]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Fix HDMI 12bpc TRANSCONF bpc value
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 POSTING_READ(GEN8_##type##_IMR(which)); \
101 I915_WRITE(GEN8_##type##_IER(which), 0); \
102 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 POSTING_READ(GEN8_##type##_IIR(which)); \
104 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107
108 #define GEN5_IRQ_RESET(type) do { \
109 I915_WRITE(type##IMR, 0xffffffff); \
110 POSTING_READ(type##IMR); \
111 I915_WRITE(type##IER, 0); \
112 I915_WRITE(type##IIR, 0xffffffff); \
113 POSTING_READ(type##IIR); \
114 I915_WRITE(type##IIR, 0xffffffff); \
115 POSTING_READ(type##IIR); \
116 } while (0)
117
118 /*
119 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120 */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 u32 val = I915_READ(reg); \
123 if (val) { \
124 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 (reg), val); \
126 I915_WRITE((reg), 0xffffffff); \
127 POSTING_READ(reg); \
128 I915_WRITE((reg), 0xffffffff); \
129 POSTING_READ(reg); \
130 } \
131 } while (0)
132
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 I915_WRITE(type##IER, (ier_val)); \
143 I915_WRITE(type##IMR, (imr_val)); \
144 POSTING_READ(type##IMR); \
145 } while (0)
146
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 assert_spin_locked(&dev_priv->irq_lock);
154
155 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 return;
157
158 if ((dev_priv->irq_mask & mask) != 0) {
159 dev_priv->irq_mask &= ~mask;
160 I915_WRITE(DEIMR, dev_priv->irq_mask);
161 POSTING_READ(DEIMR);
162 }
163 }
164
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 return;
172
173 if ((dev_priv->irq_mask & mask) != mask) {
174 dev_priv->irq_mask |= mask;
175 I915_WRITE(DEIMR, dev_priv->irq_mask);
176 POSTING_READ(DEIMR);
177 }
178 }
179
180 /**
181 * ilk_update_gt_irq - update GTIMR
182 * @dev_priv: driver private
183 * @interrupt_mask: mask of interrupt bits to update
184 * @enabled_irq_mask: mask of interrupt bits to enable
185 */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 uint32_t interrupt_mask,
188 uint32_t enabled_irq_mask)
189 {
190 assert_spin_locked(&dev_priv->irq_lock);
191
192 WARN_ON(enabled_irq_mask & ~interrupt_mask);
193
194 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 return;
196
197 dev_priv->gt_irq_mask &= ~interrupt_mask;
198 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 POSTING_READ(GTIMR);
201 }
202
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227
228 /**
229 * snb_update_pm_irq - update GEN6_PMIMR
230 * @dev_priv: driver private
231 * @interrupt_mask: mask of interrupt bits to update
232 * @enabled_irq_mask: mask of interrupt bits to enable
233 */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 uint32_t interrupt_mask,
236 uint32_t enabled_irq_mask)
237 {
238 uint32_t new_val;
239
240 WARN_ON(enabled_irq_mask & ~interrupt_mask);
241
242 assert_spin_locked(&dev_priv->irq_lock);
243
244 new_val = dev_priv->pm_irq_mask;
245 new_val &= ~interrupt_mask;
246 new_val |= (~enabled_irq_mask & interrupt_mask);
247
248 if (new_val != dev_priv->pm_irq_mask) {
249 dev_priv->pm_irq_mask = new_val;
250 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 POSTING_READ(gen6_pm_imr(dev_priv));
252 }
253 }
254
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 snb_update_pm_irq(dev_priv, mask, mask);
261 }
262
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 uint32_t mask)
265 {
266 snb_update_pm_irq(dev_priv, mask, 0);
267 }
268
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 return;
273
274 __gen6_disable_pm_irq(dev_priv, mask);
275 }
276
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 uint32_t reg = gen6_pm_iir(dev_priv);
281
282 spin_lock_irq(&dev_priv->irq_lock);
283 I915_WRITE(reg, dev_priv->pm_rps_events);
284 I915_WRITE(reg, dev_priv->pm_rps_events);
285 POSTING_READ(reg);
286 dev_priv->rps.pm_iir = 0;
287 spin_unlock_irq(&dev_priv->irq_lock);
288 }
289
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 struct drm_i915_private *dev_priv = dev->dev_private;
293
294 spin_lock_irq(&dev_priv->irq_lock);
295
296 WARN_ON(dev_priv->rps.pm_iir);
297 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 dev_priv->rps.interrupts_enabled = true;
299 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 dev_priv->pm_rps_events);
301 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302
303 spin_unlock_irq(&dev_priv->irq_lock);
304 }
305
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 /*
309 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 *
312 * TODO: verify if this can be reproduced on VLV,CHV.
313 */
314 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316
317 if (INTEL_INFO(dev_priv)->gen >= 8)
318 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319
320 return mask;
321 }
322
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 spin_lock_irq(&dev_priv->irq_lock);
328 dev_priv->rps.interrupts_enabled = false;
329 spin_unlock_irq(&dev_priv->irq_lock);
330
331 cancel_work_sync(&dev_priv->rps.work);
332
333 spin_lock_irq(&dev_priv->irq_lock);
334
335 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336
337 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 ~dev_priv->pm_rps_events);
340
341 spin_unlock_irq(&dev_priv->irq_lock);
342
343 synchronize_irq(dev->irq);
344 }
345
346 /**
347 * ibx_display_interrupt_update - update SDEIMR
348 * @dev_priv: driver private
349 * @interrupt_mask: mask of interrupt bits to update
350 * @enabled_irq_mask: mask of interrupt bits to enable
351 */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 uint32_t interrupt_mask,
354 uint32_t enabled_irq_mask)
355 {
356 uint32_t sdeimr = I915_READ(SDEIMR);
357 sdeimr &= ~interrupt_mask;
358 sdeimr |= (~enabled_irq_mask & interrupt_mask);
359
360 WARN_ON(enabled_irq_mask & ~interrupt_mask);
361
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 return;
366
367 I915_WRITE(SDEIMR, sdeimr);
368 POSTING_READ(SDEIMR);
369 }
370
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 u32 enable_mask, u32 status_mask)
374 {
375 u32 reg = PIPESTAT(pipe);
376 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378 assert_spin_locked(&dev_priv->irq_lock);
379 WARN_ON(!intel_irqs_enabled(dev_priv));
380
381 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 pipe_name(pipe), enable_mask, status_mask))
385 return;
386
387 if ((pipestat & enable_mask) == enable_mask)
388 return;
389
390 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391
392 /* Enable the interrupt, clear any pending status */
393 pipestat |= enable_mask | status_mask;
394 I915_WRITE(reg, pipestat);
395 POSTING_READ(reg);
396 }
397
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 u32 enable_mask, u32 status_mask)
401 {
402 u32 reg = PIPESTAT(pipe);
403 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404
405 assert_spin_locked(&dev_priv->irq_lock);
406 WARN_ON(!intel_irqs_enabled(dev_priv));
407
408 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 pipe_name(pipe), enable_mask, status_mask))
412 return;
413
414 if ((pipestat & enable_mask) == 0)
415 return;
416
417 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418
419 pipestat &= ~enable_mask;
420 I915_WRITE(reg, pipestat);
421 POSTING_READ(reg);
422 }
423
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 u32 enable_mask = status_mask << 16;
427
428 /*
429 * On pipe A we don't support the PSR interrupt yet,
430 * on pipe B and C the same bit MBZ.
431 */
432 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 return 0;
434 /*
435 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 * A the same bit is for perf counters which we don't use either.
437 */
438 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 return 0;
440
441 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448
449 return enable_mask;
450 }
451
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 u32 status_mask)
455 {
456 u32 enable_mask;
457
458 if (IS_VALLEYVIEW(dev_priv->dev))
459 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 status_mask);
461 else
462 enable_mask = status_mask << 16;
463 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 u32 status_mask)
469 {
470 u32 enable_mask;
471
472 if (IS_VALLEYVIEW(dev_priv->dev))
473 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 status_mask);
475 else
476 enable_mask = status_mask << 16;
477 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479
480 /**
481 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482 */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486
487 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 return;
489
490 spin_lock_irq(&dev_priv->irq_lock);
491
492 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 if (INTEL_INFO(dev)->gen >= 4)
494 i915_enable_pipestat(dev_priv, PIPE_A,
495 PIPE_LEGACY_BLC_EVENT_STATUS);
496
497 spin_unlock_irq(&dev_priv->irq_lock);
498 }
499
500 /*
501 * This timing diagram depicts the video signal in and
502 * around the vertical blanking period.
503 *
504 * Assumptions about the fictitious mode used in this example:
505 * vblank_start >= 3
506 * vsync_start = vblank_start + 1
507 * vsync_end = vblank_start + 2
508 * vtotal = vblank_start + 3
509 *
510 * start of vblank:
511 * latch double buffered registers
512 * increment frame counter (ctg+)
513 * generate start of vblank interrupt (gen4+)
514 * |
515 * | frame start:
516 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
517 * | may be shifted forward 1-3 extra lines via PIPECONF
518 * | |
519 * | | start of vsync:
520 * | | generate vsync interrupt
521 * | | |
522 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
523 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
524 * ----va---> <-----------------vb--------------------> <--------va-------------
525 * | | <----vs-----> |
526 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529 * | | |
530 * last visible pixel first visible pixel
531 * | increment frame counter (gen3/4)
532 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
533 *
534 * x = horizontal active
535 * _ = horizontal blanking
536 * hs = horizontal sync
537 * va = vertical active
538 * vb = vertical blanking
539 * vs = vertical sync
540 * vbs = vblank_start (number)
541 *
542 * Summary:
543 * - most events happen at the start of horizontal sync
544 * - frame start happens at the start of horizontal blank, 1-4 lines
545 * (depending on PIPECONF settings) after the start of vblank
546 * - gen3/4 pixel and frame counter are synchronized with the start
547 * of horizontal active on the first line of vertical active
548 */
549
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 /* Gen2 doesn't have a hardware frame counter */
553 return 0;
554 }
555
556 /* Called from drm generic code, passed a 'crtc', which
557 * we use as a pipe index
558 */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 unsigned long high_frame;
563 unsigned long low_frame;
564 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 struct intel_crtc *intel_crtc =
566 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 const struct drm_display_mode *mode =
568 &intel_crtc->config->base.adjusted_mode;
569
570 htotal = mode->crtc_htotal;
571 hsync_start = mode->crtc_hsync_start;
572 vbl_start = mode->crtc_vblank_start;
573 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
574 vbl_start = DIV_ROUND_UP(vbl_start, 2);
575
576 /* Convert to pixel count */
577 vbl_start *= htotal;
578
579 /* Start of vblank event occurs at start of hsync */
580 vbl_start -= htotal - hsync_start;
581
582 high_frame = PIPEFRAME(pipe);
583 low_frame = PIPEFRAMEPIXEL(pipe);
584
585 /*
586 * High & low register fields aren't synchronized, so make sure
587 * we get a low value that's stable across two reads of the high
588 * register.
589 */
590 do {
591 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 low = I915_READ(low_frame);
593 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
594 } while (high1 != high2);
595
596 high1 >>= PIPE_FRAME_HIGH_SHIFT;
597 pixel = low & PIPE_PIXEL_MASK;
598 low >>= PIPE_FRAME_LOW_SHIFT;
599
600 /*
601 * The frame counter increments at beginning of active.
602 * Cook up a vblank counter by also checking the pixel
603 * counter against vblank start.
604 */
605 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
606 }
607
608 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
609 {
610 struct drm_i915_private *dev_priv = dev->dev_private;
611 int reg = PIPE_FRMCOUNT_GM45(pipe);
612
613 return I915_READ(reg);
614 }
615
616 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
617 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
618
619 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
620 {
621 struct drm_device *dev = crtc->base.dev;
622 struct drm_i915_private *dev_priv = dev->dev_private;
623 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
624 enum pipe pipe = crtc->pipe;
625 int position, vtotal;
626
627 vtotal = mode->crtc_vtotal;
628 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629 vtotal /= 2;
630
631 if (IS_GEN2(dev))
632 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
633 else
634 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
635
636 /*
637 * See update_scanline_offset() for the details on the
638 * scanline_offset adjustment.
639 */
640 return (position + crtc->scanline_offset) % vtotal;
641 }
642
643 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
644 unsigned int flags, int *vpos, int *hpos,
645 ktime_t *stime, ktime_t *etime)
646 {
647 struct drm_i915_private *dev_priv = dev->dev_private;
648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650 const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
651 int position;
652 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
653 bool in_vbl = true;
654 int ret = 0;
655 unsigned long irqflags;
656
657 if (!intel_crtc->active) {
658 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
659 "pipe %c\n", pipe_name(pipe));
660 return 0;
661 }
662
663 htotal = mode->crtc_htotal;
664 hsync_start = mode->crtc_hsync_start;
665 vtotal = mode->crtc_vtotal;
666 vbl_start = mode->crtc_vblank_start;
667 vbl_end = mode->crtc_vblank_end;
668
669 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
670 vbl_start = DIV_ROUND_UP(vbl_start, 2);
671 vbl_end /= 2;
672 vtotal /= 2;
673 }
674
675 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
676
677 /*
678 * Lock uncore.lock, as we will do multiple timing critical raw
679 * register reads, potentially with preemption disabled, so the
680 * following code must not block on uncore.lock.
681 */
682 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683
684 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
685
686 /* Get optional system timestamp before query. */
687 if (stime)
688 *stime = ktime_get();
689
690 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
691 /* No obvious pixelcount register. Only query vertical
692 * scanout position from Display scan line register.
693 */
694 position = __intel_get_crtc_scanline(intel_crtc);
695 } else {
696 /* Have access to pixelcount since start of frame.
697 * We can split this into vertical and horizontal
698 * scanout position.
699 */
700 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701
702 /* convert to pixel counts */
703 vbl_start *= htotal;
704 vbl_end *= htotal;
705 vtotal *= htotal;
706
707 /*
708 * In interlaced modes, the pixel counter counts all pixels,
709 * so one field will have htotal more pixels. In order to avoid
710 * the reported position from jumping backwards when the pixel
711 * counter is beyond the length of the shorter field, just
712 * clamp the position the length of the shorter field. This
713 * matches how the scanline counter based position works since
714 * the scanline counter doesn't count the two half lines.
715 */
716 if (position >= vtotal)
717 position = vtotal - 1;
718
719 /*
720 * Start of vblank interrupt is triggered at start of hsync,
721 * just prior to the first active line of vblank. However we
722 * consider lines to start at the leading edge of horizontal
723 * active. So, should we get here before we've crossed into
724 * the horizontal active of the first line in vblank, we would
725 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
726 * always add htotal-hsync_start to the current pixel position.
727 */
728 position = (position + htotal - hsync_start) % vtotal;
729 }
730
731 /* Get optional system timestamp after query. */
732 if (etime)
733 *etime = ktime_get();
734
735 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
736
737 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
738
739 in_vbl = position >= vbl_start && position < vbl_end;
740
741 /*
742 * While in vblank, position will be negative
743 * counting up towards 0 at vbl_end. And outside
744 * vblank, position will be positive counting
745 * up since vbl_end.
746 */
747 if (position >= vbl_start)
748 position -= vbl_end;
749 else
750 position += vtotal - vbl_end;
751
752 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
753 *vpos = position;
754 *hpos = 0;
755 } else {
756 *vpos = position / htotal;
757 *hpos = position - (*vpos * htotal);
758 }
759
760 /* In vblank? */
761 if (in_vbl)
762 ret |= DRM_SCANOUTPOS_IN_VBLANK;
763
764 return ret;
765 }
766
767 int intel_get_crtc_scanline(struct intel_crtc *crtc)
768 {
769 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
770 unsigned long irqflags;
771 int position;
772
773 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
774 position = __intel_get_crtc_scanline(crtc);
775 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776
777 return position;
778 }
779
780 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
781 int *max_error,
782 struct timeval *vblank_time,
783 unsigned flags)
784 {
785 struct drm_crtc *crtc;
786
787 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
788 DRM_ERROR("Invalid crtc %d\n", pipe);
789 return -EINVAL;
790 }
791
792 /* Get drm_crtc to timestamp: */
793 crtc = intel_get_crtc_for_pipe(dev, pipe);
794 if (crtc == NULL) {
795 DRM_ERROR("Invalid crtc %d\n", pipe);
796 return -EINVAL;
797 }
798
799 if (!crtc->state->enable) {
800 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
801 return -EBUSY;
802 }
803
804 /* Helper routine in DRM core does all the work: */
805 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
806 vblank_time, flags,
807 crtc,
808 &to_intel_crtc(crtc)->config->base.adjusted_mode);
809 }
810
811 static bool intel_hpd_irq_event(struct drm_device *dev,
812 struct drm_connector *connector)
813 {
814 enum drm_connector_status old_status;
815
816 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
817 old_status = connector->status;
818
819 connector->status = connector->funcs->detect(connector, false);
820 if (old_status == connector->status)
821 return false;
822
823 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
824 connector->base.id,
825 connector->name,
826 drm_get_connector_status_name(old_status),
827 drm_get_connector_status_name(connector->status));
828
829 return true;
830 }
831
832 static void i915_digport_work_func(struct work_struct *work)
833 {
834 struct drm_i915_private *dev_priv =
835 container_of(work, struct drm_i915_private, hotplug.dig_port_work);
836 u32 long_port_mask, short_port_mask;
837 struct intel_digital_port *intel_dig_port;
838 int i;
839 u32 old_bits = 0;
840
841 spin_lock_irq(&dev_priv->irq_lock);
842 long_port_mask = dev_priv->hotplug.long_port_mask;
843 dev_priv->hotplug.long_port_mask = 0;
844 short_port_mask = dev_priv->hotplug.short_port_mask;
845 dev_priv->hotplug.short_port_mask = 0;
846 spin_unlock_irq(&dev_priv->irq_lock);
847
848 for (i = 0; i < I915_MAX_PORTS; i++) {
849 bool valid = false;
850 bool long_hpd = false;
851 intel_dig_port = dev_priv->hotplug.irq_port[i];
852 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
853 continue;
854
855 if (long_port_mask & (1 << i)) {
856 valid = true;
857 long_hpd = true;
858 } else if (short_port_mask & (1 << i))
859 valid = true;
860
861 if (valid) {
862 enum irqreturn ret;
863
864 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865 if (ret == IRQ_NONE) {
866 /* fall back to old school hpd */
867 old_bits |= (1 << intel_dig_port->base.hpd_pin);
868 }
869 }
870 }
871
872 if (old_bits) {
873 spin_lock_irq(&dev_priv->irq_lock);
874 dev_priv->hotplug.event_bits |= old_bits;
875 spin_unlock_irq(&dev_priv->irq_lock);
876 schedule_work(&dev_priv->hotplug.hotplug_work);
877 }
878 }
879
880 /*
881 * Handle hotplug events outside the interrupt handler proper.
882 */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887 struct drm_i915_private *dev_priv =
888 container_of(work, struct drm_i915_private, hotplug.hotplug_work);
889 struct drm_device *dev = dev_priv->dev;
890 struct drm_mode_config *mode_config = &dev->mode_config;
891 struct intel_connector *intel_connector;
892 struct intel_encoder *intel_encoder;
893 struct drm_connector *connector;
894 bool hpd_disabled = false;
895 bool changed = false;
896 u32 hpd_event_bits;
897
898 mutex_lock(&mode_config->mutex);
899 DRM_DEBUG_KMS("running encoder hotplug functions\n");
900
901 spin_lock_irq(&dev_priv->irq_lock);
902
903 hpd_event_bits = dev_priv->hotplug.event_bits;
904 dev_priv->hotplug.event_bits = 0;
905 list_for_each_entry(connector, &mode_config->connector_list, head) {
906 intel_connector = to_intel_connector(connector);
907 if (!intel_connector->encoder)
908 continue;
909 intel_encoder = intel_connector->encoder;
910 if (intel_encoder->hpd_pin > HPD_NONE &&
911 dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_MARK_DISABLED &&
912 connector->polled == DRM_CONNECTOR_POLL_HPD) {
913 DRM_INFO("HPD interrupt storm detected on connector %s: "
914 "switching from hotplug detection to polling\n",
915 connector->name);
916 dev_priv->hotplug.stats[intel_encoder->hpd_pin].state = HPD_DISABLED;
917 connector->polled = DRM_CONNECTOR_POLL_CONNECT
918 | DRM_CONNECTOR_POLL_DISCONNECT;
919 hpd_disabled = true;
920 }
921 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923 connector->name, intel_encoder->hpd_pin);
924 }
925 }
926 /* if there were no outputs to poll, poll was disabled,
927 * therefore make sure it's enabled when disabling HPD on
928 * some connectors */
929 if (hpd_disabled) {
930 drm_kms_helper_poll_enable(dev);
931 mod_delayed_work(system_wq, &dev_priv->hotplug.reenable_work,
932 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933 }
934
935 spin_unlock_irq(&dev_priv->irq_lock);
936
937 list_for_each_entry(connector, &mode_config->connector_list, head) {
938 intel_connector = to_intel_connector(connector);
939 if (!intel_connector->encoder)
940 continue;
941 intel_encoder = intel_connector->encoder;
942 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943 if (intel_encoder->hot_plug)
944 intel_encoder->hot_plug(intel_encoder);
945 if (intel_hpd_irq_event(dev, connector))
946 changed = true;
947 }
948 }
949 mutex_unlock(&mode_config->mutex);
950
951 if (changed)
952 drm_kms_helper_hotplug_event(dev);
953 }
954
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957 struct drm_i915_private *dev_priv = dev->dev_private;
958 u32 busy_up, busy_down, max_avg, min_avg;
959 u8 new_delay;
960
961 spin_lock(&mchdev_lock);
962
963 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964
965 new_delay = dev_priv->ips.cur_delay;
966
967 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968 busy_up = I915_READ(RCPREVBSYTUPAVG);
969 busy_down = I915_READ(RCPREVBSYTDNAVG);
970 max_avg = I915_READ(RCBMAXAVG);
971 min_avg = I915_READ(RCBMINAVG);
972
973 /* Handle RCS change request from hw */
974 if (busy_up > max_avg) {
975 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976 new_delay = dev_priv->ips.cur_delay - 1;
977 if (new_delay < dev_priv->ips.max_delay)
978 new_delay = dev_priv->ips.max_delay;
979 } else if (busy_down < min_avg) {
980 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981 new_delay = dev_priv->ips.cur_delay + 1;
982 if (new_delay > dev_priv->ips.min_delay)
983 new_delay = dev_priv->ips.min_delay;
984 }
985
986 if (ironlake_set_drps(dev, new_delay))
987 dev_priv->ips.cur_delay = new_delay;
988
989 spin_unlock(&mchdev_lock);
990
991 return;
992 }
993
994 static void notify_ring(struct intel_engine_cs *ring)
995 {
996 if (!intel_ring_initialized(ring))
997 return;
998
999 trace_i915_gem_request_notify(ring);
1000
1001 wake_up_all(&ring->irq_queue);
1002 }
1003
1004 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1005 struct intel_rps_ei *ei)
1006 {
1007 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1008 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1009 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1010 }
1011
1012 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1013 const struct intel_rps_ei *old,
1014 const struct intel_rps_ei *now,
1015 int threshold)
1016 {
1017 u64 time, c0;
1018
1019 if (old->cz_clock == 0)
1020 return false;
1021
1022 time = now->cz_clock - old->cz_clock;
1023 time *= threshold * dev_priv->mem_freq;
1024
1025 /* Workload can be split between render + media, e.g. SwapBuffers
1026 * being blitted in X after being rendered in mesa. To account for
1027 * this we need to combine both engines into our activity counter.
1028 */
1029 c0 = now->render_c0 - old->render_c0;
1030 c0 += now->media_c0 - old->media_c0;
1031 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1032
1033 return c0 >= time;
1034 }
1035
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044 struct intel_rps_ei now;
1045 u32 events = 0;
1046
1047 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048 return 0;
1049
1050 vlv_c0_read(dev_priv, &now);
1051 if (now.cz_clock == 0)
1052 return 0;
1053
1054 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055 if (!vlv_c0_above(dev_priv,
1056 &dev_priv->rps.down_ei, &now,
1057 dev_priv->rps.down_threshold))
1058 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059 dev_priv->rps.down_ei = now;
1060 }
1061
1062 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063 if (vlv_c0_above(dev_priv,
1064 &dev_priv->rps.up_ei, &now,
1065 dev_priv->rps.up_threshold))
1066 events |= GEN6_PM_RP_UP_THRESHOLD;
1067 dev_priv->rps.up_ei = now;
1068 }
1069
1070 return events;
1071 }
1072
1073 static bool any_waiters(struct drm_i915_private *dev_priv)
1074 {
1075 struct intel_engine_cs *ring;
1076 int i;
1077
1078 for_each_ring(ring, dev_priv, i)
1079 if (ring->irq_refcount)
1080 return true;
1081
1082 return false;
1083 }
1084
1085 static void gen6_pm_rps_work(struct work_struct *work)
1086 {
1087 struct drm_i915_private *dev_priv =
1088 container_of(work, struct drm_i915_private, rps.work);
1089 bool client_boost;
1090 int new_delay, adj, min, max;
1091 u32 pm_iir;
1092
1093 spin_lock_irq(&dev_priv->irq_lock);
1094 /* Speed up work cancelation during disabling rps interrupts. */
1095 if (!dev_priv->rps.interrupts_enabled) {
1096 spin_unlock_irq(&dev_priv->irq_lock);
1097 return;
1098 }
1099 pm_iir = dev_priv->rps.pm_iir;
1100 dev_priv->rps.pm_iir = 0;
1101 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1102 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1103 client_boost = dev_priv->rps.client_boost;
1104 dev_priv->rps.client_boost = false;
1105 spin_unlock_irq(&dev_priv->irq_lock);
1106
1107 /* Make sure we didn't queue anything we're not going to process. */
1108 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1109
1110 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1111 return;
1112
1113 mutex_lock(&dev_priv->rps.hw_lock);
1114
1115 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1116
1117 adj = dev_priv->rps.last_adj;
1118 new_delay = dev_priv->rps.cur_freq;
1119 min = dev_priv->rps.min_freq_softlimit;
1120 max = dev_priv->rps.max_freq_softlimit;
1121
1122 if (client_boost) {
1123 new_delay = dev_priv->rps.max_freq_softlimit;
1124 adj = 0;
1125 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1126 if (adj > 0)
1127 adj *= 2;
1128 else /* CHV needs even encode values */
1129 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1130 /*
1131 * For better performance, jump directly
1132 * to RPe if we're below it.
1133 */
1134 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1135 new_delay = dev_priv->rps.efficient_freq;
1136 adj = 0;
1137 }
1138 } else if (any_waiters(dev_priv)) {
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1141 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1142 new_delay = dev_priv->rps.efficient_freq;
1143 else
1144 new_delay = dev_priv->rps.min_freq_softlimit;
1145 adj = 0;
1146 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1147 if (adj < 0)
1148 adj *= 2;
1149 else /* CHV needs even encode values */
1150 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1151 } else { /* unknown event */
1152 adj = 0;
1153 }
1154
1155 dev_priv->rps.last_adj = adj;
1156
1157 /* sysfs frequency interfaces may have snuck in while servicing the
1158 * interrupt
1159 */
1160 new_delay += adj;
1161 new_delay = clamp_t(int, new_delay, min, max);
1162
1163 intel_set_rps(dev_priv->dev, new_delay);
1164
1165 mutex_unlock(&dev_priv->rps.hw_lock);
1166 }
1167
1168
1169 /**
1170 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1171 * occurred.
1172 * @work: workqueue struct
1173 *
1174 * Doesn't actually do anything except notify userspace. As a consequence of
1175 * this event, userspace should try to remap the bad rows since statistically
1176 * it is likely the same row is more likely to go bad again.
1177 */
1178 static void ivybridge_parity_work(struct work_struct *work)
1179 {
1180 struct drm_i915_private *dev_priv =
1181 container_of(work, struct drm_i915_private, l3_parity.error_work);
1182 u32 error_status, row, bank, subbank;
1183 char *parity_event[6];
1184 uint32_t misccpctl;
1185 uint8_t slice = 0;
1186
1187 /* We must turn off DOP level clock gating to access the L3 registers.
1188 * In order to prevent a get/put style interface, acquire struct mutex
1189 * any time we access those registers.
1190 */
1191 mutex_lock(&dev_priv->dev->struct_mutex);
1192
1193 /* If we've screwed up tracking, just let the interrupt fire again */
1194 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1195 goto out;
1196
1197 misccpctl = I915_READ(GEN7_MISCCPCTL);
1198 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1199 POSTING_READ(GEN7_MISCCPCTL);
1200
1201 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1202 u32 reg;
1203
1204 slice--;
1205 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1206 break;
1207
1208 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1209
1210 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1211
1212 error_status = I915_READ(reg);
1213 row = GEN7_PARITY_ERROR_ROW(error_status);
1214 bank = GEN7_PARITY_ERROR_BANK(error_status);
1215 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1216
1217 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1218 POSTING_READ(reg);
1219
1220 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1221 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1222 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1223 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1224 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1225 parity_event[5] = NULL;
1226
1227 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1228 KOBJ_CHANGE, parity_event);
1229
1230 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1231 slice, row, bank, subbank);
1232
1233 kfree(parity_event[4]);
1234 kfree(parity_event[3]);
1235 kfree(parity_event[2]);
1236 kfree(parity_event[1]);
1237 }
1238
1239 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1240
1241 out:
1242 WARN_ON(dev_priv->l3_parity.which_slice);
1243 spin_lock_irq(&dev_priv->irq_lock);
1244 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1245 spin_unlock_irq(&dev_priv->irq_lock);
1246
1247 mutex_unlock(&dev_priv->dev->struct_mutex);
1248 }
1249
1250 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1251 {
1252 struct drm_i915_private *dev_priv = dev->dev_private;
1253
1254 if (!HAS_L3_DPF(dev))
1255 return;
1256
1257 spin_lock(&dev_priv->irq_lock);
1258 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1259 spin_unlock(&dev_priv->irq_lock);
1260
1261 iir &= GT_PARITY_ERROR(dev);
1262 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1263 dev_priv->l3_parity.which_slice |= 1 << 1;
1264
1265 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1266 dev_priv->l3_parity.which_slice |= 1 << 0;
1267
1268 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1269 }
1270
1271 static void ilk_gt_irq_handler(struct drm_device *dev,
1272 struct drm_i915_private *dev_priv,
1273 u32 gt_iir)
1274 {
1275 if (gt_iir &
1276 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1277 notify_ring(&dev_priv->ring[RCS]);
1278 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1279 notify_ring(&dev_priv->ring[VCS]);
1280 }
1281
1282 static void snb_gt_irq_handler(struct drm_device *dev,
1283 struct drm_i915_private *dev_priv,
1284 u32 gt_iir)
1285 {
1286
1287 if (gt_iir &
1288 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1289 notify_ring(&dev_priv->ring[RCS]);
1290 if (gt_iir & GT_BSD_USER_INTERRUPT)
1291 notify_ring(&dev_priv->ring[VCS]);
1292 if (gt_iir & GT_BLT_USER_INTERRUPT)
1293 notify_ring(&dev_priv->ring[BCS]);
1294
1295 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1296 GT_BSD_CS_ERROR_INTERRUPT |
1297 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1298 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1299
1300 if (gt_iir & GT_PARITY_ERROR(dev))
1301 ivybridge_parity_error_irq_handler(dev, gt_iir);
1302 }
1303
1304 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1305 u32 master_ctl)
1306 {
1307 irqreturn_t ret = IRQ_NONE;
1308
1309 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1310 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1311 if (tmp) {
1312 I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1313 ret = IRQ_HANDLED;
1314
1315 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1316 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1317 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1318 notify_ring(&dev_priv->ring[RCS]);
1319
1320 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1321 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1322 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1323 notify_ring(&dev_priv->ring[BCS]);
1324 } else
1325 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1326 }
1327
1328 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1329 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1330 if (tmp) {
1331 I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1332 ret = IRQ_HANDLED;
1333
1334 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1335 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1336 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1337 notify_ring(&dev_priv->ring[VCS]);
1338
1339 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1340 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1341 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1342 notify_ring(&dev_priv->ring[VCS2]);
1343 } else
1344 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1345 }
1346
1347 if (master_ctl & GEN8_GT_VECS_IRQ) {
1348 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1349 if (tmp) {
1350 I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1351 ret = IRQ_HANDLED;
1352
1353 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1354 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1355 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1356 notify_ring(&dev_priv->ring[VECS]);
1357 } else
1358 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1359 }
1360
1361 if (master_ctl & GEN8_GT_PM_IRQ) {
1362 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1363 if (tmp & dev_priv->pm_rps_events) {
1364 I915_WRITE_FW(GEN8_GT_IIR(2),
1365 tmp & dev_priv->pm_rps_events);
1366 ret = IRQ_HANDLED;
1367 gen6_rps_irq_handler(dev_priv, tmp);
1368 } else
1369 DRM_ERROR("The master control interrupt lied (PM)!\n");
1370 }
1371
1372 return ret;
1373 }
1374
1375 #define HPD_STORM_DETECT_PERIOD 1000
1376 #define HPD_STORM_THRESHOLD 5
1377
1378 /**
1379 * intel_hpd_irq_storm - gather stats and detect HPD irq storm on a pin
1380 * @dev_priv: private driver data pointer
1381 * @pin: the pin to gather stats on
1382 *
1383 * Gather stats about HPD irqs from the specified @pin, and detect irq
1384 * storms. Only the pin specific stats and state are changed, the caller is
1385 * responsible for further action.
1386 *
1387 * @HPD_STORM_THRESHOLD irqs are allowed within @HPD_STORM_DETECT_PERIOD ms,
1388 * otherwise it's considered an irq storm, and the irq state is set to
1389 * @HPD_MARK_DISABLED.
1390 *
1391 * Return true if an irq storm was detected on @pin.
1392 */
1393 static bool intel_hpd_irq_storm(struct drm_i915_private *dev_priv,
1394 enum hpd_pin pin)
1395 {
1396 unsigned long start = dev_priv->hotplug.stats[pin].last_jiffies;
1397 unsigned long end = start + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD);
1398 bool storm = false;
1399
1400 if (!time_in_range(jiffies, start, end)) {
1401 dev_priv->hotplug.stats[pin].last_jiffies = jiffies;
1402 dev_priv->hotplug.stats[pin].count = 0;
1403 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", pin);
1404 } else if (dev_priv->hotplug.stats[pin].count > HPD_STORM_THRESHOLD) {
1405 dev_priv->hotplug.stats[pin].state = HPD_MARK_DISABLED;
1406 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", pin);
1407 storm = true;
1408 } else {
1409 dev_priv->hotplug.stats[pin].count++;
1410 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", pin,
1411 dev_priv->hotplug.stats[pin].count);
1412 }
1413
1414 return storm;
1415 }
1416
1417 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1418 {
1419 switch (port) {
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_B:
1435 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1436 case PORT_C:
1437 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1438 case PORT_D:
1439 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1440 default:
1441 return false;
1442 }
1443 }
1444
1445 static enum port get_port_from_pin(enum hpd_pin pin)
1446 {
1447 switch (pin) {
1448 case HPD_PORT_B:
1449 return PORT_B;
1450 case HPD_PORT_C:
1451 return PORT_C;
1452 case HPD_PORT_D:
1453 return PORT_D;
1454 default:
1455 return PORT_A; /* no hpd */
1456 }
1457 }
1458
1459 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1460 static void pch_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1461 u32 hotplug_trigger, u32 dig_hotplug_reg, const u32 hpd[HPD_NUM_PINS])
1462 {
1463 int i;
1464
1465 *pin_mask = 0;
1466 *long_mask = 0;
1467
1468 if (!hotplug_trigger)
1469 return;
1470
1471 for_each_hpd_pin(i) {
1472 if (hpd[i] & hotplug_trigger) {
1473 *pin_mask |= BIT(i);
1474
1475 if (pch_port_hotplug_long_detect(get_port_from_pin(i), dig_hotplug_reg))
1476 *long_mask |= BIT(i);
1477 }
1478 }
1479
1480 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1481 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1482
1483 }
1484
1485 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1486 static void i9xx_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1487 u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS])
1488 {
1489 int i;
1490
1491 *pin_mask = 0;
1492 *long_mask = 0;
1493
1494 if (!hotplug_trigger)
1495 return;
1496
1497 for_each_hpd_pin(i) {
1498 if (hpd[i] & hotplug_trigger) {
1499 *pin_mask |= BIT(i);
1500
1501 if (i9xx_port_hotplug_long_detect(get_port_from_pin(i), hotplug_trigger))
1502 *long_mask |= BIT(i);
1503 }
1504 }
1505
1506 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, pins 0x%08x\n",
1507 hotplug_trigger, *pin_mask);
1508 }
1509
1510 /**
1511 * intel_hpd_irq_handler - main hotplug irq handler
1512 * @dev: drm device
1513 * @pin_mask: a mask of hpd pins that have triggered the irq
1514 * @long_mask: a mask of hpd pins that may be long hpd pulses
1515 *
1516 * This is the main hotplug irq handler for all platforms. The platform specific
1517 * irq handlers call the platform specific hotplug irq handlers, which read and
1518 * decode the appropriate registers into bitmasks about hpd pins that have
1519 * triggered (@pin_mask), and which of those pins may be long pulses
1520 * (@long_mask). The @long_mask is ignored if the port corresponding to the pin
1521 * is not a digital port.
1522 *
1523 * Here, we do hotplug irq storm detection and mitigation, and pass further
1524 * processing to appropriate bottom halves.
1525 */
1526 static void intel_hpd_irq_handler(struct drm_device *dev,
1527 u32 pin_mask, u32 long_mask)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 int i;
1531 enum port port;
1532 bool storm_detected = false;
1533 bool queue_dig = false, queue_hp = false;
1534 bool is_dig_port;
1535
1536 if (!pin_mask)
1537 return;
1538
1539 spin_lock(&dev_priv->irq_lock);
1540 for_each_hpd_pin(i) {
1541 if (!(BIT(i) & pin_mask))
1542 continue;
1543
1544 port = get_port_from_pin(i);
1545 is_dig_port = port && dev_priv->hotplug.irq_port[port];
1546
1547 if (is_dig_port) {
1548 bool long_hpd = long_mask & BIT(i);
1549
1550 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n", port_name(port),
1551 long_hpd ? "long" : "short");
1552 /*
1553 * For long HPD pulses we want to have the digital queue happen,
1554 * but we still want HPD storm detection to function.
1555 */
1556 queue_dig = true;
1557 if (long_hpd) {
1558 dev_priv->hotplug.long_port_mask |= (1 << port);
1559 } else {
1560 /* for short HPD just trigger the digital queue */
1561 dev_priv->hotplug.short_port_mask |= (1 << port);
1562 continue;
1563 }
1564 }
1565
1566 if (dev_priv->hotplug.stats[i].state == HPD_DISABLED) {
1567 /*
1568 * On GMCH platforms the interrupt mask bits only
1569 * prevent irq generation, not the setting of the
1570 * hotplug bits itself. So only WARN about unexpected
1571 * interrupts on saner platforms.
1572 */
1573 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1574 "Received HPD interrupt on pin %d although disabled\n", i);
1575 continue;
1576 }
1577
1578 if (dev_priv->hotplug.stats[i].state != HPD_ENABLED)
1579 continue;
1580
1581 if (!is_dig_port) {
1582 dev_priv->hotplug.event_bits |= BIT(i);
1583 queue_hp = true;
1584 }
1585
1586 if (intel_hpd_irq_storm(dev_priv, i)) {
1587 dev_priv->hotplug.event_bits &= ~BIT(i);
1588 storm_detected = true;
1589 }
1590 }
1591
1592 if (storm_detected)
1593 dev_priv->display.hpd_irq_setup(dev);
1594 spin_unlock(&dev_priv->irq_lock);
1595
1596 /*
1597 * Our hotplug handler can grab modeset locks (by calling down into the
1598 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1599 * queue for otherwise the flush_work in the pageflip code will
1600 * deadlock.
1601 */
1602 if (queue_dig)
1603 queue_work(dev_priv->hotplug.dp_wq, &dev_priv->hotplug.dig_port_work);
1604 if (queue_hp)
1605 schedule_work(&dev_priv->hotplug.hotplug_work);
1606 }
1607
1608 static void gmbus_irq_handler(struct drm_device *dev)
1609 {
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611
1612 wake_up_all(&dev_priv->gmbus_wait_queue);
1613 }
1614
1615 static void dp_aux_irq_handler(struct drm_device *dev)
1616 {
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618
1619 wake_up_all(&dev_priv->gmbus_wait_queue);
1620 }
1621
1622 #if defined(CONFIG_DEBUG_FS)
1623 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1624 uint32_t crc0, uint32_t crc1,
1625 uint32_t crc2, uint32_t crc3,
1626 uint32_t crc4)
1627 {
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1630 struct intel_pipe_crc_entry *entry;
1631 int head, tail;
1632
1633 spin_lock(&pipe_crc->lock);
1634
1635 if (!pipe_crc->entries) {
1636 spin_unlock(&pipe_crc->lock);
1637 DRM_DEBUG_KMS("spurious interrupt\n");
1638 return;
1639 }
1640
1641 head = pipe_crc->head;
1642 tail = pipe_crc->tail;
1643
1644 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1645 spin_unlock(&pipe_crc->lock);
1646 DRM_ERROR("CRC buffer overflowing\n");
1647 return;
1648 }
1649
1650 entry = &pipe_crc->entries[head];
1651
1652 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1653 entry->crc[0] = crc0;
1654 entry->crc[1] = crc1;
1655 entry->crc[2] = crc2;
1656 entry->crc[3] = crc3;
1657 entry->crc[4] = crc4;
1658
1659 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1660 pipe_crc->head = head;
1661
1662 spin_unlock(&pipe_crc->lock);
1663
1664 wake_up_interruptible(&pipe_crc->wq);
1665 }
1666 #else
1667 static inline void
1668 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1669 uint32_t crc0, uint32_t crc1,
1670 uint32_t crc2, uint32_t crc3,
1671 uint32_t crc4) {}
1672 #endif
1673
1674
1675 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1676 {
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678
1679 display_pipe_crc_irq_handler(dev, pipe,
1680 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1681 0, 0, 0, 0);
1682 }
1683
1684 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1685 {
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687
1688 display_pipe_crc_irq_handler(dev, pipe,
1689 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1690 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1691 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1692 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1693 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1694 }
1695
1696 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1697 {
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 uint32_t res1, res2;
1700
1701 if (INTEL_INFO(dev)->gen >= 3)
1702 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1703 else
1704 res1 = 0;
1705
1706 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1707 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1708 else
1709 res2 = 0;
1710
1711 display_pipe_crc_irq_handler(dev, pipe,
1712 I915_READ(PIPE_CRC_RES_RED(pipe)),
1713 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1714 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1715 res1, res2);
1716 }
1717
1718 /* The RPS events need forcewake, so we add them to a work queue and mask their
1719 * IMR bits until the work is done. Other interrupts can be processed without
1720 * the work queue. */
1721 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1722 {
1723 if (pm_iir & dev_priv->pm_rps_events) {
1724 spin_lock(&dev_priv->irq_lock);
1725 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1726 if (dev_priv->rps.interrupts_enabled) {
1727 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1728 queue_work(dev_priv->wq, &dev_priv->rps.work);
1729 }
1730 spin_unlock(&dev_priv->irq_lock);
1731 }
1732
1733 if (INTEL_INFO(dev_priv)->gen >= 8)
1734 return;
1735
1736 if (HAS_VEBOX(dev_priv->dev)) {
1737 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1738 notify_ring(&dev_priv->ring[VECS]);
1739
1740 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1741 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1742 }
1743 }
1744
1745 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1746 {
1747 if (!drm_handle_vblank(dev, pipe))
1748 return false;
1749
1750 return true;
1751 }
1752
1753 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1754 {
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756 u32 pipe_stats[I915_MAX_PIPES] = { };
1757 int pipe;
1758
1759 spin_lock(&dev_priv->irq_lock);
1760 for_each_pipe(dev_priv, pipe) {
1761 int reg;
1762 u32 mask, iir_bit = 0;
1763
1764 /*
1765 * PIPESTAT bits get signalled even when the interrupt is
1766 * disabled with the mask bits, and some of the status bits do
1767 * not generate interrupts at all (like the underrun bit). Hence
1768 * we need to be careful that we only handle what we want to
1769 * handle.
1770 */
1771
1772 /* fifo underruns are filterered in the underrun handler. */
1773 mask = PIPE_FIFO_UNDERRUN_STATUS;
1774
1775 switch (pipe) {
1776 case PIPE_A:
1777 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1778 break;
1779 case PIPE_B:
1780 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1781 break;
1782 case PIPE_C:
1783 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1784 break;
1785 }
1786 if (iir & iir_bit)
1787 mask |= dev_priv->pipestat_irq_mask[pipe];
1788
1789 if (!mask)
1790 continue;
1791
1792 reg = PIPESTAT(pipe);
1793 mask |= PIPESTAT_INT_ENABLE_MASK;
1794 pipe_stats[pipe] = I915_READ(reg) & mask;
1795
1796 /*
1797 * Clear the PIPE*STAT regs before the IIR
1798 */
1799 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1800 PIPESTAT_INT_STATUS_MASK))
1801 I915_WRITE(reg, pipe_stats[pipe]);
1802 }
1803 spin_unlock(&dev_priv->irq_lock);
1804
1805 for_each_pipe(dev_priv, pipe) {
1806 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1807 intel_pipe_handle_vblank(dev, pipe))
1808 intel_check_page_flip(dev, pipe);
1809
1810 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1811 intel_prepare_page_flip(dev, pipe);
1812 intel_finish_page_flip(dev, pipe);
1813 }
1814
1815 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1816 i9xx_pipe_crc_irq_handler(dev, pipe);
1817
1818 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1819 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1820 }
1821
1822 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1823 gmbus_irq_handler(dev);
1824 }
1825
1826 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1827 {
1828 struct drm_i915_private *dev_priv = dev->dev_private;
1829 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1830 u32 pin_mask, long_mask;
1831
1832 if (!hotplug_status)
1833 return;
1834
1835 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1836 /*
1837 * Make sure hotplug status is cleared before we clear IIR, or else we
1838 * may miss hotplug events.
1839 */
1840 POSTING_READ(PORT_HOTPLUG_STAT);
1841
1842 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1843 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1844
1845 i9xx_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hpd_status_g4x);
1846 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1847
1848 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1849 dp_aux_irq_handler(dev);
1850 } else {
1851 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1852
1853 i9xx_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hpd_status_i915);
1854 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1855 }
1856 }
1857
1858 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1859 {
1860 struct drm_device *dev = arg;
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862 u32 iir, gt_iir, pm_iir;
1863 irqreturn_t ret = IRQ_NONE;
1864
1865 if (!intel_irqs_enabled(dev_priv))
1866 return IRQ_NONE;
1867
1868 while (true) {
1869 /* Find, clear, then process each source of interrupt */
1870
1871 gt_iir = I915_READ(GTIIR);
1872 if (gt_iir)
1873 I915_WRITE(GTIIR, gt_iir);
1874
1875 pm_iir = I915_READ(GEN6_PMIIR);
1876 if (pm_iir)
1877 I915_WRITE(GEN6_PMIIR, pm_iir);
1878
1879 iir = I915_READ(VLV_IIR);
1880 if (iir) {
1881 /* Consume port before clearing IIR or we'll miss events */
1882 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1883 i9xx_hpd_irq_handler(dev);
1884 I915_WRITE(VLV_IIR, iir);
1885 }
1886
1887 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1888 goto out;
1889
1890 ret = IRQ_HANDLED;
1891
1892 if (gt_iir)
1893 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1894 if (pm_iir)
1895 gen6_rps_irq_handler(dev_priv, pm_iir);
1896 /* Call regardless, as some status bits might not be
1897 * signalled in iir */
1898 valleyview_pipestat_irq_handler(dev, iir);
1899 }
1900
1901 out:
1902 return ret;
1903 }
1904
1905 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1906 {
1907 struct drm_device *dev = arg;
1908 struct drm_i915_private *dev_priv = dev->dev_private;
1909 u32 master_ctl, iir;
1910 irqreturn_t ret = IRQ_NONE;
1911
1912 if (!intel_irqs_enabled(dev_priv))
1913 return IRQ_NONE;
1914
1915 for (;;) {
1916 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1917 iir = I915_READ(VLV_IIR);
1918
1919 if (master_ctl == 0 && iir == 0)
1920 break;
1921
1922 ret = IRQ_HANDLED;
1923
1924 I915_WRITE(GEN8_MASTER_IRQ, 0);
1925
1926 /* Find, clear, then process each source of interrupt */
1927
1928 if (iir) {
1929 /* Consume port before clearing IIR or we'll miss events */
1930 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1931 i9xx_hpd_irq_handler(dev);
1932 I915_WRITE(VLV_IIR, iir);
1933 }
1934
1935 gen8_gt_irq_handler(dev_priv, master_ctl);
1936
1937 /* Call regardless, as some status bits might not be
1938 * signalled in iir */
1939 valleyview_pipestat_irq_handler(dev, iir);
1940
1941 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1942 POSTING_READ(GEN8_MASTER_IRQ);
1943 }
1944
1945 return ret;
1946 }
1947
1948 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 int pipe;
1952 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1953 u32 dig_hotplug_reg;
1954 u32 pin_mask, long_mask;
1955
1956 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1957 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1958
1959 pch_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1960 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1961
1962 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1963 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1964 SDE_AUDIO_POWER_SHIFT);
1965 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1966 port_name(port));
1967 }
1968
1969 if (pch_iir & SDE_AUX_MASK)
1970 dp_aux_irq_handler(dev);
1971
1972 if (pch_iir & SDE_GMBUS)
1973 gmbus_irq_handler(dev);
1974
1975 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1976 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1977
1978 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1979 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1980
1981 if (pch_iir & SDE_POISON)
1982 DRM_ERROR("PCH poison interrupt\n");
1983
1984 if (pch_iir & SDE_FDI_MASK)
1985 for_each_pipe(dev_priv, pipe)
1986 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1987 pipe_name(pipe),
1988 I915_READ(FDI_RX_IIR(pipe)));
1989
1990 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1991 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1992
1993 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1994 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1995
1996 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1997 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1998
1999 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2000 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2001 }
2002
2003 static void ivb_err_int_handler(struct drm_device *dev)
2004 {
2005 struct drm_i915_private *dev_priv = dev->dev_private;
2006 u32 err_int = I915_READ(GEN7_ERR_INT);
2007 enum pipe pipe;
2008
2009 if (err_int & ERR_INT_POISON)
2010 DRM_ERROR("Poison interrupt\n");
2011
2012 for_each_pipe(dev_priv, pipe) {
2013 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2014 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2015
2016 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2017 if (IS_IVYBRIDGE(dev))
2018 ivb_pipe_crc_irq_handler(dev, pipe);
2019 else
2020 hsw_pipe_crc_irq_handler(dev, pipe);
2021 }
2022 }
2023
2024 I915_WRITE(GEN7_ERR_INT, err_int);
2025 }
2026
2027 static void cpt_serr_int_handler(struct drm_device *dev)
2028 {
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030 u32 serr_int = I915_READ(SERR_INT);
2031
2032 if (serr_int & SERR_INT_POISON)
2033 DRM_ERROR("PCH poison interrupt\n");
2034
2035 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2036 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2037
2038 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2039 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2040
2041 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2042 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2043
2044 I915_WRITE(SERR_INT, serr_int);
2045 }
2046
2047 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2048 {
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 int pipe;
2051 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2052 u32 dig_hotplug_reg;
2053 u32 pin_mask, long_mask;
2054
2055 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2056 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2057
2058 pch_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2059 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2060
2061 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2062 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2063 SDE_AUDIO_POWER_SHIFT_CPT);
2064 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2065 port_name(port));
2066 }
2067
2068 if (pch_iir & SDE_AUX_MASK_CPT)
2069 dp_aux_irq_handler(dev);
2070
2071 if (pch_iir & SDE_GMBUS_CPT)
2072 gmbus_irq_handler(dev);
2073
2074 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2075 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2076
2077 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2078 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2079
2080 if (pch_iir & SDE_FDI_MASK_CPT)
2081 for_each_pipe(dev_priv, pipe)
2082 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2083 pipe_name(pipe),
2084 I915_READ(FDI_RX_IIR(pipe)));
2085
2086 if (pch_iir & SDE_ERROR_CPT)
2087 cpt_serr_int_handler(dev);
2088 }
2089
2090 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2091 {
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 enum pipe pipe;
2094
2095 if (de_iir & DE_AUX_CHANNEL_A)
2096 dp_aux_irq_handler(dev);
2097
2098 if (de_iir & DE_GSE)
2099 intel_opregion_asle_intr(dev);
2100
2101 if (de_iir & DE_POISON)
2102 DRM_ERROR("Poison interrupt\n");
2103
2104 for_each_pipe(dev_priv, pipe) {
2105 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2106 intel_pipe_handle_vblank(dev, pipe))
2107 intel_check_page_flip(dev, pipe);
2108
2109 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2110 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2111
2112 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2113 i9xx_pipe_crc_irq_handler(dev, pipe);
2114
2115 /* plane/pipes map 1:1 on ilk+ */
2116 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2117 intel_prepare_page_flip(dev, pipe);
2118 intel_finish_page_flip_plane(dev, pipe);
2119 }
2120 }
2121
2122 /* check event from PCH */
2123 if (de_iir & DE_PCH_EVENT) {
2124 u32 pch_iir = I915_READ(SDEIIR);
2125
2126 if (HAS_PCH_CPT(dev))
2127 cpt_irq_handler(dev, pch_iir);
2128 else
2129 ibx_irq_handler(dev, pch_iir);
2130
2131 /* should clear PCH hotplug event before clear CPU irq */
2132 I915_WRITE(SDEIIR, pch_iir);
2133 }
2134
2135 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2136 ironlake_rps_change_irq_handler(dev);
2137 }
2138
2139 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2140 {
2141 struct drm_i915_private *dev_priv = dev->dev_private;
2142 enum pipe pipe;
2143
2144 if (de_iir & DE_ERR_INT_IVB)
2145 ivb_err_int_handler(dev);
2146
2147 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148 dp_aux_irq_handler(dev);
2149
2150 if (de_iir & DE_GSE_IVB)
2151 intel_opregion_asle_intr(dev);
2152
2153 for_each_pipe(dev_priv, pipe) {
2154 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155 intel_pipe_handle_vblank(dev, pipe))
2156 intel_check_page_flip(dev, pipe);
2157
2158 /* plane/pipes map 1:1 on ilk+ */
2159 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160 intel_prepare_page_flip(dev, pipe);
2161 intel_finish_page_flip_plane(dev, pipe);
2162 }
2163 }
2164
2165 /* check event from PCH */
2166 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167 u32 pch_iir = I915_READ(SDEIIR);
2168
2169 cpt_irq_handler(dev, pch_iir);
2170
2171 /* clear PCH hotplug event before clear CPU irq */
2172 I915_WRITE(SDEIIR, pch_iir);
2173 }
2174 }
2175
2176 /*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186 struct drm_device *dev = arg;
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189 irqreturn_t ret = IRQ_NONE;
2190
2191 if (!intel_irqs_enabled(dev_priv))
2192 return IRQ_NONE;
2193
2194 /* We get interrupts on unclaimed registers, so check for this before we
2195 * do any I915_{READ,WRITE}. */
2196 intel_uncore_check_errors(dev);
2197
2198 /* disable master interrupt before clearing iir */
2199 de_ier = I915_READ(DEIER);
2200 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2201 POSTING_READ(DEIER);
2202
2203 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2204 * interrupts will will be stored on its back queue, and then we'll be
2205 * able to process them after we restore SDEIER (as soon as we restore
2206 * it, we'll get an interrupt if SDEIIR still has something to process
2207 * due to its back queue). */
2208 if (!HAS_PCH_NOP(dev)) {
2209 sde_ier = I915_READ(SDEIER);
2210 I915_WRITE(SDEIER, 0);
2211 POSTING_READ(SDEIER);
2212 }
2213
2214 /* Find, clear, then process each source of interrupt */
2215
2216 gt_iir = I915_READ(GTIIR);
2217 if (gt_iir) {
2218 I915_WRITE(GTIIR, gt_iir);
2219 ret = IRQ_HANDLED;
2220 if (INTEL_INFO(dev)->gen >= 6)
2221 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2222 else
2223 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2224 }
2225
2226 de_iir = I915_READ(DEIIR);
2227 if (de_iir) {
2228 I915_WRITE(DEIIR, de_iir);
2229 ret = IRQ_HANDLED;
2230 if (INTEL_INFO(dev)->gen >= 7)
2231 ivb_display_irq_handler(dev, de_iir);
2232 else
2233 ilk_display_irq_handler(dev, de_iir);
2234 }
2235
2236 if (INTEL_INFO(dev)->gen >= 6) {
2237 u32 pm_iir = I915_READ(GEN6_PMIIR);
2238 if (pm_iir) {
2239 I915_WRITE(GEN6_PMIIR, pm_iir);
2240 ret = IRQ_HANDLED;
2241 gen6_rps_irq_handler(dev_priv, pm_iir);
2242 }
2243 }
2244
2245 I915_WRITE(DEIER, de_ier);
2246 POSTING_READ(DEIER);
2247 if (!HAS_PCH_NOP(dev)) {
2248 I915_WRITE(SDEIER, sde_ier);
2249 POSTING_READ(SDEIER);
2250 }
2251
2252 return ret;
2253 }
2254
2255 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2256 {
2257 struct drm_i915_private *dev_priv = dev->dev_private;
2258 u32 hp_control, hp_trigger;
2259 u32 pin_mask, long_mask;
2260
2261 /* Get the status */
2262 hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2263 hp_control = I915_READ(BXT_HOTPLUG_CTL);
2264
2265 /* Hotplug not enabled ? */
2266 if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2267 DRM_ERROR("Interrupt when HPD disabled\n");
2268 return;
2269 }
2270
2271 /* Clear sticky bits in hpd status */
2272 I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2273
2274 pch_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control, hpd_bxt);
2275 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2276 }
2277
2278 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2279 {
2280 struct drm_device *dev = arg;
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 u32 master_ctl;
2283 irqreturn_t ret = IRQ_NONE;
2284 uint32_t tmp = 0;
2285 enum pipe pipe;
2286 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2287
2288 if (!intel_irqs_enabled(dev_priv))
2289 return IRQ_NONE;
2290
2291 if (IS_GEN9(dev))
2292 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2293 GEN9_AUX_CHANNEL_D;
2294
2295 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2296 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2297 if (!master_ctl)
2298 return IRQ_NONE;
2299
2300 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2301
2302 /* Find, clear, then process each source of interrupt */
2303
2304 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2305
2306 if (master_ctl & GEN8_DE_MISC_IRQ) {
2307 tmp = I915_READ(GEN8_DE_MISC_IIR);
2308 if (tmp) {
2309 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2310 ret = IRQ_HANDLED;
2311 if (tmp & GEN8_DE_MISC_GSE)
2312 intel_opregion_asle_intr(dev);
2313 else
2314 DRM_ERROR("Unexpected DE Misc interrupt\n");
2315 }
2316 else
2317 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2318 }
2319
2320 if (master_ctl & GEN8_DE_PORT_IRQ) {
2321 tmp = I915_READ(GEN8_DE_PORT_IIR);
2322 if (tmp) {
2323 bool found = false;
2324
2325 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2326 ret = IRQ_HANDLED;
2327
2328 if (tmp & aux_mask) {
2329 dp_aux_irq_handler(dev);
2330 found = true;
2331 }
2332
2333 if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2334 bxt_hpd_handler(dev, tmp);
2335 found = true;
2336 }
2337
2338 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2339 gmbus_irq_handler(dev);
2340 found = true;
2341 }
2342
2343 if (!found)
2344 DRM_ERROR("Unexpected DE Port interrupt\n");
2345 }
2346 else
2347 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2348 }
2349
2350 for_each_pipe(dev_priv, pipe) {
2351 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2352
2353 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2354 continue;
2355
2356 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2357 if (pipe_iir) {
2358 ret = IRQ_HANDLED;
2359 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2360
2361 if (pipe_iir & GEN8_PIPE_VBLANK &&
2362 intel_pipe_handle_vblank(dev, pipe))
2363 intel_check_page_flip(dev, pipe);
2364
2365 if (IS_GEN9(dev))
2366 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2367 else
2368 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2369
2370 if (flip_done) {
2371 intel_prepare_page_flip(dev, pipe);
2372 intel_finish_page_flip_plane(dev, pipe);
2373 }
2374
2375 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2376 hsw_pipe_crc_irq_handler(dev, pipe);
2377
2378 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2379 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2380 pipe);
2381
2382
2383 if (IS_GEN9(dev))
2384 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2385 else
2386 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2387
2388 if (fault_errors)
2389 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2390 pipe_name(pipe),
2391 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2392 } else
2393 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2394 }
2395
2396 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2397 master_ctl & GEN8_DE_PCH_IRQ) {
2398 /*
2399 * FIXME(BDW): Assume for now that the new interrupt handling
2400 * scheme also closed the SDE interrupt handling race we've seen
2401 * on older pch-split platforms. But this needs testing.
2402 */
2403 u32 pch_iir = I915_READ(SDEIIR);
2404 if (pch_iir) {
2405 I915_WRITE(SDEIIR, pch_iir);
2406 ret = IRQ_HANDLED;
2407 cpt_irq_handler(dev, pch_iir);
2408 } else
2409 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2410
2411 }
2412
2413 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2414 POSTING_READ_FW(GEN8_MASTER_IRQ);
2415
2416 return ret;
2417 }
2418
2419 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2420 bool reset_completed)
2421 {
2422 struct intel_engine_cs *ring;
2423 int i;
2424
2425 /*
2426 * Notify all waiters for GPU completion events that reset state has
2427 * been changed, and that they need to restart their wait after
2428 * checking for potential errors (and bail out to drop locks if there is
2429 * a gpu reset pending so that i915_error_work_func can acquire them).
2430 */
2431
2432 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2433 for_each_ring(ring, dev_priv, i)
2434 wake_up_all(&ring->irq_queue);
2435
2436 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2437 wake_up_all(&dev_priv->pending_flip_queue);
2438
2439 /*
2440 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2441 * reset state is cleared.
2442 */
2443 if (reset_completed)
2444 wake_up_all(&dev_priv->gpu_error.reset_queue);
2445 }
2446
2447 /**
2448 * i915_reset_and_wakeup - do process context error handling work
2449 *
2450 * Fire an error uevent so userspace can see that a hang or error
2451 * was detected.
2452 */
2453 static void i915_reset_and_wakeup(struct drm_device *dev)
2454 {
2455 struct drm_i915_private *dev_priv = to_i915(dev);
2456 struct i915_gpu_error *error = &dev_priv->gpu_error;
2457 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2458 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2459 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2460 int ret;
2461
2462 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2463
2464 /*
2465 * Note that there's only one work item which does gpu resets, so we
2466 * need not worry about concurrent gpu resets potentially incrementing
2467 * error->reset_counter twice. We only need to take care of another
2468 * racing irq/hangcheck declaring the gpu dead for a second time. A
2469 * quick check for that is good enough: schedule_work ensures the
2470 * correct ordering between hang detection and this work item, and since
2471 * the reset in-progress bit is only ever set by code outside of this
2472 * work we don't need to worry about any other races.
2473 */
2474 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2475 DRM_DEBUG_DRIVER("resetting chip\n");
2476 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2477 reset_event);
2478
2479 /*
2480 * In most cases it's guaranteed that we get here with an RPM
2481 * reference held, for example because there is a pending GPU
2482 * request that won't finish until the reset is done. This
2483 * isn't the case at least when we get here by doing a
2484 * simulated reset via debugs, so get an RPM reference.
2485 */
2486 intel_runtime_pm_get(dev_priv);
2487
2488 intel_prepare_reset(dev);
2489
2490 /*
2491 * All state reset _must_ be completed before we update the
2492 * reset counter, for otherwise waiters might miss the reset
2493 * pending state and not properly drop locks, resulting in
2494 * deadlocks with the reset work.
2495 */
2496 ret = i915_reset(dev);
2497
2498 intel_finish_reset(dev);
2499
2500 intel_runtime_pm_put(dev_priv);
2501
2502 if (ret == 0) {
2503 /*
2504 * After all the gem state is reset, increment the reset
2505 * counter and wake up everyone waiting for the reset to
2506 * complete.
2507 *
2508 * Since unlock operations are a one-sided barrier only,
2509 * we need to insert a barrier here to order any seqno
2510 * updates before
2511 * the counter increment.
2512 */
2513 smp_mb__before_atomic();
2514 atomic_inc(&dev_priv->gpu_error.reset_counter);
2515
2516 kobject_uevent_env(&dev->primary->kdev->kobj,
2517 KOBJ_CHANGE, reset_done_event);
2518 } else {
2519 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2520 }
2521
2522 /*
2523 * Note: The wake_up also serves as a memory barrier so that
2524 * waiters see the update value of the reset counter atomic_t.
2525 */
2526 i915_error_wake_up(dev_priv, true);
2527 }
2528 }
2529
2530 static void i915_report_and_clear_eir(struct drm_device *dev)
2531 {
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 uint32_t instdone[I915_NUM_INSTDONE_REG];
2534 u32 eir = I915_READ(EIR);
2535 int pipe, i;
2536
2537 if (!eir)
2538 return;
2539
2540 pr_err("render error detected, EIR: 0x%08x\n", eir);
2541
2542 i915_get_extra_instdone(dev, instdone);
2543
2544 if (IS_G4X(dev)) {
2545 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2546 u32 ipeir = I915_READ(IPEIR_I965);
2547
2548 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2549 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2550 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2551 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2552 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2553 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2554 I915_WRITE(IPEIR_I965, ipeir);
2555 POSTING_READ(IPEIR_I965);
2556 }
2557 if (eir & GM45_ERROR_PAGE_TABLE) {
2558 u32 pgtbl_err = I915_READ(PGTBL_ER);
2559 pr_err("page table error\n");
2560 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2561 I915_WRITE(PGTBL_ER, pgtbl_err);
2562 POSTING_READ(PGTBL_ER);
2563 }
2564 }
2565
2566 if (!IS_GEN2(dev)) {
2567 if (eir & I915_ERROR_PAGE_TABLE) {
2568 u32 pgtbl_err = I915_READ(PGTBL_ER);
2569 pr_err("page table error\n");
2570 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2571 I915_WRITE(PGTBL_ER, pgtbl_err);
2572 POSTING_READ(PGTBL_ER);
2573 }
2574 }
2575
2576 if (eir & I915_ERROR_MEMORY_REFRESH) {
2577 pr_err("memory refresh error:\n");
2578 for_each_pipe(dev_priv, pipe)
2579 pr_err("pipe %c stat: 0x%08x\n",
2580 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2581 /* pipestat has already been acked */
2582 }
2583 if (eir & I915_ERROR_INSTRUCTION) {
2584 pr_err("instruction error\n");
2585 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2586 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2587 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2588 if (INTEL_INFO(dev)->gen < 4) {
2589 u32 ipeir = I915_READ(IPEIR);
2590
2591 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2592 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2593 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2594 I915_WRITE(IPEIR, ipeir);
2595 POSTING_READ(IPEIR);
2596 } else {
2597 u32 ipeir = I915_READ(IPEIR_I965);
2598
2599 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2600 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2601 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2602 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2603 I915_WRITE(IPEIR_I965, ipeir);
2604 POSTING_READ(IPEIR_I965);
2605 }
2606 }
2607
2608 I915_WRITE(EIR, eir);
2609 POSTING_READ(EIR);
2610 eir = I915_READ(EIR);
2611 if (eir) {
2612 /*
2613 * some errors might have become stuck,
2614 * mask them.
2615 */
2616 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2617 I915_WRITE(EMR, I915_READ(EMR) | eir);
2618 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2619 }
2620 }
2621
2622 /**
2623 * i915_handle_error - handle a gpu error
2624 * @dev: drm device
2625 *
2626 * Do some basic checking of regsiter state at error time and
2627 * dump it to the syslog. Also call i915_capture_error_state() to make
2628 * sure we get a record and make it available in debugfs. Fire a uevent
2629 * so userspace knows something bad happened (should trigger collection
2630 * of a ring dump etc.).
2631 */
2632 void i915_handle_error(struct drm_device *dev, bool wedged,
2633 const char *fmt, ...)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 va_list args;
2637 char error_msg[80];
2638
2639 va_start(args, fmt);
2640 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2641 va_end(args);
2642
2643 i915_capture_error_state(dev, wedged, error_msg);
2644 i915_report_and_clear_eir(dev);
2645
2646 if (wedged) {
2647 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2648 &dev_priv->gpu_error.reset_counter);
2649
2650 /*
2651 * Wakeup waiting processes so that the reset function
2652 * i915_reset_and_wakeup doesn't deadlock trying to grab
2653 * various locks. By bumping the reset counter first, the woken
2654 * processes will see a reset in progress and back off,
2655 * releasing their locks and then wait for the reset completion.
2656 * We must do this for _all_ gpu waiters that might hold locks
2657 * that the reset work needs to acquire.
2658 *
2659 * Note: The wake_up serves as the required memory barrier to
2660 * ensure that the waiters see the updated value of the reset
2661 * counter atomic_t.
2662 */
2663 i915_error_wake_up(dev_priv, false);
2664 }
2665
2666 i915_reset_and_wakeup(dev);
2667 }
2668
2669 /* Called from drm generic code, passed 'crtc' which
2670 * we use as a pipe index
2671 */
2672 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2673 {
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 unsigned long irqflags;
2676
2677 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678 if (INTEL_INFO(dev)->gen >= 4)
2679 i915_enable_pipestat(dev_priv, pipe,
2680 PIPE_START_VBLANK_INTERRUPT_STATUS);
2681 else
2682 i915_enable_pipestat(dev_priv, pipe,
2683 PIPE_VBLANK_INTERRUPT_STATUS);
2684 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2685
2686 return 0;
2687 }
2688
2689 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2690 {
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 unsigned long irqflags;
2693 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2694 DE_PIPE_VBLANK(pipe);
2695
2696 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2697 ironlake_enable_display_irq(dev_priv, bit);
2698 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2699
2700 return 0;
2701 }
2702
2703 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2704 {
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 unsigned long irqflags;
2707
2708 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709 i915_enable_pipestat(dev_priv, pipe,
2710 PIPE_START_VBLANK_INTERRUPT_STATUS);
2711 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2712
2713 return 0;
2714 }
2715
2716 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2717 {
2718 struct drm_i915_private *dev_priv = dev->dev_private;
2719 unsigned long irqflags;
2720
2721 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2723 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2724 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2725 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2726 return 0;
2727 }
2728
2729 /* Called from drm generic code, passed 'crtc' which
2730 * we use as a pipe index
2731 */
2732 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2733 {
2734 struct drm_i915_private *dev_priv = dev->dev_private;
2735 unsigned long irqflags;
2736
2737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2738 i915_disable_pipestat(dev_priv, pipe,
2739 PIPE_VBLANK_INTERRUPT_STATUS |
2740 PIPE_START_VBLANK_INTERRUPT_STATUS);
2741 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742 }
2743
2744 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2745 {
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 unsigned long irqflags;
2748 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2749 DE_PIPE_VBLANK(pipe);
2750
2751 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 ironlake_disable_display_irq(dev_priv, bit);
2753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 unsigned long irqflags;
2760
2761 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762 i915_disable_pipestat(dev_priv, pipe,
2763 PIPE_START_VBLANK_INTERRUPT_STATUS);
2764 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2765 }
2766
2767 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2768 {
2769 struct drm_i915_private *dev_priv = dev->dev_private;
2770 unsigned long irqflags;
2771
2772 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2773 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2774 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2775 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2776 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2777 }
2778
2779 static struct drm_i915_gem_request *
2780 ring_last_request(struct intel_engine_cs *ring)
2781 {
2782 return list_entry(ring->request_list.prev,
2783 struct drm_i915_gem_request, list);
2784 }
2785
2786 static bool
2787 ring_idle(struct intel_engine_cs *ring)
2788 {
2789 return (list_empty(&ring->request_list) ||
2790 i915_gem_request_completed(ring_last_request(ring), false));
2791 }
2792
2793 static bool
2794 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2795 {
2796 if (INTEL_INFO(dev)->gen >= 8) {
2797 return (ipehr >> 23) == 0x1c;
2798 } else {
2799 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2800 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2801 MI_SEMAPHORE_REGISTER);
2802 }
2803 }
2804
2805 static struct intel_engine_cs *
2806 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2807 {
2808 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2809 struct intel_engine_cs *signaller;
2810 int i;
2811
2812 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2813 for_each_ring(signaller, dev_priv, i) {
2814 if (ring == signaller)
2815 continue;
2816
2817 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2818 return signaller;
2819 }
2820 } else {
2821 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2822
2823 for_each_ring(signaller, dev_priv, i) {
2824 if(ring == signaller)
2825 continue;
2826
2827 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2828 return signaller;
2829 }
2830 }
2831
2832 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2833 ring->id, ipehr, offset);
2834
2835 return NULL;
2836 }
2837
2838 static struct intel_engine_cs *
2839 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2840 {
2841 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2842 u32 cmd, ipehr, head;
2843 u64 offset = 0;
2844 int i, backwards;
2845
2846 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2847 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2848 return NULL;
2849
2850 /*
2851 * HEAD is likely pointing to the dword after the actual command,
2852 * so scan backwards until we find the MBOX. But limit it to just 3
2853 * or 4 dwords depending on the semaphore wait command size.
2854 * Note that we don't care about ACTHD here since that might
2855 * point at at batch, and semaphores are always emitted into the
2856 * ringbuffer itself.
2857 */
2858 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2859 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2860
2861 for (i = backwards; i; --i) {
2862 /*
2863 * Be paranoid and presume the hw has gone off into the wild -
2864 * our ring is smaller than what the hardware (and hence
2865 * HEAD_ADDR) allows. Also handles wrap-around.
2866 */
2867 head &= ring->buffer->size - 1;
2868
2869 /* This here seems to blow up */
2870 cmd = ioread32(ring->buffer->virtual_start + head);
2871 if (cmd == ipehr)
2872 break;
2873
2874 head -= 4;
2875 }
2876
2877 if (!i)
2878 return NULL;
2879
2880 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2881 if (INTEL_INFO(ring->dev)->gen >= 8) {
2882 offset = ioread32(ring->buffer->virtual_start + head + 12);
2883 offset <<= 32;
2884 offset = ioread32(ring->buffer->virtual_start + head + 8);
2885 }
2886 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2887 }
2888
2889 static int semaphore_passed(struct intel_engine_cs *ring)
2890 {
2891 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2892 struct intel_engine_cs *signaller;
2893 u32 seqno;
2894
2895 ring->hangcheck.deadlock++;
2896
2897 signaller = semaphore_waits_for(ring, &seqno);
2898 if (signaller == NULL)
2899 return -1;
2900
2901 /* Prevent pathological recursion due to driver bugs */
2902 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2903 return -1;
2904
2905 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2906 return 1;
2907
2908 /* cursory check for an unkickable deadlock */
2909 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2910 semaphore_passed(signaller) < 0)
2911 return -1;
2912
2913 return 0;
2914 }
2915
2916 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2917 {
2918 struct intel_engine_cs *ring;
2919 int i;
2920
2921 for_each_ring(ring, dev_priv, i)
2922 ring->hangcheck.deadlock = 0;
2923 }
2924
2925 static enum intel_ring_hangcheck_action
2926 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2927 {
2928 struct drm_device *dev = ring->dev;
2929 struct drm_i915_private *dev_priv = dev->dev_private;
2930 u32 tmp;
2931
2932 if (acthd != ring->hangcheck.acthd) {
2933 if (acthd > ring->hangcheck.max_acthd) {
2934 ring->hangcheck.max_acthd = acthd;
2935 return HANGCHECK_ACTIVE;
2936 }
2937
2938 return HANGCHECK_ACTIVE_LOOP;
2939 }
2940
2941 if (IS_GEN2(dev))
2942 return HANGCHECK_HUNG;
2943
2944 /* Is the chip hanging on a WAIT_FOR_EVENT?
2945 * If so we can simply poke the RB_WAIT bit
2946 * and break the hang. This should work on
2947 * all but the second generation chipsets.
2948 */
2949 tmp = I915_READ_CTL(ring);
2950 if (tmp & RING_WAIT) {
2951 i915_handle_error(dev, false,
2952 "Kicking stuck wait on %s",
2953 ring->name);
2954 I915_WRITE_CTL(ring, tmp);
2955 return HANGCHECK_KICK;
2956 }
2957
2958 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2959 switch (semaphore_passed(ring)) {
2960 default:
2961 return HANGCHECK_HUNG;
2962 case 1:
2963 i915_handle_error(dev, false,
2964 "Kicking stuck semaphore on %s",
2965 ring->name);
2966 I915_WRITE_CTL(ring, tmp);
2967 return HANGCHECK_KICK;
2968 case 0:
2969 return HANGCHECK_WAIT;
2970 }
2971 }
2972
2973 return HANGCHECK_HUNG;
2974 }
2975
2976 /*
2977 * This is called when the chip hasn't reported back with completed
2978 * batchbuffers in a long time. We keep track per ring seqno progress and
2979 * if there are no progress, hangcheck score for that ring is increased.
2980 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2981 * we kick the ring. If we see no progress on three subsequent calls
2982 * we assume chip is wedged and try to fix it by resetting the chip.
2983 */
2984 static void i915_hangcheck_elapsed(struct work_struct *work)
2985 {
2986 struct drm_i915_private *dev_priv =
2987 container_of(work, typeof(*dev_priv),
2988 gpu_error.hangcheck_work.work);
2989 struct drm_device *dev = dev_priv->dev;
2990 struct intel_engine_cs *ring;
2991 int i;
2992 int busy_count = 0, rings_hung = 0;
2993 bool stuck[I915_NUM_RINGS] = { 0 };
2994 #define BUSY 1
2995 #define KICK 5
2996 #define HUNG 20
2997
2998 if (!i915.enable_hangcheck)
2999 return;
3000
3001 for_each_ring(ring, dev_priv, i) {
3002 u64 acthd;
3003 u32 seqno;
3004 bool busy = true;
3005
3006 semaphore_clear_deadlocks(dev_priv);
3007
3008 seqno = ring->get_seqno(ring, false);
3009 acthd = intel_ring_get_active_head(ring);
3010
3011 if (ring->hangcheck.seqno == seqno) {
3012 if (ring_idle(ring)) {
3013 ring->hangcheck.action = HANGCHECK_IDLE;
3014
3015 if (waitqueue_active(&ring->irq_queue)) {
3016 /* Issue a wake-up to catch stuck h/w. */
3017 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3018 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3019 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3020 ring->name);
3021 else
3022 DRM_INFO("Fake missed irq on %s\n",
3023 ring->name);
3024 wake_up_all(&ring->irq_queue);
3025 }
3026 /* Safeguard against driver failure */
3027 ring->hangcheck.score += BUSY;
3028 } else
3029 busy = false;
3030 } else {
3031 /* We always increment the hangcheck score
3032 * if the ring is busy and still processing
3033 * the same request, so that no single request
3034 * can run indefinitely (such as a chain of
3035 * batches). The only time we do not increment
3036 * the hangcheck score on this ring, if this
3037 * ring is in a legitimate wait for another
3038 * ring. In that case the waiting ring is a
3039 * victim and we want to be sure we catch the
3040 * right culprit. Then every time we do kick
3041 * the ring, add a small increment to the
3042 * score so that we can catch a batch that is
3043 * being repeatedly kicked and so responsible
3044 * for stalling the machine.
3045 */
3046 ring->hangcheck.action = ring_stuck(ring,
3047 acthd);
3048
3049 switch (ring->hangcheck.action) {
3050 case HANGCHECK_IDLE:
3051 case HANGCHECK_WAIT:
3052 case HANGCHECK_ACTIVE:
3053 break;
3054 case HANGCHECK_ACTIVE_LOOP:
3055 ring->hangcheck.score += BUSY;
3056 break;
3057 case HANGCHECK_KICK:
3058 ring->hangcheck.score += KICK;
3059 break;
3060 case HANGCHECK_HUNG:
3061 ring->hangcheck.score += HUNG;
3062 stuck[i] = true;
3063 break;
3064 }
3065 }
3066 } else {
3067 ring->hangcheck.action = HANGCHECK_ACTIVE;
3068
3069 /* Gradually reduce the count so that we catch DoS
3070 * attempts across multiple batches.
3071 */
3072 if (ring->hangcheck.score > 0)
3073 ring->hangcheck.score--;
3074
3075 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3076 }
3077
3078 ring->hangcheck.seqno = seqno;
3079 ring->hangcheck.acthd = acthd;
3080 busy_count += busy;
3081 }
3082
3083 for_each_ring(ring, dev_priv, i) {
3084 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3085 DRM_INFO("%s on %s\n",
3086 stuck[i] ? "stuck" : "no progress",
3087 ring->name);
3088 rings_hung++;
3089 }
3090 }
3091
3092 if (rings_hung)
3093 return i915_handle_error(dev, true, "Ring hung");
3094
3095 if (busy_count)
3096 /* Reset timer case chip hangs without another request
3097 * being added */
3098 i915_queue_hangcheck(dev);
3099 }
3100
3101 void i915_queue_hangcheck(struct drm_device *dev)
3102 {
3103 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3104
3105 if (!i915.enable_hangcheck)
3106 return;
3107
3108 /* Don't continually defer the hangcheck so that it is always run at
3109 * least once after work has been scheduled on any ring. Otherwise,
3110 * we will ignore a hung ring if a second ring is kept busy.
3111 */
3112
3113 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3114 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3115 }
3116
3117 static void ibx_irq_reset(struct drm_device *dev)
3118 {
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120
3121 if (HAS_PCH_NOP(dev))
3122 return;
3123
3124 GEN5_IRQ_RESET(SDE);
3125
3126 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3127 I915_WRITE(SERR_INT, 0xffffffff);
3128 }
3129
3130 /*
3131 * SDEIER is also touched by the interrupt handler to work around missed PCH
3132 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3133 * instead we unconditionally enable all PCH interrupt sources here, but then
3134 * only unmask them as needed with SDEIMR.
3135 *
3136 * This function needs to be called before interrupts are enabled.
3137 */
3138 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3139 {
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141
3142 if (HAS_PCH_NOP(dev))
3143 return;
3144
3145 WARN_ON(I915_READ(SDEIER) != 0);
3146 I915_WRITE(SDEIER, 0xffffffff);
3147 POSTING_READ(SDEIER);
3148 }
3149
3150 static void gen5_gt_irq_reset(struct drm_device *dev)
3151 {
3152 struct drm_i915_private *dev_priv = dev->dev_private;
3153
3154 GEN5_IRQ_RESET(GT);
3155 if (INTEL_INFO(dev)->gen >= 6)
3156 GEN5_IRQ_RESET(GEN6_PM);
3157 }
3158
3159 /* drm_dma.h hooks
3160 */
3161 static void ironlake_irq_reset(struct drm_device *dev)
3162 {
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164
3165 I915_WRITE(HWSTAM, 0xffffffff);
3166
3167 GEN5_IRQ_RESET(DE);
3168 if (IS_GEN7(dev))
3169 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3170
3171 gen5_gt_irq_reset(dev);
3172
3173 ibx_irq_reset(dev);
3174 }
3175
3176 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3177 {
3178 enum pipe pipe;
3179
3180 I915_WRITE(PORT_HOTPLUG_EN, 0);
3181 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3182
3183 for_each_pipe(dev_priv, pipe)
3184 I915_WRITE(PIPESTAT(pipe), 0xffff);
3185
3186 GEN5_IRQ_RESET(VLV_);
3187 }
3188
3189 static void valleyview_irq_preinstall(struct drm_device *dev)
3190 {
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192
3193 /* VLV magic */
3194 I915_WRITE(VLV_IMR, 0);
3195 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3196 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3197 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3198
3199 gen5_gt_irq_reset(dev);
3200
3201 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3202
3203 vlv_display_irq_reset(dev_priv);
3204 }
3205
3206 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3207 {
3208 GEN8_IRQ_RESET_NDX(GT, 0);
3209 GEN8_IRQ_RESET_NDX(GT, 1);
3210 GEN8_IRQ_RESET_NDX(GT, 2);
3211 GEN8_IRQ_RESET_NDX(GT, 3);
3212 }
3213
3214 static void gen8_irq_reset(struct drm_device *dev)
3215 {
3216 struct drm_i915_private *dev_priv = dev->dev_private;
3217 int pipe;
3218
3219 I915_WRITE(GEN8_MASTER_IRQ, 0);
3220 POSTING_READ(GEN8_MASTER_IRQ);
3221
3222 gen8_gt_irq_reset(dev_priv);
3223
3224 for_each_pipe(dev_priv, pipe)
3225 if (intel_display_power_is_enabled(dev_priv,
3226 POWER_DOMAIN_PIPE(pipe)))
3227 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3228
3229 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3230 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3231 GEN5_IRQ_RESET(GEN8_PCU_);
3232
3233 if (HAS_PCH_SPLIT(dev))
3234 ibx_irq_reset(dev);
3235 }
3236
3237 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3238 unsigned int pipe_mask)
3239 {
3240 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3241
3242 spin_lock_irq(&dev_priv->irq_lock);
3243 if (pipe_mask & 1 << PIPE_A)
3244 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3245 dev_priv->de_irq_mask[PIPE_A],
3246 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3247 if (pipe_mask & 1 << PIPE_B)
3248 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3249 dev_priv->de_irq_mask[PIPE_B],
3250 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3251 if (pipe_mask & 1 << PIPE_C)
3252 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3253 dev_priv->de_irq_mask[PIPE_C],
3254 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3255 spin_unlock_irq(&dev_priv->irq_lock);
3256 }
3257
3258 static void cherryview_irq_preinstall(struct drm_device *dev)
3259 {
3260 struct drm_i915_private *dev_priv = dev->dev_private;
3261
3262 I915_WRITE(GEN8_MASTER_IRQ, 0);
3263 POSTING_READ(GEN8_MASTER_IRQ);
3264
3265 gen8_gt_irq_reset(dev_priv);
3266
3267 GEN5_IRQ_RESET(GEN8_PCU_);
3268
3269 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3270
3271 vlv_display_irq_reset(dev_priv);
3272 }
3273
3274 static void ibx_hpd_irq_setup(struct drm_device *dev)
3275 {
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 struct intel_encoder *intel_encoder;
3278 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3279
3280 if (HAS_PCH_IBX(dev)) {
3281 hotplug_irqs = SDE_HOTPLUG_MASK;
3282 for_each_intel_encoder(dev, intel_encoder)
3283 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3284 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3285 } else {
3286 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3287 for_each_intel_encoder(dev, intel_encoder)
3288 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3289 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3290 }
3291
3292 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3293
3294 /*
3295 * Enable digital hotplug on the PCH, and configure the DP short pulse
3296 * duration to 2ms (which is the minimum in the Display Port spec)
3297 *
3298 * This register is the same on all known PCH chips.
3299 */
3300 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3301 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3302 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3303 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3304 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3305 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3306 }
3307
3308 static void bxt_hpd_irq_setup(struct drm_device *dev)
3309 {
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 struct intel_encoder *intel_encoder;
3312 u32 hotplug_port = 0;
3313 u32 hotplug_ctrl;
3314
3315 /* Now, enable HPD */
3316 for_each_intel_encoder(dev, intel_encoder) {
3317 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3318 == HPD_ENABLED)
3319 hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3320 }
3321
3322 /* Mask all HPD control bits */
3323 hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3324
3325 /* Enable requested port in hotplug control */
3326 /* TODO: implement (short) HPD support on port A */
3327 WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3328 if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3329 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3330 if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3331 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3332 I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3333
3334 /* Unmask DDI hotplug in IMR */
3335 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3336 I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3337
3338 /* Enable DDI hotplug in IER */
3339 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3340 I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3341 POSTING_READ(GEN8_DE_PORT_IER);
3342 }
3343
3344 static void ibx_irq_postinstall(struct drm_device *dev)
3345 {
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 u32 mask;
3348
3349 if (HAS_PCH_NOP(dev))
3350 return;
3351
3352 if (HAS_PCH_IBX(dev))
3353 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3354 else
3355 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3356
3357 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3358 I915_WRITE(SDEIMR, ~mask);
3359 }
3360
3361 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3362 {
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 u32 pm_irqs, gt_irqs;
3365
3366 pm_irqs = gt_irqs = 0;
3367
3368 dev_priv->gt_irq_mask = ~0;
3369 if (HAS_L3_DPF(dev)) {
3370 /* L3 parity interrupt is always unmasked. */
3371 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3372 gt_irqs |= GT_PARITY_ERROR(dev);
3373 }
3374
3375 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3376 if (IS_GEN5(dev)) {
3377 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3378 ILK_BSD_USER_INTERRUPT;
3379 } else {
3380 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3381 }
3382
3383 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3384
3385 if (INTEL_INFO(dev)->gen >= 6) {
3386 /*
3387 * RPS interrupts will get enabled/disabled on demand when RPS
3388 * itself is enabled/disabled.
3389 */
3390 if (HAS_VEBOX(dev))
3391 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3392
3393 dev_priv->pm_irq_mask = 0xffffffff;
3394 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3395 }
3396 }
3397
3398 static int ironlake_irq_postinstall(struct drm_device *dev)
3399 {
3400 struct drm_i915_private *dev_priv = dev->dev_private;
3401 u32 display_mask, extra_mask;
3402
3403 if (INTEL_INFO(dev)->gen >= 7) {
3404 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3405 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3406 DE_PLANEB_FLIP_DONE_IVB |
3407 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3408 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3409 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3410 } else {
3411 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3412 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3413 DE_AUX_CHANNEL_A |
3414 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3415 DE_POISON);
3416 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3417 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3418 }
3419
3420 dev_priv->irq_mask = ~display_mask;
3421
3422 I915_WRITE(HWSTAM, 0xeffe);
3423
3424 ibx_irq_pre_postinstall(dev);
3425
3426 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3427
3428 gen5_gt_irq_postinstall(dev);
3429
3430 ibx_irq_postinstall(dev);
3431
3432 if (IS_IRONLAKE_M(dev)) {
3433 /* Enable PCU event interrupts
3434 *
3435 * spinlocking not required here for correctness since interrupt
3436 * setup is guaranteed to run in single-threaded context. But we
3437 * need it to make the assert_spin_locked happy. */
3438 spin_lock_irq(&dev_priv->irq_lock);
3439 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3440 spin_unlock_irq(&dev_priv->irq_lock);
3441 }
3442
3443 return 0;
3444 }
3445
3446 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3447 {
3448 u32 pipestat_mask;
3449 u32 iir_mask;
3450 enum pipe pipe;
3451
3452 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3453 PIPE_FIFO_UNDERRUN_STATUS;
3454
3455 for_each_pipe(dev_priv, pipe)
3456 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3457 POSTING_READ(PIPESTAT(PIPE_A));
3458
3459 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3460 PIPE_CRC_DONE_INTERRUPT_STATUS;
3461
3462 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3463 for_each_pipe(dev_priv, pipe)
3464 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3465
3466 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3467 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3468 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3469 if (IS_CHERRYVIEW(dev_priv))
3470 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3471 dev_priv->irq_mask &= ~iir_mask;
3472
3473 I915_WRITE(VLV_IIR, iir_mask);
3474 I915_WRITE(VLV_IIR, iir_mask);
3475 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3476 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3477 POSTING_READ(VLV_IMR);
3478 }
3479
3480 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3481 {
3482 u32 pipestat_mask;
3483 u32 iir_mask;
3484 enum pipe pipe;
3485
3486 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3487 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3488 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3489 if (IS_CHERRYVIEW(dev_priv))
3490 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3491
3492 dev_priv->irq_mask |= iir_mask;
3493 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3494 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3495 I915_WRITE(VLV_IIR, iir_mask);
3496 I915_WRITE(VLV_IIR, iir_mask);
3497 POSTING_READ(VLV_IIR);
3498
3499 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3500 PIPE_CRC_DONE_INTERRUPT_STATUS;
3501
3502 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3503 for_each_pipe(dev_priv, pipe)
3504 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3505
3506 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3507 PIPE_FIFO_UNDERRUN_STATUS;
3508
3509 for_each_pipe(dev_priv, pipe)
3510 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3511 POSTING_READ(PIPESTAT(PIPE_A));
3512 }
3513
3514 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3515 {
3516 assert_spin_locked(&dev_priv->irq_lock);
3517
3518 if (dev_priv->display_irqs_enabled)
3519 return;
3520
3521 dev_priv->display_irqs_enabled = true;
3522
3523 if (intel_irqs_enabled(dev_priv))
3524 valleyview_display_irqs_install(dev_priv);
3525 }
3526
3527 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3528 {
3529 assert_spin_locked(&dev_priv->irq_lock);
3530
3531 if (!dev_priv->display_irqs_enabled)
3532 return;
3533
3534 dev_priv->display_irqs_enabled = false;
3535
3536 if (intel_irqs_enabled(dev_priv))
3537 valleyview_display_irqs_uninstall(dev_priv);
3538 }
3539
3540 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3541 {
3542 dev_priv->irq_mask = ~0;
3543
3544 I915_WRITE(PORT_HOTPLUG_EN, 0);
3545 POSTING_READ(PORT_HOTPLUG_EN);
3546
3547 I915_WRITE(VLV_IIR, 0xffffffff);
3548 I915_WRITE(VLV_IIR, 0xffffffff);
3549 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3550 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3551 POSTING_READ(VLV_IMR);
3552
3553 /* Interrupt setup is already guaranteed to be single-threaded, this is
3554 * just to make the assert_spin_locked check happy. */
3555 spin_lock_irq(&dev_priv->irq_lock);
3556 if (dev_priv->display_irqs_enabled)
3557 valleyview_display_irqs_install(dev_priv);
3558 spin_unlock_irq(&dev_priv->irq_lock);
3559 }
3560
3561 static int valleyview_irq_postinstall(struct drm_device *dev)
3562 {
3563 struct drm_i915_private *dev_priv = dev->dev_private;
3564
3565 vlv_display_irq_postinstall(dev_priv);
3566
3567 gen5_gt_irq_postinstall(dev);
3568
3569 /* ack & enable invalid PTE error interrupts */
3570 #if 0 /* FIXME: add support to irq handler for checking these bits */
3571 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3572 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3573 #endif
3574
3575 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3576
3577 return 0;
3578 }
3579
3580 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3581 {
3582 /* These are interrupts we'll toggle with the ring mask register */
3583 uint32_t gt_interrupts[] = {
3584 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3585 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3586 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3587 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3588 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3589 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3590 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3591 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3592 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3593 0,
3594 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3595 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3596 };
3597
3598 dev_priv->pm_irq_mask = 0xffffffff;
3599 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3600 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3601 /*
3602 * RPS interrupts will get enabled/disabled on demand when RPS itself
3603 * is enabled/disabled.
3604 */
3605 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3606 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3607 }
3608
3609 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3610 {
3611 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3612 uint32_t de_pipe_enables;
3613 int pipe;
3614 u32 de_port_en = GEN8_AUX_CHANNEL_A;
3615
3616 if (IS_GEN9(dev_priv)) {
3617 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3618 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3619 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3620 GEN9_AUX_CHANNEL_D;
3621
3622 if (IS_BROXTON(dev_priv))
3623 de_port_en |= BXT_DE_PORT_GMBUS;
3624 } else
3625 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3626 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3627
3628 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3629 GEN8_PIPE_FIFO_UNDERRUN;
3630
3631 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3632 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3633 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3634
3635 for_each_pipe(dev_priv, pipe)
3636 if (intel_display_power_is_enabled(dev_priv,
3637 POWER_DOMAIN_PIPE(pipe)))
3638 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3639 dev_priv->de_irq_mask[pipe],
3640 de_pipe_enables);
3641
3642 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3643 }
3644
3645 static int gen8_irq_postinstall(struct drm_device *dev)
3646 {
3647 struct drm_i915_private *dev_priv = dev->dev_private;
3648
3649 if (HAS_PCH_SPLIT(dev))
3650 ibx_irq_pre_postinstall(dev);
3651
3652 gen8_gt_irq_postinstall(dev_priv);
3653 gen8_de_irq_postinstall(dev_priv);
3654
3655 if (HAS_PCH_SPLIT(dev))
3656 ibx_irq_postinstall(dev);
3657
3658 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3659 POSTING_READ(GEN8_MASTER_IRQ);
3660
3661 return 0;
3662 }
3663
3664 static int cherryview_irq_postinstall(struct drm_device *dev)
3665 {
3666 struct drm_i915_private *dev_priv = dev->dev_private;
3667
3668 vlv_display_irq_postinstall(dev_priv);
3669
3670 gen8_gt_irq_postinstall(dev_priv);
3671
3672 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3673 POSTING_READ(GEN8_MASTER_IRQ);
3674
3675 return 0;
3676 }
3677
3678 static void gen8_irq_uninstall(struct drm_device *dev)
3679 {
3680 struct drm_i915_private *dev_priv = dev->dev_private;
3681
3682 if (!dev_priv)
3683 return;
3684
3685 gen8_irq_reset(dev);
3686 }
3687
3688 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3689 {
3690 /* Interrupt setup is already guaranteed to be single-threaded, this is
3691 * just to make the assert_spin_locked check happy. */
3692 spin_lock_irq(&dev_priv->irq_lock);
3693 if (dev_priv->display_irqs_enabled)
3694 valleyview_display_irqs_uninstall(dev_priv);
3695 spin_unlock_irq(&dev_priv->irq_lock);
3696
3697 vlv_display_irq_reset(dev_priv);
3698
3699 dev_priv->irq_mask = ~0;
3700 }
3701
3702 static void valleyview_irq_uninstall(struct drm_device *dev)
3703 {
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705
3706 if (!dev_priv)
3707 return;
3708
3709 I915_WRITE(VLV_MASTER_IER, 0);
3710
3711 gen5_gt_irq_reset(dev);
3712
3713 I915_WRITE(HWSTAM, 0xffffffff);
3714
3715 vlv_display_irq_uninstall(dev_priv);
3716 }
3717
3718 static void cherryview_irq_uninstall(struct drm_device *dev)
3719 {
3720 struct drm_i915_private *dev_priv = dev->dev_private;
3721
3722 if (!dev_priv)
3723 return;
3724
3725 I915_WRITE(GEN8_MASTER_IRQ, 0);
3726 POSTING_READ(GEN8_MASTER_IRQ);
3727
3728 gen8_gt_irq_reset(dev_priv);
3729
3730 GEN5_IRQ_RESET(GEN8_PCU_);
3731
3732 vlv_display_irq_uninstall(dev_priv);
3733 }
3734
3735 static void ironlake_irq_uninstall(struct drm_device *dev)
3736 {
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738
3739 if (!dev_priv)
3740 return;
3741
3742 ironlake_irq_reset(dev);
3743 }
3744
3745 static void i8xx_irq_preinstall(struct drm_device * dev)
3746 {
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748 int pipe;
3749
3750 for_each_pipe(dev_priv, pipe)
3751 I915_WRITE(PIPESTAT(pipe), 0);
3752 I915_WRITE16(IMR, 0xffff);
3753 I915_WRITE16(IER, 0x0);
3754 POSTING_READ16(IER);
3755 }
3756
3757 static int i8xx_irq_postinstall(struct drm_device *dev)
3758 {
3759 struct drm_i915_private *dev_priv = dev->dev_private;
3760
3761 I915_WRITE16(EMR,
3762 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3763
3764 /* Unmask the interrupts that we always want on. */
3765 dev_priv->irq_mask =
3766 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3767 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3768 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3769 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3770 I915_WRITE16(IMR, dev_priv->irq_mask);
3771
3772 I915_WRITE16(IER,
3773 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3774 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3775 I915_USER_INTERRUPT);
3776 POSTING_READ16(IER);
3777
3778 /* Interrupt setup is already guaranteed to be single-threaded, this is
3779 * just to make the assert_spin_locked check happy. */
3780 spin_lock_irq(&dev_priv->irq_lock);
3781 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3782 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3783 spin_unlock_irq(&dev_priv->irq_lock);
3784
3785 return 0;
3786 }
3787
3788 /*
3789 * Returns true when a page flip has completed.
3790 */
3791 static bool i8xx_handle_vblank(struct drm_device *dev,
3792 int plane, int pipe, u32 iir)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3796
3797 if (!intel_pipe_handle_vblank(dev, pipe))
3798 return false;
3799
3800 if ((iir & flip_pending) == 0)
3801 goto check_page_flip;
3802
3803 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3804 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3805 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3806 * the flip is completed (no longer pending). Since this doesn't raise
3807 * an interrupt per se, we watch for the change at vblank.
3808 */
3809 if (I915_READ16(ISR) & flip_pending)
3810 goto check_page_flip;
3811
3812 intel_prepare_page_flip(dev, plane);
3813 intel_finish_page_flip(dev, pipe);
3814 return true;
3815
3816 check_page_flip:
3817 intel_check_page_flip(dev, pipe);
3818 return false;
3819 }
3820
3821 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3822 {
3823 struct drm_device *dev = arg;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825 u16 iir, new_iir;
3826 u32 pipe_stats[2];
3827 int pipe;
3828 u16 flip_mask =
3829 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3830 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3831
3832 if (!intel_irqs_enabled(dev_priv))
3833 return IRQ_NONE;
3834
3835 iir = I915_READ16(IIR);
3836 if (iir == 0)
3837 return IRQ_NONE;
3838
3839 while (iir & ~flip_mask) {
3840 /* Can't rely on pipestat interrupt bit in iir as it might
3841 * have been cleared after the pipestat interrupt was received.
3842 * It doesn't set the bit in iir again, but it still produces
3843 * interrupts (for non-MSI).
3844 */
3845 spin_lock(&dev_priv->irq_lock);
3846 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3847 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3848
3849 for_each_pipe(dev_priv, pipe) {
3850 int reg = PIPESTAT(pipe);
3851 pipe_stats[pipe] = I915_READ(reg);
3852
3853 /*
3854 * Clear the PIPE*STAT regs before the IIR
3855 */
3856 if (pipe_stats[pipe] & 0x8000ffff)
3857 I915_WRITE(reg, pipe_stats[pipe]);
3858 }
3859 spin_unlock(&dev_priv->irq_lock);
3860
3861 I915_WRITE16(IIR, iir & ~flip_mask);
3862 new_iir = I915_READ16(IIR); /* Flush posted writes */
3863
3864 if (iir & I915_USER_INTERRUPT)
3865 notify_ring(&dev_priv->ring[RCS]);
3866
3867 for_each_pipe(dev_priv, pipe) {
3868 int plane = pipe;
3869 if (HAS_FBC(dev))
3870 plane = !plane;
3871
3872 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3873 i8xx_handle_vblank(dev, plane, pipe, iir))
3874 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3875
3876 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3877 i9xx_pipe_crc_irq_handler(dev, pipe);
3878
3879 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3880 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3881 pipe);
3882 }
3883
3884 iir = new_iir;
3885 }
3886
3887 return IRQ_HANDLED;
3888 }
3889
3890 static void i8xx_irq_uninstall(struct drm_device * dev)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 int pipe;
3894
3895 for_each_pipe(dev_priv, pipe) {
3896 /* Clear enable bits; then clear status bits */
3897 I915_WRITE(PIPESTAT(pipe), 0);
3898 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3899 }
3900 I915_WRITE16(IMR, 0xffff);
3901 I915_WRITE16(IER, 0x0);
3902 I915_WRITE16(IIR, I915_READ16(IIR));
3903 }
3904
3905 static void i915_irq_preinstall(struct drm_device * dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 int pipe;
3909
3910 if (I915_HAS_HOTPLUG(dev)) {
3911 I915_WRITE(PORT_HOTPLUG_EN, 0);
3912 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3913 }
3914
3915 I915_WRITE16(HWSTAM, 0xeffe);
3916 for_each_pipe(dev_priv, pipe)
3917 I915_WRITE(PIPESTAT(pipe), 0);
3918 I915_WRITE(IMR, 0xffffffff);
3919 I915_WRITE(IER, 0x0);
3920 POSTING_READ(IER);
3921 }
3922
3923 static int i915_irq_postinstall(struct drm_device *dev)
3924 {
3925 struct drm_i915_private *dev_priv = dev->dev_private;
3926 u32 enable_mask;
3927
3928 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3929
3930 /* Unmask the interrupts that we always want on. */
3931 dev_priv->irq_mask =
3932 ~(I915_ASLE_INTERRUPT |
3933 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3934 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3935 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3936 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3937
3938 enable_mask =
3939 I915_ASLE_INTERRUPT |
3940 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3941 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3942 I915_USER_INTERRUPT;
3943
3944 if (I915_HAS_HOTPLUG(dev)) {
3945 I915_WRITE(PORT_HOTPLUG_EN, 0);
3946 POSTING_READ(PORT_HOTPLUG_EN);
3947
3948 /* Enable in IER... */
3949 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3950 /* and unmask in IMR */
3951 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3952 }
3953
3954 I915_WRITE(IMR, dev_priv->irq_mask);
3955 I915_WRITE(IER, enable_mask);
3956 POSTING_READ(IER);
3957
3958 i915_enable_asle_pipestat(dev);
3959
3960 /* Interrupt setup is already guaranteed to be single-threaded, this is
3961 * just to make the assert_spin_locked check happy. */
3962 spin_lock_irq(&dev_priv->irq_lock);
3963 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3964 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3965 spin_unlock_irq(&dev_priv->irq_lock);
3966
3967 return 0;
3968 }
3969
3970 /*
3971 * Returns true when a page flip has completed.
3972 */
3973 static bool i915_handle_vblank(struct drm_device *dev,
3974 int plane, int pipe, u32 iir)
3975 {
3976 struct drm_i915_private *dev_priv = dev->dev_private;
3977 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3978
3979 if (!intel_pipe_handle_vblank(dev, pipe))
3980 return false;
3981
3982 if ((iir & flip_pending) == 0)
3983 goto check_page_flip;
3984
3985 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3986 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3987 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3988 * the flip is completed (no longer pending). Since this doesn't raise
3989 * an interrupt per se, we watch for the change at vblank.
3990 */
3991 if (I915_READ(ISR) & flip_pending)
3992 goto check_page_flip;
3993
3994 intel_prepare_page_flip(dev, plane);
3995 intel_finish_page_flip(dev, pipe);
3996 return true;
3997
3998 check_page_flip:
3999 intel_check_page_flip(dev, pipe);
4000 return false;
4001 }
4002
4003 static irqreturn_t i915_irq_handler(int irq, void *arg)
4004 {
4005 struct drm_device *dev = arg;
4006 struct drm_i915_private *dev_priv = dev->dev_private;
4007 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4008 u32 flip_mask =
4009 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4011 int pipe, ret = IRQ_NONE;
4012
4013 if (!intel_irqs_enabled(dev_priv))
4014 return IRQ_NONE;
4015
4016 iir = I915_READ(IIR);
4017 do {
4018 bool irq_received = (iir & ~flip_mask) != 0;
4019 bool blc_event = false;
4020
4021 /* Can't rely on pipestat interrupt bit in iir as it might
4022 * have been cleared after the pipestat interrupt was received.
4023 * It doesn't set the bit in iir again, but it still produces
4024 * interrupts (for non-MSI).
4025 */
4026 spin_lock(&dev_priv->irq_lock);
4027 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4028 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4029
4030 for_each_pipe(dev_priv, pipe) {
4031 int reg = PIPESTAT(pipe);
4032 pipe_stats[pipe] = I915_READ(reg);
4033
4034 /* Clear the PIPE*STAT regs before the IIR */
4035 if (pipe_stats[pipe] & 0x8000ffff) {
4036 I915_WRITE(reg, pipe_stats[pipe]);
4037 irq_received = true;
4038 }
4039 }
4040 spin_unlock(&dev_priv->irq_lock);
4041
4042 if (!irq_received)
4043 break;
4044
4045 /* Consume port. Then clear IIR or we'll miss events */
4046 if (I915_HAS_HOTPLUG(dev) &&
4047 iir & I915_DISPLAY_PORT_INTERRUPT)
4048 i9xx_hpd_irq_handler(dev);
4049
4050 I915_WRITE(IIR, iir & ~flip_mask);
4051 new_iir = I915_READ(IIR); /* Flush posted writes */
4052
4053 if (iir & I915_USER_INTERRUPT)
4054 notify_ring(&dev_priv->ring[RCS]);
4055
4056 for_each_pipe(dev_priv, pipe) {
4057 int plane = pipe;
4058 if (HAS_FBC(dev))
4059 plane = !plane;
4060
4061 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4062 i915_handle_vblank(dev, plane, pipe, iir))
4063 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4064
4065 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4066 blc_event = true;
4067
4068 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4069 i9xx_pipe_crc_irq_handler(dev, pipe);
4070
4071 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4072 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4073 pipe);
4074 }
4075
4076 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4077 intel_opregion_asle_intr(dev);
4078
4079 /* With MSI, interrupts are only generated when iir
4080 * transitions from zero to nonzero. If another bit got
4081 * set while we were handling the existing iir bits, then
4082 * we would never get another interrupt.
4083 *
4084 * This is fine on non-MSI as well, as if we hit this path
4085 * we avoid exiting the interrupt handler only to generate
4086 * another one.
4087 *
4088 * Note that for MSI this could cause a stray interrupt report
4089 * if an interrupt landed in the time between writing IIR and
4090 * the posting read. This should be rare enough to never
4091 * trigger the 99% of 100,000 interrupts test for disabling
4092 * stray interrupts.
4093 */
4094 ret = IRQ_HANDLED;
4095 iir = new_iir;
4096 } while (iir & ~flip_mask);
4097
4098 return ret;
4099 }
4100
4101 static void i915_irq_uninstall(struct drm_device * dev)
4102 {
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 int pipe;
4105
4106 if (I915_HAS_HOTPLUG(dev)) {
4107 I915_WRITE(PORT_HOTPLUG_EN, 0);
4108 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4109 }
4110
4111 I915_WRITE16(HWSTAM, 0xffff);
4112 for_each_pipe(dev_priv, pipe) {
4113 /* Clear enable bits; then clear status bits */
4114 I915_WRITE(PIPESTAT(pipe), 0);
4115 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4116 }
4117 I915_WRITE(IMR, 0xffffffff);
4118 I915_WRITE(IER, 0x0);
4119
4120 I915_WRITE(IIR, I915_READ(IIR));
4121 }
4122
4123 static void i965_irq_preinstall(struct drm_device * dev)
4124 {
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 int pipe;
4127
4128 I915_WRITE(PORT_HOTPLUG_EN, 0);
4129 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4130
4131 I915_WRITE(HWSTAM, 0xeffe);
4132 for_each_pipe(dev_priv, pipe)
4133 I915_WRITE(PIPESTAT(pipe), 0);
4134 I915_WRITE(IMR, 0xffffffff);
4135 I915_WRITE(IER, 0x0);
4136 POSTING_READ(IER);
4137 }
4138
4139 static int i965_irq_postinstall(struct drm_device *dev)
4140 {
4141 struct drm_i915_private *dev_priv = dev->dev_private;
4142 u32 enable_mask;
4143 u32 error_mask;
4144
4145 /* Unmask the interrupts that we always want on. */
4146 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4147 I915_DISPLAY_PORT_INTERRUPT |
4148 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4149 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4150 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4151 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4152 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4153
4154 enable_mask = ~dev_priv->irq_mask;
4155 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4156 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4157 enable_mask |= I915_USER_INTERRUPT;
4158
4159 if (IS_G4X(dev))
4160 enable_mask |= I915_BSD_USER_INTERRUPT;
4161
4162 /* Interrupt setup is already guaranteed to be single-threaded, this is
4163 * just to make the assert_spin_locked check happy. */
4164 spin_lock_irq(&dev_priv->irq_lock);
4165 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4166 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4167 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4168 spin_unlock_irq(&dev_priv->irq_lock);
4169
4170 /*
4171 * Enable some error detection, note the instruction error mask
4172 * bit is reserved, so we leave it masked.
4173 */
4174 if (IS_G4X(dev)) {
4175 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4176 GM45_ERROR_MEM_PRIV |
4177 GM45_ERROR_CP_PRIV |
4178 I915_ERROR_MEMORY_REFRESH);
4179 } else {
4180 error_mask = ~(I915_ERROR_PAGE_TABLE |
4181 I915_ERROR_MEMORY_REFRESH);
4182 }
4183 I915_WRITE(EMR, error_mask);
4184
4185 I915_WRITE(IMR, dev_priv->irq_mask);
4186 I915_WRITE(IER, enable_mask);
4187 POSTING_READ(IER);
4188
4189 I915_WRITE(PORT_HOTPLUG_EN, 0);
4190 POSTING_READ(PORT_HOTPLUG_EN);
4191
4192 i915_enable_asle_pipestat(dev);
4193
4194 return 0;
4195 }
4196
4197 static void i915_hpd_irq_setup(struct drm_device *dev)
4198 {
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200 struct intel_encoder *intel_encoder;
4201 u32 hotplug_en;
4202
4203 assert_spin_locked(&dev_priv->irq_lock);
4204
4205 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4206 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4207 /* Note HDMI and DP share hotplug bits */
4208 /* enable bits are the same for all generations */
4209 for_each_intel_encoder(dev, intel_encoder)
4210 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
4211 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4212 /* Programming the CRT detection parameters tends
4213 to generate a spurious hotplug event about three
4214 seconds later. So just do it once.
4215 */
4216 if (IS_G4X(dev))
4217 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4218 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4219 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4220
4221 /* Ignore TV since it's buggy */
4222 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4223 }
4224
4225 static irqreturn_t i965_irq_handler(int irq, void *arg)
4226 {
4227 struct drm_device *dev = arg;
4228 struct drm_i915_private *dev_priv = dev->dev_private;
4229 u32 iir, new_iir;
4230 u32 pipe_stats[I915_MAX_PIPES];
4231 int ret = IRQ_NONE, pipe;
4232 u32 flip_mask =
4233 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4234 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4235
4236 if (!intel_irqs_enabled(dev_priv))
4237 return IRQ_NONE;
4238
4239 iir = I915_READ(IIR);
4240
4241 for (;;) {
4242 bool irq_received = (iir & ~flip_mask) != 0;
4243 bool blc_event = false;
4244
4245 /* Can't rely on pipestat interrupt bit in iir as it might
4246 * have been cleared after the pipestat interrupt was received.
4247 * It doesn't set the bit in iir again, but it still produces
4248 * interrupts (for non-MSI).
4249 */
4250 spin_lock(&dev_priv->irq_lock);
4251 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4252 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4253
4254 for_each_pipe(dev_priv, pipe) {
4255 int reg = PIPESTAT(pipe);
4256 pipe_stats[pipe] = I915_READ(reg);
4257
4258 /*
4259 * Clear the PIPE*STAT regs before the IIR
4260 */
4261 if (pipe_stats[pipe] & 0x8000ffff) {
4262 I915_WRITE(reg, pipe_stats[pipe]);
4263 irq_received = true;
4264 }
4265 }
4266 spin_unlock(&dev_priv->irq_lock);
4267
4268 if (!irq_received)
4269 break;
4270
4271 ret = IRQ_HANDLED;
4272
4273 /* Consume port. Then clear IIR or we'll miss events */
4274 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4275 i9xx_hpd_irq_handler(dev);
4276
4277 I915_WRITE(IIR, iir & ~flip_mask);
4278 new_iir = I915_READ(IIR); /* Flush posted writes */
4279
4280 if (iir & I915_USER_INTERRUPT)
4281 notify_ring(&dev_priv->ring[RCS]);
4282 if (iir & I915_BSD_USER_INTERRUPT)
4283 notify_ring(&dev_priv->ring[VCS]);
4284
4285 for_each_pipe(dev_priv, pipe) {
4286 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4287 i915_handle_vblank(dev, pipe, pipe, iir))
4288 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4289
4290 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4291 blc_event = true;
4292
4293 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4294 i9xx_pipe_crc_irq_handler(dev, pipe);
4295
4296 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4297 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4298 }
4299
4300 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4301 intel_opregion_asle_intr(dev);
4302
4303 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4304 gmbus_irq_handler(dev);
4305
4306 /* With MSI, interrupts are only generated when iir
4307 * transitions from zero to nonzero. If another bit got
4308 * set while we were handling the existing iir bits, then
4309 * we would never get another interrupt.
4310 *
4311 * This is fine on non-MSI as well, as if we hit this path
4312 * we avoid exiting the interrupt handler only to generate
4313 * another one.
4314 *
4315 * Note that for MSI this could cause a stray interrupt report
4316 * if an interrupt landed in the time between writing IIR and
4317 * the posting read. This should be rare enough to never
4318 * trigger the 99% of 100,000 interrupts test for disabling
4319 * stray interrupts.
4320 */
4321 iir = new_iir;
4322 }
4323
4324 return ret;
4325 }
4326
4327 static void i965_irq_uninstall(struct drm_device * dev)
4328 {
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330 int pipe;
4331
4332 if (!dev_priv)
4333 return;
4334
4335 I915_WRITE(PORT_HOTPLUG_EN, 0);
4336 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4337
4338 I915_WRITE(HWSTAM, 0xffffffff);
4339 for_each_pipe(dev_priv, pipe)
4340 I915_WRITE(PIPESTAT(pipe), 0);
4341 I915_WRITE(IMR, 0xffffffff);
4342 I915_WRITE(IER, 0x0);
4343
4344 for_each_pipe(dev_priv, pipe)
4345 I915_WRITE(PIPESTAT(pipe),
4346 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4347 I915_WRITE(IIR, I915_READ(IIR));
4348 }
4349
4350 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4351 {
4352 struct drm_i915_private *dev_priv =
4353 container_of(work, typeof(*dev_priv),
4354 hotplug.reenable_work.work);
4355 struct drm_device *dev = dev_priv->dev;
4356 struct drm_mode_config *mode_config = &dev->mode_config;
4357 int i;
4358
4359 intel_runtime_pm_get(dev_priv);
4360
4361 spin_lock_irq(&dev_priv->irq_lock);
4362 for_each_hpd_pin(i) {
4363 struct drm_connector *connector;
4364
4365 if (dev_priv->hotplug.stats[i].state != HPD_DISABLED)
4366 continue;
4367
4368 dev_priv->hotplug.stats[i].state = HPD_ENABLED;
4369
4370 list_for_each_entry(connector, &mode_config->connector_list, head) {
4371 struct intel_connector *intel_connector = to_intel_connector(connector);
4372
4373 if (intel_connector->encoder->hpd_pin == i) {
4374 if (connector->polled != intel_connector->polled)
4375 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4376 connector->name);
4377 connector->polled = intel_connector->polled;
4378 if (!connector->polled)
4379 connector->polled = DRM_CONNECTOR_POLL_HPD;
4380 }
4381 }
4382 }
4383 if (dev_priv->display.hpd_irq_setup)
4384 dev_priv->display.hpd_irq_setup(dev);
4385 spin_unlock_irq(&dev_priv->irq_lock);
4386
4387 intel_runtime_pm_put(dev_priv);
4388 }
4389
4390 /**
4391 * intel_irq_init - initializes irq support
4392 * @dev_priv: i915 device instance
4393 *
4394 * This function initializes all the irq support including work items, timers
4395 * and all the vtables. It does not setup the interrupt itself though.
4396 */
4397 void intel_irq_init(struct drm_i915_private *dev_priv)
4398 {
4399 struct drm_device *dev = dev_priv->dev;
4400
4401 INIT_WORK(&dev_priv->hotplug.hotplug_work, i915_hotplug_work_func);
4402 INIT_WORK(&dev_priv->hotplug.dig_port_work, i915_digport_work_func);
4403 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4404 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4405
4406 /* Let's track the enabled rps events */
4407 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4408 /* WaGsvRC0ResidencyMethod:vlv */
4409 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4410 else
4411 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4412
4413 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4414 i915_hangcheck_elapsed);
4415 INIT_DELAYED_WORK(&dev_priv->hotplug.reenable_work,
4416 intel_hpd_irq_reenable_work);
4417
4418 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4419
4420 if (IS_GEN2(dev_priv)) {
4421 dev->max_vblank_count = 0;
4422 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4423 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4424 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4425 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4426 } else {
4427 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4428 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4429 }
4430
4431 /*
4432 * Opt out of the vblank disable timer on everything except gen2.
4433 * Gen2 doesn't have a hardware frame counter and so depends on
4434 * vblank interrupts to produce sane vblank seuquence numbers.
4435 */
4436 if (!IS_GEN2(dev_priv))
4437 dev->vblank_disable_immediate = true;
4438
4439 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4440 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4441
4442 if (IS_CHERRYVIEW(dev_priv)) {
4443 dev->driver->irq_handler = cherryview_irq_handler;
4444 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4445 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4446 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4447 dev->driver->enable_vblank = valleyview_enable_vblank;
4448 dev->driver->disable_vblank = valleyview_disable_vblank;
4449 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4450 } else if (IS_VALLEYVIEW(dev_priv)) {
4451 dev->driver->irq_handler = valleyview_irq_handler;
4452 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4453 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4454 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4455 dev->driver->enable_vblank = valleyview_enable_vblank;
4456 dev->driver->disable_vblank = valleyview_disable_vblank;
4457 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4458 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4459 dev->driver->irq_handler = gen8_irq_handler;
4460 dev->driver->irq_preinstall = gen8_irq_reset;
4461 dev->driver->irq_postinstall = gen8_irq_postinstall;
4462 dev->driver->irq_uninstall = gen8_irq_uninstall;
4463 dev->driver->enable_vblank = gen8_enable_vblank;
4464 dev->driver->disable_vblank = gen8_disable_vblank;
4465 if (HAS_PCH_SPLIT(dev))
4466 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4467 else
4468 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4469 } else if (HAS_PCH_SPLIT(dev)) {
4470 dev->driver->irq_handler = ironlake_irq_handler;
4471 dev->driver->irq_preinstall = ironlake_irq_reset;
4472 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4473 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4474 dev->driver->enable_vblank = ironlake_enable_vblank;
4475 dev->driver->disable_vblank = ironlake_disable_vblank;
4476 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4477 } else {
4478 if (INTEL_INFO(dev_priv)->gen == 2) {
4479 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4480 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4481 dev->driver->irq_handler = i8xx_irq_handler;
4482 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4483 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4484 dev->driver->irq_preinstall = i915_irq_preinstall;
4485 dev->driver->irq_postinstall = i915_irq_postinstall;
4486 dev->driver->irq_uninstall = i915_irq_uninstall;
4487 dev->driver->irq_handler = i915_irq_handler;
4488 } else {
4489 dev->driver->irq_preinstall = i965_irq_preinstall;
4490 dev->driver->irq_postinstall = i965_irq_postinstall;
4491 dev->driver->irq_uninstall = i965_irq_uninstall;
4492 dev->driver->irq_handler = i965_irq_handler;
4493 }
4494 if (I915_HAS_HOTPLUG(dev_priv))
4495 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4496 dev->driver->enable_vblank = i915_enable_vblank;
4497 dev->driver->disable_vblank = i915_disable_vblank;
4498 }
4499 }
4500
4501 /**
4502 * intel_hpd_init - initializes and enables hpd support
4503 * @dev_priv: i915 device instance
4504 *
4505 * This function enables the hotplug support. It requires that interrupts have
4506 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4507 * poll request can run concurrently to other code, so locking rules must be
4508 * obeyed.
4509 *
4510 * This is a separate step from interrupt enabling to simplify the locking rules
4511 * in the driver load and resume code.
4512 */
4513 void intel_hpd_init(struct drm_i915_private *dev_priv)
4514 {
4515 struct drm_device *dev = dev_priv->dev;
4516 struct drm_mode_config *mode_config = &dev->mode_config;
4517 struct drm_connector *connector;
4518 int i;
4519
4520 for_each_hpd_pin(i) {
4521 dev_priv->hotplug.stats[i].count = 0;
4522 dev_priv->hotplug.stats[i].state = HPD_ENABLED;
4523 }
4524 list_for_each_entry(connector, &mode_config->connector_list, head) {
4525 struct intel_connector *intel_connector = to_intel_connector(connector);
4526 connector->polled = intel_connector->polled;
4527 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4528 connector->polled = DRM_CONNECTOR_POLL_HPD;
4529 if (intel_connector->mst_port)
4530 connector->polled = DRM_CONNECTOR_POLL_HPD;
4531 }
4532
4533 /* Interrupt setup is already guaranteed to be single-threaded, this is
4534 * just to make the assert_spin_locked checks happy. */
4535 spin_lock_irq(&dev_priv->irq_lock);
4536 if (dev_priv->display.hpd_irq_setup)
4537 dev_priv->display.hpd_irq_setup(dev);
4538 spin_unlock_irq(&dev_priv->irq_lock);
4539 }
4540
4541 /**
4542 * intel_irq_install - enables the hardware interrupt
4543 * @dev_priv: i915 device instance
4544 *
4545 * This function enables the hardware interrupt handling, but leaves the hotplug
4546 * handling still disabled. It is called after intel_irq_init().
4547 *
4548 * In the driver load and resume code we need working interrupts in a few places
4549 * but don't want to deal with the hassle of concurrent probe and hotplug
4550 * workers. Hence the split into this two-stage approach.
4551 */
4552 int intel_irq_install(struct drm_i915_private *dev_priv)
4553 {
4554 /*
4555 * We enable some interrupt sources in our postinstall hooks, so mark
4556 * interrupts as enabled _before_ actually enabling them to avoid
4557 * special cases in our ordering checks.
4558 */
4559 dev_priv->pm.irqs_enabled = true;
4560
4561 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4562 }
4563
4564 /**
4565 * intel_irq_uninstall - finilizes all irq handling
4566 * @dev_priv: i915 device instance
4567 *
4568 * This stops interrupt and hotplug handling and unregisters and frees all
4569 * resources acquired in the init functions.
4570 */
4571 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4572 {
4573 drm_irq_uninstall(dev_priv->dev);
4574 intel_hpd_cancel_work(dev_priv);
4575 dev_priv->pm.irqs_enabled = false;
4576 }
4577
4578 /**
4579 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4580 * @dev_priv: i915 device instance
4581 *
4582 * This function is used to disable interrupts at runtime, both in the runtime
4583 * pm and the system suspend/resume code.
4584 */
4585 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4586 {
4587 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4588 dev_priv->pm.irqs_enabled = false;
4589 synchronize_irq(dev_priv->dev->irq);
4590 }
4591
4592 /**
4593 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4594 * @dev_priv: i915 device instance
4595 *
4596 * This function is used to enable interrupts at runtime, both in the runtime
4597 * pm and the system suspend/resume code.
4598 */
4599 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4600 {
4601 dev_priv->pm.irqs_enabled = true;
4602 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4603 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4604 }