]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Rip out legacy page_flip completion/irq handling
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 lockdep_assert_held(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 lockdep_assert_held(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 lockdep_assert_held(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 lockdep_assert_held(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 lockdep_assert_held(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 lockdep_assert_held(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 lockdep_assert_held(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 return;
396
397 spin_lock_irq(&dev_priv->irq_lock);
398 dev_priv->rps.interrupts_enabled = false;
399
400 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404 spin_unlock_irq(&dev_priv->irq_lock);
405 synchronize_irq(dev_priv->drm.irq);
406
407 /* Now that we will not be generating any more work, flush any
408 * outsanding tasks. As we are called on the RPS idle path,
409 * we will reset the GPU to minimum frequencies, so the current
410 * state of the worker can be discarded.
411 */
412 cancel_work_sync(&dev_priv->rps.work);
413 gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 spin_lock_irq(&dev_priv->irq_lock);
419 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 spin_lock_irq(&dev_priv->irq_lock);
426 if (!dev_priv->guc.interrupts_enabled) {
427 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 dev_priv->pm_guc_events);
429 dev_priv->guc.interrupts_enabled = true;
430 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 }
432 spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 spin_lock_irq(&dev_priv->irq_lock);
438 dev_priv->guc.interrupts_enabled = false;
439
440 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442 spin_unlock_irq(&dev_priv->irq_lock);
443 synchronize_irq(dev_priv->drm.irq);
444
445 gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449 * bdw_update_port_irq - update DE port interrupt
450 * @dev_priv: driver private
451 * @interrupt_mask: mask of interrupt bits to update
452 * @enabled_irq_mask: mask of interrupt bits to enable
453 */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 uint32_t interrupt_mask,
456 uint32_t enabled_irq_mask)
457 {
458 uint32_t new_val;
459 uint32_t old_val;
460
461 lockdep_assert_held(&dev_priv->irq_lock);
462
463 WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 return;
467
468 old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470 new_val = old_val;
471 new_val &= ~interrupt_mask;
472 new_val |= (~enabled_irq_mask & interrupt_mask);
473
474 if (new_val != old_val) {
475 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 POSTING_READ(GEN8_DE_PORT_IMR);
477 }
478 }
479
480 /**
481 * bdw_update_pipe_irq - update DE pipe interrupt
482 * @dev_priv: driver private
483 * @pipe: pipe whose interrupt to update
484 * @interrupt_mask: mask of interrupt bits to update
485 * @enabled_irq_mask: mask of interrupt bits to enable
486 */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 enum pipe pipe,
489 uint32_t interrupt_mask,
490 uint32_t enabled_irq_mask)
491 {
492 uint32_t new_val;
493
494 lockdep_assert_held(&dev_priv->irq_lock);
495
496 WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 return;
500
501 new_val = dev_priv->de_irq_mask[pipe];
502 new_val &= ~interrupt_mask;
503 new_val |= (~enabled_irq_mask & interrupt_mask);
504
505 if (new_val != dev_priv->de_irq_mask[pipe]) {
506 dev_priv->de_irq_mask[pipe] = new_val;
507 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 }
510 }
511
512 /**
513 * ibx_display_interrupt_update - update SDEIMR
514 * @dev_priv: driver private
515 * @interrupt_mask: mask of interrupt bits to update
516 * @enabled_irq_mask: mask of interrupt bits to enable
517 */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 uint32_t interrupt_mask,
520 uint32_t enabled_irq_mask)
521 {
522 uint32_t sdeimr = I915_READ(SDEIMR);
523 sdeimr &= ~interrupt_mask;
524 sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526 WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528 lockdep_assert_held(&dev_priv->irq_lock);
529
530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 return;
532
533 I915_WRITE(SDEIMR, sdeimr);
534 POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 u32 enable_mask, u32 status_mask)
540 {
541 i915_reg_t reg = PIPESTAT(pipe);
542 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544 lockdep_assert_held(&dev_priv->irq_lock);
545 WARN_ON(!intel_irqs_enabled(dev_priv));
546
547 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 pipe_name(pipe), enable_mask, status_mask))
551 return;
552
553 if ((pipestat & enable_mask) == enable_mask)
554 return;
555
556 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558 /* Enable the interrupt, clear any pending status */
559 pipestat |= enable_mask | status_mask;
560 I915_WRITE(reg, pipestat);
561 POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 u32 enable_mask, u32 status_mask)
567 {
568 i915_reg_t reg = PIPESTAT(pipe);
569 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571 lockdep_assert_held(&dev_priv->irq_lock);
572 WARN_ON(!intel_irqs_enabled(dev_priv));
573
574 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 pipe_name(pipe), enable_mask, status_mask))
578 return;
579
580 if ((pipestat & enable_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585 pipestat &= ~enable_mask;
586 I915_WRITE(reg, pipestat);
587 POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 u32 enable_mask = status_mask << 16;
593
594 /*
595 * On pipe A we don't support the PSR interrupt yet,
596 * on pipe B and C the same bit MBZ.
597 */
598 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 return 0;
600 /*
601 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 * A the same bit is for perf counters which we don't use either.
603 */
604 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 return 0;
606
607 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615 return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 u32 status_mask)
621 {
622 u32 enable_mask;
623
624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 status_mask);
627 else
628 enable_mask = status_mask << 16;
629 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 u32 status_mask)
635 {
636 u32 enable_mask;
637
638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 status_mask);
641 else
642 enable_mask = status_mask << 16;
643 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648 * @dev_priv: i915 device private
649 */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 return;
654
655 spin_lock_irq(&dev_priv->irq_lock);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_GEN(dev_priv) >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666 * This timing diagram depicts the video signal in and
667 * around the vertical blanking period.
668 *
669 * Assumptions about the fictitious mode used in this example:
670 * vblank_start >= 3
671 * vsync_start = vblank_start + 1
672 * vsync_end = vblank_start + 2
673 * vtotal = vblank_start + 3
674 *
675 * start of vblank:
676 * latch double buffered registers
677 * increment frame counter (ctg+)
678 * generate start of vblank interrupt (gen4+)
679 * |
680 * | frame start:
681 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
682 * | may be shifted forward 1-3 extra lines via PIPECONF
683 * | |
684 * | | start of vsync:
685 * | | generate vsync interrupt
686 * | | |
687 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
688 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
689 * ----va---> <-----------------vb--------------------> <--------va-------------
690 * | | <----vs-----> |
691 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694 * | | |
695 * last visible pixel first visible pixel
696 * | increment frame counter (gen3/4)
697 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
698 *
699 * x = horizontal active
700 * _ = horizontal blanking
701 * hs = horizontal sync
702 * va = vertical active
703 * vb = vertical blanking
704 * vs = vertical sync
705 * vbs = vblank_start (number)
706 *
707 * Summary:
708 * - most events happen at the start of horizontal sync
709 * - frame start happens at the start of horizontal blank, 1-4 lines
710 * (depending on PIPECONF settings) after the start of vblank
711 * - gen3/4 pixel and frame counter are synchronized with the start
712 * of horizontal active on the first line of vertical active
713 */
714
715 /* Called from drm generic code, passed a 'crtc', which
716 * we use as a pipe index
717 */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t high_frame, low_frame;
722 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 unsigned long irqflags;
725
726 htotal = mode->crtc_htotal;
727 hsync_start = mode->crtc_hsync_start;
728 vbl_start = mode->crtc_vblank_start;
729 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732 /* Convert to pixel count */
733 vbl_start *= htotal;
734
735 /* Start of vblank event occurs at start of hsync */
736 vbl_start -= htotal - hsync_start;
737
738 high_frame = PIPEFRAME(pipe);
739 low_frame = PIPEFRAMEPIXEL(pipe);
740
741 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743 /*
744 * High & low register fields aren't synchronized, so make sure
745 * we get a low value that's stable across two reads of the high
746 * register.
747 */
748 do {
749 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 low = I915_READ_FW(low_frame);
751 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 } while (high1 != high2);
753
754 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756 high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 pixel = low & PIPE_PIXEL_MASK;
758 low >>= PIPE_FRAME_LOW_SHIFT;
759
760 /*
761 * The frame counter increments at beginning of active.
762 * Cook up a vblank counter by also checking the pixel
763 * counter against vblank start.
764 */
765 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 struct drm_i915_private *dev_priv = to_i915(dev);
771
772 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 struct drm_device *dev = crtc->base.dev;
779 struct drm_i915_private *dev_priv = to_i915(dev);
780 const struct drm_display_mode *mode;
781 struct drm_vblank_crtc *vblank;
782 enum pipe pipe = crtc->pipe;
783 int position, vtotal;
784
785 if (!crtc->active)
786 return -1;
787
788 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 mode = &vblank->hwmode;
790
791 vtotal = mode->crtc_vtotal;
792 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 vtotal /= 2;
794
795 if (IS_GEN2(dev_priv))
796 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 else
798 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800 /*
801 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 * read it just before the start of vblank. So try it again
803 * so we don't accidentally end up spanning a vblank frame
804 * increment, causing the pipe_update_end() code to squak at us.
805 *
806 * The nature of this problem means we can't simply check the ISR
807 * bit and return the vblank start value; nor can we use the scanline
808 * debug register in the transcoder as it appears to have the same
809 * problem. We may need to extend this to include other platforms,
810 * but so far testing only shows the problem on HSW.
811 */
812 if (HAS_DDI(dev_priv) && !position) {
813 int i, temp;
814
815 for (i = 0; i < 100; i++) {
816 udelay(1);
817 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 if (temp != position) {
819 position = temp;
820 break;
821 }
822 }
823 }
824
825 /*
826 * See update_scanline_offset() for the details on the
827 * scanline_offset adjustment.
828 */
829 return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 bool in_vblank_irq, int *vpos, int *hpos,
834 ktime_t *stime, ktime_t *etime,
835 const struct drm_display_mode *mode)
836 {
837 struct drm_i915_private *dev_priv = to_i915(dev);
838 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 pipe);
840 int position;
841 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 bool in_vbl = true;
843 unsigned long irqflags;
844
845 if (WARN_ON(!mode->crtc_clock)) {
846 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847 "pipe %c\n", pipe_name(pipe));
848 return false;
849 }
850
851 htotal = mode->crtc_htotal;
852 hsync_start = mode->crtc_hsync_start;
853 vtotal = mode->crtc_vtotal;
854 vbl_start = mode->crtc_vblank_start;
855 vbl_end = mode->crtc_vblank_end;
856
857 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859 vbl_end /= 2;
860 vtotal /= 2;
861 }
862
863 /*
864 * Lock uncore.lock, as we will do multiple timing critical raw
865 * register reads, potentially with preemption disabled, so the
866 * following code must not block on uncore.lock.
867 */
868 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872 /* Get optional system timestamp before query. */
873 if (stime)
874 *stime = ktime_get();
875
876 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 /* No obvious pixelcount register. Only query vertical
878 * scanout position from Display scan line register.
879 */
880 position = __intel_get_crtc_scanline(intel_crtc);
881 } else {
882 /* Have access to pixelcount since start of frame.
883 * We can split this into vertical and horizontal
884 * scanout position.
885 */
886 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888 /* convert to pixel counts */
889 vbl_start *= htotal;
890 vbl_end *= htotal;
891 vtotal *= htotal;
892
893 /*
894 * In interlaced modes, the pixel counter counts all pixels,
895 * so one field will have htotal more pixels. In order to avoid
896 * the reported position from jumping backwards when the pixel
897 * counter is beyond the length of the shorter field, just
898 * clamp the position the length of the shorter field. This
899 * matches how the scanline counter based position works since
900 * the scanline counter doesn't count the two half lines.
901 */
902 if (position >= vtotal)
903 position = vtotal - 1;
904
905 /*
906 * Start of vblank interrupt is triggered at start of hsync,
907 * just prior to the first active line of vblank. However we
908 * consider lines to start at the leading edge of horizontal
909 * active. So, should we get here before we've crossed into
910 * the horizontal active of the first line in vblank, we would
911 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912 * always add htotal-hsync_start to the current pixel position.
913 */
914 position = (position + htotal - hsync_start) % vtotal;
915 }
916
917 /* Get optional system timestamp after query. */
918 if (etime)
919 *etime = ktime_get();
920
921 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 in_vbl = position >= vbl_start && position < vbl_end;
926
927 /*
928 * While in vblank, position will be negative
929 * counting up towards 0 at vbl_end. And outside
930 * vblank, position will be positive counting
931 * up since vbl_end.
932 */
933 if (position >= vbl_start)
934 position -= vbl_end;
935 else
936 position += vtotal - vbl_end;
937
938 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939 *vpos = position;
940 *hpos = 0;
941 } else {
942 *vpos = position / htotal;
943 *hpos = position - (*vpos * htotal);
944 }
945
946 return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952 unsigned long irqflags;
953 int position;
954
955 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956 position = __intel_get_crtc_scanline(crtc);
957 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959 return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964 u32 busy_up, busy_down, max_avg, min_avg;
965 u8 new_delay;
966
967 spin_lock(&mchdev_lock);
968
969 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971 new_delay = dev_priv->ips.cur_delay;
972
973 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974 busy_up = I915_READ(RCPREVBSYTUPAVG);
975 busy_down = I915_READ(RCPREVBSYTDNAVG);
976 max_avg = I915_READ(RCBMAXAVG);
977 min_avg = I915_READ(RCBMINAVG);
978
979 /* Handle RCS change request from hw */
980 if (busy_up > max_avg) {
981 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982 new_delay = dev_priv->ips.cur_delay - 1;
983 if (new_delay < dev_priv->ips.max_delay)
984 new_delay = dev_priv->ips.max_delay;
985 } else if (busy_down < min_avg) {
986 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987 new_delay = dev_priv->ips.cur_delay + 1;
988 if (new_delay > dev_priv->ips.min_delay)
989 new_delay = dev_priv->ips.min_delay;
990 }
991
992 if (ironlake_set_drps(dev_priv, new_delay))
993 dev_priv->ips.cur_delay = new_delay;
994
995 spin_unlock(&mchdev_lock);
996
997 return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002 struct drm_i915_gem_request *rq = NULL;
1003 struct intel_wait *wait;
1004
1005 atomic_inc(&engine->irq_count);
1006 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008 spin_lock(&engine->breadcrumbs.irq_lock);
1009 wait = engine->breadcrumbs.irq_wait;
1010 if (wait) {
1011 /* We use a callback from the dma-fence to submit
1012 * requests after waiting on our own requests. To
1013 * ensure minimum delay in queuing the next request to
1014 * hardware, signal the fence now rather than wait for
1015 * the signaler to be woken up. We still wake up the
1016 * waiter in order to handle the irq-seqno coherency
1017 * issues (we may receive the interrupt before the
1018 * seqno is written, see __i915_request_irq_complete())
1019 * and to handle coalescing of multiple seqno updates
1020 * and many waiters.
1021 */
1022 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023 wait->seqno) &&
1024 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025 &wait->request->fence.flags))
1026 rq = i915_gem_request_get(wait->request);
1027
1028 wake_up_process(wait->tsk);
1029 } else {
1030 __intel_engine_disarm_breadcrumbs(engine);
1031 }
1032 spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034 if (rq) {
1035 dma_fence_signal(&rq->fence);
1036 i915_gem_request_put(rq);
1037 }
1038
1039 trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043 struct intel_rps_ei *ei)
1044 {
1045 ei->ktime = ktime_get_raw();
1046 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058 struct intel_rps_ei now;
1059 u32 events = 0;
1060
1061 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062 return 0;
1063
1064 vlv_c0_read(dev_priv, &now);
1065
1066 if (prev->ktime) {
1067 u64 time, c0;
1068 u32 render, media;
1069
1070 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072 time *= dev_priv->czclk_freq;
1073
1074 /* Workload can be split between render + media,
1075 * e.g. SwapBuffers being blitted in X after being rendered in
1076 * mesa. To account for this we need to combine both engines
1077 * into our activity counter.
1078 */
1079 render = now.render_c0 - prev->render_c0;
1080 media = now.media_c0 - prev->media_c0;
1081 c0 = max(render, media);
1082 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084 if (c0 > time * dev_priv->rps.up_threshold)
1085 events = GEN6_PM_RP_UP_THRESHOLD;
1086 else if (c0 < time * dev_priv->rps.down_threshold)
1087 events = GEN6_PM_RP_DOWN_THRESHOLD;
1088 }
1089
1090 dev_priv->rps.ei = now;
1091 return events;
1092 }
1093
1094 static void gen6_pm_rps_work(struct work_struct *work)
1095 {
1096 struct drm_i915_private *dev_priv =
1097 container_of(work, struct drm_i915_private, rps.work);
1098 bool client_boost = false;
1099 int new_delay, adj, min, max;
1100 u32 pm_iir = 0;
1101
1102 spin_lock_irq(&dev_priv->irq_lock);
1103 if (dev_priv->rps.interrupts_enabled) {
1104 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1105 client_boost = atomic_read(&dev_priv->rps.num_waiters);
1106 }
1107 spin_unlock_irq(&dev_priv->irq_lock);
1108
1109 /* Make sure we didn't queue anything we're not going to process. */
1110 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1111 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1112 goto out;
1113
1114 mutex_lock(&dev_priv->rps.hw_lock);
1115
1116 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1117
1118 adj = dev_priv->rps.last_adj;
1119 new_delay = dev_priv->rps.cur_freq;
1120 min = dev_priv->rps.min_freq_softlimit;
1121 max = dev_priv->rps.max_freq_softlimit;
1122 if (client_boost)
1123 max = dev_priv->rps.max_freq;
1124 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1125 new_delay = dev_priv->rps.boost_freq;
1126 adj = 0;
1127 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1128 if (adj > 0)
1129 adj *= 2;
1130 else /* CHV needs even encode values */
1131 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1132
1133 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1134 adj = 0;
1135 } else if (client_boost) {
1136 adj = 0;
1137 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1138 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1139 new_delay = dev_priv->rps.efficient_freq;
1140 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1141 new_delay = dev_priv->rps.min_freq_softlimit;
1142 adj = 0;
1143 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1144 if (adj < 0)
1145 adj *= 2;
1146 else /* CHV needs even encode values */
1147 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1148
1149 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1150 adj = 0;
1151 } else { /* unknown event */
1152 adj = 0;
1153 }
1154
1155 dev_priv->rps.last_adj = adj;
1156
1157 /* sysfs frequency interfaces may have snuck in while servicing the
1158 * interrupt
1159 */
1160 new_delay += adj;
1161 new_delay = clamp_t(int, new_delay, min, max);
1162
1163 if (intel_set_rps(dev_priv, new_delay)) {
1164 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1165 dev_priv->rps.last_adj = 0;
1166 }
1167
1168 mutex_unlock(&dev_priv->rps.hw_lock);
1169
1170 out:
1171 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1172 spin_lock_irq(&dev_priv->irq_lock);
1173 if (dev_priv->rps.interrupts_enabled)
1174 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1175 spin_unlock_irq(&dev_priv->irq_lock);
1176 }
1177
1178
1179 /**
1180 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181 * occurred.
1182 * @work: workqueue struct
1183 *
1184 * Doesn't actually do anything except notify userspace. As a consequence of
1185 * this event, userspace should try to remap the bad rows since statistically
1186 * it is likely the same row is more likely to go bad again.
1187 */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190 struct drm_i915_private *dev_priv =
1191 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1192 u32 error_status, row, bank, subbank;
1193 char *parity_event[6];
1194 uint32_t misccpctl;
1195 uint8_t slice = 0;
1196
1197 /* We must turn off DOP level clock gating to access the L3 registers.
1198 * In order to prevent a get/put style interface, acquire struct mutex
1199 * any time we access those registers.
1200 */
1201 mutex_lock(&dev_priv->drm.struct_mutex);
1202
1203 /* If we've screwed up tracking, just let the interrupt fire again */
1204 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205 goto out;
1206
1207 misccpctl = I915_READ(GEN7_MISCCPCTL);
1208 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209 POSTING_READ(GEN7_MISCCPCTL);
1210
1211 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212 i915_reg_t reg;
1213
1214 slice--;
1215 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216 break;
1217
1218 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219
1220 reg = GEN7_L3CDERRST1(slice);
1221
1222 error_status = I915_READ(reg);
1223 row = GEN7_PARITY_ERROR_ROW(error_status);
1224 bank = GEN7_PARITY_ERROR_BANK(error_status);
1225 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226
1227 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228 POSTING_READ(reg);
1229
1230 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235 parity_event[5] = NULL;
1236
1237 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1238 KOBJ_CHANGE, parity_event);
1239
1240 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241 slice, row, bank, subbank);
1242
1243 kfree(parity_event[4]);
1244 kfree(parity_event[3]);
1245 kfree(parity_event[2]);
1246 kfree(parity_event[1]);
1247 }
1248
1249 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250
1251 out:
1252 WARN_ON(dev_priv->l3_parity.which_slice);
1253 spin_lock_irq(&dev_priv->irq_lock);
1254 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255 spin_unlock_irq(&dev_priv->irq_lock);
1256
1257 mutex_unlock(&dev_priv->drm.struct_mutex);
1258 }
1259
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261 u32 iir)
1262 {
1263 if (!HAS_L3_DPF(dev_priv))
1264 return;
1265
1266 spin_lock(&dev_priv->irq_lock);
1267 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268 spin_unlock(&dev_priv->irq_lock);
1269
1270 iir &= GT_PARITY_ERROR(dev_priv);
1271 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272 dev_priv->l3_parity.which_slice |= 1 << 1;
1273
1274 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275 dev_priv->l3_parity.which_slice |= 1 << 0;
1276
1277 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281 u32 gt_iir)
1282 {
1283 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1284 notify_ring(dev_priv->engine[RCS]);
1285 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1286 notify_ring(dev_priv->engine[VCS]);
1287 }
1288
1289 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1293 notify_ring(dev_priv->engine[RCS]);
1294 if (gt_iir & GT_BSD_USER_INTERRUPT)
1295 notify_ring(dev_priv->engine[VCS]);
1296 if (gt_iir & GT_BLT_USER_INTERRUPT)
1297 notify_ring(dev_priv->engine[BCS]);
1298
1299 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1300 GT_BSD_CS_ERROR_INTERRUPT |
1301 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1302 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1303
1304 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1305 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1306 }
1307
1308 static void
1309 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1310 {
1311 bool tasklet = false;
1312
1313 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1314 if (port_count(&engine->execlist_port[0])) {
1315 __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1316 tasklet = true;
1317 }
1318 }
1319
1320 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1321 notify_ring(engine);
1322 tasklet |= i915.enable_guc_submission;
1323 }
1324
1325 if (tasklet)
1326 tasklet_hi_schedule(&engine->irq_tasklet);
1327 }
1328
1329 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1330 u32 master_ctl,
1331 u32 gt_iir[4])
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (gt_iir[0]) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1339 ret = IRQ_HANDLED;
1340 } else
1341 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1342 }
1343
1344 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1345 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1346 if (gt_iir[1]) {
1347 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1348 ret = IRQ_HANDLED;
1349 } else
1350 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1351 }
1352
1353 if (master_ctl & GEN8_GT_VECS_IRQ) {
1354 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1355 if (gt_iir[3]) {
1356 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1357 ret = IRQ_HANDLED;
1358 } else
1359 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1360 }
1361
1362 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1363 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1364 if (gt_iir[2] & (dev_priv->pm_rps_events |
1365 dev_priv->pm_guc_events)) {
1366 I915_WRITE_FW(GEN8_GT_IIR(2),
1367 gt_iir[2] & (dev_priv->pm_rps_events |
1368 dev_priv->pm_guc_events));
1369 ret = IRQ_HANDLED;
1370 } else
1371 DRM_ERROR("The master control interrupt lied (PM)!\n");
1372 }
1373
1374 return ret;
1375 }
1376
1377 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1378 u32 gt_iir[4])
1379 {
1380 if (gt_iir[0]) {
1381 gen8_cs_irq_handler(dev_priv->engine[RCS],
1382 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1383 gen8_cs_irq_handler(dev_priv->engine[BCS],
1384 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1385 }
1386
1387 if (gt_iir[1]) {
1388 gen8_cs_irq_handler(dev_priv->engine[VCS],
1389 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1390 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1391 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1392 }
1393
1394 if (gt_iir[3])
1395 gen8_cs_irq_handler(dev_priv->engine[VECS],
1396 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1397
1398 if (gt_iir[2] & dev_priv->pm_rps_events)
1399 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1400
1401 if (gt_iir[2] & dev_priv->pm_guc_events)
1402 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1403 }
1404
1405 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_A:
1409 return val & PORTA_HOTPLUG_LONG_DETECT;
1410 case PORT_B:
1411 return val & PORTB_HOTPLUG_LONG_DETECT;
1412 case PORT_C:
1413 return val & PORTC_HOTPLUG_LONG_DETECT;
1414 default:
1415 return false;
1416 }
1417 }
1418
1419 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1420 {
1421 switch (port) {
1422 case PORT_E:
1423 return val & PORTE_HOTPLUG_LONG_DETECT;
1424 default:
1425 return false;
1426 }
1427 }
1428
1429 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431 switch (port) {
1432 case PORT_A:
1433 return val & PORTA_HOTPLUG_LONG_DETECT;
1434 case PORT_B:
1435 return val & PORTB_HOTPLUG_LONG_DETECT;
1436 case PORT_C:
1437 return val & PORTC_HOTPLUG_LONG_DETECT;
1438 case PORT_D:
1439 return val & PORTD_HOTPLUG_LONG_DETECT;
1440 default:
1441 return false;
1442 }
1443 }
1444
1445 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1446 {
1447 switch (port) {
1448 case PORT_A:
1449 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_LONG_DETECT;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_LONG_DETECT;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_LONG_DETECT;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1470 {
1471 switch (port) {
1472 case PORT_B:
1473 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1474 case PORT_C:
1475 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1476 case PORT_D:
1477 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1478 default:
1479 return false;
1480 }
1481 }
1482
1483 /*
1484 * Get a bit mask of pins that have triggered, and which ones may be long.
1485 * This can be called multiple times with the same masks to accumulate
1486 * hotplug detection results from several registers.
1487 *
1488 * Note that the caller is expected to zero out the masks initially.
1489 */
1490 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1491 u32 hotplug_trigger, u32 dig_hotplug_reg,
1492 const u32 hpd[HPD_NUM_PINS],
1493 bool long_pulse_detect(enum port port, u32 val))
1494 {
1495 enum port port;
1496 int i;
1497
1498 for_each_hpd_pin(i) {
1499 if ((hpd[i] & hotplug_trigger) == 0)
1500 continue;
1501
1502 *pin_mask |= BIT(i);
1503
1504 if (!intel_hpd_pin_to_port(i, &port))
1505 continue;
1506
1507 if (long_pulse_detect(port, dig_hotplug_reg))
1508 *long_mask |= BIT(i);
1509 }
1510
1511 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1512 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1513
1514 }
1515
1516 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1517 {
1518 wake_up_all(&dev_priv->gmbus_wait_queue);
1519 }
1520
1521 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1522 {
1523 wake_up_all(&dev_priv->gmbus_wait_queue);
1524 }
1525
1526 #if defined(CONFIG_DEBUG_FS)
1527 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1528 enum pipe pipe,
1529 uint32_t crc0, uint32_t crc1,
1530 uint32_t crc2, uint32_t crc3,
1531 uint32_t crc4)
1532 {
1533 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1534 struct intel_pipe_crc_entry *entry;
1535 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1536 struct drm_driver *driver = dev_priv->drm.driver;
1537 uint32_t crcs[5];
1538 int head, tail;
1539
1540 spin_lock(&pipe_crc->lock);
1541 if (pipe_crc->source) {
1542 if (!pipe_crc->entries) {
1543 spin_unlock(&pipe_crc->lock);
1544 DRM_DEBUG_KMS("spurious interrupt\n");
1545 return;
1546 }
1547
1548 head = pipe_crc->head;
1549 tail = pipe_crc->tail;
1550
1551 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1552 spin_unlock(&pipe_crc->lock);
1553 DRM_ERROR("CRC buffer overflowing\n");
1554 return;
1555 }
1556
1557 entry = &pipe_crc->entries[head];
1558
1559 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1560 entry->crc[0] = crc0;
1561 entry->crc[1] = crc1;
1562 entry->crc[2] = crc2;
1563 entry->crc[3] = crc3;
1564 entry->crc[4] = crc4;
1565
1566 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1567 pipe_crc->head = head;
1568
1569 spin_unlock(&pipe_crc->lock);
1570
1571 wake_up_interruptible(&pipe_crc->wq);
1572 } else {
1573 /*
1574 * For some not yet identified reason, the first CRC is
1575 * bonkers. So let's just wait for the next vblank and read
1576 * out the buggy result.
1577 *
1578 * On CHV sometimes the second CRC is bonkers as well, so
1579 * don't trust that one either.
1580 */
1581 if (pipe_crc->skipped == 0 ||
1582 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1583 pipe_crc->skipped++;
1584 spin_unlock(&pipe_crc->lock);
1585 return;
1586 }
1587 spin_unlock(&pipe_crc->lock);
1588 crcs[0] = crc0;
1589 crcs[1] = crc1;
1590 crcs[2] = crc2;
1591 crcs[3] = crc3;
1592 crcs[4] = crc4;
1593 drm_crtc_add_crc_entry(&crtc->base, true,
1594 drm_accurate_vblank_count(&crtc->base),
1595 crcs);
1596 }
1597 }
1598 #else
1599 static inline void
1600 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1601 enum pipe pipe,
1602 uint32_t crc0, uint32_t crc1,
1603 uint32_t crc2, uint32_t crc3,
1604 uint32_t crc4) {}
1605 #endif
1606
1607
1608 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1609 enum pipe pipe)
1610 {
1611 display_pipe_crc_irq_handler(dev_priv, pipe,
1612 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1613 0, 0, 0, 0);
1614 }
1615
1616 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1617 enum pipe pipe)
1618 {
1619 display_pipe_crc_irq_handler(dev_priv, pipe,
1620 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1621 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1622 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1623 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1624 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1625 }
1626
1627 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1628 enum pipe pipe)
1629 {
1630 uint32_t res1, res2;
1631
1632 if (INTEL_GEN(dev_priv) >= 3)
1633 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1634 else
1635 res1 = 0;
1636
1637 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1638 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1639 else
1640 res2 = 0;
1641
1642 display_pipe_crc_irq_handler(dev_priv, pipe,
1643 I915_READ(PIPE_CRC_RES_RED(pipe)),
1644 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1645 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1646 res1, res2);
1647 }
1648
1649 /* The RPS events need forcewake, so we add them to a work queue and mask their
1650 * IMR bits until the work is done. Other interrupts can be processed without
1651 * the work queue. */
1652 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1653 {
1654 if (pm_iir & dev_priv->pm_rps_events) {
1655 spin_lock(&dev_priv->irq_lock);
1656 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1657 if (dev_priv->rps.interrupts_enabled) {
1658 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1659 schedule_work(&dev_priv->rps.work);
1660 }
1661 spin_unlock(&dev_priv->irq_lock);
1662 }
1663
1664 if (INTEL_GEN(dev_priv) >= 8)
1665 return;
1666
1667 if (HAS_VEBOX(dev_priv)) {
1668 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1669 notify_ring(dev_priv->engine[VECS]);
1670
1671 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1672 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1673 }
1674 }
1675
1676 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1677 {
1678 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1679 /* Sample the log buffer flush related bits & clear them out now
1680 * itself from the message identity register to minimize the
1681 * probability of losing a flush interrupt, when there are back
1682 * to back flush interrupts.
1683 * There can be a new flush interrupt, for different log buffer
1684 * type (like for ISR), whilst Host is handling one (for DPC).
1685 * Since same bit is used in message register for ISR & DPC, it
1686 * could happen that GuC sets the bit for 2nd interrupt but Host
1687 * clears out the bit on handling the 1st interrupt.
1688 */
1689 u32 msg, flush;
1690
1691 msg = I915_READ(SOFT_SCRATCH(15));
1692 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1693 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1694 if (flush) {
1695 /* Clear the message bits that are handled */
1696 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1697
1698 /* Handle flush interrupt in bottom half */
1699 queue_work(dev_priv->guc.log.runtime.flush_wq,
1700 &dev_priv->guc.log.runtime.flush_work);
1701
1702 dev_priv->guc.log.flush_interrupt_count++;
1703 } else {
1704 /* Not clearing of unhandled event bits won't result in
1705 * re-triggering of the interrupt.
1706 */
1707 }
1708 }
1709 }
1710
1711 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1712 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1713 {
1714 int pipe;
1715
1716 spin_lock(&dev_priv->irq_lock);
1717
1718 if (!dev_priv->display_irqs_enabled) {
1719 spin_unlock(&dev_priv->irq_lock);
1720 return;
1721 }
1722
1723 for_each_pipe(dev_priv, pipe) {
1724 i915_reg_t reg;
1725 u32 mask, iir_bit = 0;
1726
1727 /*
1728 * PIPESTAT bits get signalled even when the interrupt is
1729 * disabled with the mask bits, and some of the status bits do
1730 * not generate interrupts at all (like the underrun bit). Hence
1731 * we need to be careful that we only handle what we want to
1732 * handle.
1733 */
1734
1735 /* fifo underruns are filterered in the underrun handler. */
1736 mask = PIPE_FIFO_UNDERRUN_STATUS;
1737
1738 switch (pipe) {
1739 case PIPE_A:
1740 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1741 break;
1742 case PIPE_B:
1743 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1744 break;
1745 case PIPE_C:
1746 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1747 break;
1748 }
1749 if (iir & iir_bit)
1750 mask |= dev_priv->pipestat_irq_mask[pipe];
1751
1752 if (!mask)
1753 continue;
1754
1755 reg = PIPESTAT(pipe);
1756 mask |= PIPESTAT_INT_ENABLE_MASK;
1757 pipe_stats[pipe] = I915_READ(reg) & mask;
1758
1759 /*
1760 * Clear the PIPE*STAT regs before the IIR
1761 */
1762 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1763 PIPESTAT_INT_STATUS_MASK))
1764 I915_WRITE(reg, pipe_stats[pipe]);
1765 }
1766 spin_unlock(&dev_priv->irq_lock);
1767 }
1768
1769 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1770 u32 pipe_stats[I915_MAX_PIPES])
1771 {
1772 enum pipe pipe;
1773
1774 for_each_pipe(dev_priv, pipe) {
1775 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1776 drm_handle_vblank(&dev_priv->drm, pipe);
1777
1778 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1779 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1780
1781 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1782 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1783 }
1784
1785 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1786 gmbus_irq_handler(dev_priv);
1787 }
1788
1789 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1790 {
1791 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1792
1793 if (hotplug_status)
1794 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1795
1796 return hotplug_status;
1797 }
1798
1799 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1800 u32 hotplug_status)
1801 {
1802 u32 pin_mask = 0, long_mask = 0;
1803
1804 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1805 IS_CHERRYVIEW(dev_priv)) {
1806 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1807
1808 if (hotplug_trigger) {
1809 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1810 hotplug_trigger, hpd_status_g4x,
1811 i9xx_port_hotplug_long_detect);
1812
1813 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1814 }
1815
1816 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1817 dp_aux_irq_handler(dev_priv);
1818 } else {
1819 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1820
1821 if (hotplug_trigger) {
1822 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1823 hotplug_trigger, hpd_status_i915,
1824 i9xx_port_hotplug_long_detect);
1825 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1826 }
1827 }
1828 }
1829
1830 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1831 {
1832 struct drm_device *dev = arg;
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 irqreturn_t ret = IRQ_NONE;
1835
1836 if (!intel_irqs_enabled(dev_priv))
1837 return IRQ_NONE;
1838
1839 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1840 disable_rpm_wakeref_asserts(dev_priv);
1841
1842 do {
1843 u32 iir, gt_iir, pm_iir;
1844 u32 pipe_stats[I915_MAX_PIPES] = {};
1845 u32 hotplug_status = 0;
1846 u32 ier = 0;
1847
1848 gt_iir = I915_READ(GTIIR);
1849 pm_iir = I915_READ(GEN6_PMIIR);
1850 iir = I915_READ(VLV_IIR);
1851
1852 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1853 break;
1854
1855 ret = IRQ_HANDLED;
1856
1857 /*
1858 * Theory on interrupt generation, based on empirical evidence:
1859 *
1860 * x = ((VLV_IIR & VLV_IER) ||
1861 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1862 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1863 *
1864 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1865 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1866 * guarantee the CPU interrupt will be raised again even if we
1867 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1868 * bits this time around.
1869 */
1870 I915_WRITE(VLV_MASTER_IER, 0);
1871 ier = I915_READ(VLV_IER);
1872 I915_WRITE(VLV_IER, 0);
1873
1874 if (gt_iir)
1875 I915_WRITE(GTIIR, gt_iir);
1876 if (pm_iir)
1877 I915_WRITE(GEN6_PMIIR, pm_iir);
1878
1879 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1880 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1881
1882 /* Call regardless, as some status bits might not be
1883 * signalled in iir */
1884 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1885
1886 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1887 I915_LPE_PIPE_B_INTERRUPT))
1888 intel_lpe_audio_irq_handler(dev_priv);
1889
1890 /*
1891 * VLV_IIR is single buffered, and reflects the level
1892 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1893 */
1894 if (iir)
1895 I915_WRITE(VLV_IIR, iir);
1896
1897 I915_WRITE(VLV_IER, ier);
1898 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1899 POSTING_READ(VLV_MASTER_IER);
1900
1901 if (gt_iir)
1902 snb_gt_irq_handler(dev_priv, gt_iir);
1903 if (pm_iir)
1904 gen6_rps_irq_handler(dev_priv, pm_iir);
1905
1906 if (hotplug_status)
1907 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1908
1909 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1910 } while (0);
1911
1912 enable_rpm_wakeref_asserts(dev_priv);
1913
1914 return ret;
1915 }
1916
1917 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1918 {
1919 struct drm_device *dev = arg;
1920 struct drm_i915_private *dev_priv = to_i915(dev);
1921 irqreturn_t ret = IRQ_NONE;
1922
1923 if (!intel_irqs_enabled(dev_priv))
1924 return IRQ_NONE;
1925
1926 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1927 disable_rpm_wakeref_asserts(dev_priv);
1928
1929 do {
1930 u32 master_ctl, iir;
1931 u32 gt_iir[4] = {};
1932 u32 pipe_stats[I915_MAX_PIPES] = {};
1933 u32 hotplug_status = 0;
1934 u32 ier = 0;
1935
1936 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1937 iir = I915_READ(VLV_IIR);
1938
1939 if (master_ctl == 0 && iir == 0)
1940 break;
1941
1942 ret = IRQ_HANDLED;
1943
1944 /*
1945 * Theory on interrupt generation, based on empirical evidence:
1946 *
1947 * x = ((VLV_IIR & VLV_IER) ||
1948 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1949 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1950 *
1951 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1952 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1953 * guarantee the CPU interrupt will be raised again even if we
1954 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1955 * bits this time around.
1956 */
1957 I915_WRITE(GEN8_MASTER_IRQ, 0);
1958 ier = I915_READ(VLV_IER);
1959 I915_WRITE(VLV_IER, 0);
1960
1961 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1962
1963 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1964 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1965
1966 /* Call regardless, as some status bits might not be
1967 * signalled in iir */
1968 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1969
1970 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1971 I915_LPE_PIPE_B_INTERRUPT |
1972 I915_LPE_PIPE_C_INTERRUPT))
1973 intel_lpe_audio_irq_handler(dev_priv);
1974
1975 /*
1976 * VLV_IIR is single buffered, and reflects the level
1977 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1978 */
1979 if (iir)
1980 I915_WRITE(VLV_IIR, iir);
1981
1982 I915_WRITE(VLV_IER, ier);
1983 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1984 POSTING_READ(GEN8_MASTER_IRQ);
1985
1986 gen8_gt_irq_handler(dev_priv, gt_iir);
1987
1988 if (hotplug_status)
1989 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1990
1991 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1992 } while (0);
1993
1994 enable_rpm_wakeref_asserts(dev_priv);
1995
1996 return ret;
1997 }
1998
1999 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2000 u32 hotplug_trigger,
2001 const u32 hpd[HPD_NUM_PINS])
2002 {
2003 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2004
2005 /*
2006 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2007 * unless we touch the hotplug register, even if hotplug_trigger is
2008 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2009 * errors.
2010 */
2011 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2012 if (!hotplug_trigger) {
2013 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2014 PORTD_HOTPLUG_STATUS_MASK |
2015 PORTC_HOTPLUG_STATUS_MASK |
2016 PORTB_HOTPLUG_STATUS_MASK;
2017 dig_hotplug_reg &= ~mask;
2018 }
2019
2020 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2021 if (!hotplug_trigger)
2022 return;
2023
2024 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2025 dig_hotplug_reg, hpd,
2026 pch_port_hotplug_long_detect);
2027
2028 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2029 }
2030
2031 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2032 {
2033 int pipe;
2034 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2035
2036 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2037
2038 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2039 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2040 SDE_AUDIO_POWER_SHIFT);
2041 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2042 port_name(port));
2043 }
2044
2045 if (pch_iir & SDE_AUX_MASK)
2046 dp_aux_irq_handler(dev_priv);
2047
2048 if (pch_iir & SDE_GMBUS)
2049 gmbus_irq_handler(dev_priv);
2050
2051 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2052 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2053
2054 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2055 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2056
2057 if (pch_iir & SDE_POISON)
2058 DRM_ERROR("PCH poison interrupt\n");
2059
2060 if (pch_iir & SDE_FDI_MASK)
2061 for_each_pipe(dev_priv, pipe)
2062 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2063 pipe_name(pipe),
2064 I915_READ(FDI_RX_IIR(pipe)));
2065
2066 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2067 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2068
2069 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2070 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2071
2072 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2073 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2074
2075 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2076 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2077 }
2078
2079 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2080 {
2081 u32 err_int = I915_READ(GEN7_ERR_INT);
2082 enum pipe pipe;
2083
2084 if (err_int & ERR_INT_POISON)
2085 DRM_ERROR("Poison interrupt\n");
2086
2087 for_each_pipe(dev_priv, pipe) {
2088 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2089 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2090
2091 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2092 if (IS_IVYBRIDGE(dev_priv))
2093 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2094 else
2095 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2096 }
2097 }
2098
2099 I915_WRITE(GEN7_ERR_INT, err_int);
2100 }
2101
2102 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2103 {
2104 u32 serr_int = I915_READ(SERR_INT);
2105
2106 if (serr_int & SERR_INT_POISON)
2107 DRM_ERROR("PCH poison interrupt\n");
2108
2109 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2110 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2111
2112 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2113 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2114
2115 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2116 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2117
2118 I915_WRITE(SERR_INT, serr_int);
2119 }
2120
2121 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2122 {
2123 int pipe;
2124 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2125
2126 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2127
2128 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2129 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2130 SDE_AUDIO_POWER_SHIFT_CPT);
2131 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2132 port_name(port));
2133 }
2134
2135 if (pch_iir & SDE_AUX_MASK_CPT)
2136 dp_aux_irq_handler(dev_priv);
2137
2138 if (pch_iir & SDE_GMBUS_CPT)
2139 gmbus_irq_handler(dev_priv);
2140
2141 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2142 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2143
2144 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2145 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2146
2147 if (pch_iir & SDE_FDI_MASK_CPT)
2148 for_each_pipe(dev_priv, pipe)
2149 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2150 pipe_name(pipe),
2151 I915_READ(FDI_RX_IIR(pipe)));
2152
2153 if (pch_iir & SDE_ERROR_CPT)
2154 cpt_serr_int_handler(dev_priv);
2155 }
2156
2157 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2158 {
2159 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2160 ~SDE_PORTE_HOTPLUG_SPT;
2161 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2162 u32 pin_mask = 0, long_mask = 0;
2163
2164 if (hotplug_trigger) {
2165 u32 dig_hotplug_reg;
2166
2167 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2168 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2169
2170 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2171 dig_hotplug_reg, hpd_spt,
2172 spt_port_hotplug_long_detect);
2173 }
2174
2175 if (hotplug2_trigger) {
2176 u32 dig_hotplug_reg;
2177
2178 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2179 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2180
2181 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2182 dig_hotplug_reg, hpd_spt,
2183 spt_port_hotplug2_long_detect);
2184 }
2185
2186 if (pin_mask)
2187 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2188
2189 if (pch_iir & SDE_GMBUS_CPT)
2190 gmbus_irq_handler(dev_priv);
2191 }
2192
2193 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2194 u32 hotplug_trigger,
2195 const u32 hpd[HPD_NUM_PINS])
2196 {
2197 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2198
2199 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2200 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2201
2202 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2203 dig_hotplug_reg, hpd,
2204 ilk_port_hotplug_long_detect);
2205
2206 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2207 }
2208
2209 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2210 u32 de_iir)
2211 {
2212 enum pipe pipe;
2213 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2214
2215 if (hotplug_trigger)
2216 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2217
2218 if (de_iir & DE_AUX_CHANNEL_A)
2219 dp_aux_irq_handler(dev_priv);
2220
2221 if (de_iir & DE_GSE)
2222 intel_opregion_asle_intr(dev_priv);
2223
2224 if (de_iir & DE_POISON)
2225 DRM_ERROR("Poison interrupt\n");
2226
2227 for_each_pipe(dev_priv, pipe) {
2228 if (de_iir & DE_PIPE_VBLANK(pipe))
2229 drm_handle_vblank(&dev_priv->drm, pipe);
2230
2231 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2232 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2233
2234 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2235 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2236 }
2237
2238 /* check event from PCH */
2239 if (de_iir & DE_PCH_EVENT) {
2240 u32 pch_iir = I915_READ(SDEIIR);
2241
2242 if (HAS_PCH_CPT(dev_priv))
2243 cpt_irq_handler(dev_priv, pch_iir);
2244 else
2245 ibx_irq_handler(dev_priv, pch_iir);
2246
2247 /* should clear PCH hotplug event before clear CPU irq */
2248 I915_WRITE(SDEIIR, pch_iir);
2249 }
2250
2251 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2252 ironlake_rps_change_irq_handler(dev_priv);
2253 }
2254
2255 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2256 u32 de_iir)
2257 {
2258 enum pipe pipe;
2259 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2260
2261 if (hotplug_trigger)
2262 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2263
2264 if (de_iir & DE_ERR_INT_IVB)
2265 ivb_err_int_handler(dev_priv);
2266
2267 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2268 dp_aux_irq_handler(dev_priv);
2269
2270 if (de_iir & DE_GSE_IVB)
2271 intel_opregion_asle_intr(dev_priv);
2272
2273 for_each_pipe(dev_priv, pipe) {
2274 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2275 drm_handle_vblank(&dev_priv->drm, pipe);
2276 }
2277
2278 /* check event from PCH */
2279 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2280 u32 pch_iir = I915_READ(SDEIIR);
2281
2282 cpt_irq_handler(dev_priv, pch_iir);
2283
2284 /* clear PCH hotplug event before clear CPU irq */
2285 I915_WRITE(SDEIIR, pch_iir);
2286 }
2287 }
2288
2289 /*
2290 * To handle irqs with the minimum potential races with fresh interrupts, we:
2291 * 1 - Disable Master Interrupt Control.
2292 * 2 - Find the source(s) of the interrupt.
2293 * 3 - Clear the Interrupt Identity bits (IIR).
2294 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2295 * 5 - Re-enable Master Interrupt Control.
2296 */
2297 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2298 {
2299 struct drm_device *dev = arg;
2300 struct drm_i915_private *dev_priv = to_i915(dev);
2301 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2302 irqreturn_t ret = IRQ_NONE;
2303
2304 if (!intel_irqs_enabled(dev_priv))
2305 return IRQ_NONE;
2306
2307 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2308 disable_rpm_wakeref_asserts(dev_priv);
2309
2310 /* disable master interrupt before clearing iir */
2311 de_ier = I915_READ(DEIER);
2312 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2313 POSTING_READ(DEIER);
2314
2315 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2316 * interrupts will will be stored on its back queue, and then we'll be
2317 * able to process them after we restore SDEIER (as soon as we restore
2318 * it, we'll get an interrupt if SDEIIR still has something to process
2319 * due to its back queue). */
2320 if (!HAS_PCH_NOP(dev_priv)) {
2321 sde_ier = I915_READ(SDEIER);
2322 I915_WRITE(SDEIER, 0);
2323 POSTING_READ(SDEIER);
2324 }
2325
2326 /* Find, clear, then process each source of interrupt */
2327
2328 gt_iir = I915_READ(GTIIR);
2329 if (gt_iir) {
2330 I915_WRITE(GTIIR, gt_iir);
2331 ret = IRQ_HANDLED;
2332 if (INTEL_GEN(dev_priv) >= 6)
2333 snb_gt_irq_handler(dev_priv, gt_iir);
2334 else
2335 ilk_gt_irq_handler(dev_priv, gt_iir);
2336 }
2337
2338 de_iir = I915_READ(DEIIR);
2339 if (de_iir) {
2340 I915_WRITE(DEIIR, de_iir);
2341 ret = IRQ_HANDLED;
2342 if (INTEL_GEN(dev_priv) >= 7)
2343 ivb_display_irq_handler(dev_priv, de_iir);
2344 else
2345 ilk_display_irq_handler(dev_priv, de_iir);
2346 }
2347
2348 if (INTEL_GEN(dev_priv) >= 6) {
2349 u32 pm_iir = I915_READ(GEN6_PMIIR);
2350 if (pm_iir) {
2351 I915_WRITE(GEN6_PMIIR, pm_iir);
2352 ret = IRQ_HANDLED;
2353 gen6_rps_irq_handler(dev_priv, pm_iir);
2354 }
2355 }
2356
2357 I915_WRITE(DEIER, de_ier);
2358 POSTING_READ(DEIER);
2359 if (!HAS_PCH_NOP(dev_priv)) {
2360 I915_WRITE(SDEIER, sde_ier);
2361 POSTING_READ(SDEIER);
2362 }
2363
2364 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2365 enable_rpm_wakeref_asserts(dev_priv);
2366
2367 return ret;
2368 }
2369
2370 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2371 u32 hotplug_trigger,
2372 const u32 hpd[HPD_NUM_PINS])
2373 {
2374 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2375
2376 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2377 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2378
2379 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2380 dig_hotplug_reg, hpd,
2381 bxt_port_hotplug_long_detect);
2382
2383 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2384 }
2385
2386 static irqreturn_t
2387 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2388 {
2389 irqreturn_t ret = IRQ_NONE;
2390 u32 iir;
2391 enum pipe pipe;
2392
2393 if (master_ctl & GEN8_DE_MISC_IRQ) {
2394 iir = I915_READ(GEN8_DE_MISC_IIR);
2395 if (iir) {
2396 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2397 ret = IRQ_HANDLED;
2398 if (iir & GEN8_DE_MISC_GSE)
2399 intel_opregion_asle_intr(dev_priv);
2400 else
2401 DRM_ERROR("Unexpected DE Misc interrupt\n");
2402 }
2403 else
2404 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2405 }
2406
2407 if (master_ctl & GEN8_DE_PORT_IRQ) {
2408 iir = I915_READ(GEN8_DE_PORT_IIR);
2409 if (iir) {
2410 u32 tmp_mask;
2411 bool found = false;
2412
2413 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2414 ret = IRQ_HANDLED;
2415
2416 tmp_mask = GEN8_AUX_CHANNEL_A;
2417 if (INTEL_GEN(dev_priv) >= 9)
2418 tmp_mask |= GEN9_AUX_CHANNEL_B |
2419 GEN9_AUX_CHANNEL_C |
2420 GEN9_AUX_CHANNEL_D;
2421
2422 if (iir & tmp_mask) {
2423 dp_aux_irq_handler(dev_priv);
2424 found = true;
2425 }
2426
2427 if (IS_GEN9_LP(dev_priv)) {
2428 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2429 if (tmp_mask) {
2430 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2431 hpd_bxt);
2432 found = true;
2433 }
2434 } else if (IS_BROADWELL(dev_priv)) {
2435 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2436 if (tmp_mask) {
2437 ilk_hpd_irq_handler(dev_priv,
2438 tmp_mask, hpd_bdw);
2439 found = true;
2440 }
2441 }
2442
2443 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2444 gmbus_irq_handler(dev_priv);
2445 found = true;
2446 }
2447
2448 if (!found)
2449 DRM_ERROR("Unexpected DE Port interrupt\n");
2450 }
2451 else
2452 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2453 }
2454
2455 for_each_pipe(dev_priv, pipe) {
2456 u32 fault_errors;
2457
2458 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2459 continue;
2460
2461 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2462 if (!iir) {
2463 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2464 continue;
2465 }
2466
2467 ret = IRQ_HANDLED;
2468 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2469
2470 if (iir & GEN8_PIPE_VBLANK)
2471 drm_handle_vblank(&dev_priv->drm, pipe);
2472
2473 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2474 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2475
2476 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2477 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2478
2479 fault_errors = iir;
2480 if (INTEL_GEN(dev_priv) >= 9)
2481 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2482 else
2483 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2484
2485 if (fault_errors)
2486 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2487 pipe_name(pipe),
2488 fault_errors);
2489 }
2490
2491 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2492 master_ctl & GEN8_DE_PCH_IRQ) {
2493 /*
2494 * FIXME(BDW): Assume for now that the new interrupt handling
2495 * scheme also closed the SDE interrupt handling race we've seen
2496 * on older pch-split platforms. But this needs testing.
2497 */
2498 iir = I915_READ(SDEIIR);
2499 if (iir) {
2500 I915_WRITE(SDEIIR, iir);
2501 ret = IRQ_HANDLED;
2502
2503 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2504 HAS_PCH_CNP(dev_priv))
2505 spt_irq_handler(dev_priv, iir);
2506 else
2507 cpt_irq_handler(dev_priv, iir);
2508 } else {
2509 /*
2510 * Like on previous PCH there seems to be something
2511 * fishy going on with forwarding PCH interrupts.
2512 */
2513 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2514 }
2515 }
2516
2517 return ret;
2518 }
2519
2520 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2521 {
2522 struct drm_device *dev = arg;
2523 struct drm_i915_private *dev_priv = to_i915(dev);
2524 u32 master_ctl;
2525 u32 gt_iir[4] = {};
2526 irqreturn_t ret;
2527
2528 if (!intel_irqs_enabled(dev_priv))
2529 return IRQ_NONE;
2530
2531 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2532 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2533 if (!master_ctl)
2534 return IRQ_NONE;
2535
2536 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2537
2538 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2539 disable_rpm_wakeref_asserts(dev_priv);
2540
2541 /* Find, clear, then process each source of interrupt */
2542 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2543 gen8_gt_irq_handler(dev_priv, gt_iir);
2544 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2545
2546 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2547 POSTING_READ_FW(GEN8_MASTER_IRQ);
2548
2549 enable_rpm_wakeref_asserts(dev_priv);
2550
2551 return ret;
2552 }
2553
2554 struct wedge_me {
2555 struct delayed_work work;
2556 struct drm_i915_private *i915;
2557 const char *name;
2558 };
2559
2560 static void wedge_me(struct work_struct *work)
2561 {
2562 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2563
2564 dev_err(w->i915->drm.dev,
2565 "%s timed out, cancelling all in-flight rendering.\n",
2566 w->name);
2567 i915_gem_set_wedged(w->i915);
2568 }
2569
2570 static void __init_wedge(struct wedge_me *w,
2571 struct drm_i915_private *i915,
2572 long timeout,
2573 const char *name)
2574 {
2575 w->i915 = i915;
2576 w->name = name;
2577
2578 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2579 schedule_delayed_work(&w->work, timeout);
2580 }
2581
2582 static void __fini_wedge(struct wedge_me *w)
2583 {
2584 cancel_delayed_work_sync(&w->work);
2585 destroy_delayed_work_on_stack(&w->work);
2586 w->i915 = NULL;
2587 }
2588
2589 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2590 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2591 (W)->i915; \
2592 __fini_wedge((W)))
2593
2594 /**
2595 * i915_reset_device - do process context error handling work
2596 * @dev_priv: i915 device private
2597 *
2598 * Fire an error uevent so userspace can see that a hang or error
2599 * was detected.
2600 */
2601 static void i915_reset_device(struct drm_i915_private *dev_priv)
2602 {
2603 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2604 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2605 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2606 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2607 struct wedge_me w;
2608
2609 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2610
2611 DRM_DEBUG_DRIVER("resetting chip\n");
2612 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2613
2614 /* Use a watchdog to ensure that our reset completes */
2615 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2616 intel_prepare_reset(dev_priv);
2617
2618 /* Signal that locked waiters should reset the GPU */
2619 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2620 wake_up_all(&dev_priv->gpu_error.wait_queue);
2621
2622 /* Wait for anyone holding the lock to wakeup, without
2623 * blocking indefinitely on struct_mutex.
2624 */
2625 do {
2626 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2627 i915_reset(dev_priv);
2628 mutex_unlock(&dev_priv->drm.struct_mutex);
2629 }
2630 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2631 I915_RESET_HANDOFF,
2632 TASK_UNINTERRUPTIBLE,
2633 1));
2634
2635 intel_finish_reset(dev_priv);
2636 }
2637
2638 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2639 kobject_uevent_env(kobj,
2640 KOBJ_CHANGE, reset_done_event);
2641 }
2642
2643 static inline void
2644 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2645 struct intel_instdone *instdone)
2646 {
2647 int slice;
2648 int subslice;
2649
2650 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2651
2652 if (INTEL_GEN(dev_priv) <= 3)
2653 return;
2654
2655 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2656
2657 if (INTEL_GEN(dev_priv) <= 6)
2658 return;
2659
2660 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2661 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2662 slice, subslice, instdone->sampler[slice][subslice]);
2663
2664 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2665 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2666 slice, subslice, instdone->row[slice][subslice]);
2667 }
2668
2669 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2670 {
2671 u32 eir;
2672
2673 if (!IS_GEN2(dev_priv))
2674 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2675
2676 if (INTEL_GEN(dev_priv) < 4)
2677 I915_WRITE(IPEIR, I915_READ(IPEIR));
2678 else
2679 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2680
2681 I915_WRITE(EIR, I915_READ(EIR));
2682 eir = I915_READ(EIR);
2683 if (eir) {
2684 /*
2685 * some errors might have become stuck,
2686 * mask them.
2687 */
2688 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2689 I915_WRITE(EMR, I915_READ(EMR) | eir);
2690 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2691 }
2692 }
2693
2694 /**
2695 * i915_handle_error - handle a gpu error
2696 * @dev_priv: i915 device private
2697 * @engine_mask: mask representing engines that are hung
2698 * @fmt: Error message format string
2699 *
2700 * Do some basic checking of register state at error time and
2701 * dump it to the syslog. Also call i915_capture_error_state() to make
2702 * sure we get a record and make it available in debugfs. Fire a uevent
2703 * so userspace knows something bad happened (should trigger collection
2704 * of a ring dump etc.).
2705 */
2706 void i915_handle_error(struct drm_i915_private *dev_priv,
2707 u32 engine_mask,
2708 const char *fmt, ...)
2709 {
2710 struct intel_engine_cs *engine;
2711 unsigned int tmp;
2712 va_list args;
2713 char error_msg[80];
2714
2715 va_start(args, fmt);
2716 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2717 va_end(args);
2718
2719 /*
2720 * In most cases it's guaranteed that we get here with an RPM
2721 * reference held, for example because there is a pending GPU
2722 * request that won't finish until the reset is done. This
2723 * isn't the case at least when we get here by doing a
2724 * simulated reset via debugfs, so get an RPM reference.
2725 */
2726 intel_runtime_pm_get(dev_priv);
2727
2728 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2729 i915_clear_error_registers(dev_priv);
2730
2731 /*
2732 * Try engine reset when available. We fall back to full reset if
2733 * single reset fails.
2734 */
2735 if (intel_has_reset_engine(dev_priv)) {
2736 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2737 BUILD_BUG_ON(I915_RESET_HANDOFF >= I915_RESET_ENGINE);
2738 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2739 &dev_priv->gpu_error.flags))
2740 continue;
2741
2742 if (i915_reset_engine(engine) == 0)
2743 engine_mask &= ~intel_engine_flag(engine);
2744
2745 clear_bit(I915_RESET_ENGINE + engine->id,
2746 &dev_priv->gpu_error.flags);
2747 wake_up_bit(&dev_priv->gpu_error.flags,
2748 I915_RESET_ENGINE + engine->id);
2749 }
2750 }
2751
2752 if (!engine_mask)
2753 goto out;
2754
2755 /* Full reset needs the mutex, stop any other user trying to do so. */
2756 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2757 wait_event(dev_priv->gpu_error.reset_queue,
2758 !test_bit(I915_RESET_BACKOFF,
2759 &dev_priv->gpu_error.flags));
2760 goto out;
2761 }
2762
2763 /* Prevent any other reset-engine attempt. */
2764 for_each_engine(engine, dev_priv, tmp) {
2765 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2766 &dev_priv->gpu_error.flags))
2767 wait_on_bit(&dev_priv->gpu_error.flags,
2768 I915_RESET_ENGINE + engine->id,
2769 TASK_UNINTERRUPTIBLE);
2770 }
2771
2772 i915_reset_device(dev_priv);
2773
2774 for_each_engine(engine, dev_priv, tmp) {
2775 clear_bit(I915_RESET_ENGINE + engine->id,
2776 &dev_priv->gpu_error.flags);
2777 }
2778
2779 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2780 wake_up_all(&dev_priv->gpu_error.reset_queue);
2781
2782 out:
2783 intel_runtime_pm_put(dev_priv);
2784 }
2785
2786 /* Called from drm generic code, passed 'crtc' which
2787 * we use as a pipe index
2788 */
2789 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2790 {
2791 struct drm_i915_private *dev_priv = to_i915(dev);
2792 unsigned long irqflags;
2793
2794 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2795 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2796 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2797
2798 return 0;
2799 }
2800
2801 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2802 {
2803 struct drm_i915_private *dev_priv = to_i915(dev);
2804 unsigned long irqflags;
2805
2806 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807 i915_enable_pipestat(dev_priv, pipe,
2808 PIPE_START_VBLANK_INTERRUPT_STATUS);
2809 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2810
2811 return 0;
2812 }
2813
2814 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2815 {
2816 struct drm_i915_private *dev_priv = to_i915(dev);
2817 unsigned long irqflags;
2818 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2819 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2820
2821 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2822 ilk_enable_display_irq(dev_priv, bit);
2823 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2824
2825 return 0;
2826 }
2827
2828 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2829 {
2830 struct drm_i915_private *dev_priv = to_i915(dev);
2831 unsigned long irqflags;
2832
2833 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2834 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2835 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2836
2837 return 0;
2838 }
2839
2840 /* Called from drm generic code, passed 'crtc' which
2841 * we use as a pipe index
2842 */
2843 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2844 {
2845 struct drm_i915_private *dev_priv = to_i915(dev);
2846 unsigned long irqflags;
2847
2848 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2849 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2850 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2851 }
2852
2853 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2854 {
2855 struct drm_i915_private *dev_priv = to_i915(dev);
2856 unsigned long irqflags;
2857
2858 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2859 i915_disable_pipestat(dev_priv, pipe,
2860 PIPE_START_VBLANK_INTERRUPT_STATUS);
2861 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2862 }
2863
2864 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2865 {
2866 struct drm_i915_private *dev_priv = to_i915(dev);
2867 unsigned long irqflags;
2868 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2869 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2870
2871 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2872 ilk_disable_display_irq(dev_priv, bit);
2873 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2874 }
2875
2876 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2877 {
2878 struct drm_i915_private *dev_priv = to_i915(dev);
2879 unsigned long irqflags;
2880
2881 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2882 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2883 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2884 }
2885
2886 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2887 {
2888 if (HAS_PCH_NOP(dev_priv))
2889 return;
2890
2891 GEN5_IRQ_RESET(SDE);
2892
2893 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2894 I915_WRITE(SERR_INT, 0xffffffff);
2895 }
2896
2897 /*
2898 * SDEIER is also touched by the interrupt handler to work around missed PCH
2899 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2900 * instead we unconditionally enable all PCH interrupt sources here, but then
2901 * only unmask them as needed with SDEIMR.
2902 *
2903 * This function needs to be called before interrupts are enabled.
2904 */
2905 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2906 {
2907 struct drm_i915_private *dev_priv = to_i915(dev);
2908
2909 if (HAS_PCH_NOP(dev_priv))
2910 return;
2911
2912 WARN_ON(I915_READ(SDEIER) != 0);
2913 I915_WRITE(SDEIER, 0xffffffff);
2914 POSTING_READ(SDEIER);
2915 }
2916
2917 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2918 {
2919 GEN5_IRQ_RESET(GT);
2920 if (INTEL_GEN(dev_priv) >= 6)
2921 GEN5_IRQ_RESET(GEN6_PM);
2922 }
2923
2924 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2925 {
2926 enum pipe pipe;
2927
2928 if (IS_CHERRYVIEW(dev_priv))
2929 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2930 else
2931 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2932
2933 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2934 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2935
2936 for_each_pipe(dev_priv, pipe) {
2937 I915_WRITE(PIPESTAT(pipe),
2938 PIPE_FIFO_UNDERRUN_STATUS |
2939 PIPESTAT_INT_STATUS_MASK);
2940 dev_priv->pipestat_irq_mask[pipe] = 0;
2941 }
2942
2943 GEN5_IRQ_RESET(VLV_);
2944 dev_priv->irq_mask = ~0;
2945 }
2946
2947 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2948 {
2949 u32 pipestat_mask;
2950 u32 enable_mask;
2951 enum pipe pipe;
2952
2953 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2954 PIPE_CRC_DONE_INTERRUPT_STATUS;
2955
2956 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2957 for_each_pipe(dev_priv, pipe)
2958 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2959
2960 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2961 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2962 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2963 I915_LPE_PIPE_A_INTERRUPT |
2964 I915_LPE_PIPE_B_INTERRUPT;
2965
2966 if (IS_CHERRYVIEW(dev_priv))
2967 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2968 I915_LPE_PIPE_C_INTERRUPT;
2969
2970 WARN_ON(dev_priv->irq_mask != ~0);
2971
2972 dev_priv->irq_mask = ~enable_mask;
2973
2974 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2975 }
2976
2977 /* drm_dma.h hooks
2978 */
2979 static void ironlake_irq_reset(struct drm_device *dev)
2980 {
2981 struct drm_i915_private *dev_priv = to_i915(dev);
2982
2983 I915_WRITE(HWSTAM, 0xffffffff);
2984
2985 GEN5_IRQ_RESET(DE);
2986 if (IS_GEN7(dev_priv))
2987 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2988
2989 gen5_gt_irq_reset(dev_priv);
2990
2991 ibx_irq_reset(dev_priv);
2992 }
2993
2994 static void valleyview_irq_preinstall(struct drm_device *dev)
2995 {
2996 struct drm_i915_private *dev_priv = to_i915(dev);
2997
2998 I915_WRITE(VLV_MASTER_IER, 0);
2999 POSTING_READ(VLV_MASTER_IER);
3000
3001 gen5_gt_irq_reset(dev_priv);
3002
3003 spin_lock_irq(&dev_priv->irq_lock);
3004 if (dev_priv->display_irqs_enabled)
3005 vlv_display_irq_reset(dev_priv);
3006 spin_unlock_irq(&dev_priv->irq_lock);
3007 }
3008
3009 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3010 {
3011 GEN8_IRQ_RESET_NDX(GT, 0);
3012 GEN8_IRQ_RESET_NDX(GT, 1);
3013 GEN8_IRQ_RESET_NDX(GT, 2);
3014 GEN8_IRQ_RESET_NDX(GT, 3);
3015 }
3016
3017 static void gen8_irq_reset(struct drm_device *dev)
3018 {
3019 struct drm_i915_private *dev_priv = to_i915(dev);
3020 int pipe;
3021
3022 I915_WRITE(GEN8_MASTER_IRQ, 0);
3023 POSTING_READ(GEN8_MASTER_IRQ);
3024
3025 gen8_gt_irq_reset(dev_priv);
3026
3027 for_each_pipe(dev_priv, pipe)
3028 if (intel_display_power_is_enabled(dev_priv,
3029 POWER_DOMAIN_PIPE(pipe)))
3030 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3031
3032 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3033 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3034 GEN5_IRQ_RESET(GEN8_PCU_);
3035
3036 if (HAS_PCH_SPLIT(dev_priv))
3037 ibx_irq_reset(dev_priv);
3038 }
3039
3040 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3041 unsigned int pipe_mask)
3042 {
3043 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3044 enum pipe pipe;
3045
3046 spin_lock_irq(&dev_priv->irq_lock);
3047 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3048 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3049 dev_priv->de_irq_mask[pipe],
3050 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3051 spin_unlock_irq(&dev_priv->irq_lock);
3052 }
3053
3054 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3055 unsigned int pipe_mask)
3056 {
3057 enum pipe pipe;
3058
3059 spin_lock_irq(&dev_priv->irq_lock);
3060 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3061 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3062 spin_unlock_irq(&dev_priv->irq_lock);
3063
3064 /* make sure we're done processing display irqs */
3065 synchronize_irq(dev_priv->drm.irq);
3066 }
3067
3068 static void cherryview_irq_preinstall(struct drm_device *dev)
3069 {
3070 struct drm_i915_private *dev_priv = to_i915(dev);
3071
3072 I915_WRITE(GEN8_MASTER_IRQ, 0);
3073 POSTING_READ(GEN8_MASTER_IRQ);
3074
3075 gen8_gt_irq_reset(dev_priv);
3076
3077 GEN5_IRQ_RESET(GEN8_PCU_);
3078
3079 spin_lock_irq(&dev_priv->irq_lock);
3080 if (dev_priv->display_irqs_enabled)
3081 vlv_display_irq_reset(dev_priv);
3082 spin_unlock_irq(&dev_priv->irq_lock);
3083 }
3084
3085 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3086 const u32 hpd[HPD_NUM_PINS])
3087 {
3088 struct intel_encoder *encoder;
3089 u32 enabled_irqs = 0;
3090
3091 for_each_intel_encoder(&dev_priv->drm, encoder)
3092 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3093 enabled_irqs |= hpd[encoder->hpd_pin];
3094
3095 return enabled_irqs;
3096 }
3097
3098 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3099 {
3100 u32 hotplug;
3101
3102 /*
3103 * Enable digital hotplug on the PCH, and configure the DP short pulse
3104 * duration to 2ms (which is the minimum in the Display Port spec).
3105 * The pulse duration bits are reserved on LPT+.
3106 */
3107 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3108 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3109 PORTC_PULSE_DURATION_MASK |
3110 PORTD_PULSE_DURATION_MASK);
3111 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3112 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3113 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3114 /*
3115 * When CPU and PCH are on the same package, port A
3116 * HPD must be enabled in both north and south.
3117 */
3118 if (HAS_PCH_LPT_LP(dev_priv))
3119 hotplug |= PORTA_HOTPLUG_ENABLE;
3120 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3121 }
3122
3123 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3124 {
3125 u32 hotplug_irqs, enabled_irqs;
3126
3127 if (HAS_PCH_IBX(dev_priv)) {
3128 hotplug_irqs = SDE_HOTPLUG_MASK;
3129 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3130 } else {
3131 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3132 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3133 }
3134
3135 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3136
3137 ibx_hpd_detection_setup(dev_priv);
3138 }
3139
3140 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3141 {
3142 u32 hotplug;
3143
3144 /* Enable digital hotplug on the PCH */
3145 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3146 hotplug |= PORTA_HOTPLUG_ENABLE |
3147 PORTB_HOTPLUG_ENABLE |
3148 PORTC_HOTPLUG_ENABLE |
3149 PORTD_HOTPLUG_ENABLE;
3150 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3151
3152 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3153 hotplug |= PORTE_HOTPLUG_ENABLE;
3154 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3155 }
3156
3157 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3158 {
3159 u32 hotplug_irqs, enabled_irqs;
3160
3161 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3162 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3163
3164 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3165
3166 spt_hpd_detection_setup(dev_priv);
3167 }
3168
3169 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3170 {
3171 u32 hotplug;
3172
3173 /*
3174 * Enable digital hotplug on the CPU, and configure the DP short pulse
3175 * duration to 2ms (which is the minimum in the Display Port spec)
3176 * The pulse duration bits are reserved on HSW+.
3177 */
3178 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3179 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3180 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3181 DIGITAL_PORTA_PULSE_DURATION_2ms;
3182 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3183 }
3184
3185 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3186 {
3187 u32 hotplug_irqs, enabled_irqs;
3188
3189 if (INTEL_GEN(dev_priv) >= 8) {
3190 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3191 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3192
3193 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3194 } else if (INTEL_GEN(dev_priv) >= 7) {
3195 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3196 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3197
3198 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3199 } else {
3200 hotplug_irqs = DE_DP_A_HOTPLUG;
3201 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3202
3203 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3204 }
3205
3206 ilk_hpd_detection_setup(dev_priv);
3207
3208 ibx_hpd_irq_setup(dev_priv);
3209 }
3210
3211 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3212 u32 enabled_irqs)
3213 {
3214 u32 hotplug;
3215
3216 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3217 hotplug |= PORTA_HOTPLUG_ENABLE |
3218 PORTB_HOTPLUG_ENABLE |
3219 PORTC_HOTPLUG_ENABLE;
3220
3221 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3222 hotplug, enabled_irqs);
3223 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3224
3225 /*
3226 * For BXT invert bit has to be set based on AOB design
3227 * for HPD detection logic, update it based on VBT fields.
3228 */
3229 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3230 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3231 hotplug |= BXT_DDIA_HPD_INVERT;
3232 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3233 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3234 hotplug |= BXT_DDIB_HPD_INVERT;
3235 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3236 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3237 hotplug |= BXT_DDIC_HPD_INVERT;
3238
3239 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3240 }
3241
3242 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3243 {
3244 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3245 }
3246
3247 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3248 {
3249 u32 hotplug_irqs, enabled_irqs;
3250
3251 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3252 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3253
3254 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3255
3256 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3257 }
3258
3259 static void ibx_irq_postinstall(struct drm_device *dev)
3260 {
3261 struct drm_i915_private *dev_priv = to_i915(dev);
3262 u32 mask;
3263
3264 if (HAS_PCH_NOP(dev_priv))
3265 return;
3266
3267 if (HAS_PCH_IBX(dev_priv))
3268 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3269 else
3270 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3271
3272 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3273 I915_WRITE(SDEIMR, ~mask);
3274
3275 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3276 HAS_PCH_LPT(dev_priv))
3277 ibx_hpd_detection_setup(dev_priv);
3278 else
3279 spt_hpd_detection_setup(dev_priv);
3280 }
3281
3282 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3283 {
3284 struct drm_i915_private *dev_priv = to_i915(dev);
3285 u32 pm_irqs, gt_irqs;
3286
3287 pm_irqs = gt_irqs = 0;
3288
3289 dev_priv->gt_irq_mask = ~0;
3290 if (HAS_L3_DPF(dev_priv)) {
3291 /* L3 parity interrupt is always unmasked. */
3292 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3293 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3294 }
3295
3296 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3297 if (IS_GEN5(dev_priv)) {
3298 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3299 } else {
3300 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3301 }
3302
3303 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3304
3305 if (INTEL_GEN(dev_priv) >= 6) {
3306 /*
3307 * RPS interrupts will get enabled/disabled on demand when RPS
3308 * itself is enabled/disabled.
3309 */
3310 if (HAS_VEBOX(dev_priv)) {
3311 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3312 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3313 }
3314
3315 dev_priv->pm_imr = 0xffffffff;
3316 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3317 }
3318 }
3319
3320 static int ironlake_irq_postinstall(struct drm_device *dev)
3321 {
3322 struct drm_i915_private *dev_priv = to_i915(dev);
3323 u32 display_mask, extra_mask;
3324
3325 if (INTEL_GEN(dev_priv) >= 7) {
3326 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3327 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3328 DE_PLANEB_FLIP_DONE_IVB |
3329 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3330 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3331 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3332 DE_DP_A_HOTPLUG_IVB);
3333 } else {
3334 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3335 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3336 DE_AUX_CHANNEL_A |
3337 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3338 DE_POISON);
3339 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3340 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3341 DE_DP_A_HOTPLUG);
3342 }
3343
3344 dev_priv->irq_mask = ~display_mask;
3345
3346 I915_WRITE(HWSTAM, 0xeffe);
3347
3348 ibx_irq_pre_postinstall(dev);
3349
3350 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3351
3352 gen5_gt_irq_postinstall(dev);
3353
3354 ilk_hpd_detection_setup(dev_priv);
3355
3356 ibx_irq_postinstall(dev);
3357
3358 if (IS_IRONLAKE_M(dev_priv)) {
3359 /* Enable PCU event interrupts
3360 *
3361 * spinlocking not required here for correctness since interrupt
3362 * setup is guaranteed to run in single-threaded context. But we
3363 * need it to make the assert_spin_locked happy. */
3364 spin_lock_irq(&dev_priv->irq_lock);
3365 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3366 spin_unlock_irq(&dev_priv->irq_lock);
3367 }
3368
3369 return 0;
3370 }
3371
3372 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3373 {
3374 lockdep_assert_held(&dev_priv->irq_lock);
3375
3376 if (dev_priv->display_irqs_enabled)
3377 return;
3378
3379 dev_priv->display_irqs_enabled = true;
3380
3381 if (intel_irqs_enabled(dev_priv)) {
3382 vlv_display_irq_reset(dev_priv);
3383 vlv_display_irq_postinstall(dev_priv);
3384 }
3385 }
3386
3387 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3388 {
3389 lockdep_assert_held(&dev_priv->irq_lock);
3390
3391 if (!dev_priv->display_irqs_enabled)
3392 return;
3393
3394 dev_priv->display_irqs_enabled = false;
3395
3396 if (intel_irqs_enabled(dev_priv))
3397 vlv_display_irq_reset(dev_priv);
3398 }
3399
3400
3401 static int valleyview_irq_postinstall(struct drm_device *dev)
3402 {
3403 struct drm_i915_private *dev_priv = to_i915(dev);
3404
3405 gen5_gt_irq_postinstall(dev);
3406
3407 spin_lock_irq(&dev_priv->irq_lock);
3408 if (dev_priv->display_irqs_enabled)
3409 vlv_display_irq_postinstall(dev_priv);
3410 spin_unlock_irq(&dev_priv->irq_lock);
3411
3412 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3413 POSTING_READ(VLV_MASTER_IER);
3414
3415 return 0;
3416 }
3417
3418 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3419 {
3420 /* These are interrupts we'll toggle with the ring mask register */
3421 uint32_t gt_interrupts[] = {
3422 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3423 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3424 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3425 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3426 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3427 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3428 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3429 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3430 0,
3431 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3432 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3433 };
3434
3435 if (HAS_L3_DPF(dev_priv))
3436 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3437
3438 dev_priv->pm_ier = 0x0;
3439 dev_priv->pm_imr = ~dev_priv->pm_ier;
3440 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3441 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3442 /*
3443 * RPS interrupts will get enabled/disabled on demand when RPS itself
3444 * is enabled/disabled. Same wil be the case for GuC interrupts.
3445 */
3446 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3447 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3448 }
3449
3450 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3451 {
3452 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3453 uint32_t de_pipe_enables;
3454 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3455 u32 de_port_enables;
3456 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3457 enum pipe pipe;
3458
3459 if (INTEL_GEN(dev_priv) >= 9) {
3460 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3461 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3462 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3463 GEN9_AUX_CHANNEL_D;
3464 if (IS_GEN9_LP(dev_priv))
3465 de_port_masked |= BXT_DE_PORT_GMBUS;
3466 } else {
3467 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3468 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3469 }
3470
3471 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3472 GEN8_PIPE_FIFO_UNDERRUN;
3473
3474 de_port_enables = de_port_masked;
3475 if (IS_GEN9_LP(dev_priv))
3476 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3477 else if (IS_BROADWELL(dev_priv))
3478 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3479
3480 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3481 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3482 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3483
3484 for_each_pipe(dev_priv, pipe)
3485 if (intel_display_power_is_enabled(dev_priv,
3486 POWER_DOMAIN_PIPE(pipe)))
3487 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3488 dev_priv->de_irq_mask[pipe],
3489 de_pipe_enables);
3490
3491 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3492 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3493
3494 if (IS_GEN9_LP(dev_priv))
3495 bxt_hpd_detection_setup(dev_priv);
3496 else if (IS_BROADWELL(dev_priv))
3497 ilk_hpd_detection_setup(dev_priv);
3498 }
3499
3500 static int gen8_irq_postinstall(struct drm_device *dev)
3501 {
3502 struct drm_i915_private *dev_priv = to_i915(dev);
3503
3504 if (HAS_PCH_SPLIT(dev_priv))
3505 ibx_irq_pre_postinstall(dev);
3506
3507 gen8_gt_irq_postinstall(dev_priv);
3508 gen8_de_irq_postinstall(dev_priv);
3509
3510 if (HAS_PCH_SPLIT(dev_priv))
3511 ibx_irq_postinstall(dev);
3512
3513 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3514 POSTING_READ(GEN8_MASTER_IRQ);
3515
3516 return 0;
3517 }
3518
3519 static int cherryview_irq_postinstall(struct drm_device *dev)
3520 {
3521 struct drm_i915_private *dev_priv = to_i915(dev);
3522
3523 gen8_gt_irq_postinstall(dev_priv);
3524
3525 spin_lock_irq(&dev_priv->irq_lock);
3526 if (dev_priv->display_irqs_enabled)
3527 vlv_display_irq_postinstall(dev_priv);
3528 spin_unlock_irq(&dev_priv->irq_lock);
3529
3530 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3531 POSTING_READ(GEN8_MASTER_IRQ);
3532
3533 return 0;
3534 }
3535
3536 static void gen8_irq_uninstall(struct drm_device *dev)
3537 {
3538 struct drm_i915_private *dev_priv = to_i915(dev);
3539
3540 if (!dev_priv)
3541 return;
3542
3543 gen8_irq_reset(dev);
3544 }
3545
3546 static void valleyview_irq_uninstall(struct drm_device *dev)
3547 {
3548 struct drm_i915_private *dev_priv = to_i915(dev);
3549
3550 if (!dev_priv)
3551 return;
3552
3553 I915_WRITE(VLV_MASTER_IER, 0);
3554 POSTING_READ(VLV_MASTER_IER);
3555
3556 gen5_gt_irq_reset(dev_priv);
3557
3558 I915_WRITE(HWSTAM, 0xffffffff);
3559
3560 spin_lock_irq(&dev_priv->irq_lock);
3561 if (dev_priv->display_irqs_enabled)
3562 vlv_display_irq_reset(dev_priv);
3563 spin_unlock_irq(&dev_priv->irq_lock);
3564 }
3565
3566 static void cherryview_irq_uninstall(struct drm_device *dev)
3567 {
3568 struct drm_i915_private *dev_priv = to_i915(dev);
3569
3570 if (!dev_priv)
3571 return;
3572
3573 I915_WRITE(GEN8_MASTER_IRQ, 0);
3574 POSTING_READ(GEN8_MASTER_IRQ);
3575
3576 gen8_gt_irq_reset(dev_priv);
3577
3578 GEN5_IRQ_RESET(GEN8_PCU_);
3579
3580 spin_lock_irq(&dev_priv->irq_lock);
3581 if (dev_priv->display_irqs_enabled)
3582 vlv_display_irq_reset(dev_priv);
3583 spin_unlock_irq(&dev_priv->irq_lock);
3584 }
3585
3586 static void ironlake_irq_uninstall(struct drm_device *dev)
3587 {
3588 struct drm_i915_private *dev_priv = to_i915(dev);
3589
3590 if (!dev_priv)
3591 return;
3592
3593 ironlake_irq_reset(dev);
3594 }
3595
3596 static void i8xx_irq_preinstall(struct drm_device * dev)
3597 {
3598 struct drm_i915_private *dev_priv = to_i915(dev);
3599 int pipe;
3600
3601 for_each_pipe(dev_priv, pipe)
3602 I915_WRITE(PIPESTAT(pipe), 0);
3603 I915_WRITE16(IMR, 0xffff);
3604 I915_WRITE16(IER, 0x0);
3605 POSTING_READ16(IER);
3606 }
3607
3608 static int i8xx_irq_postinstall(struct drm_device *dev)
3609 {
3610 struct drm_i915_private *dev_priv = to_i915(dev);
3611
3612 I915_WRITE16(EMR,
3613 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3614
3615 /* Unmask the interrupts that we always want on. */
3616 dev_priv->irq_mask =
3617 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3618 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3619 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3620 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3621 I915_WRITE16(IMR, dev_priv->irq_mask);
3622
3623 I915_WRITE16(IER,
3624 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3625 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3626 I915_USER_INTERRUPT);
3627 POSTING_READ16(IER);
3628
3629 /* Interrupt setup is already guaranteed to be single-threaded, this is
3630 * just to make the assert_spin_locked check happy. */
3631 spin_lock_irq(&dev_priv->irq_lock);
3632 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3633 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3634 spin_unlock_irq(&dev_priv->irq_lock);
3635
3636 return 0;
3637 }
3638
3639 /*
3640 * Returns true when a page flip has completed.
3641 */
3642 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3643 {
3644 struct drm_device *dev = arg;
3645 struct drm_i915_private *dev_priv = to_i915(dev);
3646 u16 iir, new_iir;
3647 u32 pipe_stats[2];
3648 int pipe;
3649 irqreturn_t ret;
3650
3651 if (!intel_irqs_enabled(dev_priv))
3652 return IRQ_NONE;
3653
3654 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3655 disable_rpm_wakeref_asserts(dev_priv);
3656
3657 ret = IRQ_NONE;
3658 iir = I915_READ16(IIR);
3659 if (iir == 0)
3660 goto out;
3661
3662 while (iir) {
3663 /* Can't rely on pipestat interrupt bit in iir as it might
3664 * have been cleared after the pipestat interrupt was received.
3665 * It doesn't set the bit in iir again, but it still produces
3666 * interrupts (for non-MSI).
3667 */
3668 spin_lock(&dev_priv->irq_lock);
3669 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3670 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3671
3672 for_each_pipe(dev_priv, pipe) {
3673 i915_reg_t reg = PIPESTAT(pipe);
3674 pipe_stats[pipe] = I915_READ(reg);
3675
3676 /*
3677 * Clear the PIPE*STAT regs before the IIR
3678 */
3679 if (pipe_stats[pipe] & 0x8000ffff)
3680 I915_WRITE(reg, pipe_stats[pipe]);
3681 }
3682 spin_unlock(&dev_priv->irq_lock);
3683
3684 I915_WRITE16(IIR, iir);
3685 new_iir = I915_READ16(IIR); /* Flush posted writes */
3686
3687 if (iir & I915_USER_INTERRUPT)
3688 notify_ring(dev_priv->engine[RCS]);
3689
3690 for_each_pipe(dev_priv, pipe) {
3691 int plane = pipe;
3692 if (HAS_FBC(dev_priv))
3693 plane = !plane;
3694
3695 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3696 drm_handle_vblank(&dev_priv->drm, pipe);
3697
3698 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3699 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3700
3701 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3702 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3703 pipe);
3704 }
3705
3706 iir = new_iir;
3707 }
3708 ret = IRQ_HANDLED;
3709
3710 out:
3711 enable_rpm_wakeref_asserts(dev_priv);
3712
3713 return ret;
3714 }
3715
3716 static void i8xx_irq_uninstall(struct drm_device * dev)
3717 {
3718 struct drm_i915_private *dev_priv = to_i915(dev);
3719 int pipe;
3720
3721 for_each_pipe(dev_priv, pipe) {
3722 /* Clear enable bits; then clear status bits */
3723 I915_WRITE(PIPESTAT(pipe), 0);
3724 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3725 }
3726 I915_WRITE16(IMR, 0xffff);
3727 I915_WRITE16(IER, 0x0);
3728 I915_WRITE16(IIR, I915_READ16(IIR));
3729 }
3730
3731 static void i915_irq_preinstall(struct drm_device * dev)
3732 {
3733 struct drm_i915_private *dev_priv = to_i915(dev);
3734 int pipe;
3735
3736 if (I915_HAS_HOTPLUG(dev_priv)) {
3737 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3738 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3739 }
3740
3741 I915_WRITE16(HWSTAM, 0xeffe);
3742 for_each_pipe(dev_priv, pipe)
3743 I915_WRITE(PIPESTAT(pipe), 0);
3744 I915_WRITE(IMR, 0xffffffff);
3745 I915_WRITE(IER, 0x0);
3746 POSTING_READ(IER);
3747 }
3748
3749 static int i915_irq_postinstall(struct drm_device *dev)
3750 {
3751 struct drm_i915_private *dev_priv = to_i915(dev);
3752 u32 enable_mask;
3753
3754 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3755
3756 /* Unmask the interrupts that we always want on. */
3757 dev_priv->irq_mask =
3758 ~(I915_ASLE_INTERRUPT |
3759 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3760 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3761 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3762 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3763
3764 enable_mask =
3765 I915_ASLE_INTERRUPT |
3766 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3767 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3768 I915_USER_INTERRUPT;
3769
3770 if (I915_HAS_HOTPLUG(dev_priv)) {
3771 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3772 POSTING_READ(PORT_HOTPLUG_EN);
3773
3774 /* Enable in IER... */
3775 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3776 /* and unmask in IMR */
3777 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3778 }
3779
3780 I915_WRITE(IMR, dev_priv->irq_mask);
3781 I915_WRITE(IER, enable_mask);
3782 POSTING_READ(IER);
3783
3784 i915_enable_asle_pipestat(dev_priv);
3785
3786 /* Interrupt setup is already guaranteed to be single-threaded, this is
3787 * just to make the assert_spin_locked check happy. */
3788 spin_lock_irq(&dev_priv->irq_lock);
3789 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3790 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3791 spin_unlock_irq(&dev_priv->irq_lock);
3792
3793 return 0;
3794 }
3795
3796 static irqreturn_t i915_irq_handler(int irq, void *arg)
3797 {
3798 struct drm_device *dev = arg;
3799 struct drm_i915_private *dev_priv = to_i915(dev);
3800 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3801 int pipe, ret = IRQ_NONE;
3802
3803 if (!intel_irqs_enabled(dev_priv))
3804 return IRQ_NONE;
3805
3806 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3807 disable_rpm_wakeref_asserts(dev_priv);
3808
3809 iir = I915_READ(IIR);
3810 do {
3811 bool irq_received = (iir) != 0;
3812 bool blc_event = false;
3813
3814 /* Can't rely on pipestat interrupt bit in iir as it might
3815 * have been cleared after the pipestat interrupt was received.
3816 * It doesn't set the bit in iir again, but it still produces
3817 * interrupts (for non-MSI).
3818 */
3819 spin_lock(&dev_priv->irq_lock);
3820 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3821 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3822
3823 for_each_pipe(dev_priv, pipe) {
3824 i915_reg_t reg = PIPESTAT(pipe);
3825 pipe_stats[pipe] = I915_READ(reg);
3826
3827 /* Clear the PIPE*STAT regs before the IIR */
3828 if (pipe_stats[pipe] & 0x8000ffff) {
3829 I915_WRITE(reg, pipe_stats[pipe]);
3830 irq_received = true;
3831 }
3832 }
3833 spin_unlock(&dev_priv->irq_lock);
3834
3835 if (!irq_received)
3836 break;
3837
3838 /* Consume port. Then clear IIR or we'll miss events */
3839 if (I915_HAS_HOTPLUG(dev_priv) &&
3840 iir & I915_DISPLAY_PORT_INTERRUPT) {
3841 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3842 if (hotplug_status)
3843 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3844 }
3845
3846 I915_WRITE(IIR, iir);
3847 new_iir = I915_READ(IIR); /* Flush posted writes */
3848
3849 if (iir & I915_USER_INTERRUPT)
3850 notify_ring(dev_priv->engine[RCS]);
3851
3852 for_each_pipe(dev_priv, pipe) {
3853 int plane = pipe;
3854 if (HAS_FBC(dev_priv))
3855 plane = !plane;
3856
3857 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3858 drm_handle_vblank(&dev_priv->drm, pipe);
3859
3860 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3861 blc_event = true;
3862
3863 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3864 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3865
3866 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3867 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3868 pipe);
3869 }
3870
3871 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3872 intel_opregion_asle_intr(dev_priv);
3873
3874 /* With MSI, interrupts are only generated when iir
3875 * transitions from zero to nonzero. If another bit got
3876 * set while we were handling the existing iir bits, then
3877 * we would never get another interrupt.
3878 *
3879 * This is fine on non-MSI as well, as if we hit this path
3880 * we avoid exiting the interrupt handler only to generate
3881 * another one.
3882 *
3883 * Note that for MSI this could cause a stray interrupt report
3884 * if an interrupt landed in the time between writing IIR and
3885 * the posting read. This should be rare enough to never
3886 * trigger the 99% of 100,000 interrupts test for disabling
3887 * stray interrupts.
3888 */
3889 ret = IRQ_HANDLED;
3890 iir = new_iir;
3891 } while (iir);
3892
3893 enable_rpm_wakeref_asserts(dev_priv);
3894
3895 return ret;
3896 }
3897
3898 static void i915_irq_uninstall(struct drm_device * dev)
3899 {
3900 struct drm_i915_private *dev_priv = to_i915(dev);
3901 int pipe;
3902
3903 if (I915_HAS_HOTPLUG(dev_priv)) {
3904 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3905 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3906 }
3907
3908 I915_WRITE16(HWSTAM, 0xffff);
3909 for_each_pipe(dev_priv, pipe) {
3910 /* Clear enable bits; then clear status bits */
3911 I915_WRITE(PIPESTAT(pipe), 0);
3912 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3913 }
3914 I915_WRITE(IMR, 0xffffffff);
3915 I915_WRITE(IER, 0x0);
3916
3917 I915_WRITE(IIR, I915_READ(IIR));
3918 }
3919
3920 static void i965_irq_preinstall(struct drm_device * dev)
3921 {
3922 struct drm_i915_private *dev_priv = to_i915(dev);
3923 int pipe;
3924
3925 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3926 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3927
3928 I915_WRITE(HWSTAM, 0xeffe);
3929 for_each_pipe(dev_priv, pipe)
3930 I915_WRITE(PIPESTAT(pipe), 0);
3931 I915_WRITE(IMR, 0xffffffff);
3932 I915_WRITE(IER, 0x0);
3933 POSTING_READ(IER);
3934 }
3935
3936 static int i965_irq_postinstall(struct drm_device *dev)
3937 {
3938 struct drm_i915_private *dev_priv = to_i915(dev);
3939 u32 enable_mask;
3940 u32 error_mask;
3941
3942 /* Unmask the interrupts that we always want on. */
3943 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3944 I915_DISPLAY_PORT_INTERRUPT |
3945 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3946 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3947 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3948 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3949 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3950
3951 enable_mask = ~dev_priv->irq_mask;
3952 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3953 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3954 enable_mask |= I915_USER_INTERRUPT;
3955
3956 if (IS_G4X(dev_priv))
3957 enable_mask |= I915_BSD_USER_INTERRUPT;
3958
3959 /* Interrupt setup is already guaranteed to be single-threaded, this is
3960 * just to make the assert_spin_locked check happy. */
3961 spin_lock_irq(&dev_priv->irq_lock);
3962 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3963 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3964 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3965 spin_unlock_irq(&dev_priv->irq_lock);
3966
3967 /*
3968 * Enable some error detection, note the instruction error mask
3969 * bit is reserved, so we leave it masked.
3970 */
3971 if (IS_G4X(dev_priv)) {
3972 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3973 GM45_ERROR_MEM_PRIV |
3974 GM45_ERROR_CP_PRIV |
3975 I915_ERROR_MEMORY_REFRESH);
3976 } else {
3977 error_mask = ~(I915_ERROR_PAGE_TABLE |
3978 I915_ERROR_MEMORY_REFRESH);
3979 }
3980 I915_WRITE(EMR, error_mask);
3981
3982 I915_WRITE(IMR, dev_priv->irq_mask);
3983 I915_WRITE(IER, enable_mask);
3984 POSTING_READ(IER);
3985
3986 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3987 POSTING_READ(PORT_HOTPLUG_EN);
3988
3989 i915_enable_asle_pipestat(dev_priv);
3990
3991 return 0;
3992 }
3993
3994 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3995 {
3996 u32 hotplug_en;
3997
3998 lockdep_assert_held(&dev_priv->irq_lock);
3999
4000 /* Note HDMI and DP share hotplug bits */
4001 /* enable bits are the same for all generations */
4002 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4003 /* Programming the CRT detection parameters tends
4004 to generate a spurious hotplug event about three
4005 seconds later. So just do it once.
4006 */
4007 if (IS_G4X(dev_priv))
4008 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4009 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4010
4011 /* Ignore TV since it's buggy */
4012 i915_hotplug_interrupt_update_locked(dev_priv,
4013 HOTPLUG_INT_EN_MASK |
4014 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4015 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4016 hotplug_en);
4017 }
4018
4019 static irqreturn_t i965_irq_handler(int irq, void *arg)
4020 {
4021 struct drm_device *dev = arg;
4022 struct drm_i915_private *dev_priv = to_i915(dev);
4023 u32 iir, new_iir;
4024 u32 pipe_stats[I915_MAX_PIPES];
4025 int ret = IRQ_NONE, pipe;
4026
4027 if (!intel_irqs_enabled(dev_priv))
4028 return IRQ_NONE;
4029
4030 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4031 disable_rpm_wakeref_asserts(dev_priv);
4032
4033 iir = I915_READ(IIR);
4034
4035 for (;;) {
4036 bool irq_received = (iir) != 0;
4037 bool blc_event = false;
4038
4039 /* Can't rely on pipestat interrupt bit in iir as it might
4040 * have been cleared after the pipestat interrupt was received.
4041 * It doesn't set the bit in iir again, but it still produces
4042 * interrupts (for non-MSI).
4043 */
4044 spin_lock(&dev_priv->irq_lock);
4045 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4046 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4047
4048 for_each_pipe(dev_priv, pipe) {
4049 i915_reg_t reg = PIPESTAT(pipe);
4050 pipe_stats[pipe] = I915_READ(reg);
4051
4052 /*
4053 * Clear the PIPE*STAT regs before the IIR
4054 */
4055 if (pipe_stats[pipe] & 0x8000ffff) {
4056 I915_WRITE(reg, pipe_stats[pipe]);
4057 irq_received = true;
4058 }
4059 }
4060 spin_unlock(&dev_priv->irq_lock);
4061
4062 if (!irq_received)
4063 break;
4064
4065 ret = IRQ_HANDLED;
4066
4067 /* Consume port. Then clear IIR or we'll miss events */
4068 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4069 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4070 if (hotplug_status)
4071 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4072 }
4073
4074 I915_WRITE(IIR, iir);
4075 new_iir = I915_READ(IIR); /* Flush posted writes */
4076
4077 if (iir & I915_USER_INTERRUPT)
4078 notify_ring(dev_priv->engine[RCS]);
4079 if (iir & I915_BSD_USER_INTERRUPT)
4080 notify_ring(dev_priv->engine[VCS]);
4081
4082 for_each_pipe(dev_priv, pipe) {
4083 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4084 drm_handle_vblank(&dev_priv->drm, pipe);
4085
4086 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4087 blc_event = true;
4088
4089 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4090 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4091
4092 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4093 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4094 }
4095
4096 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4097 intel_opregion_asle_intr(dev_priv);
4098
4099 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4100 gmbus_irq_handler(dev_priv);
4101
4102 /* With MSI, interrupts are only generated when iir
4103 * transitions from zero to nonzero. If another bit got
4104 * set while we were handling the existing iir bits, then
4105 * we would never get another interrupt.
4106 *
4107 * This is fine on non-MSI as well, as if we hit this path
4108 * we avoid exiting the interrupt handler only to generate
4109 * another one.
4110 *
4111 * Note that for MSI this could cause a stray interrupt report
4112 * if an interrupt landed in the time between writing IIR and
4113 * the posting read. This should be rare enough to never
4114 * trigger the 99% of 100,000 interrupts test for disabling
4115 * stray interrupts.
4116 */
4117 iir = new_iir;
4118 }
4119
4120 enable_rpm_wakeref_asserts(dev_priv);
4121
4122 return ret;
4123 }
4124
4125 static void i965_irq_uninstall(struct drm_device * dev)
4126 {
4127 struct drm_i915_private *dev_priv = to_i915(dev);
4128 int pipe;
4129
4130 if (!dev_priv)
4131 return;
4132
4133 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4134 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4135
4136 I915_WRITE(HWSTAM, 0xffffffff);
4137 for_each_pipe(dev_priv, pipe)
4138 I915_WRITE(PIPESTAT(pipe), 0);
4139 I915_WRITE(IMR, 0xffffffff);
4140 I915_WRITE(IER, 0x0);
4141
4142 for_each_pipe(dev_priv, pipe)
4143 I915_WRITE(PIPESTAT(pipe),
4144 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4145 I915_WRITE(IIR, I915_READ(IIR));
4146 }
4147
4148 /**
4149 * intel_irq_init - initializes irq support
4150 * @dev_priv: i915 device instance
4151 *
4152 * This function initializes all the irq support including work items, timers
4153 * and all the vtables. It does not setup the interrupt itself though.
4154 */
4155 void intel_irq_init(struct drm_i915_private *dev_priv)
4156 {
4157 struct drm_device *dev = &dev_priv->drm;
4158 int i;
4159
4160 intel_hpd_init_work(dev_priv);
4161
4162 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4163
4164 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4165 for (i = 0; i < MAX_L3_SLICES; ++i)
4166 dev_priv->l3_parity.remap_info[i] = NULL;
4167
4168 if (HAS_GUC_SCHED(dev_priv))
4169 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4170
4171 /* Let's track the enabled rps events */
4172 if (IS_VALLEYVIEW(dev_priv))
4173 /* WaGsvRC0ResidencyMethod:vlv */
4174 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4175 else
4176 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4177
4178 dev_priv->rps.pm_intrmsk_mbz = 0;
4179
4180 /*
4181 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4182 * if GEN6_PM_UP_EI_EXPIRED is masked.
4183 *
4184 * TODO: verify if this can be reproduced on VLV,CHV.
4185 */
4186 if (INTEL_GEN(dev_priv) <= 7)
4187 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4188
4189 if (INTEL_GEN(dev_priv) >= 8)
4190 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4191
4192 if (IS_GEN2(dev_priv)) {
4193 /* Gen2 doesn't have a hardware frame counter */
4194 dev->max_vblank_count = 0;
4195 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4196 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4197 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4198 } else {
4199 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4200 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4201 }
4202
4203 /*
4204 * Opt out of the vblank disable timer on everything except gen2.
4205 * Gen2 doesn't have a hardware frame counter and so depends on
4206 * vblank interrupts to produce sane vblank seuquence numbers.
4207 */
4208 if (!IS_GEN2(dev_priv))
4209 dev->vblank_disable_immediate = true;
4210
4211 /* Most platforms treat the display irq block as an always-on
4212 * power domain. vlv/chv can disable it at runtime and need
4213 * special care to avoid writing any of the display block registers
4214 * outside of the power domain. We defer setting up the display irqs
4215 * in this case to the runtime pm.
4216 */
4217 dev_priv->display_irqs_enabled = true;
4218 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4219 dev_priv->display_irqs_enabled = false;
4220
4221 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4222
4223 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4224 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4225
4226 if (IS_CHERRYVIEW(dev_priv)) {
4227 dev->driver->irq_handler = cherryview_irq_handler;
4228 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4229 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4230 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4231 dev->driver->enable_vblank = i965_enable_vblank;
4232 dev->driver->disable_vblank = i965_disable_vblank;
4233 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4234 } else if (IS_VALLEYVIEW(dev_priv)) {
4235 dev->driver->irq_handler = valleyview_irq_handler;
4236 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4237 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4238 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4239 dev->driver->enable_vblank = i965_enable_vblank;
4240 dev->driver->disable_vblank = i965_disable_vblank;
4241 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4242 } else if (INTEL_GEN(dev_priv) >= 8) {
4243 dev->driver->irq_handler = gen8_irq_handler;
4244 dev->driver->irq_preinstall = gen8_irq_reset;
4245 dev->driver->irq_postinstall = gen8_irq_postinstall;
4246 dev->driver->irq_uninstall = gen8_irq_uninstall;
4247 dev->driver->enable_vblank = gen8_enable_vblank;
4248 dev->driver->disable_vblank = gen8_disable_vblank;
4249 if (IS_GEN9_LP(dev_priv))
4250 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4251 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4252 HAS_PCH_CNP(dev_priv))
4253 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4254 else
4255 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4256 } else if (HAS_PCH_SPLIT(dev_priv)) {
4257 dev->driver->irq_handler = ironlake_irq_handler;
4258 dev->driver->irq_preinstall = ironlake_irq_reset;
4259 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4260 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4261 dev->driver->enable_vblank = ironlake_enable_vblank;
4262 dev->driver->disable_vblank = ironlake_disable_vblank;
4263 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4264 } else {
4265 if (IS_GEN2(dev_priv)) {
4266 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4267 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4268 dev->driver->irq_handler = i8xx_irq_handler;
4269 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4270 dev->driver->enable_vblank = i8xx_enable_vblank;
4271 dev->driver->disable_vblank = i8xx_disable_vblank;
4272 } else if (IS_GEN3(dev_priv)) {
4273 dev->driver->irq_preinstall = i915_irq_preinstall;
4274 dev->driver->irq_postinstall = i915_irq_postinstall;
4275 dev->driver->irq_uninstall = i915_irq_uninstall;
4276 dev->driver->irq_handler = i915_irq_handler;
4277 dev->driver->enable_vblank = i8xx_enable_vblank;
4278 dev->driver->disable_vblank = i8xx_disable_vblank;
4279 } else {
4280 dev->driver->irq_preinstall = i965_irq_preinstall;
4281 dev->driver->irq_postinstall = i965_irq_postinstall;
4282 dev->driver->irq_uninstall = i965_irq_uninstall;
4283 dev->driver->irq_handler = i965_irq_handler;
4284 dev->driver->enable_vblank = i965_enable_vblank;
4285 dev->driver->disable_vblank = i965_disable_vblank;
4286 }
4287 if (I915_HAS_HOTPLUG(dev_priv))
4288 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4289 }
4290 }
4291
4292 /**
4293 * intel_irq_fini - deinitializes IRQ support
4294 * @i915: i915 device instance
4295 *
4296 * This function deinitializes all the IRQ support.
4297 */
4298 void intel_irq_fini(struct drm_i915_private *i915)
4299 {
4300 int i;
4301
4302 for (i = 0; i < MAX_L3_SLICES; ++i)
4303 kfree(i915->l3_parity.remap_info[i]);
4304 }
4305
4306 /**
4307 * intel_irq_install - enables the hardware interrupt
4308 * @dev_priv: i915 device instance
4309 *
4310 * This function enables the hardware interrupt handling, but leaves the hotplug
4311 * handling still disabled. It is called after intel_irq_init().
4312 *
4313 * In the driver load and resume code we need working interrupts in a few places
4314 * but don't want to deal with the hassle of concurrent probe and hotplug
4315 * workers. Hence the split into this two-stage approach.
4316 */
4317 int intel_irq_install(struct drm_i915_private *dev_priv)
4318 {
4319 /*
4320 * We enable some interrupt sources in our postinstall hooks, so mark
4321 * interrupts as enabled _before_ actually enabling them to avoid
4322 * special cases in our ordering checks.
4323 */
4324 dev_priv->pm.irqs_enabled = true;
4325
4326 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4327 }
4328
4329 /**
4330 * intel_irq_uninstall - finilizes all irq handling
4331 * @dev_priv: i915 device instance
4332 *
4333 * This stops interrupt and hotplug handling and unregisters and frees all
4334 * resources acquired in the init functions.
4335 */
4336 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4337 {
4338 drm_irq_uninstall(&dev_priv->drm);
4339 intel_hpd_cancel_work(dev_priv);
4340 dev_priv->pm.irqs_enabled = false;
4341 }
4342
4343 /**
4344 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4345 * @dev_priv: i915 device instance
4346 *
4347 * This function is used to disable interrupts at runtime, both in the runtime
4348 * pm and the system suspend/resume code.
4349 */
4350 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4351 {
4352 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4353 dev_priv->pm.irqs_enabled = false;
4354 synchronize_irq(dev_priv->drm.irq);
4355 }
4356
4357 /**
4358 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4359 * @dev_priv: i915 device instance
4360 *
4361 * This function is used to enable interrupts at runtime, both in the runtime
4362 * pm and the system suspend/resume code.
4363 */
4364 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4365 {
4366 dev_priv->pm.irqs_enabled = true;
4367 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4368 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4369 }