]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
196caa463edf7caff2ba3745c5cca3577c240785
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 lockdep_assert_held(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 lockdep_assert_held(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 lockdep_assert_held(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 lockdep_assert_held(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 lockdep_assert_held(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 lockdep_assert_held(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 lockdep_assert_held(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 return;
396
397 spin_lock_irq(&dev_priv->irq_lock);
398 dev_priv->rps.interrupts_enabled = false;
399
400 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404 spin_unlock_irq(&dev_priv->irq_lock);
405 synchronize_irq(dev_priv->drm.irq);
406
407 /* Now that we will not be generating any more work, flush any
408 * outsanding tasks. As we are called on the RPS idle path,
409 * we will reset the GPU to minimum frequencies, so the current
410 * state of the worker can be discarded.
411 */
412 cancel_work_sync(&dev_priv->rps.work);
413 gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 spin_lock_irq(&dev_priv->irq_lock);
419 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 spin_lock_irq(&dev_priv->irq_lock);
426 if (!dev_priv->guc.interrupts_enabled) {
427 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 dev_priv->pm_guc_events);
429 dev_priv->guc.interrupts_enabled = true;
430 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 }
432 spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 spin_lock_irq(&dev_priv->irq_lock);
438 dev_priv->guc.interrupts_enabled = false;
439
440 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442 spin_unlock_irq(&dev_priv->irq_lock);
443 synchronize_irq(dev_priv->drm.irq);
444
445 gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449 * bdw_update_port_irq - update DE port interrupt
450 * @dev_priv: driver private
451 * @interrupt_mask: mask of interrupt bits to update
452 * @enabled_irq_mask: mask of interrupt bits to enable
453 */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 uint32_t interrupt_mask,
456 uint32_t enabled_irq_mask)
457 {
458 uint32_t new_val;
459 uint32_t old_val;
460
461 lockdep_assert_held(&dev_priv->irq_lock);
462
463 WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 return;
467
468 old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470 new_val = old_val;
471 new_val &= ~interrupt_mask;
472 new_val |= (~enabled_irq_mask & interrupt_mask);
473
474 if (new_val != old_val) {
475 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 POSTING_READ(GEN8_DE_PORT_IMR);
477 }
478 }
479
480 /**
481 * bdw_update_pipe_irq - update DE pipe interrupt
482 * @dev_priv: driver private
483 * @pipe: pipe whose interrupt to update
484 * @interrupt_mask: mask of interrupt bits to update
485 * @enabled_irq_mask: mask of interrupt bits to enable
486 */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 enum pipe pipe,
489 uint32_t interrupt_mask,
490 uint32_t enabled_irq_mask)
491 {
492 uint32_t new_val;
493
494 lockdep_assert_held(&dev_priv->irq_lock);
495
496 WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 return;
500
501 new_val = dev_priv->de_irq_mask[pipe];
502 new_val &= ~interrupt_mask;
503 new_val |= (~enabled_irq_mask & interrupt_mask);
504
505 if (new_val != dev_priv->de_irq_mask[pipe]) {
506 dev_priv->de_irq_mask[pipe] = new_val;
507 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 }
510 }
511
512 /**
513 * ibx_display_interrupt_update - update SDEIMR
514 * @dev_priv: driver private
515 * @interrupt_mask: mask of interrupt bits to update
516 * @enabled_irq_mask: mask of interrupt bits to enable
517 */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 uint32_t interrupt_mask,
520 uint32_t enabled_irq_mask)
521 {
522 uint32_t sdeimr = I915_READ(SDEIMR);
523 sdeimr &= ~interrupt_mask;
524 sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526 WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528 lockdep_assert_held(&dev_priv->irq_lock);
529
530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 return;
532
533 I915_WRITE(SDEIMR, sdeimr);
534 POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 u32 enable_mask, u32 status_mask)
540 {
541 i915_reg_t reg = PIPESTAT(pipe);
542 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544 lockdep_assert_held(&dev_priv->irq_lock);
545 WARN_ON(!intel_irqs_enabled(dev_priv));
546
547 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 pipe_name(pipe), enable_mask, status_mask))
551 return;
552
553 if ((pipestat & enable_mask) == enable_mask)
554 return;
555
556 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558 /* Enable the interrupt, clear any pending status */
559 pipestat |= enable_mask | status_mask;
560 I915_WRITE(reg, pipestat);
561 POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 u32 enable_mask, u32 status_mask)
567 {
568 i915_reg_t reg = PIPESTAT(pipe);
569 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571 lockdep_assert_held(&dev_priv->irq_lock);
572 WARN_ON(!intel_irqs_enabled(dev_priv));
573
574 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 pipe_name(pipe), enable_mask, status_mask))
578 return;
579
580 if ((pipestat & enable_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585 pipestat &= ~enable_mask;
586 I915_WRITE(reg, pipestat);
587 POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 u32 enable_mask = status_mask << 16;
593
594 /*
595 * On pipe A we don't support the PSR interrupt yet,
596 * on pipe B and C the same bit MBZ.
597 */
598 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 return 0;
600 /*
601 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 * A the same bit is for perf counters which we don't use either.
603 */
604 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 return 0;
606
607 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615 return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 u32 status_mask)
621 {
622 u32 enable_mask;
623
624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 status_mask);
627 else
628 enable_mask = status_mask << 16;
629 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 u32 status_mask)
635 {
636 u32 enable_mask;
637
638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 status_mask);
641 else
642 enable_mask = status_mask << 16;
643 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648 * @dev_priv: i915 device private
649 */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 return;
654
655 spin_lock_irq(&dev_priv->irq_lock);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_GEN(dev_priv) >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666 * This timing diagram depicts the video signal in and
667 * around the vertical blanking period.
668 *
669 * Assumptions about the fictitious mode used in this example:
670 * vblank_start >= 3
671 * vsync_start = vblank_start + 1
672 * vsync_end = vblank_start + 2
673 * vtotal = vblank_start + 3
674 *
675 * start of vblank:
676 * latch double buffered registers
677 * increment frame counter (ctg+)
678 * generate start of vblank interrupt (gen4+)
679 * |
680 * | frame start:
681 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
682 * | may be shifted forward 1-3 extra lines via PIPECONF
683 * | |
684 * | | start of vsync:
685 * | | generate vsync interrupt
686 * | | |
687 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
688 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
689 * ----va---> <-----------------vb--------------------> <--------va-------------
690 * | | <----vs-----> |
691 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694 * | | |
695 * last visible pixel first visible pixel
696 * | increment frame counter (gen3/4)
697 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
698 *
699 * x = horizontal active
700 * _ = horizontal blanking
701 * hs = horizontal sync
702 * va = vertical active
703 * vb = vertical blanking
704 * vs = vertical sync
705 * vbs = vblank_start (number)
706 *
707 * Summary:
708 * - most events happen at the start of horizontal sync
709 * - frame start happens at the start of horizontal blank, 1-4 lines
710 * (depending on PIPECONF settings) after the start of vblank
711 * - gen3/4 pixel and frame counter are synchronized with the start
712 * of horizontal active on the first line of vertical active
713 */
714
715 /* Called from drm generic code, passed a 'crtc', which
716 * we use as a pipe index
717 */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t high_frame, low_frame;
722 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 unsigned long irqflags;
725
726 htotal = mode->crtc_htotal;
727 hsync_start = mode->crtc_hsync_start;
728 vbl_start = mode->crtc_vblank_start;
729 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732 /* Convert to pixel count */
733 vbl_start *= htotal;
734
735 /* Start of vblank event occurs at start of hsync */
736 vbl_start -= htotal - hsync_start;
737
738 high_frame = PIPEFRAME(pipe);
739 low_frame = PIPEFRAMEPIXEL(pipe);
740
741 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743 /*
744 * High & low register fields aren't synchronized, so make sure
745 * we get a low value that's stable across two reads of the high
746 * register.
747 */
748 do {
749 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 low = I915_READ_FW(low_frame);
751 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 } while (high1 != high2);
753
754 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756 high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 pixel = low & PIPE_PIXEL_MASK;
758 low >>= PIPE_FRAME_LOW_SHIFT;
759
760 /*
761 * The frame counter increments at beginning of active.
762 * Cook up a vblank counter by also checking the pixel
763 * counter against vblank start.
764 */
765 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 struct drm_i915_private *dev_priv = to_i915(dev);
771
772 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 struct drm_device *dev = crtc->base.dev;
779 struct drm_i915_private *dev_priv = to_i915(dev);
780 const struct drm_display_mode *mode;
781 struct drm_vblank_crtc *vblank;
782 enum pipe pipe = crtc->pipe;
783 int position, vtotal;
784
785 if (!crtc->active)
786 return -1;
787
788 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 mode = &vblank->hwmode;
790
791 vtotal = mode->crtc_vtotal;
792 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 vtotal /= 2;
794
795 if (IS_GEN2(dev_priv))
796 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 else
798 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800 /*
801 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 * read it just before the start of vblank. So try it again
803 * so we don't accidentally end up spanning a vblank frame
804 * increment, causing the pipe_update_end() code to squak at us.
805 *
806 * The nature of this problem means we can't simply check the ISR
807 * bit and return the vblank start value; nor can we use the scanline
808 * debug register in the transcoder as it appears to have the same
809 * problem. We may need to extend this to include other platforms,
810 * but so far testing only shows the problem on HSW.
811 */
812 if (HAS_DDI(dev_priv) && !position) {
813 int i, temp;
814
815 for (i = 0; i < 100; i++) {
816 udelay(1);
817 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 if (temp != position) {
819 position = temp;
820 break;
821 }
822 }
823 }
824
825 /*
826 * See update_scanline_offset() for the details on the
827 * scanline_offset adjustment.
828 */
829 return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 bool in_vblank_irq, int *vpos, int *hpos,
834 ktime_t *stime, ktime_t *etime,
835 const struct drm_display_mode *mode)
836 {
837 struct drm_i915_private *dev_priv = to_i915(dev);
838 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 pipe);
840 int position;
841 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 bool in_vbl = true;
843 unsigned long irqflags;
844
845 if (WARN_ON(!mode->crtc_clock)) {
846 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847 "pipe %c\n", pipe_name(pipe));
848 return false;
849 }
850
851 htotal = mode->crtc_htotal;
852 hsync_start = mode->crtc_hsync_start;
853 vtotal = mode->crtc_vtotal;
854 vbl_start = mode->crtc_vblank_start;
855 vbl_end = mode->crtc_vblank_end;
856
857 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859 vbl_end /= 2;
860 vtotal /= 2;
861 }
862
863 /*
864 * Lock uncore.lock, as we will do multiple timing critical raw
865 * register reads, potentially with preemption disabled, so the
866 * following code must not block on uncore.lock.
867 */
868 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872 /* Get optional system timestamp before query. */
873 if (stime)
874 *stime = ktime_get();
875
876 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 /* No obvious pixelcount register. Only query vertical
878 * scanout position from Display scan line register.
879 */
880 position = __intel_get_crtc_scanline(intel_crtc);
881 } else {
882 /* Have access to pixelcount since start of frame.
883 * We can split this into vertical and horizontal
884 * scanout position.
885 */
886 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888 /* convert to pixel counts */
889 vbl_start *= htotal;
890 vbl_end *= htotal;
891 vtotal *= htotal;
892
893 /*
894 * In interlaced modes, the pixel counter counts all pixels,
895 * so one field will have htotal more pixels. In order to avoid
896 * the reported position from jumping backwards when the pixel
897 * counter is beyond the length of the shorter field, just
898 * clamp the position the length of the shorter field. This
899 * matches how the scanline counter based position works since
900 * the scanline counter doesn't count the two half lines.
901 */
902 if (position >= vtotal)
903 position = vtotal - 1;
904
905 /*
906 * Start of vblank interrupt is triggered at start of hsync,
907 * just prior to the first active line of vblank. However we
908 * consider lines to start at the leading edge of horizontal
909 * active. So, should we get here before we've crossed into
910 * the horizontal active of the first line in vblank, we would
911 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912 * always add htotal-hsync_start to the current pixel position.
913 */
914 position = (position + htotal - hsync_start) % vtotal;
915 }
916
917 /* Get optional system timestamp after query. */
918 if (etime)
919 *etime = ktime_get();
920
921 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 in_vbl = position >= vbl_start && position < vbl_end;
926
927 /*
928 * While in vblank, position will be negative
929 * counting up towards 0 at vbl_end. And outside
930 * vblank, position will be positive counting
931 * up since vbl_end.
932 */
933 if (position >= vbl_start)
934 position -= vbl_end;
935 else
936 position += vtotal - vbl_end;
937
938 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939 *vpos = position;
940 *hpos = 0;
941 } else {
942 *vpos = position / htotal;
943 *hpos = position - (*vpos * htotal);
944 }
945
946 return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952 unsigned long irqflags;
953 int position;
954
955 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956 position = __intel_get_crtc_scanline(crtc);
957 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959 return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964 u32 busy_up, busy_down, max_avg, min_avg;
965 u8 new_delay;
966
967 spin_lock(&mchdev_lock);
968
969 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971 new_delay = dev_priv->ips.cur_delay;
972
973 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974 busy_up = I915_READ(RCPREVBSYTUPAVG);
975 busy_down = I915_READ(RCPREVBSYTDNAVG);
976 max_avg = I915_READ(RCBMAXAVG);
977 min_avg = I915_READ(RCBMINAVG);
978
979 /* Handle RCS change request from hw */
980 if (busy_up > max_avg) {
981 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982 new_delay = dev_priv->ips.cur_delay - 1;
983 if (new_delay < dev_priv->ips.max_delay)
984 new_delay = dev_priv->ips.max_delay;
985 } else if (busy_down < min_avg) {
986 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987 new_delay = dev_priv->ips.cur_delay + 1;
988 if (new_delay > dev_priv->ips.min_delay)
989 new_delay = dev_priv->ips.min_delay;
990 }
991
992 if (ironlake_set_drps(dev_priv, new_delay))
993 dev_priv->ips.cur_delay = new_delay;
994
995 spin_unlock(&mchdev_lock);
996
997 return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002 struct drm_i915_gem_request *rq = NULL;
1003 struct intel_wait *wait;
1004
1005 atomic_inc(&engine->irq_count);
1006 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008 spin_lock(&engine->breadcrumbs.irq_lock);
1009 wait = engine->breadcrumbs.irq_wait;
1010 if (wait) {
1011 /* We use a callback from the dma-fence to submit
1012 * requests after waiting on our own requests. To
1013 * ensure minimum delay in queuing the next request to
1014 * hardware, signal the fence now rather than wait for
1015 * the signaler to be woken up. We still wake up the
1016 * waiter in order to handle the irq-seqno coherency
1017 * issues (we may receive the interrupt before the
1018 * seqno is written, see __i915_request_irq_complete())
1019 * and to handle coalescing of multiple seqno updates
1020 * and many waiters.
1021 */
1022 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023 wait->seqno) &&
1024 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025 &wait->request->fence.flags))
1026 rq = i915_gem_request_get(wait->request);
1027
1028 wake_up_process(wait->tsk);
1029 } else {
1030 __intel_engine_disarm_breadcrumbs(engine);
1031 }
1032 spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034 if (rq) {
1035 dma_fence_signal(&rq->fence);
1036 i915_gem_request_put(rq);
1037 }
1038
1039 trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043 struct intel_rps_ei *ei)
1044 {
1045 ei->ktime = ktime_get_raw();
1046 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058 struct intel_rps_ei now;
1059 u32 events = 0;
1060
1061 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062 return 0;
1063
1064 vlv_c0_read(dev_priv, &now);
1065
1066 if (prev->ktime) {
1067 u64 time, c0;
1068 u32 render, media;
1069
1070 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072 time *= dev_priv->czclk_freq;
1073
1074 /* Workload can be split between render + media,
1075 * e.g. SwapBuffers being blitted in X after being rendered in
1076 * mesa. To account for this we need to combine both engines
1077 * into our activity counter.
1078 */
1079 render = now.render_c0 - prev->render_c0;
1080 media = now.media_c0 - prev->media_c0;
1081 c0 = max(render, media);
1082 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084 if (c0 > time * dev_priv->rps.up_threshold)
1085 events = GEN6_PM_RP_UP_THRESHOLD;
1086 else if (c0 < time * dev_priv->rps.down_threshold)
1087 events = GEN6_PM_RP_DOWN_THRESHOLD;
1088 }
1089
1090 dev_priv->rps.ei = now;
1091 return events;
1092 }
1093
1094 static void gen6_pm_rps_work(struct work_struct *work)
1095 {
1096 struct drm_i915_private *dev_priv =
1097 container_of(work, struct drm_i915_private, rps.work);
1098 bool client_boost = false;
1099 int new_delay, adj, min, max;
1100 u32 pm_iir = 0;
1101
1102 spin_lock_irq(&dev_priv->irq_lock);
1103 if (dev_priv->rps.interrupts_enabled) {
1104 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1105 client_boost = atomic_read(&dev_priv->rps.num_waiters);
1106 }
1107 spin_unlock_irq(&dev_priv->irq_lock);
1108
1109 /* Make sure we didn't queue anything we're not going to process. */
1110 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1111 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1112 goto out;
1113
1114 mutex_lock(&dev_priv->rps.hw_lock);
1115
1116 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1117
1118 adj = dev_priv->rps.last_adj;
1119 new_delay = dev_priv->rps.cur_freq;
1120 min = dev_priv->rps.min_freq_softlimit;
1121 max = dev_priv->rps.max_freq_softlimit;
1122 if (client_boost)
1123 max = dev_priv->rps.max_freq;
1124 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1125 new_delay = dev_priv->rps.boost_freq;
1126 adj = 0;
1127 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1128 if (adj > 0)
1129 adj *= 2;
1130 else /* CHV needs even encode values */
1131 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1132
1133 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1134 adj = 0;
1135 } else if (client_boost) {
1136 adj = 0;
1137 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1138 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1139 new_delay = dev_priv->rps.efficient_freq;
1140 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1141 new_delay = dev_priv->rps.min_freq_softlimit;
1142 adj = 0;
1143 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1144 if (adj < 0)
1145 adj *= 2;
1146 else /* CHV needs even encode values */
1147 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1148
1149 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1150 adj = 0;
1151 } else { /* unknown event */
1152 adj = 0;
1153 }
1154
1155 dev_priv->rps.last_adj = adj;
1156
1157 /* sysfs frequency interfaces may have snuck in while servicing the
1158 * interrupt
1159 */
1160 new_delay += adj;
1161 new_delay = clamp_t(int, new_delay, min, max);
1162
1163 if (intel_set_rps(dev_priv, new_delay)) {
1164 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1165 dev_priv->rps.last_adj = 0;
1166 }
1167
1168 mutex_unlock(&dev_priv->rps.hw_lock);
1169
1170 out:
1171 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1172 spin_lock_irq(&dev_priv->irq_lock);
1173 if (dev_priv->rps.interrupts_enabled)
1174 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1175 spin_unlock_irq(&dev_priv->irq_lock);
1176 }
1177
1178
1179 /**
1180 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181 * occurred.
1182 * @work: workqueue struct
1183 *
1184 * Doesn't actually do anything except notify userspace. As a consequence of
1185 * this event, userspace should try to remap the bad rows since statistically
1186 * it is likely the same row is more likely to go bad again.
1187 */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190 struct drm_i915_private *dev_priv =
1191 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1192 u32 error_status, row, bank, subbank;
1193 char *parity_event[6];
1194 uint32_t misccpctl;
1195 uint8_t slice = 0;
1196
1197 /* We must turn off DOP level clock gating to access the L3 registers.
1198 * In order to prevent a get/put style interface, acquire struct mutex
1199 * any time we access those registers.
1200 */
1201 mutex_lock(&dev_priv->drm.struct_mutex);
1202
1203 /* If we've screwed up tracking, just let the interrupt fire again */
1204 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205 goto out;
1206
1207 misccpctl = I915_READ(GEN7_MISCCPCTL);
1208 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209 POSTING_READ(GEN7_MISCCPCTL);
1210
1211 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212 i915_reg_t reg;
1213
1214 slice--;
1215 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216 break;
1217
1218 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219
1220 reg = GEN7_L3CDERRST1(slice);
1221
1222 error_status = I915_READ(reg);
1223 row = GEN7_PARITY_ERROR_ROW(error_status);
1224 bank = GEN7_PARITY_ERROR_BANK(error_status);
1225 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226
1227 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228 POSTING_READ(reg);
1229
1230 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235 parity_event[5] = NULL;
1236
1237 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1238 KOBJ_CHANGE, parity_event);
1239
1240 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241 slice, row, bank, subbank);
1242
1243 kfree(parity_event[4]);
1244 kfree(parity_event[3]);
1245 kfree(parity_event[2]);
1246 kfree(parity_event[1]);
1247 }
1248
1249 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250
1251 out:
1252 WARN_ON(dev_priv->l3_parity.which_slice);
1253 spin_lock_irq(&dev_priv->irq_lock);
1254 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255 spin_unlock_irq(&dev_priv->irq_lock);
1256
1257 mutex_unlock(&dev_priv->drm.struct_mutex);
1258 }
1259
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261 u32 iir)
1262 {
1263 if (!HAS_L3_DPF(dev_priv))
1264 return;
1265
1266 spin_lock(&dev_priv->irq_lock);
1267 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268 spin_unlock(&dev_priv->irq_lock);
1269
1270 iir &= GT_PARITY_ERROR(dev_priv);
1271 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272 dev_priv->l3_parity.which_slice |= 1 << 1;
1273
1274 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275 dev_priv->l3_parity.which_slice |= 1 << 0;
1276
1277 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281 u32 gt_iir)
1282 {
1283 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1284 notify_ring(dev_priv->engine[RCS]);
1285 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1286 notify_ring(dev_priv->engine[VCS]);
1287 }
1288
1289 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1293 notify_ring(dev_priv->engine[RCS]);
1294 if (gt_iir & GT_BSD_USER_INTERRUPT)
1295 notify_ring(dev_priv->engine[VCS]);
1296 if (gt_iir & GT_BLT_USER_INTERRUPT)
1297 notify_ring(dev_priv->engine[BCS]);
1298
1299 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1300 GT_BSD_CS_ERROR_INTERRUPT |
1301 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1302 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1303
1304 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1305 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1306 }
1307
1308 static void
1309 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1310 {
1311 bool tasklet = false;
1312
1313 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1314 if (port_count(&engine->execlist_port[0])) {
1315 __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1316 tasklet = true;
1317 }
1318 }
1319
1320 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1321 notify_ring(engine);
1322 tasklet |= i915.enable_guc_submission;
1323 }
1324
1325 if (tasklet)
1326 tasklet_hi_schedule(&engine->irq_tasklet);
1327 }
1328
1329 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1330 u32 master_ctl,
1331 u32 gt_iir[4])
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (gt_iir[0]) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1339 ret = IRQ_HANDLED;
1340 } else
1341 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1342 }
1343
1344 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1345 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1346 if (gt_iir[1]) {
1347 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1348 ret = IRQ_HANDLED;
1349 } else
1350 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1351 }
1352
1353 if (master_ctl & GEN8_GT_VECS_IRQ) {
1354 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1355 if (gt_iir[3]) {
1356 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1357 ret = IRQ_HANDLED;
1358 } else
1359 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1360 }
1361
1362 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1363 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1364 if (gt_iir[2] & (dev_priv->pm_rps_events |
1365 dev_priv->pm_guc_events)) {
1366 I915_WRITE_FW(GEN8_GT_IIR(2),
1367 gt_iir[2] & (dev_priv->pm_rps_events |
1368 dev_priv->pm_guc_events));
1369 ret = IRQ_HANDLED;
1370 } else
1371 DRM_ERROR("The master control interrupt lied (PM)!\n");
1372 }
1373
1374 return ret;
1375 }
1376
1377 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1378 u32 gt_iir[4])
1379 {
1380 if (gt_iir[0]) {
1381 gen8_cs_irq_handler(dev_priv->engine[RCS],
1382 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1383 gen8_cs_irq_handler(dev_priv->engine[BCS],
1384 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1385 }
1386
1387 if (gt_iir[1]) {
1388 gen8_cs_irq_handler(dev_priv->engine[VCS],
1389 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1390 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1391 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1392 }
1393
1394 if (gt_iir[3])
1395 gen8_cs_irq_handler(dev_priv->engine[VECS],
1396 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1397
1398 if (gt_iir[2] & dev_priv->pm_rps_events)
1399 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1400
1401 if (gt_iir[2] & dev_priv->pm_guc_events)
1402 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1403 }
1404
1405 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_A:
1409 return val & PORTA_HOTPLUG_LONG_DETECT;
1410 case PORT_B:
1411 return val & PORTB_HOTPLUG_LONG_DETECT;
1412 case PORT_C:
1413 return val & PORTC_HOTPLUG_LONG_DETECT;
1414 default:
1415 return false;
1416 }
1417 }
1418
1419 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1420 {
1421 switch (port) {
1422 case PORT_E:
1423 return val & PORTE_HOTPLUG_LONG_DETECT;
1424 default:
1425 return false;
1426 }
1427 }
1428
1429 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431 switch (port) {
1432 case PORT_A:
1433 return val & PORTA_HOTPLUG_LONG_DETECT;
1434 case PORT_B:
1435 return val & PORTB_HOTPLUG_LONG_DETECT;
1436 case PORT_C:
1437 return val & PORTC_HOTPLUG_LONG_DETECT;
1438 case PORT_D:
1439 return val & PORTD_HOTPLUG_LONG_DETECT;
1440 default:
1441 return false;
1442 }
1443 }
1444
1445 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1446 {
1447 switch (port) {
1448 case PORT_A:
1449 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_LONG_DETECT;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_LONG_DETECT;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_LONG_DETECT;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1470 {
1471 switch (port) {
1472 case PORT_B:
1473 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1474 case PORT_C:
1475 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1476 case PORT_D:
1477 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1478 default:
1479 return false;
1480 }
1481 }
1482
1483 /*
1484 * Get a bit mask of pins that have triggered, and which ones may be long.
1485 * This can be called multiple times with the same masks to accumulate
1486 * hotplug detection results from several registers.
1487 *
1488 * Note that the caller is expected to zero out the masks initially.
1489 */
1490 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1491 u32 hotplug_trigger, u32 dig_hotplug_reg,
1492 const u32 hpd[HPD_NUM_PINS],
1493 bool long_pulse_detect(enum port port, u32 val))
1494 {
1495 enum port port;
1496 int i;
1497
1498 for_each_hpd_pin(i) {
1499 if ((hpd[i] & hotplug_trigger) == 0)
1500 continue;
1501
1502 *pin_mask |= BIT(i);
1503
1504 if (!intel_hpd_pin_to_port(i, &port))
1505 continue;
1506
1507 if (long_pulse_detect(port, dig_hotplug_reg))
1508 *long_mask |= BIT(i);
1509 }
1510
1511 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1512 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1513
1514 }
1515
1516 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1517 {
1518 wake_up_all(&dev_priv->gmbus_wait_queue);
1519 }
1520
1521 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1522 {
1523 wake_up_all(&dev_priv->gmbus_wait_queue);
1524 }
1525
1526 #if defined(CONFIG_DEBUG_FS)
1527 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1528 enum pipe pipe,
1529 uint32_t crc0, uint32_t crc1,
1530 uint32_t crc2, uint32_t crc3,
1531 uint32_t crc4)
1532 {
1533 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1534 struct intel_pipe_crc_entry *entry;
1535 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1536 struct drm_driver *driver = dev_priv->drm.driver;
1537 uint32_t crcs[5];
1538 int head, tail;
1539
1540 spin_lock(&pipe_crc->lock);
1541 if (pipe_crc->source) {
1542 if (!pipe_crc->entries) {
1543 spin_unlock(&pipe_crc->lock);
1544 DRM_DEBUG_KMS("spurious interrupt\n");
1545 return;
1546 }
1547
1548 head = pipe_crc->head;
1549 tail = pipe_crc->tail;
1550
1551 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1552 spin_unlock(&pipe_crc->lock);
1553 DRM_ERROR("CRC buffer overflowing\n");
1554 return;
1555 }
1556
1557 entry = &pipe_crc->entries[head];
1558
1559 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1560 entry->crc[0] = crc0;
1561 entry->crc[1] = crc1;
1562 entry->crc[2] = crc2;
1563 entry->crc[3] = crc3;
1564 entry->crc[4] = crc4;
1565
1566 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1567 pipe_crc->head = head;
1568
1569 spin_unlock(&pipe_crc->lock);
1570
1571 wake_up_interruptible(&pipe_crc->wq);
1572 } else {
1573 /*
1574 * For some not yet identified reason, the first CRC is
1575 * bonkers. So let's just wait for the next vblank and read
1576 * out the buggy result.
1577 *
1578 * On CHV sometimes the second CRC is bonkers as well, so
1579 * don't trust that one either.
1580 */
1581 if (pipe_crc->skipped == 0 ||
1582 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1583 pipe_crc->skipped++;
1584 spin_unlock(&pipe_crc->lock);
1585 return;
1586 }
1587 spin_unlock(&pipe_crc->lock);
1588 crcs[0] = crc0;
1589 crcs[1] = crc1;
1590 crcs[2] = crc2;
1591 crcs[3] = crc3;
1592 crcs[4] = crc4;
1593 drm_crtc_add_crc_entry(&crtc->base, true,
1594 drm_crtc_accurate_vblank_count(&crtc->base),
1595 crcs);
1596 }
1597 }
1598 #else
1599 static inline void
1600 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1601 enum pipe pipe,
1602 uint32_t crc0, uint32_t crc1,
1603 uint32_t crc2, uint32_t crc3,
1604 uint32_t crc4) {}
1605 #endif
1606
1607
1608 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1609 enum pipe pipe)
1610 {
1611 display_pipe_crc_irq_handler(dev_priv, pipe,
1612 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1613 0, 0, 0, 0);
1614 }
1615
1616 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1617 enum pipe pipe)
1618 {
1619 display_pipe_crc_irq_handler(dev_priv, pipe,
1620 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1621 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1622 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1623 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1624 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1625 }
1626
1627 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1628 enum pipe pipe)
1629 {
1630 uint32_t res1, res2;
1631
1632 if (INTEL_GEN(dev_priv) >= 3)
1633 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1634 else
1635 res1 = 0;
1636
1637 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1638 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1639 else
1640 res2 = 0;
1641
1642 display_pipe_crc_irq_handler(dev_priv, pipe,
1643 I915_READ(PIPE_CRC_RES_RED(pipe)),
1644 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1645 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1646 res1, res2);
1647 }
1648
1649 /* The RPS events need forcewake, so we add them to a work queue and mask their
1650 * IMR bits until the work is done. Other interrupts can be processed without
1651 * the work queue. */
1652 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1653 {
1654 if (pm_iir & dev_priv->pm_rps_events) {
1655 spin_lock(&dev_priv->irq_lock);
1656 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1657 if (dev_priv->rps.interrupts_enabled) {
1658 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1659 schedule_work(&dev_priv->rps.work);
1660 }
1661 spin_unlock(&dev_priv->irq_lock);
1662 }
1663
1664 if (INTEL_GEN(dev_priv) >= 8)
1665 return;
1666
1667 if (HAS_VEBOX(dev_priv)) {
1668 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1669 notify_ring(dev_priv->engine[VECS]);
1670
1671 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1672 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1673 }
1674 }
1675
1676 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1677 {
1678 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1679 /* Sample the log buffer flush related bits & clear them out now
1680 * itself from the message identity register to minimize the
1681 * probability of losing a flush interrupt, when there are back
1682 * to back flush interrupts.
1683 * There can be a new flush interrupt, for different log buffer
1684 * type (like for ISR), whilst Host is handling one (for DPC).
1685 * Since same bit is used in message register for ISR & DPC, it
1686 * could happen that GuC sets the bit for 2nd interrupt but Host
1687 * clears out the bit on handling the 1st interrupt.
1688 */
1689 u32 msg, flush;
1690
1691 msg = I915_READ(SOFT_SCRATCH(15));
1692 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1693 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1694 if (flush) {
1695 /* Clear the message bits that are handled */
1696 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1697
1698 /* Handle flush interrupt in bottom half */
1699 queue_work(dev_priv->guc.log.runtime.flush_wq,
1700 &dev_priv->guc.log.runtime.flush_work);
1701
1702 dev_priv->guc.log.flush_interrupt_count++;
1703 } else {
1704 /* Not clearing of unhandled event bits won't result in
1705 * re-triggering of the interrupt.
1706 */
1707 }
1708 }
1709 }
1710
1711 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1712 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1713 {
1714 int pipe;
1715
1716 spin_lock(&dev_priv->irq_lock);
1717
1718 if (!dev_priv->display_irqs_enabled) {
1719 spin_unlock(&dev_priv->irq_lock);
1720 return;
1721 }
1722
1723 for_each_pipe(dev_priv, pipe) {
1724 i915_reg_t reg;
1725 u32 mask, iir_bit = 0;
1726
1727 /*
1728 * PIPESTAT bits get signalled even when the interrupt is
1729 * disabled with the mask bits, and some of the status bits do
1730 * not generate interrupts at all (like the underrun bit). Hence
1731 * we need to be careful that we only handle what we want to
1732 * handle.
1733 */
1734
1735 /* fifo underruns are filterered in the underrun handler. */
1736 mask = PIPE_FIFO_UNDERRUN_STATUS;
1737
1738 switch (pipe) {
1739 case PIPE_A:
1740 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1741 break;
1742 case PIPE_B:
1743 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1744 break;
1745 case PIPE_C:
1746 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1747 break;
1748 }
1749 if (iir & iir_bit)
1750 mask |= dev_priv->pipestat_irq_mask[pipe];
1751
1752 if (!mask)
1753 continue;
1754
1755 reg = PIPESTAT(pipe);
1756 mask |= PIPESTAT_INT_ENABLE_MASK;
1757 pipe_stats[pipe] = I915_READ(reg) & mask;
1758
1759 /*
1760 * Clear the PIPE*STAT regs before the IIR
1761 */
1762 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1763 PIPESTAT_INT_STATUS_MASK))
1764 I915_WRITE(reg, pipe_stats[pipe]);
1765 }
1766 spin_unlock(&dev_priv->irq_lock);
1767 }
1768
1769 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1770 u32 pipe_stats[I915_MAX_PIPES])
1771 {
1772 enum pipe pipe;
1773
1774 for_each_pipe(dev_priv, pipe) {
1775 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1776 drm_handle_vblank(&dev_priv->drm, pipe);
1777
1778 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1779 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1780
1781 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1782 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1783 }
1784
1785 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1786 gmbus_irq_handler(dev_priv);
1787 }
1788
1789 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1790 {
1791 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1792
1793 if (hotplug_status)
1794 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1795
1796 return hotplug_status;
1797 }
1798
1799 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1800 u32 hotplug_status)
1801 {
1802 u32 pin_mask = 0, long_mask = 0;
1803
1804 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1805 IS_CHERRYVIEW(dev_priv)) {
1806 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1807
1808 if (hotplug_trigger) {
1809 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1810 hotplug_trigger, hpd_status_g4x,
1811 i9xx_port_hotplug_long_detect);
1812
1813 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1814 }
1815
1816 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1817 dp_aux_irq_handler(dev_priv);
1818 } else {
1819 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1820
1821 if (hotplug_trigger) {
1822 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1823 hotplug_trigger, hpd_status_i915,
1824 i9xx_port_hotplug_long_detect);
1825 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1826 }
1827 }
1828 }
1829
1830 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1831 {
1832 struct drm_device *dev = arg;
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 irqreturn_t ret = IRQ_NONE;
1835
1836 if (!intel_irqs_enabled(dev_priv))
1837 return IRQ_NONE;
1838
1839 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1840 disable_rpm_wakeref_asserts(dev_priv);
1841
1842 do {
1843 u32 iir, gt_iir, pm_iir;
1844 u32 pipe_stats[I915_MAX_PIPES] = {};
1845 u32 hotplug_status = 0;
1846 u32 ier = 0;
1847
1848 gt_iir = I915_READ(GTIIR);
1849 pm_iir = I915_READ(GEN6_PMIIR);
1850 iir = I915_READ(VLV_IIR);
1851
1852 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1853 break;
1854
1855 ret = IRQ_HANDLED;
1856
1857 /*
1858 * Theory on interrupt generation, based on empirical evidence:
1859 *
1860 * x = ((VLV_IIR & VLV_IER) ||
1861 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1862 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1863 *
1864 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1865 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1866 * guarantee the CPU interrupt will be raised again even if we
1867 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1868 * bits this time around.
1869 */
1870 I915_WRITE(VLV_MASTER_IER, 0);
1871 ier = I915_READ(VLV_IER);
1872 I915_WRITE(VLV_IER, 0);
1873
1874 if (gt_iir)
1875 I915_WRITE(GTIIR, gt_iir);
1876 if (pm_iir)
1877 I915_WRITE(GEN6_PMIIR, pm_iir);
1878
1879 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1880 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1881
1882 /* Call regardless, as some status bits might not be
1883 * signalled in iir */
1884 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1885
1886 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1887 I915_LPE_PIPE_B_INTERRUPT))
1888 intel_lpe_audio_irq_handler(dev_priv);
1889
1890 /*
1891 * VLV_IIR is single buffered, and reflects the level
1892 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1893 */
1894 if (iir)
1895 I915_WRITE(VLV_IIR, iir);
1896
1897 I915_WRITE(VLV_IER, ier);
1898 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1899 POSTING_READ(VLV_MASTER_IER);
1900
1901 if (gt_iir)
1902 snb_gt_irq_handler(dev_priv, gt_iir);
1903 if (pm_iir)
1904 gen6_rps_irq_handler(dev_priv, pm_iir);
1905
1906 if (hotplug_status)
1907 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1908
1909 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1910 } while (0);
1911
1912 enable_rpm_wakeref_asserts(dev_priv);
1913
1914 return ret;
1915 }
1916
1917 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1918 {
1919 struct drm_device *dev = arg;
1920 struct drm_i915_private *dev_priv = to_i915(dev);
1921 irqreturn_t ret = IRQ_NONE;
1922
1923 if (!intel_irqs_enabled(dev_priv))
1924 return IRQ_NONE;
1925
1926 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1927 disable_rpm_wakeref_asserts(dev_priv);
1928
1929 do {
1930 u32 master_ctl, iir;
1931 u32 gt_iir[4] = {};
1932 u32 pipe_stats[I915_MAX_PIPES] = {};
1933 u32 hotplug_status = 0;
1934 u32 ier = 0;
1935
1936 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1937 iir = I915_READ(VLV_IIR);
1938
1939 if (master_ctl == 0 && iir == 0)
1940 break;
1941
1942 ret = IRQ_HANDLED;
1943
1944 /*
1945 * Theory on interrupt generation, based on empirical evidence:
1946 *
1947 * x = ((VLV_IIR & VLV_IER) ||
1948 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1949 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1950 *
1951 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1952 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1953 * guarantee the CPU interrupt will be raised again even if we
1954 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1955 * bits this time around.
1956 */
1957 I915_WRITE(GEN8_MASTER_IRQ, 0);
1958 ier = I915_READ(VLV_IER);
1959 I915_WRITE(VLV_IER, 0);
1960
1961 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1962
1963 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1964 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1965
1966 /* Call regardless, as some status bits might not be
1967 * signalled in iir */
1968 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1969
1970 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1971 I915_LPE_PIPE_B_INTERRUPT |
1972 I915_LPE_PIPE_C_INTERRUPT))
1973 intel_lpe_audio_irq_handler(dev_priv);
1974
1975 /*
1976 * VLV_IIR is single buffered, and reflects the level
1977 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1978 */
1979 if (iir)
1980 I915_WRITE(VLV_IIR, iir);
1981
1982 I915_WRITE(VLV_IER, ier);
1983 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1984 POSTING_READ(GEN8_MASTER_IRQ);
1985
1986 gen8_gt_irq_handler(dev_priv, gt_iir);
1987
1988 if (hotplug_status)
1989 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1990
1991 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1992 } while (0);
1993
1994 enable_rpm_wakeref_asserts(dev_priv);
1995
1996 return ret;
1997 }
1998
1999 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2000 u32 hotplug_trigger,
2001 const u32 hpd[HPD_NUM_PINS])
2002 {
2003 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2004
2005 /*
2006 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2007 * unless we touch the hotplug register, even if hotplug_trigger is
2008 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2009 * errors.
2010 */
2011 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2012 if (!hotplug_trigger) {
2013 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2014 PORTD_HOTPLUG_STATUS_MASK |
2015 PORTC_HOTPLUG_STATUS_MASK |
2016 PORTB_HOTPLUG_STATUS_MASK;
2017 dig_hotplug_reg &= ~mask;
2018 }
2019
2020 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2021 if (!hotplug_trigger)
2022 return;
2023
2024 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2025 dig_hotplug_reg, hpd,
2026 pch_port_hotplug_long_detect);
2027
2028 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2029 }
2030
2031 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2032 {
2033 int pipe;
2034 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2035
2036 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2037
2038 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2039 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2040 SDE_AUDIO_POWER_SHIFT);
2041 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2042 port_name(port));
2043 }
2044
2045 if (pch_iir & SDE_AUX_MASK)
2046 dp_aux_irq_handler(dev_priv);
2047
2048 if (pch_iir & SDE_GMBUS)
2049 gmbus_irq_handler(dev_priv);
2050
2051 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2052 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2053
2054 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2055 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2056
2057 if (pch_iir & SDE_POISON)
2058 DRM_ERROR("PCH poison interrupt\n");
2059
2060 if (pch_iir & SDE_FDI_MASK)
2061 for_each_pipe(dev_priv, pipe)
2062 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2063 pipe_name(pipe),
2064 I915_READ(FDI_RX_IIR(pipe)));
2065
2066 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2067 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2068
2069 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2070 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2071
2072 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2073 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2074
2075 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2076 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2077 }
2078
2079 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2080 {
2081 u32 err_int = I915_READ(GEN7_ERR_INT);
2082 enum pipe pipe;
2083
2084 if (err_int & ERR_INT_POISON)
2085 DRM_ERROR("Poison interrupt\n");
2086
2087 for_each_pipe(dev_priv, pipe) {
2088 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2089 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2090
2091 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2092 if (IS_IVYBRIDGE(dev_priv))
2093 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2094 else
2095 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2096 }
2097 }
2098
2099 I915_WRITE(GEN7_ERR_INT, err_int);
2100 }
2101
2102 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2103 {
2104 u32 serr_int = I915_READ(SERR_INT);
2105
2106 if (serr_int & SERR_INT_POISON)
2107 DRM_ERROR("PCH poison interrupt\n");
2108
2109 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2110 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2111
2112 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2113 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2114
2115 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2116 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2117
2118 I915_WRITE(SERR_INT, serr_int);
2119 }
2120
2121 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2122 {
2123 int pipe;
2124 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2125
2126 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2127
2128 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2129 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2130 SDE_AUDIO_POWER_SHIFT_CPT);
2131 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2132 port_name(port));
2133 }
2134
2135 if (pch_iir & SDE_AUX_MASK_CPT)
2136 dp_aux_irq_handler(dev_priv);
2137
2138 if (pch_iir & SDE_GMBUS_CPT)
2139 gmbus_irq_handler(dev_priv);
2140
2141 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2142 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2143
2144 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2145 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2146
2147 if (pch_iir & SDE_FDI_MASK_CPT)
2148 for_each_pipe(dev_priv, pipe)
2149 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2150 pipe_name(pipe),
2151 I915_READ(FDI_RX_IIR(pipe)));
2152
2153 if (pch_iir & SDE_ERROR_CPT)
2154 cpt_serr_int_handler(dev_priv);
2155 }
2156
2157 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2158 {
2159 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2160 ~SDE_PORTE_HOTPLUG_SPT;
2161 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2162 u32 pin_mask = 0, long_mask = 0;
2163
2164 if (hotplug_trigger) {
2165 u32 dig_hotplug_reg;
2166
2167 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2168 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2169
2170 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2171 dig_hotplug_reg, hpd_spt,
2172 spt_port_hotplug_long_detect);
2173 }
2174
2175 if (hotplug2_trigger) {
2176 u32 dig_hotplug_reg;
2177
2178 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2179 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2180
2181 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2182 dig_hotplug_reg, hpd_spt,
2183 spt_port_hotplug2_long_detect);
2184 }
2185
2186 if (pin_mask)
2187 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2188
2189 if (pch_iir & SDE_GMBUS_CPT)
2190 gmbus_irq_handler(dev_priv);
2191 }
2192
2193 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2194 u32 hotplug_trigger,
2195 const u32 hpd[HPD_NUM_PINS])
2196 {
2197 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2198
2199 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2200 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2201
2202 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2203 dig_hotplug_reg, hpd,
2204 ilk_port_hotplug_long_detect);
2205
2206 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2207 }
2208
2209 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2210 u32 de_iir)
2211 {
2212 enum pipe pipe;
2213 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2214
2215 if (hotplug_trigger)
2216 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2217
2218 if (de_iir & DE_AUX_CHANNEL_A)
2219 dp_aux_irq_handler(dev_priv);
2220
2221 if (de_iir & DE_GSE)
2222 intel_opregion_asle_intr(dev_priv);
2223
2224 if (de_iir & DE_POISON)
2225 DRM_ERROR("Poison interrupt\n");
2226
2227 for_each_pipe(dev_priv, pipe) {
2228 if (de_iir & DE_PIPE_VBLANK(pipe))
2229 drm_handle_vblank(&dev_priv->drm, pipe);
2230
2231 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2232 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2233
2234 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2235 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2236 }
2237
2238 /* check event from PCH */
2239 if (de_iir & DE_PCH_EVENT) {
2240 u32 pch_iir = I915_READ(SDEIIR);
2241
2242 if (HAS_PCH_CPT(dev_priv))
2243 cpt_irq_handler(dev_priv, pch_iir);
2244 else
2245 ibx_irq_handler(dev_priv, pch_iir);
2246
2247 /* should clear PCH hotplug event before clear CPU irq */
2248 I915_WRITE(SDEIIR, pch_iir);
2249 }
2250
2251 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2252 ironlake_rps_change_irq_handler(dev_priv);
2253 }
2254
2255 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2256 u32 de_iir)
2257 {
2258 enum pipe pipe;
2259 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2260
2261 if (hotplug_trigger)
2262 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2263
2264 if (de_iir & DE_ERR_INT_IVB)
2265 ivb_err_int_handler(dev_priv);
2266
2267 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2268 dp_aux_irq_handler(dev_priv);
2269
2270 if (de_iir & DE_GSE_IVB)
2271 intel_opregion_asle_intr(dev_priv);
2272
2273 for_each_pipe(dev_priv, pipe) {
2274 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2275 drm_handle_vblank(&dev_priv->drm, pipe);
2276 }
2277
2278 /* check event from PCH */
2279 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2280 u32 pch_iir = I915_READ(SDEIIR);
2281
2282 cpt_irq_handler(dev_priv, pch_iir);
2283
2284 /* clear PCH hotplug event before clear CPU irq */
2285 I915_WRITE(SDEIIR, pch_iir);
2286 }
2287 }
2288
2289 /*
2290 * To handle irqs with the minimum potential races with fresh interrupts, we:
2291 * 1 - Disable Master Interrupt Control.
2292 * 2 - Find the source(s) of the interrupt.
2293 * 3 - Clear the Interrupt Identity bits (IIR).
2294 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2295 * 5 - Re-enable Master Interrupt Control.
2296 */
2297 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2298 {
2299 struct drm_device *dev = arg;
2300 struct drm_i915_private *dev_priv = to_i915(dev);
2301 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2302 irqreturn_t ret = IRQ_NONE;
2303
2304 if (!intel_irqs_enabled(dev_priv))
2305 return IRQ_NONE;
2306
2307 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2308 disable_rpm_wakeref_asserts(dev_priv);
2309
2310 /* disable master interrupt before clearing iir */
2311 de_ier = I915_READ(DEIER);
2312 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2313 POSTING_READ(DEIER);
2314
2315 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2316 * interrupts will will be stored on its back queue, and then we'll be
2317 * able to process them after we restore SDEIER (as soon as we restore
2318 * it, we'll get an interrupt if SDEIIR still has something to process
2319 * due to its back queue). */
2320 if (!HAS_PCH_NOP(dev_priv)) {
2321 sde_ier = I915_READ(SDEIER);
2322 I915_WRITE(SDEIER, 0);
2323 POSTING_READ(SDEIER);
2324 }
2325
2326 /* Find, clear, then process each source of interrupt */
2327
2328 gt_iir = I915_READ(GTIIR);
2329 if (gt_iir) {
2330 I915_WRITE(GTIIR, gt_iir);
2331 ret = IRQ_HANDLED;
2332 if (INTEL_GEN(dev_priv) >= 6)
2333 snb_gt_irq_handler(dev_priv, gt_iir);
2334 else
2335 ilk_gt_irq_handler(dev_priv, gt_iir);
2336 }
2337
2338 de_iir = I915_READ(DEIIR);
2339 if (de_iir) {
2340 I915_WRITE(DEIIR, de_iir);
2341 ret = IRQ_HANDLED;
2342 if (INTEL_GEN(dev_priv) >= 7)
2343 ivb_display_irq_handler(dev_priv, de_iir);
2344 else
2345 ilk_display_irq_handler(dev_priv, de_iir);
2346 }
2347
2348 if (INTEL_GEN(dev_priv) >= 6) {
2349 u32 pm_iir = I915_READ(GEN6_PMIIR);
2350 if (pm_iir) {
2351 I915_WRITE(GEN6_PMIIR, pm_iir);
2352 ret = IRQ_HANDLED;
2353 gen6_rps_irq_handler(dev_priv, pm_iir);
2354 }
2355 }
2356
2357 I915_WRITE(DEIER, de_ier);
2358 POSTING_READ(DEIER);
2359 if (!HAS_PCH_NOP(dev_priv)) {
2360 I915_WRITE(SDEIER, sde_ier);
2361 POSTING_READ(SDEIER);
2362 }
2363
2364 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2365 enable_rpm_wakeref_asserts(dev_priv);
2366
2367 return ret;
2368 }
2369
2370 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2371 u32 hotplug_trigger,
2372 const u32 hpd[HPD_NUM_PINS])
2373 {
2374 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2375
2376 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2377 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2378
2379 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2380 dig_hotplug_reg, hpd,
2381 bxt_port_hotplug_long_detect);
2382
2383 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2384 }
2385
2386 static irqreturn_t
2387 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2388 {
2389 irqreturn_t ret = IRQ_NONE;
2390 u32 iir;
2391 enum pipe pipe;
2392
2393 if (master_ctl & GEN8_DE_MISC_IRQ) {
2394 iir = I915_READ(GEN8_DE_MISC_IIR);
2395 if (iir) {
2396 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2397 ret = IRQ_HANDLED;
2398 if (iir & GEN8_DE_MISC_GSE)
2399 intel_opregion_asle_intr(dev_priv);
2400 else
2401 DRM_ERROR("Unexpected DE Misc interrupt\n");
2402 }
2403 else
2404 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2405 }
2406
2407 if (master_ctl & GEN8_DE_PORT_IRQ) {
2408 iir = I915_READ(GEN8_DE_PORT_IIR);
2409 if (iir) {
2410 u32 tmp_mask;
2411 bool found = false;
2412
2413 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2414 ret = IRQ_HANDLED;
2415
2416 tmp_mask = GEN8_AUX_CHANNEL_A;
2417 if (INTEL_GEN(dev_priv) >= 9)
2418 tmp_mask |= GEN9_AUX_CHANNEL_B |
2419 GEN9_AUX_CHANNEL_C |
2420 GEN9_AUX_CHANNEL_D;
2421
2422 if (iir & tmp_mask) {
2423 dp_aux_irq_handler(dev_priv);
2424 found = true;
2425 }
2426
2427 if (IS_GEN9_LP(dev_priv)) {
2428 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2429 if (tmp_mask) {
2430 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2431 hpd_bxt);
2432 found = true;
2433 }
2434 } else if (IS_BROADWELL(dev_priv)) {
2435 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2436 if (tmp_mask) {
2437 ilk_hpd_irq_handler(dev_priv,
2438 tmp_mask, hpd_bdw);
2439 found = true;
2440 }
2441 }
2442
2443 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2444 gmbus_irq_handler(dev_priv);
2445 found = true;
2446 }
2447
2448 if (!found)
2449 DRM_ERROR("Unexpected DE Port interrupt\n");
2450 }
2451 else
2452 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2453 }
2454
2455 for_each_pipe(dev_priv, pipe) {
2456 u32 fault_errors;
2457
2458 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2459 continue;
2460
2461 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2462 if (!iir) {
2463 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2464 continue;
2465 }
2466
2467 ret = IRQ_HANDLED;
2468 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2469
2470 if (iir & GEN8_PIPE_VBLANK)
2471 drm_handle_vblank(&dev_priv->drm, pipe);
2472
2473 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2474 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2475
2476 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2477 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2478
2479 fault_errors = iir;
2480 if (INTEL_GEN(dev_priv) >= 9)
2481 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2482 else
2483 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2484
2485 if (fault_errors)
2486 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2487 pipe_name(pipe),
2488 fault_errors);
2489 }
2490
2491 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2492 master_ctl & GEN8_DE_PCH_IRQ) {
2493 /*
2494 * FIXME(BDW): Assume for now that the new interrupt handling
2495 * scheme also closed the SDE interrupt handling race we've seen
2496 * on older pch-split platforms. But this needs testing.
2497 */
2498 iir = I915_READ(SDEIIR);
2499 if (iir) {
2500 I915_WRITE(SDEIIR, iir);
2501 ret = IRQ_HANDLED;
2502
2503 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2504 HAS_PCH_CNP(dev_priv))
2505 spt_irq_handler(dev_priv, iir);
2506 else
2507 cpt_irq_handler(dev_priv, iir);
2508 } else {
2509 /*
2510 * Like on previous PCH there seems to be something
2511 * fishy going on with forwarding PCH interrupts.
2512 */
2513 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2514 }
2515 }
2516
2517 return ret;
2518 }
2519
2520 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2521 {
2522 struct drm_device *dev = arg;
2523 struct drm_i915_private *dev_priv = to_i915(dev);
2524 u32 master_ctl;
2525 u32 gt_iir[4] = {};
2526 irqreturn_t ret;
2527
2528 if (!intel_irqs_enabled(dev_priv))
2529 return IRQ_NONE;
2530
2531 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2532 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2533 if (!master_ctl)
2534 return IRQ_NONE;
2535
2536 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2537
2538 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2539 disable_rpm_wakeref_asserts(dev_priv);
2540
2541 /* Find, clear, then process each source of interrupt */
2542 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2543 gen8_gt_irq_handler(dev_priv, gt_iir);
2544 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2545
2546 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2547 POSTING_READ_FW(GEN8_MASTER_IRQ);
2548
2549 enable_rpm_wakeref_asserts(dev_priv);
2550
2551 return ret;
2552 }
2553
2554 struct wedge_me {
2555 struct delayed_work work;
2556 struct drm_i915_private *i915;
2557 const char *name;
2558 };
2559
2560 static void wedge_me(struct work_struct *work)
2561 {
2562 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2563
2564 dev_err(w->i915->drm.dev,
2565 "%s timed out, cancelling all in-flight rendering.\n",
2566 w->name);
2567 i915_gem_set_wedged(w->i915);
2568 }
2569
2570 static void __init_wedge(struct wedge_me *w,
2571 struct drm_i915_private *i915,
2572 long timeout,
2573 const char *name)
2574 {
2575 w->i915 = i915;
2576 w->name = name;
2577
2578 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2579 schedule_delayed_work(&w->work, timeout);
2580 }
2581
2582 static void __fini_wedge(struct wedge_me *w)
2583 {
2584 cancel_delayed_work_sync(&w->work);
2585 destroy_delayed_work_on_stack(&w->work);
2586 w->i915 = NULL;
2587 }
2588
2589 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2590 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2591 (W)->i915; \
2592 __fini_wedge((W)))
2593
2594 /**
2595 * i915_reset_device - do process context error handling work
2596 * @dev_priv: i915 device private
2597 *
2598 * Fire an error uevent so userspace can see that a hang or error
2599 * was detected.
2600 */
2601 static void i915_reset_device(struct drm_i915_private *dev_priv)
2602 {
2603 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2604 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2605 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2606 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2607 struct wedge_me w;
2608
2609 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2610
2611 DRM_DEBUG_DRIVER("resetting chip\n");
2612 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2613
2614 /* Use a watchdog to ensure that our reset completes */
2615 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2616 intel_prepare_reset(dev_priv);
2617
2618 /* Signal that locked waiters should reset the GPU */
2619 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2620 wake_up_all(&dev_priv->gpu_error.wait_queue);
2621
2622 /* Wait for anyone holding the lock to wakeup, without
2623 * blocking indefinitely on struct_mutex.
2624 */
2625 do {
2626 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2627 i915_reset(dev_priv, 0);
2628 mutex_unlock(&dev_priv->drm.struct_mutex);
2629 }
2630 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2631 I915_RESET_HANDOFF,
2632 TASK_UNINTERRUPTIBLE,
2633 1));
2634
2635 intel_finish_reset(dev_priv);
2636 }
2637
2638 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2639 kobject_uevent_env(kobj,
2640 KOBJ_CHANGE, reset_done_event);
2641 }
2642
2643 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2644 {
2645 u32 eir;
2646
2647 if (!IS_GEN2(dev_priv))
2648 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2649
2650 if (INTEL_GEN(dev_priv) < 4)
2651 I915_WRITE(IPEIR, I915_READ(IPEIR));
2652 else
2653 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2654
2655 I915_WRITE(EIR, I915_READ(EIR));
2656 eir = I915_READ(EIR);
2657 if (eir) {
2658 /*
2659 * some errors might have become stuck,
2660 * mask them.
2661 */
2662 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2663 I915_WRITE(EMR, I915_READ(EMR) | eir);
2664 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2665 }
2666 }
2667
2668 /**
2669 * i915_handle_error - handle a gpu error
2670 * @dev_priv: i915 device private
2671 * @engine_mask: mask representing engines that are hung
2672 * @fmt: Error message format string
2673 *
2674 * Do some basic checking of register state at error time and
2675 * dump it to the syslog. Also call i915_capture_error_state() to make
2676 * sure we get a record and make it available in debugfs. Fire a uevent
2677 * so userspace knows something bad happened (should trigger collection
2678 * of a ring dump etc.).
2679 */
2680 void i915_handle_error(struct drm_i915_private *dev_priv,
2681 u32 engine_mask,
2682 const char *fmt, ...)
2683 {
2684 struct intel_engine_cs *engine;
2685 unsigned int tmp;
2686 va_list args;
2687 char error_msg[80];
2688
2689 va_start(args, fmt);
2690 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2691 va_end(args);
2692
2693 /*
2694 * In most cases it's guaranteed that we get here with an RPM
2695 * reference held, for example because there is a pending GPU
2696 * request that won't finish until the reset is done. This
2697 * isn't the case at least when we get here by doing a
2698 * simulated reset via debugfs, so get an RPM reference.
2699 */
2700 intel_runtime_pm_get(dev_priv);
2701
2702 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2703 i915_clear_error_registers(dev_priv);
2704
2705 /*
2706 * Try engine reset when available. We fall back to full reset if
2707 * single reset fails.
2708 */
2709 if (intel_has_reset_engine(dev_priv)) {
2710 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2711 BUILD_BUG_ON(I915_RESET_HANDOFF >= I915_RESET_ENGINE);
2712 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2713 &dev_priv->gpu_error.flags))
2714 continue;
2715
2716 if (i915_reset_engine(engine, 0) == 0)
2717 engine_mask &= ~intel_engine_flag(engine);
2718
2719 clear_bit(I915_RESET_ENGINE + engine->id,
2720 &dev_priv->gpu_error.flags);
2721 wake_up_bit(&dev_priv->gpu_error.flags,
2722 I915_RESET_ENGINE + engine->id);
2723 }
2724 }
2725
2726 if (!engine_mask)
2727 goto out;
2728
2729 /* Full reset needs the mutex, stop any other user trying to do so. */
2730 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2731 wait_event(dev_priv->gpu_error.reset_queue,
2732 !test_bit(I915_RESET_BACKOFF,
2733 &dev_priv->gpu_error.flags));
2734 goto out;
2735 }
2736
2737 /* Prevent any other reset-engine attempt. */
2738 for_each_engine(engine, dev_priv, tmp) {
2739 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2740 &dev_priv->gpu_error.flags))
2741 wait_on_bit(&dev_priv->gpu_error.flags,
2742 I915_RESET_ENGINE + engine->id,
2743 TASK_UNINTERRUPTIBLE);
2744 }
2745
2746 i915_reset_device(dev_priv);
2747
2748 for_each_engine(engine, dev_priv, tmp) {
2749 clear_bit(I915_RESET_ENGINE + engine->id,
2750 &dev_priv->gpu_error.flags);
2751 }
2752
2753 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2754 wake_up_all(&dev_priv->gpu_error.reset_queue);
2755
2756 out:
2757 intel_runtime_pm_put(dev_priv);
2758 }
2759
2760 /* Called from drm generic code, passed 'crtc' which
2761 * we use as a pipe index
2762 */
2763 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2764 {
2765 struct drm_i915_private *dev_priv = to_i915(dev);
2766 unsigned long irqflags;
2767
2768 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2769 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2770 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771
2772 return 0;
2773 }
2774
2775 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2776 {
2777 struct drm_i915_private *dev_priv = to_i915(dev);
2778 unsigned long irqflags;
2779
2780 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2781 i915_enable_pipestat(dev_priv, pipe,
2782 PIPE_START_VBLANK_INTERRUPT_STATUS);
2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784
2785 return 0;
2786 }
2787
2788 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2789 {
2790 struct drm_i915_private *dev_priv = to_i915(dev);
2791 unsigned long irqflags;
2792 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2793 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2794
2795 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2796 ilk_enable_display_irq(dev_priv, bit);
2797 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2798
2799 return 0;
2800 }
2801
2802 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2803 {
2804 struct drm_i915_private *dev_priv = to_i915(dev);
2805 unsigned long irqflags;
2806
2807 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2808 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2810
2811 return 0;
2812 }
2813
2814 /* Called from drm generic code, passed 'crtc' which
2815 * we use as a pipe index
2816 */
2817 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2818 {
2819 struct drm_i915_private *dev_priv = to_i915(dev);
2820 unsigned long irqflags;
2821
2822 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2823 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2824 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2825 }
2826
2827 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2828 {
2829 struct drm_i915_private *dev_priv = to_i915(dev);
2830 unsigned long irqflags;
2831
2832 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2833 i915_disable_pipestat(dev_priv, pipe,
2834 PIPE_START_VBLANK_INTERRUPT_STATUS);
2835 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2836 }
2837
2838 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2839 {
2840 struct drm_i915_private *dev_priv = to_i915(dev);
2841 unsigned long irqflags;
2842 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2843 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2844
2845 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2846 ilk_disable_display_irq(dev_priv, bit);
2847 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2848 }
2849
2850 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2851 {
2852 struct drm_i915_private *dev_priv = to_i915(dev);
2853 unsigned long irqflags;
2854
2855 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2856 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2857 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2858 }
2859
2860 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2861 {
2862 if (HAS_PCH_NOP(dev_priv))
2863 return;
2864
2865 GEN5_IRQ_RESET(SDE);
2866
2867 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2868 I915_WRITE(SERR_INT, 0xffffffff);
2869 }
2870
2871 /*
2872 * SDEIER is also touched by the interrupt handler to work around missed PCH
2873 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2874 * instead we unconditionally enable all PCH interrupt sources here, but then
2875 * only unmask them as needed with SDEIMR.
2876 *
2877 * This function needs to be called before interrupts are enabled.
2878 */
2879 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2880 {
2881 struct drm_i915_private *dev_priv = to_i915(dev);
2882
2883 if (HAS_PCH_NOP(dev_priv))
2884 return;
2885
2886 WARN_ON(I915_READ(SDEIER) != 0);
2887 I915_WRITE(SDEIER, 0xffffffff);
2888 POSTING_READ(SDEIER);
2889 }
2890
2891 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2892 {
2893 GEN5_IRQ_RESET(GT);
2894 if (INTEL_GEN(dev_priv) >= 6)
2895 GEN5_IRQ_RESET(GEN6_PM);
2896 }
2897
2898 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2899 {
2900 enum pipe pipe;
2901
2902 if (IS_CHERRYVIEW(dev_priv))
2903 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2904 else
2905 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2906
2907 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2908 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2909
2910 for_each_pipe(dev_priv, pipe) {
2911 I915_WRITE(PIPESTAT(pipe),
2912 PIPE_FIFO_UNDERRUN_STATUS |
2913 PIPESTAT_INT_STATUS_MASK);
2914 dev_priv->pipestat_irq_mask[pipe] = 0;
2915 }
2916
2917 GEN5_IRQ_RESET(VLV_);
2918 dev_priv->irq_mask = ~0;
2919 }
2920
2921 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2922 {
2923 u32 pipestat_mask;
2924 u32 enable_mask;
2925 enum pipe pipe;
2926
2927 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2928 PIPE_CRC_DONE_INTERRUPT_STATUS;
2929
2930 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2931 for_each_pipe(dev_priv, pipe)
2932 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2933
2934 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2935 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2936 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2937 I915_LPE_PIPE_A_INTERRUPT |
2938 I915_LPE_PIPE_B_INTERRUPT;
2939
2940 if (IS_CHERRYVIEW(dev_priv))
2941 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2942 I915_LPE_PIPE_C_INTERRUPT;
2943
2944 WARN_ON(dev_priv->irq_mask != ~0);
2945
2946 dev_priv->irq_mask = ~enable_mask;
2947
2948 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2949 }
2950
2951 /* drm_dma.h hooks
2952 */
2953 static void ironlake_irq_reset(struct drm_device *dev)
2954 {
2955 struct drm_i915_private *dev_priv = to_i915(dev);
2956
2957 I915_WRITE(HWSTAM, 0xffffffff);
2958
2959 GEN5_IRQ_RESET(DE);
2960 if (IS_GEN7(dev_priv))
2961 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2962
2963 gen5_gt_irq_reset(dev_priv);
2964
2965 ibx_irq_reset(dev_priv);
2966 }
2967
2968 static void valleyview_irq_preinstall(struct drm_device *dev)
2969 {
2970 struct drm_i915_private *dev_priv = to_i915(dev);
2971
2972 I915_WRITE(VLV_MASTER_IER, 0);
2973 POSTING_READ(VLV_MASTER_IER);
2974
2975 gen5_gt_irq_reset(dev_priv);
2976
2977 spin_lock_irq(&dev_priv->irq_lock);
2978 if (dev_priv->display_irqs_enabled)
2979 vlv_display_irq_reset(dev_priv);
2980 spin_unlock_irq(&dev_priv->irq_lock);
2981 }
2982
2983 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2984 {
2985 GEN8_IRQ_RESET_NDX(GT, 0);
2986 GEN8_IRQ_RESET_NDX(GT, 1);
2987 GEN8_IRQ_RESET_NDX(GT, 2);
2988 GEN8_IRQ_RESET_NDX(GT, 3);
2989 }
2990
2991 static void gen8_irq_reset(struct drm_device *dev)
2992 {
2993 struct drm_i915_private *dev_priv = to_i915(dev);
2994 int pipe;
2995
2996 I915_WRITE(GEN8_MASTER_IRQ, 0);
2997 POSTING_READ(GEN8_MASTER_IRQ);
2998
2999 gen8_gt_irq_reset(dev_priv);
3000
3001 for_each_pipe(dev_priv, pipe)
3002 if (intel_display_power_is_enabled(dev_priv,
3003 POWER_DOMAIN_PIPE(pipe)))
3004 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3005
3006 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3007 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3008 GEN5_IRQ_RESET(GEN8_PCU_);
3009
3010 if (HAS_PCH_SPLIT(dev_priv))
3011 ibx_irq_reset(dev_priv);
3012 }
3013
3014 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3015 u8 pipe_mask)
3016 {
3017 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3018 enum pipe pipe;
3019
3020 spin_lock_irq(&dev_priv->irq_lock);
3021 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3022 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3023 dev_priv->de_irq_mask[pipe],
3024 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3025 spin_unlock_irq(&dev_priv->irq_lock);
3026 }
3027
3028 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3029 u8 pipe_mask)
3030 {
3031 enum pipe pipe;
3032
3033 spin_lock_irq(&dev_priv->irq_lock);
3034 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3035 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3036 spin_unlock_irq(&dev_priv->irq_lock);
3037
3038 /* make sure we're done processing display irqs */
3039 synchronize_irq(dev_priv->drm.irq);
3040 }
3041
3042 static void cherryview_irq_preinstall(struct drm_device *dev)
3043 {
3044 struct drm_i915_private *dev_priv = to_i915(dev);
3045
3046 I915_WRITE(GEN8_MASTER_IRQ, 0);
3047 POSTING_READ(GEN8_MASTER_IRQ);
3048
3049 gen8_gt_irq_reset(dev_priv);
3050
3051 GEN5_IRQ_RESET(GEN8_PCU_);
3052
3053 spin_lock_irq(&dev_priv->irq_lock);
3054 if (dev_priv->display_irqs_enabled)
3055 vlv_display_irq_reset(dev_priv);
3056 spin_unlock_irq(&dev_priv->irq_lock);
3057 }
3058
3059 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3060 const u32 hpd[HPD_NUM_PINS])
3061 {
3062 struct intel_encoder *encoder;
3063 u32 enabled_irqs = 0;
3064
3065 for_each_intel_encoder(&dev_priv->drm, encoder)
3066 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3067 enabled_irqs |= hpd[encoder->hpd_pin];
3068
3069 return enabled_irqs;
3070 }
3071
3072 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3073 {
3074 u32 hotplug;
3075
3076 /*
3077 * Enable digital hotplug on the PCH, and configure the DP short pulse
3078 * duration to 2ms (which is the minimum in the Display Port spec).
3079 * The pulse duration bits are reserved on LPT+.
3080 */
3081 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3082 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3083 PORTC_PULSE_DURATION_MASK |
3084 PORTD_PULSE_DURATION_MASK);
3085 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3086 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3087 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3088 /*
3089 * When CPU and PCH are on the same package, port A
3090 * HPD must be enabled in both north and south.
3091 */
3092 if (HAS_PCH_LPT_LP(dev_priv))
3093 hotplug |= PORTA_HOTPLUG_ENABLE;
3094 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3095 }
3096
3097 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3098 {
3099 u32 hotplug_irqs, enabled_irqs;
3100
3101 if (HAS_PCH_IBX(dev_priv)) {
3102 hotplug_irqs = SDE_HOTPLUG_MASK;
3103 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3104 } else {
3105 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3106 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3107 }
3108
3109 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3110
3111 ibx_hpd_detection_setup(dev_priv);
3112 }
3113
3114 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3115 {
3116 u32 hotplug;
3117
3118 /* Enable digital hotplug on the PCH */
3119 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3120 hotplug |= PORTA_HOTPLUG_ENABLE |
3121 PORTB_HOTPLUG_ENABLE |
3122 PORTC_HOTPLUG_ENABLE |
3123 PORTD_HOTPLUG_ENABLE;
3124 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3125
3126 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3127 hotplug |= PORTE_HOTPLUG_ENABLE;
3128 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3129 }
3130
3131 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3132 {
3133 u32 hotplug_irqs, enabled_irqs;
3134
3135 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3136 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3137
3138 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3139
3140 spt_hpd_detection_setup(dev_priv);
3141 }
3142
3143 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3144 {
3145 u32 hotplug;
3146
3147 /*
3148 * Enable digital hotplug on the CPU, and configure the DP short pulse
3149 * duration to 2ms (which is the minimum in the Display Port spec)
3150 * The pulse duration bits are reserved on HSW+.
3151 */
3152 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3153 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3154 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3155 DIGITAL_PORTA_PULSE_DURATION_2ms;
3156 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3157 }
3158
3159 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3160 {
3161 u32 hotplug_irqs, enabled_irqs;
3162
3163 if (INTEL_GEN(dev_priv) >= 8) {
3164 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3165 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3166
3167 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3168 } else if (INTEL_GEN(dev_priv) >= 7) {
3169 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3170 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3171
3172 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3173 } else {
3174 hotplug_irqs = DE_DP_A_HOTPLUG;
3175 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3176
3177 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3178 }
3179
3180 ilk_hpd_detection_setup(dev_priv);
3181
3182 ibx_hpd_irq_setup(dev_priv);
3183 }
3184
3185 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3186 u32 enabled_irqs)
3187 {
3188 u32 hotplug;
3189
3190 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3191 hotplug |= PORTA_HOTPLUG_ENABLE |
3192 PORTB_HOTPLUG_ENABLE |
3193 PORTC_HOTPLUG_ENABLE;
3194
3195 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3196 hotplug, enabled_irqs);
3197 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3198
3199 /*
3200 * For BXT invert bit has to be set based on AOB design
3201 * for HPD detection logic, update it based on VBT fields.
3202 */
3203 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3204 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3205 hotplug |= BXT_DDIA_HPD_INVERT;
3206 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3207 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3208 hotplug |= BXT_DDIB_HPD_INVERT;
3209 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3210 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3211 hotplug |= BXT_DDIC_HPD_INVERT;
3212
3213 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3214 }
3215
3216 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3217 {
3218 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3219 }
3220
3221 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3222 {
3223 u32 hotplug_irqs, enabled_irqs;
3224
3225 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3226 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3227
3228 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3229
3230 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3231 }
3232
3233 static void ibx_irq_postinstall(struct drm_device *dev)
3234 {
3235 struct drm_i915_private *dev_priv = to_i915(dev);
3236 u32 mask;
3237
3238 if (HAS_PCH_NOP(dev_priv))
3239 return;
3240
3241 if (HAS_PCH_IBX(dev_priv))
3242 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3243 else
3244 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3245
3246 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3247 I915_WRITE(SDEIMR, ~mask);
3248
3249 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3250 HAS_PCH_LPT(dev_priv))
3251 ibx_hpd_detection_setup(dev_priv);
3252 else
3253 spt_hpd_detection_setup(dev_priv);
3254 }
3255
3256 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3257 {
3258 struct drm_i915_private *dev_priv = to_i915(dev);
3259 u32 pm_irqs, gt_irqs;
3260
3261 pm_irqs = gt_irqs = 0;
3262
3263 dev_priv->gt_irq_mask = ~0;
3264 if (HAS_L3_DPF(dev_priv)) {
3265 /* L3 parity interrupt is always unmasked. */
3266 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3267 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3268 }
3269
3270 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3271 if (IS_GEN5(dev_priv)) {
3272 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3273 } else {
3274 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3275 }
3276
3277 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3278
3279 if (INTEL_GEN(dev_priv) >= 6) {
3280 /*
3281 * RPS interrupts will get enabled/disabled on demand when RPS
3282 * itself is enabled/disabled.
3283 */
3284 if (HAS_VEBOX(dev_priv)) {
3285 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3286 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3287 }
3288
3289 dev_priv->pm_imr = 0xffffffff;
3290 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3291 }
3292 }
3293
3294 static int ironlake_irq_postinstall(struct drm_device *dev)
3295 {
3296 struct drm_i915_private *dev_priv = to_i915(dev);
3297 u32 display_mask, extra_mask;
3298
3299 if (INTEL_GEN(dev_priv) >= 7) {
3300 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3301 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3302 DE_PLANEB_FLIP_DONE_IVB |
3303 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3304 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3305 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3306 DE_DP_A_HOTPLUG_IVB);
3307 } else {
3308 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3309 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3310 DE_AUX_CHANNEL_A |
3311 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3312 DE_POISON);
3313 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3314 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3315 DE_DP_A_HOTPLUG);
3316 }
3317
3318 dev_priv->irq_mask = ~display_mask;
3319
3320 I915_WRITE(HWSTAM, 0xeffe);
3321
3322 ibx_irq_pre_postinstall(dev);
3323
3324 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3325
3326 gen5_gt_irq_postinstall(dev);
3327
3328 ilk_hpd_detection_setup(dev_priv);
3329
3330 ibx_irq_postinstall(dev);
3331
3332 if (IS_IRONLAKE_M(dev_priv)) {
3333 /* Enable PCU event interrupts
3334 *
3335 * spinlocking not required here for correctness since interrupt
3336 * setup is guaranteed to run in single-threaded context. But we
3337 * need it to make the assert_spin_locked happy. */
3338 spin_lock_irq(&dev_priv->irq_lock);
3339 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3340 spin_unlock_irq(&dev_priv->irq_lock);
3341 }
3342
3343 return 0;
3344 }
3345
3346 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3347 {
3348 lockdep_assert_held(&dev_priv->irq_lock);
3349
3350 if (dev_priv->display_irqs_enabled)
3351 return;
3352
3353 dev_priv->display_irqs_enabled = true;
3354
3355 if (intel_irqs_enabled(dev_priv)) {
3356 vlv_display_irq_reset(dev_priv);
3357 vlv_display_irq_postinstall(dev_priv);
3358 }
3359 }
3360
3361 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3362 {
3363 lockdep_assert_held(&dev_priv->irq_lock);
3364
3365 if (!dev_priv->display_irqs_enabled)
3366 return;
3367
3368 dev_priv->display_irqs_enabled = false;
3369
3370 if (intel_irqs_enabled(dev_priv))
3371 vlv_display_irq_reset(dev_priv);
3372 }
3373
3374
3375 static int valleyview_irq_postinstall(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = to_i915(dev);
3378
3379 gen5_gt_irq_postinstall(dev);
3380
3381 spin_lock_irq(&dev_priv->irq_lock);
3382 if (dev_priv->display_irqs_enabled)
3383 vlv_display_irq_postinstall(dev_priv);
3384 spin_unlock_irq(&dev_priv->irq_lock);
3385
3386 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3387 POSTING_READ(VLV_MASTER_IER);
3388
3389 return 0;
3390 }
3391
3392 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3393 {
3394 /* These are interrupts we'll toggle with the ring mask register */
3395 uint32_t gt_interrupts[] = {
3396 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3397 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3399 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3400 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3401 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3403 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3404 0,
3405 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3406 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3407 };
3408
3409 if (HAS_L3_DPF(dev_priv))
3410 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3411
3412 dev_priv->pm_ier = 0x0;
3413 dev_priv->pm_imr = ~dev_priv->pm_ier;
3414 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3415 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3416 /*
3417 * RPS interrupts will get enabled/disabled on demand when RPS itself
3418 * is enabled/disabled. Same wil be the case for GuC interrupts.
3419 */
3420 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3421 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3422 }
3423
3424 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3425 {
3426 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3427 uint32_t de_pipe_enables;
3428 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3429 u32 de_port_enables;
3430 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3431 enum pipe pipe;
3432
3433 if (INTEL_GEN(dev_priv) >= 9) {
3434 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3435 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3436 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3437 GEN9_AUX_CHANNEL_D;
3438 if (IS_GEN9_LP(dev_priv))
3439 de_port_masked |= BXT_DE_PORT_GMBUS;
3440 } else {
3441 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3442 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3443 }
3444
3445 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3446 GEN8_PIPE_FIFO_UNDERRUN;
3447
3448 de_port_enables = de_port_masked;
3449 if (IS_GEN9_LP(dev_priv))
3450 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3451 else if (IS_BROADWELL(dev_priv))
3452 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3453
3454 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3455 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3456 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3457
3458 for_each_pipe(dev_priv, pipe)
3459 if (intel_display_power_is_enabled(dev_priv,
3460 POWER_DOMAIN_PIPE(pipe)))
3461 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3462 dev_priv->de_irq_mask[pipe],
3463 de_pipe_enables);
3464
3465 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3466 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3467
3468 if (IS_GEN9_LP(dev_priv))
3469 bxt_hpd_detection_setup(dev_priv);
3470 else if (IS_BROADWELL(dev_priv))
3471 ilk_hpd_detection_setup(dev_priv);
3472 }
3473
3474 static int gen8_irq_postinstall(struct drm_device *dev)
3475 {
3476 struct drm_i915_private *dev_priv = to_i915(dev);
3477
3478 if (HAS_PCH_SPLIT(dev_priv))
3479 ibx_irq_pre_postinstall(dev);
3480
3481 gen8_gt_irq_postinstall(dev_priv);
3482 gen8_de_irq_postinstall(dev_priv);
3483
3484 if (HAS_PCH_SPLIT(dev_priv))
3485 ibx_irq_postinstall(dev);
3486
3487 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3488 POSTING_READ(GEN8_MASTER_IRQ);
3489
3490 return 0;
3491 }
3492
3493 static int cherryview_irq_postinstall(struct drm_device *dev)
3494 {
3495 struct drm_i915_private *dev_priv = to_i915(dev);
3496
3497 gen8_gt_irq_postinstall(dev_priv);
3498
3499 spin_lock_irq(&dev_priv->irq_lock);
3500 if (dev_priv->display_irqs_enabled)
3501 vlv_display_irq_postinstall(dev_priv);
3502 spin_unlock_irq(&dev_priv->irq_lock);
3503
3504 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3505 POSTING_READ(GEN8_MASTER_IRQ);
3506
3507 return 0;
3508 }
3509
3510 static void gen8_irq_uninstall(struct drm_device *dev)
3511 {
3512 struct drm_i915_private *dev_priv = to_i915(dev);
3513
3514 if (!dev_priv)
3515 return;
3516
3517 gen8_irq_reset(dev);
3518 }
3519
3520 static void valleyview_irq_uninstall(struct drm_device *dev)
3521 {
3522 struct drm_i915_private *dev_priv = to_i915(dev);
3523
3524 if (!dev_priv)
3525 return;
3526
3527 I915_WRITE(VLV_MASTER_IER, 0);
3528 POSTING_READ(VLV_MASTER_IER);
3529
3530 gen5_gt_irq_reset(dev_priv);
3531
3532 I915_WRITE(HWSTAM, 0xffffffff);
3533
3534 spin_lock_irq(&dev_priv->irq_lock);
3535 if (dev_priv->display_irqs_enabled)
3536 vlv_display_irq_reset(dev_priv);
3537 spin_unlock_irq(&dev_priv->irq_lock);
3538 }
3539
3540 static void cherryview_irq_uninstall(struct drm_device *dev)
3541 {
3542 struct drm_i915_private *dev_priv = to_i915(dev);
3543
3544 if (!dev_priv)
3545 return;
3546
3547 I915_WRITE(GEN8_MASTER_IRQ, 0);
3548 POSTING_READ(GEN8_MASTER_IRQ);
3549
3550 gen8_gt_irq_reset(dev_priv);
3551
3552 GEN5_IRQ_RESET(GEN8_PCU_);
3553
3554 spin_lock_irq(&dev_priv->irq_lock);
3555 if (dev_priv->display_irqs_enabled)
3556 vlv_display_irq_reset(dev_priv);
3557 spin_unlock_irq(&dev_priv->irq_lock);
3558 }
3559
3560 static void ironlake_irq_uninstall(struct drm_device *dev)
3561 {
3562 struct drm_i915_private *dev_priv = to_i915(dev);
3563
3564 if (!dev_priv)
3565 return;
3566
3567 ironlake_irq_reset(dev);
3568 }
3569
3570 static void i8xx_irq_preinstall(struct drm_device * dev)
3571 {
3572 struct drm_i915_private *dev_priv = to_i915(dev);
3573 int pipe;
3574
3575 for_each_pipe(dev_priv, pipe)
3576 I915_WRITE(PIPESTAT(pipe), 0);
3577 I915_WRITE16(IMR, 0xffff);
3578 I915_WRITE16(IER, 0x0);
3579 POSTING_READ16(IER);
3580 }
3581
3582 static int i8xx_irq_postinstall(struct drm_device *dev)
3583 {
3584 struct drm_i915_private *dev_priv = to_i915(dev);
3585
3586 I915_WRITE16(EMR,
3587 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3588
3589 /* Unmask the interrupts that we always want on. */
3590 dev_priv->irq_mask =
3591 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3592 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3593 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3594 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3595 I915_WRITE16(IMR, dev_priv->irq_mask);
3596
3597 I915_WRITE16(IER,
3598 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3599 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3600 I915_USER_INTERRUPT);
3601 POSTING_READ16(IER);
3602
3603 /* Interrupt setup is already guaranteed to be single-threaded, this is
3604 * just to make the assert_spin_locked check happy. */
3605 spin_lock_irq(&dev_priv->irq_lock);
3606 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608 spin_unlock_irq(&dev_priv->irq_lock);
3609
3610 return 0;
3611 }
3612
3613 /*
3614 * Returns true when a page flip has completed.
3615 */
3616 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3617 {
3618 struct drm_device *dev = arg;
3619 struct drm_i915_private *dev_priv = to_i915(dev);
3620 u16 iir, new_iir;
3621 u32 pipe_stats[2];
3622 int pipe;
3623 irqreturn_t ret;
3624
3625 if (!intel_irqs_enabled(dev_priv))
3626 return IRQ_NONE;
3627
3628 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3629 disable_rpm_wakeref_asserts(dev_priv);
3630
3631 ret = IRQ_NONE;
3632 iir = I915_READ16(IIR);
3633 if (iir == 0)
3634 goto out;
3635
3636 while (iir) {
3637 /* Can't rely on pipestat interrupt bit in iir as it might
3638 * have been cleared after the pipestat interrupt was received.
3639 * It doesn't set the bit in iir again, but it still produces
3640 * interrupts (for non-MSI).
3641 */
3642 spin_lock(&dev_priv->irq_lock);
3643 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3644 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3645
3646 for_each_pipe(dev_priv, pipe) {
3647 i915_reg_t reg = PIPESTAT(pipe);
3648 pipe_stats[pipe] = I915_READ(reg);
3649
3650 /*
3651 * Clear the PIPE*STAT regs before the IIR
3652 */
3653 if (pipe_stats[pipe] & 0x8000ffff)
3654 I915_WRITE(reg, pipe_stats[pipe]);
3655 }
3656 spin_unlock(&dev_priv->irq_lock);
3657
3658 I915_WRITE16(IIR, iir);
3659 new_iir = I915_READ16(IIR); /* Flush posted writes */
3660
3661 if (iir & I915_USER_INTERRUPT)
3662 notify_ring(dev_priv->engine[RCS]);
3663
3664 for_each_pipe(dev_priv, pipe) {
3665 int plane = pipe;
3666 if (HAS_FBC(dev_priv))
3667 plane = !plane;
3668
3669 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3670 drm_handle_vblank(&dev_priv->drm, pipe);
3671
3672 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3673 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3674
3675 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3676 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3677 pipe);
3678 }
3679
3680 iir = new_iir;
3681 }
3682 ret = IRQ_HANDLED;
3683
3684 out:
3685 enable_rpm_wakeref_asserts(dev_priv);
3686
3687 return ret;
3688 }
3689
3690 static void i8xx_irq_uninstall(struct drm_device * dev)
3691 {
3692 struct drm_i915_private *dev_priv = to_i915(dev);
3693 int pipe;
3694
3695 for_each_pipe(dev_priv, pipe) {
3696 /* Clear enable bits; then clear status bits */
3697 I915_WRITE(PIPESTAT(pipe), 0);
3698 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3699 }
3700 I915_WRITE16(IMR, 0xffff);
3701 I915_WRITE16(IER, 0x0);
3702 I915_WRITE16(IIR, I915_READ16(IIR));
3703 }
3704
3705 static void i915_irq_preinstall(struct drm_device * dev)
3706 {
3707 struct drm_i915_private *dev_priv = to_i915(dev);
3708 int pipe;
3709
3710 if (I915_HAS_HOTPLUG(dev_priv)) {
3711 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3712 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3713 }
3714
3715 I915_WRITE16(HWSTAM, 0xeffe);
3716 for_each_pipe(dev_priv, pipe)
3717 I915_WRITE(PIPESTAT(pipe), 0);
3718 I915_WRITE(IMR, 0xffffffff);
3719 I915_WRITE(IER, 0x0);
3720 POSTING_READ(IER);
3721 }
3722
3723 static int i915_irq_postinstall(struct drm_device *dev)
3724 {
3725 struct drm_i915_private *dev_priv = to_i915(dev);
3726 u32 enable_mask;
3727
3728 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3729
3730 /* Unmask the interrupts that we always want on. */
3731 dev_priv->irq_mask =
3732 ~(I915_ASLE_INTERRUPT |
3733 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3734 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3735 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3736 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3737
3738 enable_mask =
3739 I915_ASLE_INTERRUPT |
3740 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3741 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3742 I915_USER_INTERRUPT;
3743
3744 if (I915_HAS_HOTPLUG(dev_priv)) {
3745 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3746 POSTING_READ(PORT_HOTPLUG_EN);
3747
3748 /* Enable in IER... */
3749 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3750 /* and unmask in IMR */
3751 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3752 }
3753
3754 I915_WRITE(IMR, dev_priv->irq_mask);
3755 I915_WRITE(IER, enable_mask);
3756 POSTING_READ(IER);
3757
3758 i915_enable_asle_pipestat(dev_priv);
3759
3760 /* Interrupt setup is already guaranteed to be single-threaded, this is
3761 * just to make the assert_spin_locked check happy. */
3762 spin_lock_irq(&dev_priv->irq_lock);
3763 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3764 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3765 spin_unlock_irq(&dev_priv->irq_lock);
3766
3767 return 0;
3768 }
3769
3770 static irqreturn_t i915_irq_handler(int irq, void *arg)
3771 {
3772 struct drm_device *dev = arg;
3773 struct drm_i915_private *dev_priv = to_i915(dev);
3774 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3775 int pipe, ret = IRQ_NONE;
3776
3777 if (!intel_irqs_enabled(dev_priv))
3778 return IRQ_NONE;
3779
3780 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3781 disable_rpm_wakeref_asserts(dev_priv);
3782
3783 iir = I915_READ(IIR);
3784 do {
3785 bool irq_received = (iir) != 0;
3786 bool blc_event = false;
3787
3788 /* Can't rely on pipestat interrupt bit in iir as it might
3789 * have been cleared after the pipestat interrupt was received.
3790 * It doesn't set the bit in iir again, but it still produces
3791 * interrupts (for non-MSI).
3792 */
3793 spin_lock(&dev_priv->irq_lock);
3794 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3795 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3796
3797 for_each_pipe(dev_priv, pipe) {
3798 i915_reg_t reg = PIPESTAT(pipe);
3799 pipe_stats[pipe] = I915_READ(reg);
3800
3801 /* Clear the PIPE*STAT regs before the IIR */
3802 if (pipe_stats[pipe] & 0x8000ffff) {
3803 I915_WRITE(reg, pipe_stats[pipe]);
3804 irq_received = true;
3805 }
3806 }
3807 spin_unlock(&dev_priv->irq_lock);
3808
3809 if (!irq_received)
3810 break;
3811
3812 /* Consume port. Then clear IIR or we'll miss events */
3813 if (I915_HAS_HOTPLUG(dev_priv) &&
3814 iir & I915_DISPLAY_PORT_INTERRUPT) {
3815 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3816 if (hotplug_status)
3817 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3818 }
3819
3820 I915_WRITE(IIR, iir);
3821 new_iir = I915_READ(IIR); /* Flush posted writes */
3822
3823 if (iir & I915_USER_INTERRUPT)
3824 notify_ring(dev_priv->engine[RCS]);
3825
3826 for_each_pipe(dev_priv, pipe) {
3827 int plane = pipe;
3828 if (HAS_FBC(dev_priv))
3829 plane = !plane;
3830
3831 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3832 drm_handle_vblank(&dev_priv->drm, pipe);
3833
3834 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3835 blc_event = true;
3836
3837 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3838 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3839
3840 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3841 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3842 pipe);
3843 }
3844
3845 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3846 intel_opregion_asle_intr(dev_priv);
3847
3848 /* With MSI, interrupts are only generated when iir
3849 * transitions from zero to nonzero. If another bit got
3850 * set while we were handling the existing iir bits, then
3851 * we would never get another interrupt.
3852 *
3853 * This is fine on non-MSI as well, as if we hit this path
3854 * we avoid exiting the interrupt handler only to generate
3855 * another one.
3856 *
3857 * Note that for MSI this could cause a stray interrupt report
3858 * if an interrupt landed in the time between writing IIR and
3859 * the posting read. This should be rare enough to never
3860 * trigger the 99% of 100,000 interrupts test for disabling
3861 * stray interrupts.
3862 */
3863 ret = IRQ_HANDLED;
3864 iir = new_iir;
3865 } while (iir);
3866
3867 enable_rpm_wakeref_asserts(dev_priv);
3868
3869 return ret;
3870 }
3871
3872 static void i915_irq_uninstall(struct drm_device * dev)
3873 {
3874 struct drm_i915_private *dev_priv = to_i915(dev);
3875 int pipe;
3876
3877 if (I915_HAS_HOTPLUG(dev_priv)) {
3878 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3879 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3880 }
3881
3882 I915_WRITE16(HWSTAM, 0xffff);
3883 for_each_pipe(dev_priv, pipe) {
3884 /* Clear enable bits; then clear status bits */
3885 I915_WRITE(PIPESTAT(pipe), 0);
3886 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3887 }
3888 I915_WRITE(IMR, 0xffffffff);
3889 I915_WRITE(IER, 0x0);
3890
3891 I915_WRITE(IIR, I915_READ(IIR));
3892 }
3893
3894 static void i965_irq_preinstall(struct drm_device * dev)
3895 {
3896 struct drm_i915_private *dev_priv = to_i915(dev);
3897 int pipe;
3898
3899 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3900 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3901
3902 I915_WRITE(HWSTAM, 0xeffe);
3903 for_each_pipe(dev_priv, pipe)
3904 I915_WRITE(PIPESTAT(pipe), 0);
3905 I915_WRITE(IMR, 0xffffffff);
3906 I915_WRITE(IER, 0x0);
3907 POSTING_READ(IER);
3908 }
3909
3910 static int i965_irq_postinstall(struct drm_device *dev)
3911 {
3912 struct drm_i915_private *dev_priv = to_i915(dev);
3913 u32 enable_mask;
3914 u32 error_mask;
3915
3916 /* Unmask the interrupts that we always want on. */
3917 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3918 I915_DISPLAY_PORT_INTERRUPT |
3919 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3920 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3921 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3922 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3923 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3924
3925 enable_mask = ~dev_priv->irq_mask;
3926 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3927 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3928 enable_mask |= I915_USER_INTERRUPT;
3929
3930 if (IS_G4X(dev_priv))
3931 enable_mask |= I915_BSD_USER_INTERRUPT;
3932
3933 /* Interrupt setup is already guaranteed to be single-threaded, this is
3934 * just to make the assert_spin_locked check happy. */
3935 spin_lock_irq(&dev_priv->irq_lock);
3936 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3937 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3938 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3939 spin_unlock_irq(&dev_priv->irq_lock);
3940
3941 /*
3942 * Enable some error detection, note the instruction error mask
3943 * bit is reserved, so we leave it masked.
3944 */
3945 if (IS_G4X(dev_priv)) {
3946 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3947 GM45_ERROR_MEM_PRIV |
3948 GM45_ERROR_CP_PRIV |
3949 I915_ERROR_MEMORY_REFRESH);
3950 } else {
3951 error_mask = ~(I915_ERROR_PAGE_TABLE |
3952 I915_ERROR_MEMORY_REFRESH);
3953 }
3954 I915_WRITE(EMR, error_mask);
3955
3956 I915_WRITE(IMR, dev_priv->irq_mask);
3957 I915_WRITE(IER, enable_mask);
3958 POSTING_READ(IER);
3959
3960 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3961 POSTING_READ(PORT_HOTPLUG_EN);
3962
3963 i915_enable_asle_pipestat(dev_priv);
3964
3965 return 0;
3966 }
3967
3968 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3969 {
3970 u32 hotplug_en;
3971
3972 lockdep_assert_held(&dev_priv->irq_lock);
3973
3974 /* Note HDMI and DP share hotplug bits */
3975 /* enable bits are the same for all generations */
3976 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3977 /* Programming the CRT detection parameters tends
3978 to generate a spurious hotplug event about three
3979 seconds later. So just do it once.
3980 */
3981 if (IS_G4X(dev_priv))
3982 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3983 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3984
3985 /* Ignore TV since it's buggy */
3986 i915_hotplug_interrupt_update_locked(dev_priv,
3987 HOTPLUG_INT_EN_MASK |
3988 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3989 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3990 hotplug_en);
3991 }
3992
3993 static irqreturn_t i965_irq_handler(int irq, void *arg)
3994 {
3995 struct drm_device *dev = arg;
3996 struct drm_i915_private *dev_priv = to_i915(dev);
3997 u32 iir, new_iir;
3998 u32 pipe_stats[I915_MAX_PIPES];
3999 int ret = IRQ_NONE, pipe;
4000
4001 if (!intel_irqs_enabled(dev_priv))
4002 return IRQ_NONE;
4003
4004 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4005 disable_rpm_wakeref_asserts(dev_priv);
4006
4007 iir = I915_READ(IIR);
4008
4009 for (;;) {
4010 bool irq_received = (iir) != 0;
4011 bool blc_event = false;
4012
4013 /* Can't rely on pipestat interrupt bit in iir as it might
4014 * have been cleared after the pipestat interrupt was received.
4015 * It doesn't set the bit in iir again, but it still produces
4016 * interrupts (for non-MSI).
4017 */
4018 spin_lock(&dev_priv->irq_lock);
4019 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4020 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4021
4022 for_each_pipe(dev_priv, pipe) {
4023 i915_reg_t reg = PIPESTAT(pipe);
4024 pipe_stats[pipe] = I915_READ(reg);
4025
4026 /*
4027 * Clear the PIPE*STAT regs before the IIR
4028 */
4029 if (pipe_stats[pipe] & 0x8000ffff) {
4030 I915_WRITE(reg, pipe_stats[pipe]);
4031 irq_received = true;
4032 }
4033 }
4034 spin_unlock(&dev_priv->irq_lock);
4035
4036 if (!irq_received)
4037 break;
4038
4039 ret = IRQ_HANDLED;
4040
4041 /* Consume port. Then clear IIR or we'll miss events */
4042 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4043 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4044 if (hotplug_status)
4045 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4046 }
4047
4048 I915_WRITE(IIR, iir);
4049 new_iir = I915_READ(IIR); /* Flush posted writes */
4050
4051 if (iir & I915_USER_INTERRUPT)
4052 notify_ring(dev_priv->engine[RCS]);
4053 if (iir & I915_BSD_USER_INTERRUPT)
4054 notify_ring(dev_priv->engine[VCS]);
4055
4056 for_each_pipe(dev_priv, pipe) {
4057 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4058 drm_handle_vblank(&dev_priv->drm, pipe);
4059
4060 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4061 blc_event = true;
4062
4063 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4064 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4065
4066 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4067 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4068 }
4069
4070 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4071 intel_opregion_asle_intr(dev_priv);
4072
4073 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4074 gmbus_irq_handler(dev_priv);
4075
4076 /* With MSI, interrupts are only generated when iir
4077 * transitions from zero to nonzero. If another bit got
4078 * set while we were handling the existing iir bits, then
4079 * we would never get another interrupt.
4080 *
4081 * This is fine on non-MSI as well, as if we hit this path
4082 * we avoid exiting the interrupt handler only to generate
4083 * another one.
4084 *
4085 * Note that for MSI this could cause a stray interrupt report
4086 * if an interrupt landed in the time between writing IIR and
4087 * the posting read. This should be rare enough to never
4088 * trigger the 99% of 100,000 interrupts test for disabling
4089 * stray interrupts.
4090 */
4091 iir = new_iir;
4092 }
4093
4094 enable_rpm_wakeref_asserts(dev_priv);
4095
4096 return ret;
4097 }
4098
4099 static void i965_irq_uninstall(struct drm_device * dev)
4100 {
4101 struct drm_i915_private *dev_priv = to_i915(dev);
4102 int pipe;
4103
4104 if (!dev_priv)
4105 return;
4106
4107 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4108 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4109
4110 I915_WRITE(HWSTAM, 0xffffffff);
4111 for_each_pipe(dev_priv, pipe)
4112 I915_WRITE(PIPESTAT(pipe), 0);
4113 I915_WRITE(IMR, 0xffffffff);
4114 I915_WRITE(IER, 0x0);
4115
4116 for_each_pipe(dev_priv, pipe)
4117 I915_WRITE(PIPESTAT(pipe),
4118 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4119 I915_WRITE(IIR, I915_READ(IIR));
4120 }
4121
4122 /**
4123 * intel_irq_init - initializes irq support
4124 * @dev_priv: i915 device instance
4125 *
4126 * This function initializes all the irq support including work items, timers
4127 * and all the vtables. It does not setup the interrupt itself though.
4128 */
4129 void intel_irq_init(struct drm_i915_private *dev_priv)
4130 {
4131 struct drm_device *dev = &dev_priv->drm;
4132 int i;
4133
4134 intel_hpd_init_work(dev_priv);
4135
4136 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4137
4138 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4139 for (i = 0; i < MAX_L3_SLICES; ++i)
4140 dev_priv->l3_parity.remap_info[i] = NULL;
4141
4142 if (HAS_GUC_SCHED(dev_priv))
4143 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4144
4145 /* Let's track the enabled rps events */
4146 if (IS_VALLEYVIEW(dev_priv))
4147 /* WaGsvRC0ResidencyMethod:vlv */
4148 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4149 else
4150 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4151
4152 dev_priv->rps.pm_intrmsk_mbz = 0;
4153
4154 /*
4155 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4156 * if GEN6_PM_UP_EI_EXPIRED is masked.
4157 *
4158 * TODO: verify if this can be reproduced on VLV,CHV.
4159 */
4160 if (INTEL_GEN(dev_priv) <= 7)
4161 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4162
4163 if (INTEL_GEN(dev_priv) >= 8)
4164 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4165
4166 if (IS_GEN2(dev_priv)) {
4167 /* Gen2 doesn't have a hardware frame counter */
4168 dev->max_vblank_count = 0;
4169 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4170 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4171 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4172 } else {
4173 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4174 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4175 }
4176
4177 /*
4178 * Opt out of the vblank disable timer on everything except gen2.
4179 * Gen2 doesn't have a hardware frame counter and so depends on
4180 * vblank interrupts to produce sane vblank seuquence numbers.
4181 */
4182 if (!IS_GEN2(dev_priv))
4183 dev->vblank_disable_immediate = true;
4184
4185 /* Most platforms treat the display irq block as an always-on
4186 * power domain. vlv/chv can disable it at runtime and need
4187 * special care to avoid writing any of the display block registers
4188 * outside of the power domain. We defer setting up the display irqs
4189 * in this case to the runtime pm.
4190 */
4191 dev_priv->display_irqs_enabled = true;
4192 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4193 dev_priv->display_irqs_enabled = false;
4194
4195 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4196
4197 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4198 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4199
4200 if (IS_CHERRYVIEW(dev_priv)) {
4201 dev->driver->irq_handler = cherryview_irq_handler;
4202 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4203 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4204 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4205 dev->driver->enable_vblank = i965_enable_vblank;
4206 dev->driver->disable_vblank = i965_disable_vblank;
4207 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4208 } else if (IS_VALLEYVIEW(dev_priv)) {
4209 dev->driver->irq_handler = valleyview_irq_handler;
4210 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4211 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4212 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4213 dev->driver->enable_vblank = i965_enable_vblank;
4214 dev->driver->disable_vblank = i965_disable_vblank;
4215 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4216 } else if (INTEL_GEN(dev_priv) >= 8) {
4217 dev->driver->irq_handler = gen8_irq_handler;
4218 dev->driver->irq_preinstall = gen8_irq_reset;
4219 dev->driver->irq_postinstall = gen8_irq_postinstall;
4220 dev->driver->irq_uninstall = gen8_irq_uninstall;
4221 dev->driver->enable_vblank = gen8_enable_vblank;
4222 dev->driver->disable_vblank = gen8_disable_vblank;
4223 if (IS_GEN9_LP(dev_priv))
4224 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4225 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4226 HAS_PCH_CNP(dev_priv))
4227 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4228 else
4229 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4230 } else if (HAS_PCH_SPLIT(dev_priv)) {
4231 dev->driver->irq_handler = ironlake_irq_handler;
4232 dev->driver->irq_preinstall = ironlake_irq_reset;
4233 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4234 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4235 dev->driver->enable_vblank = ironlake_enable_vblank;
4236 dev->driver->disable_vblank = ironlake_disable_vblank;
4237 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4238 } else {
4239 if (IS_GEN2(dev_priv)) {
4240 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4241 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4242 dev->driver->irq_handler = i8xx_irq_handler;
4243 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4244 dev->driver->enable_vblank = i8xx_enable_vblank;
4245 dev->driver->disable_vblank = i8xx_disable_vblank;
4246 } else if (IS_GEN3(dev_priv)) {
4247 dev->driver->irq_preinstall = i915_irq_preinstall;
4248 dev->driver->irq_postinstall = i915_irq_postinstall;
4249 dev->driver->irq_uninstall = i915_irq_uninstall;
4250 dev->driver->irq_handler = i915_irq_handler;
4251 dev->driver->enable_vblank = i8xx_enable_vblank;
4252 dev->driver->disable_vblank = i8xx_disable_vblank;
4253 } else {
4254 dev->driver->irq_preinstall = i965_irq_preinstall;
4255 dev->driver->irq_postinstall = i965_irq_postinstall;
4256 dev->driver->irq_uninstall = i965_irq_uninstall;
4257 dev->driver->irq_handler = i965_irq_handler;
4258 dev->driver->enable_vblank = i965_enable_vblank;
4259 dev->driver->disable_vblank = i965_disable_vblank;
4260 }
4261 if (I915_HAS_HOTPLUG(dev_priv))
4262 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4263 }
4264 }
4265
4266 /**
4267 * intel_irq_fini - deinitializes IRQ support
4268 * @i915: i915 device instance
4269 *
4270 * This function deinitializes all the IRQ support.
4271 */
4272 void intel_irq_fini(struct drm_i915_private *i915)
4273 {
4274 int i;
4275
4276 for (i = 0; i < MAX_L3_SLICES; ++i)
4277 kfree(i915->l3_parity.remap_info[i]);
4278 }
4279
4280 /**
4281 * intel_irq_install - enables the hardware interrupt
4282 * @dev_priv: i915 device instance
4283 *
4284 * This function enables the hardware interrupt handling, but leaves the hotplug
4285 * handling still disabled. It is called after intel_irq_init().
4286 *
4287 * In the driver load and resume code we need working interrupts in a few places
4288 * but don't want to deal with the hassle of concurrent probe and hotplug
4289 * workers. Hence the split into this two-stage approach.
4290 */
4291 int intel_irq_install(struct drm_i915_private *dev_priv)
4292 {
4293 /*
4294 * We enable some interrupt sources in our postinstall hooks, so mark
4295 * interrupts as enabled _before_ actually enabling them to avoid
4296 * special cases in our ordering checks.
4297 */
4298 dev_priv->pm.irqs_enabled = true;
4299
4300 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4301 }
4302
4303 /**
4304 * intel_irq_uninstall - finilizes all irq handling
4305 * @dev_priv: i915 device instance
4306 *
4307 * This stops interrupt and hotplug handling and unregisters and frees all
4308 * resources acquired in the init functions.
4309 */
4310 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4311 {
4312 drm_irq_uninstall(&dev_priv->drm);
4313 intel_hpd_cancel_work(dev_priv);
4314 dev_priv->pm.irqs_enabled = false;
4315 }
4316
4317 /**
4318 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4319 * @dev_priv: i915 device instance
4320 *
4321 * This function is used to disable interrupts at runtime, both in the runtime
4322 * pm and the system suspend/resume code.
4323 */
4324 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4325 {
4326 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4327 dev_priv->pm.irqs_enabled = false;
4328 synchronize_irq(dev_priv->drm.irq);
4329 }
4330
4331 /**
4332 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4333 * @dev_priv: i915 device instance
4334 *
4335 * This function is used to enable interrupts at runtime, both in the runtime
4336 * pm and the system suspend/resume code.
4337 */
4338 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4339 {
4340 dev_priv->pm.irqs_enabled = true;
4341 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4342 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4343 }