]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_userptr.c
f152a38d707941f2e9a602c94298b146451a9796
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
35
36 struct i915_mm_struct {
37 struct mm_struct *mm;
38 struct drm_i915_private *i915;
39 struct i915_mmu_notifier *mn;
40 struct hlist_node node;
41 struct kref kref;
42 struct work_struct work;
43 };
44
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
47
48 struct i915_mmu_notifier {
49 spinlock_t lock;
50 struct hlist_node node;
51 struct mmu_notifier mn;
52 struct rb_root objects;
53 struct workqueue_struct *wq;
54 };
55
56 struct i915_mmu_object {
57 struct i915_mmu_notifier *mn;
58 struct drm_i915_gem_object *obj;
59 struct interval_tree_node it;
60 struct list_head link;
61 struct work_struct work;
62 bool attached;
63 };
64
65 static void cancel_userptr(struct work_struct *work)
66 {
67 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 struct drm_i915_gem_object *obj = mo->obj;
69 struct work_struct *active;
70
71 /* Cancel any active worker and force us to re-evaluate gup */
72 mutex_lock(&obj->mm.lock);
73 active = fetch_and_zero(&obj->userptr.work);
74 mutex_unlock(&obj->mm.lock);
75 if (active)
76 goto out;
77
78 i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
79
80 mutex_lock(&obj->base.dev->struct_mutex);
81
82 /* We are inside a kthread context and can't be interrupted */
83 if (i915_gem_object_unbind(obj) == 0)
84 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
85 WARN_ONCE(obj->mm.pages,
86 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
87 obj->bind_count,
88 atomic_read(&obj->mm.pages_pin_count),
89 obj->pin_display);
90
91 mutex_unlock(&obj->base.dev->struct_mutex);
92
93 out:
94 i915_gem_object_put(obj);
95 }
96
97 static void add_object(struct i915_mmu_object *mo)
98 {
99 if (mo->attached)
100 return;
101
102 interval_tree_insert(&mo->it, &mo->mn->objects);
103 mo->attached = true;
104 }
105
106 static void del_object(struct i915_mmu_object *mo)
107 {
108 if (!mo->attached)
109 return;
110
111 interval_tree_remove(&mo->it, &mo->mn->objects);
112 mo->attached = false;
113 }
114
115 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
116 struct mm_struct *mm,
117 unsigned long start,
118 unsigned long end)
119 {
120 struct i915_mmu_notifier *mn =
121 container_of(_mn, struct i915_mmu_notifier, mn);
122 struct i915_mmu_object *mo;
123 struct interval_tree_node *it;
124 LIST_HEAD(cancelled);
125
126 if (RB_EMPTY_ROOT(&mn->objects))
127 return;
128
129 /* interval ranges are inclusive, but invalidate range is exclusive */
130 end--;
131
132 spin_lock(&mn->lock);
133 it = interval_tree_iter_first(&mn->objects, start, end);
134 while (it) {
135 /* The mmu_object is released late when destroying the
136 * GEM object so it is entirely possible to gain a
137 * reference on an object in the process of being freed
138 * since our serialisation is via the spinlock and not
139 * the struct_mutex - and consequently use it after it
140 * is freed and then double free it. To prevent that
141 * use-after-free we only acquire a reference on the
142 * object if it is not in the process of being destroyed.
143 */
144 mo = container_of(it, struct i915_mmu_object, it);
145 if (kref_get_unless_zero(&mo->obj->base.refcount))
146 queue_work(mn->wq, &mo->work);
147
148 list_add(&mo->link, &cancelled);
149 it = interval_tree_iter_next(it, start, end);
150 }
151 list_for_each_entry(mo, &cancelled, link)
152 del_object(mo);
153 spin_unlock(&mn->lock);
154
155 if (!list_empty(&cancelled))
156 flush_workqueue(mn->wq);
157 }
158
159 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
160 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
161 };
162
163 static struct i915_mmu_notifier *
164 i915_mmu_notifier_create(struct mm_struct *mm)
165 {
166 struct i915_mmu_notifier *mn;
167 int ret;
168
169 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
170 if (mn == NULL)
171 return ERR_PTR(-ENOMEM);
172
173 spin_lock_init(&mn->lock);
174 mn->mn.ops = &i915_gem_userptr_notifier;
175 mn->objects = RB_ROOT;
176 mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
177 if (mn->wq == NULL) {
178 kfree(mn);
179 return ERR_PTR(-ENOMEM);
180 }
181
182 /* Protected by mmap_sem (write-lock) */
183 ret = __mmu_notifier_register(&mn->mn, mm);
184 if (ret) {
185 destroy_workqueue(mn->wq);
186 kfree(mn);
187 return ERR_PTR(ret);
188 }
189
190 return mn;
191 }
192
193 static void
194 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
195 {
196 struct i915_mmu_object *mo;
197
198 mo = obj->userptr.mmu_object;
199 if (mo == NULL)
200 return;
201
202 spin_lock(&mo->mn->lock);
203 del_object(mo);
204 spin_unlock(&mo->mn->lock);
205 kfree(mo);
206
207 obj->userptr.mmu_object = NULL;
208 }
209
210 static struct i915_mmu_notifier *
211 i915_mmu_notifier_find(struct i915_mm_struct *mm)
212 {
213 struct i915_mmu_notifier *mn = mm->mn;
214
215 mn = mm->mn;
216 if (mn)
217 return mn;
218
219 down_write(&mm->mm->mmap_sem);
220 mutex_lock(&mm->i915->mm_lock);
221 if ((mn = mm->mn) == NULL) {
222 mn = i915_mmu_notifier_create(mm->mm);
223 if (!IS_ERR(mn))
224 mm->mn = mn;
225 }
226 mutex_unlock(&mm->i915->mm_lock);
227 up_write(&mm->mm->mmap_sem);
228
229 return mn;
230 }
231
232 static int
233 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
234 unsigned flags)
235 {
236 struct i915_mmu_notifier *mn;
237 struct i915_mmu_object *mo;
238
239 if (flags & I915_USERPTR_UNSYNCHRONIZED)
240 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
241
242 if (WARN_ON(obj->userptr.mm == NULL))
243 return -EINVAL;
244
245 mn = i915_mmu_notifier_find(obj->userptr.mm);
246 if (IS_ERR(mn))
247 return PTR_ERR(mn);
248
249 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
250 if (mo == NULL)
251 return -ENOMEM;
252
253 mo->mn = mn;
254 mo->obj = obj;
255 mo->it.start = obj->userptr.ptr;
256 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
257 INIT_WORK(&mo->work, cancel_userptr);
258
259 obj->userptr.mmu_object = mo;
260 return 0;
261 }
262
263 static void
264 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
265 struct mm_struct *mm)
266 {
267 if (mn == NULL)
268 return;
269
270 mmu_notifier_unregister(&mn->mn, mm);
271 destroy_workqueue(mn->wq);
272 kfree(mn);
273 }
274
275 #else
276
277 static void
278 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
279 {
280 }
281
282 static int
283 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
284 unsigned flags)
285 {
286 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
287 return -ENODEV;
288
289 if (!capable(CAP_SYS_ADMIN))
290 return -EPERM;
291
292 return 0;
293 }
294
295 static void
296 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
297 struct mm_struct *mm)
298 {
299 }
300
301 #endif
302
303 static struct i915_mm_struct *
304 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
305 {
306 struct i915_mm_struct *mm;
307
308 /* Protected by dev_priv->mm_lock */
309 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
310 if (mm->mm == real)
311 return mm;
312
313 return NULL;
314 }
315
316 static int
317 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
318 {
319 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
320 struct i915_mm_struct *mm;
321 int ret = 0;
322
323 /* During release of the GEM object we hold the struct_mutex. This
324 * precludes us from calling mmput() at that time as that may be
325 * the last reference and so call exit_mmap(). exit_mmap() will
326 * attempt to reap the vma, and if we were holding a GTT mmap
327 * would then call drm_gem_vm_close() and attempt to reacquire
328 * the struct mutex. So in order to avoid that recursion, we have
329 * to defer releasing the mm reference until after we drop the
330 * struct_mutex, i.e. we need to schedule a worker to do the clean
331 * up.
332 */
333 mutex_lock(&dev_priv->mm_lock);
334 mm = __i915_mm_struct_find(dev_priv, current->mm);
335 if (mm == NULL) {
336 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
337 if (mm == NULL) {
338 ret = -ENOMEM;
339 goto out;
340 }
341
342 kref_init(&mm->kref);
343 mm->i915 = to_i915(obj->base.dev);
344
345 mm->mm = current->mm;
346 mmgrab(current->mm);
347
348 mm->mn = NULL;
349
350 /* Protected by dev_priv->mm_lock */
351 hash_add(dev_priv->mm_structs,
352 &mm->node, (unsigned long)mm->mm);
353 } else
354 kref_get(&mm->kref);
355
356 obj->userptr.mm = mm;
357 out:
358 mutex_unlock(&dev_priv->mm_lock);
359 return ret;
360 }
361
362 static void
363 __i915_mm_struct_free__worker(struct work_struct *work)
364 {
365 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
366 i915_mmu_notifier_free(mm->mn, mm->mm);
367 mmdrop(mm->mm);
368 kfree(mm);
369 }
370
371 static void
372 __i915_mm_struct_free(struct kref *kref)
373 {
374 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
375
376 /* Protected by dev_priv->mm_lock */
377 hash_del(&mm->node);
378 mutex_unlock(&mm->i915->mm_lock);
379
380 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
381 queue_work(mm->i915->mm.userptr_wq, &mm->work);
382 }
383
384 static void
385 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
386 {
387 if (obj->userptr.mm == NULL)
388 return;
389
390 kref_put_mutex(&obj->userptr.mm->kref,
391 __i915_mm_struct_free,
392 &to_i915(obj->base.dev)->mm_lock);
393 obj->userptr.mm = NULL;
394 }
395
396 struct get_pages_work {
397 struct work_struct work;
398 struct drm_i915_gem_object *obj;
399 struct task_struct *task;
400 };
401
402 #if IS_ENABLED(CONFIG_SWIOTLB)
403 #define swiotlb_active() swiotlb_nr_tbl()
404 #else
405 #define swiotlb_active() 0
406 #endif
407
408 static int
409 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
410 {
411 struct scatterlist *sg;
412 int ret, n;
413
414 *st = kmalloc(sizeof(**st), GFP_KERNEL);
415 if (*st == NULL)
416 return -ENOMEM;
417
418 if (swiotlb_active()) {
419 ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
420 if (ret)
421 goto err;
422
423 for_each_sg((*st)->sgl, sg, num_pages, n)
424 sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
425 } else {
426 ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
427 0, num_pages << PAGE_SHIFT,
428 GFP_KERNEL);
429 if (ret)
430 goto err;
431 }
432
433 return 0;
434
435 err:
436 kfree(*st);
437 *st = NULL;
438 return ret;
439 }
440
441 static struct sg_table *
442 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
443 struct page **pvec, int num_pages)
444 {
445 struct sg_table *pages;
446 int ret;
447
448 ret = st_set_pages(&pages, pvec, num_pages);
449 if (ret)
450 return ERR_PTR(ret);
451
452 ret = i915_gem_gtt_prepare_pages(obj, pages);
453 if (ret) {
454 sg_free_table(pages);
455 kfree(pages);
456 return ERR_PTR(ret);
457 }
458
459 return pages;
460 }
461
462 static int
463 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
464 bool value)
465 {
466 int ret = 0;
467
468 /* During mm_invalidate_range we need to cancel any userptr that
469 * overlaps the range being invalidated. Doing so requires the
470 * struct_mutex, and that risks recursion. In order to cause
471 * recursion, the user must alias the userptr address space with
472 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
473 * to invalidate that mmaping, mm_invalidate_range is called with
474 * the userptr address *and* the struct_mutex held. To prevent that
475 * we set a flag under the i915_mmu_notifier spinlock to indicate
476 * whether this object is valid.
477 */
478 #if defined(CONFIG_MMU_NOTIFIER)
479 if (obj->userptr.mmu_object == NULL)
480 return 0;
481
482 spin_lock(&obj->userptr.mmu_object->mn->lock);
483 /* In order to serialise get_pages with an outstanding
484 * cancel_userptr, we must drop the struct_mutex and try again.
485 */
486 if (!value)
487 del_object(obj->userptr.mmu_object);
488 else if (!work_pending(&obj->userptr.mmu_object->work))
489 add_object(obj->userptr.mmu_object);
490 else
491 ret = -EAGAIN;
492 spin_unlock(&obj->userptr.mmu_object->mn->lock);
493 #endif
494
495 return ret;
496 }
497
498 static void
499 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
500 {
501 struct get_pages_work *work = container_of(_work, typeof(*work), work);
502 struct drm_i915_gem_object *obj = work->obj;
503 const int npages = obj->base.size >> PAGE_SHIFT;
504 struct page **pvec;
505 int pinned, ret;
506
507 ret = -ENOMEM;
508 pinned = 0;
509
510 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_TEMPORARY);
511 if (pvec != NULL) {
512 struct mm_struct *mm = obj->userptr.mm->mm;
513 unsigned int flags = 0;
514
515 if (!obj->userptr.read_only)
516 flags |= FOLL_WRITE;
517
518 ret = -EFAULT;
519 if (mmget_not_zero(mm)) {
520 down_read(&mm->mmap_sem);
521 while (pinned < npages) {
522 ret = get_user_pages_remote
523 (work->task, mm,
524 obj->userptr.ptr + pinned * PAGE_SIZE,
525 npages - pinned,
526 flags,
527 pvec + pinned, NULL, NULL);
528 if (ret < 0)
529 break;
530
531 pinned += ret;
532 }
533 up_read(&mm->mmap_sem);
534 mmput(mm);
535 }
536 }
537
538 mutex_lock(&obj->mm.lock);
539 if (obj->userptr.work == &work->work) {
540 struct sg_table *pages = ERR_PTR(ret);
541
542 if (pinned == npages) {
543 pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
544 if (!IS_ERR(pages)) {
545 __i915_gem_object_set_pages(obj, pages);
546 pinned = 0;
547 pages = NULL;
548 }
549 }
550
551 obj->userptr.work = ERR_CAST(pages);
552 if (IS_ERR(pages))
553 __i915_gem_userptr_set_active(obj, false);
554 }
555 mutex_unlock(&obj->mm.lock);
556
557 release_pages(pvec, pinned, 0);
558 kvfree(pvec);
559
560 i915_gem_object_put(obj);
561 put_task_struct(work->task);
562 kfree(work);
563 }
564
565 static struct sg_table *
566 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
567 {
568 struct get_pages_work *work;
569
570 /* Spawn a worker so that we can acquire the
571 * user pages without holding our mutex. Access
572 * to the user pages requires mmap_sem, and we have
573 * a strict lock ordering of mmap_sem, struct_mutex -
574 * we already hold struct_mutex here and so cannot
575 * call gup without encountering a lock inversion.
576 *
577 * Userspace will keep on repeating the operation
578 * (thanks to EAGAIN) until either we hit the fast
579 * path or the worker completes. If the worker is
580 * cancelled or superseded, the task is still run
581 * but the results ignored. (This leads to
582 * complications that we may have a stray object
583 * refcount that we need to be wary of when
584 * checking for existing objects during creation.)
585 * If the worker encounters an error, it reports
586 * that error back to this function through
587 * obj->userptr.work = ERR_PTR.
588 */
589 work = kmalloc(sizeof(*work), GFP_KERNEL);
590 if (work == NULL)
591 return ERR_PTR(-ENOMEM);
592
593 obj->userptr.work = &work->work;
594
595 work->obj = i915_gem_object_get(obj);
596
597 work->task = current;
598 get_task_struct(work->task);
599
600 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
601 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
602
603 return ERR_PTR(-EAGAIN);
604 }
605
606 static struct sg_table *
607 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
608 {
609 const int num_pages = obj->base.size >> PAGE_SHIFT;
610 struct mm_struct *mm = obj->userptr.mm->mm;
611 struct page **pvec;
612 struct sg_table *pages;
613 bool active;
614 int pinned;
615
616 /* If userspace should engineer that these pages are replaced in
617 * the vma between us binding this page into the GTT and completion
618 * of rendering... Their loss. If they change the mapping of their
619 * pages they need to create a new bo to point to the new vma.
620 *
621 * However, that still leaves open the possibility of the vma
622 * being copied upon fork. Which falls under the same userspace
623 * synchronisation issue as a regular bo, except that this time
624 * the process may not be expecting that a particular piece of
625 * memory is tied to the GPU.
626 *
627 * Fortunately, we can hook into the mmu_notifier in order to
628 * discard the page references prior to anything nasty happening
629 * to the vma (discard or cloning) which should prevent the more
630 * egregious cases from causing harm.
631 */
632
633 if (obj->userptr.work) {
634 /* active flag should still be held for the pending work */
635 if (IS_ERR(obj->userptr.work))
636 return ERR_CAST(obj->userptr.work);
637 else
638 return ERR_PTR(-EAGAIN);
639 }
640
641 pvec = NULL;
642 pinned = 0;
643
644 if (mm == current->mm) {
645 pvec = kvmalloc_array(num_pages, sizeof(struct page *),
646 GFP_TEMPORARY |
647 __GFP_NORETRY |
648 __GFP_NOWARN);
649 if (pvec) /* defer to worker if malloc fails */
650 pinned = __get_user_pages_fast(obj->userptr.ptr,
651 num_pages,
652 !obj->userptr.read_only,
653 pvec);
654 }
655
656 active = false;
657 if (pinned < 0) {
658 pages = ERR_PTR(pinned);
659 pinned = 0;
660 } else if (pinned < num_pages) {
661 pages = __i915_gem_userptr_get_pages_schedule(obj);
662 active = pages == ERR_PTR(-EAGAIN);
663 } else {
664 pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
665 active = !IS_ERR(pages);
666 }
667 if (active)
668 __i915_gem_userptr_set_active(obj, true);
669
670 if (IS_ERR(pages))
671 release_pages(pvec, pinned, 0);
672 kvfree(pvec);
673
674 return pages;
675 }
676
677 static void
678 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
679 struct sg_table *pages)
680 {
681 struct sgt_iter sgt_iter;
682 struct page *page;
683
684 BUG_ON(obj->userptr.work != NULL);
685 __i915_gem_userptr_set_active(obj, false);
686
687 if (obj->mm.madv != I915_MADV_WILLNEED)
688 obj->mm.dirty = false;
689
690 i915_gem_gtt_finish_pages(obj, pages);
691
692 for_each_sgt_page(page, sgt_iter, pages) {
693 if (obj->mm.dirty)
694 set_page_dirty(page);
695
696 mark_page_accessed(page);
697 put_page(page);
698 }
699 obj->mm.dirty = false;
700
701 sg_free_table(pages);
702 kfree(pages);
703 }
704
705 static void
706 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
707 {
708 i915_gem_userptr_release__mmu_notifier(obj);
709 i915_gem_userptr_release__mm_struct(obj);
710 }
711
712 static int
713 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
714 {
715 if (obj->userptr.mmu_object)
716 return 0;
717
718 return i915_gem_userptr_init__mmu_notifier(obj, 0);
719 }
720
721 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
722 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
723 I915_GEM_OBJECT_IS_SHRINKABLE,
724 .get_pages = i915_gem_userptr_get_pages,
725 .put_pages = i915_gem_userptr_put_pages,
726 .dmabuf_export = i915_gem_userptr_dmabuf_export,
727 .release = i915_gem_userptr_release,
728 };
729
730 /**
731 * Creates a new mm object that wraps some normal memory from the process
732 * context - user memory.
733 *
734 * We impose several restrictions upon the memory being mapped
735 * into the GPU.
736 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
737 * 2. It must be normal system memory, not a pointer into another map of IO
738 * space (e.g. it must not be a GTT mmapping of another object).
739 * 3. We only allow a bo as large as we could in theory map into the GTT,
740 * that is we limit the size to the total size of the GTT.
741 * 4. The bo is marked as being snoopable. The backing pages are left
742 * accessible directly by the CPU, but reads and writes by the GPU may
743 * incur the cost of a snoop (unless you have an LLC architecture).
744 *
745 * Synchronisation between multiple users and the GPU is left to userspace
746 * through the normal set-domain-ioctl. The kernel will enforce that the
747 * GPU relinquishes the VMA before it is returned back to the system
748 * i.e. upon free(), munmap() or process termination. However, the userspace
749 * malloc() library may not immediately relinquish the VMA after free() and
750 * instead reuse it whilst the GPU is still reading and writing to the VMA.
751 * Caveat emptor.
752 *
753 * Also note, that the object created here is not currently a "first class"
754 * object, in that several ioctls are banned. These are the CPU access
755 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
756 * direct access via your pointer rather than use those ioctls. Another
757 * restriction is that we do not allow userptr surfaces to be pinned to the
758 * hardware and so we reject any attempt to create a framebuffer out of a
759 * userptr.
760 *
761 * If you think this is a good interface to use to pass GPU memory between
762 * drivers, please use dma-buf instead. In fact, wherever possible use
763 * dma-buf instead.
764 */
765 int
766 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct drm_i915_gem_userptr *args = data;
770 struct drm_i915_gem_object *obj;
771 int ret;
772 u32 handle;
773
774 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
775 /* We cannot support coherent userptr objects on hw without
776 * LLC and broken snooping.
777 */
778 return -ENODEV;
779 }
780
781 if (args->flags & ~(I915_USERPTR_READ_ONLY |
782 I915_USERPTR_UNSYNCHRONIZED))
783 return -EINVAL;
784
785 if (offset_in_page(args->user_ptr | args->user_size))
786 return -EINVAL;
787
788 if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
789 (char __user *)(unsigned long)args->user_ptr, args->user_size))
790 return -EFAULT;
791
792 if (args->flags & I915_USERPTR_READ_ONLY) {
793 /* On almost all of the current hw, we cannot tell the GPU that a
794 * page is readonly, so this is just a placeholder in the uAPI.
795 */
796 return -ENODEV;
797 }
798
799 obj = i915_gem_object_alloc(dev_priv);
800 if (obj == NULL)
801 return -ENOMEM;
802
803 drm_gem_private_object_init(dev, &obj->base, args->user_size);
804 i915_gem_object_init(obj, &i915_gem_userptr_ops);
805 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
806 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
807 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
808
809 obj->userptr.ptr = args->user_ptr;
810 obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
811
812 /* And keep a pointer to the current->mm for resolving the user pages
813 * at binding. This means that we need to hook into the mmu_notifier
814 * in order to detect if the mmu is destroyed.
815 */
816 ret = i915_gem_userptr_init__mm_struct(obj);
817 if (ret == 0)
818 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
819 if (ret == 0)
820 ret = drm_gem_handle_create(file, &obj->base, &handle);
821
822 /* drop reference from allocate - handle holds it now */
823 i915_gem_object_put(obj);
824 if (ret)
825 return ret;
826
827 args->handle = handle;
828 return 0;
829 }
830
831 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
832 {
833 mutex_init(&dev_priv->mm_lock);
834 hash_init(dev_priv->mm_structs);
835
836 dev_priv->mm.userptr_wq =
837 alloc_workqueue("i915-userptr-acquire", WQ_HIGHPRI, 0);
838 if (!dev_priv->mm.userptr_wq)
839 return -ENOMEM;
840
841 return 0;
842 }
843
844 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
845 {
846 destroy_workqueue(dev_priv->mm.userptr_wq);
847 }