]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
spi: cadence: Init HW after reading devicetree attributes
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(dev_priv, pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 /**
252 * bdw_update_pm_irq - update GT interrupt 2
253 * @dev_priv: driver private
254 * @interrupt_mask: mask of interrupt bits to update
255 * @enabled_irq_mask: mask of interrupt bits to enable
256 *
257 * Copied from the snb function, updated with relevant register offsets
258 */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 uint32_t new_val;
264
265 assert_spin_locked(&dev_priv->irq_lock);
266
267 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 return;
269
270 new_val = dev_priv->pm_irq_mask;
271 new_val &= ~interrupt_mask;
272 new_val |= (~enabled_irq_mask & interrupt_mask);
273
274 if (new_val != dev_priv->pm_irq_mask) {
275 dev_priv->pm_irq_mask = new_val;
276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 POSTING_READ(GEN8_GT_IMR(2));
278 }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 enum pipe pipe;
295 struct intel_crtc *crtc;
296
297 assert_spin_locked(&dev_priv->irq_lock);
298
299 for_each_pipe(dev_priv, pipe) {
300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302 if (crtc->pch_fifo_underrun_disabled)
303 return false;
304 }
305
306 return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *crtc;
313 unsigned long flags;
314
315 spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317 for_each_intel_crtc(dev, crtc) {
318 u32 reg = PIPESTAT(crtc->pipe);
319 u32 pipestat;
320
321 if (crtc->cpu_fifo_underrun_disabled)
322 continue;
323
324 pipestat = I915_READ(reg) & 0xffff0000;
325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 continue;
327
328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 POSTING_READ(reg);
330
331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 }
333
334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 enum pipe pipe,
339 bool enable, bool old)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 u32 reg = PIPESTAT(pipe);
343 u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345 assert_spin_locked(&dev_priv->irq_lock);
346
347 if (enable) {
348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 POSTING_READ(reg);
350 } else {
351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 enum pipe pipe, bool enable)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 DE_PIPEB_FIFO_UNDERRUN;
362
363 if (enable)
364 ironlake_enable_display_irq(dev_priv, bit);
365 else
366 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 enum pipe pipe,
371 bool enable, bool old)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 if (enable) {
375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377 if (!ivb_can_enable_err_int(dev))
378 return;
379
380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 } else {
382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384 if (old &&
385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 pipe_name(pipe));
388 }
389 }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 enum pipe pipe, bool enable)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 assert_spin_locked(&dev_priv->irq_lock);
398
399 if (enable)
400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 else
402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408 * ibx_display_interrupt_update - update SDEIMR
409 * @dev_priv: driver private
410 * @interrupt_mask: mask of interrupt bits to update
411 * @enabled_irq_mask: mask of interrupt bits to enable
412 */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 uint32_t interrupt_mask,
415 uint32_t enabled_irq_mask)
416 {
417 uint32_t sdeimr = I915_READ(SDEIMR);
418 sdeimr &= ~interrupt_mask;
419 sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 return;
425
426 I915_WRITE(SDEIMR, sdeimr);
427 POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 enum transcoder pch_transcoder,
436 bool enable)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442 if (enable)
443 ibx_enable_display_interrupt(dev_priv, bit);
444 else
445 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 enum transcoder pch_transcoder,
450 bool enable, bool old)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453
454 if (enable) {
455 I915_WRITE(SERR_INT,
456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458 if (!cpt_can_enable_serr_int(dev))
459 return;
460
461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 } else {
463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465 if (old && I915_READ(SERR_INT) &
466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 transcoder_name(pch_transcoder));
469 }
470 }
471 }
472
473 /**
474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475 * @dev: drm device
476 * @pipe: pipe
477 * @enable: true if we want to report FIFO underrun errors, false otherwise
478 *
479 * This function makes us disable or enable CPU fifo underruns for a specific
480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481 * reporting for one pipe may also disable all the other CPU error interruts for
482 * the other pipes, due to the fact that there's just one interrupt mask/enable
483 * bit for all the pipes.
484 *
485 * Returns the previous state of underrun reporting.
486 */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 enum pipe pipe, bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 bool old;
494
495 assert_spin_locked(&dev_priv->irq_lock);
496
497 old = !intel_crtc->cpu_fifo_underrun_disabled;
498 intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500 if (HAS_GMCH_DISPLAY(dev))
501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 else if (IS_GEN5(dev) || IS_GEN6(dev))
503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 else if (IS_GEN7(dev))
505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 else if (IS_GEN8(dev))
507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509 return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 enum pipe pipe, bool enable)
514 {
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 unsigned long flags;
517 bool ret;
518
519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523 return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 enum pipe pipe)
528 {
529 struct drm_i915_private *dev_priv = dev->dev_private;
530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533 return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538 * @dev: drm device
539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540 * @enable: true if we want to report FIFO underrun errors, false otherwise
541 *
542 * This function makes us disable or enable PCH fifo underruns for a specific
543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544 * underrun reporting for one transcoder may also disable all the other PCH
545 * error interruts for the other transcoders, due to the fact that there's just
546 * one interrupt mask/enable bit for all the transcoders.
547 *
548 * Returns the previous state of underrun reporting.
549 */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 enum transcoder pch_transcoder,
552 bool enable)
553 {
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 unsigned long flags;
558 bool old;
559
560 /*
561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 * has only one pch transcoder A that all pipes can use. To avoid racy
563 * pch transcoder -> pipe lookups from interrupt code simply store the
564 * underrun statistics in crtc A. Since we never expose this anywhere
565 * nor use it outside of the fifo underrun code here using the "wrong"
566 * crtc on LPT won't cause issues.
567 */
568
569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571 old = !intel_crtc->pch_fifo_underrun_disabled;
572 intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574 if (HAS_PCH_IBX(dev))
575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 else
577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 u32 enable_mask, u32 status_mask)
587 {
588 u32 reg = PIPESTAT(pipe);
589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591 assert_spin_locked(&dev_priv->irq_lock);
592
593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 pipe_name(pipe), enable_mask, status_mask))
597 return;
598
599 if ((pipestat & enable_mask) == enable_mask)
600 return;
601
602 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604 /* Enable the interrupt, clear any pending status */
605 pipestat |= enable_mask | status_mask;
606 I915_WRITE(reg, pipestat);
607 POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 u32 enable_mask, u32 status_mask)
613 {
614 u32 reg = PIPESTAT(pipe);
615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617 assert_spin_locked(&dev_priv->irq_lock);
618
619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 pipe_name(pipe), enable_mask, status_mask))
623 return;
624
625 if ((pipestat & enable_mask) == 0)
626 return;
627
628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630 pipestat &= ~enable_mask;
631 I915_WRITE(reg, pipestat);
632 POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 u32 enable_mask = status_mask << 16;
638
639 /*
640 * On pipe A we don't support the PSR interrupt yet,
641 * on pipe B and C the same bit MBZ.
642 */
643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 return 0;
645 /*
646 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 * A the same bit is for perf counters which we don't use either.
648 */
649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 return 0;
651
652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660 return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 u32 status_mask)
666 {
667 u32 enable_mask;
668
669 if (IS_VALLEYVIEW(dev_priv->dev))
670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 status_mask);
672 else
673 enable_mask = status_mask << 16;
674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 u32 status_mask)
680 {
681 u32 enable_mask;
682
683 if (IS_VALLEYVIEW(dev_priv->dev))
684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 status_mask);
686 else
687 enable_mask = status_mask << 16;
688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693 */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 unsigned long irqflags;
698
699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 return;
701
702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 if (INTEL_INFO(dev)->gen >= 4)
706 i915_enable_pipestat(dev_priv, PIPE_A,
707 PIPE_LEGACY_BLC_EVENT_STATUS);
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713 * i915_pipe_enabled - check if a pipe is enabled
714 * @dev: DRM device
715 * @pipe: pipe to check
716 *
717 * Reading certain registers when the pipe is disabled can hang the chip.
718 * Use this routine to make sure the PLL is running and the pipe is active
719 * before reading such registers if unsure.
720 */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 /* Locking is horribly broken here, but whatever. */
728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731 return intel_crtc->active;
732 } else {
733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 }
735 }
736
737 /*
738 * This timing diagram depicts the video signal in and
739 * around the vertical blanking period.
740 *
741 * Assumptions about the fictitious mode used in this example:
742 * vblank_start >= 3
743 * vsync_start = vblank_start + 1
744 * vsync_end = vblank_start + 2
745 * vtotal = vblank_start + 3
746 *
747 * start of vblank:
748 * latch double buffered registers
749 * increment frame counter (ctg+)
750 * generate start of vblank interrupt (gen4+)
751 * |
752 * | frame start:
753 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
754 * | may be shifted forward 1-3 extra lines via PIPECONF
755 * | |
756 * | | start of vsync:
757 * | | generate vsync interrupt
758 * | | |
759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
761 * ----va---> <-----------------vb--------------------> <--------va-------------
762 * | | <----vs-----> |
763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766 * | | |
767 * last visible pixel first visible pixel
768 * | increment frame counter (gen3/4)
769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
770 *
771 * x = horizontal active
772 * _ = horizontal blanking
773 * hs = horizontal sync
774 * va = vertical active
775 * vb = vertical blanking
776 * vs = vertical sync
777 * vbs = vblank_start (number)
778 *
779 * Summary:
780 * - most events happen at the start of horizontal sync
781 * - frame start happens at the start of horizontal blank, 1-4 lines
782 * (depending on PIPECONF settings) after the start of vblank
783 * - gen3/4 pixel and frame counter are synchronized with the start
784 * of horizontal active on the first line of vertical active
785 */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 /* Gen2 doesn't have a hardware frame counter */
790 return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794 * we use as a pipe index
795 */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 unsigned long high_frame;
800 unsigned long low_frame;
801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803 if (!i915_pipe_enabled(dev, pipe)) {
804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 "pipe %c\n", pipe_name(pipe));
806 return 0;
807 }
808
809 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 struct intel_crtc *intel_crtc =
811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 const struct drm_display_mode *mode =
813 &intel_crtc->config.adjusted_mode;
814
815 htotal = mode->crtc_htotal;
816 hsync_start = mode->crtc_hsync_start;
817 vbl_start = mode->crtc_vblank_start;
818 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 } else {
821 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 }
830
831 /* Convert to pixel count */
832 vbl_start *= htotal;
833
834 /* Start of vblank event occurs at start of hsync */
835 vbl_start -= htotal - hsync_start;
836
837 high_frame = PIPEFRAME(pipe);
838 low_frame = PIPEFRAMEPIXEL(pipe);
839
840 /*
841 * High & low register fields aren't synchronized, so make sure
842 * we get a low value that's stable across two reads of the high
843 * register.
844 */
845 do {
846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 low = I915_READ(low_frame);
848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 } while (high1 != high2);
850
851 high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 pixel = low & PIPE_PIXEL_MASK;
853 low >>= PIPE_FRAME_LOW_SHIFT;
854
855 /*
856 * The frame counter increments at beginning of active.
857 * Cook up a vblank counter by also checking the pixel
858 * counter against vblank start.
859 */
860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868 if (!i915_pipe_enabled(dev, pipe)) {
869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 "pipe %c\n", pipe_name(pipe));
871 return 0;
872 }
873
874 return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 struct drm_device *dev = crtc->base.dev;
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 enum pipe pipe = crtc->pipe;
886 int position, vtotal;
887
888 vtotal = mode->crtc_vtotal;
889 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 vtotal /= 2;
891
892 if (IS_GEN2(dev))
893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 else
895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897 /*
898 * See update_scanline_offset() for the details on the
899 * scanline_offset adjustment.
900 */
901 return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 unsigned int flags, int *vpos, int *hpos,
906 ktime_t *stime, ktime_t *etime)
907 {
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 int position;
913 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 bool in_vbl = true;
915 int ret = 0;
916 unsigned long irqflags;
917
918 if (!intel_crtc->active) {
919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 "pipe %c\n", pipe_name(pipe));
921 return 0;
922 }
923
924 htotal = mode->crtc_htotal;
925 hsync_start = mode->crtc_hsync_start;
926 vtotal = mode->crtc_vtotal;
927 vbl_start = mode->crtc_vblank_start;
928 vbl_end = mode->crtc_vblank_end;
929
930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 vbl_end /= 2;
933 vtotal /= 2;
934 }
935
936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938 /*
939 * Lock uncore.lock, as we will do multiple timing critical raw
940 * register reads, potentially with preemption disabled, so the
941 * following code must not block on uncore.lock.
942 */
943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947 /* Get optional system timestamp before query. */
948 if (stime)
949 *stime = ktime_get();
950
951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 /* No obvious pixelcount register. Only query vertical
953 * scanout position from Display scan line register.
954 */
955 position = __intel_get_crtc_scanline(intel_crtc);
956 } else {
957 /* Have access to pixelcount since start of frame.
958 * We can split this into vertical and horizontal
959 * scanout position.
960 */
961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963 /* convert to pixel counts */
964 vbl_start *= htotal;
965 vbl_end *= htotal;
966 vtotal *= htotal;
967
968 /*
969 * In interlaced modes, the pixel counter counts all pixels,
970 * so one field will have htotal more pixels. In order to avoid
971 * the reported position from jumping backwards when the pixel
972 * counter is beyond the length of the shorter field, just
973 * clamp the position the length of the shorter field. This
974 * matches how the scanline counter based position works since
975 * the scanline counter doesn't count the two half lines.
976 */
977 if (position >= vtotal)
978 position = vtotal - 1;
979
980 /*
981 * Start of vblank interrupt is triggered at start of hsync,
982 * just prior to the first active line of vblank. However we
983 * consider lines to start at the leading edge of horizontal
984 * active. So, should we get here before we've crossed into
985 * the horizontal active of the first line in vblank, we would
986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 * always add htotal-hsync_start to the current pixel position.
988 */
989 position = (position + htotal - hsync_start) % vtotal;
990 }
991
992 /* Get optional system timestamp after query. */
993 if (etime)
994 *etime = ktime_get();
995
996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000 in_vbl = position >= vbl_start && position < vbl_end;
1001
1002 /*
1003 * While in vblank, position will be negative
1004 * counting up towards 0 at vbl_end. And outside
1005 * vblank, position will be positive counting
1006 * up since vbl_end.
1007 */
1008 if (position >= vbl_start)
1009 position -= vbl_end;
1010 else
1011 position += vtotal - vbl_end;
1012
1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 *vpos = position;
1015 *hpos = 0;
1016 } else {
1017 *vpos = position / htotal;
1018 *hpos = position - (*vpos * htotal);
1019 }
1020
1021 /* In vblank? */
1022 if (in_vbl)
1023 ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024
1025 return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 unsigned long irqflags;
1032 int position;
1033
1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 position = __intel_get_crtc_scanline(crtc);
1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038 return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 int *max_error,
1043 struct timeval *vblank_time,
1044 unsigned flags)
1045 {
1046 struct drm_crtc *crtc;
1047
1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 DRM_ERROR("Invalid crtc %d\n", pipe);
1050 return -EINVAL;
1051 }
1052
1053 /* Get drm_crtc to timestamp: */
1054 crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 if (crtc == NULL) {
1056 DRM_ERROR("Invalid crtc %d\n", pipe);
1057 return -EINVAL;
1058 }
1059
1060 if (!crtc->enabled) {
1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 return -EBUSY;
1063 }
1064
1065 /* Helper routine in DRM core does all the work: */
1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 vblank_time, flags,
1068 crtc,
1069 &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 struct drm_connector *connector)
1074 {
1075 enum drm_connector_status old_status;
1076
1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 old_status = connector->status;
1079
1080 connector->status = connector->funcs->detect(connector, false);
1081 if (old_status == connector->status)
1082 return false;
1083
1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 connector->base.id,
1086 connector->name,
1087 drm_get_connector_status_name(old_status),
1088 drm_get_connector_status_name(connector->status));
1089
1090 return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 struct drm_i915_private *dev_priv =
1096 container_of(work, struct drm_i915_private, dig_port_work);
1097 unsigned long irqflags;
1098 u32 long_port_mask, short_port_mask;
1099 struct intel_digital_port *intel_dig_port;
1100 int i, ret;
1101 u32 old_bits = 0;
1102
1103 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 long_port_mask = dev_priv->long_hpd_port_mask;
1105 dev_priv->long_hpd_port_mask = 0;
1106 short_port_mask = dev_priv->short_hpd_port_mask;
1107 dev_priv->short_hpd_port_mask = 0;
1108 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110 for (i = 0; i < I915_MAX_PORTS; i++) {
1111 bool valid = false;
1112 bool long_hpd = false;
1113 intel_dig_port = dev_priv->hpd_irq_port[i];
1114 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 continue;
1116
1117 if (long_port_mask & (1 << i)) {
1118 valid = true;
1119 long_hpd = true;
1120 } else if (short_port_mask & (1 << i))
1121 valid = true;
1122
1123 if (valid) {
1124 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 if (ret == true) {
1126 /* if we get true fallback to old school hpd */
1127 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 }
1129 }
1130 }
1131
1132 if (old_bits) {
1133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 dev_priv->hpd_event_bits |= old_bits;
1135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 schedule_work(&dev_priv->hotplug_work);
1137 }
1138 }
1139
1140 /*
1141 * Handle hotplug events outside the interrupt handler proper.
1142 */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 struct drm_i915_private *dev_priv =
1148 container_of(work, struct drm_i915_private, hotplug_work);
1149 struct drm_device *dev = dev_priv->dev;
1150 struct drm_mode_config *mode_config = &dev->mode_config;
1151 struct intel_connector *intel_connector;
1152 struct intel_encoder *intel_encoder;
1153 struct drm_connector *connector;
1154 unsigned long irqflags;
1155 bool hpd_disabled = false;
1156 bool changed = false;
1157 u32 hpd_event_bits;
1158
1159 mutex_lock(&mode_config->mutex);
1160 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164 hpd_event_bits = dev_priv->hpd_event_bits;
1165 dev_priv->hpd_event_bits = 0;
1166 list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 intel_connector = to_intel_connector(connector);
1168 if (!intel_connector->encoder)
1169 continue;
1170 intel_encoder = intel_connector->encoder;
1171 if (intel_encoder->hpd_pin > HPD_NONE &&
1172 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 "switching from hotplug detection to polling\n",
1176 connector->name);
1177 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 | DRM_CONNECTOR_POLL_DISCONNECT;
1180 hpd_disabled = true;
1181 }
1182 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 connector->name, intel_encoder->hpd_pin);
1185 }
1186 }
1187 /* if there were no outputs to poll, poll was disabled,
1188 * therefore make sure it's enabled when disabling HPD on
1189 * some connectors */
1190 if (hpd_disabled) {
1191 drm_kms_helper_poll_enable(dev);
1192 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 }
1195
1196 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198 list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 intel_connector = to_intel_connector(connector);
1200 if (!intel_connector->encoder)
1201 continue;
1202 intel_encoder = intel_connector->encoder;
1203 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 if (intel_encoder->hot_plug)
1205 intel_encoder->hot_plug(intel_encoder);
1206 if (intel_hpd_irq_event(dev, connector))
1207 changed = true;
1208 }
1209 }
1210 mutex_unlock(&mode_config->mutex);
1211
1212 if (changed)
1213 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 struct drm_i915_private *dev_priv = dev->dev_private;
1219 u32 busy_up, busy_down, max_avg, min_avg;
1220 u8 new_delay;
1221
1222 spin_lock(&mchdev_lock);
1223
1224 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226 new_delay = dev_priv->ips.cur_delay;
1227
1228 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 max_avg = I915_READ(RCBMAXAVG);
1232 min_avg = I915_READ(RCBMINAVG);
1233
1234 /* Handle RCS change request from hw */
1235 if (busy_up > max_avg) {
1236 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 new_delay = dev_priv->ips.cur_delay - 1;
1238 if (new_delay < dev_priv->ips.max_delay)
1239 new_delay = dev_priv->ips.max_delay;
1240 } else if (busy_down < min_avg) {
1241 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 new_delay = dev_priv->ips.cur_delay + 1;
1243 if (new_delay > dev_priv->ips.min_delay)
1244 new_delay = dev_priv->ips.min_delay;
1245 }
1246
1247 if (ironlake_set_drps(dev, new_delay))
1248 dev_priv->ips.cur_delay = new_delay;
1249
1250 spin_unlock(&mchdev_lock);
1251
1252 return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256 struct intel_engine_cs *ring)
1257 {
1258 if (!intel_ring_initialized(ring))
1259 return;
1260
1261 trace_i915_gem_request_complete(ring);
1262
1263 if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 intel_notify_mmio_flip(ring);
1265
1266 wake_up_all(&ring->irq_queue);
1267 i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 struct intel_rps_ei *rps_ei)
1272 {
1273 u32 cz_ts, cz_freq_khz;
1274 u32 render_count, media_count;
1275 u32 elapsed_render, elapsed_media, elapsed_time;
1276 u32 residency = 0;
1277
1278 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284 if (rps_ei->cz_clock == 0) {
1285 rps_ei->cz_clock = cz_ts;
1286 rps_ei->render_c0 = render_count;
1287 rps_ei->media_c0 = media_count;
1288
1289 return dev_priv->rps.cur_freq;
1290 }
1291
1292 elapsed_time = cz_ts - rps_ei->cz_clock;
1293 rps_ei->cz_clock = cz_ts;
1294
1295 elapsed_render = render_count - rps_ei->render_c0;
1296 rps_ei->render_c0 = render_count;
1297
1298 elapsed_media = media_count - rps_ei->media_c0;
1299 rps_ei->media_c0 = media_count;
1300
1301 /* Convert all the counters into common unit of milli sec */
1302 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 elapsed_render /= cz_freq_khz;
1304 elapsed_media /= cz_freq_khz;
1305
1306 /*
1307 * Calculate overall C0 residency percentage
1308 * only if elapsed time is non zero
1309 */
1310 if (elapsed_time) {
1311 residency =
1312 ((max(elapsed_render, elapsed_media) * 100)
1313 / elapsed_time);
1314 }
1315
1316 return residency;
1317 }
1318
1319 /**
1320 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321 * busy-ness calculated from C0 counters of render & media power wells
1322 * @dev_priv: DRM device private
1323 *
1324 */
1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 u32 residency_C0_up = 0, residency_C0_down = 0;
1328 int new_delay, adj;
1329
1330 dev_priv->rps.ei_interrupt_count++;
1331
1332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335 if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 return dev_priv->rps.cur_freq;
1339 }
1340
1341
1342 /*
1343 * To down throttle, C0 residency should be less than down threshold
1344 * for continous EI intervals. So calculate down EI counters
1345 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 */
1347 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349 dev_priv->rps.ei_interrupt_count = 0;
1350
1351 residency_C0_down = vlv_c0_residency(dev_priv,
1352 &dev_priv->rps.down_ei);
1353 } else {
1354 residency_C0_up = vlv_c0_residency(dev_priv,
1355 &dev_priv->rps.up_ei);
1356 }
1357
1358 new_delay = dev_priv->rps.cur_freq;
1359
1360 adj = dev_priv->rps.last_adj;
1361 /* C0 residency is greater than UP threshold. Increase Frequency */
1362 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 if (adj > 0)
1364 adj *= 2;
1365 else
1366 adj = 1;
1367
1368 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 new_delay = dev_priv->rps.cur_freq + adj;
1370
1371 /*
1372 * For better performance, jump directly
1373 * to RPe if we're below it.
1374 */
1375 if (new_delay < dev_priv->rps.efficient_freq)
1376 new_delay = dev_priv->rps.efficient_freq;
1377
1378 } else if (!dev_priv->rps.ei_interrupt_count &&
1379 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 if (adj < 0)
1381 adj *= 2;
1382 else
1383 adj = -1;
1384 /*
1385 * This means, C0 residency is less than down threshold over
1386 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 */
1388 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 new_delay = dev_priv->rps.cur_freq + adj;
1390 }
1391
1392 return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 struct drm_i915_private *dev_priv =
1398 container_of(work, struct drm_i915_private, rps.work);
1399 u32 pm_iir;
1400 int new_delay, adj;
1401
1402 spin_lock_irq(&dev_priv->irq_lock);
1403 pm_iir = dev_priv->rps.pm_iir;
1404 dev_priv->rps.pm_iir = 0;
1405 if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 else {
1408 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 }
1411 spin_unlock_irq(&dev_priv->irq_lock);
1412
1413 /* Make sure we didn't queue anything we're not going to process. */
1414 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 return;
1418
1419 mutex_lock(&dev_priv->rps.hw_lock);
1420
1421 adj = dev_priv->rps.last_adj;
1422 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 if (adj > 0)
1424 adj *= 2;
1425 else {
1426 /* CHV needs even encode values */
1427 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 }
1429 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431 /*
1432 * For better performance, jump directly
1433 * to RPe if we're below it.
1434 */
1435 if (new_delay < dev_priv->rps.efficient_freq)
1436 new_delay = dev_priv->rps.efficient_freq;
1437 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 new_delay = dev_priv->rps.efficient_freq;
1440 else
1441 new_delay = dev_priv->rps.min_freq_softlimit;
1442 adj = 0;
1443 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 if (adj < 0)
1447 adj *= 2;
1448 else {
1449 /* CHV needs even encode values */
1450 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 }
1452 new_delay = dev_priv->rps.cur_freq + adj;
1453 } else { /* unknown event */
1454 new_delay = dev_priv->rps.cur_freq;
1455 }
1456
1457 /* sysfs frequency interfaces may have snuck in while servicing the
1458 * interrupt
1459 */
1460 new_delay = clamp_t(int, new_delay,
1461 dev_priv->rps.min_freq_softlimit,
1462 dev_priv->rps.max_freq_softlimit);
1463
1464 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466 if (IS_VALLEYVIEW(dev_priv->dev))
1467 valleyview_set_rps(dev_priv->dev, new_delay);
1468 else
1469 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471 mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477 * occurred.
1478 * @work: workqueue struct
1479 *
1480 * Doesn't actually do anything except notify userspace. As a consequence of
1481 * this event, userspace should try to remap the bad rows since statistically
1482 * it is likely the same row is more likely to go bad again.
1483 */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 struct drm_i915_private *dev_priv =
1487 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 u32 error_status, row, bank, subbank;
1489 char *parity_event[6];
1490 uint32_t misccpctl;
1491 unsigned long flags;
1492 uint8_t slice = 0;
1493
1494 /* We must turn off DOP level clock gating to access the L3 registers.
1495 * In order to prevent a get/put style interface, acquire struct mutex
1496 * any time we access those registers.
1497 */
1498 mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500 /* If we've screwed up tracking, just let the interrupt fire again */
1501 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 goto out;
1503
1504 misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 POSTING_READ(GEN7_MISCCPCTL);
1507
1508 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 u32 reg;
1510
1511 slice--;
1512 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 break;
1514
1515 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519 error_status = I915_READ(reg);
1520 row = GEN7_PARITY_ERROR_ROW(error_status);
1521 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 POSTING_READ(reg);
1526
1527 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 parity_event[5] = NULL;
1533
1534 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 KOBJ_CHANGE, parity_event);
1536
1537 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 slice, row, bank, subbank);
1539
1540 kfree(parity_event[4]);
1541 kfree(parity_event[3]);
1542 kfree(parity_event[2]);
1543 kfree(parity_event[1]);
1544 }
1545
1546 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549 WARN_ON(dev_priv->l3_parity.which_slice);
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554 mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561 if (!HAS_L3_DPF(dev))
1562 return;
1563
1564 spin_lock(&dev_priv->irq_lock);
1565 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 spin_unlock(&dev_priv->irq_lock);
1567
1568 iir &= GT_PARITY_ERROR(dev);
1569 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 struct drm_i915_private *dev_priv,
1580 u32 gt_iir)
1581 {
1582 if (gt_iir &
1583 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 notify_ring(dev, &dev_priv->ring[RCS]);
1585 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 struct drm_i915_private *dev_priv,
1591 u32 gt_iir)
1592 {
1593
1594 if (gt_iir &
1595 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 notify_ring(dev, &dev_priv->ring[RCS]);
1597 if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 notify_ring(dev, &dev_priv->ring[VCS]);
1599 if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 GT_BSD_CS_ERROR_INTERRUPT |
1604 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 gt_iir);
1607 }
1608
1609 if (gt_iir & GT_PARITY_ERROR(dev))
1610 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 return;
1617
1618 spin_lock(&dev_priv->irq_lock);
1619 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 spin_unlock(&dev_priv->irq_lock);
1622
1623 queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 struct drm_i915_private *dev_priv,
1628 u32 master_ctl)
1629 {
1630 struct intel_engine_cs *ring;
1631 u32 rcs, bcs, vcs;
1632 uint32_t tmp = 0;
1633 irqreturn_t ret = IRQ_NONE;
1634
1635 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636 tmp = I915_READ(GEN8_GT_IIR(0));
1637 if (tmp) {
1638 I915_WRITE(GEN8_GT_IIR(0), tmp);
1639 ret = IRQ_HANDLED;
1640
1641 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642 ring = &dev_priv->ring[RCS];
1643 if (rcs & GT_RENDER_USER_INTERRUPT)
1644 notify_ring(dev, ring);
1645 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646 intel_execlists_handle_ctx_events(ring);
1647
1648 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649 ring = &dev_priv->ring[BCS];
1650 if (bcs & GT_RENDER_USER_INTERRUPT)
1651 notify_ring(dev, ring);
1652 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 intel_execlists_handle_ctx_events(ring);
1654 } else
1655 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656 }
1657
1658 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659 tmp = I915_READ(GEN8_GT_IIR(1));
1660 if (tmp) {
1661 I915_WRITE(GEN8_GT_IIR(1), tmp);
1662 ret = IRQ_HANDLED;
1663
1664 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665 ring = &dev_priv->ring[VCS];
1666 if (vcs & GT_RENDER_USER_INTERRUPT)
1667 notify_ring(dev, ring);
1668 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669 intel_execlists_handle_ctx_events(ring);
1670
1671 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672 ring = &dev_priv->ring[VCS2];
1673 if (vcs & GT_RENDER_USER_INTERRUPT)
1674 notify_ring(dev, ring);
1675 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676 intel_execlists_handle_ctx_events(ring);
1677 } else
1678 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679 }
1680
1681 if (master_ctl & GEN8_GT_PM_IRQ) {
1682 tmp = I915_READ(GEN8_GT_IIR(2));
1683 if (tmp & dev_priv->pm_rps_events) {
1684 I915_WRITE(GEN8_GT_IIR(2),
1685 tmp & dev_priv->pm_rps_events);
1686 ret = IRQ_HANDLED;
1687 gen8_rps_irq_handler(dev_priv, tmp);
1688 } else
1689 DRM_ERROR("The master control interrupt lied (PM)!\n");
1690 }
1691
1692 if (master_ctl & GEN8_GT_VECS_IRQ) {
1693 tmp = I915_READ(GEN8_GT_IIR(3));
1694 if (tmp) {
1695 I915_WRITE(GEN8_GT_IIR(3), tmp);
1696 ret = IRQ_HANDLED;
1697
1698 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699 ring = &dev_priv->ring[VECS];
1700 if (vcs & GT_RENDER_USER_INTERRUPT)
1701 notify_ring(dev, ring);
1702 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703 intel_execlists_handle_ctx_events(ring);
1704 } else
1705 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706 }
1707
1708 return ret;
1709 }
1710
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713
1714 static int ilk_port_to_hotplug_shift(enum port port)
1715 {
1716 switch (port) {
1717 case PORT_A:
1718 case PORT_E:
1719 default:
1720 return -1;
1721 case PORT_B:
1722 return 0;
1723 case PORT_C:
1724 return 8;
1725 case PORT_D:
1726 return 16;
1727 }
1728 }
1729
1730 static int g4x_port_to_hotplug_shift(enum port port)
1731 {
1732 switch (port) {
1733 case PORT_A:
1734 case PORT_E:
1735 default:
1736 return -1;
1737 case PORT_B:
1738 return 17;
1739 case PORT_C:
1740 return 19;
1741 case PORT_D:
1742 return 21;
1743 }
1744 }
1745
1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748 switch (pin) {
1749 case HPD_PORT_B:
1750 return PORT_B;
1751 case HPD_PORT_C:
1752 return PORT_C;
1753 case HPD_PORT_D:
1754 return PORT_D;
1755 default:
1756 return PORT_A; /* no hpd */
1757 }
1758 }
1759
1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761 u32 hotplug_trigger,
1762 u32 dig_hotplug_reg,
1763 const u32 *hpd)
1764 {
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 int i;
1767 enum port port;
1768 bool storm_detected = false;
1769 bool queue_dig = false, queue_hp = false;
1770 u32 dig_shift;
1771 u32 dig_port_mask = 0;
1772
1773 if (!hotplug_trigger)
1774 return;
1775
1776 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777 hotplug_trigger, dig_hotplug_reg);
1778
1779 spin_lock(&dev_priv->irq_lock);
1780 for (i = 1; i < HPD_NUM_PINS; i++) {
1781 if (!(hpd[i] & hotplug_trigger))
1782 continue;
1783
1784 port = get_port_from_pin(i);
1785 if (port && dev_priv->hpd_irq_port[port]) {
1786 bool long_hpd;
1787
1788 if (IS_G4X(dev)) {
1789 dig_shift = g4x_port_to_hotplug_shift(port);
1790 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791 } else {
1792 dig_shift = ilk_port_to_hotplug_shift(port);
1793 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794 }
1795
1796 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797 port_name(port),
1798 long_hpd ? "long" : "short");
1799 /* for long HPD pulses we want to have the digital queue happen,
1800 but we still want HPD storm detection to function. */
1801 if (long_hpd) {
1802 dev_priv->long_hpd_port_mask |= (1 << port);
1803 dig_port_mask |= hpd[i];
1804 } else {
1805 /* for short HPD just trigger the digital queue */
1806 dev_priv->short_hpd_port_mask |= (1 << port);
1807 hotplug_trigger &= ~hpd[i];
1808 }
1809 queue_dig = true;
1810 }
1811 }
1812
1813 for (i = 1; i < HPD_NUM_PINS; i++) {
1814 if (hpd[i] & hotplug_trigger &&
1815 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816 /*
1817 * On GMCH platforms the interrupt mask bits only
1818 * prevent irq generation, not the setting of the
1819 * hotplug bits itself. So only WARN about unexpected
1820 * interrupts on saner platforms.
1821 */
1822 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824 hotplug_trigger, i, hpd[i]);
1825
1826 continue;
1827 }
1828
1829 if (!(hpd[i] & hotplug_trigger) ||
1830 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831 continue;
1832
1833 if (!(dig_port_mask & hpd[i])) {
1834 dev_priv->hpd_event_bits |= (1 << i);
1835 queue_hp = true;
1836 }
1837
1838 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839 dev_priv->hpd_stats[i].hpd_last_jiffies
1840 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842 dev_priv->hpd_stats[i].hpd_cnt = 0;
1843 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846 dev_priv->hpd_event_bits &= ~(1 << i);
1847 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848 storm_detected = true;
1849 } else {
1850 dev_priv->hpd_stats[i].hpd_cnt++;
1851 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852 dev_priv->hpd_stats[i].hpd_cnt);
1853 }
1854 }
1855
1856 if (storm_detected)
1857 dev_priv->display.hpd_irq_setup(dev);
1858 spin_unlock(&dev_priv->irq_lock);
1859
1860 /*
1861 * Our hotplug handler can grab modeset locks (by calling down into the
1862 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863 * queue for otherwise the flush_work in the pageflip code will
1864 * deadlock.
1865 */
1866 if (queue_dig)
1867 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868 if (queue_hp)
1869 schedule_work(&dev_priv->hotplug_work);
1870 }
1871
1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876 wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878
1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882
1883 wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885
1886 #if defined(CONFIG_DEBUG_FS)
1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888 uint32_t crc0, uint32_t crc1,
1889 uint32_t crc2, uint32_t crc3,
1890 uint32_t crc4)
1891 {
1892 struct drm_i915_private *dev_priv = dev->dev_private;
1893 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894 struct intel_pipe_crc_entry *entry;
1895 int head, tail;
1896
1897 spin_lock(&pipe_crc->lock);
1898
1899 if (!pipe_crc->entries) {
1900 spin_unlock(&pipe_crc->lock);
1901 DRM_ERROR("spurious interrupt\n");
1902 return;
1903 }
1904
1905 head = pipe_crc->head;
1906 tail = pipe_crc->tail;
1907
1908 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909 spin_unlock(&pipe_crc->lock);
1910 DRM_ERROR("CRC buffer overflowing\n");
1911 return;
1912 }
1913
1914 entry = &pipe_crc->entries[head];
1915
1916 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917 entry->crc[0] = crc0;
1918 entry->crc[1] = crc1;
1919 entry->crc[2] = crc2;
1920 entry->crc[3] = crc3;
1921 entry->crc[4] = crc4;
1922
1923 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924 pipe_crc->head = head;
1925
1926 spin_unlock(&pipe_crc->lock);
1927
1928 wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933 uint32_t crc0, uint32_t crc1,
1934 uint32_t crc2, uint32_t crc3,
1935 uint32_t crc4) {}
1936 #endif
1937
1938
1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942
1943 display_pipe_crc_irq_handler(dev, pipe,
1944 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945 0, 0, 0, 0);
1946 }
1947
1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951
1952 display_pipe_crc_irq_handler(dev, pipe,
1953 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959
1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962 struct drm_i915_private *dev_priv = dev->dev_private;
1963 uint32_t res1, res2;
1964
1965 if (INTEL_INFO(dev)->gen >= 3)
1966 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967 else
1968 res1 = 0;
1969
1970 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972 else
1973 res2 = 0;
1974
1975 display_pipe_crc_irq_handler(dev, pipe,
1976 I915_READ(PIPE_CRC_RES_RED(pipe)),
1977 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979 res1, res2);
1980 }
1981
1982 /* The RPS events need forcewake, so we add them to a work queue and mask their
1983 * IMR bits until the work is done. Other interrupts can be processed without
1984 * the work queue. */
1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1986 {
1987 if (pm_iir & dev_priv->pm_rps_events) {
1988 spin_lock(&dev_priv->irq_lock);
1989 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1990 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1991 spin_unlock(&dev_priv->irq_lock);
1992
1993 queue_work(dev_priv->wq, &dev_priv->rps.work);
1994 }
1995
1996 if (HAS_VEBOX(dev_priv->dev)) {
1997 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1998 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1999
2000 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2001 i915_handle_error(dev_priv->dev, false,
2002 "VEBOX CS error interrupt 0x%08x",
2003 pm_iir);
2004 }
2005 }
2006 }
2007
2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2009 {
2010 if (!drm_handle_vblank(dev, pipe))
2011 return false;
2012
2013 return true;
2014 }
2015
2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 u32 pipe_stats[I915_MAX_PIPES] = { };
2020 int pipe;
2021
2022 spin_lock(&dev_priv->irq_lock);
2023 for_each_pipe(dev_priv, pipe) {
2024 int reg;
2025 u32 mask, iir_bit = 0;
2026
2027 /*
2028 * PIPESTAT bits get signalled even when the interrupt is
2029 * disabled with the mask bits, and some of the status bits do
2030 * not generate interrupts at all (like the underrun bit). Hence
2031 * we need to be careful that we only handle what we want to
2032 * handle.
2033 */
2034 mask = 0;
2035 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2036 mask |= PIPE_FIFO_UNDERRUN_STATUS;
2037
2038 switch (pipe) {
2039 case PIPE_A:
2040 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2041 break;
2042 case PIPE_B:
2043 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2044 break;
2045 case PIPE_C:
2046 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2047 break;
2048 }
2049 if (iir & iir_bit)
2050 mask |= dev_priv->pipestat_irq_mask[pipe];
2051
2052 if (!mask)
2053 continue;
2054
2055 reg = PIPESTAT(pipe);
2056 mask |= PIPESTAT_INT_ENABLE_MASK;
2057 pipe_stats[pipe] = I915_READ(reg) & mask;
2058
2059 /*
2060 * Clear the PIPE*STAT regs before the IIR
2061 */
2062 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2063 PIPESTAT_INT_STATUS_MASK))
2064 I915_WRITE(reg, pipe_stats[pipe]);
2065 }
2066 spin_unlock(&dev_priv->irq_lock);
2067
2068 for_each_pipe(dev_priv, pipe) {
2069 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2070 intel_pipe_handle_vblank(dev, pipe))
2071 intel_check_page_flip(dev, pipe);
2072
2073 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2074 intel_prepare_page_flip(dev, pipe);
2075 intel_finish_page_flip(dev, pipe);
2076 }
2077
2078 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2079 i9xx_pipe_crc_irq_handler(dev, pipe);
2080
2081 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2082 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2083 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2084 }
2085
2086 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2087 gmbus_irq_handler(dev);
2088 }
2089
2090 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2091 {
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2094
2095 if (hotplug_status) {
2096 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2097 /*
2098 * Make sure hotplug status is cleared before we clear IIR, or else we
2099 * may miss hotplug events.
2100 */
2101 POSTING_READ(PORT_HOTPLUG_STAT);
2102
2103 if (IS_G4X(dev)) {
2104 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2105
2106 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2107 } else {
2108 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2109
2110 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2111 }
2112
2113 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2114 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115 dp_aux_irq_handler(dev);
2116 }
2117 }
2118
2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2120 {
2121 struct drm_device *dev = arg;
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 u32 iir, gt_iir, pm_iir;
2124 irqreturn_t ret = IRQ_NONE;
2125
2126 while (true) {
2127 /* Find, clear, then process each source of interrupt */
2128
2129 gt_iir = I915_READ(GTIIR);
2130 if (gt_iir)
2131 I915_WRITE(GTIIR, gt_iir);
2132
2133 pm_iir = I915_READ(GEN6_PMIIR);
2134 if (pm_iir)
2135 I915_WRITE(GEN6_PMIIR, pm_iir);
2136
2137 iir = I915_READ(VLV_IIR);
2138 if (iir) {
2139 /* Consume port before clearing IIR or we'll miss events */
2140 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2141 i9xx_hpd_irq_handler(dev);
2142 I915_WRITE(VLV_IIR, iir);
2143 }
2144
2145 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2146 goto out;
2147
2148 ret = IRQ_HANDLED;
2149
2150 if (gt_iir)
2151 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2152 if (pm_iir)
2153 gen6_rps_irq_handler(dev_priv, pm_iir);
2154 /* Call regardless, as some status bits might not be
2155 * signalled in iir */
2156 valleyview_pipestat_irq_handler(dev, iir);
2157 }
2158
2159 out:
2160 return ret;
2161 }
2162
2163 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2164 {
2165 struct drm_device *dev = arg;
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167 u32 master_ctl, iir;
2168 irqreturn_t ret = IRQ_NONE;
2169
2170 for (;;) {
2171 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2172 iir = I915_READ(VLV_IIR);
2173
2174 if (master_ctl == 0 && iir == 0)
2175 break;
2176
2177 ret = IRQ_HANDLED;
2178
2179 I915_WRITE(GEN8_MASTER_IRQ, 0);
2180
2181 /* Find, clear, then process each source of interrupt */
2182
2183 if (iir) {
2184 /* Consume port before clearing IIR or we'll miss events */
2185 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2186 i9xx_hpd_irq_handler(dev);
2187 I915_WRITE(VLV_IIR, iir);
2188 }
2189
2190 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2191
2192 /* Call regardless, as some status bits might not be
2193 * signalled in iir */
2194 valleyview_pipestat_irq_handler(dev, iir);
2195
2196 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2197 POSTING_READ(GEN8_MASTER_IRQ);
2198 }
2199
2200 return ret;
2201 }
2202
2203 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2204 {
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 int pipe;
2207 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2208 u32 dig_hotplug_reg;
2209
2210 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2211 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2212
2213 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2214
2215 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2216 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2217 SDE_AUDIO_POWER_SHIFT);
2218 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2219 port_name(port));
2220 }
2221
2222 if (pch_iir & SDE_AUX_MASK)
2223 dp_aux_irq_handler(dev);
2224
2225 if (pch_iir & SDE_GMBUS)
2226 gmbus_irq_handler(dev);
2227
2228 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2229 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2230
2231 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2232 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2233
2234 if (pch_iir & SDE_POISON)
2235 DRM_ERROR("PCH poison interrupt\n");
2236
2237 if (pch_iir & SDE_FDI_MASK)
2238 for_each_pipe(dev_priv, pipe)
2239 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2240 pipe_name(pipe),
2241 I915_READ(FDI_RX_IIR(pipe)));
2242
2243 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2244 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2245
2246 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2247 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2248
2249 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2250 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2251 false))
2252 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2253
2254 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2255 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2256 false))
2257 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2258 }
2259
2260 static void ivb_err_int_handler(struct drm_device *dev)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 u32 err_int = I915_READ(GEN7_ERR_INT);
2264 enum pipe pipe;
2265
2266 if (err_int & ERR_INT_POISON)
2267 DRM_ERROR("Poison interrupt\n");
2268
2269 for_each_pipe(dev_priv, pipe) {
2270 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2271 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2272 false))
2273 DRM_ERROR("Pipe %c FIFO underrun\n",
2274 pipe_name(pipe));
2275 }
2276
2277 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2278 if (IS_IVYBRIDGE(dev))
2279 ivb_pipe_crc_irq_handler(dev, pipe);
2280 else
2281 hsw_pipe_crc_irq_handler(dev, pipe);
2282 }
2283 }
2284
2285 I915_WRITE(GEN7_ERR_INT, err_int);
2286 }
2287
2288 static void cpt_serr_int_handler(struct drm_device *dev)
2289 {
2290 struct drm_i915_private *dev_priv = dev->dev_private;
2291 u32 serr_int = I915_READ(SERR_INT);
2292
2293 if (serr_int & SERR_INT_POISON)
2294 DRM_ERROR("PCH poison interrupt\n");
2295
2296 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2297 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2298 false))
2299 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2300
2301 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2302 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2303 false))
2304 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2305
2306 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2307 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2308 false))
2309 DRM_ERROR("PCH transcoder C FIFO underrun\n");
2310
2311 I915_WRITE(SERR_INT, serr_int);
2312 }
2313
2314 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2315 {
2316 struct drm_i915_private *dev_priv = dev->dev_private;
2317 int pipe;
2318 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2319 u32 dig_hotplug_reg;
2320
2321 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2322 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2323
2324 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2325
2326 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2327 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2328 SDE_AUDIO_POWER_SHIFT_CPT);
2329 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2330 port_name(port));
2331 }
2332
2333 if (pch_iir & SDE_AUX_MASK_CPT)
2334 dp_aux_irq_handler(dev);
2335
2336 if (pch_iir & SDE_GMBUS_CPT)
2337 gmbus_irq_handler(dev);
2338
2339 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2340 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2341
2342 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2343 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2344
2345 if (pch_iir & SDE_FDI_MASK_CPT)
2346 for_each_pipe(dev_priv, pipe)
2347 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2348 pipe_name(pipe),
2349 I915_READ(FDI_RX_IIR(pipe)));
2350
2351 if (pch_iir & SDE_ERROR_CPT)
2352 cpt_serr_int_handler(dev);
2353 }
2354
2355 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2356 {
2357 struct drm_i915_private *dev_priv = dev->dev_private;
2358 enum pipe pipe;
2359
2360 if (de_iir & DE_AUX_CHANNEL_A)
2361 dp_aux_irq_handler(dev);
2362
2363 if (de_iir & DE_GSE)
2364 intel_opregion_asle_intr(dev);
2365
2366 if (de_iir & DE_POISON)
2367 DRM_ERROR("Poison interrupt\n");
2368
2369 for_each_pipe(dev_priv, pipe) {
2370 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2371 intel_pipe_handle_vblank(dev, pipe))
2372 intel_check_page_flip(dev, pipe);
2373
2374 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2375 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2376 DRM_ERROR("Pipe %c FIFO underrun\n",
2377 pipe_name(pipe));
2378
2379 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2380 i9xx_pipe_crc_irq_handler(dev, pipe);
2381
2382 /* plane/pipes map 1:1 on ilk+ */
2383 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2384 intel_prepare_page_flip(dev, pipe);
2385 intel_finish_page_flip_plane(dev, pipe);
2386 }
2387 }
2388
2389 /* check event from PCH */
2390 if (de_iir & DE_PCH_EVENT) {
2391 u32 pch_iir = I915_READ(SDEIIR);
2392
2393 if (HAS_PCH_CPT(dev))
2394 cpt_irq_handler(dev, pch_iir);
2395 else
2396 ibx_irq_handler(dev, pch_iir);
2397
2398 /* should clear PCH hotplug event before clear CPU irq */
2399 I915_WRITE(SDEIIR, pch_iir);
2400 }
2401
2402 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2403 ironlake_rps_change_irq_handler(dev);
2404 }
2405
2406 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2407 {
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409 enum pipe pipe;
2410
2411 if (de_iir & DE_ERR_INT_IVB)
2412 ivb_err_int_handler(dev);
2413
2414 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2415 dp_aux_irq_handler(dev);
2416
2417 if (de_iir & DE_GSE_IVB)
2418 intel_opregion_asle_intr(dev);
2419
2420 for_each_pipe(dev_priv, pipe) {
2421 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2422 intel_pipe_handle_vblank(dev, pipe))
2423 intel_check_page_flip(dev, pipe);
2424
2425 /* plane/pipes map 1:1 on ilk+ */
2426 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2427 intel_prepare_page_flip(dev, pipe);
2428 intel_finish_page_flip_plane(dev, pipe);
2429 }
2430 }
2431
2432 /* check event from PCH */
2433 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2434 u32 pch_iir = I915_READ(SDEIIR);
2435
2436 cpt_irq_handler(dev, pch_iir);
2437
2438 /* clear PCH hotplug event before clear CPU irq */
2439 I915_WRITE(SDEIIR, pch_iir);
2440 }
2441 }
2442
2443 /*
2444 * To handle irqs with the minimum potential races with fresh interrupts, we:
2445 * 1 - Disable Master Interrupt Control.
2446 * 2 - Find the source(s) of the interrupt.
2447 * 3 - Clear the Interrupt Identity bits (IIR).
2448 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2449 * 5 - Re-enable Master Interrupt Control.
2450 */
2451 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2452 {
2453 struct drm_device *dev = arg;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2456 irqreturn_t ret = IRQ_NONE;
2457
2458 /* We get interrupts on unclaimed registers, so check for this before we
2459 * do any I915_{READ,WRITE}. */
2460 intel_uncore_check_errors(dev);
2461
2462 /* disable master interrupt before clearing iir */
2463 de_ier = I915_READ(DEIER);
2464 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2465 POSTING_READ(DEIER);
2466
2467 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2468 * interrupts will will be stored on its back queue, and then we'll be
2469 * able to process them after we restore SDEIER (as soon as we restore
2470 * it, we'll get an interrupt if SDEIIR still has something to process
2471 * due to its back queue). */
2472 if (!HAS_PCH_NOP(dev)) {
2473 sde_ier = I915_READ(SDEIER);
2474 I915_WRITE(SDEIER, 0);
2475 POSTING_READ(SDEIER);
2476 }
2477
2478 /* Find, clear, then process each source of interrupt */
2479
2480 gt_iir = I915_READ(GTIIR);
2481 if (gt_iir) {
2482 I915_WRITE(GTIIR, gt_iir);
2483 ret = IRQ_HANDLED;
2484 if (INTEL_INFO(dev)->gen >= 6)
2485 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2486 else
2487 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2488 }
2489
2490 de_iir = I915_READ(DEIIR);
2491 if (de_iir) {
2492 I915_WRITE(DEIIR, de_iir);
2493 ret = IRQ_HANDLED;
2494 if (INTEL_INFO(dev)->gen >= 7)
2495 ivb_display_irq_handler(dev, de_iir);
2496 else
2497 ilk_display_irq_handler(dev, de_iir);
2498 }
2499
2500 if (INTEL_INFO(dev)->gen >= 6) {
2501 u32 pm_iir = I915_READ(GEN6_PMIIR);
2502 if (pm_iir) {
2503 I915_WRITE(GEN6_PMIIR, pm_iir);
2504 ret = IRQ_HANDLED;
2505 gen6_rps_irq_handler(dev_priv, pm_iir);
2506 }
2507 }
2508
2509 I915_WRITE(DEIER, de_ier);
2510 POSTING_READ(DEIER);
2511 if (!HAS_PCH_NOP(dev)) {
2512 I915_WRITE(SDEIER, sde_ier);
2513 POSTING_READ(SDEIER);
2514 }
2515
2516 return ret;
2517 }
2518
2519 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2520 {
2521 struct drm_device *dev = arg;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 u32 master_ctl;
2524 irqreturn_t ret = IRQ_NONE;
2525 uint32_t tmp = 0;
2526 enum pipe pipe;
2527
2528 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2529 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2530 if (!master_ctl)
2531 return IRQ_NONE;
2532
2533 I915_WRITE(GEN8_MASTER_IRQ, 0);
2534 POSTING_READ(GEN8_MASTER_IRQ);
2535
2536 /* Find, clear, then process each source of interrupt */
2537
2538 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2539
2540 if (master_ctl & GEN8_DE_MISC_IRQ) {
2541 tmp = I915_READ(GEN8_DE_MISC_IIR);
2542 if (tmp) {
2543 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2544 ret = IRQ_HANDLED;
2545 if (tmp & GEN8_DE_MISC_GSE)
2546 intel_opregion_asle_intr(dev);
2547 else
2548 DRM_ERROR("Unexpected DE Misc interrupt\n");
2549 }
2550 else
2551 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2552 }
2553
2554 if (master_ctl & GEN8_DE_PORT_IRQ) {
2555 tmp = I915_READ(GEN8_DE_PORT_IIR);
2556 if (tmp) {
2557 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2558 ret = IRQ_HANDLED;
2559 if (tmp & GEN8_AUX_CHANNEL_A)
2560 dp_aux_irq_handler(dev);
2561 else
2562 DRM_ERROR("Unexpected DE Port interrupt\n");
2563 }
2564 else
2565 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2566 }
2567
2568 for_each_pipe(dev_priv, pipe) {
2569 uint32_t pipe_iir;
2570
2571 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2572 continue;
2573
2574 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2575 if (pipe_iir) {
2576 ret = IRQ_HANDLED;
2577 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2578 if (pipe_iir & GEN8_PIPE_VBLANK &&
2579 intel_pipe_handle_vblank(dev, pipe))
2580 intel_check_page_flip(dev, pipe);
2581
2582 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2583 intel_prepare_page_flip(dev, pipe);
2584 intel_finish_page_flip_plane(dev, pipe);
2585 }
2586
2587 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2588 hsw_pipe_crc_irq_handler(dev, pipe);
2589
2590 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2591 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2592 false))
2593 DRM_ERROR("Pipe %c FIFO underrun\n",
2594 pipe_name(pipe));
2595 }
2596
2597 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2598 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2599 pipe_name(pipe),
2600 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2601 }
2602 } else
2603 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2604 }
2605
2606 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2607 /*
2608 * FIXME(BDW): Assume for now that the new interrupt handling
2609 * scheme also closed the SDE interrupt handling race we've seen
2610 * on older pch-split platforms. But this needs testing.
2611 */
2612 u32 pch_iir = I915_READ(SDEIIR);
2613 if (pch_iir) {
2614 I915_WRITE(SDEIIR, pch_iir);
2615 ret = IRQ_HANDLED;
2616 cpt_irq_handler(dev, pch_iir);
2617 } else
2618 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2619
2620 }
2621
2622 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2623 POSTING_READ(GEN8_MASTER_IRQ);
2624
2625 return ret;
2626 }
2627
2628 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2629 bool reset_completed)
2630 {
2631 struct intel_engine_cs *ring;
2632 int i;
2633
2634 /*
2635 * Notify all waiters for GPU completion events that reset state has
2636 * been changed, and that they need to restart their wait after
2637 * checking for potential errors (and bail out to drop locks if there is
2638 * a gpu reset pending so that i915_error_work_func can acquire them).
2639 */
2640
2641 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2642 for_each_ring(ring, dev_priv, i)
2643 wake_up_all(&ring->irq_queue);
2644
2645 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2646 wake_up_all(&dev_priv->pending_flip_queue);
2647
2648 /*
2649 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2650 * reset state is cleared.
2651 */
2652 if (reset_completed)
2653 wake_up_all(&dev_priv->gpu_error.reset_queue);
2654 }
2655
2656 /**
2657 * i915_error_work_func - do process context error handling work
2658 * @work: work struct
2659 *
2660 * Fire an error uevent so userspace can see that a hang or error
2661 * was detected.
2662 */
2663 static void i915_error_work_func(struct work_struct *work)
2664 {
2665 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2666 work);
2667 struct drm_i915_private *dev_priv =
2668 container_of(error, struct drm_i915_private, gpu_error);
2669 struct drm_device *dev = dev_priv->dev;
2670 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2671 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2672 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2673 int ret;
2674
2675 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2676
2677 /*
2678 * Note that there's only one work item which does gpu resets, so we
2679 * need not worry about concurrent gpu resets potentially incrementing
2680 * error->reset_counter twice. We only need to take care of another
2681 * racing irq/hangcheck declaring the gpu dead for a second time. A
2682 * quick check for that is good enough: schedule_work ensures the
2683 * correct ordering between hang detection and this work item, and since
2684 * the reset in-progress bit is only ever set by code outside of this
2685 * work we don't need to worry about any other races.
2686 */
2687 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2688 DRM_DEBUG_DRIVER("resetting chip\n");
2689 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2690 reset_event);
2691
2692 /*
2693 * In most cases it's guaranteed that we get here with an RPM
2694 * reference held, for example because there is a pending GPU
2695 * request that won't finish until the reset is done. This
2696 * isn't the case at least when we get here by doing a
2697 * simulated reset via debugs, so get an RPM reference.
2698 */
2699 intel_runtime_pm_get(dev_priv);
2700 /*
2701 * All state reset _must_ be completed before we update the
2702 * reset counter, for otherwise waiters might miss the reset
2703 * pending state and not properly drop locks, resulting in
2704 * deadlocks with the reset work.
2705 */
2706 ret = i915_reset(dev);
2707
2708 intel_display_handle_reset(dev);
2709
2710 intel_runtime_pm_put(dev_priv);
2711
2712 if (ret == 0) {
2713 /*
2714 * After all the gem state is reset, increment the reset
2715 * counter and wake up everyone waiting for the reset to
2716 * complete.
2717 *
2718 * Since unlock operations are a one-sided barrier only,
2719 * we need to insert a barrier here to order any seqno
2720 * updates before
2721 * the counter increment.
2722 */
2723 smp_mb__before_atomic();
2724 atomic_inc(&dev_priv->gpu_error.reset_counter);
2725
2726 kobject_uevent_env(&dev->primary->kdev->kobj,
2727 KOBJ_CHANGE, reset_done_event);
2728 } else {
2729 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2730 }
2731
2732 /*
2733 * Note: The wake_up also serves as a memory barrier so that
2734 * waiters see the update value of the reset counter atomic_t.
2735 */
2736 i915_error_wake_up(dev_priv, true);
2737 }
2738 }
2739
2740 static void i915_report_and_clear_eir(struct drm_device *dev)
2741 {
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 uint32_t instdone[I915_NUM_INSTDONE_REG];
2744 u32 eir = I915_READ(EIR);
2745 int pipe, i;
2746
2747 if (!eir)
2748 return;
2749
2750 pr_err("render error detected, EIR: 0x%08x\n", eir);
2751
2752 i915_get_extra_instdone(dev, instdone);
2753
2754 if (IS_G4X(dev)) {
2755 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2756 u32 ipeir = I915_READ(IPEIR_I965);
2757
2758 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2759 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2760 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2761 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2762 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2763 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2764 I915_WRITE(IPEIR_I965, ipeir);
2765 POSTING_READ(IPEIR_I965);
2766 }
2767 if (eir & GM45_ERROR_PAGE_TABLE) {
2768 u32 pgtbl_err = I915_READ(PGTBL_ER);
2769 pr_err("page table error\n");
2770 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2771 I915_WRITE(PGTBL_ER, pgtbl_err);
2772 POSTING_READ(PGTBL_ER);
2773 }
2774 }
2775
2776 if (!IS_GEN2(dev)) {
2777 if (eir & I915_ERROR_PAGE_TABLE) {
2778 u32 pgtbl_err = I915_READ(PGTBL_ER);
2779 pr_err("page table error\n");
2780 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2781 I915_WRITE(PGTBL_ER, pgtbl_err);
2782 POSTING_READ(PGTBL_ER);
2783 }
2784 }
2785
2786 if (eir & I915_ERROR_MEMORY_REFRESH) {
2787 pr_err("memory refresh error:\n");
2788 for_each_pipe(dev_priv, pipe)
2789 pr_err("pipe %c stat: 0x%08x\n",
2790 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2791 /* pipestat has already been acked */
2792 }
2793 if (eir & I915_ERROR_INSTRUCTION) {
2794 pr_err("instruction error\n");
2795 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2796 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2797 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2798 if (INTEL_INFO(dev)->gen < 4) {
2799 u32 ipeir = I915_READ(IPEIR);
2800
2801 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2802 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2803 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2804 I915_WRITE(IPEIR, ipeir);
2805 POSTING_READ(IPEIR);
2806 } else {
2807 u32 ipeir = I915_READ(IPEIR_I965);
2808
2809 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2810 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2811 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2812 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2813 I915_WRITE(IPEIR_I965, ipeir);
2814 POSTING_READ(IPEIR_I965);
2815 }
2816 }
2817
2818 I915_WRITE(EIR, eir);
2819 POSTING_READ(EIR);
2820 eir = I915_READ(EIR);
2821 if (eir) {
2822 /*
2823 * some errors might have become stuck,
2824 * mask them.
2825 */
2826 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2827 I915_WRITE(EMR, I915_READ(EMR) | eir);
2828 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2829 }
2830 }
2831
2832 /**
2833 * i915_handle_error - handle an error interrupt
2834 * @dev: drm device
2835 *
2836 * Do some basic checking of regsiter state at error interrupt time and
2837 * dump it to the syslog. Also call i915_capture_error_state() to make
2838 * sure we get a record and make it available in debugfs. Fire a uevent
2839 * so userspace knows something bad happened (should trigger collection
2840 * of a ring dump etc.).
2841 */
2842 void i915_handle_error(struct drm_device *dev, bool wedged,
2843 const char *fmt, ...)
2844 {
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 va_list args;
2847 char error_msg[80];
2848
2849 va_start(args, fmt);
2850 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851 va_end(args);
2852
2853 i915_capture_error_state(dev, wedged, error_msg);
2854 i915_report_and_clear_eir(dev);
2855
2856 if (wedged) {
2857 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2858 &dev_priv->gpu_error.reset_counter);
2859
2860 /*
2861 * Wakeup waiting processes so that the reset work function
2862 * i915_error_work_func doesn't deadlock trying to grab various
2863 * locks. By bumping the reset counter first, the woken
2864 * processes will see a reset in progress and back off,
2865 * releasing their locks and then wait for the reset completion.
2866 * We must do this for _all_ gpu waiters that might hold locks
2867 * that the reset work needs to acquire.
2868 *
2869 * Note: The wake_up serves as the required memory barrier to
2870 * ensure that the waiters see the updated value of the reset
2871 * counter atomic_t.
2872 */
2873 i915_error_wake_up(dev_priv, false);
2874 }
2875
2876 /*
2877 * Our reset work can grab modeset locks (since it needs to reset the
2878 * state of outstanding pagelips). Hence it must not be run on our own
2879 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2880 * code will deadlock.
2881 */
2882 schedule_work(&dev_priv->gpu_error.work);
2883 }
2884
2885 /* Called from drm generic code, passed 'crtc' which
2886 * we use as a pipe index
2887 */
2888 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2889 {
2890 struct drm_i915_private *dev_priv = dev->dev_private;
2891 unsigned long irqflags;
2892
2893 if (!i915_pipe_enabled(dev, pipe))
2894 return -EINVAL;
2895
2896 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2897 if (INTEL_INFO(dev)->gen >= 4)
2898 i915_enable_pipestat(dev_priv, pipe,
2899 PIPE_START_VBLANK_INTERRUPT_STATUS);
2900 else
2901 i915_enable_pipestat(dev_priv, pipe,
2902 PIPE_VBLANK_INTERRUPT_STATUS);
2903 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2904
2905 return 0;
2906 }
2907
2908 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2909 {
2910 struct drm_i915_private *dev_priv = dev->dev_private;
2911 unsigned long irqflags;
2912 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2913 DE_PIPE_VBLANK(pipe);
2914
2915 if (!i915_pipe_enabled(dev, pipe))
2916 return -EINVAL;
2917
2918 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2919 ironlake_enable_display_irq(dev_priv, bit);
2920 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2921
2922 return 0;
2923 }
2924
2925 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2926 {
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928 unsigned long irqflags;
2929
2930 if (!i915_pipe_enabled(dev, pipe))
2931 return -EINVAL;
2932
2933 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2934 i915_enable_pipestat(dev_priv, pipe,
2935 PIPE_START_VBLANK_INTERRUPT_STATUS);
2936 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2937
2938 return 0;
2939 }
2940
2941 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2942 {
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944 unsigned long irqflags;
2945
2946 if (!i915_pipe_enabled(dev, pipe))
2947 return -EINVAL;
2948
2949 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2950 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2951 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2952 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2953 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2954 return 0;
2955 }
2956
2957 /* Called from drm generic code, passed 'crtc' which
2958 * we use as a pipe index
2959 */
2960 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2961 {
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 unsigned long irqflags;
2964
2965 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2966 i915_disable_pipestat(dev_priv, pipe,
2967 PIPE_VBLANK_INTERRUPT_STATUS |
2968 PIPE_START_VBLANK_INTERRUPT_STATUS);
2969 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2970 }
2971
2972 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2973 {
2974 struct drm_i915_private *dev_priv = dev->dev_private;
2975 unsigned long irqflags;
2976 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2977 DE_PIPE_VBLANK(pipe);
2978
2979 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2980 ironlake_disable_display_irq(dev_priv, bit);
2981 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2982 }
2983
2984 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 unsigned long irqflags;
2988
2989 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990 i915_disable_pipestat(dev_priv, pipe,
2991 PIPE_START_VBLANK_INTERRUPT_STATUS);
2992 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2993 }
2994
2995 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2996 {
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2998 unsigned long irqflags;
2999
3000 if (!i915_pipe_enabled(dev, pipe))
3001 return;
3002
3003 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3005 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3006 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3007 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3008 }
3009
3010 static u32
3011 ring_last_seqno(struct intel_engine_cs *ring)
3012 {
3013 return list_entry(ring->request_list.prev,
3014 struct drm_i915_gem_request, list)->seqno;
3015 }
3016
3017 static bool
3018 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3019 {
3020 return (list_empty(&ring->request_list) ||
3021 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3022 }
3023
3024 static bool
3025 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3026 {
3027 if (INTEL_INFO(dev)->gen >= 8) {
3028 return (ipehr >> 23) == 0x1c;
3029 } else {
3030 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3031 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3032 MI_SEMAPHORE_REGISTER);
3033 }
3034 }
3035
3036 static struct intel_engine_cs *
3037 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3038 {
3039 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3040 struct intel_engine_cs *signaller;
3041 int i;
3042
3043 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3044 for_each_ring(signaller, dev_priv, i) {
3045 if (ring == signaller)
3046 continue;
3047
3048 if (offset == signaller->semaphore.signal_ggtt[ring->id])
3049 return signaller;
3050 }
3051 } else {
3052 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3053
3054 for_each_ring(signaller, dev_priv, i) {
3055 if(ring == signaller)
3056 continue;
3057
3058 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3059 return signaller;
3060 }
3061 }
3062
3063 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3064 ring->id, ipehr, offset);
3065
3066 return NULL;
3067 }
3068
3069 static struct intel_engine_cs *
3070 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3071 {
3072 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3073 u32 cmd, ipehr, head;
3074 u64 offset = 0;
3075 int i, backwards;
3076
3077 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3078 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3079 return NULL;
3080
3081 /*
3082 * HEAD is likely pointing to the dword after the actual command,
3083 * so scan backwards until we find the MBOX. But limit it to just 3
3084 * or 4 dwords depending on the semaphore wait command size.
3085 * Note that we don't care about ACTHD here since that might
3086 * point at at batch, and semaphores are always emitted into the
3087 * ringbuffer itself.
3088 */
3089 head = I915_READ_HEAD(ring) & HEAD_ADDR;
3090 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3091
3092 for (i = backwards; i; --i) {
3093 /*
3094 * Be paranoid and presume the hw has gone off into the wild -
3095 * our ring is smaller than what the hardware (and hence
3096 * HEAD_ADDR) allows. Also handles wrap-around.
3097 */
3098 head &= ring->buffer->size - 1;
3099
3100 /* This here seems to blow up */
3101 cmd = ioread32(ring->buffer->virtual_start + head);
3102 if (cmd == ipehr)
3103 break;
3104
3105 head -= 4;
3106 }
3107
3108 if (!i)
3109 return NULL;
3110
3111 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3112 if (INTEL_INFO(ring->dev)->gen >= 8) {
3113 offset = ioread32(ring->buffer->virtual_start + head + 12);
3114 offset <<= 32;
3115 offset = ioread32(ring->buffer->virtual_start + head + 8);
3116 }
3117 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3118 }
3119
3120 static int semaphore_passed(struct intel_engine_cs *ring)
3121 {
3122 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3123 struct intel_engine_cs *signaller;
3124 u32 seqno;
3125
3126 ring->hangcheck.deadlock++;
3127
3128 signaller = semaphore_waits_for(ring, &seqno);
3129 if (signaller == NULL)
3130 return -1;
3131
3132 /* Prevent pathological recursion due to driver bugs */
3133 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3134 return -1;
3135
3136 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3137 return 1;
3138
3139 /* cursory check for an unkickable deadlock */
3140 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3141 semaphore_passed(signaller) < 0)
3142 return -1;
3143
3144 return 0;
3145 }
3146
3147 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3148 {
3149 struct intel_engine_cs *ring;
3150 int i;
3151
3152 for_each_ring(ring, dev_priv, i)
3153 ring->hangcheck.deadlock = 0;
3154 }
3155
3156 static enum intel_ring_hangcheck_action
3157 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3158 {
3159 struct drm_device *dev = ring->dev;
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161 u32 tmp;
3162
3163 if (acthd != ring->hangcheck.acthd) {
3164 if (acthd > ring->hangcheck.max_acthd) {
3165 ring->hangcheck.max_acthd = acthd;
3166 return HANGCHECK_ACTIVE;
3167 }
3168
3169 return HANGCHECK_ACTIVE_LOOP;
3170 }
3171
3172 if (IS_GEN2(dev))
3173 return HANGCHECK_HUNG;
3174
3175 /* Is the chip hanging on a WAIT_FOR_EVENT?
3176 * If so we can simply poke the RB_WAIT bit
3177 * and break the hang. This should work on
3178 * all but the second generation chipsets.
3179 */
3180 tmp = I915_READ_CTL(ring);
3181 if (tmp & RING_WAIT) {
3182 i915_handle_error(dev, false,
3183 "Kicking stuck wait on %s",
3184 ring->name);
3185 I915_WRITE_CTL(ring, tmp);
3186 return HANGCHECK_KICK;
3187 }
3188
3189 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3190 switch (semaphore_passed(ring)) {
3191 default:
3192 return HANGCHECK_HUNG;
3193 case 1:
3194 i915_handle_error(dev, false,
3195 "Kicking stuck semaphore on %s",
3196 ring->name);
3197 I915_WRITE_CTL(ring, tmp);
3198 return HANGCHECK_KICK;
3199 case 0:
3200 return HANGCHECK_WAIT;
3201 }
3202 }
3203
3204 return HANGCHECK_HUNG;
3205 }
3206
3207 /**
3208 * This is called when the chip hasn't reported back with completed
3209 * batchbuffers in a long time. We keep track per ring seqno progress and
3210 * if there are no progress, hangcheck score for that ring is increased.
3211 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3212 * we kick the ring. If we see no progress on three subsequent calls
3213 * we assume chip is wedged and try to fix it by resetting the chip.
3214 */
3215 static void i915_hangcheck_elapsed(unsigned long data)
3216 {
3217 struct drm_device *dev = (struct drm_device *)data;
3218 struct drm_i915_private *dev_priv = dev->dev_private;
3219 struct intel_engine_cs *ring;
3220 int i;
3221 int busy_count = 0, rings_hung = 0;
3222 bool stuck[I915_NUM_RINGS] = { 0 };
3223 #define BUSY 1
3224 #define KICK 5
3225 #define HUNG 20
3226
3227 if (!i915.enable_hangcheck)
3228 return;
3229
3230 for_each_ring(ring, dev_priv, i) {
3231 u64 acthd;
3232 u32 seqno;
3233 bool busy = true;
3234
3235 semaphore_clear_deadlocks(dev_priv);
3236
3237 seqno = ring->get_seqno(ring, false);
3238 acthd = intel_ring_get_active_head(ring);
3239
3240 if (ring->hangcheck.seqno == seqno) {
3241 if (ring_idle(ring, seqno)) {
3242 ring->hangcheck.action = HANGCHECK_IDLE;
3243
3244 if (waitqueue_active(&ring->irq_queue)) {
3245 /* Issue a wake-up to catch stuck h/w. */
3246 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3247 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3248 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3249 ring->name);
3250 else
3251 DRM_INFO("Fake missed irq on %s\n",
3252 ring->name);
3253 wake_up_all(&ring->irq_queue);
3254 }
3255 /* Safeguard against driver failure */
3256 ring->hangcheck.score += BUSY;
3257 } else
3258 busy = false;
3259 } else {
3260 /* We always increment the hangcheck score
3261 * if the ring is busy and still processing
3262 * the same request, so that no single request
3263 * can run indefinitely (such as a chain of
3264 * batches). The only time we do not increment
3265 * the hangcheck score on this ring, if this
3266 * ring is in a legitimate wait for another
3267 * ring. In that case the waiting ring is a
3268 * victim and we want to be sure we catch the
3269 * right culprit. Then every time we do kick
3270 * the ring, add a small increment to the
3271 * score so that we can catch a batch that is
3272 * being repeatedly kicked and so responsible
3273 * for stalling the machine.
3274 */
3275 ring->hangcheck.action = ring_stuck(ring,
3276 acthd);
3277
3278 switch (ring->hangcheck.action) {
3279 case HANGCHECK_IDLE:
3280 case HANGCHECK_WAIT:
3281 case HANGCHECK_ACTIVE:
3282 break;
3283 case HANGCHECK_ACTIVE_LOOP:
3284 ring->hangcheck.score += BUSY;
3285 break;
3286 case HANGCHECK_KICK:
3287 ring->hangcheck.score += KICK;
3288 break;
3289 case HANGCHECK_HUNG:
3290 ring->hangcheck.score += HUNG;
3291 stuck[i] = true;
3292 break;
3293 }
3294 }
3295 } else {
3296 ring->hangcheck.action = HANGCHECK_ACTIVE;
3297
3298 /* Gradually reduce the count so that we catch DoS
3299 * attempts across multiple batches.
3300 */
3301 if (ring->hangcheck.score > 0)
3302 ring->hangcheck.score--;
3303
3304 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3305 }
3306
3307 ring->hangcheck.seqno = seqno;
3308 ring->hangcheck.acthd = acthd;
3309 busy_count += busy;
3310 }
3311
3312 for_each_ring(ring, dev_priv, i) {
3313 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3314 DRM_INFO("%s on %s\n",
3315 stuck[i] ? "stuck" : "no progress",
3316 ring->name);
3317 rings_hung++;
3318 }
3319 }
3320
3321 if (rings_hung)
3322 return i915_handle_error(dev, true, "Ring hung");
3323
3324 if (busy_count)
3325 /* Reset timer case chip hangs without another request
3326 * being added */
3327 i915_queue_hangcheck(dev);
3328 }
3329
3330 void i915_queue_hangcheck(struct drm_device *dev)
3331 {
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 if (!i915.enable_hangcheck)
3334 return;
3335
3336 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3337 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3338 }
3339
3340 static void ibx_irq_reset(struct drm_device *dev)
3341 {
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343
3344 if (HAS_PCH_NOP(dev))
3345 return;
3346
3347 GEN5_IRQ_RESET(SDE);
3348
3349 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3350 I915_WRITE(SERR_INT, 0xffffffff);
3351 }
3352
3353 /*
3354 * SDEIER is also touched by the interrupt handler to work around missed PCH
3355 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3356 * instead we unconditionally enable all PCH interrupt sources here, but then
3357 * only unmask them as needed with SDEIMR.
3358 *
3359 * This function needs to be called before interrupts are enabled.
3360 */
3361 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3362 {
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365 if (HAS_PCH_NOP(dev))
3366 return;
3367
3368 WARN_ON(I915_READ(SDEIER) != 0);
3369 I915_WRITE(SDEIER, 0xffffffff);
3370 POSTING_READ(SDEIER);
3371 }
3372
3373 static void gen5_gt_irq_reset(struct drm_device *dev)
3374 {
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376
3377 GEN5_IRQ_RESET(GT);
3378 if (INTEL_INFO(dev)->gen >= 6)
3379 GEN5_IRQ_RESET(GEN6_PM);
3380 }
3381
3382 /* drm_dma.h hooks
3383 */
3384 static void ironlake_irq_reset(struct drm_device *dev)
3385 {
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387
3388 I915_WRITE(HWSTAM, 0xffffffff);
3389
3390 GEN5_IRQ_RESET(DE);
3391 if (IS_GEN7(dev))
3392 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3393
3394 gen5_gt_irq_reset(dev);
3395
3396 ibx_irq_reset(dev);
3397 }
3398
3399 static void valleyview_irq_preinstall(struct drm_device *dev)
3400 {
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 int pipe;
3403
3404 /* VLV magic */
3405 I915_WRITE(VLV_IMR, 0);
3406 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3407 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3408 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3409
3410 /* and GT */
3411 I915_WRITE(GTIIR, I915_READ(GTIIR));
3412 I915_WRITE(GTIIR, I915_READ(GTIIR));
3413
3414 gen5_gt_irq_reset(dev);
3415
3416 I915_WRITE(DPINVGTT, 0xff);
3417
3418 I915_WRITE(PORT_HOTPLUG_EN, 0);
3419 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3420 for_each_pipe(dev_priv, pipe)
3421 I915_WRITE(PIPESTAT(pipe), 0xffff);
3422 I915_WRITE(VLV_IIR, 0xffffffff);
3423 I915_WRITE(VLV_IMR, 0xffffffff);
3424 I915_WRITE(VLV_IER, 0x0);
3425 POSTING_READ(VLV_IER);
3426 }
3427
3428 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3429 {
3430 GEN8_IRQ_RESET_NDX(GT, 0);
3431 GEN8_IRQ_RESET_NDX(GT, 1);
3432 GEN8_IRQ_RESET_NDX(GT, 2);
3433 GEN8_IRQ_RESET_NDX(GT, 3);
3434 }
3435
3436 static void gen8_irq_reset(struct drm_device *dev)
3437 {
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439 int pipe;
3440
3441 I915_WRITE(GEN8_MASTER_IRQ, 0);
3442 POSTING_READ(GEN8_MASTER_IRQ);
3443
3444 gen8_gt_irq_reset(dev_priv);
3445
3446 for_each_pipe(dev_priv, pipe)
3447 if (intel_display_power_enabled(dev_priv,
3448 POWER_DOMAIN_PIPE(pipe)))
3449 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3450
3451 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3452 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3453 GEN5_IRQ_RESET(GEN8_PCU_);
3454
3455 ibx_irq_reset(dev);
3456 }
3457
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3459 {
3460 unsigned long irqflags;
3461
3462 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3464 ~dev_priv->de_irq_mask[PIPE_B]);
3465 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3466 ~dev_priv->de_irq_mask[PIPE_C]);
3467 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3468 }
3469
3470 static void cherryview_irq_preinstall(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 int pipe;
3474
3475 I915_WRITE(GEN8_MASTER_IRQ, 0);
3476 POSTING_READ(GEN8_MASTER_IRQ);
3477
3478 gen8_gt_irq_reset(dev_priv);
3479
3480 GEN5_IRQ_RESET(GEN8_PCU_);
3481
3482 POSTING_READ(GEN8_PCU_IIR);
3483
3484 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3485
3486 I915_WRITE(PORT_HOTPLUG_EN, 0);
3487 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3488
3489 for_each_pipe(dev_priv, pipe)
3490 I915_WRITE(PIPESTAT(pipe), 0xffff);
3491
3492 I915_WRITE(VLV_IMR, 0xffffffff);
3493 I915_WRITE(VLV_IER, 0x0);
3494 I915_WRITE(VLV_IIR, 0xffffffff);
3495 POSTING_READ(VLV_IIR);
3496 }
3497
3498 static void ibx_hpd_irq_setup(struct drm_device *dev)
3499 {
3500 struct drm_i915_private *dev_priv = dev->dev_private;
3501 struct intel_encoder *intel_encoder;
3502 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3503
3504 if (HAS_PCH_IBX(dev)) {
3505 hotplug_irqs = SDE_HOTPLUG_MASK;
3506 for_each_intel_encoder(dev, intel_encoder)
3507 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3508 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3509 } else {
3510 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3511 for_each_intel_encoder(dev, intel_encoder)
3512 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3513 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3514 }
3515
3516 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3517
3518 /*
3519 * Enable digital hotplug on the PCH, and configure the DP short pulse
3520 * duration to 2ms (which is the minimum in the Display Port spec)
3521 *
3522 * This register is the same on all known PCH chips.
3523 */
3524 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3525 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3526 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3527 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3528 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3529 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3530 }
3531
3532 static void ibx_irq_postinstall(struct drm_device *dev)
3533 {
3534 struct drm_i915_private *dev_priv = dev->dev_private;
3535 u32 mask;
3536
3537 if (HAS_PCH_NOP(dev))
3538 return;
3539
3540 if (HAS_PCH_IBX(dev))
3541 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3542 else
3543 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3544
3545 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3546 I915_WRITE(SDEIMR, ~mask);
3547 }
3548
3549 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3550 {
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 u32 pm_irqs, gt_irqs;
3553
3554 pm_irqs = gt_irqs = 0;
3555
3556 dev_priv->gt_irq_mask = ~0;
3557 if (HAS_L3_DPF(dev)) {
3558 /* L3 parity interrupt is always unmasked. */
3559 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3560 gt_irqs |= GT_PARITY_ERROR(dev);
3561 }
3562
3563 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3564 if (IS_GEN5(dev)) {
3565 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3566 ILK_BSD_USER_INTERRUPT;
3567 } else {
3568 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3569 }
3570
3571 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3572
3573 if (INTEL_INFO(dev)->gen >= 6) {
3574 pm_irqs |= dev_priv->pm_rps_events;
3575
3576 if (HAS_VEBOX(dev))
3577 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3578
3579 dev_priv->pm_irq_mask = 0xffffffff;
3580 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3581 }
3582 }
3583
3584 static int ironlake_irq_postinstall(struct drm_device *dev)
3585 {
3586 unsigned long irqflags;
3587 struct drm_i915_private *dev_priv = dev->dev_private;
3588 u32 display_mask, extra_mask;
3589
3590 if (INTEL_INFO(dev)->gen >= 7) {
3591 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3592 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3593 DE_PLANEB_FLIP_DONE_IVB |
3594 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3595 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3596 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3597 } else {
3598 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3599 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3600 DE_AUX_CHANNEL_A |
3601 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3602 DE_POISON);
3603 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3604 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3605 }
3606
3607 dev_priv->irq_mask = ~display_mask;
3608
3609 I915_WRITE(HWSTAM, 0xeffe);
3610
3611 ibx_irq_pre_postinstall(dev);
3612
3613 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3614
3615 gen5_gt_irq_postinstall(dev);
3616
3617 ibx_irq_postinstall(dev);
3618
3619 if (IS_IRONLAKE_M(dev)) {
3620 /* Enable PCU event interrupts
3621 *
3622 * spinlocking not required here for correctness since interrupt
3623 * setup is guaranteed to run in single-threaded context. But we
3624 * need it to make the assert_spin_locked happy. */
3625 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3626 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3627 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3628 }
3629
3630 return 0;
3631 }
3632
3633 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3634 {
3635 u32 pipestat_mask;
3636 u32 iir_mask;
3637
3638 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3639 PIPE_FIFO_UNDERRUN_STATUS;
3640
3641 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3642 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3643 POSTING_READ(PIPESTAT(PIPE_A));
3644
3645 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3646 PIPE_CRC_DONE_INTERRUPT_STATUS;
3647
3648 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3649 PIPE_GMBUS_INTERRUPT_STATUS);
3650 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3651
3652 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3653 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3654 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3655 dev_priv->irq_mask &= ~iir_mask;
3656
3657 I915_WRITE(VLV_IIR, iir_mask);
3658 I915_WRITE(VLV_IIR, iir_mask);
3659 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3660 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3661 POSTING_READ(VLV_IER);
3662 }
3663
3664 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3665 {
3666 u32 pipestat_mask;
3667 u32 iir_mask;
3668
3669 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3670 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3671 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3672
3673 dev_priv->irq_mask |= iir_mask;
3674 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3675 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3676 I915_WRITE(VLV_IIR, iir_mask);
3677 I915_WRITE(VLV_IIR, iir_mask);
3678 POSTING_READ(VLV_IIR);
3679
3680 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3681 PIPE_CRC_DONE_INTERRUPT_STATUS;
3682
3683 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3684 PIPE_GMBUS_INTERRUPT_STATUS);
3685 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3686
3687 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3688 PIPE_FIFO_UNDERRUN_STATUS;
3689 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3690 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3691 POSTING_READ(PIPESTAT(PIPE_A));
3692 }
3693
3694 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3695 {
3696 assert_spin_locked(&dev_priv->irq_lock);
3697
3698 if (dev_priv->display_irqs_enabled)
3699 return;
3700
3701 dev_priv->display_irqs_enabled = true;
3702
3703 if (dev_priv->dev->irq_enabled)
3704 valleyview_display_irqs_install(dev_priv);
3705 }
3706
3707 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3708 {
3709 assert_spin_locked(&dev_priv->irq_lock);
3710
3711 if (!dev_priv->display_irqs_enabled)
3712 return;
3713
3714 dev_priv->display_irqs_enabled = false;
3715
3716 if (dev_priv->dev->irq_enabled)
3717 valleyview_display_irqs_uninstall(dev_priv);
3718 }
3719
3720 static int valleyview_irq_postinstall(struct drm_device *dev)
3721 {
3722 struct drm_i915_private *dev_priv = dev->dev_private;
3723 unsigned long irqflags;
3724
3725 dev_priv->irq_mask = ~0;
3726
3727 I915_WRITE(PORT_HOTPLUG_EN, 0);
3728 POSTING_READ(PORT_HOTPLUG_EN);
3729
3730 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3731 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3732 I915_WRITE(VLV_IIR, 0xffffffff);
3733 POSTING_READ(VLV_IER);
3734
3735 /* Interrupt setup is already guaranteed to be single-threaded, this is
3736 * just to make the assert_spin_locked check happy. */
3737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3738 if (dev_priv->display_irqs_enabled)
3739 valleyview_display_irqs_install(dev_priv);
3740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3741
3742 I915_WRITE(VLV_IIR, 0xffffffff);
3743 I915_WRITE(VLV_IIR, 0xffffffff);
3744
3745 gen5_gt_irq_postinstall(dev);
3746
3747 /* ack & enable invalid PTE error interrupts */
3748 #if 0 /* FIXME: add support to irq handler for checking these bits */
3749 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3750 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3751 #endif
3752
3753 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3754
3755 return 0;
3756 }
3757
3758 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3759 {
3760 /* These are interrupts we'll toggle with the ring mask register */
3761 uint32_t gt_interrupts[] = {
3762 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3763 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3764 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3765 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3766 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3767 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3768 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3769 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3770 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3771 0,
3772 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3773 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3774 };
3775
3776 dev_priv->pm_irq_mask = 0xffffffff;
3777 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3778 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3779 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3780 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3781 }
3782
3783 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3786 GEN8_PIPE_CDCLK_CRC_DONE |
3787 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3788 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789 GEN8_PIPE_FIFO_UNDERRUN;
3790 int pipe;
3791 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3792 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3793 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3794
3795 for_each_pipe(dev_priv, pipe)
3796 if (intel_display_power_enabled(dev_priv,
3797 POWER_DOMAIN_PIPE(pipe)))
3798 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3799 dev_priv->de_irq_mask[pipe],
3800 de_pipe_enables);
3801
3802 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3803 }
3804
3805 static int gen8_irq_postinstall(struct drm_device *dev)
3806 {
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808
3809 ibx_irq_pre_postinstall(dev);
3810
3811 gen8_gt_irq_postinstall(dev_priv);
3812 gen8_de_irq_postinstall(dev_priv);
3813
3814 ibx_irq_postinstall(dev);
3815
3816 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3817 POSTING_READ(GEN8_MASTER_IRQ);
3818
3819 return 0;
3820 }
3821
3822 static int cherryview_irq_postinstall(struct drm_device *dev)
3823 {
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3826 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3827 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3828 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3829 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3830 PIPE_CRC_DONE_INTERRUPT_STATUS;
3831 unsigned long irqflags;
3832 int pipe;
3833
3834 /*
3835 * Leave vblank interrupts masked initially. enable/disable will
3836 * toggle them based on usage.
3837 */
3838 dev_priv->irq_mask = ~enable_mask;
3839
3840 for_each_pipe(dev_priv, pipe)
3841 I915_WRITE(PIPESTAT(pipe), 0xffff);
3842
3843 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3844 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3845 for_each_pipe(dev_priv, pipe)
3846 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3847 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3848
3849 I915_WRITE(VLV_IIR, 0xffffffff);
3850 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3851 I915_WRITE(VLV_IER, enable_mask);
3852
3853 gen8_gt_irq_postinstall(dev_priv);
3854
3855 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3856 POSTING_READ(GEN8_MASTER_IRQ);
3857
3858 return 0;
3859 }
3860
3861 static void gen8_irq_uninstall(struct drm_device *dev)
3862 {
3863 struct drm_i915_private *dev_priv = dev->dev_private;
3864
3865 if (!dev_priv)
3866 return;
3867
3868 gen8_irq_reset(dev);
3869 }
3870
3871 static void valleyview_irq_uninstall(struct drm_device *dev)
3872 {
3873 struct drm_i915_private *dev_priv = dev->dev_private;
3874 unsigned long irqflags;
3875 int pipe;
3876
3877 if (!dev_priv)
3878 return;
3879
3880 I915_WRITE(VLV_MASTER_IER, 0);
3881
3882 for_each_pipe(dev_priv, pipe)
3883 I915_WRITE(PIPESTAT(pipe), 0xffff);
3884
3885 I915_WRITE(HWSTAM, 0xffffffff);
3886 I915_WRITE(PORT_HOTPLUG_EN, 0);
3887 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3888
3889 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3890 if (dev_priv->display_irqs_enabled)
3891 valleyview_display_irqs_uninstall(dev_priv);
3892 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3893
3894 dev_priv->irq_mask = 0;
3895
3896 I915_WRITE(VLV_IIR, 0xffffffff);
3897 I915_WRITE(VLV_IMR, 0xffffffff);
3898 I915_WRITE(VLV_IER, 0x0);
3899 POSTING_READ(VLV_IER);
3900 }
3901
3902 static void cherryview_irq_uninstall(struct drm_device *dev)
3903 {
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 int pipe;
3906
3907 if (!dev_priv)
3908 return;
3909
3910 I915_WRITE(GEN8_MASTER_IRQ, 0);
3911 POSTING_READ(GEN8_MASTER_IRQ);
3912
3913 #define GEN8_IRQ_FINI_NDX(type, which) \
3914 do { \
3915 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3916 I915_WRITE(GEN8_##type##_IER(which), 0); \
3917 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3918 POSTING_READ(GEN8_##type##_IIR(which)); \
3919 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3920 } while (0)
3921
3922 #define GEN8_IRQ_FINI(type) \
3923 do { \
3924 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3925 I915_WRITE(GEN8_##type##_IER, 0); \
3926 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3927 POSTING_READ(GEN8_##type##_IIR); \
3928 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3929 } while (0)
3930
3931 GEN8_IRQ_FINI_NDX(GT, 0);
3932 GEN8_IRQ_FINI_NDX(GT, 1);
3933 GEN8_IRQ_FINI_NDX(GT, 2);
3934 GEN8_IRQ_FINI_NDX(GT, 3);
3935
3936 GEN8_IRQ_FINI(PCU);
3937
3938 #undef GEN8_IRQ_FINI
3939 #undef GEN8_IRQ_FINI_NDX
3940
3941 I915_WRITE(PORT_HOTPLUG_EN, 0);
3942 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3943
3944 for_each_pipe(dev_priv, pipe)
3945 I915_WRITE(PIPESTAT(pipe), 0xffff);
3946
3947 I915_WRITE(VLV_IMR, 0xffffffff);
3948 I915_WRITE(VLV_IER, 0x0);
3949 I915_WRITE(VLV_IIR, 0xffffffff);
3950 POSTING_READ(VLV_IIR);
3951 }
3952
3953 static void ironlake_irq_uninstall(struct drm_device *dev)
3954 {
3955 struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957 if (!dev_priv)
3958 return;
3959
3960 ironlake_irq_reset(dev);
3961 }
3962
3963 static void i8xx_irq_preinstall(struct drm_device * dev)
3964 {
3965 struct drm_i915_private *dev_priv = dev->dev_private;
3966 int pipe;
3967
3968 for_each_pipe(dev_priv, pipe)
3969 I915_WRITE(PIPESTAT(pipe), 0);
3970 I915_WRITE16(IMR, 0xffff);
3971 I915_WRITE16(IER, 0x0);
3972 POSTING_READ16(IER);
3973 }
3974
3975 static int i8xx_irq_postinstall(struct drm_device *dev)
3976 {
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 unsigned long irqflags;
3979
3980 I915_WRITE16(EMR,
3981 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3982
3983 /* Unmask the interrupts that we always want on. */
3984 dev_priv->irq_mask =
3985 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3986 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3987 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3989 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3990 I915_WRITE16(IMR, dev_priv->irq_mask);
3991
3992 I915_WRITE16(IER,
3993 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3994 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3995 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3996 I915_USER_INTERRUPT);
3997 POSTING_READ16(IER);
3998
3999 /* Interrupt setup is already guaranteed to be single-threaded, this is
4000 * just to make the assert_spin_locked check happy. */
4001 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4002 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4003 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4005
4006 return 0;
4007 }
4008
4009 /*
4010 * Returns true when a page flip has completed.
4011 */
4012 static bool i8xx_handle_vblank(struct drm_device *dev,
4013 int plane, int pipe, u32 iir)
4014 {
4015 struct drm_i915_private *dev_priv = dev->dev_private;
4016 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4017
4018 if (!intel_pipe_handle_vblank(dev, pipe))
4019 return false;
4020
4021 if ((iir & flip_pending) == 0)
4022 goto check_page_flip;
4023
4024 intel_prepare_page_flip(dev, plane);
4025
4026 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4027 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4028 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4029 * the flip is completed (no longer pending). Since this doesn't raise
4030 * an interrupt per se, we watch for the change at vblank.
4031 */
4032 if (I915_READ16(ISR) & flip_pending)
4033 goto check_page_flip;
4034
4035 intel_finish_page_flip(dev, pipe);
4036 return true;
4037
4038 check_page_flip:
4039 intel_check_page_flip(dev, pipe);
4040 return false;
4041 }
4042
4043 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4044 {
4045 struct drm_device *dev = arg;
4046 struct drm_i915_private *dev_priv = dev->dev_private;
4047 u16 iir, new_iir;
4048 u32 pipe_stats[2];
4049 unsigned long irqflags;
4050 int pipe;
4051 u16 flip_mask =
4052 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4053 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4054
4055 iir = I915_READ16(IIR);
4056 if (iir == 0)
4057 return IRQ_NONE;
4058
4059 while (iir & ~flip_mask) {
4060 /* Can't rely on pipestat interrupt bit in iir as it might
4061 * have been cleared after the pipestat interrupt was received.
4062 * It doesn't set the bit in iir again, but it still produces
4063 * interrupts (for non-MSI).
4064 */
4065 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4066 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4067 i915_handle_error(dev, false,
4068 "Command parser error, iir 0x%08x",
4069 iir);
4070
4071 for_each_pipe(dev_priv, pipe) {
4072 int reg = PIPESTAT(pipe);
4073 pipe_stats[pipe] = I915_READ(reg);
4074
4075 /*
4076 * Clear the PIPE*STAT regs before the IIR
4077 */
4078 if (pipe_stats[pipe] & 0x8000ffff)
4079 I915_WRITE(reg, pipe_stats[pipe]);
4080 }
4081 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4082
4083 I915_WRITE16(IIR, iir & ~flip_mask);
4084 new_iir = I915_READ16(IIR); /* Flush posted writes */
4085
4086 i915_update_dri1_breadcrumb(dev);
4087
4088 if (iir & I915_USER_INTERRUPT)
4089 notify_ring(dev, &dev_priv->ring[RCS]);
4090
4091 for_each_pipe(dev_priv, pipe) {
4092 int plane = pipe;
4093 if (HAS_FBC(dev))
4094 plane = !plane;
4095
4096 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4097 i8xx_handle_vblank(dev, plane, pipe, iir))
4098 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4099
4100 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4101 i9xx_pipe_crc_irq_handler(dev, pipe);
4102
4103 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4104 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4105 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4106 }
4107
4108 iir = new_iir;
4109 }
4110
4111 return IRQ_HANDLED;
4112 }
4113
4114 static void i8xx_irq_uninstall(struct drm_device * dev)
4115 {
4116 struct drm_i915_private *dev_priv = dev->dev_private;
4117 int pipe;
4118
4119 for_each_pipe(dev_priv, pipe) {
4120 /* Clear enable bits; then clear status bits */
4121 I915_WRITE(PIPESTAT(pipe), 0);
4122 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4123 }
4124 I915_WRITE16(IMR, 0xffff);
4125 I915_WRITE16(IER, 0x0);
4126 I915_WRITE16(IIR, I915_READ16(IIR));
4127 }
4128
4129 static void i915_irq_preinstall(struct drm_device * dev)
4130 {
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132 int pipe;
4133
4134 if (I915_HAS_HOTPLUG(dev)) {
4135 I915_WRITE(PORT_HOTPLUG_EN, 0);
4136 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4137 }
4138
4139 I915_WRITE16(HWSTAM, 0xeffe);
4140 for_each_pipe(dev_priv, pipe)
4141 I915_WRITE(PIPESTAT(pipe), 0);
4142 I915_WRITE(IMR, 0xffffffff);
4143 I915_WRITE(IER, 0x0);
4144 POSTING_READ(IER);
4145 }
4146
4147 static int i915_irq_postinstall(struct drm_device *dev)
4148 {
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 u32 enable_mask;
4151 unsigned long irqflags;
4152
4153 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4154
4155 /* Unmask the interrupts that we always want on. */
4156 dev_priv->irq_mask =
4157 ~(I915_ASLE_INTERRUPT |
4158 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4159 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4160 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4161 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4162 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4163
4164 enable_mask =
4165 I915_ASLE_INTERRUPT |
4166 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4167 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4168 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4169 I915_USER_INTERRUPT;
4170
4171 if (I915_HAS_HOTPLUG(dev)) {
4172 I915_WRITE(PORT_HOTPLUG_EN, 0);
4173 POSTING_READ(PORT_HOTPLUG_EN);
4174
4175 /* Enable in IER... */
4176 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4177 /* and unmask in IMR */
4178 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4179 }
4180
4181 I915_WRITE(IMR, dev_priv->irq_mask);
4182 I915_WRITE(IER, enable_mask);
4183 POSTING_READ(IER);
4184
4185 i915_enable_asle_pipestat(dev);
4186
4187 /* Interrupt setup is already guaranteed to be single-threaded, this is
4188 * just to make the assert_spin_locked check happy. */
4189 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4190 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4193
4194 return 0;
4195 }
4196
4197 /*
4198 * Returns true when a page flip has completed.
4199 */
4200 static bool i915_handle_vblank(struct drm_device *dev,
4201 int plane, int pipe, u32 iir)
4202 {
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4205
4206 if (!intel_pipe_handle_vblank(dev, pipe))
4207 return false;
4208
4209 if ((iir & flip_pending) == 0)
4210 goto check_page_flip;
4211
4212 intel_prepare_page_flip(dev, plane);
4213
4214 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4215 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4216 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4217 * the flip is completed (no longer pending). Since this doesn't raise
4218 * an interrupt per se, we watch for the change at vblank.
4219 */
4220 if (I915_READ(ISR) & flip_pending)
4221 goto check_page_flip;
4222
4223 intel_finish_page_flip(dev, pipe);
4224 return true;
4225
4226 check_page_flip:
4227 intel_check_page_flip(dev, pipe);
4228 return false;
4229 }
4230
4231 static irqreturn_t i915_irq_handler(int irq, void *arg)
4232 {
4233 struct drm_device *dev = arg;
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4236 unsigned long irqflags;
4237 u32 flip_mask =
4238 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4239 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4240 int pipe, ret = IRQ_NONE;
4241
4242 iir = I915_READ(IIR);
4243 do {
4244 bool irq_received = (iir & ~flip_mask) != 0;
4245 bool blc_event = false;
4246
4247 /* Can't rely on pipestat interrupt bit in iir as it might
4248 * have been cleared after the pipestat interrupt was received.
4249 * It doesn't set the bit in iir again, but it still produces
4250 * interrupts (for non-MSI).
4251 */
4252 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4253 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4254 i915_handle_error(dev, false,
4255 "Command parser error, iir 0x%08x",
4256 iir);
4257
4258 for_each_pipe(dev_priv, pipe) {
4259 int reg = PIPESTAT(pipe);
4260 pipe_stats[pipe] = I915_READ(reg);
4261
4262 /* Clear the PIPE*STAT regs before the IIR */
4263 if (pipe_stats[pipe] & 0x8000ffff) {
4264 I915_WRITE(reg, pipe_stats[pipe]);
4265 irq_received = true;
4266 }
4267 }
4268 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4269
4270 if (!irq_received)
4271 break;
4272
4273 /* Consume port. Then clear IIR or we'll miss events */
4274 if (I915_HAS_HOTPLUG(dev) &&
4275 iir & I915_DISPLAY_PORT_INTERRUPT)
4276 i9xx_hpd_irq_handler(dev);
4277
4278 I915_WRITE(IIR, iir & ~flip_mask);
4279 new_iir = I915_READ(IIR); /* Flush posted writes */
4280
4281 if (iir & I915_USER_INTERRUPT)
4282 notify_ring(dev, &dev_priv->ring[RCS]);
4283
4284 for_each_pipe(dev_priv, pipe) {
4285 int plane = pipe;
4286 if (HAS_FBC(dev))
4287 plane = !plane;
4288
4289 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4290 i915_handle_vblank(dev, plane, pipe, iir))
4291 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4292
4293 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4294 blc_event = true;
4295
4296 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4297 i9xx_pipe_crc_irq_handler(dev, pipe);
4298
4299 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4300 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4301 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4302 }
4303
4304 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4305 intel_opregion_asle_intr(dev);
4306
4307 /* With MSI, interrupts are only generated when iir
4308 * transitions from zero to nonzero. If another bit got
4309 * set while we were handling the existing iir bits, then
4310 * we would never get another interrupt.
4311 *
4312 * This is fine on non-MSI as well, as if we hit this path
4313 * we avoid exiting the interrupt handler only to generate
4314 * another one.
4315 *
4316 * Note that for MSI this could cause a stray interrupt report
4317 * if an interrupt landed in the time between writing IIR and
4318 * the posting read. This should be rare enough to never
4319 * trigger the 99% of 100,000 interrupts test for disabling
4320 * stray interrupts.
4321 */
4322 ret = IRQ_HANDLED;
4323 iir = new_iir;
4324 } while (iir & ~flip_mask);
4325
4326 i915_update_dri1_breadcrumb(dev);
4327
4328 return ret;
4329 }
4330
4331 static void i915_irq_uninstall(struct drm_device * dev)
4332 {
4333 struct drm_i915_private *dev_priv = dev->dev_private;
4334 int pipe;
4335
4336 if (I915_HAS_HOTPLUG(dev)) {
4337 I915_WRITE(PORT_HOTPLUG_EN, 0);
4338 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4339 }
4340
4341 I915_WRITE16(HWSTAM, 0xffff);
4342 for_each_pipe(dev_priv, pipe) {
4343 /* Clear enable bits; then clear status bits */
4344 I915_WRITE(PIPESTAT(pipe), 0);
4345 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4346 }
4347 I915_WRITE(IMR, 0xffffffff);
4348 I915_WRITE(IER, 0x0);
4349
4350 I915_WRITE(IIR, I915_READ(IIR));
4351 }
4352
4353 static void i965_irq_preinstall(struct drm_device * dev)
4354 {
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356 int pipe;
4357
4358 I915_WRITE(PORT_HOTPLUG_EN, 0);
4359 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4360
4361 I915_WRITE(HWSTAM, 0xeffe);
4362 for_each_pipe(dev_priv, pipe)
4363 I915_WRITE(PIPESTAT(pipe), 0);
4364 I915_WRITE(IMR, 0xffffffff);
4365 I915_WRITE(IER, 0x0);
4366 POSTING_READ(IER);
4367 }
4368
4369 static int i965_irq_postinstall(struct drm_device *dev)
4370 {
4371 struct drm_i915_private *dev_priv = dev->dev_private;
4372 u32 enable_mask;
4373 u32 error_mask;
4374 unsigned long irqflags;
4375
4376 /* Unmask the interrupts that we always want on. */
4377 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4378 I915_DISPLAY_PORT_INTERRUPT |
4379 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4380 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4381 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4382 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4383 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4384
4385 enable_mask = ~dev_priv->irq_mask;
4386 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4387 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4388 enable_mask |= I915_USER_INTERRUPT;
4389
4390 if (IS_G4X(dev))
4391 enable_mask |= I915_BSD_USER_INTERRUPT;
4392
4393 /* Interrupt setup is already guaranteed to be single-threaded, this is
4394 * just to make the assert_spin_locked check happy. */
4395 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4396 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4397 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4398 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4399 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4400
4401 /*
4402 * Enable some error detection, note the instruction error mask
4403 * bit is reserved, so we leave it masked.
4404 */
4405 if (IS_G4X(dev)) {
4406 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4407 GM45_ERROR_MEM_PRIV |
4408 GM45_ERROR_CP_PRIV |
4409 I915_ERROR_MEMORY_REFRESH);
4410 } else {
4411 error_mask = ~(I915_ERROR_PAGE_TABLE |
4412 I915_ERROR_MEMORY_REFRESH);
4413 }
4414 I915_WRITE(EMR, error_mask);
4415
4416 I915_WRITE(IMR, dev_priv->irq_mask);
4417 I915_WRITE(IER, enable_mask);
4418 POSTING_READ(IER);
4419
4420 I915_WRITE(PORT_HOTPLUG_EN, 0);
4421 POSTING_READ(PORT_HOTPLUG_EN);
4422
4423 i915_enable_asle_pipestat(dev);
4424
4425 return 0;
4426 }
4427
4428 static void i915_hpd_irq_setup(struct drm_device *dev)
4429 {
4430 struct drm_i915_private *dev_priv = dev->dev_private;
4431 struct intel_encoder *intel_encoder;
4432 u32 hotplug_en;
4433
4434 assert_spin_locked(&dev_priv->irq_lock);
4435
4436 if (I915_HAS_HOTPLUG(dev)) {
4437 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4438 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4439 /* Note HDMI and DP share hotplug bits */
4440 /* enable bits are the same for all generations */
4441 for_each_intel_encoder(dev, intel_encoder)
4442 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4443 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4444 /* Programming the CRT detection parameters tends
4445 to generate a spurious hotplug event about three
4446 seconds later. So just do it once.
4447 */
4448 if (IS_G4X(dev))
4449 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4450 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4451 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4452
4453 /* Ignore TV since it's buggy */
4454 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4455 }
4456 }
4457
4458 static irqreturn_t i965_irq_handler(int irq, void *arg)
4459 {
4460 struct drm_device *dev = arg;
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462 u32 iir, new_iir;
4463 u32 pipe_stats[I915_MAX_PIPES];
4464 unsigned long irqflags;
4465 int ret = IRQ_NONE, pipe;
4466 u32 flip_mask =
4467 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4468 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4469
4470 iir = I915_READ(IIR);
4471
4472 for (;;) {
4473 bool irq_received = (iir & ~flip_mask) != 0;
4474 bool blc_event = false;
4475
4476 /* Can't rely on pipestat interrupt bit in iir as it might
4477 * have been cleared after the pipestat interrupt was received.
4478 * It doesn't set the bit in iir again, but it still produces
4479 * interrupts (for non-MSI).
4480 */
4481 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4482 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4483 i915_handle_error(dev, false,
4484 "Command parser error, iir 0x%08x",
4485 iir);
4486
4487 for_each_pipe(dev_priv, pipe) {
4488 int reg = PIPESTAT(pipe);
4489 pipe_stats[pipe] = I915_READ(reg);
4490
4491 /*
4492 * Clear the PIPE*STAT regs before the IIR
4493 */
4494 if (pipe_stats[pipe] & 0x8000ffff) {
4495 I915_WRITE(reg, pipe_stats[pipe]);
4496 irq_received = true;
4497 }
4498 }
4499 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4500
4501 if (!irq_received)
4502 break;
4503
4504 ret = IRQ_HANDLED;
4505
4506 /* Consume port. Then clear IIR or we'll miss events */
4507 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4508 i9xx_hpd_irq_handler(dev);
4509
4510 I915_WRITE(IIR, iir & ~flip_mask);
4511 new_iir = I915_READ(IIR); /* Flush posted writes */
4512
4513 if (iir & I915_USER_INTERRUPT)
4514 notify_ring(dev, &dev_priv->ring[RCS]);
4515 if (iir & I915_BSD_USER_INTERRUPT)
4516 notify_ring(dev, &dev_priv->ring[VCS]);
4517
4518 for_each_pipe(dev_priv, pipe) {
4519 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4520 i915_handle_vblank(dev, pipe, pipe, iir))
4521 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4522
4523 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4524 blc_event = true;
4525
4526 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4527 i9xx_pipe_crc_irq_handler(dev, pipe);
4528
4529 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4530 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4531 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4532 }
4533
4534 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4535 intel_opregion_asle_intr(dev);
4536
4537 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4538 gmbus_irq_handler(dev);
4539
4540 /* With MSI, interrupts are only generated when iir
4541 * transitions from zero to nonzero. If another bit got
4542 * set while we were handling the existing iir bits, then
4543 * we would never get another interrupt.
4544 *
4545 * This is fine on non-MSI as well, as if we hit this path
4546 * we avoid exiting the interrupt handler only to generate
4547 * another one.
4548 *
4549 * Note that for MSI this could cause a stray interrupt report
4550 * if an interrupt landed in the time between writing IIR and
4551 * the posting read. This should be rare enough to never
4552 * trigger the 99% of 100,000 interrupts test for disabling
4553 * stray interrupts.
4554 */
4555 iir = new_iir;
4556 }
4557
4558 i915_update_dri1_breadcrumb(dev);
4559
4560 return ret;
4561 }
4562
4563 static void i965_irq_uninstall(struct drm_device * dev)
4564 {
4565 struct drm_i915_private *dev_priv = dev->dev_private;
4566 int pipe;
4567
4568 if (!dev_priv)
4569 return;
4570
4571 I915_WRITE(PORT_HOTPLUG_EN, 0);
4572 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4573
4574 I915_WRITE(HWSTAM, 0xffffffff);
4575 for_each_pipe(dev_priv, pipe)
4576 I915_WRITE(PIPESTAT(pipe), 0);
4577 I915_WRITE(IMR, 0xffffffff);
4578 I915_WRITE(IER, 0x0);
4579
4580 for_each_pipe(dev_priv, pipe)
4581 I915_WRITE(PIPESTAT(pipe),
4582 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4583 I915_WRITE(IIR, I915_READ(IIR));
4584 }
4585
4586 static void intel_hpd_irq_reenable(struct work_struct *work)
4587 {
4588 struct drm_i915_private *dev_priv =
4589 container_of(work, typeof(*dev_priv),
4590 hotplug_reenable_work.work);
4591 struct drm_device *dev = dev_priv->dev;
4592 struct drm_mode_config *mode_config = &dev->mode_config;
4593 unsigned long irqflags;
4594 int i;
4595
4596 intel_runtime_pm_get(dev_priv);
4597
4598 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4599 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4600 struct drm_connector *connector;
4601
4602 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4603 continue;
4604
4605 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4606
4607 list_for_each_entry(connector, &mode_config->connector_list, head) {
4608 struct intel_connector *intel_connector = to_intel_connector(connector);
4609
4610 if (intel_connector->encoder->hpd_pin == i) {
4611 if (connector->polled != intel_connector->polled)
4612 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4613 connector->name);
4614 connector->polled = intel_connector->polled;
4615 if (!connector->polled)
4616 connector->polled = DRM_CONNECTOR_POLL_HPD;
4617 }
4618 }
4619 }
4620 if (dev_priv->display.hpd_irq_setup)
4621 dev_priv->display.hpd_irq_setup(dev);
4622 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4623
4624 intel_runtime_pm_put(dev_priv);
4625 }
4626
4627 void intel_irq_init(struct drm_device *dev)
4628 {
4629 struct drm_i915_private *dev_priv = dev->dev_private;
4630
4631 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4632 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4633 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4634 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4635 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4636
4637 /* Let's track the enabled rps events */
4638 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4639 /* WaGsvRC0ResidencyMethod:vlv */
4640 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4641 else
4642 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4643
4644 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4645 i915_hangcheck_elapsed,
4646 (unsigned long) dev);
4647 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4648 intel_hpd_irq_reenable);
4649
4650 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4651
4652 /* Haven't installed the IRQ handler yet */
4653 dev_priv->pm._irqs_disabled = true;
4654
4655 if (IS_GEN2(dev)) {
4656 dev->max_vblank_count = 0;
4657 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4658 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4659 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4660 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4661 } else {
4662 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4663 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4664 }
4665
4666 /*
4667 * Opt out of the vblank disable timer on everything except gen2.
4668 * Gen2 doesn't have a hardware frame counter and so depends on
4669 * vblank interrupts to produce sane vblank seuquence numbers.
4670 */
4671 if (!IS_GEN2(dev))
4672 dev->vblank_disable_immediate = true;
4673
4674 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4675 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4676 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4677 }
4678
4679 if (IS_CHERRYVIEW(dev)) {
4680 dev->driver->irq_handler = cherryview_irq_handler;
4681 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4682 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4683 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4684 dev->driver->enable_vblank = valleyview_enable_vblank;
4685 dev->driver->disable_vblank = valleyview_disable_vblank;
4686 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4687 } else if (IS_VALLEYVIEW(dev)) {
4688 dev->driver->irq_handler = valleyview_irq_handler;
4689 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4690 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4691 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4692 dev->driver->enable_vblank = valleyview_enable_vblank;
4693 dev->driver->disable_vblank = valleyview_disable_vblank;
4694 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4695 } else if (IS_GEN8(dev)) {
4696 dev->driver->irq_handler = gen8_irq_handler;
4697 dev->driver->irq_preinstall = gen8_irq_reset;
4698 dev->driver->irq_postinstall = gen8_irq_postinstall;
4699 dev->driver->irq_uninstall = gen8_irq_uninstall;
4700 dev->driver->enable_vblank = gen8_enable_vblank;
4701 dev->driver->disable_vblank = gen8_disable_vblank;
4702 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4703 } else if (HAS_PCH_SPLIT(dev)) {
4704 dev->driver->irq_handler = ironlake_irq_handler;
4705 dev->driver->irq_preinstall = ironlake_irq_reset;
4706 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4707 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4708 dev->driver->enable_vblank = ironlake_enable_vblank;
4709 dev->driver->disable_vblank = ironlake_disable_vblank;
4710 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4711 } else {
4712 if (INTEL_INFO(dev)->gen == 2) {
4713 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4714 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4715 dev->driver->irq_handler = i8xx_irq_handler;
4716 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4717 } else if (INTEL_INFO(dev)->gen == 3) {
4718 dev->driver->irq_preinstall = i915_irq_preinstall;
4719 dev->driver->irq_postinstall = i915_irq_postinstall;
4720 dev->driver->irq_uninstall = i915_irq_uninstall;
4721 dev->driver->irq_handler = i915_irq_handler;
4722 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4723 } else {
4724 dev->driver->irq_preinstall = i965_irq_preinstall;
4725 dev->driver->irq_postinstall = i965_irq_postinstall;
4726 dev->driver->irq_uninstall = i965_irq_uninstall;
4727 dev->driver->irq_handler = i965_irq_handler;
4728 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4729 }
4730 dev->driver->enable_vblank = i915_enable_vblank;
4731 dev->driver->disable_vblank = i915_disable_vblank;
4732 }
4733 }
4734
4735 void intel_hpd_init(struct drm_device *dev)
4736 {
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct drm_mode_config *mode_config = &dev->mode_config;
4739 struct drm_connector *connector;
4740 unsigned long irqflags;
4741 int i;
4742
4743 for (i = 1; i < HPD_NUM_PINS; i++) {
4744 dev_priv->hpd_stats[i].hpd_cnt = 0;
4745 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4746 }
4747 list_for_each_entry(connector, &mode_config->connector_list, head) {
4748 struct intel_connector *intel_connector = to_intel_connector(connector);
4749 connector->polled = intel_connector->polled;
4750 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4751 connector->polled = DRM_CONNECTOR_POLL_HPD;
4752 if (intel_connector->mst_port)
4753 connector->polled = DRM_CONNECTOR_POLL_HPD;
4754 }
4755
4756 /* Interrupt setup is already guaranteed to be single-threaded, this is
4757 * just to make the assert_spin_locked checks happy. */
4758 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4759 if (dev_priv->display.hpd_irq_setup)
4760 dev_priv->display.hpd_irq_setup(dev);
4761 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4762 }
4763
4764 /* Disable interrupts so we can allow runtime PM. */
4765 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4766 {
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768
4769 dev->driver->irq_uninstall(dev);
4770 dev_priv->pm._irqs_disabled = true;
4771 }
4772
4773 /* Restore interrupts so we can recover from runtime PM. */
4774 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4775 {
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777
4778 dev_priv->pm._irqs_disabled = false;
4779 dev->driver->irq_preinstall(dev);
4780 dev->driver->irq_postinstall(dev);
4781 }