]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_guc_submission.c
drm/amdkfd: Improve multiple SDMA queues support per process
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_guc_submission.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24 #include <linux/circ_buf.h>
25 #include "i915_drv.h"
26 #include "intel_uc.h"
27
28 #include <trace/events/dma_fence.h>
29
30 /**
31 * DOC: GuC-based command submission
32 *
33 * GuC client:
34 * A i915_guc_client refers to a submission path through GuC. Currently, there
35 * is only one of these (the execbuf_client) and this one is charged with all
36 * submissions to the GuC. This struct is the owner of a doorbell, a process
37 * descriptor and a workqueue (all of them inside a single gem object that
38 * contains all required pages for these elements).
39 *
40 * GuC stage descriptor:
41 * During initialization, the driver allocates a static pool of 1024 such
42 * descriptors, and shares them with the GuC.
43 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 * guc_stage_desc (via the client's stage_id), so effectively only one
45 * gets used. This stage descriptor lets the GuC know about the doorbell,
46 * workqueue and process descriptor. Theoretically, it also lets the GuC
47 * know about our HW contexts (context ID, etc...), but we actually
48 * employ a kind of submission where the GuC uses the LRCA sent via the work
49 * item instead (the single guc_stage_desc associated to execbuf client
50 * contains information about the default kernel context only, but this is
51 * essentially unused). This is called a "proxy" submission.
52 *
53 * The Scratch registers:
54 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
55 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
56 * triggers an interrupt on the GuC via another register write (0xC4C8).
57 * Firmware writes a success/fail code back to the action register after
58 * processes the request. The kernel driver polls waiting for this update and
59 * then proceeds.
60 * See intel_guc_send()
61 *
62 * Doorbells:
63 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
64 * mapped into process space.
65 *
66 * Work Items:
67 * There are several types of work items that the host may place into a
68 * workqueue, each with its own requirements and limitations. Currently only
69 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
70 * represents in-order queue. The kernel driver packs ring tail pointer and an
71 * ELSP context descriptor dword into Work Item.
72 * See guc_wq_item_append()
73 *
74 * ADS:
75 * The Additional Data Struct (ADS) has pointers for different buffers used by
76 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
77 * scheduling policies (guc_policies), a structure describing a collection of
78 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
79 * its internal state for sleep.
80 *
81 */
82
83 static inline bool is_high_priority(struct i915_guc_client* client)
84 {
85 return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 }
87
88 static int __reserve_doorbell(struct i915_guc_client *client)
89 {
90 unsigned long offset;
91 unsigned long end;
92 u16 id;
93
94 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
95
96 /*
97 * The bitmap tracks which doorbell registers are currently in use.
98 * It is split into two halves; the first half is used for normal
99 * priority contexts, the second half for high-priority ones.
100 */
101 offset = 0;
102 end = GUC_NUM_DOORBELLS/2;
103 if (is_high_priority(client)) {
104 offset = end;
105 end += offset;
106 }
107
108 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
109 if (id == end)
110 return -ENOSPC;
111
112 __set_bit(id, client->guc->doorbell_bitmap);
113 client->doorbell_id = id;
114 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115 client->stage_id, yesno(is_high_priority(client)),
116 id);
117 return 0;
118 }
119
120 static void __unreserve_doorbell(struct i915_guc_client *client)
121 {
122 GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
123
124 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
125 client->doorbell_id = GUC_DOORBELL_INVALID;
126 }
127
128 /*
129 * Tell the GuC to allocate or deallocate a specific doorbell
130 */
131
132 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133 {
134 u32 action[] = {
135 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136 stage_id
137 };
138
139 return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 }
141
142 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143 {
144 u32 action[] = {
145 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146 stage_id
147 };
148
149 return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 }
151
152 static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153 {
154 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155
156 return &base[client->stage_id];
157 }
158
159 /*
160 * Initialise, update, or clear doorbell data shared with the GuC
161 *
162 * These functions modify shared data and so need access to the mapped
163 * client object which contains the page being used for the doorbell
164 */
165
166 static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167 {
168 struct guc_stage_desc *desc;
169
170 /* Update the GuC's idea of the doorbell ID */
171 desc = __get_stage_desc(client);
172 desc->db_id = new_id;
173 }
174
175 static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
176 {
177 return client->vaddr + client->doorbell_offset;
178 }
179
180 static bool has_doorbell(struct i915_guc_client *client)
181 {
182 if (client->doorbell_id == GUC_DOORBELL_INVALID)
183 return false;
184
185 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
186 }
187
188 static int __create_doorbell(struct i915_guc_client *client)
189 {
190 struct guc_doorbell_info *doorbell;
191 int err;
192
193 doorbell = __get_doorbell(client);
194 doorbell->db_status = GUC_DOORBELL_ENABLED;
195 doorbell->cookie = 0;
196
197 err = __guc_allocate_doorbell(client->guc, client->stage_id);
198 if (err)
199 doorbell->db_status = GUC_DOORBELL_DISABLED;
200
201 return err;
202 }
203
204 static int __destroy_doorbell(struct i915_guc_client *client)
205 {
206 struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
207 struct guc_doorbell_info *doorbell;
208 u16 db_id = client->doorbell_id;
209
210 GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
211
212 doorbell = __get_doorbell(client);
213 doorbell->db_status = GUC_DOORBELL_DISABLED;
214 doorbell->cookie = 0;
215
216 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
217 * to go to zero after updating db_status before we call the GuC to
218 * release the doorbell */
219 if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
220 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
221
222 return __guc_deallocate_doorbell(client->guc, client->stage_id);
223 }
224
225 static int create_doorbell(struct i915_guc_client *client)
226 {
227 int ret;
228
229 ret = __reserve_doorbell(client);
230 if (ret)
231 return ret;
232
233 __update_doorbell_desc(client, client->doorbell_id);
234
235 ret = __create_doorbell(client);
236 if (ret)
237 goto err;
238
239 return 0;
240
241 err:
242 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
243 __unreserve_doorbell(client);
244 return ret;
245 }
246
247 static int destroy_doorbell(struct i915_guc_client *client)
248 {
249 int err;
250
251 GEM_BUG_ON(!has_doorbell(client));
252
253 /* XXX: wait for any interrupts */
254 /* XXX: wait for workqueue to drain */
255
256 err = __destroy_doorbell(client);
257 if (err)
258 return err;
259
260 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
261
262 __unreserve_doorbell(client);
263
264 return 0;
265 }
266
267 static unsigned long __select_cacheline(struct intel_guc* guc)
268 {
269 unsigned long offset;
270
271 /* Doorbell uses a single cache line within a page */
272 offset = offset_in_page(guc->db_cacheline);
273
274 /* Moving to next cache line to reduce contention */
275 guc->db_cacheline += cache_line_size();
276
277 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
278 offset, guc->db_cacheline, cache_line_size());
279 return offset;
280 }
281
282 static inline struct guc_process_desc *
283 __get_process_desc(struct i915_guc_client *client)
284 {
285 return client->vaddr + client->proc_desc_offset;
286 }
287
288 /*
289 * Initialise the process descriptor shared with the GuC firmware.
290 */
291 static void guc_proc_desc_init(struct intel_guc *guc,
292 struct i915_guc_client *client)
293 {
294 struct guc_process_desc *desc;
295
296 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
297
298 /*
299 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
300 * space for ring3 clients (set them as in mmap_ioctl) or kernel
301 * space for kernel clients (map on demand instead? May make debug
302 * easier to have it mapped).
303 */
304 desc->wq_base_addr = 0;
305 desc->db_base_addr = 0;
306
307 desc->stage_id = client->stage_id;
308 desc->wq_size_bytes = GUC_WQ_SIZE;
309 desc->wq_status = WQ_STATUS_ACTIVE;
310 desc->priority = client->priority;
311 }
312
313 /*
314 * Initialise/clear the stage descriptor shared with the GuC firmware.
315 *
316 * This descriptor tells the GuC where (in GGTT space) to find the important
317 * data structures relating to this client (doorbell, process descriptor,
318 * write queue, etc).
319 */
320 static void guc_stage_desc_init(struct intel_guc *guc,
321 struct i915_guc_client *client)
322 {
323 struct drm_i915_private *dev_priv = guc_to_i915(guc);
324 struct intel_engine_cs *engine;
325 struct i915_gem_context *ctx = client->owner;
326 struct guc_stage_desc *desc;
327 unsigned int tmp;
328 u32 gfx_addr;
329
330 desc = __get_stage_desc(client);
331 memset(desc, 0, sizeof(*desc));
332
333 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
334 desc->stage_id = client->stage_id;
335 desc->priority = client->priority;
336 desc->db_id = client->doorbell_id;
337
338 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
339 struct intel_context *ce = &ctx->engine[engine->id];
340 uint32_t guc_engine_id = engine->guc_id;
341 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
342
343 /* TODO: We have a design issue to be solved here. Only when we
344 * receive the first batch, we know which engine is used by the
345 * user. But here GuC expects the lrc and ring to be pinned. It
346 * is not an issue for default context, which is the only one
347 * for now who owns a GuC client. But for future owner of GuC
348 * client, need to make sure lrc is pinned prior to enter here.
349 */
350 if (!ce->state)
351 break; /* XXX: continue? */
352
353 /*
354 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
355 * submission or, in other words, not using a direct submission
356 * model) the KMD's LRCA is not used for any work submission.
357 * Instead, the GuC uses the LRCA of the user mode context (see
358 * guc_wq_item_append below).
359 */
360 lrc->context_desc = lower_32_bits(ce->lrc_desc);
361
362 /* The state page is after PPHWSP */
363 lrc->ring_lrca =
364 guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
365
366 /* XXX: In direct submission, the GuC wants the HW context id
367 * here. In proxy submission, it wants the stage id */
368 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
369 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
370
371 lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
372 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
373 lrc->ring_next_free_location = lrc->ring_begin;
374 lrc->ring_current_tail_pointer_value = 0;
375
376 desc->engines_used |= (1 << guc_engine_id);
377 }
378
379 DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
380 client->engines, desc->engines_used);
381 WARN_ON(desc->engines_used == 0);
382
383 /*
384 * The doorbell, process descriptor, and workqueue are all parts
385 * of the client object, which the GuC will reference via the GGTT
386 */
387 gfx_addr = guc_ggtt_offset(client->vma);
388 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
389 client->doorbell_offset;
390 desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
391 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
392 desc->process_desc = gfx_addr + client->proc_desc_offset;
393 desc->wq_addr = gfx_addr + GUC_DB_SIZE;
394 desc->wq_size = GUC_WQ_SIZE;
395
396 desc->desc_private = (uintptr_t)client;
397 }
398
399 static void guc_stage_desc_fini(struct intel_guc *guc,
400 struct i915_guc_client *client)
401 {
402 struct guc_stage_desc *desc;
403
404 desc = __get_stage_desc(client);
405 memset(desc, 0, sizeof(*desc));
406 }
407
408 /* Construct a Work Item and append it to the GuC's Work Queue */
409 static void guc_wq_item_append(struct i915_guc_client *client,
410 struct drm_i915_gem_request *rq)
411 {
412 /* wqi_len is in DWords, and does not include the one-word header */
413 const size_t wqi_size = sizeof(struct guc_wq_item);
414 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
415 struct intel_engine_cs *engine = rq->engine;
416 struct i915_gem_context *ctx = rq->ctx;
417 struct guc_process_desc *desc = __get_process_desc(client);
418 struct guc_wq_item *wqi;
419 u32 ring_tail, wq_off;
420
421 lockdep_assert_held(&client->wq_lock);
422
423 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
424 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
425
426 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
427 * should not have the case where structure wqi is across page, neither
428 * wrapped to the beginning. This simplifies the implementation below.
429 *
430 * XXX: if not the case, we need save data to a temp wqi and copy it to
431 * workqueue buffer dw by dw.
432 */
433 BUILD_BUG_ON(wqi_size != 16);
434
435 /* Free space is guaranteed. */
436 wq_off = READ_ONCE(desc->tail);
437 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
438 GUC_WQ_SIZE) < wqi_size);
439 GEM_BUG_ON(wq_off & (wqi_size - 1));
440
441 /* WQ starts from the page after doorbell / process_desc */
442 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
443
444 /* Now fill in the 4-word work queue item */
445 wqi->header = WQ_TYPE_INORDER |
446 (wqi_len << WQ_LEN_SHIFT) |
447 (engine->guc_id << WQ_TARGET_SHIFT) |
448 WQ_NO_WCFLUSH_WAIT;
449
450 wqi->context_desc = lower_32_bits(intel_lr_context_descriptor(ctx, engine));
451
452 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
453 wqi->fence_id = rq->global_seqno;
454
455 /* Postincrement WQ tail for next time. */
456 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
457 }
458
459 static void guc_reset_wq(struct i915_guc_client *client)
460 {
461 struct guc_process_desc *desc = __get_process_desc(client);
462
463 desc->head = 0;
464 desc->tail = 0;
465 }
466
467 static void guc_ring_doorbell(struct i915_guc_client *client)
468 {
469 struct guc_doorbell_info *db;
470 u32 cookie;
471
472 lockdep_assert_held(&client->wq_lock);
473
474 /* pointer of current doorbell cacheline */
475 db = __get_doorbell(client);
476
477 /* we're not expecting the doorbell cookie to change behind our back */
478 cookie = READ_ONCE(db->cookie);
479 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1) != cookie);
480
481 /* XXX: doorbell was lost and need to acquire it again */
482 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
483 }
484
485 /**
486 * i915_guc_submit() - Submit commands through GuC
487 * @engine: engine associated with the commands
488 *
489 * The only error here arises if the doorbell hardware isn't functioning
490 * as expected, which really shouln't happen.
491 */
492 static void i915_guc_submit(struct intel_engine_cs *engine)
493 {
494 struct drm_i915_private *dev_priv = engine->i915;
495 struct intel_guc *guc = &dev_priv->guc;
496 struct i915_guc_client *client = guc->execbuf_client;
497 struct intel_engine_execlists * const execlists = &engine->execlists;
498 struct execlist_port *port = execlists->port;
499 const unsigned int engine_id = engine->id;
500 unsigned int n;
501
502 for (n = 0; n < ARRAY_SIZE(execlists->port); n++) {
503 struct drm_i915_gem_request *rq;
504 unsigned int count;
505
506 rq = port_unpack(&port[n], &count);
507 if (rq && count == 0) {
508 port_set(&port[n], port_pack(rq, ++count));
509
510 if (i915_vma_is_map_and_fenceable(rq->ring->vma))
511 POSTING_READ_FW(GUC_STATUS);
512
513 spin_lock(&client->wq_lock);
514
515 guc_wq_item_append(client, rq);
516 guc_ring_doorbell(client);
517
518 client->submissions[engine_id] += 1;
519
520 spin_unlock(&client->wq_lock);
521 }
522 }
523 }
524
525 static void nested_enable_signaling(struct drm_i915_gem_request *rq)
526 {
527 /* If we use dma_fence_enable_sw_signaling() directly, lockdep
528 * detects an ordering issue between the fence lockclass and the
529 * global_timeline. This circular dependency can only occur via 2
530 * different fences (but same fence lockclass), so we use the nesting
531 * annotation here to prevent the warn, equivalent to the nesting
532 * inside i915_gem_request_submit() for when we also enable the
533 * signaler.
534 */
535
536 if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
537 &rq->fence.flags))
538 return;
539
540 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
541 trace_dma_fence_enable_signal(&rq->fence);
542
543 spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
544 intel_engine_enable_signaling(rq, true);
545 spin_unlock(&rq->lock);
546 }
547
548 static void port_assign(struct execlist_port *port,
549 struct drm_i915_gem_request *rq)
550 {
551 GEM_BUG_ON(rq == port_request(port));
552
553 if (port_isset(port))
554 i915_gem_request_put(port_request(port));
555
556 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
557 nested_enable_signaling(rq);
558 }
559
560 static void i915_guc_dequeue(struct intel_engine_cs *engine)
561 {
562 struct intel_engine_execlists * const execlists = &engine->execlists;
563 struct execlist_port *port = execlists->port;
564 struct drm_i915_gem_request *last = NULL;
565 const struct execlist_port * const last_port =
566 &execlists->port[execlists->port_mask];
567 bool submit = false;
568 struct rb_node *rb;
569
570 if (port_isset(port))
571 port++;
572
573 spin_lock_irq(&engine->timeline->lock);
574 rb = execlists->first;
575 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
576 while (rb) {
577 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
578 struct drm_i915_gem_request *rq, *rn;
579
580 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
581 if (last && rq->ctx != last->ctx) {
582 if (port == last_port) {
583 __list_del_many(&p->requests,
584 &rq->priotree.link);
585 goto done;
586 }
587
588 if (submit)
589 port_assign(port, last);
590 port++;
591 }
592
593 INIT_LIST_HEAD(&rq->priotree.link);
594 rq->priotree.priority = INT_MAX;
595
596 __i915_gem_request_submit(rq);
597 trace_i915_gem_request_in(rq, port_index(port, execlists));
598 last = rq;
599 submit = true;
600 }
601
602 rb = rb_next(rb);
603 rb_erase(&p->node, &execlists->queue);
604 INIT_LIST_HEAD(&p->requests);
605 if (p->priority != I915_PRIORITY_NORMAL)
606 kmem_cache_free(engine->i915->priorities, p);
607 }
608 done:
609 execlists->first = rb;
610 if (submit) {
611 port_assign(port, last);
612 i915_guc_submit(engine);
613 }
614 spin_unlock_irq(&engine->timeline->lock);
615 }
616
617 static void i915_guc_irq_handler(unsigned long data)
618 {
619 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
620 struct intel_engine_execlists * const execlists = &engine->execlists;
621 struct execlist_port *port = execlists->port;
622 const struct execlist_port * const last_port =
623 &execlists->port[execlists->port_mask];
624 struct drm_i915_gem_request *rq;
625
626 rq = port_request(&port[0]);
627 while (rq && i915_gem_request_completed(rq)) {
628 trace_i915_gem_request_out(rq);
629 i915_gem_request_put(rq);
630
631 execlists_port_complete(execlists, port);
632
633 rq = port_request(&port[0]);
634 }
635
636 if (!port_isset(last_port))
637 i915_guc_dequeue(engine);
638 }
639
640 /*
641 * Everything below here is concerned with setup & teardown, and is
642 * therefore not part of the somewhat time-critical batch-submission
643 * path of i915_guc_submit() above.
644 */
645
646 /**
647 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
648 * @guc: the guc
649 * @size: size of area to allocate (both virtual space and memory)
650 *
651 * This is a wrapper to create an object for use with the GuC. In order to
652 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
653 * both some backing storage and a range inside the Global GTT. We must pin
654 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
655 * range is reserved inside GuC.
656 *
657 * Return: A i915_vma if successful, otherwise an ERR_PTR.
658 */
659 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
660 {
661 struct drm_i915_private *dev_priv = guc_to_i915(guc);
662 struct drm_i915_gem_object *obj;
663 struct i915_vma *vma;
664 int ret;
665
666 obj = i915_gem_object_create(dev_priv, size);
667 if (IS_ERR(obj))
668 return ERR_CAST(obj);
669
670 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
671 if (IS_ERR(vma))
672 goto err;
673
674 ret = i915_vma_pin(vma, 0, PAGE_SIZE,
675 PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
676 if (ret) {
677 vma = ERR_PTR(ret);
678 goto err;
679 }
680
681 return vma;
682
683 err:
684 i915_gem_object_put(obj);
685 return vma;
686 }
687
688 /* Check that a doorbell register is in the expected state */
689 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
690 {
691 struct drm_i915_private *dev_priv = guc_to_i915(guc);
692 u32 drbregl;
693 bool valid;
694
695 GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
696
697 drbregl = I915_READ(GEN8_DRBREGL(db_id));
698 valid = drbregl & GEN8_DRB_VALID;
699
700 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
701 return true;
702
703 DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
704 db_id, drbregl, yesno(valid));
705
706 return false;
707 }
708
709 /*
710 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
711 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
712 * doorbell to the rightful owner.
713 */
714 static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
715 {
716 int err;
717
718 __update_doorbell_desc(client, db_id);
719 err = __create_doorbell(client);
720 if (!err)
721 err = __destroy_doorbell(client);
722
723 return err;
724 }
725
726 /*
727 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
728 * HW is (re)initialised. For that end, we might have to borrow the first
729 * client. Also, tell GuC about all the doorbells in use by all clients.
730 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
731 * sync (e.g. we can reset the GuC, but not the doorbel HW).
732 */
733 static int guc_init_doorbell_hw(struct intel_guc *guc)
734 {
735 struct i915_guc_client *client = guc->execbuf_client;
736 bool recreate_first_client = false;
737 u16 db_id;
738 int ret;
739
740 /* For unused doorbells, make sure they are disabled */
741 for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
742 if (doorbell_ok(guc, db_id))
743 continue;
744
745 if (has_doorbell(client)) {
746 /* Borrow execbuf_client (we will recreate it later) */
747 destroy_doorbell(client);
748 recreate_first_client = true;
749 }
750
751 ret = __reset_doorbell(client, db_id);
752 WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
753 }
754
755 if (recreate_first_client) {
756 ret = __reserve_doorbell(client);
757 if (unlikely(ret)) {
758 DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
759 return ret;
760 }
761
762 __update_doorbell_desc(client, client->doorbell_id);
763 }
764
765 /* Now for every client (and not only execbuf_client) make sure their
766 * doorbells are known by the GuC */
767 //for (client = client_list; client != NULL; client = client->next)
768 {
769 ret = __create_doorbell(client);
770 if (ret) {
771 DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
772 client->stage_id, ret);
773 return ret;
774 }
775 }
776
777 /* Read back & verify all (used & unused) doorbell registers */
778 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
779 WARN_ON(!doorbell_ok(guc, db_id));
780
781 return 0;
782 }
783
784 /**
785 * guc_client_alloc() - Allocate an i915_guc_client
786 * @dev_priv: driver private data structure
787 * @engines: The set of engines to enable for this client
788 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
789 * The kernel client to replace ExecList submission is created with
790 * NORMAL priority. Priority of a client for scheduler can be HIGH,
791 * while a preemption context can use CRITICAL.
792 * @ctx: the context that owns the client (we use the default render
793 * context)
794 *
795 * Return: An i915_guc_client object if success, else NULL.
796 */
797 static struct i915_guc_client *
798 guc_client_alloc(struct drm_i915_private *dev_priv,
799 uint32_t engines,
800 uint32_t priority,
801 struct i915_gem_context *ctx)
802 {
803 struct i915_guc_client *client;
804 struct intel_guc *guc = &dev_priv->guc;
805 struct i915_vma *vma;
806 void *vaddr;
807 int ret;
808
809 client = kzalloc(sizeof(*client), GFP_KERNEL);
810 if (!client)
811 return ERR_PTR(-ENOMEM);
812
813 client->guc = guc;
814 client->owner = ctx;
815 client->engines = engines;
816 client->priority = priority;
817 client->doorbell_id = GUC_DOORBELL_INVALID;
818 spin_lock_init(&client->wq_lock);
819
820 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
821 GFP_KERNEL);
822 if (ret < 0)
823 goto err_client;
824
825 client->stage_id = ret;
826
827 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
828 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
829 if (IS_ERR(vma)) {
830 ret = PTR_ERR(vma);
831 goto err_id;
832 }
833
834 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
835 client->vma = vma;
836
837 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
838 if (IS_ERR(vaddr)) {
839 ret = PTR_ERR(vaddr);
840 goto err_vma;
841 }
842 client->vaddr = vaddr;
843
844 client->doorbell_offset = __select_cacheline(guc);
845
846 /*
847 * Since the doorbell only requires a single cacheline, we can save
848 * space by putting the application process descriptor in the same
849 * page. Use the half of the page that doesn't include the doorbell.
850 */
851 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
852 client->proc_desc_offset = 0;
853 else
854 client->proc_desc_offset = (GUC_DB_SIZE / 2);
855
856 guc_proc_desc_init(guc, client);
857 guc_stage_desc_init(guc, client);
858
859 ret = create_doorbell(client);
860 if (ret)
861 goto err_vaddr;
862
863 DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
864 priority, client, client->engines, client->stage_id);
865 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
866 client->doorbell_id, client->doorbell_offset);
867
868 return client;
869
870 err_vaddr:
871 i915_gem_object_unpin_map(client->vma->obj);
872 err_vma:
873 i915_vma_unpin_and_release(&client->vma);
874 err_id:
875 ida_simple_remove(&guc->stage_ids, client->stage_id);
876 err_client:
877 kfree(client);
878 return ERR_PTR(ret);
879 }
880
881 static void guc_client_free(struct i915_guc_client *client)
882 {
883 /*
884 * XXX: wait for any outstanding submissions before freeing memory.
885 * Be sure to drop any locks
886 */
887
888 /* FIXME: in many cases, by the time we get here the GuC has been
889 * reset, so we cannot destroy the doorbell properly. Ignore the
890 * error message for now */
891 destroy_doorbell(client);
892 guc_stage_desc_fini(client->guc, client);
893 i915_gem_object_unpin_map(client->vma->obj);
894 i915_vma_unpin_and_release(&client->vma);
895 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
896 kfree(client);
897 }
898
899 static void guc_policy_init(struct guc_policy *policy)
900 {
901 policy->execution_quantum = POLICY_DEFAULT_EXECUTION_QUANTUM_US;
902 policy->preemption_time = POLICY_DEFAULT_PREEMPTION_TIME_US;
903 policy->fault_time = POLICY_DEFAULT_FAULT_TIME_US;
904 policy->policy_flags = 0;
905 }
906
907 static void guc_policies_init(struct guc_policies *policies)
908 {
909 struct guc_policy *policy;
910 u32 p, i;
911
912 policies->dpc_promote_time = POLICY_DEFAULT_DPC_PROMOTE_TIME_US;
913 policies->max_num_work_items = POLICY_MAX_NUM_WI;
914
915 for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
916 for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
917 policy = &policies->policy[p][i];
918
919 guc_policy_init(policy);
920 }
921 }
922
923 policies->is_valid = 1;
924 }
925
926 /*
927 * The first 80 dwords of the register state context, containing the
928 * execlists and ppgtt registers.
929 */
930 #define LR_HW_CONTEXT_SIZE (80 * sizeof(u32))
931
932 static int guc_ads_create(struct intel_guc *guc)
933 {
934 struct drm_i915_private *dev_priv = guc_to_i915(guc);
935 struct i915_vma *vma;
936 struct page *page;
937 /* The ads obj includes the struct itself and buffers passed to GuC */
938 struct {
939 struct guc_ads ads;
940 struct guc_policies policies;
941 struct guc_mmio_reg_state reg_state;
942 u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
943 } __packed *blob;
944 struct intel_engine_cs *engine;
945 enum intel_engine_id id;
946 const u32 skipped_offset = LRC_HEADER_PAGES * PAGE_SIZE;
947 const u32 skipped_size = LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SIZE;
948 u32 base;
949
950 GEM_BUG_ON(guc->ads_vma);
951
952 vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
953 if (IS_ERR(vma))
954 return PTR_ERR(vma);
955
956 guc->ads_vma = vma;
957
958 page = i915_vma_first_page(vma);
959 blob = kmap(page);
960
961 /* GuC scheduling policies */
962 guc_policies_init(&blob->policies);
963
964 /* MMIO reg state */
965 for_each_engine(engine, dev_priv, id) {
966 blob->reg_state.white_list[engine->guc_id].mmio_start =
967 engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
968
969 /* Nothing to be saved or restored for now. */
970 blob->reg_state.white_list[engine->guc_id].count = 0;
971 }
972
973 /*
974 * The GuC requires a "Golden Context" when it reinitialises
975 * engines after a reset. Here we use the Render ring default
976 * context, which must already exist and be pinned in the GGTT,
977 * so its address won't change after we've told the GuC where
978 * to find it. Note that we have to skip our header (1 page),
979 * because our GuC shared data is there.
980 */
981 blob->ads.golden_context_lrca =
982 guc_ggtt_offset(dev_priv->kernel_context->engine[RCS].state) + skipped_offset;
983
984 /*
985 * The GuC expects us to exclude the portion of the context image that
986 * it skips from the size it is to read. It starts reading from after
987 * the execlist context (so skipping the first page [PPHWSP] and 80
988 * dwords). Weird guc is weird.
989 */
990 for_each_engine(engine, dev_priv, id)
991 blob->ads.eng_state_size[engine->guc_id] = engine->context_size - skipped_size;
992
993 base = guc_ggtt_offset(vma);
994 blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
995 blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
996 blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
997
998 kunmap(page);
999
1000 return 0;
1001 }
1002
1003 static void guc_ads_destroy(struct intel_guc *guc)
1004 {
1005 i915_vma_unpin_and_release(&guc->ads_vma);
1006 }
1007
1008 /*
1009 * Set up the memory resources to be shared with the GuC (via the GGTT)
1010 * at firmware loading time.
1011 */
1012 int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1013 {
1014 struct intel_guc *guc = &dev_priv->guc;
1015 struct i915_vma *vma;
1016 void *vaddr;
1017 int ret;
1018
1019 if (guc->stage_desc_pool)
1020 return 0;
1021
1022 vma = intel_guc_allocate_vma(guc,
1023 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
1024 GUC_MAX_STAGE_DESCRIPTORS));
1025 if (IS_ERR(vma))
1026 return PTR_ERR(vma);
1027
1028 guc->stage_desc_pool = vma;
1029
1030 vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1031 if (IS_ERR(vaddr)) {
1032 ret = PTR_ERR(vaddr);
1033 goto err_vma;
1034 }
1035
1036 guc->stage_desc_pool_vaddr = vaddr;
1037
1038 ret = intel_guc_log_create(guc);
1039 if (ret < 0)
1040 goto err_vaddr;
1041
1042 ret = guc_ads_create(guc);
1043 if (ret < 0)
1044 goto err_log;
1045
1046 ida_init(&guc->stage_ids);
1047
1048 return 0;
1049
1050 err_log:
1051 intel_guc_log_destroy(guc);
1052 err_vaddr:
1053 i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1054 err_vma:
1055 i915_vma_unpin_and_release(&guc->stage_desc_pool);
1056 return ret;
1057 }
1058
1059 void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1060 {
1061 struct intel_guc *guc = &dev_priv->guc;
1062
1063 ida_destroy(&guc->stage_ids);
1064 guc_ads_destroy(guc);
1065 intel_guc_log_destroy(guc);
1066 i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1067 i915_vma_unpin_and_release(&guc->stage_desc_pool);
1068 }
1069
1070 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1071 {
1072 struct intel_engine_cs *engine;
1073 enum intel_engine_id id;
1074 int irqs;
1075
1076 /* tell all command streamers to forward interrupts (but not vblank) to GuC */
1077 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1078 for_each_engine(engine, dev_priv, id)
1079 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1080
1081 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1082 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1083 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1084 /* These three registers have the same bit definitions */
1085 I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1086 I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1087 I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1088
1089 /*
1090 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1091 * (unmasked) PM interrupts to the GuC. All other bits of this
1092 * register *disable* generation of a specific interrupt.
1093 *
1094 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1095 * writing to the PM interrupt mask register, i.e. interrupts
1096 * that must not be disabled.
1097 *
1098 * If the GuC is handling these interrupts, then we must not let
1099 * the PM code disable ANY interrupt that the GuC is expecting.
1100 * So for each ENABLED (0) bit in this register, we must SET the
1101 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1102 * GuC needs ARAT expired interrupt unmasked hence it is set in
1103 * pm_intrmsk_mbz.
1104 *
1105 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1106 * result in the register bit being left SET!
1107 */
1108 dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1109 dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1110 }
1111
1112 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1113 {
1114 struct intel_engine_cs *engine;
1115 enum intel_engine_id id;
1116 int irqs;
1117
1118 /*
1119 * tell all command streamers NOT to forward interrupts or vblank
1120 * to GuC.
1121 */
1122 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1123 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1124 for_each_engine(engine, dev_priv, id)
1125 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1126
1127 /* route all GT interrupts to the host */
1128 I915_WRITE(GUC_BCS_RCS_IER, 0);
1129 I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1130 I915_WRITE(GUC_WD_VECS_IER, 0);
1131
1132 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1133 dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1134 }
1135
1136 int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1137 {
1138 struct intel_guc *guc = &dev_priv->guc;
1139 struct i915_guc_client *client = guc->execbuf_client;
1140 struct intel_engine_cs *engine;
1141 enum intel_engine_id id;
1142 int err;
1143
1144 /*
1145 * We're using GuC work items for submitting work through GuC. Since
1146 * we're coalescing multiple requests from a single context into a
1147 * single work item prior to assigning it to execlist_port, we can
1148 * never have more work items than the total number of ports (for all
1149 * engines). The GuC firmware is controlling the HEAD of work queue,
1150 * and it is guaranteed that it will remove the work item from the
1151 * queue before our request is completed.
1152 */
1153 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1154 sizeof(struct guc_wq_item) *
1155 I915_NUM_ENGINES > GUC_WQ_SIZE);
1156
1157 if (!client) {
1158 client = guc_client_alloc(dev_priv,
1159 INTEL_INFO(dev_priv)->ring_mask,
1160 GUC_CLIENT_PRIORITY_KMD_NORMAL,
1161 dev_priv->kernel_context);
1162 if (IS_ERR(client)) {
1163 DRM_ERROR("Failed to create GuC client for execbuf!\n");
1164 return PTR_ERR(client);
1165 }
1166
1167 guc->execbuf_client = client;
1168 }
1169
1170 err = intel_guc_sample_forcewake(guc);
1171 if (err)
1172 goto err_execbuf_client;
1173
1174 guc_reset_wq(client);
1175
1176 err = guc_init_doorbell_hw(guc);
1177 if (err)
1178 goto err_execbuf_client;
1179
1180 /* Take over from manual control of ELSP (execlists) */
1181 guc_interrupts_capture(dev_priv);
1182
1183 for_each_engine(engine, dev_priv, id) {
1184 struct intel_engine_execlists * const execlists = &engine->execlists;
1185 /* The tasklet was initialised by execlists, and may be in
1186 * a state of flux (across a reset) and so we just want to
1187 * take over the callback without changing any other state
1188 * in the tasklet.
1189 */
1190 execlists->irq_tasklet.func = i915_guc_irq_handler;
1191 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1192 tasklet_schedule(&execlists->irq_tasklet);
1193 }
1194
1195 return 0;
1196
1197 err_execbuf_client:
1198 guc_client_free(guc->execbuf_client);
1199 guc->execbuf_client = NULL;
1200 return err;
1201 }
1202
1203 void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1204 {
1205 struct intel_guc *guc = &dev_priv->guc;
1206
1207 guc_interrupts_release(dev_priv);
1208
1209 /* Revert back to manual ELSP submission */
1210 intel_engines_reset_default_submission(dev_priv);
1211
1212 guc_client_free(guc->execbuf_client);
1213 guc->execbuf_client = NULL;
1214 }
1215
1216 /**
1217 * intel_guc_suspend() - notify GuC entering suspend state
1218 * @dev_priv: i915 device private
1219 */
1220 int intel_guc_suspend(struct drm_i915_private *dev_priv)
1221 {
1222 struct intel_guc *guc = &dev_priv->guc;
1223 struct i915_gem_context *ctx;
1224 u32 data[3];
1225
1226 if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1227 return 0;
1228
1229 gen9_disable_guc_interrupts(dev_priv);
1230
1231 ctx = dev_priv->kernel_context;
1232
1233 data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1234 /* any value greater than GUC_POWER_D0 */
1235 data[1] = GUC_POWER_D1;
1236 /* first page is shared data with GuC */
1237 data[2] = guc_ggtt_offset(ctx->engine[RCS].state) + LRC_GUCSHR_PN * PAGE_SIZE;
1238
1239 return intel_guc_send(guc, data, ARRAY_SIZE(data));
1240 }
1241
1242 /**
1243 * intel_guc_resume() - notify GuC resuming from suspend state
1244 * @dev_priv: i915 device private
1245 */
1246 int intel_guc_resume(struct drm_i915_private *dev_priv)
1247 {
1248 struct intel_guc *guc = &dev_priv->guc;
1249 struct i915_gem_context *ctx;
1250 u32 data[3];
1251
1252 if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1253 return 0;
1254
1255 if (i915_modparams.guc_log_level >= 0)
1256 gen9_enable_guc_interrupts(dev_priv);
1257
1258 ctx = dev_priv->kernel_context;
1259
1260 data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1261 data[1] = GUC_POWER_D0;
1262 /* first page is shared data with GuC */
1263 data[2] = guc_ggtt_offset(ctx->engine[RCS].state) + LRC_GUCSHR_PN * PAGE_SIZE;
1264
1265 return intel_guc_send(guc, data, ARRAY_SIZE(data));
1266 }