]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
2fa26159d6e55916dc28a9cd991726361a195c52
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 spin_lock_irq(&dev_priv->irq_lock);
344 I915_WRITE(reg, dev_priv->pm_rps_events);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 POSTING_READ(reg);
347 dev_priv->rps.pm_iir = 0;
348 spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 spin_lock_irq(&dev_priv->irq_lock);
354
355 WARN_ON(dev_priv->rps.pm_iir);
356 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
357 dev_priv->rps.interrupts_enabled = true;
358 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
359 dev_priv->pm_rps_events);
360 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
361
362 spin_unlock_irq(&dev_priv->irq_lock);
363 }
364
365 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
366 {
367 /*
368 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
369 * if GEN6_PM_UP_EI_EXPIRED is masked.
370 *
371 * TODO: verify if this can be reproduced on VLV,CHV.
372 */
373 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
374 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
375
376 if (INTEL_INFO(dev_priv)->gen >= 8)
377 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
378
379 return mask;
380 }
381
382 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
383 {
384 spin_lock_irq(&dev_priv->irq_lock);
385 dev_priv->rps.interrupts_enabled = false;
386 spin_unlock_irq(&dev_priv->irq_lock);
387
388 cancel_work_sync(&dev_priv->rps.work);
389
390 spin_lock_irq(&dev_priv->irq_lock);
391
392 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
393
394 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
395 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
396 ~dev_priv->pm_rps_events);
397
398 spin_unlock_irq(&dev_priv->irq_lock);
399
400 synchronize_irq(dev_priv->dev->irq);
401 }
402
403 /**
404 * bdw_update_port_irq - update DE port interrupt
405 * @dev_priv: driver private
406 * @interrupt_mask: mask of interrupt bits to update
407 * @enabled_irq_mask: mask of interrupt bits to enable
408 */
409 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
410 uint32_t interrupt_mask,
411 uint32_t enabled_irq_mask)
412 {
413 uint32_t new_val;
414 uint32_t old_val;
415
416 assert_spin_locked(&dev_priv->irq_lock);
417
418 WARN_ON(enabled_irq_mask & ~interrupt_mask);
419
420 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
421 return;
422
423 old_val = I915_READ(GEN8_DE_PORT_IMR);
424
425 new_val = old_val;
426 new_val &= ~interrupt_mask;
427 new_val |= (~enabled_irq_mask & interrupt_mask);
428
429 if (new_val != old_val) {
430 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
431 POSTING_READ(GEN8_DE_PORT_IMR);
432 }
433 }
434
435 /**
436 * bdw_update_pipe_irq - update DE pipe interrupt
437 * @dev_priv: driver private
438 * @pipe: pipe whose interrupt to update
439 * @interrupt_mask: mask of interrupt bits to update
440 * @enabled_irq_mask: mask of interrupt bits to enable
441 */
442 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
443 enum pipe pipe,
444 uint32_t interrupt_mask,
445 uint32_t enabled_irq_mask)
446 {
447 uint32_t new_val;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 WARN_ON(enabled_irq_mask & ~interrupt_mask);
452
453 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
454 return;
455
456 new_val = dev_priv->de_irq_mask[pipe];
457 new_val &= ~interrupt_mask;
458 new_val |= (~enabled_irq_mask & interrupt_mask);
459
460 if (new_val != dev_priv->de_irq_mask[pipe]) {
461 dev_priv->de_irq_mask[pipe] = new_val;
462 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
463 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
464 }
465 }
466
467 /**
468 * ibx_display_interrupt_update - update SDEIMR
469 * @dev_priv: driver private
470 * @interrupt_mask: mask of interrupt bits to update
471 * @enabled_irq_mask: mask of interrupt bits to enable
472 */
473 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
474 uint32_t interrupt_mask,
475 uint32_t enabled_irq_mask)
476 {
477 uint32_t sdeimr = I915_READ(SDEIMR);
478 sdeimr &= ~interrupt_mask;
479 sdeimr |= (~enabled_irq_mask & interrupt_mask);
480
481 WARN_ON(enabled_irq_mask & ~interrupt_mask);
482
483 assert_spin_locked(&dev_priv->irq_lock);
484
485 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
486 return;
487
488 I915_WRITE(SDEIMR, sdeimr);
489 POSTING_READ(SDEIMR);
490 }
491
492 static void
493 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
494 u32 enable_mask, u32 status_mask)
495 {
496 i915_reg_t reg = PIPESTAT(pipe);
497 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
498
499 assert_spin_locked(&dev_priv->irq_lock);
500 WARN_ON(!intel_irqs_enabled(dev_priv));
501
502 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
503 status_mask & ~PIPESTAT_INT_STATUS_MASK,
504 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
505 pipe_name(pipe), enable_mask, status_mask))
506 return;
507
508 if ((pipestat & enable_mask) == enable_mask)
509 return;
510
511 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
512
513 /* Enable the interrupt, clear any pending status */
514 pipestat |= enable_mask | status_mask;
515 I915_WRITE(reg, pipestat);
516 POSTING_READ(reg);
517 }
518
519 static void
520 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
521 u32 enable_mask, u32 status_mask)
522 {
523 i915_reg_t reg = PIPESTAT(pipe);
524 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
525
526 assert_spin_locked(&dev_priv->irq_lock);
527 WARN_ON(!intel_irqs_enabled(dev_priv));
528
529 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
530 status_mask & ~PIPESTAT_INT_STATUS_MASK,
531 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
532 pipe_name(pipe), enable_mask, status_mask))
533 return;
534
535 if ((pipestat & enable_mask) == 0)
536 return;
537
538 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
539
540 pipestat &= ~enable_mask;
541 I915_WRITE(reg, pipestat);
542 POSTING_READ(reg);
543 }
544
545 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
546 {
547 u32 enable_mask = status_mask << 16;
548
549 /*
550 * On pipe A we don't support the PSR interrupt yet,
551 * on pipe B and C the same bit MBZ.
552 */
553 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
554 return 0;
555 /*
556 * On pipe B and C we don't support the PSR interrupt yet, on pipe
557 * A the same bit is for perf counters which we don't use either.
558 */
559 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
560 return 0;
561
562 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
563 SPRITE0_FLIP_DONE_INT_EN_VLV |
564 SPRITE1_FLIP_DONE_INT_EN_VLV);
565 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
566 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
567 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
568 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
569
570 return enable_mask;
571 }
572
573 void
574 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
575 u32 status_mask)
576 {
577 u32 enable_mask;
578
579 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
580 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
581 status_mask);
582 else
583 enable_mask = status_mask << 16;
584 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
585 }
586
587 void
588 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
589 u32 status_mask)
590 {
591 u32 enable_mask;
592
593 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
594 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
595 status_mask);
596 else
597 enable_mask = status_mask << 16;
598 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
599 }
600
601 /**
602 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
603 * @dev: drm device
604 */
605 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
606 {
607 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
608 return;
609
610 spin_lock_irq(&dev_priv->irq_lock);
611
612 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
613 if (INTEL_GEN(dev_priv) >= 4)
614 i915_enable_pipestat(dev_priv, PIPE_A,
615 PIPE_LEGACY_BLC_EVENT_STATUS);
616
617 spin_unlock_irq(&dev_priv->irq_lock);
618 }
619
620 /*
621 * This timing diagram depicts the video signal in and
622 * around the vertical blanking period.
623 *
624 * Assumptions about the fictitious mode used in this example:
625 * vblank_start >= 3
626 * vsync_start = vblank_start + 1
627 * vsync_end = vblank_start + 2
628 * vtotal = vblank_start + 3
629 *
630 * start of vblank:
631 * latch double buffered registers
632 * increment frame counter (ctg+)
633 * generate start of vblank interrupt (gen4+)
634 * |
635 * | frame start:
636 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
637 * | may be shifted forward 1-3 extra lines via PIPECONF
638 * | |
639 * | | start of vsync:
640 * | | generate vsync interrupt
641 * | | |
642 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
643 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
644 * ----va---> <-----------------vb--------------------> <--------va-------------
645 * | | <----vs-----> |
646 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
647 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
648 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
649 * | | |
650 * last visible pixel first visible pixel
651 * | increment frame counter (gen3/4)
652 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
653 *
654 * x = horizontal active
655 * _ = horizontal blanking
656 * hs = horizontal sync
657 * va = vertical active
658 * vb = vertical blanking
659 * vs = vertical sync
660 * vbs = vblank_start (number)
661 *
662 * Summary:
663 * - most events happen at the start of horizontal sync
664 * - frame start happens at the start of horizontal blank, 1-4 lines
665 * (depending on PIPECONF settings) after the start of vblank
666 * - gen3/4 pixel and frame counter are synchronized with the start
667 * of horizontal active on the first line of vertical active
668 */
669
670 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
671 {
672 /* Gen2 doesn't have a hardware frame counter */
673 return 0;
674 }
675
676 /* Called from drm generic code, passed a 'crtc', which
677 * we use as a pipe index
678 */
679 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
680 {
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 i915_reg_t high_frame, low_frame;
683 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
684 struct intel_crtc *intel_crtc =
685 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
686 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
687
688 htotal = mode->crtc_htotal;
689 hsync_start = mode->crtc_hsync_start;
690 vbl_start = mode->crtc_vblank_start;
691 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
692 vbl_start = DIV_ROUND_UP(vbl_start, 2);
693
694 /* Convert to pixel count */
695 vbl_start *= htotal;
696
697 /* Start of vblank event occurs at start of hsync */
698 vbl_start -= htotal - hsync_start;
699
700 high_frame = PIPEFRAME(pipe);
701 low_frame = PIPEFRAMEPIXEL(pipe);
702
703 /*
704 * High & low register fields aren't synchronized, so make sure
705 * we get a low value that's stable across two reads of the high
706 * register.
707 */
708 do {
709 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
710 low = I915_READ(low_frame);
711 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
712 } while (high1 != high2);
713
714 high1 >>= PIPE_FRAME_HIGH_SHIFT;
715 pixel = low & PIPE_PIXEL_MASK;
716 low >>= PIPE_FRAME_LOW_SHIFT;
717
718 /*
719 * The frame counter increments at beginning of active.
720 * Cook up a vblank counter by also checking the pixel
721 * counter against vblank start.
722 */
723 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
724 }
725
726 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
727 {
728 struct drm_i915_private *dev_priv = dev->dev_private;
729
730 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
731 }
732
733 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
734 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
735 {
736 struct drm_device *dev = crtc->base.dev;
737 struct drm_i915_private *dev_priv = dev->dev_private;
738 const struct drm_display_mode *mode = &crtc->base.hwmode;
739 enum pipe pipe = crtc->pipe;
740 int position, vtotal;
741
742 vtotal = mode->crtc_vtotal;
743 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
744 vtotal /= 2;
745
746 if (IS_GEN2(dev_priv))
747 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
748 else
749 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
750
751 /*
752 * On HSW, the DSL reg (0x70000) appears to return 0 if we
753 * read it just before the start of vblank. So try it again
754 * so we don't accidentally end up spanning a vblank frame
755 * increment, causing the pipe_update_end() code to squak at us.
756 *
757 * The nature of this problem means we can't simply check the ISR
758 * bit and return the vblank start value; nor can we use the scanline
759 * debug register in the transcoder as it appears to have the same
760 * problem. We may need to extend this to include other platforms,
761 * but so far testing only shows the problem on HSW.
762 */
763 if (HAS_DDI(dev_priv) && !position) {
764 int i, temp;
765
766 for (i = 0; i < 100; i++) {
767 udelay(1);
768 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
769 DSL_LINEMASK_GEN3;
770 if (temp != position) {
771 position = temp;
772 break;
773 }
774 }
775 }
776
777 /*
778 * See update_scanline_offset() for the details on the
779 * scanline_offset adjustment.
780 */
781 return (position + crtc->scanline_offset) % vtotal;
782 }
783
784 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
785 unsigned int flags, int *vpos, int *hpos,
786 ktime_t *stime, ktime_t *etime,
787 const struct drm_display_mode *mode)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
792 int position;
793 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
794 bool in_vbl = true;
795 int ret = 0;
796 unsigned long irqflags;
797
798 if (WARN_ON(!mode->crtc_clock)) {
799 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
800 "pipe %c\n", pipe_name(pipe));
801 return 0;
802 }
803
804 htotal = mode->crtc_htotal;
805 hsync_start = mode->crtc_hsync_start;
806 vtotal = mode->crtc_vtotal;
807 vbl_start = mode->crtc_vblank_start;
808 vbl_end = mode->crtc_vblank_end;
809
810 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
811 vbl_start = DIV_ROUND_UP(vbl_start, 2);
812 vbl_end /= 2;
813 vtotal /= 2;
814 }
815
816 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
817
818 /*
819 * Lock uncore.lock, as we will do multiple timing critical raw
820 * register reads, potentially with preemption disabled, so the
821 * following code must not block on uncore.lock.
822 */
823 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
824
825 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
826
827 /* Get optional system timestamp before query. */
828 if (stime)
829 *stime = ktime_get();
830
831 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
832 /* No obvious pixelcount register. Only query vertical
833 * scanout position from Display scan line register.
834 */
835 position = __intel_get_crtc_scanline(intel_crtc);
836 } else {
837 /* Have access to pixelcount since start of frame.
838 * We can split this into vertical and horizontal
839 * scanout position.
840 */
841 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
842
843 /* convert to pixel counts */
844 vbl_start *= htotal;
845 vbl_end *= htotal;
846 vtotal *= htotal;
847
848 /*
849 * In interlaced modes, the pixel counter counts all pixels,
850 * so one field will have htotal more pixels. In order to avoid
851 * the reported position from jumping backwards when the pixel
852 * counter is beyond the length of the shorter field, just
853 * clamp the position the length of the shorter field. This
854 * matches how the scanline counter based position works since
855 * the scanline counter doesn't count the two half lines.
856 */
857 if (position >= vtotal)
858 position = vtotal - 1;
859
860 /*
861 * Start of vblank interrupt is triggered at start of hsync,
862 * just prior to the first active line of vblank. However we
863 * consider lines to start at the leading edge of horizontal
864 * active. So, should we get here before we've crossed into
865 * the horizontal active of the first line in vblank, we would
866 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
867 * always add htotal-hsync_start to the current pixel position.
868 */
869 position = (position + htotal - hsync_start) % vtotal;
870 }
871
872 /* Get optional system timestamp after query. */
873 if (etime)
874 *etime = ktime_get();
875
876 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
877
878 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
879
880 in_vbl = position >= vbl_start && position < vbl_end;
881
882 /*
883 * While in vblank, position will be negative
884 * counting up towards 0 at vbl_end. And outside
885 * vblank, position will be positive counting
886 * up since vbl_end.
887 */
888 if (position >= vbl_start)
889 position -= vbl_end;
890 else
891 position += vtotal - vbl_end;
892
893 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
894 *vpos = position;
895 *hpos = 0;
896 } else {
897 *vpos = position / htotal;
898 *hpos = position - (*vpos * htotal);
899 }
900
901 /* In vblank? */
902 if (in_vbl)
903 ret |= DRM_SCANOUTPOS_IN_VBLANK;
904
905 return ret;
906 }
907
908 int intel_get_crtc_scanline(struct intel_crtc *crtc)
909 {
910 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
911 unsigned long irqflags;
912 int position;
913
914 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
915 position = __intel_get_crtc_scanline(crtc);
916 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
917
918 return position;
919 }
920
921 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
922 int *max_error,
923 struct timeval *vblank_time,
924 unsigned flags)
925 {
926 struct drm_crtc *crtc;
927
928 if (pipe >= INTEL_INFO(dev)->num_pipes) {
929 DRM_ERROR("Invalid crtc %u\n", pipe);
930 return -EINVAL;
931 }
932
933 /* Get drm_crtc to timestamp: */
934 crtc = intel_get_crtc_for_pipe(dev, pipe);
935 if (crtc == NULL) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 if (!crtc->hwmode.crtc_clock) {
941 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
942 return -EBUSY;
943 }
944
945 /* Helper routine in DRM core does all the work: */
946 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
947 vblank_time, flags,
948 &crtc->hwmode);
949 }
950
951 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
952 {
953 u32 busy_up, busy_down, max_avg, min_avg;
954 u8 new_delay;
955
956 spin_lock(&mchdev_lock);
957
958 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
959
960 new_delay = dev_priv->ips.cur_delay;
961
962 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
963 busy_up = I915_READ(RCPREVBSYTUPAVG);
964 busy_down = I915_READ(RCPREVBSYTDNAVG);
965 max_avg = I915_READ(RCBMAXAVG);
966 min_avg = I915_READ(RCBMINAVG);
967
968 /* Handle RCS change request from hw */
969 if (busy_up > max_avg) {
970 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
971 new_delay = dev_priv->ips.cur_delay - 1;
972 if (new_delay < dev_priv->ips.max_delay)
973 new_delay = dev_priv->ips.max_delay;
974 } else if (busy_down < min_avg) {
975 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
976 new_delay = dev_priv->ips.cur_delay + 1;
977 if (new_delay > dev_priv->ips.min_delay)
978 new_delay = dev_priv->ips.min_delay;
979 }
980
981 if (ironlake_set_drps(dev_priv, new_delay))
982 dev_priv->ips.cur_delay = new_delay;
983
984 spin_unlock(&mchdev_lock);
985
986 return;
987 }
988
989 static void notify_ring(struct intel_engine_cs *engine)
990 {
991 if (!intel_engine_initialized(engine))
992 return;
993
994 trace_i915_gem_request_notify(engine);
995 engine->user_interrupts++;
996
997 wake_up_all(&engine->irq_queue);
998 }
999
1000 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1001 struct intel_rps_ei *ei)
1002 {
1003 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1004 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1005 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1006 }
1007
1008 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1009 const struct intel_rps_ei *old,
1010 const struct intel_rps_ei *now,
1011 int threshold)
1012 {
1013 u64 time, c0;
1014 unsigned int mul = 100;
1015
1016 if (old->cz_clock == 0)
1017 return false;
1018
1019 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1020 mul <<= 8;
1021
1022 time = now->cz_clock - old->cz_clock;
1023 time *= threshold * dev_priv->czclk_freq;
1024
1025 /* Workload can be split between render + media, e.g. SwapBuffers
1026 * being blitted in X after being rendered in mesa. To account for
1027 * this we need to combine both engines into our activity counter.
1028 */
1029 c0 = now->render_c0 - old->render_c0;
1030 c0 += now->media_c0 - old->media_c0;
1031 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1032
1033 return c0 >= time;
1034 }
1035
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044 struct intel_rps_ei now;
1045 u32 events = 0;
1046
1047 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048 return 0;
1049
1050 vlv_c0_read(dev_priv, &now);
1051 if (now.cz_clock == 0)
1052 return 0;
1053
1054 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055 if (!vlv_c0_above(dev_priv,
1056 &dev_priv->rps.down_ei, &now,
1057 dev_priv->rps.down_threshold))
1058 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059 dev_priv->rps.down_ei = now;
1060 }
1061
1062 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063 if (vlv_c0_above(dev_priv,
1064 &dev_priv->rps.up_ei, &now,
1065 dev_priv->rps.up_threshold))
1066 events |= GEN6_PM_RP_UP_THRESHOLD;
1067 dev_priv->rps.up_ei = now;
1068 }
1069
1070 return events;
1071 }
1072
1073 static bool any_waiters(struct drm_i915_private *dev_priv)
1074 {
1075 struct intel_engine_cs *engine;
1076
1077 for_each_engine(engine, dev_priv)
1078 if (engine->irq_refcount)
1079 return true;
1080
1081 return false;
1082 }
1083
1084 static void gen6_pm_rps_work(struct work_struct *work)
1085 {
1086 struct drm_i915_private *dev_priv =
1087 container_of(work, struct drm_i915_private, rps.work);
1088 bool client_boost;
1089 int new_delay, adj, min, max;
1090 u32 pm_iir;
1091
1092 spin_lock_irq(&dev_priv->irq_lock);
1093 /* Speed up work cancelation during disabling rps interrupts. */
1094 if (!dev_priv->rps.interrupts_enabled) {
1095 spin_unlock_irq(&dev_priv->irq_lock);
1096 return;
1097 }
1098
1099 /*
1100 * The RPS work is synced during runtime suspend, we don't require a
1101 * wakeref. TODO: instead of disabling the asserts make sure that we
1102 * always hold an RPM reference while the work is running.
1103 */
1104 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1105
1106 pm_iir = dev_priv->rps.pm_iir;
1107 dev_priv->rps.pm_iir = 0;
1108 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1109 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1110 client_boost = dev_priv->rps.client_boost;
1111 dev_priv->rps.client_boost = false;
1112 spin_unlock_irq(&dev_priv->irq_lock);
1113
1114 /* Make sure we didn't queue anything we're not going to process. */
1115 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1116
1117 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1118 goto out;
1119
1120 mutex_lock(&dev_priv->rps.hw_lock);
1121
1122 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1123
1124 adj = dev_priv->rps.last_adj;
1125 new_delay = dev_priv->rps.cur_freq;
1126 min = dev_priv->rps.min_freq_softlimit;
1127 max = dev_priv->rps.max_freq_softlimit;
1128
1129 if (client_boost) {
1130 new_delay = dev_priv->rps.max_freq_softlimit;
1131 adj = 0;
1132 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1133 if (adj > 0)
1134 adj *= 2;
1135 else /* CHV needs even encode values */
1136 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1137 /*
1138 * For better performance, jump directly
1139 * to RPe if we're below it.
1140 */
1141 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1142 new_delay = dev_priv->rps.efficient_freq;
1143 adj = 0;
1144 }
1145 } else if (any_waiters(dev_priv)) {
1146 adj = 0;
1147 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1148 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1149 new_delay = dev_priv->rps.efficient_freq;
1150 else
1151 new_delay = dev_priv->rps.min_freq_softlimit;
1152 adj = 0;
1153 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1154 if (adj < 0)
1155 adj *= 2;
1156 else /* CHV needs even encode values */
1157 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1158 } else { /* unknown event */
1159 adj = 0;
1160 }
1161
1162 dev_priv->rps.last_adj = adj;
1163
1164 /* sysfs frequency interfaces may have snuck in while servicing the
1165 * interrupt
1166 */
1167 new_delay += adj;
1168 new_delay = clamp_t(int, new_delay, min, max);
1169
1170 intel_set_rps(dev_priv, new_delay);
1171
1172 mutex_unlock(&dev_priv->rps.hw_lock);
1173 out:
1174 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1175 }
1176
1177
1178 /**
1179 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1180 * occurred.
1181 * @work: workqueue struct
1182 *
1183 * Doesn't actually do anything except notify userspace. As a consequence of
1184 * this event, userspace should try to remap the bad rows since statistically
1185 * it is likely the same row is more likely to go bad again.
1186 */
1187 static void ivybridge_parity_work(struct work_struct *work)
1188 {
1189 struct drm_i915_private *dev_priv =
1190 container_of(work, struct drm_i915_private, l3_parity.error_work);
1191 u32 error_status, row, bank, subbank;
1192 char *parity_event[6];
1193 uint32_t misccpctl;
1194 uint8_t slice = 0;
1195
1196 /* We must turn off DOP level clock gating to access the L3 registers.
1197 * In order to prevent a get/put style interface, acquire struct mutex
1198 * any time we access those registers.
1199 */
1200 mutex_lock(&dev_priv->dev->struct_mutex);
1201
1202 /* If we've screwed up tracking, just let the interrupt fire again */
1203 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1204 goto out;
1205
1206 misccpctl = I915_READ(GEN7_MISCCPCTL);
1207 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1208 POSTING_READ(GEN7_MISCCPCTL);
1209
1210 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1211 i915_reg_t reg;
1212
1213 slice--;
1214 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1215 break;
1216
1217 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1218
1219 reg = GEN7_L3CDERRST1(slice);
1220
1221 error_status = I915_READ(reg);
1222 row = GEN7_PARITY_ERROR_ROW(error_status);
1223 bank = GEN7_PARITY_ERROR_BANK(error_status);
1224 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1225
1226 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1227 POSTING_READ(reg);
1228
1229 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1230 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1231 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1232 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1233 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1234 parity_event[5] = NULL;
1235
1236 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1237 KOBJ_CHANGE, parity_event);
1238
1239 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1240 slice, row, bank, subbank);
1241
1242 kfree(parity_event[4]);
1243 kfree(parity_event[3]);
1244 kfree(parity_event[2]);
1245 kfree(parity_event[1]);
1246 }
1247
1248 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1249
1250 out:
1251 WARN_ON(dev_priv->l3_parity.which_slice);
1252 spin_lock_irq(&dev_priv->irq_lock);
1253 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1254 spin_unlock_irq(&dev_priv->irq_lock);
1255
1256 mutex_unlock(&dev_priv->dev->struct_mutex);
1257 }
1258
1259 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1260 u32 iir)
1261 {
1262 if (!HAS_L3_DPF(dev_priv))
1263 return;
1264
1265 spin_lock(&dev_priv->irq_lock);
1266 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1267 spin_unlock(&dev_priv->irq_lock);
1268
1269 iir &= GT_PARITY_ERROR(dev_priv);
1270 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1271 dev_priv->l3_parity.which_slice |= 1 << 1;
1272
1273 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1274 dev_priv->l3_parity.which_slice |= 1 << 0;
1275
1276 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1277 }
1278
1279 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1280 u32 gt_iir)
1281 {
1282 if (gt_iir &
1283 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1284 notify_ring(&dev_priv->engine[RCS]);
1285 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1286 notify_ring(&dev_priv->engine[VCS]);
1287 }
1288
1289 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292
1293 if (gt_iir &
1294 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1295 notify_ring(&dev_priv->engine[RCS]);
1296 if (gt_iir & GT_BSD_USER_INTERRUPT)
1297 notify_ring(&dev_priv->engine[VCS]);
1298 if (gt_iir & GT_BLT_USER_INTERRUPT)
1299 notify_ring(&dev_priv->engine[BCS]);
1300
1301 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1302 GT_BSD_CS_ERROR_INTERRUPT |
1303 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1304 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1305
1306 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1307 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1308 }
1309
1310 static __always_inline void
1311 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1312 {
1313 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1314 notify_ring(engine);
1315 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1316 tasklet_schedule(&engine->irq_tasklet);
1317 }
1318
1319 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1320 u32 master_ctl,
1321 u32 gt_iir[4])
1322 {
1323 irqreturn_t ret = IRQ_NONE;
1324
1325 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1326 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1327 if (gt_iir[0]) {
1328 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1329 ret = IRQ_HANDLED;
1330 } else
1331 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1332 }
1333
1334 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1335 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1336 if (gt_iir[1]) {
1337 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1338 ret = IRQ_HANDLED;
1339 } else
1340 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1341 }
1342
1343 if (master_ctl & GEN8_GT_VECS_IRQ) {
1344 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1345 if (gt_iir[3]) {
1346 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1347 ret = IRQ_HANDLED;
1348 } else
1349 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1350 }
1351
1352 if (master_ctl & GEN8_GT_PM_IRQ) {
1353 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1354 if (gt_iir[2] & dev_priv->pm_rps_events) {
1355 I915_WRITE_FW(GEN8_GT_IIR(2),
1356 gt_iir[2] & dev_priv->pm_rps_events);
1357 ret = IRQ_HANDLED;
1358 } else
1359 DRM_ERROR("The master control interrupt lied (PM)!\n");
1360 }
1361
1362 return ret;
1363 }
1364
1365 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1366 u32 gt_iir[4])
1367 {
1368 if (gt_iir[0]) {
1369 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1370 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1371 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1372 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1373 }
1374
1375 if (gt_iir[1]) {
1376 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1377 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1378 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1379 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1380 }
1381
1382 if (gt_iir[3])
1383 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1384 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1385
1386 if (gt_iir[2] & dev_priv->pm_rps_events)
1387 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1388 }
1389
1390 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1391 {
1392 switch (port) {
1393 case PORT_A:
1394 return val & PORTA_HOTPLUG_LONG_DETECT;
1395 case PORT_B:
1396 return val & PORTB_HOTPLUG_LONG_DETECT;
1397 case PORT_C:
1398 return val & PORTC_HOTPLUG_LONG_DETECT;
1399 default:
1400 return false;
1401 }
1402 }
1403
1404 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1405 {
1406 switch (port) {
1407 case PORT_E:
1408 return val & PORTE_HOTPLUG_LONG_DETECT;
1409 default:
1410 return false;
1411 }
1412 }
1413
1414 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416 switch (port) {
1417 case PORT_A:
1418 return val & PORTA_HOTPLUG_LONG_DETECT;
1419 case PORT_B:
1420 return val & PORTB_HOTPLUG_LONG_DETECT;
1421 case PORT_C:
1422 return val & PORTC_HOTPLUG_LONG_DETECT;
1423 case PORT_D:
1424 return val & PORTD_HOTPLUG_LONG_DETECT;
1425 default:
1426 return false;
1427 }
1428 }
1429
1430 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1431 {
1432 switch (port) {
1433 case PORT_A:
1434 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1435 default:
1436 return false;
1437 }
1438 }
1439
1440 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1441 {
1442 switch (port) {
1443 case PORT_B:
1444 return val & PORTB_HOTPLUG_LONG_DETECT;
1445 case PORT_C:
1446 return val & PORTC_HOTPLUG_LONG_DETECT;
1447 case PORT_D:
1448 return val & PORTD_HOTPLUG_LONG_DETECT;
1449 default:
1450 return false;
1451 }
1452 }
1453
1454 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1455 {
1456 switch (port) {
1457 case PORT_B:
1458 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1459 case PORT_C:
1460 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1461 case PORT_D:
1462 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1463 default:
1464 return false;
1465 }
1466 }
1467
1468 /*
1469 * Get a bit mask of pins that have triggered, and which ones may be long.
1470 * This can be called multiple times with the same masks to accumulate
1471 * hotplug detection results from several registers.
1472 *
1473 * Note that the caller is expected to zero out the masks initially.
1474 */
1475 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1476 u32 hotplug_trigger, u32 dig_hotplug_reg,
1477 const u32 hpd[HPD_NUM_PINS],
1478 bool long_pulse_detect(enum port port, u32 val))
1479 {
1480 enum port port;
1481 int i;
1482
1483 for_each_hpd_pin(i) {
1484 if ((hpd[i] & hotplug_trigger) == 0)
1485 continue;
1486
1487 *pin_mask |= BIT(i);
1488
1489 if (!intel_hpd_pin_to_port(i, &port))
1490 continue;
1491
1492 if (long_pulse_detect(port, dig_hotplug_reg))
1493 *long_mask |= BIT(i);
1494 }
1495
1496 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1497 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1498
1499 }
1500
1501 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1502 {
1503 wake_up_all(&dev_priv->gmbus_wait_queue);
1504 }
1505
1506 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1507 {
1508 wake_up_all(&dev_priv->gmbus_wait_queue);
1509 }
1510
1511 #if defined(CONFIG_DEBUG_FS)
1512 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1513 enum pipe pipe,
1514 uint32_t crc0, uint32_t crc1,
1515 uint32_t crc2, uint32_t crc3,
1516 uint32_t crc4)
1517 {
1518 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1519 struct intel_pipe_crc_entry *entry;
1520 int head, tail;
1521
1522 spin_lock(&pipe_crc->lock);
1523
1524 if (!pipe_crc->entries) {
1525 spin_unlock(&pipe_crc->lock);
1526 DRM_DEBUG_KMS("spurious interrupt\n");
1527 return;
1528 }
1529
1530 head = pipe_crc->head;
1531 tail = pipe_crc->tail;
1532
1533 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1534 spin_unlock(&pipe_crc->lock);
1535 DRM_ERROR("CRC buffer overflowing\n");
1536 return;
1537 }
1538
1539 entry = &pipe_crc->entries[head];
1540
1541 entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1542 pipe);
1543 entry->crc[0] = crc0;
1544 entry->crc[1] = crc1;
1545 entry->crc[2] = crc2;
1546 entry->crc[3] = crc3;
1547 entry->crc[4] = crc4;
1548
1549 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1550 pipe_crc->head = head;
1551
1552 spin_unlock(&pipe_crc->lock);
1553
1554 wake_up_interruptible(&pipe_crc->wq);
1555 }
1556 #else
1557 static inline void
1558 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1559 enum pipe pipe,
1560 uint32_t crc0, uint32_t crc1,
1561 uint32_t crc2, uint32_t crc3,
1562 uint32_t crc4) {}
1563 #endif
1564
1565
1566 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1567 enum pipe pipe)
1568 {
1569 display_pipe_crc_irq_handler(dev_priv, pipe,
1570 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1571 0, 0, 0, 0);
1572 }
1573
1574 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1575 enum pipe pipe)
1576 {
1577 display_pipe_crc_irq_handler(dev_priv, pipe,
1578 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1579 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1580 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1581 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1582 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1583 }
1584
1585 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1586 enum pipe pipe)
1587 {
1588 uint32_t res1, res2;
1589
1590 if (INTEL_GEN(dev_priv) >= 3)
1591 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1592 else
1593 res1 = 0;
1594
1595 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1596 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1597 else
1598 res2 = 0;
1599
1600 display_pipe_crc_irq_handler(dev_priv, pipe,
1601 I915_READ(PIPE_CRC_RES_RED(pipe)),
1602 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1603 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1604 res1, res2);
1605 }
1606
1607 /* The RPS events need forcewake, so we add them to a work queue and mask their
1608 * IMR bits until the work is done. Other interrupts can be processed without
1609 * the work queue. */
1610 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1611 {
1612 if (pm_iir & dev_priv->pm_rps_events) {
1613 spin_lock(&dev_priv->irq_lock);
1614 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1615 if (dev_priv->rps.interrupts_enabled) {
1616 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1617 queue_work(dev_priv->wq, &dev_priv->rps.work);
1618 }
1619 spin_unlock(&dev_priv->irq_lock);
1620 }
1621
1622 if (INTEL_INFO(dev_priv)->gen >= 8)
1623 return;
1624
1625 if (HAS_VEBOX(dev_priv)) {
1626 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1627 notify_ring(&dev_priv->engine[VECS]);
1628
1629 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1630 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1631 }
1632 }
1633
1634 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1635 enum pipe pipe)
1636 {
1637 return drm_handle_vblank(dev_priv->dev, pipe);
1638 }
1639
1640 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1641 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1642 {
1643 int pipe;
1644
1645 spin_lock(&dev_priv->irq_lock);
1646
1647 if (!dev_priv->display_irqs_enabled) {
1648 spin_unlock(&dev_priv->irq_lock);
1649 return;
1650 }
1651
1652 for_each_pipe(dev_priv, pipe) {
1653 i915_reg_t reg;
1654 u32 mask, iir_bit = 0;
1655
1656 /*
1657 * PIPESTAT bits get signalled even when the interrupt is
1658 * disabled with the mask bits, and some of the status bits do
1659 * not generate interrupts at all (like the underrun bit). Hence
1660 * we need to be careful that we only handle what we want to
1661 * handle.
1662 */
1663
1664 /* fifo underruns are filterered in the underrun handler. */
1665 mask = PIPE_FIFO_UNDERRUN_STATUS;
1666
1667 switch (pipe) {
1668 case PIPE_A:
1669 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1670 break;
1671 case PIPE_B:
1672 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1673 break;
1674 case PIPE_C:
1675 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1676 break;
1677 }
1678 if (iir & iir_bit)
1679 mask |= dev_priv->pipestat_irq_mask[pipe];
1680
1681 if (!mask)
1682 continue;
1683
1684 reg = PIPESTAT(pipe);
1685 mask |= PIPESTAT_INT_ENABLE_MASK;
1686 pipe_stats[pipe] = I915_READ(reg) & mask;
1687
1688 /*
1689 * Clear the PIPE*STAT regs before the IIR
1690 */
1691 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1692 PIPESTAT_INT_STATUS_MASK))
1693 I915_WRITE(reg, pipe_stats[pipe]);
1694 }
1695 spin_unlock(&dev_priv->irq_lock);
1696 }
1697
1698 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1699 u32 pipe_stats[I915_MAX_PIPES])
1700 {
1701 enum pipe pipe;
1702
1703 for_each_pipe(dev_priv, pipe) {
1704 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1705 intel_pipe_handle_vblank(dev_priv, pipe))
1706 intel_check_page_flip(dev_priv, pipe);
1707
1708 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1709 intel_prepare_page_flip(dev_priv, pipe);
1710 intel_finish_page_flip(dev_priv, pipe);
1711 }
1712
1713 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1714 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1715
1716 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1717 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1718 }
1719
1720 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1721 gmbus_irq_handler(dev_priv);
1722 }
1723
1724 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1725 {
1726 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1727
1728 if (hotplug_status)
1729 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1730
1731 return hotplug_status;
1732 }
1733
1734 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735 u32 hotplug_status)
1736 {
1737 u32 pin_mask = 0, long_mask = 0;
1738
1739 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1740 IS_CHERRYVIEW(dev_priv)) {
1741 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1742
1743 if (hotplug_trigger) {
1744 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1745 hotplug_trigger, hpd_status_g4x,
1746 i9xx_port_hotplug_long_detect);
1747
1748 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1749 }
1750
1751 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1752 dp_aux_irq_handler(dev_priv);
1753 } else {
1754 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1755
1756 if (hotplug_trigger) {
1757 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1758 hotplug_trigger, hpd_status_i915,
1759 i9xx_port_hotplug_long_detect);
1760 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1761 }
1762 }
1763 }
1764
1765 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1766 {
1767 struct drm_device *dev = arg;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 irqreturn_t ret = IRQ_NONE;
1770
1771 if (!intel_irqs_enabled(dev_priv))
1772 return IRQ_NONE;
1773
1774 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1775 disable_rpm_wakeref_asserts(dev_priv);
1776
1777 do {
1778 u32 iir, gt_iir, pm_iir;
1779 u32 pipe_stats[I915_MAX_PIPES] = {};
1780 u32 hotplug_status = 0;
1781 u32 ier = 0;
1782
1783 gt_iir = I915_READ(GTIIR);
1784 pm_iir = I915_READ(GEN6_PMIIR);
1785 iir = I915_READ(VLV_IIR);
1786
1787 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1788 break;
1789
1790 ret = IRQ_HANDLED;
1791
1792 /*
1793 * Theory on interrupt generation, based on empirical evidence:
1794 *
1795 * x = ((VLV_IIR & VLV_IER) ||
1796 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1797 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1798 *
1799 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1800 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1801 * guarantee the CPU interrupt will be raised again even if we
1802 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1803 * bits this time around.
1804 */
1805 I915_WRITE(VLV_MASTER_IER, 0);
1806 ier = I915_READ(VLV_IER);
1807 I915_WRITE(VLV_IER, 0);
1808
1809 if (gt_iir)
1810 I915_WRITE(GTIIR, gt_iir);
1811 if (pm_iir)
1812 I915_WRITE(GEN6_PMIIR, pm_iir);
1813
1814 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1815 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1816
1817 /* Call regardless, as some status bits might not be
1818 * signalled in iir */
1819 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1820
1821 /*
1822 * VLV_IIR is single buffered, and reflects the level
1823 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1824 */
1825 if (iir)
1826 I915_WRITE(VLV_IIR, iir);
1827
1828 I915_WRITE(VLV_IER, ier);
1829 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1830 POSTING_READ(VLV_MASTER_IER);
1831
1832 if (gt_iir)
1833 snb_gt_irq_handler(dev_priv, gt_iir);
1834 if (pm_iir)
1835 gen6_rps_irq_handler(dev_priv, pm_iir);
1836
1837 if (hotplug_status)
1838 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1839
1840 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1841 } while (0);
1842
1843 enable_rpm_wakeref_asserts(dev_priv);
1844
1845 return ret;
1846 }
1847
1848 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1849 {
1850 struct drm_device *dev = arg;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 irqreturn_t ret = IRQ_NONE;
1853
1854 if (!intel_irqs_enabled(dev_priv))
1855 return IRQ_NONE;
1856
1857 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1858 disable_rpm_wakeref_asserts(dev_priv);
1859
1860 do {
1861 u32 master_ctl, iir;
1862 u32 gt_iir[4] = {};
1863 u32 pipe_stats[I915_MAX_PIPES] = {};
1864 u32 hotplug_status = 0;
1865 u32 ier = 0;
1866
1867 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1868 iir = I915_READ(VLV_IIR);
1869
1870 if (master_ctl == 0 && iir == 0)
1871 break;
1872
1873 ret = IRQ_HANDLED;
1874
1875 /*
1876 * Theory on interrupt generation, based on empirical evidence:
1877 *
1878 * x = ((VLV_IIR & VLV_IER) ||
1879 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1880 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1881 *
1882 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1883 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1884 * guarantee the CPU interrupt will be raised again even if we
1885 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1886 * bits this time around.
1887 */
1888 I915_WRITE(GEN8_MASTER_IRQ, 0);
1889 ier = I915_READ(VLV_IER);
1890 I915_WRITE(VLV_IER, 0);
1891
1892 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1893
1894 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1895 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1896
1897 /* Call regardless, as some status bits might not be
1898 * signalled in iir */
1899 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1900
1901 /*
1902 * VLV_IIR is single buffered, and reflects the level
1903 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1904 */
1905 if (iir)
1906 I915_WRITE(VLV_IIR, iir);
1907
1908 I915_WRITE(VLV_IER, ier);
1909 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1910 POSTING_READ(GEN8_MASTER_IRQ);
1911
1912 gen8_gt_irq_handler(dev_priv, gt_iir);
1913
1914 if (hotplug_status)
1915 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1916
1917 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1918 } while (0);
1919
1920 enable_rpm_wakeref_asserts(dev_priv);
1921
1922 return ret;
1923 }
1924
1925 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1926 u32 hotplug_trigger,
1927 const u32 hpd[HPD_NUM_PINS])
1928 {
1929 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1930
1931 /*
1932 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1933 * unless we touch the hotplug register, even if hotplug_trigger is
1934 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1935 * errors.
1936 */
1937 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1938 if (!hotplug_trigger) {
1939 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1940 PORTD_HOTPLUG_STATUS_MASK |
1941 PORTC_HOTPLUG_STATUS_MASK |
1942 PORTB_HOTPLUG_STATUS_MASK;
1943 dig_hotplug_reg &= ~mask;
1944 }
1945
1946 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1947 if (!hotplug_trigger)
1948 return;
1949
1950 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1951 dig_hotplug_reg, hpd,
1952 pch_port_hotplug_long_detect);
1953
1954 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1955 }
1956
1957 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1958 {
1959 int pipe;
1960 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1961
1962 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1963
1964 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1965 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1966 SDE_AUDIO_POWER_SHIFT);
1967 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1968 port_name(port));
1969 }
1970
1971 if (pch_iir & SDE_AUX_MASK)
1972 dp_aux_irq_handler(dev_priv);
1973
1974 if (pch_iir & SDE_GMBUS)
1975 gmbus_irq_handler(dev_priv);
1976
1977 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1978 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1979
1980 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1981 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1982
1983 if (pch_iir & SDE_POISON)
1984 DRM_ERROR("PCH poison interrupt\n");
1985
1986 if (pch_iir & SDE_FDI_MASK)
1987 for_each_pipe(dev_priv, pipe)
1988 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1989 pipe_name(pipe),
1990 I915_READ(FDI_RX_IIR(pipe)));
1991
1992 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1993 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1994
1995 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1996 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1997
1998 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1999 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2000
2001 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2002 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2003 }
2004
2005 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2006 {
2007 u32 err_int = I915_READ(GEN7_ERR_INT);
2008 enum pipe pipe;
2009
2010 if (err_int & ERR_INT_POISON)
2011 DRM_ERROR("Poison interrupt\n");
2012
2013 for_each_pipe(dev_priv, pipe) {
2014 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2015 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2016
2017 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2018 if (IS_IVYBRIDGE(dev_priv))
2019 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2020 else
2021 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2022 }
2023 }
2024
2025 I915_WRITE(GEN7_ERR_INT, err_int);
2026 }
2027
2028 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2029 {
2030 u32 serr_int = I915_READ(SERR_INT);
2031
2032 if (serr_int & SERR_INT_POISON)
2033 DRM_ERROR("PCH poison interrupt\n");
2034
2035 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2036 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2037
2038 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2039 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2040
2041 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2042 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2043
2044 I915_WRITE(SERR_INT, serr_int);
2045 }
2046
2047 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2048 {
2049 int pipe;
2050 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2051
2052 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2053
2054 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2055 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2056 SDE_AUDIO_POWER_SHIFT_CPT);
2057 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2058 port_name(port));
2059 }
2060
2061 if (pch_iir & SDE_AUX_MASK_CPT)
2062 dp_aux_irq_handler(dev_priv);
2063
2064 if (pch_iir & SDE_GMBUS_CPT)
2065 gmbus_irq_handler(dev_priv);
2066
2067 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2068 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2069
2070 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2071 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2072
2073 if (pch_iir & SDE_FDI_MASK_CPT)
2074 for_each_pipe(dev_priv, pipe)
2075 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2076 pipe_name(pipe),
2077 I915_READ(FDI_RX_IIR(pipe)));
2078
2079 if (pch_iir & SDE_ERROR_CPT)
2080 cpt_serr_int_handler(dev_priv);
2081 }
2082
2083 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2084 {
2085 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2086 ~SDE_PORTE_HOTPLUG_SPT;
2087 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2088 u32 pin_mask = 0, long_mask = 0;
2089
2090 if (hotplug_trigger) {
2091 u32 dig_hotplug_reg;
2092
2093 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2094 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2095
2096 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2097 dig_hotplug_reg, hpd_spt,
2098 spt_port_hotplug_long_detect);
2099 }
2100
2101 if (hotplug2_trigger) {
2102 u32 dig_hotplug_reg;
2103
2104 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2105 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2106
2107 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2108 dig_hotplug_reg, hpd_spt,
2109 spt_port_hotplug2_long_detect);
2110 }
2111
2112 if (pin_mask)
2113 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2114
2115 if (pch_iir & SDE_GMBUS_CPT)
2116 gmbus_irq_handler(dev_priv);
2117 }
2118
2119 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2120 u32 hotplug_trigger,
2121 const u32 hpd[HPD_NUM_PINS])
2122 {
2123 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2124
2125 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2126 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2127
2128 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2129 dig_hotplug_reg, hpd,
2130 ilk_port_hotplug_long_detect);
2131
2132 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2133 }
2134
2135 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2136 u32 de_iir)
2137 {
2138 enum pipe pipe;
2139 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2140
2141 if (hotplug_trigger)
2142 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2143
2144 if (de_iir & DE_AUX_CHANNEL_A)
2145 dp_aux_irq_handler(dev_priv);
2146
2147 if (de_iir & DE_GSE)
2148 intel_opregion_asle_intr(dev_priv);
2149
2150 if (de_iir & DE_POISON)
2151 DRM_ERROR("Poison interrupt\n");
2152
2153 for_each_pipe(dev_priv, pipe) {
2154 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2155 intel_pipe_handle_vblank(dev_priv, pipe))
2156 intel_check_page_flip(dev_priv, pipe);
2157
2158 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2159 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2160
2161 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2162 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2163
2164 /* plane/pipes map 1:1 on ilk+ */
2165 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2166 intel_prepare_page_flip(dev_priv, pipe);
2167 intel_finish_page_flip_plane(dev_priv, pipe);
2168 }
2169 }
2170
2171 /* check event from PCH */
2172 if (de_iir & DE_PCH_EVENT) {
2173 u32 pch_iir = I915_READ(SDEIIR);
2174
2175 if (HAS_PCH_CPT(dev_priv))
2176 cpt_irq_handler(dev_priv, pch_iir);
2177 else
2178 ibx_irq_handler(dev_priv, pch_iir);
2179
2180 /* should clear PCH hotplug event before clear CPU irq */
2181 I915_WRITE(SDEIIR, pch_iir);
2182 }
2183
2184 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2185 ironlake_rps_change_irq_handler(dev_priv);
2186 }
2187
2188 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2189 u32 de_iir)
2190 {
2191 enum pipe pipe;
2192 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2193
2194 if (hotplug_trigger)
2195 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2196
2197 if (de_iir & DE_ERR_INT_IVB)
2198 ivb_err_int_handler(dev_priv);
2199
2200 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2201 dp_aux_irq_handler(dev_priv);
2202
2203 if (de_iir & DE_GSE_IVB)
2204 intel_opregion_asle_intr(dev_priv);
2205
2206 for_each_pipe(dev_priv, pipe) {
2207 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2208 intel_pipe_handle_vblank(dev_priv, pipe))
2209 intel_check_page_flip(dev_priv, pipe);
2210
2211 /* plane/pipes map 1:1 on ilk+ */
2212 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2213 intel_prepare_page_flip(dev_priv, pipe);
2214 intel_finish_page_flip_plane(dev_priv, pipe);
2215 }
2216 }
2217
2218 /* check event from PCH */
2219 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2220 u32 pch_iir = I915_READ(SDEIIR);
2221
2222 cpt_irq_handler(dev_priv, pch_iir);
2223
2224 /* clear PCH hotplug event before clear CPU irq */
2225 I915_WRITE(SDEIIR, pch_iir);
2226 }
2227 }
2228
2229 /*
2230 * To handle irqs with the minimum potential races with fresh interrupts, we:
2231 * 1 - Disable Master Interrupt Control.
2232 * 2 - Find the source(s) of the interrupt.
2233 * 3 - Clear the Interrupt Identity bits (IIR).
2234 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2235 * 5 - Re-enable Master Interrupt Control.
2236 */
2237 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2238 {
2239 struct drm_device *dev = arg;
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2242 irqreturn_t ret = IRQ_NONE;
2243
2244 if (!intel_irqs_enabled(dev_priv))
2245 return IRQ_NONE;
2246
2247 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2248 disable_rpm_wakeref_asserts(dev_priv);
2249
2250 /* disable master interrupt before clearing iir */
2251 de_ier = I915_READ(DEIER);
2252 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2253 POSTING_READ(DEIER);
2254
2255 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2256 * interrupts will will be stored on its back queue, and then we'll be
2257 * able to process them after we restore SDEIER (as soon as we restore
2258 * it, we'll get an interrupt if SDEIIR still has something to process
2259 * due to its back queue). */
2260 if (!HAS_PCH_NOP(dev_priv)) {
2261 sde_ier = I915_READ(SDEIER);
2262 I915_WRITE(SDEIER, 0);
2263 POSTING_READ(SDEIER);
2264 }
2265
2266 /* Find, clear, then process each source of interrupt */
2267
2268 gt_iir = I915_READ(GTIIR);
2269 if (gt_iir) {
2270 I915_WRITE(GTIIR, gt_iir);
2271 ret = IRQ_HANDLED;
2272 if (INTEL_GEN(dev_priv) >= 6)
2273 snb_gt_irq_handler(dev_priv, gt_iir);
2274 else
2275 ilk_gt_irq_handler(dev_priv, gt_iir);
2276 }
2277
2278 de_iir = I915_READ(DEIIR);
2279 if (de_iir) {
2280 I915_WRITE(DEIIR, de_iir);
2281 ret = IRQ_HANDLED;
2282 if (INTEL_GEN(dev_priv) >= 7)
2283 ivb_display_irq_handler(dev_priv, de_iir);
2284 else
2285 ilk_display_irq_handler(dev_priv, de_iir);
2286 }
2287
2288 if (INTEL_GEN(dev_priv) >= 6) {
2289 u32 pm_iir = I915_READ(GEN6_PMIIR);
2290 if (pm_iir) {
2291 I915_WRITE(GEN6_PMIIR, pm_iir);
2292 ret = IRQ_HANDLED;
2293 gen6_rps_irq_handler(dev_priv, pm_iir);
2294 }
2295 }
2296
2297 I915_WRITE(DEIER, de_ier);
2298 POSTING_READ(DEIER);
2299 if (!HAS_PCH_NOP(dev_priv)) {
2300 I915_WRITE(SDEIER, sde_ier);
2301 POSTING_READ(SDEIER);
2302 }
2303
2304 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2305 enable_rpm_wakeref_asserts(dev_priv);
2306
2307 return ret;
2308 }
2309
2310 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2311 u32 hotplug_trigger,
2312 const u32 hpd[HPD_NUM_PINS])
2313 {
2314 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2315
2316 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2317 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2318
2319 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2320 dig_hotplug_reg, hpd,
2321 bxt_port_hotplug_long_detect);
2322
2323 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2324 }
2325
2326 static irqreturn_t
2327 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2328 {
2329 irqreturn_t ret = IRQ_NONE;
2330 u32 iir;
2331 enum pipe pipe;
2332
2333 if (master_ctl & GEN8_DE_MISC_IRQ) {
2334 iir = I915_READ(GEN8_DE_MISC_IIR);
2335 if (iir) {
2336 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2337 ret = IRQ_HANDLED;
2338 if (iir & GEN8_DE_MISC_GSE)
2339 intel_opregion_asle_intr(dev_priv);
2340 else
2341 DRM_ERROR("Unexpected DE Misc interrupt\n");
2342 }
2343 else
2344 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2345 }
2346
2347 if (master_ctl & GEN8_DE_PORT_IRQ) {
2348 iir = I915_READ(GEN8_DE_PORT_IIR);
2349 if (iir) {
2350 u32 tmp_mask;
2351 bool found = false;
2352
2353 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2354 ret = IRQ_HANDLED;
2355
2356 tmp_mask = GEN8_AUX_CHANNEL_A;
2357 if (INTEL_INFO(dev_priv)->gen >= 9)
2358 tmp_mask |= GEN9_AUX_CHANNEL_B |
2359 GEN9_AUX_CHANNEL_C |
2360 GEN9_AUX_CHANNEL_D;
2361
2362 if (iir & tmp_mask) {
2363 dp_aux_irq_handler(dev_priv);
2364 found = true;
2365 }
2366
2367 if (IS_BROXTON(dev_priv)) {
2368 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2369 if (tmp_mask) {
2370 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2371 hpd_bxt);
2372 found = true;
2373 }
2374 } else if (IS_BROADWELL(dev_priv)) {
2375 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2376 if (tmp_mask) {
2377 ilk_hpd_irq_handler(dev_priv,
2378 tmp_mask, hpd_bdw);
2379 found = true;
2380 }
2381 }
2382
2383 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2384 gmbus_irq_handler(dev_priv);
2385 found = true;
2386 }
2387
2388 if (!found)
2389 DRM_ERROR("Unexpected DE Port interrupt\n");
2390 }
2391 else
2392 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2393 }
2394
2395 for_each_pipe(dev_priv, pipe) {
2396 u32 flip_done, fault_errors;
2397
2398 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2399 continue;
2400
2401 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2402 if (!iir) {
2403 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2404 continue;
2405 }
2406
2407 ret = IRQ_HANDLED;
2408 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2409
2410 if (iir & GEN8_PIPE_VBLANK &&
2411 intel_pipe_handle_vblank(dev_priv, pipe))
2412 intel_check_page_flip(dev_priv, pipe);
2413
2414 flip_done = iir;
2415 if (INTEL_INFO(dev_priv)->gen >= 9)
2416 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2417 else
2418 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2419
2420 if (flip_done) {
2421 intel_prepare_page_flip(dev_priv, pipe);
2422 intel_finish_page_flip_plane(dev_priv, pipe);
2423 }
2424
2425 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2426 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2427
2428 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2429 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2430
2431 fault_errors = iir;
2432 if (INTEL_INFO(dev_priv)->gen >= 9)
2433 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2434 else
2435 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2436
2437 if (fault_errors)
2438 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2439 pipe_name(pipe),
2440 fault_errors);
2441 }
2442
2443 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2444 master_ctl & GEN8_DE_PCH_IRQ) {
2445 /*
2446 * FIXME(BDW): Assume for now that the new interrupt handling
2447 * scheme also closed the SDE interrupt handling race we've seen
2448 * on older pch-split platforms. But this needs testing.
2449 */
2450 iir = I915_READ(SDEIIR);
2451 if (iir) {
2452 I915_WRITE(SDEIIR, iir);
2453 ret = IRQ_HANDLED;
2454
2455 if (HAS_PCH_SPT(dev_priv))
2456 spt_irq_handler(dev_priv, iir);
2457 else
2458 cpt_irq_handler(dev_priv, iir);
2459 } else {
2460 /*
2461 * Like on previous PCH there seems to be something
2462 * fishy going on with forwarding PCH interrupts.
2463 */
2464 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2465 }
2466 }
2467
2468 return ret;
2469 }
2470
2471 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2472 {
2473 struct drm_device *dev = arg;
2474 struct drm_i915_private *dev_priv = dev->dev_private;
2475 u32 master_ctl;
2476 u32 gt_iir[4] = {};
2477 irqreturn_t ret;
2478
2479 if (!intel_irqs_enabled(dev_priv))
2480 return IRQ_NONE;
2481
2482 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2483 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2484 if (!master_ctl)
2485 return IRQ_NONE;
2486
2487 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2488
2489 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2490 disable_rpm_wakeref_asserts(dev_priv);
2491
2492 /* Find, clear, then process each source of interrupt */
2493 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2494 gen8_gt_irq_handler(dev_priv, gt_iir);
2495 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2496
2497 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2498 POSTING_READ_FW(GEN8_MASTER_IRQ);
2499
2500 enable_rpm_wakeref_asserts(dev_priv);
2501
2502 return ret;
2503 }
2504
2505 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2506 bool reset_completed)
2507 {
2508 struct intel_engine_cs *engine;
2509
2510 /*
2511 * Notify all waiters for GPU completion events that reset state has
2512 * been changed, and that they need to restart their wait after
2513 * checking for potential errors (and bail out to drop locks if there is
2514 * a gpu reset pending so that i915_error_work_func can acquire them).
2515 */
2516
2517 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2518 for_each_engine(engine, dev_priv)
2519 wake_up_all(&engine->irq_queue);
2520
2521 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2522 wake_up_all(&dev_priv->pending_flip_queue);
2523
2524 /*
2525 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2526 * reset state is cleared.
2527 */
2528 if (reset_completed)
2529 wake_up_all(&dev_priv->gpu_error.reset_queue);
2530 }
2531
2532 /**
2533 * i915_reset_and_wakeup - do process context error handling work
2534 * @dev: drm device
2535 *
2536 * Fire an error uevent so userspace can see that a hang or error
2537 * was detected.
2538 */
2539 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2540 {
2541 struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
2542 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2543 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2544 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2545 int ret;
2546
2547 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2548
2549 /*
2550 * Note that there's only one work item which does gpu resets, so we
2551 * need not worry about concurrent gpu resets potentially incrementing
2552 * error->reset_counter twice. We only need to take care of another
2553 * racing irq/hangcheck declaring the gpu dead for a second time. A
2554 * quick check for that is good enough: schedule_work ensures the
2555 * correct ordering between hang detection and this work item, and since
2556 * the reset in-progress bit is only ever set by code outside of this
2557 * work we don't need to worry about any other races.
2558 */
2559 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2560 DRM_DEBUG_DRIVER("resetting chip\n");
2561 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2562
2563 /*
2564 * In most cases it's guaranteed that we get here with an RPM
2565 * reference held, for example because there is a pending GPU
2566 * request that won't finish until the reset is done. This
2567 * isn't the case at least when we get here by doing a
2568 * simulated reset via debugs, so get an RPM reference.
2569 */
2570 intel_runtime_pm_get(dev_priv);
2571
2572 intel_prepare_reset(dev_priv);
2573
2574 /*
2575 * All state reset _must_ be completed before we update the
2576 * reset counter, for otherwise waiters might miss the reset
2577 * pending state and not properly drop locks, resulting in
2578 * deadlocks with the reset work.
2579 */
2580 ret = i915_reset(dev_priv);
2581
2582 intel_finish_reset(dev_priv);
2583
2584 intel_runtime_pm_put(dev_priv);
2585
2586 if (ret == 0)
2587 kobject_uevent_env(kobj,
2588 KOBJ_CHANGE, reset_done_event);
2589
2590 /*
2591 * Note: The wake_up also serves as a memory barrier so that
2592 * waiters see the update value of the reset counter atomic_t.
2593 */
2594 i915_error_wake_up(dev_priv, true);
2595 }
2596 }
2597
2598 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2599 {
2600 uint32_t instdone[I915_NUM_INSTDONE_REG];
2601 u32 eir = I915_READ(EIR);
2602 int pipe, i;
2603
2604 if (!eir)
2605 return;
2606
2607 pr_err("render error detected, EIR: 0x%08x\n", eir);
2608
2609 i915_get_extra_instdone(dev_priv, instdone);
2610
2611 if (IS_G4X(dev_priv)) {
2612 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2613 u32 ipeir = I915_READ(IPEIR_I965);
2614
2615 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2616 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2617 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2620 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2621 I915_WRITE(IPEIR_I965, ipeir);
2622 POSTING_READ(IPEIR_I965);
2623 }
2624 if (eir & GM45_ERROR_PAGE_TABLE) {
2625 u32 pgtbl_err = I915_READ(PGTBL_ER);
2626 pr_err("page table error\n");
2627 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2628 I915_WRITE(PGTBL_ER, pgtbl_err);
2629 POSTING_READ(PGTBL_ER);
2630 }
2631 }
2632
2633 if (!IS_GEN2(dev_priv)) {
2634 if (eir & I915_ERROR_PAGE_TABLE) {
2635 u32 pgtbl_err = I915_READ(PGTBL_ER);
2636 pr_err("page table error\n");
2637 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2638 I915_WRITE(PGTBL_ER, pgtbl_err);
2639 POSTING_READ(PGTBL_ER);
2640 }
2641 }
2642
2643 if (eir & I915_ERROR_MEMORY_REFRESH) {
2644 pr_err("memory refresh error:\n");
2645 for_each_pipe(dev_priv, pipe)
2646 pr_err("pipe %c stat: 0x%08x\n",
2647 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2648 /* pipestat has already been acked */
2649 }
2650 if (eir & I915_ERROR_INSTRUCTION) {
2651 pr_err("instruction error\n");
2652 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2653 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2654 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2655 if (INTEL_GEN(dev_priv) < 4) {
2656 u32 ipeir = I915_READ(IPEIR);
2657
2658 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2659 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2660 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2661 I915_WRITE(IPEIR, ipeir);
2662 POSTING_READ(IPEIR);
2663 } else {
2664 u32 ipeir = I915_READ(IPEIR_I965);
2665
2666 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2667 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2668 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2669 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2670 I915_WRITE(IPEIR_I965, ipeir);
2671 POSTING_READ(IPEIR_I965);
2672 }
2673 }
2674
2675 I915_WRITE(EIR, eir);
2676 POSTING_READ(EIR);
2677 eir = I915_READ(EIR);
2678 if (eir) {
2679 /*
2680 * some errors might have become stuck,
2681 * mask them.
2682 */
2683 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2684 I915_WRITE(EMR, I915_READ(EMR) | eir);
2685 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2686 }
2687 }
2688
2689 /**
2690 * i915_handle_error - handle a gpu error
2691 * @dev: drm device
2692 * @engine_mask: mask representing engines that are hung
2693 * Do some basic checking of register state at error time and
2694 * dump it to the syslog. Also call i915_capture_error_state() to make
2695 * sure we get a record and make it available in debugfs. Fire a uevent
2696 * so userspace knows something bad happened (should trigger collection
2697 * of a ring dump etc.).
2698 */
2699 void i915_handle_error(struct drm_i915_private *dev_priv,
2700 u32 engine_mask,
2701 const char *fmt, ...)
2702 {
2703 va_list args;
2704 char error_msg[80];
2705
2706 va_start(args, fmt);
2707 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2708 va_end(args);
2709
2710 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2711 i915_report_and_clear_eir(dev_priv);
2712
2713 if (engine_mask) {
2714 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2715 &dev_priv->gpu_error.reset_counter);
2716
2717 /*
2718 * Wakeup waiting processes so that the reset function
2719 * i915_reset_and_wakeup doesn't deadlock trying to grab
2720 * various locks. By bumping the reset counter first, the woken
2721 * processes will see a reset in progress and back off,
2722 * releasing their locks and then wait for the reset completion.
2723 * We must do this for _all_ gpu waiters that might hold locks
2724 * that the reset work needs to acquire.
2725 *
2726 * Note: The wake_up serves as the required memory barrier to
2727 * ensure that the waiters see the updated value of the reset
2728 * counter atomic_t.
2729 */
2730 i915_error_wake_up(dev_priv, false);
2731 }
2732
2733 i915_reset_and_wakeup(dev_priv);
2734 }
2735
2736 /* Called from drm generic code, passed 'crtc' which
2737 * we use as a pipe index
2738 */
2739 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2740 {
2741 struct drm_i915_private *dev_priv = dev->dev_private;
2742 unsigned long irqflags;
2743
2744 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2745 if (INTEL_INFO(dev)->gen >= 4)
2746 i915_enable_pipestat(dev_priv, pipe,
2747 PIPE_START_VBLANK_INTERRUPT_STATUS);
2748 else
2749 i915_enable_pipestat(dev_priv, pipe,
2750 PIPE_VBLANK_INTERRUPT_STATUS);
2751 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2752
2753 return 0;
2754 }
2755
2756 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 unsigned long irqflags;
2760 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2761 DE_PIPE_VBLANK(pipe);
2762
2763 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2764 ilk_enable_display_irq(dev_priv, bit);
2765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766
2767 return 0;
2768 }
2769
2770 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2771 {
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 unsigned long irqflags;
2774
2775 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776 i915_enable_pipestat(dev_priv, pipe,
2777 PIPE_START_VBLANK_INTERRUPT_STATUS);
2778 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2779
2780 return 0;
2781 }
2782
2783 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2784 {
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 unsigned long irqflags;
2787
2788 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2789 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2790 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2791
2792 return 0;
2793 }
2794
2795 /* Called from drm generic code, passed 'crtc' which
2796 * we use as a pipe index
2797 */
2798 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2799 {
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801 unsigned long irqflags;
2802
2803 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2804 i915_disable_pipestat(dev_priv, pipe,
2805 PIPE_VBLANK_INTERRUPT_STATUS |
2806 PIPE_START_VBLANK_INTERRUPT_STATUS);
2807 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2808 }
2809
2810 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2811 {
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 unsigned long irqflags;
2814 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2815 DE_PIPE_VBLANK(pipe);
2816
2817 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2818 ilk_disable_display_irq(dev_priv, bit);
2819 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2820 }
2821
2822 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 unsigned long irqflags;
2826
2827 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2828 i915_disable_pipestat(dev_priv, pipe,
2829 PIPE_START_VBLANK_INTERRUPT_STATUS);
2830 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2831 }
2832
2833 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2834 {
2835 struct drm_i915_private *dev_priv = dev->dev_private;
2836 unsigned long irqflags;
2837
2838 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2839 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2840 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2841 }
2842
2843 static bool
2844 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2845 {
2846 return i915_seqno_passed(seqno,
2847 READ_ONCE(engine->last_submitted_seqno));
2848 }
2849
2850 static bool
2851 ipehr_is_semaphore_wait(struct drm_i915_private *dev_priv, u32 ipehr)
2852 {
2853 if (INTEL_GEN(dev_priv) >= 8) {
2854 return (ipehr >> 23) == 0x1c;
2855 } else {
2856 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2857 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2858 MI_SEMAPHORE_REGISTER);
2859 }
2860 }
2861
2862 static struct intel_engine_cs *
2863 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2864 u64 offset)
2865 {
2866 struct drm_i915_private *dev_priv = engine->i915;
2867 struct intel_engine_cs *signaller;
2868
2869 if (INTEL_GEN(dev_priv) >= 8) {
2870 for_each_engine(signaller, dev_priv) {
2871 if (engine == signaller)
2872 continue;
2873
2874 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2875 return signaller;
2876 }
2877 } else {
2878 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2879
2880 for_each_engine(signaller, dev_priv) {
2881 if(engine == signaller)
2882 continue;
2883
2884 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2885 return signaller;
2886 }
2887 }
2888
2889 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2890 engine->id, ipehr, offset);
2891
2892 return NULL;
2893 }
2894
2895 static struct intel_engine_cs *
2896 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2897 {
2898 struct drm_i915_private *dev_priv = engine->i915;
2899 u32 cmd, ipehr, head;
2900 u64 offset = 0;
2901 int i, backwards;
2902
2903 /*
2904 * This function does not support execlist mode - any attempt to
2905 * proceed further into this function will result in a kernel panic
2906 * when dereferencing ring->buffer, which is not set up in execlist
2907 * mode.
2908 *
2909 * The correct way of doing it would be to derive the currently
2910 * executing ring buffer from the current context, which is derived
2911 * from the currently running request. Unfortunately, to get the
2912 * current request we would have to grab the struct_mutex before doing
2913 * anything else, which would be ill-advised since some other thread
2914 * might have grabbed it already and managed to hang itself, causing
2915 * the hang checker to deadlock.
2916 *
2917 * Therefore, this function does not support execlist mode in its
2918 * current form. Just return NULL and move on.
2919 */
2920 if (engine->buffer == NULL)
2921 return NULL;
2922
2923 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2924 if (!ipehr_is_semaphore_wait(engine->i915, ipehr))
2925 return NULL;
2926
2927 /*
2928 * HEAD is likely pointing to the dword after the actual command,
2929 * so scan backwards until we find the MBOX. But limit it to just 3
2930 * or 4 dwords depending on the semaphore wait command size.
2931 * Note that we don't care about ACTHD here since that might
2932 * point at at batch, and semaphores are always emitted into the
2933 * ringbuffer itself.
2934 */
2935 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2936 backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2937
2938 for (i = backwards; i; --i) {
2939 /*
2940 * Be paranoid and presume the hw has gone off into the wild -
2941 * our ring is smaller than what the hardware (and hence
2942 * HEAD_ADDR) allows. Also handles wrap-around.
2943 */
2944 head &= engine->buffer->size - 1;
2945
2946 /* This here seems to blow up */
2947 cmd = ioread32(engine->buffer->virtual_start + head);
2948 if (cmd == ipehr)
2949 break;
2950
2951 head -= 4;
2952 }
2953
2954 if (!i)
2955 return NULL;
2956
2957 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2958 if (INTEL_GEN(dev_priv) >= 8) {
2959 offset = ioread32(engine->buffer->virtual_start + head + 12);
2960 offset <<= 32;
2961 offset = ioread32(engine->buffer->virtual_start + head + 8);
2962 }
2963 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2964 }
2965
2966 static int semaphore_passed(struct intel_engine_cs *engine)
2967 {
2968 struct drm_i915_private *dev_priv = engine->i915;
2969 struct intel_engine_cs *signaller;
2970 u32 seqno;
2971
2972 engine->hangcheck.deadlock++;
2973
2974 signaller = semaphore_waits_for(engine, &seqno);
2975 if (signaller == NULL)
2976 return -1;
2977
2978 /* Prevent pathological recursion due to driver bugs */
2979 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2980 return -1;
2981
2982 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2983 return 1;
2984
2985 /* cursory check for an unkickable deadlock */
2986 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2987 semaphore_passed(signaller) < 0)
2988 return -1;
2989
2990 return 0;
2991 }
2992
2993 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2994 {
2995 struct intel_engine_cs *engine;
2996
2997 for_each_engine(engine, dev_priv)
2998 engine->hangcheck.deadlock = 0;
2999 }
3000
3001 static bool subunits_stuck(struct intel_engine_cs *engine)
3002 {
3003 u32 instdone[I915_NUM_INSTDONE_REG];
3004 bool stuck;
3005 int i;
3006
3007 if (engine->id != RCS)
3008 return true;
3009
3010 i915_get_extra_instdone(engine->i915, instdone);
3011
3012 /* There might be unstable subunit states even when
3013 * actual head is not moving. Filter out the unstable ones by
3014 * accumulating the undone -> done transitions and only
3015 * consider those as progress.
3016 */
3017 stuck = true;
3018 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3019 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3020
3021 if (tmp != engine->hangcheck.instdone[i])
3022 stuck = false;
3023
3024 engine->hangcheck.instdone[i] |= tmp;
3025 }
3026
3027 return stuck;
3028 }
3029
3030 static enum intel_ring_hangcheck_action
3031 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3032 {
3033 if (acthd != engine->hangcheck.acthd) {
3034
3035 /* Clear subunit states on head movement */
3036 memset(engine->hangcheck.instdone, 0,
3037 sizeof(engine->hangcheck.instdone));
3038
3039 return HANGCHECK_ACTIVE;
3040 }
3041
3042 if (!subunits_stuck(engine))
3043 return HANGCHECK_ACTIVE;
3044
3045 return HANGCHECK_HUNG;
3046 }
3047
3048 static enum intel_ring_hangcheck_action
3049 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3050 {
3051 struct drm_i915_private *dev_priv = engine->i915;
3052 enum intel_ring_hangcheck_action ha;
3053 u32 tmp;
3054
3055 ha = head_stuck(engine, acthd);
3056 if (ha != HANGCHECK_HUNG)
3057 return ha;
3058
3059 if (IS_GEN2(dev_priv))
3060 return HANGCHECK_HUNG;
3061
3062 /* Is the chip hanging on a WAIT_FOR_EVENT?
3063 * If so we can simply poke the RB_WAIT bit
3064 * and break the hang. This should work on
3065 * all but the second generation chipsets.
3066 */
3067 tmp = I915_READ_CTL(engine);
3068 if (tmp & RING_WAIT) {
3069 i915_handle_error(dev_priv, 0,
3070 "Kicking stuck wait on %s",
3071 engine->name);
3072 I915_WRITE_CTL(engine, tmp);
3073 return HANGCHECK_KICK;
3074 }
3075
3076 if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3077 switch (semaphore_passed(engine)) {
3078 default:
3079 return HANGCHECK_HUNG;
3080 case 1:
3081 i915_handle_error(dev_priv, 0,
3082 "Kicking stuck semaphore on %s",
3083 engine->name);
3084 I915_WRITE_CTL(engine, tmp);
3085 return HANGCHECK_KICK;
3086 case 0:
3087 return HANGCHECK_WAIT;
3088 }
3089 }
3090
3091 return HANGCHECK_HUNG;
3092 }
3093
3094 static unsigned kick_waiters(struct intel_engine_cs *engine)
3095 {
3096 struct drm_i915_private *i915 = engine->i915;
3097 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3098
3099 if (engine->hangcheck.user_interrupts == user_interrupts &&
3100 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3101 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3102 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3103 engine->name);
3104 else
3105 DRM_INFO("Fake missed irq on %s\n",
3106 engine->name);
3107 wake_up_all(&engine->irq_queue);
3108 }
3109
3110 return user_interrupts;
3111 }
3112 /*
3113 * This is called when the chip hasn't reported back with completed
3114 * batchbuffers in a long time. We keep track per ring seqno progress and
3115 * if there are no progress, hangcheck score for that ring is increased.
3116 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3117 * we kick the ring. If we see no progress on three subsequent calls
3118 * we assume chip is wedged and try to fix it by resetting the chip.
3119 */
3120 static void i915_hangcheck_elapsed(struct work_struct *work)
3121 {
3122 struct drm_i915_private *dev_priv =
3123 container_of(work, typeof(*dev_priv),
3124 gpu_error.hangcheck_work.work);
3125 struct intel_engine_cs *engine;
3126 enum intel_engine_id id;
3127 int busy_count = 0, rings_hung = 0;
3128 bool stuck[I915_NUM_ENGINES] = { 0 };
3129 #define BUSY 1
3130 #define KICK 5
3131 #define HUNG 20
3132 #define ACTIVE_DECAY 15
3133
3134 if (!i915.enable_hangcheck)
3135 return;
3136
3137 /*
3138 * The hangcheck work is synced during runtime suspend, we don't
3139 * require a wakeref. TODO: instead of disabling the asserts make
3140 * sure that we hold a reference when this work is running.
3141 */
3142 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3143
3144 /* As enabling the GPU requires fairly extensive mmio access,
3145 * periodically arm the mmio checker to see if we are triggering
3146 * any invalid access.
3147 */
3148 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3149
3150 for_each_engine_id(engine, dev_priv, id) {
3151 u64 acthd;
3152 u32 seqno;
3153 unsigned user_interrupts;
3154 bool busy = true;
3155
3156 semaphore_clear_deadlocks(dev_priv);
3157
3158 /* We don't strictly need an irq-barrier here, as we are not
3159 * serving an interrupt request, be paranoid in case the
3160 * barrier has side-effects (such as preventing a broken
3161 * cacheline snoop) and so be sure that we can see the seqno
3162 * advance. If the seqno should stick, due to a stale
3163 * cacheline, we would erroneously declare the GPU hung.
3164 */
3165 if (engine->irq_seqno_barrier)
3166 engine->irq_seqno_barrier(engine);
3167
3168 acthd = intel_ring_get_active_head(engine);
3169 seqno = engine->get_seqno(engine);
3170
3171 /* Reset stuck interrupts between batch advances */
3172 user_interrupts = 0;
3173
3174 if (engine->hangcheck.seqno == seqno) {
3175 if (ring_idle(engine, seqno)) {
3176 engine->hangcheck.action = HANGCHECK_IDLE;
3177 if (waitqueue_active(&engine->irq_queue)) {
3178 /* Safeguard against driver failure */
3179 user_interrupts = kick_waiters(engine);
3180 engine->hangcheck.score += BUSY;
3181 } else
3182 busy = false;
3183 } else {
3184 /* We always increment the hangcheck score
3185 * if the ring is busy and still processing
3186 * the same request, so that no single request
3187 * can run indefinitely (such as a chain of
3188 * batches). The only time we do not increment
3189 * the hangcheck score on this ring, if this
3190 * ring is in a legitimate wait for another
3191 * ring. In that case the waiting ring is a
3192 * victim and we want to be sure we catch the
3193 * right culprit. Then every time we do kick
3194 * the ring, add a small increment to the
3195 * score so that we can catch a batch that is
3196 * being repeatedly kicked and so responsible
3197 * for stalling the machine.
3198 */
3199 engine->hangcheck.action = ring_stuck(engine,
3200 acthd);
3201
3202 switch (engine->hangcheck.action) {
3203 case HANGCHECK_IDLE:
3204 case HANGCHECK_WAIT:
3205 break;
3206 case HANGCHECK_ACTIVE:
3207 engine->hangcheck.score += BUSY;
3208 break;
3209 case HANGCHECK_KICK:
3210 engine->hangcheck.score += KICK;
3211 break;
3212 case HANGCHECK_HUNG:
3213 engine->hangcheck.score += HUNG;
3214 stuck[id] = true;
3215 break;
3216 }
3217 }
3218 } else {
3219 engine->hangcheck.action = HANGCHECK_ACTIVE;
3220
3221 /* Gradually reduce the count so that we catch DoS
3222 * attempts across multiple batches.
3223 */
3224 if (engine->hangcheck.score > 0)
3225 engine->hangcheck.score -= ACTIVE_DECAY;
3226 if (engine->hangcheck.score < 0)
3227 engine->hangcheck.score = 0;
3228
3229 /* Clear head and subunit states on seqno movement */
3230 acthd = 0;
3231
3232 memset(engine->hangcheck.instdone, 0,
3233 sizeof(engine->hangcheck.instdone));
3234 }
3235
3236 engine->hangcheck.seqno = seqno;
3237 engine->hangcheck.acthd = acthd;
3238 engine->hangcheck.user_interrupts = user_interrupts;
3239 busy_count += busy;
3240 }
3241
3242 for_each_engine_id(engine, dev_priv, id) {
3243 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3244 DRM_INFO("%s on %s\n",
3245 stuck[id] ? "stuck" : "no progress",
3246 engine->name);
3247 rings_hung |= intel_engine_flag(engine);
3248 }
3249 }
3250
3251 if (rings_hung) {
3252 i915_handle_error(dev_priv, rings_hung, "Engine(s) hung");
3253 goto out;
3254 }
3255
3256 if (busy_count)
3257 /* Reset timer case chip hangs without another request
3258 * being added */
3259 i915_queue_hangcheck(dev_priv);
3260
3261 out:
3262 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3263 }
3264
3265 void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3266 {
3267 struct i915_gpu_error *e = &dev_priv->gpu_error;
3268
3269 if (!i915.enable_hangcheck)
3270 return;
3271
3272 /* Don't continually defer the hangcheck so that it is always run at
3273 * least once after work has been scheduled on any ring. Otherwise,
3274 * we will ignore a hung ring if a second ring is kept busy.
3275 */
3276
3277 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3278 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3279 }
3280
3281 static void ibx_irq_reset(struct drm_device *dev)
3282 {
3283 struct drm_i915_private *dev_priv = dev->dev_private;
3284
3285 if (HAS_PCH_NOP(dev))
3286 return;
3287
3288 GEN5_IRQ_RESET(SDE);
3289
3290 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3291 I915_WRITE(SERR_INT, 0xffffffff);
3292 }
3293
3294 /*
3295 * SDEIER is also touched by the interrupt handler to work around missed PCH
3296 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3297 * instead we unconditionally enable all PCH interrupt sources here, but then
3298 * only unmask them as needed with SDEIMR.
3299 *
3300 * This function needs to be called before interrupts are enabled.
3301 */
3302 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3303 {
3304 struct drm_i915_private *dev_priv = dev->dev_private;
3305
3306 if (HAS_PCH_NOP(dev))
3307 return;
3308
3309 WARN_ON(I915_READ(SDEIER) != 0);
3310 I915_WRITE(SDEIER, 0xffffffff);
3311 POSTING_READ(SDEIER);
3312 }
3313
3314 static void gen5_gt_irq_reset(struct drm_device *dev)
3315 {
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317
3318 GEN5_IRQ_RESET(GT);
3319 if (INTEL_INFO(dev)->gen >= 6)
3320 GEN5_IRQ_RESET(GEN6_PM);
3321 }
3322
3323 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3324 {
3325 enum pipe pipe;
3326
3327 if (IS_CHERRYVIEW(dev_priv))
3328 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3329 else
3330 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3331
3332 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3333 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3334
3335 for_each_pipe(dev_priv, pipe) {
3336 I915_WRITE(PIPESTAT(pipe),
3337 PIPE_FIFO_UNDERRUN_STATUS |
3338 PIPESTAT_INT_STATUS_MASK);
3339 dev_priv->pipestat_irq_mask[pipe] = 0;
3340 }
3341
3342 GEN5_IRQ_RESET(VLV_);
3343 dev_priv->irq_mask = ~0;
3344 }
3345
3346 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3347 {
3348 u32 pipestat_mask;
3349 u32 enable_mask;
3350 enum pipe pipe;
3351
3352 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3353 PIPE_CRC_DONE_INTERRUPT_STATUS;
3354
3355 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3356 for_each_pipe(dev_priv, pipe)
3357 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3358
3359 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3360 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3361 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3362 if (IS_CHERRYVIEW(dev_priv))
3363 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3364
3365 WARN_ON(dev_priv->irq_mask != ~0);
3366
3367 dev_priv->irq_mask = ~enable_mask;
3368
3369 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3370 }
3371
3372 /* drm_dma.h hooks
3373 */
3374 static void ironlake_irq_reset(struct drm_device *dev)
3375 {
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377
3378 I915_WRITE(HWSTAM, 0xffffffff);
3379
3380 GEN5_IRQ_RESET(DE);
3381 if (IS_GEN7(dev))
3382 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3383
3384 gen5_gt_irq_reset(dev);
3385
3386 ibx_irq_reset(dev);
3387 }
3388
3389 static void valleyview_irq_preinstall(struct drm_device *dev)
3390 {
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392
3393 I915_WRITE(VLV_MASTER_IER, 0);
3394 POSTING_READ(VLV_MASTER_IER);
3395
3396 gen5_gt_irq_reset(dev);
3397
3398 spin_lock_irq(&dev_priv->irq_lock);
3399 if (dev_priv->display_irqs_enabled)
3400 vlv_display_irq_reset(dev_priv);
3401 spin_unlock_irq(&dev_priv->irq_lock);
3402 }
3403
3404 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3405 {
3406 GEN8_IRQ_RESET_NDX(GT, 0);
3407 GEN8_IRQ_RESET_NDX(GT, 1);
3408 GEN8_IRQ_RESET_NDX(GT, 2);
3409 GEN8_IRQ_RESET_NDX(GT, 3);
3410 }
3411
3412 static void gen8_irq_reset(struct drm_device *dev)
3413 {
3414 struct drm_i915_private *dev_priv = dev->dev_private;
3415 int pipe;
3416
3417 I915_WRITE(GEN8_MASTER_IRQ, 0);
3418 POSTING_READ(GEN8_MASTER_IRQ);
3419
3420 gen8_gt_irq_reset(dev_priv);
3421
3422 for_each_pipe(dev_priv, pipe)
3423 if (intel_display_power_is_enabled(dev_priv,
3424 POWER_DOMAIN_PIPE(pipe)))
3425 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3426
3427 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3428 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3429 GEN5_IRQ_RESET(GEN8_PCU_);
3430
3431 if (HAS_PCH_SPLIT(dev))
3432 ibx_irq_reset(dev);
3433 }
3434
3435 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3436 unsigned int pipe_mask)
3437 {
3438 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3439 enum pipe pipe;
3440
3441 spin_lock_irq(&dev_priv->irq_lock);
3442 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3443 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3444 dev_priv->de_irq_mask[pipe],
3445 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3446 spin_unlock_irq(&dev_priv->irq_lock);
3447 }
3448
3449 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3450 unsigned int pipe_mask)
3451 {
3452 enum pipe pipe;
3453
3454 spin_lock_irq(&dev_priv->irq_lock);
3455 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3456 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3457 spin_unlock_irq(&dev_priv->irq_lock);
3458
3459 /* make sure we're done processing display irqs */
3460 synchronize_irq(dev_priv->dev->irq);
3461 }
3462
3463 static void cherryview_irq_preinstall(struct drm_device *dev)
3464 {
3465 struct drm_i915_private *dev_priv = dev->dev_private;
3466
3467 I915_WRITE(GEN8_MASTER_IRQ, 0);
3468 POSTING_READ(GEN8_MASTER_IRQ);
3469
3470 gen8_gt_irq_reset(dev_priv);
3471
3472 GEN5_IRQ_RESET(GEN8_PCU_);
3473
3474 spin_lock_irq(&dev_priv->irq_lock);
3475 if (dev_priv->display_irqs_enabled)
3476 vlv_display_irq_reset(dev_priv);
3477 spin_unlock_irq(&dev_priv->irq_lock);
3478 }
3479
3480 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3481 const u32 hpd[HPD_NUM_PINS])
3482 {
3483 struct intel_encoder *encoder;
3484 u32 enabled_irqs = 0;
3485
3486 for_each_intel_encoder(dev_priv->dev, encoder)
3487 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3488 enabled_irqs |= hpd[encoder->hpd_pin];
3489
3490 return enabled_irqs;
3491 }
3492
3493 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3494 {
3495 u32 hotplug_irqs, hotplug, enabled_irqs;
3496
3497 if (HAS_PCH_IBX(dev_priv)) {
3498 hotplug_irqs = SDE_HOTPLUG_MASK;
3499 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3500 } else {
3501 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3502 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3503 }
3504
3505 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3506
3507 /*
3508 * Enable digital hotplug on the PCH, and configure the DP short pulse
3509 * duration to 2ms (which is the minimum in the Display Port spec).
3510 * The pulse duration bits are reserved on LPT+.
3511 */
3512 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3513 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3514 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3515 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3516 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3517 /*
3518 * When CPU and PCH are on the same package, port A
3519 * HPD must be enabled in both north and south.
3520 */
3521 if (HAS_PCH_LPT_LP(dev_priv))
3522 hotplug |= PORTA_HOTPLUG_ENABLE;
3523 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3524 }
3525
3526 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3527 {
3528 u32 hotplug_irqs, hotplug, enabled_irqs;
3529
3530 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3531 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3532
3533 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3534
3535 /* Enable digital hotplug on the PCH */
3536 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3537 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3538 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3539 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3540
3541 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3542 hotplug |= PORTE_HOTPLUG_ENABLE;
3543 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3544 }
3545
3546 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3547 {
3548 u32 hotplug_irqs, hotplug, enabled_irqs;
3549
3550 if (INTEL_GEN(dev_priv) >= 8) {
3551 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3552 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3553
3554 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3555 } else if (INTEL_GEN(dev_priv) >= 7) {
3556 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3557 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3558
3559 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3560 } else {
3561 hotplug_irqs = DE_DP_A_HOTPLUG;
3562 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3563
3564 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3565 }
3566
3567 /*
3568 * Enable digital hotplug on the CPU, and configure the DP short pulse
3569 * duration to 2ms (which is the minimum in the Display Port spec)
3570 * The pulse duration bits are reserved on HSW+.
3571 */
3572 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3573 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3574 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3575 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3576
3577 ibx_hpd_irq_setup(dev_priv);
3578 }
3579
3580 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3581 {
3582 u32 hotplug_irqs, hotplug, enabled_irqs;
3583
3584 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3585 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3586
3587 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3588
3589 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3590 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3591 PORTA_HOTPLUG_ENABLE;
3592
3593 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3594 hotplug, enabled_irqs);
3595 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3596
3597 /*
3598 * For BXT invert bit has to be set based on AOB design
3599 * for HPD detection logic, update it based on VBT fields.
3600 */
3601
3602 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3603 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3604 hotplug |= BXT_DDIA_HPD_INVERT;
3605 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3606 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3607 hotplug |= BXT_DDIB_HPD_INVERT;
3608 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3609 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3610 hotplug |= BXT_DDIC_HPD_INVERT;
3611
3612 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3613 }
3614
3615 static void ibx_irq_postinstall(struct drm_device *dev)
3616 {
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 u32 mask;
3619
3620 if (HAS_PCH_NOP(dev))
3621 return;
3622
3623 if (HAS_PCH_IBX(dev))
3624 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3625 else
3626 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3627
3628 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3629 I915_WRITE(SDEIMR, ~mask);
3630 }
3631
3632 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3633 {
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635 u32 pm_irqs, gt_irqs;
3636
3637 pm_irqs = gt_irqs = 0;
3638
3639 dev_priv->gt_irq_mask = ~0;
3640 if (HAS_L3_DPF(dev)) {
3641 /* L3 parity interrupt is always unmasked. */
3642 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3643 gt_irqs |= GT_PARITY_ERROR(dev);
3644 }
3645
3646 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3647 if (IS_GEN5(dev)) {
3648 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3649 ILK_BSD_USER_INTERRUPT;
3650 } else {
3651 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3652 }
3653
3654 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3655
3656 if (INTEL_INFO(dev)->gen >= 6) {
3657 /*
3658 * RPS interrupts will get enabled/disabled on demand when RPS
3659 * itself is enabled/disabled.
3660 */
3661 if (HAS_VEBOX(dev))
3662 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3663
3664 dev_priv->pm_irq_mask = 0xffffffff;
3665 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3666 }
3667 }
3668
3669 static int ironlake_irq_postinstall(struct drm_device *dev)
3670 {
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 u32 display_mask, extra_mask;
3673
3674 if (INTEL_INFO(dev)->gen >= 7) {
3675 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3676 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3677 DE_PLANEB_FLIP_DONE_IVB |
3678 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3679 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3680 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3681 DE_DP_A_HOTPLUG_IVB);
3682 } else {
3683 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3684 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3685 DE_AUX_CHANNEL_A |
3686 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3687 DE_POISON);
3688 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3689 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3690 DE_DP_A_HOTPLUG);
3691 }
3692
3693 dev_priv->irq_mask = ~display_mask;
3694
3695 I915_WRITE(HWSTAM, 0xeffe);
3696
3697 ibx_irq_pre_postinstall(dev);
3698
3699 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3700
3701 gen5_gt_irq_postinstall(dev);
3702
3703 ibx_irq_postinstall(dev);
3704
3705 if (IS_IRONLAKE_M(dev)) {
3706 /* Enable PCU event interrupts
3707 *
3708 * spinlocking not required here for correctness since interrupt
3709 * setup is guaranteed to run in single-threaded context. But we
3710 * need it to make the assert_spin_locked happy. */
3711 spin_lock_irq(&dev_priv->irq_lock);
3712 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3713 spin_unlock_irq(&dev_priv->irq_lock);
3714 }
3715
3716 return 0;
3717 }
3718
3719 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3720 {
3721 assert_spin_locked(&dev_priv->irq_lock);
3722
3723 if (dev_priv->display_irqs_enabled)
3724 return;
3725
3726 dev_priv->display_irqs_enabled = true;
3727
3728 if (intel_irqs_enabled(dev_priv)) {
3729 vlv_display_irq_reset(dev_priv);
3730 vlv_display_irq_postinstall(dev_priv);
3731 }
3732 }
3733
3734 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3735 {
3736 assert_spin_locked(&dev_priv->irq_lock);
3737
3738 if (!dev_priv->display_irqs_enabled)
3739 return;
3740
3741 dev_priv->display_irqs_enabled = false;
3742
3743 if (intel_irqs_enabled(dev_priv))
3744 vlv_display_irq_reset(dev_priv);
3745 }
3746
3747
3748 static int valleyview_irq_postinstall(struct drm_device *dev)
3749 {
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751
3752 gen5_gt_irq_postinstall(dev);
3753
3754 spin_lock_irq(&dev_priv->irq_lock);
3755 if (dev_priv->display_irqs_enabled)
3756 vlv_display_irq_postinstall(dev_priv);
3757 spin_unlock_irq(&dev_priv->irq_lock);
3758
3759 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3760 POSTING_READ(VLV_MASTER_IER);
3761
3762 return 0;
3763 }
3764
3765 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3766 {
3767 /* These are interrupts we'll toggle with the ring mask register */
3768 uint32_t gt_interrupts[] = {
3769 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3770 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3771 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3772 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3773 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3774 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3775 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3776 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3777 0,
3778 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3779 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3780 };
3781
3782 if (HAS_L3_DPF(dev_priv))
3783 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3784
3785 dev_priv->pm_irq_mask = 0xffffffff;
3786 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3787 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3788 /*
3789 * RPS interrupts will get enabled/disabled on demand when RPS itself
3790 * is enabled/disabled.
3791 */
3792 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3793 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3794 }
3795
3796 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3797 {
3798 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3799 uint32_t de_pipe_enables;
3800 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3801 u32 de_port_enables;
3802 enum pipe pipe;
3803
3804 if (INTEL_INFO(dev_priv)->gen >= 9) {
3805 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3806 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3807 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3808 GEN9_AUX_CHANNEL_D;
3809 if (IS_BROXTON(dev_priv))
3810 de_port_masked |= BXT_DE_PORT_GMBUS;
3811 } else {
3812 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3813 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3814 }
3815
3816 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3817 GEN8_PIPE_FIFO_UNDERRUN;
3818
3819 de_port_enables = de_port_masked;
3820 if (IS_BROXTON(dev_priv))
3821 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3822 else if (IS_BROADWELL(dev_priv))
3823 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3824
3825 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3826 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3827 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3828
3829 for_each_pipe(dev_priv, pipe)
3830 if (intel_display_power_is_enabled(dev_priv,
3831 POWER_DOMAIN_PIPE(pipe)))
3832 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3833 dev_priv->de_irq_mask[pipe],
3834 de_pipe_enables);
3835
3836 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3837 }
3838
3839 static int gen8_irq_postinstall(struct drm_device *dev)
3840 {
3841 struct drm_i915_private *dev_priv = dev->dev_private;
3842
3843 if (HAS_PCH_SPLIT(dev))
3844 ibx_irq_pre_postinstall(dev);
3845
3846 gen8_gt_irq_postinstall(dev_priv);
3847 gen8_de_irq_postinstall(dev_priv);
3848
3849 if (HAS_PCH_SPLIT(dev))
3850 ibx_irq_postinstall(dev);
3851
3852 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3853 POSTING_READ(GEN8_MASTER_IRQ);
3854
3855 return 0;
3856 }
3857
3858 static int cherryview_irq_postinstall(struct drm_device *dev)
3859 {
3860 struct drm_i915_private *dev_priv = dev->dev_private;
3861
3862 gen8_gt_irq_postinstall(dev_priv);
3863
3864 spin_lock_irq(&dev_priv->irq_lock);
3865 if (dev_priv->display_irqs_enabled)
3866 vlv_display_irq_postinstall(dev_priv);
3867 spin_unlock_irq(&dev_priv->irq_lock);
3868
3869 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3870 POSTING_READ(GEN8_MASTER_IRQ);
3871
3872 return 0;
3873 }
3874
3875 static void gen8_irq_uninstall(struct drm_device *dev)
3876 {
3877 struct drm_i915_private *dev_priv = dev->dev_private;
3878
3879 if (!dev_priv)
3880 return;
3881
3882 gen8_irq_reset(dev);
3883 }
3884
3885 static void valleyview_irq_uninstall(struct drm_device *dev)
3886 {
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888
3889 if (!dev_priv)
3890 return;
3891
3892 I915_WRITE(VLV_MASTER_IER, 0);
3893 POSTING_READ(VLV_MASTER_IER);
3894
3895 gen5_gt_irq_reset(dev);
3896
3897 I915_WRITE(HWSTAM, 0xffffffff);
3898
3899 spin_lock_irq(&dev_priv->irq_lock);
3900 if (dev_priv->display_irqs_enabled)
3901 vlv_display_irq_reset(dev_priv);
3902 spin_unlock_irq(&dev_priv->irq_lock);
3903 }
3904
3905 static void cherryview_irq_uninstall(struct drm_device *dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 if (!dev_priv)
3910 return;
3911
3912 I915_WRITE(GEN8_MASTER_IRQ, 0);
3913 POSTING_READ(GEN8_MASTER_IRQ);
3914
3915 gen8_gt_irq_reset(dev_priv);
3916
3917 GEN5_IRQ_RESET(GEN8_PCU_);
3918
3919 spin_lock_irq(&dev_priv->irq_lock);
3920 if (dev_priv->display_irqs_enabled)
3921 vlv_display_irq_reset(dev_priv);
3922 spin_unlock_irq(&dev_priv->irq_lock);
3923 }
3924
3925 static void ironlake_irq_uninstall(struct drm_device *dev)
3926 {
3927 struct drm_i915_private *dev_priv = dev->dev_private;
3928
3929 if (!dev_priv)
3930 return;
3931
3932 ironlake_irq_reset(dev);
3933 }
3934
3935 static void i8xx_irq_preinstall(struct drm_device * dev)
3936 {
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938 int pipe;
3939
3940 for_each_pipe(dev_priv, pipe)
3941 I915_WRITE(PIPESTAT(pipe), 0);
3942 I915_WRITE16(IMR, 0xffff);
3943 I915_WRITE16(IER, 0x0);
3944 POSTING_READ16(IER);
3945 }
3946
3947 static int i8xx_irq_postinstall(struct drm_device *dev)
3948 {
3949 struct drm_i915_private *dev_priv = dev->dev_private;
3950
3951 I915_WRITE16(EMR,
3952 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3953
3954 /* Unmask the interrupts that we always want on. */
3955 dev_priv->irq_mask =
3956 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3957 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3958 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3959 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3960 I915_WRITE16(IMR, dev_priv->irq_mask);
3961
3962 I915_WRITE16(IER,
3963 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3964 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3965 I915_USER_INTERRUPT);
3966 POSTING_READ16(IER);
3967
3968 /* Interrupt setup is already guaranteed to be single-threaded, this is
3969 * just to make the assert_spin_locked check happy. */
3970 spin_lock_irq(&dev_priv->irq_lock);
3971 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3972 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3973 spin_unlock_irq(&dev_priv->irq_lock);
3974
3975 return 0;
3976 }
3977
3978 /*
3979 * Returns true when a page flip has completed.
3980 */
3981 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3982 int plane, int pipe, u32 iir)
3983 {
3984 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3985
3986 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3987 return false;
3988
3989 if ((iir & flip_pending) == 0)
3990 goto check_page_flip;
3991
3992 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3993 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3994 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3995 * the flip is completed (no longer pending). Since this doesn't raise
3996 * an interrupt per se, we watch for the change at vblank.
3997 */
3998 if (I915_READ16(ISR) & flip_pending)
3999 goto check_page_flip;
4000
4001 intel_prepare_page_flip(dev_priv, plane);
4002 intel_finish_page_flip(dev_priv, pipe);
4003 return true;
4004
4005 check_page_flip:
4006 intel_check_page_flip(dev_priv, pipe);
4007 return false;
4008 }
4009
4010 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4011 {
4012 struct drm_device *dev = arg;
4013 struct drm_i915_private *dev_priv = dev->dev_private;
4014 u16 iir, new_iir;
4015 u32 pipe_stats[2];
4016 int pipe;
4017 u16 flip_mask =
4018 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4019 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4020 irqreturn_t ret;
4021
4022 if (!intel_irqs_enabled(dev_priv))
4023 return IRQ_NONE;
4024
4025 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4026 disable_rpm_wakeref_asserts(dev_priv);
4027
4028 ret = IRQ_NONE;
4029 iir = I915_READ16(IIR);
4030 if (iir == 0)
4031 goto out;
4032
4033 while (iir & ~flip_mask) {
4034 /* Can't rely on pipestat interrupt bit in iir as it might
4035 * have been cleared after the pipestat interrupt was received.
4036 * It doesn't set the bit in iir again, but it still produces
4037 * interrupts (for non-MSI).
4038 */
4039 spin_lock(&dev_priv->irq_lock);
4040 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4041 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4042
4043 for_each_pipe(dev_priv, pipe) {
4044 i915_reg_t reg = PIPESTAT(pipe);
4045 pipe_stats[pipe] = I915_READ(reg);
4046
4047 /*
4048 * Clear the PIPE*STAT regs before the IIR
4049 */
4050 if (pipe_stats[pipe] & 0x8000ffff)
4051 I915_WRITE(reg, pipe_stats[pipe]);
4052 }
4053 spin_unlock(&dev_priv->irq_lock);
4054
4055 I915_WRITE16(IIR, iir & ~flip_mask);
4056 new_iir = I915_READ16(IIR); /* Flush posted writes */
4057
4058 if (iir & I915_USER_INTERRUPT)
4059 notify_ring(&dev_priv->engine[RCS]);
4060
4061 for_each_pipe(dev_priv, pipe) {
4062 int plane = pipe;
4063 if (HAS_FBC(dev_priv))
4064 plane = !plane;
4065
4066 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4067 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4068 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4069
4070 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4071 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4072
4073 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4074 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4075 pipe);
4076 }
4077
4078 iir = new_iir;
4079 }
4080 ret = IRQ_HANDLED;
4081
4082 out:
4083 enable_rpm_wakeref_asserts(dev_priv);
4084
4085 return ret;
4086 }
4087
4088 static void i8xx_irq_uninstall(struct drm_device * dev)
4089 {
4090 struct drm_i915_private *dev_priv = dev->dev_private;
4091 int pipe;
4092
4093 for_each_pipe(dev_priv, pipe) {
4094 /* Clear enable bits; then clear status bits */
4095 I915_WRITE(PIPESTAT(pipe), 0);
4096 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4097 }
4098 I915_WRITE16(IMR, 0xffff);
4099 I915_WRITE16(IER, 0x0);
4100 I915_WRITE16(IIR, I915_READ16(IIR));
4101 }
4102
4103 static void i915_irq_preinstall(struct drm_device * dev)
4104 {
4105 struct drm_i915_private *dev_priv = dev->dev_private;
4106 int pipe;
4107
4108 if (I915_HAS_HOTPLUG(dev)) {
4109 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4110 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4111 }
4112
4113 I915_WRITE16(HWSTAM, 0xeffe);
4114 for_each_pipe(dev_priv, pipe)
4115 I915_WRITE(PIPESTAT(pipe), 0);
4116 I915_WRITE(IMR, 0xffffffff);
4117 I915_WRITE(IER, 0x0);
4118 POSTING_READ(IER);
4119 }
4120
4121 static int i915_irq_postinstall(struct drm_device *dev)
4122 {
4123 struct drm_i915_private *dev_priv = dev->dev_private;
4124 u32 enable_mask;
4125
4126 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4127
4128 /* Unmask the interrupts that we always want on. */
4129 dev_priv->irq_mask =
4130 ~(I915_ASLE_INTERRUPT |
4131 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4132 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4133 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4134 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4135
4136 enable_mask =
4137 I915_ASLE_INTERRUPT |
4138 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4139 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4140 I915_USER_INTERRUPT;
4141
4142 if (I915_HAS_HOTPLUG(dev)) {
4143 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4144 POSTING_READ(PORT_HOTPLUG_EN);
4145
4146 /* Enable in IER... */
4147 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4148 /* and unmask in IMR */
4149 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4150 }
4151
4152 I915_WRITE(IMR, dev_priv->irq_mask);
4153 I915_WRITE(IER, enable_mask);
4154 POSTING_READ(IER);
4155
4156 i915_enable_asle_pipestat(dev_priv);
4157
4158 /* Interrupt setup is already guaranteed to be single-threaded, this is
4159 * just to make the assert_spin_locked check happy. */
4160 spin_lock_irq(&dev_priv->irq_lock);
4161 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4162 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4163 spin_unlock_irq(&dev_priv->irq_lock);
4164
4165 return 0;
4166 }
4167
4168 /*
4169 * Returns true when a page flip has completed.
4170 */
4171 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4172 int plane, int pipe, u32 iir)
4173 {
4174 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4175
4176 if (!intel_pipe_handle_vblank(dev_priv, pipe))
4177 return false;
4178
4179 if ((iir & flip_pending) == 0)
4180 goto check_page_flip;
4181
4182 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4183 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4184 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4185 * the flip is completed (no longer pending). Since this doesn't raise
4186 * an interrupt per se, we watch for the change at vblank.
4187 */
4188 if (I915_READ(ISR) & flip_pending)
4189 goto check_page_flip;
4190
4191 intel_prepare_page_flip(dev_priv, plane);
4192 intel_finish_page_flip(dev_priv, pipe);
4193 return true;
4194
4195 check_page_flip:
4196 intel_check_page_flip(dev_priv, pipe);
4197 return false;
4198 }
4199
4200 static irqreturn_t i915_irq_handler(int irq, void *arg)
4201 {
4202 struct drm_device *dev = arg;
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4205 u32 flip_mask =
4206 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4207 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4208 int pipe, ret = IRQ_NONE;
4209
4210 if (!intel_irqs_enabled(dev_priv))
4211 return IRQ_NONE;
4212
4213 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4214 disable_rpm_wakeref_asserts(dev_priv);
4215
4216 iir = I915_READ(IIR);
4217 do {
4218 bool irq_received = (iir & ~flip_mask) != 0;
4219 bool blc_event = false;
4220
4221 /* Can't rely on pipestat interrupt bit in iir as it might
4222 * have been cleared after the pipestat interrupt was received.
4223 * It doesn't set the bit in iir again, but it still produces
4224 * interrupts (for non-MSI).
4225 */
4226 spin_lock(&dev_priv->irq_lock);
4227 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4228 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4229
4230 for_each_pipe(dev_priv, pipe) {
4231 i915_reg_t reg = PIPESTAT(pipe);
4232 pipe_stats[pipe] = I915_READ(reg);
4233
4234 /* Clear the PIPE*STAT regs before the IIR */
4235 if (pipe_stats[pipe] & 0x8000ffff) {
4236 I915_WRITE(reg, pipe_stats[pipe]);
4237 irq_received = true;
4238 }
4239 }
4240 spin_unlock(&dev_priv->irq_lock);
4241
4242 if (!irq_received)
4243 break;
4244
4245 /* Consume port. Then clear IIR or we'll miss events */
4246 if (I915_HAS_HOTPLUG(dev_priv) &&
4247 iir & I915_DISPLAY_PORT_INTERRUPT) {
4248 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4249 if (hotplug_status)
4250 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4251 }
4252
4253 I915_WRITE(IIR, iir & ~flip_mask);
4254 new_iir = I915_READ(IIR); /* Flush posted writes */
4255
4256 if (iir & I915_USER_INTERRUPT)
4257 notify_ring(&dev_priv->engine[RCS]);
4258
4259 for_each_pipe(dev_priv, pipe) {
4260 int plane = pipe;
4261 if (HAS_FBC(dev_priv))
4262 plane = !plane;
4263
4264 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4265 i915_handle_vblank(dev_priv, plane, pipe, iir))
4266 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4267
4268 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4269 blc_event = true;
4270
4271 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4272 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4273
4274 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4275 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4276 pipe);
4277 }
4278
4279 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4280 intel_opregion_asle_intr(dev_priv);
4281
4282 /* With MSI, interrupts are only generated when iir
4283 * transitions from zero to nonzero. If another bit got
4284 * set while we were handling the existing iir bits, then
4285 * we would never get another interrupt.
4286 *
4287 * This is fine on non-MSI as well, as if we hit this path
4288 * we avoid exiting the interrupt handler only to generate
4289 * another one.
4290 *
4291 * Note that for MSI this could cause a stray interrupt report
4292 * if an interrupt landed in the time between writing IIR and
4293 * the posting read. This should be rare enough to never
4294 * trigger the 99% of 100,000 interrupts test for disabling
4295 * stray interrupts.
4296 */
4297 ret = IRQ_HANDLED;
4298 iir = new_iir;
4299 } while (iir & ~flip_mask);
4300
4301 enable_rpm_wakeref_asserts(dev_priv);
4302
4303 return ret;
4304 }
4305
4306 static void i915_irq_uninstall(struct drm_device * dev)
4307 {
4308 struct drm_i915_private *dev_priv = dev->dev_private;
4309 int pipe;
4310
4311 if (I915_HAS_HOTPLUG(dev)) {
4312 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4313 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4314 }
4315
4316 I915_WRITE16(HWSTAM, 0xffff);
4317 for_each_pipe(dev_priv, pipe) {
4318 /* Clear enable bits; then clear status bits */
4319 I915_WRITE(PIPESTAT(pipe), 0);
4320 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4321 }
4322 I915_WRITE(IMR, 0xffffffff);
4323 I915_WRITE(IER, 0x0);
4324
4325 I915_WRITE(IIR, I915_READ(IIR));
4326 }
4327
4328 static void i965_irq_preinstall(struct drm_device * dev)
4329 {
4330 struct drm_i915_private *dev_priv = dev->dev_private;
4331 int pipe;
4332
4333 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4334 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4335
4336 I915_WRITE(HWSTAM, 0xeffe);
4337 for_each_pipe(dev_priv, pipe)
4338 I915_WRITE(PIPESTAT(pipe), 0);
4339 I915_WRITE(IMR, 0xffffffff);
4340 I915_WRITE(IER, 0x0);
4341 POSTING_READ(IER);
4342 }
4343
4344 static int i965_irq_postinstall(struct drm_device *dev)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 u32 enable_mask;
4348 u32 error_mask;
4349
4350 /* Unmask the interrupts that we always want on. */
4351 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4352 I915_DISPLAY_PORT_INTERRUPT |
4353 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4354 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4355 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4356 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4357 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4358
4359 enable_mask = ~dev_priv->irq_mask;
4360 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4361 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4362 enable_mask |= I915_USER_INTERRUPT;
4363
4364 if (IS_G4X(dev_priv))
4365 enable_mask |= I915_BSD_USER_INTERRUPT;
4366
4367 /* Interrupt setup is already guaranteed to be single-threaded, this is
4368 * just to make the assert_spin_locked check happy. */
4369 spin_lock_irq(&dev_priv->irq_lock);
4370 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4371 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4372 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4373 spin_unlock_irq(&dev_priv->irq_lock);
4374
4375 /*
4376 * Enable some error detection, note the instruction error mask
4377 * bit is reserved, so we leave it masked.
4378 */
4379 if (IS_G4X(dev_priv)) {
4380 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4381 GM45_ERROR_MEM_PRIV |
4382 GM45_ERROR_CP_PRIV |
4383 I915_ERROR_MEMORY_REFRESH);
4384 } else {
4385 error_mask = ~(I915_ERROR_PAGE_TABLE |
4386 I915_ERROR_MEMORY_REFRESH);
4387 }
4388 I915_WRITE(EMR, error_mask);
4389
4390 I915_WRITE(IMR, dev_priv->irq_mask);
4391 I915_WRITE(IER, enable_mask);
4392 POSTING_READ(IER);
4393
4394 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4395 POSTING_READ(PORT_HOTPLUG_EN);
4396
4397 i915_enable_asle_pipestat(dev_priv);
4398
4399 return 0;
4400 }
4401
4402 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4403 {
4404 u32 hotplug_en;
4405
4406 assert_spin_locked(&dev_priv->irq_lock);
4407
4408 /* Note HDMI and DP share hotplug bits */
4409 /* enable bits are the same for all generations */
4410 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4411 /* Programming the CRT detection parameters tends
4412 to generate a spurious hotplug event about three
4413 seconds later. So just do it once.
4414 */
4415 if (IS_G4X(dev_priv))
4416 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4417 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4418
4419 /* Ignore TV since it's buggy */
4420 i915_hotplug_interrupt_update_locked(dev_priv,
4421 HOTPLUG_INT_EN_MASK |
4422 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4423 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4424 hotplug_en);
4425 }
4426
4427 static irqreturn_t i965_irq_handler(int irq, void *arg)
4428 {
4429 struct drm_device *dev = arg;
4430 struct drm_i915_private *dev_priv = dev->dev_private;
4431 u32 iir, new_iir;
4432 u32 pipe_stats[I915_MAX_PIPES];
4433 int ret = IRQ_NONE, pipe;
4434 u32 flip_mask =
4435 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4436 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4437
4438 if (!intel_irqs_enabled(dev_priv))
4439 return IRQ_NONE;
4440
4441 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4442 disable_rpm_wakeref_asserts(dev_priv);
4443
4444 iir = I915_READ(IIR);
4445
4446 for (;;) {
4447 bool irq_received = (iir & ~flip_mask) != 0;
4448 bool blc_event = false;
4449
4450 /* Can't rely on pipestat interrupt bit in iir as it might
4451 * have been cleared after the pipestat interrupt was received.
4452 * It doesn't set the bit in iir again, but it still produces
4453 * interrupts (for non-MSI).
4454 */
4455 spin_lock(&dev_priv->irq_lock);
4456 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4457 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4458
4459 for_each_pipe(dev_priv, pipe) {
4460 i915_reg_t reg = PIPESTAT(pipe);
4461 pipe_stats[pipe] = I915_READ(reg);
4462
4463 /*
4464 * Clear the PIPE*STAT regs before the IIR
4465 */
4466 if (pipe_stats[pipe] & 0x8000ffff) {
4467 I915_WRITE(reg, pipe_stats[pipe]);
4468 irq_received = true;
4469 }
4470 }
4471 spin_unlock(&dev_priv->irq_lock);
4472
4473 if (!irq_received)
4474 break;
4475
4476 ret = IRQ_HANDLED;
4477
4478 /* Consume port. Then clear IIR or we'll miss events */
4479 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4480 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4481 if (hotplug_status)
4482 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4483 }
4484
4485 I915_WRITE(IIR, iir & ~flip_mask);
4486 new_iir = I915_READ(IIR); /* Flush posted writes */
4487
4488 if (iir & I915_USER_INTERRUPT)
4489 notify_ring(&dev_priv->engine[RCS]);
4490 if (iir & I915_BSD_USER_INTERRUPT)
4491 notify_ring(&dev_priv->engine[VCS]);
4492
4493 for_each_pipe(dev_priv, pipe) {
4494 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4495 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4496 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4497
4498 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4499 blc_event = true;
4500
4501 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4502 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4503
4504 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4505 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4506 }
4507
4508 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4509 intel_opregion_asle_intr(dev_priv);
4510
4511 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4512 gmbus_irq_handler(dev_priv);
4513
4514 /* With MSI, interrupts are only generated when iir
4515 * transitions from zero to nonzero. If another bit got
4516 * set while we were handling the existing iir bits, then
4517 * we would never get another interrupt.
4518 *
4519 * This is fine on non-MSI as well, as if we hit this path
4520 * we avoid exiting the interrupt handler only to generate
4521 * another one.
4522 *
4523 * Note that for MSI this could cause a stray interrupt report
4524 * if an interrupt landed in the time between writing IIR and
4525 * the posting read. This should be rare enough to never
4526 * trigger the 99% of 100,000 interrupts test for disabling
4527 * stray interrupts.
4528 */
4529 iir = new_iir;
4530 }
4531
4532 enable_rpm_wakeref_asserts(dev_priv);
4533
4534 return ret;
4535 }
4536
4537 static void i965_irq_uninstall(struct drm_device * dev)
4538 {
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 int pipe;
4541
4542 if (!dev_priv)
4543 return;
4544
4545 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4546 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4547
4548 I915_WRITE(HWSTAM, 0xffffffff);
4549 for_each_pipe(dev_priv, pipe)
4550 I915_WRITE(PIPESTAT(pipe), 0);
4551 I915_WRITE(IMR, 0xffffffff);
4552 I915_WRITE(IER, 0x0);
4553
4554 for_each_pipe(dev_priv, pipe)
4555 I915_WRITE(PIPESTAT(pipe),
4556 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4557 I915_WRITE(IIR, I915_READ(IIR));
4558 }
4559
4560 /**
4561 * intel_irq_init - initializes irq support
4562 * @dev_priv: i915 device instance
4563 *
4564 * This function initializes all the irq support including work items, timers
4565 * and all the vtables. It does not setup the interrupt itself though.
4566 */
4567 void intel_irq_init(struct drm_i915_private *dev_priv)
4568 {
4569 struct drm_device *dev = dev_priv->dev;
4570
4571 intel_hpd_init_work(dev_priv);
4572
4573 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4574 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4575
4576 /* Let's track the enabled rps events */
4577 if (IS_VALLEYVIEW(dev_priv))
4578 /* WaGsvRC0ResidencyMethod:vlv */
4579 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4580 else
4581 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4582
4583 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4584 i915_hangcheck_elapsed);
4585
4586 if (IS_GEN2(dev_priv)) {
4587 dev->max_vblank_count = 0;
4588 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4589 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4590 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4591 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4592 } else {
4593 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4594 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4595 }
4596
4597 /*
4598 * Opt out of the vblank disable timer on everything except gen2.
4599 * Gen2 doesn't have a hardware frame counter and so depends on
4600 * vblank interrupts to produce sane vblank seuquence numbers.
4601 */
4602 if (!IS_GEN2(dev_priv))
4603 dev->vblank_disable_immediate = true;
4604
4605 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4606 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4607
4608 if (IS_CHERRYVIEW(dev_priv)) {
4609 dev->driver->irq_handler = cherryview_irq_handler;
4610 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4611 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4612 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4613 dev->driver->enable_vblank = valleyview_enable_vblank;
4614 dev->driver->disable_vblank = valleyview_disable_vblank;
4615 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4616 } else if (IS_VALLEYVIEW(dev_priv)) {
4617 dev->driver->irq_handler = valleyview_irq_handler;
4618 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4619 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4620 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4621 dev->driver->enable_vblank = valleyview_enable_vblank;
4622 dev->driver->disable_vblank = valleyview_disable_vblank;
4623 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4624 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4625 dev->driver->irq_handler = gen8_irq_handler;
4626 dev->driver->irq_preinstall = gen8_irq_reset;
4627 dev->driver->irq_postinstall = gen8_irq_postinstall;
4628 dev->driver->irq_uninstall = gen8_irq_uninstall;
4629 dev->driver->enable_vblank = gen8_enable_vblank;
4630 dev->driver->disable_vblank = gen8_disable_vblank;
4631 if (IS_BROXTON(dev))
4632 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4633 else if (HAS_PCH_SPT(dev))
4634 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4635 else
4636 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4637 } else if (HAS_PCH_SPLIT(dev)) {
4638 dev->driver->irq_handler = ironlake_irq_handler;
4639 dev->driver->irq_preinstall = ironlake_irq_reset;
4640 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4641 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4642 dev->driver->enable_vblank = ironlake_enable_vblank;
4643 dev->driver->disable_vblank = ironlake_disable_vblank;
4644 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4645 } else {
4646 if (INTEL_INFO(dev_priv)->gen == 2) {
4647 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4648 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4649 dev->driver->irq_handler = i8xx_irq_handler;
4650 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4651 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4652 dev->driver->irq_preinstall = i915_irq_preinstall;
4653 dev->driver->irq_postinstall = i915_irq_postinstall;
4654 dev->driver->irq_uninstall = i915_irq_uninstall;
4655 dev->driver->irq_handler = i915_irq_handler;
4656 } else {
4657 dev->driver->irq_preinstall = i965_irq_preinstall;
4658 dev->driver->irq_postinstall = i965_irq_postinstall;
4659 dev->driver->irq_uninstall = i965_irq_uninstall;
4660 dev->driver->irq_handler = i965_irq_handler;
4661 }
4662 if (I915_HAS_HOTPLUG(dev_priv))
4663 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4664 dev->driver->enable_vblank = i915_enable_vblank;
4665 dev->driver->disable_vblank = i915_disable_vblank;
4666 }
4667 }
4668
4669 /**
4670 * intel_irq_install - enables the hardware interrupt
4671 * @dev_priv: i915 device instance
4672 *
4673 * This function enables the hardware interrupt handling, but leaves the hotplug
4674 * handling still disabled. It is called after intel_irq_init().
4675 *
4676 * In the driver load and resume code we need working interrupts in a few places
4677 * but don't want to deal with the hassle of concurrent probe and hotplug
4678 * workers. Hence the split into this two-stage approach.
4679 */
4680 int intel_irq_install(struct drm_i915_private *dev_priv)
4681 {
4682 /*
4683 * We enable some interrupt sources in our postinstall hooks, so mark
4684 * interrupts as enabled _before_ actually enabling them to avoid
4685 * special cases in our ordering checks.
4686 */
4687 dev_priv->pm.irqs_enabled = true;
4688
4689 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4690 }
4691
4692 /**
4693 * intel_irq_uninstall - finilizes all irq handling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This stops interrupt and hotplug handling and unregisters and frees all
4697 * resources acquired in the init functions.
4698 */
4699 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4700 {
4701 drm_irq_uninstall(dev_priv->dev);
4702 intel_hpd_cancel_work(dev_priv);
4703 dev_priv->pm.irqs_enabled = false;
4704 }
4705
4706 /**
4707 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to disable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4714 {
4715 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4716 dev_priv->pm.irqs_enabled = false;
4717 synchronize_irq(dev_priv->dev->irq);
4718 }
4719
4720 /**
4721 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4722 * @dev_priv: i915 device instance
4723 *
4724 * This function is used to enable interrupts at runtime, both in the runtime
4725 * pm and the system suspend/resume code.
4726 */
4727 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4728 {
4729 dev_priv->pm.irqs_enabled = true;
4730 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4731 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4732 }