]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 assert_spin_locked(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 assert_spin_locked(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 assert_spin_locked(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 assert_spin_locked(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 assert_spin_locked(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 assert_spin_locked(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394 return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400 return;
401
402 spin_lock_irq(&dev_priv->irq_lock);
403 dev_priv->rps.interrupts_enabled = false;
404
405 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409 spin_unlock_irq(&dev_priv->irq_lock);
410 synchronize_irq(dev_priv->drm.irq);
411
412 /* Now that we will not be generating any more work, flush any
413 * outsanding tasks. As we are called on the RPS idle path,
414 * we will reset the GPU to minimum frequencies, so the current
415 * state of the worker can be discarded.
416 */
417 cancel_work_sync(&dev_priv->rps.work);
418 gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423 spin_lock_irq(&dev_priv->irq_lock);
424 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425 spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430 spin_lock_irq(&dev_priv->irq_lock);
431 if (!dev_priv->guc.interrupts_enabled) {
432 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433 dev_priv->pm_guc_events);
434 dev_priv->guc.interrupts_enabled = true;
435 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436 }
437 spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442 spin_lock_irq(&dev_priv->irq_lock);
443 dev_priv->guc.interrupts_enabled = false;
444
445 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447 spin_unlock_irq(&dev_priv->irq_lock);
448 synchronize_irq(dev_priv->drm.irq);
449
450 gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454 * bdw_update_port_irq - update DE port interrupt
455 * @dev_priv: driver private
456 * @interrupt_mask: mask of interrupt bits to update
457 * @enabled_irq_mask: mask of interrupt bits to enable
458 */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460 uint32_t interrupt_mask,
461 uint32_t enabled_irq_mask)
462 {
463 uint32_t new_val;
464 uint32_t old_val;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471 return;
472
473 old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475 new_val = old_val;
476 new_val &= ~interrupt_mask;
477 new_val |= (~enabled_irq_mask & interrupt_mask);
478
479 if (new_val != old_val) {
480 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481 POSTING_READ(GEN8_DE_PORT_IMR);
482 }
483 }
484
485 /**
486 * bdw_update_pipe_irq - update DE pipe interrupt
487 * @dev_priv: driver private
488 * @pipe: pipe whose interrupt to update
489 * @interrupt_mask: mask of interrupt bits to update
490 * @enabled_irq_mask: mask of interrupt bits to enable
491 */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493 enum pipe pipe,
494 uint32_t interrupt_mask,
495 uint32_t enabled_irq_mask)
496 {
497 uint32_t new_val;
498
499 assert_spin_locked(&dev_priv->irq_lock);
500
501 WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504 return;
505
506 new_val = dev_priv->de_irq_mask[pipe];
507 new_val &= ~interrupt_mask;
508 new_val |= (~enabled_irq_mask & interrupt_mask);
509
510 if (new_val != dev_priv->de_irq_mask[pipe]) {
511 dev_priv->de_irq_mask[pipe] = new_val;
512 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514 }
515 }
516
517 /**
518 * ibx_display_interrupt_update - update SDEIMR
519 * @dev_priv: driver private
520 * @interrupt_mask: mask of interrupt bits to update
521 * @enabled_irq_mask: mask of interrupt bits to enable
522 */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524 uint32_t interrupt_mask,
525 uint32_t enabled_irq_mask)
526 {
527 uint32_t sdeimr = I915_READ(SDEIMR);
528 sdeimr &= ~interrupt_mask;
529 sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531 WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533 assert_spin_locked(&dev_priv->irq_lock);
534
535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 return;
537
538 I915_WRITE(SDEIMR, sdeimr);
539 POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544 u32 enable_mask, u32 status_mask)
545 {
546 i915_reg_t reg = PIPESTAT(pipe);
547 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549 assert_spin_locked(&dev_priv->irq_lock);
550 WARN_ON(!intel_irqs_enabled(dev_priv));
551
552 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553 status_mask & ~PIPESTAT_INT_STATUS_MASK,
554 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555 pipe_name(pipe), enable_mask, status_mask))
556 return;
557
558 if ((pipestat & enable_mask) == enable_mask)
559 return;
560
561 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563 /* Enable the interrupt, clear any pending status */
564 pipestat |= enable_mask | status_mask;
565 I915_WRITE(reg, pipestat);
566 POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571 u32 enable_mask, u32 status_mask)
572 {
573 i915_reg_t reg = PIPESTAT(pipe);
574 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576 assert_spin_locked(&dev_priv->irq_lock);
577 WARN_ON(!intel_irqs_enabled(dev_priv));
578
579 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580 status_mask & ~PIPESTAT_INT_STATUS_MASK,
581 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582 pipe_name(pipe), enable_mask, status_mask))
583 return;
584
585 if ((pipestat & enable_mask) == 0)
586 return;
587
588 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590 pipestat &= ~enable_mask;
591 I915_WRITE(reg, pipestat);
592 POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597 u32 enable_mask = status_mask << 16;
598
599 /*
600 * On pipe A we don't support the PSR interrupt yet,
601 * on pipe B and C the same bit MBZ.
602 */
603 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604 return 0;
605 /*
606 * On pipe B and C we don't support the PSR interrupt yet, on pipe
607 * A the same bit is for perf counters which we don't use either.
608 */
609 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610 return 0;
611
612 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613 SPRITE0_FLIP_DONE_INT_EN_VLV |
614 SPRITE1_FLIP_DONE_INT_EN_VLV);
615 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620 return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625 u32 status_mask)
626 {
627 u32 enable_mask;
628
629 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631 status_mask);
632 else
633 enable_mask = status_mask << 16;
634 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639 u32 status_mask)
640 {
641 u32 enable_mask;
642
643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645 status_mask);
646 else
647 enable_mask = status_mask << 16;
648 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653 * @dev_priv: i915 device private
654 */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658 return;
659
660 spin_lock_irq(&dev_priv->irq_lock);
661
662 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663 if (INTEL_GEN(dev_priv) >= 4)
664 i915_enable_pipestat(dev_priv, PIPE_A,
665 PIPE_LEGACY_BLC_EVENT_STATUS);
666
667 spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671 * This timing diagram depicts the video signal in and
672 * around the vertical blanking period.
673 *
674 * Assumptions about the fictitious mode used in this example:
675 * vblank_start >= 3
676 * vsync_start = vblank_start + 1
677 * vsync_end = vblank_start + 2
678 * vtotal = vblank_start + 3
679 *
680 * start of vblank:
681 * latch double buffered registers
682 * increment frame counter (ctg+)
683 * generate start of vblank interrupt (gen4+)
684 * |
685 * | frame start:
686 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
687 * | may be shifted forward 1-3 extra lines via PIPECONF
688 * | |
689 * | | start of vsync:
690 * | | generate vsync interrupt
691 * | | |
692 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
693 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
694 * ----va---> <-----------------vb--------------------> <--------va-------------
695 * | | <----vs-----> |
696 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699 * | | |
700 * last visible pixel first visible pixel
701 * | increment frame counter (gen3/4)
702 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
703 *
704 * x = horizontal active
705 * _ = horizontal blanking
706 * hs = horizontal sync
707 * va = vertical active
708 * vb = vertical blanking
709 * vs = vertical sync
710 * vbs = vblank_start (number)
711 *
712 * Summary:
713 * - most events happen at the start of horizontal sync
714 * - frame start happens at the start of horizontal blank, 1-4 lines
715 * (depending on PIPECONF settings) after the start of vblank
716 * - gen3/4 pixel and frame counter are synchronized with the start
717 * of horizontal active on the first line of vertical active
718 */
719
720 /* Called from drm generic code, passed a 'crtc', which
721 * we use as a pipe index
722 */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725 struct drm_i915_private *dev_priv = to_i915(dev);
726 i915_reg_t high_frame, low_frame;
727 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729 pipe);
730 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732 htotal = mode->crtc_htotal;
733 hsync_start = mode->crtc_hsync_start;
734 vbl_start = mode->crtc_vblank_start;
735 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738 /* Convert to pixel count */
739 vbl_start *= htotal;
740
741 /* Start of vblank event occurs at start of hsync */
742 vbl_start -= htotal - hsync_start;
743
744 high_frame = PIPEFRAME(pipe);
745 low_frame = PIPEFRAMEPIXEL(pipe);
746
747 /*
748 * High & low register fields aren't synchronized, so make sure
749 * we get a low value that's stable across two reads of the high
750 * register.
751 */
752 do {
753 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754 low = I915_READ(low_frame);
755 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756 } while (high1 != high2);
757
758 high1 >>= PIPE_FRAME_HIGH_SHIFT;
759 pixel = low & PIPE_PIXEL_MASK;
760 low >>= PIPE_FRAME_LOW_SHIFT;
761
762 /*
763 * The frame counter increments at beginning of active.
764 * Cook up a vblank counter by also checking the pixel
765 * counter against vblank start.
766 */
767 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772 struct drm_i915_private *dev_priv = to_i915(dev);
773
774 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 struct drm_i915_private *dev_priv = to_i915(dev);
782 const struct drm_display_mode *mode = &crtc->base.hwmode;
783 enum pipe pipe = crtc->pipe;
784 int position, vtotal;
785
786 vtotal = mode->crtc_vtotal;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vtotal /= 2;
789
790 if (IS_GEN2(dev_priv))
791 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792 else
793 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795 /*
796 * On HSW, the DSL reg (0x70000) appears to return 0 if we
797 * read it just before the start of vblank. So try it again
798 * so we don't accidentally end up spanning a vblank frame
799 * increment, causing the pipe_update_end() code to squak at us.
800 *
801 * The nature of this problem means we can't simply check the ISR
802 * bit and return the vblank start value; nor can we use the scanline
803 * debug register in the transcoder as it appears to have the same
804 * problem. We may need to extend this to include other platforms,
805 * but so far testing only shows the problem on HSW.
806 */
807 if (HAS_DDI(dev_priv) && !position) {
808 int i, temp;
809
810 for (i = 0; i < 100; i++) {
811 udelay(1);
812 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813 DSL_LINEMASK_GEN3;
814 if (temp != position) {
815 position = temp;
816 break;
817 }
818 }
819 }
820
821 /*
822 * See update_scanline_offset() for the details on the
823 * scanline_offset adjustment.
824 */
825 return (position + crtc->scanline_offset) % vtotal;
826 }
827
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829 unsigned int flags, int *vpos, int *hpos,
830 ktime_t *stime, ktime_t *etime,
831 const struct drm_display_mode *mode)
832 {
833 struct drm_i915_private *dev_priv = to_i915(dev);
834 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835 pipe);
836 int position;
837 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838 bool in_vbl = true;
839 int ret = 0;
840 unsigned long irqflags;
841
842 if (WARN_ON(!mode->crtc_clock)) {
843 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844 "pipe %c\n", pipe_name(pipe));
845 return 0;
846 }
847
848 htotal = mode->crtc_htotal;
849 hsync_start = mode->crtc_hsync_start;
850 vtotal = mode->crtc_vtotal;
851 vbl_start = mode->crtc_vblank_start;
852 vbl_end = mode->crtc_vblank_end;
853
854 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856 vbl_end /= 2;
857 vtotal /= 2;
858 }
859
860 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862 /*
863 * Lock uncore.lock, as we will do multiple timing critical raw
864 * register reads, potentially with preemption disabled, so the
865 * following code must not block on uncore.lock.
866 */
867 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871 /* Get optional system timestamp before query. */
872 if (stime)
873 *stime = ktime_get();
874
875 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876 /* No obvious pixelcount register. Only query vertical
877 * scanout position from Display scan line register.
878 */
879 position = __intel_get_crtc_scanline(intel_crtc);
880 } else {
881 /* Have access to pixelcount since start of frame.
882 * We can split this into vertical and horizontal
883 * scanout position.
884 */
885 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887 /* convert to pixel counts */
888 vbl_start *= htotal;
889 vbl_end *= htotal;
890 vtotal *= htotal;
891
892 /*
893 * In interlaced modes, the pixel counter counts all pixels,
894 * so one field will have htotal more pixels. In order to avoid
895 * the reported position from jumping backwards when the pixel
896 * counter is beyond the length of the shorter field, just
897 * clamp the position the length of the shorter field. This
898 * matches how the scanline counter based position works since
899 * the scanline counter doesn't count the two half lines.
900 */
901 if (position >= vtotal)
902 position = vtotal - 1;
903
904 /*
905 * Start of vblank interrupt is triggered at start of hsync,
906 * just prior to the first active line of vblank. However we
907 * consider lines to start at the leading edge of horizontal
908 * active. So, should we get here before we've crossed into
909 * the horizontal active of the first line in vblank, we would
910 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911 * always add htotal-hsync_start to the current pixel position.
912 */
913 position = (position + htotal - hsync_start) % vtotal;
914 }
915
916 /* Get optional system timestamp after query. */
917 if (etime)
918 *etime = ktime_get();
919
920 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924 in_vbl = position >= vbl_start && position < vbl_end;
925
926 /*
927 * While in vblank, position will be negative
928 * counting up towards 0 at vbl_end. And outside
929 * vblank, position will be positive counting
930 * up since vbl_end.
931 */
932 if (position >= vbl_start)
933 position -= vbl_end;
934 else
935 position += vtotal - vbl_end;
936
937 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938 *vpos = position;
939 *hpos = 0;
940 } else {
941 *vpos = position / htotal;
942 *hpos = position - (*vpos * htotal);
943 }
944
945 /* In vblank? */
946 if (in_vbl)
947 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949 return ret;
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955 unsigned long irqflags;
956 int position;
957
958 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959 position = __intel_get_crtc_scanline(crtc);
960 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962 return position;
963 }
964
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966 int *max_error,
967 struct timeval *vblank_time,
968 unsigned flags)
969 {
970 struct drm_i915_private *dev_priv = to_i915(dev);
971 struct intel_crtc *crtc;
972
973 if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974 DRM_ERROR("Invalid crtc %u\n", pipe);
975 return -EINVAL;
976 }
977
978 /* Get drm_crtc to timestamp: */
979 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980 if (crtc == NULL) {
981 DRM_ERROR("Invalid crtc %u\n", pipe);
982 return -EINVAL;
983 }
984
985 if (!crtc->base.hwmode.crtc_clock) {
986 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987 return -EBUSY;
988 }
989
990 /* Helper routine in DRM core does all the work: */
991 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992 vblank_time, flags,
993 &crtc->base.hwmode);
994 }
995
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998 u32 busy_up, busy_down, max_avg, min_avg;
999 u8 new_delay;
1000
1001 spin_lock(&mchdev_lock);
1002
1003 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005 new_delay = dev_priv->ips.cur_delay;
1006
1007 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008 busy_up = I915_READ(RCPREVBSYTUPAVG);
1009 busy_down = I915_READ(RCPREVBSYTDNAVG);
1010 max_avg = I915_READ(RCBMAXAVG);
1011 min_avg = I915_READ(RCBMINAVG);
1012
1013 /* Handle RCS change request from hw */
1014 if (busy_up > max_avg) {
1015 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016 new_delay = dev_priv->ips.cur_delay - 1;
1017 if (new_delay < dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.max_delay;
1019 } else if (busy_down < min_avg) {
1020 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021 new_delay = dev_priv->ips.cur_delay + 1;
1022 if (new_delay > dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.min_delay;
1024 }
1025
1026 if (ironlake_set_drps(dev_priv, new_delay))
1027 dev_priv->ips.cur_delay = new_delay;
1028
1029 spin_unlock(&mchdev_lock);
1030
1031 return;
1032 }
1033
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036 smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037 if (intel_engine_wakeup(engine))
1038 trace_i915_gem_request_notify(engine);
1039 }
1040
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042 struct intel_rps_ei *ei)
1043 {
1044 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048
1049 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1050 {
1051 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1052 }
1053
1054 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1055 {
1056 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1057 struct intel_rps_ei now;
1058 u32 events = 0;
1059
1060 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1061 return 0;
1062
1063 vlv_c0_read(dev_priv, &now);
1064 if (now.cz_clock == 0)
1065 return 0;
1066
1067 if (prev->cz_clock) {
1068 u64 time, c0;
1069 unsigned int mul;
1070
1071 mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1072 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1073 mul <<= 8;
1074
1075 time = now.cz_clock - prev->cz_clock;
1076 time *= dev_priv->czclk_freq;
1077
1078 /* Workload can be split between render + media,
1079 * e.g. SwapBuffers being blitted in X after being rendered in
1080 * mesa. To account for this we need to combine both engines
1081 * into our activity counter.
1082 */
1083 c0 = now.render_c0 - prev->render_c0;
1084 c0 += now.media_c0 - prev->media_c0;
1085 c0 *= mul;
1086
1087 if (c0 > time * dev_priv->rps.up_threshold)
1088 events = GEN6_PM_RP_UP_THRESHOLD;
1089 else if (c0 < time * dev_priv->rps.down_threshold)
1090 events = GEN6_PM_RP_DOWN_THRESHOLD;
1091 }
1092
1093 dev_priv->rps.ei = now;
1094 return events;
1095 }
1096
1097 static bool any_waiters(struct drm_i915_private *dev_priv)
1098 {
1099 struct intel_engine_cs *engine;
1100 enum intel_engine_id id;
1101
1102 for_each_engine(engine, dev_priv, id)
1103 if (intel_engine_has_waiter(engine))
1104 return true;
1105
1106 return false;
1107 }
1108
1109 static void gen6_pm_rps_work(struct work_struct *work)
1110 {
1111 struct drm_i915_private *dev_priv =
1112 container_of(work, struct drm_i915_private, rps.work);
1113 bool client_boost;
1114 int new_delay, adj, min, max;
1115 u32 pm_iir;
1116
1117 spin_lock_irq(&dev_priv->irq_lock);
1118 /* Speed up work cancelation during disabling rps interrupts. */
1119 if (!dev_priv->rps.interrupts_enabled) {
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121 return;
1122 }
1123
1124 pm_iir = dev_priv->rps.pm_iir;
1125 dev_priv->rps.pm_iir = 0;
1126 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1127 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1128 client_boost = dev_priv->rps.client_boost;
1129 dev_priv->rps.client_boost = false;
1130 spin_unlock_irq(&dev_priv->irq_lock);
1131
1132 /* Make sure we didn't queue anything we're not going to process. */
1133 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1134
1135 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1136 return;
1137
1138 mutex_lock(&dev_priv->rps.hw_lock);
1139
1140 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1141
1142 adj = dev_priv->rps.last_adj;
1143 new_delay = dev_priv->rps.cur_freq;
1144 min = dev_priv->rps.min_freq_softlimit;
1145 max = dev_priv->rps.max_freq_softlimit;
1146 if (client_boost || any_waiters(dev_priv))
1147 max = dev_priv->rps.max_freq;
1148 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1149 new_delay = dev_priv->rps.boost_freq;
1150 adj = 0;
1151 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1152 if (adj > 0)
1153 adj *= 2;
1154 else /* CHV needs even encode values */
1155 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1156
1157 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1158 adj = 0;
1159 /*
1160 * For better performance, jump directly
1161 * to RPe if we're below it.
1162 */
1163 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1164 new_delay = dev_priv->rps.efficient_freq;
1165 adj = 0;
1166 }
1167 } else if (client_boost || any_waiters(dev_priv)) {
1168 adj = 0;
1169 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1170 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1171 new_delay = dev_priv->rps.efficient_freq;
1172 else
1173 new_delay = dev_priv->rps.min_freq_softlimit;
1174 adj = 0;
1175 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1176 if (adj < 0)
1177 adj *= 2;
1178 else /* CHV needs even encode values */
1179 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1180
1181 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1182 adj = 0;
1183 } else { /* unknown event */
1184 adj = 0;
1185 }
1186
1187 dev_priv->rps.last_adj = adj;
1188
1189 /* sysfs frequency interfaces may have snuck in while servicing the
1190 * interrupt
1191 */
1192 new_delay += adj;
1193 new_delay = clamp_t(int, new_delay, min, max);
1194
1195 intel_set_rps(dev_priv, new_delay);
1196
1197 mutex_unlock(&dev_priv->rps.hw_lock);
1198 }
1199
1200
1201 /**
1202 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1203 * occurred.
1204 * @work: workqueue struct
1205 *
1206 * Doesn't actually do anything except notify userspace. As a consequence of
1207 * this event, userspace should try to remap the bad rows since statistically
1208 * it is likely the same row is more likely to go bad again.
1209 */
1210 static void ivybridge_parity_work(struct work_struct *work)
1211 {
1212 struct drm_i915_private *dev_priv =
1213 container_of(work, struct drm_i915_private, l3_parity.error_work);
1214 u32 error_status, row, bank, subbank;
1215 char *parity_event[6];
1216 uint32_t misccpctl;
1217 uint8_t slice = 0;
1218
1219 /* We must turn off DOP level clock gating to access the L3 registers.
1220 * In order to prevent a get/put style interface, acquire struct mutex
1221 * any time we access those registers.
1222 */
1223 mutex_lock(&dev_priv->drm.struct_mutex);
1224
1225 /* If we've screwed up tracking, just let the interrupt fire again */
1226 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1227 goto out;
1228
1229 misccpctl = I915_READ(GEN7_MISCCPCTL);
1230 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1231 POSTING_READ(GEN7_MISCCPCTL);
1232
1233 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1234 i915_reg_t reg;
1235
1236 slice--;
1237 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1238 break;
1239
1240 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1241
1242 reg = GEN7_L3CDERRST1(slice);
1243
1244 error_status = I915_READ(reg);
1245 row = GEN7_PARITY_ERROR_ROW(error_status);
1246 bank = GEN7_PARITY_ERROR_BANK(error_status);
1247 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1248
1249 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1250 POSTING_READ(reg);
1251
1252 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1253 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1254 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1255 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1256 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1257 parity_event[5] = NULL;
1258
1259 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1260 KOBJ_CHANGE, parity_event);
1261
1262 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1263 slice, row, bank, subbank);
1264
1265 kfree(parity_event[4]);
1266 kfree(parity_event[3]);
1267 kfree(parity_event[2]);
1268 kfree(parity_event[1]);
1269 }
1270
1271 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1272
1273 out:
1274 WARN_ON(dev_priv->l3_parity.which_slice);
1275 spin_lock_irq(&dev_priv->irq_lock);
1276 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1277 spin_unlock_irq(&dev_priv->irq_lock);
1278
1279 mutex_unlock(&dev_priv->drm.struct_mutex);
1280 }
1281
1282 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1283 u32 iir)
1284 {
1285 if (!HAS_L3_DPF(dev_priv))
1286 return;
1287
1288 spin_lock(&dev_priv->irq_lock);
1289 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1290 spin_unlock(&dev_priv->irq_lock);
1291
1292 iir &= GT_PARITY_ERROR(dev_priv);
1293 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1294 dev_priv->l3_parity.which_slice |= 1 << 1;
1295
1296 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1297 dev_priv->l3_parity.which_slice |= 1 << 0;
1298
1299 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1300 }
1301
1302 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1303 u32 gt_iir)
1304 {
1305 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1306 notify_ring(dev_priv->engine[RCS]);
1307 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1308 notify_ring(dev_priv->engine[VCS]);
1309 }
1310
1311 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1312 u32 gt_iir)
1313 {
1314 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1315 notify_ring(dev_priv->engine[RCS]);
1316 if (gt_iir & GT_BSD_USER_INTERRUPT)
1317 notify_ring(dev_priv->engine[VCS]);
1318 if (gt_iir & GT_BLT_USER_INTERRUPT)
1319 notify_ring(dev_priv->engine[BCS]);
1320
1321 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1322 GT_BSD_CS_ERROR_INTERRUPT |
1323 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1324 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1325
1326 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1327 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1328 }
1329
1330 static __always_inline void
1331 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1332 {
1333 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1334 notify_ring(engine);
1335 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1336 tasklet_schedule(&engine->irq_tasklet);
1337 }
1338
1339 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1340 u32 master_ctl,
1341 u32 gt_iir[4])
1342 {
1343 irqreturn_t ret = IRQ_NONE;
1344
1345 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1346 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1347 if (gt_iir[0]) {
1348 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1349 ret = IRQ_HANDLED;
1350 } else
1351 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1352 }
1353
1354 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1355 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1356 if (gt_iir[1]) {
1357 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1358 ret = IRQ_HANDLED;
1359 } else
1360 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1361 }
1362
1363 if (master_ctl & GEN8_GT_VECS_IRQ) {
1364 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1365 if (gt_iir[3]) {
1366 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1367 ret = IRQ_HANDLED;
1368 } else
1369 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1370 }
1371
1372 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1373 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1374 if (gt_iir[2] & (dev_priv->pm_rps_events |
1375 dev_priv->pm_guc_events)) {
1376 I915_WRITE_FW(GEN8_GT_IIR(2),
1377 gt_iir[2] & (dev_priv->pm_rps_events |
1378 dev_priv->pm_guc_events));
1379 ret = IRQ_HANDLED;
1380 } else
1381 DRM_ERROR("The master control interrupt lied (PM)!\n");
1382 }
1383
1384 return ret;
1385 }
1386
1387 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1388 u32 gt_iir[4])
1389 {
1390 if (gt_iir[0]) {
1391 gen8_cs_irq_handler(dev_priv->engine[RCS],
1392 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1393 gen8_cs_irq_handler(dev_priv->engine[BCS],
1394 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1395 }
1396
1397 if (gt_iir[1]) {
1398 gen8_cs_irq_handler(dev_priv->engine[VCS],
1399 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1400 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1401 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1402 }
1403
1404 if (gt_iir[3])
1405 gen8_cs_irq_handler(dev_priv->engine[VECS],
1406 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1407
1408 if (gt_iir[2] & dev_priv->pm_rps_events)
1409 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1410
1411 if (gt_iir[2] & dev_priv->pm_guc_events)
1412 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1413 }
1414
1415 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 default:
1425 return false;
1426 }
1427 }
1428
1429 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1430 {
1431 switch (port) {
1432 case PORT_E:
1433 return val & PORTE_HOTPLUG_LONG_DETECT;
1434 default:
1435 return false;
1436 }
1437 }
1438
1439 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1440 {
1441 switch (port) {
1442 case PORT_A:
1443 return val & PORTA_HOTPLUG_LONG_DETECT;
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_A:
1459 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1460 default:
1461 return false;
1462 }
1463 }
1464
1465 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1466 {
1467 switch (port) {
1468 case PORT_B:
1469 return val & PORTB_HOTPLUG_LONG_DETECT;
1470 case PORT_C:
1471 return val & PORTC_HOTPLUG_LONG_DETECT;
1472 case PORT_D:
1473 return val & PORTD_HOTPLUG_LONG_DETECT;
1474 default:
1475 return false;
1476 }
1477 }
1478
1479 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1480 {
1481 switch (port) {
1482 case PORT_B:
1483 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1484 case PORT_C:
1485 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1486 case PORT_D:
1487 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1488 default:
1489 return false;
1490 }
1491 }
1492
1493 /*
1494 * Get a bit mask of pins that have triggered, and which ones may be long.
1495 * This can be called multiple times with the same masks to accumulate
1496 * hotplug detection results from several registers.
1497 *
1498 * Note that the caller is expected to zero out the masks initially.
1499 */
1500 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1501 u32 hotplug_trigger, u32 dig_hotplug_reg,
1502 const u32 hpd[HPD_NUM_PINS],
1503 bool long_pulse_detect(enum port port, u32 val))
1504 {
1505 enum port port;
1506 int i;
1507
1508 for_each_hpd_pin(i) {
1509 if ((hpd[i] & hotplug_trigger) == 0)
1510 continue;
1511
1512 *pin_mask |= BIT(i);
1513
1514 if (!intel_hpd_pin_to_port(i, &port))
1515 continue;
1516
1517 if (long_pulse_detect(port, dig_hotplug_reg))
1518 *long_mask |= BIT(i);
1519 }
1520
1521 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1522 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1523
1524 }
1525
1526 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1527 {
1528 wake_up_all(&dev_priv->gmbus_wait_queue);
1529 }
1530
1531 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1532 {
1533 wake_up_all(&dev_priv->gmbus_wait_queue);
1534 }
1535
1536 #if defined(CONFIG_DEBUG_FS)
1537 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1538 enum pipe pipe,
1539 uint32_t crc0, uint32_t crc1,
1540 uint32_t crc2, uint32_t crc3,
1541 uint32_t crc4)
1542 {
1543 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1544 struct intel_pipe_crc_entry *entry;
1545 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1546 struct drm_driver *driver = dev_priv->drm.driver;
1547 uint32_t crcs[5];
1548 int head, tail;
1549
1550 spin_lock(&pipe_crc->lock);
1551 if (pipe_crc->source) {
1552 if (!pipe_crc->entries) {
1553 spin_unlock(&pipe_crc->lock);
1554 DRM_DEBUG_KMS("spurious interrupt\n");
1555 return;
1556 }
1557
1558 head = pipe_crc->head;
1559 tail = pipe_crc->tail;
1560
1561 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1562 spin_unlock(&pipe_crc->lock);
1563 DRM_ERROR("CRC buffer overflowing\n");
1564 return;
1565 }
1566
1567 entry = &pipe_crc->entries[head];
1568
1569 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1570 entry->crc[0] = crc0;
1571 entry->crc[1] = crc1;
1572 entry->crc[2] = crc2;
1573 entry->crc[3] = crc3;
1574 entry->crc[4] = crc4;
1575
1576 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1577 pipe_crc->head = head;
1578
1579 spin_unlock(&pipe_crc->lock);
1580
1581 wake_up_interruptible(&pipe_crc->wq);
1582 } else {
1583 /*
1584 * For some not yet identified reason, the first CRC is
1585 * bonkers. So let's just wait for the next vblank and read
1586 * out the buggy result.
1587 *
1588 * On CHV sometimes the second CRC is bonkers as well, so
1589 * don't trust that one either.
1590 */
1591 if (pipe_crc->skipped == 0 ||
1592 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1593 pipe_crc->skipped++;
1594 spin_unlock(&pipe_crc->lock);
1595 return;
1596 }
1597 spin_unlock(&pipe_crc->lock);
1598 crcs[0] = crc0;
1599 crcs[1] = crc1;
1600 crcs[2] = crc2;
1601 crcs[3] = crc3;
1602 crcs[4] = crc4;
1603 drm_crtc_add_crc_entry(&crtc->base, true,
1604 drm_accurate_vblank_count(&crtc->base),
1605 crcs);
1606 }
1607 }
1608 #else
1609 static inline void
1610 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1611 enum pipe pipe,
1612 uint32_t crc0, uint32_t crc1,
1613 uint32_t crc2, uint32_t crc3,
1614 uint32_t crc4) {}
1615 #endif
1616
1617
1618 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1619 enum pipe pipe)
1620 {
1621 display_pipe_crc_irq_handler(dev_priv, pipe,
1622 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1623 0, 0, 0, 0);
1624 }
1625
1626 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1627 enum pipe pipe)
1628 {
1629 display_pipe_crc_irq_handler(dev_priv, pipe,
1630 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1631 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1632 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1633 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1634 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1635 }
1636
1637 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1638 enum pipe pipe)
1639 {
1640 uint32_t res1, res2;
1641
1642 if (INTEL_GEN(dev_priv) >= 3)
1643 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1644 else
1645 res1 = 0;
1646
1647 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1648 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1649 else
1650 res2 = 0;
1651
1652 display_pipe_crc_irq_handler(dev_priv, pipe,
1653 I915_READ(PIPE_CRC_RES_RED(pipe)),
1654 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1655 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1656 res1, res2);
1657 }
1658
1659 /* The RPS events need forcewake, so we add them to a work queue and mask their
1660 * IMR bits until the work is done. Other interrupts can be processed without
1661 * the work queue. */
1662 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1663 {
1664 if (pm_iir & dev_priv->pm_rps_events) {
1665 spin_lock(&dev_priv->irq_lock);
1666 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1667 if (dev_priv->rps.interrupts_enabled) {
1668 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1669 schedule_work(&dev_priv->rps.work);
1670 }
1671 spin_unlock(&dev_priv->irq_lock);
1672 }
1673
1674 if (INTEL_INFO(dev_priv)->gen >= 8)
1675 return;
1676
1677 if (HAS_VEBOX(dev_priv)) {
1678 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1679 notify_ring(dev_priv->engine[VECS]);
1680
1681 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1682 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1683 }
1684 }
1685
1686 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1687 {
1688 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1689 /* Sample the log buffer flush related bits & clear them out now
1690 * itself from the message identity register to minimize the
1691 * probability of losing a flush interrupt, when there are back
1692 * to back flush interrupts.
1693 * There can be a new flush interrupt, for different log buffer
1694 * type (like for ISR), whilst Host is handling one (for DPC).
1695 * Since same bit is used in message register for ISR & DPC, it
1696 * could happen that GuC sets the bit for 2nd interrupt but Host
1697 * clears out the bit on handling the 1st interrupt.
1698 */
1699 u32 msg, flush;
1700
1701 msg = I915_READ(SOFT_SCRATCH(15));
1702 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1703 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1704 if (flush) {
1705 /* Clear the message bits that are handled */
1706 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1707
1708 /* Handle flush interrupt in bottom half */
1709 queue_work(dev_priv->guc.log.flush_wq,
1710 &dev_priv->guc.log.flush_work);
1711
1712 dev_priv->guc.log.flush_interrupt_count++;
1713 } else {
1714 /* Not clearing of unhandled event bits won't result in
1715 * re-triggering of the interrupt.
1716 */
1717 }
1718 }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1722 enum pipe pipe)
1723 {
1724 bool ret;
1725
1726 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1727 if (ret)
1728 intel_finish_page_flip_mmio(dev_priv, pipe);
1729
1730 return ret;
1731 }
1732
1733 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1734 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1735 {
1736 int pipe;
1737
1738 spin_lock(&dev_priv->irq_lock);
1739
1740 if (!dev_priv->display_irqs_enabled) {
1741 spin_unlock(&dev_priv->irq_lock);
1742 return;
1743 }
1744
1745 for_each_pipe(dev_priv, pipe) {
1746 i915_reg_t reg;
1747 u32 mask, iir_bit = 0;
1748
1749 /*
1750 * PIPESTAT bits get signalled even when the interrupt is
1751 * disabled with the mask bits, and some of the status bits do
1752 * not generate interrupts at all (like the underrun bit). Hence
1753 * we need to be careful that we only handle what we want to
1754 * handle.
1755 */
1756
1757 /* fifo underruns are filterered in the underrun handler. */
1758 mask = PIPE_FIFO_UNDERRUN_STATUS;
1759
1760 switch (pipe) {
1761 case PIPE_A:
1762 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1763 break;
1764 case PIPE_B:
1765 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1766 break;
1767 case PIPE_C:
1768 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1769 break;
1770 }
1771 if (iir & iir_bit)
1772 mask |= dev_priv->pipestat_irq_mask[pipe];
1773
1774 if (!mask)
1775 continue;
1776
1777 reg = PIPESTAT(pipe);
1778 mask |= PIPESTAT_INT_ENABLE_MASK;
1779 pipe_stats[pipe] = I915_READ(reg) & mask;
1780
1781 /*
1782 * Clear the PIPE*STAT regs before the IIR
1783 */
1784 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1785 PIPESTAT_INT_STATUS_MASK))
1786 I915_WRITE(reg, pipe_stats[pipe]);
1787 }
1788 spin_unlock(&dev_priv->irq_lock);
1789 }
1790
1791 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1792 u32 pipe_stats[I915_MAX_PIPES])
1793 {
1794 enum pipe pipe;
1795
1796 for_each_pipe(dev_priv, pipe) {
1797 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1798 intel_pipe_handle_vblank(dev_priv, pipe))
1799 intel_check_page_flip(dev_priv, pipe);
1800
1801 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1802 intel_finish_page_flip_cs(dev_priv, pipe);
1803
1804 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1805 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1806
1807 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1808 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1809 }
1810
1811 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1812 gmbus_irq_handler(dev_priv);
1813 }
1814
1815 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1816 {
1817 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1818
1819 if (hotplug_status)
1820 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1821
1822 return hotplug_status;
1823 }
1824
1825 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1826 u32 hotplug_status)
1827 {
1828 u32 pin_mask = 0, long_mask = 0;
1829
1830 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1831 IS_CHERRYVIEW(dev_priv)) {
1832 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1833
1834 if (hotplug_trigger) {
1835 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1836 hotplug_trigger, hpd_status_g4x,
1837 i9xx_port_hotplug_long_detect);
1838
1839 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1840 }
1841
1842 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1843 dp_aux_irq_handler(dev_priv);
1844 } else {
1845 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1846
1847 if (hotplug_trigger) {
1848 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1849 hotplug_trigger, hpd_status_i915,
1850 i9xx_port_hotplug_long_detect);
1851 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1852 }
1853 }
1854 }
1855
1856 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1857 {
1858 struct drm_device *dev = arg;
1859 struct drm_i915_private *dev_priv = to_i915(dev);
1860 irqreturn_t ret = IRQ_NONE;
1861
1862 if (!intel_irqs_enabled(dev_priv))
1863 return IRQ_NONE;
1864
1865 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866 disable_rpm_wakeref_asserts(dev_priv);
1867
1868 do {
1869 u32 iir, gt_iir, pm_iir;
1870 u32 pipe_stats[I915_MAX_PIPES] = {};
1871 u32 hotplug_status = 0;
1872 u32 ier = 0;
1873
1874 gt_iir = I915_READ(GTIIR);
1875 pm_iir = I915_READ(GEN6_PMIIR);
1876 iir = I915_READ(VLV_IIR);
1877
1878 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879 break;
1880
1881 ret = IRQ_HANDLED;
1882
1883 /*
1884 * Theory on interrupt generation, based on empirical evidence:
1885 *
1886 * x = ((VLV_IIR & VLV_IER) ||
1887 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1888 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1889 *
1890 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1891 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1892 * guarantee the CPU interrupt will be raised again even if we
1893 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1894 * bits this time around.
1895 */
1896 I915_WRITE(VLV_MASTER_IER, 0);
1897 ier = I915_READ(VLV_IER);
1898 I915_WRITE(VLV_IER, 0);
1899
1900 if (gt_iir)
1901 I915_WRITE(GTIIR, gt_iir);
1902 if (pm_iir)
1903 I915_WRITE(GEN6_PMIIR, pm_iir);
1904
1905 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1906 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1907
1908 /* Call regardless, as some status bits might not be
1909 * signalled in iir */
1910 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1911
1912 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1913 I915_LPE_PIPE_B_INTERRUPT))
1914 intel_lpe_audio_irq_handler(dev_priv);
1915
1916 /*
1917 * VLV_IIR is single buffered, and reflects the level
1918 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 */
1920 if (iir)
1921 I915_WRITE(VLV_IIR, iir);
1922
1923 I915_WRITE(VLV_IER, ier);
1924 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1925 POSTING_READ(VLV_MASTER_IER);
1926
1927 if (gt_iir)
1928 snb_gt_irq_handler(dev_priv, gt_iir);
1929 if (pm_iir)
1930 gen6_rps_irq_handler(dev_priv, pm_iir);
1931
1932 if (hotplug_status)
1933 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1934
1935 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1936 } while (0);
1937
1938 enable_rpm_wakeref_asserts(dev_priv);
1939
1940 return ret;
1941 }
1942
1943 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1944 {
1945 struct drm_device *dev = arg;
1946 struct drm_i915_private *dev_priv = to_i915(dev);
1947 irqreturn_t ret = IRQ_NONE;
1948
1949 if (!intel_irqs_enabled(dev_priv))
1950 return IRQ_NONE;
1951
1952 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1953 disable_rpm_wakeref_asserts(dev_priv);
1954
1955 do {
1956 u32 master_ctl, iir;
1957 u32 gt_iir[4] = {};
1958 u32 pipe_stats[I915_MAX_PIPES] = {};
1959 u32 hotplug_status = 0;
1960 u32 ier = 0;
1961
1962 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1963 iir = I915_READ(VLV_IIR);
1964
1965 if (master_ctl == 0 && iir == 0)
1966 break;
1967
1968 ret = IRQ_HANDLED;
1969
1970 /*
1971 * Theory on interrupt generation, based on empirical evidence:
1972 *
1973 * x = ((VLV_IIR & VLV_IER) ||
1974 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1975 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1976 *
1977 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1978 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1979 * guarantee the CPU interrupt will be raised again even if we
1980 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1981 * bits this time around.
1982 */
1983 I915_WRITE(GEN8_MASTER_IRQ, 0);
1984 ier = I915_READ(VLV_IER);
1985 I915_WRITE(VLV_IER, 0);
1986
1987 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1988
1989 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1990 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1991
1992 /* Call regardless, as some status bits might not be
1993 * signalled in iir */
1994 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1995
1996 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1997 I915_LPE_PIPE_B_INTERRUPT |
1998 I915_LPE_PIPE_C_INTERRUPT))
1999 intel_lpe_audio_irq_handler(dev_priv);
2000
2001 /*
2002 * VLV_IIR is single buffered, and reflects the level
2003 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2004 */
2005 if (iir)
2006 I915_WRITE(VLV_IIR, iir);
2007
2008 I915_WRITE(VLV_IER, ier);
2009 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2010 POSTING_READ(GEN8_MASTER_IRQ);
2011
2012 gen8_gt_irq_handler(dev_priv, gt_iir);
2013
2014 if (hotplug_status)
2015 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 } while (0);
2019
2020 enable_rpm_wakeref_asserts(dev_priv);
2021
2022 return ret;
2023 }
2024
2025 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2026 u32 hotplug_trigger,
2027 const u32 hpd[HPD_NUM_PINS])
2028 {
2029 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2030
2031 /*
2032 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2033 * unless we touch the hotplug register, even if hotplug_trigger is
2034 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2035 * errors.
2036 */
2037 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2038 if (!hotplug_trigger) {
2039 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2040 PORTD_HOTPLUG_STATUS_MASK |
2041 PORTC_HOTPLUG_STATUS_MASK |
2042 PORTB_HOTPLUG_STATUS_MASK;
2043 dig_hotplug_reg &= ~mask;
2044 }
2045
2046 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2047 if (!hotplug_trigger)
2048 return;
2049
2050 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2051 dig_hotplug_reg, hpd,
2052 pch_port_hotplug_long_detect);
2053
2054 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055 }
2056
2057 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059 int pipe;
2060 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2061
2062 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2063
2064 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2065 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2066 SDE_AUDIO_POWER_SHIFT);
2067 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2068 port_name(port));
2069 }
2070
2071 if (pch_iir & SDE_AUX_MASK)
2072 dp_aux_irq_handler(dev_priv);
2073
2074 if (pch_iir & SDE_GMBUS)
2075 gmbus_irq_handler(dev_priv);
2076
2077 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2078 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2079
2080 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2081 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2082
2083 if (pch_iir & SDE_POISON)
2084 DRM_ERROR("PCH poison interrupt\n");
2085
2086 if (pch_iir & SDE_FDI_MASK)
2087 for_each_pipe(dev_priv, pipe)
2088 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2089 pipe_name(pipe),
2090 I915_READ(FDI_RX_IIR(pipe)));
2091
2092 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2093 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2094
2095 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2096 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2097
2098 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2099 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2100
2101 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2102 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2103 }
2104
2105 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2106 {
2107 u32 err_int = I915_READ(GEN7_ERR_INT);
2108 enum pipe pipe;
2109
2110 if (err_int & ERR_INT_POISON)
2111 DRM_ERROR("Poison interrupt\n");
2112
2113 for_each_pipe(dev_priv, pipe) {
2114 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2115 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2116
2117 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2118 if (IS_IVYBRIDGE(dev_priv))
2119 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2120 else
2121 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2122 }
2123 }
2124
2125 I915_WRITE(GEN7_ERR_INT, err_int);
2126 }
2127
2128 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2129 {
2130 u32 serr_int = I915_READ(SERR_INT);
2131
2132 if (serr_int & SERR_INT_POISON)
2133 DRM_ERROR("PCH poison interrupt\n");
2134
2135 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2136 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2137
2138 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2139 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2140
2141 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2142 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2143
2144 I915_WRITE(SERR_INT, serr_int);
2145 }
2146
2147 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2148 {
2149 int pipe;
2150 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2151
2152 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2153
2154 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2155 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2156 SDE_AUDIO_POWER_SHIFT_CPT);
2157 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2158 port_name(port));
2159 }
2160
2161 if (pch_iir & SDE_AUX_MASK_CPT)
2162 dp_aux_irq_handler(dev_priv);
2163
2164 if (pch_iir & SDE_GMBUS_CPT)
2165 gmbus_irq_handler(dev_priv);
2166
2167 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2168 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2169
2170 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2171 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2172
2173 if (pch_iir & SDE_FDI_MASK_CPT)
2174 for_each_pipe(dev_priv, pipe)
2175 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2176 pipe_name(pipe),
2177 I915_READ(FDI_RX_IIR(pipe)));
2178
2179 if (pch_iir & SDE_ERROR_CPT)
2180 cpt_serr_int_handler(dev_priv);
2181 }
2182
2183 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2186 ~SDE_PORTE_HOTPLUG_SPT;
2187 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2188 u32 pin_mask = 0, long_mask = 0;
2189
2190 if (hotplug_trigger) {
2191 u32 dig_hotplug_reg;
2192
2193 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195
2196 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2197 dig_hotplug_reg, hpd_spt,
2198 spt_port_hotplug_long_detect);
2199 }
2200
2201 if (hotplug2_trigger) {
2202 u32 dig_hotplug_reg;
2203
2204 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2205 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2206
2207 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2208 dig_hotplug_reg, hpd_spt,
2209 spt_port_hotplug2_long_detect);
2210 }
2211
2212 if (pin_mask)
2213 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2214
2215 if (pch_iir & SDE_GMBUS_CPT)
2216 gmbus_irq_handler(dev_priv);
2217 }
2218
2219 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2220 u32 hotplug_trigger,
2221 const u32 hpd[HPD_NUM_PINS])
2222 {
2223 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2224
2225 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2226 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2227
2228 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2229 dig_hotplug_reg, hpd,
2230 ilk_port_hotplug_long_detect);
2231
2232 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2233 }
2234
2235 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2236 u32 de_iir)
2237 {
2238 enum pipe pipe;
2239 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2240
2241 if (hotplug_trigger)
2242 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2243
2244 if (de_iir & DE_AUX_CHANNEL_A)
2245 dp_aux_irq_handler(dev_priv);
2246
2247 if (de_iir & DE_GSE)
2248 intel_opregion_asle_intr(dev_priv);
2249
2250 if (de_iir & DE_POISON)
2251 DRM_ERROR("Poison interrupt\n");
2252
2253 for_each_pipe(dev_priv, pipe) {
2254 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2255 intel_pipe_handle_vblank(dev_priv, pipe))
2256 intel_check_page_flip(dev_priv, pipe);
2257
2258 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2259 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2260
2261 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2262 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2263
2264 /* plane/pipes map 1:1 on ilk+ */
2265 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2266 intel_finish_page_flip_cs(dev_priv, pipe);
2267 }
2268
2269 /* check event from PCH */
2270 if (de_iir & DE_PCH_EVENT) {
2271 u32 pch_iir = I915_READ(SDEIIR);
2272
2273 if (HAS_PCH_CPT(dev_priv))
2274 cpt_irq_handler(dev_priv, pch_iir);
2275 else
2276 ibx_irq_handler(dev_priv, pch_iir);
2277
2278 /* should clear PCH hotplug event before clear CPU irq */
2279 I915_WRITE(SDEIIR, pch_iir);
2280 }
2281
2282 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2283 ironlake_rps_change_irq_handler(dev_priv);
2284 }
2285
2286 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2287 u32 de_iir)
2288 {
2289 enum pipe pipe;
2290 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2291
2292 if (hotplug_trigger)
2293 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2294
2295 if (de_iir & DE_ERR_INT_IVB)
2296 ivb_err_int_handler(dev_priv);
2297
2298 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2299 dp_aux_irq_handler(dev_priv);
2300
2301 if (de_iir & DE_GSE_IVB)
2302 intel_opregion_asle_intr(dev_priv);
2303
2304 for_each_pipe(dev_priv, pipe) {
2305 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2306 intel_pipe_handle_vblank(dev_priv, pipe))
2307 intel_check_page_flip(dev_priv, pipe);
2308
2309 /* plane/pipes map 1:1 on ilk+ */
2310 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2311 intel_finish_page_flip_cs(dev_priv, pipe);
2312 }
2313
2314 /* check event from PCH */
2315 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2316 u32 pch_iir = I915_READ(SDEIIR);
2317
2318 cpt_irq_handler(dev_priv, pch_iir);
2319
2320 /* clear PCH hotplug event before clear CPU irq */
2321 I915_WRITE(SDEIIR, pch_iir);
2322 }
2323 }
2324
2325 /*
2326 * To handle irqs with the minimum potential races with fresh interrupts, we:
2327 * 1 - Disable Master Interrupt Control.
2328 * 2 - Find the source(s) of the interrupt.
2329 * 3 - Clear the Interrupt Identity bits (IIR).
2330 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2331 * 5 - Re-enable Master Interrupt Control.
2332 */
2333 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2334 {
2335 struct drm_device *dev = arg;
2336 struct drm_i915_private *dev_priv = to_i915(dev);
2337 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2338 irqreturn_t ret = IRQ_NONE;
2339
2340 if (!intel_irqs_enabled(dev_priv))
2341 return IRQ_NONE;
2342
2343 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2344 disable_rpm_wakeref_asserts(dev_priv);
2345
2346 /* disable master interrupt before clearing iir */
2347 de_ier = I915_READ(DEIER);
2348 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2349 POSTING_READ(DEIER);
2350
2351 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2352 * interrupts will will be stored on its back queue, and then we'll be
2353 * able to process them after we restore SDEIER (as soon as we restore
2354 * it, we'll get an interrupt if SDEIIR still has something to process
2355 * due to its back queue). */
2356 if (!HAS_PCH_NOP(dev_priv)) {
2357 sde_ier = I915_READ(SDEIER);
2358 I915_WRITE(SDEIER, 0);
2359 POSTING_READ(SDEIER);
2360 }
2361
2362 /* Find, clear, then process each source of interrupt */
2363
2364 gt_iir = I915_READ(GTIIR);
2365 if (gt_iir) {
2366 I915_WRITE(GTIIR, gt_iir);
2367 ret = IRQ_HANDLED;
2368 if (INTEL_GEN(dev_priv) >= 6)
2369 snb_gt_irq_handler(dev_priv, gt_iir);
2370 else
2371 ilk_gt_irq_handler(dev_priv, gt_iir);
2372 }
2373
2374 de_iir = I915_READ(DEIIR);
2375 if (de_iir) {
2376 I915_WRITE(DEIIR, de_iir);
2377 ret = IRQ_HANDLED;
2378 if (INTEL_GEN(dev_priv) >= 7)
2379 ivb_display_irq_handler(dev_priv, de_iir);
2380 else
2381 ilk_display_irq_handler(dev_priv, de_iir);
2382 }
2383
2384 if (INTEL_GEN(dev_priv) >= 6) {
2385 u32 pm_iir = I915_READ(GEN6_PMIIR);
2386 if (pm_iir) {
2387 I915_WRITE(GEN6_PMIIR, pm_iir);
2388 ret = IRQ_HANDLED;
2389 gen6_rps_irq_handler(dev_priv, pm_iir);
2390 }
2391 }
2392
2393 I915_WRITE(DEIER, de_ier);
2394 POSTING_READ(DEIER);
2395 if (!HAS_PCH_NOP(dev_priv)) {
2396 I915_WRITE(SDEIER, sde_ier);
2397 POSTING_READ(SDEIER);
2398 }
2399
2400 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2401 enable_rpm_wakeref_asserts(dev_priv);
2402
2403 return ret;
2404 }
2405
2406 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2407 u32 hotplug_trigger,
2408 const u32 hpd[HPD_NUM_PINS])
2409 {
2410 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2411
2412 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2413 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2414
2415 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2416 dig_hotplug_reg, hpd,
2417 bxt_port_hotplug_long_detect);
2418
2419 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2420 }
2421
2422 static irqreturn_t
2423 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2424 {
2425 irqreturn_t ret = IRQ_NONE;
2426 u32 iir;
2427 enum pipe pipe;
2428
2429 if (master_ctl & GEN8_DE_MISC_IRQ) {
2430 iir = I915_READ(GEN8_DE_MISC_IIR);
2431 if (iir) {
2432 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2433 ret = IRQ_HANDLED;
2434 if (iir & GEN8_DE_MISC_GSE)
2435 intel_opregion_asle_intr(dev_priv);
2436 else
2437 DRM_ERROR("Unexpected DE Misc interrupt\n");
2438 }
2439 else
2440 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2441 }
2442
2443 if (master_ctl & GEN8_DE_PORT_IRQ) {
2444 iir = I915_READ(GEN8_DE_PORT_IIR);
2445 if (iir) {
2446 u32 tmp_mask;
2447 bool found = false;
2448
2449 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2450 ret = IRQ_HANDLED;
2451
2452 tmp_mask = GEN8_AUX_CHANNEL_A;
2453 if (INTEL_INFO(dev_priv)->gen >= 9)
2454 tmp_mask |= GEN9_AUX_CHANNEL_B |
2455 GEN9_AUX_CHANNEL_C |
2456 GEN9_AUX_CHANNEL_D;
2457
2458 if (iir & tmp_mask) {
2459 dp_aux_irq_handler(dev_priv);
2460 found = true;
2461 }
2462
2463 if (IS_GEN9_LP(dev_priv)) {
2464 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2465 if (tmp_mask) {
2466 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2467 hpd_bxt);
2468 found = true;
2469 }
2470 } else if (IS_BROADWELL(dev_priv)) {
2471 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2472 if (tmp_mask) {
2473 ilk_hpd_irq_handler(dev_priv,
2474 tmp_mask, hpd_bdw);
2475 found = true;
2476 }
2477 }
2478
2479 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2480 gmbus_irq_handler(dev_priv);
2481 found = true;
2482 }
2483
2484 if (!found)
2485 DRM_ERROR("Unexpected DE Port interrupt\n");
2486 }
2487 else
2488 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2489 }
2490
2491 for_each_pipe(dev_priv, pipe) {
2492 u32 flip_done, fault_errors;
2493
2494 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2495 continue;
2496
2497 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2498 if (!iir) {
2499 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2500 continue;
2501 }
2502
2503 ret = IRQ_HANDLED;
2504 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2505
2506 if (iir & GEN8_PIPE_VBLANK &&
2507 intel_pipe_handle_vblank(dev_priv, pipe))
2508 intel_check_page_flip(dev_priv, pipe);
2509
2510 flip_done = iir;
2511 if (INTEL_INFO(dev_priv)->gen >= 9)
2512 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2513 else
2514 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2515
2516 if (flip_done)
2517 intel_finish_page_flip_cs(dev_priv, pipe);
2518
2519 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2520 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2521
2522 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2523 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2524
2525 fault_errors = iir;
2526 if (INTEL_INFO(dev_priv)->gen >= 9)
2527 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2528 else
2529 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2530
2531 if (fault_errors)
2532 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2533 pipe_name(pipe),
2534 fault_errors);
2535 }
2536
2537 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2538 master_ctl & GEN8_DE_PCH_IRQ) {
2539 /*
2540 * FIXME(BDW): Assume for now that the new interrupt handling
2541 * scheme also closed the SDE interrupt handling race we've seen
2542 * on older pch-split platforms. But this needs testing.
2543 */
2544 iir = I915_READ(SDEIIR);
2545 if (iir) {
2546 I915_WRITE(SDEIIR, iir);
2547 ret = IRQ_HANDLED;
2548
2549 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2550 spt_irq_handler(dev_priv, iir);
2551 else
2552 cpt_irq_handler(dev_priv, iir);
2553 } else {
2554 /*
2555 * Like on previous PCH there seems to be something
2556 * fishy going on with forwarding PCH interrupts.
2557 */
2558 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2559 }
2560 }
2561
2562 return ret;
2563 }
2564
2565 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2566 {
2567 struct drm_device *dev = arg;
2568 struct drm_i915_private *dev_priv = to_i915(dev);
2569 u32 master_ctl;
2570 u32 gt_iir[4] = {};
2571 irqreturn_t ret;
2572
2573 if (!intel_irqs_enabled(dev_priv))
2574 return IRQ_NONE;
2575
2576 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2577 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2578 if (!master_ctl)
2579 return IRQ_NONE;
2580
2581 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2582
2583 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2584 disable_rpm_wakeref_asserts(dev_priv);
2585
2586 /* Find, clear, then process each source of interrupt */
2587 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2588 gen8_gt_irq_handler(dev_priv, gt_iir);
2589 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2590
2591 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2592 POSTING_READ_FW(GEN8_MASTER_IRQ);
2593
2594 enable_rpm_wakeref_asserts(dev_priv);
2595
2596 return ret;
2597 }
2598
2599 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2600 {
2601 /*
2602 * Notify all waiters for GPU completion events that reset state has
2603 * been changed, and that they need to restart their wait after
2604 * checking for potential errors (and bail out to drop locks if there is
2605 * a gpu reset pending so that i915_error_work_func can acquire them).
2606 */
2607
2608 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2609 wake_up_all(&dev_priv->gpu_error.wait_queue);
2610
2611 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2612 wake_up_all(&dev_priv->pending_flip_queue);
2613 }
2614
2615 /**
2616 * i915_reset_and_wakeup - do process context error handling work
2617 * @dev_priv: i915 device private
2618 *
2619 * Fire an error uevent so userspace can see that a hang or error
2620 * was detected.
2621 */
2622 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2623 {
2624 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2625 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2626 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2627 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2628
2629 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2630
2631 DRM_DEBUG_DRIVER("resetting chip\n");
2632 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2633
2634 /*
2635 * In most cases it's guaranteed that we get here with an RPM
2636 * reference held, for example because there is a pending GPU
2637 * request that won't finish until the reset is done. This
2638 * isn't the case at least when we get here by doing a
2639 * simulated reset via debugs, so get an RPM reference.
2640 */
2641 intel_runtime_pm_get(dev_priv);
2642 intel_prepare_reset(dev_priv);
2643
2644 do {
2645 /*
2646 * All state reset _must_ be completed before we update the
2647 * reset counter, for otherwise waiters might miss the reset
2648 * pending state and not properly drop locks, resulting in
2649 * deadlocks with the reset work.
2650 */
2651 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2652 i915_reset(dev_priv);
2653 mutex_unlock(&dev_priv->drm.struct_mutex);
2654 }
2655
2656 /* We need to wait for anyone holding the lock to wakeup */
2657 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2658 I915_RESET_IN_PROGRESS,
2659 TASK_UNINTERRUPTIBLE,
2660 HZ));
2661
2662 intel_finish_reset(dev_priv);
2663 intel_runtime_pm_put(dev_priv);
2664
2665 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2666 kobject_uevent_env(kobj,
2667 KOBJ_CHANGE, reset_done_event);
2668
2669 /*
2670 * Note: The wake_up also serves as a memory barrier so that
2671 * waiters see the updated value of the dev_priv->gpu_error.
2672 */
2673 wake_up_all(&dev_priv->gpu_error.reset_queue);
2674 }
2675
2676 static inline void
2677 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2678 struct intel_instdone *instdone)
2679 {
2680 int slice;
2681 int subslice;
2682
2683 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2684
2685 if (INTEL_GEN(dev_priv) <= 3)
2686 return;
2687
2688 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2689
2690 if (INTEL_GEN(dev_priv) <= 6)
2691 return;
2692
2693 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2694 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2695 slice, subslice, instdone->sampler[slice][subslice]);
2696
2697 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2698 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2699 slice, subslice, instdone->row[slice][subslice]);
2700 }
2701
2702 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2703 {
2704 u32 eir;
2705
2706 if (!IS_GEN2(dev_priv))
2707 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2708
2709 if (INTEL_GEN(dev_priv) < 4)
2710 I915_WRITE(IPEIR, I915_READ(IPEIR));
2711 else
2712 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2713
2714 I915_WRITE(EIR, I915_READ(EIR));
2715 eir = I915_READ(EIR);
2716 if (eir) {
2717 /*
2718 * some errors might have become stuck,
2719 * mask them.
2720 */
2721 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2722 I915_WRITE(EMR, I915_READ(EMR) | eir);
2723 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2724 }
2725 }
2726
2727 /**
2728 * i915_handle_error - handle a gpu error
2729 * @dev_priv: i915 device private
2730 * @engine_mask: mask representing engines that are hung
2731 * @fmt: Error message format string
2732 *
2733 * Do some basic checking of register state at error time and
2734 * dump it to the syslog. Also call i915_capture_error_state() to make
2735 * sure we get a record and make it available in debugfs. Fire a uevent
2736 * so userspace knows something bad happened (should trigger collection
2737 * of a ring dump etc.).
2738 */
2739 void i915_handle_error(struct drm_i915_private *dev_priv,
2740 u32 engine_mask,
2741 const char *fmt, ...)
2742 {
2743 va_list args;
2744 char error_msg[80];
2745
2746 va_start(args, fmt);
2747 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2748 va_end(args);
2749
2750 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2751 i915_clear_error_registers(dev_priv);
2752
2753 if (!engine_mask)
2754 return;
2755
2756 if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2757 &dev_priv->gpu_error.flags))
2758 return;
2759
2760 /*
2761 * Wakeup waiting processes so that the reset function
2762 * i915_reset_and_wakeup doesn't deadlock trying to grab
2763 * various locks. By bumping the reset counter first, the woken
2764 * processes will see a reset in progress and back off,
2765 * releasing their locks and then wait for the reset completion.
2766 * We must do this for _all_ gpu waiters that might hold locks
2767 * that the reset work needs to acquire.
2768 *
2769 * Note: The wake_up also provides a memory barrier to ensure that the
2770 * waiters see the updated value of the reset flags.
2771 */
2772 i915_error_wake_up(dev_priv);
2773
2774 i915_reset_and_wakeup(dev_priv);
2775 }
2776
2777 /* Called from drm generic code, passed 'crtc' which
2778 * we use as a pipe index
2779 */
2780 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782 struct drm_i915_private *dev_priv = to_i915(dev);
2783 unsigned long irqflags;
2784
2785 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2787 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2788
2789 return 0;
2790 }
2791
2792 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2793 {
2794 struct drm_i915_private *dev_priv = to_i915(dev);
2795 unsigned long irqflags;
2796
2797 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798 i915_enable_pipestat(dev_priv, pipe,
2799 PIPE_START_VBLANK_INTERRUPT_STATUS);
2800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802 return 0;
2803 }
2804
2805 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807 struct drm_i915_private *dev_priv = to_i915(dev);
2808 unsigned long irqflags;
2809 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2810 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2811
2812 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2813 ilk_enable_display_irq(dev_priv, bit);
2814 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2815
2816 return 0;
2817 }
2818
2819 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821 struct drm_i915_private *dev_priv = to_i915(dev);
2822 unsigned long irqflags;
2823
2824 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2826 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827
2828 return 0;
2829 }
2830
2831 /* Called from drm generic code, passed 'crtc' which
2832 * we use as a pipe index
2833 */
2834 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2835 {
2836 struct drm_i915_private *dev_priv = to_i915(dev);
2837 unsigned long irqflags;
2838
2839 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2841 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842 }
2843
2844 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2845 {
2846 struct drm_i915_private *dev_priv = to_i915(dev);
2847 unsigned long irqflags;
2848
2849 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2850 i915_disable_pipestat(dev_priv, pipe,
2851 PIPE_START_VBLANK_INTERRUPT_STATUS);
2852 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2853 }
2854
2855 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2856 {
2857 struct drm_i915_private *dev_priv = to_i915(dev);
2858 unsigned long irqflags;
2859 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2860 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2861
2862 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863 ilk_disable_display_irq(dev_priv, bit);
2864 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2865 }
2866
2867 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2868 {
2869 struct drm_i915_private *dev_priv = to_i915(dev);
2870 unsigned long irqflags;
2871
2872 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2873 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2874 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2875 }
2876
2877 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2878 {
2879 if (HAS_PCH_NOP(dev_priv))
2880 return;
2881
2882 GEN5_IRQ_RESET(SDE);
2883
2884 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2885 I915_WRITE(SERR_INT, 0xffffffff);
2886 }
2887
2888 /*
2889 * SDEIER is also touched by the interrupt handler to work around missed PCH
2890 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2891 * instead we unconditionally enable all PCH interrupt sources here, but then
2892 * only unmask them as needed with SDEIMR.
2893 *
2894 * This function needs to be called before interrupts are enabled.
2895 */
2896 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2897 {
2898 struct drm_i915_private *dev_priv = to_i915(dev);
2899
2900 if (HAS_PCH_NOP(dev_priv))
2901 return;
2902
2903 WARN_ON(I915_READ(SDEIER) != 0);
2904 I915_WRITE(SDEIER, 0xffffffff);
2905 POSTING_READ(SDEIER);
2906 }
2907
2908 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2909 {
2910 GEN5_IRQ_RESET(GT);
2911 if (INTEL_GEN(dev_priv) >= 6)
2912 GEN5_IRQ_RESET(GEN6_PM);
2913 }
2914
2915 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2916 {
2917 enum pipe pipe;
2918
2919 if (IS_CHERRYVIEW(dev_priv))
2920 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2921 else
2922 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2923
2924 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2925 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2926
2927 for_each_pipe(dev_priv, pipe) {
2928 I915_WRITE(PIPESTAT(pipe),
2929 PIPE_FIFO_UNDERRUN_STATUS |
2930 PIPESTAT_INT_STATUS_MASK);
2931 dev_priv->pipestat_irq_mask[pipe] = 0;
2932 }
2933
2934 GEN5_IRQ_RESET(VLV_);
2935 dev_priv->irq_mask = ~0;
2936 }
2937
2938 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2939 {
2940 u32 pipestat_mask;
2941 u32 enable_mask;
2942 enum pipe pipe;
2943 u32 val;
2944
2945 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2946 PIPE_CRC_DONE_INTERRUPT_STATUS;
2947
2948 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2949 for_each_pipe(dev_priv, pipe)
2950 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2951
2952 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2953 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2954 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2955 if (IS_CHERRYVIEW(dev_priv))
2956 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2957
2958 WARN_ON(dev_priv->irq_mask != ~0);
2959
2960 val = (I915_LPE_PIPE_A_INTERRUPT |
2961 I915_LPE_PIPE_B_INTERRUPT |
2962 I915_LPE_PIPE_C_INTERRUPT);
2963
2964 enable_mask |= val;
2965
2966 dev_priv->irq_mask = ~enable_mask;
2967
2968 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2969 }
2970
2971 /* drm_dma.h hooks
2972 */
2973 static void ironlake_irq_reset(struct drm_device *dev)
2974 {
2975 struct drm_i915_private *dev_priv = to_i915(dev);
2976
2977 I915_WRITE(HWSTAM, 0xffffffff);
2978
2979 GEN5_IRQ_RESET(DE);
2980 if (IS_GEN7(dev_priv))
2981 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2982
2983 gen5_gt_irq_reset(dev_priv);
2984
2985 ibx_irq_reset(dev_priv);
2986 }
2987
2988 static void valleyview_irq_preinstall(struct drm_device *dev)
2989 {
2990 struct drm_i915_private *dev_priv = to_i915(dev);
2991
2992 I915_WRITE(VLV_MASTER_IER, 0);
2993 POSTING_READ(VLV_MASTER_IER);
2994
2995 gen5_gt_irq_reset(dev_priv);
2996
2997 spin_lock_irq(&dev_priv->irq_lock);
2998 if (dev_priv->display_irqs_enabled)
2999 vlv_display_irq_reset(dev_priv);
3000 spin_unlock_irq(&dev_priv->irq_lock);
3001 }
3002
3003 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3004 {
3005 GEN8_IRQ_RESET_NDX(GT, 0);
3006 GEN8_IRQ_RESET_NDX(GT, 1);
3007 GEN8_IRQ_RESET_NDX(GT, 2);
3008 GEN8_IRQ_RESET_NDX(GT, 3);
3009 }
3010
3011 static void gen8_irq_reset(struct drm_device *dev)
3012 {
3013 struct drm_i915_private *dev_priv = to_i915(dev);
3014 int pipe;
3015
3016 I915_WRITE(GEN8_MASTER_IRQ, 0);
3017 POSTING_READ(GEN8_MASTER_IRQ);
3018
3019 gen8_gt_irq_reset(dev_priv);
3020
3021 for_each_pipe(dev_priv, pipe)
3022 if (intel_display_power_is_enabled(dev_priv,
3023 POWER_DOMAIN_PIPE(pipe)))
3024 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3025
3026 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3027 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3028 GEN5_IRQ_RESET(GEN8_PCU_);
3029
3030 if (HAS_PCH_SPLIT(dev_priv))
3031 ibx_irq_reset(dev_priv);
3032 }
3033
3034 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3035 unsigned int pipe_mask)
3036 {
3037 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3038 enum pipe pipe;
3039
3040 spin_lock_irq(&dev_priv->irq_lock);
3041 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3042 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3043 dev_priv->de_irq_mask[pipe],
3044 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3045 spin_unlock_irq(&dev_priv->irq_lock);
3046 }
3047
3048 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3049 unsigned int pipe_mask)
3050 {
3051 enum pipe pipe;
3052
3053 spin_lock_irq(&dev_priv->irq_lock);
3054 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3055 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3056 spin_unlock_irq(&dev_priv->irq_lock);
3057
3058 /* make sure we're done processing display irqs */
3059 synchronize_irq(dev_priv->drm.irq);
3060 }
3061
3062 static void cherryview_irq_preinstall(struct drm_device *dev)
3063 {
3064 struct drm_i915_private *dev_priv = to_i915(dev);
3065
3066 I915_WRITE(GEN8_MASTER_IRQ, 0);
3067 POSTING_READ(GEN8_MASTER_IRQ);
3068
3069 gen8_gt_irq_reset(dev_priv);
3070
3071 GEN5_IRQ_RESET(GEN8_PCU_);
3072
3073 spin_lock_irq(&dev_priv->irq_lock);
3074 if (dev_priv->display_irqs_enabled)
3075 vlv_display_irq_reset(dev_priv);
3076 spin_unlock_irq(&dev_priv->irq_lock);
3077 }
3078
3079 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3080 const u32 hpd[HPD_NUM_PINS])
3081 {
3082 struct intel_encoder *encoder;
3083 u32 enabled_irqs = 0;
3084
3085 for_each_intel_encoder(&dev_priv->drm, encoder)
3086 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3087 enabled_irqs |= hpd[encoder->hpd_pin];
3088
3089 return enabled_irqs;
3090 }
3091
3092 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 u32 hotplug_irqs, hotplug, enabled_irqs;
3095
3096 if (HAS_PCH_IBX(dev_priv)) {
3097 hotplug_irqs = SDE_HOTPLUG_MASK;
3098 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3099 } else {
3100 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3101 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3102 }
3103
3104 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3105
3106 /*
3107 * Enable digital hotplug on the PCH, and configure the DP short pulse
3108 * duration to 2ms (which is the minimum in the Display Port spec).
3109 * The pulse duration bits are reserved on LPT+.
3110 */
3111 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3112 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3113 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3114 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3115 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3116 /*
3117 * When CPU and PCH are on the same package, port A
3118 * HPD must be enabled in both north and south.
3119 */
3120 if (HAS_PCH_LPT_LP(dev_priv))
3121 hotplug |= PORTA_HOTPLUG_ENABLE;
3122 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3123 }
3124
3125 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3126 {
3127 u32 hotplug;
3128
3129 /* Enable digital hotplug on the PCH */
3130 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3131 hotplug |= PORTA_HOTPLUG_ENABLE |
3132 PORTB_HOTPLUG_ENABLE |
3133 PORTC_HOTPLUG_ENABLE |
3134 PORTD_HOTPLUG_ENABLE;
3135 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3136
3137 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3138 hotplug |= PORTE_HOTPLUG_ENABLE;
3139 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3140 }
3141
3142 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3143 {
3144 u32 hotplug_irqs, enabled_irqs;
3145
3146 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3147 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3148
3149 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3150
3151 spt_hpd_detection_setup(dev_priv);
3152 }
3153
3154 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3155 {
3156 u32 hotplug_irqs, hotplug, enabled_irqs;
3157
3158 if (INTEL_GEN(dev_priv) >= 8) {
3159 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3160 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3161
3162 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3163 } else if (INTEL_GEN(dev_priv) >= 7) {
3164 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3165 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3166
3167 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3168 } else {
3169 hotplug_irqs = DE_DP_A_HOTPLUG;
3170 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3171
3172 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3173 }
3174
3175 /*
3176 * Enable digital hotplug on the CPU, and configure the DP short pulse
3177 * duration to 2ms (which is the minimum in the Display Port spec)
3178 * The pulse duration bits are reserved on HSW+.
3179 */
3180 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3181 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3182 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3183 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3184
3185 ibx_hpd_irq_setup(dev_priv);
3186 }
3187
3188 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3189 u32 enabled_irqs)
3190 {
3191 u32 hotplug;
3192
3193 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3194 hotplug |= PORTA_HOTPLUG_ENABLE |
3195 PORTB_HOTPLUG_ENABLE |
3196 PORTC_HOTPLUG_ENABLE;
3197
3198 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3199 hotplug, enabled_irqs);
3200 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3201
3202 /*
3203 * For BXT invert bit has to be set based on AOB design
3204 * for HPD detection logic, update it based on VBT fields.
3205 */
3206 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3207 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3208 hotplug |= BXT_DDIA_HPD_INVERT;
3209 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3210 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3211 hotplug |= BXT_DDIB_HPD_INVERT;
3212 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3213 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3214 hotplug |= BXT_DDIC_HPD_INVERT;
3215
3216 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3217 }
3218
3219 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3220 {
3221 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3222 }
3223
3224 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3225 {
3226 u32 hotplug_irqs, enabled_irqs;
3227
3228 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3229 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3230
3231 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3232
3233 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3234 }
3235
3236 static void ibx_irq_postinstall(struct drm_device *dev)
3237 {
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239 u32 mask;
3240
3241 if (HAS_PCH_NOP(dev_priv))
3242 return;
3243
3244 if (HAS_PCH_IBX(dev_priv))
3245 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3246 else
3247 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3248
3249 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3250 I915_WRITE(SDEIMR, ~mask);
3251
3252 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3253 HAS_PCH_LPT(dev_priv))
3254 ; /* TODO: Enable HPD detection on older PCH platforms too */
3255 else
3256 spt_hpd_detection_setup(dev_priv);
3257 }
3258
3259 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3260 {
3261 struct drm_i915_private *dev_priv = to_i915(dev);
3262 u32 pm_irqs, gt_irqs;
3263
3264 pm_irqs = gt_irqs = 0;
3265
3266 dev_priv->gt_irq_mask = ~0;
3267 if (HAS_L3_DPF(dev_priv)) {
3268 /* L3 parity interrupt is always unmasked. */
3269 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3270 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3271 }
3272
3273 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3274 if (IS_GEN5(dev_priv)) {
3275 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3276 } else {
3277 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3278 }
3279
3280 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3281
3282 if (INTEL_GEN(dev_priv) >= 6) {
3283 /*
3284 * RPS interrupts will get enabled/disabled on demand when RPS
3285 * itself is enabled/disabled.
3286 */
3287 if (HAS_VEBOX(dev_priv)) {
3288 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3289 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3290 }
3291
3292 dev_priv->pm_imr = 0xffffffff;
3293 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3294 }
3295 }
3296
3297 static int ironlake_irq_postinstall(struct drm_device *dev)
3298 {
3299 struct drm_i915_private *dev_priv = to_i915(dev);
3300 u32 display_mask, extra_mask;
3301
3302 if (INTEL_GEN(dev_priv) >= 7) {
3303 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3304 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3305 DE_PLANEB_FLIP_DONE_IVB |
3306 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3307 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3308 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3309 DE_DP_A_HOTPLUG_IVB);
3310 } else {
3311 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3312 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3313 DE_AUX_CHANNEL_A |
3314 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3315 DE_POISON);
3316 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3317 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3318 DE_DP_A_HOTPLUG);
3319 }
3320
3321 dev_priv->irq_mask = ~display_mask;
3322
3323 I915_WRITE(HWSTAM, 0xeffe);
3324
3325 ibx_irq_pre_postinstall(dev);
3326
3327 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3328
3329 gen5_gt_irq_postinstall(dev);
3330
3331 ibx_irq_postinstall(dev);
3332
3333 if (IS_IRONLAKE_M(dev_priv)) {
3334 /* Enable PCU event interrupts
3335 *
3336 * spinlocking not required here for correctness since interrupt
3337 * setup is guaranteed to run in single-threaded context. But we
3338 * need it to make the assert_spin_locked happy. */
3339 spin_lock_irq(&dev_priv->irq_lock);
3340 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341 spin_unlock_irq(&dev_priv->irq_lock);
3342 }
3343
3344 return 0;
3345 }
3346
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349 assert_spin_locked(&dev_priv->irq_lock);
3350
3351 if (dev_priv->display_irqs_enabled)
3352 return;
3353
3354 dev_priv->display_irqs_enabled = true;
3355
3356 if (intel_irqs_enabled(dev_priv)) {
3357 vlv_display_irq_reset(dev_priv);
3358 vlv_display_irq_postinstall(dev_priv);
3359 }
3360 }
3361
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364 assert_spin_locked(&dev_priv->irq_lock);
3365
3366 if (!dev_priv->display_irqs_enabled)
3367 return;
3368
3369 dev_priv->display_irqs_enabled = false;
3370
3371 if (intel_irqs_enabled(dev_priv))
3372 vlv_display_irq_reset(dev_priv);
3373 }
3374
3375
3376 static int valleyview_irq_postinstall(struct drm_device *dev)
3377 {
3378 struct drm_i915_private *dev_priv = to_i915(dev);
3379
3380 gen5_gt_irq_postinstall(dev);
3381
3382 spin_lock_irq(&dev_priv->irq_lock);
3383 if (dev_priv->display_irqs_enabled)
3384 vlv_display_irq_postinstall(dev_priv);
3385 spin_unlock_irq(&dev_priv->irq_lock);
3386
3387 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3388 POSTING_READ(VLV_MASTER_IER);
3389
3390 return 0;
3391 }
3392
3393 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3394 {
3395 /* These are interrupts we'll toggle with the ring mask register */
3396 uint32_t gt_interrupts[] = {
3397 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3399 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3400 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3401 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3403 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3404 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3405 0,
3406 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3407 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3408 };
3409
3410 if (HAS_L3_DPF(dev_priv))
3411 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3412
3413 dev_priv->pm_ier = 0x0;
3414 dev_priv->pm_imr = ~dev_priv->pm_ier;
3415 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3416 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3417 /*
3418 * RPS interrupts will get enabled/disabled on demand when RPS itself
3419 * is enabled/disabled. Same wil be the case for GuC interrupts.
3420 */
3421 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3422 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3423 }
3424
3425 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3428 uint32_t de_pipe_enables;
3429 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3430 u32 de_port_enables;
3431 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3432 enum pipe pipe;
3433
3434 if (INTEL_INFO(dev_priv)->gen >= 9) {
3435 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3436 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3437 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3438 GEN9_AUX_CHANNEL_D;
3439 if (IS_GEN9_LP(dev_priv))
3440 de_port_masked |= BXT_DE_PORT_GMBUS;
3441 } else {
3442 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3443 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3444 }
3445
3446 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3447 GEN8_PIPE_FIFO_UNDERRUN;
3448
3449 de_port_enables = de_port_masked;
3450 if (IS_GEN9_LP(dev_priv))
3451 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3452 else if (IS_BROADWELL(dev_priv))
3453 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3454
3455 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3456 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3457 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3458
3459 for_each_pipe(dev_priv, pipe)
3460 if (intel_display_power_is_enabled(dev_priv,
3461 POWER_DOMAIN_PIPE(pipe)))
3462 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3463 dev_priv->de_irq_mask[pipe],
3464 de_pipe_enables);
3465
3466 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3467 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3468
3469 if (IS_GEN9_LP(dev_priv))
3470 bxt_hpd_detection_setup(dev_priv);
3471 }
3472
3473 static int gen8_irq_postinstall(struct drm_device *dev)
3474 {
3475 struct drm_i915_private *dev_priv = to_i915(dev);
3476
3477 if (HAS_PCH_SPLIT(dev_priv))
3478 ibx_irq_pre_postinstall(dev);
3479
3480 gen8_gt_irq_postinstall(dev_priv);
3481 gen8_de_irq_postinstall(dev_priv);
3482
3483 if (HAS_PCH_SPLIT(dev_priv))
3484 ibx_irq_postinstall(dev);
3485
3486 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3487 POSTING_READ(GEN8_MASTER_IRQ);
3488
3489 return 0;
3490 }
3491
3492 static int cherryview_irq_postinstall(struct drm_device *dev)
3493 {
3494 struct drm_i915_private *dev_priv = to_i915(dev);
3495
3496 gen8_gt_irq_postinstall(dev_priv);
3497
3498 spin_lock_irq(&dev_priv->irq_lock);
3499 if (dev_priv->display_irqs_enabled)
3500 vlv_display_irq_postinstall(dev_priv);
3501 spin_unlock_irq(&dev_priv->irq_lock);
3502
3503 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3504 POSTING_READ(GEN8_MASTER_IRQ);
3505
3506 return 0;
3507 }
3508
3509 static void gen8_irq_uninstall(struct drm_device *dev)
3510 {
3511 struct drm_i915_private *dev_priv = to_i915(dev);
3512
3513 if (!dev_priv)
3514 return;
3515
3516 gen8_irq_reset(dev);
3517 }
3518
3519 static void valleyview_irq_uninstall(struct drm_device *dev)
3520 {
3521 struct drm_i915_private *dev_priv = to_i915(dev);
3522
3523 if (!dev_priv)
3524 return;
3525
3526 I915_WRITE(VLV_MASTER_IER, 0);
3527 POSTING_READ(VLV_MASTER_IER);
3528
3529 gen5_gt_irq_reset(dev_priv);
3530
3531 I915_WRITE(HWSTAM, 0xffffffff);
3532
3533 spin_lock_irq(&dev_priv->irq_lock);
3534 if (dev_priv->display_irqs_enabled)
3535 vlv_display_irq_reset(dev_priv);
3536 spin_unlock_irq(&dev_priv->irq_lock);
3537 }
3538
3539 static void cherryview_irq_uninstall(struct drm_device *dev)
3540 {
3541 struct drm_i915_private *dev_priv = to_i915(dev);
3542
3543 if (!dev_priv)
3544 return;
3545
3546 I915_WRITE(GEN8_MASTER_IRQ, 0);
3547 POSTING_READ(GEN8_MASTER_IRQ);
3548
3549 gen8_gt_irq_reset(dev_priv);
3550
3551 GEN5_IRQ_RESET(GEN8_PCU_);
3552
3553 spin_lock_irq(&dev_priv->irq_lock);
3554 if (dev_priv->display_irqs_enabled)
3555 vlv_display_irq_reset(dev_priv);
3556 spin_unlock_irq(&dev_priv->irq_lock);
3557 }
3558
3559 static void ironlake_irq_uninstall(struct drm_device *dev)
3560 {
3561 struct drm_i915_private *dev_priv = to_i915(dev);
3562
3563 if (!dev_priv)
3564 return;
3565
3566 ironlake_irq_reset(dev);
3567 }
3568
3569 static void i8xx_irq_preinstall(struct drm_device * dev)
3570 {
3571 struct drm_i915_private *dev_priv = to_i915(dev);
3572 int pipe;
3573
3574 for_each_pipe(dev_priv, pipe)
3575 I915_WRITE(PIPESTAT(pipe), 0);
3576 I915_WRITE16(IMR, 0xffff);
3577 I915_WRITE16(IER, 0x0);
3578 POSTING_READ16(IER);
3579 }
3580
3581 static int i8xx_irq_postinstall(struct drm_device *dev)
3582 {
3583 struct drm_i915_private *dev_priv = to_i915(dev);
3584
3585 I915_WRITE16(EMR,
3586 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3587
3588 /* Unmask the interrupts that we always want on. */
3589 dev_priv->irq_mask =
3590 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3591 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3592 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3593 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3594 I915_WRITE16(IMR, dev_priv->irq_mask);
3595
3596 I915_WRITE16(IER,
3597 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3598 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3599 I915_USER_INTERRUPT);
3600 POSTING_READ16(IER);
3601
3602 /* Interrupt setup is already guaranteed to be single-threaded, this is
3603 * just to make the assert_spin_locked check happy. */
3604 spin_lock_irq(&dev_priv->irq_lock);
3605 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3606 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607 spin_unlock_irq(&dev_priv->irq_lock);
3608
3609 return 0;
3610 }
3611
3612 /*
3613 * Returns true when a page flip has completed.
3614 */
3615 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3616 int plane, int pipe, u32 iir)
3617 {
3618 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3619
3620 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3621 return false;
3622
3623 if ((iir & flip_pending) == 0)
3624 goto check_page_flip;
3625
3626 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3627 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3628 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3629 * the flip is completed (no longer pending). Since this doesn't raise
3630 * an interrupt per se, we watch for the change at vblank.
3631 */
3632 if (I915_READ16(ISR) & flip_pending)
3633 goto check_page_flip;
3634
3635 intel_finish_page_flip_cs(dev_priv, pipe);
3636 return true;
3637
3638 check_page_flip:
3639 intel_check_page_flip(dev_priv, pipe);
3640 return false;
3641 }
3642
3643 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3644 {
3645 struct drm_device *dev = arg;
3646 struct drm_i915_private *dev_priv = to_i915(dev);
3647 u16 iir, new_iir;
3648 u32 pipe_stats[2];
3649 int pipe;
3650 u16 flip_mask =
3651 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3652 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3653 irqreturn_t ret;
3654
3655 if (!intel_irqs_enabled(dev_priv))
3656 return IRQ_NONE;
3657
3658 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3659 disable_rpm_wakeref_asserts(dev_priv);
3660
3661 ret = IRQ_NONE;
3662 iir = I915_READ16(IIR);
3663 if (iir == 0)
3664 goto out;
3665
3666 while (iir & ~flip_mask) {
3667 /* Can't rely on pipestat interrupt bit in iir as it might
3668 * have been cleared after the pipestat interrupt was received.
3669 * It doesn't set the bit in iir again, but it still produces
3670 * interrupts (for non-MSI).
3671 */
3672 spin_lock(&dev_priv->irq_lock);
3673 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3674 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3675
3676 for_each_pipe(dev_priv, pipe) {
3677 i915_reg_t reg = PIPESTAT(pipe);
3678 pipe_stats[pipe] = I915_READ(reg);
3679
3680 /*
3681 * Clear the PIPE*STAT regs before the IIR
3682 */
3683 if (pipe_stats[pipe] & 0x8000ffff)
3684 I915_WRITE(reg, pipe_stats[pipe]);
3685 }
3686 spin_unlock(&dev_priv->irq_lock);
3687
3688 I915_WRITE16(IIR, iir & ~flip_mask);
3689 new_iir = I915_READ16(IIR); /* Flush posted writes */
3690
3691 if (iir & I915_USER_INTERRUPT)
3692 notify_ring(dev_priv->engine[RCS]);
3693
3694 for_each_pipe(dev_priv, pipe) {
3695 int plane = pipe;
3696 if (HAS_FBC(dev_priv))
3697 plane = !plane;
3698
3699 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3700 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3701 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3702
3703 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3704 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3705
3706 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3707 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3708 pipe);
3709 }
3710
3711 iir = new_iir;
3712 }
3713 ret = IRQ_HANDLED;
3714
3715 out:
3716 enable_rpm_wakeref_asserts(dev_priv);
3717
3718 return ret;
3719 }
3720
3721 static void i8xx_irq_uninstall(struct drm_device * dev)
3722 {
3723 struct drm_i915_private *dev_priv = to_i915(dev);
3724 int pipe;
3725
3726 for_each_pipe(dev_priv, pipe) {
3727 /* Clear enable bits; then clear status bits */
3728 I915_WRITE(PIPESTAT(pipe), 0);
3729 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3730 }
3731 I915_WRITE16(IMR, 0xffff);
3732 I915_WRITE16(IER, 0x0);
3733 I915_WRITE16(IIR, I915_READ16(IIR));
3734 }
3735
3736 static void i915_irq_preinstall(struct drm_device * dev)
3737 {
3738 struct drm_i915_private *dev_priv = to_i915(dev);
3739 int pipe;
3740
3741 if (I915_HAS_HOTPLUG(dev_priv)) {
3742 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3743 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3744 }
3745
3746 I915_WRITE16(HWSTAM, 0xeffe);
3747 for_each_pipe(dev_priv, pipe)
3748 I915_WRITE(PIPESTAT(pipe), 0);
3749 I915_WRITE(IMR, 0xffffffff);
3750 I915_WRITE(IER, 0x0);
3751 POSTING_READ(IER);
3752 }
3753
3754 static int i915_irq_postinstall(struct drm_device *dev)
3755 {
3756 struct drm_i915_private *dev_priv = to_i915(dev);
3757 u32 enable_mask;
3758
3759 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3760
3761 /* Unmask the interrupts that we always want on. */
3762 dev_priv->irq_mask =
3763 ~(I915_ASLE_INTERRUPT |
3764 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3765 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3766 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3767 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3768
3769 enable_mask =
3770 I915_ASLE_INTERRUPT |
3771 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3772 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3773 I915_USER_INTERRUPT;
3774
3775 if (I915_HAS_HOTPLUG(dev_priv)) {
3776 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3777 POSTING_READ(PORT_HOTPLUG_EN);
3778
3779 /* Enable in IER... */
3780 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3781 /* and unmask in IMR */
3782 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3783 }
3784
3785 I915_WRITE(IMR, dev_priv->irq_mask);
3786 I915_WRITE(IER, enable_mask);
3787 POSTING_READ(IER);
3788
3789 i915_enable_asle_pipestat(dev_priv);
3790
3791 /* Interrupt setup is already guaranteed to be single-threaded, this is
3792 * just to make the assert_spin_locked check happy. */
3793 spin_lock_irq(&dev_priv->irq_lock);
3794 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3795 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3796 spin_unlock_irq(&dev_priv->irq_lock);
3797
3798 return 0;
3799 }
3800
3801 /*
3802 * Returns true when a page flip has completed.
3803 */
3804 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3805 int plane, int pipe, u32 iir)
3806 {
3807 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3808
3809 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3810 return false;
3811
3812 if ((iir & flip_pending) == 0)
3813 goto check_page_flip;
3814
3815 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3816 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3817 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3818 * the flip is completed (no longer pending). Since this doesn't raise
3819 * an interrupt per se, we watch for the change at vblank.
3820 */
3821 if (I915_READ(ISR) & flip_pending)
3822 goto check_page_flip;
3823
3824 intel_finish_page_flip_cs(dev_priv, pipe);
3825 return true;
3826
3827 check_page_flip:
3828 intel_check_page_flip(dev_priv, pipe);
3829 return false;
3830 }
3831
3832 static irqreturn_t i915_irq_handler(int irq, void *arg)
3833 {
3834 struct drm_device *dev = arg;
3835 struct drm_i915_private *dev_priv = to_i915(dev);
3836 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3837 u32 flip_mask =
3838 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3839 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3840 int pipe, ret = IRQ_NONE;
3841
3842 if (!intel_irqs_enabled(dev_priv))
3843 return IRQ_NONE;
3844
3845 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3846 disable_rpm_wakeref_asserts(dev_priv);
3847
3848 iir = I915_READ(IIR);
3849 do {
3850 bool irq_received = (iir & ~flip_mask) != 0;
3851 bool blc_event = false;
3852
3853 /* Can't rely on pipestat interrupt bit in iir as it might
3854 * have been cleared after the pipestat interrupt was received.
3855 * It doesn't set the bit in iir again, but it still produces
3856 * interrupts (for non-MSI).
3857 */
3858 spin_lock(&dev_priv->irq_lock);
3859 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3860 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3861
3862 for_each_pipe(dev_priv, pipe) {
3863 i915_reg_t reg = PIPESTAT(pipe);
3864 pipe_stats[pipe] = I915_READ(reg);
3865
3866 /* Clear the PIPE*STAT regs before the IIR */
3867 if (pipe_stats[pipe] & 0x8000ffff) {
3868 I915_WRITE(reg, pipe_stats[pipe]);
3869 irq_received = true;
3870 }
3871 }
3872 spin_unlock(&dev_priv->irq_lock);
3873
3874 if (!irq_received)
3875 break;
3876
3877 /* Consume port. Then clear IIR or we'll miss events */
3878 if (I915_HAS_HOTPLUG(dev_priv) &&
3879 iir & I915_DISPLAY_PORT_INTERRUPT) {
3880 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3881 if (hotplug_status)
3882 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3883 }
3884
3885 I915_WRITE(IIR, iir & ~flip_mask);
3886 new_iir = I915_READ(IIR); /* Flush posted writes */
3887
3888 if (iir & I915_USER_INTERRUPT)
3889 notify_ring(dev_priv->engine[RCS]);
3890
3891 for_each_pipe(dev_priv, pipe) {
3892 int plane = pipe;
3893 if (HAS_FBC(dev_priv))
3894 plane = !plane;
3895
3896 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3897 i915_handle_vblank(dev_priv, plane, pipe, iir))
3898 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3899
3900 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3901 blc_event = true;
3902
3903 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3904 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3905
3906 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3907 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3908 pipe);
3909 }
3910
3911 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3912 intel_opregion_asle_intr(dev_priv);
3913
3914 /* With MSI, interrupts are only generated when iir
3915 * transitions from zero to nonzero. If another bit got
3916 * set while we were handling the existing iir bits, then
3917 * we would never get another interrupt.
3918 *
3919 * This is fine on non-MSI as well, as if we hit this path
3920 * we avoid exiting the interrupt handler only to generate
3921 * another one.
3922 *
3923 * Note that for MSI this could cause a stray interrupt report
3924 * if an interrupt landed in the time between writing IIR and
3925 * the posting read. This should be rare enough to never
3926 * trigger the 99% of 100,000 interrupts test for disabling
3927 * stray interrupts.
3928 */
3929 ret = IRQ_HANDLED;
3930 iir = new_iir;
3931 } while (iir & ~flip_mask);
3932
3933 enable_rpm_wakeref_asserts(dev_priv);
3934
3935 return ret;
3936 }
3937
3938 static void i915_irq_uninstall(struct drm_device * dev)
3939 {
3940 struct drm_i915_private *dev_priv = to_i915(dev);
3941 int pipe;
3942
3943 if (I915_HAS_HOTPLUG(dev_priv)) {
3944 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3945 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3946 }
3947
3948 I915_WRITE16(HWSTAM, 0xffff);
3949 for_each_pipe(dev_priv, pipe) {
3950 /* Clear enable bits; then clear status bits */
3951 I915_WRITE(PIPESTAT(pipe), 0);
3952 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3953 }
3954 I915_WRITE(IMR, 0xffffffff);
3955 I915_WRITE(IER, 0x0);
3956
3957 I915_WRITE(IIR, I915_READ(IIR));
3958 }
3959
3960 static void i965_irq_preinstall(struct drm_device * dev)
3961 {
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 int pipe;
3964
3965 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3966 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3967
3968 I915_WRITE(HWSTAM, 0xeffe);
3969 for_each_pipe(dev_priv, pipe)
3970 I915_WRITE(PIPESTAT(pipe), 0);
3971 I915_WRITE(IMR, 0xffffffff);
3972 I915_WRITE(IER, 0x0);
3973 POSTING_READ(IER);
3974 }
3975
3976 static int i965_irq_postinstall(struct drm_device *dev)
3977 {
3978 struct drm_i915_private *dev_priv = to_i915(dev);
3979 u32 enable_mask;
3980 u32 error_mask;
3981
3982 /* Unmask the interrupts that we always want on. */
3983 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3984 I915_DISPLAY_PORT_INTERRUPT |
3985 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3986 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3987 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3989 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3990
3991 enable_mask = ~dev_priv->irq_mask;
3992 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3993 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3994 enable_mask |= I915_USER_INTERRUPT;
3995
3996 if (IS_G4X(dev_priv))
3997 enable_mask |= I915_BSD_USER_INTERRUPT;
3998
3999 /* Interrupt setup is already guaranteed to be single-threaded, this is
4000 * just to make the assert_spin_locked check happy. */
4001 spin_lock_irq(&dev_priv->irq_lock);
4002 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4003 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4005 spin_unlock_irq(&dev_priv->irq_lock);
4006
4007 /*
4008 * Enable some error detection, note the instruction error mask
4009 * bit is reserved, so we leave it masked.
4010 */
4011 if (IS_G4X(dev_priv)) {
4012 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4013 GM45_ERROR_MEM_PRIV |
4014 GM45_ERROR_CP_PRIV |
4015 I915_ERROR_MEMORY_REFRESH);
4016 } else {
4017 error_mask = ~(I915_ERROR_PAGE_TABLE |
4018 I915_ERROR_MEMORY_REFRESH);
4019 }
4020 I915_WRITE(EMR, error_mask);
4021
4022 I915_WRITE(IMR, dev_priv->irq_mask);
4023 I915_WRITE(IER, enable_mask);
4024 POSTING_READ(IER);
4025
4026 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4027 POSTING_READ(PORT_HOTPLUG_EN);
4028
4029 i915_enable_asle_pipestat(dev_priv);
4030
4031 return 0;
4032 }
4033
4034 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4035 {
4036 u32 hotplug_en;
4037
4038 assert_spin_locked(&dev_priv->irq_lock);
4039
4040 /* Note HDMI and DP share hotplug bits */
4041 /* enable bits are the same for all generations */
4042 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4043 /* Programming the CRT detection parameters tends
4044 to generate a spurious hotplug event about three
4045 seconds later. So just do it once.
4046 */
4047 if (IS_G4X(dev_priv))
4048 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4049 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4050
4051 /* Ignore TV since it's buggy */
4052 i915_hotplug_interrupt_update_locked(dev_priv,
4053 HOTPLUG_INT_EN_MASK |
4054 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4055 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4056 hotplug_en);
4057 }
4058
4059 static irqreturn_t i965_irq_handler(int irq, void *arg)
4060 {
4061 struct drm_device *dev = arg;
4062 struct drm_i915_private *dev_priv = to_i915(dev);
4063 u32 iir, new_iir;
4064 u32 pipe_stats[I915_MAX_PIPES];
4065 int ret = IRQ_NONE, pipe;
4066 u32 flip_mask =
4067 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4068 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4069
4070 if (!intel_irqs_enabled(dev_priv))
4071 return IRQ_NONE;
4072
4073 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4074 disable_rpm_wakeref_asserts(dev_priv);
4075
4076 iir = I915_READ(IIR);
4077
4078 for (;;) {
4079 bool irq_received = (iir & ~flip_mask) != 0;
4080 bool blc_event = false;
4081
4082 /* Can't rely on pipestat interrupt bit in iir as it might
4083 * have been cleared after the pipestat interrupt was received.
4084 * It doesn't set the bit in iir again, but it still produces
4085 * interrupts (for non-MSI).
4086 */
4087 spin_lock(&dev_priv->irq_lock);
4088 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4089 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4090
4091 for_each_pipe(dev_priv, pipe) {
4092 i915_reg_t reg = PIPESTAT(pipe);
4093 pipe_stats[pipe] = I915_READ(reg);
4094
4095 /*
4096 * Clear the PIPE*STAT regs before the IIR
4097 */
4098 if (pipe_stats[pipe] & 0x8000ffff) {
4099 I915_WRITE(reg, pipe_stats[pipe]);
4100 irq_received = true;
4101 }
4102 }
4103 spin_unlock(&dev_priv->irq_lock);
4104
4105 if (!irq_received)
4106 break;
4107
4108 ret = IRQ_HANDLED;
4109
4110 /* Consume port. Then clear IIR or we'll miss events */
4111 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4112 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4113 if (hotplug_status)
4114 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4115 }
4116
4117 I915_WRITE(IIR, iir & ~flip_mask);
4118 new_iir = I915_READ(IIR); /* Flush posted writes */
4119
4120 if (iir & I915_USER_INTERRUPT)
4121 notify_ring(dev_priv->engine[RCS]);
4122 if (iir & I915_BSD_USER_INTERRUPT)
4123 notify_ring(dev_priv->engine[VCS]);
4124
4125 for_each_pipe(dev_priv, pipe) {
4126 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4127 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4128 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4129
4130 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4131 blc_event = true;
4132
4133 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4134 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4135
4136 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4137 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4138 }
4139
4140 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4141 intel_opregion_asle_intr(dev_priv);
4142
4143 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4144 gmbus_irq_handler(dev_priv);
4145
4146 /* With MSI, interrupts are only generated when iir
4147 * transitions from zero to nonzero. If another bit got
4148 * set while we were handling the existing iir bits, then
4149 * we would never get another interrupt.
4150 *
4151 * This is fine on non-MSI as well, as if we hit this path
4152 * we avoid exiting the interrupt handler only to generate
4153 * another one.
4154 *
4155 * Note that for MSI this could cause a stray interrupt report
4156 * if an interrupt landed in the time between writing IIR and
4157 * the posting read. This should be rare enough to never
4158 * trigger the 99% of 100,000 interrupts test for disabling
4159 * stray interrupts.
4160 */
4161 iir = new_iir;
4162 }
4163
4164 enable_rpm_wakeref_asserts(dev_priv);
4165
4166 return ret;
4167 }
4168
4169 static void i965_irq_uninstall(struct drm_device * dev)
4170 {
4171 struct drm_i915_private *dev_priv = to_i915(dev);
4172 int pipe;
4173
4174 if (!dev_priv)
4175 return;
4176
4177 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4178 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4179
4180 I915_WRITE(HWSTAM, 0xffffffff);
4181 for_each_pipe(dev_priv, pipe)
4182 I915_WRITE(PIPESTAT(pipe), 0);
4183 I915_WRITE(IMR, 0xffffffff);
4184 I915_WRITE(IER, 0x0);
4185
4186 for_each_pipe(dev_priv, pipe)
4187 I915_WRITE(PIPESTAT(pipe),
4188 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4189 I915_WRITE(IIR, I915_READ(IIR));
4190 }
4191
4192 /**
4193 * intel_irq_init - initializes irq support
4194 * @dev_priv: i915 device instance
4195 *
4196 * This function initializes all the irq support including work items, timers
4197 * and all the vtables. It does not setup the interrupt itself though.
4198 */
4199 void intel_irq_init(struct drm_i915_private *dev_priv)
4200 {
4201 struct drm_device *dev = &dev_priv->drm;
4202
4203 intel_hpd_init_work(dev_priv);
4204
4205 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4206 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4207
4208 if (HAS_GUC_SCHED(dev_priv))
4209 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4210
4211 /* Let's track the enabled rps events */
4212 if (IS_VALLEYVIEW(dev_priv))
4213 /* WaGsvRC0ResidencyMethod:vlv */
4214 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4215 else
4216 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4217
4218 dev_priv->rps.pm_intr_keep = 0;
4219
4220 /*
4221 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4222 * if GEN6_PM_UP_EI_EXPIRED is masked.
4223 *
4224 * TODO: verify if this can be reproduced on VLV,CHV.
4225 */
4226 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4227 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4228
4229 if (INTEL_INFO(dev_priv)->gen >= 8)
4230 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4231
4232 if (IS_GEN2(dev_priv)) {
4233 /* Gen2 doesn't have a hardware frame counter */
4234 dev->max_vblank_count = 0;
4235 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4236 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4237 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4238 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4239 } else {
4240 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4241 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4242 }
4243
4244 /*
4245 * Opt out of the vblank disable timer on everything except gen2.
4246 * Gen2 doesn't have a hardware frame counter and so depends on
4247 * vblank interrupts to produce sane vblank seuquence numbers.
4248 */
4249 if (!IS_GEN2(dev_priv))
4250 dev->vblank_disable_immediate = true;
4251
4252 /* Most platforms treat the display irq block as an always-on
4253 * power domain. vlv/chv can disable it at runtime and need
4254 * special care to avoid writing any of the display block registers
4255 * outside of the power domain. We defer setting up the display irqs
4256 * in this case to the runtime pm.
4257 */
4258 dev_priv->display_irqs_enabled = true;
4259 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4260 dev_priv->display_irqs_enabled = false;
4261
4262 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4263 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4264
4265 if (IS_CHERRYVIEW(dev_priv)) {
4266 dev->driver->irq_handler = cherryview_irq_handler;
4267 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4268 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4269 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4270 dev->driver->enable_vblank = i965_enable_vblank;
4271 dev->driver->disable_vblank = i965_disable_vblank;
4272 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4273 } else if (IS_VALLEYVIEW(dev_priv)) {
4274 dev->driver->irq_handler = valleyview_irq_handler;
4275 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4276 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4277 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4278 dev->driver->enable_vblank = i965_enable_vblank;
4279 dev->driver->disable_vblank = i965_disable_vblank;
4280 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4281 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4282 dev->driver->irq_handler = gen8_irq_handler;
4283 dev->driver->irq_preinstall = gen8_irq_reset;
4284 dev->driver->irq_postinstall = gen8_irq_postinstall;
4285 dev->driver->irq_uninstall = gen8_irq_uninstall;
4286 dev->driver->enable_vblank = gen8_enable_vblank;
4287 dev->driver->disable_vblank = gen8_disable_vblank;
4288 if (IS_GEN9_LP(dev_priv))
4289 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4290 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4291 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4292 else
4293 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4294 } else if (HAS_PCH_SPLIT(dev_priv)) {
4295 dev->driver->irq_handler = ironlake_irq_handler;
4296 dev->driver->irq_preinstall = ironlake_irq_reset;
4297 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4298 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4299 dev->driver->enable_vblank = ironlake_enable_vblank;
4300 dev->driver->disable_vblank = ironlake_disable_vblank;
4301 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4302 } else {
4303 if (IS_GEN2(dev_priv)) {
4304 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4305 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4306 dev->driver->irq_handler = i8xx_irq_handler;
4307 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4308 dev->driver->enable_vblank = i8xx_enable_vblank;
4309 dev->driver->disable_vblank = i8xx_disable_vblank;
4310 } else if (IS_GEN3(dev_priv)) {
4311 dev->driver->irq_preinstall = i915_irq_preinstall;
4312 dev->driver->irq_postinstall = i915_irq_postinstall;
4313 dev->driver->irq_uninstall = i915_irq_uninstall;
4314 dev->driver->irq_handler = i915_irq_handler;
4315 dev->driver->enable_vblank = i8xx_enable_vblank;
4316 dev->driver->disable_vblank = i8xx_disable_vblank;
4317 } else {
4318 dev->driver->irq_preinstall = i965_irq_preinstall;
4319 dev->driver->irq_postinstall = i965_irq_postinstall;
4320 dev->driver->irq_uninstall = i965_irq_uninstall;
4321 dev->driver->irq_handler = i965_irq_handler;
4322 dev->driver->enable_vblank = i965_enable_vblank;
4323 dev->driver->disable_vblank = i965_disable_vblank;
4324 }
4325 if (I915_HAS_HOTPLUG(dev_priv))
4326 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4327 }
4328 }
4329
4330 /**
4331 * intel_irq_install - enables the hardware interrupt
4332 * @dev_priv: i915 device instance
4333 *
4334 * This function enables the hardware interrupt handling, but leaves the hotplug
4335 * handling still disabled. It is called after intel_irq_init().
4336 *
4337 * In the driver load and resume code we need working interrupts in a few places
4338 * but don't want to deal with the hassle of concurrent probe and hotplug
4339 * workers. Hence the split into this two-stage approach.
4340 */
4341 int intel_irq_install(struct drm_i915_private *dev_priv)
4342 {
4343 /*
4344 * We enable some interrupt sources in our postinstall hooks, so mark
4345 * interrupts as enabled _before_ actually enabling them to avoid
4346 * special cases in our ordering checks.
4347 */
4348 dev_priv->pm.irqs_enabled = true;
4349
4350 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4351 }
4352
4353 /**
4354 * intel_irq_uninstall - finilizes all irq handling
4355 * @dev_priv: i915 device instance
4356 *
4357 * This stops interrupt and hotplug handling and unregisters and frees all
4358 * resources acquired in the init functions.
4359 */
4360 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4361 {
4362 drm_irq_uninstall(&dev_priv->drm);
4363 intel_hpd_cancel_work(dev_priv);
4364 dev_priv->pm.irqs_enabled = false;
4365 }
4366
4367 /**
4368 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4369 * @dev_priv: i915 device instance
4370 *
4371 * This function is used to disable interrupts at runtime, both in the runtime
4372 * pm and the system suspend/resume code.
4373 */
4374 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4375 {
4376 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4377 dev_priv->pm.irqs_enabled = false;
4378 synchronize_irq(dev_priv->drm.irq);
4379 }
4380
4381 /**
4382 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4383 * @dev_priv: i915 device instance
4384 *
4385 * This function is used to enable interrupts at runtime, both in the runtime
4386 * pm and the system suspend/resume code.
4387 */
4388 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4389 {
4390 dev_priv->pm.irqs_enabled = true;
4391 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4392 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4393 }