]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
07ca71cabb2bfe94a6c250cc538dce500157f404
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 assert_spin_locked(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 assert_spin_locked(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 assert_spin_locked(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 assert_spin_locked(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 assert_spin_locked(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 assert_spin_locked(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394 return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 return;
401
402 spin_lock_irq(&dev_priv->irq_lock);
403 dev_priv->rps.interrupts_enabled = false;
404
405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409 spin_unlock_irq(&dev_priv->irq_lock);
410 synchronize_irq(dev_priv->drm.irq);
411
412 /* Now that we will not be generating any more work, flush any
413 * outsanding tasks. As we are called on the RPS idle path,
414 * we will reset the GPU to minimum frequencies, so the current
415 * state of the worker can be discarded.
416 */
417 cancel_work_sync(&dev_priv->rps.work);
418 gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423 spin_lock_irq(&dev_priv->irq_lock);
424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430 spin_lock_irq(&dev_priv->irq_lock);
431 if (!dev_priv->guc.interrupts_enabled) {
432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 dev_priv->pm_guc_events);
434 dev_priv->guc.interrupts_enabled = true;
435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 }
437 spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442 spin_lock_irq(&dev_priv->irq_lock);
443 dev_priv->guc.interrupts_enabled = false;
444
445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447 spin_unlock_irq(&dev_priv->irq_lock);
448 synchronize_irq(dev_priv->drm.irq);
449
450 gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454 * bdw_update_port_irq - update DE port interrupt
455 * @dev_priv: driver private
456 * @interrupt_mask: mask of interrupt bits to update
457 * @enabled_irq_mask: mask of interrupt bits to enable
458 */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 uint32_t interrupt_mask,
461 uint32_t enabled_irq_mask)
462 {
463 uint32_t new_val;
464 uint32_t old_val;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 return;
472
473 old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475 new_val = old_val;
476 new_val &= ~interrupt_mask;
477 new_val |= (~enabled_irq_mask & interrupt_mask);
478
479 if (new_val != old_val) {
480 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 POSTING_READ(GEN8_DE_PORT_IMR);
482 }
483 }
484
485 /**
486 * bdw_update_pipe_irq - update DE pipe interrupt
487 * @dev_priv: driver private
488 * @pipe: pipe whose interrupt to update
489 * @interrupt_mask: mask of interrupt bits to update
490 * @enabled_irq_mask: mask of interrupt bits to enable
491 */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 enum pipe pipe,
494 uint32_t interrupt_mask,
495 uint32_t enabled_irq_mask)
496 {
497 uint32_t new_val;
498
499 assert_spin_locked(&dev_priv->irq_lock);
500
501 WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 return;
505
506 new_val = dev_priv->de_irq_mask[pipe];
507 new_val &= ~interrupt_mask;
508 new_val |= (~enabled_irq_mask & interrupt_mask);
509
510 if (new_val != dev_priv->de_irq_mask[pipe]) {
511 dev_priv->de_irq_mask[pipe] = new_val;
512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 }
515 }
516
517 /**
518 * ibx_display_interrupt_update - update SDEIMR
519 * @dev_priv: driver private
520 * @interrupt_mask: mask of interrupt bits to update
521 * @enabled_irq_mask: mask of interrupt bits to enable
522 */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 uint32_t interrupt_mask,
525 uint32_t enabled_irq_mask)
526 {
527 uint32_t sdeimr = I915_READ(SDEIMR);
528 sdeimr &= ~interrupt_mask;
529 sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531 WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533 assert_spin_locked(&dev_priv->irq_lock);
534
535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 return;
537
538 I915_WRITE(SDEIMR, sdeimr);
539 POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544 u32 enable_mask, u32 status_mask)
545 {
546 i915_reg_t reg = PIPESTAT(pipe);
547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549 assert_spin_locked(&dev_priv->irq_lock);
550 WARN_ON(!intel_irqs_enabled(dev_priv));
551
552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 pipe_name(pipe), enable_mask, status_mask))
556 return;
557
558 if ((pipestat & enable_mask) == enable_mask)
559 return;
560
561 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563 /* Enable the interrupt, clear any pending status */
564 pipestat |= enable_mask | status_mask;
565 I915_WRITE(reg, pipestat);
566 POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571 u32 enable_mask, u32 status_mask)
572 {
573 i915_reg_t reg = PIPESTAT(pipe);
574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576 assert_spin_locked(&dev_priv->irq_lock);
577 WARN_ON(!intel_irqs_enabled(dev_priv));
578
579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 pipe_name(pipe), enable_mask, status_mask))
583 return;
584
585 if ((pipestat & enable_mask) == 0)
586 return;
587
588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590 pipestat &= ~enable_mask;
591 I915_WRITE(reg, pipestat);
592 POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597 u32 enable_mask = status_mask << 16;
598
599 /*
600 * On pipe A we don't support the PSR interrupt yet,
601 * on pipe B and C the same bit MBZ.
602 */
603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 return 0;
605 /*
606 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 * A the same bit is for perf counters which we don't use either.
608 */
609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 return 0;
611
612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620 return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625 u32 status_mask)
626 {
627 u32 enable_mask;
628
629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 status_mask);
632 else
633 enable_mask = status_mask << 16;
634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639 u32 status_mask)
640 {
641 u32 enable_mask;
642
643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 status_mask);
646 else
647 enable_mask = status_mask << 16;
648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653 * @dev_priv: i915 device private
654 */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 return;
659
660 spin_lock_irq(&dev_priv->irq_lock);
661
662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 if (INTEL_GEN(dev_priv) >= 4)
664 i915_enable_pipestat(dev_priv, PIPE_A,
665 PIPE_LEGACY_BLC_EVENT_STATUS);
666
667 spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671 * This timing diagram depicts the video signal in and
672 * around the vertical blanking period.
673 *
674 * Assumptions about the fictitious mode used in this example:
675 * vblank_start >= 3
676 * vsync_start = vblank_start + 1
677 * vsync_end = vblank_start + 2
678 * vtotal = vblank_start + 3
679 *
680 * start of vblank:
681 * latch double buffered registers
682 * increment frame counter (ctg+)
683 * generate start of vblank interrupt (gen4+)
684 * |
685 * | frame start:
686 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
687 * | may be shifted forward 1-3 extra lines via PIPECONF
688 * | |
689 * | | start of vsync:
690 * | | generate vsync interrupt
691 * | | |
692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
694 * ----va---> <-----------------vb--------------------> <--------va-------------
695 * | | <----vs-----> |
696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699 * | | |
700 * last visible pixel first visible pixel
701 * | increment frame counter (gen3/4)
702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
703 *
704 * x = horizontal active
705 * _ = horizontal blanking
706 * hs = horizontal sync
707 * va = vertical active
708 * vb = vertical blanking
709 * vs = vertical sync
710 * vbs = vblank_start (number)
711 *
712 * Summary:
713 * - most events happen at the start of horizontal sync
714 * - frame start happens at the start of horizontal blank, 1-4 lines
715 * (depending on PIPECONF settings) after the start of vblank
716 * - gen3/4 pixel and frame counter are synchronized with the start
717 * of horizontal active on the first line of vertical active
718 */
719
720 /* Called from drm generic code, passed a 'crtc', which
721 * we use as a pipe index
722 */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725 struct drm_i915_private *dev_priv = to_i915(dev);
726 i915_reg_t high_frame, low_frame;
727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 pipe);
730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732 htotal = mode->crtc_htotal;
733 hsync_start = mode->crtc_hsync_start;
734 vbl_start = mode->crtc_vblank_start;
735 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738 /* Convert to pixel count */
739 vbl_start *= htotal;
740
741 /* Start of vblank event occurs at start of hsync */
742 vbl_start -= htotal - hsync_start;
743
744 high_frame = PIPEFRAME(pipe);
745 low_frame = PIPEFRAMEPIXEL(pipe);
746
747 /*
748 * High & low register fields aren't synchronized, so make sure
749 * we get a low value that's stable across two reads of the high
750 * register.
751 */
752 do {
753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 low = I915_READ(low_frame);
755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 } while (high1 != high2);
757
758 high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 pixel = low & PIPE_PIXEL_MASK;
760 low >>= PIPE_FRAME_LOW_SHIFT;
761
762 /*
763 * The frame counter increments at beginning of active.
764 * Cook up a vblank counter by also checking the pixel
765 * counter against vblank start.
766 */
767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 struct drm_i915_private *dev_priv = to_i915(dev);
773
774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 struct drm_i915_private *dev_priv = to_i915(dev);
782 const struct drm_display_mode *mode = &crtc->base.hwmode;
783 enum pipe pipe = crtc->pipe;
784 int position, vtotal;
785
786 vtotal = mode->crtc_vtotal;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vtotal /= 2;
789
790 if (IS_GEN2(dev_priv))
791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 else
793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795 /*
796 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 * read it just before the start of vblank. So try it again
798 * so we don't accidentally end up spanning a vblank frame
799 * increment, causing the pipe_update_end() code to squak at us.
800 *
801 * The nature of this problem means we can't simply check the ISR
802 * bit and return the vblank start value; nor can we use the scanline
803 * debug register in the transcoder as it appears to have the same
804 * problem. We may need to extend this to include other platforms,
805 * but so far testing only shows the problem on HSW.
806 */
807 if (HAS_DDI(dev_priv) && !position) {
808 int i, temp;
809
810 for (i = 0; i < 100; i++) {
811 udelay(1);
812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 DSL_LINEMASK_GEN3;
814 if (temp != position) {
815 position = temp;
816 break;
817 }
818 }
819 }
820
821 /*
822 * See update_scanline_offset() for the details on the
823 * scanline_offset adjustment.
824 */
825 return (position + crtc->scanline_offset) % vtotal;
826 }
827
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 unsigned int flags, int *vpos, int *hpos,
830 ktime_t *stime, ktime_t *etime,
831 const struct drm_display_mode *mode)
832 {
833 struct drm_i915_private *dev_priv = to_i915(dev);
834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 pipe);
836 int position;
837 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 bool in_vbl = true;
839 int ret = 0;
840 unsigned long irqflags;
841
842 if (WARN_ON(!mode->crtc_clock)) {
843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 "pipe %c\n", pipe_name(pipe));
845 return 0;
846 }
847
848 htotal = mode->crtc_htotal;
849 hsync_start = mode->crtc_hsync_start;
850 vtotal = mode->crtc_vtotal;
851 vbl_start = mode->crtc_vblank_start;
852 vbl_end = mode->crtc_vblank_end;
853
854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 vbl_end /= 2;
857 vtotal /= 2;
858 }
859
860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862 /*
863 * Lock uncore.lock, as we will do multiple timing critical raw
864 * register reads, potentially with preemption disabled, so the
865 * following code must not block on uncore.lock.
866 */
867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871 /* Get optional system timestamp before query. */
872 if (stime)
873 *stime = ktime_get();
874
875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 /* No obvious pixelcount register. Only query vertical
877 * scanout position from Display scan line register.
878 */
879 position = __intel_get_crtc_scanline(intel_crtc);
880 } else {
881 /* Have access to pixelcount since start of frame.
882 * We can split this into vertical and horizontal
883 * scanout position.
884 */
885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887 /* convert to pixel counts */
888 vbl_start *= htotal;
889 vbl_end *= htotal;
890 vtotal *= htotal;
891
892 /*
893 * In interlaced modes, the pixel counter counts all pixels,
894 * so one field will have htotal more pixels. In order to avoid
895 * the reported position from jumping backwards when the pixel
896 * counter is beyond the length of the shorter field, just
897 * clamp the position the length of the shorter field. This
898 * matches how the scanline counter based position works since
899 * the scanline counter doesn't count the two half lines.
900 */
901 if (position >= vtotal)
902 position = vtotal - 1;
903
904 /*
905 * Start of vblank interrupt is triggered at start of hsync,
906 * just prior to the first active line of vblank. However we
907 * consider lines to start at the leading edge of horizontal
908 * active. So, should we get here before we've crossed into
909 * the horizontal active of the first line in vblank, we would
910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 * always add htotal-hsync_start to the current pixel position.
912 */
913 position = (position + htotal - hsync_start) % vtotal;
914 }
915
916 /* Get optional system timestamp after query. */
917 if (etime)
918 *etime = ktime_get();
919
920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924 in_vbl = position >= vbl_start && position < vbl_end;
925
926 /*
927 * While in vblank, position will be negative
928 * counting up towards 0 at vbl_end. And outside
929 * vblank, position will be positive counting
930 * up since vbl_end.
931 */
932 if (position >= vbl_start)
933 position -= vbl_end;
934 else
935 position += vtotal - vbl_end;
936
937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 *vpos = position;
939 *hpos = 0;
940 } else {
941 *vpos = position / htotal;
942 *hpos = position - (*vpos * htotal);
943 }
944
945 /* In vblank? */
946 if (in_vbl)
947 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949 return ret;
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 unsigned long irqflags;
956 int position;
957
958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 position = __intel_get_crtc_scanline(crtc);
960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962 return position;
963 }
964
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 int *max_error,
967 struct timeval *vblank_time,
968 unsigned flags)
969 {
970 struct drm_i915_private *dev_priv = to_i915(dev);
971 struct intel_crtc *crtc;
972
973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 DRM_ERROR("Invalid crtc %u\n", pipe);
975 return -EINVAL;
976 }
977
978 /* Get drm_crtc to timestamp: */
979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 if (crtc == NULL) {
981 DRM_ERROR("Invalid crtc %u\n", pipe);
982 return -EINVAL;
983 }
984
985 if (!crtc->base.hwmode.crtc_clock) {
986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 return -EBUSY;
988 }
989
990 /* Helper routine in DRM core does all the work: */
991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 vblank_time, flags,
993 &crtc->base.hwmode);
994 }
995
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998 u32 busy_up, busy_down, max_avg, min_avg;
999 u8 new_delay;
1000
1001 spin_lock(&mchdev_lock);
1002
1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005 new_delay = dev_priv->ips.cur_delay;
1006
1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 max_avg = I915_READ(RCBMAXAVG);
1011 min_avg = I915_READ(RCBMINAVG);
1012
1013 /* Handle RCS change request from hw */
1014 if (busy_up > max_avg) {
1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 new_delay = dev_priv->ips.cur_delay - 1;
1017 if (new_delay < dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.max_delay;
1019 } else if (busy_down < min_avg) {
1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 new_delay = dev_priv->ips.cur_delay + 1;
1022 if (new_delay > dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.min_delay;
1024 }
1025
1026 if (ironlake_set_drps(dev_priv, new_delay))
1027 dev_priv->ips.cur_delay = new_delay;
1028
1029 spin_unlock(&mchdev_lock);
1030
1031 return;
1032 }
1033
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036 smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 if (intel_engine_wakeup(engine))
1038 trace_i915_gem_request_notify(engine);
1039 }
1040
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 struct intel_rps_ei *ei)
1043 {
1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048
1049 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1050 const struct intel_rps_ei *old,
1051 const struct intel_rps_ei *now,
1052 int threshold)
1053 {
1054 u64 time, c0;
1055 unsigned int mul = 100;
1056
1057 if (old->cz_clock == 0)
1058 return false;
1059
1060 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1061 mul <<= 8;
1062
1063 time = now->cz_clock - old->cz_clock;
1064 time *= threshold * dev_priv->czclk_freq;
1065
1066 /* Workload can be split between render + media, e.g. SwapBuffers
1067 * being blitted in X after being rendered in mesa. To account for
1068 * this we need to combine both engines into our activity counter.
1069 */
1070 c0 = now->render_c0 - old->render_c0;
1071 c0 += now->media_c0 - old->media_c0;
1072 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1073
1074 return c0 >= time;
1075 }
1076
1077 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1078 {
1079 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1080 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1081 }
1082
1083 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1084 {
1085 struct intel_rps_ei now;
1086 u32 events = 0;
1087
1088 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1089 return 0;
1090
1091 vlv_c0_read(dev_priv, &now);
1092 if (now.cz_clock == 0)
1093 return 0;
1094
1095 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1096 if (!vlv_c0_above(dev_priv,
1097 &dev_priv->rps.down_ei, &now,
1098 dev_priv->rps.down_threshold))
1099 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1100 dev_priv->rps.down_ei = now;
1101 }
1102
1103 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1104 if (vlv_c0_above(dev_priv,
1105 &dev_priv->rps.up_ei, &now,
1106 dev_priv->rps.up_threshold))
1107 events |= GEN6_PM_RP_UP_THRESHOLD;
1108 dev_priv->rps.up_ei = now;
1109 }
1110
1111 return events;
1112 }
1113
1114 static bool any_waiters(struct drm_i915_private *dev_priv)
1115 {
1116 struct intel_engine_cs *engine;
1117 enum intel_engine_id id;
1118
1119 for_each_engine(engine, dev_priv, id)
1120 if (intel_engine_has_waiter(engine))
1121 return true;
1122
1123 return false;
1124 }
1125
1126 static void gen6_pm_rps_work(struct work_struct *work)
1127 {
1128 struct drm_i915_private *dev_priv =
1129 container_of(work, struct drm_i915_private, rps.work);
1130 bool client_boost;
1131 int new_delay, adj, min, max;
1132 u32 pm_iir;
1133
1134 spin_lock_irq(&dev_priv->irq_lock);
1135 /* Speed up work cancelation during disabling rps interrupts. */
1136 if (!dev_priv->rps.interrupts_enabled) {
1137 spin_unlock_irq(&dev_priv->irq_lock);
1138 return;
1139 }
1140
1141 pm_iir = dev_priv->rps.pm_iir;
1142 dev_priv->rps.pm_iir = 0;
1143 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1144 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1145 client_boost = dev_priv->rps.client_boost;
1146 dev_priv->rps.client_boost = false;
1147 spin_unlock_irq(&dev_priv->irq_lock);
1148
1149 /* Make sure we didn't queue anything we're not going to process. */
1150 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1151
1152 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1153 return;
1154
1155 mutex_lock(&dev_priv->rps.hw_lock);
1156
1157 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1158
1159 adj = dev_priv->rps.last_adj;
1160 new_delay = dev_priv->rps.cur_freq;
1161 min = dev_priv->rps.min_freq_softlimit;
1162 max = dev_priv->rps.max_freq_softlimit;
1163 if (client_boost || any_waiters(dev_priv))
1164 max = dev_priv->rps.max_freq;
1165 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1166 new_delay = dev_priv->rps.boost_freq;
1167 adj = 0;
1168 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1169 if (adj > 0)
1170 adj *= 2;
1171 else /* CHV needs even encode values */
1172 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1173 /*
1174 * For better performance, jump directly
1175 * to RPe if we're below it.
1176 */
1177 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1178 new_delay = dev_priv->rps.efficient_freq;
1179 adj = 0;
1180 }
1181 } else if (client_boost || any_waiters(dev_priv)) {
1182 adj = 0;
1183 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1184 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1185 new_delay = dev_priv->rps.efficient_freq;
1186 else
1187 new_delay = dev_priv->rps.min_freq_softlimit;
1188 adj = 0;
1189 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1190 if (adj < 0)
1191 adj *= 2;
1192 else /* CHV needs even encode values */
1193 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1194 } else { /* unknown event */
1195 adj = 0;
1196 }
1197
1198 dev_priv->rps.last_adj = adj;
1199
1200 /* sysfs frequency interfaces may have snuck in while servicing the
1201 * interrupt
1202 */
1203 new_delay += adj;
1204 new_delay = clamp_t(int, new_delay, min, max);
1205
1206 intel_set_rps(dev_priv, new_delay);
1207
1208 mutex_unlock(&dev_priv->rps.hw_lock);
1209 }
1210
1211
1212 /**
1213 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1214 * occurred.
1215 * @work: workqueue struct
1216 *
1217 * Doesn't actually do anything except notify userspace. As a consequence of
1218 * this event, userspace should try to remap the bad rows since statistically
1219 * it is likely the same row is more likely to go bad again.
1220 */
1221 static void ivybridge_parity_work(struct work_struct *work)
1222 {
1223 struct drm_i915_private *dev_priv =
1224 container_of(work, struct drm_i915_private, l3_parity.error_work);
1225 u32 error_status, row, bank, subbank;
1226 char *parity_event[6];
1227 uint32_t misccpctl;
1228 uint8_t slice = 0;
1229
1230 /* We must turn off DOP level clock gating to access the L3 registers.
1231 * In order to prevent a get/put style interface, acquire struct mutex
1232 * any time we access those registers.
1233 */
1234 mutex_lock(&dev_priv->drm.struct_mutex);
1235
1236 /* If we've screwed up tracking, just let the interrupt fire again */
1237 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1238 goto out;
1239
1240 misccpctl = I915_READ(GEN7_MISCCPCTL);
1241 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1242 POSTING_READ(GEN7_MISCCPCTL);
1243
1244 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1245 i915_reg_t reg;
1246
1247 slice--;
1248 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1249 break;
1250
1251 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1252
1253 reg = GEN7_L3CDERRST1(slice);
1254
1255 error_status = I915_READ(reg);
1256 row = GEN7_PARITY_ERROR_ROW(error_status);
1257 bank = GEN7_PARITY_ERROR_BANK(error_status);
1258 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1259
1260 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1261 POSTING_READ(reg);
1262
1263 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1264 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1265 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1266 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1267 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1268 parity_event[5] = NULL;
1269
1270 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1271 KOBJ_CHANGE, parity_event);
1272
1273 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1274 slice, row, bank, subbank);
1275
1276 kfree(parity_event[4]);
1277 kfree(parity_event[3]);
1278 kfree(parity_event[2]);
1279 kfree(parity_event[1]);
1280 }
1281
1282 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1283
1284 out:
1285 WARN_ON(dev_priv->l3_parity.which_slice);
1286 spin_lock_irq(&dev_priv->irq_lock);
1287 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1288 spin_unlock_irq(&dev_priv->irq_lock);
1289
1290 mutex_unlock(&dev_priv->drm.struct_mutex);
1291 }
1292
1293 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1294 u32 iir)
1295 {
1296 if (!HAS_L3_DPF(dev_priv))
1297 return;
1298
1299 spin_lock(&dev_priv->irq_lock);
1300 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1301 spin_unlock(&dev_priv->irq_lock);
1302
1303 iir &= GT_PARITY_ERROR(dev_priv);
1304 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1305 dev_priv->l3_parity.which_slice |= 1 << 1;
1306
1307 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1308 dev_priv->l3_parity.which_slice |= 1 << 0;
1309
1310 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1311 }
1312
1313 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1314 u32 gt_iir)
1315 {
1316 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1317 notify_ring(dev_priv->engine[RCS]);
1318 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1319 notify_ring(dev_priv->engine[VCS]);
1320 }
1321
1322 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1323 u32 gt_iir)
1324 {
1325 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1326 notify_ring(dev_priv->engine[RCS]);
1327 if (gt_iir & GT_BSD_USER_INTERRUPT)
1328 notify_ring(dev_priv->engine[VCS]);
1329 if (gt_iir & GT_BLT_USER_INTERRUPT)
1330 notify_ring(dev_priv->engine[BCS]);
1331
1332 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1333 GT_BSD_CS_ERROR_INTERRUPT |
1334 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1335 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1336
1337 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1338 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1339 }
1340
1341 static __always_inline void
1342 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1343 {
1344 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1345 notify_ring(engine);
1346 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1347 tasklet_schedule(&engine->irq_tasklet);
1348 }
1349
1350 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1351 u32 master_ctl,
1352 u32 gt_iir[4])
1353 {
1354 irqreturn_t ret = IRQ_NONE;
1355
1356 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1357 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1358 if (gt_iir[0]) {
1359 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1360 ret = IRQ_HANDLED;
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1363 }
1364
1365 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1366 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1367 if (gt_iir[1]) {
1368 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1369 ret = IRQ_HANDLED;
1370 } else
1371 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1372 }
1373
1374 if (master_ctl & GEN8_GT_VECS_IRQ) {
1375 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1376 if (gt_iir[3]) {
1377 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1378 ret = IRQ_HANDLED;
1379 } else
1380 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1381 }
1382
1383 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1384 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1385 if (gt_iir[2] & (dev_priv->pm_rps_events |
1386 dev_priv->pm_guc_events)) {
1387 I915_WRITE_FW(GEN8_GT_IIR(2),
1388 gt_iir[2] & (dev_priv->pm_rps_events |
1389 dev_priv->pm_guc_events));
1390 ret = IRQ_HANDLED;
1391 } else
1392 DRM_ERROR("The master control interrupt lied (PM)!\n");
1393 }
1394
1395 return ret;
1396 }
1397
1398 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1399 u32 gt_iir[4])
1400 {
1401 if (gt_iir[0]) {
1402 gen8_cs_irq_handler(dev_priv->engine[RCS],
1403 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1404 gen8_cs_irq_handler(dev_priv->engine[BCS],
1405 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1406 }
1407
1408 if (gt_iir[1]) {
1409 gen8_cs_irq_handler(dev_priv->engine[VCS],
1410 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1411 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1412 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1413 }
1414
1415 if (gt_iir[3])
1416 gen8_cs_irq_handler(dev_priv->engine[VECS],
1417 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1418
1419 if (gt_iir[2] & dev_priv->pm_rps_events)
1420 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1421
1422 if (gt_iir[2] & dev_priv->pm_guc_events)
1423 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1424 }
1425
1426 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1427 {
1428 switch (port) {
1429 case PORT_A:
1430 return val & PORTA_HOTPLUG_LONG_DETECT;
1431 case PORT_B:
1432 return val & PORTB_HOTPLUG_LONG_DETECT;
1433 case PORT_C:
1434 return val & PORTC_HOTPLUG_LONG_DETECT;
1435 default:
1436 return false;
1437 }
1438 }
1439
1440 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1441 {
1442 switch (port) {
1443 case PORT_E:
1444 return val & PORTE_HOTPLUG_LONG_DETECT;
1445 default:
1446 return false;
1447 }
1448 }
1449
1450 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1451 {
1452 switch (port) {
1453 case PORT_A:
1454 return val & PORTA_HOTPLUG_LONG_DETECT;
1455 case PORT_B:
1456 return val & PORTB_HOTPLUG_LONG_DETECT;
1457 case PORT_C:
1458 return val & PORTC_HOTPLUG_LONG_DETECT;
1459 case PORT_D:
1460 return val & PORTD_HOTPLUG_LONG_DETECT;
1461 default:
1462 return false;
1463 }
1464 }
1465
1466 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1467 {
1468 switch (port) {
1469 case PORT_A:
1470 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1471 default:
1472 return false;
1473 }
1474 }
1475
1476 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1477 {
1478 switch (port) {
1479 case PORT_B:
1480 return val & PORTB_HOTPLUG_LONG_DETECT;
1481 case PORT_C:
1482 return val & PORTC_HOTPLUG_LONG_DETECT;
1483 case PORT_D:
1484 return val & PORTD_HOTPLUG_LONG_DETECT;
1485 default:
1486 return false;
1487 }
1488 }
1489
1490 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1491 {
1492 switch (port) {
1493 case PORT_B:
1494 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1495 case PORT_C:
1496 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1497 case PORT_D:
1498 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1499 default:
1500 return false;
1501 }
1502 }
1503
1504 /*
1505 * Get a bit mask of pins that have triggered, and which ones may be long.
1506 * This can be called multiple times with the same masks to accumulate
1507 * hotplug detection results from several registers.
1508 *
1509 * Note that the caller is expected to zero out the masks initially.
1510 */
1511 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1512 u32 hotplug_trigger, u32 dig_hotplug_reg,
1513 const u32 hpd[HPD_NUM_PINS],
1514 bool long_pulse_detect(enum port port, u32 val))
1515 {
1516 enum port port;
1517 int i;
1518
1519 for_each_hpd_pin(i) {
1520 if ((hpd[i] & hotplug_trigger) == 0)
1521 continue;
1522
1523 *pin_mask |= BIT(i);
1524
1525 if (!intel_hpd_pin_to_port(i, &port))
1526 continue;
1527
1528 if (long_pulse_detect(port, dig_hotplug_reg))
1529 *long_mask |= BIT(i);
1530 }
1531
1532 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1533 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1534
1535 }
1536
1537 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1538 {
1539 wake_up_all(&dev_priv->gmbus_wait_queue);
1540 }
1541
1542 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1543 {
1544 wake_up_all(&dev_priv->gmbus_wait_queue);
1545 }
1546
1547 #if defined(CONFIG_DEBUG_FS)
1548 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1549 enum pipe pipe,
1550 uint32_t crc0, uint32_t crc1,
1551 uint32_t crc2, uint32_t crc3,
1552 uint32_t crc4)
1553 {
1554 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1555 struct intel_pipe_crc_entry *entry;
1556 int head, tail;
1557
1558 spin_lock(&pipe_crc->lock);
1559
1560 if (!pipe_crc->entries) {
1561 spin_unlock(&pipe_crc->lock);
1562 DRM_DEBUG_KMS("spurious interrupt\n");
1563 return;
1564 }
1565
1566 head = pipe_crc->head;
1567 tail = pipe_crc->tail;
1568
1569 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1570 spin_unlock(&pipe_crc->lock);
1571 DRM_ERROR("CRC buffer overflowing\n");
1572 return;
1573 }
1574
1575 entry = &pipe_crc->entries[head];
1576
1577 entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1578 pipe);
1579 entry->crc[0] = crc0;
1580 entry->crc[1] = crc1;
1581 entry->crc[2] = crc2;
1582 entry->crc[3] = crc3;
1583 entry->crc[4] = crc4;
1584
1585 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1586 pipe_crc->head = head;
1587
1588 spin_unlock(&pipe_crc->lock);
1589
1590 wake_up_interruptible(&pipe_crc->wq);
1591 }
1592 #else
1593 static inline void
1594 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1595 enum pipe pipe,
1596 uint32_t crc0, uint32_t crc1,
1597 uint32_t crc2, uint32_t crc3,
1598 uint32_t crc4) {}
1599 #endif
1600
1601
1602 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1603 enum pipe pipe)
1604 {
1605 display_pipe_crc_irq_handler(dev_priv, pipe,
1606 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1607 0, 0, 0, 0);
1608 }
1609
1610 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1611 enum pipe pipe)
1612 {
1613 display_pipe_crc_irq_handler(dev_priv, pipe,
1614 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1615 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1616 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1617 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1618 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1619 }
1620
1621 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1622 enum pipe pipe)
1623 {
1624 uint32_t res1, res2;
1625
1626 if (INTEL_GEN(dev_priv) >= 3)
1627 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1628 else
1629 res1 = 0;
1630
1631 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1632 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1633 else
1634 res2 = 0;
1635
1636 display_pipe_crc_irq_handler(dev_priv, pipe,
1637 I915_READ(PIPE_CRC_RES_RED(pipe)),
1638 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1639 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1640 res1, res2);
1641 }
1642
1643 /* The RPS events need forcewake, so we add them to a work queue and mask their
1644 * IMR bits until the work is done. Other interrupts can be processed without
1645 * the work queue. */
1646 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1647 {
1648 if (pm_iir & dev_priv->pm_rps_events) {
1649 spin_lock(&dev_priv->irq_lock);
1650 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1651 if (dev_priv->rps.interrupts_enabled) {
1652 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1653 schedule_work(&dev_priv->rps.work);
1654 }
1655 spin_unlock(&dev_priv->irq_lock);
1656 }
1657
1658 if (INTEL_INFO(dev_priv)->gen >= 8)
1659 return;
1660
1661 if (HAS_VEBOX(dev_priv)) {
1662 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1663 notify_ring(dev_priv->engine[VECS]);
1664
1665 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1666 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1667 }
1668 }
1669
1670 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1671 {
1672 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1673 /* Sample the log buffer flush related bits & clear them out now
1674 * itself from the message identity register to minimize the
1675 * probability of losing a flush interrupt, when there are back
1676 * to back flush interrupts.
1677 * There can be a new flush interrupt, for different log buffer
1678 * type (like for ISR), whilst Host is handling one (for DPC).
1679 * Since same bit is used in message register for ISR & DPC, it
1680 * could happen that GuC sets the bit for 2nd interrupt but Host
1681 * clears out the bit on handling the 1st interrupt.
1682 */
1683 u32 msg, flush;
1684
1685 msg = I915_READ(SOFT_SCRATCH(15));
1686 flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED |
1687 GUC2HOST_MSG_FLUSH_LOG_BUFFER);
1688 if (flush) {
1689 /* Clear the message bits that are handled */
1690 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1691
1692 /* Handle flush interrupt in bottom half */
1693 queue_work(dev_priv->guc.log.flush_wq,
1694 &dev_priv->guc.log.flush_work);
1695
1696 dev_priv->guc.log.flush_interrupt_count++;
1697 } else {
1698 /* Not clearing of unhandled event bits won't result in
1699 * re-triggering of the interrupt.
1700 */
1701 }
1702 }
1703 }
1704
1705 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1706 enum pipe pipe)
1707 {
1708 bool ret;
1709
1710 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1711 if (ret)
1712 intel_finish_page_flip_mmio(dev_priv, pipe);
1713
1714 return ret;
1715 }
1716
1717 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1718 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1719 {
1720 int pipe;
1721
1722 spin_lock(&dev_priv->irq_lock);
1723
1724 if (!dev_priv->display_irqs_enabled) {
1725 spin_unlock(&dev_priv->irq_lock);
1726 return;
1727 }
1728
1729 for_each_pipe(dev_priv, pipe) {
1730 i915_reg_t reg;
1731 u32 mask, iir_bit = 0;
1732
1733 /*
1734 * PIPESTAT bits get signalled even when the interrupt is
1735 * disabled with the mask bits, and some of the status bits do
1736 * not generate interrupts at all (like the underrun bit). Hence
1737 * we need to be careful that we only handle what we want to
1738 * handle.
1739 */
1740
1741 /* fifo underruns are filterered in the underrun handler. */
1742 mask = PIPE_FIFO_UNDERRUN_STATUS;
1743
1744 switch (pipe) {
1745 case PIPE_A:
1746 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1747 break;
1748 case PIPE_B:
1749 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1750 break;
1751 case PIPE_C:
1752 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1753 break;
1754 }
1755 if (iir & iir_bit)
1756 mask |= dev_priv->pipestat_irq_mask[pipe];
1757
1758 if (!mask)
1759 continue;
1760
1761 reg = PIPESTAT(pipe);
1762 mask |= PIPESTAT_INT_ENABLE_MASK;
1763 pipe_stats[pipe] = I915_READ(reg) & mask;
1764
1765 /*
1766 * Clear the PIPE*STAT regs before the IIR
1767 */
1768 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1769 PIPESTAT_INT_STATUS_MASK))
1770 I915_WRITE(reg, pipe_stats[pipe]);
1771 }
1772 spin_unlock(&dev_priv->irq_lock);
1773 }
1774
1775 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1776 u32 pipe_stats[I915_MAX_PIPES])
1777 {
1778 enum pipe pipe;
1779
1780 for_each_pipe(dev_priv, pipe) {
1781 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1782 intel_pipe_handle_vblank(dev_priv, pipe))
1783 intel_check_page_flip(dev_priv, pipe);
1784
1785 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1786 intel_finish_page_flip_cs(dev_priv, pipe);
1787
1788 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1789 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1790
1791 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1792 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1793 }
1794
1795 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1796 gmbus_irq_handler(dev_priv);
1797 }
1798
1799 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1800 {
1801 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1802
1803 if (hotplug_status)
1804 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1805
1806 return hotplug_status;
1807 }
1808
1809 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1810 u32 hotplug_status)
1811 {
1812 u32 pin_mask = 0, long_mask = 0;
1813
1814 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1815 IS_CHERRYVIEW(dev_priv)) {
1816 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1817
1818 if (hotplug_trigger) {
1819 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1820 hotplug_trigger, hpd_status_g4x,
1821 i9xx_port_hotplug_long_detect);
1822
1823 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1824 }
1825
1826 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1827 dp_aux_irq_handler(dev_priv);
1828 } else {
1829 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1830
1831 if (hotplug_trigger) {
1832 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1833 hotplug_trigger, hpd_status_i915,
1834 i9xx_port_hotplug_long_detect);
1835 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1836 }
1837 }
1838 }
1839
1840 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1841 {
1842 struct drm_device *dev = arg;
1843 struct drm_i915_private *dev_priv = to_i915(dev);
1844 irqreturn_t ret = IRQ_NONE;
1845
1846 if (!intel_irqs_enabled(dev_priv))
1847 return IRQ_NONE;
1848
1849 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1850 disable_rpm_wakeref_asserts(dev_priv);
1851
1852 do {
1853 u32 iir, gt_iir, pm_iir;
1854 u32 pipe_stats[I915_MAX_PIPES] = {};
1855 u32 hotplug_status = 0;
1856 u32 ier = 0;
1857
1858 gt_iir = I915_READ(GTIIR);
1859 pm_iir = I915_READ(GEN6_PMIIR);
1860 iir = I915_READ(VLV_IIR);
1861
1862 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1863 break;
1864
1865 ret = IRQ_HANDLED;
1866
1867 /*
1868 * Theory on interrupt generation, based on empirical evidence:
1869 *
1870 * x = ((VLV_IIR & VLV_IER) ||
1871 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1872 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1873 *
1874 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1875 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1876 * guarantee the CPU interrupt will be raised again even if we
1877 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1878 * bits this time around.
1879 */
1880 I915_WRITE(VLV_MASTER_IER, 0);
1881 ier = I915_READ(VLV_IER);
1882 I915_WRITE(VLV_IER, 0);
1883
1884 if (gt_iir)
1885 I915_WRITE(GTIIR, gt_iir);
1886 if (pm_iir)
1887 I915_WRITE(GEN6_PMIIR, pm_iir);
1888
1889 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1890 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1891
1892 /* Call regardless, as some status bits might not be
1893 * signalled in iir */
1894 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1895
1896 /*
1897 * VLV_IIR is single buffered, and reflects the level
1898 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1899 */
1900 if (iir)
1901 I915_WRITE(VLV_IIR, iir);
1902
1903 I915_WRITE(VLV_IER, ier);
1904 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1905 POSTING_READ(VLV_MASTER_IER);
1906
1907 if (gt_iir)
1908 snb_gt_irq_handler(dev_priv, gt_iir);
1909 if (pm_iir)
1910 gen6_rps_irq_handler(dev_priv, pm_iir);
1911
1912 if (hotplug_status)
1913 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1914
1915 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1916 } while (0);
1917
1918 enable_rpm_wakeref_asserts(dev_priv);
1919
1920 return ret;
1921 }
1922
1923 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1924 {
1925 struct drm_device *dev = arg;
1926 struct drm_i915_private *dev_priv = to_i915(dev);
1927 irqreturn_t ret = IRQ_NONE;
1928
1929 if (!intel_irqs_enabled(dev_priv))
1930 return IRQ_NONE;
1931
1932 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1933 disable_rpm_wakeref_asserts(dev_priv);
1934
1935 do {
1936 u32 master_ctl, iir;
1937 u32 gt_iir[4] = {};
1938 u32 pipe_stats[I915_MAX_PIPES] = {};
1939 u32 hotplug_status = 0;
1940 u32 ier = 0;
1941
1942 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1943 iir = I915_READ(VLV_IIR);
1944
1945 if (master_ctl == 0 && iir == 0)
1946 break;
1947
1948 ret = IRQ_HANDLED;
1949
1950 /*
1951 * Theory on interrupt generation, based on empirical evidence:
1952 *
1953 * x = ((VLV_IIR & VLV_IER) ||
1954 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1955 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1956 *
1957 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1958 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1959 * guarantee the CPU interrupt will be raised again even if we
1960 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1961 * bits this time around.
1962 */
1963 I915_WRITE(GEN8_MASTER_IRQ, 0);
1964 ier = I915_READ(VLV_IER);
1965 I915_WRITE(VLV_IER, 0);
1966
1967 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1968
1969 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1970 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1971
1972 /* Call regardless, as some status bits might not be
1973 * signalled in iir */
1974 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1975
1976 /*
1977 * VLV_IIR is single buffered, and reflects the level
1978 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1979 */
1980 if (iir)
1981 I915_WRITE(VLV_IIR, iir);
1982
1983 I915_WRITE(VLV_IER, ier);
1984 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1985 POSTING_READ(GEN8_MASTER_IRQ);
1986
1987 gen8_gt_irq_handler(dev_priv, gt_iir);
1988
1989 if (hotplug_status)
1990 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1991
1992 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1993 } while (0);
1994
1995 enable_rpm_wakeref_asserts(dev_priv);
1996
1997 return ret;
1998 }
1999
2000 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2001 u32 hotplug_trigger,
2002 const u32 hpd[HPD_NUM_PINS])
2003 {
2004 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2005
2006 /*
2007 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2008 * unless we touch the hotplug register, even if hotplug_trigger is
2009 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2010 * errors.
2011 */
2012 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2013 if (!hotplug_trigger) {
2014 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2015 PORTD_HOTPLUG_STATUS_MASK |
2016 PORTC_HOTPLUG_STATUS_MASK |
2017 PORTB_HOTPLUG_STATUS_MASK;
2018 dig_hotplug_reg &= ~mask;
2019 }
2020
2021 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2022 if (!hotplug_trigger)
2023 return;
2024
2025 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2026 dig_hotplug_reg, hpd,
2027 pch_port_hotplug_long_detect);
2028
2029 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2030 }
2031
2032 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2033 {
2034 int pipe;
2035 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2036
2037 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2038
2039 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2040 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2041 SDE_AUDIO_POWER_SHIFT);
2042 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2043 port_name(port));
2044 }
2045
2046 if (pch_iir & SDE_AUX_MASK)
2047 dp_aux_irq_handler(dev_priv);
2048
2049 if (pch_iir & SDE_GMBUS)
2050 gmbus_irq_handler(dev_priv);
2051
2052 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2053 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2054
2055 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2056 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2057
2058 if (pch_iir & SDE_POISON)
2059 DRM_ERROR("PCH poison interrupt\n");
2060
2061 if (pch_iir & SDE_FDI_MASK)
2062 for_each_pipe(dev_priv, pipe)
2063 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2064 pipe_name(pipe),
2065 I915_READ(FDI_RX_IIR(pipe)));
2066
2067 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2068 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2069
2070 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2071 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2072
2073 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2074 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2075
2076 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2077 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2078 }
2079
2080 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2081 {
2082 u32 err_int = I915_READ(GEN7_ERR_INT);
2083 enum pipe pipe;
2084
2085 if (err_int & ERR_INT_POISON)
2086 DRM_ERROR("Poison interrupt\n");
2087
2088 for_each_pipe(dev_priv, pipe) {
2089 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2090 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2091
2092 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2093 if (IS_IVYBRIDGE(dev_priv))
2094 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2095 else
2096 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2097 }
2098 }
2099
2100 I915_WRITE(GEN7_ERR_INT, err_int);
2101 }
2102
2103 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2104 {
2105 u32 serr_int = I915_READ(SERR_INT);
2106
2107 if (serr_int & SERR_INT_POISON)
2108 DRM_ERROR("PCH poison interrupt\n");
2109
2110 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2111 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2112
2113 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2114 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2115
2116 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2117 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2118
2119 I915_WRITE(SERR_INT, serr_int);
2120 }
2121
2122 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2123 {
2124 int pipe;
2125 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2126
2127 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2128
2129 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2130 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2131 SDE_AUDIO_POWER_SHIFT_CPT);
2132 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2133 port_name(port));
2134 }
2135
2136 if (pch_iir & SDE_AUX_MASK_CPT)
2137 dp_aux_irq_handler(dev_priv);
2138
2139 if (pch_iir & SDE_GMBUS_CPT)
2140 gmbus_irq_handler(dev_priv);
2141
2142 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2143 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2144
2145 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2146 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2147
2148 if (pch_iir & SDE_FDI_MASK_CPT)
2149 for_each_pipe(dev_priv, pipe)
2150 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2151 pipe_name(pipe),
2152 I915_READ(FDI_RX_IIR(pipe)));
2153
2154 if (pch_iir & SDE_ERROR_CPT)
2155 cpt_serr_int_handler(dev_priv);
2156 }
2157
2158 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2159 {
2160 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2161 ~SDE_PORTE_HOTPLUG_SPT;
2162 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2163 u32 pin_mask = 0, long_mask = 0;
2164
2165 if (hotplug_trigger) {
2166 u32 dig_hotplug_reg;
2167
2168 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2169 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2170
2171 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2172 dig_hotplug_reg, hpd_spt,
2173 spt_port_hotplug_long_detect);
2174 }
2175
2176 if (hotplug2_trigger) {
2177 u32 dig_hotplug_reg;
2178
2179 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2180 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2181
2182 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2183 dig_hotplug_reg, hpd_spt,
2184 spt_port_hotplug2_long_detect);
2185 }
2186
2187 if (pin_mask)
2188 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2189
2190 if (pch_iir & SDE_GMBUS_CPT)
2191 gmbus_irq_handler(dev_priv);
2192 }
2193
2194 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2195 u32 hotplug_trigger,
2196 const u32 hpd[HPD_NUM_PINS])
2197 {
2198 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2199
2200 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2201 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2202
2203 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2204 dig_hotplug_reg, hpd,
2205 ilk_port_hotplug_long_detect);
2206
2207 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2208 }
2209
2210 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2211 u32 de_iir)
2212 {
2213 enum pipe pipe;
2214 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2215
2216 if (hotplug_trigger)
2217 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2218
2219 if (de_iir & DE_AUX_CHANNEL_A)
2220 dp_aux_irq_handler(dev_priv);
2221
2222 if (de_iir & DE_GSE)
2223 intel_opregion_asle_intr(dev_priv);
2224
2225 if (de_iir & DE_POISON)
2226 DRM_ERROR("Poison interrupt\n");
2227
2228 for_each_pipe(dev_priv, pipe) {
2229 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2230 intel_pipe_handle_vblank(dev_priv, pipe))
2231 intel_check_page_flip(dev_priv, pipe);
2232
2233 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2234 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2235
2236 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2237 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2238
2239 /* plane/pipes map 1:1 on ilk+ */
2240 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2241 intel_finish_page_flip_cs(dev_priv, pipe);
2242 }
2243
2244 /* check event from PCH */
2245 if (de_iir & DE_PCH_EVENT) {
2246 u32 pch_iir = I915_READ(SDEIIR);
2247
2248 if (HAS_PCH_CPT(dev_priv))
2249 cpt_irq_handler(dev_priv, pch_iir);
2250 else
2251 ibx_irq_handler(dev_priv, pch_iir);
2252
2253 /* should clear PCH hotplug event before clear CPU irq */
2254 I915_WRITE(SDEIIR, pch_iir);
2255 }
2256
2257 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2258 ironlake_rps_change_irq_handler(dev_priv);
2259 }
2260
2261 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2262 u32 de_iir)
2263 {
2264 enum pipe pipe;
2265 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2266
2267 if (hotplug_trigger)
2268 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2269
2270 if (de_iir & DE_ERR_INT_IVB)
2271 ivb_err_int_handler(dev_priv);
2272
2273 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2274 dp_aux_irq_handler(dev_priv);
2275
2276 if (de_iir & DE_GSE_IVB)
2277 intel_opregion_asle_intr(dev_priv);
2278
2279 for_each_pipe(dev_priv, pipe) {
2280 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2281 intel_pipe_handle_vblank(dev_priv, pipe))
2282 intel_check_page_flip(dev_priv, pipe);
2283
2284 /* plane/pipes map 1:1 on ilk+ */
2285 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2286 intel_finish_page_flip_cs(dev_priv, pipe);
2287 }
2288
2289 /* check event from PCH */
2290 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2291 u32 pch_iir = I915_READ(SDEIIR);
2292
2293 cpt_irq_handler(dev_priv, pch_iir);
2294
2295 /* clear PCH hotplug event before clear CPU irq */
2296 I915_WRITE(SDEIIR, pch_iir);
2297 }
2298 }
2299
2300 /*
2301 * To handle irqs with the minimum potential races with fresh interrupts, we:
2302 * 1 - Disable Master Interrupt Control.
2303 * 2 - Find the source(s) of the interrupt.
2304 * 3 - Clear the Interrupt Identity bits (IIR).
2305 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2306 * 5 - Re-enable Master Interrupt Control.
2307 */
2308 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2309 {
2310 struct drm_device *dev = arg;
2311 struct drm_i915_private *dev_priv = to_i915(dev);
2312 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2313 irqreturn_t ret = IRQ_NONE;
2314
2315 if (!intel_irqs_enabled(dev_priv))
2316 return IRQ_NONE;
2317
2318 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2319 disable_rpm_wakeref_asserts(dev_priv);
2320
2321 /* disable master interrupt before clearing iir */
2322 de_ier = I915_READ(DEIER);
2323 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2324 POSTING_READ(DEIER);
2325
2326 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2327 * interrupts will will be stored on its back queue, and then we'll be
2328 * able to process them after we restore SDEIER (as soon as we restore
2329 * it, we'll get an interrupt if SDEIIR still has something to process
2330 * due to its back queue). */
2331 if (!HAS_PCH_NOP(dev_priv)) {
2332 sde_ier = I915_READ(SDEIER);
2333 I915_WRITE(SDEIER, 0);
2334 POSTING_READ(SDEIER);
2335 }
2336
2337 /* Find, clear, then process each source of interrupt */
2338
2339 gt_iir = I915_READ(GTIIR);
2340 if (gt_iir) {
2341 I915_WRITE(GTIIR, gt_iir);
2342 ret = IRQ_HANDLED;
2343 if (INTEL_GEN(dev_priv) >= 6)
2344 snb_gt_irq_handler(dev_priv, gt_iir);
2345 else
2346 ilk_gt_irq_handler(dev_priv, gt_iir);
2347 }
2348
2349 de_iir = I915_READ(DEIIR);
2350 if (de_iir) {
2351 I915_WRITE(DEIIR, de_iir);
2352 ret = IRQ_HANDLED;
2353 if (INTEL_GEN(dev_priv) >= 7)
2354 ivb_display_irq_handler(dev_priv, de_iir);
2355 else
2356 ilk_display_irq_handler(dev_priv, de_iir);
2357 }
2358
2359 if (INTEL_GEN(dev_priv) >= 6) {
2360 u32 pm_iir = I915_READ(GEN6_PMIIR);
2361 if (pm_iir) {
2362 I915_WRITE(GEN6_PMIIR, pm_iir);
2363 ret = IRQ_HANDLED;
2364 gen6_rps_irq_handler(dev_priv, pm_iir);
2365 }
2366 }
2367
2368 I915_WRITE(DEIER, de_ier);
2369 POSTING_READ(DEIER);
2370 if (!HAS_PCH_NOP(dev_priv)) {
2371 I915_WRITE(SDEIER, sde_ier);
2372 POSTING_READ(SDEIER);
2373 }
2374
2375 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2376 enable_rpm_wakeref_asserts(dev_priv);
2377
2378 return ret;
2379 }
2380
2381 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2382 u32 hotplug_trigger,
2383 const u32 hpd[HPD_NUM_PINS])
2384 {
2385 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2386
2387 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2388 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2389
2390 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2391 dig_hotplug_reg, hpd,
2392 bxt_port_hotplug_long_detect);
2393
2394 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2395 }
2396
2397 static irqreturn_t
2398 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2399 {
2400 irqreturn_t ret = IRQ_NONE;
2401 u32 iir;
2402 enum pipe pipe;
2403
2404 if (master_ctl & GEN8_DE_MISC_IRQ) {
2405 iir = I915_READ(GEN8_DE_MISC_IIR);
2406 if (iir) {
2407 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2408 ret = IRQ_HANDLED;
2409 if (iir & GEN8_DE_MISC_GSE)
2410 intel_opregion_asle_intr(dev_priv);
2411 else
2412 DRM_ERROR("Unexpected DE Misc interrupt\n");
2413 }
2414 else
2415 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2416 }
2417
2418 if (master_ctl & GEN8_DE_PORT_IRQ) {
2419 iir = I915_READ(GEN8_DE_PORT_IIR);
2420 if (iir) {
2421 u32 tmp_mask;
2422 bool found = false;
2423
2424 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2425 ret = IRQ_HANDLED;
2426
2427 tmp_mask = GEN8_AUX_CHANNEL_A;
2428 if (INTEL_INFO(dev_priv)->gen >= 9)
2429 tmp_mask |= GEN9_AUX_CHANNEL_B |
2430 GEN9_AUX_CHANNEL_C |
2431 GEN9_AUX_CHANNEL_D;
2432
2433 if (iir & tmp_mask) {
2434 dp_aux_irq_handler(dev_priv);
2435 found = true;
2436 }
2437
2438 if (IS_BROXTON(dev_priv)) {
2439 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2440 if (tmp_mask) {
2441 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2442 hpd_bxt);
2443 found = true;
2444 }
2445 } else if (IS_BROADWELL(dev_priv)) {
2446 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2447 if (tmp_mask) {
2448 ilk_hpd_irq_handler(dev_priv,
2449 tmp_mask, hpd_bdw);
2450 found = true;
2451 }
2452 }
2453
2454 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2455 gmbus_irq_handler(dev_priv);
2456 found = true;
2457 }
2458
2459 if (!found)
2460 DRM_ERROR("Unexpected DE Port interrupt\n");
2461 }
2462 else
2463 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2464 }
2465
2466 for_each_pipe(dev_priv, pipe) {
2467 u32 flip_done, fault_errors;
2468
2469 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2470 continue;
2471
2472 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2473 if (!iir) {
2474 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2475 continue;
2476 }
2477
2478 ret = IRQ_HANDLED;
2479 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2480
2481 if (iir & GEN8_PIPE_VBLANK &&
2482 intel_pipe_handle_vblank(dev_priv, pipe))
2483 intel_check_page_flip(dev_priv, pipe);
2484
2485 flip_done = iir;
2486 if (INTEL_INFO(dev_priv)->gen >= 9)
2487 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2488 else
2489 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2490
2491 if (flip_done)
2492 intel_finish_page_flip_cs(dev_priv, pipe);
2493
2494 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2495 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2496
2497 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2498 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2499
2500 fault_errors = iir;
2501 if (INTEL_INFO(dev_priv)->gen >= 9)
2502 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2503 else
2504 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2505
2506 if (fault_errors)
2507 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2508 pipe_name(pipe),
2509 fault_errors);
2510 }
2511
2512 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2513 master_ctl & GEN8_DE_PCH_IRQ) {
2514 /*
2515 * FIXME(BDW): Assume for now that the new interrupt handling
2516 * scheme also closed the SDE interrupt handling race we've seen
2517 * on older pch-split platforms. But this needs testing.
2518 */
2519 iir = I915_READ(SDEIIR);
2520 if (iir) {
2521 I915_WRITE(SDEIIR, iir);
2522 ret = IRQ_HANDLED;
2523
2524 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2525 spt_irq_handler(dev_priv, iir);
2526 else
2527 cpt_irq_handler(dev_priv, iir);
2528 } else {
2529 /*
2530 * Like on previous PCH there seems to be something
2531 * fishy going on with forwarding PCH interrupts.
2532 */
2533 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2534 }
2535 }
2536
2537 return ret;
2538 }
2539
2540 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2541 {
2542 struct drm_device *dev = arg;
2543 struct drm_i915_private *dev_priv = to_i915(dev);
2544 u32 master_ctl;
2545 u32 gt_iir[4] = {};
2546 irqreturn_t ret;
2547
2548 if (!intel_irqs_enabled(dev_priv))
2549 return IRQ_NONE;
2550
2551 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2552 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2553 if (!master_ctl)
2554 return IRQ_NONE;
2555
2556 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2557
2558 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2559 disable_rpm_wakeref_asserts(dev_priv);
2560
2561 /* Find, clear, then process each source of interrupt */
2562 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2563 gen8_gt_irq_handler(dev_priv, gt_iir);
2564 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2565
2566 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2567 POSTING_READ_FW(GEN8_MASTER_IRQ);
2568
2569 enable_rpm_wakeref_asserts(dev_priv);
2570
2571 return ret;
2572 }
2573
2574 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2575 {
2576 /*
2577 * Notify all waiters for GPU completion events that reset state has
2578 * been changed, and that they need to restart their wait after
2579 * checking for potential errors (and bail out to drop locks if there is
2580 * a gpu reset pending so that i915_error_work_func can acquire them).
2581 */
2582
2583 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2584 wake_up_all(&dev_priv->gpu_error.wait_queue);
2585
2586 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2587 wake_up_all(&dev_priv->pending_flip_queue);
2588 }
2589
2590 /**
2591 * i915_reset_and_wakeup - do process context error handling work
2592 * @dev_priv: i915 device private
2593 *
2594 * Fire an error uevent so userspace can see that a hang or error
2595 * was detected.
2596 */
2597 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2598 {
2599 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2600 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2601 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2602 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2603
2604 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2605
2606 DRM_DEBUG_DRIVER("resetting chip\n");
2607 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2608
2609 /*
2610 * In most cases it's guaranteed that we get here with an RPM
2611 * reference held, for example because there is a pending GPU
2612 * request that won't finish until the reset is done. This
2613 * isn't the case at least when we get here by doing a
2614 * simulated reset via debugs, so get an RPM reference.
2615 */
2616 intel_runtime_pm_get(dev_priv);
2617 intel_prepare_reset(dev_priv);
2618
2619 do {
2620 /*
2621 * All state reset _must_ be completed before we update the
2622 * reset counter, for otherwise waiters might miss the reset
2623 * pending state and not properly drop locks, resulting in
2624 * deadlocks with the reset work.
2625 */
2626 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2627 i915_reset(dev_priv);
2628 mutex_unlock(&dev_priv->drm.struct_mutex);
2629 }
2630
2631 /* We need to wait for anyone holding the lock to wakeup */
2632 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2633 I915_RESET_IN_PROGRESS,
2634 TASK_UNINTERRUPTIBLE,
2635 HZ));
2636
2637 intel_finish_reset(dev_priv);
2638 intel_runtime_pm_put(dev_priv);
2639
2640 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2641 kobject_uevent_env(kobj,
2642 KOBJ_CHANGE, reset_done_event);
2643
2644 /*
2645 * Note: The wake_up also serves as a memory barrier so that
2646 * waiters see the updated value of the dev_priv->gpu_error.
2647 */
2648 wake_up_all(&dev_priv->gpu_error.reset_queue);
2649 }
2650
2651 static inline void
2652 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2653 struct intel_instdone *instdone)
2654 {
2655 int slice;
2656 int subslice;
2657
2658 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2659
2660 if (INTEL_GEN(dev_priv) <= 3)
2661 return;
2662
2663 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2664
2665 if (INTEL_GEN(dev_priv) <= 6)
2666 return;
2667
2668 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2669 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2670 slice, subslice, instdone->sampler[slice][subslice]);
2671
2672 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2673 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2674 slice, subslice, instdone->row[slice][subslice]);
2675 }
2676
2677 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2678 {
2679 u32 eir;
2680
2681 if (!IS_GEN2(dev_priv))
2682 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2683
2684 if (INTEL_GEN(dev_priv) < 4)
2685 I915_WRITE(IPEIR, I915_READ(IPEIR));
2686 else
2687 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2688
2689 I915_WRITE(EIR, I915_READ(EIR));
2690 eir = I915_READ(EIR);
2691 if (eir) {
2692 /*
2693 * some errors might have become stuck,
2694 * mask them.
2695 */
2696 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2697 I915_WRITE(EMR, I915_READ(EMR) | eir);
2698 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2699 }
2700 }
2701
2702 /**
2703 * i915_handle_error - handle a gpu error
2704 * @dev_priv: i915 device private
2705 * @engine_mask: mask representing engines that are hung
2706 * Do some basic checking of register state at error time and
2707 * dump it to the syslog. Also call i915_capture_error_state() to make
2708 * sure we get a record and make it available in debugfs. Fire a uevent
2709 * so userspace knows something bad happened (should trigger collection
2710 * of a ring dump etc.).
2711 * @fmt: Error message format string
2712 */
2713 void i915_handle_error(struct drm_i915_private *dev_priv,
2714 u32 engine_mask,
2715 const char *fmt, ...)
2716 {
2717 va_list args;
2718 char error_msg[80];
2719
2720 va_start(args, fmt);
2721 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2722 va_end(args);
2723
2724 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2725 i915_clear_error_registers(dev_priv);
2726
2727 if (!engine_mask)
2728 return;
2729
2730 if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2731 &dev_priv->gpu_error.flags))
2732 return;
2733
2734 /*
2735 * Wakeup waiting processes so that the reset function
2736 * i915_reset_and_wakeup doesn't deadlock trying to grab
2737 * various locks. By bumping the reset counter first, the woken
2738 * processes will see a reset in progress and back off,
2739 * releasing their locks and then wait for the reset completion.
2740 * We must do this for _all_ gpu waiters that might hold locks
2741 * that the reset work needs to acquire.
2742 *
2743 * Note: The wake_up also provides a memory barrier to ensure that the
2744 * waiters see the updated value of the reset flags.
2745 */
2746 i915_error_wake_up(dev_priv);
2747
2748 i915_reset_and_wakeup(dev_priv);
2749 }
2750
2751 /* Called from drm generic code, passed 'crtc' which
2752 * we use as a pipe index
2753 */
2754 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2755 {
2756 struct drm_i915_private *dev_priv = to_i915(dev);
2757 unsigned long irqflags;
2758
2759 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2760 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2761 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2762
2763 return 0;
2764 }
2765
2766 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2767 {
2768 struct drm_i915_private *dev_priv = to_i915(dev);
2769 unsigned long irqflags;
2770
2771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772 i915_enable_pipestat(dev_priv, pipe,
2773 PIPE_START_VBLANK_INTERRUPT_STATUS);
2774 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2775
2776 return 0;
2777 }
2778
2779 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2780 {
2781 struct drm_i915_private *dev_priv = to_i915(dev);
2782 unsigned long irqflags;
2783 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2784 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2785
2786 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2787 ilk_enable_display_irq(dev_priv, bit);
2788 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2789
2790 return 0;
2791 }
2792
2793 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2794 {
2795 struct drm_i915_private *dev_priv = to_i915(dev);
2796 unsigned long irqflags;
2797
2798 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802 return 0;
2803 }
2804
2805 /* Called from drm generic code, passed 'crtc' which
2806 * we use as a pipe index
2807 */
2808 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2809 {
2810 struct drm_i915_private *dev_priv = to_i915(dev);
2811 unsigned long irqflags;
2812
2813 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2814 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2815 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2816 }
2817
2818 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820 struct drm_i915_private *dev_priv = to_i915(dev);
2821 unsigned long irqflags;
2822
2823 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2824 i915_disable_pipestat(dev_priv, pipe,
2825 PIPE_START_VBLANK_INTERRUPT_STATUS);
2826 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827 }
2828
2829 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2830 {
2831 struct drm_i915_private *dev_priv = to_i915(dev);
2832 unsigned long irqflags;
2833 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2834 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2835
2836 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2837 ilk_disable_display_irq(dev_priv, bit);
2838 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2839 }
2840
2841 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2842 {
2843 struct drm_i915_private *dev_priv = to_i915(dev);
2844 unsigned long irqflags;
2845
2846 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2847 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2848 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2849 }
2850
2851 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2852 {
2853 if (HAS_PCH_NOP(dev_priv))
2854 return;
2855
2856 GEN5_IRQ_RESET(SDE);
2857
2858 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2859 I915_WRITE(SERR_INT, 0xffffffff);
2860 }
2861
2862 /*
2863 * SDEIER is also touched by the interrupt handler to work around missed PCH
2864 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2865 * instead we unconditionally enable all PCH interrupt sources here, but then
2866 * only unmask them as needed with SDEIMR.
2867 *
2868 * This function needs to be called before interrupts are enabled.
2869 */
2870 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2871 {
2872 struct drm_i915_private *dev_priv = to_i915(dev);
2873
2874 if (HAS_PCH_NOP(dev_priv))
2875 return;
2876
2877 WARN_ON(I915_READ(SDEIER) != 0);
2878 I915_WRITE(SDEIER, 0xffffffff);
2879 POSTING_READ(SDEIER);
2880 }
2881
2882 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2883 {
2884 GEN5_IRQ_RESET(GT);
2885 if (INTEL_GEN(dev_priv) >= 6)
2886 GEN5_IRQ_RESET(GEN6_PM);
2887 }
2888
2889 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2890 {
2891 enum pipe pipe;
2892
2893 if (IS_CHERRYVIEW(dev_priv))
2894 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2895 else
2896 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2897
2898 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2899 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2900
2901 for_each_pipe(dev_priv, pipe) {
2902 I915_WRITE(PIPESTAT(pipe),
2903 PIPE_FIFO_UNDERRUN_STATUS |
2904 PIPESTAT_INT_STATUS_MASK);
2905 dev_priv->pipestat_irq_mask[pipe] = 0;
2906 }
2907
2908 GEN5_IRQ_RESET(VLV_);
2909 dev_priv->irq_mask = ~0;
2910 }
2911
2912 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2913 {
2914 u32 pipestat_mask;
2915 u32 enable_mask;
2916 enum pipe pipe;
2917
2918 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2919 PIPE_CRC_DONE_INTERRUPT_STATUS;
2920
2921 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2922 for_each_pipe(dev_priv, pipe)
2923 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2924
2925 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2926 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2927 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2928 if (IS_CHERRYVIEW(dev_priv))
2929 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2930
2931 WARN_ON(dev_priv->irq_mask != ~0);
2932
2933 dev_priv->irq_mask = ~enable_mask;
2934
2935 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2936 }
2937
2938 /* drm_dma.h hooks
2939 */
2940 static void ironlake_irq_reset(struct drm_device *dev)
2941 {
2942 struct drm_i915_private *dev_priv = to_i915(dev);
2943
2944 I915_WRITE(HWSTAM, 0xffffffff);
2945
2946 GEN5_IRQ_RESET(DE);
2947 if (IS_GEN7(dev_priv))
2948 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2949
2950 gen5_gt_irq_reset(dev_priv);
2951
2952 ibx_irq_reset(dev_priv);
2953 }
2954
2955 static void valleyview_irq_preinstall(struct drm_device *dev)
2956 {
2957 struct drm_i915_private *dev_priv = to_i915(dev);
2958
2959 I915_WRITE(VLV_MASTER_IER, 0);
2960 POSTING_READ(VLV_MASTER_IER);
2961
2962 gen5_gt_irq_reset(dev_priv);
2963
2964 spin_lock_irq(&dev_priv->irq_lock);
2965 if (dev_priv->display_irqs_enabled)
2966 vlv_display_irq_reset(dev_priv);
2967 spin_unlock_irq(&dev_priv->irq_lock);
2968 }
2969
2970 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2971 {
2972 GEN8_IRQ_RESET_NDX(GT, 0);
2973 GEN8_IRQ_RESET_NDX(GT, 1);
2974 GEN8_IRQ_RESET_NDX(GT, 2);
2975 GEN8_IRQ_RESET_NDX(GT, 3);
2976 }
2977
2978 static void gen8_irq_reset(struct drm_device *dev)
2979 {
2980 struct drm_i915_private *dev_priv = to_i915(dev);
2981 int pipe;
2982
2983 I915_WRITE(GEN8_MASTER_IRQ, 0);
2984 POSTING_READ(GEN8_MASTER_IRQ);
2985
2986 gen8_gt_irq_reset(dev_priv);
2987
2988 for_each_pipe(dev_priv, pipe)
2989 if (intel_display_power_is_enabled(dev_priv,
2990 POWER_DOMAIN_PIPE(pipe)))
2991 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2992
2993 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2994 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2995 GEN5_IRQ_RESET(GEN8_PCU_);
2996
2997 if (HAS_PCH_SPLIT(dev_priv))
2998 ibx_irq_reset(dev_priv);
2999 }
3000
3001 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3002 unsigned int pipe_mask)
3003 {
3004 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3005 enum pipe pipe;
3006
3007 spin_lock_irq(&dev_priv->irq_lock);
3008 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3009 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3010 dev_priv->de_irq_mask[pipe],
3011 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3012 spin_unlock_irq(&dev_priv->irq_lock);
3013 }
3014
3015 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3016 unsigned int pipe_mask)
3017 {
3018 enum pipe pipe;
3019
3020 spin_lock_irq(&dev_priv->irq_lock);
3021 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3022 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3023 spin_unlock_irq(&dev_priv->irq_lock);
3024
3025 /* make sure we're done processing display irqs */
3026 synchronize_irq(dev_priv->drm.irq);
3027 }
3028
3029 static void cherryview_irq_preinstall(struct drm_device *dev)
3030 {
3031 struct drm_i915_private *dev_priv = to_i915(dev);
3032
3033 I915_WRITE(GEN8_MASTER_IRQ, 0);
3034 POSTING_READ(GEN8_MASTER_IRQ);
3035
3036 gen8_gt_irq_reset(dev_priv);
3037
3038 GEN5_IRQ_RESET(GEN8_PCU_);
3039
3040 spin_lock_irq(&dev_priv->irq_lock);
3041 if (dev_priv->display_irqs_enabled)
3042 vlv_display_irq_reset(dev_priv);
3043 spin_unlock_irq(&dev_priv->irq_lock);
3044 }
3045
3046 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3047 const u32 hpd[HPD_NUM_PINS])
3048 {
3049 struct intel_encoder *encoder;
3050 u32 enabled_irqs = 0;
3051
3052 for_each_intel_encoder(&dev_priv->drm, encoder)
3053 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3054 enabled_irqs |= hpd[encoder->hpd_pin];
3055
3056 return enabled_irqs;
3057 }
3058
3059 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3060 {
3061 u32 hotplug_irqs, hotplug, enabled_irqs;
3062
3063 if (HAS_PCH_IBX(dev_priv)) {
3064 hotplug_irqs = SDE_HOTPLUG_MASK;
3065 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3066 } else {
3067 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3068 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3069 }
3070
3071 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3072
3073 /*
3074 * Enable digital hotplug on the PCH, and configure the DP short pulse
3075 * duration to 2ms (which is the minimum in the Display Port spec).
3076 * The pulse duration bits are reserved on LPT+.
3077 */
3078 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3079 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3080 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3081 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3082 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3083 /*
3084 * When CPU and PCH are on the same package, port A
3085 * HPD must be enabled in both north and south.
3086 */
3087 if (HAS_PCH_LPT_LP(dev_priv))
3088 hotplug |= PORTA_HOTPLUG_ENABLE;
3089 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3090 }
3091
3092 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 u32 hotplug_irqs, hotplug, enabled_irqs;
3095
3096 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3097 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3098
3099 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3100
3101 /* Enable digital hotplug on the PCH */
3102 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3103 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3104 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3105 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3106
3107 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3108 hotplug |= PORTE_HOTPLUG_ENABLE;
3109 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3110 }
3111
3112 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3113 {
3114 u32 hotplug_irqs, hotplug, enabled_irqs;
3115
3116 if (INTEL_GEN(dev_priv) >= 8) {
3117 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3118 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3119
3120 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3121 } else if (INTEL_GEN(dev_priv) >= 7) {
3122 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3123 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3124
3125 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3126 } else {
3127 hotplug_irqs = DE_DP_A_HOTPLUG;
3128 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3129
3130 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3131 }
3132
3133 /*
3134 * Enable digital hotplug on the CPU, and configure the DP short pulse
3135 * duration to 2ms (which is the minimum in the Display Port spec)
3136 * The pulse duration bits are reserved on HSW+.
3137 */
3138 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3139 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3140 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3141 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3142
3143 ibx_hpd_irq_setup(dev_priv);
3144 }
3145
3146 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3147 {
3148 u32 hotplug_irqs, hotplug, enabled_irqs;
3149
3150 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3151 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3152
3153 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3154
3155 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3156 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3157 PORTA_HOTPLUG_ENABLE;
3158
3159 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3160 hotplug, enabled_irqs);
3161 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3162
3163 /*
3164 * For BXT invert bit has to be set based on AOB design
3165 * for HPD detection logic, update it based on VBT fields.
3166 */
3167
3168 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3169 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3170 hotplug |= BXT_DDIA_HPD_INVERT;
3171 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3172 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3173 hotplug |= BXT_DDIB_HPD_INVERT;
3174 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3175 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3176 hotplug |= BXT_DDIC_HPD_INVERT;
3177
3178 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3179 }
3180
3181 static void ibx_irq_postinstall(struct drm_device *dev)
3182 {
3183 struct drm_i915_private *dev_priv = to_i915(dev);
3184 u32 mask;
3185
3186 if (HAS_PCH_NOP(dev_priv))
3187 return;
3188
3189 if (HAS_PCH_IBX(dev_priv))
3190 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3191 else
3192 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3193
3194 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3195 I915_WRITE(SDEIMR, ~mask);
3196 }
3197
3198 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3199 {
3200 struct drm_i915_private *dev_priv = to_i915(dev);
3201 u32 pm_irqs, gt_irqs;
3202
3203 pm_irqs = gt_irqs = 0;
3204
3205 dev_priv->gt_irq_mask = ~0;
3206 if (HAS_L3_DPF(dev_priv)) {
3207 /* L3 parity interrupt is always unmasked. */
3208 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3209 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3210 }
3211
3212 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3213 if (IS_GEN5(dev_priv)) {
3214 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3215 } else {
3216 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3217 }
3218
3219 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3220
3221 if (INTEL_GEN(dev_priv) >= 6) {
3222 /*
3223 * RPS interrupts will get enabled/disabled on demand when RPS
3224 * itself is enabled/disabled.
3225 */
3226 if (HAS_VEBOX(dev_priv)) {
3227 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3228 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3229 }
3230
3231 dev_priv->pm_imr = 0xffffffff;
3232 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3233 }
3234 }
3235
3236 static int ironlake_irq_postinstall(struct drm_device *dev)
3237 {
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239 u32 display_mask, extra_mask;
3240
3241 if (INTEL_GEN(dev_priv) >= 7) {
3242 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3243 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3244 DE_PLANEB_FLIP_DONE_IVB |
3245 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3246 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3247 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3248 DE_DP_A_HOTPLUG_IVB);
3249 } else {
3250 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3251 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3252 DE_AUX_CHANNEL_A |
3253 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3254 DE_POISON);
3255 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3256 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3257 DE_DP_A_HOTPLUG);
3258 }
3259
3260 dev_priv->irq_mask = ~display_mask;
3261
3262 I915_WRITE(HWSTAM, 0xeffe);
3263
3264 ibx_irq_pre_postinstall(dev);
3265
3266 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3267
3268 gen5_gt_irq_postinstall(dev);
3269
3270 ibx_irq_postinstall(dev);
3271
3272 if (IS_IRONLAKE_M(dev_priv)) {
3273 /* Enable PCU event interrupts
3274 *
3275 * spinlocking not required here for correctness since interrupt
3276 * setup is guaranteed to run in single-threaded context. But we
3277 * need it to make the assert_spin_locked happy. */
3278 spin_lock_irq(&dev_priv->irq_lock);
3279 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3280 spin_unlock_irq(&dev_priv->irq_lock);
3281 }
3282
3283 return 0;
3284 }
3285
3286 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3287 {
3288 assert_spin_locked(&dev_priv->irq_lock);
3289
3290 if (dev_priv->display_irqs_enabled)
3291 return;
3292
3293 dev_priv->display_irqs_enabled = true;
3294
3295 if (intel_irqs_enabled(dev_priv)) {
3296 vlv_display_irq_reset(dev_priv);
3297 vlv_display_irq_postinstall(dev_priv);
3298 }
3299 }
3300
3301 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3302 {
3303 assert_spin_locked(&dev_priv->irq_lock);
3304
3305 if (!dev_priv->display_irqs_enabled)
3306 return;
3307
3308 dev_priv->display_irqs_enabled = false;
3309
3310 if (intel_irqs_enabled(dev_priv))
3311 vlv_display_irq_reset(dev_priv);
3312 }
3313
3314
3315 static int valleyview_irq_postinstall(struct drm_device *dev)
3316 {
3317 struct drm_i915_private *dev_priv = to_i915(dev);
3318
3319 gen5_gt_irq_postinstall(dev);
3320
3321 spin_lock_irq(&dev_priv->irq_lock);
3322 if (dev_priv->display_irqs_enabled)
3323 vlv_display_irq_postinstall(dev_priv);
3324 spin_unlock_irq(&dev_priv->irq_lock);
3325
3326 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3327 POSTING_READ(VLV_MASTER_IER);
3328
3329 return 0;
3330 }
3331
3332 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3333 {
3334 /* These are interrupts we'll toggle with the ring mask register */
3335 uint32_t gt_interrupts[] = {
3336 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3337 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3338 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3339 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3340 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3341 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3342 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3343 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3344 0,
3345 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3346 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3347 };
3348
3349 if (HAS_L3_DPF(dev_priv))
3350 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3351
3352 dev_priv->pm_ier = 0x0;
3353 dev_priv->pm_imr = ~dev_priv->pm_ier;
3354 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3355 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3356 /*
3357 * RPS interrupts will get enabled/disabled on demand when RPS itself
3358 * is enabled/disabled. Same wil be the case for GuC interrupts.
3359 */
3360 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3361 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3362 }
3363
3364 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3365 {
3366 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3367 uint32_t de_pipe_enables;
3368 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3369 u32 de_port_enables;
3370 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3371 enum pipe pipe;
3372
3373 if (INTEL_INFO(dev_priv)->gen >= 9) {
3374 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3375 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3376 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3377 GEN9_AUX_CHANNEL_D;
3378 if (IS_BROXTON(dev_priv))
3379 de_port_masked |= BXT_DE_PORT_GMBUS;
3380 } else {
3381 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3382 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3383 }
3384
3385 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3386 GEN8_PIPE_FIFO_UNDERRUN;
3387
3388 de_port_enables = de_port_masked;
3389 if (IS_BROXTON(dev_priv))
3390 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3391 else if (IS_BROADWELL(dev_priv))
3392 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3393
3394 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3395 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3396 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3397
3398 for_each_pipe(dev_priv, pipe)
3399 if (intel_display_power_is_enabled(dev_priv,
3400 POWER_DOMAIN_PIPE(pipe)))
3401 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3402 dev_priv->de_irq_mask[pipe],
3403 de_pipe_enables);
3404
3405 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3406 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3407 }
3408
3409 static int gen8_irq_postinstall(struct drm_device *dev)
3410 {
3411 struct drm_i915_private *dev_priv = to_i915(dev);
3412
3413 if (HAS_PCH_SPLIT(dev_priv))
3414 ibx_irq_pre_postinstall(dev);
3415
3416 gen8_gt_irq_postinstall(dev_priv);
3417 gen8_de_irq_postinstall(dev_priv);
3418
3419 if (HAS_PCH_SPLIT(dev_priv))
3420 ibx_irq_postinstall(dev);
3421
3422 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3423 POSTING_READ(GEN8_MASTER_IRQ);
3424
3425 return 0;
3426 }
3427
3428 static int cherryview_irq_postinstall(struct drm_device *dev)
3429 {
3430 struct drm_i915_private *dev_priv = to_i915(dev);
3431
3432 gen8_gt_irq_postinstall(dev_priv);
3433
3434 spin_lock_irq(&dev_priv->irq_lock);
3435 if (dev_priv->display_irqs_enabled)
3436 vlv_display_irq_postinstall(dev_priv);
3437 spin_unlock_irq(&dev_priv->irq_lock);
3438
3439 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3440 POSTING_READ(GEN8_MASTER_IRQ);
3441
3442 return 0;
3443 }
3444
3445 static void gen8_irq_uninstall(struct drm_device *dev)
3446 {
3447 struct drm_i915_private *dev_priv = to_i915(dev);
3448
3449 if (!dev_priv)
3450 return;
3451
3452 gen8_irq_reset(dev);
3453 }
3454
3455 static void valleyview_irq_uninstall(struct drm_device *dev)
3456 {
3457 struct drm_i915_private *dev_priv = to_i915(dev);
3458
3459 if (!dev_priv)
3460 return;
3461
3462 I915_WRITE(VLV_MASTER_IER, 0);
3463 POSTING_READ(VLV_MASTER_IER);
3464
3465 gen5_gt_irq_reset(dev_priv);
3466
3467 I915_WRITE(HWSTAM, 0xffffffff);
3468
3469 spin_lock_irq(&dev_priv->irq_lock);
3470 if (dev_priv->display_irqs_enabled)
3471 vlv_display_irq_reset(dev_priv);
3472 spin_unlock_irq(&dev_priv->irq_lock);
3473 }
3474
3475 static void cherryview_irq_uninstall(struct drm_device *dev)
3476 {
3477 struct drm_i915_private *dev_priv = to_i915(dev);
3478
3479 if (!dev_priv)
3480 return;
3481
3482 I915_WRITE(GEN8_MASTER_IRQ, 0);
3483 POSTING_READ(GEN8_MASTER_IRQ);
3484
3485 gen8_gt_irq_reset(dev_priv);
3486
3487 GEN5_IRQ_RESET(GEN8_PCU_);
3488
3489 spin_lock_irq(&dev_priv->irq_lock);
3490 if (dev_priv->display_irqs_enabled)
3491 vlv_display_irq_reset(dev_priv);
3492 spin_unlock_irq(&dev_priv->irq_lock);
3493 }
3494
3495 static void ironlake_irq_uninstall(struct drm_device *dev)
3496 {
3497 struct drm_i915_private *dev_priv = to_i915(dev);
3498
3499 if (!dev_priv)
3500 return;
3501
3502 ironlake_irq_reset(dev);
3503 }
3504
3505 static void i8xx_irq_preinstall(struct drm_device * dev)
3506 {
3507 struct drm_i915_private *dev_priv = to_i915(dev);
3508 int pipe;
3509
3510 for_each_pipe(dev_priv, pipe)
3511 I915_WRITE(PIPESTAT(pipe), 0);
3512 I915_WRITE16(IMR, 0xffff);
3513 I915_WRITE16(IER, 0x0);
3514 POSTING_READ16(IER);
3515 }
3516
3517 static int i8xx_irq_postinstall(struct drm_device *dev)
3518 {
3519 struct drm_i915_private *dev_priv = to_i915(dev);
3520
3521 I915_WRITE16(EMR,
3522 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3523
3524 /* Unmask the interrupts that we always want on. */
3525 dev_priv->irq_mask =
3526 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3527 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3528 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3529 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3530 I915_WRITE16(IMR, dev_priv->irq_mask);
3531
3532 I915_WRITE16(IER,
3533 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3534 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3535 I915_USER_INTERRUPT);
3536 POSTING_READ16(IER);
3537
3538 /* Interrupt setup is already guaranteed to be single-threaded, this is
3539 * just to make the assert_spin_locked check happy. */
3540 spin_lock_irq(&dev_priv->irq_lock);
3541 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3542 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3543 spin_unlock_irq(&dev_priv->irq_lock);
3544
3545 return 0;
3546 }
3547
3548 /*
3549 * Returns true when a page flip has completed.
3550 */
3551 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3552 int plane, int pipe, u32 iir)
3553 {
3554 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3555
3556 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3557 return false;
3558
3559 if ((iir & flip_pending) == 0)
3560 goto check_page_flip;
3561
3562 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3563 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3564 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3565 * the flip is completed (no longer pending). Since this doesn't raise
3566 * an interrupt per se, we watch for the change at vblank.
3567 */
3568 if (I915_READ16(ISR) & flip_pending)
3569 goto check_page_flip;
3570
3571 intel_finish_page_flip_cs(dev_priv, pipe);
3572 return true;
3573
3574 check_page_flip:
3575 intel_check_page_flip(dev_priv, pipe);
3576 return false;
3577 }
3578
3579 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3580 {
3581 struct drm_device *dev = arg;
3582 struct drm_i915_private *dev_priv = to_i915(dev);
3583 u16 iir, new_iir;
3584 u32 pipe_stats[2];
3585 int pipe;
3586 u16 flip_mask =
3587 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3588 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3589 irqreturn_t ret;
3590
3591 if (!intel_irqs_enabled(dev_priv))
3592 return IRQ_NONE;
3593
3594 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3595 disable_rpm_wakeref_asserts(dev_priv);
3596
3597 ret = IRQ_NONE;
3598 iir = I915_READ16(IIR);
3599 if (iir == 0)
3600 goto out;
3601
3602 while (iir & ~flip_mask) {
3603 /* Can't rely on pipestat interrupt bit in iir as it might
3604 * have been cleared after the pipestat interrupt was received.
3605 * It doesn't set the bit in iir again, but it still produces
3606 * interrupts (for non-MSI).
3607 */
3608 spin_lock(&dev_priv->irq_lock);
3609 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3610 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3611
3612 for_each_pipe(dev_priv, pipe) {
3613 i915_reg_t reg = PIPESTAT(pipe);
3614 pipe_stats[pipe] = I915_READ(reg);
3615
3616 /*
3617 * Clear the PIPE*STAT regs before the IIR
3618 */
3619 if (pipe_stats[pipe] & 0x8000ffff)
3620 I915_WRITE(reg, pipe_stats[pipe]);
3621 }
3622 spin_unlock(&dev_priv->irq_lock);
3623
3624 I915_WRITE16(IIR, iir & ~flip_mask);
3625 new_iir = I915_READ16(IIR); /* Flush posted writes */
3626
3627 if (iir & I915_USER_INTERRUPT)
3628 notify_ring(dev_priv->engine[RCS]);
3629
3630 for_each_pipe(dev_priv, pipe) {
3631 int plane = pipe;
3632 if (HAS_FBC(dev_priv))
3633 plane = !plane;
3634
3635 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3636 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3637 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3638
3639 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3640 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3641
3642 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3643 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3644 pipe);
3645 }
3646
3647 iir = new_iir;
3648 }
3649 ret = IRQ_HANDLED;
3650
3651 out:
3652 enable_rpm_wakeref_asserts(dev_priv);
3653
3654 return ret;
3655 }
3656
3657 static void i8xx_irq_uninstall(struct drm_device * dev)
3658 {
3659 struct drm_i915_private *dev_priv = to_i915(dev);
3660 int pipe;
3661
3662 for_each_pipe(dev_priv, pipe) {
3663 /* Clear enable bits; then clear status bits */
3664 I915_WRITE(PIPESTAT(pipe), 0);
3665 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3666 }
3667 I915_WRITE16(IMR, 0xffff);
3668 I915_WRITE16(IER, 0x0);
3669 I915_WRITE16(IIR, I915_READ16(IIR));
3670 }
3671
3672 static void i915_irq_preinstall(struct drm_device * dev)
3673 {
3674 struct drm_i915_private *dev_priv = to_i915(dev);
3675 int pipe;
3676
3677 if (I915_HAS_HOTPLUG(dev_priv)) {
3678 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3679 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3680 }
3681
3682 I915_WRITE16(HWSTAM, 0xeffe);
3683 for_each_pipe(dev_priv, pipe)
3684 I915_WRITE(PIPESTAT(pipe), 0);
3685 I915_WRITE(IMR, 0xffffffff);
3686 I915_WRITE(IER, 0x0);
3687 POSTING_READ(IER);
3688 }
3689
3690 static int i915_irq_postinstall(struct drm_device *dev)
3691 {
3692 struct drm_i915_private *dev_priv = to_i915(dev);
3693 u32 enable_mask;
3694
3695 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3696
3697 /* Unmask the interrupts that we always want on. */
3698 dev_priv->irq_mask =
3699 ~(I915_ASLE_INTERRUPT |
3700 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3701 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3702 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3703 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3704
3705 enable_mask =
3706 I915_ASLE_INTERRUPT |
3707 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3708 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3709 I915_USER_INTERRUPT;
3710
3711 if (I915_HAS_HOTPLUG(dev_priv)) {
3712 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3713 POSTING_READ(PORT_HOTPLUG_EN);
3714
3715 /* Enable in IER... */
3716 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3717 /* and unmask in IMR */
3718 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3719 }
3720
3721 I915_WRITE(IMR, dev_priv->irq_mask);
3722 I915_WRITE(IER, enable_mask);
3723 POSTING_READ(IER);
3724
3725 i915_enable_asle_pipestat(dev_priv);
3726
3727 /* Interrupt setup is already guaranteed to be single-threaded, this is
3728 * just to make the assert_spin_locked check happy. */
3729 spin_lock_irq(&dev_priv->irq_lock);
3730 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3731 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3732 spin_unlock_irq(&dev_priv->irq_lock);
3733
3734 return 0;
3735 }
3736
3737 /*
3738 * Returns true when a page flip has completed.
3739 */
3740 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3741 int plane, int pipe, u32 iir)
3742 {
3743 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3744
3745 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3746 return false;
3747
3748 if ((iir & flip_pending) == 0)
3749 goto check_page_flip;
3750
3751 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3752 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3753 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3754 * the flip is completed (no longer pending). Since this doesn't raise
3755 * an interrupt per se, we watch for the change at vblank.
3756 */
3757 if (I915_READ(ISR) & flip_pending)
3758 goto check_page_flip;
3759
3760 intel_finish_page_flip_cs(dev_priv, pipe);
3761 return true;
3762
3763 check_page_flip:
3764 intel_check_page_flip(dev_priv, pipe);
3765 return false;
3766 }
3767
3768 static irqreturn_t i915_irq_handler(int irq, void *arg)
3769 {
3770 struct drm_device *dev = arg;
3771 struct drm_i915_private *dev_priv = to_i915(dev);
3772 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3773 u32 flip_mask =
3774 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3775 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3776 int pipe, ret = IRQ_NONE;
3777
3778 if (!intel_irqs_enabled(dev_priv))
3779 return IRQ_NONE;
3780
3781 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3782 disable_rpm_wakeref_asserts(dev_priv);
3783
3784 iir = I915_READ(IIR);
3785 do {
3786 bool irq_received = (iir & ~flip_mask) != 0;
3787 bool blc_event = false;
3788
3789 /* Can't rely on pipestat interrupt bit in iir as it might
3790 * have been cleared after the pipestat interrupt was received.
3791 * It doesn't set the bit in iir again, but it still produces
3792 * interrupts (for non-MSI).
3793 */
3794 spin_lock(&dev_priv->irq_lock);
3795 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3796 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3797
3798 for_each_pipe(dev_priv, pipe) {
3799 i915_reg_t reg = PIPESTAT(pipe);
3800 pipe_stats[pipe] = I915_READ(reg);
3801
3802 /* Clear the PIPE*STAT regs before the IIR */
3803 if (pipe_stats[pipe] & 0x8000ffff) {
3804 I915_WRITE(reg, pipe_stats[pipe]);
3805 irq_received = true;
3806 }
3807 }
3808 spin_unlock(&dev_priv->irq_lock);
3809
3810 if (!irq_received)
3811 break;
3812
3813 /* Consume port. Then clear IIR or we'll miss events */
3814 if (I915_HAS_HOTPLUG(dev_priv) &&
3815 iir & I915_DISPLAY_PORT_INTERRUPT) {
3816 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3817 if (hotplug_status)
3818 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3819 }
3820
3821 I915_WRITE(IIR, iir & ~flip_mask);
3822 new_iir = I915_READ(IIR); /* Flush posted writes */
3823
3824 if (iir & I915_USER_INTERRUPT)
3825 notify_ring(dev_priv->engine[RCS]);
3826
3827 for_each_pipe(dev_priv, pipe) {
3828 int plane = pipe;
3829 if (HAS_FBC(dev_priv))
3830 plane = !plane;
3831
3832 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3833 i915_handle_vblank(dev_priv, plane, pipe, iir))
3834 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3835
3836 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3837 blc_event = true;
3838
3839 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3840 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3841
3842 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3843 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3844 pipe);
3845 }
3846
3847 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3848 intel_opregion_asle_intr(dev_priv);
3849
3850 /* With MSI, interrupts are only generated when iir
3851 * transitions from zero to nonzero. If another bit got
3852 * set while we were handling the existing iir bits, then
3853 * we would never get another interrupt.
3854 *
3855 * This is fine on non-MSI as well, as if we hit this path
3856 * we avoid exiting the interrupt handler only to generate
3857 * another one.
3858 *
3859 * Note that for MSI this could cause a stray interrupt report
3860 * if an interrupt landed in the time between writing IIR and
3861 * the posting read. This should be rare enough to never
3862 * trigger the 99% of 100,000 interrupts test for disabling
3863 * stray interrupts.
3864 */
3865 ret = IRQ_HANDLED;
3866 iir = new_iir;
3867 } while (iir & ~flip_mask);
3868
3869 enable_rpm_wakeref_asserts(dev_priv);
3870
3871 return ret;
3872 }
3873
3874 static void i915_irq_uninstall(struct drm_device * dev)
3875 {
3876 struct drm_i915_private *dev_priv = to_i915(dev);
3877 int pipe;
3878
3879 if (I915_HAS_HOTPLUG(dev_priv)) {
3880 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3881 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3882 }
3883
3884 I915_WRITE16(HWSTAM, 0xffff);
3885 for_each_pipe(dev_priv, pipe) {
3886 /* Clear enable bits; then clear status bits */
3887 I915_WRITE(PIPESTAT(pipe), 0);
3888 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3889 }
3890 I915_WRITE(IMR, 0xffffffff);
3891 I915_WRITE(IER, 0x0);
3892
3893 I915_WRITE(IIR, I915_READ(IIR));
3894 }
3895
3896 static void i965_irq_preinstall(struct drm_device * dev)
3897 {
3898 struct drm_i915_private *dev_priv = to_i915(dev);
3899 int pipe;
3900
3901 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3902 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3903
3904 I915_WRITE(HWSTAM, 0xeffe);
3905 for_each_pipe(dev_priv, pipe)
3906 I915_WRITE(PIPESTAT(pipe), 0);
3907 I915_WRITE(IMR, 0xffffffff);
3908 I915_WRITE(IER, 0x0);
3909 POSTING_READ(IER);
3910 }
3911
3912 static int i965_irq_postinstall(struct drm_device *dev)
3913 {
3914 struct drm_i915_private *dev_priv = to_i915(dev);
3915 u32 enable_mask;
3916 u32 error_mask;
3917
3918 /* Unmask the interrupts that we always want on. */
3919 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3920 I915_DISPLAY_PORT_INTERRUPT |
3921 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3924 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3925 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3926
3927 enable_mask = ~dev_priv->irq_mask;
3928 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3929 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3930 enable_mask |= I915_USER_INTERRUPT;
3931
3932 if (IS_G4X(dev_priv))
3933 enable_mask |= I915_BSD_USER_INTERRUPT;
3934
3935 /* Interrupt setup is already guaranteed to be single-threaded, this is
3936 * just to make the assert_spin_locked check happy. */
3937 spin_lock_irq(&dev_priv->irq_lock);
3938 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3939 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3940 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3941 spin_unlock_irq(&dev_priv->irq_lock);
3942
3943 /*
3944 * Enable some error detection, note the instruction error mask
3945 * bit is reserved, so we leave it masked.
3946 */
3947 if (IS_G4X(dev_priv)) {
3948 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3949 GM45_ERROR_MEM_PRIV |
3950 GM45_ERROR_CP_PRIV |
3951 I915_ERROR_MEMORY_REFRESH);
3952 } else {
3953 error_mask = ~(I915_ERROR_PAGE_TABLE |
3954 I915_ERROR_MEMORY_REFRESH);
3955 }
3956 I915_WRITE(EMR, error_mask);
3957
3958 I915_WRITE(IMR, dev_priv->irq_mask);
3959 I915_WRITE(IER, enable_mask);
3960 POSTING_READ(IER);
3961
3962 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3963 POSTING_READ(PORT_HOTPLUG_EN);
3964
3965 i915_enable_asle_pipestat(dev_priv);
3966
3967 return 0;
3968 }
3969
3970 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3971 {
3972 u32 hotplug_en;
3973
3974 assert_spin_locked(&dev_priv->irq_lock);
3975
3976 /* Note HDMI and DP share hotplug bits */
3977 /* enable bits are the same for all generations */
3978 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3979 /* Programming the CRT detection parameters tends
3980 to generate a spurious hotplug event about three
3981 seconds later. So just do it once.
3982 */
3983 if (IS_G4X(dev_priv))
3984 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3985 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3986
3987 /* Ignore TV since it's buggy */
3988 i915_hotplug_interrupt_update_locked(dev_priv,
3989 HOTPLUG_INT_EN_MASK |
3990 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3991 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3992 hotplug_en);
3993 }
3994
3995 static irqreturn_t i965_irq_handler(int irq, void *arg)
3996 {
3997 struct drm_device *dev = arg;
3998 struct drm_i915_private *dev_priv = to_i915(dev);
3999 u32 iir, new_iir;
4000 u32 pipe_stats[I915_MAX_PIPES];
4001 int ret = IRQ_NONE, pipe;
4002 u32 flip_mask =
4003 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4004 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4005
4006 if (!intel_irqs_enabled(dev_priv))
4007 return IRQ_NONE;
4008
4009 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4010 disable_rpm_wakeref_asserts(dev_priv);
4011
4012 iir = I915_READ(IIR);
4013
4014 for (;;) {
4015 bool irq_received = (iir & ~flip_mask) != 0;
4016 bool blc_event = false;
4017
4018 /* Can't rely on pipestat interrupt bit in iir as it might
4019 * have been cleared after the pipestat interrupt was received.
4020 * It doesn't set the bit in iir again, but it still produces
4021 * interrupts (for non-MSI).
4022 */
4023 spin_lock(&dev_priv->irq_lock);
4024 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4025 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4026
4027 for_each_pipe(dev_priv, pipe) {
4028 i915_reg_t reg = PIPESTAT(pipe);
4029 pipe_stats[pipe] = I915_READ(reg);
4030
4031 /*
4032 * Clear the PIPE*STAT regs before the IIR
4033 */
4034 if (pipe_stats[pipe] & 0x8000ffff) {
4035 I915_WRITE(reg, pipe_stats[pipe]);
4036 irq_received = true;
4037 }
4038 }
4039 spin_unlock(&dev_priv->irq_lock);
4040
4041 if (!irq_received)
4042 break;
4043
4044 ret = IRQ_HANDLED;
4045
4046 /* Consume port. Then clear IIR or we'll miss events */
4047 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4048 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4049 if (hotplug_status)
4050 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4051 }
4052
4053 I915_WRITE(IIR, iir & ~flip_mask);
4054 new_iir = I915_READ(IIR); /* Flush posted writes */
4055
4056 if (iir & I915_USER_INTERRUPT)
4057 notify_ring(dev_priv->engine[RCS]);
4058 if (iir & I915_BSD_USER_INTERRUPT)
4059 notify_ring(dev_priv->engine[VCS]);
4060
4061 for_each_pipe(dev_priv, pipe) {
4062 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4063 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4064 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4065
4066 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4067 blc_event = true;
4068
4069 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4070 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4071
4072 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4073 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4074 }
4075
4076 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4077 intel_opregion_asle_intr(dev_priv);
4078
4079 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4080 gmbus_irq_handler(dev_priv);
4081
4082 /* With MSI, interrupts are only generated when iir
4083 * transitions from zero to nonzero. If another bit got
4084 * set while we were handling the existing iir bits, then
4085 * we would never get another interrupt.
4086 *
4087 * This is fine on non-MSI as well, as if we hit this path
4088 * we avoid exiting the interrupt handler only to generate
4089 * another one.
4090 *
4091 * Note that for MSI this could cause a stray interrupt report
4092 * if an interrupt landed in the time between writing IIR and
4093 * the posting read. This should be rare enough to never
4094 * trigger the 99% of 100,000 interrupts test for disabling
4095 * stray interrupts.
4096 */
4097 iir = new_iir;
4098 }
4099
4100 enable_rpm_wakeref_asserts(dev_priv);
4101
4102 return ret;
4103 }
4104
4105 static void i965_irq_uninstall(struct drm_device * dev)
4106 {
4107 struct drm_i915_private *dev_priv = to_i915(dev);
4108 int pipe;
4109
4110 if (!dev_priv)
4111 return;
4112
4113 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4114 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4115
4116 I915_WRITE(HWSTAM, 0xffffffff);
4117 for_each_pipe(dev_priv, pipe)
4118 I915_WRITE(PIPESTAT(pipe), 0);
4119 I915_WRITE(IMR, 0xffffffff);
4120 I915_WRITE(IER, 0x0);
4121
4122 for_each_pipe(dev_priv, pipe)
4123 I915_WRITE(PIPESTAT(pipe),
4124 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4125 I915_WRITE(IIR, I915_READ(IIR));
4126 }
4127
4128 /**
4129 * intel_irq_init - initializes irq support
4130 * @dev_priv: i915 device instance
4131 *
4132 * This function initializes all the irq support including work items, timers
4133 * and all the vtables. It does not setup the interrupt itself though.
4134 */
4135 void intel_irq_init(struct drm_i915_private *dev_priv)
4136 {
4137 struct drm_device *dev = &dev_priv->drm;
4138
4139 intel_hpd_init_work(dev_priv);
4140
4141 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4142 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4143
4144 if (HAS_GUC_SCHED(dev_priv))
4145 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4146
4147 /* Let's track the enabled rps events */
4148 if (IS_VALLEYVIEW(dev_priv))
4149 /* WaGsvRC0ResidencyMethod:vlv */
4150 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4151 else
4152 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4153
4154 dev_priv->rps.pm_intr_keep = 0;
4155
4156 /*
4157 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4158 * if GEN6_PM_UP_EI_EXPIRED is masked.
4159 *
4160 * TODO: verify if this can be reproduced on VLV,CHV.
4161 */
4162 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4163 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4164
4165 if (INTEL_INFO(dev_priv)->gen >= 8)
4166 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4167
4168 if (IS_GEN2(dev_priv)) {
4169 /* Gen2 doesn't have a hardware frame counter */
4170 dev->max_vblank_count = 0;
4171 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4172 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4173 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4174 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4175 } else {
4176 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4177 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4178 }
4179
4180 /*
4181 * Opt out of the vblank disable timer on everything except gen2.
4182 * Gen2 doesn't have a hardware frame counter and so depends on
4183 * vblank interrupts to produce sane vblank seuquence numbers.
4184 */
4185 if (!IS_GEN2(dev_priv))
4186 dev->vblank_disable_immediate = true;
4187
4188 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4189 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4190
4191 if (IS_CHERRYVIEW(dev_priv)) {
4192 dev->driver->irq_handler = cherryview_irq_handler;
4193 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4194 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4195 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4196 dev->driver->enable_vblank = i965_enable_vblank;
4197 dev->driver->disable_vblank = i965_disable_vblank;
4198 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4199 } else if (IS_VALLEYVIEW(dev_priv)) {
4200 dev->driver->irq_handler = valleyview_irq_handler;
4201 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4202 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4203 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4204 dev->driver->enable_vblank = i965_enable_vblank;
4205 dev->driver->disable_vblank = i965_disable_vblank;
4206 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4207 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4208 dev->driver->irq_handler = gen8_irq_handler;
4209 dev->driver->irq_preinstall = gen8_irq_reset;
4210 dev->driver->irq_postinstall = gen8_irq_postinstall;
4211 dev->driver->irq_uninstall = gen8_irq_uninstall;
4212 dev->driver->enable_vblank = gen8_enable_vblank;
4213 dev->driver->disable_vblank = gen8_disable_vblank;
4214 if (IS_BROXTON(dev_priv))
4215 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4216 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4217 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4218 else
4219 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4220 } else if (HAS_PCH_SPLIT(dev_priv)) {
4221 dev->driver->irq_handler = ironlake_irq_handler;
4222 dev->driver->irq_preinstall = ironlake_irq_reset;
4223 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4224 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4225 dev->driver->enable_vblank = ironlake_enable_vblank;
4226 dev->driver->disable_vblank = ironlake_disable_vblank;
4227 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4228 } else {
4229 if (IS_GEN2(dev_priv)) {
4230 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4231 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4232 dev->driver->irq_handler = i8xx_irq_handler;
4233 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4234 dev->driver->enable_vblank = i8xx_enable_vblank;
4235 dev->driver->disable_vblank = i8xx_disable_vblank;
4236 } else if (IS_GEN3(dev_priv)) {
4237 dev->driver->irq_preinstall = i915_irq_preinstall;
4238 dev->driver->irq_postinstall = i915_irq_postinstall;
4239 dev->driver->irq_uninstall = i915_irq_uninstall;
4240 dev->driver->irq_handler = i915_irq_handler;
4241 dev->driver->enable_vblank = i8xx_enable_vblank;
4242 dev->driver->disable_vblank = i8xx_disable_vblank;
4243 } else {
4244 dev->driver->irq_preinstall = i965_irq_preinstall;
4245 dev->driver->irq_postinstall = i965_irq_postinstall;
4246 dev->driver->irq_uninstall = i965_irq_uninstall;
4247 dev->driver->irq_handler = i965_irq_handler;
4248 dev->driver->enable_vblank = i965_enable_vblank;
4249 dev->driver->disable_vblank = i965_disable_vblank;
4250 }
4251 if (I915_HAS_HOTPLUG(dev_priv))
4252 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4253 }
4254 }
4255
4256 /**
4257 * intel_irq_install - enables the hardware interrupt
4258 * @dev_priv: i915 device instance
4259 *
4260 * This function enables the hardware interrupt handling, but leaves the hotplug
4261 * handling still disabled. It is called after intel_irq_init().
4262 *
4263 * In the driver load and resume code we need working interrupts in a few places
4264 * but don't want to deal with the hassle of concurrent probe and hotplug
4265 * workers. Hence the split into this two-stage approach.
4266 */
4267 int intel_irq_install(struct drm_i915_private *dev_priv)
4268 {
4269 /*
4270 * We enable some interrupt sources in our postinstall hooks, so mark
4271 * interrupts as enabled _before_ actually enabling them to avoid
4272 * special cases in our ordering checks.
4273 */
4274 dev_priv->pm.irqs_enabled = true;
4275
4276 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4277 }
4278
4279 /**
4280 * intel_irq_uninstall - finilizes all irq handling
4281 * @dev_priv: i915 device instance
4282 *
4283 * This stops interrupt and hotplug handling and unregisters and frees all
4284 * resources acquired in the init functions.
4285 */
4286 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4287 {
4288 drm_irq_uninstall(&dev_priv->drm);
4289 intel_hpd_cancel_work(dev_priv);
4290 dev_priv->pm.irqs_enabled = false;
4291 }
4292
4293 /**
4294 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4295 * @dev_priv: i915 device instance
4296 *
4297 * This function is used to disable interrupts at runtime, both in the runtime
4298 * pm and the system suspend/resume code.
4299 */
4300 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4301 {
4302 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4303 dev_priv->pm.irqs_enabled = false;
4304 synchronize_irq(dev_priv->drm.irq);
4305 }
4306
4307 /**
4308 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4309 * @dev_priv: i915 device instance
4310 *
4311 * This function is used to enable interrupts at runtime, both in the runtime
4312 * pm and the system suspend/resume code.
4313 */
4314 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4315 {
4316 dev_priv->pm.irqs_enabled = true;
4317 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4318 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4319 }