]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 lockdep_assert_held(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 lockdep_assert_held(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 lockdep_assert_held(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 lockdep_assert_held(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 lockdep_assert_held(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 lockdep_assert_held(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 lockdep_assert_held(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 return;
396
397 spin_lock_irq(&dev_priv->irq_lock);
398 dev_priv->rps.interrupts_enabled = false;
399
400 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404 spin_unlock_irq(&dev_priv->irq_lock);
405 synchronize_irq(dev_priv->drm.irq);
406
407 /* Now that we will not be generating any more work, flush any
408 * outsanding tasks. As we are called on the RPS idle path,
409 * we will reset the GPU to minimum frequencies, so the current
410 * state of the worker can be discarded.
411 */
412 cancel_work_sync(&dev_priv->rps.work);
413 gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 spin_lock_irq(&dev_priv->irq_lock);
419 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 spin_lock_irq(&dev_priv->irq_lock);
426 if (!dev_priv->guc.interrupts_enabled) {
427 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 dev_priv->pm_guc_events);
429 dev_priv->guc.interrupts_enabled = true;
430 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 }
432 spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 spin_lock_irq(&dev_priv->irq_lock);
438 dev_priv->guc.interrupts_enabled = false;
439
440 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442 spin_unlock_irq(&dev_priv->irq_lock);
443 synchronize_irq(dev_priv->drm.irq);
444
445 gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449 * bdw_update_port_irq - update DE port interrupt
450 * @dev_priv: driver private
451 * @interrupt_mask: mask of interrupt bits to update
452 * @enabled_irq_mask: mask of interrupt bits to enable
453 */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 uint32_t interrupt_mask,
456 uint32_t enabled_irq_mask)
457 {
458 uint32_t new_val;
459 uint32_t old_val;
460
461 lockdep_assert_held(&dev_priv->irq_lock);
462
463 WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 return;
467
468 old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470 new_val = old_val;
471 new_val &= ~interrupt_mask;
472 new_val |= (~enabled_irq_mask & interrupt_mask);
473
474 if (new_val != old_val) {
475 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 POSTING_READ(GEN8_DE_PORT_IMR);
477 }
478 }
479
480 /**
481 * bdw_update_pipe_irq - update DE pipe interrupt
482 * @dev_priv: driver private
483 * @pipe: pipe whose interrupt to update
484 * @interrupt_mask: mask of interrupt bits to update
485 * @enabled_irq_mask: mask of interrupt bits to enable
486 */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 enum pipe pipe,
489 uint32_t interrupt_mask,
490 uint32_t enabled_irq_mask)
491 {
492 uint32_t new_val;
493
494 lockdep_assert_held(&dev_priv->irq_lock);
495
496 WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 return;
500
501 new_val = dev_priv->de_irq_mask[pipe];
502 new_val &= ~interrupt_mask;
503 new_val |= (~enabled_irq_mask & interrupt_mask);
504
505 if (new_val != dev_priv->de_irq_mask[pipe]) {
506 dev_priv->de_irq_mask[pipe] = new_val;
507 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 }
510 }
511
512 /**
513 * ibx_display_interrupt_update - update SDEIMR
514 * @dev_priv: driver private
515 * @interrupt_mask: mask of interrupt bits to update
516 * @enabled_irq_mask: mask of interrupt bits to enable
517 */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 uint32_t interrupt_mask,
520 uint32_t enabled_irq_mask)
521 {
522 uint32_t sdeimr = I915_READ(SDEIMR);
523 sdeimr &= ~interrupt_mask;
524 sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526 WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528 lockdep_assert_held(&dev_priv->irq_lock);
529
530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 return;
532
533 I915_WRITE(SDEIMR, sdeimr);
534 POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 u32 enable_mask, u32 status_mask)
540 {
541 i915_reg_t reg = PIPESTAT(pipe);
542 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544 lockdep_assert_held(&dev_priv->irq_lock);
545 WARN_ON(!intel_irqs_enabled(dev_priv));
546
547 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 pipe_name(pipe), enable_mask, status_mask))
551 return;
552
553 if ((pipestat & enable_mask) == enable_mask)
554 return;
555
556 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558 /* Enable the interrupt, clear any pending status */
559 pipestat |= enable_mask | status_mask;
560 I915_WRITE(reg, pipestat);
561 POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 u32 enable_mask, u32 status_mask)
567 {
568 i915_reg_t reg = PIPESTAT(pipe);
569 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571 lockdep_assert_held(&dev_priv->irq_lock);
572 WARN_ON(!intel_irqs_enabled(dev_priv));
573
574 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 pipe_name(pipe), enable_mask, status_mask))
578 return;
579
580 if ((pipestat & enable_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585 pipestat &= ~enable_mask;
586 I915_WRITE(reg, pipestat);
587 POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 u32 enable_mask = status_mask << 16;
593
594 /*
595 * On pipe A we don't support the PSR interrupt yet,
596 * on pipe B and C the same bit MBZ.
597 */
598 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 return 0;
600 /*
601 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 * A the same bit is for perf counters which we don't use either.
603 */
604 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 return 0;
606
607 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615 return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 u32 status_mask)
621 {
622 u32 enable_mask;
623
624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 status_mask);
627 else
628 enable_mask = status_mask << 16;
629 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 u32 status_mask)
635 {
636 u32 enable_mask;
637
638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 status_mask);
641 else
642 enable_mask = status_mask << 16;
643 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648 * @dev_priv: i915 device private
649 */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 return;
654
655 spin_lock_irq(&dev_priv->irq_lock);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_GEN(dev_priv) >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666 * This timing diagram depicts the video signal in and
667 * around the vertical blanking period.
668 *
669 * Assumptions about the fictitious mode used in this example:
670 * vblank_start >= 3
671 * vsync_start = vblank_start + 1
672 * vsync_end = vblank_start + 2
673 * vtotal = vblank_start + 3
674 *
675 * start of vblank:
676 * latch double buffered registers
677 * increment frame counter (ctg+)
678 * generate start of vblank interrupt (gen4+)
679 * |
680 * | frame start:
681 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
682 * | may be shifted forward 1-3 extra lines via PIPECONF
683 * | |
684 * | | start of vsync:
685 * | | generate vsync interrupt
686 * | | |
687 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
688 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
689 * ----va---> <-----------------vb--------------------> <--------va-------------
690 * | | <----vs-----> |
691 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694 * | | |
695 * last visible pixel first visible pixel
696 * | increment frame counter (gen3/4)
697 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
698 *
699 * x = horizontal active
700 * _ = horizontal blanking
701 * hs = horizontal sync
702 * va = vertical active
703 * vb = vertical blanking
704 * vs = vertical sync
705 * vbs = vblank_start (number)
706 *
707 * Summary:
708 * - most events happen at the start of horizontal sync
709 * - frame start happens at the start of horizontal blank, 1-4 lines
710 * (depending on PIPECONF settings) after the start of vblank
711 * - gen3/4 pixel and frame counter are synchronized with the start
712 * of horizontal active on the first line of vertical active
713 */
714
715 /* Called from drm generic code, passed a 'crtc', which
716 * we use as a pipe index
717 */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t high_frame, low_frame;
722 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
724 pipe);
725 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
726 unsigned long irqflags;
727
728 htotal = mode->crtc_htotal;
729 hsync_start = mode->crtc_hsync_start;
730 vbl_start = mode->crtc_vblank_start;
731 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732 vbl_start = DIV_ROUND_UP(vbl_start, 2);
733
734 /* Convert to pixel count */
735 vbl_start *= htotal;
736
737 /* Start of vblank event occurs at start of hsync */
738 vbl_start -= htotal - hsync_start;
739
740 high_frame = PIPEFRAME(pipe);
741 low_frame = PIPEFRAMEPIXEL(pipe);
742
743 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
744
745 /*
746 * High & low register fields aren't synchronized, so make sure
747 * we get a low value that's stable across two reads of the high
748 * register.
749 */
750 do {
751 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 low = I915_READ_FW(low_frame);
753 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
754 } while (high1 != high2);
755
756 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
757
758 high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 pixel = low & PIPE_PIXEL_MASK;
760 low >>= PIPE_FRAME_LOW_SHIFT;
761
762 /*
763 * The frame counter increments at beginning of active.
764 * Cook up a vblank counter by also checking the pixel
765 * counter against vblank start.
766 */
767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 struct drm_i915_private *dev_priv = to_i915(dev);
773
774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 struct drm_i915_private *dev_priv = to_i915(dev);
782 const struct drm_display_mode *mode = &crtc->base.hwmode;
783 enum pipe pipe = crtc->pipe;
784 int position, vtotal;
785
786 if (!crtc->active)
787 return -1;
788
789 vtotal = mode->crtc_vtotal;
790 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
791 vtotal /= 2;
792
793 if (IS_GEN2(dev_priv))
794 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
795 else
796 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
797
798 /*
799 * On HSW, the DSL reg (0x70000) appears to return 0 if we
800 * read it just before the start of vblank. So try it again
801 * so we don't accidentally end up spanning a vblank frame
802 * increment, causing the pipe_update_end() code to squak at us.
803 *
804 * The nature of this problem means we can't simply check the ISR
805 * bit and return the vblank start value; nor can we use the scanline
806 * debug register in the transcoder as it appears to have the same
807 * problem. We may need to extend this to include other platforms,
808 * but so far testing only shows the problem on HSW.
809 */
810 if (HAS_DDI(dev_priv) && !position) {
811 int i, temp;
812
813 for (i = 0; i < 100; i++) {
814 udelay(1);
815 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
816 if (temp != position) {
817 position = temp;
818 break;
819 }
820 }
821 }
822
823 /*
824 * See update_scanline_offset() for the details on the
825 * scanline_offset adjustment.
826 */
827 return (position + crtc->scanline_offset) % vtotal;
828 }
829
830 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
831 unsigned int flags, int *vpos, int *hpos,
832 ktime_t *stime, ktime_t *etime,
833 const struct drm_display_mode *mode)
834 {
835 struct drm_i915_private *dev_priv = to_i915(dev);
836 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
837 pipe);
838 int position;
839 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
840 bool in_vbl = true;
841 int ret = 0;
842 unsigned long irqflags;
843
844 if (WARN_ON(!mode->crtc_clock)) {
845 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846 "pipe %c\n", pipe_name(pipe));
847 return 0;
848 }
849
850 htotal = mode->crtc_htotal;
851 hsync_start = mode->crtc_hsync_start;
852 vtotal = mode->crtc_vtotal;
853 vbl_start = mode->crtc_vblank_start;
854 vbl_end = mode->crtc_vblank_end;
855
856 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857 vbl_start = DIV_ROUND_UP(vbl_start, 2);
858 vbl_end /= 2;
859 vtotal /= 2;
860 }
861
862 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
863
864 /*
865 * Lock uncore.lock, as we will do multiple timing critical raw
866 * register reads, potentially with preemption disabled, so the
867 * following code must not block on uncore.lock.
868 */
869 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
870
871 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
872
873 /* Get optional system timestamp before query. */
874 if (stime)
875 *stime = ktime_get();
876
877 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
878 /* No obvious pixelcount register. Only query vertical
879 * scanout position from Display scan line register.
880 */
881 position = __intel_get_crtc_scanline(intel_crtc);
882 } else {
883 /* Have access to pixelcount since start of frame.
884 * We can split this into vertical and horizontal
885 * scanout position.
886 */
887 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
888
889 /* convert to pixel counts */
890 vbl_start *= htotal;
891 vbl_end *= htotal;
892 vtotal *= htotal;
893
894 /*
895 * In interlaced modes, the pixel counter counts all pixels,
896 * so one field will have htotal more pixels. In order to avoid
897 * the reported position from jumping backwards when the pixel
898 * counter is beyond the length of the shorter field, just
899 * clamp the position the length of the shorter field. This
900 * matches how the scanline counter based position works since
901 * the scanline counter doesn't count the two half lines.
902 */
903 if (position >= vtotal)
904 position = vtotal - 1;
905
906 /*
907 * Start of vblank interrupt is triggered at start of hsync,
908 * just prior to the first active line of vblank. However we
909 * consider lines to start at the leading edge of horizontal
910 * active. So, should we get here before we've crossed into
911 * the horizontal active of the first line in vblank, we would
912 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
913 * always add htotal-hsync_start to the current pixel position.
914 */
915 position = (position + htotal - hsync_start) % vtotal;
916 }
917
918 /* Get optional system timestamp after query. */
919 if (etime)
920 *etime = ktime_get();
921
922 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
923
924 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
925
926 in_vbl = position >= vbl_start && position < vbl_end;
927
928 /*
929 * While in vblank, position will be negative
930 * counting up towards 0 at vbl_end. And outside
931 * vblank, position will be positive counting
932 * up since vbl_end.
933 */
934 if (position >= vbl_start)
935 position -= vbl_end;
936 else
937 position += vtotal - vbl_end;
938
939 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
940 *vpos = position;
941 *hpos = 0;
942 } else {
943 *vpos = position / htotal;
944 *hpos = position - (*vpos * htotal);
945 }
946
947 /* In vblank? */
948 if (in_vbl)
949 ret |= DRM_SCANOUTPOS_IN_VBLANK;
950
951 return ret;
952 }
953
954 int intel_get_crtc_scanline(struct intel_crtc *crtc)
955 {
956 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
957 unsigned long irqflags;
958 int position;
959
960 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
961 position = __intel_get_crtc_scanline(crtc);
962 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
963
964 return position;
965 }
966
967 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
968 int *max_error,
969 struct timeval *vblank_time,
970 unsigned flags)
971 {
972 struct drm_i915_private *dev_priv = to_i915(dev);
973 struct intel_crtc *crtc;
974
975 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
976 DRM_ERROR("Invalid crtc %u\n", pipe);
977 return -EINVAL;
978 }
979
980 /* Get drm_crtc to timestamp: */
981 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
982 if (crtc == NULL) {
983 DRM_ERROR("Invalid crtc %u\n", pipe);
984 return -EINVAL;
985 }
986
987 if (!crtc->base.hwmode.crtc_clock) {
988 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
989 return -EBUSY;
990 }
991
992 /* Helper routine in DRM core does all the work: */
993 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
994 vblank_time, flags,
995 &crtc->base.hwmode);
996 }
997
998 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
999 {
1000 u32 busy_up, busy_down, max_avg, min_avg;
1001 u8 new_delay;
1002
1003 spin_lock(&mchdev_lock);
1004
1005 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006
1007 new_delay = dev_priv->ips.cur_delay;
1008
1009 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010 busy_up = I915_READ(RCPREVBSYTUPAVG);
1011 busy_down = I915_READ(RCPREVBSYTDNAVG);
1012 max_avg = I915_READ(RCBMAXAVG);
1013 min_avg = I915_READ(RCBMINAVG);
1014
1015 /* Handle RCS change request from hw */
1016 if (busy_up > max_avg) {
1017 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.cur_delay - 1;
1019 if (new_delay < dev_priv->ips.max_delay)
1020 new_delay = dev_priv->ips.max_delay;
1021 } else if (busy_down < min_avg) {
1022 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.cur_delay + 1;
1024 if (new_delay > dev_priv->ips.min_delay)
1025 new_delay = dev_priv->ips.min_delay;
1026 }
1027
1028 if (ironlake_set_drps(dev_priv, new_delay))
1029 dev_priv->ips.cur_delay = new_delay;
1030
1031 spin_unlock(&mchdev_lock);
1032
1033 return;
1034 }
1035
1036 static void notify_ring(struct intel_engine_cs *engine)
1037 {
1038 struct drm_i915_gem_request *rq = NULL;
1039 struct intel_wait *wait;
1040
1041 atomic_inc(&engine->irq_count);
1042 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1043
1044 spin_lock(&engine->breadcrumbs.irq_lock);
1045 wait = engine->breadcrumbs.irq_wait;
1046 if (wait) {
1047 /* We use a callback from the dma-fence to submit
1048 * requests after waiting on our own requests. To
1049 * ensure minimum delay in queuing the next request to
1050 * hardware, signal the fence now rather than wait for
1051 * the signaler to be woken up. We still wake up the
1052 * waiter in order to handle the irq-seqno coherency
1053 * issues (we may receive the interrupt before the
1054 * seqno is written, see __i915_request_irq_complete())
1055 * and to handle coalescing of multiple seqno updates
1056 * and many waiters.
1057 */
1058 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1059 wait->seqno) &&
1060 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1061 &wait->request->fence.flags))
1062 rq = i915_gem_request_get(wait->request);
1063
1064 wake_up_process(wait->tsk);
1065 } else {
1066 __intel_engine_disarm_breadcrumbs(engine);
1067 }
1068 spin_unlock(&engine->breadcrumbs.irq_lock);
1069
1070 if (rq) {
1071 dma_fence_signal(&rq->fence);
1072 i915_gem_request_put(rq);
1073 }
1074
1075 trace_intel_engine_notify(engine, wait);
1076 }
1077
1078 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1079 struct intel_rps_ei *ei)
1080 {
1081 ei->ktime = ktime_get_raw();
1082 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1083 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1084 }
1085
1086 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1087 {
1088 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1089 }
1090
1091 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1092 {
1093 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1094 struct intel_rps_ei now;
1095 u32 events = 0;
1096
1097 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1098 return 0;
1099
1100 vlv_c0_read(dev_priv, &now);
1101
1102 if (prev->ktime) {
1103 u64 time, c0;
1104 u32 render, media;
1105
1106 time = ktime_us_delta(now.ktime, prev->ktime);
1107
1108 time *= dev_priv->czclk_freq;
1109
1110 /* Workload can be split between render + media,
1111 * e.g. SwapBuffers being blitted in X after being rendered in
1112 * mesa. To account for this we need to combine both engines
1113 * into our activity counter.
1114 */
1115 render = now.render_c0 - prev->render_c0;
1116 media = now.media_c0 - prev->media_c0;
1117 c0 = max(render, media);
1118 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1119
1120 if (c0 > time * dev_priv->rps.up_threshold)
1121 events = GEN6_PM_RP_UP_THRESHOLD;
1122 else if (c0 < time * dev_priv->rps.down_threshold)
1123 events = GEN6_PM_RP_DOWN_THRESHOLD;
1124 }
1125
1126 dev_priv->rps.ei = now;
1127 return events;
1128 }
1129
1130 static bool any_waiters(struct drm_i915_private *dev_priv)
1131 {
1132 struct intel_engine_cs *engine;
1133 enum intel_engine_id id;
1134
1135 for_each_engine(engine, dev_priv, id)
1136 if (intel_engine_has_waiter(engine))
1137 return true;
1138
1139 return false;
1140 }
1141
1142 static void gen6_pm_rps_work(struct work_struct *work)
1143 {
1144 struct drm_i915_private *dev_priv =
1145 container_of(work, struct drm_i915_private, rps.work);
1146 bool client_boost = false;
1147 int new_delay, adj, min, max;
1148 u32 pm_iir = 0;
1149
1150 spin_lock_irq(&dev_priv->irq_lock);
1151 if (dev_priv->rps.interrupts_enabled) {
1152 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1153 client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1154 }
1155 spin_unlock_irq(&dev_priv->irq_lock);
1156
1157 /* Make sure we didn't queue anything we're not going to process. */
1158 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1159 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1160 goto out;
1161
1162 mutex_lock(&dev_priv->rps.hw_lock);
1163
1164 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1165
1166 adj = dev_priv->rps.last_adj;
1167 new_delay = dev_priv->rps.cur_freq;
1168 min = dev_priv->rps.min_freq_softlimit;
1169 max = dev_priv->rps.max_freq_softlimit;
1170 if (client_boost || any_waiters(dev_priv))
1171 max = dev_priv->rps.max_freq;
1172 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1173 new_delay = dev_priv->rps.boost_freq;
1174 adj = 0;
1175 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1176 if (adj > 0)
1177 adj *= 2;
1178 else /* CHV needs even encode values */
1179 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1180
1181 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1182 adj = 0;
1183 } else if (client_boost || any_waiters(dev_priv)) {
1184 adj = 0;
1185 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1186 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1187 new_delay = dev_priv->rps.efficient_freq;
1188 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1189 new_delay = dev_priv->rps.min_freq_softlimit;
1190 adj = 0;
1191 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1192 if (adj < 0)
1193 adj *= 2;
1194 else /* CHV needs even encode values */
1195 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1196
1197 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1198 adj = 0;
1199 } else { /* unknown event */
1200 adj = 0;
1201 }
1202
1203 dev_priv->rps.last_adj = adj;
1204
1205 /* sysfs frequency interfaces may have snuck in while servicing the
1206 * interrupt
1207 */
1208 new_delay += adj;
1209 new_delay = clamp_t(int, new_delay, min, max);
1210
1211 if (intel_set_rps(dev_priv, new_delay)) {
1212 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1213 dev_priv->rps.last_adj = 0;
1214 }
1215
1216 mutex_unlock(&dev_priv->rps.hw_lock);
1217
1218 out:
1219 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1220 spin_lock_irq(&dev_priv->irq_lock);
1221 if (dev_priv->rps.interrupts_enabled)
1222 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1223 spin_unlock_irq(&dev_priv->irq_lock);
1224 }
1225
1226
1227 /**
1228 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1229 * occurred.
1230 * @work: workqueue struct
1231 *
1232 * Doesn't actually do anything except notify userspace. As a consequence of
1233 * this event, userspace should try to remap the bad rows since statistically
1234 * it is likely the same row is more likely to go bad again.
1235 */
1236 static void ivybridge_parity_work(struct work_struct *work)
1237 {
1238 struct drm_i915_private *dev_priv =
1239 container_of(work, struct drm_i915_private, l3_parity.error_work);
1240 u32 error_status, row, bank, subbank;
1241 char *parity_event[6];
1242 uint32_t misccpctl;
1243 uint8_t slice = 0;
1244
1245 /* We must turn off DOP level clock gating to access the L3 registers.
1246 * In order to prevent a get/put style interface, acquire struct mutex
1247 * any time we access those registers.
1248 */
1249 mutex_lock(&dev_priv->drm.struct_mutex);
1250
1251 /* If we've screwed up tracking, just let the interrupt fire again */
1252 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1253 goto out;
1254
1255 misccpctl = I915_READ(GEN7_MISCCPCTL);
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1257 POSTING_READ(GEN7_MISCCPCTL);
1258
1259 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1260 i915_reg_t reg;
1261
1262 slice--;
1263 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1264 break;
1265
1266 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1267
1268 reg = GEN7_L3CDERRST1(slice);
1269
1270 error_status = I915_READ(reg);
1271 row = GEN7_PARITY_ERROR_ROW(error_status);
1272 bank = GEN7_PARITY_ERROR_BANK(error_status);
1273 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1274
1275 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1276 POSTING_READ(reg);
1277
1278 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1279 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1280 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1281 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1282 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1283 parity_event[5] = NULL;
1284
1285 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1286 KOBJ_CHANGE, parity_event);
1287
1288 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1289 slice, row, bank, subbank);
1290
1291 kfree(parity_event[4]);
1292 kfree(parity_event[3]);
1293 kfree(parity_event[2]);
1294 kfree(parity_event[1]);
1295 }
1296
1297 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1298
1299 out:
1300 WARN_ON(dev_priv->l3_parity.which_slice);
1301 spin_lock_irq(&dev_priv->irq_lock);
1302 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1303 spin_unlock_irq(&dev_priv->irq_lock);
1304
1305 mutex_unlock(&dev_priv->drm.struct_mutex);
1306 }
1307
1308 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1309 u32 iir)
1310 {
1311 if (!HAS_L3_DPF(dev_priv))
1312 return;
1313
1314 spin_lock(&dev_priv->irq_lock);
1315 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1316 spin_unlock(&dev_priv->irq_lock);
1317
1318 iir &= GT_PARITY_ERROR(dev_priv);
1319 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1320 dev_priv->l3_parity.which_slice |= 1 << 1;
1321
1322 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1323 dev_priv->l3_parity.which_slice |= 1 << 0;
1324
1325 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1326 }
1327
1328 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1329 u32 gt_iir)
1330 {
1331 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1332 notify_ring(dev_priv->engine[RCS]);
1333 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1334 notify_ring(dev_priv->engine[VCS]);
1335 }
1336
1337 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1338 u32 gt_iir)
1339 {
1340 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1341 notify_ring(dev_priv->engine[RCS]);
1342 if (gt_iir & GT_BSD_USER_INTERRUPT)
1343 notify_ring(dev_priv->engine[VCS]);
1344 if (gt_iir & GT_BLT_USER_INTERRUPT)
1345 notify_ring(dev_priv->engine[BCS]);
1346
1347 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1348 GT_BSD_CS_ERROR_INTERRUPT |
1349 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1350 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1351
1352 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1353 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1354 }
1355
1356 static __always_inline void
1357 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1358 {
1359 bool tasklet = false;
1360
1361 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1362 set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1363 tasklet = true;
1364 }
1365
1366 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1367 notify_ring(engine);
1368 tasklet |= i915.enable_guc_submission;
1369 }
1370
1371 if (tasklet)
1372 tasklet_hi_schedule(&engine->irq_tasklet);
1373 }
1374
1375 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1376 u32 master_ctl,
1377 u32 gt_iir[4])
1378 {
1379 irqreturn_t ret = IRQ_NONE;
1380
1381 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1382 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1383 if (gt_iir[0]) {
1384 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1385 ret = IRQ_HANDLED;
1386 } else
1387 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1388 }
1389
1390 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1391 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1392 if (gt_iir[1]) {
1393 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1394 ret = IRQ_HANDLED;
1395 } else
1396 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1397 }
1398
1399 if (master_ctl & GEN8_GT_VECS_IRQ) {
1400 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1401 if (gt_iir[3]) {
1402 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1403 ret = IRQ_HANDLED;
1404 } else
1405 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1406 }
1407
1408 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1409 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1410 if (gt_iir[2] & (dev_priv->pm_rps_events |
1411 dev_priv->pm_guc_events)) {
1412 I915_WRITE_FW(GEN8_GT_IIR(2),
1413 gt_iir[2] & (dev_priv->pm_rps_events |
1414 dev_priv->pm_guc_events));
1415 ret = IRQ_HANDLED;
1416 } else
1417 DRM_ERROR("The master control interrupt lied (PM)!\n");
1418 }
1419
1420 return ret;
1421 }
1422
1423 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1424 u32 gt_iir[4])
1425 {
1426 if (gt_iir[0]) {
1427 gen8_cs_irq_handler(dev_priv->engine[RCS],
1428 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1429 gen8_cs_irq_handler(dev_priv->engine[BCS],
1430 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1431 }
1432
1433 if (gt_iir[1]) {
1434 gen8_cs_irq_handler(dev_priv->engine[VCS],
1435 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1436 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1437 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1438 }
1439
1440 if (gt_iir[3])
1441 gen8_cs_irq_handler(dev_priv->engine[VECS],
1442 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1443
1444 if (gt_iir[2] & dev_priv->pm_rps_events)
1445 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1446
1447 if (gt_iir[2] & dev_priv->pm_guc_events)
1448 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1449 }
1450
1451 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1452 {
1453 switch (port) {
1454 case PORT_A:
1455 return val & PORTA_HOTPLUG_LONG_DETECT;
1456 case PORT_B:
1457 return val & PORTB_HOTPLUG_LONG_DETECT;
1458 case PORT_C:
1459 return val & PORTC_HOTPLUG_LONG_DETECT;
1460 default:
1461 return false;
1462 }
1463 }
1464
1465 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1466 {
1467 switch (port) {
1468 case PORT_E:
1469 return val & PORTE_HOTPLUG_LONG_DETECT;
1470 default:
1471 return false;
1472 }
1473 }
1474
1475 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1476 {
1477 switch (port) {
1478 case PORT_A:
1479 return val & PORTA_HOTPLUG_LONG_DETECT;
1480 case PORT_B:
1481 return val & PORTB_HOTPLUG_LONG_DETECT;
1482 case PORT_C:
1483 return val & PORTC_HOTPLUG_LONG_DETECT;
1484 case PORT_D:
1485 return val & PORTD_HOTPLUG_LONG_DETECT;
1486 default:
1487 return false;
1488 }
1489 }
1490
1491 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1492 {
1493 switch (port) {
1494 case PORT_A:
1495 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1496 default:
1497 return false;
1498 }
1499 }
1500
1501 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1502 {
1503 switch (port) {
1504 case PORT_B:
1505 return val & PORTB_HOTPLUG_LONG_DETECT;
1506 case PORT_C:
1507 return val & PORTC_HOTPLUG_LONG_DETECT;
1508 case PORT_D:
1509 return val & PORTD_HOTPLUG_LONG_DETECT;
1510 default:
1511 return false;
1512 }
1513 }
1514
1515 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1516 {
1517 switch (port) {
1518 case PORT_B:
1519 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1520 case PORT_C:
1521 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1522 case PORT_D:
1523 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1524 default:
1525 return false;
1526 }
1527 }
1528
1529 /*
1530 * Get a bit mask of pins that have triggered, and which ones may be long.
1531 * This can be called multiple times with the same masks to accumulate
1532 * hotplug detection results from several registers.
1533 *
1534 * Note that the caller is expected to zero out the masks initially.
1535 */
1536 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1537 u32 hotplug_trigger, u32 dig_hotplug_reg,
1538 const u32 hpd[HPD_NUM_PINS],
1539 bool long_pulse_detect(enum port port, u32 val))
1540 {
1541 enum port port;
1542 int i;
1543
1544 for_each_hpd_pin(i) {
1545 if ((hpd[i] & hotplug_trigger) == 0)
1546 continue;
1547
1548 *pin_mask |= BIT(i);
1549
1550 if (!intel_hpd_pin_to_port(i, &port))
1551 continue;
1552
1553 if (long_pulse_detect(port, dig_hotplug_reg))
1554 *long_mask |= BIT(i);
1555 }
1556
1557 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1558 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1559
1560 }
1561
1562 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1563 {
1564 wake_up_all(&dev_priv->gmbus_wait_queue);
1565 }
1566
1567 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1568 {
1569 wake_up_all(&dev_priv->gmbus_wait_queue);
1570 }
1571
1572 #if defined(CONFIG_DEBUG_FS)
1573 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1574 enum pipe pipe,
1575 uint32_t crc0, uint32_t crc1,
1576 uint32_t crc2, uint32_t crc3,
1577 uint32_t crc4)
1578 {
1579 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1580 struct intel_pipe_crc_entry *entry;
1581 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1582 struct drm_driver *driver = dev_priv->drm.driver;
1583 uint32_t crcs[5];
1584 int head, tail;
1585
1586 spin_lock(&pipe_crc->lock);
1587 if (pipe_crc->source) {
1588 if (!pipe_crc->entries) {
1589 spin_unlock(&pipe_crc->lock);
1590 DRM_DEBUG_KMS("spurious interrupt\n");
1591 return;
1592 }
1593
1594 head = pipe_crc->head;
1595 tail = pipe_crc->tail;
1596
1597 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1598 spin_unlock(&pipe_crc->lock);
1599 DRM_ERROR("CRC buffer overflowing\n");
1600 return;
1601 }
1602
1603 entry = &pipe_crc->entries[head];
1604
1605 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1606 entry->crc[0] = crc0;
1607 entry->crc[1] = crc1;
1608 entry->crc[2] = crc2;
1609 entry->crc[3] = crc3;
1610 entry->crc[4] = crc4;
1611
1612 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1613 pipe_crc->head = head;
1614
1615 spin_unlock(&pipe_crc->lock);
1616
1617 wake_up_interruptible(&pipe_crc->wq);
1618 } else {
1619 /*
1620 * For some not yet identified reason, the first CRC is
1621 * bonkers. So let's just wait for the next vblank and read
1622 * out the buggy result.
1623 *
1624 * On CHV sometimes the second CRC is bonkers as well, so
1625 * don't trust that one either.
1626 */
1627 if (pipe_crc->skipped == 0 ||
1628 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1629 pipe_crc->skipped++;
1630 spin_unlock(&pipe_crc->lock);
1631 return;
1632 }
1633 spin_unlock(&pipe_crc->lock);
1634 crcs[0] = crc0;
1635 crcs[1] = crc1;
1636 crcs[2] = crc2;
1637 crcs[3] = crc3;
1638 crcs[4] = crc4;
1639 drm_crtc_add_crc_entry(&crtc->base, true,
1640 drm_accurate_vblank_count(&crtc->base),
1641 crcs);
1642 }
1643 }
1644 #else
1645 static inline void
1646 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1647 enum pipe pipe,
1648 uint32_t crc0, uint32_t crc1,
1649 uint32_t crc2, uint32_t crc3,
1650 uint32_t crc4) {}
1651 #endif
1652
1653
1654 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1655 enum pipe pipe)
1656 {
1657 display_pipe_crc_irq_handler(dev_priv, pipe,
1658 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1659 0, 0, 0, 0);
1660 }
1661
1662 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1663 enum pipe pipe)
1664 {
1665 display_pipe_crc_irq_handler(dev_priv, pipe,
1666 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672
1673 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675 {
1676 uint32_t res1, res2;
1677
1678 if (INTEL_GEN(dev_priv) >= 3)
1679 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680 else
1681 res1 = 0;
1682
1683 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1684 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685 else
1686 res2 = 0;
1687
1688 display_pipe_crc_irq_handler(dev_priv, pipe,
1689 I915_READ(PIPE_CRC_RES_RED(pipe)),
1690 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692 res1, res2);
1693 }
1694
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696 * IMR bits until the work is done. Other interrupts can be processed without
1697 * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700 if (pm_iir & dev_priv->pm_rps_events) {
1701 spin_lock(&dev_priv->irq_lock);
1702 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1703 if (dev_priv->rps.interrupts_enabled) {
1704 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1705 schedule_work(&dev_priv->rps.work);
1706 }
1707 spin_unlock(&dev_priv->irq_lock);
1708 }
1709
1710 if (INTEL_INFO(dev_priv)->gen >= 8)
1711 return;
1712
1713 if (HAS_VEBOX(dev_priv)) {
1714 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1715 notify_ring(dev_priv->engine[VECS]);
1716
1717 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1718 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1719 }
1720 }
1721
1722 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1723 {
1724 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1725 /* Sample the log buffer flush related bits & clear them out now
1726 * itself from the message identity register to minimize the
1727 * probability of losing a flush interrupt, when there are back
1728 * to back flush interrupts.
1729 * There can be a new flush interrupt, for different log buffer
1730 * type (like for ISR), whilst Host is handling one (for DPC).
1731 * Since same bit is used in message register for ISR & DPC, it
1732 * could happen that GuC sets the bit for 2nd interrupt but Host
1733 * clears out the bit on handling the 1st interrupt.
1734 */
1735 u32 msg, flush;
1736
1737 msg = I915_READ(SOFT_SCRATCH(15));
1738 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1739 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1740 if (flush) {
1741 /* Clear the message bits that are handled */
1742 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1743
1744 /* Handle flush interrupt in bottom half */
1745 queue_work(dev_priv->guc.log.runtime.flush_wq,
1746 &dev_priv->guc.log.runtime.flush_work);
1747
1748 dev_priv->guc.log.flush_interrupt_count++;
1749 } else {
1750 /* Not clearing of unhandled event bits won't result in
1751 * re-triggering of the interrupt.
1752 */
1753 }
1754 }
1755 }
1756
1757 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1758 enum pipe pipe)
1759 {
1760 bool ret;
1761
1762 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1763 if (ret)
1764 intel_finish_page_flip_mmio(dev_priv, pipe);
1765
1766 return ret;
1767 }
1768
1769 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1770 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1771 {
1772 int pipe;
1773
1774 spin_lock(&dev_priv->irq_lock);
1775
1776 if (!dev_priv->display_irqs_enabled) {
1777 spin_unlock(&dev_priv->irq_lock);
1778 return;
1779 }
1780
1781 for_each_pipe(dev_priv, pipe) {
1782 i915_reg_t reg;
1783 u32 mask, iir_bit = 0;
1784
1785 /*
1786 * PIPESTAT bits get signalled even when the interrupt is
1787 * disabled with the mask bits, and some of the status bits do
1788 * not generate interrupts at all (like the underrun bit). Hence
1789 * we need to be careful that we only handle what we want to
1790 * handle.
1791 */
1792
1793 /* fifo underruns are filterered in the underrun handler. */
1794 mask = PIPE_FIFO_UNDERRUN_STATUS;
1795
1796 switch (pipe) {
1797 case PIPE_A:
1798 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1799 break;
1800 case PIPE_B:
1801 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1802 break;
1803 case PIPE_C:
1804 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1805 break;
1806 }
1807 if (iir & iir_bit)
1808 mask |= dev_priv->pipestat_irq_mask[pipe];
1809
1810 if (!mask)
1811 continue;
1812
1813 reg = PIPESTAT(pipe);
1814 mask |= PIPESTAT_INT_ENABLE_MASK;
1815 pipe_stats[pipe] = I915_READ(reg) & mask;
1816
1817 /*
1818 * Clear the PIPE*STAT regs before the IIR
1819 */
1820 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1821 PIPESTAT_INT_STATUS_MASK))
1822 I915_WRITE(reg, pipe_stats[pipe]);
1823 }
1824 spin_unlock(&dev_priv->irq_lock);
1825 }
1826
1827 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1828 u32 pipe_stats[I915_MAX_PIPES])
1829 {
1830 enum pipe pipe;
1831
1832 for_each_pipe(dev_priv, pipe) {
1833 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1834 intel_pipe_handle_vblank(dev_priv, pipe))
1835 intel_check_page_flip(dev_priv, pipe);
1836
1837 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1838 intel_finish_page_flip_cs(dev_priv, pipe);
1839
1840 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1841 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1842
1843 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1844 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1845 }
1846
1847 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1848 gmbus_irq_handler(dev_priv);
1849 }
1850
1851 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1852 {
1853 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1854
1855 if (hotplug_status)
1856 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1857
1858 return hotplug_status;
1859 }
1860
1861 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1862 u32 hotplug_status)
1863 {
1864 u32 pin_mask = 0, long_mask = 0;
1865
1866 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1867 IS_CHERRYVIEW(dev_priv)) {
1868 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1869
1870 if (hotplug_trigger) {
1871 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1872 hotplug_trigger, hpd_status_g4x,
1873 i9xx_port_hotplug_long_detect);
1874
1875 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1876 }
1877
1878 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1879 dp_aux_irq_handler(dev_priv);
1880 } else {
1881 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1882
1883 if (hotplug_trigger) {
1884 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1885 hotplug_trigger, hpd_status_i915,
1886 i9xx_port_hotplug_long_detect);
1887 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1888 }
1889 }
1890 }
1891
1892 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1893 {
1894 struct drm_device *dev = arg;
1895 struct drm_i915_private *dev_priv = to_i915(dev);
1896 irqreturn_t ret = IRQ_NONE;
1897
1898 if (!intel_irqs_enabled(dev_priv))
1899 return IRQ_NONE;
1900
1901 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1902 disable_rpm_wakeref_asserts(dev_priv);
1903
1904 do {
1905 u32 iir, gt_iir, pm_iir;
1906 u32 pipe_stats[I915_MAX_PIPES] = {};
1907 u32 hotplug_status = 0;
1908 u32 ier = 0;
1909
1910 gt_iir = I915_READ(GTIIR);
1911 pm_iir = I915_READ(GEN6_PMIIR);
1912 iir = I915_READ(VLV_IIR);
1913
1914 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1915 break;
1916
1917 ret = IRQ_HANDLED;
1918
1919 /*
1920 * Theory on interrupt generation, based on empirical evidence:
1921 *
1922 * x = ((VLV_IIR & VLV_IER) ||
1923 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1924 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1925 *
1926 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1927 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1928 * guarantee the CPU interrupt will be raised again even if we
1929 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1930 * bits this time around.
1931 */
1932 I915_WRITE(VLV_MASTER_IER, 0);
1933 ier = I915_READ(VLV_IER);
1934 I915_WRITE(VLV_IER, 0);
1935
1936 if (gt_iir)
1937 I915_WRITE(GTIIR, gt_iir);
1938 if (pm_iir)
1939 I915_WRITE(GEN6_PMIIR, pm_iir);
1940
1941 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1942 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1943
1944 /* Call regardless, as some status bits might not be
1945 * signalled in iir */
1946 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1947
1948 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1949 I915_LPE_PIPE_B_INTERRUPT))
1950 intel_lpe_audio_irq_handler(dev_priv);
1951
1952 /*
1953 * VLV_IIR is single buffered, and reflects the level
1954 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1955 */
1956 if (iir)
1957 I915_WRITE(VLV_IIR, iir);
1958
1959 I915_WRITE(VLV_IER, ier);
1960 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1961 POSTING_READ(VLV_MASTER_IER);
1962
1963 if (gt_iir)
1964 snb_gt_irq_handler(dev_priv, gt_iir);
1965 if (pm_iir)
1966 gen6_rps_irq_handler(dev_priv, pm_iir);
1967
1968 if (hotplug_status)
1969 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1970
1971 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1972 } while (0);
1973
1974 enable_rpm_wakeref_asserts(dev_priv);
1975
1976 return ret;
1977 }
1978
1979 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1980 {
1981 struct drm_device *dev = arg;
1982 struct drm_i915_private *dev_priv = to_i915(dev);
1983 irqreturn_t ret = IRQ_NONE;
1984
1985 if (!intel_irqs_enabled(dev_priv))
1986 return IRQ_NONE;
1987
1988 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1989 disable_rpm_wakeref_asserts(dev_priv);
1990
1991 do {
1992 u32 master_ctl, iir;
1993 u32 gt_iir[4] = {};
1994 u32 pipe_stats[I915_MAX_PIPES] = {};
1995 u32 hotplug_status = 0;
1996 u32 ier = 0;
1997
1998 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1999 iir = I915_READ(VLV_IIR);
2000
2001 if (master_ctl == 0 && iir == 0)
2002 break;
2003
2004 ret = IRQ_HANDLED;
2005
2006 /*
2007 * Theory on interrupt generation, based on empirical evidence:
2008 *
2009 * x = ((VLV_IIR & VLV_IER) ||
2010 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2011 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2012 *
2013 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2014 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2015 * guarantee the CPU interrupt will be raised again even if we
2016 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2017 * bits this time around.
2018 */
2019 I915_WRITE(GEN8_MASTER_IRQ, 0);
2020 ier = I915_READ(VLV_IER);
2021 I915_WRITE(VLV_IER, 0);
2022
2023 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2024
2025 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2026 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2027
2028 /* Call regardless, as some status bits might not be
2029 * signalled in iir */
2030 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2031
2032 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2033 I915_LPE_PIPE_B_INTERRUPT |
2034 I915_LPE_PIPE_C_INTERRUPT))
2035 intel_lpe_audio_irq_handler(dev_priv);
2036
2037 /*
2038 * VLV_IIR is single buffered, and reflects the level
2039 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2040 */
2041 if (iir)
2042 I915_WRITE(VLV_IIR, iir);
2043
2044 I915_WRITE(VLV_IER, ier);
2045 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2046 POSTING_READ(GEN8_MASTER_IRQ);
2047
2048 gen8_gt_irq_handler(dev_priv, gt_iir);
2049
2050 if (hotplug_status)
2051 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2052
2053 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2054 } while (0);
2055
2056 enable_rpm_wakeref_asserts(dev_priv);
2057
2058 return ret;
2059 }
2060
2061 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2062 u32 hotplug_trigger,
2063 const u32 hpd[HPD_NUM_PINS])
2064 {
2065 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2066
2067 /*
2068 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2069 * unless we touch the hotplug register, even if hotplug_trigger is
2070 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2071 * errors.
2072 */
2073 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2074 if (!hotplug_trigger) {
2075 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2076 PORTD_HOTPLUG_STATUS_MASK |
2077 PORTC_HOTPLUG_STATUS_MASK |
2078 PORTB_HOTPLUG_STATUS_MASK;
2079 dig_hotplug_reg &= ~mask;
2080 }
2081
2082 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2083 if (!hotplug_trigger)
2084 return;
2085
2086 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2087 dig_hotplug_reg, hpd,
2088 pch_port_hotplug_long_detect);
2089
2090 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2091 }
2092
2093 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2094 {
2095 int pipe;
2096 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2097
2098 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2099
2100 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2101 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2102 SDE_AUDIO_POWER_SHIFT);
2103 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2104 port_name(port));
2105 }
2106
2107 if (pch_iir & SDE_AUX_MASK)
2108 dp_aux_irq_handler(dev_priv);
2109
2110 if (pch_iir & SDE_GMBUS)
2111 gmbus_irq_handler(dev_priv);
2112
2113 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2114 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2115
2116 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2117 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2118
2119 if (pch_iir & SDE_POISON)
2120 DRM_ERROR("PCH poison interrupt\n");
2121
2122 if (pch_iir & SDE_FDI_MASK)
2123 for_each_pipe(dev_priv, pipe)
2124 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2125 pipe_name(pipe),
2126 I915_READ(FDI_RX_IIR(pipe)));
2127
2128 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2129 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2130
2131 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2132 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2133
2134 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2135 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2136
2137 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2138 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2139 }
2140
2141 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2142 {
2143 u32 err_int = I915_READ(GEN7_ERR_INT);
2144 enum pipe pipe;
2145
2146 if (err_int & ERR_INT_POISON)
2147 DRM_ERROR("Poison interrupt\n");
2148
2149 for_each_pipe(dev_priv, pipe) {
2150 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2151 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2152
2153 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2154 if (IS_IVYBRIDGE(dev_priv))
2155 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2156 else
2157 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2158 }
2159 }
2160
2161 I915_WRITE(GEN7_ERR_INT, err_int);
2162 }
2163
2164 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2165 {
2166 u32 serr_int = I915_READ(SERR_INT);
2167
2168 if (serr_int & SERR_INT_POISON)
2169 DRM_ERROR("PCH poison interrupt\n");
2170
2171 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2172 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2173
2174 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2175 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2176
2177 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2178 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2179
2180 I915_WRITE(SERR_INT, serr_int);
2181 }
2182
2183 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 int pipe;
2186 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2187
2188 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2189
2190 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2191 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2192 SDE_AUDIO_POWER_SHIFT_CPT);
2193 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2194 port_name(port));
2195 }
2196
2197 if (pch_iir & SDE_AUX_MASK_CPT)
2198 dp_aux_irq_handler(dev_priv);
2199
2200 if (pch_iir & SDE_GMBUS_CPT)
2201 gmbus_irq_handler(dev_priv);
2202
2203 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2204 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2205
2206 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2207 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2208
2209 if (pch_iir & SDE_FDI_MASK_CPT)
2210 for_each_pipe(dev_priv, pipe)
2211 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2212 pipe_name(pipe),
2213 I915_READ(FDI_RX_IIR(pipe)));
2214
2215 if (pch_iir & SDE_ERROR_CPT)
2216 cpt_serr_int_handler(dev_priv);
2217 }
2218
2219 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2220 {
2221 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2222 ~SDE_PORTE_HOTPLUG_SPT;
2223 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2224 u32 pin_mask = 0, long_mask = 0;
2225
2226 if (hotplug_trigger) {
2227 u32 dig_hotplug_reg;
2228
2229 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2230 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2231
2232 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2233 dig_hotplug_reg, hpd_spt,
2234 spt_port_hotplug_long_detect);
2235 }
2236
2237 if (hotplug2_trigger) {
2238 u32 dig_hotplug_reg;
2239
2240 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2241 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2242
2243 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2244 dig_hotplug_reg, hpd_spt,
2245 spt_port_hotplug2_long_detect);
2246 }
2247
2248 if (pin_mask)
2249 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2250
2251 if (pch_iir & SDE_GMBUS_CPT)
2252 gmbus_irq_handler(dev_priv);
2253 }
2254
2255 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2256 u32 hotplug_trigger,
2257 const u32 hpd[HPD_NUM_PINS])
2258 {
2259 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2260
2261 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2262 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2263
2264 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2265 dig_hotplug_reg, hpd,
2266 ilk_port_hotplug_long_detect);
2267
2268 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2269 }
2270
2271 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2272 u32 de_iir)
2273 {
2274 enum pipe pipe;
2275 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2276
2277 if (hotplug_trigger)
2278 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2279
2280 if (de_iir & DE_AUX_CHANNEL_A)
2281 dp_aux_irq_handler(dev_priv);
2282
2283 if (de_iir & DE_GSE)
2284 intel_opregion_asle_intr(dev_priv);
2285
2286 if (de_iir & DE_POISON)
2287 DRM_ERROR("Poison interrupt\n");
2288
2289 for_each_pipe(dev_priv, pipe) {
2290 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2291 intel_pipe_handle_vblank(dev_priv, pipe))
2292 intel_check_page_flip(dev_priv, pipe);
2293
2294 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2295 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2296
2297 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2298 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2299
2300 /* plane/pipes map 1:1 on ilk+ */
2301 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2302 intel_finish_page_flip_cs(dev_priv, pipe);
2303 }
2304
2305 /* check event from PCH */
2306 if (de_iir & DE_PCH_EVENT) {
2307 u32 pch_iir = I915_READ(SDEIIR);
2308
2309 if (HAS_PCH_CPT(dev_priv))
2310 cpt_irq_handler(dev_priv, pch_iir);
2311 else
2312 ibx_irq_handler(dev_priv, pch_iir);
2313
2314 /* should clear PCH hotplug event before clear CPU irq */
2315 I915_WRITE(SDEIIR, pch_iir);
2316 }
2317
2318 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2319 ironlake_rps_change_irq_handler(dev_priv);
2320 }
2321
2322 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2323 u32 de_iir)
2324 {
2325 enum pipe pipe;
2326 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2327
2328 if (hotplug_trigger)
2329 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2330
2331 if (de_iir & DE_ERR_INT_IVB)
2332 ivb_err_int_handler(dev_priv);
2333
2334 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2335 dp_aux_irq_handler(dev_priv);
2336
2337 if (de_iir & DE_GSE_IVB)
2338 intel_opregion_asle_intr(dev_priv);
2339
2340 for_each_pipe(dev_priv, pipe) {
2341 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2342 intel_pipe_handle_vblank(dev_priv, pipe))
2343 intel_check_page_flip(dev_priv, pipe);
2344
2345 /* plane/pipes map 1:1 on ilk+ */
2346 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2347 intel_finish_page_flip_cs(dev_priv, pipe);
2348 }
2349
2350 /* check event from PCH */
2351 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2352 u32 pch_iir = I915_READ(SDEIIR);
2353
2354 cpt_irq_handler(dev_priv, pch_iir);
2355
2356 /* clear PCH hotplug event before clear CPU irq */
2357 I915_WRITE(SDEIIR, pch_iir);
2358 }
2359 }
2360
2361 /*
2362 * To handle irqs with the minimum potential races with fresh interrupts, we:
2363 * 1 - Disable Master Interrupt Control.
2364 * 2 - Find the source(s) of the interrupt.
2365 * 3 - Clear the Interrupt Identity bits (IIR).
2366 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2367 * 5 - Re-enable Master Interrupt Control.
2368 */
2369 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2370 {
2371 struct drm_device *dev = arg;
2372 struct drm_i915_private *dev_priv = to_i915(dev);
2373 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2374 irqreturn_t ret = IRQ_NONE;
2375
2376 if (!intel_irqs_enabled(dev_priv))
2377 return IRQ_NONE;
2378
2379 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2380 disable_rpm_wakeref_asserts(dev_priv);
2381
2382 /* disable master interrupt before clearing iir */
2383 de_ier = I915_READ(DEIER);
2384 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2385 POSTING_READ(DEIER);
2386
2387 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2388 * interrupts will will be stored on its back queue, and then we'll be
2389 * able to process them after we restore SDEIER (as soon as we restore
2390 * it, we'll get an interrupt if SDEIIR still has something to process
2391 * due to its back queue). */
2392 if (!HAS_PCH_NOP(dev_priv)) {
2393 sde_ier = I915_READ(SDEIER);
2394 I915_WRITE(SDEIER, 0);
2395 POSTING_READ(SDEIER);
2396 }
2397
2398 /* Find, clear, then process each source of interrupt */
2399
2400 gt_iir = I915_READ(GTIIR);
2401 if (gt_iir) {
2402 I915_WRITE(GTIIR, gt_iir);
2403 ret = IRQ_HANDLED;
2404 if (INTEL_GEN(dev_priv) >= 6)
2405 snb_gt_irq_handler(dev_priv, gt_iir);
2406 else
2407 ilk_gt_irq_handler(dev_priv, gt_iir);
2408 }
2409
2410 de_iir = I915_READ(DEIIR);
2411 if (de_iir) {
2412 I915_WRITE(DEIIR, de_iir);
2413 ret = IRQ_HANDLED;
2414 if (INTEL_GEN(dev_priv) >= 7)
2415 ivb_display_irq_handler(dev_priv, de_iir);
2416 else
2417 ilk_display_irq_handler(dev_priv, de_iir);
2418 }
2419
2420 if (INTEL_GEN(dev_priv) >= 6) {
2421 u32 pm_iir = I915_READ(GEN6_PMIIR);
2422 if (pm_iir) {
2423 I915_WRITE(GEN6_PMIIR, pm_iir);
2424 ret = IRQ_HANDLED;
2425 gen6_rps_irq_handler(dev_priv, pm_iir);
2426 }
2427 }
2428
2429 I915_WRITE(DEIER, de_ier);
2430 POSTING_READ(DEIER);
2431 if (!HAS_PCH_NOP(dev_priv)) {
2432 I915_WRITE(SDEIER, sde_ier);
2433 POSTING_READ(SDEIER);
2434 }
2435
2436 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2437 enable_rpm_wakeref_asserts(dev_priv);
2438
2439 return ret;
2440 }
2441
2442 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2443 u32 hotplug_trigger,
2444 const u32 hpd[HPD_NUM_PINS])
2445 {
2446 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2447
2448 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2449 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2450
2451 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2452 dig_hotplug_reg, hpd,
2453 bxt_port_hotplug_long_detect);
2454
2455 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2456 }
2457
2458 static irqreturn_t
2459 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2460 {
2461 irqreturn_t ret = IRQ_NONE;
2462 u32 iir;
2463 enum pipe pipe;
2464
2465 if (master_ctl & GEN8_DE_MISC_IRQ) {
2466 iir = I915_READ(GEN8_DE_MISC_IIR);
2467 if (iir) {
2468 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2469 ret = IRQ_HANDLED;
2470 if (iir & GEN8_DE_MISC_GSE)
2471 intel_opregion_asle_intr(dev_priv);
2472 else
2473 DRM_ERROR("Unexpected DE Misc interrupt\n");
2474 }
2475 else
2476 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2477 }
2478
2479 if (master_ctl & GEN8_DE_PORT_IRQ) {
2480 iir = I915_READ(GEN8_DE_PORT_IIR);
2481 if (iir) {
2482 u32 tmp_mask;
2483 bool found = false;
2484
2485 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2486 ret = IRQ_HANDLED;
2487
2488 tmp_mask = GEN8_AUX_CHANNEL_A;
2489 if (INTEL_INFO(dev_priv)->gen >= 9)
2490 tmp_mask |= GEN9_AUX_CHANNEL_B |
2491 GEN9_AUX_CHANNEL_C |
2492 GEN9_AUX_CHANNEL_D;
2493
2494 if (iir & tmp_mask) {
2495 dp_aux_irq_handler(dev_priv);
2496 found = true;
2497 }
2498
2499 if (IS_GEN9_LP(dev_priv)) {
2500 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2501 if (tmp_mask) {
2502 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2503 hpd_bxt);
2504 found = true;
2505 }
2506 } else if (IS_BROADWELL(dev_priv)) {
2507 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2508 if (tmp_mask) {
2509 ilk_hpd_irq_handler(dev_priv,
2510 tmp_mask, hpd_bdw);
2511 found = true;
2512 }
2513 }
2514
2515 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2516 gmbus_irq_handler(dev_priv);
2517 found = true;
2518 }
2519
2520 if (!found)
2521 DRM_ERROR("Unexpected DE Port interrupt\n");
2522 }
2523 else
2524 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2525 }
2526
2527 for_each_pipe(dev_priv, pipe) {
2528 u32 flip_done, fault_errors;
2529
2530 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2531 continue;
2532
2533 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2534 if (!iir) {
2535 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2536 continue;
2537 }
2538
2539 ret = IRQ_HANDLED;
2540 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2541
2542 if (iir & GEN8_PIPE_VBLANK &&
2543 intel_pipe_handle_vblank(dev_priv, pipe))
2544 intel_check_page_flip(dev_priv, pipe);
2545
2546 flip_done = iir;
2547 if (INTEL_INFO(dev_priv)->gen >= 9)
2548 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2549 else
2550 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2551
2552 if (flip_done)
2553 intel_finish_page_flip_cs(dev_priv, pipe);
2554
2555 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2556 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2557
2558 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2559 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2560
2561 fault_errors = iir;
2562 if (INTEL_INFO(dev_priv)->gen >= 9)
2563 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2564 else
2565 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2566
2567 if (fault_errors)
2568 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2569 pipe_name(pipe),
2570 fault_errors);
2571 }
2572
2573 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2574 master_ctl & GEN8_DE_PCH_IRQ) {
2575 /*
2576 * FIXME(BDW): Assume for now that the new interrupt handling
2577 * scheme also closed the SDE interrupt handling race we've seen
2578 * on older pch-split platforms. But this needs testing.
2579 */
2580 iir = I915_READ(SDEIIR);
2581 if (iir) {
2582 I915_WRITE(SDEIIR, iir);
2583 ret = IRQ_HANDLED;
2584
2585 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2586 spt_irq_handler(dev_priv, iir);
2587 else
2588 cpt_irq_handler(dev_priv, iir);
2589 } else {
2590 /*
2591 * Like on previous PCH there seems to be something
2592 * fishy going on with forwarding PCH interrupts.
2593 */
2594 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2595 }
2596 }
2597
2598 return ret;
2599 }
2600
2601 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2602 {
2603 struct drm_device *dev = arg;
2604 struct drm_i915_private *dev_priv = to_i915(dev);
2605 u32 master_ctl;
2606 u32 gt_iir[4] = {};
2607 irqreturn_t ret;
2608
2609 if (!intel_irqs_enabled(dev_priv))
2610 return IRQ_NONE;
2611
2612 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2613 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2614 if (!master_ctl)
2615 return IRQ_NONE;
2616
2617 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2618
2619 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2620 disable_rpm_wakeref_asserts(dev_priv);
2621
2622 /* Find, clear, then process each source of interrupt */
2623 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2624 gen8_gt_irq_handler(dev_priv, gt_iir);
2625 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2626
2627 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2628 POSTING_READ_FW(GEN8_MASTER_IRQ);
2629
2630 enable_rpm_wakeref_asserts(dev_priv);
2631
2632 return ret;
2633 }
2634
2635 /**
2636 * i915_reset_and_wakeup - do process context error handling work
2637 * @dev_priv: i915 device private
2638 *
2639 * Fire an error uevent so userspace can see that a hang or error
2640 * was detected.
2641 */
2642 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2643 {
2644 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2645 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2646 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2647 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2648
2649 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2650
2651 DRM_DEBUG_DRIVER("resetting chip\n");
2652 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2653
2654 intel_prepare_reset(dev_priv);
2655
2656 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2657 wake_up_all(&dev_priv->gpu_error.wait_queue);
2658
2659 do {
2660 /*
2661 * All state reset _must_ be completed before we update the
2662 * reset counter, for otherwise waiters might miss the reset
2663 * pending state and not properly drop locks, resulting in
2664 * deadlocks with the reset work.
2665 */
2666 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2667 i915_reset(dev_priv);
2668 mutex_unlock(&dev_priv->drm.struct_mutex);
2669 }
2670
2671 /* We need to wait for anyone holding the lock to wakeup */
2672 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2673 I915_RESET_HANDOFF,
2674 TASK_UNINTERRUPTIBLE,
2675 HZ));
2676
2677 intel_finish_reset(dev_priv);
2678
2679 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2680 kobject_uevent_env(kobj,
2681 KOBJ_CHANGE, reset_done_event);
2682
2683 /*
2684 * Note: The wake_up also serves as a memory barrier so that
2685 * waiters see the updated value of the dev_priv->gpu_error.
2686 */
2687 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2688 wake_up_all(&dev_priv->gpu_error.reset_queue);
2689 }
2690
2691 static inline void
2692 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2693 struct intel_instdone *instdone)
2694 {
2695 int slice;
2696 int subslice;
2697
2698 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2699
2700 if (INTEL_GEN(dev_priv) <= 3)
2701 return;
2702
2703 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2704
2705 if (INTEL_GEN(dev_priv) <= 6)
2706 return;
2707
2708 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2709 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2710 slice, subslice, instdone->sampler[slice][subslice]);
2711
2712 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2713 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2714 slice, subslice, instdone->row[slice][subslice]);
2715 }
2716
2717 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2718 {
2719 u32 eir;
2720
2721 if (!IS_GEN2(dev_priv))
2722 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2723
2724 if (INTEL_GEN(dev_priv) < 4)
2725 I915_WRITE(IPEIR, I915_READ(IPEIR));
2726 else
2727 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2728
2729 I915_WRITE(EIR, I915_READ(EIR));
2730 eir = I915_READ(EIR);
2731 if (eir) {
2732 /*
2733 * some errors might have become stuck,
2734 * mask them.
2735 */
2736 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2737 I915_WRITE(EMR, I915_READ(EMR) | eir);
2738 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2739 }
2740 }
2741
2742 /**
2743 * i915_handle_error - handle a gpu error
2744 * @dev_priv: i915 device private
2745 * @engine_mask: mask representing engines that are hung
2746 * @fmt: Error message format string
2747 *
2748 * Do some basic checking of register state at error time and
2749 * dump it to the syslog. Also call i915_capture_error_state() to make
2750 * sure we get a record and make it available in debugfs. Fire a uevent
2751 * so userspace knows something bad happened (should trigger collection
2752 * of a ring dump etc.).
2753 */
2754 void i915_handle_error(struct drm_i915_private *dev_priv,
2755 u32 engine_mask,
2756 const char *fmt, ...)
2757 {
2758 va_list args;
2759 char error_msg[80];
2760
2761 va_start(args, fmt);
2762 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2763 va_end(args);
2764
2765 /*
2766 * In most cases it's guaranteed that we get here with an RPM
2767 * reference held, for example because there is a pending GPU
2768 * request that won't finish until the reset is done. This
2769 * isn't the case at least when we get here by doing a
2770 * simulated reset via debugfs, so get an RPM reference.
2771 */
2772 intel_runtime_pm_get(dev_priv);
2773
2774 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2775 i915_clear_error_registers(dev_priv);
2776
2777 if (!engine_mask)
2778 goto out;
2779
2780 if (test_and_set_bit(I915_RESET_BACKOFF,
2781 &dev_priv->gpu_error.flags))
2782 goto out;
2783
2784 i915_reset_and_wakeup(dev_priv);
2785
2786 out:
2787 intel_runtime_pm_put(dev_priv);
2788 }
2789
2790 /* Called from drm generic code, passed 'crtc' which
2791 * we use as a pipe index
2792 */
2793 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2794 {
2795 struct drm_i915_private *dev_priv = to_i915(dev);
2796 unsigned long irqflags;
2797
2798 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802 return 0;
2803 }
2804
2805 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807 struct drm_i915_private *dev_priv = to_i915(dev);
2808 unsigned long irqflags;
2809
2810 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2811 i915_enable_pipestat(dev_priv, pipe,
2812 PIPE_START_VBLANK_INTERRUPT_STATUS);
2813 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814
2815 return 0;
2816 }
2817
2818 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820 struct drm_i915_private *dev_priv = to_i915(dev);
2821 unsigned long irqflags;
2822 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2823 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2824
2825 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2826 ilk_enable_display_irq(dev_priv, bit);
2827 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2828
2829 return 0;
2830 }
2831
2832 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2833 {
2834 struct drm_i915_private *dev_priv = to_i915(dev);
2835 unsigned long irqflags;
2836
2837 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2838 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2839 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2840
2841 return 0;
2842 }
2843
2844 /* Called from drm generic code, passed 'crtc' which
2845 * we use as a pipe index
2846 */
2847 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2848 {
2849 struct drm_i915_private *dev_priv = to_i915(dev);
2850 unsigned long irqflags;
2851
2852 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2854 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 }
2856
2857 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2858 {
2859 struct drm_i915_private *dev_priv = to_i915(dev);
2860 unsigned long irqflags;
2861
2862 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863 i915_disable_pipestat(dev_priv, pipe,
2864 PIPE_START_VBLANK_INTERRUPT_STATUS);
2865 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2866 }
2867
2868 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2869 {
2870 struct drm_i915_private *dev_priv = to_i915(dev);
2871 unsigned long irqflags;
2872 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2873 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2874
2875 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2876 ilk_disable_display_irq(dev_priv, bit);
2877 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2878 }
2879
2880 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2881 {
2882 struct drm_i915_private *dev_priv = to_i915(dev);
2883 unsigned long irqflags;
2884
2885 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2886 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2887 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2888 }
2889
2890 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2891 {
2892 if (HAS_PCH_NOP(dev_priv))
2893 return;
2894
2895 GEN5_IRQ_RESET(SDE);
2896
2897 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2898 I915_WRITE(SERR_INT, 0xffffffff);
2899 }
2900
2901 /*
2902 * SDEIER is also touched by the interrupt handler to work around missed PCH
2903 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2904 * instead we unconditionally enable all PCH interrupt sources here, but then
2905 * only unmask them as needed with SDEIMR.
2906 *
2907 * This function needs to be called before interrupts are enabled.
2908 */
2909 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2910 {
2911 struct drm_i915_private *dev_priv = to_i915(dev);
2912
2913 if (HAS_PCH_NOP(dev_priv))
2914 return;
2915
2916 WARN_ON(I915_READ(SDEIER) != 0);
2917 I915_WRITE(SDEIER, 0xffffffff);
2918 POSTING_READ(SDEIER);
2919 }
2920
2921 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2922 {
2923 GEN5_IRQ_RESET(GT);
2924 if (INTEL_GEN(dev_priv) >= 6)
2925 GEN5_IRQ_RESET(GEN6_PM);
2926 }
2927
2928 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2929 {
2930 enum pipe pipe;
2931
2932 if (IS_CHERRYVIEW(dev_priv))
2933 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2934 else
2935 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936
2937 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2938 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2939
2940 for_each_pipe(dev_priv, pipe) {
2941 I915_WRITE(PIPESTAT(pipe),
2942 PIPE_FIFO_UNDERRUN_STATUS |
2943 PIPESTAT_INT_STATUS_MASK);
2944 dev_priv->pipestat_irq_mask[pipe] = 0;
2945 }
2946
2947 GEN5_IRQ_RESET(VLV_);
2948 dev_priv->irq_mask = ~0;
2949 }
2950
2951 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2952 {
2953 u32 pipestat_mask;
2954 u32 enable_mask;
2955 enum pipe pipe;
2956
2957 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2958 PIPE_CRC_DONE_INTERRUPT_STATUS;
2959
2960 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2961 for_each_pipe(dev_priv, pipe)
2962 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2963
2964 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2965 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2966 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2967 I915_LPE_PIPE_A_INTERRUPT |
2968 I915_LPE_PIPE_B_INTERRUPT;
2969
2970 if (IS_CHERRYVIEW(dev_priv))
2971 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2972 I915_LPE_PIPE_C_INTERRUPT;
2973
2974 WARN_ON(dev_priv->irq_mask != ~0);
2975
2976 dev_priv->irq_mask = ~enable_mask;
2977
2978 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2979 }
2980
2981 /* drm_dma.h hooks
2982 */
2983 static void ironlake_irq_reset(struct drm_device *dev)
2984 {
2985 struct drm_i915_private *dev_priv = to_i915(dev);
2986
2987 I915_WRITE(HWSTAM, 0xffffffff);
2988
2989 GEN5_IRQ_RESET(DE);
2990 if (IS_GEN7(dev_priv))
2991 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2992
2993 gen5_gt_irq_reset(dev_priv);
2994
2995 ibx_irq_reset(dev_priv);
2996 }
2997
2998 static void valleyview_irq_preinstall(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = to_i915(dev);
3001
3002 I915_WRITE(VLV_MASTER_IER, 0);
3003 POSTING_READ(VLV_MASTER_IER);
3004
3005 gen5_gt_irq_reset(dev_priv);
3006
3007 spin_lock_irq(&dev_priv->irq_lock);
3008 if (dev_priv->display_irqs_enabled)
3009 vlv_display_irq_reset(dev_priv);
3010 spin_unlock_irq(&dev_priv->irq_lock);
3011 }
3012
3013 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3014 {
3015 GEN8_IRQ_RESET_NDX(GT, 0);
3016 GEN8_IRQ_RESET_NDX(GT, 1);
3017 GEN8_IRQ_RESET_NDX(GT, 2);
3018 GEN8_IRQ_RESET_NDX(GT, 3);
3019 }
3020
3021 static void gen8_irq_reset(struct drm_device *dev)
3022 {
3023 struct drm_i915_private *dev_priv = to_i915(dev);
3024 int pipe;
3025
3026 I915_WRITE(GEN8_MASTER_IRQ, 0);
3027 POSTING_READ(GEN8_MASTER_IRQ);
3028
3029 gen8_gt_irq_reset(dev_priv);
3030
3031 for_each_pipe(dev_priv, pipe)
3032 if (intel_display_power_is_enabled(dev_priv,
3033 POWER_DOMAIN_PIPE(pipe)))
3034 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3035
3036 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3037 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3038 GEN5_IRQ_RESET(GEN8_PCU_);
3039
3040 if (HAS_PCH_SPLIT(dev_priv))
3041 ibx_irq_reset(dev_priv);
3042 }
3043
3044 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3045 unsigned int pipe_mask)
3046 {
3047 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3048 enum pipe pipe;
3049
3050 spin_lock_irq(&dev_priv->irq_lock);
3051 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3052 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3053 dev_priv->de_irq_mask[pipe],
3054 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3055 spin_unlock_irq(&dev_priv->irq_lock);
3056 }
3057
3058 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3059 unsigned int pipe_mask)
3060 {
3061 enum pipe pipe;
3062
3063 spin_lock_irq(&dev_priv->irq_lock);
3064 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3065 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3066 spin_unlock_irq(&dev_priv->irq_lock);
3067
3068 /* make sure we're done processing display irqs */
3069 synchronize_irq(dev_priv->drm.irq);
3070 }
3071
3072 static void cherryview_irq_preinstall(struct drm_device *dev)
3073 {
3074 struct drm_i915_private *dev_priv = to_i915(dev);
3075
3076 I915_WRITE(GEN8_MASTER_IRQ, 0);
3077 POSTING_READ(GEN8_MASTER_IRQ);
3078
3079 gen8_gt_irq_reset(dev_priv);
3080
3081 GEN5_IRQ_RESET(GEN8_PCU_);
3082
3083 spin_lock_irq(&dev_priv->irq_lock);
3084 if (dev_priv->display_irqs_enabled)
3085 vlv_display_irq_reset(dev_priv);
3086 spin_unlock_irq(&dev_priv->irq_lock);
3087 }
3088
3089 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3090 const u32 hpd[HPD_NUM_PINS])
3091 {
3092 struct intel_encoder *encoder;
3093 u32 enabled_irqs = 0;
3094
3095 for_each_intel_encoder(&dev_priv->drm, encoder)
3096 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3097 enabled_irqs |= hpd[encoder->hpd_pin];
3098
3099 return enabled_irqs;
3100 }
3101
3102 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3103 {
3104 u32 hotplug;
3105
3106 /*
3107 * Enable digital hotplug on the PCH, and configure the DP short pulse
3108 * duration to 2ms (which is the minimum in the Display Port spec).
3109 * The pulse duration bits are reserved on LPT+.
3110 */
3111 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3112 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3113 PORTC_PULSE_DURATION_MASK |
3114 PORTD_PULSE_DURATION_MASK);
3115 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3116 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3117 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3118 /*
3119 * When CPU and PCH are on the same package, port A
3120 * HPD must be enabled in both north and south.
3121 */
3122 if (HAS_PCH_LPT_LP(dev_priv))
3123 hotplug |= PORTA_HOTPLUG_ENABLE;
3124 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3125 }
3126
3127 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3128 {
3129 u32 hotplug_irqs, enabled_irqs;
3130
3131 if (HAS_PCH_IBX(dev_priv)) {
3132 hotplug_irqs = SDE_HOTPLUG_MASK;
3133 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3134 } else {
3135 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3136 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3137 }
3138
3139 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3140
3141 ibx_hpd_detection_setup(dev_priv);
3142 }
3143
3144 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3145 {
3146 u32 hotplug;
3147
3148 /* Enable digital hotplug on the PCH */
3149 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3150 hotplug |= PORTA_HOTPLUG_ENABLE |
3151 PORTB_HOTPLUG_ENABLE |
3152 PORTC_HOTPLUG_ENABLE |
3153 PORTD_HOTPLUG_ENABLE;
3154 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3155
3156 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3157 hotplug |= PORTE_HOTPLUG_ENABLE;
3158 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3159 }
3160
3161 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3162 {
3163 u32 hotplug_irqs, enabled_irqs;
3164
3165 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3166 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3167
3168 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3169
3170 spt_hpd_detection_setup(dev_priv);
3171 }
3172
3173 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3174 {
3175 u32 hotplug;
3176
3177 /*
3178 * Enable digital hotplug on the CPU, and configure the DP short pulse
3179 * duration to 2ms (which is the minimum in the Display Port spec)
3180 * The pulse duration bits are reserved on HSW+.
3181 */
3182 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3183 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3184 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3185 DIGITAL_PORTA_PULSE_DURATION_2ms;
3186 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3187 }
3188
3189 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3190 {
3191 u32 hotplug_irqs, enabled_irqs;
3192
3193 if (INTEL_GEN(dev_priv) >= 8) {
3194 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3195 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3196
3197 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3198 } else if (INTEL_GEN(dev_priv) >= 7) {
3199 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3200 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3201
3202 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3203 } else {
3204 hotplug_irqs = DE_DP_A_HOTPLUG;
3205 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3206
3207 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3208 }
3209
3210 ilk_hpd_detection_setup(dev_priv);
3211
3212 ibx_hpd_irq_setup(dev_priv);
3213 }
3214
3215 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3216 u32 enabled_irqs)
3217 {
3218 u32 hotplug;
3219
3220 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3221 hotplug |= PORTA_HOTPLUG_ENABLE |
3222 PORTB_HOTPLUG_ENABLE |
3223 PORTC_HOTPLUG_ENABLE;
3224
3225 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3226 hotplug, enabled_irqs);
3227 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3228
3229 /*
3230 * For BXT invert bit has to be set based on AOB design
3231 * for HPD detection logic, update it based on VBT fields.
3232 */
3233 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3234 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3235 hotplug |= BXT_DDIA_HPD_INVERT;
3236 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3237 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3238 hotplug |= BXT_DDIB_HPD_INVERT;
3239 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3240 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3241 hotplug |= BXT_DDIC_HPD_INVERT;
3242
3243 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3244 }
3245
3246 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3247 {
3248 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3249 }
3250
3251 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3252 {
3253 u32 hotplug_irqs, enabled_irqs;
3254
3255 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3256 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3257
3258 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3259
3260 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3261 }
3262
3263 static void ibx_irq_postinstall(struct drm_device *dev)
3264 {
3265 struct drm_i915_private *dev_priv = to_i915(dev);
3266 u32 mask;
3267
3268 if (HAS_PCH_NOP(dev_priv))
3269 return;
3270
3271 if (HAS_PCH_IBX(dev_priv))
3272 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3273 else
3274 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3275
3276 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3277 I915_WRITE(SDEIMR, ~mask);
3278
3279 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3280 HAS_PCH_LPT(dev_priv))
3281 ibx_hpd_detection_setup(dev_priv);
3282 else
3283 spt_hpd_detection_setup(dev_priv);
3284 }
3285
3286 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3287 {
3288 struct drm_i915_private *dev_priv = to_i915(dev);
3289 u32 pm_irqs, gt_irqs;
3290
3291 pm_irqs = gt_irqs = 0;
3292
3293 dev_priv->gt_irq_mask = ~0;
3294 if (HAS_L3_DPF(dev_priv)) {
3295 /* L3 parity interrupt is always unmasked. */
3296 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3297 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3298 }
3299
3300 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3301 if (IS_GEN5(dev_priv)) {
3302 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3303 } else {
3304 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3305 }
3306
3307 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3308
3309 if (INTEL_GEN(dev_priv) >= 6) {
3310 /*
3311 * RPS interrupts will get enabled/disabled on demand when RPS
3312 * itself is enabled/disabled.
3313 */
3314 if (HAS_VEBOX(dev_priv)) {
3315 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3316 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3317 }
3318
3319 dev_priv->pm_imr = 0xffffffff;
3320 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3321 }
3322 }
3323
3324 static int ironlake_irq_postinstall(struct drm_device *dev)
3325 {
3326 struct drm_i915_private *dev_priv = to_i915(dev);
3327 u32 display_mask, extra_mask;
3328
3329 if (INTEL_GEN(dev_priv) >= 7) {
3330 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3331 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3332 DE_PLANEB_FLIP_DONE_IVB |
3333 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3334 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3335 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3336 DE_DP_A_HOTPLUG_IVB);
3337 } else {
3338 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3339 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3340 DE_AUX_CHANNEL_A |
3341 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3342 DE_POISON);
3343 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3344 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3345 DE_DP_A_HOTPLUG);
3346 }
3347
3348 dev_priv->irq_mask = ~display_mask;
3349
3350 I915_WRITE(HWSTAM, 0xeffe);
3351
3352 ibx_irq_pre_postinstall(dev);
3353
3354 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3355
3356 gen5_gt_irq_postinstall(dev);
3357
3358 ilk_hpd_detection_setup(dev_priv);
3359
3360 ibx_irq_postinstall(dev);
3361
3362 if (IS_IRONLAKE_M(dev_priv)) {
3363 /* Enable PCU event interrupts
3364 *
3365 * spinlocking not required here for correctness since interrupt
3366 * setup is guaranteed to run in single-threaded context. But we
3367 * need it to make the assert_spin_locked happy. */
3368 spin_lock_irq(&dev_priv->irq_lock);
3369 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3370 spin_unlock_irq(&dev_priv->irq_lock);
3371 }
3372
3373 return 0;
3374 }
3375
3376 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3377 {
3378 lockdep_assert_held(&dev_priv->irq_lock);
3379
3380 if (dev_priv->display_irqs_enabled)
3381 return;
3382
3383 dev_priv->display_irqs_enabled = true;
3384
3385 if (intel_irqs_enabled(dev_priv)) {
3386 vlv_display_irq_reset(dev_priv);
3387 vlv_display_irq_postinstall(dev_priv);
3388 }
3389 }
3390
3391 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3392 {
3393 lockdep_assert_held(&dev_priv->irq_lock);
3394
3395 if (!dev_priv->display_irqs_enabled)
3396 return;
3397
3398 dev_priv->display_irqs_enabled = false;
3399
3400 if (intel_irqs_enabled(dev_priv))
3401 vlv_display_irq_reset(dev_priv);
3402 }
3403
3404
3405 static int valleyview_irq_postinstall(struct drm_device *dev)
3406 {
3407 struct drm_i915_private *dev_priv = to_i915(dev);
3408
3409 gen5_gt_irq_postinstall(dev);
3410
3411 spin_lock_irq(&dev_priv->irq_lock);
3412 if (dev_priv->display_irqs_enabled)
3413 vlv_display_irq_postinstall(dev_priv);
3414 spin_unlock_irq(&dev_priv->irq_lock);
3415
3416 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3417 POSTING_READ(VLV_MASTER_IER);
3418
3419 return 0;
3420 }
3421
3422 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3423 {
3424 /* These are interrupts we'll toggle with the ring mask register */
3425 uint32_t gt_interrupts[] = {
3426 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3427 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3428 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3429 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3430 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3431 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3432 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3433 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3434 0,
3435 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3436 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3437 };
3438
3439 if (HAS_L3_DPF(dev_priv))
3440 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3441
3442 dev_priv->pm_ier = 0x0;
3443 dev_priv->pm_imr = ~dev_priv->pm_ier;
3444 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3445 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3446 /*
3447 * RPS interrupts will get enabled/disabled on demand when RPS itself
3448 * is enabled/disabled. Same wil be the case for GuC interrupts.
3449 */
3450 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3451 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3452 }
3453
3454 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3455 {
3456 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3457 uint32_t de_pipe_enables;
3458 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3459 u32 de_port_enables;
3460 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3461 enum pipe pipe;
3462
3463 if (INTEL_INFO(dev_priv)->gen >= 9) {
3464 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3465 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3466 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3467 GEN9_AUX_CHANNEL_D;
3468 if (IS_GEN9_LP(dev_priv))
3469 de_port_masked |= BXT_DE_PORT_GMBUS;
3470 } else {
3471 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3472 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3473 }
3474
3475 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3476 GEN8_PIPE_FIFO_UNDERRUN;
3477
3478 de_port_enables = de_port_masked;
3479 if (IS_GEN9_LP(dev_priv))
3480 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3481 else if (IS_BROADWELL(dev_priv))
3482 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3483
3484 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3485 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3486 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3487
3488 for_each_pipe(dev_priv, pipe)
3489 if (intel_display_power_is_enabled(dev_priv,
3490 POWER_DOMAIN_PIPE(pipe)))
3491 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3492 dev_priv->de_irq_mask[pipe],
3493 de_pipe_enables);
3494
3495 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3496 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3497
3498 if (IS_GEN9_LP(dev_priv))
3499 bxt_hpd_detection_setup(dev_priv);
3500 else if (IS_BROADWELL(dev_priv))
3501 ilk_hpd_detection_setup(dev_priv);
3502 }
3503
3504 static int gen8_irq_postinstall(struct drm_device *dev)
3505 {
3506 struct drm_i915_private *dev_priv = to_i915(dev);
3507
3508 if (HAS_PCH_SPLIT(dev_priv))
3509 ibx_irq_pre_postinstall(dev);
3510
3511 gen8_gt_irq_postinstall(dev_priv);
3512 gen8_de_irq_postinstall(dev_priv);
3513
3514 if (HAS_PCH_SPLIT(dev_priv))
3515 ibx_irq_postinstall(dev);
3516
3517 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3518 POSTING_READ(GEN8_MASTER_IRQ);
3519
3520 return 0;
3521 }
3522
3523 static int cherryview_irq_postinstall(struct drm_device *dev)
3524 {
3525 struct drm_i915_private *dev_priv = to_i915(dev);
3526
3527 gen8_gt_irq_postinstall(dev_priv);
3528
3529 spin_lock_irq(&dev_priv->irq_lock);
3530 if (dev_priv->display_irqs_enabled)
3531 vlv_display_irq_postinstall(dev_priv);
3532 spin_unlock_irq(&dev_priv->irq_lock);
3533
3534 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3535 POSTING_READ(GEN8_MASTER_IRQ);
3536
3537 return 0;
3538 }
3539
3540 static void gen8_irq_uninstall(struct drm_device *dev)
3541 {
3542 struct drm_i915_private *dev_priv = to_i915(dev);
3543
3544 if (!dev_priv)
3545 return;
3546
3547 gen8_irq_reset(dev);
3548 }
3549
3550 static void valleyview_irq_uninstall(struct drm_device *dev)
3551 {
3552 struct drm_i915_private *dev_priv = to_i915(dev);
3553
3554 if (!dev_priv)
3555 return;
3556
3557 I915_WRITE(VLV_MASTER_IER, 0);
3558 POSTING_READ(VLV_MASTER_IER);
3559
3560 gen5_gt_irq_reset(dev_priv);
3561
3562 I915_WRITE(HWSTAM, 0xffffffff);
3563
3564 spin_lock_irq(&dev_priv->irq_lock);
3565 if (dev_priv->display_irqs_enabled)
3566 vlv_display_irq_reset(dev_priv);
3567 spin_unlock_irq(&dev_priv->irq_lock);
3568 }
3569
3570 static void cherryview_irq_uninstall(struct drm_device *dev)
3571 {
3572 struct drm_i915_private *dev_priv = to_i915(dev);
3573
3574 if (!dev_priv)
3575 return;
3576
3577 I915_WRITE(GEN8_MASTER_IRQ, 0);
3578 POSTING_READ(GEN8_MASTER_IRQ);
3579
3580 gen8_gt_irq_reset(dev_priv);
3581
3582 GEN5_IRQ_RESET(GEN8_PCU_);
3583
3584 spin_lock_irq(&dev_priv->irq_lock);
3585 if (dev_priv->display_irqs_enabled)
3586 vlv_display_irq_reset(dev_priv);
3587 spin_unlock_irq(&dev_priv->irq_lock);
3588 }
3589
3590 static void ironlake_irq_uninstall(struct drm_device *dev)
3591 {
3592 struct drm_i915_private *dev_priv = to_i915(dev);
3593
3594 if (!dev_priv)
3595 return;
3596
3597 ironlake_irq_reset(dev);
3598 }
3599
3600 static void i8xx_irq_preinstall(struct drm_device * dev)
3601 {
3602 struct drm_i915_private *dev_priv = to_i915(dev);
3603 int pipe;
3604
3605 for_each_pipe(dev_priv, pipe)
3606 I915_WRITE(PIPESTAT(pipe), 0);
3607 I915_WRITE16(IMR, 0xffff);
3608 I915_WRITE16(IER, 0x0);
3609 POSTING_READ16(IER);
3610 }
3611
3612 static int i8xx_irq_postinstall(struct drm_device *dev)
3613 {
3614 struct drm_i915_private *dev_priv = to_i915(dev);
3615
3616 I915_WRITE16(EMR,
3617 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3618
3619 /* Unmask the interrupts that we always want on. */
3620 dev_priv->irq_mask =
3621 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3622 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3623 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3624 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3625 I915_WRITE16(IMR, dev_priv->irq_mask);
3626
3627 I915_WRITE16(IER,
3628 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3629 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3630 I915_USER_INTERRUPT);
3631 POSTING_READ16(IER);
3632
3633 /* Interrupt setup is already guaranteed to be single-threaded, this is
3634 * just to make the assert_spin_locked check happy. */
3635 spin_lock_irq(&dev_priv->irq_lock);
3636 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3637 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3638 spin_unlock_irq(&dev_priv->irq_lock);
3639
3640 return 0;
3641 }
3642
3643 /*
3644 * Returns true when a page flip has completed.
3645 */
3646 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3647 int plane, int pipe, u32 iir)
3648 {
3649 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3650
3651 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3652 return false;
3653
3654 if ((iir & flip_pending) == 0)
3655 goto check_page_flip;
3656
3657 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3658 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3659 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3660 * the flip is completed (no longer pending). Since this doesn't raise
3661 * an interrupt per se, we watch for the change at vblank.
3662 */
3663 if (I915_READ16(ISR) & flip_pending)
3664 goto check_page_flip;
3665
3666 intel_finish_page_flip_cs(dev_priv, pipe);
3667 return true;
3668
3669 check_page_flip:
3670 intel_check_page_flip(dev_priv, pipe);
3671 return false;
3672 }
3673
3674 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3675 {
3676 struct drm_device *dev = arg;
3677 struct drm_i915_private *dev_priv = to_i915(dev);
3678 u16 iir, new_iir;
3679 u32 pipe_stats[2];
3680 int pipe;
3681 u16 flip_mask =
3682 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3683 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3684 irqreturn_t ret;
3685
3686 if (!intel_irqs_enabled(dev_priv))
3687 return IRQ_NONE;
3688
3689 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3690 disable_rpm_wakeref_asserts(dev_priv);
3691
3692 ret = IRQ_NONE;
3693 iir = I915_READ16(IIR);
3694 if (iir == 0)
3695 goto out;
3696
3697 while (iir & ~flip_mask) {
3698 /* Can't rely on pipestat interrupt bit in iir as it might
3699 * have been cleared after the pipestat interrupt was received.
3700 * It doesn't set the bit in iir again, but it still produces
3701 * interrupts (for non-MSI).
3702 */
3703 spin_lock(&dev_priv->irq_lock);
3704 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3705 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3706
3707 for_each_pipe(dev_priv, pipe) {
3708 i915_reg_t reg = PIPESTAT(pipe);
3709 pipe_stats[pipe] = I915_READ(reg);
3710
3711 /*
3712 * Clear the PIPE*STAT regs before the IIR
3713 */
3714 if (pipe_stats[pipe] & 0x8000ffff)
3715 I915_WRITE(reg, pipe_stats[pipe]);
3716 }
3717 spin_unlock(&dev_priv->irq_lock);
3718
3719 I915_WRITE16(IIR, iir & ~flip_mask);
3720 new_iir = I915_READ16(IIR); /* Flush posted writes */
3721
3722 if (iir & I915_USER_INTERRUPT)
3723 notify_ring(dev_priv->engine[RCS]);
3724
3725 for_each_pipe(dev_priv, pipe) {
3726 int plane = pipe;
3727 if (HAS_FBC(dev_priv))
3728 plane = !plane;
3729
3730 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3731 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3732 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3733
3734 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3735 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3736
3737 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3738 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3739 pipe);
3740 }
3741
3742 iir = new_iir;
3743 }
3744 ret = IRQ_HANDLED;
3745
3746 out:
3747 enable_rpm_wakeref_asserts(dev_priv);
3748
3749 return ret;
3750 }
3751
3752 static void i8xx_irq_uninstall(struct drm_device * dev)
3753 {
3754 struct drm_i915_private *dev_priv = to_i915(dev);
3755 int pipe;
3756
3757 for_each_pipe(dev_priv, pipe) {
3758 /* Clear enable bits; then clear status bits */
3759 I915_WRITE(PIPESTAT(pipe), 0);
3760 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3761 }
3762 I915_WRITE16(IMR, 0xffff);
3763 I915_WRITE16(IER, 0x0);
3764 I915_WRITE16(IIR, I915_READ16(IIR));
3765 }
3766
3767 static void i915_irq_preinstall(struct drm_device * dev)
3768 {
3769 struct drm_i915_private *dev_priv = to_i915(dev);
3770 int pipe;
3771
3772 if (I915_HAS_HOTPLUG(dev_priv)) {
3773 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3774 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3775 }
3776
3777 I915_WRITE16(HWSTAM, 0xeffe);
3778 for_each_pipe(dev_priv, pipe)
3779 I915_WRITE(PIPESTAT(pipe), 0);
3780 I915_WRITE(IMR, 0xffffffff);
3781 I915_WRITE(IER, 0x0);
3782 POSTING_READ(IER);
3783 }
3784
3785 static int i915_irq_postinstall(struct drm_device *dev)
3786 {
3787 struct drm_i915_private *dev_priv = to_i915(dev);
3788 u32 enable_mask;
3789
3790 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3791
3792 /* Unmask the interrupts that we always want on. */
3793 dev_priv->irq_mask =
3794 ~(I915_ASLE_INTERRUPT |
3795 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3796 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3797 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3798 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3799
3800 enable_mask =
3801 I915_ASLE_INTERRUPT |
3802 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3803 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3804 I915_USER_INTERRUPT;
3805
3806 if (I915_HAS_HOTPLUG(dev_priv)) {
3807 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3808 POSTING_READ(PORT_HOTPLUG_EN);
3809
3810 /* Enable in IER... */
3811 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3812 /* and unmask in IMR */
3813 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3814 }
3815
3816 I915_WRITE(IMR, dev_priv->irq_mask);
3817 I915_WRITE(IER, enable_mask);
3818 POSTING_READ(IER);
3819
3820 i915_enable_asle_pipestat(dev_priv);
3821
3822 /* Interrupt setup is already guaranteed to be single-threaded, this is
3823 * just to make the assert_spin_locked check happy. */
3824 spin_lock_irq(&dev_priv->irq_lock);
3825 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3826 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3827 spin_unlock_irq(&dev_priv->irq_lock);
3828
3829 return 0;
3830 }
3831
3832 /*
3833 * Returns true when a page flip has completed.
3834 */
3835 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3836 int plane, int pipe, u32 iir)
3837 {
3838 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3839
3840 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3841 return false;
3842
3843 if ((iir & flip_pending) == 0)
3844 goto check_page_flip;
3845
3846 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3847 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3848 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3849 * the flip is completed (no longer pending). Since this doesn't raise
3850 * an interrupt per se, we watch for the change at vblank.
3851 */
3852 if (I915_READ(ISR) & flip_pending)
3853 goto check_page_flip;
3854
3855 intel_finish_page_flip_cs(dev_priv, pipe);
3856 return true;
3857
3858 check_page_flip:
3859 intel_check_page_flip(dev_priv, pipe);
3860 return false;
3861 }
3862
3863 static irqreturn_t i915_irq_handler(int irq, void *arg)
3864 {
3865 struct drm_device *dev = arg;
3866 struct drm_i915_private *dev_priv = to_i915(dev);
3867 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3868 u32 flip_mask =
3869 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3870 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3871 int pipe, ret = IRQ_NONE;
3872
3873 if (!intel_irqs_enabled(dev_priv))
3874 return IRQ_NONE;
3875
3876 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3877 disable_rpm_wakeref_asserts(dev_priv);
3878
3879 iir = I915_READ(IIR);
3880 do {
3881 bool irq_received = (iir & ~flip_mask) != 0;
3882 bool blc_event = false;
3883
3884 /* Can't rely on pipestat interrupt bit in iir as it might
3885 * have been cleared after the pipestat interrupt was received.
3886 * It doesn't set the bit in iir again, but it still produces
3887 * interrupts (for non-MSI).
3888 */
3889 spin_lock(&dev_priv->irq_lock);
3890 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3891 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3892
3893 for_each_pipe(dev_priv, pipe) {
3894 i915_reg_t reg = PIPESTAT(pipe);
3895 pipe_stats[pipe] = I915_READ(reg);
3896
3897 /* Clear the PIPE*STAT regs before the IIR */
3898 if (pipe_stats[pipe] & 0x8000ffff) {
3899 I915_WRITE(reg, pipe_stats[pipe]);
3900 irq_received = true;
3901 }
3902 }
3903 spin_unlock(&dev_priv->irq_lock);
3904
3905 if (!irq_received)
3906 break;
3907
3908 /* Consume port. Then clear IIR or we'll miss events */
3909 if (I915_HAS_HOTPLUG(dev_priv) &&
3910 iir & I915_DISPLAY_PORT_INTERRUPT) {
3911 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3912 if (hotplug_status)
3913 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3914 }
3915
3916 I915_WRITE(IIR, iir & ~flip_mask);
3917 new_iir = I915_READ(IIR); /* Flush posted writes */
3918
3919 if (iir & I915_USER_INTERRUPT)
3920 notify_ring(dev_priv->engine[RCS]);
3921
3922 for_each_pipe(dev_priv, pipe) {
3923 int plane = pipe;
3924 if (HAS_FBC(dev_priv))
3925 plane = !plane;
3926
3927 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3928 i915_handle_vblank(dev_priv, plane, pipe, iir))
3929 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3930
3931 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3932 blc_event = true;
3933
3934 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3935 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3936
3937 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3938 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3939 pipe);
3940 }
3941
3942 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3943 intel_opregion_asle_intr(dev_priv);
3944
3945 /* With MSI, interrupts are only generated when iir
3946 * transitions from zero to nonzero. If another bit got
3947 * set while we were handling the existing iir bits, then
3948 * we would never get another interrupt.
3949 *
3950 * This is fine on non-MSI as well, as if we hit this path
3951 * we avoid exiting the interrupt handler only to generate
3952 * another one.
3953 *
3954 * Note that for MSI this could cause a stray interrupt report
3955 * if an interrupt landed in the time between writing IIR and
3956 * the posting read. This should be rare enough to never
3957 * trigger the 99% of 100,000 interrupts test for disabling
3958 * stray interrupts.
3959 */
3960 ret = IRQ_HANDLED;
3961 iir = new_iir;
3962 } while (iir & ~flip_mask);
3963
3964 enable_rpm_wakeref_asserts(dev_priv);
3965
3966 return ret;
3967 }
3968
3969 static void i915_irq_uninstall(struct drm_device * dev)
3970 {
3971 struct drm_i915_private *dev_priv = to_i915(dev);
3972 int pipe;
3973
3974 if (I915_HAS_HOTPLUG(dev_priv)) {
3975 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3976 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3977 }
3978
3979 I915_WRITE16(HWSTAM, 0xffff);
3980 for_each_pipe(dev_priv, pipe) {
3981 /* Clear enable bits; then clear status bits */
3982 I915_WRITE(PIPESTAT(pipe), 0);
3983 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3984 }
3985 I915_WRITE(IMR, 0xffffffff);
3986 I915_WRITE(IER, 0x0);
3987
3988 I915_WRITE(IIR, I915_READ(IIR));
3989 }
3990
3991 static void i965_irq_preinstall(struct drm_device * dev)
3992 {
3993 struct drm_i915_private *dev_priv = to_i915(dev);
3994 int pipe;
3995
3996 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3997 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3998
3999 I915_WRITE(HWSTAM, 0xeffe);
4000 for_each_pipe(dev_priv, pipe)
4001 I915_WRITE(PIPESTAT(pipe), 0);
4002 I915_WRITE(IMR, 0xffffffff);
4003 I915_WRITE(IER, 0x0);
4004 POSTING_READ(IER);
4005 }
4006
4007 static int i965_irq_postinstall(struct drm_device *dev)
4008 {
4009 struct drm_i915_private *dev_priv = to_i915(dev);
4010 u32 enable_mask;
4011 u32 error_mask;
4012
4013 /* Unmask the interrupts that we always want on. */
4014 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4015 I915_DISPLAY_PORT_INTERRUPT |
4016 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4017 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4018 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4019 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4020 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4021
4022 enable_mask = ~dev_priv->irq_mask;
4023 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4024 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4025 enable_mask |= I915_USER_INTERRUPT;
4026
4027 if (IS_G4X(dev_priv))
4028 enable_mask |= I915_BSD_USER_INTERRUPT;
4029
4030 /* Interrupt setup is already guaranteed to be single-threaded, this is
4031 * just to make the assert_spin_locked check happy. */
4032 spin_lock_irq(&dev_priv->irq_lock);
4033 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4034 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4035 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4036 spin_unlock_irq(&dev_priv->irq_lock);
4037
4038 /*
4039 * Enable some error detection, note the instruction error mask
4040 * bit is reserved, so we leave it masked.
4041 */
4042 if (IS_G4X(dev_priv)) {
4043 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4044 GM45_ERROR_MEM_PRIV |
4045 GM45_ERROR_CP_PRIV |
4046 I915_ERROR_MEMORY_REFRESH);
4047 } else {
4048 error_mask = ~(I915_ERROR_PAGE_TABLE |
4049 I915_ERROR_MEMORY_REFRESH);
4050 }
4051 I915_WRITE(EMR, error_mask);
4052
4053 I915_WRITE(IMR, dev_priv->irq_mask);
4054 I915_WRITE(IER, enable_mask);
4055 POSTING_READ(IER);
4056
4057 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4058 POSTING_READ(PORT_HOTPLUG_EN);
4059
4060 i915_enable_asle_pipestat(dev_priv);
4061
4062 return 0;
4063 }
4064
4065 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4066 {
4067 u32 hotplug_en;
4068
4069 lockdep_assert_held(&dev_priv->irq_lock);
4070
4071 /* Note HDMI and DP share hotplug bits */
4072 /* enable bits are the same for all generations */
4073 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4074 /* Programming the CRT detection parameters tends
4075 to generate a spurious hotplug event about three
4076 seconds later. So just do it once.
4077 */
4078 if (IS_G4X(dev_priv))
4079 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4080 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4081
4082 /* Ignore TV since it's buggy */
4083 i915_hotplug_interrupt_update_locked(dev_priv,
4084 HOTPLUG_INT_EN_MASK |
4085 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4086 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4087 hotplug_en);
4088 }
4089
4090 static irqreturn_t i965_irq_handler(int irq, void *arg)
4091 {
4092 struct drm_device *dev = arg;
4093 struct drm_i915_private *dev_priv = to_i915(dev);
4094 u32 iir, new_iir;
4095 u32 pipe_stats[I915_MAX_PIPES];
4096 int ret = IRQ_NONE, pipe;
4097 u32 flip_mask =
4098 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4099 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4100
4101 if (!intel_irqs_enabled(dev_priv))
4102 return IRQ_NONE;
4103
4104 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4105 disable_rpm_wakeref_asserts(dev_priv);
4106
4107 iir = I915_READ(IIR);
4108
4109 for (;;) {
4110 bool irq_received = (iir & ~flip_mask) != 0;
4111 bool blc_event = false;
4112
4113 /* Can't rely on pipestat interrupt bit in iir as it might
4114 * have been cleared after the pipestat interrupt was received.
4115 * It doesn't set the bit in iir again, but it still produces
4116 * interrupts (for non-MSI).
4117 */
4118 spin_lock(&dev_priv->irq_lock);
4119 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4120 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4121
4122 for_each_pipe(dev_priv, pipe) {
4123 i915_reg_t reg = PIPESTAT(pipe);
4124 pipe_stats[pipe] = I915_READ(reg);
4125
4126 /*
4127 * Clear the PIPE*STAT regs before the IIR
4128 */
4129 if (pipe_stats[pipe] & 0x8000ffff) {
4130 I915_WRITE(reg, pipe_stats[pipe]);
4131 irq_received = true;
4132 }
4133 }
4134 spin_unlock(&dev_priv->irq_lock);
4135
4136 if (!irq_received)
4137 break;
4138
4139 ret = IRQ_HANDLED;
4140
4141 /* Consume port. Then clear IIR or we'll miss events */
4142 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4143 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4144 if (hotplug_status)
4145 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4146 }
4147
4148 I915_WRITE(IIR, iir & ~flip_mask);
4149 new_iir = I915_READ(IIR); /* Flush posted writes */
4150
4151 if (iir & I915_USER_INTERRUPT)
4152 notify_ring(dev_priv->engine[RCS]);
4153 if (iir & I915_BSD_USER_INTERRUPT)
4154 notify_ring(dev_priv->engine[VCS]);
4155
4156 for_each_pipe(dev_priv, pipe) {
4157 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4158 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4159 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4160
4161 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4162 blc_event = true;
4163
4164 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4165 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4166
4167 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4168 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4169 }
4170
4171 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4172 intel_opregion_asle_intr(dev_priv);
4173
4174 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4175 gmbus_irq_handler(dev_priv);
4176
4177 /* With MSI, interrupts are only generated when iir
4178 * transitions from zero to nonzero. If another bit got
4179 * set while we were handling the existing iir bits, then
4180 * we would never get another interrupt.
4181 *
4182 * This is fine on non-MSI as well, as if we hit this path
4183 * we avoid exiting the interrupt handler only to generate
4184 * another one.
4185 *
4186 * Note that for MSI this could cause a stray interrupt report
4187 * if an interrupt landed in the time between writing IIR and
4188 * the posting read. This should be rare enough to never
4189 * trigger the 99% of 100,000 interrupts test for disabling
4190 * stray interrupts.
4191 */
4192 iir = new_iir;
4193 }
4194
4195 enable_rpm_wakeref_asserts(dev_priv);
4196
4197 return ret;
4198 }
4199
4200 static void i965_irq_uninstall(struct drm_device * dev)
4201 {
4202 struct drm_i915_private *dev_priv = to_i915(dev);
4203 int pipe;
4204
4205 if (!dev_priv)
4206 return;
4207
4208 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4209 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4210
4211 I915_WRITE(HWSTAM, 0xffffffff);
4212 for_each_pipe(dev_priv, pipe)
4213 I915_WRITE(PIPESTAT(pipe), 0);
4214 I915_WRITE(IMR, 0xffffffff);
4215 I915_WRITE(IER, 0x0);
4216
4217 for_each_pipe(dev_priv, pipe)
4218 I915_WRITE(PIPESTAT(pipe),
4219 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4220 I915_WRITE(IIR, I915_READ(IIR));
4221 }
4222
4223 /**
4224 * intel_irq_init - initializes irq support
4225 * @dev_priv: i915 device instance
4226 *
4227 * This function initializes all the irq support including work items, timers
4228 * and all the vtables. It does not setup the interrupt itself though.
4229 */
4230 void intel_irq_init(struct drm_i915_private *dev_priv)
4231 {
4232 struct drm_device *dev = &dev_priv->drm;
4233
4234 intel_hpd_init_work(dev_priv);
4235
4236 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4237 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4238
4239 if (HAS_GUC_SCHED(dev_priv))
4240 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4241
4242 /* Let's track the enabled rps events */
4243 if (IS_VALLEYVIEW(dev_priv))
4244 /* WaGsvRC0ResidencyMethod:vlv */
4245 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4246 else
4247 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4248
4249 dev_priv->rps.pm_intrmsk_mbz = 0;
4250
4251 /*
4252 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4253 * if GEN6_PM_UP_EI_EXPIRED is masked.
4254 *
4255 * TODO: verify if this can be reproduced on VLV,CHV.
4256 */
4257 if (INTEL_INFO(dev_priv)->gen <= 7)
4258 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4259
4260 if (INTEL_INFO(dev_priv)->gen >= 8)
4261 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4262
4263 if (IS_GEN2(dev_priv)) {
4264 /* Gen2 doesn't have a hardware frame counter */
4265 dev->max_vblank_count = 0;
4266 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4267 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4268 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4269 } else {
4270 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4271 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4272 }
4273
4274 /*
4275 * Opt out of the vblank disable timer on everything except gen2.
4276 * Gen2 doesn't have a hardware frame counter and so depends on
4277 * vblank interrupts to produce sane vblank seuquence numbers.
4278 */
4279 if (!IS_GEN2(dev_priv))
4280 dev->vblank_disable_immediate = true;
4281
4282 /* Most platforms treat the display irq block as an always-on
4283 * power domain. vlv/chv can disable it at runtime and need
4284 * special care to avoid writing any of the display block registers
4285 * outside of the power domain. We defer setting up the display irqs
4286 * in this case to the runtime pm.
4287 */
4288 dev_priv->display_irqs_enabled = true;
4289 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4290 dev_priv->display_irqs_enabled = false;
4291
4292 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4293
4294 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4295 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4296
4297 if (IS_CHERRYVIEW(dev_priv)) {
4298 dev->driver->irq_handler = cherryview_irq_handler;
4299 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4300 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4301 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4302 dev->driver->enable_vblank = i965_enable_vblank;
4303 dev->driver->disable_vblank = i965_disable_vblank;
4304 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4305 } else if (IS_VALLEYVIEW(dev_priv)) {
4306 dev->driver->irq_handler = valleyview_irq_handler;
4307 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4308 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4309 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4310 dev->driver->enable_vblank = i965_enable_vblank;
4311 dev->driver->disable_vblank = i965_disable_vblank;
4312 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4313 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4314 dev->driver->irq_handler = gen8_irq_handler;
4315 dev->driver->irq_preinstall = gen8_irq_reset;
4316 dev->driver->irq_postinstall = gen8_irq_postinstall;
4317 dev->driver->irq_uninstall = gen8_irq_uninstall;
4318 dev->driver->enable_vblank = gen8_enable_vblank;
4319 dev->driver->disable_vblank = gen8_disable_vblank;
4320 if (IS_GEN9_LP(dev_priv))
4321 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4322 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4323 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4324 else
4325 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4326 } else if (HAS_PCH_SPLIT(dev_priv)) {
4327 dev->driver->irq_handler = ironlake_irq_handler;
4328 dev->driver->irq_preinstall = ironlake_irq_reset;
4329 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4330 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4331 dev->driver->enable_vblank = ironlake_enable_vblank;
4332 dev->driver->disable_vblank = ironlake_disable_vblank;
4333 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4334 } else {
4335 if (IS_GEN2(dev_priv)) {
4336 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4337 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4338 dev->driver->irq_handler = i8xx_irq_handler;
4339 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4340 dev->driver->enable_vblank = i8xx_enable_vblank;
4341 dev->driver->disable_vblank = i8xx_disable_vblank;
4342 } else if (IS_GEN3(dev_priv)) {
4343 dev->driver->irq_preinstall = i915_irq_preinstall;
4344 dev->driver->irq_postinstall = i915_irq_postinstall;
4345 dev->driver->irq_uninstall = i915_irq_uninstall;
4346 dev->driver->irq_handler = i915_irq_handler;
4347 dev->driver->enable_vblank = i8xx_enable_vblank;
4348 dev->driver->disable_vblank = i8xx_disable_vblank;
4349 } else {
4350 dev->driver->irq_preinstall = i965_irq_preinstall;
4351 dev->driver->irq_postinstall = i965_irq_postinstall;
4352 dev->driver->irq_uninstall = i965_irq_uninstall;
4353 dev->driver->irq_handler = i965_irq_handler;
4354 dev->driver->enable_vblank = i965_enable_vblank;
4355 dev->driver->disable_vblank = i965_disable_vblank;
4356 }
4357 if (I915_HAS_HOTPLUG(dev_priv))
4358 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4359 }
4360 }
4361
4362 /**
4363 * intel_irq_install - enables the hardware interrupt
4364 * @dev_priv: i915 device instance
4365 *
4366 * This function enables the hardware interrupt handling, but leaves the hotplug
4367 * handling still disabled. It is called after intel_irq_init().
4368 *
4369 * In the driver load and resume code we need working interrupts in a few places
4370 * but don't want to deal with the hassle of concurrent probe and hotplug
4371 * workers. Hence the split into this two-stage approach.
4372 */
4373 int intel_irq_install(struct drm_i915_private *dev_priv)
4374 {
4375 /*
4376 * We enable some interrupt sources in our postinstall hooks, so mark
4377 * interrupts as enabled _before_ actually enabling them to avoid
4378 * special cases in our ordering checks.
4379 */
4380 dev_priv->pm.irqs_enabled = true;
4381
4382 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4383 }
4384
4385 /**
4386 * intel_irq_uninstall - finilizes all irq handling
4387 * @dev_priv: i915 device instance
4388 *
4389 * This stops interrupt and hotplug handling and unregisters and frees all
4390 * resources acquired in the init functions.
4391 */
4392 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4393 {
4394 drm_irq_uninstall(&dev_priv->drm);
4395 intel_hpd_cancel_work(dev_priv);
4396 dev_priv->pm.irqs_enabled = false;
4397 }
4398
4399 /**
4400 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4401 * @dev_priv: i915 device instance
4402 *
4403 * This function is used to disable interrupts at runtime, both in the runtime
4404 * pm and the system suspend/resume code.
4405 */
4406 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4407 {
4408 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4409 dev_priv->pm.irqs_enabled = false;
4410 synchronize_irq(dev_priv->drm.irq);
4411 }
4412
4413 /**
4414 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4415 * @dev_priv: i915 device instance
4416 *
4417 * This function is used to enable interrupts at runtime, both in the runtime
4418 * pm and the system suspend/resume code.
4419 */
4420 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4421 {
4422 dev_priv->pm.irqs_enabled = true;
4423 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4424 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4425 }