]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
afa55199b8290c84a8b4b601c23509812d3ba8f2
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(dev_priv->pm.irqs_disabled))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(dev_priv->pm.irqs_disabled))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(dev_priv->pm.irqs_disabled))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(dev_priv->pm.irqs_disabled))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 static bool cpt_can_enable_serr_int(struct drm_device *dev)
252 {
253 struct drm_i915_private *dev_priv = dev->dev_private;
254 enum pipe pipe;
255 struct intel_crtc *crtc;
256
257 assert_spin_locked(&dev_priv->irq_lock);
258
259 for_each_pipe(pipe) {
260 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
261
262 if (crtc->pch_fifo_underrun_disabled)
263 return false;
264 }
265
266 return true;
267 }
268
269 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 u32 reg = PIPESTAT(pipe);
273 u32 pipestat = I915_READ(reg) & 0x7fff0000;
274
275 assert_spin_locked(&dev_priv->irq_lock);
276
277 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
278 POSTING_READ(reg);
279 }
280
281 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
282 enum pipe pipe, bool enable)
283 {
284 struct drm_i915_private *dev_priv = dev->dev_private;
285 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
286 DE_PIPEB_FIFO_UNDERRUN;
287
288 if (enable)
289 ironlake_enable_display_irq(dev_priv, bit);
290 else
291 ironlake_disable_display_irq(dev_priv, bit);
292 }
293
294 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
295 enum pipe pipe, bool enable)
296 {
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 if (enable) {
299 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
300
301 if (!ivb_can_enable_err_int(dev))
302 return;
303
304 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
305 } else {
306 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
307
308 /* Change the state _after_ we've read out the current one. */
309 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
310
311 if (!was_enabled &&
312 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
313 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
314 pipe_name(pipe));
315 }
316 }
317 }
318
319 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum pipe pipe, bool enable)
321 {
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 assert_spin_locked(&dev_priv->irq_lock);
325
326 if (enable)
327 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
328 else
329 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
330 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
331 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
332 }
333
334 /**
335 * ibx_display_interrupt_update - update SDEIMR
336 * @dev_priv: driver private
337 * @interrupt_mask: mask of interrupt bits to update
338 * @enabled_irq_mask: mask of interrupt bits to enable
339 */
340 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
341 uint32_t interrupt_mask,
342 uint32_t enabled_irq_mask)
343 {
344 uint32_t sdeimr = I915_READ(SDEIMR);
345 sdeimr &= ~interrupt_mask;
346 sdeimr |= (~enabled_irq_mask & interrupt_mask);
347
348 assert_spin_locked(&dev_priv->irq_lock);
349
350 if (WARN_ON(dev_priv->pm.irqs_disabled))
351 return;
352
353 I915_WRITE(SDEIMR, sdeimr);
354 POSTING_READ(SDEIMR);
355 }
356 #define ibx_enable_display_interrupt(dev_priv, bits) \
357 ibx_display_interrupt_update((dev_priv), (bits), (bits))
358 #define ibx_disable_display_interrupt(dev_priv, bits) \
359 ibx_display_interrupt_update((dev_priv), (bits), 0)
360
361 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
362 enum transcoder pch_transcoder,
363 bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
367 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
368
369 if (enable)
370 ibx_enable_display_interrupt(dev_priv, bit);
371 else
372 ibx_disable_display_interrupt(dev_priv, bit);
373 }
374
375 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
376 enum transcoder pch_transcoder,
377 bool enable)
378 {
379 struct drm_i915_private *dev_priv = dev->dev_private;
380
381 if (enable) {
382 I915_WRITE(SERR_INT,
383 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
384
385 if (!cpt_can_enable_serr_int(dev))
386 return;
387
388 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
389 } else {
390 uint32_t tmp = I915_READ(SERR_INT);
391 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
392
393 /* Change the state _after_ we've read out the current one. */
394 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
395
396 if (!was_enabled &&
397 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
398 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
399 transcoder_name(pch_transcoder));
400 }
401 }
402 }
403
404 /**
405 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
406 * @dev: drm device
407 * @pipe: pipe
408 * @enable: true if we want to report FIFO underrun errors, false otherwise
409 *
410 * This function makes us disable or enable CPU fifo underruns for a specific
411 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
412 * reporting for one pipe may also disable all the other CPU error interruts for
413 * the other pipes, due to the fact that there's just one interrupt mask/enable
414 * bit for all the pipes.
415 *
416 * Returns the previous state of underrun reporting.
417 */
418 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
419 enum pipe pipe, bool enable)
420 {
421 struct drm_i915_private *dev_priv = dev->dev_private;
422 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
424 bool ret;
425
426 assert_spin_locked(&dev_priv->irq_lock);
427
428 ret = !intel_crtc->cpu_fifo_underrun_disabled;
429
430 if (enable == ret)
431 goto done;
432
433 intel_crtc->cpu_fifo_underrun_disabled = !enable;
434
435 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
436 i9xx_clear_fifo_underrun(dev, pipe);
437 else if (IS_GEN5(dev) || IS_GEN6(dev))
438 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
439 else if (IS_GEN7(dev))
440 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
441 else if (IS_GEN8(dev))
442 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
443
444 done:
445 return ret;
446 }
447
448 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
449 enum pipe pipe, bool enable)
450 {
451 struct drm_i915_private *dev_priv = dev->dev_private;
452 unsigned long flags;
453 bool ret;
454
455 spin_lock_irqsave(&dev_priv->irq_lock, flags);
456 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
457 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
458
459 return ret;
460 }
461
462 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
463 enum pipe pipe)
464 {
465 struct drm_i915_private *dev_priv = dev->dev_private;
466 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
468
469 return !intel_crtc->cpu_fifo_underrun_disabled;
470 }
471
472 /**
473 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
474 * @dev: drm device
475 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
476 * @enable: true if we want to report FIFO underrun errors, false otherwise
477 *
478 * This function makes us disable or enable PCH fifo underruns for a specific
479 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
480 * underrun reporting for one transcoder may also disable all the other PCH
481 * error interruts for the other transcoders, due to the fact that there's just
482 * one interrupt mask/enable bit for all the transcoders.
483 *
484 * Returns the previous state of underrun reporting.
485 */
486 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
487 enum transcoder pch_transcoder,
488 bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 unsigned long flags;
494 bool ret;
495
496 /*
497 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
498 * has only one pch transcoder A that all pipes can use. To avoid racy
499 * pch transcoder -> pipe lookups from interrupt code simply store the
500 * underrun statistics in crtc A. Since we never expose this anywhere
501 * nor use it outside of the fifo underrun code here using the "wrong"
502 * crtc on LPT won't cause issues.
503 */
504
505 spin_lock_irqsave(&dev_priv->irq_lock, flags);
506
507 ret = !intel_crtc->pch_fifo_underrun_disabled;
508
509 if (enable == ret)
510 goto done;
511
512 intel_crtc->pch_fifo_underrun_disabled = !enable;
513
514 if (HAS_PCH_IBX(dev))
515 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
516 else
517 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
518
519 done:
520 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
521 return ret;
522 }
523
524
525 static void
526 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
527 u32 enable_mask, u32 status_mask)
528 {
529 u32 reg = PIPESTAT(pipe);
530 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
531
532 assert_spin_locked(&dev_priv->irq_lock);
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == enable_mask)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
544
545 /* Enable the interrupt, clear any pending status */
546 pipestat |= enable_mask | status_mask;
547 I915_WRITE(reg, pipestat);
548 POSTING_READ(reg);
549 }
550
551 static void
552 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
553 u32 enable_mask, u32 status_mask)
554 {
555 u32 reg = PIPESTAT(pipe);
556 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
557
558 assert_spin_locked(&dev_priv->irq_lock);
559
560 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
561 status_mask & ~PIPESTAT_INT_STATUS_MASK,
562 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
563 pipe_name(pipe), enable_mask, status_mask))
564 return;
565
566 if ((pipestat & enable_mask) == 0)
567 return;
568
569 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
570
571 pipestat &= ~enable_mask;
572 I915_WRITE(reg, pipestat);
573 POSTING_READ(reg);
574 }
575
576 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
577 {
578 u32 enable_mask = status_mask << 16;
579
580 /*
581 * On pipe A we don't support the PSR interrupt yet, on pipe B the
582 * same bit MBZ.
583 */
584 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
585 return 0;
586
587 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
588 SPRITE0_FLIP_DONE_INT_EN_VLV |
589 SPRITE1_FLIP_DONE_INT_EN_VLV);
590 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
591 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
592 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
593 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
594
595 return enable_mask;
596 }
597
598 void
599 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
600 u32 status_mask)
601 {
602 u32 enable_mask;
603
604 if (IS_VALLEYVIEW(dev_priv->dev))
605 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
606 status_mask);
607 else
608 enable_mask = status_mask << 16;
609 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
610 }
611
612 void
613 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
614 u32 status_mask)
615 {
616 u32 enable_mask;
617
618 if (IS_VALLEYVIEW(dev_priv->dev))
619 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
620 status_mask);
621 else
622 enable_mask = status_mask << 16;
623 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
624 }
625
626 /**
627 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
628 */
629 static void i915_enable_asle_pipestat(struct drm_device *dev)
630 {
631 struct drm_i915_private *dev_priv = dev->dev_private;
632 unsigned long irqflags;
633
634 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
635 return;
636
637 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
638
639 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
640 if (INTEL_INFO(dev)->gen >= 4)
641 i915_enable_pipestat(dev_priv, PIPE_A,
642 PIPE_LEGACY_BLC_EVENT_STATUS);
643
644 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
645 }
646
647 /**
648 * i915_pipe_enabled - check if a pipe is enabled
649 * @dev: DRM device
650 * @pipe: pipe to check
651 *
652 * Reading certain registers when the pipe is disabled can hang the chip.
653 * Use this routine to make sure the PLL is running and the pipe is active
654 * before reading such registers if unsure.
655 */
656 static int
657 i915_pipe_enabled(struct drm_device *dev, int pipe)
658 {
659 struct drm_i915_private *dev_priv = dev->dev_private;
660
661 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
662 /* Locking is horribly broken here, but whatever. */
663 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
665
666 return intel_crtc->active;
667 } else {
668 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
669 }
670 }
671
672 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
673 {
674 /* Gen2 doesn't have a hardware frame counter */
675 return 0;
676 }
677
678 /* Called from drm generic code, passed a 'crtc', which
679 * we use as a pipe index
680 */
681 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
682 {
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 unsigned long high_frame;
685 unsigned long low_frame;
686 u32 high1, high2, low, pixel, vbl_start;
687
688 if (!i915_pipe_enabled(dev, pipe)) {
689 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
690 "pipe %c\n", pipe_name(pipe));
691 return 0;
692 }
693
694 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
695 struct intel_crtc *intel_crtc =
696 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
697 const struct drm_display_mode *mode =
698 &intel_crtc->config.adjusted_mode;
699
700 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
701 } else {
702 enum transcoder cpu_transcoder = (enum transcoder) pipe;
703 u32 htotal;
704
705 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
706 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
707
708 vbl_start *= htotal;
709 }
710
711 high_frame = PIPEFRAME(pipe);
712 low_frame = PIPEFRAMEPIXEL(pipe);
713
714 /*
715 * High & low register fields aren't synchronized, so make sure
716 * we get a low value that's stable across two reads of the high
717 * register.
718 */
719 do {
720 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
721 low = I915_READ(low_frame);
722 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
723 } while (high1 != high2);
724
725 high1 >>= PIPE_FRAME_HIGH_SHIFT;
726 pixel = low & PIPE_PIXEL_MASK;
727 low >>= PIPE_FRAME_LOW_SHIFT;
728
729 /*
730 * The frame counter increments at beginning of active.
731 * Cook up a vblank counter by also checking the pixel
732 * counter against vblank start.
733 */
734 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
735 }
736
737 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
738 {
739 struct drm_i915_private *dev_priv = dev->dev_private;
740 int reg = PIPE_FRMCOUNT_GM45(pipe);
741
742 if (!i915_pipe_enabled(dev, pipe)) {
743 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
744 "pipe %c\n", pipe_name(pipe));
745 return 0;
746 }
747
748 return I915_READ(reg);
749 }
750
751 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
752 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
753
754 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
755 {
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 uint32_t status;
758 int reg;
759
760 if (INTEL_INFO(dev)->gen >= 8) {
761 status = GEN8_PIPE_VBLANK;
762 reg = GEN8_DE_PIPE_ISR(pipe);
763 } else if (INTEL_INFO(dev)->gen >= 7) {
764 status = DE_PIPE_VBLANK_IVB(pipe);
765 reg = DEISR;
766 } else {
767 status = DE_PIPE_VBLANK(pipe);
768 reg = DEISR;
769 }
770
771 return __raw_i915_read32(dev_priv, reg) & status;
772 }
773
774 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
775 unsigned int flags, int *vpos, int *hpos,
776 ktime_t *stime, ktime_t *etime)
777 {
778 struct drm_i915_private *dev_priv = dev->dev_private;
779 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
782 int position;
783 int vbl_start, vbl_end, htotal, vtotal;
784 bool in_vbl = true;
785 int ret = 0;
786 unsigned long irqflags;
787
788 if (!intel_crtc->active) {
789 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
790 "pipe %c\n", pipe_name(pipe));
791 return 0;
792 }
793
794 htotal = mode->crtc_htotal;
795 vtotal = mode->crtc_vtotal;
796 vbl_start = mode->crtc_vblank_start;
797 vbl_end = mode->crtc_vblank_end;
798
799 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801 vbl_end /= 2;
802 vtotal /= 2;
803 }
804
805 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807 /*
808 * Lock uncore.lock, as we will do multiple timing critical raw
809 * register reads, potentially with preemption disabled, so the
810 * following code must not block on uncore.lock.
811 */
812 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816 /* Get optional system timestamp before query. */
817 if (stime)
818 *stime = ktime_get();
819
820 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
821 /* No obvious pixelcount register. Only query vertical
822 * scanout position from Display scan line register.
823 */
824 if (IS_GEN2(dev))
825 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
826 else
827 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
828
829 if (HAS_DDI(dev)) {
830 /*
831 * On HSW HDMI outputs there seems to be a 2 line
832 * difference, whereas eDP has the normal 1 line
833 * difference that earlier platforms have. External
834 * DP is unknown. For now just check for the 2 line
835 * difference case on all output types on HSW+.
836 *
837 * This might misinterpret the scanline counter being
838 * one line too far along on eDP, but that's less
839 * dangerous than the alternative since that would lead
840 * the vblank timestamp code astray when it sees a
841 * scanline count before vblank_start during a vblank
842 * interrupt.
843 */
844 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
845 if ((in_vbl && (position == vbl_start - 2 ||
846 position == vbl_start - 1)) ||
847 (!in_vbl && (position == vbl_end - 2 ||
848 position == vbl_end - 1)))
849 position = (position + 2) % vtotal;
850 } else if (HAS_PCH_SPLIT(dev)) {
851 /*
852 * The scanline counter increments at the leading edge
853 * of hsync, ie. it completely misses the active portion
854 * of the line. Fix up the counter at both edges of vblank
855 * to get a more accurate picture whether we're in vblank
856 * or not.
857 */
858 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
859 if ((in_vbl && position == vbl_start - 1) ||
860 (!in_vbl && position == vbl_end - 1))
861 position = (position + 1) % vtotal;
862 } else {
863 /*
864 * ISR vblank status bits don't work the way we'd want
865 * them to work on non-PCH platforms (for
866 * ilk_pipe_in_vblank_locked()), and there doesn't
867 * appear any other way to determine if we're currently
868 * in vblank.
869 *
870 * Instead let's assume that we're already in vblank if
871 * we got called from the vblank interrupt and the
872 * scanline counter value indicates that we're on the
873 * line just prior to vblank start. This should result
874 * in the correct answer, unless the vblank interrupt
875 * delivery really got delayed for almost exactly one
876 * full frame/field.
877 */
878 if (flags & DRM_CALLED_FROM_VBLIRQ &&
879 position == vbl_start - 1) {
880 position = (position + 1) % vtotal;
881
882 /* Signal this correction as "applied". */
883 ret |= 0x8;
884 }
885 }
886 } else {
887 /* Have access to pixelcount since start of frame.
888 * We can split this into vertical and horizontal
889 * scanout position.
890 */
891 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
892
893 /* convert to pixel counts */
894 vbl_start *= htotal;
895 vbl_end *= htotal;
896 vtotal *= htotal;
897 }
898
899 /* Get optional system timestamp after query. */
900 if (etime)
901 *etime = ktime_get();
902
903 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
904
905 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907 in_vbl = position >= vbl_start && position < vbl_end;
908
909 /*
910 * While in vblank, position will be negative
911 * counting up towards 0 at vbl_end. And outside
912 * vblank, position will be positive counting
913 * up since vbl_end.
914 */
915 if (position >= vbl_start)
916 position -= vbl_end;
917 else
918 position += vtotal - vbl_end;
919
920 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 *vpos = position;
922 *hpos = 0;
923 } else {
924 *vpos = position / htotal;
925 *hpos = position - (*vpos * htotal);
926 }
927
928 /* In vblank? */
929 if (in_vbl)
930 ret |= DRM_SCANOUTPOS_INVBL;
931
932 return ret;
933 }
934
935 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
936 int *max_error,
937 struct timeval *vblank_time,
938 unsigned flags)
939 {
940 struct drm_crtc *crtc;
941
942 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
943 DRM_ERROR("Invalid crtc %d\n", pipe);
944 return -EINVAL;
945 }
946
947 /* Get drm_crtc to timestamp: */
948 crtc = intel_get_crtc_for_pipe(dev, pipe);
949 if (crtc == NULL) {
950 DRM_ERROR("Invalid crtc %d\n", pipe);
951 return -EINVAL;
952 }
953
954 if (!crtc->enabled) {
955 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
956 return -EBUSY;
957 }
958
959 /* Helper routine in DRM core does all the work: */
960 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
961 vblank_time, flags,
962 crtc,
963 &to_intel_crtc(crtc)->config.adjusted_mode);
964 }
965
966 static bool intel_hpd_irq_event(struct drm_device *dev,
967 struct drm_connector *connector)
968 {
969 enum drm_connector_status old_status;
970
971 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
972 old_status = connector->status;
973
974 connector->status = connector->funcs->detect(connector, false);
975 if (old_status == connector->status)
976 return false;
977
978 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
979 connector->base.id,
980 drm_get_connector_name(connector),
981 drm_get_connector_status_name(old_status),
982 drm_get_connector_status_name(connector->status));
983
984 return true;
985 }
986
987 /*
988 * Handle hotplug events outside the interrupt handler proper.
989 */
990 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
991
992 static void i915_hotplug_work_func(struct work_struct *work)
993 {
994 struct drm_i915_private *dev_priv =
995 container_of(work, struct drm_i915_private, hotplug_work);
996 struct drm_device *dev = dev_priv->dev;
997 struct drm_mode_config *mode_config = &dev->mode_config;
998 struct intel_connector *intel_connector;
999 struct intel_encoder *intel_encoder;
1000 struct drm_connector *connector;
1001 unsigned long irqflags;
1002 bool hpd_disabled = false;
1003 bool changed = false;
1004 u32 hpd_event_bits;
1005
1006 /* HPD irq before everything is fully set up. */
1007 if (!dev_priv->enable_hotplug_processing)
1008 return;
1009
1010 mutex_lock(&mode_config->mutex);
1011 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1012
1013 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1014
1015 hpd_event_bits = dev_priv->hpd_event_bits;
1016 dev_priv->hpd_event_bits = 0;
1017 list_for_each_entry(connector, &mode_config->connector_list, head) {
1018 intel_connector = to_intel_connector(connector);
1019 intel_encoder = intel_connector->encoder;
1020 if (intel_encoder->hpd_pin > HPD_NONE &&
1021 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1022 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1023 DRM_INFO("HPD interrupt storm detected on connector %s: "
1024 "switching from hotplug detection to polling\n",
1025 drm_get_connector_name(connector));
1026 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1027 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1028 | DRM_CONNECTOR_POLL_DISCONNECT;
1029 hpd_disabled = true;
1030 }
1031 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1032 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1033 drm_get_connector_name(connector), intel_encoder->hpd_pin);
1034 }
1035 }
1036 /* if there were no outputs to poll, poll was disabled,
1037 * therefore make sure it's enabled when disabling HPD on
1038 * some connectors */
1039 if (hpd_disabled) {
1040 drm_kms_helper_poll_enable(dev);
1041 mod_timer(&dev_priv->hotplug_reenable_timer,
1042 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1043 }
1044
1045 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1046
1047 list_for_each_entry(connector, &mode_config->connector_list, head) {
1048 intel_connector = to_intel_connector(connector);
1049 intel_encoder = intel_connector->encoder;
1050 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1051 if (intel_encoder->hot_plug)
1052 intel_encoder->hot_plug(intel_encoder);
1053 if (intel_hpd_irq_event(dev, connector))
1054 changed = true;
1055 }
1056 }
1057 mutex_unlock(&mode_config->mutex);
1058
1059 if (changed)
1060 drm_kms_helper_hotplug_event(dev);
1061 }
1062
1063 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1064 {
1065 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1066 }
1067
1068 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 u32 busy_up, busy_down, max_avg, min_avg;
1072 u8 new_delay;
1073
1074 spin_lock(&mchdev_lock);
1075
1076 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1077
1078 new_delay = dev_priv->ips.cur_delay;
1079
1080 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1081 busy_up = I915_READ(RCPREVBSYTUPAVG);
1082 busy_down = I915_READ(RCPREVBSYTDNAVG);
1083 max_avg = I915_READ(RCBMAXAVG);
1084 min_avg = I915_READ(RCBMINAVG);
1085
1086 /* Handle RCS change request from hw */
1087 if (busy_up > max_avg) {
1088 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1089 new_delay = dev_priv->ips.cur_delay - 1;
1090 if (new_delay < dev_priv->ips.max_delay)
1091 new_delay = dev_priv->ips.max_delay;
1092 } else if (busy_down < min_avg) {
1093 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1094 new_delay = dev_priv->ips.cur_delay + 1;
1095 if (new_delay > dev_priv->ips.min_delay)
1096 new_delay = dev_priv->ips.min_delay;
1097 }
1098
1099 if (ironlake_set_drps(dev, new_delay))
1100 dev_priv->ips.cur_delay = new_delay;
1101
1102 spin_unlock(&mchdev_lock);
1103
1104 return;
1105 }
1106
1107 static void notify_ring(struct drm_device *dev,
1108 struct intel_ring_buffer *ring)
1109 {
1110 if (ring->obj == NULL)
1111 return;
1112
1113 trace_i915_gem_request_complete(ring);
1114
1115 wake_up_all(&ring->irq_queue);
1116 i915_queue_hangcheck(dev);
1117 }
1118
1119 static void gen6_pm_rps_work(struct work_struct *work)
1120 {
1121 struct drm_i915_private *dev_priv =
1122 container_of(work, struct drm_i915_private, rps.work);
1123 u32 pm_iir;
1124 int new_delay, adj;
1125
1126 spin_lock_irq(&dev_priv->irq_lock);
1127 pm_iir = dev_priv->rps.pm_iir;
1128 dev_priv->rps.pm_iir = 0;
1129 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1130 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1131 spin_unlock_irq(&dev_priv->irq_lock);
1132
1133 /* Make sure we didn't queue anything we're not going to process. */
1134 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1135
1136 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1137 return;
1138
1139 mutex_lock(&dev_priv->rps.hw_lock);
1140
1141 adj = dev_priv->rps.last_adj;
1142 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1143 if (adj > 0)
1144 adj *= 2;
1145 else
1146 adj = 1;
1147 new_delay = dev_priv->rps.cur_freq + adj;
1148
1149 /*
1150 * For better performance, jump directly
1151 * to RPe if we're below it.
1152 */
1153 if (new_delay < dev_priv->rps.efficient_freq)
1154 new_delay = dev_priv->rps.efficient_freq;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else
1165 adj = -1;
1166 new_delay = dev_priv->rps.cur_freq + adj;
1167 } else { /* unknown event */
1168 new_delay = dev_priv->rps.cur_freq;
1169 }
1170
1171 /* sysfs frequency interfaces may have snuck in while servicing the
1172 * interrupt
1173 */
1174 new_delay = clamp_t(int, new_delay,
1175 dev_priv->rps.min_freq_softlimit,
1176 dev_priv->rps.max_freq_softlimit);
1177
1178 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1179
1180 if (IS_VALLEYVIEW(dev_priv->dev))
1181 valleyview_set_rps(dev_priv->dev, new_delay);
1182 else
1183 gen6_set_rps(dev_priv->dev, new_delay);
1184
1185 mutex_unlock(&dev_priv->rps.hw_lock);
1186 }
1187
1188
1189 /**
1190 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1191 * occurred.
1192 * @work: workqueue struct
1193 *
1194 * Doesn't actually do anything except notify userspace. As a consequence of
1195 * this event, userspace should try to remap the bad rows since statistically
1196 * it is likely the same row is more likely to go bad again.
1197 */
1198 static void ivybridge_parity_work(struct work_struct *work)
1199 {
1200 struct drm_i915_private *dev_priv =
1201 container_of(work, struct drm_i915_private, l3_parity.error_work);
1202 u32 error_status, row, bank, subbank;
1203 char *parity_event[6];
1204 uint32_t misccpctl;
1205 unsigned long flags;
1206 uint8_t slice = 0;
1207
1208 /* We must turn off DOP level clock gating to access the L3 registers.
1209 * In order to prevent a get/put style interface, acquire struct mutex
1210 * any time we access those registers.
1211 */
1212 mutex_lock(&dev_priv->dev->struct_mutex);
1213
1214 /* If we've screwed up tracking, just let the interrupt fire again */
1215 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1216 goto out;
1217
1218 misccpctl = I915_READ(GEN7_MISCCPCTL);
1219 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1220 POSTING_READ(GEN7_MISCCPCTL);
1221
1222 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1223 u32 reg;
1224
1225 slice--;
1226 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1227 break;
1228
1229 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1230
1231 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1232
1233 error_status = I915_READ(reg);
1234 row = GEN7_PARITY_ERROR_ROW(error_status);
1235 bank = GEN7_PARITY_ERROR_BANK(error_status);
1236 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1237
1238 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1239 POSTING_READ(reg);
1240
1241 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1242 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1243 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1244 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1245 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1246 parity_event[5] = NULL;
1247
1248 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1249 KOBJ_CHANGE, parity_event);
1250
1251 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1252 slice, row, bank, subbank);
1253
1254 kfree(parity_event[4]);
1255 kfree(parity_event[3]);
1256 kfree(parity_event[2]);
1257 kfree(parity_event[1]);
1258 }
1259
1260 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1261
1262 out:
1263 WARN_ON(dev_priv->l3_parity.which_slice);
1264 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1265 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1266 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1267
1268 mutex_unlock(&dev_priv->dev->struct_mutex);
1269 }
1270
1271 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1272 {
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274
1275 if (!HAS_L3_DPF(dev))
1276 return;
1277
1278 spin_lock(&dev_priv->irq_lock);
1279 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1280 spin_unlock(&dev_priv->irq_lock);
1281
1282 iir &= GT_PARITY_ERROR(dev);
1283 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1284 dev_priv->l3_parity.which_slice |= 1 << 1;
1285
1286 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1287 dev_priv->l3_parity.which_slice |= 1 << 0;
1288
1289 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1290 }
1291
1292 static void ilk_gt_irq_handler(struct drm_device *dev,
1293 struct drm_i915_private *dev_priv,
1294 u32 gt_iir)
1295 {
1296 if (gt_iir &
1297 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1298 notify_ring(dev, &dev_priv->ring[RCS]);
1299 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1300 notify_ring(dev, &dev_priv->ring[VCS]);
1301 }
1302
1303 static void snb_gt_irq_handler(struct drm_device *dev,
1304 struct drm_i915_private *dev_priv,
1305 u32 gt_iir)
1306 {
1307
1308 if (gt_iir &
1309 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1310 notify_ring(dev, &dev_priv->ring[RCS]);
1311 if (gt_iir & GT_BSD_USER_INTERRUPT)
1312 notify_ring(dev, &dev_priv->ring[VCS]);
1313 if (gt_iir & GT_BLT_USER_INTERRUPT)
1314 notify_ring(dev, &dev_priv->ring[BCS]);
1315
1316 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1317 GT_BSD_CS_ERROR_INTERRUPT |
1318 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1319 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1320 gt_iir);
1321 }
1322
1323 if (gt_iir & GT_PARITY_ERROR(dev))
1324 ivybridge_parity_error_irq_handler(dev, gt_iir);
1325 }
1326
1327 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1328 struct drm_i915_private *dev_priv,
1329 u32 master_ctl)
1330 {
1331 u32 rcs, bcs, vcs;
1332 uint32_t tmp = 0;
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 tmp = I915_READ(GEN8_GT_IIR(0));
1337 if (tmp) {
1338 ret = IRQ_HANDLED;
1339 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1340 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1341 if (rcs & GT_RENDER_USER_INTERRUPT)
1342 notify_ring(dev, &dev_priv->ring[RCS]);
1343 if (bcs & GT_RENDER_USER_INTERRUPT)
1344 notify_ring(dev, &dev_priv->ring[BCS]);
1345 I915_WRITE(GEN8_GT_IIR(0), tmp);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1351 tmp = I915_READ(GEN8_GT_IIR(1));
1352 if (tmp) {
1353 ret = IRQ_HANDLED;
1354 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1355 if (vcs & GT_RENDER_USER_INTERRUPT)
1356 notify_ring(dev, &dev_priv->ring[VCS]);
1357 I915_WRITE(GEN8_GT_IIR(1), tmp);
1358 } else
1359 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1360 }
1361
1362 if (master_ctl & GEN8_GT_VECS_IRQ) {
1363 tmp = I915_READ(GEN8_GT_IIR(3));
1364 if (tmp) {
1365 ret = IRQ_HANDLED;
1366 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1367 if (vcs & GT_RENDER_USER_INTERRUPT)
1368 notify_ring(dev, &dev_priv->ring[VECS]);
1369 I915_WRITE(GEN8_GT_IIR(3), tmp);
1370 } else
1371 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1372 }
1373
1374 return ret;
1375 }
1376
1377 #define HPD_STORM_DETECT_PERIOD 1000
1378 #define HPD_STORM_THRESHOLD 5
1379
1380 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1381 u32 hotplug_trigger,
1382 const u32 *hpd)
1383 {
1384 struct drm_i915_private *dev_priv = dev->dev_private;
1385 int i;
1386 bool storm_detected = false;
1387
1388 if (!hotplug_trigger)
1389 return;
1390
1391 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1392 hotplug_trigger);
1393
1394 spin_lock(&dev_priv->irq_lock);
1395 for (i = 1; i < HPD_NUM_PINS; i++) {
1396
1397 if (hpd[i] & hotplug_trigger &&
1398 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1399 /*
1400 * On GMCH platforms the interrupt mask bits only
1401 * prevent irq generation, not the setting of the
1402 * hotplug bits itself. So only WARN about unexpected
1403 * interrupts on saner platforms.
1404 */
1405 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1406 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1407 hotplug_trigger, i, hpd[i]);
1408
1409 continue;
1410 }
1411
1412 if (!(hpd[i] & hotplug_trigger) ||
1413 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1414 continue;
1415
1416 dev_priv->hpd_event_bits |= (1 << i);
1417 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1418 dev_priv->hpd_stats[i].hpd_last_jiffies
1419 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1420 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1421 dev_priv->hpd_stats[i].hpd_cnt = 0;
1422 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1423 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1424 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1425 dev_priv->hpd_event_bits &= ~(1 << i);
1426 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1427 storm_detected = true;
1428 } else {
1429 dev_priv->hpd_stats[i].hpd_cnt++;
1430 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1431 dev_priv->hpd_stats[i].hpd_cnt);
1432 }
1433 }
1434
1435 if (storm_detected)
1436 dev_priv->display.hpd_irq_setup(dev);
1437 spin_unlock(&dev_priv->irq_lock);
1438
1439 /*
1440 * Our hotplug handler can grab modeset locks (by calling down into the
1441 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1442 * queue for otherwise the flush_work in the pageflip code will
1443 * deadlock.
1444 */
1445 schedule_work(&dev_priv->hotplug_work);
1446 }
1447
1448 static void gmbus_irq_handler(struct drm_device *dev)
1449 {
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451
1452 wake_up_all(&dev_priv->gmbus_wait_queue);
1453 }
1454
1455 static void dp_aux_irq_handler(struct drm_device *dev)
1456 {
1457 struct drm_i915_private *dev_priv = dev->dev_private;
1458
1459 wake_up_all(&dev_priv->gmbus_wait_queue);
1460 }
1461
1462 #if defined(CONFIG_DEBUG_FS)
1463 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1464 uint32_t crc0, uint32_t crc1,
1465 uint32_t crc2, uint32_t crc3,
1466 uint32_t crc4)
1467 {
1468 struct drm_i915_private *dev_priv = dev->dev_private;
1469 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1470 struct intel_pipe_crc_entry *entry;
1471 int head, tail;
1472
1473 spin_lock(&pipe_crc->lock);
1474
1475 if (!pipe_crc->entries) {
1476 spin_unlock(&pipe_crc->lock);
1477 DRM_ERROR("spurious interrupt\n");
1478 return;
1479 }
1480
1481 head = pipe_crc->head;
1482 tail = pipe_crc->tail;
1483
1484 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1485 spin_unlock(&pipe_crc->lock);
1486 DRM_ERROR("CRC buffer overflowing\n");
1487 return;
1488 }
1489
1490 entry = &pipe_crc->entries[head];
1491
1492 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1493 entry->crc[0] = crc0;
1494 entry->crc[1] = crc1;
1495 entry->crc[2] = crc2;
1496 entry->crc[3] = crc3;
1497 entry->crc[4] = crc4;
1498
1499 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1500 pipe_crc->head = head;
1501
1502 spin_unlock(&pipe_crc->lock);
1503
1504 wake_up_interruptible(&pipe_crc->wq);
1505 }
1506 #else
1507 static inline void
1508 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1509 uint32_t crc0, uint32_t crc1,
1510 uint32_t crc2, uint32_t crc3,
1511 uint32_t crc4) {}
1512 #endif
1513
1514
1515 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1516 {
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519 display_pipe_crc_irq_handler(dev, pipe,
1520 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1521 0, 0, 0, 0);
1522 }
1523
1524 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1525 {
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527
1528 display_pipe_crc_irq_handler(dev, pipe,
1529 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1530 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1531 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1532 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1533 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1534 }
1535
1536 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1537 {
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 uint32_t res1, res2;
1540
1541 if (INTEL_INFO(dev)->gen >= 3)
1542 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1543 else
1544 res1 = 0;
1545
1546 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1547 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1548 else
1549 res2 = 0;
1550
1551 display_pipe_crc_irq_handler(dev, pipe,
1552 I915_READ(PIPE_CRC_RES_RED(pipe)),
1553 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1554 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1555 res1, res2);
1556 }
1557
1558 /* The RPS events need forcewake, so we add them to a work queue and mask their
1559 * IMR bits until the work is done. Other interrupts can be processed without
1560 * the work queue. */
1561 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1562 {
1563 if (pm_iir & dev_priv->pm_rps_events) {
1564 spin_lock(&dev_priv->irq_lock);
1565 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1566 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1567 spin_unlock(&dev_priv->irq_lock);
1568
1569 queue_work(dev_priv->wq, &dev_priv->rps.work);
1570 }
1571
1572 if (HAS_VEBOX(dev_priv->dev)) {
1573 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1574 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1575
1576 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1577 i915_handle_error(dev_priv->dev, false,
1578 "VEBOX CS error interrupt 0x%08x",
1579 pm_iir);
1580 }
1581 }
1582 }
1583
1584 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1585 {
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 u32 pipe_stats[I915_MAX_PIPES] = { };
1588 int pipe;
1589
1590 spin_lock(&dev_priv->irq_lock);
1591 for_each_pipe(pipe) {
1592 int reg;
1593 u32 mask, iir_bit = 0;
1594
1595 /*
1596 * PIPESTAT bits get signalled even when the interrupt is
1597 * disabled with the mask bits, and some of the status bits do
1598 * not generate interrupts at all (like the underrun bit). Hence
1599 * we need to be careful that we only handle what we want to
1600 * handle.
1601 */
1602 mask = 0;
1603 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1604 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1605
1606 switch (pipe) {
1607 case PIPE_A:
1608 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1609 break;
1610 case PIPE_B:
1611 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1612 break;
1613 }
1614 if (iir & iir_bit)
1615 mask |= dev_priv->pipestat_irq_mask[pipe];
1616
1617 if (!mask)
1618 continue;
1619
1620 reg = PIPESTAT(pipe);
1621 mask |= PIPESTAT_INT_ENABLE_MASK;
1622 pipe_stats[pipe] = I915_READ(reg) & mask;
1623
1624 /*
1625 * Clear the PIPE*STAT regs before the IIR
1626 */
1627 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1628 PIPESTAT_INT_STATUS_MASK))
1629 I915_WRITE(reg, pipe_stats[pipe]);
1630 }
1631 spin_unlock(&dev_priv->irq_lock);
1632
1633 for_each_pipe(pipe) {
1634 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1635 drm_handle_vblank(dev, pipe);
1636
1637 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1638 intel_prepare_page_flip(dev, pipe);
1639 intel_finish_page_flip(dev, pipe);
1640 }
1641
1642 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1643 i9xx_pipe_crc_irq_handler(dev, pipe);
1644
1645 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1646 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1647 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1648 }
1649
1650 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1651 gmbus_irq_handler(dev);
1652 }
1653
1654 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1655 {
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1658
1659 if (IS_G4X(dev)) {
1660 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1661
1662 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1663 } else {
1664 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1665
1666 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1667 }
1668
1669 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1670 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1671 dp_aux_irq_handler(dev);
1672
1673 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1674 /*
1675 * Make sure hotplug status is cleared before we clear IIR, or else we
1676 * may miss hotplug events.
1677 */
1678 POSTING_READ(PORT_HOTPLUG_STAT);
1679 }
1680
1681 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1682 {
1683 struct drm_device *dev = (struct drm_device *) arg;
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 u32 iir, gt_iir, pm_iir;
1686 irqreturn_t ret = IRQ_NONE;
1687
1688 while (true) {
1689 iir = I915_READ(VLV_IIR);
1690 gt_iir = I915_READ(GTIIR);
1691 pm_iir = I915_READ(GEN6_PMIIR);
1692
1693 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1694 goto out;
1695
1696 ret = IRQ_HANDLED;
1697
1698 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1699
1700 valleyview_pipestat_irq_handler(dev, iir);
1701
1702 /* Consume port. Then clear IIR or we'll miss events */
1703 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1704 i9xx_hpd_irq_handler(dev);
1705
1706 if (pm_iir)
1707 gen6_rps_irq_handler(dev_priv, pm_iir);
1708
1709 I915_WRITE(GTIIR, gt_iir);
1710 I915_WRITE(GEN6_PMIIR, pm_iir);
1711 I915_WRITE(VLV_IIR, iir);
1712 }
1713
1714 out:
1715 return ret;
1716 }
1717
1718 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1719 {
1720 struct drm_i915_private *dev_priv = dev->dev_private;
1721 int pipe;
1722 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1723
1724 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1725
1726 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1727 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1728 SDE_AUDIO_POWER_SHIFT);
1729 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1730 port_name(port));
1731 }
1732
1733 if (pch_iir & SDE_AUX_MASK)
1734 dp_aux_irq_handler(dev);
1735
1736 if (pch_iir & SDE_GMBUS)
1737 gmbus_irq_handler(dev);
1738
1739 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1740 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1741
1742 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1743 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1744
1745 if (pch_iir & SDE_POISON)
1746 DRM_ERROR("PCH poison interrupt\n");
1747
1748 if (pch_iir & SDE_FDI_MASK)
1749 for_each_pipe(pipe)
1750 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1751 pipe_name(pipe),
1752 I915_READ(FDI_RX_IIR(pipe)));
1753
1754 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1755 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1756
1757 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1758 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1759
1760 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1761 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1762 false))
1763 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1764
1765 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1766 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1767 false))
1768 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1769 }
1770
1771 static void ivb_err_int_handler(struct drm_device *dev)
1772 {
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 u32 err_int = I915_READ(GEN7_ERR_INT);
1775 enum pipe pipe;
1776
1777 if (err_int & ERR_INT_POISON)
1778 DRM_ERROR("Poison interrupt\n");
1779
1780 for_each_pipe(pipe) {
1781 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1782 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1783 false))
1784 DRM_ERROR("Pipe %c FIFO underrun\n",
1785 pipe_name(pipe));
1786 }
1787
1788 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1789 if (IS_IVYBRIDGE(dev))
1790 ivb_pipe_crc_irq_handler(dev, pipe);
1791 else
1792 hsw_pipe_crc_irq_handler(dev, pipe);
1793 }
1794 }
1795
1796 I915_WRITE(GEN7_ERR_INT, err_int);
1797 }
1798
1799 static void cpt_serr_int_handler(struct drm_device *dev)
1800 {
1801 struct drm_i915_private *dev_priv = dev->dev_private;
1802 u32 serr_int = I915_READ(SERR_INT);
1803
1804 if (serr_int & SERR_INT_POISON)
1805 DRM_ERROR("PCH poison interrupt\n");
1806
1807 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1808 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1809 false))
1810 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1811
1812 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1813 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1814 false))
1815 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1816
1817 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1818 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1819 false))
1820 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1821
1822 I915_WRITE(SERR_INT, serr_int);
1823 }
1824
1825 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1826 {
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 int pipe;
1829 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1830
1831 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1832
1833 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1834 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1835 SDE_AUDIO_POWER_SHIFT_CPT);
1836 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1837 port_name(port));
1838 }
1839
1840 if (pch_iir & SDE_AUX_MASK_CPT)
1841 dp_aux_irq_handler(dev);
1842
1843 if (pch_iir & SDE_GMBUS_CPT)
1844 gmbus_irq_handler(dev);
1845
1846 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1847 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1848
1849 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1850 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1851
1852 if (pch_iir & SDE_FDI_MASK_CPT)
1853 for_each_pipe(pipe)
1854 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1855 pipe_name(pipe),
1856 I915_READ(FDI_RX_IIR(pipe)));
1857
1858 if (pch_iir & SDE_ERROR_CPT)
1859 cpt_serr_int_handler(dev);
1860 }
1861
1862 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1863 {
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 enum pipe pipe;
1866
1867 if (de_iir & DE_AUX_CHANNEL_A)
1868 dp_aux_irq_handler(dev);
1869
1870 if (de_iir & DE_GSE)
1871 intel_opregion_asle_intr(dev);
1872
1873 if (de_iir & DE_POISON)
1874 DRM_ERROR("Poison interrupt\n");
1875
1876 for_each_pipe(pipe) {
1877 if (de_iir & DE_PIPE_VBLANK(pipe))
1878 drm_handle_vblank(dev, pipe);
1879
1880 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1881 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1882 DRM_ERROR("Pipe %c FIFO underrun\n",
1883 pipe_name(pipe));
1884
1885 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1886 i9xx_pipe_crc_irq_handler(dev, pipe);
1887
1888 /* plane/pipes map 1:1 on ilk+ */
1889 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1890 intel_prepare_page_flip(dev, pipe);
1891 intel_finish_page_flip_plane(dev, pipe);
1892 }
1893 }
1894
1895 /* check event from PCH */
1896 if (de_iir & DE_PCH_EVENT) {
1897 u32 pch_iir = I915_READ(SDEIIR);
1898
1899 if (HAS_PCH_CPT(dev))
1900 cpt_irq_handler(dev, pch_iir);
1901 else
1902 ibx_irq_handler(dev, pch_iir);
1903
1904 /* should clear PCH hotplug event before clear CPU irq */
1905 I915_WRITE(SDEIIR, pch_iir);
1906 }
1907
1908 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1909 ironlake_rps_change_irq_handler(dev);
1910 }
1911
1912 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1913 {
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915 enum pipe pipe;
1916
1917 if (de_iir & DE_ERR_INT_IVB)
1918 ivb_err_int_handler(dev);
1919
1920 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1921 dp_aux_irq_handler(dev);
1922
1923 if (de_iir & DE_GSE_IVB)
1924 intel_opregion_asle_intr(dev);
1925
1926 for_each_pipe(pipe) {
1927 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1928 drm_handle_vblank(dev, pipe);
1929
1930 /* plane/pipes map 1:1 on ilk+ */
1931 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1932 intel_prepare_page_flip(dev, pipe);
1933 intel_finish_page_flip_plane(dev, pipe);
1934 }
1935 }
1936
1937 /* check event from PCH */
1938 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1939 u32 pch_iir = I915_READ(SDEIIR);
1940
1941 cpt_irq_handler(dev, pch_iir);
1942
1943 /* clear PCH hotplug event before clear CPU irq */
1944 I915_WRITE(SDEIIR, pch_iir);
1945 }
1946 }
1947
1948 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1949 {
1950 struct drm_device *dev = (struct drm_device *) arg;
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1953 irqreturn_t ret = IRQ_NONE;
1954
1955 /* We get interrupts on unclaimed registers, so check for this before we
1956 * do any I915_{READ,WRITE}. */
1957 intel_uncore_check_errors(dev);
1958
1959 /* disable master interrupt before clearing iir */
1960 de_ier = I915_READ(DEIER);
1961 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1962 POSTING_READ(DEIER);
1963
1964 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1965 * interrupts will will be stored on its back queue, and then we'll be
1966 * able to process them after we restore SDEIER (as soon as we restore
1967 * it, we'll get an interrupt if SDEIIR still has something to process
1968 * due to its back queue). */
1969 if (!HAS_PCH_NOP(dev)) {
1970 sde_ier = I915_READ(SDEIER);
1971 I915_WRITE(SDEIER, 0);
1972 POSTING_READ(SDEIER);
1973 }
1974
1975 gt_iir = I915_READ(GTIIR);
1976 if (gt_iir) {
1977 if (INTEL_INFO(dev)->gen >= 6)
1978 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1979 else
1980 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1981 I915_WRITE(GTIIR, gt_iir);
1982 ret = IRQ_HANDLED;
1983 }
1984
1985 de_iir = I915_READ(DEIIR);
1986 if (de_iir) {
1987 if (INTEL_INFO(dev)->gen >= 7)
1988 ivb_display_irq_handler(dev, de_iir);
1989 else
1990 ilk_display_irq_handler(dev, de_iir);
1991 I915_WRITE(DEIIR, de_iir);
1992 ret = IRQ_HANDLED;
1993 }
1994
1995 if (INTEL_INFO(dev)->gen >= 6) {
1996 u32 pm_iir = I915_READ(GEN6_PMIIR);
1997 if (pm_iir) {
1998 gen6_rps_irq_handler(dev_priv, pm_iir);
1999 I915_WRITE(GEN6_PMIIR, pm_iir);
2000 ret = IRQ_HANDLED;
2001 }
2002 }
2003
2004 I915_WRITE(DEIER, de_ier);
2005 POSTING_READ(DEIER);
2006 if (!HAS_PCH_NOP(dev)) {
2007 I915_WRITE(SDEIER, sde_ier);
2008 POSTING_READ(SDEIER);
2009 }
2010
2011 return ret;
2012 }
2013
2014 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2015 {
2016 struct drm_device *dev = arg;
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 u32 master_ctl;
2019 irqreturn_t ret = IRQ_NONE;
2020 uint32_t tmp = 0;
2021 enum pipe pipe;
2022
2023 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2024 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2025 if (!master_ctl)
2026 return IRQ_NONE;
2027
2028 I915_WRITE(GEN8_MASTER_IRQ, 0);
2029 POSTING_READ(GEN8_MASTER_IRQ);
2030
2031 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2032
2033 if (master_ctl & GEN8_DE_MISC_IRQ) {
2034 tmp = I915_READ(GEN8_DE_MISC_IIR);
2035 if (tmp & GEN8_DE_MISC_GSE)
2036 intel_opregion_asle_intr(dev);
2037 else if (tmp)
2038 DRM_ERROR("Unexpected DE Misc interrupt\n");
2039 else
2040 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2041
2042 if (tmp) {
2043 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2044 ret = IRQ_HANDLED;
2045 }
2046 }
2047
2048 if (master_ctl & GEN8_DE_PORT_IRQ) {
2049 tmp = I915_READ(GEN8_DE_PORT_IIR);
2050 if (tmp & GEN8_AUX_CHANNEL_A)
2051 dp_aux_irq_handler(dev);
2052 else if (tmp)
2053 DRM_ERROR("Unexpected DE Port interrupt\n");
2054 else
2055 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2056
2057 if (tmp) {
2058 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2059 ret = IRQ_HANDLED;
2060 }
2061 }
2062
2063 for_each_pipe(pipe) {
2064 uint32_t pipe_iir;
2065
2066 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2067 continue;
2068
2069 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2070 if (pipe_iir & GEN8_PIPE_VBLANK)
2071 drm_handle_vblank(dev, pipe);
2072
2073 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2074 intel_prepare_page_flip(dev, pipe);
2075 intel_finish_page_flip_plane(dev, pipe);
2076 }
2077
2078 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2079 hsw_pipe_crc_irq_handler(dev, pipe);
2080
2081 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2082 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2083 false))
2084 DRM_ERROR("Pipe %c FIFO underrun\n",
2085 pipe_name(pipe));
2086 }
2087
2088 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2089 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2090 pipe_name(pipe),
2091 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2092 }
2093
2094 if (pipe_iir) {
2095 ret = IRQ_HANDLED;
2096 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2097 } else
2098 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2099 }
2100
2101 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2102 /*
2103 * FIXME(BDW): Assume for now that the new interrupt handling
2104 * scheme also closed the SDE interrupt handling race we've seen
2105 * on older pch-split platforms. But this needs testing.
2106 */
2107 u32 pch_iir = I915_READ(SDEIIR);
2108
2109 cpt_irq_handler(dev, pch_iir);
2110
2111 if (pch_iir) {
2112 I915_WRITE(SDEIIR, pch_iir);
2113 ret = IRQ_HANDLED;
2114 }
2115 }
2116
2117 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2118 POSTING_READ(GEN8_MASTER_IRQ);
2119
2120 return ret;
2121 }
2122
2123 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2124 bool reset_completed)
2125 {
2126 struct intel_ring_buffer *ring;
2127 int i;
2128
2129 /*
2130 * Notify all waiters for GPU completion events that reset state has
2131 * been changed, and that they need to restart their wait after
2132 * checking for potential errors (and bail out to drop locks if there is
2133 * a gpu reset pending so that i915_error_work_func can acquire them).
2134 */
2135
2136 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2137 for_each_ring(ring, dev_priv, i)
2138 wake_up_all(&ring->irq_queue);
2139
2140 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2141 wake_up_all(&dev_priv->pending_flip_queue);
2142
2143 /*
2144 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2145 * reset state is cleared.
2146 */
2147 if (reset_completed)
2148 wake_up_all(&dev_priv->gpu_error.reset_queue);
2149 }
2150
2151 /**
2152 * i915_error_work_func - do process context error handling work
2153 * @work: work struct
2154 *
2155 * Fire an error uevent so userspace can see that a hang or error
2156 * was detected.
2157 */
2158 static void i915_error_work_func(struct work_struct *work)
2159 {
2160 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2161 work);
2162 struct drm_i915_private *dev_priv =
2163 container_of(error, struct drm_i915_private, gpu_error);
2164 struct drm_device *dev = dev_priv->dev;
2165 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2166 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2167 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2168 int ret;
2169
2170 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2171
2172 /*
2173 * Note that there's only one work item which does gpu resets, so we
2174 * need not worry about concurrent gpu resets potentially incrementing
2175 * error->reset_counter twice. We only need to take care of another
2176 * racing irq/hangcheck declaring the gpu dead for a second time. A
2177 * quick check for that is good enough: schedule_work ensures the
2178 * correct ordering between hang detection and this work item, and since
2179 * the reset in-progress bit is only ever set by code outside of this
2180 * work we don't need to worry about any other races.
2181 */
2182 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2183 DRM_DEBUG_DRIVER("resetting chip\n");
2184 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2185 reset_event);
2186
2187 /*
2188 * All state reset _must_ be completed before we update the
2189 * reset counter, for otherwise waiters might miss the reset
2190 * pending state and not properly drop locks, resulting in
2191 * deadlocks with the reset work.
2192 */
2193 ret = i915_reset(dev);
2194
2195 intel_display_handle_reset(dev);
2196
2197 if (ret == 0) {
2198 /*
2199 * After all the gem state is reset, increment the reset
2200 * counter and wake up everyone waiting for the reset to
2201 * complete.
2202 *
2203 * Since unlock operations are a one-sided barrier only,
2204 * we need to insert a barrier here to order any seqno
2205 * updates before
2206 * the counter increment.
2207 */
2208 smp_mb__before_atomic_inc();
2209 atomic_inc(&dev_priv->gpu_error.reset_counter);
2210
2211 kobject_uevent_env(&dev->primary->kdev->kobj,
2212 KOBJ_CHANGE, reset_done_event);
2213 } else {
2214 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2215 }
2216
2217 /*
2218 * Note: The wake_up also serves as a memory barrier so that
2219 * waiters see the update value of the reset counter atomic_t.
2220 */
2221 i915_error_wake_up(dev_priv, true);
2222 }
2223 }
2224
2225 static void i915_report_and_clear_eir(struct drm_device *dev)
2226 {
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228 uint32_t instdone[I915_NUM_INSTDONE_REG];
2229 u32 eir = I915_READ(EIR);
2230 int pipe, i;
2231
2232 if (!eir)
2233 return;
2234
2235 pr_err("render error detected, EIR: 0x%08x\n", eir);
2236
2237 i915_get_extra_instdone(dev, instdone);
2238
2239 if (IS_G4X(dev)) {
2240 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2241 u32 ipeir = I915_READ(IPEIR_I965);
2242
2243 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2244 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2245 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2246 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2247 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2248 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2249 I915_WRITE(IPEIR_I965, ipeir);
2250 POSTING_READ(IPEIR_I965);
2251 }
2252 if (eir & GM45_ERROR_PAGE_TABLE) {
2253 u32 pgtbl_err = I915_READ(PGTBL_ER);
2254 pr_err("page table error\n");
2255 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2256 I915_WRITE(PGTBL_ER, pgtbl_err);
2257 POSTING_READ(PGTBL_ER);
2258 }
2259 }
2260
2261 if (!IS_GEN2(dev)) {
2262 if (eir & I915_ERROR_PAGE_TABLE) {
2263 u32 pgtbl_err = I915_READ(PGTBL_ER);
2264 pr_err("page table error\n");
2265 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2266 I915_WRITE(PGTBL_ER, pgtbl_err);
2267 POSTING_READ(PGTBL_ER);
2268 }
2269 }
2270
2271 if (eir & I915_ERROR_MEMORY_REFRESH) {
2272 pr_err("memory refresh error:\n");
2273 for_each_pipe(pipe)
2274 pr_err("pipe %c stat: 0x%08x\n",
2275 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2276 /* pipestat has already been acked */
2277 }
2278 if (eir & I915_ERROR_INSTRUCTION) {
2279 pr_err("instruction error\n");
2280 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2281 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2282 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2283 if (INTEL_INFO(dev)->gen < 4) {
2284 u32 ipeir = I915_READ(IPEIR);
2285
2286 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2287 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2288 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2289 I915_WRITE(IPEIR, ipeir);
2290 POSTING_READ(IPEIR);
2291 } else {
2292 u32 ipeir = I915_READ(IPEIR_I965);
2293
2294 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2295 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2296 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2297 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2298 I915_WRITE(IPEIR_I965, ipeir);
2299 POSTING_READ(IPEIR_I965);
2300 }
2301 }
2302
2303 I915_WRITE(EIR, eir);
2304 POSTING_READ(EIR);
2305 eir = I915_READ(EIR);
2306 if (eir) {
2307 /*
2308 * some errors might have become stuck,
2309 * mask them.
2310 */
2311 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2312 I915_WRITE(EMR, I915_READ(EMR) | eir);
2313 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2314 }
2315 }
2316
2317 /**
2318 * i915_handle_error - handle an error interrupt
2319 * @dev: drm device
2320 *
2321 * Do some basic checking of regsiter state at error interrupt time and
2322 * dump it to the syslog. Also call i915_capture_error_state() to make
2323 * sure we get a record and make it available in debugfs. Fire a uevent
2324 * so userspace knows something bad happened (should trigger collection
2325 * of a ring dump etc.).
2326 */
2327 void i915_handle_error(struct drm_device *dev, bool wedged,
2328 const char *fmt, ...)
2329 {
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 va_list args;
2332 char error_msg[80];
2333
2334 va_start(args, fmt);
2335 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2336 va_end(args);
2337
2338 i915_capture_error_state(dev, wedged, error_msg);
2339 i915_report_and_clear_eir(dev);
2340
2341 if (wedged) {
2342 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2343 &dev_priv->gpu_error.reset_counter);
2344
2345 /*
2346 * Wakeup waiting processes so that the reset work function
2347 * i915_error_work_func doesn't deadlock trying to grab various
2348 * locks. By bumping the reset counter first, the woken
2349 * processes will see a reset in progress and back off,
2350 * releasing their locks and then wait for the reset completion.
2351 * We must do this for _all_ gpu waiters that might hold locks
2352 * that the reset work needs to acquire.
2353 *
2354 * Note: The wake_up serves as the required memory barrier to
2355 * ensure that the waiters see the updated value of the reset
2356 * counter atomic_t.
2357 */
2358 i915_error_wake_up(dev_priv, false);
2359 }
2360
2361 /*
2362 * Our reset work can grab modeset locks (since it needs to reset the
2363 * state of outstanding pagelips). Hence it must not be run on our own
2364 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2365 * code will deadlock.
2366 */
2367 schedule_work(&dev_priv->gpu_error.work);
2368 }
2369
2370 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2371 {
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2375 struct drm_i915_gem_object *obj;
2376 struct intel_unpin_work *work;
2377 unsigned long flags;
2378 bool stall_detected;
2379
2380 /* Ignore early vblank irqs */
2381 if (intel_crtc == NULL)
2382 return;
2383
2384 spin_lock_irqsave(&dev->event_lock, flags);
2385 work = intel_crtc->unpin_work;
2386
2387 if (work == NULL ||
2388 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2389 !work->enable_stall_check) {
2390 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2391 spin_unlock_irqrestore(&dev->event_lock, flags);
2392 return;
2393 }
2394
2395 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2396 obj = work->pending_flip_obj;
2397 if (INTEL_INFO(dev)->gen >= 4) {
2398 int dspsurf = DSPSURF(intel_crtc->plane);
2399 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2400 i915_gem_obj_ggtt_offset(obj);
2401 } else {
2402 int dspaddr = DSPADDR(intel_crtc->plane);
2403 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2404 crtc->y * crtc->primary->fb->pitches[0] +
2405 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2406 }
2407
2408 spin_unlock_irqrestore(&dev->event_lock, flags);
2409
2410 if (stall_detected) {
2411 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2412 intel_prepare_page_flip(dev, intel_crtc->plane);
2413 }
2414 }
2415
2416 /* Called from drm generic code, passed 'crtc' which
2417 * we use as a pipe index
2418 */
2419 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2420 {
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 unsigned long irqflags;
2423
2424 if (!i915_pipe_enabled(dev, pipe))
2425 return -EINVAL;
2426
2427 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2428 if (INTEL_INFO(dev)->gen >= 4)
2429 i915_enable_pipestat(dev_priv, pipe,
2430 PIPE_START_VBLANK_INTERRUPT_STATUS);
2431 else
2432 i915_enable_pipestat(dev_priv, pipe,
2433 PIPE_VBLANK_INTERRUPT_STATUS);
2434
2435 /* maintain vblank delivery even in deep C-states */
2436 if (INTEL_INFO(dev)->gen == 3)
2437 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2438 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2439
2440 return 0;
2441 }
2442
2443 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2444 {
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446 unsigned long irqflags;
2447 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2448 DE_PIPE_VBLANK(pipe);
2449
2450 if (!i915_pipe_enabled(dev, pipe))
2451 return -EINVAL;
2452
2453 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2454 ironlake_enable_display_irq(dev_priv, bit);
2455 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2456
2457 return 0;
2458 }
2459
2460 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2461 {
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 unsigned long irqflags;
2464
2465 if (!i915_pipe_enabled(dev, pipe))
2466 return -EINVAL;
2467
2468 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2469 i915_enable_pipestat(dev_priv, pipe,
2470 PIPE_START_VBLANK_INTERRUPT_STATUS);
2471 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2472
2473 return 0;
2474 }
2475
2476 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2477 {
2478 struct drm_i915_private *dev_priv = dev->dev_private;
2479 unsigned long irqflags;
2480
2481 if (!i915_pipe_enabled(dev, pipe))
2482 return -EINVAL;
2483
2484 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2485 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2486 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2487 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2488 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2489 return 0;
2490 }
2491
2492 /* Called from drm generic code, passed 'crtc' which
2493 * we use as a pipe index
2494 */
2495 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2496 {
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 unsigned long irqflags;
2499
2500 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2501 if (INTEL_INFO(dev)->gen == 3)
2502 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2503
2504 i915_disable_pipestat(dev_priv, pipe,
2505 PIPE_VBLANK_INTERRUPT_STATUS |
2506 PIPE_START_VBLANK_INTERRUPT_STATUS);
2507 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2508 }
2509
2510 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2511 {
2512 struct drm_i915_private *dev_priv = dev->dev_private;
2513 unsigned long irqflags;
2514 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2515 DE_PIPE_VBLANK(pipe);
2516
2517 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2518 ironlake_disable_display_irq(dev_priv, bit);
2519 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2520 }
2521
2522 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2523 {
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 unsigned long irqflags;
2526
2527 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2528 i915_disable_pipestat(dev_priv, pipe,
2529 PIPE_START_VBLANK_INTERRUPT_STATUS);
2530 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2531 }
2532
2533 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2534 {
2535 struct drm_i915_private *dev_priv = dev->dev_private;
2536 unsigned long irqflags;
2537
2538 if (!i915_pipe_enabled(dev, pipe))
2539 return;
2540
2541 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2542 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2543 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2544 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2545 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2546 }
2547
2548 static u32
2549 ring_last_seqno(struct intel_ring_buffer *ring)
2550 {
2551 return list_entry(ring->request_list.prev,
2552 struct drm_i915_gem_request, list)->seqno;
2553 }
2554
2555 static bool
2556 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2557 {
2558 return (list_empty(&ring->request_list) ||
2559 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2560 }
2561
2562 static bool
2563 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2564 {
2565 if (INTEL_INFO(dev)->gen >= 8) {
2566 /*
2567 * FIXME: gen8 semaphore support - currently we don't emit
2568 * semaphores on bdw anyway, but this needs to be addressed when
2569 * we merge that code.
2570 */
2571 return false;
2572 } else {
2573 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2574 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2575 MI_SEMAPHORE_REGISTER);
2576 }
2577 }
2578
2579 static struct intel_ring_buffer *
2580 semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2581 {
2582 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2583 struct intel_ring_buffer *signaller;
2584 int i;
2585
2586 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2587 /*
2588 * FIXME: gen8 semaphore support - currently we don't emit
2589 * semaphores on bdw anyway, but this needs to be addressed when
2590 * we merge that code.
2591 */
2592 return NULL;
2593 } else {
2594 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2595
2596 for_each_ring(signaller, dev_priv, i) {
2597 if(ring == signaller)
2598 continue;
2599
2600 if (sync_bits ==
2601 signaller->semaphore_register[ring->id])
2602 return signaller;
2603 }
2604 }
2605
2606 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2607 ring->id, ipehr);
2608
2609 return NULL;
2610 }
2611
2612 static struct intel_ring_buffer *
2613 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2614 {
2615 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2616 u32 cmd, ipehr, head;
2617 int i;
2618
2619 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2620 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2621 return NULL;
2622
2623 /*
2624 * HEAD is likely pointing to the dword after the actual command,
2625 * so scan backwards until we find the MBOX. But limit it to just 3
2626 * dwords. Note that we don't care about ACTHD here since that might
2627 * point at at batch, and semaphores are always emitted into the
2628 * ringbuffer itself.
2629 */
2630 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2631
2632 for (i = 4; i; --i) {
2633 /*
2634 * Be paranoid and presume the hw has gone off into the wild -
2635 * our ring is smaller than what the hardware (and hence
2636 * HEAD_ADDR) allows. Also handles wrap-around.
2637 */
2638 head &= ring->size - 1;
2639
2640 /* This here seems to blow up */
2641 cmd = ioread32(ring->virtual_start + head);
2642 if (cmd == ipehr)
2643 break;
2644
2645 head -= 4;
2646 }
2647
2648 if (!i)
2649 return NULL;
2650
2651 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2652 return semaphore_wait_to_signaller_ring(ring, ipehr);
2653 }
2654
2655 static int semaphore_passed(struct intel_ring_buffer *ring)
2656 {
2657 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2658 struct intel_ring_buffer *signaller;
2659 u32 seqno, ctl;
2660
2661 ring->hangcheck.deadlock = true;
2662
2663 signaller = semaphore_waits_for(ring, &seqno);
2664 if (signaller == NULL || signaller->hangcheck.deadlock)
2665 return -1;
2666
2667 /* cursory check for an unkickable deadlock */
2668 ctl = I915_READ_CTL(signaller);
2669 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2670 return -1;
2671
2672 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2673 }
2674
2675 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2676 {
2677 struct intel_ring_buffer *ring;
2678 int i;
2679
2680 for_each_ring(ring, dev_priv, i)
2681 ring->hangcheck.deadlock = false;
2682 }
2683
2684 static enum intel_ring_hangcheck_action
2685 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2686 {
2687 struct drm_device *dev = ring->dev;
2688 struct drm_i915_private *dev_priv = dev->dev_private;
2689 u32 tmp;
2690
2691 if (ring->hangcheck.acthd != acthd)
2692 return HANGCHECK_ACTIVE;
2693
2694 if (IS_GEN2(dev))
2695 return HANGCHECK_HUNG;
2696
2697 /* Is the chip hanging on a WAIT_FOR_EVENT?
2698 * If so we can simply poke the RB_WAIT bit
2699 * and break the hang. This should work on
2700 * all but the second generation chipsets.
2701 */
2702 tmp = I915_READ_CTL(ring);
2703 if (tmp & RING_WAIT) {
2704 i915_handle_error(dev, false,
2705 "Kicking stuck wait on %s",
2706 ring->name);
2707 I915_WRITE_CTL(ring, tmp);
2708 return HANGCHECK_KICK;
2709 }
2710
2711 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2712 switch (semaphore_passed(ring)) {
2713 default:
2714 return HANGCHECK_HUNG;
2715 case 1:
2716 i915_handle_error(dev, false,
2717 "Kicking stuck semaphore on %s",
2718 ring->name);
2719 I915_WRITE_CTL(ring, tmp);
2720 return HANGCHECK_KICK;
2721 case 0:
2722 return HANGCHECK_WAIT;
2723 }
2724 }
2725
2726 return HANGCHECK_HUNG;
2727 }
2728
2729 /**
2730 * This is called when the chip hasn't reported back with completed
2731 * batchbuffers in a long time. We keep track per ring seqno progress and
2732 * if there are no progress, hangcheck score for that ring is increased.
2733 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2734 * we kick the ring. If we see no progress on three subsequent calls
2735 * we assume chip is wedged and try to fix it by resetting the chip.
2736 */
2737 static void i915_hangcheck_elapsed(unsigned long data)
2738 {
2739 struct drm_device *dev = (struct drm_device *)data;
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 struct intel_ring_buffer *ring;
2742 int i;
2743 int busy_count = 0, rings_hung = 0;
2744 bool stuck[I915_NUM_RINGS] = { 0 };
2745 #define BUSY 1
2746 #define KICK 5
2747 #define HUNG 20
2748
2749 if (!i915.enable_hangcheck)
2750 return;
2751
2752 for_each_ring(ring, dev_priv, i) {
2753 u64 acthd;
2754 u32 seqno;
2755 bool busy = true;
2756
2757 semaphore_clear_deadlocks(dev_priv);
2758
2759 seqno = ring->get_seqno(ring, false);
2760 acthd = intel_ring_get_active_head(ring);
2761
2762 if (ring->hangcheck.seqno == seqno) {
2763 if (ring_idle(ring, seqno)) {
2764 ring->hangcheck.action = HANGCHECK_IDLE;
2765
2766 if (waitqueue_active(&ring->irq_queue)) {
2767 /* Issue a wake-up to catch stuck h/w. */
2768 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2769 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2770 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2771 ring->name);
2772 else
2773 DRM_INFO("Fake missed irq on %s\n",
2774 ring->name);
2775 wake_up_all(&ring->irq_queue);
2776 }
2777 /* Safeguard against driver failure */
2778 ring->hangcheck.score += BUSY;
2779 } else
2780 busy = false;
2781 } else {
2782 /* We always increment the hangcheck score
2783 * if the ring is busy and still processing
2784 * the same request, so that no single request
2785 * can run indefinitely (such as a chain of
2786 * batches). The only time we do not increment
2787 * the hangcheck score on this ring, if this
2788 * ring is in a legitimate wait for another
2789 * ring. In that case the waiting ring is a
2790 * victim and we want to be sure we catch the
2791 * right culprit. Then every time we do kick
2792 * the ring, add a small increment to the
2793 * score so that we can catch a batch that is
2794 * being repeatedly kicked and so responsible
2795 * for stalling the machine.
2796 */
2797 ring->hangcheck.action = ring_stuck(ring,
2798 acthd);
2799
2800 switch (ring->hangcheck.action) {
2801 case HANGCHECK_IDLE:
2802 case HANGCHECK_WAIT:
2803 break;
2804 case HANGCHECK_ACTIVE:
2805 ring->hangcheck.score += BUSY;
2806 break;
2807 case HANGCHECK_KICK:
2808 ring->hangcheck.score += KICK;
2809 break;
2810 case HANGCHECK_HUNG:
2811 ring->hangcheck.score += HUNG;
2812 stuck[i] = true;
2813 break;
2814 }
2815 }
2816 } else {
2817 ring->hangcheck.action = HANGCHECK_ACTIVE;
2818
2819 /* Gradually reduce the count so that we catch DoS
2820 * attempts across multiple batches.
2821 */
2822 if (ring->hangcheck.score > 0)
2823 ring->hangcheck.score--;
2824 }
2825
2826 ring->hangcheck.seqno = seqno;
2827 ring->hangcheck.acthd = acthd;
2828 busy_count += busy;
2829 }
2830
2831 for_each_ring(ring, dev_priv, i) {
2832 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2833 DRM_INFO("%s on %s\n",
2834 stuck[i] ? "stuck" : "no progress",
2835 ring->name);
2836 rings_hung++;
2837 }
2838 }
2839
2840 if (rings_hung)
2841 return i915_handle_error(dev, true, "Ring hung");
2842
2843 if (busy_count)
2844 /* Reset timer case chip hangs without another request
2845 * being added */
2846 i915_queue_hangcheck(dev);
2847 }
2848
2849 void i915_queue_hangcheck(struct drm_device *dev)
2850 {
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852 if (!i915.enable_hangcheck)
2853 return;
2854
2855 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2856 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2857 }
2858
2859 static void ibx_irq_reset(struct drm_device *dev)
2860 {
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862
2863 if (HAS_PCH_NOP(dev))
2864 return;
2865
2866 GEN5_IRQ_RESET(SDE);
2867
2868 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2869 I915_WRITE(SERR_INT, 0xffffffff);
2870 }
2871
2872 /*
2873 * SDEIER is also touched by the interrupt handler to work around missed PCH
2874 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2875 * instead we unconditionally enable all PCH interrupt sources here, but then
2876 * only unmask them as needed with SDEIMR.
2877 *
2878 * This function needs to be called before interrupts are enabled.
2879 */
2880 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2881 {
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883
2884 if (HAS_PCH_NOP(dev))
2885 return;
2886
2887 WARN_ON(I915_READ(SDEIER) != 0);
2888 I915_WRITE(SDEIER, 0xffffffff);
2889 POSTING_READ(SDEIER);
2890 }
2891
2892 static void gen5_gt_irq_reset(struct drm_device *dev)
2893 {
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895
2896 GEN5_IRQ_RESET(GT);
2897 if (INTEL_INFO(dev)->gen >= 6)
2898 GEN5_IRQ_RESET(GEN6_PM);
2899 }
2900
2901 /* drm_dma.h hooks
2902 */
2903 static void ironlake_irq_reset(struct drm_device *dev)
2904 {
2905 struct drm_i915_private *dev_priv = dev->dev_private;
2906
2907 I915_WRITE(HWSTAM, 0xffffffff);
2908
2909 GEN5_IRQ_RESET(DE);
2910 if (IS_GEN7(dev))
2911 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2912
2913 gen5_gt_irq_reset(dev);
2914
2915 ibx_irq_reset(dev);
2916 }
2917
2918 static void ironlake_irq_preinstall(struct drm_device *dev)
2919 {
2920 ironlake_irq_reset(dev);
2921 }
2922
2923 static void valleyview_irq_preinstall(struct drm_device *dev)
2924 {
2925 struct drm_i915_private *dev_priv = dev->dev_private;
2926 int pipe;
2927
2928 /* VLV magic */
2929 I915_WRITE(VLV_IMR, 0);
2930 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2931 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2932 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2933
2934 /* and GT */
2935 I915_WRITE(GTIIR, I915_READ(GTIIR));
2936 I915_WRITE(GTIIR, I915_READ(GTIIR));
2937
2938 gen5_gt_irq_reset(dev);
2939
2940 I915_WRITE(DPINVGTT, 0xff);
2941
2942 I915_WRITE(PORT_HOTPLUG_EN, 0);
2943 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2944 for_each_pipe(pipe)
2945 I915_WRITE(PIPESTAT(pipe), 0xffff);
2946 I915_WRITE(VLV_IIR, 0xffffffff);
2947 I915_WRITE(VLV_IMR, 0xffffffff);
2948 I915_WRITE(VLV_IER, 0x0);
2949 POSTING_READ(VLV_IER);
2950 }
2951
2952 static void gen8_irq_reset(struct drm_device *dev)
2953 {
2954 struct drm_i915_private *dev_priv = dev->dev_private;
2955 int pipe;
2956
2957 I915_WRITE(GEN8_MASTER_IRQ, 0);
2958 POSTING_READ(GEN8_MASTER_IRQ);
2959
2960 GEN8_IRQ_RESET_NDX(GT, 0);
2961 GEN8_IRQ_RESET_NDX(GT, 1);
2962 GEN8_IRQ_RESET_NDX(GT, 2);
2963 GEN8_IRQ_RESET_NDX(GT, 3);
2964
2965 for_each_pipe(pipe)
2966 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2967
2968 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2969 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2970 GEN5_IRQ_RESET(GEN8_PCU_);
2971
2972 ibx_irq_reset(dev);
2973 }
2974
2975 static void gen8_irq_preinstall(struct drm_device *dev)
2976 {
2977 gen8_irq_reset(dev);
2978 }
2979
2980 static void ibx_hpd_irq_setup(struct drm_device *dev)
2981 {
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2983 struct drm_mode_config *mode_config = &dev->mode_config;
2984 struct intel_encoder *intel_encoder;
2985 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2986
2987 if (HAS_PCH_IBX(dev)) {
2988 hotplug_irqs = SDE_HOTPLUG_MASK;
2989 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2990 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2991 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2992 } else {
2993 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2994 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2995 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2996 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2997 }
2998
2999 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3000
3001 /*
3002 * Enable digital hotplug on the PCH, and configure the DP short pulse
3003 * duration to 2ms (which is the minimum in the Display Port spec)
3004 *
3005 * This register is the same on all known PCH chips.
3006 */
3007 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3008 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3009 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3010 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3011 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3012 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3013 }
3014
3015 static void ibx_irq_postinstall(struct drm_device *dev)
3016 {
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 u32 mask;
3019
3020 if (HAS_PCH_NOP(dev))
3021 return;
3022
3023 if (HAS_PCH_IBX(dev))
3024 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3025 else
3026 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3027
3028 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3029 I915_WRITE(SDEIMR, ~mask);
3030 }
3031
3032 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3033 {
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 u32 pm_irqs, gt_irqs;
3036
3037 pm_irqs = gt_irqs = 0;
3038
3039 dev_priv->gt_irq_mask = ~0;
3040 if (HAS_L3_DPF(dev)) {
3041 /* L3 parity interrupt is always unmasked. */
3042 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3043 gt_irqs |= GT_PARITY_ERROR(dev);
3044 }
3045
3046 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3047 if (IS_GEN5(dev)) {
3048 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3049 ILK_BSD_USER_INTERRUPT;
3050 } else {
3051 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3052 }
3053
3054 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3055
3056 if (INTEL_INFO(dev)->gen >= 6) {
3057 pm_irqs |= dev_priv->pm_rps_events;
3058
3059 if (HAS_VEBOX(dev))
3060 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3061
3062 dev_priv->pm_irq_mask = 0xffffffff;
3063 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3064 }
3065 }
3066
3067 static int ironlake_irq_postinstall(struct drm_device *dev)
3068 {
3069 unsigned long irqflags;
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071 u32 display_mask, extra_mask;
3072
3073 if (INTEL_INFO(dev)->gen >= 7) {
3074 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3075 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3076 DE_PLANEB_FLIP_DONE_IVB |
3077 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3078 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3079 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3080 } else {
3081 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3082 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3083 DE_AUX_CHANNEL_A |
3084 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3085 DE_POISON);
3086 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3087 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3088 }
3089
3090 dev_priv->irq_mask = ~display_mask;
3091
3092 I915_WRITE(HWSTAM, 0xeffe);
3093
3094 ibx_irq_pre_postinstall(dev);
3095
3096 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3097
3098 gen5_gt_irq_postinstall(dev);
3099
3100 ibx_irq_postinstall(dev);
3101
3102 if (IS_IRONLAKE_M(dev)) {
3103 /* Enable PCU event interrupts
3104 *
3105 * spinlocking not required here for correctness since interrupt
3106 * setup is guaranteed to run in single-threaded context. But we
3107 * need it to make the assert_spin_locked happy. */
3108 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3109 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3110 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3111 }
3112
3113 return 0;
3114 }
3115
3116 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3117 {
3118 u32 pipestat_mask;
3119 u32 iir_mask;
3120
3121 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3122 PIPE_FIFO_UNDERRUN_STATUS;
3123
3124 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3125 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3126 POSTING_READ(PIPESTAT(PIPE_A));
3127
3128 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3129 PIPE_CRC_DONE_INTERRUPT_STATUS;
3130
3131 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3132 PIPE_GMBUS_INTERRUPT_STATUS);
3133 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3134
3135 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3136 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3137 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3138 dev_priv->irq_mask &= ~iir_mask;
3139
3140 I915_WRITE(VLV_IIR, iir_mask);
3141 I915_WRITE(VLV_IIR, iir_mask);
3142 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3143 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3144 POSTING_READ(VLV_IER);
3145 }
3146
3147 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3148 {
3149 u32 pipestat_mask;
3150 u32 iir_mask;
3151
3152 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3153 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3154 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3155
3156 dev_priv->irq_mask |= iir_mask;
3157 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3158 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3159 I915_WRITE(VLV_IIR, iir_mask);
3160 I915_WRITE(VLV_IIR, iir_mask);
3161 POSTING_READ(VLV_IIR);
3162
3163 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3164 PIPE_CRC_DONE_INTERRUPT_STATUS;
3165
3166 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3167 PIPE_GMBUS_INTERRUPT_STATUS);
3168 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3169
3170 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3171 PIPE_FIFO_UNDERRUN_STATUS;
3172 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3173 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3174 POSTING_READ(PIPESTAT(PIPE_A));
3175 }
3176
3177 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3178 {
3179 assert_spin_locked(&dev_priv->irq_lock);
3180
3181 if (dev_priv->display_irqs_enabled)
3182 return;
3183
3184 dev_priv->display_irqs_enabled = true;
3185
3186 if (dev_priv->dev->irq_enabled)
3187 valleyview_display_irqs_install(dev_priv);
3188 }
3189
3190 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3191 {
3192 assert_spin_locked(&dev_priv->irq_lock);
3193
3194 if (!dev_priv->display_irqs_enabled)
3195 return;
3196
3197 dev_priv->display_irqs_enabled = false;
3198
3199 if (dev_priv->dev->irq_enabled)
3200 valleyview_display_irqs_uninstall(dev_priv);
3201 }
3202
3203 static int valleyview_irq_postinstall(struct drm_device *dev)
3204 {
3205 struct drm_i915_private *dev_priv = dev->dev_private;
3206 unsigned long irqflags;
3207
3208 dev_priv->irq_mask = ~0;
3209
3210 I915_WRITE(PORT_HOTPLUG_EN, 0);
3211 POSTING_READ(PORT_HOTPLUG_EN);
3212
3213 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3214 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3215 I915_WRITE(VLV_IIR, 0xffffffff);
3216 POSTING_READ(VLV_IER);
3217
3218 /* Interrupt setup is already guaranteed to be single-threaded, this is
3219 * just to make the assert_spin_locked check happy. */
3220 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3221 if (dev_priv->display_irqs_enabled)
3222 valleyview_display_irqs_install(dev_priv);
3223 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3224
3225 I915_WRITE(VLV_IIR, 0xffffffff);
3226 I915_WRITE(VLV_IIR, 0xffffffff);
3227
3228 gen5_gt_irq_postinstall(dev);
3229
3230 /* ack & enable invalid PTE error interrupts */
3231 #if 0 /* FIXME: add support to irq handler for checking these bits */
3232 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3233 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3234 #endif
3235
3236 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3237
3238 return 0;
3239 }
3240
3241 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3242 {
3243 int i;
3244
3245 /* These are interrupts we'll toggle with the ring mask register */
3246 uint32_t gt_interrupts[] = {
3247 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3248 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3249 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3250 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3251 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3252 0,
3253 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3254 };
3255
3256 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3257 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3258 }
3259
3260 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3261 {
3262 struct drm_device *dev = dev_priv->dev;
3263 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3264 GEN8_PIPE_CDCLK_CRC_DONE |
3265 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3266 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3267 GEN8_PIPE_FIFO_UNDERRUN;
3268 int pipe;
3269 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3270 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3271 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3272
3273 for_each_pipe(pipe)
3274 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3275 de_pipe_enables);
3276
3277 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3278 }
3279
3280 static int gen8_irq_postinstall(struct drm_device *dev)
3281 {
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283
3284 ibx_irq_pre_postinstall(dev);
3285
3286 gen8_gt_irq_postinstall(dev_priv);
3287 gen8_de_irq_postinstall(dev_priv);
3288
3289 ibx_irq_postinstall(dev);
3290
3291 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3292 POSTING_READ(GEN8_MASTER_IRQ);
3293
3294 return 0;
3295 }
3296
3297 static void gen8_irq_uninstall(struct drm_device *dev)
3298 {
3299 struct drm_i915_private *dev_priv = dev->dev_private;
3300
3301 if (!dev_priv)
3302 return;
3303
3304 intel_hpd_irq_uninstall(dev_priv);
3305
3306 gen8_irq_reset(dev);
3307 }
3308
3309 static void valleyview_irq_uninstall(struct drm_device *dev)
3310 {
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 unsigned long irqflags;
3313 int pipe;
3314
3315 if (!dev_priv)
3316 return;
3317
3318 intel_hpd_irq_uninstall(dev_priv);
3319
3320 for_each_pipe(pipe)
3321 I915_WRITE(PIPESTAT(pipe), 0xffff);
3322
3323 I915_WRITE(HWSTAM, 0xffffffff);
3324 I915_WRITE(PORT_HOTPLUG_EN, 0);
3325 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3326
3327 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328 if (dev_priv->display_irqs_enabled)
3329 valleyview_display_irqs_uninstall(dev_priv);
3330 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3331
3332 dev_priv->irq_mask = 0;
3333
3334 I915_WRITE(VLV_IIR, 0xffffffff);
3335 I915_WRITE(VLV_IMR, 0xffffffff);
3336 I915_WRITE(VLV_IER, 0x0);
3337 POSTING_READ(VLV_IER);
3338 }
3339
3340 static void ironlake_irq_uninstall(struct drm_device *dev)
3341 {
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343
3344 if (!dev_priv)
3345 return;
3346
3347 intel_hpd_irq_uninstall(dev_priv);
3348
3349 ironlake_irq_reset(dev);
3350 }
3351
3352 static void i8xx_irq_preinstall(struct drm_device * dev)
3353 {
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 int pipe;
3356
3357 for_each_pipe(pipe)
3358 I915_WRITE(PIPESTAT(pipe), 0);
3359 I915_WRITE16(IMR, 0xffff);
3360 I915_WRITE16(IER, 0x0);
3361 POSTING_READ16(IER);
3362 }
3363
3364 static int i8xx_irq_postinstall(struct drm_device *dev)
3365 {
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 unsigned long irqflags;
3368
3369 I915_WRITE16(EMR,
3370 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3371
3372 /* Unmask the interrupts that we always want on. */
3373 dev_priv->irq_mask =
3374 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3375 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3376 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3377 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3378 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3379 I915_WRITE16(IMR, dev_priv->irq_mask);
3380
3381 I915_WRITE16(IER,
3382 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3383 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3384 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3385 I915_USER_INTERRUPT);
3386 POSTING_READ16(IER);
3387
3388 /* Interrupt setup is already guaranteed to be single-threaded, this is
3389 * just to make the assert_spin_locked check happy. */
3390 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3391 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3392 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3393 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3394
3395 return 0;
3396 }
3397
3398 /*
3399 * Returns true when a page flip has completed.
3400 */
3401 static bool i8xx_handle_vblank(struct drm_device *dev,
3402 int plane, int pipe, u32 iir)
3403 {
3404 struct drm_i915_private *dev_priv = dev->dev_private;
3405 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3406
3407 if (!drm_handle_vblank(dev, pipe))
3408 return false;
3409
3410 if ((iir & flip_pending) == 0)
3411 return false;
3412
3413 intel_prepare_page_flip(dev, plane);
3414
3415 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3416 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3417 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3418 * the flip is completed (no longer pending). Since this doesn't raise
3419 * an interrupt per se, we watch for the change at vblank.
3420 */
3421 if (I915_READ16(ISR) & flip_pending)
3422 return false;
3423
3424 intel_finish_page_flip(dev, pipe);
3425
3426 return true;
3427 }
3428
3429 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3430 {
3431 struct drm_device *dev = (struct drm_device *) arg;
3432 struct drm_i915_private *dev_priv = dev->dev_private;
3433 u16 iir, new_iir;
3434 u32 pipe_stats[2];
3435 unsigned long irqflags;
3436 int pipe;
3437 u16 flip_mask =
3438 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3439 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3440
3441 iir = I915_READ16(IIR);
3442 if (iir == 0)
3443 return IRQ_NONE;
3444
3445 while (iir & ~flip_mask) {
3446 /* Can't rely on pipestat interrupt bit in iir as it might
3447 * have been cleared after the pipestat interrupt was received.
3448 * It doesn't set the bit in iir again, but it still produces
3449 * interrupts (for non-MSI).
3450 */
3451 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3452 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3453 i915_handle_error(dev, false,
3454 "Command parser error, iir 0x%08x",
3455 iir);
3456
3457 for_each_pipe(pipe) {
3458 int reg = PIPESTAT(pipe);
3459 pipe_stats[pipe] = I915_READ(reg);
3460
3461 /*
3462 * Clear the PIPE*STAT regs before the IIR
3463 */
3464 if (pipe_stats[pipe] & 0x8000ffff)
3465 I915_WRITE(reg, pipe_stats[pipe]);
3466 }
3467 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3468
3469 I915_WRITE16(IIR, iir & ~flip_mask);
3470 new_iir = I915_READ16(IIR); /* Flush posted writes */
3471
3472 i915_update_dri1_breadcrumb(dev);
3473
3474 if (iir & I915_USER_INTERRUPT)
3475 notify_ring(dev, &dev_priv->ring[RCS]);
3476
3477 for_each_pipe(pipe) {
3478 int plane = pipe;
3479 if (HAS_FBC(dev))
3480 plane = !plane;
3481
3482 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3483 i8xx_handle_vblank(dev, plane, pipe, iir))
3484 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3485
3486 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3487 i9xx_pipe_crc_irq_handler(dev, pipe);
3488
3489 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3490 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3491 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3492 }
3493
3494 iir = new_iir;
3495 }
3496
3497 return IRQ_HANDLED;
3498 }
3499
3500 static void i8xx_irq_uninstall(struct drm_device * dev)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 int pipe;
3504
3505 for_each_pipe(pipe) {
3506 /* Clear enable bits; then clear status bits */
3507 I915_WRITE(PIPESTAT(pipe), 0);
3508 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3509 }
3510 I915_WRITE16(IMR, 0xffff);
3511 I915_WRITE16(IER, 0x0);
3512 I915_WRITE16(IIR, I915_READ16(IIR));
3513 }
3514
3515 static void i915_irq_preinstall(struct drm_device * dev)
3516 {
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 int pipe;
3519
3520 if (I915_HAS_HOTPLUG(dev)) {
3521 I915_WRITE(PORT_HOTPLUG_EN, 0);
3522 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3523 }
3524
3525 I915_WRITE16(HWSTAM, 0xeffe);
3526 for_each_pipe(pipe)
3527 I915_WRITE(PIPESTAT(pipe), 0);
3528 I915_WRITE(IMR, 0xffffffff);
3529 I915_WRITE(IER, 0x0);
3530 POSTING_READ(IER);
3531 }
3532
3533 static int i915_irq_postinstall(struct drm_device *dev)
3534 {
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 u32 enable_mask;
3537 unsigned long irqflags;
3538
3539 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3540
3541 /* Unmask the interrupts that we always want on. */
3542 dev_priv->irq_mask =
3543 ~(I915_ASLE_INTERRUPT |
3544 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3545 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3546 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3547 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3548 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3549
3550 enable_mask =
3551 I915_ASLE_INTERRUPT |
3552 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3553 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3554 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3555 I915_USER_INTERRUPT;
3556
3557 if (I915_HAS_HOTPLUG(dev)) {
3558 I915_WRITE(PORT_HOTPLUG_EN, 0);
3559 POSTING_READ(PORT_HOTPLUG_EN);
3560
3561 /* Enable in IER... */
3562 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3563 /* and unmask in IMR */
3564 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3565 }
3566
3567 I915_WRITE(IMR, dev_priv->irq_mask);
3568 I915_WRITE(IER, enable_mask);
3569 POSTING_READ(IER);
3570
3571 i915_enable_asle_pipestat(dev);
3572
3573 /* Interrupt setup is already guaranteed to be single-threaded, this is
3574 * just to make the assert_spin_locked check happy. */
3575 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3576 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3577 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3578 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3579
3580 return 0;
3581 }
3582
3583 /*
3584 * Returns true when a page flip has completed.
3585 */
3586 static bool i915_handle_vblank(struct drm_device *dev,
3587 int plane, int pipe, u32 iir)
3588 {
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3591
3592 if (!drm_handle_vblank(dev, pipe))
3593 return false;
3594
3595 if ((iir & flip_pending) == 0)
3596 return false;
3597
3598 intel_prepare_page_flip(dev, plane);
3599
3600 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3601 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3602 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3603 * the flip is completed (no longer pending). Since this doesn't raise
3604 * an interrupt per se, we watch for the change at vblank.
3605 */
3606 if (I915_READ(ISR) & flip_pending)
3607 return false;
3608
3609 intel_finish_page_flip(dev, pipe);
3610
3611 return true;
3612 }
3613
3614 static irqreturn_t i915_irq_handler(int irq, void *arg)
3615 {
3616 struct drm_device *dev = (struct drm_device *) arg;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3619 unsigned long irqflags;
3620 u32 flip_mask =
3621 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3622 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3623 int pipe, ret = IRQ_NONE;
3624
3625 iir = I915_READ(IIR);
3626 do {
3627 bool irq_received = (iir & ~flip_mask) != 0;
3628 bool blc_event = false;
3629
3630 /* Can't rely on pipestat interrupt bit in iir as it might
3631 * have been cleared after the pipestat interrupt was received.
3632 * It doesn't set the bit in iir again, but it still produces
3633 * interrupts (for non-MSI).
3634 */
3635 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3636 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3637 i915_handle_error(dev, false,
3638 "Command parser error, iir 0x%08x",
3639 iir);
3640
3641 for_each_pipe(pipe) {
3642 int reg = PIPESTAT(pipe);
3643 pipe_stats[pipe] = I915_READ(reg);
3644
3645 /* Clear the PIPE*STAT regs before the IIR */
3646 if (pipe_stats[pipe] & 0x8000ffff) {
3647 I915_WRITE(reg, pipe_stats[pipe]);
3648 irq_received = true;
3649 }
3650 }
3651 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3652
3653 if (!irq_received)
3654 break;
3655
3656 /* Consume port. Then clear IIR or we'll miss events */
3657 if (I915_HAS_HOTPLUG(dev) &&
3658 iir & I915_DISPLAY_PORT_INTERRUPT)
3659 i9xx_hpd_irq_handler(dev);
3660
3661 I915_WRITE(IIR, iir & ~flip_mask);
3662 new_iir = I915_READ(IIR); /* Flush posted writes */
3663
3664 if (iir & I915_USER_INTERRUPT)
3665 notify_ring(dev, &dev_priv->ring[RCS]);
3666
3667 for_each_pipe(pipe) {
3668 int plane = pipe;
3669 if (HAS_FBC(dev))
3670 plane = !plane;
3671
3672 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3673 i915_handle_vblank(dev, plane, pipe, iir))
3674 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3675
3676 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3677 blc_event = true;
3678
3679 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3680 i9xx_pipe_crc_irq_handler(dev, pipe);
3681
3682 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3683 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3684 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3685 }
3686
3687 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3688 intel_opregion_asle_intr(dev);
3689
3690 /* With MSI, interrupts are only generated when iir
3691 * transitions from zero to nonzero. If another bit got
3692 * set while we were handling the existing iir bits, then
3693 * we would never get another interrupt.
3694 *
3695 * This is fine on non-MSI as well, as if we hit this path
3696 * we avoid exiting the interrupt handler only to generate
3697 * another one.
3698 *
3699 * Note that for MSI this could cause a stray interrupt report
3700 * if an interrupt landed in the time between writing IIR and
3701 * the posting read. This should be rare enough to never
3702 * trigger the 99% of 100,000 interrupts test for disabling
3703 * stray interrupts.
3704 */
3705 ret = IRQ_HANDLED;
3706 iir = new_iir;
3707 } while (iir & ~flip_mask);
3708
3709 i915_update_dri1_breadcrumb(dev);
3710
3711 return ret;
3712 }
3713
3714 static void i915_irq_uninstall(struct drm_device * dev)
3715 {
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 int pipe;
3718
3719 intel_hpd_irq_uninstall(dev_priv);
3720
3721 if (I915_HAS_HOTPLUG(dev)) {
3722 I915_WRITE(PORT_HOTPLUG_EN, 0);
3723 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3724 }
3725
3726 I915_WRITE16(HWSTAM, 0xffff);
3727 for_each_pipe(pipe) {
3728 /* Clear enable bits; then clear status bits */
3729 I915_WRITE(PIPESTAT(pipe), 0);
3730 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3731 }
3732 I915_WRITE(IMR, 0xffffffff);
3733 I915_WRITE(IER, 0x0);
3734
3735 I915_WRITE(IIR, I915_READ(IIR));
3736 }
3737
3738 static void i965_irq_preinstall(struct drm_device * dev)
3739 {
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 int pipe;
3742
3743 I915_WRITE(PORT_HOTPLUG_EN, 0);
3744 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3745
3746 I915_WRITE(HWSTAM, 0xeffe);
3747 for_each_pipe(pipe)
3748 I915_WRITE(PIPESTAT(pipe), 0);
3749 I915_WRITE(IMR, 0xffffffff);
3750 I915_WRITE(IER, 0x0);
3751 POSTING_READ(IER);
3752 }
3753
3754 static int i965_irq_postinstall(struct drm_device *dev)
3755 {
3756 struct drm_i915_private *dev_priv = dev->dev_private;
3757 u32 enable_mask;
3758 u32 error_mask;
3759 unsigned long irqflags;
3760
3761 /* Unmask the interrupts that we always want on. */
3762 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3763 I915_DISPLAY_PORT_INTERRUPT |
3764 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3765 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3766 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3767 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3768 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3769
3770 enable_mask = ~dev_priv->irq_mask;
3771 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3772 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3773 enable_mask |= I915_USER_INTERRUPT;
3774
3775 if (IS_G4X(dev))
3776 enable_mask |= I915_BSD_USER_INTERRUPT;
3777
3778 /* Interrupt setup is already guaranteed to be single-threaded, this is
3779 * just to make the assert_spin_locked check happy. */
3780 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3781 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3782 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3783 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3784 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3785
3786 /*
3787 * Enable some error detection, note the instruction error mask
3788 * bit is reserved, so we leave it masked.
3789 */
3790 if (IS_G4X(dev)) {
3791 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3792 GM45_ERROR_MEM_PRIV |
3793 GM45_ERROR_CP_PRIV |
3794 I915_ERROR_MEMORY_REFRESH);
3795 } else {
3796 error_mask = ~(I915_ERROR_PAGE_TABLE |
3797 I915_ERROR_MEMORY_REFRESH);
3798 }
3799 I915_WRITE(EMR, error_mask);
3800
3801 I915_WRITE(IMR, dev_priv->irq_mask);
3802 I915_WRITE(IER, enable_mask);
3803 POSTING_READ(IER);
3804
3805 I915_WRITE(PORT_HOTPLUG_EN, 0);
3806 POSTING_READ(PORT_HOTPLUG_EN);
3807
3808 i915_enable_asle_pipestat(dev);
3809
3810 return 0;
3811 }
3812
3813 static void i915_hpd_irq_setup(struct drm_device *dev)
3814 {
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 struct drm_mode_config *mode_config = &dev->mode_config;
3817 struct intel_encoder *intel_encoder;
3818 u32 hotplug_en;
3819
3820 assert_spin_locked(&dev_priv->irq_lock);
3821
3822 if (I915_HAS_HOTPLUG(dev)) {
3823 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3824 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3825 /* Note HDMI and DP share hotplug bits */
3826 /* enable bits are the same for all generations */
3827 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3828 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3829 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3830 /* Programming the CRT detection parameters tends
3831 to generate a spurious hotplug event about three
3832 seconds later. So just do it once.
3833 */
3834 if (IS_G4X(dev))
3835 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3836 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3837 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3838
3839 /* Ignore TV since it's buggy */
3840 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3841 }
3842 }
3843
3844 static irqreturn_t i965_irq_handler(int irq, void *arg)
3845 {
3846 struct drm_device *dev = (struct drm_device *) arg;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 u32 iir, new_iir;
3849 u32 pipe_stats[I915_MAX_PIPES];
3850 unsigned long irqflags;
3851 int ret = IRQ_NONE, pipe;
3852 u32 flip_mask =
3853 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3854 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3855
3856 iir = I915_READ(IIR);
3857
3858 for (;;) {
3859 bool irq_received = (iir & ~flip_mask) != 0;
3860 bool blc_event = false;
3861
3862 /* Can't rely on pipestat interrupt bit in iir as it might
3863 * have been cleared after the pipestat interrupt was received.
3864 * It doesn't set the bit in iir again, but it still produces
3865 * interrupts (for non-MSI).
3866 */
3867 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3868 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3869 i915_handle_error(dev, false,
3870 "Command parser error, iir 0x%08x",
3871 iir);
3872
3873 for_each_pipe(pipe) {
3874 int reg = PIPESTAT(pipe);
3875 pipe_stats[pipe] = I915_READ(reg);
3876
3877 /*
3878 * Clear the PIPE*STAT regs before the IIR
3879 */
3880 if (pipe_stats[pipe] & 0x8000ffff) {
3881 I915_WRITE(reg, pipe_stats[pipe]);
3882 irq_received = true;
3883 }
3884 }
3885 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3886
3887 if (!irq_received)
3888 break;
3889
3890 ret = IRQ_HANDLED;
3891
3892 /* Consume port. Then clear IIR or we'll miss events */
3893 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3894 i9xx_hpd_irq_handler(dev);
3895
3896 I915_WRITE(IIR, iir & ~flip_mask);
3897 new_iir = I915_READ(IIR); /* Flush posted writes */
3898
3899 if (iir & I915_USER_INTERRUPT)
3900 notify_ring(dev, &dev_priv->ring[RCS]);
3901 if (iir & I915_BSD_USER_INTERRUPT)
3902 notify_ring(dev, &dev_priv->ring[VCS]);
3903
3904 for_each_pipe(pipe) {
3905 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3906 i915_handle_vblank(dev, pipe, pipe, iir))
3907 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3908
3909 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3910 blc_event = true;
3911
3912 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3913 i9xx_pipe_crc_irq_handler(dev, pipe);
3914
3915 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3916 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3917 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3918 }
3919
3920 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3921 intel_opregion_asle_intr(dev);
3922
3923 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3924 gmbus_irq_handler(dev);
3925
3926 /* With MSI, interrupts are only generated when iir
3927 * transitions from zero to nonzero. If another bit got
3928 * set while we were handling the existing iir bits, then
3929 * we would never get another interrupt.
3930 *
3931 * This is fine on non-MSI as well, as if we hit this path
3932 * we avoid exiting the interrupt handler only to generate
3933 * another one.
3934 *
3935 * Note that for MSI this could cause a stray interrupt report
3936 * if an interrupt landed in the time between writing IIR and
3937 * the posting read. This should be rare enough to never
3938 * trigger the 99% of 100,000 interrupts test for disabling
3939 * stray interrupts.
3940 */
3941 iir = new_iir;
3942 }
3943
3944 i915_update_dri1_breadcrumb(dev);
3945
3946 return ret;
3947 }
3948
3949 static void i965_irq_uninstall(struct drm_device * dev)
3950 {
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952 int pipe;
3953
3954 if (!dev_priv)
3955 return;
3956
3957 intel_hpd_irq_uninstall(dev_priv);
3958
3959 I915_WRITE(PORT_HOTPLUG_EN, 0);
3960 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3961
3962 I915_WRITE(HWSTAM, 0xffffffff);
3963 for_each_pipe(pipe)
3964 I915_WRITE(PIPESTAT(pipe), 0);
3965 I915_WRITE(IMR, 0xffffffff);
3966 I915_WRITE(IER, 0x0);
3967
3968 for_each_pipe(pipe)
3969 I915_WRITE(PIPESTAT(pipe),
3970 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3971 I915_WRITE(IIR, I915_READ(IIR));
3972 }
3973
3974 static void intel_hpd_irq_reenable(unsigned long data)
3975 {
3976 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3977 struct drm_device *dev = dev_priv->dev;
3978 struct drm_mode_config *mode_config = &dev->mode_config;
3979 unsigned long irqflags;
3980 int i;
3981
3982 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3983 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3984 struct drm_connector *connector;
3985
3986 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3987 continue;
3988
3989 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3990
3991 list_for_each_entry(connector, &mode_config->connector_list, head) {
3992 struct intel_connector *intel_connector = to_intel_connector(connector);
3993
3994 if (intel_connector->encoder->hpd_pin == i) {
3995 if (connector->polled != intel_connector->polled)
3996 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3997 drm_get_connector_name(connector));
3998 connector->polled = intel_connector->polled;
3999 if (!connector->polled)
4000 connector->polled = DRM_CONNECTOR_POLL_HPD;
4001 }
4002 }
4003 }
4004 if (dev_priv->display.hpd_irq_setup)
4005 dev_priv->display.hpd_irq_setup(dev);
4006 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4007 }
4008
4009 void intel_irq_init(struct drm_device *dev)
4010 {
4011 struct drm_i915_private *dev_priv = dev->dev_private;
4012
4013 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4014 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4015 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4016 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4017
4018 /* Let's track the enabled rps events */
4019 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4020
4021 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4022 i915_hangcheck_elapsed,
4023 (unsigned long) dev);
4024 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4025 (unsigned long) dev_priv);
4026
4027 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4028
4029 if (IS_GEN2(dev)) {
4030 dev->max_vblank_count = 0;
4031 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4032 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4033 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4034 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4035 } else {
4036 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4037 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4038 }
4039
4040 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4041 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4042 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4043 }
4044
4045 if (IS_VALLEYVIEW(dev)) {
4046 dev->driver->irq_handler = valleyview_irq_handler;
4047 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4048 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4049 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4050 dev->driver->enable_vblank = valleyview_enable_vblank;
4051 dev->driver->disable_vblank = valleyview_disable_vblank;
4052 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4053 } else if (IS_GEN8(dev)) {
4054 dev->driver->irq_handler = gen8_irq_handler;
4055 dev->driver->irq_preinstall = gen8_irq_preinstall;
4056 dev->driver->irq_postinstall = gen8_irq_postinstall;
4057 dev->driver->irq_uninstall = gen8_irq_uninstall;
4058 dev->driver->enable_vblank = gen8_enable_vblank;
4059 dev->driver->disable_vblank = gen8_disable_vblank;
4060 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4061 } else if (HAS_PCH_SPLIT(dev)) {
4062 dev->driver->irq_handler = ironlake_irq_handler;
4063 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4064 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4065 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4066 dev->driver->enable_vblank = ironlake_enable_vblank;
4067 dev->driver->disable_vblank = ironlake_disable_vblank;
4068 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4069 } else {
4070 if (INTEL_INFO(dev)->gen == 2) {
4071 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4072 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4073 dev->driver->irq_handler = i8xx_irq_handler;
4074 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4075 } else if (INTEL_INFO(dev)->gen == 3) {
4076 dev->driver->irq_preinstall = i915_irq_preinstall;
4077 dev->driver->irq_postinstall = i915_irq_postinstall;
4078 dev->driver->irq_uninstall = i915_irq_uninstall;
4079 dev->driver->irq_handler = i915_irq_handler;
4080 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4081 } else {
4082 dev->driver->irq_preinstall = i965_irq_preinstall;
4083 dev->driver->irq_postinstall = i965_irq_postinstall;
4084 dev->driver->irq_uninstall = i965_irq_uninstall;
4085 dev->driver->irq_handler = i965_irq_handler;
4086 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4087 }
4088 dev->driver->enable_vblank = i915_enable_vblank;
4089 dev->driver->disable_vblank = i915_disable_vblank;
4090 }
4091 }
4092
4093 void intel_hpd_init(struct drm_device *dev)
4094 {
4095 struct drm_i915_private *dev_priv = dev->dev_private;
4096 struct drm_mode_config *mode_config = &dev->mode_config;
4097 struct drm_connector *connector;
4098 unsigned long irqflags;
4099 int i;
4100
4101 for (i = 1; i < HPD_NUM_PINS; i++) {
4102 dev_priv->hpd_stats[i].hpd_cnt = 0;
4103 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4104 }
4105 list_for_each_entry(connector, &mode_config->connector_list, head) {
4106 struct intel_connector *intel_connector = to_intel_connector(connector);
4107 connector->polled = intel_connector->polled;
4108 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4109 connector->polled = DRM_CONNECTOR_POLL_HPD;
4110 }
4111
4112 /* Interrupt setup is already guaranteed to be single-threaded, this is
4113 * just to make the assert_spin_locked checks happy. */
4114 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4115 if (dev_priv->display.hpd_irq_setup)
4116 dev_priv->display.hpd_irq_setup(dev);
4117 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4118 }
4119
4120 /* Disable interrupts so we can allow runtime PM. */
4121 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4122 {
4123 struct drm_i915_private *dev_priv = dev->dev_private;
4124
4125 dev->driver->irq_uninstall(dev);
4126 dev_priv->pm.irqs_disabled = true;
4127 }
4128
4129 /* Restore interrupts so we can recover from runtime PM. */
4130 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4131 {
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133
4134 dev_priv->pm.irqs_disabled = false;
4135 dev->driver->irq_preinstall(dev);
4136 dev->driver->irq_postinstall(dev);
4137 }