]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: use enum pipe consistently in i915_irq.c
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_gen4[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pc8.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pc8.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pc8.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pc8.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pc8.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pc8.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 enum pipe pipe, bool enable)
237 {
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 DE_PIPEB_FIFO_UNDERRUN;
241
242 if (enable)
243 ironlake_enable_display_irq(dev_priv, bit);
244 else
245 ironlake_disable_display_irq(dev_priv, bit);
246 }
247
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 enum pipe pipe, bool enable)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 if (enable) {
253 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254
255 if (!ivb_can_enable_err_int(dev))
256 return;
257
258 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 } else {
260 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261
262 /* Change the state _after_ we've read out the current one. */
263 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264
265 if (!was_enabled &&
266 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 pipe_name(pipe));
269 }
270 }
271 }
272
273 /**
274 * ibx_display_interrupt_update - update SDEIMR
275 * @dev_priv: driver private
276 * @interrupt_mask: mask of interrupt bits to update
277 * @enabled_irq_mask: mask of interrupt bits to enable
278 */
279 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
280 uint32_t interrupt_mask,
281 uint32_t enabled_irq_mask)
282 {
283 uint32_t sdeimr = I915_READ(SDEIMR);
284 sdeimr &= ~interrupt_mask;
285 sdeimr |= (~enabled_irq_mask & interrupt_mask);
286
287 assert_spin_locked(&dev_priv->irq_lock);
288
289 if (dev_priv->pc8.irqs_disabled &&
290 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
291 WARN(1, "IRQs disabled\n");
292 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
293 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
294 interrupt_mask);
295 return;
296 }
297
298 I915_WRITE(SDEIMR, sdeimr);
299 POSTING_READ(SDEIMR);
300 }
301 #define ibx_enable_display_interrupt(dev_priv, bits) \
302 ibx_display_interrupt_update((dev_priv), (bits), (bits))
303 #define ibx_disable_display_interrupt(dev_priv, bits) \
304 ibx_display_interrupt_update((dev_priv), (bits), 0)
305
306 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
307 enum transcoder pch_transcoder,
308 bool enable)
309 {
310 struct drm_i915_private *dev_priv = dev->dev_private;
311 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
312 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
313
314 if (enable)
315 ibx_enable_display_interrupt(dev_priv, bit);
316 else
317 ibx_disable_display_interrupt(dev_priv, bit);
318 }
319
320 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
321 enum transcoder pch_transcoder,
322 bool enable)
323 {
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 if (enable) {
327 I915_WRITE(SERR_INT,
328 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
329
330 if (!cpt_can_enable_serr_int(dev))
331 return;
332
333 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
334 } else {
335 uint32_t tmp = I915_READ(SERR_INT);
336 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
337
338 /* Change the state _after_ we've read out the current one. */
339 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
340
341 if (!was_enabled &&
342 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
343 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
344 transcoder_name(pch_transcoder));
345 }
346 }
347 }
348
349 /**
350 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
351 * @dev: drm device
352 * @pipe: pipe
353 * @enable: true if we want to report FIFO underrun errors, false otherwise
354 *
355 * This function makes us disable or enable CPU fifo underruns for a specific
356 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
357 * reporting for one pipe may also disable all the other CPU error interruts for
358 * the other pipes, due to the fact that there's just one interrupt mask/enable
359 * bit for all the pipes.
360 *
361 * Returns the previous state of underrun reporting.
362 */
363 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
364 enum pipe pipe, bool enable)
365 {
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
369 unsigned long flags;
370 bool ret;
371
372 spin_lock_irqsave(&dev_priv->irq_lock, flags);
373
374 ret = !intel_crtc->cpu_fifo_underrun_disabled;
375
376 if (enable == ret)
377 goto done;
378
379 intel_crtc->cpu_fifo_underrun_disabled = !enable;
380
381 if (IS_GEN5(dev) || IS_GEN6(dev))
382 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
383 else if (IS_GEN7(dev))
384 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
385
386 done:
387 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
388 return ret;
389 }
390
391 /**
392 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
393 * @dev: drm device
394 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
395 * @enable: true if we want to report FIFO underrun errors, false otherwise
396 *
397 * This function makes us disable or enable PCH fifo underruns for a specific
398 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
399 * underrun reporting for one transcoder may also disable all the other PCH
400 * error interruts for the other transcoders, due to the fact that there's just
401 * one interrupt mask/enable bit for all the transcoders.
402 *
403 * Returns the previous state of underrun reporting.
404 */
405 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
406 enum transcoder pch_transcoder,
407 bool enable)
408 {
409 struct drm_i915_private *dev_priv = dev->dev_private;
410 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
412 unsigned long flags;
413 bool ret;
414
415 /*
416 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
417 * has only one pch transcoder A that all pipes can use. To avoid racy
418 * pch transcoder -> pipe lookups from interrupt code simply store the
419 * underrun statistics in crtc A. Since we never expose this anywhere
420 * nor use it outside of the fifo underrun code here using the "wrong"
421 * crtc on LPT won't cause issues.
422 */
423
424 spin_lock_irqsave(&dev_priv->irq_lock, flags);
425
426 ret = !intel_crtc->pch_fifo_underrun_disabled;
427
428 if (enable == ret)
429 goto done;
430
431 intel_crtc->pch_fifo_underrun_disabled = !enable;
432
433 if (HAS_PCH_IBX(dev))
434 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
435 else
436 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
437
438 done:
439 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
440 return ret;
441 }
442
443
444 void
445 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
446 {
447 u32 reg = PIPESTAT(pipe);
448 u32 pipestat = I915_READ(reg) & 0x7fff0000;
449
450 assert_spin_locked(&dev_priv->irq_lock);
451
452 if ((pipestat & mask) == mask)
453 return;
454
455 /* Enable the interrupt, clear any pending status */
456 pipestat |= mask | (mask >> 16);
457 I915_WRITE(reg, pipestat);
458 POSTING_READ(reg);
459 }
460
461 void
462 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
463 {
464 u32 reg = PIPESTAT(pipe);
465 u32 pipestat = I915_READ(reg) & 0x7fff0000;
466
467 assert_spin_locked(&dev_priv->irq_lock);
468
469 if ((pipestat & mask) == 0)
470 return;
471
472 pipestat &= ~mask;
473 I915_WRITE(reg, pipestat);
474 POSTING_READ(reg);
475 }
476
477 /**
478 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
479 */
480 static void i915_enable_asle_pipestat(struct drm_device *dev)
481 {
482 drm_i915_private_t *dev_priv = dev->dev_private;
483 unsigned long irqflags;
484
485 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
486 return;
487
488 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
489
490 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
491 if (INTEL_INFO(dev)->gen >= 4)
492 i915_enable_pipestat(dev_priv, PIPE_A,
493 PIPE_LEGACY_BLC_EVENT_ENABLE);
494
495 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
496 }
497
498 /**
499 * i915_pipe_enabled - check if a pipe is enabled
500 * @dev: DRM device
501 * @pipe: pipe to check
502 *
503 * Reading certain registers when the pipe is disabled can hang the chip.
504 * Use this routine to make sure the PLL is running and the pipe is active
505 * before reading such registers if unsure.
506 */
507 static int
508 i915_pipe_enabled(struct drm_device *dev, int pipe)
509 {
510 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
511
512 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
513 /* Locking is horribly broken here, but whatever. */
514 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
516
517 return intel_crtc->active;
518 } else {
519 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
520 }
521 }
522
523 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
524 {
525 /* Gen2 doesn't have a hardware frame counter */
526 return 0;
527 }
528
529 /* Called from drm generic code, passed a 'crtc', which
530 * we use as a pipe index
531 */
532 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
533 {
534 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
535 unsigned long high_frame;
536 unsigned long low_frame;
537 u32 high1, high2, low, pixel, vbl_start;
538
539 if (!i915_pipe_enabled(dev, pipe)) {
540 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
541 "pipe %c\n", pipe_name(pipe));
542 return 0;
543 }
544
545 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
546 struct intel_crtc *intel_crtc =
547 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
548 const struct drm_display_mode *mode =
549 &intel_crtc->config.adjusted_mode;
550
551 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
552 } else {
553 enum transcoder cpu_transcoder =
554 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
555 u32 htotal;
556
557 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
558 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
559
560 vbl_start *= htotal;
561 }
562
563 high_frame = PIPEFRAME(pipe);
564 low_frame = PIPEFRAMEPIXEL(pipe);
565
566 /*
567 * High & low register fields aren't synchronized, so make sure
568 * we get a low value that's stable across two reads of the high
569 * register.
570 */
571 do {
572 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
573 low = I915_READ(low_frame);
574 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
575 } while (high1 != high2);
576
577 high1 >>= PIPE_FRAME_HIGH_SHIFT;
578 pixel = low & PIPE_PIXEL_MASK;
579 low >>= PIPE_FRAME_LOW_SHIFT;
580
581 /*
582 * The frame counter increments at beginning of active.
583 * Cook up a vblank counter by also checking the pixel
584 * counter against vblank start.
585 */
586 return ((high1 << 8) | low) + (pixel >= vbl_start);
587 }
588
589 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
590 {
591 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
592 int reg = PIPE_FRMCOUNT_GM45(pipe);
593
594 if (!i915_pipe_enabled(dev, pipe)) {
595 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
596 "pipe %c\n", pipe_name(pipe));
597 return 0;
598 }
599
600 return I915_READ(reg);
601 }
602
603 static bool intel_pipe_in_vblank(struct drm_device *dev, enum pipe pipe)
604 {
605 struct drm_i915_private *dev_priv = dev->dev_private;
606 uint32_t status;
607
608 if (IS_VALLEYVIEW(dev)) {
609 status = pipe == PIPE_A ?
610 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
611 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
612
613 return I915_READ(VLV_ISR) & status;
614 } else if (IS_GEN2(dev)) {
615 status = pipe == PIPE_A ?
616 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
617 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
618
619 return I915_READ16(ISR) & status;
620 } else if (INTEL_INFO(dev)->gen < 5) {
621 status = pipe == PIPE_A ?
622 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
623 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
624
625 return I915_READ(ISR) & status;
626 } else if (INTEL_INFO(dev)->gen < 7) {
627 status = pipe == PIPE_A ?
628 DE_PIPEA_VBLANK :
629 DE_PIPEB_VBLANK;
630
631 return I915_READ(DEISR) & status;
632 } else {
633 switch (pipe) {
634 default:
635 case PIPE_A:
636 status = DE_PIPEA_VBLANK_IVB;
637 break;
638 case PIPE_B:
639 status = DE_PIPEB_VBLANK_IVB;
640 break;
641 case PIPE_C:
642 status = DE_PIPEC_VBLANK_IVB;
643 break;
644 }
645
646 return I915_READ(DEISR) & status;
647 }
648 }
649
650 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
651 int *vpos, int *hpos)
652 {
653 struct drm_i915_private *dev_priv = dev->dev_private;
654 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
656 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
657 int position;
658 int vbl_start, vbl_end, htotal, vtotal;
659 bool in_vbl = true;
660 int ret = 0;
661
662 if (!intel_crtc->active) {
663 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
664 "pipe %c\n", pipe_name(pipe));
665 return 0;
666 }
667
668 htotal = mode->crtc_htotal;
669 vtotal = mode->crtc_vtotal;
670 vbl_start = mode->crtc_vblank_start;
671 vbl_end = mode->crtc_vblank_end;
672
673 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
674
675 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
676 /* No obvious pixelcount register. Only query vertical
677 * scanout position from Display scan line register.
678 */
679 if (IS_GEN2(dev))
680 position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
681 else
682 position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
683
684 /*
685 * The scanline counter increments at the leading edge
686 * of hsync, ie. it completely misses the active portion
687 * of the line. Fix up the counter at both edges of vblank
688 * to get a more accurate picture whether we're in vblank
689 * or not.
690 */
691 in_vbl = intel_pipe_in_vblank(dev, pipe);
692 if ((in_vbl && position == vbl_start - 1) ||
693 (!in_vbl && position == vbl_end - 1))
694 position = (position + 1) % vtotal;
695 } else {
696 /* Have access to pixelcount since start of frame.
697 * We can split this into vertical and horizontal
698 * scanout position.
699 */
700 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701
702 /* convert to pixel counts */
703 vbl_start *= htotal;
704 vbl_end *= htotal;
705 vtotal *= htotal;
706 }
707
708 in_vbl = position >= vbl_start && position < vbl_end;
709
710 /*
711 * While in vblank, position will be negative
712 * counting up towards 0 at vbl_end. And outside
713 * vblank, position will be positive counting
714 * up since vbl_end.
715 */
716 if (position >= vbl_start)
717 position -= vbl_end;
718 else
719 position += vtotal - vbl_end;
720
721 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
722 *vpos = position;
723 *hpos = 0;
724 } else {
725 *vpos = position / htotal;
726 *hpos = position - (*vpos * htotal);
727 }
728
729 /* In vblank? */
730 if (in_vbl)
731 ret |= DRM_SCANOUTPOS_INVBL;
732
733 return ret;
734 }
735
736 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
737 int *max_error,
738 struct timeval *vblank_time,
739 unsigned flags)
740 {
741 struct drm_crtc *crtc;
742
743 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
744 DRM_ERROR("Invalid crtc %d\n", pipe);
745 return -EINVAL;
746 }
747
748 /* Get drm_crtc to timestamp: */
749 crtc = intel_get_crtc_for_pipe(dev, pipe);
750 if (crtc == NULL) {
751 DRM_ERROR("Invalid crtc %d\n", pipe);
752 return -EINVAL;
753 }
754
755 if (!crtc->enabled) {
756 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
757 return -EBUSY;
758 }
759
760 /* Helper routine in DRM core does all the work: */
761 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
762 vblank_time, flags,
763 crtc);
764 }
765
766 static bool intel_hpd_irq_event(struct drm_device *dev,
767 struct drm_connector *connector)
768 {
769 enum drm_connector_status old_status;
770
771 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
772 old_status = connector->status;
773
774 connector->status = connector->funcs->detect(connector, false);
775 if (old_status == connector->status)
776 return false;
777
778 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
779 connector->base.id,
780 drm_get_connector_name(connector),
781 drm_get_connector_status_name(old_status),
782 drm_get_connector_status_name(connector->status));
783
784 return true;
785 }
786
787 /*
788 * Handle hotplug events outside the interrupt handler proper.
789 */
790 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
791
792 static void i915_hotplug_work_func(struct work_struct *work)
793 {
794 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
795 hotplug_work);
796 struct drm_device *dev = dev_priv->dev;
797 struct drm_mode_config *mode_config = &dev->mode_config;
798 struct intel_connector *intel_connector;
799 struct intel_encoder *intel_encoder;
800 struct drm_connector *connector;
801 unsigned long irqflags;
802 bool hpd_disabled = false;
803 bool changed = false;
804 u32 hpd_event_bits;
805
806 /* HPD irq before everything is fully set up. */
807 if (!dev_priv->enable_hotplug_processing)
808 return;
809
810 mutex_lock(&mode_config->mutex);
811 DRM_DEBUG_KMS("running encoder hotplug functions\n");
812
813 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
814
815 hpd_event_bits = dev_priv->hpd_event_bits;
816 dev_priv->hpd_event_bits = 0;
817 list_for_each_entry(connector, &mode_config->connector_list, head) {
818 intel_connector = to_intel_connector(connector);
819 intel_encoder = intel_connector->encoder;
820 if (intel_encoder->hpd_pin > HPD_NONE &&
821 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
822 connector->polled == DRM_CONNECTOR_POLL_HPD) {
823 DRM_INFO("HPD interrupt storm detected on connector %s: "
824 "switching from hotplug detection to polling\n",
825 drm_get_connector_name(connector));
826 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
827 connector->polled = DRM_CONNECTOR_POLL_CONNECT
828 | DRM_CONNECTOR_POLL_DISCONNECT;
829 hpd_disabled = true;
830 }
831 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
832 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
833 drm_get_connector_name(connector), intel_encoder->hpd_pin);
834 }
835 }
836 /* if there were no outputs to poll, poll was disabled,
837 * therefore make sure it's enabled when disabling HPD on
838 * some connectors */
839 if (hpd_disabled) {
840 drm_kms_helper_poll_enable(dev);
841 mod_timer(&dev_priv->hotplug_reenable_timer,
842 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
843 }
844
845 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
846
847 list_for_each_entry(connector, &mode_config->connector_list, head) {
848 intel_connector = to_intel_connector(connector);
849 intel_encoder = intel_connector->encoder;
850 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
851 if (intel_encoder->hot_plug)
852 intel_encoder->hot_plug(intel_encoder);
853 if (intel_hpd_irq_event(dev, connector))
854 changed = true;
855 }
856 }
857 mutex_unlock(&mode_config->mutex);
858
859 if (changed)
860 drm_kms_helper_hotplug_event(dev);
861 }
862
863 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
864 {
865 drm_i915_private_t *dev_priv = dev->dev_private;
866 u32 busy_up, busy_down, max_avg, min_avg;
867 u8 new_delay;
868
869 spin_lock(&mchdev_lock);
870
871 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
872
873 new_delay = dev_priv->ips.cur_delay;
874
875 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
876 busy_up = I915_READ(RCPREVBSYTUPAVG);
877 busy_down = I915_READ(RCPREVBSYTDNAVG);
878 max_avg = I915_READ(RCBMAXAVG);
879 min_avg = I915_READ(RCBMINAVG);
880
881 /* Handle RCS change request from hw */
882 if (busy_up > max_avg) {
883 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
884 new_delay = dev_priv->ips.cur_delay - 1;
885 if (new_delay < dev_priv->ips.max_delay)
886 new_delay = dev_priv->ips.max_delay;
887 } else if (busy_down < min_avg) {
888 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
889 new_delay = dev_priv->ips.cur_delay + 1;
890 if (new_delay > dev_priv->ips.min_delay)
891 new_delay = dev_priv->ips.min_delay;
892 }
893
894 if (ironlake_set_drps(dev, new_delay))
895 dev_priv->ips.cur_delay = new_delay;
896
897 spin_unlock(&mchdev_lock);
898
899 return;
900 }
901
902 static void notify_ring(struct drm_device *dev,
903 struct intel_ring_buffer *ring)
904 {
905 if (ring->obj == NULL)
906 return;
907
908 trace_i915_gem_request_complete(ring);
909
910 wake_up_all(&ring->irq_queue);
911 i915_queue_hangcheck(dev);
912 }
913
914 static void gen6_pm_rps_work(struct work_struct *work)
915 {
916 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
917 rps.work);
918 u32 pm_iir;
919 int new_delay, adj;
920
921 spin_lock_irq(&dev_priv->irq_lock);
922 pm_iir = dev_priv->rps.pm_iir;
923 dev_priv->rps.pm_iir = 0;
924 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
925 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
926 spin_unlock_irq(&dev_priv->irq_lock);
927
928 /* Make sure we didn't queue anything we're not going to process. */
929 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
930
931 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
932 return;
933
934 mutex_lock(&dev_priv->rps.hw_lock);
935
936 adj = dev_priv->rps.last_adj;
937 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
938 if (adj > 0)
939 adj *= 2;
940 else
941 adj = 1;
942 new_delay = dev_priv->rps.cur_delay + adj;
943
944 /*
945 * For better performance, jump directly
946 * to RPe if we're below it.
947 */
948 if (new_delay < dev_priv->rps.rpe_delay)
949 new_delay = dev_priv->rps.rpe_delay;
950 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
951 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
952 new_delay = dev_priv->rps.rpe_delay;
953 else
954 new_delay = dev_priv->rps.min_delay;
955 adj = 0;
956 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
957 if (adj < 0)
958 adj *= 2;
959 else
960 adj = -1;
961 new_delay = dev_priv->rps.cur_delay + adj;
962 } else { /* unknown event */
963 new_delay = dev_priv->rps.cur_delay;
964 }
965
966 /* sysfs frequency interfaces may have snuck in while servicing the
967 * interrupt
968 */
969 if (new_delay < (int)dev_priv->rps.min_delay)
970 new_delay = dev_priv->rps.min_delay;
971 if (new_delay > (int)dev_priv->rps.max_delay)
972 new_delay = dev_priv->rps.max_delay;
973 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
974
975 if (IS_VALLEYVIEW(dev_priv->dev))
976 valleyview_set_rps(dev_priv->dev, new_delay);
977 else
978 gen6_set_rps(dev_priv->dev, new_delay);
979
980 mutex_unlock(&dev_priv->rps.hw_lock);
981 }
982
983
984 /**
985 * ivybridge_parity_work - Workqueue called when a parity error interrupt
986 * occurred.
987 * @work: workqueue struct
988 *
989 * Doesn't actually do anything except notify userspace. As a consequence of
990 * this event, userspace should try to remap the bad rows since statistically
991 * it is likely the same row is more likely to go bad again.
992 */
993 static void ivybridge_parity_work(struct work_struct *work)
994 {
995 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
996 l3_parity.error_work);
997 u32 error_status, row, bank, subbank;
998 char *parity_event[6];
999 uint32_t misccpctl;
1000 unsigned long flags;
1001 uint8_t slice = 0;
1002
1003 /* We must turn off DOP level clock gating to access the L3 registers.
1004 * In order to prevent a get/put style interface, acquire struct mutex
1005 * any time we access those registers.
1006 */
1007 mutex_lock(&dev_priv->dev->struct_mutex);
1008
1009 /* If we've screwed up tracking, just let the interrupt fire again */
1010 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1011 goto out;
1012
1013 misccpctl = I915_READ(GEN7_MISCCPCTL);
1014 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1015 POSTING_READ(GEN7_MISCCPCTL);
1016
1017 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1018 u32 reg;
1019
1020 slice--;
1021 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1022 break;
1023
1024 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1025
1026 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1027
1028 error_status = I915_READ(reg);
1029 row = GEN7_PARITY_ERROR_ROW(error_status);
1030 bank = GEN7_PARITY_ERROR_BANK(error_status);
1031 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1032
1033 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1034 POSTING_READ(reg);
1035
1036 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1037 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1038 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1039 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1040 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1041 parity_event[5] = NULL;
1042
1043 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
1044 KOBJ_CHANGE, parity_event);
1045
1046 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1047 slice, row, bank, subbank);
1048
1049 kfree(parity_event[4]);
1050 kfree(parity_event[3]);
1051 kfree(parity_event[2]);
1052 kfree(parity_event[1]);
1053 }
1054
1055 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1056
1057 out:
1058 WARN_ON(dev_priv->l3_parity.which_slice);
1059 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1060 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1061 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1062
1063 mutex_unlock(&dev_priv->dev->struct_mutex);
1064 }
1065
1066 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1067 {
1068 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1069
1070 if (!HAS_L3_DPF(dev))
1071 return;
1072
1073 spin_lock(&dev_priv->irq_lock);
1074 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1075 spin_unlock(&dev_priv->irq_lock);
1076
1077 iir &= GT_PARITY_ERROR(dev);
1078 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1079 dev_priv->l3_parity.which_slice |= 1 << 1;
1080
1081 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1082 dev_priv->l3_parity.which_slice |= 1 << 0;
1083
1084 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1085 }
1086
1087 static void ilk_gt_irq_handler(struct drm_device *dev,
1088 struct drm_i915_private *dev_priv,
1089 u32 gt_iir)
1090 {
1091 if (gt_iir &
1092 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1093 notify_ring(dev, &dev_priv->ring[RCS]);
1094 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1095 notify_ring(dev, &dev_priv->ring[VCS]);
1096 }
1097
1098 static void snb_gt_irq_handler(struct drm_device *dev,
1099 struct drm_i915_private *dev_priv,
1100 u32 gt_iir)
1101 {
1102
1103 if (gt_iir &
1104 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1105 notify_ring(dev, &dev_priv->ring[RCS]);
1106 if (gt_iir & GT_BSD_USER_INTERRUPT)
1107 notify_ring(dev, &dev_priv->ring[VCS]);
1108 if (gt_iir & GT_BLT_USER_INTERRUPT)
1109 notify_ring(dev, &dev_priv->ring[BCS]);
1110
1111 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1112 GT_BSD_CS_ERROR_INTERRUPT |
1113 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1114 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1115 i915_handle_error(dev, false);
1116 }
1117
1118 if (gt_iir & GT_PARITY_ERROR(dev))
1119 ivybridge_parity_error_irq_handler(dev, gt_iir);
1120 }
1121
1122 #define HPD_STORM_DETECT_PERIOD 1000
1123 #define HPD_STORM_THRESHOLD 5
1124
1125 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1126 u32 hotplug_trigger,
1127 const u32 *hpd)
1128 {
1129 drm_i915_private_t *dev_priv = dev->dev_private;
1130 int i;
1131 bool storm_detected = false;
1132
1133 if (!hotplug_trigger)
1134 return;
1135
1136 spin_lock(&dev_priv->irq_lock);
1137 for (i = 1; i < HPD_NUM_PINS; i++) {
1138
1139 WARN(((hpd[i] & hotplug_trigger) &&
1140 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1141 "Received HPD interrupt although disabled\n");
1142
1143 if (!(hpd[i] & hotplug_trigger) ||
1144 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1145 continue;
1146
1147 dev_priv->hpd_event_bits |= (1 << i);
1148 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1149 dev_priv->hpd_stats[i].hpd_last_jiffies
1150 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1151 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1152 dev_priv->hpd_stats[i].hpd_cnt = 0;
1153 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1154 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1155 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1156 dev_priv->hpd_event_bits &= ~(1 << i);
1157 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1158 storm_detected = true;
1159 } else {
1160 dev_priv->hpd_stats[i].hpd_cnt++;
1161 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1162 dev_priv->hpd_stats[i].hpd_cnt);
1163 }
1164 }
1165
1166 if (storm_detected)
1167 dev_priv->display.hpd_irq_setup(dev);
1168 spin_unlock(&dev_priv->irq_lock);
1169
1170 /*
1171 * Our hotplug handler can grab modeset locks (by calling down into the
1172 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1173 * queue for otherwise the flush_work in the pageflip code will
1174 * deadlock.
1175 */
1176 schedule_work(&dev_priv->hotplug_work);
1177 }
1178
1179 static void gmbus_irq_handler(struct drm_device *dev)
1180 {
1181 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1182
1183 wake_up_all(&dev_priv->gmbus_wait_queue);
1184 }
1185
1186 static void dp_aux_irq_handler(struct drm_device *dev)
1187 {
1188 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1189
1190 wake_up_all(&dev_priv->gmbus_wait_queue);
1191 }
1192
1193 #if defined(CONFIG_DEBUG_FS)
1194 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1195 uint32_t crc0, uint32_t crc1,
1196 uint32_t crc2, uint32_t crc3,
1197 uint32_t crc4)
1198 {
1199 struct drm_i915_private *dev_priv = dev->dev_private;
1200 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1201 struct intel_pipe_crc_entry *entry;
1202 int head, tail;
1203
1204 spin_lock(&pipe_crc->lock);
1205
1206 if (!pipe_crc->entries) {
1207 spin_unlock(&pipe_crc->lock);
1208 DRM_ERROR("spurious interrupt\n");
1209 return;
1210 }
1211
1212 head = pipe_crc->head;
1213 tail = pipe_crc->tail;
1214
1215 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1216 spin_unlock(&pipe_crc->lock);
1217 DRM_ERROR("CRC buffer overflowing\n");
1218 return;
1219 }
1220
1221 entry = &pipe_crc->entries[head];
1222
1223 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1224 entry->crc[0] = crc0;
1225 entry->crc[1] = crc1;
1226 entry->crc[2] = crc2;
1227 entry->crc[3] = crc3;
1228 entry->crc[4] = crc4;
1229
1230 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1231 pipe_crc->head = head;
1232
1233 spin_unlock(&pipe_crc->lock);
1234
1235 wake_up_interruptible(&pipe_crc->wq);
1236 }
1237 #else
1238 static inline void
1239 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1240 uint32_t crc0, uint32_t crc1,
1241 uint32_t crc2, uint32_t crc3,
1242 uint32_t crc4) {}
1243 #endif
1244
1245
1246 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1247 {
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249
1250 display_pipe_crc_irq_handler(dev, pipe,
1251 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1252 0, 0, 0, 0);
1253 }
1254
1255 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1256 {
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258
1259 display_pipe_crc_irq_handler(dev, pipe,
1260 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1261 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1262 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1263 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1264 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1265 }
1266
1267 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 uint32_t res1, res2;
1271
1272 if (INTEL_INFO(dev)->gen >= 3)
1273 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1274 else
1275 res1 = 0;
1276
1277 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1278 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1279 else
1280 res2 = 0;
1281
1282 display_pipe_crc_irq_handler(dev, pipe,
1283 I915_READ(PIPE_CRC_RES_RED(pipe)),
1284 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1285 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1286 res1, res2);
1287 }
1288
1289 /* The RPS events need forcewake, so we add them to a work queue and mask their
1290 * IMR bits until the work is done. Other interrupts can be processed without
1291 * the work queue. */
1292 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1293 {
1294 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1295 spin_lock(&dev_priv->irq_lock);
1296 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1297 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1298 spin_unlock(&dev_priv->irq_lock);
1299
1300 queue_work(dev_priv->wq, &dev_priv->rps.work);
1301 }
1302
1303 if (HAS_VEBOX(dev_priv->dev)) {
1304 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1305 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1306
1307 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1308 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1309 i915_handle_error(dev_priv->dev, false);
1310 }
1311 }
1312 }
1313
1314 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1315 {
1316 struct drm_device *dev = (struct drm_device *) arg;
1317 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1318 u32 iir, gt_iir, pm_iir;
1319 irqreturn_t ret = IRQ_NONE;
1320 unsigned long irqflags;
1321 int pipe;
1322 u32 pipe_stats[I915_MAX_PIPES];
1323
1324 atomic_inc(&dev_priv->irq_received);
1325
1326 while (true) {
1327 iir = I915_READ(VLV_IIR);
1328 gt_iir = I915_READ(GTIIR);
1329 pm_iir = I915_READ(GEN6_PMIIR);
1330
1331 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1332 goto out;
1333
1334 ret = IRQ_HANDLED;
1335
1336 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1337
1338 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1339 for_each_pipe(pipe) {
1340 int reg = PIPESTAT(pipe);
1341 pipe_stats[pipe] = I915_READ(reg);
1342
1343 /*
1344 * Clear the PIPE*STAT regs before the IIR
1345 */
1346 if (pipe_stats[pipe] & 0x8000ffff) {
1347 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1348 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1349 pipe_name(pipe));
1350 I915_WRITE(reg, pipe_stats[pipe]);
1351 }
1352 }
1353 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1354
1355 for_each_pipe(pipe) {
1356 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1357 drm_handle_vblank(dev, pipe);
1358
1359 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1360 intel_prepare_page_flip(dev, pipe);
1361 intel_finish_page_flip(dev, pipe);
1362 }
1363
1364 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1365 i9xx_pipe_crc_irq_handler(dev, pipe);
1366 }
1367
1368 /* Consume port. Then clear IIR or we'll miss events */
1369 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1370 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1371 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1372
1373 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1374 hotplug_status);
1375
1376 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1377
1378 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1379 I915_READ(PORT_HOTPLUG_STAT);
1380 }
1381
1382 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1383 gmbus_irq_handler(dev);
1384
1385 if (pm_iir)
1386 gen6_rps_irq_handler(dev_priv, pm_iir);
1387
1388 I915_WRITE(GTIIR, gt_iir);
1389 I915_WRITE(GEN6_PMIIR, pm_iir);
1390 I915_WRITE(VLV_IIR, iir);
1391 }
1392
1393 out:
1394 return ret;
1395 }
1396
1397 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1398 {
1399 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1400 int pipe;
1401 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1402
1403 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1404
1405 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1406 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1407 SDE_AUDIO_POWER_SHIFT);
1408 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1409 port_name(port));
1410 }
1411
1412 if (pch_iir & SDE_AUX_MASK)
1413 dp_aux_irq_handler(dev);
1414
1415 if (pch_iir & SDE_GMBUS)
1416 gmbus_irq_handler(dev);
1417
1418 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1419 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1420
1421 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1422 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1423
1424 if (pch_iir & SDE_POISON)
1425 DRM_ERROR("PCH poison interrupt\n");
1426
1427 if (pch_iir & SDE_FDI_MASK)
1428 for_each_pipe(pipe)
1429 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1430 pipe_name(pipe),
1431 I915_READ(FDI_RX_IIR(pipe)));
1432
1433 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1434 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1435
1436 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1437 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1438
1439 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1440 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1441 false))
1442 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1443
1444 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1445 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1446 false))
1447 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1448 }
1449
1450 static void ivb_err_int_handler(struct drm_device *dev)
1451 {
1452 struct drm_i915_private *dev_priv = dev->dev_private;
1453 u32 err_int = I915_READ(GEN7_ERR_INT);
1454 enum pipe pipe;
1455
1456 if (err_int & ERR_INT_POISON)
1457 DRM_ERROR("Poison interrupt\n");
1458
1459 for_each_pipe(pipe) {
1460 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1461 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1462 false))
1463 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1464 pipe_name(pipe));
1465 }
1466
1467 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1468 if (IS_IVYBRIDGE(dev))
1469 ivb_pipe_crc_irq_handler(dev, pipe);
1470 else
1471 hsw_pipe_crc_irq_handler(dev, pipe);
1472 }
1473 }
1474
1475 I915_WRITE(GEN7_ERR_INT, err_int);
1476 }
1477
1478 static void cpt_serr_int_handler(struct drm_device *dev)
1479 {
1480 struct drm_i915_private *dev_priv = dev->dev_private;
1481 u32 serr_int = I915_READ(SERR_INT);
1482
1483 if (serr_int & SERR_INT_POISON)
1484 DRM_ERROR("PCH poison interrupt\n");
1485
1486 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1487 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1488 false))
1489 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1490
1491 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1492 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1493 false))
1494 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1495
1496 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1497 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1498 false))
1499 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1500
1501 I915_WRITE(SERR_INT, serr_int);
1502 }
1503
1504 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1505 {
1506 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1507 int pipe;
1508 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1509
1510 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1511
1512 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1513 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1514 SDE_AUDIO_POWER_SHIFT_CPT);
1515 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1516 port_name(port));
1517 }
1518
1519 if (pch_iir & SDE_AUX_MASK_CPT)
1520 dp_aux_irq_handler(dev);
1521
1522 if (pch_iir & SDE_GMBUS_CPT)
1523 gmbus_irq_handler(dev);
1524
1525 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1526 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1527
1528 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1529 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1530
1531 if (pch_iir & SDE_FDI_MASK_CPT)
1532 for_each_pipe(pipe)
1533 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1534 pipe_name(pipe),
1535 I915_READ(FDI_RX_IIR(pipe)));
1536
1537 if (pch_iir & SDE_ERROR_CPT)
1538 cpt_serr_int_handler(dev);
1539 }
1540
1541 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1542 {
1543 struct drm_i915_private *dev_priv = dev->dev_private;
1544
1545 if (de_iir & DE_AUX_CHANNEL_A)
1546 dp_aux_irq_handler(dev);
1547
1548 if (de_iir & DE_GSE)
1549 intel_opregion_asle_intr(dev);
1550
1551 if (de_iir & DE_PIPEA_VBLANK)
1552 drm_handle_vblank(dev, 0);
1553
1554 if (de_iir & DE_PIPEB_VBLANK)
1555 drm_handle_vblank(dev, 1);
1556
1557 if (de_iir & DE_POISON)
1558 DRM_ERROR("Poison interrupt\n");
1559
1560 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1561 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1562 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1563
1564 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1565 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1566 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1567
1568 if (de_iir & DE_PIPEA_CRC_DONE)
1569 i9xx_pipe_crc_irq_handler(dev, PIPE_A);
1570
1571 if (de_iir & DE_PIPEB_CRC_DONE)
1572 i9xx_pipe_crc_irq_handler(dev, PIPE_B);
1573
1574 if (de_iir & DE_PLANEA_FLIP_DONE) {
1575 intel_prepare_page_flip(dev, 0);
1576 intel_finish_page_flip_plane(dev, 0);
1577 }
1578
1579 if (de_iir & DE_PLANEB_FLIP_DONE) {
1580 intel_prepare_page_flip(dev, 1);
1581 intel_finish_page_flip_plane(dev, 1);
1582 }
1583
1584 /* check event from PCH */
1585 if (de_iir & DE_PCH_EVENT) {
1586 u32 pch_iir = I915_READ(SDEIIR);
1587
1588 if (HAS_PCH_CPT(dev))
1589 cpt_irq_handler(dev, pch_iir);
1590 else
1591 ibx_irq_handler(dev, pch_iir);
1592
1593 /* should clear PCH hotplug event before clear CPU irq */
1594 I915_WRITE(SDEIIR, pch_iir);
1595 }
1596
1597 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1598 ironlake_rps_change_irq_handler(dev);
1599 }
1600
1601 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1602 {
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 enum pipe i;
1605
1606 if (de_iir & DE_ERR_INT_IVB)
1607 ivb_err_int_handler(dev);
1608
1609 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1610 dp_aux_irq_handler(dev);
1611
1612 if (de_iir & DE_GSE_IVB)
1613 intel_opregion_asle_intr(dev);
1614
1615 for_each_pipe(i) {
1616 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1617 drm_handle_vblank(dev, i);
1618 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1619 intel_prepare_page_flip(dev, i);
1620 intel_finish_page_flip_plane(dev, i);
1621 }
1622 }
1623
1624 /* check event from PCH */
1625 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1626 u32 pch_iir = I915_READ(SDEIIR);
1627
1628 cpt_irq_handler(dev, pch_iir);
1629
1630 /* clear PCH hotplug event before clear CPU irq */
1631 I915_WRITE(SDEIIR, pch_iir);
1632 }
1633 }
1634
1635 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1636 {
1637 struct drm_device *dev = (struct drm_device *) arg;
1638 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1639 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1640 irqreturn_t ret = IRQ_NONE;
1641
1642 atomic_inc(&dev_priv->irq_received);
1643
1644 /* We get interrupts on unclaimed registers, so check for this before we
1645 * do any I915_{READ,WRITE}. */
1646 intel_uncore_check_errors(dev);
1647
1648 /* disable master interrupt before clearing iir */
1649 de_ier = I915_READ(DEIER);
1650 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1651 POSTING_READ(DEIER);
1652
1653 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1654 * interrupts will will be stored on its back queue, and then we'll be
1655 * able to process them after we restore SDEIER (as soon as we restore
1656 * it, we'll get an interrupt if SDEIIR still has something to process
1657 * due to its back queue). */
1658 if (!HAS_PCH_NOP(dev)) {
1659 sde_ier = I915_READ(SDEIER);
1660 I915_WRITE(SDEIER, 0);
1661 POSTING_READ(SDEIER);
1662 }
1663
1664 gt_iir = I915_READ(GTIIR);
1665 if (gt_iir) {
1666 if (INTEL_INFO(dev)->gen >= 6)
1667 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1668 else
1669 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1670 I915_WRITE(GTIIR, gt_iir);
1671 ret = IRQ_HANDLED;
1672 }
1673
1674 de_iir = I915_READ(DEIIR);
1675 if (de_iir) {
1676 if (INTEL_INFO(dev)->gen >= 7)
1677 ivb_display_irq_handler(dev, de_iir);
1678 else
1679 ilk_display_irq_handler(dev, de_iir);
1680 I915_WRITE(DEIIR, de_iir);
1681 ret = IRQ_HANDLED;
1682 }
1683
1684 if (INTEL_INFO(dev)->gen >= 6) {
1685 u32 pm_iir = I915_READ(GEN6_PMIIR);
1686 if (pm_iir) {
1687 gen6_rps_irq_handler(dev_priv, pm_iir);
1688 I915_WRITE(GEN6_PMIIR, pm_iir);
1689 ret = IRQ_HANDLED;
1690 }
1691 }
1692
1693 I915_WRITE(DEIER, de_ier);
1694 POSTING_READ(DEIER);
1695 if (!HAS_PCH_NOP(dev)) {
1696 I915_WRITE(SDEIER, sde_ier);
1697 POSTING_READ(SDEIER);
1698 }
1699
1700 return ret;
1701 }
1702
1703 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1704 bool reset_completed)
1705 {
1706 struct intel_ring_buffer *ring;
1707 int i;
1708
1709 /*
1710 * Notify all waiters for GPU completion events that reset state has
1711 * been changed, and that they need to restart their wait after
1712 * checking for potential errors (and bail out to drop locks if there is
1713 * a gpu reset pending so that i915_error_work_func can acquire them).
1714 */
1715
1716 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1717 for_each_ring(ring, dev_priv, i)
1718 wake_up_all(&ring->irq_queue);
1719
1720 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1721 wake_up_all(&dev_priv->pending_flip_queue);
1722
1723 /*
1724 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1725 * reset state is cleared.
1726 */
1727 if (reset_completed)
1728 wake_up_all(&dev_priv->gpu_error.reset_queue);
1729 }
1730
1731 /**
1732 * i915_error_work_func - do process context error handling work
1733 * @work: work struct
1734 *
1735 * Fire an error uevent so userspace can see that a hang or error
1736 * was detected.
1737 */
1738 static void i915_error_work_func(struct work_struct *work)
1739 {
1740 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1741 work);
1742 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1743 gpu_error);
1744 struct drm_device *dev = dev_priv->dev;
1745 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1746 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1747 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1748 int ret;
1749
1750 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1751
1752 /*
1753 * Note that there's only one work item which does gpu resets, so we
1754 * need not worry about concurrent gpu resets potentially incrementing
1755 * error->reset_counter twice. We only need to take care of another
1756 * racing irq/hangcheck declaring the gpu dead for a second time. A
1757 * quick check for that is good enough: schedule_work ensures the
1758 * correct ordering between hang detection and this work item, and since
1759 * the reset in-progress bit is only ever set by code outside of this
1760 * work we don't need to worry about any other races.
1761 */
1762 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1763 DRM_DEBUG_DRIVER("resetting chip\n");
1764 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1765 reset_event);
1766
1767 /*
1768 * All state reset _must_ be completed before we update the
1769 * reset counter, for otherwise waiters might miss the reset
1770 * pending state and not properly drop locks, resulting in
1771 * deadlocks with the reset work.
1772 */
1773 ret = i915_reset(dev);
1774
1775 intel_display_handle_reset(dev);
1776
1777 if (ret == 0) {
1778 /*
1779 * After all the gem state is reset, increment the reset
1780 * counter and wake up everyone waiting for the reset to
1781 * complete.
1782 *
1783 * Since unlock operations are a one-sided barrier only,
1784 * we need to insert a barrier here to order any seqno
1785 * updates before
1786 * the counter increment.
1787 */
1788 smp_mb__before_atomic_inc();
1789 atomic_inc(&dev_priv->gpu_error.reset_counter);
1790
1791 kobject_uevent_env(&dev->primary->kdev.kobj,
1792 KOBJ_CHANGE, reset_done_event);
1793 } else {
1794 atomic_set(&error->reset_counter, I915_WEDGED);
1795 }
1796
1797 /*
1798 * Note: The wake_up also serves as a memory barrier so that
1799 * waiters see the update value of the reset counter atomic_t.
1800 */
1801 i915_error_wake_up(dev_priv, true);
1802 }
1803 }
1804
1805 static void i915_report_and_clear_eir(struct drm_device *dev)
1806 {
1807 struct drm_i915_private *dev_priv = dev->dev_private;
1808 uint32_t instdone[I915_NUM_INSTDONE_REG];
1809 u32 eir = I915_READ(EIR);
1810 int pipe, i;
1811
1812 if (!eir)
1813 return;
1814
1815 pr_err("render error detected, EIR: 0x%08x\n", eir);
1816
1817 i915_get_extra_instdone(dev, instdone);
1818
1819 if (IS_G4X(dev)) {
1820 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1821 u32 ipeir = I915_READ(IPEIR_I965);
1822
1823 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1824 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1825 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1826 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1827 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1828 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1829 I915_WRITE(IPEIR_I965, ipeir);
1830 POSTING_READ(IPEIR_I965);
1831 }
1832 if (eir & GM45_ERROR_PAGE_TABLE) {
1833 u32 pgtbl_err = I915_READ(PGTBL_ER);
1834 pr_err("page table error\n");
1835 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1836 I915_WRITE(PGTBL_ER, pgtbl_err);
1837 POSTING_READ(PGTBL_ER);
1838 }
1839 }
1840
1841 if (!IS_GEN2(dev)) {
1842 if (eir & I915_ERROR_PAGE_TABLE) {
1843 u32 pgtbl_err = I915_READ(PGTBL_ER);
1844 pr_err("page table error\n");
1845 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1846 I915_WRITE(PGTBL_ER, pgtbl_err);
1847 POSTING_READ(PGTBL_ER);
1848 }
1849 }
1850
1851 if (eir & I915_ERROR_MEMORY_REFRESH) {
1852 pr_err("memory refresh error:\n");
1853 for_each_pipe(pipe)
1854 pr_err("pipe %c stat: 0x%08x\n",
1855 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1856 /* pipestat has already been acked */
1857 }
1858 if (eir & I915_ERROR_INSTRUCTION) {
1859 pr_err("instruction error\n");
1860 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1861 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1862 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1863 if (INTEL_INFO(dev)->gen < 4) {
1864 u32 ipeir = I915_READ(IPEIR);
1865
1866 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1867 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1868 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1869 I915_WRITE(IPEIR, ipeir);
1870 POSTING_READ(IPEIR);
1871 } else {
1872 u32 ipeir = I915_READ(IPEIR_I965);
1873
1874 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1875 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1876 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1877 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1878 I915_WRITE(IPEIR_I965, ipeir);
1879 POSTING_READ(IPEIR_I965);
1880 }
1881 }
1882
1883 I915_WRITE(EIR, eir);
1884 POSTING_READ(EIR);
1885 eir = I915_READ(EIR);
1886 if (eir) {
1887 /*
1888 * some errors might have become stuck,
1889 * mask them.
1890 */
1891 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1892 I915_WRITE(EMR, I915_READ(EMR) | eir);
1893 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1894 }
1895 }
1896
1897 /**
1898 * i915_handle_error - handle an error interrupt
1899 * @dev: drm device
1900 *
1901 * Do some basic checking of regsiter state at error interrupt time and
1902 * dump it to the syslog. Also call i915_capture_error_state() to make
1903 * sure we get a record and make it available in debugfs. Fire a uevent
1904 * so userspace knows something bad happened (should trigger collection
1905 * of a ring dump etc.).
1906 */
1907 void i915_handle_error(struct drm_device *dev, bool wedged)
1908 {
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910
1911 i915_capture_error_state(dev);
1912 i915_report_and_clear_eir(dev);
1913
1914 if (wedged) {
1915 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1916 &dev_priv->gpu_error.reset_counter);
1917
1918 /*
1919 * Wakeup waiting processes so that the reset work function
1920 * i915_error_work_func doesn't deadlock trying to grab various
1921 * locks. By bumping the reset counter first, the woken
1922 * processes will see a reset in progress and back off,
1923 * releasing their locks and then wait for the reset completion.
1924 * We must do this for _all_ gpu waiters that might hold locks
1925 * that the reset work needs to acquire.
1926 *
1927 * Note: The wake_up serves as the required memory barrier to
1928 * ensure that the waiters see the updated value of the reset
1929 * counter atomic_t.
1930 */
1931 i915_error_wake_up(dev_priv, false);
1932 }
1933
1934 /*
1935 * Our reset work can grab modeset locks (since it needs to reset the
1936 * state of outstanding pagelips). Hence it must not be run on our own
1937 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1938 * code will deadlock.
1939 */
1940 schedule_work(&dev_priv->gpu_error.work);
1941 }
1942
1943 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1944 {
1945 drm_i915_private_t *dev_priv = dev->dev_private;
1946 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1948 struct drm_i915_gem_object *obj;
1949 struct intel_unpin_work *work;
1950 unsigned long flags;
1951 bool stall_detected;
1952
1953 /* Ignore early vblank irqs */
1954 if (intel_crtc == NULL)
1955 return;
1956
1957 spin_lock_irqsave(&dev->event_lock, flags);
1958 work = intel_crtc->unpin_work;
1959
1960 if (work == NULL ||
1961 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1962 !work->enable_stall_check) {
1963 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1964 spin_unlock_irqrestore(&dev->event_lock, flags);
1965 return;
1966 }
1967
1968 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1969 obj = work->pending_flip_obj;
1970 if (INTEL_INFO(dev)->gen >= 4) {
1971 int dspsurf = DSPSURF(intel_crtc->plane);
1972 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1973 i915_gem_obj_ggtt_offset(obj);
1974 } else {
1975 int dspaddr = DSPADDR(intel_crtc->plane);
1976 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1977 crtc->y * crtc->fb->pitches[0] +
1978 crtc->x * crtc->fb->bits_per_pixel/8);
1979 }
1980
1981 spin_unlock_irqrestore(&dev->event_lock, flags);
1982
1983 if (stall_detected) {
1984 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1985 intel_prepare_page_flip(dev, intel_crtc->plane);
1986 }
1987 }
1988
1989 /* Called from drm generic code, passed 'crtc' which
1990 * we use as a pipe index
1991 */
1992 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1993 {
1994 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1995 unsigned long irqflags;
1996
1997 if (!i915_pipe_enabled(dev, pipe))
1998 return -EINVAL;
1999
2000 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2001 if (INTEL_INFO(dev)->gen >= 4)
2002 i915_enable_pipestat(dev_priv, pipe,
2003 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2004 else
2005 i915_enable_pipestat(dev_priv, pipe,
2006 PIPE_VBLANK_INTERRUPT_ENABLE);
2007
2008 /* maintain vblank delivery even in deep C-states */
2009 if (dev_priv->info->gen == 3)
2010 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2011 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2012
2013 return 0;
2014 }
2015
2016 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2017 {
2018 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2019 unsigned long irqflags;
2020 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2021 DE_PIPE_VBLANK_ILK(pipe);
2022
2023 if (!i915_pipe_enabled(dev, pipe))
2024 return -EINVAL;
2025
2026 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2027 ironlake_enable_display_irq(dev_priv, bit);
2028 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2029
2030 return 0;
2031 }
2032
2033 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2034 {
2035 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2036 unsigned long irqflags;
2037 u32 imr;
2038
2039 if (!i915_pipe_enabled(dev, pipe))
2040 return -EINVAL;
2041
2042 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2043 imr = I915_READ(VLV_IMR);
2044 if (pipe == PIPE_A)
2045 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2046 else
2047 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2048 I915_WRITE(VLV_IMR, imr);
2049 i915_enable_pipestat(dev_priv, pipe,
2050 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2051 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2052
2053 return 0;
2054 }
2055
2056 /* Called from drm generic code, passed 'crtc' which
2057 * we use as a pipe index
2058 */
2059 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2060 {
2061 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2062 unsigned long irqflags;
2063
2064 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2065 if (dev_priv->info->gen == 3)
2066 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2067
2068 i915_disable_pipestat(dev_priv, pipe,
2069 PIPE_VBLANK_INTERRUPT_ENABLE |
2070 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2071 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2072 }
2073
2074 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2075 {
2076 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2077 unsigned long irqflags;
2078 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2079 DE_PIPE_VBLANK_ILK(pipe);
2080
2081 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2082 ironlake_disable_display_irq(dev_priv, bit);
2083 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2084 }
2085
2086 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2087 {
2088 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2089 unsigned long irqflags;
2090 u32 imr;
2091
2092 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2093 i915_disable_pipestat(dev_priv, pipe,
2094 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2095 imr = I915_READ(VLV_IMR);
2096 if (pipe == PIPE_A)
2097 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2098 else
2099 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2100 I915_WRITE(VLV_IMR, imr);
2101 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2102 }
2103
2104 static u32
2105 ring_last_seqno(struct intel_ring_buffer *ring)
2106 {
2107 return list_entry(ring->request_list.prev,
2108 struct drm_i915_gem_request, list)->seqno;
2109 }
2110
2111 static bool
2112 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2113 {
2114 return (list_empty(&ring->request_list) ||
2115 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2116 }
2117
2118 static struct intel_ring_buffer *
2119 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2120 {
2121 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2122 u32 cmd, ipehr, acthd, acthd_min;
2123
2124 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2125 if ((ipehr & ~(0x3 << 16)) !=
2126 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2127 return NULL;
2128
2129 /* ACTHD is likely pointing to the dword after the actual command,
2130 * so scan backwards until we find the MBOX.
2131 */
2132 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2133 acthd_min = max((int)acthd - 3 * 4, 0);
2134 do {
2135 cmd = ioread32(ring->virtual_start + acthd);
2136 if (cmd == ipehr)
2137 break;
2138
2139 acthd -= 4;
2140 if (acthd < acthd_min)
2141 return NULL;
2142 } while (1);
2143
2144 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2145 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2146 }
2147
2148 static int semaphore_passed(struct intel_ring_buffer *ring)
2149 {
2150 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2151 struct intel_ring_buffer *signaller;
2152 u32 seqno, ctl;
2153
2154 ring->hangcheck.deadlock = true;
2155
2156 signaller = semaphore_waits_for(ring, &seqno);
2157 if (signaller == NULL || signaller->hangcheck.deadlock)
2158 return -1;
2159
2160 /* cursory check for an unkickable deadlock */
2161 ctl = I915_READ_CTL(signaller);
2162 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2163 return -1;
2164
2165 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2166 }
2167
2168 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2169 {
2170 struct intel_ring_buffer *ring;
2171 int i;
2172
2173 for_each_ring(ring, dev_priv, i)
2174 ring->hangcheck.deadlock = false;
2175 }
2176
2177 static enum intel_ring_hangcheck_action
2178 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2179 {
2180 struct drm_device *dev = ring->dev;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 u32 tmp;
2183
2184 if (ring->hangcheck.acthd != acthd)
2185 return HANGCHECK_ACTIVE;
2186
2187 if (IS_GEN2(dev))
2188 return HANGCHECK_HUNG;
2189
2190 /* Is the chip hanging on a WAIT_FOR_EVENT?
2191 * If so we can simply poke the RB_WAIT bit
2192 * and break the hang. This should work on
2193 * all but the second generation chipsets.
2194 */
2195 tmp = I915_READ_CTL(ring);
2196 if (tmp & RING_WAIT) {
2197 DRM_ERROR("Kicking stuck wait on %s\n",
2198 ring->name);
2199 i915_handle_error(dev, false);
2200 I915_WRITE_CTL(ring, tmp);
2201 return HANGCHECK_KICK;
2202 }
2203
2204 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2205 switch (semaphore_passed(ring)) {
2206 default:
2207 return HANGCHECK_HUNG;
2208 case 1:
2209 DRM_ERROR("Kicking stuck semaphore on %s\n",
2210 ring->name);
2211 i915_handle_error(dev, false);
2212 I915_WRITE_CTL(ring, tmp);
2213 return HANGCHECK_KICK;
2214 case 0:
2215 return HANGCHECK_WAIT;
2216 }
2217 }
2218
2219 return HANGCHECK_HUNG;
2220 }
2221
2222 /**
2223 * This is called when the chip hasn't reported back with completed
2224 * batchbuffers in a long time. We keep track per ring seqno progress and
2225 * if there are no progress, hangcheck score for that ring is increased.
2226 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2227 * we kick the ring. If we see no progress on three subsequent calls
2228 * we assume chip is wedged and try to fix it by resetting the chip.
2229 */
2230 static void i915_hangcheck_elapsed(unsigned long data)
2231 {
2232 struct drm_device *dev = (struct drm_device *)data;
2233 drm_i915_private_t *dev_priv = dev->dev_private;
2234 struct intel_ring_buffer *ring;
2235 int i;
2236 int busy_count = 0, rings_hung = 0;
2237 bool stuck[I915_NUM_RINGS] = { 0 };
2238 #define BUSY 1
2239 #define KICK 5
2240 #define HUNG 20
2241 #define FIRE 30
2242
2243 if (!i915_enable_hangcheck)
2244 return;
2245
2246 for_each_ring(ring, dev_priv, i) {
2247 u32 seqno, acthd;
2248 bool busy = true;
2249
2250 semaphore_clear_deadlocks(dev_priv);
2251
2252 seqno = ring->get_seqno(ring, false);
2253 acthd = intel_ring_get_active_head(ring);
2254
2255 if (ring->hangcheck.seqno == seqno) {
2256 if (ring_idle(ring, seqno)) {
2257 ring->hangcheck.action = HANGCHECK_IDLE;
2258
2259 if (waitqueue_active(&ring->irq_queue)) {
2260 /* Issue a wake-up to catch stuck h/w. */
2261 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2262 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2263 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2264 ring->name);
2265 else
2266 DRM_INFO("Fake missed irq on %s\n",
2267 ring->name);
2268 wake_up_all(&ring->irq_queue);
2269 }
2270 /* Safeguard against driver failure */
2271 ring->hangcheck.score += BUSY;
2272 } else
2273 busy = false;
2274 } else {
2275 /* We always increment the hangcheck score
2276 * if the ring is busy and still processing
2277 * the same request, so that no single request
2278 * can run indefinitely (such as a chain of
2279 * batches). The only time we do not increment
2280 * the hangcheck score on this ring, if this
2281 * ring is in a legitimate wait for another
2282 * ring. In that case the waiting ring is a
2283 * victim and we want to be sure we catch the
2284 * right culprit. Then every time we do kick
2285 * the ring, add a small increment to the
2286 * score so that we can catch a batch that is
2287 * being repeatedly kicked and so responsible
2288 * for stalling the machine.
2289 */
2290 ring->hangcheck.action = ring_stuck(ring,
2291 acthd);
2292
2293 switch (ring->hangcheck.action) {
2294 case HANGCHECK_IDLE:
2295 case HANGCHECK_WAIT:
2296 break;
2297 case HANGCHECK_ACTIVE:
2298 ring->hangcheck.score += BUSY;
2299 break;
2300 case HANGCHECK_KICK:
2301 ring->hangcheck.score += KICK;
2302 break;
2303 case HANGCHECK_HUNG:
2304 ring->hangcheck.score += HUNG;
2305 stuck[i] = true;
2306 break;
2307 }
2308 }
2309 } else {
2310 ring->hangcheck.action = HANGCHECK_ACTIVE;
2311
2312 /* Gradually reduce the count so that we catch DoS
2313 * attempts across multiple batches.
2314 */
2315 if (ring->hangcheck.score > 0)
2316 ring->hangcheck.score--;
2317 }
2318
2319 ring->hangcheck.seqno = seqno;
2320 ring->hangcheck.acthd = acthd;
2321 busy_count += busy;
2322 }
2323
2324 for_each_ring(ring, dev_priv, i) {
2325 if (ring->hangcheck.score > FIRE) {
2326 DRM_INFO("%s on %s\n",
2327 stuck[i] ? "stuck" : "no progress",
2328 ring->name);
2329 rings_hung++;
2330 }
2331 }
2332
2333 if (rings_hung)
2334 return i915_handle_error(dev, true);
2335
2336 if (busy_count)
2337 /* Reset timer case chip hangs without another request
2338 * being added */
2339 i915_queue_hangcheck(dev);
2340 }
2341
2342 void i915_queue_hangcheck(struct drm_device *dev)
2343 {
2344 struct drm_i915_private *dev_priv = dev->dev_private;
2345 if (!i915_enable_hangcheck)
2346 return;
2347
2348 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2349 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2350 }
2351
2352 static void ibx_irq_preinstall(struct drm_device *dev)
2353 {
2354 struct drm_i915_private *dev_priv = dev->dev_private;
2355
2356 if (HAS_PCH_NOP(dev))
2357 return;
2358
2359 /* south display irq */
2360 I915_WRITE(SDEIMR, 0xffffffff);
2361 /*
2362 * SDEIER is also touched by the interrupt handler to work around missed
2363 * PCH interrupts. Hence we can't update it after the interrupt handler
2364 * is enabled - instead we unconditionally enable all PCH interrupt
2365 * sources here, but then only unmask them as needed with SDEIMR.
2366 */
2367 I915_WRITE(SDEIER, 0xffffffff);
2368 POSTING_READ(SDEIER);
2369 }
2370
2371 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2372 {
2373 struct drm_i915_private *dev_priv = dev->dev_private;
2374
2375 /* and GT */
2376 I915_WRITE(GTIMR, 0xffffffff);
2377 I915_WRITE(GTIER, 0x0);
2378 POSTING_READ(GTIER);
2379
2380 if (INTEL_INFO(dev)->gen >= 6) {
2381 /* and PM */
2382 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2383 I915_WRITE(GEN6_PMIER, 0x0);
2384 POSTING_READ(GEN6_PMIER);
2385 }
2386 }
2387
2388 /* drm_dma.h hooks
2389 */
2390 static void ironlake_irq_preinstall(struct drm_device *dev)
2391 {
2392 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2393
2394 atomic_set(&dev_priv->irq_received, 0);
2395
2396 I915_WRITE(HWSTAM, 0xeffe);
2397
2398 I915_WRITE(DEIMR, 0xffffffff);
2399 I915_WRITE(DEIER, 0x0);
2400 POSTING_READ(DEIER);
2401
2402 gen5_gt_irq_preinstall(dev);
2403
2404 ibx_irq_preinstall(dev);
2405 }
2406
2407 static void valleyview_irq_preinstall(struct drm_device *dev)
2408 {
2409 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2410 int pipe;
2411
2412 atomic_set(&dev_priv->irq_received, 0);
2413
2414 /* VLV magic */
2415 I915_WRITE(VLV_IMR, 0);
2416 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2417 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2418 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2419
2420 /* and GT */
2421 I915_WRITE(GTIIR, I915_READ(GTIIR));
2422 I915_WRITE(GTIIR, I915_READ(GTIIR));
2423
2424 gen5_gt_irq_preinstall(dev);
2425
2426 I915_WRITE(DPINVGTT, 0xff);
2427
2428 I915_WRITE(PORT_HOTPLUG_EN, 0);
2429 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2430 for_each_pipe(pipe)
2431 I915_WRITE(PIPESTAT(pipe), 0xffff);
2432 I915_WRITE(VLV_IIR, 0xffffffff);
2433 I915_WRITE(VLV_IMR, 0xffffffff);
2434 I915_WRITE(VLV_IER, 0x0);
2435 POSTING_READ(VLV_IER);
2436 }
2437
2438 static void ibx_hpd_irq_setup(struct drm_device *dev)
2439 {
2440 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2441 struct drm_mode_config *mode_config = &dev->mode_config;
2442 struct intel_encoder *intel_encoder;
2443 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2444
2445 if (HAS_PCH_IBX(dev)) {
2446 hotplug_irqs = SDE_HOTPLUG_MASK;
2447 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2448 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2449 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2450 } else {
2451 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2452 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2453 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2454 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2455 }
2456
2457 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2458
2459 /*
2460 * Enable digital hotplug on the PCH, and configure the DP short pulse
2461 * duration to 2ms (which is the minimum in the Display Port spec)
2462 *
2463 * This register is the same on all known PCH chips.
2464 */
2465 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2466 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2467 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2468 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2469 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2470 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2471 }
2472
2473 static void ibx_irq_postinstall(struct drm_device *dev)
2474 {
2475 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2476 u32 mask;
2477
2478 if (HAS_PCH_NOP(dev))
2479 return;
2480
2481 if (HAS_PCH_IBX(dev)) {
2482 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2483 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2484 } else {
2485 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2486
2487 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2488 }
2489
2490 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2491 I915_WRITE(SDEIMR, ~mask);
2492 }
2493
2494 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2495 {
2496 struct drm_i915_private *dev_priv = dev->dev_private;
2497 u32 pm_irqs, gt_irqs;
2498
2499 pm_irqs = gt_irqs = 0;
2500
2501 dev_priv->gt_irq_mask = ~0;
2502 if (HAS_L3_DPF(dev)) {
2503 /* L3 parity interrupt is always unmasked. */
2504 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2505 gt_irqs |= GT_PARITY_ERROR(dev);
2506 }
2507
2508 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2509 if (IS_GEN5(dev)) {
2510 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2511 ILK_BSD_USER_INTERRUPT;
2512 } else {
2513 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2514 }
2515
2516 I915_WRITE(GTIIR, I915_READ(GTIIR));
2517 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2518 I915_WRITE(GTIER, gt_irqs);
2519 POSTING_READ(GTIER);
2520
2521 if (INTEL_INFO(dev)->gen >= 6) {
2522 pm_irqs |= GEN6_PM_RPS_EVENTS;
2523
2524 if (HAS_VEBOX(dev))
2525 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2526
2527 dev_priv->pm_irq_mask = 0xffffffff;
2528 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2529 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2530 I915_WRITE(GEN6_PMIER, pm_irqs);
2531 POSTING_READ(GEN6_PMIER);
2532 }
2533 }
2534
2535 static int ironlake_irq_postinstall(struct drm_device *dev)
2536 {
2537 unsigned long irqflags;
2538 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2539 u32 display_mask, extra_mask;
2540
2541 if (INTEL_INFO(dev)->gen >= 7) {
2542 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2543 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2544 DE_PLANEB_FLIP_DONE_IVB |
2545 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2546 DE_ERR_INT_IVB);
2547 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2548 DE_PIPEA_VBLANK_IVB);
2549
2550 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2551 } else {
2552 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2553 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2554 DE_AUX_CHANNEL_A |
2555 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
2556 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2557 DE_POISON);
2558 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2559 }
2560
2561 dev_priv->irq_mask = ~display_mask;
2562
2563 /* should always can generate irq */
2564 I915_WRITE(DEIIR, I915_READ(DEIIR));
2565 I915_WRITE(DEIMR, dev_priv->irq_mask);
2566 I915_WRITE(DEIER, display_mask | extra_mask);
2567 POSTING_READ(DEIER);
2568
2569 gen5_gt_irq_postinstall(dev);
2570
2571 ibx_irq_postinstall(dev);
2572
2573 if (IS_IRONLAKE_M(dev)) {
2574 /* Enable PCU event interrupts
2575 *
2576 * spinlocking not required here for correctness since interrupt
2577 * setup is guaranteed to run in single-threaded context. But we
2578 * need it to make the assert_spin_locked happy. */
2579 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2580 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2581 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2582 }
2583
2584 return 0;
2585 }
2586
2587 static int valleyview_irq_postinstall(struct drm_device *dev)
2588 {
2589 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590 u32 enable_mask;
2591 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2592 PIPE_CRC_DONE_ENABLE;
2593 unsigned long irqflags;
2594
2595 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2596 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2597 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2598 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2599 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2600
2601 /*
2602 *Leave vblank interrupts masked initially. enable/disable will
2603 * toggle them based on usage.
2604 */
2605 dev_priv->irq_mask = (~enable_mask) |
2606 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2607 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2608
2609 I915_WRITE(PORT_HOTPLUG_EN, 0);
2610 POSTING_READ(PORT_HOTPLUG_EN);
2611
2612 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2613 I915_WRITE(VLV_IER, enable_mask);
2614 I915_WRITE(VLV_IIR, 0xffffffff);
2615 I915_WRITE(PIPESTAT(0), 0xffff);
2616 I915_WRITE(PIPESTAT(1), 0xffff);
2617 POSTING_READ(VLV_IER);
2618
2619 /* Interrupt setup is already guaranteed to be single-threaded, this is
2620 * just to make the assert_spin_locked check happy. */
2621 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2622 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2623 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2624 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2625 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2626
2627 I915_WRITE(VLV_IIR, 0xffffffff);
2628 I915_WRITE(VLV_IIR, 0xffffffff);
2629
2630 gen5_gt_irq_postinstall(dev);
2631
2632 /* ack & enable invalid PTE error interrupts */
2633 #if 0 /* FIXME: add support to irq handler for checking these bits */
2634 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2635 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2636 #endif
2637
2638 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2639
2640 return 0;
2641 }
2642
2643 static void valleyview_irq_uninstall(struct drm_device *dev)
2644 {
2645 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2646 int pipe;
2647
2648 if (!dev_priv)
2649 return;
2650
2651 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2652
2653 for_each_pipe(pipe)
2654 I915_WRITE(PIPESTAT(pipe), 0xffff);
2655
2656 I915_WRITE(HWSTAM, 0xffffffff);
2657 I915_WRITE(PORT_HOTPLUG_EN, 0);
2658 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2659 for_each_pipe(pipe)
2660 I915_WRITE(PIPESTAT(pipe), 0xffff);
2661 I915_WRITE(VLV_IIR, 0xffffffff);
2662 I915_WRITE(VLV_IMR, 0xffffffff);
2663 I915_WRITE(VLV_IER, 0x0);
2664 POSTING_READ(VLV_IER);
2665 }
2666
2667 static void ironlake_irq_uninstall(struct drm_device *dev)
2668 {
2669 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2670
2671 if (!dev_priv)
2672 return;
2673
2674 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2675
2676 I915_WRITE(HWSTAM, 0xffffffff);
2677
2678 I915_WRITE(DEIMR, 0xffffffff);
2679 I915_WRITE(DEIER, 0x0);
2680 I915_WRITE(DEIIR, I915_READ(DEIIR));
2681 if (IS_GEN7(dev))
2682 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2683
2684 I915_WRITE(GTIMR, 0xffffffff);
2685 I915_WRITE(GTIER, 0x0);
2686 I915_WRITE(GTIIR, I915_READ(GTIIR));
2687
2688 if (HAS_PCH_NOP(dev))
2689 return;
2690
2691 I915_WRITE(SDEIMR, 0xffffffff);
2692 I915_WRITE(SDEIER, 0x0);
2693 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2694 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2695 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2696 }
2697
2698 static void i8xx_irq_preinstall(struct drm_device * dev)
2699 {
2700 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2701 int pipe;
2702
2703 atomic_set(&dev_priv->irq_received, 0);
2704
2705 for_each_pipe(pipe)
2706 I915_WRITE(PIPESTAT(pipe), 0);
2707 I915_WRITE16(IMR, 0xffff);
2708 I915_WRITE16(IER, 0x0);
2709 POSTING_READ16(IER);
2710 }
2711
2712 static int i8xx_irq_postinstall(struct drm_device *dev)
2713 {
2714 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2715 unsigned long irqflags;
2716
2717 I915_WRITE16(EMR,
2718 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2719
2720 /* Unmask the interrupts that we always want on. */
2721 dev_priv->irq_mask =
2722 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2723 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2724 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2725 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2726 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2727 I915_WRITE16(IMR, dev_priv->irq_mask);
2728
2729 I915_WRITE16(IER,
2730 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2731 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2732 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2733 I915_USER_INTERRUPT);
2734 POSTING_READ16(IER);
2735
2736 /* Interrupt setup is already guaranteed to be single-threaded, this is
2737 * just to make the assert_spin_locked check happy. */
2738 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
2740 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
2741 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742
2743 return 0;
2744 }
2745
2746 /*
2747 * Returns true when a page flip has completed.
2748 */
2749 static bool i8xx_handle_vblank(struct drm_device *dev,
2750 int pipe, u16 iir)
2751 {
2752 drm_i915_private_t *dev_priv = dev->dev_private;
2753 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2754
2755 if (!drm_handle_vblank(dev, pipe))
2756 return false;
2757
2758 if ((iir & flip_pending) == 0)
2759 return false;
2760
2761 intel_prepare_page_flip(dev, pipe);
2762
2763 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2764 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2765 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2766 * the flip is completed (no longer pending). Since this doesn't raise
2767 * an interrupt per se, we watch for the change at vblank.
2768 */
2769 if (I915_READ16(ISR) & flip_pending)
2770 return false;
2771
2772 intel_finish_page_flip(dev, pipe);
2773
2774 return true;
2775 }
2776
2777 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2778 {
2779 struct drm_device *dev = (struct drm_device *) arg;
2780 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2781 u16 iir, new_iir;
2782 u32 pipe_stats[2];
2783 unsigned long irqflags;
2784 int pipe;
2785 u16 flip_mask =
2786 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2787 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2788
2789 atomic_inc(&dev_priv->irq_received);
2790
2791 iir = I915_READ16(IIR);
2792 if (iir == 0)
2793 return IRQ_NONE;
2794
2795 while (iir & ~flip_mask) {
2796 /* Can't rely on pipestat interrupt bit in iir as it might
2797 * have been cleared after the pipestat interrupt was received.
2798 * It doesn't set the bit in iir again, but it still produces
2799 * interrupts (for non-MSI).
2800 */
2801 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2803 i915_handle_error(dev, false);
2804
2805 for_each_pipe(pipe) {
2806 int reg = PIPESTAT(pipe);
2807 pipe_stats[pipe] = I915_READ(reg);
2808
2809 /*
2810 * Clear the PIPE*STAT regs before the IIR
2811 */
2812 if (pipe_stats[pipe] & 0x8000ffff) {
2813 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2814 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2815 pipe_name(pipe));
2816 I915_WRITE(reg, pipe_stats[pipe]);
2817 }
2818 }
2819 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2820
2821 I915_WRITE16(IIR, iir & ~flip_mask);
2822 new_iir = I915_READ16(IIR); /* Flush posted writes */
2823
2824 i915_update_dri1_breadcrumb(dev);
2825
2826 if (iir & I915_USER_INTERRUPT)
2827 notify_ring(dev, &dev_priv->ring[RCS]);
2828
2829 for_each_pipe(pipe) {
2830 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2831 i8xx_handle_vblank(dev, pipe, iir))
2832 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2833
2834 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2835 i9xx_pipe_crc_irq_handler(dev, pipe);
2836 }
2837
2838 iir = new_iir;
2839 }
2840
2841 return IRQ_HANDLED;
2842 }
2843
2844 static void i8xx_irq_uninstall(struct drm_device * dev)
2845 {
2846 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2847 int pipe;
2848
2849 for_each_pipe(pipe) {
2850 /* Clear enable bits; then clear status bits */
2851 I915_WRITE(PIPESTAT(pipe), 0);
2852 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2853 }
2854 I915_WRITE16(IMR, 0xffff);
2855 I915_WRITE16(IER, 0x0);
2856 I915_WRITE16(IIR, I915_READ16(IIR));
2857 }
2858
2859 static void i915_irq_preinstall(struct drm_device * dev)
2860 {
2861 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2862 int pipe;
2863
2864 atomic_set(&dev_priv->irq_received, 0);
2865
2866 if (I915_HAS_HOTPLUG(dev)) {
2867 I915_WRITE(PORT_HOTPLUG_EN, 0);
2868 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2869 }
2870
2871 I915_WRITE16(HWSTAM, 0xeffe);
2872 for_each_pipe(pipe)
2873 I915_WRITE(PIPESTAT(pipe), 0);
2874 I915_WRITE(IMR, 0xffffffff);
2875 I915_WRITE(IER, 0x0);
2876 POSTING_READ(IER);
2877 }
2878
2879 static int i915_irq_postinstall(struct drm_device *dev)
2880 {
2881 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2882 u32 enable_mask;
2883 unsigned long irqflags;
2884
2885 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2886
2887 /* Unmask the interrupts that we always want on. */
2888 dev_priv->irq_mask =
2889 ~(I915_ASLE_INTERRUPT |
2890 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2891 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2892 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2893 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2894 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2895
2896 enable_mask =
2897 I915_ASLE_INTERRUPT |
2898 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2899 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2900 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2901 I915_USER_INTERRUPT;
2902
2903 if (I915_HAS_HOTPLUG(dev)) {
2904 I915_WRITE(PORT_HOTPLUG_EN, 0);
2905 POSTING_READ(PORT_HOTPLUG_EN);
2906
2907 /* Enable in IER... */
2908 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2909 /* and unmask in IMR */
2910 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2911 }
2912
2913 I915_WRITE(IMR, dev_priv->irq_mask);
2914 I915_WRITE(IER, enable_mask);
2915 POSTING_READ(IER);
2916
2917 i915_enable_asle_pipestat(dev);
2918
2919 /* Interrupt setup is already guaranteed to be single-threaded, this is
2920 * just to make the assert_spin_locked check happy. */
2921 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2922 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
2923 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
2924 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2925
2926 return 0;
2927 }
2928
2929 /*
2930 * Returns true when a page flip has completed.
2931 */
2932 static bool i915_handle_vblank(struct drm_device *dev,
2933 int plane, int pipe, u32 iir)
2934 {
2935 drm_i915_private_t *dev_priv = dev->dev_private;
2936 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2937
2938 if (!drm_handle_vblank(dev, pipe))
2939 return false;
2940
2941 if ((iir & flip_pending) == 0)
2942 return false;
2943
2944 intel_prepare_page_flip(dev, plane);
2945
2946 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2947 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2948 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2949 * the flip is completed (no longer pending). Since this doesn't raise
2950 * an interrupt per se, we watch for the change at vblank.
2951 */
2952 if (I915_READ(ISR) & flip_pending)
2953 return false;
2954
2955 intel_finish_page_flip(dev, pipe);
2956
2957 return true;
2958 }
2959
2960 static irqreturn_t i915_irq_handler(int irq, void *arg)
2961 {
2962 struct drm_device *dev = (struct drm_device *) arg;
2963 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2964 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2965 unsigned long irqflags;
2966 u32 flip_mask =
2967 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2968 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2969 int pipe, ret = IRQ_NONE;
2970
2971 atomic_inc(&dev_priv->irq_received);
2972
2973 iir = I915_READ(IIR);
2974 do {
2975 bool irq_received = (iir & ~flip_mask) != 0;
2976 bool blc_event = false;
2977
2978 /* Can't rely on pipestat interrupt bit in iir as it might
2979 * have been cleared after the pipestat interrupt was received.
2980 * It doesn't set the bit in iir again, but it still produces
2981 * interrupts (for non-MSI).
2982 */
2983 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2984 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2985 i915_handle_error(dev, false);
2986
2987 for_each_pipe(pipe) {
2988 int reg = PIPESTAT(pipe);
2989 pipe_stats[pipe] = I915_READ(reg);
2990
2991 /* Clear the PIPE*STAT regs before the IIR */
2992 if (pipe_stats[pipe] & 0x8000ffff) {
2993 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2994 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2995 pipe_name(pipe));
2996 I915_WRITE(reg, pipe_stats[pipe]);
2997 irq_received = true;
2998 }
2999 }
3000 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3001
3002 if (!irq_received)
3003 break;
3004
3005 /* Consume port. Then clear IIR or we'll miss events */
3006 if ((I915_HAS_HOTPLUG(dev)) &&
3007 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3008 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3009 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3010
3011 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3012 hotplug_status);
3013
3014 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3015
3016 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3017 POSTING_READ(PORT_HOTPLUG_STAT);
3018 }
3019
3020 I915_WRITE(IIR, iir & ~flip_mask);
3021 new_iir = I915_READ(IIR); /* Flush posted writes */
3022
3023 if (iir & I915_USER_INTERRUPT)
3024 notify_ring(dev, &dev_priv->ring[RCS]);
3025
3026 for_each_pipe(pipe) {
3027 int plane = pipe;
3028 if (IS_MOBILE(dev))
3029 plane = !plane;
3030
3031 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3032 i915_handle_vblank(dev, plane, pipe, iir))
3033 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3034
3035 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3036 blc_event = true;
3037
3038 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3039 i9xx_pipe_crc_irq_handler(dev, pipe);
3040 }
3041
3042 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3043 intel_opregion_asle_intr(dev);
3044
3045 /* With MSI, interrupts are only generated when iir
3046 * transitions from zero to nonzero. If another bit got
3047 * set while we were handling the existing iir bits, then
3048 * we would never get another interrupt.
3049 *
3050 * This is fine on non-MSI as well, as if we hit this path
3051 * we avoid exiting the interrupt handler only to generate
3052 * another one.
3053 *
3054 * Note that for MSI this could cause a stray interrupt report
3055 * if an interrupt landed in the time between writing IIR and
3056 * the posting read. This should be rare enough to never
3057 * trigger the 99% of 100,000 interrupts test for disabling
3058 * stray interrupts.
3059 */
3060 ret = IRQ_HANDLED;
3061 iir = new_iir;
3062 } while (iir & ~flip_mask);
3063
3064 i915_update_dri1_breadcrumb(dev);
3065
3066 return ret;
3067 }
3068
3069 static void i915_irq_uninstall(struct drm_device * dev)
3070 {
3071 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3072 int pipe;
3073
3074 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3075
3076 if (I915_HAS_HOTPLUG(dev)) {
3077 I915_WRITE(PORT_HOTPLUG_EN, 0);
3078 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3079 }
3080
3081 I915_WRITE16(HWSTAM, 0xffff);
3082 for_each_pipe(pipe) {
3083 /* Clear enable bits; then clear status bits */
3084 I915_WRITE(PIPESTAT(pipe), 0);
3085 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3086 }
3087 I915_WRITE(IMR, 0xffffffff);
3088 I915_WRITE(IER, 0x0);
3089
3090 I915_WRITE(IIR, I915_READ(IIR));
3091 }
3092
3093 static void i965_irq_preinstall(struct drm_device * dev)
3094 {
3095 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3096 int pipe;
3097
3098 atomic_set(&dev_priv->irq_received, 0);
3099
3100 I915_WRITE(PORT_HOTPLUG_EN, 0);
3101 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3102
3103 I915_WRITE(HWSTAM, 0xeffe);
3104 for_each_pipe(pipe)
3105 I915_WRITE(PIPESTAT(pipe), 0);
3106 I915_WRITE(IMR, 0xffffffff);
3107 I915_WRITE(IER, 0x0);
3108 POSTING_READ(IER);
3109 }
3110
3111 static int i965_irq_postinstall(struct drm_device *dev)
3112 {
3113 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3114 u32 enable_mask;
3115 u32 error_mask;
3116 unsigned long irqflags;
3117
3118 /* Unmask the interrupts that we always want on. */
3119 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3120 I915_DISPLAY_PORT_INTERRUPT |
3121 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3122 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3123 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3124 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3125 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3126
3127 enable_mask = ~dev_priv->irq_mask;
3128 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3129 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3130 enable_mask |= I915_USER_INTERRUPT;
3131
3132 if (IS_G4X(dev))
3133 enable_mask |= I915_BSD_USER_INTERRUPT;
3134
3135 /* Interrupt setup is already guaranteed to be single-threaded, this is
3136 * just to make the assert_spin_locked check happy. */
3137 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3138 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3139 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3140 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3141 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3142
3143 /*
3144 * Enable some error detection, note the instruction error mask
3145 * bit is reserved, so we leave it masked.
3146 */
3147 if (IS_G4X(dev)) {
3148 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3149 GM45_ERROR_MEM_PRIV |
3150 GM45_ERROR_CP_PRIV |
3151 I915_ERROR_MEMORY_REFRESH);
3152 } else {
3153 error_mask = ~(I915_ERROR_PAGE_TABLE |
3154 I915_ERROR_MEMORY_REFRESH);
3155 }
3156 I915_WRITE(EMR, error_mask);
3157
3158 I915_WRITE(IMR, dev_priv->irq_mask);
3159 I915_WRITE(IER, enable_mask);
3160 POSTING_READ(IER);
3161
3162 I915_WRITE(PORT_HOTPLUG_EN, 0);
3163 POSTING_READ(PORT_HOTPLUG_EN);
3164
3165 i915_enable_asle_pipestat(dev);
3166
3167 return 0;
3168 }
3169
3170 static void i915_hpd_irq_setup(struct drm_device *dev)
3171 {
3172 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3173 struct drm_mode_config *mode_config = &dev->mode_config;
3174 struct intel_encoder *intel_encoder;
3175 u32 hotplug_en;
3176
3177 assert_spin_locked(&dev_priv->irq_lock);
3178
3179 if (I915_HAS_HOTPLUG(dev)) {
3180 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3181 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3182 /* Note HDMI and DP share hotplug bits */
3183 /* enable bits are the same for all generations */
3184 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3185 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3186 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3187 /* Programming the CRT detection parameters tends
3188 to generate a spurious hotplug event about three
3189 seconds later. So just do it once.
3190 */
3191 if (IS_G4X(dev))
3192 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3193 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3194 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3195
3196 /* Ignore TV since it's buggy */
3197 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3198 }
3199 }
3200
3201 static irqreturn_t i965_irq_handler(int irq, void *arg)
3202 {
3203 struct drm_device *dev = (struct drm_device *) arg;
3204 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3205 u32 iir, new_iir;
3206 u32 pipe_stats[I915_MAX_PIPES];
3207 unsigned long irqflags;
3208 int irq_received;
3209 int ret = IRQ_NONE, pipe;
3210 u32 flip_mask =
3211 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3212 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3213
3214 atomic_inc(&dev_priv->irq_received);
3215
3216 iir = I915_READ(IIR);
3217
3218 for (;;) {
3219 bool blc_event = false;
3220
3221 irq_received = (iir & ~flip_mask) != 0;
3222
3223 /* Can't rely on pipestat interrupt bit in iir as it might
3224 * have been cleared after the pipestat interrupt was received.
3225 * It doesn't set the bit in iir again, but it still produces
3226 * interrupts (for non-MSI).
3227 */
3228 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3229 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3230 i915_handle_error(dev, false);
3231
3232 for_each_pipe(pipe) {
3233 int reg = PIPESTAT(pipe);
3234 pipe_stats[pipe] = I915_READ(reg);
3235
3236 /*
3237 * Clear the PIPE*STAT regs before the IIR
3238 */
3239 if (pipe_stats[pipe] & 0x8000ffff) {
3240 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3241 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3242 pipe_name(pipe));
3243 I915_WRITE(reg, pipe_stats[pipe]);
3244 irq_received = 1;
3245 }
3246 }
3247 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3248
3249 if (!irq_received)
3250 break;
3251
3252 ret = IRQ_HANDLED;
3253
3254 /* Consume port. Then clear IIR or we'll miss events */
3255 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3256 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3257 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3258 HOTPLUG_INT_STATUS_G4X :
3259 HOTPLUG_INT_STATUS_I915);
3260
3261 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3262 hotplug_status);
3263
3264 intel_hpd_irq_handler(dev, hotplug_trigger,
3265 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3266
3267 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3268 I915_READ(PORT_HOTPLUG_STAT);
3269 }
3270
3271 I915_WRITE(IIR, iir & ~flip_mask);
3272 new_iir = I915_READ(IIR); /* Flush posted writes */
3273
3274 if (iir & I915_USER_INTERRUPT)
3275 notify_ring(dev, &dev_priv->ring[RCS]);
3276 if (iir & I915_BSD_USER_INTERRUPT)
3277 notify_ring(dev, &dev_priv->ring[VCS]);
3278
3279 for_each_pipe(pipe) {
3280 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3281 i915_handle_vblank(dev, pipe, pipe, iir))
3282 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3283
3284 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3285 blc_event = true;
3286
3287 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3288 i9xx_pipe_crc_irq_handler(dev, pipe);
3289 }
3290
3291
3292 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3293 intel_opregion_asle_intr(dev);
3294
3295 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3296 gmbus_irq_handler(dev);
3297
3298 /* With MSI, interrupts are only generated when iir
3299 * transitions from zero to nonzero. If another bit got
3300 * set while we were handling the existing iir bits, then
3301 * we would never get another interrupt.
3302 *
3303 * This is fine on non-MSI as well, as if we hit this path
3304 * we avoid exiting the interrupt handler only to generate
3305 * another one.
3306 *
3307 * Note that for MSI this could cause a stray interrupt report
3308 * if an interrupt landed in the time between writing IIR and
3309 * the posting read. This should be rare enough to never
3310 * trigger the 99% of 100,000 interrupts test for disabling
3311 * stray interrupts.
3312 */
3313 iir = new_iir;
3314 }
3315
3316 i915_update_dri1_breadcrumb(dev);
3317
3318 return ret;
3319 }
3320
3321 static void i965_irq_uninstall(struct drm_device * dev)
3322 {
3323 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3324 int pipe;
3325
3326 if (!dev_priv)
3327 return;
3328
3329 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3330
3331 I915_WRITE(PORT_HOTPLUG_EN, 0);
3332 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3333
3334 I915_WRITE(HWSTAM, 0xffffffff);
3335 for_each_pipe(pipe)
3336 I915_WRITE(PIPESTAT(pipe), 0);
3337 I915_WRITE(IMR, 0xffffffff);
3338 I915_WRITE(IER, 0x0);
3339
3340 for_each_pipe(pipe)
3341 I915_WRITE(PIPESTAT(pipe),
3342 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3343 I915_WRITE(IIR, I915_READ(IIR));
3344 }
3345
3346 static void i915_reenable_hotplug_timer_func(unsigned long data)
3347 {
3348 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3349 struct drm_device *dev = dev_priv->dev;
3350 struct drm_mode_config *mode_config = &dev->mode_config;
3351 unsigned long irqflags;
3352 int i;
3353
3354 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3355 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3356 struct drm_connector *connector;
3357
3358 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3359 continue;
3360
3361 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3362
3363 list_for_each_entry(connector, &mode_config->connector_list, head) {
3364 struct intel_connector *intel_connector = to_intel_connector(connector);
3365
3366 if (intel_connector->encoder->hpd_pin == i) {
3367 if (connector->polled != intel_connector->polled)
3368 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3369 drm_get_connector_name(connector));
3370 connector->polled = intel_connector->polled;
3371 if (!connector->polled)
3372 connector->polled = DRM_CONNECTOR_POLL_HPD;
3373 }
3374 }
3375 }
3376 if (dev_priv->display.hpd_irq_setup)
3377 dev_priv->display.hpd_irq_setup(dev);
3378 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3379 }
3380
3381 void intel_irq_init(struct drm_device *dev)
3382 {
3383 struct drm_i915_private *dev_priv = dev->dev_private;
3384
3385 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3386 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3387 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3388 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3389
3390 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3391 i915_hangcheck_elapsed,
3392 (unsigned long) dev);
3393 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3394 (unsigned long) dev_priv);
3395
3396 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3397
3398 if (IS_GEN2(dev)) {
3399 dev->max_vblank_count = 0;
3400 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3401 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3402 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3403 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3404 } else {
3405 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3406 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3407 }
3408
3409 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3410 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3411 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3412 }
3413
3414 if (IS_VALLEYVIEW(dev)) {
3415 dev->driver->irq_handler = valleyview_irq_handler;
3416 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3417 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3418 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3419 dev->driver->enable_vblank = valleyview_enable_vblank;
3420 dev->driver->disable_vblank = valleyview_disable_vblank;
3421 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3422 } else if (HAS_PCH_SPLIT(dev)) {
3423 dev->driver->irq_handler = ironlake_irq_handler;
3424 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3425 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3426 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3427 dev->driver->enable_vblank = ironlake_enable_vblank;
3428 dev->driver->disable_vblank = ironlake_disable_vblank;
3429 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3430 } else {
3431 if (INTEL_INFO(dev)->gen == 2) {
3432 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3433 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3434 dev->driver->irq_handler = i8xx_irq_handler;
3435 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3436 } else if (INTEL_INFO(dev)->gen == 3) {
3437 dev->driver->irq_preinstall = i915_irq_preinstall;
3438 dev->driver->irq_postinstall = i915_irq_postinstall;
3439 dev->driver->irq_uninstall = i915_irq_uninstall;
3440 dev->driver->irq_handler = i915_irq_handler;
3441 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3442 } else {
3443 dev->driver->irq_preinstall = i965_irq_preinstall;
3444 dev->driver->irq_postinstall = i965_irq_postinstall;
3445 dev->driver->irq_uninstall = i965_irq_uninstall;
3446 dev->driver->irq_handler = i965_irq_handler;
3447 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3448 }
3449 dev->driver->enable_vblank = i915_enable_vblank;
3450 dev->driver->disable_vblank = i915_disable_vblank;
3451 }
3452 }
3453
3454 void intel_hpd_init(struct drm_device *dev)
3455 {
3456 struct drm_i915_private *dev_priv = dev->dev_private;
3457 struct drm_mode_config *mode_config = &dev->mode_config;
3458 struct drm_connector *connector;
3459 unsigned long irqflags;
3460 int i;
3461
3462 for (i = 1; i < HPD_NUM_PINS; i++) {
3463 dev_priv->hpd_stats[i].hpd_cnt = 0;
3464 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3465 }
3466 list_for_each_entry(connector, &mode_config->connector_list, head) {
3467 struct intel_connector *intel_connector = to_intel_connector(connector);
3468 connector->polled = intel_connector->polled;
3469 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3470 connector->polled = DRM_CONNECTOR_POLL_HPD;
3471 }
3472
3473 /* Interrupt setup is already guaranteed to be single-threaded, this is
3474 * just to make the assert_spin_locked checks happy. */
3475 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3476 if (dev_priv->display.hpd_irq_setup)
3477 dev_priv->display.hpd_irq_setup(dev);
3478 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3479 }
3480
3481 /* Disable interrupts so we can allow Package C8+. */
3482 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3483 {
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 unsigned long irqflags;
3486
3487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3488
3489 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3490 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3491 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3492 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3493 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3494
3495 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3496 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3497 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3498 snb_disable_pm_irq(dev_priv, 0xffffffff);
3499
3500 dev_priv->pc8.irqs_disabled = true;
3501
3502 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3503 }
3504
3505 /* Restore interrupts so we can recover from Package C8+. */
3506 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3507 {
3508 struct drm_i915_private *dev_priv = dev->dev_private;
3509 unsigned long irqflags;
3510 uint32_t val, expected;
3511
3512 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3513
3514 val = I915_READ(DEIMR);
3515 expected = ~DE_PCH_EVENT_IVB;
3516 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3517
3518 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3519 expected = ~SDE_HOTPLUG_MASK_CPT;
3520 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3521 val, expected);
3522
3523 val = I915_READ(GTIMR);
3524 expected = 0xffffffff;
3525 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3526
3527 val = I915_READ(GEN6_PMIMR);
3528 expected = 0xffffffff;
3529 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3530 expected);
3531
3532 dev_priv->pc8.irqs_disabled = false;
3533
3534 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3535 ibx_enable_display_interrupt(dev_priv,
3536 ~dev_priv->pc8.regsave.sdeimr &
3537 ~SDE_HOTPLUG_MASK_CPT);
3538 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3539 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3540 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3541
3542 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3543 }