]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge commit '683b6c6f82a60fabf47012581c2cfbf1b037ab95' into stable/for-linus-3.15
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pc8.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pc8.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pc8.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pc8.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pc8.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pc8.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 enum pipe pipe, bool enable)
237 {
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 DE_PIPEB_FIFO_UNDERRUN;
241
242 if (enable)
243 ironlake_enable_display_irq(dev_priv, bit);
244 else
245 ironlake_disable_display_irq(dev_priv, bit);
246 }
247
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 enum pipe pipe, bool enable)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 if (enable) {
253 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254
255 if (!ivb_can_enable_err_int(dev))
256 return;
257
258 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 } else {
260 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261
262 /* Change the state _after_ we've read out the current one. */
263 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264
265 if (!was_enabled &&
266 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 pipe_name(pipe));
269 }
270 }
271 }
272
273 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
274 enum pipe pipe, bool enable)
275 {
276 struct drm_i915_private *dev_priv = dev->dev_private;
277
278 assert_spin_locked(&dev_priv->irq_lock);
279
280 if (enable)
281 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
282 else
283 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
284 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
285 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
286 }
287
288 /**
289 * ibx_display_interrupt_update - update SDEIMR
290 * @dev_priv: driver private
291 * @interrupt_mask: mask of interrupt bits to update
292 * @enabled_irq_mask: mask of interrupt bits to enable
293 */
294 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
295 uint32_t interrupt_mask,
296 uint32_t enabled_irq_mask)
297 {
298 uint32_t sdeimr = I915_READ(SDEIMR);
299 sdeimr &= ~interrupt_mask;
300 sdeimr |= (~enabled_irq_mask & interrupt_mask);
301
302 assert_spin_locked(&dev_priv->irq_lock);
303
304 if (dev_priv->pc8.irqs_disabled &&
305 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
306 WARN(1, "IRQs disabled\n");
307 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
308 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
309 interrupt_mask);
310 return;
311 }
312
313 I915_WRITE(SDEIMR, sdeimr);
314 POSTING_READ(SDEIMR);
315 }
316 #define ibx_enable_display_interrupt(dev_priv, bits) \
317 ibx_display_interrupt_update((dev_priv), (bits), (bits))
318 #define ibx_disable_display_interrupt(dev_priv, bits) \
319 ibx_display_interrupt_update((dev_priv), (bits), 0)
320
321 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
322 enum transcoder pch_transcoder,
323 bool enable)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
327 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
328
329 if (enable)
330 ibx_enable_display_interrupt(dev_priv, bit);
331 else
332 ibx_disable_display_interrupt(dev_priv, bit);
333 }
334
335 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
336 enum transcoder pch_transcoder,
337 bool enable)
338 {
339 struct drm_i915_private *dev_priv = dev->dev_private;
340
341 if (enable) {
342 I915_WRITE(SERR_INT,
343 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
344
345 if (!cpt_can_enable_serr_int(dev))
346 return;
347
348 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
349 } else {
350 uint32_t tmp = I915_READ(SERR_INT);
351 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
352
353 /* Change the state _after_ we've read out the current one. */
354 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
355
356 if (!was_enabled &&
357 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
358 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
359 transcoder_name(pch_transcoder));
360 }
361 }
362 }
363
364 /**
365 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
366 * @dev: drm device
367 * @pipe: pipe
368 * @enable: true if we want to report FIFO underrun errors, false otherwise
369 *
370 * This function makes us disable or enable CPU fifo underruns for a specific
371 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
372 * reporting for one pipe may also disable all the other CPU error interruts for
373 * the other pipes, due to the fact that there's just one interrupt mask/enable
374 * bit for all the pipes.
375 *
376 * Returns the previous state of underrun reporting.
377 */
378 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
379 enum pipe pipe, bool enable)
380 {
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
384 unsigned long flags;
385 bool ret;
386
387 spin_lock_irqsave(&dev_priv->irq_lock, flags);
388
389 ret = !intel_crtc->cpu_fifo_underrun_disabled;
390
391 if (enable == ret)
392 goto done;
393
394 intel_crtc->cpu_fifo_underrun_disabled = !enable;
395
396 if (IS_GEN5(dev) || IS_GEN6(dev))
397 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
398 else if (IS_GEN7(dev))
399 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
400 else if (IS_GEN8(dev))
401 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
402
403 done:
404 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
405 return ret;
406 }
407
408 /**
409 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
410 * @dev: drm device
411 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
412 * @enable: true if we want to report FIFO underrun errors, false otherwise
413 *
414 * This function makes us disable or enable PCH fifo underruns for a specific
415 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
416 * underrun reporting for one transcoder may also disable all the other PCH
417 * error interruts for the other transcoders, due to the fact that there's just
418 * one interrupt mask/enable bit for all the transcoders.
419 *
420 * Returns the previous state of underrun reporting.
421 */
422 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
423 enum transcoder pch_transcoder,
424 bool enable)
425 {
426 struct drm_i915_private *dev_priv = dev->dev_private;
427 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
429 unsigned long flags;
430 bool ret;
431
432 /*
433 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
434 * has only one pch transcoder A that all pipes can use. To avoid racy
435 * pch transcoder -> pipe lookups from interrupt code simply store the
436 * underrun statistics in crtc A. Since we never expose this anywhere
437 * nor use it outside of the fifo underrun code here using the "wrong"
438 * crtc on LPT won't cause issues.
439 */
440
441 spin_lock_irqsave(&dev_priv->irq_lock, flags);
442
443 ret = !intel_crtc->pch_fifo_underrun_disabled;
444
445 if (enable == ret)
446 goto done;
447
448 intel_crtc->pch_fifo_underrun_disabled = !enable;
449
450 if (HAS_PCH_IBX(dev))
451 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
452 else
453 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
454
455 done:
456 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
457 return ret;
458 }
459
460
461 void
462 i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
463 {
464 u32 reg = PIPESTAT(pipe);
465 u32 pipestat = I915_READ(reg) & 0x7fff0000;
466
467 assert_spin_locked(&dev_priv->irq_lock);
468
469 if ((pipestat & mask) == mask)
470 return;
471
472 /* Enable the interrupt, clear any pending status */
473 pipestat |= mask | (mask >> 16);
474 I915_WRITE(reg, pipestat);
475 POSTING_READ(reg);
476 }
477
478 void
479 i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask)
480 {
481 u32 reg = PIPESTAT(pipe);
482 u32 pipestat = I915_READ(reg) & 0x7fff0000;
483
484 assert_spin_locked(&dev_priv->irq_lock);
485
486 if ((pipestat & mask) == 0)
487 return;
488
489 pipestat &= ~mask;
490 I915_WRITE(reg, pipestat);
491 POSTING_READ(reg);
492 }
493
494 /**
495 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
496 */
497 static void i915_enable_asle_pipestat(struct drm_device *dev)
498 {
499 drm_i915_private_t *dev_priv = dev->dev_private;
500 unsigned long irqflags;
501
502 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
503 return;
504
505 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
506
507 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE);
508 if (INTEL_INFO(dev)->gen >= 4)
509 i915_enable_pipestat(dev_priv, PIPE_A,
510 PIPE_LEGACY_BLC_EVENT_ENABLE);
511
512 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
513 }
514
515 /**
516 * i915_pipe_enabled - check if a pipe is enabled
517 * @dev: DRM device
518 * @pipe: pipe to check
519 *
520 * Reading certain registers when the pipe is disabled can hang the chip.
521 * Use this routine to make sure the PLL is running and the pipe is active
522 * before reading such registers if unsure.
523 */
524 static int
525 i915_pipe_enabled(struct drm_device *dev, int pipe)
526 {
527 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
528
529 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
530 /* Locking is horribly broken here, but whatever. */
531 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
533
534 return intel_crtc->active;
535 } else {
536 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
537 }
538 }
539
540 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
541 {
542 /* Gen2 doesn't have a hardware frame counter */
543 return 0;
544 }
545
546 /* Called from drm generic code, passed a 'crtc', which
547 * we use as a pipe index
548 */
549 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
550 {
551 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
552 unsigned long high_frame;
553 unsigned long low_frame;
554 u32 high1, high2, low, pixel, vbl_start;
555
556 if (!i915_pipe_enabled(dev, pipe)) {
557 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
558 "pipe %c\n", pipe_name(pipe));
559 return 0;
560 }
561
562 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
563 struct intel_crtc *intel_crtc =
564 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
565 const struct drm_display_mode *mode =
566 &intel_crtc->config.adjusted_mode;
567
568 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
569 } else {
570 enum transcoder cpu_transcoder = (enum transcoder) pipe;
571 u32 htotal;
572
573 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
574 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
575
576 vbl_start *= htotal;
577 }
578
579 high_frame = PIPEFRAME(pipe);
580 low_frame = PIPEFRAMEPIXEL(pipe);
581
582 /*
583 * High & low register fields aren't synchronized, so make sure
584 * we get a low value that's stable across two reads of the high
585 * register.
586 */
587 do {
588 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
589 low = I915_READ(low_frame);
590 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
591 } while (high1 != high2);
592
593 high1 >>= PIPE_FRAME_HIGH_SHIFT;
594 pixel = low & PIPE_PIXEL_MASK;
595 low >>= PIPE_FRAME_LOW_SHIFT;
596
597 /*
598 * The frame counter increments at beginning of active.
599 * Cook up a vblank counter by also checking the pixel
600 * counter against vblank start.
601 */
602 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
603 }
604
605 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
606 {
607 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
608 int reg = PIPE_FRMCOUNT_GM45(pipe);
609
610 if (!i915_pipe_enabled(dev, pipe)) {
611 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
612 "pipe %c\n", pipe_name(pipe));
613 return 0;
614 }
615
616 return I915_READ(reg);
617 }
618
619 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
620 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
621
622 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
623 {
624 struct drm_i915_private *dev_priv = dev->dev_private;
625 uint32_t status;
626 int reg;
627
628 if (INTEL_INFO(dev)->gen >= 8) {
629 status = GEN8_PIPE_VBLANK;
630 reg = GEN8_DE_PIPE_ISR(pipe);
631 } else if (INTEL_INFO(dev)->gen >= 7) {
632 status = DE_PIPE_VBLANK_IVB(pipe);
633 reg = DEISR;
634 } else {
635 status = DE_PIPE_VBLANK(pipe);
636 reg = DEISR;
637 }
638
639 return __raw_i915_read32(dev_priv, reg) & status;
640 }
641
642 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
643 unsigned int flags, int *vpos, int *hpos,
644 ktime_t *stime, ktime_t *etime)
645 {
646 struct drm_i915_private *dev_priv = dev->dev_private;
647 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
649 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
650 int position;
651 int vbl_start, vbl_end, htotal, vtotal;
652 bool in_vbl = true;
653 int ret = 0;
654 unsigned long irqflags;
655
656 if (!intel_crtc->active) {
657 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
658 "pipe %c\n", pipe_name(pipe));
659 return 0;
660 }
661
662 htotal = mode->crtc_htotal;
663 vtotal = mode->crtc_vtotal;
664 vbl_start = mode->crtc_vblank_start;
665 vbl_end = mode->crtc_vblank_end;
666
667 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
668 vbl_start = DIV_ROUND_UP(vbl_start, 2);
669 vbl_end /= 2;
670 vtotal /= 2;
671 }
672
673 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
674
675 /*
676 * Lock uncore.lock, as we will do multiple timing critical raw
677 * register reads, potentially with preemption disabled, so the
678 * following code must not block on uncore.lock.
679 */
680 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
681
682 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
683
684 /* Get optional system timestamp before query. */
685 if (stime)
686 *stime = ktime_get();
687
688 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
689 /* No obvious pixelcount register. Only query vertical
690 * scanout position from Display scan line register.
691 */
692 if (IS_GEN2(dev))
693 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
694 else
695 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
696
697 if (HAS_DDI(dev)) {
698 /*
699 * On HSW HDMI outputs there seems to be a 2 line
700 * difference, whereas eDP has the normal 1 line
701 * difference that earlier platforms have. External
702 * DP is unknown. For now just check for the 2 line
703 * difference case on all output types on HSW+.
704 *
705 * This might misinterpret the scanline counter being
706 * one line too far along on eDP, but that's less
707 * dangerous than the alternative since that would lead
708 * the vblank timestamp code astray when it sees a
709 * scanline count before vblank_start during a vblank
710 * interrupt.
711 */
712 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
713 if ((in_vbl && (position == vbl_start - 2 ||
714 position == vbl_start - 1)) ||
715 (!in_vbl && (position == vbl_end - 2 ||
716 position == vbl_end - 1)))
717 position = (position + 2) % vtotal;
718 } else if (HAS_PCH_SPLIT(dev)) {
719 /*
720 * The scanline counter increments at the leading edge
721 * of hsync, ie. it completely misses the active portion
722 * of the line. Fix up the counter at both edges of vblank
723 * to get a more accurate picture whether we're in vblank
724 * or not.
725 */
726 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
727 if ((in_vbl && position == vbl_start - 1) ||
728 (!in_vbl && position == vbl_end - 1))
729 position = (position + 1) % vtotal;
730 } else {
731 /*
732 * ISR vblank status bits don't work the way we'd want
733 * them to work on non-PCH platforms (for
734 * ilk_pipe_in_vblank_locked()), and there doesn't
735 * appear any other way to determine if we're currently
736 * in vblank.
737 *
738 * Instead let's assume that we're already in vblank if
739 * we got called from the vblank interrupt and the
740 * scanline counter value indicates that we're on the
741 * line just prior to vblank start. This should result
742 * in the correct answer, unless the vblank interrupt
743 * delivery really got delayed for almost exactly one
744 * full frame/field.
745 */
746 if (flags & DRM_CALLED_FROM_VBLIRQ &&
747 position == vbl_start - 1) {
748 position = (position + 1) % vtotal;
749
750 /* Signal this correction as "applied". */
751 ret |= 0x8;
752 }
753 }
754 } else {
755 /* Have access to pixelcount since start of frame.
756 * We can split this into vertical and horizontal
757 * scanout position.
758 */
759 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
760
761 /* convert to pixel counts */
762 vbl_start *= htotal;
763 vbl_end *= htotal;
764 vtotal *= htotal;
765 }
766
767 /* Get optional system timestamp after query. */
768 if (etime)
769 *etime = ktime_get();
770
771 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
772
773 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
774
775 in_vbl = position >= vbl_start && position < vbl_end;
776
777 /*
778 * While in vblank, position will be negative
779 * counting up towards 0 at vbl_end. And outside
780 * vblank, position will be positive counting
781 * up since vbl_end.
782 */
783 if (position >= vbl_start)
784 position -= vbl_end;
785 else
786 position += vtotal - vbl_end;
787
788 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 *vpos = position;
790 *hpos = 0;
791 } else {
792 *vpos = position / htotal;
793 *hpos = position - (*vpos * htotal);
794 }
795
796 /* In vblank? */
797 if (in_vbl)
798 ret |= DRM_SCANOUTPOS_INVBL;
799
800 return ret;
801 }
802
803 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
804 int *max_error,
805 struct timeval *vblank_time,
806 unsigned flags)
807 {
808 struct drm_crtc *crtc;
809
810 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
811 DRM_ERROR("Invalid crtc %d\n", pipe);
812 return -EINVAL;
813 }
814
815 /* Get drm_crtc to timestamp: */
816 crtc = intel_get_crtc_for_pipe(dev, pipe);
817 if (crtc == NULL) {
818 DRM_ERROR("Invalid crtc %d\n", pipe);
819 return -EINVAL;
820 }
821
822 if (!crtc->enabled) {
823 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
824 return -EBUSY;
825 }
826
827 /* Helper routine in DRM core does all the work: */
828 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
829 vblank_time, flags,
830 crtc,
831 &to_intel_crtc(crtc)->config.adjusted_mode);
832 }
833
834 static bool intel_hpd_irq_event(struct drm_device *dev,
835 struct drm_connector *connector)
836 {
837 enum drm_connector_status old_status;
838
839 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
840 old_status = connector->status;
841
842 connector->status = connector->funcs->detect(connector, false);
843 if (old_status == connector->status)
844 return false;
845
846 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
847 connector->base.id,
848 drm_get_connector_name(connector),
849 drm_get_connector_status_name(old_status),
850 drm_get_connector_status_name(connector->status));
851
852 return true;
853 }
854
855 /*
856 * Handle hotplug events outside the interrupt handler proper.
857 */
858 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
859
860 static void i915_hotplug_work_func(struct work_struct *work)
861 {
862 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
863 hotplug_work);
864 struct drm_device *dev = dev_priv->dev;
865 struct drm_mode_config *mode_config = &dev->mode_config;
866 struct intel_connector *intel_connector;
867 struct intel_encoder *intel_encoder;
868 struct drm_connector *connector;
869 unsigned long irqflags;
870 bool hpd_disabled = false;
871 bool changed = false;
872 u32 hpd_event_bits;
873
874 /* HPD irq before everything is fully set up. */
875 if (!dev_priv->enable_hotplug_processing)
876 return;
877
878 mutex_lock(&mode_config->mutex);
879 DRM_DEBUG_KMS("running encoder hotplug functions\n");
880
881 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
882
883 hpd_event_bits = dev_priv->hpd_event_bits;
884 dev_priv->hpd_event_bits = 0;
885 list_for_each_entry(connector, &mode_config->connector_list, head) {
886 intel_connector = to_intel_connector(connector);
887 intel_encoder = intel_connector->encoder;
888 if (intel_encoder->hpd_pin > HPD_NONE &&
889 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
890 connector->polled == DRM_CONNECTOR_POLL_HPD) {
891 DRM_INFO("HPD interrupt storm detected on connector %s: "
892 "switching from hotplug detection to polling\n",
893 drm_get_connector_name(connector));
894 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
895 connector->polled = DRM_CONNECTOR_POLL_CONNECT
896 | DRM_CONNECTOR_POLL_DISCONNECT;
897 hpd_disabled = true;
898 }
899 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
900 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
901 drm_get_connector_name(connector), intel_encoder->hpd_pin);
902 }
903 }
904 /* if there were no outputs to poll, poll was disabled,
905 * therefore make sure it's enabled when disabling HPD on
906 * some connectors */
907 if (hpd_disabled) {
908 drm_kms_helper_poll_enable(dev);
909 mod_timer(&dev_priv->hotplug_reenable_timer,
910 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
911 }
912
913 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
914
915 list_for_each_entry(connector, &mode_config->connector_list, head) {
916 intel_connector = to_intel_connector(connector);
917 intel_encoder = intel_connector->encoder;
918 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
919 if (intel_encoder->hot_plug)
920 intel_encoder->hot_plug(intel_encoder);
921 if (intel_hpd_irq_event(dev, connector))
922 changed = true;
923 }
924 }
925 mutex_unlock(&mode_config->mutex);
926
927 if (changed)
928 drm_kms_helper_hotplug_event(dev);
929 }
930
931 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
932 {
933 drm_i915_private_t *dev_priv = dev->dev_private;
934 u32 busy_up, busy_down, max_avg, min_avg;
935 u8 new_delay;
936
937 spin_lock(&mchdev_lock);
938
939 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
940
941 new_delay = dev_priv->ips.cur_delay;
942
943 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
944 busy_up = I915_READ(RCPREVBSYTUPAVG);
945 busy_down = I915_READ(RCPREVBSYTDNAVG);
946 max_avg = I915_READ(RCBMAXAVG);
947 min_avg = I915_READ(RCBMINAVG);
948
949 /* Handle RCS change request from hw */
950 if (busy_up > max_avg) {
951 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
952 new_delay = dev_priv->ips.cur_delay - 1;
953 if (new_delay < dev_priv->ips.max_delay)
954 new_delay = dev_priv->ips.max_delay;
955 } else if (busy_down < min_avg) {
956 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
957 new_delay = dev_priv->ips.cur_delay + 1;
958 if (new_delay > dev_priv->ips.min_delay)
959 new_delay = dev_priv->ips.min_delay;
960 }
961
962 if (ironlake_set_drps(dev, new_delay))
963 dev_priv->ips.cur_delay = new_delay;
964
965 spin_unlock(&mchdev_lock);
966
967 return;
968 }
969
970 static void notify_ring(struct drm_device *dev,
971 struct intel_ring_buffer *ring)
972 {
973 if (ring->obj == NULL)
974 return;
975
976 trace_i915_gem_request_complete(ring);
977
978 wake_up_all(&ring->irq_queue);
979 i915_queue_hangcheck(dev);
980 }
981
982 static void gen6_pm_rps_work(struct work_struct *work)
983 {
984 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
985 rps.work);
986 u32 pm_iir;
987 int new_delay, adj;
988
989 spin_lock_irq(&dev_priv->irq_lock);
990 pm_iir = dev_priv->rps.pm_iir;
991 dev_priv->rps.pm_iir = 0;
992 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
993 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
994 spin_unlock_irq(&dev_priv->irq_lock);
995
996 /* Make sure we didn't queue anything we're not going to process. */
997 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
998
999 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
1000 return;
1001
1002 mutex_lock(&dev_priv->rps.hw_lock);
1003
1004 adj = dev_priv->rps.last_adj;
1005 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1006 if (adj > 0)
1007 adj *= 2;
1008 else
1009 adj = 1;
1010 new_delay = dev_priv->rps.cur_delay + adj;
1011
1012 /*
1013 * For better performance, jump directly
1014 * to RPe if we're below it.
1015 */
1016 if (new_delay < dev_priv->rps.rpe_delay)
1017 new_delay = dev_priv->rps.rpe_delay;
1018 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1019 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
1020 new_delay = dev_priv->rps.rpe_delay;
1021 else
1022 new_delay = dev_priv->rps.min_delay;
1023 adj = 0;
1024 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1025 if (adj < 0)
1026 adj *= 2;
1027 else
1028 adj = -1;
1029 new_delay = dev_priv->rps.cur_delay + adj;
1030 } else { /* unknown event */
1031 new_delay = dev_priv->rps.cur_delay;
1032 }
1033
1034 /* sysfs frequency interfaces may have snuck in while servicing the
1035 * interrupt
1036 */
1037 new_delay = clamp_t(int, new_delay,
1038 dev_priv->rps.min_delay, dev_priv->rps.max_delay);
1039 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
1040
1041 if (IS_VALLEYVIEW(dev_priv->dev))
1042 valleyview_set_rps(dev_priv->dev, new_delay);
1043 else
1044 gen6_set_rps(dev_priv->dev, new_delay);
1045
1046 mutex_unlock(&dev_priv->rps.hw_lock);
1047 }
1048
1049
1050 /**
1051 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1052 * occurred.
1053 * @work: workqueue struct
1054 *
1055 * Doesn't actually do anything except notify userspace. As a consequence of
1056 * this event, userspace should try to remap the bad rows since statistically
1057 * it is likely the same row is more likely to go bad again.
1058 */
1059 static void ivybridge_parity_work(struct work_struct *work)
1060 {
1061 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1062 l3_parity.error_work);
1063 u32 error_status, row, bank, subbank;
1064 char *parity_event[6];
1065 uint32_t misccpctl;
1066 unsigned long flags;
1067 uint8_t slice = 0;
1068
1069 /* We must turn off DOP level clock gating to access the L3 registers.
1070 * In order to prevent a get/put style interface, acquire struct mutex
1071 * any time we access those registers.
1072 */
1073 mutex_lock(&dev_priv->dev->struct_mutex);
1074
1075 /* If we've screwed up tracking, just let the interrupt fire again */
1076 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1077 goto out;
1078
1079 misccpctl = I915_READ(GEN7_MISCCPCTL);
1080 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1081 POSTING_READ(GEN7_MISCCPCTL);
1082
1083 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1084 u32 reg;
1085
1086 slice--;
1087 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1088 break;
1089
1090 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1091
1092 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1093
1094 error_status = I915_READ(reg);
1095 row = GEN7_PARITY_ERROR_ROW(error_status);
1096 bank = GEN7_PARITY_ERROR_BANK(error_status);
1097 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1098
1099 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1100 POSTING_READ(reg);
1101
1102 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1103 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1104 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1105 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1106 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1107 parity_event[5] = NULL;
1108
1109 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1110 KOBJ_CHANGE, parity_event);
1111
1112 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1113 slice, row, bank, subbank);
1114
1115 kfree(parity_event[4]);
1116 kfree(parity_event[3]);
1117 kfree(parity_event[2]);
1118 kfree(parity_event[1]);
1119 }
1120
1121 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1122
1123 out:
1124 WARN_ON(dev_priv->l3_parity.which_slice);
1125 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1126 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1127 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1128
1129 mutex_unlock(&dev_priv->dev->struct_mutex);
1130 }
1131
1132 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1133 {
1134 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1135
1136 if (!HAS_L3_DPF(dev))
1137 return;
1138
1139 spin_lock(&dev_priv->irq_lock);
1140 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1141 spin_unlock(&dev_priv->irq_lock);
1142
1143 iir &= GT_PARITY_ERROR(dev);
1144 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1145 dev_priv->l3_parity.which_slice |= 1 << 1;
1146
1147 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1148 dev_priv->l3_parity.which_slice |= 1 << 0;
1149
1150 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1151 }
1152
1153 static void ilk_gt_irq_handler(struct drm_device *dev,
1154 struct drm_i915_private *dev_priv,
1155 u32 gt_iir)
1156 {
1157 if (gt_iir &
1158 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1159 notify_ring(dev, &dev_priv->ring[RCS]);
1160 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1161 notify_ring(dev, &dev_priv->ring[VCS]);
1162 }
1163
1164 static void snb_gt_irq_handler(struct drm_device *dev,
1165 struct drm_i915_private *dev_priv,
1166 u32 gt_iir)
1167 {
1168
1169 if (gt_iir &
1170 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1171 notify_ring(dev, &dev_priv->ring[RCS]);
1172 if (gt_iir & GT_BSD_USER_INTERRUPT)
1173 notify_ring(dev, &dev_priv->ring[VCS]);
1174 if (gt_iir & GT_BLT_USER_INTERRUPT)
1175 notify_ring(dev, &dev_priv->ring[BCS]);
1176
1177 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1178 GT_BSD_CS_ERROR_INTERRUPT |
1179 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1180 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1181 i915_handle_error(dev, false);
1182 }
1183
1184 if (gt_iir & GT_PARITY_ERROR(dev))
1185 ivybridge_parity_error_irq_handler(dev, gt_iir);
1186 }
1187
1188 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1189 struct drm_i915_private *dev_priv,
1190 u32 master_ctl)
1191 {
1192 u32 rcs, bcs, vcs;
1193 uint32_t tmp = 0;
1194 irqreturn_t ret = IRQ_NONE;
1195
1196 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1197 tmp = I915_READ(GEN8_GT_IIR(0));
1198 if (tmp) {
1199 ret = IRQ_HANDLED;
1200 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1201 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1202 if (rcs & GT_RENDER_USER_INTERRUPT)
1203 notify_ring(dev, &dev_priv->ring[RCS]);
1204 if (bcs & GT_RENDER_USER_INTERRUPT)
1205 notify_ring(dev, &dev_priv->ring[BCS]);
1206 I915_WRITE(GEN8_GT_IIR(0), tmp);
1207 } else
1208 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1209 }
1210
1211 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1212 tmp = I915_READ(GEN8_GT_IIR(1));
1213 if (tmp) {
1214 ret = IRQ_HANDLED;
1215 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1216 if (vcs & GT_RENDER_USER_INTERRUPT)
1217 notify_ring(dev, &dev_priv->ring[VCS]);
1218 I915_WRITE(GEN8_GT_IIR(1), tmp);
1219 } else
1220 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1221 }
1222
1223 if (master_ctl & GEN8_GT_VECS_IRQ) {
1224 tmp = I915_READ(GEN8_GT_IIR(3));
1225 if (tmp) {
1226 ret = IRQ_HANDLED;
1227 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1228 if (vcs & GT_RENDER_USER_INTERRUPT)
1229 notify_ring(dev, &dev_priv->ring[VECS]);
1230 I915_WRITE(GEN8_GT_IIR(3), tmp);
1231 } else
1232 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1233 }
1234
1235 return ret;
1236 }
1237
1238 #define HPD_STORM_DETECT_PERIOD 1000
1239 #define HPD_STORM_THRESHOLD 5
1240
1241 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1242 u32 hotplug_trigger,
1243 const u32 *hpd)
1244 {
1245 drm_i915_private_t *dev_priv = dev->dev_private;
1246 int i;
1247 bool storm_detected = false;
1248
1249 if (!hotplug_trigger)
1250 return;
1251
1252 spin_lock(&dev_priv->irq_lock);
1253 for (i = 1; i < HPD_NUM_PINS; i++) {
1254
1255 WARN_ONCE(hpd[i] & hotplug_trigger &&
1256 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1257 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1258 hotplug_trigger, i, hpd[i]);
1259
1260 if (!(hpd[i] & hotplug_trigger) ||
1261 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1262 continue;
1263
1264 dev_priv->hpd_event_bits |= (1 << i);
1265 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1266 dev_priv->hpd_stats[i].hpd_last_jiffies
1267 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1268 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1269 dev_priv->hpd_stats[i].hpd_cnt = 0;
1270 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1271 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1272 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1273 dev_priv->hpd_event_bits &= ~(1 << i);
1274 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1275 storm_detected = true;
1276 } else {
1277 dev_priv->hpd_stats[i].hpd_cnt++;
1278 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1279 dev_priv->hpd_stats[i].hpd_cnt);
1280 }
1281 }
1282
1283 if (storm_detected)
1284 dev_priv->display.hpd_irq_setup(dev);
1285 spin_unlock(&dev_priv->irq_lock);
1286
1287 /*
1288 * Our hotplug handler can grab modeset locks (by calling down into the
1289 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1290 * queue for otherwise the flush_work in the pageflip code will
1291 * deadlock.
1292 */
1293 schedule_work(&dev_priv->hotplug_work);
1294 }
1295
1296 static void gmbus_irq_handler(struct drm_device *dev)
1297 {
1298 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1299
1300 wake_up_all(&dev_priv->gmbus_wait_queue);
1301 }
1302
1303 static void dp_aux_irq_handler(struct drm_device *dev)
1304 {
1305 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1306
1307 wake_up_all(&dev_priv->gmbus_wait_queue);
1308 }
1309
1310 #if defined(CONFIG_DEBUG_FS)
1311 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1312 uint32_t crc0, uint32_t crc1,
1313 uint32_t crc2, uint32_t crc3,
1314 uint32_t crc4)
1315 {
1316 struct drm_i915_private *dev_priv = dev->dev_private;
1317 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1318 struct intel_pipe_crc_entry *entry;
1319 int head, tail;
1320
1321 spin_lock(&pipe_crc->lock);
1322
1323 if (!pipe_crc->entries) {
1324 spin_unlock(&pipe_crc->lock);
1325 DRM_ERROR("spurious interrupt\n");
1326 return;
1327 }
1328
1329 head = pipe_crc->head;
1330 tail = pipe_crc->tail;
1331
1332 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1333 spin_unlock(&pipe_crc->lock);
1334 DRM_ERROR("CRC buffer overflowing\n");
1335 return;
1336 }
1337
1338 entry = &pipe_crc->entries[head];
1339
1340 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1341 entry->crc[0] = crc0;
1342 entry->crc[1] = crc1;
1343 entry->crc[2] = crc2;
1344 entry->crc[3] = crc3;
1345 entry->crc[4] = crc4;
1346
1347 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1348 pipe_crc->head = head;
1349
1350 spin_unlock(&pipe_crc->lock);
1351
1352 wake_up_interruptible(&pipe_crc->wq);
1353 }
1354 #else
1355 static inline void
1356 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1357 uint32_t crc0, uint32_t crc1,
1358 uint32_t crc2, uint32_t crc3,
1359 uint32_t crc4) {}
1360 #endif
1361
1362
1363 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1364 {
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367 display_pipe_crc_irq_handler(dev, pipe,
1368 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1369 0, 0, 0, 0);
1370 }
1371
1372 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1373 {
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375
1376 display_pipe_crc_irq_handler(dev, pipe,
1377 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1378 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1379 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1380 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1381 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1382 }
1383
1384 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1385 {
1386 struct drm_i915_private *dev_priv = dev->dev_private;
1387 uint32_t res1, res2;
1388
1389 if (INTEL_INFO(dev)->gen >= 3)
1390 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1391 else
1392 res1 = 0;
1393
1394 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1395 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1396 else
1397 res2 = 0;
1398
1399 display_pipe_crc_irq_handler(dev, pipe,
1400 I915_READ(PIPE_CRC_RES_RED(pipe)),
1401 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1402 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1403 res1, res2);
1404 }
1405
1406 /* The RPS events need forcewake, so we add them to a work queue and mask their
1407 * IMR bits until the work is done. Other interrupts can be processed without
1408 * the work queue. */
1409 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1410 {
1411 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1412 spin_lock(&dev_priv->irq_lock);
1413 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1414 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1415 spin_unlock(&dev_priv->irq_lock);
1416
1417 queue_work(dev_priv->wq, &dev_priv->rps.work);
1418 }
1419
1420 if (HAS_VEBOX(dev_priv->dev)) {
1421 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1422 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1423
1424 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1425 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1426 i915_handle_error(dev_priv->dev, false);
1427 }
1428 }
1429 }
1430
1431 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1432 {
1433 struct drm_device *dev = (struct drm_device *) arg;
1434 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1435 u32 iir, gt_iir, pm_iir;
1436 irqreturn_t ret = IRQ_NONE;
1437 unsigned long irqflags;
1438 int pipe;
1439 u32 pipe_stats[I915_MAX_PIPES];
1440
1441 atomic_inc(&dev_priv->irq_received);
1442
1443 while (true) {
1444 iir = I915_READ(VLV_IIR);
1445 gt_iir = I915_READ(GTIIR);
1446 pm_iir = I915_READ(GEN6_PMIIR);
1447
1448 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1449 goto out;
1450
1451 ret = IRQ_HANDLED;
1452
1453 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1454
1455 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1456 for_each_pipe(pipe) {
1457 int reg = PIPESTAT(pipe);
1458 pipe_stats[pipe] = I915_READ(reg);
1459
1460 /*
1461 * Clear the PIPE*STAT regs before the IIR
1462 */
1463 if (pipe_stats[pipe] & 0x8000ffff) {
1464 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1465 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1466 pipe_name(pipe));
1467 I915_WRITE(reg, pipe_stats[pipe]);
1468 }
1469 }
1470 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1471
1472 for_each_pipe(pipe) {
1473 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1474 drm_handle_vblank(dev, pipe);
1475
1476 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1477 intel_prepare_page_flip(dev, pipe);
1478 intel_finish_page_flip(dev, pipe);
1479 }
1480
1481 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1482 i9xx_pipe_crc_irq_handler(dev, pipe);
1483 }
1484
1485 /* Consume port. Then clear IIR or we'll miss events */
1486 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1487 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1488 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1489
1490 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1491 hotplug_status);
1492
1493 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1494
1495 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1496 dp_aux_irq_handler(dev);
1497
1498 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1499 I915_READ(PORT_HOTPLUG_STAT);
1500 }
1501
1502 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1503 gmbus_irq_handler(dev);
1504
1505 if (pm_iir)
1506 gen6_rps_irq_handler(dev_priv, pm_iir);
1507
1508 I915_WRITE(GTIIR, gt_iir);
1509 I915_WRITE(GEN6_PMIIR, pm_iir);
1510 I915_WRITE(VLV_IIR, iir);
1511 }
1512
1513 out:
1514 return ret;
1515 }
1516
1517 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1518 {
1519 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1520 int pipe;
1521 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1522
1523 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1524
1525 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1526 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1527 SDE_AUDIO_POWER_SHIFT);
1528 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1529 port_name(port));
1530 }
1531
1532 if (pch_iir & SDE_AUX_MASK)
1533 dp_aux_irq_handler(dev);
1534
1535 if (pch_iir & SDE_GMBUS)
1536 gmbus_irq_handler(dev);
1537
1538 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1539 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1540
1541 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1542 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1543
1544 if (pch_iir & SDE_POISON)
1545 DRM_ERROR("PCH poison interrupt\n");
1546
1547 if (pch_iir & SDE_FDI_MASK)
1548 for_each_pipe(pipe)
1549 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1550 pipe_name(pipe),
1551 I915_READ(FDI_RX_IIR(pipe)));
1552
1553 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1554 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1555
1556 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1557 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1558
1559 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1560 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1561 false))
1562 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1563
1564 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1565 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1566 false))
1567 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1568 }
1569
1570 static void ivb_err_int_handler(struct drm_device *dev)
1571 {
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 u32 err_int = I915_READ(GEN7_ERR_INT);
1574 enum pipe pipe;
1575
1576 if (err_int & ERR_INT_POISON)
1577 DRM_ERROR("Poison interrupt\n");
1578
1579 for_each_pipe(pipe) {
1580 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1581 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1582 false))
1583 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1584 pipe_name(pipe));
1585 }
1586
1587 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1588 if (IS_IVYBRIDGE(dev))
1589 ivb_pipe_crc_irq_handler(dev, pipe);
1590 else
1591 hsw_pipe_crc_irq_handler(dev, pipe);
1592 }
1593 }
1594
1595 I915_WRITE(GEN7_ERR_INT, err_int);
1596 }
1597
1598 static void cpt_serr_int_handler(struct drm_device *dev)
1599 {
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 u32 serr_int = I915_READ(SERR_INT);
1602
1603 if (serr_int & SERR_INT_POISON)
1604 DRM_ERROR("PCH poison interrupt\n");
1605
1606 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1607 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1608 false))
1609 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1610
1611 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1612 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1613 false))
1614 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1615
1616 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1617 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1618 false))
1619 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1620
1621 I915_WRITE(SERR_INT, serr_int);
1622 }
1623
1624 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1625 {
1626 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1627 int pipe;
1628 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1629
1630 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1631
1632 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1633 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1634 SDE_AUDIO_POWER_SHIFT_CPT);
1635 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1636 port_name(port));
1637 }
1638
1639 if (pch_iir & SDE_AUX_MASK_CPT)
1640 dp_aux_irq_handler(dev);
1641
1642 if (pch_iir & SDE_GMBUS_CPT)
1643 gmbus_irq_handler(dev);
1644
1645 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1646 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1647
1648 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1649 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1650
1651 if (pch_iir & SDE_FDI_MASK_CPT)
1652 for_each_pipe(pipe)
1653 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1654 pipe_name(pipe),
1655 I915_READ(FDI_RX_IIR(pipe)));
1656
1657 if (pch_iir & SDE_ERROR_CPT)
1658 cpt_serr_int_handler(dev);
1659 }
1660
1661 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1662 {
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 enum pipe pipe;
1665
1666 if (de_iir & DE_AUX_CHANNEL_A)
1667 dp_aux_irq_handler(dev);
1668
1669 if (de_iir & DE_GSE)
1670 intel_opregion_asle_intr(dev);
1671
1672 if (de_iir & DE_POISON)
1673 DRM_ERROR("Poison interrupt\n");
1674
1675 for_each_pipe(pipe) {
1676 if (de_iir & DE_PIPE_VBLANK(pipe))
1677 drm_handle_vblank(dev, pipe);
1678
1679 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1680 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1681 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1682 pipe_name(pipe));
1683
1684 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1685 i9xx_pipe_crc_irq_handler(dev, pipe);
1686
1687 /* plane/pipes map 1:1 on ilk+ */
1688 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1689 intel_prepare_page_flip(dev, pipe);
1690 intel_finish_page_flip_plane(dev, pipe);
1691 }
1692 }
1693
1694 /* check event from PCH */
1695 if (de_iir & DE_PCH_EVENT) {
1696 u32 pch_iir = I915_READ(SDEIIR);
1697
1698 if (HAS_PCH_CPT(dev))
1699 cpt_irq_handler(dev, pch_iir);
1700 else
1701 ibx_irq_handler(dev, pch_iir);
1702
1703 /* should clear PCH hotplug event before clear CPU irq */
1704 I915_WRITE(SDEIIR, pch_iir);
1705 }
1706
1707 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1708 ironlake_rps_change_irq_handler(dev);
1709 }
1710
1711 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1712 {
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 enum pipe i;
1715
1716 if (de_iir & DE_ERR_INT_IVB)
1717 ivb_err_int_handler(dev);
1718
1719 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1720 dp_aux_irq_handler(dev);
1721
1722 if (de_iir & DE_GSE_IVB)
1723 intel_opregion_asle_intr(dev);
1724
1725 for_each_pipe(i) {
1726 if (de_iir & (DE_PIPE_VBLANK_IVB(i)))
1727 drm_handle_vblank(dev, i);
1728
1729 /* plane/pipes map 1:1 on ilk+ */
1730 if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) {
1731 intel_prepare_page_flip(dev, i);
1732 intel_finish_page_flip_plane(dev, i);
1733 }
1734 }
1735
1736 /* check event from PCH */
1737 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1738 u32 pch_iir = I915_READ(SDEIIR);
1739
1740 cpt_irq_handler(dev, pch_iir);
1741
1742 /* clear PCH hotplug event before clear CPU irq */
1743 I915_WRITE(SDEIIR, pch_iir);
1744 }
1745 }
1746
1747 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1748 {
1749 struct drm_device *dev = (struct drm_device *) arg;
1750 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1751 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1752 irqreturn_t ret = IRQ_NONE;
1753
1754 atomic_inc(&dev_priv->irq_received);
1755
1756 /* We get interrupts on unclaimed registers, so check for this before we
1757 * do any I915_{READ,WRITE}. */
1758 intel_uncore_check_errors(dev);
1759
1760 /* disable master interrupt before clearing iir */
1761 de_ier = I915_READ(DEIER);
1762 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1763 POSTING_READ(DEIER);
1764
1765 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1766 * interrupts will will be stored on its back queue, and then we'll be
1767 * able to process them after we restore SDEIER (as soon as we restore
1768 * it, we'll get an interrupt if SDEIIR still has something to process
1769 * due to its back queue). */
1770 if (!HAS_PCH_NOP(dev)) {
1771 sde_ier = I915_READ(SDEIER);
1772 I915_WRITE(SDEIER, 0);
1773 POSTING_READ(SDEIER);
1774 }
1775
1776 gt_iir = I915_READ(GTIIR);
1777 if (gt_iir) {
1778 if (INTEL_INFO(dev)->gen >= 6)
1779 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1780 else
1781 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1782 I915_WRITE(GTIIR, gt_iir);
1783 ret = IRQ_HANDLED;
1784 }
1785
1786 de_iir = I915_READ(DEIIR);
1787 if (de_iir) {
1788 if (INTEL_INFO(dev)->gen >= 7)
1789 ivb_display_irq_handler(dev, de_iir);
1790 else
1791 ilk_display_irq_handler(dev, de_iir);
1792 I915_WRITE(DEIIR, de_iir);
1793 ret = IRQ_HANDLED;
1794 }
1795
1796 if (INTEL_INFO(dev)->gen >= 6) {
1797 u32 pm_iir = I915_READ(GEN6_PMIIR);
1798 if (pm_iir) {
1799 gen6_rps_irq_handler(dev_priv, pm_iir);
1800 I915_WRITE(GEN6_PMIIR, pm_iir);
1801 ret = IRQ_HANDLED;
1802 }
1803 }
1804
1805 I915_WRITE(DEIER, de_ier);
1806 POSTING_READ(DEIER);
1807 if (!HAS_PCH_NOP(dev)) {
1808 I915_WRITE(SDEIER, sde_ier);
1809 POSTING_READ(SDEIER);
1810 }
1811
1812 return ret;
1813 }
1814
1815 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1816 {
1817 struct drm_device *dev = arg;
1818 struct drm_i915_private *dev_priv = dev->dev_private;
1819 u32 master_ctl;
1820 irqreturn_t ret = IRQ_NONE;
1821 uint32_t tmp = 0;
1822 enum pipe pipe;
1823
1824 atomic_inc(&dev_priv->irq_received);
1825
1826 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1827 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1828 if (!master_ctl)
1829 return IRQ_NONE;
1830
1831 I915_WRITE(GEN8_MASTER_IRQ, 0);
1832 POSTING_READ(GEN8_MASTER_IRQ);
1833
1834 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1835
1836 if (master_ctl & GEN8_DE_MISC_IRQ) {
1837 tmp = I915_READ(GEN8_DE_MISC_IIR);
1838 if (tmp & GEN8_DE_MISC_GSE)
1839 intel_opregion_asle_intr(dev);
1840 else if (tmp)
1841 DRM_ERROR("Unexpected DE Misc interrupt\n");
1842 else
1843 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1844
1845 if (tmp) {
1846 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1847 ret = IRQ_HANDLED;
1848 }
1849 }
1850
1851 if (master_ctl & GEN8_DE_PORT_IRQ) {
1852 tmp = I915_READ(GEN8_DE_PORT_IIR);
1853 if (tmp & GEN8_AUX_CHANNEL_A)
1854 dp_aux_irq_handler(dev);
1855 else if (tmp)
1856 DRM_ERROR("Unexpected DE Port interrupt\n");
1857 else
1858 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1859
1860 if (tmp) {
1861 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
1862 ret = IRQ_HANDLED;
1863 }
1864 }
1865
1866 for_each_pipe(pipe) {
1867 uint32_t pipe_iir;
1868
1869 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
1870 continue;
1871
1872 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
1873 if (pipe_iir & GEN8_PIPE_VBLANK)
1874 drm_handle_vblank(dev, pipe);
1875
1876 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
1877 intel_prepare_page_flip(dev, pipe);
1878 intel_finish_page_flip_plane(dev, pipe);
1879 }
1880
1881 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
1882 hsw_pipe_crc_irq_handler(dev, pipe);
1883
1884 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
1885 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1886 false))
1887 DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n",
1888 pipe_name(pipe));
1889 }
1890
1891 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
1892 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
1893 pipe_name(pipe),
1894 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
1895 }
1896
1897 if (pipe_iir) {
1898 ret = IRQ_HANDLED;
1899 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
1900 } else
1901 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
1902 }
1903
1904 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
1905 /*
1906 * FIXME(BDW): Assume for now that the new interrupt handling
1907 * scheme also closed the SDE interrupt handling race we've seen
1908 * on older pch-split platforms. But this needs testing.
1909 */
1910 u32 pch_iir = I915_READ(SDEIIR);
1911
1912 cpt_irq_handler(dev, pch_iir);
1913
1914 if (pch_iir) {
1915 I915_WRITE(SDEIIR, pch_iir);
1916 ret = IRQ_HANDLED;
1917 }
1918 }
1919
1920 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1921 POSTING_READ(GEN8_MASTER_IRQ);
1922
1923 return ret;
1924 }
1925
1926 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1927 bool reset_completed)
1928 {
1929 struct intel_ring_buffer *ring;
1930 int i;
1931
1932 /*
1933 * Notify all waiters for GPU completion events that reset state has
1934 * been changed, and that they need to restart their wait after
1935 * checking for potential errors (and bail out to drop locks if there is
1936 * a gpu reset pending so that i915_error_work_func can acquire them).
1937 */
1938
1939 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1940 for_each_ring(ring, dev_priv, i)
1941 wake_up_all(&ring->irq_queue);
1942
1943 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1944 wake_up_all(&dev_priv->pending_flip_queue);
1945
1946 /*
1947 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1948 * reset state is cleared.
1949 */
1950 if (reset_completed)
1951 wake_up_all(&dev_priv->gpu_error.reset_queue);
1952 }
1953
1954 /**
1955 * i915_error_work_func - do process context error handling work
1956 * @work: work struct
1957 *
1958 * Fire an error uevent so userspace can see that a hang or error
1959 * was detected.
1960 */
1961 static void i915_error_work_func(struct work_struct *work)
1962 {
1963 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1964 work);
1965 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1966 gpu_error);
1967 struct drm_device *dev = dev_priv->dev;
1968 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1969 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1970 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1971 int ret;
1972
1973 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
1974
1975 /*
1976 * Note that there's only one work item which does gpu resets, so we
1977 * need not worry about concurrent gpu resets potentially incrementing
1978 * error->reset_counter twice. We only need to take care of another
1979 * racing irq/hangcheck declaring the gpu dead for a second time. A
1980 * quick check for that is good enough: schedule_work ensures the
1981 * correct ordering between hang detection and this work item, and since
1982 * the reset in-progress bit is only ever set by code outside of this
1983 * work we don't need to worry about any other races.
1984 */
1985 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1986 DRM_DEBUG_DRIVER("resetting chip\n");
1987 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
1988 reset_event);
1989
1990 /*
1991 * All state reset _must_ be completed before we update the
1992 * reset counter, for otherwise waiters might miss the reset
1993 * pending state and not properly drop locks, resulting in
1994 * deadlocks with the reset work.
1995 */
1996 ret = i915_reset(dev);
1997
1998 intel_display_handle_reset(dev);
1999
2000 if (ret == 0) {
2001 /*
2002 * After all the gem state is reset, increment the reset
2003 * counter and wake up everyone waiting for the reset to
2004 * complete.
2005 *
2006 * Since unlock operations are a one-sided barrier only,
2007 * we need to insert a barrier here to order any seqno
2008 * updates before
2009 * the counter increment.
2010 */
2011 smp_mb__before_atomic_inc();
2012 atomic_inc(&dev_priv->gpu_error.reset_counter);
2013
2014 kobject_uevent_env(&dev->primary->kdev->kobj,
2015 KOBJ_CHANGE, reset_done_event);
2016 } else {
2017 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2018 }
2019
2020 /*
2021 * Note: The wake_up also serves as a memory barrier so that
2022 * waiters see the update value of the reset counter atomic_t.
2023 */
2024 i915_error_wake_up(dev_priv, true);
2025 }
2026 }
2027
2028 static void i915_report_and_clear_eir(struct drm_device *dev)
2029 {
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 uint32_t instdone[I915_NUM_INSTDONE_REG];
2032 u32 eir = I915_READ(EIR);
2033 int pipe, i;
2034
2035 if (!eir)
2036 return;
2037
2038 pr_err("render error detected, EIR: 0x%08x\n", eir);
2039
2040 i915_get_extra_instdone(dev, instdone);
2041
2042 if (IS_G4X(dev)) {
2043 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2044 u32 ipeir = I915_READ(IPEIR_I965);
2045
2046 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2047 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2048 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2049 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2050 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2051 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2052 I915_WRITE(IPEIR_I965, ipeir);
2053 POSTING_READ(IPEIR_I965);
2054 }
2055 if (eir & GM45_ERROR_PAGE_TABLE) {
2056 u32 pgtbl_err = I915_READ(PGTBL_ER);
2057 pr_err("page table error\n");
2058 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2059 I915_WRITE(PGTBL_ER, pgtbl_err);
2060 POSTING_READ(PGTBL_ER);
2061 }
2062 }
2063
2064 if (!IS_GEN2(dev)) {
2065 if (eir & I915_ERROR_PAGE_TABLE) {
2066 u32 pgtbl_err = I915_READ(PGTBL_ER);
2067 pr_err("page table error\n");
2068 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2069 I915_WRITE(PGTBL_ER, pgtbl_err);
2070 POSTING_READ(PGTBL_ER);
2071 }
2072 }
2073
2074 if (eir & I915_ERROR_MEMORY_REFRESH) {
2075 pr_err("memory refresh error:\n");
2076 for_each_pipe(pipe)
2077 pr_err("pipe %c stat: 0x%08x\n",
2078 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2079 /* pipestat has already been acked */
2080 }
2081 if (eir & I915_ERROR_INSTRUCTION) {
2082 pr_err("instruction error\n");
2083 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2084 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2085 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2086 if (INTEL_INFO(dev)->gen < 4) {
2087 u32 ipeir = I915_READ(IPEIR);
2088
2089 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2090 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2091 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2092 I915_WRITE(IPEIR, ipeir);
2093 POSTING_READ(IPEIR);
2094 } else {
2095 u32 ipeir = I915_READ(IPEIR_I965);
2096
2097 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2098 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2099 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2100 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2101 I915_WRITE(IPEIR_I965, ipeir);
2102 POSTING_READ(IPEIR_I965);
2103 }
2104 }
2105
2106 I915_WRITE(EIR, eir);
2107 POSTING_READ(EIR);
2108 eir = I915_READ(EIR);
2109 if (eir) {
2110 /*
2111 * some errors might have become stuck,
2112 * mask them.
2113 */
2114 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2115 I915_WRITE(EMR, I915_READ(EMR) | eir);
2116 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2117 }
2118 }
2119
2120 /**
2121 * i915_handle_error - handle an error interrupt
2122 * @dev: drm device
2123 *
2124 * Do some basic checking of regsiter state at error interrupt time and
2125 * dump it to the syslog. Also call i915_capture_error_state() to make
2126 * sure we get a record and make it available in debugfs. Fire a uevent
2127 * so userspace knows something bad happened (should trigger collection
2128 * of a ring dump etc.).
2129 */
2130 void i915_handle_error(struct drm_device *dev, bool wedged)
2131 {
2132 struct drm_i915_private *dev_priv = dev->dev_private;
2133
2134 i915_capture_error_state(dev);
2135 i915_report_and_clear_eir(dev);
2136
2137 if (wedged) {
2138 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2139 &dev_priv->gpu_error.reset_counter);
2140
2141 /*
2142 * Wakeup waiting processes so that the reset work function
2143 * i915_error_work_func doesn't deadlock trying to grab various
2144 * locks. By bumping the reset counter first, the woken
2145 * processes will see a reset in progress and back off,
2146 * releasing their locks and then wait for the reset completion.
2147 * We must do this for _all_ gpu waiters that might hold locks
2148 * that the reset work needs to acquire.
2149 *
2150 * Note: The wake_up serves as the required memory barrier to
2151 * ensure that the waiters see the updated value of the reset
2152 * counter atomic_t.
2153 */
2154 i915_error_wake_up(dev_priv, false);
2155 }
2156
2157 /*
2158 * Our reset work can grab modeset locks (since it needs to reset the
2159 * state of outstanding pagelips). Hence it must not be run on our own
2160 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2161 * code will deadlock.
2162 */
2163 schedule_work(&dev_priv->gpu_error.work);
2164 }
2165
2166 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2167 {
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2171 struct drm_i915_gem_object *obj;
2172 struct intel_unpin_work *work;
2173 unsigned long flags;
2174 bool stall_detected;
2175
2176 /* Ignore early vblank irqs */
2177 if (intel_crtc == NULL)
2178 return;
2179
2180 spin_lock_irqsave(&dev->event_lock, flags);
2181 work = intel_crtc->unpin_work;
2182
2183 if (work == NULL ||
2184 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2185 !work->enable_stall_check) {
2186 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2187 spin_unlock_irqrestore(&dev->event_lock, flags);
2188 return;
2189 }
2190
2191 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2192 obj = work->pending_flip_obj;
2193 if (INTEL_INFO(dev)->gen >= 4) {
2194 int dspsurf = DSPSURF(intel_crtc->plane);
2195 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2196 i915_gem_obj_ggtt_offset(obj);
2197 } else {
2198 int dspaddr = DSPADDR(intel_crtc->plane);
2199 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2200 crtc->y * crtc->fb->pitches[0] +
2201 crtc->x * crtc->fb->bits_per_pixel/8);
2202 }
2203
2204 spin_unlock_irqrestore(&dev->event_lock, flags);
2205
2206 if (stall_detected) {
2207 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2208 intel_prepare_page_flip(dev, intel_crtc->plane);
2209 }
2210 }
2211
2212 /* Called from drm generic code, passed 'crtc' which
2213 * we use as a pipe index
2214 */
2215 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2216 {
2217 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2218 unsigned long irqflags;
2219
2220 if (!i915_pipe_enabled(dev, pipe))
2221 return -EINVAL;
2222
2223 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2224 if (INTEL_INFO(dev)->gen >= 4)
2225 i915_enable_pipestat(dev_priv, pipe,
2226 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2227 else
2228 i915_enable_pipestat(dev_priv, pipe,
2229 PIPE_VBLANK_INTERRUPT_ENABLE);
2230
2231 /* maintain vblank delivery even in deep C-states */
2232 if (dev_priv->info->gen == 3)
2233 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2234 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2235
2236 return 0;
2237 }
2238
2239 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2240 {
2241 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2242 unsigned long irqflags;
2243 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2244 DE_PIPE_VBLANK(pipe);
2245
2246 if (!i915_pipe_enabled(dev, pipe))
2247 return -EINVAL;
2248
2249 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2250 ironlake_enable_display_irq(dev_priv, bit);
2251 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2252
2253 return 0;
2254 }
2255
2256 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2257 {
2258 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2259 unsigned long irqflags;
2260 u32 imr;
2261
2262 if (!i915_pipe_enabled(dev, pipe))
2263 return -EINVAL;
2264
2265 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2266 imr = I915_READ(VLV_IMR);
2267 if (pipe == PIPE_A)
2268 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2269 else
2270 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2271 I915_WRITE(VLV_IMR, imr);
2272 i915_enable_pipestat(dev_priv, pipe,
2273 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2274 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2275
2276 return 0;
2277 }
2278
2279 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2280 {
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 unsigned long irqflags;
2283
2284 if (!i915_pipe_enabled(dev, pipe))
2285 return -EINVAL;
2286
2287 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2288 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2289 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2290 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2291 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2292 return 0;
2293 }
2294
2295 /* Called from drm generic code, passed 'crtc' which
2296 * we use as a pipe index
2297 */
2298 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2299 {
2300 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2301 unsigned long irqflags;
2302
2303 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2304 if (dev_priv->info->gen == 3)
2305 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2306
2307 i915_disable_pipestat(dev_priv, pipe,
2308 PIPE_VBLANK_INTERRUPT_ENABLE |
2309 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2310 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2311 }
2312
2313 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2314 {
2315 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2316 unsigned long irqflags;
2317 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2318 DE_PIPE_VBLANK(pipe);
2319
2320 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2321 ironlake_disable_display_irq(dev_priv, bit);
2322 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2323 }
2324
2325 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2326 {
2327 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2328 unsigned long irqflags;
2329 u32 imr;
2330
2331 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2332 i915_disable_pipestat(dev_priv, pipe,
2333 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2334 imr = I915_READ(VLV_IMR);
2335 if (pipe == PIPE_A)
2336 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2337 else
2338 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2339 I915_WRITE(VLV_IMR, imr);
2340 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2341 }
2342
2343 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2344 {
2345 struct drm_i915_private *dev_priv = dev->dev_private;
2346 unsigned long irqflags;
2347
2348 if (!i915_pipe_enabled(dev, pipe))
2349 return;
2350
2351 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2352 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2353 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2354 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2355 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2356 }
2357
2358 static u32
2359 ring_last_seqno(struct intel_ring_buffer *ring)
2360 {
2361 return list_entry(ring->request_list.prev,
2362 struct drm_i915_gem_request, list)->seqno;
2363 }
2364
2365 static bool
2366 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2367 {
2368 return (list_empty(&ring->request_list) ||
2369 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2370 }
2371
2372 static struct intel_ring_buffer *
2373 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2374 {
2375 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2376 u32 cmd, ipehr, acthd, acthd_min;
2377
2378 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2379 if ((ipehr & ~(0x3 << 16)) !=
2380 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2381 return NULL;
2382
2383 /* ACTHD is likely pointing to the dword after the actual command,
2384 * so scan backwards until we find the MBOX.
2385 */
2386 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2387 acthd_min = max((int)acthd - 3 * 4, 0);
2388 do {
2389 cmd = ioread32(ring->virtual_start + acthd);
2390 if (cmd == ipehr)
2391 break;
2392
2393 acthd -= 4;
2394 if (acthd < acthd_min)
2395 return NULL;
2396 } while (1);
2397
2398 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2399 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2400 }
2401
2402 static int semaphore_passed(struct intel_ring_buffer *ring)
2403 {
2404 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2405 struct intel_ring_buffer *signaller;
2406 u32 seqno, ctl;
2407
2408 ring->hangcheck.deadlock = true;
2409
2410 signaller = semaphore_waits_for(ring, &seqno);
2411 if (signaller == NULL || signaller->hangcheck.deadlock)
2412 return -1;
2413
2414 /* cursory check for an unkickable deadlock */
2415 ctl = I915_READ_CTL(signaller);
2416 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2417 return -1;
2418
2419 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2420 }
2421
2422 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2423 {
2424 struct intel_ring_buffer *ring;
2425 int i;
2426
2427 for_each_ring(ring, dev_priv, i)
2428 ring->hangcheck.deadlock = false;
2429 }
2430
2431 static enum intel_ring_hangcheck_action
2432 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2433 {
2434 struct drm_device *dev = ring->dev;
2435 struct drm_i915_private *dev_priv = dev->dev_private;
2436 u32 tmp;
2437
2438 if (ring->hangcheck.acthd != acthd)
2439 return HANGCHECK_ACTIVE;
2440
2441 if (IS_GEN2(dev))
2442 return HANGCHECK_HUNG;
2443
2444 /* Is the chip hanging on a WAIT_FOR_EVENT?
2445 * If so we can simply poke the RB_WAIT bit
2446 * and break the hang. This should work on
2447 * all but the second generation chipsets.
2448 */
2449 tmp = I915_READ_CTL(ring);
2450 if (tmp & RING_WAIT) {
2451 DRM_ERROR("Kicking stuck wait on %s\n",
2452 ring->name);
2453 i915_handle_error(dev, false);
2454 I915_WRITE_CTL(ring, tmp);
2455 return HANGCHECK_KICK;
2456 }
2457
2458 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2459 switch (semaphore_passed(ring)) {
2460 default:
2461 return HANGCHECK_HUNG;
2462 case 1:
2463 DRM_ERROR("Kicking stuck semaphore on %s\n",
2464 ring->name);
2465 i915_handle_error(dev, false);
2466 I915_WRITE_CTL(ring, tmp);
2467 return HANGCHECK_KICK;
2468 case 0:
2469 return HANGCHECK_WAIT;
2470 }
2471 }
2472
2473 return HANGCHECK_HUNG;
2474 }
2475
2476 /**
2477 * This is called when the chip hasn't reported back with completed
2478 * batchbuffers in a long time. We keep track per ring seqno progress and
2479 * if there are no progress, hangcheck score for that ring is increased.
2480 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2481 * we kick the ring. If we see no progress on three subsequent calls
2482 * we assume chip is wedged and try to fix it by resetting the chip.
2483 */
2484 static void i915_hangcheck_elapsed(unsigned long data)
2485 {
2486 struct drm_device *dev = (struct drm_device *)data;
2487 drm_i915_private_t *dev_priv = dev->dev_private;
2488 struct intel_ring_buffer *ring;
2489 int i;
2490 int busy_count = 0, rings_hung = 0;
2491 bool stuck[I915_NUM_RINGS] = { 0 };
2492 #define BUSY 1
2493 #define KICK 5
2494 #define HUNG 20
2495 #define FIRE 30
2496
2497 if (!i915_enable_hangcheck)
2498 return;
2499
2500 for_each_ring(ring, dev_priv, i) {
2501 u32 seqno, acthd;
2502 bool busy = true;
2503
2504 semaphore_clear_deadlocks(dev_priv);
2505
2506 seqno = ring->get_seqno(ring, false);
2507 acthd = intel_ring_get_active_head(ring);
2508
2509 if (ring->hangcheck.seqno == seqno) {
2510 if (ring_idle(ring, seqno)) {
2511 ring->hangcheck.action = HANGCHECK_IDLE;
2512
2513 if (waitqueue_active(&ring->irq_queue)) {
2514 /* Issue a wake-up to catch stuck h/w. */
2515 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2516 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2517 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2518 ring->name);
2519 else
2520 DRM_INFO("Fake missed irq on %s\n",
2521 ring->name);
2522 wake_up_all(&ring->irq_queue);
2523 }
2524 /* Safeguard against driver failure */
2525 ring->hangcheck.score += BUSY;
2526 } else
2527 busy = false;
2528 } else {
2529 /* We always increment the hangcheck score
2530 * if the ring is busy and still processing
2531 * the same request, so that no single request
2532 * can run indefinitely (such as a chain of
2533 * batches). The only time we do not increment
2534 * the hangcheck score on this ring, if this
2535 * ring is in a legitimate wait for another
2536 * ring. In that case the waiting ring is a
2537 * victim and we want to be sure we catch the
2538 * right culprit. Then every time we do kick
2539 * the ring, add a small increment to the
2540 * score so that we can catch a batch that is
2541 * being repeatedly kicked and so responsible
2542 * for stalling the machine.
2543 */
2544 ring->hangcheck.action = ring_stuck(ring,
2545 acthd);
2546
2547 switch (ring->hangcheck.action) {
2548 case HANGCHECK_IDLE:
2549 case HANGCHECK_WAIT:
2550 break;
2551 case HANGCHECK_ACTIVE:
2552 ring->hangcheck.score += BUSY;
2553 break;
2554 case HANGCHECK_KICK:
2555 ring->hangcheck.score += KICK;
2556 break;
2557 case HANGCHECK_HUNG:
2558 ring->hangcheck.score += HUNG;
2559 stuck[i] = true;
2560 break;
2561 }
2562 }
2563 } else {
2564 ring->hangcheck.action = HANGCHECK_ACTIVE;
2565
2566 /* Gradually reduce the count so that we catch DoS
2567 * attempts across multiple batches.
2568 */
2569 if (ring->hangcheck.score > 0)
2570 ring->hangcheck.score--;
2571 }
2572
2573 ring->hangcheck.seqno = seqno;
2574 ring->hangcheck.acthd = acthd;
2575 busy_count += busy;
2576 }
2577
2578 for_each_ring(ring, dev_priv, i) {
2579 if (ring->hangcheck.score > FIRE) {
2580 DRM_INFO("%s on %s\n",
2581 stuck[i] ? "stuck" : "no progress",
2582 ring->name);
2583 rings_hung++;
2584 }
2585 }
2586
2587 if (rings_hung)
2588 return i915_handle_error(dev, true);
2589
2590 if (busy_count)
2591 /* Reset timer case chip hangs without another request
2592 * being added */
2593 i915_queue_hangcheck(dev);
2594 }
2595
2596 void i915_queue_hangcheck(struct drm_device *dev)
2597 {
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 if (!i915_enable_hangcheck)
2600 return;
2601
2602 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2603 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2604 }
2605
2606 static void ibx_irq_preinstall(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609
2610 if (HAS_PCH_NOP(dev))
2611 return;
2612
2613 /* south display irq */
2614 I915_WRITE(SDEIMR, 0xffffffff);
2615 /*
2616 * SDEIER is also touched by the interrupt handler to work around missed
2617 * PCH interrupts. Hence we can't update it after the interrupt handler
2618 * is enabled - instead we unconditionally enable all PCH interrupt
2619 * sources here, but then only unmask them as needed with SDEIMR.
2620 */
2621 I915_WRITE(SDEIER, 0xffffffff);
2622 POSTING_READ(SDEIER);
2623 }
2624
2625 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2626 {
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628
2629 /* and GT */
2630 I915_WRITE(GTIMR, 0xffffffff);
2631 I915_WRITE(GTIER, 0x0);
2632 POSTING_READ(GTIER);
2633
2634 if (INTEL_INFO(dev)->gen >= 6) {
2635 /* and PM */
2636 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2637 I915_WRITE(GEN6_PMIER, 0x0);
2638 POSTING_READ(GEN6_PMIER);
2639 }
2640 }
2641
2642 /* drm_dma.h hooks
2643 */
2644 static void ironlake_irq_preinstall(struct drm_device *dev)
2645 {
2646 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2647
2648 atomic_set(&dev_priv->irq_received, 0);
2649
2650 I915_WRITE(HWSTAM, 0xeffe);
2651
2652 I915_WRITE(DEIMR, 0xffffffff);
2653 I915_WRITE(DEIER, 0x0);
2654 POSTING_READ(DEIER);
2655
2656 gen5_gt_irq_preinstall(dev);
2657
2658 ibx_irq_preinstall(dev);
2659 }
2660
2661 static void valleyview_irq_preinstall(struct drm_device *dev)
2662 {
2663 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2664 int pipe;
2665
2666 atomic_set(&dev_priv->irq_received, 0);
2667
2668 /* VLV magic */
2669 I915_WRITE(VLV_IMR, 0);
2670 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2671 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2672 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2673
2674 /* and GT */
2675 I915_WRITE(GTIIR, I915_READ(GTIIR));
2676 I915_WRITE(GTIIR, I915_READ(GTIIR));
2677
2678 gen5_gt_irq_preinstall(dev);
2679
2680 I915_WRITE(DPINVGTT, 0xff);
2681
2682 I915_WRITE(PORT_HOTPLUG_EN, 0);
2683 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2684 for_each_pipe(pipe)
2685 I915_WRITE(PIPESTAT(pipe), 0xffff);
2686 I915_WRITE(VLV_IIR, 0xffffffff);
2687 I915_WRITE(VLV_IMR, 0xffffffff);
2688 I915_WRITE(VLV_IER, 0x0);
2689 POSTING_READ(VLV_IER);
2690 }
2691
2692 static void gen8_irq_preinstall(struct drm_device *dev)
2693 {
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 int pipe;
2696
2697 atomic_set(&dev_priv->irq_received, 0);
2698
2699 I915_WRITE(GEN8_MASTER_IRQ, 0);
2700 POSTING_READ(GEN8_MASTER_IRQ);
2701
2702 /* IIR can theoretically queue up two events. Be paranoid */
2703 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2704 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2705 POSTING_READ(GEN8_##type##_IMR(which)); \
2706 I915_WRITE(GEN8_##type##_IER(which), 0); \
2707 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2708 POSTING_READ(GEN8_##type##_IIR(which)); \
2709 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2710 } while (0)
2711
2712 #define GEN8_IRQ_INIT(type) do { \
2713 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2714 POSTING_READ(GEN8_##type##_IMR); \
2715 I915_WRITE(GEN8_##type##_IER, 0); \
2716 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2717 POSTING_READ(GEN8_##type##_IIR); \
2718 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2719 } while (0)
2720
2721 GEN8_IRQ_INIT_NDX(GT, 0);
2722 GEN8_IRQ_INIT_NDX(GT, 1);
2723 GEN8_IRQ_INIT_NDX(GT, 2);
2724 GEN8_IRQ_INIT_NDX(GT, 3);
2725
2726 for_each_pipe(pipe) {
2727 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2728 }
2729
2730 GEN8_IRQ_INIT(DE_PORT);
2731 GEN8_IRQ_INIT(DE_MISC);
2732 GEN8_IRQ_INIT(PCU);
2733 #undef GEN8_IRQ_INIT
2734 #undef GEN8_IRQ_INIT_NDX
2735
2736 POSTING_READ(GEN8_PCU_IIR);
2737
2738 ibx_irq_preinstall(dev);
2739 }
2740
2741 static void ibx_hpd_irq_setup(struct drm_device *dev)
2742 {
2743 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2744 struct drm_mode_config *mode_config = &dev->mode_config;
2745 struct intel_encoder *intel_encoder;
2746 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2747
2748 if (HAS_PCH_IBX(dev)) {
2749 hotplug_irqs = SDE_HOTPLUG_MASK;
2750 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2751 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2752 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2753 } else {
2754 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2755 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2756 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2757 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2758 }
2759
2760 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2761
2762 /*
2763 * Enable digital hotplug on the PCH, and configure the DP short pulse
2764 * duration to 2ms (which is the minimum in the Display Port spec)
2765 *
2766 * This register is the same on all known PCH chips.
2767 */
2768 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2769 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2770 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2771 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2772 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2773 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2774 }
2775
2776 static void ibx_irq_postinstall(struct drm_device *dev)
2777 {
2778 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2779 u32 mask;
2780
2781 if (HAS_PCH_NOP(dev))
2782 return;
2783
2784 if (HAS_PCH_IBX(dev)) {
2785 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2786 } else {
2787 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2788
2789 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2790 }
2791
2792 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2793 I915_WRITE(SDEIMR, ~mask);
2794 }
2795
2796 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2797 {
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 u32 pm_irqs, gt_irqs;
2800
2801 pm_irqs = gt_irqs = 0;
2802
2803 dev_priv->gt_irq_mask = ~0;
2804 if (HAS_L3_DPF(dev)) {
2805 /* L3 parity interrupt is always unmasked. */
2806 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2807 gt_irqs |= GT_PARITY_ERROR(dev);
2808 }
2809
2810 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2811 if (IS_GEN5(dev)) {
2812 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2813 ILK_BSD_USER_INTERRUPT;
2814 } else {
2815 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2816 }
2817
2818 I915_WRITE(GTIIR, I915_READ(GTIIR));
2819 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2820 I915_WRITE(GTIER, gt_irqs);
2821 POSTING_READ(GTIER);
2822
2823 if (INTEL_INFO(dev)->gen >= 6) {
2824 pm_irqs |= GEN6_PM_RPS_EVENTS;
2825
2826 if (HAS_VEBOX(dev))
2827 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2828
2829 dev_priv->pm_irq_mask = 0xffffffff;
2830 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2831 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2832 I915_WRITE(GEN6_PMIER, pm_irqs);
2833 POSTING_READ(GEN6_PMIER);
2834 }
2835 }
2836
2837 static int ironlake_irq_postinstall(struct drm_device *dev)
2838 {
2839 unsigned long irqflags;
2840 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2841 u32 display_mask, extra_mask;
2842
2843 if (INTEL_INFO(dev)->gen >= 7) {
2844 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2845 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2846 DE_PLANEB_FLIP_DONE_IVB |
2847 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2848 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2849 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
2850
2851 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2852 } else {
2853 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2854 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2855 DE_AUX_CHANNEL_A |
2856 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2857 DE_POISON);
2858 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
2859 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
2860 }
2861
2862 dev_priv->irq_mask = ~display_mask;
2863
2864 /* should always can generate irq */
2865 I915_WRITE(DEIIR, I915_READ(DEIIR));
2866 I915_WRITE(DEIMR, dev_priv->irq_mask);
2867 I915_WRITE(DEIER, display_mask | extra_mask);
2868 POSTING_READ(DEIER);
2869
2870 gen5_gt_irq_postinstall(dev);
2871
2872 ibx_irq_postinstall(dev);
2873
2874 if (IS_IRONLAKE_M(dev)) {
2875 /* Enable PCU event interrupts
2876 *
2877 * spinlocking not required here for correctness since interrupt
2878 * setup is guaranteed to run in single-threaded context. But we
2879 * need it to make the assert_spin_locked happy. */
2880 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2881 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2882 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2883 }
2884
2885 return 0;
2886 }
2887
2888 static int valleyview_irq_postinstall(struct drm_device *dev)
2889 {
2890 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2891 u32 enable_mask;
2892 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV |
2893 PIPE_CRC_DONE_ENABLE;
2894 unsigned long irqflags;
2895
2896 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2897 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2898 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2899 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2900 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2901
2902 /*
2903 *Leave vblank interrupts masked initially. enable/disable will
2904 * toggle them based on usage.
2905 */
2906 dev_priv->irq_mask = (~enable_mask) |
2907 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2908 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2909
2910 I915_WRITE(PORT_HOTPLUG_EN, 0);
2911 POSTING_READ(PORT_HOTPLUG_EN);
2912
2913 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2914 I915_WRITE(VLV_IER, enable_mask);
2915 I915_WRITE(VLV_IIR, 0xffffffff);
2916 I915_WRITE(PIPESTAT(0), 0xffff);
2917 I915_WRITE(PIPESTAT(1), 0xffff);
2918 POSTING_READ(VLV_IER);
2919
2920 /* Interrupt setup is already guaranteed to be single-threaded, this is
2921 * just to make the assert_spin_locked check happy. */
2922 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2923 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable);
2924 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
2925 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable);
2926 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2927
2928 I915_WRITE(VLV_IIR, 0xffffffff);
2929 I915_WRITE(VLV_IIR, 0xffffffff);
2930
2931 gen5_gt_irq_postinstall(dev);
2932
2933 /* ack & enable invalid PTE error interrupts */
2934 #if 0 /* FIXME: add support to irq handler for checking these bits */
2935 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2937 #endif
2938
2939 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2940
2941 return 0;
2942 }
2943
2944 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
2945 {
2946 int i;
2947
2948 /* These are interrupts we'll toggle with the ring mask register */
2949 uint32_t gt_interrupts[] = {
2950 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
2951 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
2952 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
2953 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
2954 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
2955 0,
2956 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
2957 };
2958
2959 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
2960 u32 tmp = I915_READ(GEN8_GT_IIR(i));
2961 if (tmp)
2962 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2963 i, tmp);
2964 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
2965 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
2966 }
2967 POSTING_READ(GEN8_GT_IER(0));
2968 }
2969
2970 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
2971 {
2972 struct drm_device *dev = dev_priv->dev;
2973 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
2974 GEN8_PIPE_CDCLK_CRC_DONE |
2975 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2976 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
2977 GEN8_PIPE_FIFO_UNDERRUN;
2978 int pipe;
2979 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
2980 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
2981 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
2982
2983 for_each_pipe(pipe) {
2984 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2985 if (tmp)
2986 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
2987 pipe, tmp);
2988 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2989 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
2990 }
2991 POSTING_READ(GEN8_DE_PIPE_ISR(0));
2992
2993 I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
2994 I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
2995 POSTING_READ(GEN8_DE_PORT_IER);
2996 }
2997
2998 static int gen8_irq_postinstall(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001
3002 gen8_gt_irq_postinstall(dev_priv);
3003 gen8_de_irq_postinstall(dev_priv);
3004
3005 ibx_irq_postinstall(dev);
3006
3007 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3008 POSTING_READ(GEN8_MASTER_IRQ);
3009
3010 return 0;
3011 }
3012
3013 static void gen8_irq_uninstall(struct drm_device *dev)
3014 {
3015 struct drm_i915_private *dev_priv = dev->dev_private;
3016 int pipe;
3017
3018 if (!dev_priv)
3019 return;
3020
3021 atomic_set(&dev_priv->irq_received, 0);
3022
3023 I915_WRITE(GEN8_MASTER_IRQ, 0);
3024
3025 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3026 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3027 I915_WRITE(GEN8_##type##_IER(which), 0); \
3028 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3029 } while (0)
3030
3031 #define GEN8_IRQ_FINI(type) do { \
3032 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3033 I915_WRITE(GEN8_##type##_IER, 0); \
3034 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3035 } while (0)
3036
3037 GEN8_IRQ_FINI_NDX(GT, 0);
3038 GEN8_IRQ_FINI_NDX(GT, 1);
3039 GEN8_IRQ_FINI_NDX(GT, 2);
3040 GEN8_IRQ_FINI_NDX(GT, 3);
3041
3042 for_each_pipe(pipe) {
3043 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3044 }
3045
3046 GEN8_IRQ_FINI(DE_PORT);
3047 GEN8_IRQ_FINI(DE_MISC);
3048 GEN8_IRQ_FINI(PCU);
3049 #undef GEN8_IRQ_FINI
3050 #undef GEN8_IRQ_FINI_NDX
3051
3052 POSTING_READ(GEN8_PCU_IIR);
3053 }
3054
3055 static void valleyview_irq_uninstall(struct drm_device *dev)
3056 {
3057 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3058 int pipe;
3059
3060 if (!dev_priv)
3061 return;
3062
3063 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3064
3065 for_each_pipe(pipe)
3066 I915_WRITE(PIPESTAT(pipe), 0xffff);
3067
3068 I915_WRITE(HWSTAM, 0xffffffff);
3069 I915_WRITE(PORT_HOTPLUG_EN, 0);
3070 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3071 for_each_pipe(pipe)
3072 I915_WRITE(PIPESTAT(pipe), 0xffff);
3073 I915_WRITE(VLV_IIR, 0xffffffff);
3074 I915_WRITE(VLV_IMR, 0xffffffff);
3075 I915_WRITE(VLV_IER, 0x0);
3076 POSTING_READ(VLV_IER);
3077 }
3078
3079 static void ironlake_irq_uninstall(struct drm_device *dev)
3080 {
3081 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3082
3083 if (!dev_priv)
3084 return;
3085
3086 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3087
3088 I915_WRITE(HWSTAM, 0xffffffff);
3089
3090 I915_WRITE(DEIMR, 0xffffffff);
3091 I915_WRITE(DEIER, 0x0);
3092 I915_WRITE(DEIIR, I915_READ(DEIIR));
3093 if (IS_GEN7(dev))
3094 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3095
3096 I915_WRITE(GTIMR, 0xffffffff);
3097 I915_WRITE(GTIER, 0x0);
3098 I915_WRITE(GTIIR, I915_READ(GTIIR));
3099
3100 if (HAS_PCH_NOP(dev))
3101 return;
3102
3103 I915_WRITE(SDEIMR, 0xffffffff);
3104 I915_WRITE(SDEIER, 0x0);
3105 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3106 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3107 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3108 }
3109
3110 static void i8xx_irq_preinstall(struct drm_device * dev)
3111 {
3112 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3113 int pipe;
3114
3115 atomic_set(&dev_priv->irq_received, 0);
3116
3117 for_each_pipe(pipe)
3118 I915_WRITE(PIPESTAT(pipe), 0);
3119 I915_WRITE16(IMR, 0xffff);
3120 I915_WRITE16(IER, 0x0);
3121 POSTING_READ16(IER);
3122 }
3123
3124 static int i8xx_irq_postinstall(struct drm_device *dev)
3125 {
3126 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3127 unsigned long irqflags;
3128
3129 I915_WRITE16(EMR,
3130 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3131
3132 /* Unmask the interrupts that we always want on. */
3133 dev_priv->irq_mask =
3134 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3135 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3136 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3137 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3138 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3139 I915_WRITE16(IMR, dev_priv->irq_mask);
3140
3141 I915_WRITE16(IER,
3142 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3143 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3144 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3145 I915_USER_INTERRUPT);
3146 POSTING_READ16(IER);
3147
3148 /* Interrupt setup is already guaranteed to be single-threaded, this is
3149 * just to make the assert_spin_locked check happy. */
3150 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3151 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3152 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3153 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3154
3155 return 0;
3156 }
3157
3158 /*
3159 * Returns true when a page flip has completed.
3160 */
3161 static bool i8xx_handle_vblank(struct drm_device *dev,
3162 int plane, int pipe, u32 iir)
3163 {
3164 drm_i915_private_t *dev_priv = dev->dev_private;
3165 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3166
3167 if (!drm_handle_vblank(dev, pipe))
3168 return false;
3169
3170 if ((iir & flip_pending) == 0)
3171 return false;
3172
3173 intel_prepare_page_flip(dev, plane);
3174
3175 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3176 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3177 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3178 * the flip is completed (no longer pending). Since this doesn't raise
3179 * an interrupt per se, we watch for the change at vblank.
3180 */
3181 if (I915_READ16(ISR) & flip_pending)
3182 return false;
3183
3184 intel_finish_page_flip(dev, pipe);
3185
3186 return true;
3187 }
3188
3189 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3190 {
3191 struct drm_device *dev = (struct drm_device *) arg;
3192 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3193 u16 iir, new_iir;
3194 u32 pipe_stats[2];
3195 unsigned long irqflags;
3196 int pipe;
3197 u16 flip_mask =
3198 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3199 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3200
3201 atomic_inc(&dev_priv->irq_received);
3202
3203 iir = I915_READ16(IIR);
3204 if (iir == 0)
3205 return IRQ_NONE;
3206
3207 while (iir & ~flip_mask) {
3208 /* Can't rely on pipestat interrupt bit in iir as it might
3209 * have been cleared after the pipestat interrupt was received.
3210 * It doesn't set the bit in iir again, but it still produces
3211 * interrupts (for non-MSI).
3212 */
3213 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3214 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3215 i915_handle_error(dev, false);
3216
3217 for_each_pipe(pipe) {
3218 int reg = PIPESTAT(pipe);
3219 pipe_stats[pipe] = I915_READ(reg);
3220
3221 /*
3222 * Clear the PIPE*STAT regs before the IIR
3223 */
3224 if (pipe_stats[pipe] & 0x8000ffff) {
3225 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3226 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3227 pipe_name(pipe));
3228 I915_WRITE(reg, pipe_stats[pipe]);
3229 }
3230 }
3231 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3232
3233 I915_WRITE16(IIR, iir & ~flip_mask);
3234 new_iir = I915_READ16(IIR); /* Flush posted writes */
3235
3236 i915_update_dri1_breadcrumb(dev);
3237
3238 if (iir & I915_USER_INTERRUPT)
3239 notify_ring(dev, &dev_priv->ring[RCS]);
3240
3241 for_each_pipe(pipe) {
3242 int plane = pipe;
3243 if (HAS_FBC(dev))
3244 plane = !plane;
3245
3246 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3247 i8xx_handle_vblank(dev, plane, pipe, iir))
3248 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3249
3250 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3251 i9xx_pipe_crc_irq_handler(dev, pipe);
3252 }
3253
3254 iir = new_iir;
3255 }
3256
3257 return IRQ_HANDLED;
3258 }
3259
3260 static void i8xx_irq_uninstall(struct drm_device * dev)
3261 {
3262 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3263 int pipe;
3264
3265 for_each_pipe(pipe) {
3266 /* Clear enable bits; then clear status bits */
3267 I915_WRITE(PIPESTAT(pipe), 0);
3268 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3269 }
3270 I915_WRITE16(IMR, 0xffff);
3271 I915_WRITE16(IER, 0x0);
3272 I915_WRITE16(IIR, I915_READ16(IIR));
3273 }
3274
3275 static void i915_irq_preinstall(struct drm_device * dev)
3276 {
3277 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3278 int pipe;
3279
3280 atomic_set(&dev_priv->irq_received, 0);
3281
3282 if (I915_HAS_HOTPLUG(dev)) {
3283 I915_WRITE(PORT_HOTPLUG_EN, 0);
3284 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3285 }
3286
3287 I915_WRITE16(HWSTAM, 0xeffe);
3288 for_each_pipe(pipe)
3289 I915_WRITE(PIPESTAT(pipe), 0);
3290 I915_WRITE(IMR, 0xffffffff);
3291 I915_WRITE(IER, 0x0);
3292 POSTING_READ(IER);
3293 }
3294
3295 static int i915_irq_postinstall(struct drm_device *dev)
3296 {
3297 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3298 u32 enable_mask;
3299 unsigned long irqflags;
3300
3301 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3302
3303 /* Unmask the interrupts that we always want on. */
3304 dev_priv->irq_mask =
3305 ~(I915_ASLE_INTERRUPT |
3306 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3307 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3308 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3309 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3310 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3311
3312 enable_mask =
3313 I915_ASLE_INTERRUPT |
3314 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3315 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3316 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3317 I915_USER_INTERRUPT;
3318
3319 if (I915_HAS_HOTPLUG(dev)) {
3320 I915_WRITE(PORT_HOTPLUG_EN, 0);
3321 POSTING_READ(PORT_HOTPLUG_EN);
3322
3323 /* Enable in IER... */
3324 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3325 /* and unmask in IMR */
3326 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3327 }
3328
3329 I915_WRITE(IMR, dev_priv->irq_mask);
3330 I915_WRITE(IER, enable_mask);
3331 POSTING_READ(IER);
3332
3333 i915_enable_asle_pipestat(dev);
3334
3335 /* Interrupt setup is already guaranteed to be single-threaded, this is
3336 * just to make the assert_spin_locked check happy. */
3337 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3338 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3339 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3340 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3341
3342 return 0;
3343 }
3344
3345 /*
3346 * Returns true when a page flip has completed.
3347 */
3348 static bool i915_handle_vblank(struct drm_device *dev,
3349 int plane, int pipe, u32 iir)
3350 {
3351 drm_i915_private_t *dev_priv = dev->dev_private;
3352 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3353
3354 if (!drm_handle_vblank(dev, pipe))
3355 return false;
3356
3357 if ((iir & flip_pending) == 0)
3358 return false;
3359
3360 intel_prepare_page_flip(dev, plane);
3361
3362 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3363 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3364 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3365 * the flip is completed (no longer pending). Since this doesn't raise
3366 * an interrupt per se, we watch for the change at vblank.
3367 */
3368 if (I915_READ(ISR) & flip_pending)
3369 return false;
3370
3371 intel_finish_page_flip(dev, pipe);
3372
3373 return true;
3374 }
3375
3376 static irqreturn_t i915_irq_handler(int irq, void *arg)
3377 {
3378 struct drm_device *dev = (struct drm_device *) arg;
3379 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3380 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3381 unsigned long irqflags;
3382 u32 flip_mask =
3383 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3384 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3385 int pipe, ret = IRQ_NONE;
3386
3387 atomic_inc(&dev_priv->irq_received);
3388
3389 iir = I915_READ(IIR);
3390 do {
3391 bool irq_received = (iir & ~flip_mask) != 0;
3392 bool blc_event = false;
3393
3394 /* Can't rely on pipestat interrupt bit in iir as it might
3395 * have been cleared after the pipestat interrupt was received.
3396 * It doesn't set the bit in iir again, but it still produces
3397 * interrupts (for non-MSI).
3398 */
3399 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3400 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3401 i915_handle_error(dev, false);
3402
3403 for_each_pipe(pipe) {
3404 int reg = PIPESTAT(pipe);
3405 pipe_stats[pipe] = I915_READ(reg);
3406
3407 /* Clear the PIPE*STAT regs before the IIR */
3408 if (pipe_stats[pipe] & 0x8000ffff) {
3409 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3410 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3411 pipe_name(pipe));
3412 I915_WRITE(reg, pipe_stats[pipe]);
3413 irq_received = true;
3414 }
3415 }
3416 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3417
3418 if (!irq_received)
3419 break;
3420
3421 /* Consume port. Then clear IIR or we'll miss events */
3422 if ((I915_HAS_HOTPLUG(dev)) &&
3423 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3424 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3425 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3426
3427 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3428 hotplug_status);
3429
3430 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3431
3432 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3433 POSTING_READ(PORT_HOTPLUG_STAT);
3434 }
3435
3436 I915_WRITE(IIR, iir & ~flip_mask);
3437 new_iir = I915_READ(IIR); /* Flush posted writes */
3438
3439 if (iir & I915_USER_INTERRUPT)
3440 notify_ring(dev, &dev_priv->ring[RCS]);
3441
3442 for_each_pipe(pipe) {
3443 int plane = pipe;
3444 if (HAS_FBC(dev))
3445 plane = !plane;
3446
3447 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3448 i915_handle_vblank(dev, plane, pipe, iir))
3449 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3450
3451 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3452 blc_event = true;
3453
3454 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3455 i9xx_pipe_crc_irq_handler(dev, pipe);
3456 }
3457
3458 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3459 intel_opregion_asle_intr(dev);
3460
3461 /* With MSI, interrupts are only generated when iir
3462 * transitions from zero to nonzero. If another bit got
3463 * set while we were handling the existing iir bits, then
3464 * we would never get another interrupt.
3465 *
3466 * This is fine on non-MSI as well, as if we hit this path
3467 * we avoid exiting the interrupt handler only to generate
3468 * another one.
3469 *
3470 * Note that for MSI this could cause a stray interrupt report
3471 * if an interrupt landed in the time between writing IIR and
3472 * the posting read. This should be rare enough to never
3473 * trigger the 99% of 100,000 interrupts test for disabling
3474 * stray interrupts.
3475 */
3476 ret = IRQ_HANDLED;
3477 iir = new_iir;
3478 } while (iir & ~flip_mask);
3479
3480 i915_update_dri1_breadcrumb(dev);
3481
3482 return ret;
3483 }
3484
3485 static void i915_irq_uninstall(struct drm_device * dev)
3486 {
3487 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3488 int pipe;
3489
3490 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3491
3492 if (I915_HAS_HOTPLUG(dev)) {
3493 I915_WRITE(PORT_HOTPLUG_EN, 0);
3494 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3495 }
3496
3497 I915_WRITE16(HWSTAM, 0xffff);
3498 for_each_pipe(pipe) {
3499 /* Clear enable bits; then clear status bits */
3500 I915_WRITE(PIPESTAT(pipe), 0);
3501 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3502 }
3503 I915_WRITE(IMR, 0xffffffff);
3504 I915_WRITE(IER, 0x0);
3505
3506 I915_WRITE(IIR, I915_READ(IIR));
3507 }
3508
3509 static void i965_irq_preinstall(struct drm_device * dev)
3510 {
3511 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3512 int pipe;
3513
3514 atomic_set(&dev_priv->irq_received, 0);
3515
3516 I915_WRITE(PORT_HOTPLUG_EN, 0);
3517 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3518
3519 I915_WRITE(HWSTAM, 0xeffe);
3520 for_each_pipe(pipe)
3521 I915_WRITE(PIPESTAT(pipe), 0);
3522 I915_WRITE(IMR, 0xffffffff);
3523 I915_WRITE(IER, 0x0);
3524 POSTING_READ(IER);
3525 }
3526
3527 static int i965_irq_postinstall(struct drm_device *dev)
3528 {
3529 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3530 u32 enable_mask;
3531 u32 error_mask;
3532 unsigned long irqflags;
3533
3534 /* Unmask the interrupts that we always want on. */
3535 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3536 I915_DISPLAY_PORT_INTERRUPT |
3537 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3538 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3539 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3540 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3541 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3542
3543 enable_mask = ~dev_priv->irq_mask;
3544 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3545 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3546 enable_mask |= I915_USER_INTERRUPT;
3547
3548 if (IS_G4X(dev))
3549 enable_mask |= I915_BSD_USER_INTERRUPT;
3550
3551 /* Interrupt setup is already guaranteed to be single-threaded, this is
3552 * just to make the assert_spin_locked check happy. */
3553 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3554 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE);
3555 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE);
3556 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE);
3557 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3558
3559 /*
3560 * Enable some error detection, note the instruction error mask
3561 * bit is reserved, so we leave it masked.
3562 */
3563 if (IS_G4X(dev)) {
3564 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3565 GM45_ERROR_MEM_PRIV |
3566 GM45_ERROR_CP_PRIV |
3567 I915_ERROR_MEMORY_REFRESH);
3568 } else {
3569 error_mask = ~(I915_ERROR_PAGE_TABLE |
3570 I915_ERROR_MEMORY_REFRESH);
3571 }
3572 I915_WRITE(EMR, error_mask);
3573
3574 I915_WRITE(IMR, dev_priv->irq_mask);
3575 I915_WRITE(IER, enable_mask);
3576 POSTING_READ(IER);
3577
3578 I915_WRITE(PORT_HOTPLUG_EN, 0);
3579 POSTING_READ(PORT_HOTPLUG_EN);
3580
3581 i915_enable_asle_pipestat(dev);
3582
3583 return 0;
3584 }
3585
3586 static void i915_hpd_irq_setup(struct drm_device *dev)
3587 {
3588 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3589 struct drm_mode_config *mode_config = &dev->mode_config;
3590 struct intel_encoder *intel_encoder;
3591 u32 hotplug_en;
3592
3593 assert_spin_locked(&dev_priv->irq_lock);
3594
3595 if (I915_HAS_HOTPLUG(dev)) {
3596 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3597 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3598 /* Note HDMI and DP share hotplug bits */
3599 /* enable bits are the same for all generations */
3600 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3601 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3602 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3603 /* Programming the CRT detection parameters tends
3604 to generate a spurious hotplug event about three
3605 seconds later. So just do it once.
3606 */
3607 if (IS_G4X(dev))
3608 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3609 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3610 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3611
3612 /* Ignore TV since it's buggy */
3613 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3614 }
3615 }
3616
3617 static irqreturn_t i965_irq_handler(int irq, void *arg)
3618 {
3619 struct drm_device *dev = (struct drm_device *) arg;
3620 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3621 u32 iir, new_iir;
3622 u32 pipe_stats[I915_MAX_PIPES];
3623 unsigned long irqflags;
3624 int irq_received;
3625 int ret = IRQ_NONE, pipe;
3626 u32 flip_mask =
3627 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3628 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3629
3630 atomic_inc(&dev_priv->irq_received);
3631
3632 iir = I915_READ(IIR);
3633
3634 for (;;) {
3635 bool blc_event = false;
3636
3637 irq_received = (iir & ~flip_mask) != 0;
3638
3639 /* Can't rely on pipestat interrupt bit in iir as it might
3640 * have been cleared after the pipestat interrupt was received.
3641 * It doesn't set the bit in iir again, but it still produces
3642 * interrupts (for non-MSI).
3643 */
3644 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3645 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3646 i915_handle_error(dev, false);
3647
3648 for_each_pipe(pipe) {
3649 int reg = PIPESTAT(pipe);
3650 pipe_stats[pipe] = I915_READ(reg);
3651
3652 /*
3653 * Clear the PIPE*STAT regs before the IIR
3654 */
3655 if (pipe_stats[pipe] & 0x8000ffff) {
3656 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3657 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3658 pipe_name(pipe));
3659 I915_WRITE(reg, pipe_stats[pipe]);
3660 irq_received = 1;
3661 }
3662 }
3663 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3664
3665 if (!irq_received)
3666 break;
3667
3668 ret = IRQ_HANDLED;
3669
3670 /* Consume port. Then clear IIR or we'll miss events */
3671 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3672 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3673 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3674 HOTPLUG_INT_STATUS_G4X :
3675 HOTPLUG_INT_STATUS_I915);
3676
3677 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3678 hotplug_status);
3679
3680 intel_hpd_irq_handler(dev, hotplug_trigger,
3681 IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3682
3683 if (IS_G4X(dev) &&
3684 (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3685 dp_aux_irq_handler(dev);
3686
3687 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3688 I915_READ(PORT_HOTPLUG_STAT);
3689 }
3690
3691 I915_WRITE(IIR, iir & ~flip_mask);
3692 new_iir = I915_READ(IIR); /* Flush posted writes */
3693
3694 if (iir & I915_USER_INTERRUPT)
3695 notify_ring(dev, &dev_priv->ring[RCS]);
3696 if (iir & I915_BSD_USER_INTERRUPT)
3697 notify_ring(dev, &dev_priv->ring[VCS]);
3698
3699 for_each_pipe(pipe) {
3700 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3701 i915_handle_vblank(dev, pipe, pipe, iir))
3702 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3703
3704 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3705 blc_event = true;
3706
3707 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3708 i9xx_pipe_crc_irq_handler(dev, pipe);
3709 }
3710
3711
3712 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3713 intel_opregion_asle_intr(dev);
3714
3715 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3716 gmbus_irq_handler(dev);
3717
3718 /* With MSI, interrupts are only generated when iir
3719 * transitions from zero to nonzero. If another bit got
3720 * set while we were handling the existing iir bits, then
3721 * we would never get another interrupt.
3722 *
3723 * This is fine on non-MSI as well, as if we hit this path
3724 * we avoid exiting the interrupt handler only to generate
3725 * another one.
3726 *
3727 * Note that for MSI this could cause a stray interrupt report
3728 * if an interrupt landed in the time between writing IIR and
3729 * the posting read. This should be rare enough to never
3730 * trigger the 99% of 100,000 interrupts test for disabling
3731 * stray interrupts.
3732 */
3733 iir = new_iir;
3734 }
3735
3736 i915_update_dri1_breadcrumb(dev);
3737
3738 return ret;
3739 }
3740
3741 static void i965_irq_uninstall(struct drm_device * dev)
3742 {
3743 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3744 int pipe;
3745
3746 if (!dev_priv)
3747 return;
3748
3749 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3750
3751 I915_WRITE(PORT_HOTPLUG_EN, 0);
3752 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3753
3754 I915_WRITE(HWSTAM, 0xffffffff);
3755 for_each_pipe(pipe)
3756 I915_WRITE(PIPESTAT(pipe), 0);
3757 I915_WRITE(IMR, 0xffffffff);
3758 I915_WRITE(IER, 0x0);
3759
3760 for_each_pipe(pipe)
3761 I915_WRITE(PIPESTAT(pipe),
3762 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3763 I915_WRITE(IIR, I915_READ(IIR));
3764 }
3765
3766 static void i915_reenable_hotplug_timer_func(unsigned long data)
3767 {
3768 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3769 struct drm_device *dev = dev_priv->dev;
3770 struct drm_mode_config *mode_config = &dev->mode_config;
3771 unsigned long irqflags;
3772 int i;
3773
3774 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3775 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3776 struct drm_connector *connector;
3777
3778 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3779 continue;
3780
3781 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3782
3783 list_for_each_entry(connector, &mode_config->connector_list, head) {
3784 struct intel_connector *intel_connector = to_intel_connector(connector);
3785
3786 if (intel_connector->encoder->hpd_pin == i) {
3787 if (connector->polled != intel_connector->polled)
3788 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3789 drm_get_connector_name(connector));
3790 connector->polled = intel_connector->polled;
3791 if (!connector->polled)
3792 connector->polled = DRM_CONNECTOR_POLL_HPD;
3793 }
3794 }
3795 }
3796 if (dev_priv->display.hpd_irq_setup)
3797 dev_priv->display.hpd_irq_setup(dev);
3798 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3799 }
3800
3801 void intel_irq_init(struct drm_device *dev)
3802 {
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804
3805 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3806 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3807 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3808 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3809
3810 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3811 i915_hangcheck_elapsed,
3812 (unsigned long) dev);
3813 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3814 (unsigned long) dev_priv);
3815
3816 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3817
3818 if (IS_GEN2(dev)) {
3819 dev->max_vblank_count = 0;
3820 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3821 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3822 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3823 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3824 } else {
3825 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3826 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3827 }
3828
3829 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3830 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3831 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3832 }
3833
3834 if (IS_VALLEYVIEW(dev)) {
3835 dev->driver->irq_handler = valleyview_irq_handler;
3836 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3837 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3838 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3839 dev->driver->enable_vblank = valleyview_enable_vblank;
3840 dev->driver->disable_vblank = valleyview_disable_vblank;
3841 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3842 } else if (IS_GEN8(dev)) {
3843 dev->driver->irq_handler = gen8_irq_handler;
3844 dev->driver->irq_preinstall = gen8_irq_preinstall;
3845 dev->driver->irq_postinstall = gen8_irq_postinstall;
3846 dev->driver->irq_uninstall = gen8_irq_uninstall;
3847 dev->driver->enable_vblank = gen8_enable_vblank;
3848 dev->driver->disable_vblank = gen8_disable_vblank;
3849 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3850 } else if (HAS_PCH_SPLIT(dev)) {
3851 dev->driver->irq_handler = ironlake_irq_handler;
3852 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3853 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3854 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3855 dev->driver->enable_vblank = ironlake_enable_vblank;
3856 dev->driver->disable_vblank = ironlake_disable_vblank;
3857 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3858 } else {
3859 if (INTEL_INFO(dev)->gen == 2) {
3860 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3861 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3862 dev->driver->irq_handler = i8xx_irq_handler;
3863 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3864 } else if (INTEL_INFO(dev)->gen == 3) {
3865 dev->driver->irq_preinstall = i915_irq_preinstall;
3866 dev->driver->irq_postinstall = i915_irq_postinstall;
3867 dev->driver->irq_uninstall = i915_irq_uninstall;
3868 dev->driver->irq_handler = i915_irq_handler;
3869 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3870 } else {
3871 dev->driver->irq_preinstall = i965_irq_preinstall;
3872 dev->driver->irq_postinstall = i965_irq_postinstall;
3873 dev->driver->irq_uninstall = i965_irq_uninstall;
3874 dev->driver->irq_handler = i965_irq_handler;
3875 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3876 }
3877 dev->driver->enable_vblank = i915_enable_vblank;
3878 dev->driver->disable_vblank = i915_disable_vblank;
3879 }
3880 }
3881
3882 void intel_hpd_init(struct drm_device *dev)
3883 {
3884 struct drm_i915_private *dev_priv = dev->dev_private;
3885 struct drm_mode_config *mode_config = &dev->mode_config;
3886 struct drm_connector *connector;
3887 unsigned long irqflags;
3888 int i;
3889
3890 for (i = 1; i < HPD_NUM_PINS; i++) {
3891 dev_priv->hpd_stats[i].hpd_cnt = 0;
3892 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3893 }
3894 list_for_each_entry(connector, &mode_config->connector_list, head) {
3895 struct intel_connector *intel_connector = to_intel_connector(connector);
3896 connector->polled = intel_connector->polled;
3897 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3898 connector->polled = DRM_CONNECTOR_POLL_HPD;
3899 }
3900
3901 /* Interrupt setup is already guaranteed to be single-threaded, this is
3902 * just to make the assert_spin_locked checks happy. */
3903 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3904 if (dev_priv->display.hpd_irq_setup)
3905 dev_priv->display.hpd_irq_setup(dev);
3906 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3907 }
3908
3909 /* Disable interrupts so we can allow Package C8+. */
3910 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3911 {
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913 unsigned long irqflags;
3914
3915 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3916
3917 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3918 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3919 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3920 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3921 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3922
3923 ironlake_disable_display_irq(dev_priv, 0xffffffff);
3924 ibx_disable_display_interrupt(dev_priv, 0xffffffff);
3925 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3926 snb_disable_pm_irq(dev_priv, 0xffffffff);
3927
3928 dev_priv->pc8.irqs_disabled = true;
3929
3930 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3931 }
3932
3933 /* Restore interrupts so we can recover from Package C8+. */
3934 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3935 {
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937 unsigned long irqflags;
3938 uint32_t val;
3939
3940 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3941
3942 val = I915_READ(DEIMR);
3943 WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
3944
3945 val = I915_READ(SDEIMR);
3946 WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
3947
3948 val = I915_READ(GTIMR);
3949 WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
3950
3951 val = I915_READ(GEN6_PMIMR);
3952 WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
3953
3954 dev_priv->pc8.irqs_disabled = false;
3955
3956 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3957 ibx_enable_display_interrupt(dev_priv, ~dev_priv->pc8.regsave.sdeimr);
3958 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3959 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3960 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3961
3962 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3963 }