]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'drm-misc-next-2017-03-06' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 assert_spin_locked(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 assert_spin_locked(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 assert_spin_locked(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 assert_spin_locked(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 assert_spin_locked(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 assert_spin_locked(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394 return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 return;
401
402 spin_lock_irq(&dev_priv->irq_lock);
403 dev_priv->rps.interrupts_enabled = false;
404
405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409 spin_unlock_irq(&dev_priv->irq_lock);
410 synchronize_irq(dev_priv->drm.irq);
411
412 /* Now that we will not be generating any more work, flush any
413 * outsanding tasks. As we are called on the RPS idle path,
414 * we will reset the GPU to minimum frequencies, so the current
415 * state of the worker can be discarded.
416 */
417 cancel_work_sync(&dev_priv->rps.work);
418 gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423 spin_lock_irq(&dev_priv->irq_lock);
424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430 spin_lock_irq(&dev_priv->irq_lock);
431 if (!dev_priv->guc.interrupts_enabled) {
432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 dev_priv->pm_guc_events);
434 dev_priv->guc.interrupts_enabled = true;
435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 }
437 spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442 spin_lock_irq(&dev_priv->irq_lock);
443 dev_priv->guc.interrupts_enabled = false;
444
445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447 spin_unlock_irq(&dev_priv->irq_lock);
448 synchronize_irq(dev_priv->drm.irq);
449
450 gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454 * bdw_update_port_irq - update DE port interrupt
455 * @dev_priv: driver private
456 * @interrupt_mask: mask of interrupt bits to update
457 * @enabled_irq_mask: mask of interrupt bits to enable
458 */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 uint32_t interrupt_mask,
461 uint32_t enabled_irq_mask)
462 {
463 uint32_t new_val;
464 uint32_t old_val;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 return;
472
473 old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475 new_val = old_val;
476 new_val &= ~interrupt_mask;
477 new_val |= (~enabled_irq_mask & interrupt_mask);
478
479 if (new_val != old_val) {
480 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 POSTING_READ(GEN8_DE_PORT_IMR);
482 }
483 }
484
485 /**
486 * bdw_update_pipe_irq - update DE pipe interrupt
487 * @dev_priv: driver private
488 * @pipe: pipe whose interrupt to update
489 * @interrupt_mask: mask of interrupt bits to update
490 * @enabled_irq_mask: mask of interrupt bits to enable
491 */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 enum pipe pipe,
494 uint32_t interrupt_mask,
495 uint32_t enabled_irq_mask)
496 {
497 uint32_t new_val;
498
499 assert_spin_locked(&dev_priv->irq_lock);
500
501 WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 return;
505
506 new_val = dev_priv->de_irq_mask[pipe];
507 new_val &= ~interrupt_mask;
508 new_val |= (~enabled_irq_mask & interrupt_mask);
509
510 if (new_val != dev_priv->de_irq_mask[pipe]) {
511 dev_priv->de_irq_mask[pipe] = new_val;
512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 }
515 }
516
517 /**
518 * ibx_display_interrupt_update - update SDEIMR
519 * @dev_priv: driver private
520 * @interrupt_mask: mask of interrupt bits to update
521 * @enabled_irq_mask: mask of interrupt bits to enable
522 */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 uint32_t interrupt_mask,
525 uint32_t enabled_irq_mask)
526 {
527 uint32_t sdeimr = I915_READ(SDEIMR);
528 sdeimr &= ~interrupt_mask;
529 sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531 WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533 assert_spin_locked(&dev_priv->irq_lock);
534
535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 return;
537
538 I915_WRITE(SDEIMR, sdeimr);
539 POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544 u32 enable_mask, u32 status_mask)
545 {
546 i915_reg_t reg = PIPESTAT(pipe);
547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549 assert_spin_locked(&dev_priv->irq_lock);
550 WARN_ON(!intel_irqs_enabled(dev_priv));
551
552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 pipe_name(pipe), enable_mask, status_mask))
556 return;
557
558 if ((pipestat & enable_mask) == enable_mask)
559 return;
560
561 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563 /* Enable the interrupt, clear any pending status */
564 pipestat |= enable_mask | status_mask;
565 I915_WRITE(reg, pipestat);
566 POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571 u32 enable_mask, u32 status_mask)
572 {
573 i915_reg_t reg = PIPESTAT(pipe);
574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576 assert_spin_locked(&dev_priv->irq_lock);
577 WARN_ON(!intel_irqs_enabled(dev_priv));
578
579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 pipe_name(pipe), enable_mask, status_mask))
583 return;
584
585 if ((pipestat & enable_mask) == 0)
586 return;
587
588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590 pipestat &= ~enable_mask;
591 I915_WRITE(reg, pipestat);
592 POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597 u32 enable_mask = status_mask << 16;
598
599 /*
600 * On pipe A we don't support the PSR interrupt yet,
601 * on pipe B and C the same bit MBZ.
602 */
603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 return 0;
605 /*
606 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 * A the same bit is for perf counters which we don't use either.
608 */
609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 return 0;
611
612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620 return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625 u32 status_mask)
626 {
627 u32 enable_mask;
628
629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 status_mask);
632 else
633 enable_mask = status_mask << 16;
634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639 u32 status_mask)
640 {
641 u32 enable_mask;
642
643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 status_mask);
646 else
647 enable_mask = status_mask << 16;
648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653 * @dev_priv: i915 device private
654 */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 return;
659
660 spin_lock_irq(&dev_priv->irq_lock);
661
662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 if (INTEL_GEN(dev_priv) >= 4)
664 i915_enable_pipestat(dev_priv, PIPE_A,
665 PIPE_LEGACY_BLC_EVENT_STATUS);
666
667 spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671 * This timing diagram depicts the video signal in and
672 * around the vertical blanking period.
673 *
674 * Assumptions about the fictitious mode used in this example:
675 * vblank_start >= 3
676 * vsync_start = vblank_start + 1
677 * vsync_end = vblank_start + 2
678 * vtotal = vblank_start + 3
679 *
680 * start of vblank:
681 * latch double buffered registers
682 * increment frame counter (ctg+)
683 * generate start of vblank interrupt (gen4+)
684 * |
685 * | frame start:
686 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
687 * | may be shifted forward 1-3 extra lines via PIPECONF
688 * | |
689 * | | start of vsync:
690 * | | generate vsync interrupt
691 * | | |
692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
694 * ----va---> <-----------------vb--------------------> <--------va-------------
695 * | | <----vs-----> |
696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699 * | | |
700 * last visible pixel first visible pixel
701 * | increment frame counter (gen3/4)
702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
703 *
704 * x = horizontal active
705 * _ = horizontal blanking
706 * hs = horizontal sync
707 * va = vertical active
708 * vb = vertical blanking
709 * vs = vertical sync
710 * vbs = vblank_start (number)
711 *
712 * Summary:
713 * - most events happen at the start of horizontal sync
714 * - frame start happens at the start of horizontal blank, 1-4 lines
715 * (depending on PIPECONF settings) after the start of vblank
716 * - gen3/4 pixel and frame counter are synchronized with the start
717 * of horizontal active on the first line of vertical active
718 */
719
720 /* Called from drm generic code, passed a 'crtc', which
721 * we use as a pipe index
722 */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725 struct drm_i915_private *dev_priv = to_i915(dev);
726 i915_reg_t high_frame, low_frame;
727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 pipe);
730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732 htotal = mode->crtc_htotal;
733 hsync_start = mode->crtc_hsync_start;
734 vbl_start = mode->crtc_vblank_start;
735 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738 /* Convert to pixel count */
739 vbl_start *= htotal;
740
741 /* Start of vblank event occurs at start of hsync */
742 vbl_start -= htotal - hsync_start;
743
744 high_frame = PIPEFRAME(pipe);
745 low_frame = PIPEFRAMEPIXEL(pipe);
746
747 /*
748 * High & low register fields aren't synchronized, so make sure
749 * we get a low value that's stable across two reads of the high
750 * register.
751 */
752 do {
753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 low = I915_READ(low_frame);
755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 } while (high1 != high2);
757
758 high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 pixel = low & PIPE_PIXEL_MASK;
760 low >>= PIPE_FRAME_LOW_SHIFT;
761
762 /*
763 * The frame counter increments at beginning of active.
764 * Cook up a vblank counter by also checking the pixel
765 * counter against vblank start.
766 */
767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 struct drm_i915_private *dev_priv = to_i915(dev);
773
774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 struct drm_i915_private *dev_priv = to_i915(dev);
782 const struct drm_display_mode *mode = &crtc->base.hwmode;
783 enum pipe pipe = crtc->pipe;
784 int position, vtotal;
785
786 vtotal = mode->crtc_vtotal;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vtotal /= 2;
789
790 if (IS_GEN2(dev_priv))
791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 else
793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795 /*
796 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 * read it just before the start of vblank. So try it again
798 * so we don't accidentally end up spanning a vblank frame
799 * increment, causing the pipe_update_end() code to squak at us.
800 *
801 * The nature of this problem means we can't simply check the ISR
802 * bit and return the vblank start value; nor can we use the scanline
803 * debug register in the transcoder as it appears to have the same
804 * problem. We may need to extend this to include other platforms,
805 * but so far testing only shows the problem on HSW.
806 */
807 if (HAS_DDI(dev_priv) && !position) {
808 int i, temp;
809
810 for (i = 0; i < 100; i++) {
811 udelay(1);
812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 DSL_LINEMASK_GEN3;
814 if (temp != position) {
815 position = temp;
816 break;
817 }
818 }
819 }
820
821 /*
822 * See update_scanline_offset() for the details on the
823 * scanline_offset adjustment.
824 */
825 return (position + crtc->scanline_offset) % vtotal;
826 }
827
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 unsigned int flags, int *vpos, int *hpos,
830 ktime_t *stime, ktime_t *etime,
831 const struct drm_display_mode *mode)
832 {
833 struct drm_i915_private *dev_priv = to_i915(dev);
834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 pipe);
836 int position;
837 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 bool in_vbl = true;
839 int ret = 0;
840 unsigned long irqflags;
841
842 if (WARN_ON(!mode->crtc_clock)) {
843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 "pipe %c\n", pipe_name(pipe));
845 return 0;
846 }
847
848 htotal = mode->crtc_htotal;
849 hsync_start = mode->crtc_hsync_start;
850 vtotal = mode->crtc_vtotal;
851 vbl_start = mode->crtc_vblank_start;
852 vbl_end = mode->crtc_vblank_end;
853
854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 vbl_end /= 2;
857 vtotal /= 2;
858 }
859
860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862 /*
863 * Lock uncore.lock, as we will do multiple timing critical raw
864 * register reads, potentially with preemption disabled, so the
865 * following code must not block on uncore.lock.
866 */
867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871 /* Get optional system timestamp before query. */
872 if (stime)
873 *stime = ktime_get();
874
875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 /* No obvious pixelcount register. Only query vertical
877 * scanout position from Display scan line register.
878 */
879 position = __intel_get_crtc_scanline(intel_crtc);
880 } else {
881 /* Have access to pixelcount since start of frame.
882 * We can split this into vertical and horizontal
883 * scanout position.
884 */
885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887 /* convert to pixel counts */
888 vbl_start *= htotal;
889 vbl_end *= htotal;
890 vtotal *= htotal;
891
892 /*
893 * In interlaced modes, the pixel counter counts all pixels,
894 * so one field will have htotal more pixels. In order to avoid
895 * the reported position from jumping backwards when the pixel
896 * counter is beyond the length of the shorter field, just
897 * clamp the position the length of the shorter field. This
898 * matches how the scanline counter based position works since
899 * the scanline counter doesn't count the two half lines.
900 */
901 if (position >= vtotal)
902 position = vtotal - 1;
903
904 /*
905 * Start of vblank interrupt is triggered at start of hsync,
906 * just prior to the first active line of vblank. However we
907 * consider lines to start at the leading edge of horizontal
908 * active. So, should we get here before we've crossed into
909 * the horizontal active of the first line in vblank, we would
910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 * always add htotal-hsync_start to the current pixel position.
912 */
913 position = (position + htotal - hsync_start) % vtotal;
914 }
915
916 /* Get optional system timestamp after query. */
917 if (etime)
918 *etime = ktime_get();
919
920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924 in_vbl = position >= vbl_start && position < vbl_end;
925
926 /*
927 * While in vblank, position will be negative
928 * counting up towards 0 at vbl_end. And outside
929 * vblank, position will be positive counting
930 * up since vbl_end.
931 */
932 if (position >= vbl_start)
933 position -= vbl_end;
934 else
935 position += vtotal - vbl_end;
936
937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 *vpos = position;
939 *hpos = 0;
940 } else {
941 *vpos = position / htotal;
942 *hpos = position - (*vpos * htotal);
943 }
944
945 /* In vblank? */
946 if (in_vbl)
947 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949 return ret;
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 unsigned long irqflags;
956 int position;
957
958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 position = __intel_get_crtc_scanline(crtc);
960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962 return position;
963 }
964
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 int *max_error,
967 struct timeval *vblank_time,
968 unsigned flags)
969 {
970 struct drm_i915_private *dev_priv = to_i915(dev);
971 struct intel_crtc *crtc;
972
973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 DRM_ERROR("Invalid crtc %u\n", pipe);
975 return -EINVAL;
976 }
977
978 /* Get drm_crtc to timestamp: */
979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 if (crtc == NULL) {
981 DRM_ERROR("Invalid crtc %u\n", pipe);
982 return -EINVAL;
983 }
984
985 if (!crtc->base.hwmode.crtc_clock) {
986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 return -EBUSY;
988 }
989
990 /* Helper routine in DRM core does all the work: */
991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 vblank_time, flags,
993 &crtc->base.hwmode);
994 }
995
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998 u32 busy_up, busy_down, max_avg, min_avg;
999 u8 new_delay;
1000
1001 spin_lock(&mchdev_lock);
1002
1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005 new_delay = dev_priv->ips.cur_delay;
1006
1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 max_avg = I915_READ(RCBMAXAVG);
1011 min_avg = I915_READ(RCBMINAVG);
1012
1013 /* Handle RCS change request from hw */
1014 if (busy_up > max_avg) {
1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 new_delay = dev_priv->ips.cur_delay - 1;
1017 if (new_delay < dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.max_delay;
1019 } else if (busy_down < min_avg) {
1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 new_delay = dev_priv->ips.cur_delay + 1;
1022 if (new_delay > dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.min_delay;
1024 }
1025
1026 if (ironlake_set_drps(dev_priv, new_delay))
1027 dev_priv->ips.cur_delay = new_delay;
1028
1029 spin_unlock(&mchdev_lock);
1030
1031 return;
1032 }
1033
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036 smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 if (intel_engine_wakeup(engine))
1038 trace_i915_gem_request_notify(engine);
1039 }
1040
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 struct intel_rps_ei *ei)
1043 {
1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048
1049 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1050 const struct intel_rps_ei *old,
1051 const struct intel_rps_ei *now,
1052 int threshold)
1053 {
1054 u64 time, c0;
1055 unsigned int mul = 100;
1056
1057 if (old->cz_clock == 0)
1058 return false;
1059
1060 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1061 mul <<= 8;
1062
1063 time = now->cz_clock - old->cz_clock;
1064 time *= threshold * dev_priv->czclk_freq;
1065
1066 /* Workload can be split between render + media, e.g. SwapBuffers
1067 * being blitted in X after being rendered in mesa. To account for
1068 * this we need to combine both engines into our activity counter.
1069 */
1070 c0 = now->render_c0 - old->render_c0;
1071 c0 += now->media_c0 - old->media_c0;
1072 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1073
1074 return c0 >= time;
1075 }
1076
1077 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1078 {
1079 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1080 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1081 }
1082
1083 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1084 {
1085 struct intel_rps_ei now;
1086 u32 events = 0;
1087
1088 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1089 return 0;
1090
1091 vlv_c0_read(dev_priv, &now);
1092 if (now.cz_clock == 0)
1093 return 0;
1094
1095 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1096 if (!vlv_c0_above(dev_priv,
1097 &dev_priv->rps.down_ei, &now,
1098 dev_priv->rps.down_threshold))
1099 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1100 dev_priv->rps.down_ei = now;
1101 }
1102
1103 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1104 if (vlv_c0_above(dev_priv,
1105 &dev_priv->rps.up_ei, &now,
1106 dev_priv->rps.up_threshold))
1107 events |= GEN6_PM_RP_UP_THRESHOLD;
1108 dev_priv->rps.up_ei = now;
1109 }
1110
1111 return events;
1112 }
1113
1114 static bool any_waiters(struct drm_i915_private *dev_priv)
1115 {
1116 struct intel_engine_cs *engine;
1117 enum intel_engine_id id;
1118
1119 for_each_engine(engine, dev_priv, id)
1120 if (intel_engine_has_waiter(engine))
1121 return true;
1122
1123 return false;
1124 }
1125
1126 static void gen6_pm_rps_work(struct work_struct *work)
1127 {
1128 struct drm_i915_private *dev_priv =
1129 container_of(work, struct drm_i915_private, rps.work);
1130 bool client_boost;
1131 int new_delay, adj, min, max;
1132 u32 pm_iir;
1133
1134 spin_lock_irq(&dev_priv->irq_lock);
1135 /* Speed up work cancelation during disabling rps interrupts. */
1136 if (!dev_priv->rps.interrupts_enabled) {
1137 spin_unlock_irq(&dev_priv->irq_lock);
1138 return;
1139 }
1140
1141 pm_iir = dev_priv->rps.pm_iir;
1142 dev_priv->rps.pm_iir = 0;
1143 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1144 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1145 client_boost = dev_priv->rps.client_boost;
1146 dev_priv->rps.client_boost = false;
1147 spin_unlock_irq(&dev_priv->irq_lock);
1148
1149 /* Make sure we didn't queue anything we're not going to process. */
1150 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1151
1152 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1153 return;
1154
1155 mutex_lock(&dev_priv->rps.hw_lock);
1156
1157 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1158
1159 adj = dev_priv->rps.last_adj;
1160 new_delay = dev_priv->rps.cur_freq;
1161 min = dev_priv->rps.min_freq_softlimit;
1162 max = dev_priv->rps.max_freq_softlimit;
1163 if (client_boost || any_waiters(dev_priv))
1164 max = dev_priv->rps.max_freq;
1165 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1166 new_delay = dev_priv->rps.boost_freq;
1167 adj = 0;
1168 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1169 if (adj > 0)
1170 adj *= 2;
1171 else /* CHV needs even encode values */
1172 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1173
1174 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1175 adj = 0;
1176 /*
1177 * For better performance, jump directly
1178 * to RPe if we're below it.
1179 */
1180 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1181 new_delay = dev_priv->rps.efficient_freq;
1182 adj = 0;
1183 }
1184 } else if (client_boost || any_waiters(dev_priv)) {
1185 adj = 0;
1186 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1187 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1188 new_delay = dev_priv->rps.efficient_freq;
1189 else
1190 new_delay = dev_priv->rps.min_freq_softlimit;
1191 adj = 0;
1192 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1193 if (adj < 0)
1194 adj *= 2;
1195 else /* CHV needs even encode values */
1196 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1197
1198 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1199 adj = 0;
1200 } else { /* unknown event */
1201 adj = 0;
1202 }
1203
1204 dev_priv->rps.last_adj = adj;
1205
1206 /* sysfs frequency interfaces may have snuck in while servicing the
1207 * interrupt
1208 */
1209 new_delay += adj;
1210 new_delay = clamp_t(int, new_delay, min, max);
1211
1212 intel_set_rps(dev_priv, new_delay);
1213
1214 mutex_unlock(&dev_priv->rps.hw_lock);
1215 }
1216
1217
1218 /**
1219 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1220 * occurred.
1221 * @work: workqueue struct
1222 *
1223 * Doesn't actually do anything except notify userspace. As a consequence of
1224 * this event, userspace should try to remap the bad rows since statistically
1225 * it is likely the same row is more likely to go bad again.
1226 */
1227 static void ivybridge_parity_work(struct work_struct *work)
1228 {
1229 struct drm_i915_private *dev_priv =
1230 container_of(work, struct drm_i915_private, l3_parity.error_work);
1231 u32 error_status, row, bank, subbank;
1232 char *parity_event[6];
1233 uint32_t misccpctl;
1234 uint8_t slice = 0;
1235
1236 /* We must turn off DOP level clock gating to access the L3 registers.
1237 * In order to prevent a get/put style interface, acquire struct mutex
1238 * any time we access those registers.
1239 */
1240 mutex_lock(&dev_priv->drm.struct_mutex);
1241
1242 /* If we've screwed up tracking, just let the interrupt fire again */
1243 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1244 goto out;
1245
1246 misccpctl = I915_READ(GEN7_MISCCPCTL);
1247 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1248 POSTING_READ(GEN7_MISCCPCTL);
1249
1250 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1251 i915_reg_t reg;
1252
1253 slice--;
1254 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1255 break;
1256
1257 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1258
1259 reg = GEN7_L3CDERRST1(slice);
1260
1261 error_status = I915_READ(reg);
1262 row = GEN7_PARITY_ERROR_ROW(error_status);
1263 bank = GEN7_PARITY_ERROR_BANK(error_status);
1264 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1265
1266 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1267 POSTING_READ(reg);
1268
1269 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1270 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1271 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1272 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1273 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1274 parity_event[5] = NULL;
1275
1276 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1277 KOBJ_CHANGE, parity_event);
1278
1279 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1280 slice, row, bank, subbank);
1281
1282 kfree(parity_event[4]);
1283 kfree(parity_event[3]);
1284 kfree(parity_event[2]);
1285 kfree(parity_event[1]);
1286 }
1287
1288 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1289
1290 out:
1291 WARN_ON(dev_priv->l3_parity.which_slice);
1292 spin_lock_irq(&dev_priv->irq_lock);
1293 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1294 spin_unlock_irq(&dev_priv->irq_lock);
1295
1296 mutex_unlock(&dev_priv->drm.struct_mutex);
1297 }
1298
1299 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1300 u32 iir)
1301 {
1302 if (!HAS_L3_DPF(dev_priv))
1303 return;
1304
1305 spin_lock(&dev_priv->irq_lock);
1306 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1307 spin_unlock(&dev_priv->irq_lock);
1308
1309 iir &= GT_PARITY_ERROR(dev_priv);
1310 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1311 dev_priv->l3_parity.which_slice |= 1 << 1;
1312
1313 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1314 dev_priv->l3_parity.which_slice |= 1 << 0;
1315
1316 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1317 }
1318
1319 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1320 u32 gt_iir)
1321 {
1322 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1323 notify_ring(dev_priv->engine[RCS]);
1324 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1325 notify_ring(dev_priv->engine[VCS]);
1326 }
1327
1328 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1329 u32 gt_iir)
1330 {
1331 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1332 notify_ring(dev_priv->engine[RCS]);
1333 if (gt_iir & GT_BSD_USER_INTERRUPT)
1334 notify_ring(dev_priv->engine[VCS]);
1335 if (gt_iir & GT_BLT_USER_INTERRUPT)
1336 notify_ring(dev_priv->engine[BCS]);
1337
1338 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1339 GT_BSD_CS_ERROR_INTERRUPT |
1340 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1341 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1342
1343 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1344 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1345 }
1346
1347 static __always_inline void
1348 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1349 {
1350 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1351 notify_ring(engine);
1352 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1353 tasklet_schedule(&engine->irq_tasklet);
1354 }
1355
1356 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1357 u32 master_ctl,
1358 u32 gt_iir[4])
1359 {
1360 irqreturn_t ret = IRQ_NONE;
1361
1362 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1363 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1364 if (gt_iir[0]) {
1365 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1366 ret = IRQ_HANDLED;
1367 } else
1368 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1369 }
1370
1371 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1372 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1373 if (gt_iir[1]) {
1374 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1375 ret = IRQ_HANDLED;
1376 } else
1377 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1378 }
1379
1380 if (master_ctl & GEN8_GT_VECS_IRQ) {
1381 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1382 if (gt_iir[3]) {
1383 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1384 ret = IRQ_HANDLED;
1385 } else
1386 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1387 }
1388
1389 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1390 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1391 if (gt_iir[2] & (dev_priv->pm_rps_events |
1392 dev_priv->pm_guc_events)) {
1393 I915_WRITE_FW(GEN8_GT_IIR(2),
1394 gt_iir[2] & (dev_priv->pm_rps_events |
1395 dev_priv->pm_guc_events));
1396 ret = IRQ_HANDLED;
1397 } else
1398 DRM_ERROR("The master control interrupt lied (PM)!\n");
1399 }
1400
1401 return ret;
1402 }
1403
1404 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1405 u32 gt_iir[4])
1406 {
1407 if (gt_iir[0]) {
1408 gen8_cs_irq_handler(dev_priv->engine[RCS],
1409 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1410 gen8_cs_irq_handler(dev_priv->engine[BCS],
1411 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1412 }
1413
1414 if (gt_iir[1]) {
1415 gen8_cs_irq_handler(dev_priv->engine[VCS],
1416 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1417 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1418 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1419 }
1420
1421 if (gt_iir[3])
1422 gen8_cs_irq_handler(dev_priv->engine[VECS],
1423 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1424
1425 if (gt_iir[2] & dev_priv->pm_rps_events)
1426 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1427
1428 if (gt_iir[2] & dev_priv->pm_guc_events)
1429 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1430 }
1431
1432 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1433 {
1434 switch (port) {
1435 case PORT_A:
1436 return val & PORTA_HOTPLUG_LONG_DETECT;
1437 case PORT_B:
1438 return val & PORTB_HOTPLUG_LONG_DETECT;
1439 case PORT_C:
1440 return val & PORTC_HOTPLUG_LONG_DETECT;
1441 default:
1442 return false;
1443 }
1444 }
1445
1446 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1447 {
1448 switch (port) {
1449 case PORT_E:
1450 return val & PORTE_HOTPLUG_LONG_DETECT;
1451 default:
1452 return false;
1453 }
1454 }
1455
1456 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1457 {
1458 switch (port) {
1459 case PORT_A:
1460 return val & PORTA_HOTPLUG_LONG_DETECT;
1461 case PORT_B:
1462 return val & PORTB_HOTPLUG_LONG_DETECT;
1463 case PORT_C:
1464 return val & PORTC_HOTPLUG_LONG_DETECT;
1465 case PORT_D:
1466 return val & PORTD_HOTPLUG_LONG_DETECT;
1467 default:
1468 return false;
1469 }
1470 }
1471
1472 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1473 {
1474 switch (port) {
1475 case PORT_A:
1476 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1477 default:
1478 return false;
1479 }
1480 }
1481
1482 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1483 {
1484 switch (port) {
1485 case PORT_B:
1486 return val & PORTB_HOTPLUG_LONG_DETECT;
1487 case PORT_C:
1488 return val & PORTC_HOTPLUG_LONG_DETECT;
1489 case PORT_D:
1490 return val & PORTD_HOTPLUG_LONG_DETECT;
1491 default:
1492 return false;
1493 }
1494 }
1495
1496 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1497 {
1498 switch (port) {
1499 case PORT_B:
1500 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1501 case PORT_C:
1502 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1503 case PORT_D:
1504 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1505 default:
1506 return false;
1507 }
1508 }
1509
1510 /*
1511 * Get a bit mask of pins that have triggered, and which ones may be long.
1512 * This can be called multiple times with the same masks to accumulate
1513 * hotplug detection results from several registers.
1514 *
1515 * Note that the caller is expected to zero out the masks initially.
1516 */
1517 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1518 u32 hotplug_trigger, u32 dig_hotplug_reg,
1519 const u32 hpd[HPD_NUM_PINS],
1520 bool long_pulse_detect(enum port port, u32 val))
1521 {
1522 enum port port;
1523 int i;
1524
1525 for_each_hpd_pin(i) {
1526 if ((hpd[i] & hotplug_trigger) == 0)
1527 continue;
1528
1529 *pin_mask |= BIT(i);
1530
1531 if (!intel_hpd_pin_to_port(i, &port))
1532 continue;
1533
1534 if (long_pulse_detect(port, dig_hotplug_reg))
1535 *long_mask |= BIT(i);
1536 }
1537
1538 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1539 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1540
1541 }
1542
1543 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1544 {
1545 wake_up_all(&dev_priv->gmbus_wait_queue);
1546 }
1547
1548 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1549 {
1550 wake_up_all(&dev_priv->gmbus_wait_queue);
1551 }
1552
1553 #if defined(CONFIG_DEBUG_FS)
1554 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1555 enum pipe pipe,
1556 uint32_t crc0, uint32_t crc1,
1557 uint32_t crc2, uint32_t crc3,
1558 uint32_t crc4)
1559 {
1560 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1561 struct intel_pipe_crc_entry *entry;
1562 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1563 struct drm_driver *driver = dev_priv->drm.driver;
1564 uint32_t crcs[5];
1565 int head, tail;
1566
1567 spin_lock(&pipe_crc->lock);
1568 if (pipe_crc->source) {
1569 if (!pipe_crc->entries) {
1570 spin_unlock(&pipe_crc->lock);
1571 DRM_DEBUG_KMS("spurious interrupt\n");
1572 return;
1573 }
1574
1575 head = pipe_crc->head;
1576 tail = pipe_crc->tail;
1577
1578 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1579 spin_unlock(&pipe_crc->lock);
1580 DRM_ERROR("CRC buffer overflowing\n");
1581 return;
1582 }
1583
1584 entry = &pipe_crc->entries[head];
1585
1586 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1587 entry->crc[0] = crc0;
1588 entry->crc[1] = crc1;
1589 entry->crc[2] = crc2;
1590 entry->crc[3] = crc3;
1591 entry->crc[4] = crc4;
1592
1593 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1594 pipe_crc->head = head;
1595
1596 spin_unlock(&pipe_crc->lock);
1597
1598 wake_up_interruptible(&pipe_crc->wq);
1599 } else {
1600 /*
1601 * For some not yet identified reason, the first CRC is
1602 * bonkers. So let's just wait for the next vblank and read
1603 * out the buggy result.
1604 *
1605 * On CHV sometimes the second CRC is bonkers as well, so
1606 * don't trust that one either.
1607 */
1608 if (pipe_crc->skipped == 0 ||
1609 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1610 pipe_crc->skipped++;
1611 spin_unlock(&pipe_crc->lock);
1612 return;
1613 }
1614 spin_unlock(&pipe_crc->lock);
1615 crcs[0] = crc0;
1616 crcs[1] = crc1;
1617 crcs[2] = crc2;
1618 crcs[3] = crc3;
1619 crcs[4] = crc4;
1620 drm_crtc_add_crc_entry(&crtc->base, true,
1621 drm_accurate_vblank_count(&crtc->base),
1622 crcs);
1623 }
1624 }
1625 #else
1626 static inline void
1627 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1628 enum pipe pipe,
1629 uint32_t crc0, uint32_t crc1,
1630 uint32_t crc2, uint32_t crc3,
1631 uint32_t crc4) {}
1632 #endif
1633
1634
1635 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1636 enum pipe pipe)
1637 {
1638 display_pipe_crc_irq_handler(dev_priv, pipe,
1639 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1640 0, 0, 0, 0);
1641 }
1642
1643 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1644 enum pipe pipe)
1645 {
1646 display_pipe_crc_irq_handler(dev_priv, pipe,
1647 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1648 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1649 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1650 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1651 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1652 }
1653
1654 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1655 enum pipe pipe)
1656 {
1657 uint32_t res1, res2;
1658
1659 if (INTEL_GEN(dev_priv) >= 3)
1660 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1661 else
1662 res1 = 0;
1663
1664 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1665 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1666 else
1667 res2 = 0;
1668
1669 display_pipe_crc_irq_handler(dev_priv, pipe,
1670 I915_READ(PIPE_CRC_RES_RED(pipe)),
1671 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1672 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1673 res1, res2);
1674 }
1675
1676 /* The RPS events need forcewake, so we add them to a work queue and mask their
1677 * IMR bits until the work is done. Other interrupts can be processed without
1678 * the work queue. */
1679 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1680 {
1681 if (pm_iir & dev_priv->pm_rps_events) {
1682 spin_lock(&dev_priv->irq_lock);
1683 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1684 if (dev_priv->rps.interrupts_enabled) {
1685 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1686 schedule_work(&dev_priv->rps.work);
1687 }
1688 spin_unlock(&dev_priv->irq_lock);
1689 }
1690
1691 if (INTEL_INFO(dev_priv)->gen >= 8)
1692 return;
1693
1694 if (HAS_VEBOX(dev_priv)) {
1695 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1696 notify_ring(dev_priv->engine[VECS]);
1697
1698 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1699 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1700 }
1701 }
1702
1703 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1704 {
1705 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1706 /* Sample the log buffer flush related bits & clear them out now
1707 * itself from the message identity register to minimize the
1708 * probability of losing a flush interrupt, when there are back
1709 * to back flush interrupts.
1710 * There can be a new flush interrupt, for different log buffer
1711 * type (like for ISR), whilst Host is handling one (for DPC).
1712 * Since same bit is used in message register for ISR & DPC, it
1713 * could happen that GuC sets the bit for 2nd interrupt but Host
1714 * clears out the bit on handling the 1st interrupt.
1715 */
1716 u32 msg, flush;
1717
1718 msg = I915_READ(SOFT_SCRATCH(15));
1719 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1720 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1721 if (flush) {
1722 /* Clear the message bits that are handled */
1723 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1724
1725 /* Handle flush interrupt in bottom half */
1726 queue_work(dev_priv->guc.log.flush_wq,
1727 &dev_priv->guc.log.flush_work);
1728
1729 dev_priv->guc.log.flush_interrupt_count++;
1730 } else {
1731 /* Not clearing of unhandled event bits won't result in
1732 * re-triggering of the interrupt.
1733 */
1734 }
1735 }
1736 }
1737
1738 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1739 enum pipe pipe)
1740 {
1741 bool ret;
1742
1743 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1744 if (ret)
1745 intel_finish_page_flip_mmio(dev_priv, pipe);
1746
1747 return ret;
1748 }
1749
1750 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1751 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1752 {
1753 int pipe;
1754
1755 spin_lock(&dev_priv->irq_lock);
1756
1757 if (!dev_priv->display_irqs_enabled) {
1758 spin_unlock(&dev_priv->irq_lock);
1759 return;
1760 }
1761
1762 for_each_pipe(dev_priv, pipe) {
1763 i915_reg_t reg;
1764 u32 mask, iir_bit = 0;
1765
1766 /*
1767 * PIPESTAT bits get signalled even when the interrupt is
1768 * disabled with the mask bits, and some of the status bits do
1769 * not generate interrupts at all (like the underrun bit). Hence
1770 * we need to be careful that we only handle what we want to
1771 * handle.
1772 */
1773
1774 /* fifo underruns are filterered in the underrun handler. */
1775 mask = PIPE_FIFO_UNDERRUN_STATUS;
1776
1777 switch (pipe) {
1778 case PIPE_A:
1779 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1780 break;
1781 case PIPE_B:
1782 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1783 break;
1784 case PIPE_C:
1785 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1786 break;
1787 }
1788 if (iir & iir_bit)
1789 mask |= dev_priv->pipestat_irq_mask[pipe];
1790
1791 if (!mask)
1792 continue;
1793
1794 reg = PIPESTAT(pipe);
1795 mask |= PIPESTAT_INT_ENABLE_MASK;
1796 pipe_stats[pipe] = I915_READ(reg) & mask;
1797
1798 /*
1799 * Clear the PIPE*STAT regs before the IIR
1800 */
1801 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1802 PIPESTAT_INT_STATUS_MASK))
1803 I915_WRITE(reg, pipe_stats[pipe]);
1804 }
1805 spin_unlock(&dev_priv->irq_lock);
1806 }
1807
1808 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1809 u32 pipe_stats[I915_MAX_PIPES])
1810 {
1811 enum pipe pipe;
1812
1813 for_each_pipe(dev_priv, pipe) {
1814 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1815 intel_pipe_handle_vblank(dev_priv, pipe))
1816 intel_check_page_flip(dev_priv, pipe);
1817
1818 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1819 intel_finish_page_flip_cs(dev_priv, pipe);
1820
1821 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1822 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1823
1824 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1825 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1826 }
1827
1828 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1829 gmbus_irq_handler(dev_priv);
1830 }
1831
1832 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1833 {
1834 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1835
1836 if (hotplug_status)
1837 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1838
1839 return hotplug_status;
1840 }
1841
1842 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1843 u32 hotplug_status)
1844 {
1845 u32 pin_mask = 0, long_mask = 0;
1846
1847 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1848 IS_CHERRYVIEW(dev_priv)) {
1849 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1850
1851 if (hotplug_trigger) {
1852 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1853 hotplug_trigger, hpd_status_g4x,
1854 i9xx_port_hotplug_long_detect);
1855
1856 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1857 }
1858
1859 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1860 dp_aux_irq_handler(dev_priv);
1861 } else {
1862 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1863
1864 if (hotplug_trigger) {
1865 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1866 hotplug_trigger, hpd_status_i915,
1867 i9xx_port_hotplug_long_detect);
1868 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1869 }
1870 }
1871 }
1872
1873 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1874 {
1875 struct drm_device *dev = arg;
1876 struct drm_i915_private *dev_priv = to_i915(dev);
1877 irqreturn_t ret = IRQ_NONE;
1878
1879 if (!intel_irqs_enabled(dev_priv))
1880 return IRQ_NONE;
1881
1882 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1883 disable_rpm_wakeref_asserts(dev_priv);
1884
1885 do {
1886 u32 iir, gt_iir, pm_iir;
1887 u32 pipe_stats[I915_MAX_PIPES] = {};
1888 u32 hotplug_status = 0;
1889 u32 ier = 0;
1890
1891 gt_iir = I915_READ(GTIIR);
1892 pm_iir = I915_READ(GEN6_PMIIR);
1893 iir = I915_READ(VLV_IIR);
1894
1895 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1896 break;
1897
1898 ret = IRQ_HANDLED;
1899
1900 /*
1901 * Theory on interrupt generation, based on empirical evidence:
1902 *
1903 * x = ((VLV_IIR & VLV_IER) ||
1904 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1905 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1906 *
1907 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1908 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1909 * guarantee the CPU interrupt will be raised again even if we
1910 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1911 * bits this time around.
1912 */
1913 I915_WRITE(VLV_MASTER_IER, 0);
1914 ier = I915_READ(VLV_IER);
1915 I915_WRITE(VLV_IER, 0);
1916
1917 if (gt_iir)
1918 I915_WRITE(GTIIR, gt_iir);
1919 if (pm_iir)
1920 I915_WRITE(GEN6_PMIIR, pm_iir);
1921
1922 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1923 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1924
1925 /* Call regardless, as some status bits might not be
1926 * signalled in iir */
1927 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1928
1929 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1930 I915_LPE_PIPE_B_INTERRUPT))
1931 intel_lpe_audio_irq_handler(dev_priv);
1932
1933 /*
1934 * VLV_IIR is single buffered, and reflects the level
1935 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1936 */
1937 if (iir)
1938 I915_WRITE(VLV_IIR, iir);
1939
1940 I915_WRITE(VLV_IER, ier);
1941 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1942 POSTING_READ(VLV_MASTER_IER);
1943
1944 if (gt_iir)
1945 snb_gt_irq_handler(dev_priv, gt_iir);
1946 if (pm_iir)
1947 gen6_rps_irq_handler(dev_priv, pm_iir);
1948
1949 if (hotplug_status)
1950 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1951
1952 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1953 } while (0);
1954
1955 enable_rpm_wakeref_asserts(dev_priv);
1956
1957 return ret;
1958 }
1959
1960 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1961 {
1962 struct drm_device *dev = arg;
1963 struct drm_i915_private *dev_priv = to_i915(dev);
1964 irqreturn_t ret = IRQ_NONE;
1965
1966 if (!intel_irqs_enabled(dev_priv))
1967 return IRQ_NONE;
1968
1969 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1970 disable_rpm_wakeref_asserts(dev_priv);
1971
1972 do {
1973 u32 master_ctl, iir;
1974 u32 gt_iir[4] = {};
1975 u32 pipe_stats[I915_MAX_PIPES] = {};
1976 u32 hotplug_status = 0;
1977 u32 ier = 0;
1978
1979 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1980 iir = I915_READ(VLV_IIR);
1981
1982 if (master_ctl == 0 && iir == 0)
1983 break;
1984
1985 ret = IRQ_HANDLED;
1986
1987 /*
1988 * Theory on interrupt generation, based on empirical evidence:
1989 *
1990 * x = ((VLV_IIR & VLV_IER) ||
1991 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1992 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1993 *
1994 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1995 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1996 * guarantee the CPU interrupt will be raised again even if we
1997 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1998 * bits this time around.
1999 */
2000 I915_WRITE(GEN8_MASTER_IRQ, 0);
2001 ier = I915_READ(VLV_IER);
2002 I915_WRITE(VLV_IER, 0);
2003
2004 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2005
2006 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2007 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2008
2009 /* Call regardless, as some status bits might not be
2010 * signalled in iir */
2011 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2012
2013 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2014 I915_LPE_PIPE_B_INTERRUPT |
2015 I915_LPE_PIPE_C_INTERRUPT))
2016 intel_lpe_audio_irq_handler(dev_priv);
2017
2018 /*
2019 * VLV_IIR is single buffered, and reflects the level
2020 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2021 */
2022 if (iir)
2023 I915_WRITE(VLV_IIR, iir);
2024
2025 I915_WRITE(VLV_IER, ier);
2026 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2027 POSTING_READ(GEN8_MASTER_IRQ);
2028
2029 gen8_gt_irq_handler(dev_priv, gt_iir);
2030
2031 if (hotplug_status)
2032 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2033
2034 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2035 } while (0);
2036
2037 enable_rpm_wakeref_asserts(dev_priv);
2038
2039 return ret;
2040 }
2041
2042 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2043 u32 hotplug_trigger,
2044 const u32 hpd[HPD_NUM_PINS])
2045 {
2046 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2047
2048 /*
2049 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2050 * unless we touch the hotplug register, even if hotplug_trigger is
2051 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2052 * errors.
2053 */
2054 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2055 if (!hotplug_trigger) {
2056 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2057 PORTD_HOTPLUG_STATUS_MASK |
2058 PORTC_HOTPLUG_STATUS_MASK |
2059 PORTB_HOTPLUG_STATUS_MASK;
2060 dig_hotplug_reg &= ~mask;
2061 }
2062
2063 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2064 if (!hotplug_trigger)
2065 return;
2066
2067 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2068 dig_hotplug_reg, hpd,
2069 pch_port_hotplug_long_detect);
2070
2071 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2072 }
2073
2074 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2075 {
2076 int pipe;
2077 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2078
2079 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2080
2081 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2082 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2083 SDE_AUDIO_POWER_SHIFT);
2084 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2085 port_name(port));
2086 }
2087
2088 if (pch_iir & SDE_AUX_MASK)
2089 dp_aux_irq_handler(dev_priv);
2090
2091 if (pch_iir & SDE_GMBUS)
2092 gmbus_irq_handler(dev_priv);
2093
2094 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2095 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2096
2097 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2098 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2099
2100 if (pch_iir & SDE_POISON)
2101 DRM_ERROR("PCH poison interrupt\n");
2102
2103 if (pch_iir & SDE_FDI_MASK)
2104 for_each_pipe(dev_priv, pipe)
2105 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2106 pipe_name(pipe),
2107 I915_READ(FDI_RX_IIR(pipe)));
2108
2109 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2110 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2111
2112 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2113 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2114
2115 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2116 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2117
2118 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2119 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2120 }
2121
2122 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2123 {
2124 u32 err_int = I915_READ(GEN7_ERR_INT);
2125 enum pipe pipe;
2126
2127 if (err_int & ERR_INT_POISON)
2128 DRM_ERROR("Poison interrupt\n");
2129
2130 for_each_pipe(dev_priv, pipe) {
2131 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2132 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2133
2134 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2135 if (IS_IVYBRIDGE(dev_priv))
2136 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2137 else
2138 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2139 }
2140 }
2141
2142 I915_WRITE(GEN7_ERR_INT, err_int);
2143 }
2144
2145 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2146 {
2147 u32 serr_int = I915_READ(SERR_INT);
2148
2149 if (serr_int & SERR_INT_POISON)
2150 DRM_ERROR("PCH poison interrupt\n");
2151
2152 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2153 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2154
2155 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2156 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2157
2158 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2159 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2160
2161 I915_WRITE(SERR_INT, serr_int);
2162 }
2163
2164 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2165 {
2166 int pipe;
2167 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2168
2169 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2170
2171 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2172 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2173 SDE_AUDIO_POWER_SHIFT_CPT);
2174 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2175 port_name(port));
2176 }
2177
2178 if (pch_iir & SDE_AUX_MASK_CPT)
2179 dp_aux_irq_handler(dev_priv);
2180
2181 if (pch_iir & SDE_GMBUS_CPT)
2182 gmbus_irq_handler(dev_priv);
2183
2184 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2185 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2186
2187 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2188 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2189
2190 if (pch_iir & SDE_FDI_MASK_CPT)
2191 for_each_pipe(dev_priv, pipe)
2192 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2193 pipe_name(pipe),
2194 I915_READ(FDI_RX_IIR(pipe)));
2195
2196 if (pch_iir & SDE_ERROR_CPT)
2197 cpt_serr_int_handler(dev_priv);
2198 }
2199
2200 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2201 {
2202 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2203 ~SDE_PORTE_HOTPLUG_SPT;
2204 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2205 u32 pin_mask = 0, long_mask = 0;
2206
2207 if (hotplug_trigger) {
2208 u32 dig_hotplug_reg;
2209
2210 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2211 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2212
2213 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2214 dig_hotplug_reg, hpd_spt,
2215 spt_port_hotplug_long_detect);
2216 }
2217
2218 if (hotplug2_trigger) {
2219 u32 dig_hotplug_reg;
2220
2221 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2222 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2223
2224 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2225 dig_hotplug_reg, hpd_spt,
2226 spt_port_hotplug2_long_detect);
2227 }
2228
2229 if (pin_mask)
2230 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2231
2232 if (pch_iir & SDE_GMBUS_CPT)
2233 gmbus_irq_handler(dev_priv);
2234 }
2235
2236 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2237 u32 hotplug_trigger,
2238 const u32 hpd[HPD_NUM_PINS])
2239 {
2240 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2241
2242 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2243 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2244
2245 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2246 dig_hotplug_reg, hpd,
2247 ilk_port_hotplug_long_detect);
2248
2249 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2250 }
2251
2252 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2253 u32 de_iir)
2254 {
2255 enum pipe pipe;
2256 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2257
2258 if (hotplug_trigger)
2259 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2260
2261 if (de_iir & DE_AUX_CHANNEL_A)
2262 dp_aux_irq_handler(dev_priv);
2263
2264 if (de_iir & DE_GSE)
2265 intel_opregion_asle_intr(dev_priv);
2266
2267 if (de_iir & DE_POISON)
2268 DRM_ERROR("Poison interrupt\n");
2269
2270 for_each_pipe(dev_priv, pipe) {
2271 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2272 intel_pipe_handle_vblank(dev_priv, pipe))
2273 intel_check_page_flip(dev_priv, pipe);
2274
2275 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2276 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2277
2278 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2279 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2280
2281 /* plane/pipes map 1:1 on ilk+ */
2282 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2283 intel_finish_page_flip_cs(dev_priv, pipe);
2284 }
2285
2286 /* check event from PCH */
2287 if (de_iir & DE_PCH_EVENT) {
2288 u32 pch_iir = I915_READ(SDEIIR);
2289
2290 if (HAS_PCH_CPT(dev_priv))
2291 cpt_irq_handler(dev_priv, pch_iir);
2292 else
2293 ibx_irq_handler(dev_priv, pch_iir);
2294
2295 /* should clear PCH hotplug event before clear CPU irq */
2296 I915_WRITE(SDEIIR, pch_iir);
2297 }
2298
2299 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2300 ironlake_rps_change_irq_handler(dev_priv);
2301 }
2302
2303 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2304 u32 de_iir)
2305 {
2306 enum pipe pipe;
2307 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2308
2309 if (hotplug_trigger)
2310 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2311
2312 if (de_iir & DE_ERR_INT_IVB)
2313 ivb_err_int_handler(dev_priv);
2314
2315 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2316 dp_aux_irq_handler(dev_priv);
2317
2318 if (de_iir & DE_GSE_IVB)
2319 intel_opregion_asle_intr(dev_priv);
2320
2321 for_each_pipe(dev_priv, pipe) {
2322 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2323 intel_pipe_handle_vblank(dev_priv, pipe))
2324 intel_check_page_flip(dev_priv, pipe);
2325
2326 /* plane/pipes map 1:1 on ilk+ */
2327 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2328 intel_finish_page_flip_cs(dev_priv, pipe);
2329 }
2330
2331 /* check event from PCH */
2332 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2333 u32 pch_iir = I915_READ(SDEIIR);
2334
2335 cpt_irq_handler(dev_priv, pch_iir);
2336
2337 /* clear PCH hotplug event before clear CPU irq */
2338 I915_WRITE(SDEIIR, pch_iir);
2339 }
2340 }
2341
2342 /*
2343 * To handle irqs with the minimum potential races with fresh interrupts, we:
2344 * 1 - Disable Master Interrupt Control.
2345 * 2 - Find the source(s) of the interrupt.
2346 * 3 - Clear the Interrupt Identity bits (IIR).
2347 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2348 * 5 - Re-enable Master Interrupt Control.
2349 */
2350 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2351 {
2352 struct drm_device *dev = arg;
2353 struct drm_i915_private *dev_priv = to_i915(dev);
2354 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2355 irqreturn_t ret = IRQ_NONE;
2356
2357 if (!intel_irqs_enabled(dev_priv))
2358 return IRQ_NONE;
2359
2360 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2361 disable_rpm_wakeref_asserts(dev_priv);
2362
2363 /* disable master interrupt before clearing iir */
2364 de_ier = I915_READ(DEIER);
2365 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2366 POSTING_READ(DEIER);
2367
2368 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2369 * interrupts will will be stored on its back queue, and then we'll be
2370 * able to process them after we restore SDEIER (as soon as we restore
2371 * it, we'll get an interrupt if SDEIIR still has something to process
2372 * due to its back queue). */
2373 if (!HAS_PCH_NOP(dev_priv)) {
2374 sde_ier = I915_READ(SDEIER);
2375 I915_WRITE(SDEIER, 0);
2376 POSTING_READ(SDEIER);
2377 }
2378
2379 /* Find, clear, then process each source of interrupt */
2380
2381 gt_iir = I915_READ(GTIIR);
2382 if (gt_iir) {
2383 I915_WRITE(GTIIR, gt_iir);
2384 ret = IRQ_HANDLED;
2385 if (INTEL_GEN(dev_priv) >= 6)
2386 snb_gt_irq_handler(dev_priv, gt_iir);
2387 else
2388 ilk_gt_irq_handler(dev_priv, gt_iir);
2389 }
2390
2391 de_iir = I915_READ(DEIIR);
2392 if (de_iir) {
2393 I915_WRITE(DEIIR, de_iir);
2394 ret = IRQ_HANDLED;
2395 if (INTEL_GEN(dev_priv) >= 7)
2396 ivb_display_irq_handler(dev_priv, de_iir);
2397 else
2398 ilk_display_irq_handler(dev_priv, de_iir);
2399 }
2400
2401 if (INTEL_GEN(dev_priv) >= 6) {
2402 u32 pm_iir = I915_READ(GEN6_PMIIR);
2403 if (pm_iir) {
2404 I915_WRITE(GEN6_PMIIR, pm_iir);
2405 ret = IRQ_HANDLED;
2406 gen6_rps_irq_handler(dev_priv, pm_iir);
2407 }
2408 }
2409
2410 I915_WRITE(DEIER, de_ier);
2411 POSTING_READ(DEIER);
2412 if (!HAS_PCH_NOP(dev_priv)) {
2413 I915_WRITE(SDEIER, sde_ier);
2414 POSTING_READ(SDEIER);
2415 }
2416
2417 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2418 enable_rpm_wakeref_asserts(dev_priv);
2419
2420 return ret;
2421 }
2422
2423 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2424 u32 hotplug_trigger,
2425 const u32 hpd[HPD_NUM_PINS])
2426 {
2427 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2428
2429 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2430 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2431
2432 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2433 dig_hotplug_reg, hpd,
2434 bxt_port_hotplug_long_detect);
2435
2436 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2437 }
2438
2439 static irqreturn_t
2440 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2441 {
2442 irqreturn_t ret = IRQ_NONE;
2443 u32 iir;
2444 enum pipe pipe;
2445
2446 if (master_ctl & GEN8_DE_MISC_IRQ) {
2447 iir = I915_READ(GEN8_DE_MISC_IIR);
2448 if (iir) {
2449 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2450 ret = IRQ_HANDLED;
2451 if (iir & GEN8_DE_MISC_GSE)
2452 intel_opregion_asle_intr(dev_priv);
2453 else
2454 DRM_ERROR("Unexpected DE Misc interrupt\n");
2455 }
2456 else
2457 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2458 }
2459
2460 if (master_ctl & GEN8_DE_PORT_IRQ) {
2461 iir = I915_READ(GEN8_DE_PORT_IIR);
2462 if (iir) {
2463 u32 tmp_mask;
2464 bool found = false;
2465
2466 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2467 ret = IRQ_HANDLED;
2468
2469 tmp_mask = GEN8_AUX_CHANNEL_A;
2470 if (INTEL_INFO(dev_priv)->gen >= 9)
2471 tmp_mask |= GEN9_AUX_CHANNEL_B |
2472 GEN9_AUX_CHANNEL_C |
2473 GEN9_AUX_CHANNEL_D;
2474
2475 if (iir & tmp_mask) {
2476 dp_aux_irq_handler(dev_priv);
2477 found = true;
2478 }
2479
2480 if (IS_GEN9_LP(dev_priv)) {
2481 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2482 if (tmp_mask) {
2483 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2484 hpd_bxt);
2485 found = true;
2486 }
2487 } else if (IS_BROADWELL(dev_priv)) {
2488 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2489 if (tmp_mask) {
2490 ilk_hpd_irq_handler(dev_priv,
2491 tmp_mask, hpd_bdw);
2492 found = true;
2493 }
2494 }
2495
2496 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2497 gmbus_irq_handler(dev_priv);
2498 found = true;
2499 }
2500
2501 if (!found)
2502 DRM_ERROR("Unexpected DE Port interrupt\n");
2503 }
2504 else
2505 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2506 }
2507
2508 for_each_pipe(dev_priv, pipe) {
2509 u32 flip_done, fault_errors;
2510
2511 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2512 continue;
2513
2514 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2515 if (!iir) {
2516 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2517 continue;
2518 }
2519
2520 ret = IRQ_HANDLED;
2521 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2522
2523 if (iir & GEN8_PIPE_VBLANK &&
2524 intel_pipe_handle_vblank(dev_priv, pipe))
2525 intel_check_page_flip(dev_priv, pipe);
2526
2527 flip_done = iir;
2528 if (INTEL_INFO(dev_priv)->gen >= 9)
2529 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2530 else
2531 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2532
2533 if (flip_done)
2534 intel_finish_page_flip_cs(dev_priv, pipe);
2535
2536 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2537 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2538
2539 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2540 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2541
2542 fault_errors = iir;
2543 if (INTEL_INFO(dev_priv)->gen >= 9)
2544 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2545 else
2546 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2547
2548 if (fault_errors)
2549 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2550 pipe_name(pipe),
2551 fault_errors);
2552 }
2553
2554 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2555 master_ctl & GEN8_DE_PCH_IRQ) {
2556 /*
2557 * FIXME(BDW): Assume for now that the new interrupt handling
2558 * scheme also closed the SDE interrupt handling race we've seen
2559 * on older pch-split platforms. But this needs testing.
2560 */
2561 iir = I915_READ(SDEIIR);
2562 if (iir) {
2563 I915_WRITE(SDEIIR, iir);
2564 ret = IRQ_HANDLED;
2565
2566 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2567 spt_irq_handler(dev_priv, iir);
2568 else
2569 cpt_irq_handler(dev_priv, iir);
2570 } else {
2571 /*
2572 * Like on previous PCH there seems to be something
2573 * fishy going on with forwarding PCH interrupts.
2574 */
2575 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2576 }
2577 }
2578
2579 return ret;
2580 }
2581
2582 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2583 {
2584 struct drm_device *dev = arg;
2585 struct drm_i915_private *dev_priv = to_i915(dev);
2586 u32 master_ctl;
2587 u32 gt_iir[4] = {};
2588 irqreturn_t ret;
2589
2590 if (!intel_irqs_enabled(dev_priv))
2591 return IRQ_NONE;
2592
2593 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2594 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2595 if (!master_ctl)
2596 return IRQ_NONE;
2597
2598 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2599
2600 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2601 disable_rpm_wakeref_asserts(dev_priv);
2602
2603 /* Find, clear, then process each source of interrupt */
2604 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2605 gen8_gt_irq_handler(dev_priv, gt_iir);
2606 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2607
2608 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2609 POSTING_READ_FW(GEN8_MASTER_IRQ);
2610
2611 enable_rpm_wakeref_asserts(dev_priv);
2612
2613 return ret;
2614 }
2615
2616 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2617 {
2618 /*
2619 * Notify all waiters for GPU completion events that reset state has
2620 * been changed, and that they need to restart their wait after
2621 * checking for potential errors (and bail out to drop locks if there is
2622 * a gpu reset pending so that i915_error_work_func can acquire them).
2623 */
2624
2625 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2626 wake_up_all(&dev_priv->gpu_error.wait_queue);
2627
2628 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2629 wake_up_all(&dev_priv->pending_flip_queue);
2630 }
2631
2632 /**
2633 * i915_reset_and_wakeup - do process context error handling work
2634 * @dev_priv: i915 device private
2635 *
2636 * Fire an error uevent so userspace can see that a hang or error
2637 * was detected.
2638 */
2639 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2640 {
2641 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2642 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2643 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2644 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2645
2646 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2647
2648 DRM_DEBUG_DRIVER("resetting chip\n");
2649 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2650
2651 /*
2652 * In most cases it's guaranteed that we get here with an RPM
2653 * reference held, for example because there is a pending GPU
2654 * request that won't finish until the reset is done. This
2655 * isn't the case at least when we get here by doing a
2656 * simulated reset via debugs, so get an RPM reference.
2657 */
2658 intel_runtime_pm_get(dev_priv);
2659 intel_prepare_reset(dev_priv);
2660
2661 do {
2662 /*
2663 * All state reset _must_ be completed before we update the
2664 * reset counter, for otherwise waiters might miss the reset
2665 * pending state and not properly drop locks, resulting in
2666 * deadlocks with the reset work.
2667 */
2668 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2669 i915_reset(dev_priv);
2670 mutex_unlock(&dev_priv->drm.struct_mutex);
2671 }
2672
2673 /* We need to wait for anyone holding the lock to wakeup */
2674 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2675 I915_RESET_IN_PROGRESS,
2676 TASK_UNINTERRUPTIBLE,
2677 HZ));
2678
2679 intel_finish_reset(dev_priv);
2680 intel_runtime_pm_put(dev_priv);
2681
2682 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2683 kobject_uevent_env(kobj,
2684 KOBJ_CHANGE, reset_done_event);
2685
2686 /*
2687 * Note: The wake_up also serves as a memory barrier so that
2688 * waiters see the updated value of the dev_priv->gpu_error.
2689 */
2690 wake_up_all(&dev_priv->gpu_error.reset_queue);
2691 }
2692
2693 static inline void
2694 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2695 struct intel_instdone *instdone)
2696 {
2697 int slice;
2698 int subslice;
2699
2700 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2701
2702 if (INTEL_GEN(dev_priv) <= 3)
2703 return;
2704
2705 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2706
2707 if (INTEL_GEN(dev_priv) <= 6)
2708 return;
2709
2710 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2711 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2712 slice, subslice, instdone->sampler[slice][subslice]);
2713
2714 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2715 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2716 slice, subslice, instdone->row[slice][subslice]);
2717 }
2718
2719 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2720 {
2721 u32 eir;
2722
2723 if (!IS_GEN2(dev_priv))
2724 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2725
2726 if (INTEL_GEN(dev_priv) < 4)
2727 I915_WRITE(IPEIR, I915_READ(IPEIR));
2728 else
2729 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2730
2731 I915_WRITE(EIR, I915_READ(EIR));
2732 eir = I915_READ(EIR);
2733 if (eir) {
2734 /*
2735 * some errors might have become stuck,
2736 * mask them.
2737 */
2738 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2739 I915_WRITE(EMR, I915_READ(EMR) | eir);
2740 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2741 }
2742 }
2743
2744 /**
2745 * i915_handle_error - handle a gpu error
2746 * @dev_priv: i915 device private
2747 * @engine_mask: mask representing engines that are hung
2748 * @fmt: Error message format string
2749 *
2750 * Do some basic checking of register state at error time and
2751 * dump it to the syslog. Also call i915_capture_error_state() to make
2752 * sure we get a record and make it available in debugfs. Fire a uevent
2753 * so userspace knows something bad happened (should trigger collection
2754 * of a ring dump etc.).
2755 */
2756 void i915_handle_error(struct drm_i915_private *dev_priv,
2757 u32 engine_mask,
2758 const char *fmt, ...)
2759 {
2760 va_list args;
2761 char error_msg[80];
2762
2763 va_start(args, fmt);
2764 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2765 va_end(args);
2766
2767 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2768 i915_clear_error_registers(dev_priv);
2769
2770 if (!engine_mask)
2771 return;
2772
2773 if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2774 &dev_priv->gpu_error.flags))
2775 return;
2776
2777 /*
2778 * Wakeup waiting processes so that the reset function
2779 * i915_reset_and_wakeup doesn't deadlock trying to grab
2780 * various locks. By bumping the reset counter first, the woken
2781 * processes will see a reset in progress and back off,
2782 * releasing their locks and then wait for the reset completion.
2783 * We must do this for _all_ gpu waiters that might hold locks
2784 * that the reset work needs to acquire.
2785 *
2786 * Note: The wake_up also provides a memory barrier to ensure that the
2787 * waiters see the updated value of the reset flags.
2788 */
2789 i915_error_wake_up(dev_priv);
2790
2791 i915_reset_and_wakeup(dev_priv);
2792 }
2793
2794 /* Called from drm generic code, passed 'crtc' which
2795 * we use as a pipe index
2796 */
2797 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799 struct drm_i915_private *dev_priv = to_i915(dev);
2800 unsigned long irqflags;
2801
2802 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2804 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805
2806 return 0;
2807 }
2808
2809 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2810 {
2811 struct drm_i915_private *dev_priv = to_i915(dev);
2812 unsigned long irqflags;
2813
2814 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2815 i915_enable_pipestat(dev_priv, pipe,
2816 PIPE_START_VBLANK_INTERRUPT_STATUS);
2817 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2818
2819 return 0;
2820 }
2821
2822 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2823 {
2824 struct drm_i915_private *dev_priv = to_i915(dev);
2825 unsigned long irqflags;
2826 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2827 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2828
2829 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 ilk_enable_display_irq(dev_priv, bit);
2831 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832
2833 return 0;
2834 }
2835
2836 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2837 {
2838 struct drm_i915_private *dev_priv = to_i915(dev);
2839 unsigned long irqflags;
2840
2841 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2842 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2843 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2844
2845 return 0;
2846 }
2847
2848 /* Called from drm generic code, passed 'crtc' which
2849 * we use as a pipe index
2850 */
2851 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2852 {
2853 struct drm_i915_private *dev_priv = to_i915(dev);
2854 unsigned long irqflags;
2855
2856 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2858 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859 }
2860
2861 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2862 {
2863 struct drm_i915_private *dev_priv = to_i915(dev);
2864 unsigned long irqflags;
2865
2866 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2867 i915_disable_pipestat(dev_priv, pipe,
2868 PIPE_START_VBLANK_INTERRUPT_STATUS);
2869 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2870 }
2871
2872 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2873 {
2874 struct drm_i915_private *dev_priv = to_i915(dev);
2875 unsigned long irqflags;
2876 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2877 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2878
2879 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2880 ilk_disable_display_irq(dev_priv, bit);
2881 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2882 }
2883
2884 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2885 {
2886 struct drm_i915_private *dev_priv = to_i915(dev);
2887 unsigned long irqflags;
2888
2889 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2890 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2891 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2892 }
2893
2894 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2895 {
2896 if (HAS_PCH_NOP(dev_priv))
2897 return;
2898
2899 GEN5_IRQ_RESET(SDE);
2900
2901 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2902 I915_WRITE(SERR_INT, 0xffffffff);
2903 }
2904
2905 /*
2906 * SDEIER is also touched by the interrupt handler to work around missed PCH
2907 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2908 * instead we unconditionally enable all PCH interrupt sources here, but then
2909 * only unmask them as needed with SDEIMR.
2910 *
2911 * This function needs to be called before interrupts are enabled.
2912 */
2913 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2914 {
2915 struct drm_i915_private *dev_priv = to_i915(dev);
2916
2917 if (HAS_PCH_NOP(dev_priv))
2918 return;
2919
2920 WARN_ON(I915_READ(SDEIER) != 0);
2921 I915_WRITE(SDEIER, 0xffffffff);
2922 POSTING_READ(SDEIER);
2923 }
2924
2925 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2926 {
2927 GEN5_IRQ_RESET(GT);
2928 if (INTEL_GEN(dev_priv) >= 6)
2929 GEN5_IRQ_RESET(GEN6_PM);
2930 }
2931
2932 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2933 {
2934 enum pipe pipe;
2935
2936 if (IS_CHERRYVIEW(dev_priv))
2937 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2938 else
2939 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2940
2941 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2942 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2943
2944 for_each_pipe(dev_priv, pipe) {
2945 I915_WRITE(PIPESTAT(pipe),
2946 PIPE_FIFO_UNDERRUN_STATUS |
2947 PIPESTAT_INT_STATUS_MASK);
2948 dev_priv->pipestat_irq_mask[pipe] = 0;
2949 }
2950
2951 GEN5_IRQ_RESET(VLV_);
2952 dev_priv->irq_mask = ~0;
2953 }
2954
2955 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2956 {
2957 u32 pipestat_mask;
2958 u32 enable_mask;
2959 enum pipe pipe;
2960 u32 val;
2961
2962 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2963 PIPE_CRC_DONE_INTERRUPT_STATUS;
2964
2965 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2966 for_each_pipe(dev_priv, pipe)
2967 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2968
2969 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2970 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2971 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2972 if (IS_CHERRYVIEW(dev_priv))
2973 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2974
2975 WARN_ON(dev_priv->irq_mask != ~0);
2976
2977 val = (I915_LPE_PIPE_A_INTERRUPT |
2978 I915_LPE_PIPE_B_INTERRUPT |
2979 I915_LPE_PIPE_C_INTERRUPT);
2980
2981 enable_mask |= val;
2982
2983 dev_priv->irq_mask = ~enable_mask;
2984
2985 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2986 }
2987
2988 /* drm_dma.h hooks
2989 */
2990 static void ironlake_irq_reset(struct drm_device *dev)
2991 {
2992 struct drm_i915_private *dev_priv = to_i915(dev);
2993
2994 I915_WRITE(HWSTAM, 0xffffffff);
2995
2996 GEN5_IRQ_RESET(DE);
2997 if (IS_GEN7(dev_priv))
2998 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2999
3000 gen5_gt_irq_reset(dev_priv);
3001
3002 ibx_irq_reset(dev_priv);
3003 }
3004
3005 static void valleyview_irq_preinstall(struct drm_device *dev)
3006 {
3007 struct drm_i915_private *dev_priv = to_i915(dev);
3008
3009 I915_WRITE(VLV_MASTER_IER, 0);
3010 POSTING_READ(VLV_MASTER_IER);
3011
3012 gen5_gt_irq_reset(dev_priv);
3013
3014 spin_lock_irq(&dev_priv->irq_lock);
3015 if (dev_priv->display_irqs_enabled)
3016 vlv_display_irq_reset(dev_priv);
3017 spin_unlock_irq(&dev_priv->irq_lock);
3018 }
3019
3020 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3021 {
3022 GEN8_IRQ_RESET_NDX(GT, 0);
3023 GEN8_IRQ_RESET_NDX(GT, 1);
3024 GEN8_IRQ_RESET_NDX(GT, 2);
3025 GEN8_IRQ_RESET_NDX(GT, 3);
3026 }
3027
3028 static void gen8_irq_reset(struct drm_device *dev)
3029 {
3030 struct drm_i915_private *dev_priv = to_i915(dev);
3031 int pipe;
3032
3033 I915_WRITE(GEN8_MASTER_IRQ, 0);
3034 POSTING_READ(GEN8_MASTER_IRQ);
3035
3036 gen8_gt_irq_reset(dev_priv);
3037
3038 for_each_pipe(dev_priv, pipe)
3039 if (intel_display_power_is_enabled(dev_priv,
3040 POWER_DOMAIN_PIPE(pipe)))
3041 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3042
3043 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3044 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3045 GEN5_IRQ_RESET(GEN8_PCU_);
3046
3047 if (HAS_PCH_SPLIT(dev_priv))
3048 ibx_irq_reset(dev_priv);
3049 }
3050
3051 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3052 unsigned int pipe_mask)
3053 {
3054 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3055 enum pipe pipe;
3056
3057 spin_lock_irq(&dev_priv->irq_lock);
3058 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3059 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3060 dev_priv->de_irq_mask[pipe],
3061 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3062 spin_unlock_irq(&dev_priv->irq_lock);
3063 }
3064
3065 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3066 unsigned int pipe_mask)
3067 {
3068 enum pipe pipe;
3069
3070 spin_lock_irq(&dev_priv->irq_lock);
3071 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3072 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3073 spin_unlock_irq(&dev_priv->irq_lock);
3074
3075 /* make sure we're done processing display irqs */
3076 synchronize_irq(dev_priv->drm.irq);
3077 }
3078
3079 static void cherryview_irq_preinstall(struct drm_device *dev)
3080 {
3081 struct drm_i915_private *dev_priv = to_i915(dev);
3082
3083 I915_WRITE(GEN8_MASTER_IRQ, 0);
3084 POSTING_READ(GEN8_MASTER_IRQ);
3085
3086 gen8_gt_irq_reset(dev_priv);
3087
3088 GEN5_IRQ_RESET(GEN8_PCU_);
3089
3090 spin_lock_irq(&dev_priv->irq_lock);
3091 if (dev_priv->display_irqs_enabled)
3092 vlv_display_irq_reset(dev_priv);
3093 spin_unlock_irq(&dev_priv->irq_lock);
3094 }
3095
3096 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3097 const u32 hpd[HPD_NUM_PINS])
3098 {
3099 struct intel_encoder *encoder;
3100 u32 enabled_irqs = 0;
3101
3102 for_each_intel_encoder(&dev_priv->drm, encoder)
3103 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3104 enabled_irqs |= hpd[encoder->hpd_pin];
3105
3106 return enabled_irqs;
3107 }
3108
3109 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3110 {
3111 u32 hotplug_irqs, hotplug, enabled_irqs;
3112
3113 if (HAS_PCH_IBX(dev_priv)) {
3114 hotplug_irqs = SDE_HOTPLUG_MASK;
3115 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3116 } else {
3117 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3118 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3119 }
3120
3121 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3122
3123 /*
3124 * Enable digital hotplug on the PCH, and configure the DP short pulse
3125 * duration to 2ms (which is the minimum in the Display Port spec).
3126 * The pulse duration bits are reserved on LPT+.
3127 */
3128 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3129 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3130 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3131 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3132 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3133 /*
3134 * When CPU and PCH are on the same package, port A
3135 * HPD must be enabled in both north and south.
3136 */
3137 if (HAS_PCH_LPT_LP(dev_priv))
3138 hotplug |= PORTA_HOTPLUG_ENABLE;
3139 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3140 }
3141
3142 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3143 {
3144 u32 hotplug;
3145
3146 /* Enable digital hotplug on the PCH */
3147 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3148 hotplug |= PORTA_HOTPLUG_ENABLE |
3149 PORTB_HOTPLUG_ENABLE |
3150 PORTC_HOTPLUG_ENABLE |
3151 PORTD_HOTPLUG_ENABLE;
3152 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3153
3154 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3155 hotplug |= PORTE_HOTPLUG_ENABLE;
3156 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3157 }
3158
3159 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3160 {
3161 u32 hotplug_irqs, enabled_irqs;
3162
3163 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3164 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3165
3166 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3167
3168 spt_hpd_detection_setup(dev_priv);
3169 }
3170
3171 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3172 {
3173 u32 hotplug_irqs, hotplug, enabled_irqs;
3174
3175 if (INTEL_GEN(dev_priv) >= 8) {
3176 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3177 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3178
3179 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3180 } else if (INTEL_GEN(dev_priv) >= 7) {
3181 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3182 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3183
3184 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3185 } else {
3186 hotplug_irqs = DE_DP_A_HOTPLUG;
3187 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3188
3189 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3190 }
3191
3192 /*
3193 * Enable digital hotplug on the CPU, and configure the DP short pulse
3194 * duration to 2ms (which is the minimum in the Display Port spec)
3195 * The pulse duration bits are reserved on HSW+.
3196 */
3197 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3198 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3199 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3200 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3201
3202 ibx_hpd_irq_setup(dev_priv);
3203 }
3204
3205 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3206 u32 enabled_irqs)
3207 {
3208 u32 hotplug;
3209
3210 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3211 hotplug |= PORTA_HOTPLUG_ENABLE |
3212 PORTB_HOTPLUG_ENABLE |
3213 PORTC_HOTPLUG_ENABLE;
3214
3215 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3216 hotplug, enabled_irqs);
3217 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3218
3219 /*
3220 * For BXT invert bit has to be set based on AOB design
3221 * for HPD detection logic, update it based on VBT fields.
3222 */
3223 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3224 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3225 hotplug |= BXT_DDIA_HPD_INVERT;
3226 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3227 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3228 hotplug |= BXT_DDIB_HPD_INVERT;
3229 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3230 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3231 hotplug |= BXT_DDIC_HPD_INVERT;
3232
3233 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3234 }
3235
3236 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3237 {
3238 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3239 }
3240
3241 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3242 {
3243 u32 hotplug_irqs, enabled_irqs;
3244
3245 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3246 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3247
3248 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3249
3250 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3251 }
3252
3253 static void ibx_irq_postinstall(struct drm_device *dev)
3254 {
3255 struct drm_i915_private *dev_priv = to_i915(dev);
3256 u32 mask;
3257
3258 if (HAS_PCH_NOP(dev_priv))
3259 return;
3260
3261 if (HAS_PCH_IBX(dev_priv))
3262 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3263 else
3264 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3265
3266 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3267 I915_WRITE(SDEIMR, ~mask);
3268
3269 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3270 HAS_PCH_LPT(dev_priv))
3271 ; /* TODO: Enable HPD detection on older PCH platforms too */
3272 else
3273 spt_hpd_detection_setup(dev_priv);
3274 }
3275
3276 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3277 {
3278 struct drm_i915_private *dev_priv = to_i915(dev);
3279 u32 pm_irqs, gt_irqs;
3280
3281 pm_irqs = gt_irqs = 0;
3282
3283 dev_priv->gt_irq_mask = ~0;
3284 if (HAS_L3_DPF(dev_priv)) {
3285 /* L3 parity interrupt is always unmasked. */
3286 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3287 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3288 }
3289
3290 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3291 if (IS_GEN5(dev_priv)) {
3292 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3293 } else {
3294 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3295 }
3296
3297 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3298
3299 if (INTEL_GEN(dev_priv) >= 6) {
3300 /*
3301 * RPS interrupts will get enabled/disabled on demand when RPS
3302 * itself is enabled/disabled.
3303 */
3304 if (HAS_VEBOX(dev_priv)) {
3305 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3306 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3307 }
3308
3309 dev_priv->pm_imr = 0xffffffff;
3310 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3311 }
3312 }
3313
3314 static int ironlake_irq_postinstall(struct drm_device *dev)
3315 {
3316 struct drm_i915_private *dev_priv = to_i915(dev);
3317 u32 display_mask, extra_mask;
3318
3319 if (INTEL_GEN(dev_priv) >= 7) {
3320 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3321 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3322 DE_PLANEB_FLIP_DONE_IVB |
3323 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3324 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3325 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3326 DE_DP_A_HOTPLUG_IVB);
3327 } else {
3328 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3329 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3330 DE_AUX_CHANNEL_A |
3331 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3332 DE_POISON);
3333 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3334 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3335 DE_DP_A_HOTPLUG);
3336 }
3337
3338 dev_priv->irq_mask = ~display_mask;
3339
3340 I915_WRITE(HWSTAM, 0xeffe);
3341
3342 ibx_irq_pre_postinstall(dev);
3343
3344 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3345
3346 gen5_gt_irq_postinstall(dev);
3347
3348 ibx_irq_postinstall(dev);
3349
3350 if (IS_IRONLAKE_M(dev_priv)) {
3351 /* Enable PCU event interrupts
3352 *
3353 * spinlocking not required here for correctness since interrupt
3354 * setup is guaranteed to run in single-threaded context. But we
3355 * need it to make the assert_spin_locked happy. */
3356 spin_lock_irq(&dev_priv->irq_lock);
3357 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3358 spin_unlock_irq(&dev_priv->irq_lock);
3359 }
3360
3361 return 0;
3362 }
3363
3364 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3365 {
3366 assert_spin_locked(&dev_priv->irq_lock);
3367
3368 if (dev_priv->display_irqs_enabled)
3369 return;
3370
3371 dev_priv->display_irqs_enabled = true;
3372
3373 if (intel_irqs_enabled(dev_priv)) {
3374 vlv_display_irq_reset(dev_priv);
3375 vlv_display_irq_postinstall(dev_priv);
3376 }
3377 }
3378
3379 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3380 {
3381 assert_spin_locked(&dev_priv->irq_lock);
3382
3383 if (!dev_priv->display_irqs_enabled)
3384 return;
3385
3386 dev_priv->display_irqs_enabled = false;
3387
3388 if (intel_irqs_enabled(dev_priv))
3389 vlv_display_irq_reset(dev_priv);
3390 }
3391
3392
3393 static int valleyview_irq_postinstall(struct drm_device *dev)
3394 {
3395 struct drm_i915_private *dev_priv = to_i915(dev);
3396
3397 gen5_gt_irq_postinstall(dev);
3398
3399 spin_lock_irq(&dev_priv->irq_lock);
3400 if (dev_priv->display_irqs_enabled)
3401 vlv_display_irq_postinstall(dev_priv);
3402 spin_unlock_irq(&dev_priv->irq_lock);
3403
3404 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3405 POSTING_READ(VLV_MASTER_IER);
3406
3407 return 0;
3408 }
3409
3410 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3411 {
3412 /* These are interrupts we'll toggle with the ring mask register */
3413 uint32_t gt_interrupts[] = {
3414 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3415 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3416 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3417 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3418 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3419 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3420 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3421 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3422 0,
3423 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3424 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3425 };
3426
3427 if (HAS_L3_DPF(dev_priv))
3428 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3429
3430 dev_priv->pm_ier = 0x0;
3431 dev_priv->pm_imr = ~dev_priv->pm_ier;
3432 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3433 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3434 /*
3435 * RPS interrupts will get enabled/disabled on demand when RPS itself
3436 * is enabled/disabled. Same wil be the case for GuC interrupts.
3437 */
3438 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3439 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3440 }
3441
3442 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3443 {
3444 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3445 uint32_t de_pipe_enables;
3446 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3447 u32 de_port_enables;
3448 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3449 enum pipe pipe;
3450
3451 if (INTEL_INFO(dev_priv)->gen >= 9) {
3452 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3453 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3454 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3455 GEN9_AUX_CHANNEL_D;
3456 if (IS_GEN9_LP(dev_priv))
3457 de_port_masked |= BXT_DE_PORT_GMBUS;
3458 } else {
3459 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3460 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3461 }
3462
3463 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3464 GEN8_PIPE_FIFO_UNDERRUN;
3465
3466 de_port_enables = de_port_masked;
3467 if (IS_GEN9_LP(dev_priv))
3468 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3469 else if (IS_BROADWELL(dev_priv))
3470 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3471
3472 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3473 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3474 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3475
3476 for_each_pipe(dev_priv, pipe)
3477 if (intel_display_power_is_enabled(dev_priv,
3478 POWER_DOMAIN_PIPE(pipe)))
3479 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3480 dev_priv->de_irq_mask[pipe],
3481 de_pipe_enables);
3482
3483 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3484 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3485
3486 if (IS_GEN9_LP(dev_priv))
3487 bxt_hpd_detection_setup(dev_priv);
3488 }
3489
3490 static int gen8_irq_postinstall(struct drm_device *dev)
3491 {
3492 struct drm_i915_private *dev_priv = to_i915(dev);
3493
3494 if (HAS_PCH_SPLIT(dev_priv))
3495 ibx_irq_pre_postinstall(dev);
3496
3497 gen8_gt_irq_postinstall(dev_priv);
3498 gen8_de_irq_postinstall(dev_priv);
3499
3500 if (HAS_PCH_SPLIT(dev_priv))
3501 ibx_irq_postinstall(dev);
3502
3503 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3504 POSTING_READ(GEN8_MASTER_IRQ);
3505
3506 return 0;
3507 }
3508
3509 static int cherryview_irq_postinstall(struct drm_device *dev)
3510 {
3511 struct drm_i915_private *dev_priv = to_i915(dev);
3512
3513 gen8_gt_irq_postinstall(dev_priv);
3514
3515 spin_lock_irq(&dev_priv->irq_lock);
3516 if (dev_priv->display_irqs_enabled)
3517 vlv_display_irq_postinstall(dev_priv);
3518 spin_unlock_irq(&dev_priv->irq_lock);
3519
3520 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3521 POSTING_READ(GEN8_MASTER_IRQ);
3522
3523 return 0;
3524 }
3525
3526 static void gen8_irq_uninstall(struct drm_device *dev)
3527 {
3528 struct drm_i915_private *dev_priv = to_i915(dev);
3529
3530 if (!dev_priv)
3531 return;
3532
3533 gen8_irq_reset(dev);
3534 }
3535
3536 static void valleyview_irq_uninstall(struct drm_device *dev)
3537 {
3538 struct drm_i915_private *dev_priv = to_i915(dev);
3539
3540 if (!dev_priv)
3541 return;
3542
3543 I915_WRITE(VLV_MASTER_IER, 0);
3544 POSTING_READ(VLV_MASTER_IER);
3545
3546 gen5_gt_irq_reset(dev_priv);
3547
3548 I915_WRITE(HWSTAM, 0xffffffff);
3549
3550 spin_lock_irq(&dev_priv->irq_lock);
3551 if (dev_priv->display_irqs_enabled)
3552 vlv_display_irq_reset(dev_priv);
3553 spin_unlock_irq(&dev_priv->irq_lock);
3554 }
3555
3556 static void cherryview_irq_uninstall(struct drm_device *dev)
3557 {
3558 struct drm_i915_private *dev_priv = to_i915(dev);
3559
3560 if (!dev_priv)
3561 return;
3562
3563 I915_WRITE(GEN8_MASTER_IRQ, 0);
3564 POSTING_READ(GEN8_MASTER_IRQ);
3565
3566 gen8_gt_irq_reset(dev_priv);
3567
3568 GEN5_IRQ_RESET(GEN8_PCU_);
3569
3570 spin_lock_irq(&dev_priv->irq_lock);
3571 if (dev_priv->display_irqs_enabled)
3572 vlv_display_irq_reset(dev_priv);
3573 spin_unlock_irq(&dev_priv->irq_lock);
3574 }
3575
3576 static void ironlake_irq_uninstall(struct drm_device *dev)
3577 {
3578 struct drm_i915_private *dev_priv = to_i915(dev);
3579
3580 if (!dev_priv)
3581 return;
3582
3583 ironlake_irq_reset(dev);
3584 }
3585
3586 static void i8xx_irq_preinstall(struct drm_device * dev)
3587 {
3588 struct drm_i915_private *dev_priv = to_i915(dev);
3589 int pipe;
3590
3591 for_each_pipe(dev_priv, pipe)
3592 I915_WRITE(PIPESTAT(pipe), 0);
3593 I915_WRITE16(IMR, 0xffff);
3594 I915_WRITE16(IER, 0x0);
3595 POSTING_READ16(IER);
3596 }
3597
3598 static int i8xx_irq_postinstall(struct drm_device *dev)
3599 {
3600 struct drm_i915_private *dev_priv = to_i915(dev);
3601
3602 I915_WRITE16(EMR,
3603 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3604
3605 /* Unmask the interrupts that we always want on. */
3606 dev_priv->irq_mask =
3607 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3608 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3609 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3610 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3611 I915_WRITE16(IMR, dev_priv->irq_mask);
3612
3613 I915_WRITE16(IER,
3614 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3615 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3616 I915_USER_INTERRUPT);
3617 POSTING_READ16(IER);
3618
3619 /* Interrupt setup is already guaranteed to be single-threaded, this is
3620 * just to make the assert_spin_locked check happy. */
3621 spin_lock_irq(&dev_priv->irq_lock);
3622 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3623 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3624 spin_unlock_irq(&dev_priv->irq_lock);
3625
3626 return 0;
3627 }
3628
3629 /*
3630 * Returns true when a page flip has completed.
3631 */
3632 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3633 int plane, int pipe, u32 iir)
3634 {
3635 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3636
3637 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3638 return false;
3639
3640 if ((iir & flip_pending) == 0)
3641 goto check_page_flip;
3642
3643 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3644 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3645 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3646 * the flip is completed (no longer pending). Since this doesn't raise
3647 * an interrupt per se, we watch for the change at vblank.
3648 */
3649 if (I915_READ16(ISR) & flip_pending)
3650 goto check_page_flip;
3651
3652 intel_finish_page_flip_cs(dev_priv, pipe);
3653 return true;
3654
3655 check_page_flip:
3656 intel_check_page_flip(dev_priv, pipe);
3657 return false;
3658 }
3659
3660 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3661 {
3662 struct drm_device *dev = arg;
3663 struct drm_i915_private *dev_priv = to_i915(dev);
3664 u16 iir, new_iir;
3665 u32 pipe_stats[2];
3666 int pipe;
3667 u16 flip_mask =
3668 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3669 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3670 irqreturn_t ret;
3671
3672 if (!intel_irqs_enabled(dev_priv))
3673 return IRQ_NONE;
3674
3675 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3676 disable_rpm_wakeref_asserts(dev_priv);
3677
3678 ret = IRQ_NONE;
3679 iir = I915_READ16(IIR);
3680 if (iir == 0)
3681 goto out;
3682
3683 while (iir & ~flip_mask) {
3684 /* Can't rely on pipestat interrupt bit in iir as it might
3685 * have been cleared after the pipestat interrupt was received.
3686 * It doesn't set the bit in iir again, but it still produces
3687 * interrupts (for non-MSI).
3688 */
3689 spin_lock(&dev_priv->irq_lock);
3690 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3691 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3692
3693 for_each_pipe(dev_priv, pipe) {
3694 i915_reg_t reg = PIPESTAT(pipe);
3695 pipe_stats[pipe] = I915_READ(reg);
3696
3697 /*
3698 * Clear the PIPE*STAT regs before the IIR
3699 */
3700 if (pipe_stats[pipe] & 0x8000ffff)
3701 I915_WRITE(reg, pipe_stats[pipe]);
3702 }
3703 spin_unlock(&dev_priv->irq_lock);
3704
3705 I915_WRITE16(IIR, iir & ~flip_mask);
3706 new_iir = I915_READ16(IIR); /* Flush posted writes */
3707
3708 if (iir & I915_USER_INTERRUPT)
3709 notify_ring(dev_priv->engine[RCS]);
3710
3711 for_each_pipe(dev_priv, pipe) {
3712 int plane = pipe;
3713 if (HAS_FBC(dev_priv))
3714 plane = !plane;
3715
3716 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3717 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3718 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3719
3720 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3721 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3722
3723 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3724 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3725 pipe);
3726 }
3727
3728 iir = new_iir;
3729 }
3730 ret = IRQ_HANDLED;
3731
3732 out:
3733 enable_rpm_wakeref_asserts(dev_priv);
3734
3735 return ret;
3736 }
3737
3738 static void i8xx_irq_uninstall(struct drm_device * dev)
3739 {
3740 struct drm_i915_private *dev_priv = to_i915(dev);
3741 int pipe;
3742
3743 for_each_pipe(dev_priv, pipe) {
3744 /* Clear enable bits; then clear status bits */
3745 I915_WRITE(PIPESTAT(pipe), 0);
3746 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3747 }
3748 I915_WRITE16(IMR, 0xffff);
3749 I915_WRITE16(IER, 0x0);
3750 I915_WRITE16(IIR, I915_READ16(IIR));
3751 }
3752
3753 static void i915_irq_preinstall(struct drm_device * dev)
3754 {
3755 struct drm_i915_private *dev_priv = to_i915(dev);
3756 int pipe;
3757
3758 if (I915_HAS_HOTPLUG(dev_priv)) {
3759 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3760 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3761 }
3762
3763 I915_WRITE16(HWSTAM, 0xeffe);
3764 for_each_pipe(dev_priv, pipe)
3765 I915_WRITE(PIPESTAT(pipe), 0);
3766 I915_WRITE(IMR, 0xffffffff);
3767 I915_WRITE(IER, 0x0);
3768 POSTING_READ(IER);
3769 }
3770
3771 static int i915_irq_postinstall(struct drm_device *dev)
3772 {
3773 struct drm_i915_private *dev_priv = to_i915(dev);
3774 u32 enable_mask;
3775
3776 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3777
3778 /* Unmask the interrupts that we always want on. */
3779 dev_priv->irq_mask =
3780 ~(I915_ASLE_INTERRUPT |
3781 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3782 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3783 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3784 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3785
3786 enable_mask =
3787 I915_ASLE_INTERRUPT |
3788 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3790 I915_USER_INTERRUPT;
3791
3792 if (I915_HAS_HOTPLUG(dev_priv)) {
3793 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3794 POSTING_READ(PORT_HOTPLUG_EN);
3795
3796 /* Enable in IER... */
3797 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3798 /* and unmask in IMR */
3799 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3800 }
3801
3802 I915_WRITE(IMR, dev_priv->irq_mask);
3803 I915_WRITE(IER, enable_mask);
3804 POSTING_READ(IER);
3805
3806 i915_enable_asle_pipestat(dev_priv);
3807
3808 /* Interrupt setup is already guaranteed to be single-threaded, this is
3809 * just to make the assert_spin_locked check happy. */
3810 spin_lock_irq(&dev_priv->irq_lock);
3811 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3812 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3813 spin_unlock_irq(&dev_priv->irq_lock);
3814
3815 return 0;
3816 }
3817
3818 /*
3819 * Returns true when a page flip has completed.
3820 */
3821 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3822 int plane, int pipe, u32 iir)
3823 {
3824 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3825
3826 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3827 return false;
3828
3829 if ((iir & flip_pending) == 0)
3830 goto check_page_flip;
3831
3832 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3833 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3834 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3835 * the flip is completed (no longer pending). Since this doesn't raise
3836 * an interrupt per se, we watch for the change at vblank.
3837 */
3838 if (I915_READ(ISR) & flip_pending)
3839 goto check_page_flip;
3840
3841 intel_finish_page_flip_cs(dev_priv, pipe);
3842 return true;
3843
3844 check_page_flip:
3845 intel_check_page_flip(dev_priv, pipe);
3846 return false;
3847 }
3848
3849 static irqreturn_t i915_irq_handler(int irq, void *arg)
3850 {
3851 struct drm_device *dev = arg;
3852 struct drm_i915_private *dev_priv = to_i915(dev);
3853 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3854 u32 flip_mask =
3855 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3856 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3857 int pipe, ret = IRQ_NONE;
3858
3859 if (!intel_irqs_enabled(dev_priv))
3860 return IRQ_NONE;
3861
3862 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3863 disable_rpm_wakeref_asserts(dev_priv);
3864
3865 iir = I915_READ(IIR);
3866 do {
3867 bool irq_received = (iir & ~flip_mask) != 0;
3868 bool blc_event = false;
3869
3870 /* Can't rely on pipestat interrupt bit in iir as it might
3871 * have been cleared after the pipestat interrupt was received.
3872 * It doesn't set the bit in iir again, but it still produces
3873 * interrupts (for non-MSI).
3874 */
3875 spin_lock(&dev_priv->irq_lock);
3876 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3877 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3878
3879 for_each_pipe(dev_priv, pipe) {
3880 i915_reg_t reg = PIPESTAT(pipe);
3881 pipe_stats[pipe] = I915_READ(reg);
3882
3883 /* Clear the PIPE*STAT regs before the IIR */
3884 if (pipe_stats[pipe] & 0x8000ffff) {
3885 I915_WRITE(reg, pipe_stats[pipe]);
3886 irq_received = true;
3887 }
3888 }
3889 spin_unlock(&dev_priv->irq_lock);
3890
3891 if (!irq_received)
3892 break;
3893
3894 /* Consume port. Then clear IIR or we'll miss events */
3895 if (I915_HAS_HOTPLUG(dev_priv) &&
3896 iir & I915_DISPLAY_PORT_INTERRUPT) {
3897 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3898 if (hotplug_status)
3899 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3900 }
3901
3902 I915_WRITE(IIR, iir & ~flip_mask);
3903 new_iir = I915_READ(IIR); /* Flush posted writes */
3904
3905 if (iir & I915_USER_INTERRUPT)
3906 notify_ring(dev_priv->engine[RCS]);
3907
3908 for_each_pipe(dev_priv, pipe) {
3909 int plane = pipe;
3910 if (HAS_FBC(dev_priv))
3911 plane = !plane;
3912
3913 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3914 i915_handle_vblank(dev_priv, plane, pipe, iir))
3915 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3916
3917 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3918 blc_event = true;
3919
3920 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3921 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3922
3923 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3924 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3925 pipe);
3926 }
3927
3928 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3929 intel_opregion_asle_intr(dev_priv);
3930
3931 /* With MSI, interrupts are only generated when iir
3932 * transitions from zero to nonzero. If another bit got
3933 * set while we were handling the existing iir bits, then
3934 * we would never get another interrupt.
3935 *
3936 * This is fine on non-MSI as well, as if we hit this path
3937 * we avoid exiting the interrupt handler only to generate
3938 * another one.
3939 *
3940 * Note that for MSI this could cause a stray interrupt report
3941 * if an interrupt landed in the time between writing IIR and
3942 * the posting read. This should be rare enough to never
3943 * trigger the 99% of 100,000 interrupts test for disabling
3944 * stray interrupts.
3945 */
3946 ret = IRQ_HANDLED;
3947 iir = new_iir;
3948 } while (iir & ~flip_mask);
3949
3950 enable_rpm_wakeref_asserts(dev_priv);
3951
3952 return ret;
3953 }
3954
3955 static void i915_irq_uninstall(struct drm_device * dev)
3956 {
3957 struct drm_i915_private *dev_priv = to_i915(dev);
3958 int pipe;
3959
3960 if (I915_HAS_HOTPLUG(dev_priv)) {
3961 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3962 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3963 }
3964
3965 I915_WRITE16(HWSTAM, 0xffff);
3966 for_each_pipe(dev_priv, pipe) {
3967 /* Clear enable bits; then clear status bits */
3968 I915_WRITE(PIPESTAT(pipe), 0);
3969 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3970 }
3971 I915_WRITE(IMR, 0xffffffff);
3972 I915_WRITE(IER, 0x0);
3973
3974 I915_WRITE(IIR, I915_READ(IIR));
3975 }
3976
3977 static void i965_irq_preinstall(struct drm_device * dev)
3978 {
3979 struct drm_i915_private *dev_priv = to_i915(dev);
3980 int pipe;
3981
3982 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3983 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3984
3985 I915_WRITE(HWSTAM, 0xeffe);
3986 for_each_pipe(dev_priv, pipe)
3987 I915_WRITE(PIPESTAT(pipe), 0);
3988 I915_WRITE(IMR, 0xffffffff);
3989 I915_WRITE(IER, 0x0);
3990 POSTING_READ(IER);
3991 }
3992
3993 static int i965_irq_postinstall(struct drm_device *dev)
3994 {
3995 struct drm_i915_private *dev_priv = to_i915(dev);
3996 u32 enable_mask;
3997 u32 error_mask;
3998
3999 /* Unmask the interrupts that we always want on. */
4000 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4001 I915_DISPLAY_PORT_INTERRUPT |
4002 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4003 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4004 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4005 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4006 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4007
4008 enable_mask = ~dev_priv->irq_mask;
4009 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4011 enable_mask |= I915_USER_INTERRUPT;
4012
4013 if (IS_G4X(dev_priv))
4014 enable_mask |= I915_BSD_USER_INTERRUPT;
4015
4016 /* Interrupt setup is already guaranteed to be single-threaded, this is
4017 * just to make the assert_spin_locked check happy. */
4018 spin_lock_irq(&dev_priv->irq_lock);
4019 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4020 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4021 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4022 spin_unlock_irq(&dev_priv->irq_lock);
4023
4024 /*
4025 * Enable some error detection, note the instruction error mask
4026 * bit is reserved, so we leave it masked.
4027 */
4028 if (IS_G4X(dev_priv)) {
4029 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4030 GM45_ERROR_MEM_PRIV |
4031 GM45_ERROR_CP_PRIV |
4032 I915_ERROR_MEMORY_REFRESH);
4033 } else {
4034 error_mask = ~(I915_ERROR_PAGE_TABLE |
4035 I915_ERROR_MEMORY_REFRESH);
4036 }
4037 I915_WRITE(EMR, error_mask);
4038
4039 I915_WRITE(IMR, dev_priv->irq_mask);
4040 I915_WRITE(IER, enable_mask);
4041 POSTING_READ(IER);
4042
4043 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4044 POSTING_READ(PORT_HOTPLUG_EN);
4045
4046 i915_enable_asle_pipestat(dev_priv);
4047
4048 return 0;
4049 }
4050
4051 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4052 {
4053 u32 hotplug_en;
4054
4055 assert_spin_locked(&dev_priv->irq_lock);
4056
4057 /* Note HDMI and DP share hotplug bits */
4058 /* enable bits are the same for all generations */
4059 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4060 /* Programming the CRT detection parameters tends
4061 to generate a spurious hotplug event about three
4062 seconds later. So just do it once.
4063 */
4064 if (IS_G4X(dev_priv))
4065 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4066 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4067
4068 /* Ignore TV since it's buggy */
4069 i915_hotplug_interrupt_update_locked(dev_priv,
4070 HOTPLUG_INT_EN_MASK |
4071 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4072 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4073 hotplug_en);
4074 }
4075
4076 static irqreturn_t i965_irq_handler(int irq, void *arg)
4077 {
4078 struct drm_device *dev = arg;
4079 struct drm_i915_private *dev_priv = to_i915(dev);
4080 u32 iir, new_iir;
4081 u32 pipe_stats[I915_MAX_PIPES];
4082 int ret = IRQ_NONE, pipe;
4083 u32 flip_mask =
4084 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4085 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4086
4087 if (!intel_irqs_enabled(dev_priv))
4088 return IRQ_NONE;
4089
4090 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4091 disable_rpm_wakeref_asserts(dev_priv);
4092
4093 iir = I915_READ(IIR);
4094
4095 for (;;) {
4096 bool irq_received = (iir & ~flip_mask) != 0;
4097 bool blc_event = false;
4098
4099 /* Can't rely on pipestat interrupt bit in iir as it might
4100 * have been cleared after the pipestat interrupt was received.
4101 * It doesn't set the bit in iir again, but it still produces
4102 * interrupts (for non-MSI).
4103 */
4104 spin_lock(&dev_priv->irq_lock);
4105 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4106 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4107
4108 for_each_pipe(dev_priv, pipe) {
4109 i915_reg_t reg = PIPESTAT(pipe);
4110 pipe_stats[pipe] = I915_READ(reg);
4111
4112 /*
4113 * Clear the PIPE*STAT regs before the IIR
4114 */
4115 if (pipe_stats[pipe] & 0x8000ffff) {
4116 I915_WRITE(reg, pipe_stats[pipe]);
4117 irq_received = true;
4118 }
4119 }
4120 spin_unlock(&dev_priv->irq_lock);
4121
4122 if (!irq_received)
4123 break;
4124
4125 ret = IRQ_HANDLED;
4126
4127 /* Consume port. Then clear IIR or we'll miss events */
4128 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4129 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4130 if (hotplug_status)
4131 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4132 }
4133
4134 I915_WRITE(IIR, iir & ~flip_mask);
4135 new_iir = I915_READ(IIR); /* Flush posted writes */
4136
4137 if (iir & I915_USER_INTERRUPT)
4138 notify_ring(dev_priv->engine[RCS]);
4139 if (iir & I915_BSD_USER_INTERRUPT)
4140 notify_ring(dev_priv->engine[VCS]);
4141
4142 for_each_pipe(dev_priv, pipe) {
4143 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4144 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4145 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4146
4147 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4148 blc_event = true;
4149
4150 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4151 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4152
4153 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4154 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4155 }
4156
4157 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4158 intel_opregion_asle_intr(dev_priv);
4159
4160 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4161 gmbus_irq_handler(dev_priv);
4162
4163 /* With MSI, interrupts are only generated when iir
4164 * transitions from zero to nonzero. If another bit got
4165 * set while we were handling the existing iir bits, then
4166 * we would never get another interrupt.
4167 *
4168 * This is fine on non-MSI as well, as if we hit this path
4169 * we avoid exiting the interrupt handler only to generate
4170 * another one.
4171 *
4172 * Note that for MSI this could cause a stray interrupt report
4173 * if an interrupt landed in the time between writing IIR and
4174 * the posting read. This should be rare enough to never
4175 * trigger the 99% of 100,000 interrupts test for disabling
4176 * stray interrupts.
4177 */
4178 iir = new_iir;
4179 }
4180
4181 enable_rpm_wakeref_asserts(dev_priv);
4182
4183 return ret;
4184 }
4185
4186 static void i965_irq_uninstall(struct drm_device * dev)
4187 {
4188 struct drm_i915_private *dev_priv = to_i915(dev);
4189 int pipe;
4190
4191 if (!dev_priv)
4192 return;
4193
4194 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4195 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4196
4197 I915_WRITE(HWSTAM, 0xffffffff);
4198 for_each_pipe(dev_priv, pipe)
4199 I915_WRITE(PIPESTAT(pipe), 0);
4200 I915_WRITE(IMR, 0xffffffff);
4201 I915_WRITE(IER, 0x0);
4202
4203 for_each_pipe(dev_priv, pipe)
4204 I915_WRITE(PIPESTAT(pipe),
4205 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4206 I915_WRITE(IIR, I915_READ(IIR));
4207 }
4208
4209 /**
4210 * intel_irq_init - initializes irq support
4211 * @dev_priv: i915 device instance
4212 *
4213 * This function initializes all the irq support including work items, timers
4214 * and all the vtables. It does not setup the interrupt itself though.
4215 */
4216 void intel_irq_init(struct drm_i915_private *dev_priv)
4217 {
4218 struct drm_device *dev = &dev_priv->drm;
4219
4220 intel_hpd_init_work(dev_priv);
4221
4222 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4223 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4224
4225 if (HAS_GUC_SCHED(dev_priv))
4226 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4227
4228 /* Let's track the enabled rps events */
4229 if (IS_VALLEYVIEW(dev_priv))
4230 /* WaGsvRC0ResidencyMethod:vlv */
4231 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4232 else
4233 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4234
4235 dev_priv->rps.pm_intr_keep = 0;
4236
4237 /*
4238 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4239 * if GEN6_PM_UP_EI_EXPIRED is masked.
4240 *
4241 * TODO: verify if this can be reproduced on VLV,CHV.
4242 */
4243 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4244 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4245
4246 if (INTEL_INFO(dev_priv)->gen >= 8)
4247 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4248
4249 if (IS_GEN2(dev_priv)) {
4250 /* Gen2 doesn't have a hardware frame counter */
4251 dev->max_vblank_count = 0;
4252 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4253 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4254 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4255 } else {
4256 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4257 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4258 }
4259
4260 /*
4261 * Opt out of the vblank disable timer on everything except gen2.
4262 * Gen2 doesn't have a hardware frame counter and so depends on
4263 * vblank interrupts to produce sane vblank seuquence numbers.
4264 */
4265 if (!IS_GEN2(dev_priv))
4266 dev->vblank_disable_immediate = true;
4267
4268 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4269 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4270
4271 if (IS_CHERRYVIEW(dev_priv)) {
4272 dev->driver->irq_handler = cherryview_irq_handler;
4273 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4274 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4275 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4276 dev->driver->enable_vblank = i965_enable_vblank;
4277 dev->driver->disable_vblank = i965_disable_vblank;
4278 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4279 } else if (IS_VALLEYVIEW(dev_priv)) {
4280 dev->driver->irq_handler = valleyview_irq_handler;
4281 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4282 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4283 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4284 dev->driver->enable_vblank = i965_enable_vblank;
4285 dev->driver->disable_vblank = i965_disable_vblank;
4286 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4287 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4288 dev->driver->irq_handler = gen8_irq_handler;
4289 dev->driver->irq_preinstall = gen8_irq_reset;
4290 dev->driver->irq_postinstall = gen8_irq_postinstall;
4291 dev->driver->irq_uninstall = gen8_irq_uninstall;
4292 dev->driver->enable_vblank = gen8_enable_vblank;
4293 dev->driver->disable_vblank = gen8_disable_vblank;
4294 if (IS_GEN9_LP(dev_priv))
4295 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4296 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4297 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4298 else
4299 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4300 } else if (HAS_PCH_SPLIT(dev_priv)) {
4301 dev->driver->irq_handler = ironlake_irq_handler;
4302 dev->driver->irq_preinstall = ironlake_irq_reset;
4303 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4304 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4305 dev->driver->enable_vblank = ironlake_enable_vblank;
4306 dev->driver->disable_vblank = ironlake_disable_vblank;
4307 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4308 } else {
4309 if (IS_GEN2(dev_priv)) {
4310 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4311 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4312 dev->driver->irq_handler = i8xx_irq_handler;
4313 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4314 dev->driver->enable_vblank = i8xx_enable_vblank;
4315 dev->driver->disable_vblank = i8xx_disable_vblank;
4316 } else if (IS_GEN3(dev_priv)) {
4317 dev->driver->irq_preinstall = i915_irq_preinstall;
4318 dev->driver->irq_postinstall = i915_irq_postinstall;
4319 dev->driver->irq_uninstall = i915_irq_uninstall;
4320 dev->driver->irq_handler = i915_irq_handler;
4321 dev->driver->enable_vblank = i8xx_enable_vblank;
4322 dev->driver->disable_vblank = i8xx_disable_vblank;
4323 } else {
4324 dev->driver->irq_preinstall = i965_irq_preinstall;
4325 dev->driver->irq_postinstall = i965_irq_postinstall;
4326 dev->driver->irq_uninstall = i965_irq_uninstall;
4327 dev->driver->irq_handler = i965_irq_handler;
4328 dev->driver->enable_vblank = i965_enable_vblank;
4329 dev->driver->disable_vblank = i965_disable_vblank;
4330 }
4331 if (I915_HAS_HOTPLUG(dev_priv))
4332 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4333 }
4334 }
4335
4336 /**
4337 * intel_irq_install - enables the hardware interrupt
4338 * @dev_priv: i915 device instance
4339 *
4340 * This function enables the hardware interrupt handling, but leaves the hotplug
4341 * handling still disabled. It is called after intel_irq_init().
4342 *
4343 * In the driver load and resume code we need working interrupts in a few places
4344 * but don't want to deal with the hassle of concurrent probe and hotplug
4345 * workers. Hence the split into this two-stage approach.
4346 */
4347 int intel_irq_install(struct drm_i915_private *dev_priv)
4348 {
4349 /*
4350 * We enable some interrupt sources in our postinstall hooks, so mark
4351 * interrupts as enabled _before_ actually enabling them to avoid
4352 * special cases in our ordering checks.
4353 */
4354 dev_priv->pm.irqs_enabled = true;
4355
4356 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4357 }
4358
4359 /**
4360 * intel_irq_uninstall - finilizes all irq handling
4361 * @dev_priv: i915 device instance
4362 *
4363 * This stops interrupt and hotplug handling and unregisters and frees all
4364 * resources acquired in the init functions.
4365 */
4366 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4367 {
4368 drm_irq_uninstall(&dev_priv->drm);
4369 intel_hpd_cancel_work(dev_priv);
4370 dev_priv->pm.irqs_enabled = false;
4371 }
4372
4373 /**
4374 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4375 * @dev_priv: i915 device instance
4376 *
4377 * This function is used to disable interrupts at runtime, both in the runtime
4378 * pm and the system suspend/resume code.
4379 */
4380 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4381 {
4382 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4383 dev_priv->pm.irqs_enabled = false;
4384 synchronize_irq(dev_priv->drm.irq);
4385 }
4386
4387 /**
4388 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4389 * @dev_priv: i915 device instance
4390 *
4391 * This function is used to enable interrupts at runtime, both in the runtime
4392 * pm and the system suspend/resume code.
4393 */
4394 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4395 {
4396 dev_priv->pm.irqs_enabled = true;
4397 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4398 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4399 }