]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: merge HSW and SNB PM irq handlers
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 /**
108 * ilk_update_gt_irq - update GTIMR
109 * @dev_priv: driver private
110 * @interrupt_mask: mask of interrupt bits to update
111 * @enabled_irq_mask: mask of interrupt bits to enable
112 */
113 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
114 uint32_t interrupt_mask,
115 uint32_t enabled_irq_mask)
116 {
117 assert_spin_locked(&dev_priv->irq_lock);
118
119 dev_priv->gt_irq_mask &= ~interrupt_mask;
120 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
121 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
122 POSTING_READ(GTIMR);
123 }
124
125 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
126 {
127 ilk_update_gt_irq(dev_priv, mask, mask);
128 }
129
130 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
131 {
132 ilk_update_gt_irq(dev_priv, mask, 0);
133 }
134
135 /**
136 * snb_update_pm_irq - update GEN6_PMIMR
137 * @dev_priv: driver private
138 * @interrupt_mask: mask of interrupt bits to update
139 * @enabled_irq_mask: mask of interrupt bits to enable
140 */
141 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
142 uint32_t interrupt_mask,
143 uint32_t enabled_irq_mask)
144 {
145 uint32_t new_val;
146
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 new_val = dev_priv->pm_irq_mask;
150 new_val &= ~interrupt_mask;
151 new_val |= (~enabled_irq_mask & interrupt_mask);
152
153 if (new_val != dev_priv->pm_irq_mask) {
154 dev_priv->pm_irq_mask = new_val;
155 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
156 POSTING_READ(GEN6_PMIMR);
157 }
158 }
159
160 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
161 {
162 snb_update_pm_irq(dev_priv, mask, mask);
163 }
164
165 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
166 {
167 snb_update_pm_irq(dev_priv, mask, 0);
168 }
169
170 static bool ivb_can_enable_err_int(struct drm_device *dev)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct intel_crtc *crtc;
174 enum pipe pipe;
175
176 assert_spin_locked(&dev_priv->irq_lock);
177
178 for_each_pipe(pipe) {
179 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
180
181 if (crtc->cpu_fifo_underrun_disabled)
182 return false;
183 }
184
185 return true;
186 }
187
188 static bool cpt_can_enable_serr_int(struct drm_device *dev)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 enum pipe pipe;
192 struct intel_crtc *crtc;
193
194 assert_spin_locked(&dev_priv->irq_lock);
195
196 for_each_pipe(pipe) {
197 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
198
199 if (crtc->pch_fifo_underrun_disabled)
200 return false;
201 }
202
203 return true;
204 }
205
206 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
207 enum pipe pipe, bool enable)
208 {
209 struct drm_i915_private *dev_priv = dev->dev_private;
210 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
211 DE_PIPEB_FIFO_UNDERRUN;
212
213 if (enable)
214 ironlake_enable_display_irq(dev_priv, bit);
215 else
216 ironlake_disable_display_irq(dev_priv, bit);
217 }
218
219 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
220 enum pipe pipe, bool enable)
221 {
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 if (enable) {
224 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
225
226 if (!ivb_can_enable_err_int(dev))
227 return;
228
229 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
230 } else {
231 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
232
233 /* Change the state _after_ we've read out the current one. */
234 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
235
236 if (!was_enabled &&
237 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
238 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
239 pipe_name(pipe));
240 }
241 }
242 }
243
244 /**
245 * ibx_display_interrupt_update - update SDEIMR
246 * @dev_priv: driver private
247 * @interrupt_mask: mask of interrupt bits to update
248 * @enabled_irq_mask: mask of interrupt bits to enable
249 */
250 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
251 uint32_t interrupt_mask,
252 uint32_t enabled_irq_mask)
253 {
254 uint32_t sdeimr = I915_READ(SDEIMR);
255 sdeimr &= ~interrupt_mask;
256 sdeimr |= (~enabled_irq_mask & interrupt_mask);
257
258 assert_spin_locked(&dev_priv->irq_lock);
259
260 I915_WRITE(SDEIMR, sdeimr);
261 POSTING_READ(SDEIMR);
262 }
263 #define ibx_enable_display_interrupt(dev_priv, bits) \
264 ibx_display_interrupt_update((dev_priv), (bits), (bits))
265 #define ibx_disable_display_interrupt(dev_priv, bits) \
266 ibx_display_interrupt_update((dev_priv), (bits), 0)
267
268 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
269 enum transcoder pch_transcoder,
270 bool enable)
271 {
272 struct drm_i915_private *dev_priv = dev->dev_private;
273 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
274 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
275
276 if (enable)
277 ibx_enable_display_interrupt(dev_priv, bit);
278 else
279 ibx_disable_display_interrupt(dev_priv, bit);
280 }
281
282 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
283 enum transcoder pch_transcoder,
284 bool enable)
285 {
286 struct drm_i915_private *dev_priv = dev->dev_private;
287
288 if (enable) {
289 I915_WRITE(SERR_INT,
290 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
291
292 if (!cpt_can_enable_serr_int(dev))
293 return;
294
295 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
296 } else {
297 uint32_t tmp = I915_READ(SERR_INT);
298 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
299
300 /* Change the state _after_ we've read out the current one. */
301 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
302
303 if (!was_enabled &&
304 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
305 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
306 transcoder_name(pch_transcoder));
307 }
308 }
309 }
310
311 /**
312 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
313 * @dev: drm device
314 * @pipe: pipe
315 * @enable: true if we want to report FIFO underrun errors, false otherwise
316 *
317 * This function makes us disable or enable CPU fifo underruns for a specific
318 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
319 * reporting for one pipe may also disable all the other CPU error interruts for
320 * the other pipes, due to the fact that there's just one interrupt mask/enable
321 * bit for all the pipes.
322 *
323 * Returns the previous state of underrun reporting.
324 */
325 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
326 enum pipe pipe, bool enable)
327 {
328 struct drm_i915_private *dev_priv = dev->dev_private;
329 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
331 unsigned long flags;
332 bool ret;
333
334 spin_lock_irqsave(&dev_priv->irq_lock, flags);
335
336 ret = !intel_crtc->cpu_fifo_underrun_disabled;
337
338 if (enable == ret)
339 goto done;
340
341 intel_crtc->cpu_fifo_underrun_disabled = !enable;
342
343 if (IS_GEN5(dev) || IS_GEN6(dev))
344 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
345 else if (IS_GEN7(dev))
346 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
347
348 done:
349 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
350 return ret;
351 }
352
353 /**
354 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
355 * @dev: drm device
356 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
357 * @enable: true if we want to report FIFO underrun errors, false otherwise
358 *
359 * This function makes us disable or enable PCH fifo underruns for a specific
360 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
361 * underrun reporting for one transcoder may also disable all the other PCH
362 * error interruts for the other transcoders, due to the fact that there's just
363 * one interrupt mask/enable bit for all the transcoders.
364 *
365 * Returns the previous state of underrun reporting.
366 */
367 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
368 enum transcoder pch_transcoder,
369 bool enable)
370 {
371 struct drm_i915_private *dev_priv = dev->dev_private;
372 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
374 unsigned long flags;
375 bool ret;
376
377 /*
378 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
379 * has only one pch transcoder A that all pipes can use. To avoid racy
380 * pch transcoder -> pipe lookups from interrupt code simply store the
381 * underrun statistics in crtc A. Since we never expose this anywhere
382 * nor use it outside of the fifo underrun code here using the "wrong"
383 * crtc on LPT won't cause issues.
384 */
385
386 spin_lock_irqsave(&dev_priv->irq_lock, flags);
387
388 ret = !intel_crtc->pch_fifo_underrun_disabled;
389
390 if (enable == ret)
391 goto done;
392
393 intel_crtc->pch_fifo_underrun_disabled = !enable;
394
395 if (HAS_PCH_IBX(dev))
396 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
397 else
398 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
399
400 done:
401 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
402 return ret;
403 }
404
405
406 void
407 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
408 {
409 u32 reg = PIPESTAT(pipe);
410 u32 pipestat = I915_READ(reg) & 0x7fff0000;
411
412 assert_spin_locked(&dev_priv->irq_lock);
413
414 if ((pipestat & mask) == mask)
415 return;
416
417 /* Enable the interrupt, clear any pending status */
418 pipestat |= mask | (mask >> 16);
419 I915_WRITE(reg, pipestat);
420 POSTING_READ(reg);
421 }
422
423 void
424 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
425 {
426 u32 reg = PIPESTAT(pipe);
427 u32 pipestat = I915_READ(reg) & 0x7fff0000;
428
429 assert_spin_locked(&dev_priv->irq_lock);
430
431 if ((pipestat & mask) == 0)
432 return;
433
434 pipestat &= ~mask;
435 I915_WRITE(reg, pipestat);
436 POSTING_READ(reg);
437 }
438
439 /**
440 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
441 */
442 static void i915_enable_asle_pipestat(struct drm_device *dev)
443 {
444 drm_i915_private_t *dev_priv = dev->dev_private;
445 unsigned long irqflags;
446
447 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
448 return;
449
450 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
451
452 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
453 if (INTEL_INFO(dev)->gen >= 4)
454 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
455
456 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
457 }
458
459 /**
460 * i915_pipe_enabled - check if a pipe is enabled
461 * @dev: DRM device
462 * @pipe: pipe to check
463 *
464 * Reading certain registers when the pipe is disabled can hang the chip.
465 * Use this routine to make sure the PLL is running and the pipe is active
466 * before reading such registers if unsure.
467 */
468 static int
469 i915_pipe_enabled(struct drm_device *dev, int pipe)
470 {
471 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
472
473 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
474 /* Locking is horribly broken here, but whatever. */
475 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
477
478 return intel_crtc->active;
479 } else {
480 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
481 }
482 }
483
484 /* Called from drm generic code, passed a 'crtc', which
485 * we use as a pipe index
486 */
487 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
488 {
489 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
490 unsigned long high_frame;
491 unsigned long low_frame;
492 u32 high1, high2, low;
493
494 if (!i915_pipe_enabled(dev, pipe)) {
495 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
496 "pipe %c\n", pipe_name(pipe));
497 return 0;
498 }
499
500 high_frame = PIPEFRAME(pipe);
501 low_frame = PIPEFRAMEPIXEL(pipe);
502
503 /*
504 * High & low register fields aren't synchronized, so make sure
505 * we get a low value that's stable across two reads of the high
506 * register.
507 */
508 do {
509 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
510 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
511 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
512 } while (high1 != high2);
513
514 high1 >>= PIPE_FRAME_HIGH_SHIFT;
515 low >>= PIPE_FRAME_LOW_SHIFT;
516 return (high1 << 8) | low;
517 }
518
519 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
520 {
521 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
522 int reg = PIPE_FRMCOUNT_GM45(pipe);
523
524 if (!i915_pipe_enabled(dev, pipe)) {
525 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
526 "pipe %c\n", pipe_name(pipe));
527 return 0;
528 }
529
530 return I915_READ(reg);
531 }
532
533 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
534 int *vpos, int *hpos)
535 {
536 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
537 u32 vbl = 0, position = 0;
538 int vbl_start, vbl_end, htotal, vtotal;
539 bool in_vbl = true;
540 int ret = 0;
541 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
542 pipe);
543
544 if (!i915_pipe_enabled(dev, pipe)) {
545 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
546 "pipe %c\n", pipe_name(pipe));
547 return 0;
548 }
549
550 /* Get vtotal. */
551 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
552
553 if (INTEL_INFO(dev)->gen >= 4) {
554 /* No obvious pixelcount register. Only query vertical
555 * scanout position from Display scan line register.
556 */
557 position = I915_READ(PIPEDSL(pipe));
558
559 /* Decode into vertical scanout position. Don't have
560 * horizontal scanout position.
561 */
562 *vpos = position & 0x1fff;
563 *hpos = 0;
564 } else {
565 /* Have access to pixelcount since start of frame.
566 * We can split this into vertical and horizontal
567 * scanout position.
568 */
569 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
570
571 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
572 *vpos = position / htotal;
573 *hpos = position - (*vpos * htotal);
574 }
575
576 /* Query vblank area. */
577 vbl = I915_READ(VBLANK(cpu_transcoder));
578
579 /* Test position against vblank region. */
580 vbl_start = vbl & 0x1fff;
581 vbl_end = (vbl >> 16) & 0x1fff;
582
583 if ((*vpos < vbl_start) || (*vpos > vbl_end))
584 in_vbl = false;
585
586 /* Inside "upper part" of vblank area? Apply corrective offset: */
587 if (in_vbl && (*vpos >= vbl_start))
588 *vpos = *vpos - vtotal;
589
590 /* Readouts valid? */
591 if (vbl > 0)
592 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
593
594 /* In vblank? */
595 if (in_vbl)
596 ret |= DRM_SCANOUTPOS_INVBL;
597
598 return ret;
599 }
600
601 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
602 int *max_error,
603 struct timeval *vblank_time,
604 unsigned flags)
605 {
606 struct drm_crtc *crtc;
607
608 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
609 DRM_ERROR("Invalid crtc %d\n", pipe);
610 return -EINVAL;
611 }
612
613 /* Get drm_crtc to timestamp: */
614 crtc = intel_get_crtc_for_pipe(dev, pipe);
615 if (crtc == NULL) {
616 DRM_ERROR("Invalid crtc %d\n", pipe);
617 return -EINVAL;
618 }
619
620 if (!crtc->enabled) {
621 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
622 return -EBUSY;
623 }
624
625 /* Helper routine in DRM core does all the work: */
626 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
627 vblank_time, flags,
628 crtc);
629 }
630
631 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
632 {
633 enum drm_connector_status old_status;
634
635 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
636 old_status = connector->status;
637
638 connector->status = connector->funcs->detect(connector, false);
639 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
640 connector->base.id,
641 drm_get_connector_name(connector),
642 old_status, connector->status);
643 return (old_status != connector->status);
644 }
645
646 /*
647 * Handle hotplug events outside the interrupt handler proper.
648 */
649 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
650
651 static void i915_hotplug_work_func(struct work_struct *work)
652 {
653 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
654 hotplug_work);
655 struct drm_device *dev = dev_priv->dev;
656 struct drm_mode_config *mode_config = &dev->mode_config;
657 struct intel_connector *intel_connector;
658 struct intel_encoder *intel_encoder;
659 struct drm_connector *connector;
660 unsigned long irqflags;
661 bool hpd_disabled = false;
662 bool changed = false;
663 u32 hpd_event_bits;
664
665 /* HPD irq before everything is fully set up. */
666 if (!dev_priv->enable_hotplug_processing)
667 return;
668
669 mutex_lock(&mode_config->mutex);
670 DRM_DEBUG_KMS("running encoder hotplug functions\n");
671
672 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
673
674 hpd_event_bits = dev_priv->hpd_event_bits;
675 dev_priv->hpd_event_bits = 0;
676 list_for_each_entry(connector, &mode_config->connector_list, head) {
677 intel_connector = to_intel_connector(connector);
678 intel_encoder = intel_connector->encoder;
679 if (intel_encoder->hpd_pin > HPD_NONE &&
680 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
681 connector->polled == DRM_CONNECTOR_POLL_HPD) {
682 DRM_INFO("HPD interrupt storm detected on connector %s: "
683 "switching from hotplug detection to polling\n",
684 drm_get_connector_name(connector));
685 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
686 connector->polled = DRM_CONNECTOR_POLL_CONNECT
687 | DRM_CONNECTOR_POLL_DISCONNECT;
688 hpd_disabled = true;
689 }
690 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
691 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
692 drm_get_connector_name(connector), intel_encoder->hpd_pin);
693 }
694 }
695 /* if there were no outputs to poll, poll was disabled,
696 * therefore make sure it's enabled when disabling HPD on
697 * some connectors */
698 if (hpd_disabled) {
699 drm_kms_helper_poll_enable(dev);
700 mod_timer(&dev_priv->hotplug_reenable_timer,
701 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
702 }
703
704 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
705
706 list_for_each_entry(connector, &mode_config->connector_list, head) {
707 intel_connector = to_intel_connector(connector);
708 intel_encoder = intel_connector->encoder;
709 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
710 if (intel_encoder->hot_plug)
711 intel_encoder->hot_plug(intel_encoder);
712 if (intel_hpd_irq_event(dev, connector))
713 changed = true;
714 }
715 }
716 mutex_unlock(&mode_config->mutex);
717
718 if (changed)
719 drm_kms_helper_hotplug_event(dev);
720 }
721
722 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
723 {
724 drm_i915_private_t *dev_priv = dev->dev_private;
725 u32 busy_up, busy_down, max_avg, min_avg;
726 u8 new_delay;
727
728 spin_lock(&mchdev_lock);
729
730 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
731
732 new_delay = dev_priv->ips.cur_delay;
733
734 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
735 busy_up = I915_READ(RCPREVBSYTUPAVG);
736 busy_down = I915_READ(RCPREVBSYTDNAVG);
737 max_avg = I915_READ(RCBMAXAVG);
738 min_avg = I915_READ(RCBMINAVG);
739
740 /* Handle RCS change request from hw */
741 if (busy_up > max_avg) {
742 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
743 new_delay = dev_priv->ips.cur_delay - 1;
744 if (new_delay < dev_priv->ips.max_delay)
745 new_delay = dev_priv->ips.max_delay;
746 } else if (busy_down < min_avg) {
747 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
748 new_delay = dev_priv->ips.cur_delay + 1;
749 if (new_delay > dev_priv->ips.min_delay)
750 new_delay = dev_priv->ips.min_delay;
751 }
752
753 if (ironlake_set_drps(dev, new_delay))
754 dev_priv->ips.cur_delay = new_delay;
755
756 spin_unlock(&mchdev_lock);
757
758 return;
759 }
760
761 static void notify_ring(struct drm_device *dev,
762 struct intel_ring_buffer *ring)
763 {
764 if (ring->obj == NULL)
765 return;
766
767 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
768
769 wake_up_all(&ring->irq_queue);
770 i915_queue_hangcheck(dev);
771 }
772
773 static void gen6_pm_rps_work(struct work_struct *work)
774 {
775 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
776 rps.work);
777 u32 pm_iir;
778 u8 new_delay;
779
780 spin_lock_irq(&dev_priv->irq_lock);
781 pm_iir = dev_priv->rps.pm_iir;
782 dev_priv->rps.pm_iir = 0;
783 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
784 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
785 spin_unlock_irq(&dev_priv->irq_lock);
786
787 /* Make sure we didn't queue anything we're not going to process. */
788 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
789
790 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
791 return;
792
793 mutex_lock(&dev_priv->rps.hw_lock);
794
795 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
796 new_delay = dev_priv->rps.cur_delay + 1;
797
798 /*
799 * For better performance, jump directly
800 * to RPe if we're below it.
801 */
802 if (IS_VALLEYVIEW(dev_priv->dev) &&
803 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
804 new_delay = dev_priv->rps.rpe_delay;
805 } else
806 new_delay = dev_priv->rps.cur_delay - 1;
807
808 /* sysfs frequency interfaces may have snuck in while servicing the
809 * interrupt
810 */
811 if (new_delay >= dev_priv->rps.min_delay &&
812 new_delay <= dev_priv->rps.max_delay) {
813 if (IS_VALLEYVIEW(dev_priv->dev))
814 valleyview_set_rps(dev_priv->dev, new_delay);
815 else
816 gen6_set_rps(dev_priv->dev, new_delay);
817 }
818
819 if (IS_VALLEYVIEW(dev_priv->dev)) {
820 /*
821 * On VLV, when we enter RC6 we may not be at the minimum
822 * voltage level, so arm a timer to check. It should only
823 * fire when there's activity or once after we've entered
824 * RC6, and then won't be re-armed until the next RPS interrupt.
825 */
826 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
827 msecs_to_jiffies(100));
828 }
829
830 mutex_unlock(&dev_priv->rps.hw_lock);
831 }
832
833
834 /**
835 * ivybridge_parity_work - Workqueue called when a parity error interrupt
836 * occurred.
837 * @work: workqueue struct
838 *
839 * Doesn't actually do anything except notify userspace. As a consequence of
840 * this event, userspace should try to remap the bad rows since statistically
841 * it is likely the same row is more likely to go bad again.
842 */
843 static void ivybridge_parity_work(struct work_struct *work)
844 {
845 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
846 l3_parity.error_work);
847 u32 error_status, row, bank, subbank;
848 char *parity_event[5];
849 uint32_t misccpctl;
850 unsigned long flags;
851
852 /* We must turn off DOP level clock gating to access the L3 registers.
853 * In order to prevent a get/put style interface, acquire struct mutex
854 * any time we access those registers.
855 */
856 mutex_lock(&dev_priv->dev->struct_mutex);
857
858 misccpctl = I915_READ(GEN7_MISCCPCTL);
859 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
860 POSTING_READ(GEN7_MISCCPCTL);
861
862 error_status = I915_READ(GEN7_L3CDERRST1);
863 row = GEN7_PARITY_ERROR_ROW(error_status);
864 bank = GEN7_PARITY_ERROR_BANK(error_status);
865 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
866
867 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
868 GEN7_L3CDERRST1_ENABLE);
869 POSTING_READ(GEN7_L3CDERRST1);
870
871 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
872
873 spin_lock_irqsave(&dev_priv->irq_lock, flags);
874 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
875 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
876
877 mutex_unlock(&dev_priv->dev->struct_mutex);
878
879 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
880 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
881 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
882 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
883 parity_event[4] = NULL;
884
885 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
886 KOBJ_CHANGE, parity_event);
887
888 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
889 row, bank, subbank);
890
891 kfree(parity_event[3]);
892 kfree(parity_event[2]);
893 kfree(parity_event[1]);
894 }
895
896 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
897 {
898 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
899
900 if (!HAS_L3_GPU_CACHE(dev))
901 return;
902
903 spin_lock(&dev_priv->irq_lock);
904 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
905 spin_unlock(&dev_priv->irq_lock);
906
907 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
908 }
909
910 static void ilk_gt_irq_handler(struct drm_device *dev,
911 struct drm_i915_private *dev_priv,
912 u32 gt_iir)
913 {
914 if (gt_iir &
915 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
916 notify_ring(dev, &dev_priv->ring[RCS]);
917 if (gt_iir & ILK_BSD_USER_INTERRUPT)
918 notify_ring(dev, &dev_priv->ring[VCS]);
919 }
920
921 static void snb_gt_irq_handler(struct drm_device *dev,
922 struct drm_i915_private *dev_priv,
923 u32 gt_iir)
924 {
925
926 if (gt_iir &
927 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
928 notify_ring(dev, &dev_priv->ring[RCS]);
929 if (gt_iir & GT_BSD_USER_INTERRUPT)
930 notify_ring(dev, &dev_priv->ring[VCS]);
931 if (gt_iir & GT_BLT_USER_INTERRUPT)
932 notify_ring(dev, &dev_priv->ring[BCS]);
933
934 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
935 GT_BSD_CS_ERROR_INTERRUPT |
936 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
937 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
938 i915_handle_error(dev, false);
939 }
940
941 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
942 ivybridge_parity_error_irq_handler(dev);
943 }
944
945 #define HPD_STORM_DETECT_PERIOD 1000
946 #define HPD_STORM_THRESHOLD 5
947
948 static inline void intel_hpd_irq_handler(struct drm_device *dev,
949 u32 hotplug_trigger,
950 const u32 *hpd)
951 {
952 drm_i915_private_t *dev_priv = dev->dev_private;
953 int i;
954 bool storm_detected = false;
955
956 if (!hotplug_trigger)
957 return;
958
959 spin_lock(&dev_priv->irq_lock);
960 for (i = 1; i < HPD_NUM_PINS; i++) {
961
962 WARN(((hpd[i] & hotplug_trigger) &&
963 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
964 "Received HPD interrupt although disabled\n");
965
966 if (!(hpd[i] & hotplug_trigger) ||
967 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
968 continue;
969
970 dev_priv->hpd_event_bits |= (1 << i);
971 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
972 dev_priv->hpd_stats[i].hpd_last_jiffies
973 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
974 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
975 dev_priv->hpd_stats[i].hpd_cnt = 0;
976 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
977 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
978 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
979 dev_priv->hpd_event_bits &= ~(1 << i);
980 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
981 storm_detected = true;
982 } else {
983 dev_priv->hpd_stats[i].hpd_cnt++;
984 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
985 dev_priv->hpd_stats[i].hpd_cnt);
986 }
987 }
988
989 if (storm_detected)
990 dev_priv->display.hpd_irq_setup(dev);
991 spin_unlock(&dev_priv->irq_lock);
992
993 queue_work(dev_priv->wq,
994 &dev_priv->hotplug_work);
995 }
996
997 static void gmbus_irq_handler(struct drm_device *dev)
998 {
999 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1000
1001 wake_up_all(&dev_priv->gmbus_wait_queue);
1002 }
1003
1004 static void dp_aux_irq_handler(struct drm_device *dev)
1005 {
1006 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1007
1008 wake_up_all(&dev_priv->gmbus_wait_queue);
1009 }
1010
1011 /* The RPS events need forcewake, so we add them to a work queue and mask their
1012 * IMR bits until the work is done. Other interrupts can be processed without
1013 * the work queue. */
1014 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1015 {
1016 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1017 spin_lock(&dev_priv->irq_lock);
1018 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1019 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1020 spin_unlock(&dev_priv->irq_lock);
1021
1022 queue_work(dev_priv->wq, &dev_priv->rps.work);
1023 }
1024
1025 if (HAS_VEBOX(dev_priv->dev)) {
1026 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1027 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1028
1029 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1030 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1031 i915_handle_error(dev_priv->dev, false);
1032 }
1033 }
1034 }
1035
1036 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1037 {
1038 struct drm_device *dev = (struct drm_device *) arg;
1039 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1040 u32 iir, gt_iir, pm_iir;
1041 irqreturn_t ret = IRQ_NONE;
1042 unsigned long irqflags;
1043 int pipe;
1044 u32 pipe_stats[I915_MAX_PIPES];
1045
1046 atomic_inc(&dev_priv->irq_received);
1047
1048 while (true) {
1049 iir = I915_READ(VLV_IIR);
1050 gt_iir = I915_READ(GTIIR);
1051 pm_iir = I915_READ(GEN6_PMIIR);
1052
1053 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1054 goto out;
1055
1056 ret = IRQ_HANDLED;
1057
1058 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1059
1060 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1061 for_each_pipe(pipe) {
1062 int reg = PIPESTAT(pipe);
1063 pipe_stats[pipe] = I915_READ(reg);
1064
1065 /*
1066 * Clear the PIPE*STAT regs before the IIR
1067 */
1068 if (pipe_stats[pipe] & 0x8000ffff) {
1069 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1070 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1071 pipe_name(pipe));
1072 I915_WRITE(reg, pipe_stats[pipe]);
1073 }
1074 }
1075 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1076
1077 for_each_pipe(pipe) {
1078 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1079 drm_handle_vblank(dev, pipe);
1080
1081 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1082 intel_prepare_page_flip(dev, pipe);
1083 intel_finish_page_flip(dev, pipe);
1084 }
1085 }
1086
1087 /* Consume port. Then clear IIR or we'll miss events */
1088 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1089 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1090 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1091
1092 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1093 hotplug_status);
1094
1095 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1096
1097 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1098 I915_READ(PORT_HOTPLUG_STAT);
1099 }
1100
1101 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1102 gmbus_irq_handler(dev);
1103
1104 if (pm_iir)
1105 gen6_rps_irq_handler(dev_priv, pm_iir);
1106
1107 I915_WRITE(GTIIR, gt_iir);
1108 I915_WRITE(GEN6_PMIIR, pm_iir);
1109 I915_WRITE(VLV_IIR, iir);
1110 }
1111
1112 out:
1113 return ret;
1114 }
1115
1116 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1117 {
1118 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1119 int pipe;
1120 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1121
1122 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1123
1124 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1125 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1126 SDE_AUDIO_POWER_SHIFT);
1127 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1128 port_name(port));
1129 }
1130
1131 if (pch_iir & SDE_AUX_MASK)
1132 dp_aux_irq_handler(dev);
1133
1134 if (pch_iir & SDE_GMBUS)
1135 gmbus_irq_handler(dev);
1136
1137 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1138 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1139
1140 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1141 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1142
1143 if (pch_iir & SDE_POISON)
1144 DRM_ERROR("PCH poison interrupt\n");
1145
1146 if (pch_iir & SDE_FDI_MASK)
1147 for_each_pipe(pipe)
1148 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1149 pipe_name(pipe),
1150 I915_READ(FDI_RX_IIR(pipe)));
1151
1152 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1153 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1154
1155 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1156 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1157
1158 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1159 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1160 false))
1161 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1162
1163 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1164 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1165 false))
1166 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1167 }
1168
1169 static void ivb_err_int_handler(struct drm_device *dev)
1170 {
1171 struct drm_i915_private *dev_priv = dev->dev_private;
1172 u32 err_int = I915_READ(GEN7_ERR_INT);
1173
1174 if (err_int & ERR_INT_POISON)
1175 DRM_ERROR("Poison interrupt\n");
1176
1177 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1178 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1179 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1180
1181 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1182 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1183 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1184
1185 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1186 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1187 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1188
1189 I915_WRITE(GEN7_ERR_INT, err_int);
1190 }
1191
1192 static void cpt_serr_int_handler(struct drm_device *dev)
1193 {
1194 struct drm_i915_private *dev_priv = dev->dev_private;
1195 u32 serr_int = I915_READ(SERR_INT);
1196
1197 if (serr_int & SERR_INT_POISON)
1198 DRM_ERROR("PCH poison interrupt\n");
1199
1200 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1201 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1202 false))
1203 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1204
1205 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1206 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1207 false))
1208 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1209
1210 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1211 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1212 false))
1213 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1214
1215 I915_WRITE(SERR_INT, serr_int);
1216 }
1217
1218 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1219 {
1220 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221 int pipe;
1222 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1223
1224 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1225
1226 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1227 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1228 SDE_AUDIO_POWER_SHIFT_CPT);
1229 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1230 port_name(port));
1231 }
1232
1233 if (pch_iir & SDE_AUX_MASK_CPT)
1234 dp_aux_irq_handler(dev);
1235
1236 if (pch_iir & SDE_GMBUS_CPT)
1237 gmbus_irq_handler(dev);
1238
1239 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1240 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1241
1242 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1243 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1244
1245 if (pch_iir & SDE_FDI_MASK_CPT)
1246 for_each_pipe(pipe)
1247 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1248 pipe_name(pipe),
1249 I915_READ(FDI_RX_IIR(pipe)));
1250
1251 if (pch_iir & SDE_ERROR_CPT)
1252 cpt_serr_int_handler(dev);
1253 }
1254
1255 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1256 {
1257 struct drm_i915_private *dev_priv = dev->dev_private;
1258
1259 if (de_iir & DE_AUX_CHANNEL_A)
1260 dp_aux_irq_handler(dev);
1261
1262 if (de_iir & DE_GSE)
1263 intel_opregion_asle_intr(dev);
1264
1265 if (de_iir & DE_PIPEA_VBLANK)
1266 drm_handle_vblank(dev, 0);
1267
1268 if (de_iir & DE_PIPEB_VBLANK)
1269 drm_handle_vblank(dev, 1);
1270
1271 if (de_iir & DE_POISON)
1272 DRM_ERROR("Poison interrupt\n");
1273
1274 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1275 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1276 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1277
1278 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1279 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1280 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1281
1282 if (de_iir & DE_PLANEA_FLIP_DONE) {
1283 intel_prepare_page_flip(dev, 0);
1284 intel_finish_page_flip_plane(dev, 0);
1285 }
1286
1287 if (de_iir & DE_PLANEB_FLIP_DONE) {
1288 intel_prepare_page_flip(dev, 1);
1289 intel_finish_page_flip_plane(dev, 1);
1290 }
1291
1292 /* check event from PCH */
1293 if (de_iir & DE_PCH_EVENT) {
1294 u32 pch_iir = I915_READ(SDEIIR);
1295
1296 if (HAS_PCH_CPT(dev))
1297 cpt_irq_handler(dev, pch_iir);
1298 else
1299 ibx_irq_handler(dev, pch_iir);
1300
1301 /* should clear PCH hotplug event before clear CPU irq */
1302 I915_WRITE(SDEIIR, pch_iir);
1303 }
1304
1305 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1306 ironlake_rps_change_irq_handler(dev);
1307 }
1308
1309 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1310 {
1311 struct drm_i915_private *dev_priv = dev->dev_private;
1312 int i;
1313
1314 if (de_iir & DE_ERR_INT_IVB)
1315 ivb_err_int_handler(dev);
1316
1317 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1318 dp_aux_irq_handler(dev);
1319
1320 if (de_iir & DE_GSE_IVB)
1321 intel_opregion_asle_intr(dev);
1322
1323 for (i = 0; i < 3; i++) {
1324 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1325 drm_handle_vblank(dev, i);
1326 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1327 intel_prepare_page_flip(dev, i);
1328 intel_finish_page_flip_plane(dev, i);
1329 }
1330 }
1331
1332 /* check event from PCH */
1333 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1334 u32 pch_iir = I915_READ(SDEIIR);
1335
1336 cpt_irq_handler(dev, pch_iir);
1337
1338 /* clear PCH hotplug event before clear CPU irq */
1339 I915_WRITE(SDEIIR, pch_iir);
1340 }
1341 }
1342
1343 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1344 {
1345 struct drm_device *dev = (struct drm_device *) arg;
1346 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1347 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1348 irqreturn_t ret = IRQ_NONE;
1349 bool err_int_reenable = false;
1350
1351 atomic_inc(&dev_priv->irq_received);
1352
1353 /* We get interrupts on unclaimed registers, so check for this before we
1354 * do any I915_{READ,WRITE}. */
1355 intel_uncore_check_errors(dev);
1356
1357 /* disable master interrupt before clearing iir */
1358 de_ier = I915_READ(DEIER);
1359 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1360 POSTING_READ(DEIER);
1361
1362 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1363 * interrupts will will be stored on its back queue, and then we'll be
1364 * able to process them after we restore SDEIER (as soon as we restore
1365 * it, we'll get an interrupt if SDEIIR still has something to process
1366 * due to its back queue). */
1367 if (!HAS_PCH_NOP(dev)) {
1368 sde_ier = I915_READ(SDEIER);
1369 I915_WRITE(SDEIER, 0);
1370 POSTING_READ(SDEIER);
1371 }
1372
1373 /* On Haswell, also mask ERR_INT because we don't want to risk
1374 * generating "unclaimed register" interrupts from inside the interrupt
1375 * handler. */
1376 if (IS_HASWELL(dev)) {
1377 spin_lock(&dev_priv->irq_lock);
1378 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1379 if (err_int_reenable)
1380 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1381 spin_unlock(&dev_priv->irq_lock);
1382 }
1383
1384 gt_iir = I915_READ(GTIIR);
1385 if (gt_iir) {
1386 if (INTEL_INFO(dev)->gen >= 6)
1387 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1388 else
1389 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1390 I915_WRITE(GTIIR, gt_iir);
1391 ret = IRQ_HANDLED;
1392 }
1393
1394 de_iir = I915_READ(DEIIR);
1395 if (de_iir) {
1396 if (INTEL_INFO(dev)->gen >= 7)
1397 ivb_display_irq_handler(dev, de_iir);
1398 else
1399 ilk_display_irq_handler(dev, de_iir);
1400 I915_WRITE(DEIIR, de_iir);
1401 ret = IRQ_HANDLED;
1402 }
1403
1404 if (INTEL_INFO(dev)->gen >= 6) {
1405 u32 pm_iir = I915_READ(GEN6_PMIIR);
1406 if (pm_iir) {
1407 gen6_rps_irq_handler(dev_priv, pm_iir);
1408 I915_WRITE(GEN6_PMIIR, pm_iir);
1409 ret = IRQ_HANDLED;
1410 }
1411 }
1412
1413 if (err_int_reenable) {
1414 spin_lock(&dev_priv->irq_lock);
1415 if (ivb_can_enable_err_int(dev))
1416 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1417 spin_unlock(&dev_priv->irq_lock);
1418 }
1419
1420 I915_WRITE(DEIER, de_ier);
1421 POSTING_READ(DEIER);
1422 if (!HAS_PCH_NOP(dev)) {
1423 I915_WRITE(SDEIER, sde_ier);
1424 POSTING_READ(SDEIER);
1425 }
1426
1427 return ret;
1428 }
1429
1430 /**
1431 * i915_error_work_func - do process context error handling work
1432 * @work: work struct
1433 *
1434 * Fire an error uevent so userspace can see that a hang or error
1435 * was detected.
1436 */
1437 static void i915_error_work_func(struct work_struct *work)
1438 {
1439 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1440 work);
1441 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1442 gpu_error);
1443 struct drm_device *dev = dev_priv->dev;
1444 struct intel_ring_buffer *ring;
1445 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1446 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1447 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1448 int i, ret;
1449
1450 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1451
1452 /*
1453 * Note that there's only one work item which does gpu resets, so we
1454 * need not worry about concurrent gpu resets potentially incrementing
1455 * error->reset_counter twice. We only need to take care of another
1456 * racing irq/hangcheck declaring the gpu dead for a second time. A
1457 * quick check for that is good enough: schedule_work ensures the
1458 * correct ordering between hang detection and this work item, and since
1459 * the reset in-progress bit is only ever set by code outside of this
1460 * work we don't need to worry about any other races.
1461 */
1462 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1463 DRM_DEBUG_DRIVER("resetting chip\n");
1464 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1465 reset_event);
1466
1467 ret = i915_reset(dev);
1468
1469 if (ret == 0) {
1470 /*
1471 * After all the gem state is reset, increment the reset
1472 * counter and wake up everyone waiting for the reset to
1473 * complete.
1474 *
1475 * Since unlock operations are a one-sided barrier only,
1476 * we need to insert a barrier here to order any seqno
1477 * updates before
1478 * the counter increment.
1479 */
1480 smp_mb__before_atomic_inc();
1481 atomic_inc(&dev_priv->gpu_error.reset_counter);
1482
1483 kobject_uevent_env(&dev->primary->kdev.kobj,
1484 KOBJ_CHANGE, reset_done_event);
1485 } else {
1486 atomic_set(&error->reset_counter, I915_WEDGED);
1487 }
1488
1489 for_each_ring(ring, dev_priv, i)
1490 wake_up_all(&ring->irq_queue);
1491
1492 intel_display_handle_reset(dev);
1493
1494 wake_up_all(&dev_priv->gpu_error.reset_queue);
1495 }
1496 }
1497
1498 static void i915_report_and_clear_eir(struct drm_device *dev)
1499 {
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 uint32_t instdone[I915_NUM_INSTDONE_REG];
1502 u32 eir = I915_READ(EIR);
1503 int pipe, i;
1504
1505 if (!eir)
1506 return;
1507
1508 pr_err("render error detected, EIR: 0x%08x\n", eir);
1509
1510 i915_get_extra_instdone(dev, instdone);
1511
1512 if (IS_G4X(dev)) {
1513 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1514 u32 ipeir = I915_READ(IPEIR_I965);
1515
1516 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1517 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1518 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1519 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1520 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1521 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1522 I915_WRITE(IPEIR_I965, ipeir);
1523 POSTING_READ(IPEIR_I965);
1524 }
1525 if (eir & GM45_ERROR_PAGE_TABLE) {
1526 u32 pgtbl_err = I915_READ(PGTBL_ER);
1527 pr_err("page table error\n");
1528 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1529 I915_WRITE(PGTBL_ER, pgtbl_err);
1530 POSTING_READ(PGTBL_ER);
1531 }
1532 }
1533
1534 if (!IS_GEN2(dev)) {
1535 if (eir & I915_ERROR_PAGE_TABLE) {
1536 u32 pgtbl_err = I915_READ(PGTBL_ER);
1537 pr_err("page table error\n");
1538 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1539 I915_WRITE(PGTBL_ER, pgtbl_err);
1540 POSTING_READ(PGTBL_ER);
1541 }
1542 }
1543
1544 if (eir & I915_ERROR_MEMORY_REFRESH) {
1545 pr_err("memory refresh error:\n");
1546 for_each_pipe(pipe)
1547 pr_err("pipe %c stat: 0x%08x\n",
1548 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1549 /* pipestat has already been acked */
1550 }
1551 if (eir & I915_ERROR_INSTRUCTION) {
1552 pr_err("instruction error\n");
1553 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1554 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1555 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1556 if (INTEL_INFO(dev)->gen < 4) {
1557 u32 ipeir = I915_READ(IPEIR);
1558
1559 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1560 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1561 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1562 I915_WRITE(IPEIR, ipeir);
1563 POSTING_READ(IPEIR);
1564 } else {
1565 u32 ipeir = I915_READ(IPEIR_I965);
1566
1567 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1568 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1569 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1570 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1571 I915_WRITE(IPEIR_I965, ipeir);
1572 POSTING_READ(IPEIR_I965);
1573 }
1574 }
1575
1576 I915_WRITE(EIR, eir);
1577 POSTING_READ(EIR);
1578 eir = I915_READ(EIR);
1579 if (eir) {
1580 /*
1581 * some errors might have become stuck,
1582 * mask them.
1583 */
1584 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1585 I915_WRITE(EMR, I915_READ(EMR) | eir);
1586 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1587 }
1588 }
1589
1590 /**
1591 * i915_handle_error - handle an error interrupt
1592 * @dev: drm device
1593 *
1594 * Do some basic checking of regsiter state at error interrupt time and
1595 * dump it to the syslog. Also call i915_capture_error_state() to make
1596 * sure we get a record and make it available in debugfs. Fire a uevent
1597 * so userspace knows something bad happened (should trigger collection
1598 * of a ring dump etc.).
1599 */
1600 void i915_handle_error(struct drm_device *dev, bool wedged)
1601 {
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 struct intel_ring_buffer *ring;
1604 int i;
1605
1606 i915_capture_error_state(dev);
1607 i915_report_and_clear_eir(dev);
1608
1609 if (wedged) {
1610 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1611 &dev_priv->gpu_error.reset_counter);
1612
1613 /*
1614 * Wakeup waiting processes so that the reset work item
1615 * doesn't deadlock trying to grab various locks.
1616 */
1617 for_each_ring(ring, dev_priv, i)
1618 wake_up_all(&ring->irq_queue);
1619 }
1620
1621 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1622 }
1623
1624 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1625 {
1626 drm_i915_private_t *dev_priv = dev->dev_private;
1627 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1629 struct drm_i915_gem_object *obj;
1630 struct intel_unpin_work *work;
1631 unsigned long flags;
1632 bool stall_detected;
1633
1634 /* Ignore early vblank irqs */
1635 if (intel_crtc == NULL)
1636 return;
1637
1638 spin_lock_irqsave(&dev->event_lock, flags);
1639 work = intel_crtc->unpin_work;
1640
1641 if (work == NULL ||
1642 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1643 !work->enable_stall_check) {
1644 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1645 spin_unlock_irqrestore(&dev->event_lock, flags);
1646 return;
1647 }
1648
1649 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1650 obj = work->pending_flip_obj;
1651 if (INTEL_INFO(dev)->gen >= 4) {
1652 int dspsurf = DSPSURF(intel_crtc->plane);
1653 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1654 i915_gem_obj_ggtt_offset(obj);
1655 } else {
1656 int dspaddr = DSPADDR(intel_crtc->plane);
1657 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1658 crtc->y * crtc->fb->pitches[0] +
1659 crtc->x * crtc->fb->bits_per_pixel/8);
1660 }
1661
1662 spin_unlock_irqrestore(&dev->event_lock, flags);
1663
1664 if (stall_detected) {
1665 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1666 intel_prepare_page_flip(dev, intel_crtc->plane);
1667 }
1668 }
1669
1670 /* Called from drm generic code, passed 'crtc' which
1671 * we use as a pipe index
1672 */
1673 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1674 {
1675 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1676 unsigned long irqflags;
1677
1678 if (!i915_pipe_enabled(dev, pipe))
1679 return -EINVAL;
1680
1681 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1682 if (INTEL_INFO(dev)->gen >= 4)
1683 i915_enable_pipestat(dev_priv, pipe,
1684 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1685 else
1686 i915_enable_pipestat(dev_priv, pipe,
1687 PIPE_VBLANK_INTERRUPT_ENABLE);
1688
1689 /* maintain vblank delivery even in deep C-states */
1690 if (dev_priv->info->gen == 3)
1691 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1692 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1693
1694 return 0;
1695 }
1696
1697 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1698 {
1699 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1700 unsigned long irqflags;
1701 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1702 DE_PIPE_VBLANK_ILK(pipe);
1703
1704 if (!i915_pipe_enabled(dev, pipe))
1705 return -EINVAL;
1706
1707 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1708 ironlake_enable_display_irq(dev_priv, bit);
1709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1710
1711 return 0;
1712 }
1713
1714 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1715 {
1716 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1717 unsigned long irqflags;
1718 u32 imr;
1719
1720 if (!i915_pipe_enabled(dev, pipe))
1721 return -EINVAL;
1722
1723 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1724 imr = I915_READ(VLV_IMR);
1725 if (pipe == 0)
1726 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1727 else
1728 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1729 I915_WRITE(VLV_IMR, imr);
1730 i915_enable_pipestat(dev_priv, pipe,
1731 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1732 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1733
1734 return 0;
1735 }
1736
1737 /* Called from drm generic code, passed 'crtc' which
1738 * we use as a pipe index
1739 */
1740 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1741 {
1742 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1743 unsigned long irqflags;
1744
1745 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1746 if (dev_priv->info->gen == 3)
1747 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1748
1749 i915_disable_pipestat(dev_priv, pipe,
1750 PIPE_VBLANK_INTERRUPT_ENABLE |
1751 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1752 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1753 }
1754
1755 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1756 {
1757 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1758 unsigned long irqflags;
1759 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1760 DE_PIPE_VBLANK_ILK(pipe);
1761
1762 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1763 ironlake_disable_display_irq(dev_priv, bit);
1764 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1765 }
1766
1767 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1768 {
1769 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1770 unsigned long irqflags;
1771 u32 imr;
1772
1773 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1774 i915_disable_pipestat(dev_priv, pipe,
1775 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1776 imr = I915_READ(VLV_IMR);
1777 if (pipe == 0)
1778 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1779 else
1780 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1781 I915_WRITE(VLV_IMR, imr);
1782 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1783 }
1784
1785 static u32
1786 ring_last_seqno(struct intel_ring_buffer *ring)
1787 {
1788 return list_entry(ring->request_list.prev,
1789 struct drm_i915_gem_request, list)->seqno;
1790 }
1791
1792 static bool
1793 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1794 {
1795 return (list_empty(&ring->request_list) ||
1796 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1797 }
1798
1799 static struct intel_ring_buffer *
1800 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1801 {
1802 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1803 u32 cmd, ipehr, acthd, acthd_min;
1804
1805 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1806 if ((ipehr & ~(0x3 << 16)) !=
1807 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1808 return NULL;
1809
1810 /* ACTHD is likely pointing to the dword after the actual command,
1811 * so scan backwards until we find the MBOX.
1812 */
1813 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1814 acthd_min = max((int)acthd - 3 * 4, 0);
1815 do {
1816 cmd = ioread32(ring->virtual_start + acthd);
1817 if (cmd == ipehr)
1818 break;
1819
1820 acthd -= 4;
1821 if (acthd < acthd_min)
1822 return NULL;
1823 } while (1);
1824
1825 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1826 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1827 }
1828
1829 static int semaphore_passed(struct intel_ring_buffer *ring)
1830 {
1831 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1832 struct intel_ring_buffer *signaller;
1833 u32 seqno, ctl;
1834
1835 ring->hangcheck.deadlock = true;
1836
1837 signaller = semaphore_waits_for(ring, &seqno);
1838 if (signaller == NULL || signaller->hangcheck.deadlock)
1839 return -1;
1840
1841 /* cursory check for an unkickable deadlock */
1842 ctl = I915_READ_CTL(signaller);
1843 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1844 return -1;
1845
1846 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1847 }
1848
1849 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1850 {
1851 struct intel_ring_buffer *ring;
1852 int i;
1853
1854 for_each_ring(ring, dev_priv, i)
1855 ring->hangcheck.deadlock = false;
1856 }
1857
1858 static enum intel_ring_hangcheck_action
1859 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1860 {
1861 struct drm_device *dev = ring->dev;
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863 u32 tmp;
1864
1865 if (ring->hangcheck.acthd != acthd)
1866 return HANGCHECK_ACTIVE;
1867
1868 if (IS_GEN2(dev))
1869 return HANGCHECK_HUNG;
1870
1871 /* Is the chip hanging on a WAIT_FOR_EVENT?
1872 * If so we can simply poke the RB_WAIT bit
1873 * and break the hang. This should work on
1874 * all but the second generation chipsets.
1875 */
1876 tmp = I915_READ_CTL(ring);
1877 if (tmp & RING_WAIT) {
1878 DRM_ERROR("Kicking stuck wait on %s\n",
1879 ring->name);
1880 I915_WRITE_CTL(ring, tmp);
1881 return HANGCHECK_KICK;
1882 }
1883
1884 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1885 switch (semaphore_passed(ring)) {
1886 default:
1887 return HANGCHECK_HUNG;
1888 case 1:
1889 DRM_ERROR("Kicking stuck semaphore on %s\n",
1890 ring->name);
1891 I915_WRITE_CTL(ring, tmp);
1892 return HANGCHECK_KICK;
1893 case 0:
1894 return HANGCHECK_WAIT;
1895 }
1896 }
1897
1898 return HANGCHECK_HUNG;
1899 }
1900
1901 /**
1902 * This is called when the chip hasn't reported back with completed
1903 * batchbuffers in a long time. We keep track per ring seqno progress and
1904 * if there are no progress, hangcheck score for that ring is increased.
1905 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1906 * we kick the ring. If we see no progress on three subsequent calls
1907 * we assume chip is wedged and try to fix it by resetting the chip.
1908 */
1909 static void i915_hangcheck_elapsed(unsigned long data)
1910 {
1911 struct drm_device *dev = (struct drm_device *)data;
1912 drm_i915_private_t *dev_priv = dev->dev_private;
1913 struct intel_ring_buffer *ring;
1914 int i;
1915 int busy_count = 0, rings_hung = 0;
1916 bool stuck[I915_NUM_RINGS] = { 0 };
1917 #define BUSY 1
1918 #define KICK 5
1919 #define HUNG 20
1920 #define FIRE 30
1921
1922 if (!i915_enable_hangcheck)
1923 return;
1924
1925 for_each_ring(ring, dev_priv, i) {
1926 u32 seqno, acthd;
1927 bool busy = true;
1928
1929 semaphore_clear_deadlocks(dev_priv);
1930
1931 seqno = ring->get_seqno(ring, false);
1932 acthd = intel_ring_get_active_head(ring);
1933
1934 if (ring->hangcheck.seqno == seqno) {
1935 if (ring_idle(ring, seqno)) {
1936 if (waitqueue_active(&ring->irq_queue)) {
1937 /* Issue a wake-up to catch stuck h/w. */
1938 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1939 ring->name);
1940 wake_up_all(&ring->irq_queue);
1941 ring->hangcheck.score += HUNG;
1942 } else
1943 busy = false;
1944 } else {
1945 /* We always increment the hangcheck score
1946 * if the ring is busy and still processing
1947 * the same request, so that no single request
1948 * can run indefinitely (such as a chain of
1949 * batches). The only time we do not increment
1950 * the hangcheck score on this ring, if this
1951 * ring is in a legitimate wait for another
1952 * ring. In that case the waiting ring is a
1953 * victim and we want to be sure we catch the
1954 * right culprit. Then every time we do kick
1955 * the ring, add a small increment to the
1956 * score so that we can catch a batch that is
1957 * being repeatedly kicked and so responsible
1958 * for stalling the machine.
1959 */
1960 ring->hangcheck.action = ring_stuck(ring,
1961 acthd);
1962
1963 switch (ring->hangcheck.action) {
1964 case HANGCHECK_WAIT:
1965 break;
1966 case HANGCHECK_ACTIVE:
1967 ring->hangcheck.score += BUSY;
1968 break;
1969 case HANGCHECK_KICK:
1970 ring->hangcheck.score += KICK;
1971 break;
1972 case HANGCHECK_HUNG:
1973 ring->hangcheck.score += HUNG;
1974 stuck[i] = true;
1975 break;
1976 }
1977 }
1978 } else {
1979 /* Gradually reduce the count so that we catch DoS
1980 * attempts across multiple batches.
1981 */
1982 if (ring->hangcheck.score > 0)
1983 ring->hangcheck.score--;
1984 }
1985
1986 ring->hangcheck.seqno = seqno;
1987 ring->hangcheck.acthd = acthd;
1988 busy_count += busy;
1989 }
1990
1991 for_each_ring(ring, dev_priv, i) {
1992 if (ring->hangcheck.score > FIRE) {
1993 DRM_ERROR("%s on %s\n",
1994 stuck[i] ? "stuck" : "no progress",
1995 ring->name);
1996 rings_hung++;
1997 }
1998 }
1999
2000 if (rings_hung)
2001 return i915_handle_error(dev, true);
2002
2003 if (busy_count)
2004 /* Reset timer case chip hangs without another request
2005 * being added */
2006 i915_queue_hangcheck(dev);
2007 }
2008
2009 void i915_queue_hangcheck(struct drm_device *dev)
2010 {
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 if (!i915_enable_hangcheck)
2013 return;
2014
2015 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2016 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2017 }
2018
2019 static void ibx_irq_preinstall(struct drm_device *dev)
2020 {
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022
2023 if (HAS_PCH_NOP(dev))
2024 return;
2025
2026 /* south display irq */
2027 I915_WRITE(SDEIMR, 0xffffffff);
2028 /*
2029 * SDEIER is also touched by the interrupt handler to work around missed
2030 * PCH interrupts. Hence we can't update it after the interrupt handler
2031 * is enabled - instead we unconditionally enable all PCH interrupt
2032 * sources here, but then only unmask them as needed with SDEIMR.
2033 */
2034 I915_WRITE(SDEIER, 0xffffffff);
2035 POSTING_READ(SDEIER);
2036 }
2037
2038 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2039 {
2040 struct drm_i915_private *dev_priv = dev->dev_private;
2041
2042 /* and GT */
2043 I915_WRITE(GTIMR, 0xffffffff);
2044 I915_WRITE(GTIER, 0x0);
2045 POSTING_READ(GTIER);
2046
2047 if (INTEL_INFO(dev)->gen >= 6) {
2048 /* and PM */
2049 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2050 I915_WRITE(GEN6_PMIER, 0x0);
2051 POSTING_READ(GEN6_PMIER);
2052 }
2053 }
2054
2055 /* drm_dma.h hooks
2056 */
2057 static void ironlake_irq_preinstall(struct drm_device *dev)
2058 {
2059 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2060
2061 atomic_set(&dev_priv->irq_received, 0);
2062
2063 I915_WRITE(HWSTAM, 0xeffe);
2064
2065 I915_WRITE(DEIMR, 0xffffffff);
2066 I915_WRITE(DEIER, 0x0);
2067 POSTING_READ(DEIER);
2068
2069 gen5_gt_irq_preinstall(dev);
2070
2071 ibx_irq_preinstall(dev);
2072 }
2073
2074 static void valleyview_irq_preinstall(struct drm_device *dev)
2075 {
2076 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2077 int pipe;
2078
2079 atomic_set(&dev_priv->irq_received, 0);
2080
2081 /* VLV magic */
2082 I915_WRITE(VLV_IMR, 0);
2083 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2084 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2085 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2086
2087 /* and GT */
2088 I915_WRITE(GTIIR, I915_READ(GTIIR));
2089 I915_WRITE(GTIIR, I915_READ(GTIIR));
2090
2091 gen5_gt_irq_preinstall(dev);
2092
2093 I915_WRITE(DPINVGTT, 0xff);
2094
2095 I915_WRITE(PORT_HOTPLUG_EN, 0);
2096 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2097 for_each_pipe(pipe)
2098 I915_WRITE(PIPESTAT(pipe), 0xffff);
2099 I915_WRITE(VLV_IIR, 0xffffffff);
2100 I915_WRITE(VLV_IMR, 0xffffffff);
2101 I915_WRITE(VLV_IER, 0x0);
2102 POSTING_READ(VLV_IER);
2103 }
2104
2105 static void ibx_hpd_irq_setup(struct drm_device *dev)
2106 {
2107 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2108 struct drm_mode_config *mode_config = &dev->mode_config;
2109 struct intel_encoder *intel_encoder;
2110 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2111
2112 if (HAS_PCH_IBX(dev)) {
2113 hotplug_irqs = SDE_HOTPLUG_MASK;
2114 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2115 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2116 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2117 } else {
2118 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2119 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2120 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2121 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2122 }
2123
2124 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2125
2126 /*
2127 * Enable digital hotplug on the PCH, and configure the DP short pulse
2128 * duration to 2ms (which is the minimum in the Display Port spec)
2129 *
2130 * This register is the same on all known PCH chips.
2131 */
2132 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2133 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2134 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2135 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2136 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2137 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2138 }
2139
2140 static void ibx_irq_postinstall(struct drm_device *dev)
2141 {
2142 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2143 u32 mask;
2144
2145 if (HAS_PCH_NOP(dev))
2146 return;
2147
2148 if (HAS_PCH_IBX(dev)) {
2149 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2150 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2151 } else {
2152 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2153
2154 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2155 }
2156
2157 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2158 I915_WRITE(SDEIMR, ~mask);
2159 }
2160
2161 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2162 {
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164 u32 pm_irqs, gt_irqs;
2165
2166 pm_irqs = gt_irqs = 0;
2167
2168 dev_priv->gt_irq_mask = ~0;
2169 if (HAS_L3_GPU_CACHE(dev)) {
2170 /* L3 parity interrupt is always unmasked. */
2171 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2172 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2173 }
2174
2175 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2176 if (IS_GEN5(dev)) {
2177 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2178 ILK_BSD_USER_INTERRUPT;
2179 } else {
2180 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2181 }
2182
2183 I915_WRITE(GTIIR, I915_READ(GTIIR));
2184 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2185 I915_WRITE(GTIER, gt_irqs);
2186 POSTING_READ(GTIER);
2187
2188 if (INTEL_INFO(dev)->gen >= 6) {
2189 pm_irqs |= GEN6_PM_RPS_EVENTS;
2190
2191 if (HAS_VEBOX(dev))
2192 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2193
2194 dev_priv->pm_irq_mask = 0xffffffff;
2195 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2196 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2197 I915_WRITE(GEN6_PMIER, pm_irqs);
2198 POSTING_READ(GEN6_PMIER);
2199 }
2200 }
2201
2202 static int ironlake_irq_postinstall(struct drm_device *dev)
2203 {
2204 unsigned long irqflags;
2205 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2206 u32 display_mask, extra_mask;
2207
2208 if (INTEL_INFO(dev)->gen >= 7) {
2209 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2210 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2211 DE_PLANEB_FLIP_DONE_IVB |
2212 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2213 DE_ERR_INT_IVB);
2214 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2215 DE_PIPEA_VBLANK_IVB);
2216
2217 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2218 } else {
2219 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2220 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2221 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2222 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2223 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2224 }
2225
2226 dev_priv->irq_mask = ~display_mask;
2227
2228 /* should always can generate irq */
2229 I915_WRITE(DEIIR, I915_READ(DEIIR));
2230 I915_WRITE(DEIMR, dev_priv->irq_mask);
2231 I915_WRITE(DEIER, display_mask | extra_mask);
2232 POSTING_READ(DEIER);
2233
2234 gen5_gt_irq_postinstall(dev);
2235
2236 ibx_irq_postinstall(dev);
2237
2238 if (IS_IRONLAKE_M(dev)) {
2239 /* Enable PCU event interrupts
2240 *
2241 * spinlocking not required here for correctness since interrupt
2242 * setup is guaranteed to run in single-threaded context. But we
2243 * need it to make the assert_spin_locked happy. */
2244 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2245 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2246 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2247 }
2248
2249 return 0;
2250 }
2251
2252 static int valleyview_irq_postinstall(struct drm_device *dev)
2253 {
2254 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2255 u32 enable_mask;
2256 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2257 unsigned long irqflags;
2258
2259 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2260 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2261 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2262 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2263 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2264
2265 /*
2266 *Leave vblank interrupts masked initially. enable/disable will
2267 * toggle them based on usage.
2268 */
2269 dev_priv->irq_mask = (~enable_mask) |
2270 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2271 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2272
2273 I915_WRITE(PORT_HOTPLUG_EN, 0);
2274 POSTING_READ(PORT_HOTPLUG_EN);
2275
2276 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2277 I915_WRITE(VLV_IER, enable_mask);
2278 I915_WRITE(VLV_IIR, 0xffffffff);
2279 I915_WRITE(PIPESTAT(0), 0xffff);
2280 I915_WRITE(PIPESTAT(1), 0xffff);
2281 POSTING_READ(VLV_IER);
2282
2283 /* Interrupt setup is already guaranteed to be single-threaded, this is
2284 * just to make the assert_spin_locked check happy. */
2285 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2286 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2287 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2288 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2289 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2290
2291 I915_WRITE(VLV_IIR, 0xffffffff);
2292 I915_WRITE(VLV_IIR, 0xffffffff);
2293
2294 gen5_gt_irq_postinstall(dev);
2295
2296 /* ack & enable invalid PTE error interrupts */
2297 #if 0 /* FIXME: add support to irq handler for checking these bits */
2298 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2299 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2300 #endif
2301
2302 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2303
2304 return 0;
2305 }
2306
2307 static void valleyview_irq_uninstall(struct drm_device *dev)
2308 {
2309 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2310 int pipe;
2311
2312 if (!dev_priv)
2313 return;
2314
2315 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2316
2317 for_each_pipe(pipe)
2318 I915_WRITE(PIPESTAT(pipe), 0xffff);
2319
2320 I915_WRITE(HWSTAM, 0xffffffff);
2321 I915_WRITE(PORT_HOTPLUG_EN, 0);
2322 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2323 for_each_pipe(pipe)
2324 I915_WRITE(PIPESTAT(pipe), 0xffff);
2325 I915_WRITE(VLV_IIR, 0xffffffff);
2326 I915_WRITE(VLV_IMR, 0xffffffff);
2327 I915_WRITE(VLV_IER, 0x0);
2328 POSTING_READ(VLV_IER);
2329 }
2330
2331 static void ironlake_irq_uninstall(struct drm_device *dev)
2332 {
2333 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2334
2335 if (!dev_priv)
2336 return;
2337
2338 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2339
2340 I915_WRITE(HWSTAM, 0xffffffff);
2341
2342 I915_WRITE(DEIMR, 0xffffffff);
2343 I915_WRITE(DEIER, 0x0);
2344 I915_WRITE(DEIIR, I915_READ(DEIIR));
2345 if (IS_GEN7(dev))
2346 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2347
2348 I915_WRITE(GTIMR, 0xffffffff);
2349 I915_WRITE(GTIER, 0x0);
2350 I915_WRITE(GTIIR, I915_READ(GTIIR));
2351
2352 if (HAS_PCH_NOP(dev))
2353 return;
2354
2355 I915_WRITE(SDEIMR, 0xffffffff);
2356 I915_WRITE(SDEIER, 0x0);
2357 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2358 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2359 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2360 }
2361
2362 static void i8xx_irq_preinstall(struct drm_device * dev)
2363 {
2364 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2365 int pipe;
2366
2367 atomic_set(&dev_priv->irq_received, 0);
2368
2369 for_each_pipe(pipe)
2370 I915_WRITE(PIPESTAT(pipe), 0);
2371 I915_WRITE16(IMR, 0xffff);
2372 I915_WRITE16(IER, 0x0);
2373 POSTING_READ16(IER);
2374 }
2375
2376 static int i8xx_irq_postinstall(struct drm_device *dev)
2377 {
2378 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2379
2380 I915_WRITE16(EMR,
2381 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2382
2383 /* Unmask the interrupts that we always want on. */
2384 dev_priv->irq_mask =
2385 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2386 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2387 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2388 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2389 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2390 I915_WRITE16(IMR, dev_priv->irq_mask);
2391
2392 I915_WRITE16(IER,
2393 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2394 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2395 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2396 I915_USER_INTERRUPT);
2397 POSTING_READ16(IER);
2398
2399 return 0;
2400 }
2401
2402 /*
2403 * Returns true when a page flip has completed.
2404 */
2405 static bool i8xx_handle_vblank(struct drm_device *dev,
2406 int pipe, u16 iir)
2407 {
2408 drm_i915_private_t *dev_priv = dev->dev_private;
2409 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2410
2411 if (!drm_handle_vblank(dev, pipe))
2412 return false;
2413
2414 if ((iir & flip_pending) == 0)
2415 return false;
2416
2417 intel_prepare_page_flip(dev, pipe);
2418
2419 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2420 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2421 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2422 * the flip is completed (no longer pending). Since this doesn't raise
2423 * an interrupt per se, we watch for the change at vblank.
2424 */
2425 if (I915_READ16(ISR) & flip_pending)
2426 return false;
2427
2428 intel_finish_page_flip(dev, pipe);
2429
2430 return true;
2431 }
2432
2433 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2434 {
2435 struct drm_device *dev = (struct drm_device *) arg;
2436 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2437 u16 iir, new_iir;
2438 u32 pipe_stats[2];
2439 unsigned long irqflags;
2440 int pipe;
2441 u16 flip_mask =
2442 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2443 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2444
2445 atomic_inc(&dev_priv->irq_received);
2446
2447 iir = I915_READ16(IIR);
2448 if (iir == 0)
2449 return IRQ_NONE;
2450
2451 while (iir & ~flip_mask) {
2452 /* Can't rely on pipestat interrupt bit in iir as it might
2453 * have been cleared after the pipestat interrupt was received.
2454 * It doesn't set the bit in iir again, but it still produces
2455 * interrupts (for non-MSI).
2456 */
2457 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2458 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2459 i915_handle_error(dev, false);
2460
2461 for_each_pipe(pipe) {
2462 int reg = PIPESTAT(pipe);
2463 pipe_stats[pipe] = I915_READ(reg);
2464
2465 /*
2466 * Clear the PIPE*STAT regs before the IIR
2467 */
2468 if (pipe_stats[pipe] & 0x8000ffff) {
2469 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2470 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2471 pipe_name(pipe));
2472 I915_WRITE(reg, pipe_stats[pipe]);
2473 }
2474 }
2475 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2476
2477 I915_WRITE16(IIR, iir & ~flip_mask);
2478 new_iir = I915_READ16(IIR); /* Flush posted writes */
2479
2480 i915_update_dri1_breadcrumb(dev);
2481
2482 if (iir & I915_USER_INTERRUPT)
2483 notify_ring(dev, &dev_priv->ring[RCS]);
2484
2485 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2486 i8xx_handle_vblank(dev, 0, iir))
2487 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2488
2489 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2490 i8xx_handle_vblank(dev, 1, iir))
2491 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2492
2493 iir = new_iir;
2494 }
2495
2496 return IRQ_HANDLED;
2497 }
2498
2499 static void i8xx_irq_uninstall(struct drm_device * dev)
2500 {
2501 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2502 int pipe;
2503
2504 for_each_pipe(pipe) {
2505 /* Clear enable bits; then clear status bits */
2506 I915_WRITE(PIPESTAT(pipe), 0);
2507 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2508 }
2509 I915_WRITE16(IMR, 0xffff);
2510 I915_WRITE16(IER, 0x0);
2511 I915_WRITE16(IIR, I915_READ16(IIR));
2512 }
2513
2514 static void i915_irq_preinstall(struct drm_device * dev)
2515 {
2516 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2517 int pipe;
2518
2519 atomic_set(&dev_priv->irq_received, 0);
2520
2521 if (I915_HAS_HOTPLUG(dev)) {
2522 I915_WRITE(PORT_HOTPLUG_EN, 0);
2523 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2524 }
2525
2526 I915_WRITE16(HWSTAM, 0xeffe);
2527 for_each_pipe(pipe)
2528 I915_WRITE(PIPESTAT(pipe), 0);
2529 I915_WRITE(IMR, 0xffffffff);
2530 I915_WRITE(IER, 0x0);
2531 POSTING_READ(IER);
2532 }
2533
2534 static int i915_irq_postinstall(struct drm_device *dev)
2535 {
2536 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2537 u32 enable_mask;
2538
2539 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2540
2541 /* Unmask the interrupts that we always want on. */
2542 dev_priv->irq_mask =
2543 ~(I915_ASLE_INTERRUPT |
2544 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2545 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2546 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2547 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2548 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2549
2550 enable_mask =
2551 I915_ASLE_INTERRUPT |
2552 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2553 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2554 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2555 I915_USER_INTERRUPT;
2556
2557 if (I915_HAS_HOTPLUG(dev)) {
2558 I915_WRITE(PORT_HOTPLUG_EN, 0);
2559 POSTING_READ(PORT_HOTPLUG_EN);
2560
2561 /* Enable in IER... */
2562 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2563 /* and unmask in IMR */
2564 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2565 }
2566
2567 I915_WRITE(IMR, dev_priv->irq_mask);
2568 I915_WRITE(IER, enable_mask);
2569 POSTING_READ(IER);
2570
2571 i915_enable_asle_pipestat(dev);
2572
2573 return 0;
2574 }
2575
2576 /*
2577 * Returns true when a page flip has completed.
2578 */
2579 static bool i915_handle_vblank(struct drm_device *dev,
2580 int plane, int pipe, u32 iir)
2581 {
2582 drm_i915_private_t *dev_priv = dev->dev_private;
2583 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2584
2585 if (!drm_handle_vblank(dev, pipe))
2586 return false;
2587
2588 if ((iir & flip_pending) == 0)
2589 return false;
2590
2591 intel_prepare_page_flip(dev, plane);
2592
2593 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2594 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2595 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2596 * the flip is completed (no longer pending). Since this doesn't raise
2597 * an interrupt per se, we watch for the change at vblank.
2598 */
2599 if (I915_READ(ISR) & flip_pending)
2600 return false;
2601
2602 intel_finish_page_flip(dev, pipe);
2603
2604 return true;
2605 }
2606
2607 static irqreturn_t i915_irq_handler(int irq, void *arg)
2608 {
2609 struct drm_device *dev = (struct drm_device *) arg;
2610 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2611 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2612 unsigned long irqflags;
2613 u32 flip_mask =
2614 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2615 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2616 int pipe, ret = IRQ_NONE;
2617
2618 atomic_inc(&dev_priv->irq_received);
2619
2620 iir = I915_READ(IIR);
2621 do {
2622 bool irq_received = (iir & ~flip_mask) != 0;
2623 bool blc_event = false;
2624
2625 /* Can't rely on pipestat interrupt bit in iir as it might
2626 * have been cleared after the pipestat interrupt was received.
2627 * It doesn't set the bit in iir again, but it still produces
2628 * interrupts (for non-MSI).
2629 */
2630 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2631 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2632 i915_handle_error(dev, false);
2633
2634 for_each_pipe(pipe) {
2635 int reg = PIPESTAT(pipe);
2636 pipe_stats[pipe] = I915_READ(reg);
2637
2638 /* Clear the PIPE*STAT regs before the IIR */
2639 if (pipe_stats[pipe] & 0x8000ffff) {
2640 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2641 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2642 pipe_name(pipe));
2643 I915_WRITE(reg, pipe_stats[pipe]);
2644 irq_received = true;
2645 }
2646 }
2647 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2648
2649 if (!irq_received)
2650 break;
2651
2652 /* Consume port. Then clear IIR or we'll miss events */
2653 if ((I915_HAS_HOTPLUG(dev)) &&
2654 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2655 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2656 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2657
2658 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2659 hotplug_status);
2660
2661 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2662
2663 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2664 POSTING_READ(PORT_HOTPLUG_STAT);
2665 }
2666
2667 I915_WRITE(IIR, iir & ~flip_mask);
2668 new_iir = I915_READ(IIR); /* Flush posted writes */
2669
2670 if (iir & I915_USER_INTERRUPT)
2671 notify_ring(dev, &dev_priv->ring[RCS]);
2672
2673 for_each_pipe(pipe) {
2674 int plane = pipe;
2675 if (IS_MOBILE(dev))
2676 plane = !plane;
2677
2678 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2679 i915_handle_vblank(dev, plane, pipe, iir))
2680 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2681
2682 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2683 blc_event = true;
2684 }
2685
2686 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2687 intel_opregion_asle_intr(dev);
2688
2689 /* With MSI, interrupts are only generated when iir
2690 * transitions from zero to nonzero. If another bit got
2691 * set while we were handling the existing iir bits, then
2692 * we would never get another interrupt.
2693 *
2694 * This is fine on non-MSI as well, as if we hit this path
2695 * we avoid exiting the interrupt handler only to generate
2696 * another one.
2697 *
2698 * Note that for MSI this could cause a stray interrupt report
2699 * if an interrupt landed in the time between writing IIR and
2700 * the posting read. This should be rare enough to never
2701 * trigger the 99% of 100,000 interrupts test for disabling
2702 * stray interrupts.
2703 */
2704 ret = IRQ_HANDLED;
2705 iir = new_iir;
2706 } while (iir & ~flip_mask);
2707
2708 i915_update_dri1_breadcrumb(dev);
2709
2710 return ret;
2711 }
2712
2713 static void i915_irq_uninstall(struct drm_device * dev)
2714 {
2715 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2716 int pipe;
2717
2718 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2719
2720 if (I915_HAS_HOTPLUG(dev)) {
2721 I915_WRITE(PORT_HOTPLUG_EN, 0);
2722 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2723 }
2724
2725 I915_WRITE16(HWSTAM, 0xffff);
2726 for_each_pipe(pipe) {
2727 /* Clear enable bits; then clear status bits */
2728 I915_WRITE(PIPESTAT(pipe), 0);
2729 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2730 }
2731 I915_WRITE(IMR, 0xffffffff);
2732 I915_WRITE(IER, 0x0);
2733
2734 I915_WRITE(IIR, I915_READ(IIR));
2735 }
2736
2737 static void i965_irq_preinstall(struct drm_device * dev)
2738 {
2739 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2740 int pipe;
2741
2742 atomic_set(&dev_priv->irq_received, 0);
2743
2744 I915_WRITE(PORT_HOTPLUG_EN, 0);
2745 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2746
2747 I915_WRITE(HWSTAM, 0xeffe);
2748 for_each_pipe(pipe)
2749 I915_WRITE(PIPESTAT(pipe), 0);
2750 I915_WRITE(IMR, 0xffffffff);
2751 I915_WRITE(IER, 0x0);
2752 POSTING_READ(IER);
2753 }
2754
2755 static int i965_irq_postinstall(struct drm_device *dev)
2756 {
2757 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2758 u32 enable_mask;
2759 u32 error_mask;
2760 unsigned long irqflags;
2761
2762 /* Unmask the interrupts that we always want on. */
2763 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2764 I915_DISPLAY_PORT_INTERRUPT |
2765 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2766 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2767 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2768 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2769 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2770
2771 enable_mask = ~dev_priv->irq_mask;
2772 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2773 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2774 enable_mask |= I915_USER_INTERRUPT;
2775
2776 if (IS_G4X(dev))
2777 enable_mask |= I915_BSD_USER_INTERRUPT;
2778
2779 /* Interrupt setup is already guaranteed to be single-threaded, this is
2780 * just to make the assert_spin_locked check happy. */
2781 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784
2785 /*
2786 * Enable some error detection, note the instruction error mask
2787 * bit is reserved, so we leave it masked.
2788 */
2789 if (IS_G4X(dev)) {
2790 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2791 GM45_ERROR_MEM_PRIV |
2792 GM45_ERROR_CP_PRIV |
2793 I915_ERROR_MEMORY_REFRESH);
2794 } else {
2795 error_mask = ~(I915_ERROR_PAGE_TABLE |
2796 I915_ERROR_MEMORY_REFRESH);
2797 }
2798 I915_WRITE(EMR, error_mask);
2799
2800 I915_WRITE(IMR, dev_priv->irq_mask);
2801 I915_WRITE(IER, enable_mask);
2802 POSTING_READ(IER);
2803
2804 I915_WRITE(PORT_HOTPLUG_EN, 0);
2805 POSTING_READ(PORT_HOTPLUG_EN);
2806
2807 i915_enable_asle_pipestat(dev);
2808
2809 return 0;
2810 }
2811
2812 static void i915_hpd_irq_setup(struct drm_device *dev)
2813 {
2814 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2815 struct drm_mode_config *mode_config = &dev->mode_config;
2816 struct intel_encoder *intel_encoder;
2817 u32 hotplug_en;
2818
2819 assert_spin_locked(&dev_priv->irq_lock);
2820
2821 if (I915_HAS_HOTPLUG(dev)) {
2822 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2823 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2824 /* Note HDMI and DP share hotplug bits */
2825 /* enable bits are the same for all generations */
2826 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2827 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2828 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2829 /* Programming the CRT detection parameters tends
2830 to generate a spurious hotplug event about three
2831 seconds later. So just do it once.
2832 */
2833 if (IS_G4X(dev))
2834 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2835 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2836 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2837
2838 /* Ignore TV since it's buggy */
2839 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2840 }
2841 }
2842
2843 static irqreturn_t i965_irq_handler(int irq, void *arg)
2844 {
2845 struct drm_device *dev = (struct drm_device *) arg;
2846 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2847 u32 iir, new_iir;
2848 u32 pipe_stats[I915_MAX_PIPES];
2849 unsigned long irqflags;
2850 int irq_received;
2851 int ret = IRQ_NONE, pipe;
2852 u32 flip_mask =
2853 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2854 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2855
2856 atomic_inc(&dev_priv->irq_received);
2857
2858 iir = I915_READ(IIR);
2859
2860 for (;;) {
2861 bool blc_event = false;
2862
2863 irq_received = (iir & ~flip_mask) != 0;
2864
2865 /* Can't rely on pipestat interrupt bit in iir as it might
2866 * have been cleared after the pipestat interrupt was received.
2867 * It doesn't set the bit in iir again, but it still produces
2868 * interrupts (for non-MSI).
2869 */
2870 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2871 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2872 i915_handle_error(dev, false);
2873
2874 for_each_pipe(pipe) {
2875 int reg = PIPESTAT(pipe);
2876 pipe_stats[pipe] = I915_READ(reg);
2877
2878 /*
2879 * Clear the PIPE*STAT regs before the IIR
2880 */
2881 if (pipe_stats[pipe] & 0x8000ffff) {
2882 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2883 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2884 pipe_name(pipe));
2885 I915_WRITE(reg, pipe_stats[pipe]);
2886 irq_received = 1;
2887 }
2888 }
2889 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2890
2891 if (!irq_received)
2892 break;
2893
2894 ret = IRQ_HANDLED;
2895
2896 /* Consume port. Then clear IIR or we'll miss events */
2897 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2898 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2899 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2900 HOTPLUG_INT_STATUS_G4X :
2901 HOTPLUG_INT_STATUS_I915);
2902
2903 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2904 hotplug_status);
2905
2906 intel_hpd_irq_handler(dev, hotplug_trigger,
2907 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2908
2909 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2910 I915_READ(PORT_HOTPLUG_STAT);
2911 }
2912
2913 I915_WRITE(IIR, iir & ~flip_mask);
2914 new_iir = I915_READ(IIR); /* Flush posted writes */
2915
2916 if (iir & I915_USER_INTERRUPT)
2917 notify_ring(dev, &dev_priv->ring[RCS]);
2918 if (iir & I915_BSD_USER_INTERRUPT)
2919 notify_ring(dev, &dev_priv->ring[VCS]);
2920
2921 for_each_pipe(pipe) {
2922 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2923 i915_handle_vblank(dev, pipe, pipe, iir))
2924 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2925
2926 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2927 blc_event = true;
2928 }
2929
2930
2931 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2932 intel_opregion_asle_intr(dev);
2933
2934 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2935 gmbus_irq_handler(dev);
2936
2937 /* With MSI, interrupts are only generated when iir
2938 * transitions from zero to nonzero. If another bit got
2939 * set while we were handling the existing iir bits, then
2940 * we would never get another interrupt.
2941 *
2942 * This is fine on non-MSI as well, as if we hit this path
2943 * we avoid exiting the interrupt handler only to generate
2944 * another one.
2945 *
2946 * Note that for MSI this could cause a stray interrupt report
2947 * if an interrupt landed in the time between writing IIR and
2948 * the posting read. This should be rare enough to never
2949 * trigger the 99% of 100,000 interrupts test for disabling
2950 * stray interrupts.
2951 */
2952 iir = new_iir;
2953 }
2954
2955 i915_update_dri1_breadcrumb(dev);
2956
2957 return ret;
2958 }
2959
2960 static void i965_irq_uninstall(struct drm_device * dev)
2961 {
2962 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2963 int pipe;
2964
2965 if (!dev_priv)
2966 return;
2967
2968 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2969
2970 I915_WRITE(PORT_HOTPLUG_EN, 0);
2971 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2972
2973 I915_WRITE(HWSTAM, 0xffffffff);
2974 for_each_pipe(pipe)
2975 I915_WRITE(PIPESTAT(pipe), 0);
2976 I915_WRITE(IMR, 0xffffffff);
2977 I915_WRITE(IER, 0x0);
2978
2979 for_each_pipe(pipe)
2980 I915_WRITE(PIPESTAT(pipe),
2981 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2982 I915_WRITE(IIR, I915_READ(IIR));
2983 }
2984
2985 static void i915_reenable_hotplug_timer_func(unsigned long data)
2986 {
2987 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
2988 struct drm_device *dev = dev_priv->dev;
2989 struct drm_mode_config *mode_config = &dev->mode_config;
2990 unsigned long irqflags;
2991 int i;
2992
2993 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2994 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
2995 struct drm_connector *connector;
2996
2997 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
2998 continue;
2999
3000 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3001
3002 list_for_each_entry(connector, &mode_config->connector_list, head) {
3003 struct intel_connector *intel_connector = to_intel_connector(connector);
3004
3005 if (intel_connector->encoder->hpd_pin == i) {
3006 if (connector->polled != intel_connector->polled)
3007 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3008 drm_get_connector_name(connector));
3009 connector->polled = intel_connector->polled;
3010 if (!connector->polled)
3011 connector->polled = DRM_CONNECTOR_POLL_HPD;
3012 }
3013 }
3014 }
3015 if (dev_priv->display.hpd_irq_setup)
3016 dev_priv->display.hpd_irq_setup(dev);
3017 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3018 }
3019
3020 void intel_irq_init(struct drm_device *dev)
3021 {
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023
3024 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3025 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3026 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3027 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3028
3029 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3030 i915_hangcheck_elapsed,
3031 (unsigned long) dev);
3032 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3033 (unsigned long) dev_priv);
3034
3035 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3036
3037 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3038 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3039 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3040 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3041 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3042 }
3043
3044 if (drm_core_check_feature(dev, DRIVER_MODESET))
3045 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3046 else
3047 dev->driver->get_vblank_timestamp = NULL;
3048 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3049
3050 if (IS_VALLEYVIEW(dev)) {
3051 dev->driver->irq_handler = valleyview_irq_handler;
3052 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3053 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3054 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3055 dev->driver->enable_vblank = valleyview_enable_vblank;
3056 dev->driver->disable_vblank = valleyview_disable_vblank;
3057 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3058 } else if (HAS_PCH_SPLIT(dev)) {
3059 dev->driver->irq_handler = ironlake_irq_handler;
3060 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3061 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3062 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3063 dev->driver->enable_vblank = ironlake_enable_vblank;
3064 dev->driver->disable_vblank = ironlake_disable_vblank;
3065 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3066 } else {
3067 if (INTEL_INFO(dev)->gen == 2) {
3068 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3069 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3070 dev->driver->irq_handler = i8xx_irq_handler;
3071 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3072 } else if (INTEL_INFO(dev)->gen == 3) {
3073 dev->driver->irq_preinstall = i915_irq_preinstall;
3074 dev->driver->irq_postinstall = i915_irq_postinstall;
3075 dev->driver->irq_uninstall = i915_irq_uninstall;
3076 dev->driver->irq_handler = i915_irq_handler;
3077 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3078 } else {
3079 dev->driver->irq_preinstall = i965_irq_preinstall;
3080 dev->driver->irq_postinstall = i965_irq_postinstall;
3081 dev->driver->irq_uninstall = i965_irq_uninstall;
3082 dev->driver->irq_handler = i965_irq_handler;
3083 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3084 }
3085 dev->driver->enable_vblank = i915_enable_vblank;
3086 dev->driver->disable_vblank = i915_disable_vblank;
3087 }
3088 }
3089
3090 void intel_hpd_init(struct drm_device *dev)
3091 {
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct drm_mode_config *mode_config = &dev->mode_config;
3094 struct drm_connector *connector;
3095 unsigned long irqflags;
3096 int i;
3097
3098 for (i = 1; i < HPD_NUM_PINS; i++) {
3099 dev_priv->hpd_stats[i].hpd_cnt = 0;
3100 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3101 }
3102 list_for_each_entry(connector, &mode_config->connector_list, head) {
3103 struct intel_connector *intel_connector = to_intel_connector(connector);
3104 connector->polled = intel_connector->polled;
3105 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3106 connector->polled = DRM_CONNECTOR_POLL_HPD;
3107 }
3108
3109 /* Interrupt setup is already guaranteed to be single-threaded, this is
3110 * just to make the assert_spin_locked checks happy. */
3111 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3112 if (dev_priv->display.hpd_irq_setup)
3113 dev_priv->display.hpd_irq_setup(dev);
3114 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3115 }