]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Use drm official vblank_no_hw_counter callback.
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266 ilk_update_gt_irq(dev_priv, mask, mask);
267 POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 spin_lock_irq(&dev_priv->irq_lock);
344 I915_WRITE(reg, dev_priv->pm_rps_events);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 POSTING_READ(reg);
347 dev_priv->rps.pm_iir = 0;
348 spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 spin_lock_irq(&dev_priv->irq_lock);
354 WARN_ON_ONCE(dev_priv->rps.pm_iir);
355 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
356 dev_priv->rps.interrupts_enabled = true;
357 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
358 dev_priv->pm_rps_events);
359 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
360
361 spin_unlock_irq(&dev_priv->irq_lock);
362 }
363
364 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
365 {
366 return (mask & ~dev_priv->rps.pm_intr_keep);
367 }
368
369 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
370 {
371 spin_lock_irq(&dev_priv->irq_lock);
372 dev_priv->rps.interrupts_enabled = false;
373
374 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
375
376 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
377 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
378 ~dev_priv->pm_rps_events);
379
380 spin_unlock_irq(&dev_priv->irq_lock);
381 synchronize_irq(dev_priv->drm.irq);
382
383 /* Now that we will not be generating any more work, flush any
384 * outsanding tasks. As we are called on the RPS idle path,
385 * we will reset the GPU to minimum frequencies, so the current
386 * state of the worker can be discarded.
387 */
388 cancel_work_sync(&dev_priv->rps.work);
389 gen6_reset_rps_interrupts(dev_priv);
390 }
391
392 /**
393 * bdw_update_port_irq - update DE port interrupt
394 * @dev_priv: driver private
395 * @interrupt_mask: mask of interrupt bits to update
396 * @enabled_irq_mask: mask of interrupt bits to enable
397 */
398 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
399 uint32_t interrupt_mask,
400 uint32_t enabled_irq_mask)
401 {
402 uint32_t new_val;
403 uint32_t old_val;
404
405 assert_spin_locked(&dev_priv->irq_lock);
406
407 WARN_ON(enabled_irq_mask & ~interrupt_mask);
408
409 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
410 return;
411
412 old_val = I915_READ(GEN8_DE_PORT_IMR);
413
414 new_val = old_val;
415 new_val &= ~interrupt_mask;
416 new_val |= (~enabled_irq_mask & interrupt_mask);
417
418 if (new_val != old_val) {
419 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
420 POSTING_READ(GEN8_DE_PORT_IMR);
421 }
422 }
423
424 /**
425 * bdw_update_pipe_irq - update DE pipe interrupt
426 * @dev_priv: driver private
427 * @pipe: pipe whose interrupt to update
428 * @interrupt_mask: mask of interrupt bits to update
429 * @enabled_irq_mask: mask of interrupt bits to enable
430 */
431 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
432 enum pipe pipe,
433 uint32_t interrupt_mask,
434 uint32_t enabled_irq_mask)
435 {
436 uint32_t new_val;
437
438 assert_spin_locked(&dev_priv->irq_lock);
439
440 WARN_ON(enabled_irq_mask & ~interrupt_mask);
441
442 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
443 return;
444
445 new_val = dev_priv->de_irq_mask[pipe];
446 new_val &= ~interrupt_mask;
447 new_val |= (~enabled_irq_mask & interrupt_mask);
448
449 if (new_val != dev_priv->de_irq_mask[pipe]) {
450 dev_priv->de_irq_mask[pipe] = new_val;
451 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
452 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
453 }
454 }
455
456 /**
457 * ibx_display_interrupt_update - update SDEIMR
458 * @dev_priv: driver private
459 * @interrupt_mask: mask of interrupt bits to update
460 * @enabled_irq_mask: mask of interrupt bits to enable
461 */
462 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
463 uint32_t interrupt_mask,
464 uint32_t enabled_irq_mask)
465 {
466 uint32_t sdeimr = I915_READ(SDEIMR);
467 sdeimr &= ~interrupt_mask;
468 sdeimr |= (~enabled_irq_mask & interrupt_mask);
469
470 WARN_ON(enabled_irq_mask & ~interrupt_mask);
471
472 assert_spin_locked(&dev_priv->irq_lock);
473
474 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
475 return;
476
477 I915_WRITE(SDEIMR, sdeimr);
478 POSTING_READ(SDEIMR);
479 }
480
481 static void
482 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
483 u32 enable_mask, u32 status_mask)
484 {
485 i915_reg_t reg = PIPESTAT(pipe);
486 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
487
488 assert_spin_locked(&dev_priv->irq_lock);
489 WARN_ON(!intel_irqs_enabled(dev_priv));
490
491 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492 status_mask & ~PIPESTAT_INT_STATUS_MASK,
493 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494 pipe_name(pipe), enable_mask, status_mask))
495 return;
496
497 if ((pipestat & enable_mask) == enable_mask)
498 return;
499
500 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
501
502 /* Enable the interrupt, clear any pending status */
503 pipestat |= enable_mask | status_mask;
504 I915_WRITE(reg, pipestat);
505 POSTING_READ(reg);
506 }
507
508 static void
509 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
510 u32 enable_mask, u32 status_mask)
511 {
512 i915_reg_t reg = PIPESTAT(pipe);
513 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
514
515 assert_spin_locked(&dev_priv->irq_lock);
516 WARN_ON(!intel_irqs_enabled(dev_priv));
517
518 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
519 status_mask & ~PIPESTAT_INT_STATUS_MASK,
520 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
521 pipe_name(pipe), enable_mask, status_mask))
522 return;
523
524 if ((pipestat & enable_mask) == 0)
525 return;
526
527 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
528
529 pipestat &= ~enable_mask;
530 I915_WRITE(reg, pipestat);
531 POSTING_READ(reg);
532 }
533
534 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
535 {
536 u32 enable_mask = status_mask << 16;
537
538 /*
539 * On pipe A we don't support the PSR interrupt yet,
540 * on pipe B and C the same bit MBZ.
541 */
542 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
543 return 0;
544 /*
545 * On pipe B and C we don't support the PSR interrupt yet, on pipe
546 * A the same bit is for perf counters which we don't use either.
547 */
548 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
549 return 0;
550
551 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
552 SPRITE0_FLIP_DONE_INT_EN_VLV |
553 SPRITE1_FLIP_DONE_INT_EN_VLV);
554 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
555 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
556 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
557 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
558
559 return enable_mask;
560 }
561
562 void
563 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
564 u32 status_mask)
565 {
566 u32 enable_mask;
567
568 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
569 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
570 status_mask);
571 else
572 enable_mask = status_mask << 16;
573 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
574 }
575
576 void
577 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578 u32 status_mask)
579 {
580 u32 enable_mask;
581
582 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
583 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
584 status_mask);
585 else
586 enable_mask = status_mask << 16;
587 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588 }
589
590 /**
591 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
592 * @dev_priv: i915 device private
593 */
594 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
595 {
596 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
597 return;
598
599 spin_lock_irq(&dev_priv->irq_lock);
600
601 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
602 if (INTEL_GEN(dev_priv) >= 4)
603 i915_enable_pipestat(dev_priv, PIPE_A,
604 PIPE_LEGACY_BLC_EVENT_STATUS);
605
606 spin_unlock_irq(&dev_priv->irq_lock);
607 }
608
609 /*
610 * This timing diagram depicts the video signal in and
611 * around the vertical blanking period.
612 *
613 * Assumptions about the fictitious mode used in this example:
614 * vblank_start >= 3
615 * vsync_start = vblank_start + 1
616 * vsync_end = vblank_start + 2
617 * vtotal = vblank_start + 3
618 *
619 * start of vblank:
620 * latch double buffered registers
621 * increment frame counter (ctg+)
622 * generate start of vblank interrupt (gen4+)
623 * |
624 * | frame start:
625 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
626 * | may be shifted forward 1-3 extra lines via PIPECONF
627 * | |
628 * | | start of vsync:
629 * | | generate vsync interrupt
630 * | | |
631 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
632 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
633 * ----va---> <-----------------vb--------------------> <--------va-------------
634 * | | <----vs-----> |
635 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
636 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
637 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
638 * | | |
639 * last visible pixel first visible pixel
640 * | increment frame counter (gen3/4)
641 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
642 *
643 * x = horizontal active
644 * _ = horizontal blanking
645 * hs = horizontal sync
646 * va = vertical active
647 * vb = vertical blanking
648 * vs = vertical sync
649 * vbs = vblank_start (number)
650 *
651 * Summary:
652 * - most events happen at the start of horizontal sync
653 * - frame start happens at the start of horizontal blank, 1-4 lines
654 * (depending on PIPECONF settings) after the start of vblank
655 * - gen3/4 pixel and frame counter are synchronized with the start
656 * of horizontal active on the first line of vertical active
657 */
658
659 /* Called from drm generic code, passed a 'crtc', which
660 * we use as a pipe index
661 */
662 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
663 {
664 struct drm_i915_private *dev_priv = to_i915(dev);
665 i915_reg_t high_frame, low_frame;
666 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
667 struct intel_crtc *intel_crtc =
668 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
669 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
670
671 htotal = mode->crtc_htotal;
672 hsync_start = mode->crtc_hsync_start;
673 vbl_start = mode->crtc_vblank_start;
674 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
675 vbl_start = DIV_ROUND_UP(vbl_start, 2);
676
677 /* Convert to pixel count */
678 vbl_start *= htotal;
679
680 /* Start of vblank event occurs at start of hsync */
681 vbl_start -= htotal - hsync_start;
682
683 high_frame = PIPEFRAME(pipe);
684 low_frame = PIPEFRAMEPIXEL(pipe);
685
686 /*
687 * High & low register fields aren't synchronized, so make sure
688 * we get a low value that's stable across two reads of the high
689 * register.
690 */
691 do {
692 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
693 low = I915_READ(low_frame);
694 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
695 } while (high1 != high2);
696
697 high1 >>= PIPE_FRAME_HIGH_SHIFT;
698 pixel = low & PIPE_PIXEL_MASK;
699 low >>= PIPE_FRAME_LOW_SHIFT;
700
701 /*
702 * The frame counter increments at beginning of active.
703 * Cook up a vblank counter by also checking the pixel
704 * counter against vblank start.
705 */
706 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708
709 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
710 {
711 struct drm_i915_private *dev_priv = to_i915(dev);
712
713 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
714 }
715
716 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
717 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
718 {
719 struct drm_device *dev = crtc->base.dev;
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 const struct drm_display_mode *mode = &crtc->base.hwmode;
722 enum pipe pipe = crtc->pipe;
723 int position, vtotal;
724
725 vtotal = mode->crtc_vtotal;
726 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
727 vtotal /= 2;
728
729 if (IS_GEN2(dev_priv))
730 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
731 else
732 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
733
734 /*
735 * On HSW, the DSL reg (0x70000) appears to return 0 if we
736 * read it just before the start of vblank. So try it again
737 * so we don't accidentally end up spanning a vblank frame
738 * increment, causing the pipe_update_end() code to squak at us.
739 *
740 * The nature of this problem means we can't simply check the ISR
741 * bit and return the vblank start value; nor can we use the scanline
742 * debug register in the transcoder as it appears to have the same
743 * problem. We may need to extend this to include other platforms,
744 * but so far testing only shows the problem on HSW.
745 */
746 if (HAS_DDI(dev_priv) && !position) {
747 int i, temp;
748
749 for (i = 0; i < 100; i++) {
750 udelay(1);
751 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
752 DSL_LINEMASK_GEN3;
753 if (temp != position) {
754 position = temp;
755 break;
756 }
757 }
758 }
759
760 /*
761 * See update_scanline_offset() for the details on the
762 * scanline_offset adjustment.
763 */
764 return (position + crtc->scanline_offset) % vtotal;
765 }
766
767 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
768 unsigned int flags, int *vpos, int *hpos,
769 ktime_t *stime, ktime_t *etime,
770 const struct drm_display_mode *mode)
771 {
772 struct drm_i915_private *dev_priv = to_i915(dev);
773 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
775 int position;
776 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
777 bool in_vbl = true;
778 int ret = 0;
779 unsigned long irqflags;
780
781 if (WARN_ON(!mode->crtc_clock)) {
782 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
783 "pipe %c\n", pipe_name(pipe));
784 return 0;
785 }
786
787 htotal = mode->crtc_htotal;
788 hsync_start = mode->crtc_hsync_start;
789 vtotal = mode->crtc_vtotal;
790 vbl_start = mode->crtc_vblank_start;
791 vbl_end = mode->crtc_vblank_end;
792
793 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
794 vbl_start = DIV_ROUND_UP(vbl_start, 2);
795 vbl_end /= 2;
796 vtotal /= 2;
797 }
798
799 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
800
801 /*
802 * Lock uncore.lock, as we will do multiple timing critical raw
803 * register reads, potentially with preemption disabled, so the
804 * following code must not block on uncore.lock.
805 */
806 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
807
808 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
809
810 /* Get optional system timestamp before query. */
811 if (stime)
812 *stime = ktime_get();
813
814 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
815 /* No obvious pixelcount register. Only query vertical
816 * scanout position from Display scan line register.
817 */
818 position = __intel_get_crtc_scanline(intel_crtc);
819 } else {
820 /* Have access to pixelcount since start of frame.
821 * We can split this into vertical and horizontal
822 * scanout position.
823 */
824 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
825
826 /* convert to pixel counts */
827 vbl_start *= htotal;
828 vbl_end *= htotal;
829 vtotal *= htotal;
830
831 /*
832 * In interlaced modes, the pixel counter counts all pixels,
833 * so one field will have htotal more pixels. In order to avoid
834 * the reported position from jumping backwards when the pixel
835 * counter is beyond the length of the shorter field, just
836 * clamp the position the length of the shorter field. This
837 * matches how the scanline counter based position works since
838 * the scanline counter doesn't count the two half lines.
839 */
840 if (position >= vtotal)
841 position = vtotal - 1;
842
843 /*
844 * Start of vblank interrupt is triggered at start of hsync,
845 * just prior to the first active line of vblank. However we
846 * consider lines to start at the leading edge of horizontal
847 * active. So, should we get here before we've crossed into
848 * the horizontal active of the first line in vblank, we would
849 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
850 * always add htotal-hsync_start to the current pixel position.
851 */
852 position = (position + htotal - hsync_start) % vtotal;
853 }
854
855 /* Get optional system timestamp after query. */
856 if (etime)
857 *etime = ktime_get();
858
859 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
860
861 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
862
863 in_vbl = position >= vbl_start && position < vbl_end;
864
865 /*
866 * While in vblank, position will be negative
867 * counting up towards 0 at vbl_end. And outside
868 * vblank, position will be positive counting
869 * up since vbl_end.
870 */
871 if (position >= vbl_start)
872 position -= vbl_end;
873 else
874 position += vtotal - vbl_end;
875
876 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 *vpos = position;
878 *hpos = 0;
879 } else {
880 *vpos = position / htotal;
881 *hpos = position - (*vpos * htotal);
882 }
883
884 /* In vblank? */
885 if (in_vbl)
886 ret |= DRM_SCANOUTPOS_IN_VBLANK;
887
888 return ret;
889 }
890
891 int intel_get_crtc_scanline(struct intel_crtc *crtc)
892 {
893 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
894 unsigned long irqflags;
895 int position;
896
897 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
898 position = __intel_get_crtc_scanline(crtc);
899 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
900
901 return position;
902 }
903
904 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
905 int *max_error,
906 struct timeval *vblank_time,
907 unsigned flags)
908 {
909 struct drm_crtc *crtc;
910
911 if (pipe >= INTEL_INFO(dev)->num_pipes) {
912 DRM_ERROR("Invalid crtc %u\n", pipe);
913 return -EINVAL;
914 }
915
916 /* Get drm_crtc to timestamp: */
917 crtc = intel_get_crtc_for_pipe(dev, pipe);
918 if (crtc == NULL) {
919 DRM_ERROR("Invalid crtc %u\n", pipe);
920 return -EINVAL;
921 }
922
923 if (!crtc->hwmode.crtc_clock) {
924 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
925 return -EBUSY;
926 }
927
928 /* Helper routine in DRM core does all the work: */
929 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
930 vblank_time, flags,
931 &crtc->hwmode);
932 }
933
934 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
935 {
936 u32 busy_up, busy_down, max_avg, min_avg;
937 u8 new_delay;
938
939 spin_lock(&mchdev_lock);
940
941 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
942
943 new_delay = dev_priv->ips.cur_delay;
944
945 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
946 busy_up = I915_READ(RCPREVBSYTUPAVG);
947 busy_down = I915_READ(RCPREVBSYTDNAVG);
948 max_avg = I915_READ(RCBMAXAVG);
949 min_avg = I915_READ(RCBMINAVG);
950
951 /* Handle RCS change request from hw */
952 if (busy_up > max_avg) {
953 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
954 new_delay = dev_priv->ips.cur_delay - 1;
955 if (new_delay < dev_priv->ips.max_delay)
956 new_delay = dev_priv->ips.max_delay;
957 } else if (busy_down < min_avg) {
958 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
959 new_delay = dev_priv->ips.cur_delay + 1;
960 if (new_delay > dev_priv->ips.min_delay)
961 new_delay = dev_priv->ips.min_delay;
962 }
963
964 if (ironlake_set_drps(dev_priv, new_delay))
965 dev_priv->ips.cur_delay = new_delay;
966
967 spin_unlock(&mchdev_lock);
968
969 return;
970 }
971
972 static void notify_ring(struct intel_engine_cs *engine)
973 {
974 smp_store_mb(engine->breadcrumbs.irq_posted, true);
975 if (intel_engine_wakeup(engine)) {
976 trace_i915_gem_request_notify(engine);
977 engine->breadcrumbs.irq_wakeups++;
978 }
979 }
980
981 static void vlv_c0_read(struct drm_i915_private *dev_priv,
982 struct intel_rps_ei *ei)
983 {
984 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
985 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
986 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
987 }
988
989 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
990 const struct intel_rps_ei *old,
991 const struct intel_rps_ei *now,
992 int threshold)
993 {
994 u64 time, c0;
995 unsigned int mul = 100;
996
997 if (old->cz_clock == 0)
998 return false;
999
1000 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1001 mul <<= 8;
1002
1003 time = now->cz_clock - old->cz_clock;
1004 time *= threshold * dev_priv->czclk_freq;
1005
1006 /* Workload can be split between render + media, e.g. SwapBuffers
1007 * being blitted in X after being rendered in mesa. To account for
1008 * this we need to combine both engines into our activity counter.
1009 */
1010 c0 = now->render_c0 - old->render_c0;
1011 c0 += now->media_c0 - old->media_c0;
1012 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1013
1014 return c0 >= time;
1015 }
1016
1017 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1018 {
1019 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1020 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1021 }
1022
1023 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1024 {
1025 struct intel_rps_ei now;
1026 u32 events = 0;
1027
1028 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1029 return 0;
1030
1031 vlv_c0_read(dev_priv, &now);
1032 if (now.cz_clock == 0)
1033 return 0;
1034
1035 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1036 if (!vlv_c0_above(dev_priv,
1037 &dev_priv->rps.down_ei, &now,
1038 dev_priv->rps.down_threshold))
1039 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1040 dev_priv->rps.down_ei = now;
1041 }
1042
1043 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1044 if (vlv_c0_above(dev_priv,
1045 &dev_priv->rps.up_ei, &now,
1046 dev_priv->rps.up_threshold))
1047 events |= GEN6_PM_RP_UP_THRESHOLD;
1048 dev_priv->rps.up_ei = now;
1049 }
1050
1051 return events;
1052 }
1053
1054 static bool any_waiters(struct drm_i915_private *dev_priv)
1055 {
1056 struct intel_engine_cs *engine;
1057
1058 for_each_engine(engine, dev_priv)
1059 if (intel_engine_has_waiter(engine))
1060 return true;
1061
1062 return false;
1063 }
1064
1065 static void gen6_pm_rps_work(struct work_struct *work)
1066 {
1067 struct drm_i915_private *dev_priv =
1068 container_of(work, struct drm_i915_private, rps.work);
1069 bool client_boost;
1070 int new_delay, adj, min, max;
1071 u32 pm_iir;
1072
1073 spin_lock_irq(&dev_priv->irq_lock);
1074 /* Speed up work cancelation during disabling rps interrupts. */
1075 if (!dev_priv->rps.interrupts_enabled) {
1076 spin_unlock_irq(&dev_priv->irq_lock);
1077 return;
1078 }
1079
1080 pm_iir = dev_priv->rps.pm_iir;
1081 dev_priv->rps.pm_iir = 0;
1082 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1083 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1084 client_boost = dev_priv->rps.client_boost;
1085 dev_priv->rps.client_boost = false;
1086 spin_unlock_irq(&dev_priv->irq_lock);
1087
1088 /* Make sure we didn't queue anything we're not going to process. */
1089 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1090
1091 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1092 return;
1093
1094 mutex_lock(&dev_priv->rps.hw_lock);
1095
1096 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1097
1098 adj = dev_priv->rps.last_adj;
1099 new_delay = dev_priv->rps.cur_freq;
1100 min = dev_priv->rps.min_freq_softlimit;
1101 max = dev_priv->rps.max_freq_softlimit;
1102 if (client_boost || any_waiters(dev_priv))
1103 max = dev_priv->rps.max_freq;
1104 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1105 new_delay = dev_priv->rps.boost_freq;
1106 adj = 0;
1107 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1108 if (adj > 0)
1109 adj *= 2;
1110 else /* CHV needs even encode values */
1111 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1112 /*
1113 * For better performance, jump directly
1114 * to RPe if we're below it.
1115 */
1116 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1117 new_delay = dev_priv->rps.efficient_freq;
1118 adj = 0;
1119 }
1120 } else if (client_boost || any_waiters(dev_priv)) {
1121 adj = 0;
1122 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1123 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1124 new_delay = dev_priv->rps.efficient_freq;
1125 else
1126 new_delay = dev_priv->rps.min_freq_softlimit;
1127 adj = 0;
1128 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1129 if (adj < 0)
1130 adj *= 2;
1131 else /* CHV needs even encode values */
1132 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1133 } else { /* unknown event */
1134 adj = 0;
1135 }
1136
1137 dev_priv->rps.last_adj = adj;
1138
1139 /* sysfs frequency interfaces may have snuck in while servicing the
1140 * interrupt
1141 */
1142 new_delay += adj;
1143 new_delay = clamp_t(int, new_delay, min, max);
1144
1145 intel_set_rps(dev_priv, new_delay);
1146
1147 mutex_unlock(&dev_priv->rps.hw_lock);
1148 }
1149
1150
1151 /**
1152 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1153 * occurred.
1154 * @work: workqueue struct
1155 *
1156 * Doesn't actually do anything except notify userspace. As a consequence of
1157 * this event, userspace should try to remap the bad rows since statistically
1158 * it is likely the same row is more likely to go bad again.
1159 */
1160 static void ivybridge_parity_work(struct work_struct *work)
1161 {
1162 struct drm_i915_private *dev_priv =
1163 container_of(work, struct drm_i915_private, l3_parity.error_work);
1164 u32 error_status, row, bank, subbank;
1165 char *parity_event[6];
1166 uint32_t misccpctl;
1167 uint8_t slice = 0;
1168
1169 /* We must turn off DOP level clock gating to access the L3 registers.
1170 * In order to prevent a get/put style interface, acquire struct mutex
1171 * any time we access those registers.
1172 */
1173 mutex_lock(&dev_priv->drm.struct_mutex);
1174
1175 /* If we've screwed up tracking, just let the interrupt fire again */
1176 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1177 goto out;
1178
1179 misccpctl = I915_READ(GEN7_MISCCPCTL);
1180 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1181 POSTING_READ(GEN7_MISCCPCTL);
1182
1183 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1184 i915_reg_t reg;
1185
1186 slice--;
1187 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1188 break;
1189
1190 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1191
1192 reg = GEN7_L3CDERRST1(slice);
1193
1194 error_status = I915_READ(reg);
1195 row = GEN7_PARITY_ERROR_ROW(error_status);
1196 bank = GEN7_PARITY_ERROR_BANK(error_status);
1197 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1198
1199 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1200 POSTING_READ(reg);
1201
1202 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1203 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1204 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1205 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1206 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1207 parity_event[5] = NULL;
1208
1209 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1210 KOBJ_CHANGE, parity_event);
1211
1212 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1213 slice, row, bank, subbank);
1214
1215 kfree(parity_event[4]);
1216 kfree(parity_event[3]);
1217 kfree(parity_event[2]);
1218 kfree(parity_event[1]);
1219 }
1220
1221 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1222
1223 out:
1224 WARN_ON(dev_priv->l3_parity.which_slice);
1225 spin_lock_irq(&dev_priv->irq_lock);
1226 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1227 spin_unlock_irq(&dev_priv->irq_lock);
1228
1229 mutex_unlock(&dev_priv->drm.struct_mutex);
1230 }
1231
1232 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1233 u32 iir)
1234 {
1235 if (!HAS_L3_DPF(dev_priv))
1236 return;
1237
1238 spin_lock(&dev_priv->irq_lock);
1239 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1240 spin_unlock(&dev_priv->irq_lock);
1241
1242 iir &= GT_PARITY_ERROR(dev_priv);
1243 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1244 dev_priv->l3_parity.which_slice |= 1 << 1;
1245
1246 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1247 dev_priv->l3_parity.which_slice |= 1 << 0;
1248
1249 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1250 }
1251
1252 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1253 u32 gt_iir)
1254 {
1255 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1256 notify_ring(&dev_priv->engine[RCS]);
1257 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1258 notify_ring(&dev_priv->engine[VCS]);
1259 }
1260
1261 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1262 u32 gt_iir)
1263 {
1264 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1265 notify_ring(&dev_priv->engine[RCS]);
1266 if (gt_iir & GT_BSD_USER_INTERRUPT)
1267 notify_ring(&dev_priv->engine[VCS]);
1268 if (gt_iir & GT_BLT_USER_INTERRUPT)
1269 notify_ring(&dev_priv->engine[BCS]);
1270
1271 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1272 GT_BSD_CS_ERROR_INTERRUPT |
1273 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1274 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1275
1276 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1277 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1278 }
1279
1280 static __always_inline void
1281 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1282 {
1283 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1284 notify_ring(engine);
1285 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1286 tasklet_schedule(&engine->irq_tasklet);
1287 }
1288
1289 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1290 u32 master_ctl,
1291 u32 gt_iir[4])
1292 {
1293 irqreturn_t ret = IRQ_NONE;
1294
1295 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1296 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1297 if (gt_iir[0]) {
1298 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1299 ret = IRQ_HANDLED;
1300 } else
1301 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1302 }
1303
1304 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1305 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1306 if (gt_iir[1]) {
1307 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1308 ret = IRQ_HANDLED;
1309 } else
1310 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1311 }
1312
1313 if (master_ctl & GEN8_GT_VECS_IRQ) {
1314 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1315 if (gt_iir[3]) {
1316 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1317 ret = IRQ_HANDLED;
1318 } else
1319 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1320 }
1321
1322 if (master_ctl & GEN8_GT_PM_IRQ) {
1323 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1324 if (gt_iir[2] & dev_priv->pm_rps_events) {
1325 I915_WRITE_FW(GEN8_GT_IIR(2),
1326 gt_iir[2] & dev_priv->pm_rps_events);
1327 ret = IRQ_HANDLED;
1328 } else
1329 DRM_ERROR("The master control interrupt lied (PM)!\n");
1330 }
1331
1332 return ret;
1333 }
1334
1335 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1336 u32 gt_iir[4])
1337 {
1338 if (gt_iir[0]) {
1339 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1340 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1341 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1342 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1343 }
1344
1345 if (gt_iir[1]) {
1346 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1347 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1348 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1349 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1350 }
1351
1352 if (gt_iir[3])
1353 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1354 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1355
1356 if (gt_iir[2] & dev_priv->pm_rps_events)
1357 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1358 }
1359
1360 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1361 {
1362 switch (port) {
1363 case PORT_A:
1364 return val & PORTA_HOTPLUG_LONG_DETECT;
1365 case PORT_B:
1366 return val & PORTB_HOTPLUG_LONG_DETECT;
1367 case PORT_C:
1368 return val & PORTC_HOTPLUG_LONG_DETECT;
1369 default:
1370 return false;
1371 }
1372 }
1373
1374 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1375 {
1376 switch (port) {
1377 case PORT_E:
1378 return val & PORTE_HOTPLUG_LONG_DETECT;
1379 default:
1380 return false;
1381 }
1382 }
1383
1384 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1385 {
1386 switch (port) {
1387 case PORT_A:
1388 return val & PORTA_HOTPLUG_LONG_DETECT;
1389 case PORT_B:
1390 return val & PORTB_HOTPLUG_LONG_DETECT;
1391 case PORT_C:
1392 return val & PORTC_HOTPLUG_LONG_DETECT;
1393 case PORT_D:
1394 return val & PORTD_HOTPLUG_LONG_DETECT;
1395 default:
1396 return false;
1397 }
1398 }
1399
1400 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1401 {
1402 switch (port) {
1403 case PORT_A:
1404 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1405 default:
1406 return false;
1407 }
1408 }
1409
1410 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1411 {
1412 switch (port) {
1413 case PORT_B:
1414 return val & PORTB_HOTPLUG_LONG_DETECT;
1415 case PORT_C:
1416 return val & PORTC_HOTPLUG_LONG_DETECT;
1417 case PORT_D:
1418 return val & PORTD_HOTPLUG_LONG_DETECT;
1419 default:
1420 return false;
1421 }
1422 }
1423
1424 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1425 {
1426 switch (port) {
1427 case PORT_B:
1428 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1429 case PORT_C:
1430 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1431 case PORT_D:
1432 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1433 default:
1434 return false;
1435 }
1436 }
1437
1438 /*
1439 * Get a bit mask of pins that have triggered, and which ones may be long.
1440 * This can be called multiple times with the same masks to accumulate
1441 * hotplug detection results from several registers.
1442 *
1443 * Note that the caller is expected to zero out the masks initially.
1444 */
1445 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1446 u32 hotplug_trigger, u32 dig_hotplug_reg,
1447 const u32 hpd[HPD_NUM_PINS],
1448 bool long_pulse_detect(enum port port, u32 val))
1449 {
1450 enum port port;
1451 int i;
1452
1453 for_each_hpd_pin(i) {
1454 if ((hpd[i] & hotplug_trigger) == 0)
1455 continue;
1456
1457 *pin_mask |= BIT(i);
1458
1459 if (!intel_hpd_pin_to_port(i, &port))
1460 continue;
1461
1462 if (long_pulse_detect(port, dig_hotplug_reg))
1463 *long_mask |= BIT(i);
1464 }
1465
1466 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1467 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1468
1469 }
1470
1471 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1472 {
1473 wake_up_all(&dev_priv->gmbus_wait_queue);
1474 }
1475
1476 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1477 {
1478 wake_up_all(&dev_priv->gmbus_wait_queue);
1479 }
1480
1481 #if defined(CONFIG_DEBUG_FS)
1482 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1483 enum pipe pipe,
1484 uint32_t crc0, uint32_t crc1,
1485 uint32_t crc2, uint32_t crc3,
1486 uint32_t crc4)
1487 {
1488 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1489 struct intel_pipe_crc_entry *entry;
1490 int head, tail;
1491
1492 spin_lock(&pipe_crc->lock);
1493
1494 if (!pipe_crc->entries) {
1495 spin_unlock(&pipe_crc->lock);
1496 DRM_DEBUG_KMS("spurious interrupt\n");
1497 return;
1498 }
1499
1500 head = pipe_crc->head;
1501 tail = pipe_crc->tail;
1502
1503 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1504 spin_unlock(&pipe_crc->lock);
1505 DRM_ERROR("CRC buffer overflowing\n");
1506 return;
1507 }
1508
1509 entry = &pipe_crc->entries[head];
1510
1511 entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1512 pipe);
1513 entry->crc[0] = crc0;
1514 entry->crc[1] = crc1;
1515 entry->crc[2] = crc2;
1516 entry->crc[3] = crc3;
1517 entry->crc[4] = crc4;
1518
1519 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1520 pipe_crc->head = head;
1521
1522 spin_unlock(&pipe_crc->lock);
1523
1524 wake_up_interruptible(&pipe_crc->wq);
1525 }
1526 #else
1527 static inline void
1528 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1529 enum pipe pipe,
1530 uint32_t crc0, uint32_t crc1,
1531 uint32_t crc2, uint32_t crc3,
1532 uint32_t crc4) {}
1533 #endif
1534
1535
1536 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1537 enum pipe pipe)
1538 {
1539 display_pipe_crc_irq_handler(dev_priv, pipe,
1540 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1541 0, 0, 0, 0);
1542 }
1543
1544 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1545 enum pipe pipe)
1546 {
1547 display_pipe_crc_irq_handler(dev_priv, pipe,
1548 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1549 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1550 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1551 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1552 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1553 }
1554
1555 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1556 enum pipe pipe)
1557 {
1558 uint32_t res1, res2;
1559
1560 if (INTEL_GEN(dev_priv) >= 3)
1561 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1562 else
1563 res1 = 0;
1564
1565 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1566 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1567 else
1568 res2 = 0;
1569
1570 display_pipe_crc_irq_handler(dev_priv, pipe,
1571 I915_READ(PIPE_CRC_RES_RED(pipe)),
1572 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1573 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1574 res1, res2);
1575 }
1576
1577 /* The RPS events need forcewake, so we add them to a work queue and mask their
1578 * IMR bits until the work is done. Other interrupts can be processed without
1579 * the work queue. */
1580 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1581 {
1582 if (pm_iir & dev_priv->pm_rps_events) {
1583 spin_lock(&dev_priv->irq_lock);
1584 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1585 if (dev_priv->rps.interrupts_enabled) {
1586 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1587 schedule_work(&dev_priv->rps.work);
1588 }
1589 spin_unlock(&dev_priv->irq_lock);
1590 }
1591
1592 if (INTEL_INFO(dev_priv)->gen >= 8)
1593 return;
1594
1595 if (HAS_VEBOX(dev_priv)) {
1596 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1597 notify_ring(&dev_priv->engine[VECS]);
1598
1599 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1600 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1601 }
1602 }
1603
1604 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1605 enum pipe pipe)
1606 {
1607 bool ret;
1608
1609 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1610 if (ret)
1611 intel_finish_page_flip_mmio(dev_priv, pipe);
1612
1613 return ret;
1614 }
1615
1616 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1617 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1618 {
1619 int pipe;
1620
1621 spin_lock(&dev_priv->irq_lock);
1622
1623 if (!dev_priv->display_irqs_enabled) {
1624 spin_unlock(&dev_priv->irq_lock);
1625 return;
1626 }
1627
1628 for_each_pipe(dev_priv, pipe) {
1629 i915_reg_t reg;
1630 u32 mask, iir_bit = 0;
1631
1632 /*
1633 * PIPESTAT bits get signalled even when the interrupt is
1634 * disabled with the mask bits, and some of the status bits do
1635 * not generate interrupts at all (like the underrun bit). Hence
1636 * we need to be careful that we only handle what we want to
1637 * handle.
1638 */
1639
1640 /* fifo underruns are filterered in the underrun handler. */
1641 mask = PIPE_FIFO_UNDERRUN_STATUS;
1642
1643 switch (pipe) {
1644 case PIPE_A:
1645 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1646 break;
1647 case PIPE_B:
1648 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1649 break;
1650 case PIPE_C:
1651 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1652 break;
1653 }
1654 if (iir & iir_bit)
1655 mask |= dev_priv->pipestat_irq_mask[pipe];
1656
1657 if (!mask)
1658 continue;
1659
1660 reg = PIPESTAT(pipe);
1661 mask |= PIPESTAT_INT_ENABLE_MASK;
1662 pipe_stats[pipe] = I915_READ(reg) & mask;
1663
1664 /*
1665 * Clear the PIPE*STAT regs before the IIR
1666 */
1667 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1668 PIPESTAT_INT_STATUS_MASK))
1669 I915_WRITE(reg, pipe_stats[pipe]);
1670 }
1671 spin_unlock(&dev_priv->irq_lock);
1672 }
1673
1674 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1675 u32 pipe_stats[I915_MAX_PIPES])
1676 {
1677 enum pipe pipe;
1678
1679 for_each_pipe(dev_priv, pipe) {
1680 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1681 intel_pipe_handle_vblank(dev_priv, pipe))
1682 intel_check_page_flip(dev_priv, pipe);
1683
1684 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1685 intel_finish_page_flip_cs(dev_priv, pipe);
1686
1687 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1688 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1689
1690 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1691 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1692 }
1693
1694 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1695 gmbus_irq_handler(dev_priv);
1696 }
1697
1698 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1699 {
1700 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1701
1702 if (hotplug_status)
1703 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1704
1705 return hotplug_status;
1706 }
1707
1708 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1709 u32 hotplug_status)
1710 {
1711 u32 pin_mask = 0, long_mask = 0;
1712
1713 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1714 IS_CHERRYVIEW(dev_priv)) {
1715 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1716
1717 if (hotplug_trigger) {
1718 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1719 hotplug_trigger, hpd_status_g4x,
1720 i9xx_port_hotplug_long_detect);
1721
1722 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1723 }
1724
1725 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1726 dp_aux_irq_handler(dev_priv);
1727 } else {
1728 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1729
1730 if (hotplug_trigger) {
1731 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1732 hotplug_trigger, hpd_status_i915,
1733 i9xx_port_hotplug_long_detect);
1734 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1735 }
1736 }
1737 }
1738
1739 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1740 {
1741 struct drm_device *dev = arg;
1742 struct drm_i915_private *dev_priv = to_i915(dev);
1743 irqreturn_t ret = IRQ_NONE;
1744
1745 if (!intel_irqs_enabled(dev_priv))
1746 return IRQ_NONE;
1747
1748 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1749 disable_rpm_wakeref_asserts(dev_priv);
1750
1751 do {
1752 u32 iir, gt_iir, pm_iir;
1753 u32 pipe_stats[I915_MAX_PIPES] = {};
1754 u32 hotplug_status = 0;
1755 u32 ier = 0;
1756
1757 gt_iir = I915_READ(GTIIR);
1758 pm_iir = I915_READ(GEN6_PMIIR);
1759 iir = I915_READ(VLV_IIR);
1760
1761 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1762 break;
1763
1764 ret = IRQ_HANDLED;
1765
1766 /*
1767 * Theory on interrupt generation, based on empirical evidence:
1768 *
1769 * x = ((VLV_IIR & VLV_IER) ||
1770 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1771 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1772 *
1773 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1774 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1775 * guarantee the CPU interrupt will be raised again even if we
1776 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1777 * bits this time around.
1778 */
1779 I915_WRITE(VLV_MASTER_IER, 0);
1780 ier = I915_READ(VLV_IER);
1781 I915_WRITE(VLV_IER, 0);
1782
1783 if (gt_iir)
1784 I915_WRITE(GTIIR, gt_iir);
1785 if (pm_iir)
1786 I915_WRITE(GEN6_PMIIR, pm_iir);
1787
1788 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1789 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1790
1791 /* Call regardless, as some status bits might not be
1792 * signalled in iir */
1793 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1794
1795 /*
1796 * VLV_IIR is single buffered, and reflects the level
1797 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1798 */
1799 if (iir)
1800 I915_WRITE(VLV_IIR, iir);
1801
1802 I915_WRITE(VLV_IER, ier);
1803 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1804 POSTING_READ(VLV_MASTER_IER);
1805
1806 if (gt_iir)
1807 snb_gt_irq_handler(dev_priv, gt_iir);
1808 if (pm_iir)
1809 gen6_rps_irq_handler(dev_priv, pm_iir);
1810
1811 if (hotplug_status)
1812 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1813
1814 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1815 } while (0);
1816
1817 enable_rpm_wakeref_asserts(dev_priv);
1818
1819 return ret;
1820 }
1821
1822 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1823 {
1824 struct drm_device *dev = arg;
1825 struct drm_i915_private *dev_priv = to_i915(dev);
1826 irqreturn_t ret = IRQ_NONE;
1827
1828 if (!intel_irqs_enabled(dev_priv))
1829 return IRQ_NONE;
1830
1831 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1832 disable_rpm_wakeref_asserts(dev_priv);
1833
1834 do {
1835 u32 master_ctl, iir;
1836 u32 gt_iir[4] = {};
1837 u32 pipe_stats[I915_MAX_PIPES] = {};
1838 u32 hotplug_status = 0;
1839 u32 ier = 0;
1840
1841 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1842 iir = I915_READ(VLV_IIR);
1843
1844 if (master_ctl == 0 && iir == 0)
1845 break;
1846
1847 ret = IRQ_HANDLED;
1848
1849 /*
1850 * Theory on interrupt generation, based on empirical evidence:
1851 *
1852 * x = ((VLV_IIR & VLV_IER) ||
1853 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1854 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1855 *
1856 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1857 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1858 * guarantee the CPU interrupt will be raised again even if we
1859 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1860 * bits this time around.
1861 */
1862 I915_WRITE(GEN8_MASTER_IRQ, 0);
1863 ier = I915_READ(VLV_IER);
1864 I915_WRITE(VLV_IER, 0);
1865
1866 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1867
1868 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1869 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1870
1871 /* Call regardless, as some status bits might not be
1872 * signalled in iir */
1873 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1874
1875 /*
1876 * VLV_IIR is single buffered, and reflects the level
1877 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1878 */
1879 if (iir)
1880 I915_WRITE(VLV_IIR, iir);
1881
1882 I915_WRITE(VLV_IER, ier);
1883 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1884 POSTING_READ(GEN8_MASTER_IRQ);
1885
1886 gen8_gt_irq_handler(dev_priv, gt_iir);
1887
1888 if (hotplug_status)
1889 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1890
1891 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1892 } while (0);
1893
1894 enable_rpm_wakeref_asserts(dev_priv);
1895
1896 return ret;
1897 }
1898
1899 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1900 u32 hotplug_trigger,
1901 const u32 hpd[HPD_NUM_PINS])
1902 {
1903 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1904
1905 /*
1906 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1907 * unless we touch the hotplug register, even if hotplug_trigger is
1908 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1909 * errors.
1910 */
1911 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1912 if (!hotplug_trigger) {
1913 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1914 PORTD_HOTPLUG_STATUS_MASK |
1915 PORTC_HOTPLUG_STATUS_MASK |
1916 PORTB_HOTPLUG_STATUS_MASK;
1917 dig_hotplug_reg &= ~mask;
1918 }
1919
1920 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1921 if (!hotplug_trigger)
1922 return;
1923
1924 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1925 dig_hotplug_reg, hpd,
1926 pch_port_hotplug_long_detect);
1927
1928 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1929 }
1930
1931 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1932 {
1933 int pipe;
1934 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1935
1936 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1937
1938 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1939 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1940 SDE_AUDIO_POWER_SHIFT);
1941 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1942 port_name(port));
1943 }
1944
1945 if (pch_iir & SDE_AUX_MASK)
1946 dp_aux_irq_handler(dev_priv);
1947
1948 if (pch_iir & SDE_GMBUS)
1949 gmbus_irq_handler(dev_priv);
1950
1951 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1952 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1953
1954 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1955 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1956
1957 if (pch_iir & SDE_POISON)
1958 DRM_ERROR("PCH poison interrupt\n");
1959
1960 if (pch_iir & SDE_FDI_MASK)
1961 for_each_pipe(dev_priv, pipe)
1962 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1963 pipe_name(pipe),
1964 I915_READ(FDI_RX_IIR(pipe)));
1965
1966 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1967 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1968
1969 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1970 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1971
1972 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1973 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1974
1975 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1976 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1977 }
1978
1979 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1980 {
1981 u32 err_int = I915_READ(GEN7_ERR_INT);
1982 enum pipe pipe;
1983
1984 if (err_int & ERR_INT_POISON)
1985 DRM_ERROR("Poison interrupt\n");
1986
1987 for_each_pipe(dev_priv, pipe) {
1988 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1989 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1990
1991 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1992 if (IS_IVYBRIDGE(dev_priv))
1993 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1994 else
1995 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1996 }
1997 }
1998
1999 I915_WRITE(GEN7_ERR_INT, err_int);
2000 }
2001
2002 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2003 {
2004 u32 serr_int = I915_READ(SERR_INT);
2005
2006 if (serr_int & SERR_INT_POISON)
2007 DRM_ERROR("PCH poison interrupt\n");
2008
2009 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2010 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2011
2012 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2013 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2014
2015 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2016 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2017
2018 I915_WRITE(SERR_INT, serr_int);
2019 }
2020
2021 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2022 {
2023 int pipe;
2024 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2025
2026 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2027
2028 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2029 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2030 SDE_AUDIO_POWER_SHIFT_CPT);
2031 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2032 port_name(port));
2033 }
2034
2035 if (pch_iir & SDE_AUX_MASK_CPT)
2036 dp_aux_irq_handler(dev_priv);
2037
2038 if (pch_iir & SDE_GMBUS_CPT)
2039 gmbus_irq_handler(dev_priv);
2040
2041 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2042 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2043
2044 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2045 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2046
2047 if (pch_iir & SDE_FDI_MASK_CPT)
2048 for_each_pipe(dev_priv, pipe)
2049 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2050 pipe_name(pipe),
2051 I915_READ(FDI_RX_IIR(pipe)));
2052
2053 if (pch_iir & SDE_ERROR_CPT)
2054 cpt_serr_int_handler(dev_priv);
2055 }
2056
2057 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2060 ~SDE_PORTE_HOTPLUG_SPT;
2061 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2062 u32 pin_mask = 0, long_mask = 0;
2063
2064 if (hotplug_trigger) {
2065 u32 dig_hotplug_reg;
2066
2067 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2068 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2069
2070 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2071 dig_hotplug_reg, hpd_spt,
2072 spt_port_hotplug_long_detect);
2073 }
2074
2075 if (hotplug2_trigger) {
2076 u32 dig_hotplug_reg;
2077
2078 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2079 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2080
2081 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2082 dig_hotplug_reg, hpd_spt,
2083 spt_port_hotplug2_long_detect);
2084 }
2085
2086 if (pin_mask)
2087 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2088
2089 if (pch_iir & SDE_GMBUS_CPT)
2090 gmbus_irq_handler(dev_priv);
2091 }
2092
2093 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2094 u32 hotplug_trigger,
2095 const u32 hpd[HPD_NUM_PINS])
2096 {
2097 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2098
2099 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2100 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2101
2102 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2103 dig_hotplug_reg, hpd,
2104 ilk_port_hotplug_long_detect);
2105
2106 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2107 }
2108
2109 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2110 u32 de_iir)
2111 {
2112 enum pipe pipe;
2113 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2114
2115 if (hotplug_trigger)
2116 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2117
2118 if (de_iir & DE_AUX_CHANNEL_A)
2119 dp_aux_irq_handler(dev_priv);
2120
2121 if (de_iir & DE_GSE)
2122 intel_opregion_asle_intr(dev_priv);
2123
2124 if (de_iir & DE_POISON)
2125 DRM_ERROR("Poison interrupt\n");
2126
2127 for_each_pipe(dev_priv, pipe) {
2128 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2129 intel_pipe_handle_vblank(dev_priv, pipe))
2130 intel_check_page_flip(dev_priv, pipe);
2131
2132 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2133 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2134
2135 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2136 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2137
2138 /* plane/pipes map 1:1 on ilk+ */
2139 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2140 intel_finish_page_flip_cs(dev_priv, pipe);
2141 }
2142
2143 /* check event from PCH */
2144 if (de_iir & DE_PCH_EVENT) {
2145 u32 pch_iir = I915_READ(SDEIIR);
2146
2147 if (HAS_PCH_CPT(dev_priv))
2148 cpt_irq_handler(dev_priv, pch_iir);
2149 else
2150 ibx_irq_handler(dev_priv, pch_iir);
2151
2152 /* should clear PCH hotplug event before clear CPU irq */
2153 I915_WRITE(SDEIIR, pch_iir);
2154 }
2155
2156 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2157 ironlake_rps_change_irq_handler(dev_priv);
2158 }
2159
2160 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2161 u32 de_iir)
2162 {
2163 enum pipe pipe;
2164 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2165
2166 if (hotplug_trigger)
2167 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2168
2169 if (de_iir & DE_ERR_INT_IVB)
2170 ivb_err_int_handler(dev_priv);
2171
2172 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2173 dp_aux_irq_handler(dev_priv);
2174
2175 if (de_iir & DE_GSE_IVB)
2176 intel_opregion_asle_intr(dev_priv);
2177
2178 for_each_pipe(dev_priv, pipe) {
2179 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2180 intel_pipe_handle_vblank(dev_priv, pipe))
2181 intel_check_page_flip(dev_priv, pipe);
2182
2183 /* plane/pipes map 1:1 on ilk+ */
2184 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2185 intel_finish_page_flip_cs(dev_priv, pipe);
2186 }
2187
2188 /* check event from PCH */
2189 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2190 u32 pch_iir = I915_READ(SDEIIR);
2191
2192 cpt_irq_handler(dev_priv, pch_iir);
2193
2194 /* clear PCH hotplug event before clear CPU irq */
2195 I915_WRITE(SDEIIR, pch_iir);
2196 }
2197 }
2198
2199 /*
2200 * To handle irqs with the minimum potential races with fresh interrupts, we:
2201 * 1 - Disable Master Interrupt Control.
2202 * 2 - Find the source(s) of the interrupt.
2203 * 3 - Clear the Interrupt Identity bits (IIR).
2204 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2205 * 5 - Re-enable Master Interrupt Control.
2206 */
2207 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2208 {
2209 struct drm_device *dev = arg;
2210 struct drm_i915_private *dev_priv = to_i915(dev);
2211 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2212 irqreturn_t ret = IRQ_NONE;
2213
2214 if (!intel_irqs_enabled(dev_priv))
2215 return IRQ_NONE;
2216
2217 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2218 disable_rpm_wakeref_asserts(dev_priv);
2219
2220 /* disable master interrupt before clearing iir */
2221 de_ier = I915_READ(DEIER);
2222 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2223 POSTING_READ(DEIER);
2224
2225 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2226 * interrupts will will be stored on its back queue, and then we'll be
2227 * able to process them after we restore SDEIER (as soon as we restore
2228 * it, we'll get an interrupt if SDEIIR still has something to process
2229 * due to its back queue). */
2230 if (!HAS_PCH_NOP(dev_priv)) {
2231 sde_ier = I915_READ(SDEIER);
2232 I915_WRITE(SDEIER, 0);
2233 POSTING_READ(SDEIER);
2234 }
2235
2236 /* Find, clear, then process each source of interrupt */
2237
2238 gt_iir = I915_READ(GTIIR);
2239 if (gt_iir) {
2240 I915_WRITE(GTIIR, gt_iir);
2241 ret = IRQ_HANDLED;
2242 if (INTEL_GEN(dev_priv) >= 6)
2243 snb_gt_irq_handler(dev_priv, gt_iir);
2244 else
2245 ilk_gt_irq_handler(dev_priv, gt_iir);
2246 }
2247
2248 de_iir = I915_READ(DEIIR);
2249 if (de_iir) {
2250 I915_WRITE(DEIIR, de_iir);
2251 ret = IRQ_HANDLED;
2252 if (INTEL_GEN(dev_priv) >= 7)
2253 ivb_display_irq_handler(dev_priv, de_iir);
2254 else
2255 ilk_display_irq_handler(dev_priv, de_iir);
2256 }
2257
2258 if (INTEL_GEN(dev_priv) >= 6) {
2259 u32 pm_iir = I915_READ(GEN6_PMIIR);
2260 if (pm_iir) {
2261 I915_WRITE(GEN6_PMIIR, pm_iir);
2262 ret = IRQ_HANDLED;
2263 gen6_rps_irq_handler(dev_priv, pm_iir);
2264 }
2265 }
2266
2267 I915_WRITE(DEIER, de_ier);
2268 POSTING_READ(DEIER);
2269 if (!HAS_PCH_NOP(dev_priv)) {
2270 I915_WRITE(SDEIER, sde_ier);
2271 POSTING_READ(SDEIER);
2272 }
2273
2274 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2275 enable_rpm_wakeref_asserts(dev_priv);
2276
2277 return ret;
2278 }
2279
2280 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2281 u32 hotplug_trigger,
2282 const u32 hpd[HPD_NUM_PINS])
2283 {
2284 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2285
2286 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2287 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2288
2289 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2290 dig_hotplug_reg, hpd,
2291 bxt_port_hotplug_long_detect);
2292
2293 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2294 }
2295
2296 static irqreturn_t
2297 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2298 {
2299 irqreturn_t ret = IRQ_NONE;
2300 u32 iir;
2301 enum pipe pipe;
2302
2303 if (master_ctl & GEN8_DE_MISC_IRQ) {
2304 iir = I915_READ(GEN8_DE_MISC_IIR);
2305 if (iir) {
2306 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2307 ret = IRQ_HANDLED;
2308 if (iir & GEN8_DE_MISC_GSE)
2309 intel_opregion_asle_intr(dev_priv);
2310 else
2311 DRM_ERROR("Unexpected DE Misc interrupt\n");
2312 }
2313 else
2314 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2315 }
2316
2317 if (master_ctl & GEN8_DE_PORT_IRQ) {
2318 iir = I915_READ(GEN8_DE_PORT_IIR);
2319 if (iir) {
2320 u32 tmp_mask;
2321 bool found = false;
2322
2323 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2324 ret = IRQ_HANDLED;
2325
2326 tmp_mask = GEN8_AUX_CHANNEL_A;
2327 if (INTEL_INFO(dev_priv)->gen >= 9)
2328 tmp_mask |= GEN9_AUX_CHANNEL_B |
2329 GEN9_AUX_CHANNEL_C |
2330 GEN9_AUX_CHANNEL_D;
2331
2332 if (iir & tmp_mask) {
2333 dp_aux_irq_handler(dev_priv);
2334 found = true;
2335 }
2336
2337 if (IS_BROXTON(dev_priv)) {
2338 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2339 if (tmp_mask) {
2340 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2341 hpd_bxt);
2342 found = true;
2343 }
2344 } else if (IS_BROADWELL(dev_priv)) {
2345 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2346 if (tmp_mask) {
2347 ilk_hpd_irq_handler(dev_priv,
2348 tmp_mask, hpd_bdw);
2349 found = true;
2350 }
2351 }
2352
2353 if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2354 gmbus_irq_handler(dev_priv);
2355 found = true;
2356 }
2357
2358 if (!found)
2359 DRM_ERROR("Unexpected DE Port interrupt\n");
2360 }
2361 else
2362 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2363 }
2364
2365 for_each_pipe(dev_priv, pipe) {
2366 u32 flip_done, fault_errors;
2367
2368 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2369 continue;
2370
2371 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2372 if (!iir) {
2373 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2374 continue;
2375 }
2376
2377 ret = IRQ_HANDLED;
2378 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2379
2380 if (iir & GEN8_PIPE_VBLANK &&
2381 intel_pipe_handle_vblank(dev_priv, pipe))
2382 intel_check_page_flip(dev_priv, pipe);
2383
2384 flip_done = iir;
2385 if (INTEL_INFO(dev_priv)->gen >= 9)
2386 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2387 else
2388 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2389
2390 if (flip_done)
2391 intel_finish_page_flip_cs(dev_priv, pipe);
2392
2393 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2394 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2395
2396 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2397 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2398
2399 fault_errors = iir;
2400 if (INTEL_INFO(dev_priv)->gen >= 9)
2401 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2402 else
2403 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2404
2405 if (fault_errors)
2406 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2407 pipe_name(pipe),
2408 fault_errors);
2409 }
2410
2411 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2412 master_ctl & GEN8_DE_PCH_IRQ) {
2413 /*
2414 * FIXME(BDW): Assume for now that the new interrupt handling
2415 * scheme also closed the SDE interrupt handling race we've seen
2416 * on older pch-split platforms. But this needs testing.
2417 */
2418 iir = I915_READ(SDEIIR);
2419 if (iir) {
2420 I915_WRITE(SDEIIR, iir);
2421 ret = IRQ_HANDLED;
2422
2423 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2424 spt_irq_handler(dev_priv, iir);
2425 else
2426 cpt_irq_handler(dev_priv, iir);
2427 } else {
2428 /*
2429 * Like on previous PCH there seems to be something
2430 * fishy going on with forwarding PCH interrupts.
2431 */
2432 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2433 }
2434 }
2435
2436 return ret;
2437 }
2438
2439 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2440 {
2441 struct drm_device *dev = arg;
2442 struct drm_i915_private *dev_priv = to_i915(dev);
2443 u32 master_ctl;
2444 u32 gt_iir[4] = {};
2445 irqreturn_t ret;
2446
2447 if (!intel_irqs_enabled(dev_priv))
2448 return IRQ_NONE;
2449
2450 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2451 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2452 if (!master_ctl)
2453 return IRQ_NONE;
2454
2455 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2456
2457 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2458 disable_rpm_wakeref_asserts(dev_priv);
2459
2460 /* Find, clear, then process each source of interrupt */
2461 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2462 gen8_gt_irq_handler(dev_priv, gt_iir);
2463 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2464
2465 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2466 POSTING_READ_FW(GEN8_MASTER_IRQ);
2467
2468 enable_rpm_wakeref_asserts(dev_priv);
2469
2470 return ret;
2471 }
2472
2473 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2474 {
2475 /*
2476 * Notify all waiters for GPU completion events that reset state has
2477 * been changed, and that they need to restart their wait after
2478 * checking for potential errors (and bail out to drop locks if there is
2479 * a gpu reset pending so that i915_error_work_func can acquire them).
2480 */
2481
2482 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2483 wake_up_all(&dev_priv->gpu_error.wait_queue);
2484
2485 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2486 wake_up_all(&dev_priv->pending_flip_queue);
2487 }
2488
2489 /**
2490 * i915_reset_and_wakeup - do process context error handling work
2491 * @dev_priv: i915 device private
2492 *
2493 * Fire an error uevent so userspace can see that a hang or error
2494 * was detected.
2495 */
2496 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2497 {
2498 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2499 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2500 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2501 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2502 int ret;
2503
2504 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2505
2506 /*
2507 * Note that there's only one work item which does gpu resets, so we
2508 * need not worry about concurrent gpu resets potentially incrementing
2509 * error->reset_counter twice. We only need to take care of another
2510 * racing irq/hangcheck declaring the gpu dead for a second time. A
2511 * quick check for that is good enough: schedule_work ensures the
2512 * correct ordering between hang detection and this work item, and since
2513 * the reset in-progress bit is only ever set by code outside of this
2514 * work we don't need to worry about any other races.
2515 */
2516 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2517 DRM_DEBUG_DRIVER("resetting chip\n");
2518 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2519
2520 /*
2521 * In most cases it's guaranteed that we get here with an RPM
2522 * reference held, for example because there is a pending GPU
2523 * request that won't finish until the reset is done. This
2524 * isn't the case at least when we get here by doing a
2525 * simulated reset via debugs, so get an RPM reference.
2526 */
2527 intel_runtime_pm_get(dev_priv);
2528
2529 intel_prepare_reset(dev_priv);
2530
2531 /*
2532 * All state reset _must_ be completed before we update the
2533 * reset counter, for otherwise waiters might miss the reset
2534 * pending state and not properly drop locks, resulting in
2535 * deadlocks with the reset work.
2536 */
2537 ret = i915_reset(dev_priv);
2538
2539 intel_finish_reset(dev_priv);
2540
2541 intel_runtime_pm_put(dev_priv);
2542
2543 if (ret == 0)
2544 kobject_uevent_env(kobj,
2545 KOBJ_CHANGE, reset_done_event);
2546
2547 /*
2548 * Note: The wake_up also serves as a memory barrier so that
2549 * waiters see the update value of the reset counter atomic_t.
2550 */
2551 wake_up_all(&dev_priv->gpu_error.reset_queue);
2552 }
2553 }
2554
2555 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2556 {
2557 uint32_t instdone[I915_NUM_INSTDONE_REG];
2558 u32 eir = I915_READ(EIR);
2559 int pipe, i;
2560
2561 if (!eir)
2562 return;
2563
2564 pr_err("render error detected, EIR: 0x%08x\n", eir);
2565
2566 i915_get_extra_instdone(dev_priv, instdone);
2567
2568 if (IS_G4X(dev_priv)) {
2569 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2570 u32 ipeir = I915_READ(IPEIR_I965);
2571
2572 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2573 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2574 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2575 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2576 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2577 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2578 I915_WRITE(IPEIR_I965, ipeir);
2579 POSTING_READ(IPEIR_I965);
2580 }
2581 if (eir & GM45_ERROR_PAGE_TABLE) {
2582 u32 pgtbl_err = I915_READ(PGTBL_ER);
2583 pr_err("page table error\n");
2584 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2585 I915_WRITE(PGTBL_ER, pgtbl_err);
2586 POSTING_READ(PGTBL_ER);
2587 }
2588 }
2589
2590 if (!IS_GEN2(dev_priv)) {
2591 if (eir & I915_ERROR_PAGE_TABLE) {
2592 u32 pgtbl_err = I915_READ(PGTBL_ER);
2593 pr_err("page table error\n");
2594 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2595 I915_WRITE(PGTBL_ER, pgtbl_err);
2596 POSTING_READ(PGTBL_ER);
2597 }
2598 }
2599
2600 if (eir & I915_ERROR_MEMORY_REFRESH) {
2601 pr_err("memory refresh error:\n");
2602 for_each_pipe(dev_priv, pipe)
2603 pr_err("pipe %c stat: 0x%08x\n",
2604 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2605 /* pipestat has already been acked */
2606 }
2607 if (eir & I915_ERROR_INSTRUCTION) {
2608 pr_err("instruction error\n");
2609 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2610 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2611 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2612 if (INTEL_GEN(dev_priv) < 4) {
2613 u32 ipeir = I915_READ(IPEIR);
2614
2615 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2616 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2617 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2618 I915_WRITE(IPEIR, ipeir);
2619 POSTING_READ(IPEIR);
2620 } else {
2621 u32 ipeir = I915_READ(IPEIR_I965);
2622
2623 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2624 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2625 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2626 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2627 I915_WRITE(IPEIR_I965, ipeir);
2628 POSTING_READ(IPEIR_I965);
2629 }
2630 }
2631
2632 I915_WRITE(EIR, eir);
2633 POSTING_READ(EIR);
2634 eir = I915_READ(EIR);
2635 if (eir) {
2636 /*
2637 * some errors might have become stuck,
2638 * mask them.
2639 */
2640 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2641 I915_WRITE(EMR, I915_READ(EMR) | eir);
2642 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2643 }
2644 }
2645
2646 /**
2647 * i915_handle_error - handle a gpu error
2648 * @dev_priv: i915 device private
2649 * @engine_mask: mask representing engines that are hung
2650 * Do some basic checking of register state at error time and
2651 * dump it to the syslog. Also call i915_capture_error_state() to make
2652 * sure we get a record and make it available in debugfs. Fire a uevent
2653 * so userspace knows something bad happened (should trigger collection
2654 * of a ring dump etc.).
2655 * @fmt: Error message format string
2656 */
2657 void i915_handle_error(struct drm_i915_private *dev_priv,
2658 u32 engine_mask,
2659 const char *fmt, ...)
2660 {
2661 va_list args;
2662 char error_msg[80];
2663
2664 va_start(args, fmt);
2665 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2666 va_end(args);
2667
2668 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2669 i915_report_and_clear_eir(dev_priv);
2670
2671 if (engine_mask) {
2672 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2673 &dev_priv->gpu_error.reset_counter);
2674
2675 /*
2676 * Wakeup waiting processes so that the reset function
2677 * i915_reset_and_wakeup doesn't deadlock trying to grab
2678 * various locks. By bumping the reset counter first, the woken
2679 * processes will see a reset in progress and back off,
2680 * releasing their locks and then wait for the reset completion.
2681 * We must do this for _all_ gpu waiters that might hold locks
2682 * that the reset work needs to acquire.
2683 *
2684 * Note: The wake_up serves as the required memory barrier to
2685 * ensure that the waiters see the updated value of the reset
2686 * counter atomic_t.
2687 */
2688 i915_error_wake_up(dev_priv);
2689 }
2690
2691 i915_reset_and_wakeup(dev_priv);
2692 }
2693
2694 /* Called from drm generic code, passed 'crtc' which
2695 * we use as a pipe index
2696 */
2697 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2698 {
2699 struct drm_i915_private *dev_priv = to_i915(dev);
2700 unsigned long irqflags;
2701
2702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 if (INTEL_INFO(dev)->gen >= 4)
2704 i915_enable_pipestat(dev_priv, pipe,
2705 PIPE_START_VBLANK_INTERRUPT_STATUS);
2706 else
2707 i915_enable_pipestat(dev_priv, pipe,
2708 PIPE_VBLANK_INTERRUPT_STATUS);
2709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710
2711 return 0;
2712 }
2713
2714 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2715 {
2716 struct drm_i915_private *dev_priv = to_i915(dev);
2717 unsigned long irqflags;
2718 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2719 DE_PIPE_VBLANK(pipe);
2720
2721 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722 ilk_enable_display_irq(dev_priv, bit);
2723 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2724
2725 return 0;
2726 }
2727
2728 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2729 {
2730 struct drm_i915_private *dev_priv = to_i915(dev);
2731 unsigned long irqflags;
2732
2733 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734 i915_enable_pipestat(dev_priv, pipe,
2735 PIPE_START_VBLANK_INTERRUPT_STATUS);
2736 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738 return 0;
2739 }
2740
2741 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2742 {
2743 struct drm_i915_private *dev_priv = to_i915(dev);
2744 unsigned long irqflags;
2745
2746 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2747 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2748 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2749
2750 return 0;
2751 }
2752
2753 /* Called from drm generic code, passed 'crtc' which
2754 * we use as a pipe index
2755 */
2756 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758 struct drm_i915_private *dev_priv = to_i915(dev);
2759 unsigned long irqflags;
2760
2761 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762 i915_disable_pipestat(dev_priv, pipe,
2763 PIPE_VBLANK_INTERRUPT_STATUS |
2764 PIPE_START_VBLANK_INTERRUPT_STATUS);
2765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766 }
2767
2768 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2769 {
2770 struct drm_i915_private *dev_priv = to_i915(dev);
2771 unsigned long irqflags;
2772 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2773 DE_PIPE_VBLANK(pipe);
2774
2775 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776 ilk_disable_display_irq(dev_priv, bit);
2777 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2778 }
2779
2780 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782 struct drm_i915_private *dev_priv = to_i915(dev);
2783 unsigned long irqflags;
2784
2785 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786 i915_disable_pipestat(dev_priv, pipe,
2787 PIPE_START_VBLANK_INTERRUPT_STATUS);
2788 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2789 }
2790
2791 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793 struct drm_i915_private *dev_priv = to_i915(dev);
2794 unsigned long irqflags;
2795
2796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2798 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 }
2800
2801 static bool
2802 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2803 {
2804 if (INTEL_GEN(engine->i915) >= 8) {
2805 return (ipehr >> 23) == 0x1c;
2806 } else {
2807 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2808 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2809 MI_SEMAPHORE_REGISTER);
2810 }
2811 }
2812
2813 static struct intel_engine_cs *
2814 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2815 u64 offset)
2816 {
2817 struct drm_i915_private *dev_priv = engine->i915;
2818 struct intel_engine_cs *signaller;
2819
2820 if (INTEL_GEN(dev_priv) >= 8) {
2821 for_each_engine(signaller, dev_priv) {
2822 if (engine == signaller)
2823 continue;
2824
2825 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2826 return signaller;
2827 }
2828 } else {
2829 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2830
2831 for_each_engine(signaller, dev_priv) {
2832 if(engine == signaller)
2833 continue;
2834
2835 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2836 return signaller;
2837 }
2838 }
2839
2840 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2841 engine->id, ipehr, offset);
2842
2843 return NULL;
2844 }
2845
2846 static struct intel_engine_cs *
2847 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2848 {
2849 struct drm_i915_private *dev_priv = engine->i915;
2850 void __iomem *vaddr;
2851 u32 cmd, ipehr, head;
2852 u64 offset = 0;
2853 int i, backwards;
2854
2855 /*
2856 * This function does not support execlist mode - any attempt to
2857 * proceed further into this function will result in a kernel panic
2858 * when dereferencing ring->buffer, which is not set up in execlist
2859 * mode.
2860 *
2861 * The correct way of doing it would be to derive the currently
2862 * executing ring buffer from the current context, which is derived
2863 * from the currently running request. Unfortunately, to get the
2864 * current request we would have to grab the struct_mutex before doing
2865 * anything else, which would be ill-advised since some other thread
2866 * might have grabbed it already and managed to hang itself, causing
2867 * the hang checker to deadlock.
2868 *
2869 * Therefore, this function does not support execlist mode in its
2870 * current form. Just return NULL and move on.
2871 */
2872 if (engine->buffer == NULL)
2873 return NULL;
2874
2875 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2876 if (!ipehr_is_semaphore_wait(engine, ipehr))
2877 return NULL;
2878
2879 /*
2880 * HEAD is likely pointing to the dword after the actual command,
2881 * so scan backwards until we find the MBOX. But limit it to just 3
2882 * or 4 dwords depending on the semaphore wait command size.
2883 * Note that we don't care about ACTHD here since that might
2884 * point at at batch, and semaphores are always emitted into the
2885 * ringbuffer itself.
2886 */
2887 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2888 backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2889 vaddr = (void __iomem *)engine->buffer->vaddr;
2890
2891 for (i = backwards; i; --i) {
2892 /*
2893 * Be paranoid and presume the hw has gone off into the wild -
2894 * our ring is smaller than what the hardware (and hence
2895 * HEAD_ADDR) allows. Also handles wrap-around.
2896 */
2897 head &= engine->buffer->size - 1;
2898
2899 /* This here seems to blow up */
2900 cmd = ioread32(vaddr + head);
2901 if (cmd == ipehr)
2902 break;
2903
2904 head -= 4;
2905 }
2906
2907 if (!i)
2908 return NULL;
2909
2910 *seqno = ioread32(vaddr + head + 4) + 1;
2911 if (INTEL_GEN(dev_priv) >= 8) {
2912 offset = ioread32(vaddr + head + 12);
2913 offset <<= 32;
2914 offset |= ioread32(vaddr + head + 8);
2915 }
2916 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2917 }
2918
2919 static int semaphore_passed(struct intel_engine_cs *engine)
2920 {
2921 struct drm_i915_private *dev_priv = engine->i915;
2922 struct intel_engine_cs *signaller;
2923 u32 seqno;
2924
2925 engine->hangcheck.deadlock++;
2926
2927 signaller = semaphore_waits_for(engine, &seqno);
2928 if (signaller == NULL)
2929 return -1;
2930
2931 /* Prevent pathological recursion due to driver bugs */
2932 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2933 return -1;
2934
2935 if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2936 return 1;
2937
2938 /* cursory check for an unkickable deadlock */
2939 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2940 semaphore_passed(signaller) < 0)
2941 return -1;
2942
2943 return 0;
2944 }
2945
2946 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2947 {
2948 struct intel_engine_cs *engine;
2949
2950 for_each_engine(engine, dev_priv)
2951 engine->hangcheck.deadlock = 0;
2952 }
2953
2954 static bool subunits_stuck(struct intel_engine_cs *engine)
2955 {
2956 u32 instdone[I915_NUM_INSTDONE_REG];
2957 bool stuck;
2958 int i;
2959
2960 if (engine->id != RCS)
2961 return true;
2962
2963 i915_get_extra_instdone(engine->i915, instdone);
2964
2965 /* There might be unstable subunit states even when
2966 * actual head is not moving. Filter out the unstable ones by
2967 * accumulating the undone -> done transitions and only
2968 * consider those as progress.
2969 */
2970 stuck = true;
2971 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2972 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2973
2974 if (tmp != engine->hangcheck.instdone[i])
2975 stuck = false;
2976
2977 engine->hangcheck.instdone[i] |= tmp;
2978 }
2979
2980 return stuck;
2981 }
2982
2983 static enum intel_engine_hangcheck_action
2984 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2985 {
2986 if (acthd != engine->hangcheck.acthd) {
2987
2988 /* Clear subunit states on head movement */
2989 memset(engine->hangcheck.instdone, 0,
2990 sizeof(engine->hangcheck.instdone));
2991
2992 return HANGCHECK_ACTIVE;
2993 }
2994
2995 if (!subunits_stuck(engine))
2996 return HANGCHECK_ACTIVE;
2997
2998 return HANGCHECK_HUNG;
2999 }
3000
3001 static enum intel_engine_hangcheck_action
3002 engine_stuck(struct intel_engine_cs *engine, u64 acthd)
3003 {
3004 struct drm_i915_private *dev_priv = engine->i915;
3005 enum intel_engine_hangcheck_action ha;
3006 u32 tmp;
3007
3008 ha = head_stuck(engine, acthd);
3009 if (ha != HANGCHECK_HUNG)
3010 return ha;
3011
3012 if (IS_GEN2(dev_priv))
3013 return HANGCHECK_HUNG;
3014
3015 /* Is the chip hanging on a WAIT_FOR_EVENT?
3016 * If so we can simply poke the RB_WAIT bit
3017 * and break the hang. This should work on
3018 * all but the second generation chipsets.
3019 */
3020 tmp = I915_READ_CTL(engine);
3021 if (tmp & RING_WAIT) {
3022 i915_handle_error(dev_priv, 0,
3023 "Kicking stuck wait on %s",
3024 engine->name);
3025 I915_WRITE_CTL(engine, tmp);
3026 return HANGCHECK_KICK;
3027 }
3028
3029 if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3030 switch (semaphore_passed(engine)) {
3031 default:
3032 return HANGCHECK_HUNG;
3033 case 1:
3034 i915_handle_error(dev_priv, 0,
3035 "Kicking stuck semaphore on %s",
3036 engine->name);
3037 I915_WRITE_CTL(engine, tmp);
3038 return HANGCHECK_KICK;
3039 case 0:
3040 return HANGCHECK_WAIT;
3041 }
3042 }
3043
3044 return HANGCHECK_HUNG;
3045 }
3046
3047 static unsigned long kick_waiters(struct intel_engine_cs *engine)
3048 {
3049 struct drm_i915_private *i915 = engine->i915;
3050 unsigned long irq_count = READ_ONCE(engine->breadcrumbs.irq_wakeups);
3051
3052 if (engine->hangcheck.user_interrupts == irq_count &&
3053 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3054 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
3055 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3056 engine->name);
3057
3058 intel_engine_enable_fake_irq(engine);
3059 }
3060
3061 return irq_count;
3062 }
3063 /*
3064 * This is called when the chip hasn't reported back with completed
3065 * batchbuffers in a long time. We keep track per ring seqno progress and
3066 * if there are no progress, hangcheck score for that ring is increased.
3067 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3068 * we kick the ring. If we see no progress on three subsequent calls
3069 * we assume chip is wedged and try to fix it by resetting the chip.
3070 */
3071 static void i915_hangcheck_elapsed(struct work_struct *work)
3072 {
3073 struct drm_i915_private *dev_priv =
3074 container_of(work, typeof(*dev_priv),
3075 gpu_error.hangcheck_work.work);
3076 struct intel_engine_cs *engine;
3077 unsigned int hung = 0, stuck = 0;
3078 int busy_count = 0;
3079 #define BUSY 1
3080 #define KICK 5
3081 #define HUNG 20
3082 #define ACTIVE_DECAY 15
3083
3084 if (!i915.enable_hangcheck)
3085 return;
3086
3087 if (!READ_ONCE(dev_priv->gt.awake))
3088 return;
3089
3090 /* As enabling the GPU requires fairly extensive mmio access,
3091 * periodically arm the mmio checker to see if we are triggering
3092 * any invalid access.
3093 */
3094 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3095
3096 for_each_engine(engine, dev_priv) {
3097 bool busy = intel_engine_has_waiter(engine);
3098 u64 acthd;
3099 u32 seqno;
3100 unsigned user_interrupts;
3101
3102 semaphore_clear_deadlocks(dev_priv);
3103
3104 /* We don't strictly need an irq-barrier here, as we are not
3105 * serving an interrupt request, be paranoid in case the
3106 * barrier has side-effects (such as preventing a broken
3107 * cacheline snoop) and so be sure that we can see the seqno
3108 * advance. If the seqno should stick, due to a stale
3109 * cacheline, we would erroneously declare the GPU hung.
3110 */
3111 if (engine->irq_seqno_barrier)
3112 engine->irq_seqno_barrier(engine);
3113
3114 acthd = intel_engine_get_active_head(engine);
3115 seqno = intel_engine_get_seqno(engine);
3116
3117 /* Reset stuck interrupts between batch advances */
3118 user_interrupts = 0;
3119
3120 if (engine->hangcheck.seqno == seqno) {
3121 if (!intel_engine_is_active(engine)) {
3122 engine->hangcheck.action = HANGCHECK_IDLE;
3123 if (busy) {
3124 /* Safeguard against driver failure */
3125 user_interrupts = kick_waiters(engine);
3126 engine->hangcheck.score += BUSY;
3127 }
3128 } else {
3129 /* We always increment the hangcheck score
3130 * if the engine is busy and still processing
3131 * the same request, so that no single request
3132 * can run indefinitely (such as a chain of
3133 * batches). The only time we do not increment
3134 * the hangcheck score on this ring, if this
3135 * engine is in a legitimate wait for another
3136 * engine. In that case the waiting engine is a
3137 * victim and we want to be sure we catch the
3138 * right culprit. Then every time we do kick
3139 * the ring, add a small increment to the
3140 * score so that we can catch a batch that is
3141 * being repeatedly kicked and so responsible
3142 * for stalling the machine.
3143 */
3144 engine->hangcheck.action =
3145 engine_stuck(engine, acthd);
3146
3147 switch (engine->hangcheck.action) {
3148 case HANGCHECK_IDLE:
3149 case HANGCHECK_WAIT:
3150 break;
3151 case HANGCHECK_ACTIVE:
3152 engine->hangcheck.score += BUSY;
3153 break;
3154 case HANGCHECK_KICK:
3155 engine->hangcheck.score += KICK;
3156 break;
3157 case HANGCHECK_HUNG:
3158 engine->hangcheck.score += HUNG;
3159 break;
3160 }
3161 }
3162
3163 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3164 hung |= intel_engine_flag(engine);
3165 if (engine->hangcheck.action != HANGCHECK_HUNG)
3166 stuck |= intel_engine_flag(engine);
3167 }
3168 } else {
3169 engine->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171 /* Gradually reduce the count so that we catch DoS
3172 * attempts across multiple batches.
3173 */
3174 if (engine->hangcheck.score > 0)
3175 engine->hangcheck.score -= ACTIVE_DECAY;
3176 if (engine->hangcheck.score < 0)
3177 engine->hangcheck.score = 0;
3178
3179 /* Clear head and subunit states on seqno movement */
3180 acthd = 0;
3181
3182 memset(engine->hangcheck.instdone, 0,
3183 sizeof(engine->hangcheck.instdone));
3184 }
3185
3186 engine->hangcheck.seqno = seqno;
3187 engine->hangcheck.acthd = acthd;
3188 engine->hangcheck.user_interrupts = user_interrupts;
3189 busy_count += busy;
3190 }
3191
3192 if (hung) {
3193 char msg[80];
3194 int len;
3195
3196 /* If some rings hung but others were still busy, only
3197 * blame the hanging rings in the synopsis.
3198 */
3199 if (stuck != hung)
3200 hung &= ~stuck;
3201 len = scnprintf(msg, sizeof(msg),
3202 "%s on ", stuck == hung ? "No progress" : "Hang");
3203 for_each_engine_masked(engine, dev_priv, hung)
3204 len += scnprintf(msg + len, sizeof(msg) - len,
3205 "%s, ", engine->name);
3206 msg[len-2] = '\0';
3207
3208 return i915_handle_error(dev_priv, hung, msg);
3209 }
3210
3211 /* Reset timer in case GPU hangs without another request being added */
3212 if (busy_count)
3213 i915_queue_hangcheck(dev_priv);
3214 }
3215
3216 static void ibx_irq_reset(struct drm_device *dev)
3217 {
3218 struct drm_i915_private *dev_priv = to_i915(dev);
3219
3220 if (HAS_PCH_NOP(dev))
3221 return;
3222
3223 GEN5_IRQ_RESET(SDE);
3224
3225 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3226 I915_WRITE(SERR_INT, 0xffffffff);
3227 }
3228
3229 /*
3230 * SDEIER is also touched by the interrupt handler to work around missed PCH
3231 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3232 * instead we unconditionally enable all PCH interrupt sources here, but then
3233 * only unmask them as needed with SDEIMR.
3234 *
3235 * This function needs to be called before interrupts are enabled.
3236 */
3237 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3238 {
3239 struct drm_i915_private *dev_priv = to_i915(dev);
3240
3241 if (HAS_PCH_NOP(dev))
3242 return;
3243
3244 WARN_ON(I915_READ(SDEIER) != 0);
3245 I915_WRITE(SDEIER, 0xffffffff);
3246 POSTING_READ(SDEIER);
3247 }
3248
3249 static void gen5_gt_irq_reset(struct drm_device *dev)
3250 {
3251 struct drm_i915_private *dev_priv = to_i915(dev);
3252
3253 GEN5_IRQ_RESET(GT);
3254 if (INTEL_INFO(dev)->gen >= 6)
3255 GEN5_IRQ_RESET(GEN6_PM);
3256 }
3257
3258 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3259 {
3260 enum pipe pipe;
3261
3262 if (IS_CHERRYVIEW(dev_priv))
3263 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3264 else
3265 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3266
3267 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3268 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3269
3270 for_each_pipe(dev_priv, pipe) {
3271 I915_WRITE(PIPESTAT(pipe),
3272 PIPE_FIFO_UNDERRUN_STATUS |
3273 PIPESTAT_INT_STATUS_MASK);
3274 dev_priv->pipestat_irq_mask[pipe] = 0;
3275 }
3276
3277 GEN5_IRQ_RESET(VLV_);
3278 dev_priv->irq_mask = ~0;
3279 }
3280
3281 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3282 {
3283 u32 pipestat_mask;
3284 u32 enable_mask;
3285 enum pipe pipe;
3286
3287 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3288 PIPE_CRC_DONE_INTERRUPT_STATUS;
3289
3290 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3291 for_each_pipe(dev_priv, pipe)
3292 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3293
3294 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3295 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3296 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3297 if (IS_CHERRYVIEW(dev_priv))
3298 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3299
3300 WARN_ON(dev_priv->irq_mask != ~0);
3301
3302 dev_priv->irq_mask = ~enable_mask;
3303
3304 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3305 }
3306
3307 /* drm_dma.h hooks
3308 */
3309 static void ironlake_irq_reset(struct drm_device *dev)
3310 {
3311 struct drm_i915_private *dev_priv = to_i915(dev);
3312
3313 I915_WRITE(HWSTAM, 0xffffffff);
3314
3315 GEN5_IRQ_RESET(DE);
3316 if (IS_GEN7(dev))
3317 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3318
3319 gen5_gt_irq_reset(dev);
3320
3321 ibx_irq_reset(dev);
3322 }
3323
3324 static void valleyview_irq_preinstall(struct drm_device *dev)
3325 {
3326 struct drm_i915_private *dev_priv = to_i915(dev);
3327
3328 I915_WRITE(VLV_MASTER_IER, 0);
3329 POSTING_READ(VLV_MASTER_IER);
3330
3331 gen5_gt_irq_reset(dev);
3332
3333 spin_lock_irq(&dev_priv->irq_lock);
3334 if (dev_priv->display_irqs_enabled)
3335 vlv_display_irq_reset(dev_priv);
3336 spin_unlock_irq(&dev_priv->irq_lock);
3337 }
3338
3339 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3340 {
3341 GEN8_IRQ_RESET_NDX(GT, 0);
3342 GEN8_IRQ_RESET_NDX(GT, 1);
3343 GEN8_IRQ_RESET_NDX(GT, 2);
3344 GEN8_IRQ_RESET_NDX(GT, 3);
3345 }
3346
3347 static void gen8_irq_reset(struct drm_device *dev)
3348 {
3349 struct drm_i915_private *dev_priv = to_i915(dev);
3350 int pipe;
3351
3352 I915_WRITE(GEN8_MASTER_IRQ, 0);
3353 POSTING_READ(GEN8_MASTER_IRQ);
3354
3355 gen8_gt_irq_reset(dev_priv);
3356
3357 for_each_pipe(dev_priv, pipe)
3358 if (intel_display_power_is_enabled(dev_priv,
3359 POWER_DOMAIN_PIPE(pipe)))
3360 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3361
3362 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3363 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3364 GEN5_IRQ_RESET(GEN8_PCU_);
3365
3366 if (HAS_PCH_SPLIT(dev))
3367 ibx_irq_reset(dev);
3368 }
3369
3370 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3371 unsigned int pipe_mask)
3372 {
3373 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3374 enum pipe pipe;
3375
3376 spin_lock_irq(&dev_priv->irq_lock);
3377 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3378 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3379 dev_priv->de_irq_mask[pipe],
3380 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3381 spin_unlock_irq(&dev_priv->irq_lock);
3382 }
3383
3384 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3385 unsigned int pipe_mask)
3386 {
3387 enum pipe pipe;
3388
3389 spin_lock_irq(&dev_priv->irq_lock);
3390 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3391 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3392 spin_unlock_irq(&dev_priv->irq_lock);
3393
3394 /* make sure we're done processing display irqs */
3395 synchronize_irq(dev_priv->drm.irq);
3396 }
3397
3398 static void cherryview_irq_preinstall(struct drm_device *dev)
3399 {
3400 struct drm_i915_private *dev_priv = to_i915(dev);
3401
3402 I915_WRITE(GEN8_MASTER_IRQ, 0);
3403 POSTING_READ(GEN8_MASTER_IRQ);
3404
3405 gen8_gt_irq_reset(dev_priv);
3406
3407 GEN5_IRQ_RESET(GEN8_PCU_);
3408
3409 spin_lock_irq(&dev_priv->irq_lock);
3410 if (dev_priv->display_irqs_enabled)
3411 vlv_display_irq_reset(dev_priv);
3412 spin_unlock_irq(&dev_priv->irq_lock);
3413 }
3414
3415 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3416 const u32 hpd[HPD_NUM_PINS])
3417 {
3418 struct intel_encoder *encoder;
3419 u32 enabled_irqs = 0;
3420
3421 for_each_intel_encoder(&dev_priv->drm, encoder)
3422 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3423 enabled_irqs |= hpd[encoder->hpd_pin];
3424
3425 return enabled_irqs;
3426 }
3427
3428 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3429 {
3430 u32 hotplug_irqs, hotplug, enabled_irqs;
3431
3432 if (HAS_PCH_IBX(dev_priv)) {
3433 hotplug_irqs = SDE_HOTPLUG_MASK;
3434 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3435 } else {
3436 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3437 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3438 }
3439
3440 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3441
3442 /*
3443 * Enable digital hotplug on the PCH, and configure the DP short pulse
3444 * duration to 2ms (which is the minimum in the Display Port spec).
3445 * The pulse duration bits are reserved on LPT+.
3446 */
3447 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3448 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3449 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3450 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3451 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3452 /*
3453 * When CPU and PCH are on the same package, port A
3454 * HPD must be enabled in both north and south.
3455 */
3456 if (HAS_PCH_LPT_LP(dev_priv))
3457 hotplug |= PORTA_HOTPLUG_ENABLE;
3458 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3459 }
3460
3461 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3462 {
3463 u32 hotplug_irqs, hotplug, enabled_irqs;
3464
3465 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3466 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3467
3468 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3469
3470 /* Enable digital hotplug on the PCH */
3471 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3472 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3473 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3474 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3475
3476 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3477 hotplug |= PORTE_HOTPLUG_ENABLE;
3478 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3479 }
3480
3481 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3482 {
3483 u32 hotplug_irqs, hotplug, enabled_irqs;
3484
3485 if (INTEL_GEN(dev_priv) >= 8) {
3486 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3487 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3488
3489 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3490 } else if (INTEL_GEN(dev_priv) >= 7) {
3491 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3492 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3493
3494 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3495 } else {
3496 hotplug_irqs = DE_DP_A_HOTPLUG;
3497 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3498
3499 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3500 }
3501
3502 /*
3503 * Enable digital hotplug on the CPU, and configure the DP short pulse
3504 * duration to 2ms (which is the minimum in the Display Port spec)
3505 * The pulse duration bits are reserved on HSW+.
3506 */
3507 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3508 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3509 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3510 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3511
3512 ibx_hpd_irq_setup(dev_priv);
3513 }
3514
3515 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3516 {
3517 u32 hotplug_irqs, hotplug, enabled_irqs;
3518
3519 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3520 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3521
3522 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3523
3524 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3525 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3526 PORTA_HOTPLUG_ENABLE;
3527
3528 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3529 hotplug, enabled_irqs);
3530 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3531
3532 /*
3533 * For BXT invert bit has to be set based on AOB design
3534 * for HPD detection logic, update it based on VBT fields.
3535 */
3536
3537 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3538 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3539 hotplug |= BXT_DDIA_HPD_INVERT;
3540 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3541 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3542 hotplug |= BXT_DDIB_HPD_INVERT;
3543 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3544 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3545 hotplug |= BXT_DDIC_HPD_INVERT;
3546
3547 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3548 }
3549
3550 static void ibx_irq_postinstall(struct drm_device *dev)
3551 {
3552 struct drm_i915_private *dev_priv = to_i915(dev);
3553 u32 mask;
3554
3555 if (HAS_PCH_NOP(dev))
3556 return;
3557
3558 if (HAS_PCH_IBX(dev))
3559 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3560 else
3561 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3562
3563 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3564 I915_WRITE(SDEIMR, ~mask);
3565 }
3566
3567 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3568 {
3569 struct drm_i915_private *dev_priv = to_i915(dev);
3570 u32 pm_irqs, gt_irqs;
3571
3572 pm_irqs = gt_irqs = 0;
3573
3574 dev_priv->gt_irq_mask = ~0;
3575 if (HAS_L3_DPF(dev)) {
3576 /* L3 parity interrupt is always unmasked. */
3577 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3578 gt_irqs |= GT_PARITY_ERROR(dev);
3579 }
3580
3581 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3582 if (IS_GEN5(dev)) {
3583 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3584 } else {
3585 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3586 }
3587
3588 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3589
3590 if (INTEL_INFO(dev)->gen >= 6) {
3591 /*
3592 * RPS interrupts will get enabled/disabled on demand when RPS
3593 * itself is enabled/disabled.
3594 */
3595 if (HAS_VEBOX(dev))
3596 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3597
3598 dev_priv->pm_irq_mask = 0xffffffff;
3599 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3600 }
3601 }
3602
3603 static int ironlake_irq_postinstall(struct drm_device *dev)
3604 {
3605 struct drm_i915_private *dev_priv = to_i915(dev);
3606 u32 display_mask, extra_mask;
3607
3608 if (INTEL_INFO(dev)->gen >= 7) {
3609 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3610 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3611 DE_PLANEB_FLIP_DONE_IVB |
3612 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3613 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3614 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3615 DE_DP_A_HOTPLUG_IVB);
3616 } else {
3617 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3618 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3619 DE_AUX_CHANNEL_A |
3620 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3621 DE_POISON);
3622 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3623 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3624 DE_DP_A_HOTPLUG);
3625 }
3626
3627 dev_priv->irq_mask = ~display_mask;
3628
3629 I915_WRITE(HWSTAM, 0xeffe);
3630
3631 ibx_irq_pre_postinstall(dev);
3632
3633 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3634
3635 gen5_gt_irq_postinstall(dev);
3636
3637 ibx_irq_postinstall(dev);
3638
3639 if (IS_IRONLAKE_M(dev)) {
3640 /* Enable PCU event interrupts
3641 *
3642 * spinlocking not required here for correctness since interrupt
3643 * setup is guaranteed to run in single-threaded context. But we
3644 * need it to make the assert_spin_locked happy. */
3645 spin_lock_irq(&dev_priv->irq_lock);
3646 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3647 spin_unlock_irq(&dev_priv->irq_lock);
3648 }
3649
3650 return 0;
3651 }
3652
3653 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3654 {
3655 assert_spin_locked(&dev_priv->irq_lock);
3656
3657 if (dev_priv->display_irqs_enabled)
3658 return;
3659
3660 dev_priv->display_irqs_enabled = true;
3661
3662 if (intel_irqs_enabled(dev_priv)) {
3663 vlv_display_irq_reset(dev_priv);
3664 vlv_display_irq_postinstall(dev_priv);
3665 }
3666 }
3667
3668 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3669 {
3670 assert_spin_locked(&dev_priv->irq_lock);
3671
3672 if (!dev_priv->display_irqs_enabled)
3673 return;
3674
3675 dev_priv->display_irqs_enabled = false;
3676
3677 if (intel_irqs_enabled(dev_priv))
3678 vlv_display_irq_reset(dev_priv);
3679 }
3680
3681
3682 static int valleyview_irq_postinstall(struct drm_device *dev)
3683 {
3684 struct drm_i915_private *dev_priv = to_i915(dev);
3685
3686 gen5_gt_irq_postinstall(dev);
3687
3688 spin_lock_irq(&dev_priv->irq_lock);
3689 if (dev_priv->display_irqs_enabled)
3690 vlv_display_irq_postinstall(dev_priv);
3691 spin_unlock_irq(&dev_priv->irq_lock);
3692
3693 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3694 POSTING_READ(VLV_MASTER_IER);
3695
3696 return 0;
3697 }
3698
3699 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3700 {
3701 /* These are interrupts we'll toggle with the ring mask register */
3702 uint32_t gt_interrupts[] = {
3703 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3704 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3705 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3706 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3707 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3708 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3709 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3710 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3711 0,
3712 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3713 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3714 };
3715
3716 if (HAS_L3_DPF(dev_priv))
3717 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3718
3719 dev_priv->pm_irq_mask = 0xffffffff;
3720 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3721 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3722 /*
3723 * RPS interrupts will get enabled/disabled on demand when RPS itself
3724 * is enabled/disabled.
3725 */
3726 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3727 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3728 }
3729
3730 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3731 {
3732 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3733 uint32_t de_pipe_enables;
3734 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3735 u32 de_port_enables;
3736 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3737 enum pipe pipe;
3738
3739 if (INTEL_INFO(dev_priv)->gen >= 9) {
3740 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3741 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3742 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3743 GEN9_AUX_CHANNEL_D;
3744 if (IS_BROXTON(dev_priv))
3745 de_port_masked |= BXT_DE_PORT_GMBUS;
3746 } else {
3747 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3748 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3749 }
3750
3751 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3752 GEN8_PIPE_FIFO_UNDERRUN;
3753
3754 de_port_enables = de_port_masked;
3755 if (IS_BROXTON(dev_priv))
3756 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3757 else if (IS_BROADWELL(dev_priv))
3758 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3759
3760 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3761 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3762 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3763
3764 for_each_pipe(dev_priv, pipe)
3765 if (intel_display_power_is_enabled(dev_priv,
3766 POWER_DOMAIN_PIPE(pipe)))
3767 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3768 dev_priv->de_irq_mask[pipe],
3769 de_pipe_enables);
3770
3771 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3772 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3773 }
3774
3775 static int gen8_irq_postinstall(struct drm_device *dev)
3776 {
3777 struct drm_i915_private *dev_priv = to_i915(dev);
3778
3779 if (HAS_PCH_SPLIT(dev))
3780 ibx_irq_pre_postinstall(dev);
3781
3782 gen8_gt_irq_postinstall(dev_priv);
3783 gen8_de_irq_postinstall(dev_priv);
3784
3785 if (HAS_PCH_SPLIT(dev))
3786 ibx_irq_postinstall(dev);
3787
3788 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3789 POSTING_READ(GEN8_MASTER_IRQ);
3790
3791 return 0;
3792 }
3793
3794 static int cherryview_irq_postinstall(struct drm_device *dev)
3795 {
3796 struct drm_i915_private *dev_priv = to_i915(dev);
3797
3798 gen8_gt_irq_postinstall(dev_priv);
3799
3800 spin_lock_irq(&dev_priv->irq_lock);
3801 if (dev_priv->display_irqs_enabled)
3802 vlv_display_irq_postinstall(dev_priv);
3803 spin_unlock_irq(&dev_priv->irq_lock);
3804
3805 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3806 POSTING_READ(GEN8_MASTER_IRQ);
3807
3808 return 0;
3809 }
3810
3811 static void gen8_irq_uninstall(struct drm_device *dev)
3812 {
3813 struct drm_i915_private *dev_priv = to_i915(dev);
3814
3815 if (!dev_priv)
3816 return;
3817
3818 gen8_irq_reset(dev);
3819 }
3820
3821 static void valleyview_irq_uninstall(struct drm_device *dev)
3822 {
3823 struct drm_i915_private *dev_priv = to_i915(dev);
3824
3825 if (!dev_priv)
3826 return;
3827
3828 I915_WRITE(VLV_MASTER_IER, 0);
3829 POSTING_READ(VLV_MASTER_IER);
3830
3831 gen5_gt_irq_reset(dev);
3832
3833 I915_WRITE(HWSTAM, 0xffffffff);
3834
3835 spin_lock_irq(&dev_priv->irq_lock);
3836 if (dev_priv->display_irqs_enabled)
3837 vlv_display_irq_reset(dev_priv);
3838 spin_unlock_irq(&dev_priv->irq_lock);
3839 }
3840
3841 static void cherryview_irq_uninstall(struct drm_device *dev)
3842 {
3843 struct drm_i915_private *dev_priv = to_i915(dev);
3844
3845 if (!dev_priv)
3846 return;
3847
3848 I915_WRITE(GEN8_MASTER_IRQ, 0);
3849 POSTING_READ(GEN8_MASTER_IRQ);
3850
3851 gen8_gt_irq_reset(dev_priv);
3852
3853 GEN5_IRQ_RESET(GEN8_PCU_);
3854
3855 spin_lock_irq(&dev_priv->irq_lock);
3856 if (dev_priv->display_irqs_enabled)
3857 vlv_display_irq_reset(dev_priv);
3858 spin_unlock_irq(&dev_priv->irq_lock);
3859 }
3860
3861 static void ironlake_irq_uninstall(struct drm_device *dev)
3862 {
3863 struct drm_i915_private *dev_priv = to_i915(dev);
3864
3865 if (!dev_priv)
3866 return;
3867
3868 ironlake_irq_reset(dev);
3869 }
3870
3871 static void i8xx_irq_preinstall(struct drm_device * dev)
3872 {
3873 struct drm_i915_private *dev_priv = to_i915(dev);
3874 int pipe;
3875
3876 for_each_pipe(dev_priv, pipe)
3877 I915_WRITE(PIPESTAT(pipe), 0);
3878 I915_WRITE16(IMR, 0xffff);
3879 I915_WRITE16(IER, 0x0);
3880 POSTING_READ16(IER);
3881 }
3882
3883 static int i8xx_irq_postinstall(struct drm_device *dev)
3884 {
3885 struct drm_i915_private *dev_priv = to_i915(dev);
3886
3887 I915_WRITE16(EMR,
3888 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3889
3890 /* Unmask the interrupts that we always want on. */
3891 dev_priv->irq_mask =
3892 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3893 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3894 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3895 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3896 I915_WRITE16(IMR, dev_priv->irq_mask);
3897
3898 I915_WRITE16(IER,
3899 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3900 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3901 I915_USER_INTERRUPT);
3902 POSTING_READ16(IER);
3903
3904 /* Interrupt setup is already guaranteed to be single-threaded, this is
3905 * just to make the assert_spin_locked check happy. */
3906 spin_lock_irq(&dev_priv->irq_lock);
3907 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3908 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3909 spin_unlock_irq(&dev_priv->irq_lock);
3910
3911 return 0;
3912 }
3913
3914 /*
3915 * Returns true when a page flip has completed.
3916 */
3917 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3918 int plane, int pipe, u32 iir)
3919 {
3920 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3921
3922 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3923 return false;
3924
3925 if ((iir & flip_pending) == 0)
3926 goto check_page_flip;
3927
3928 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3929 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3930 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3931 * the flip is completed (no longer pending). Since this doesn't raise
3932 * an interrupt per se, we watch for the change at vblank.
3933 */
3934 if (I915_READ16(ISR) & flip_pending)
3935 goto check_page_flip;
3936
3937 intel_finish_page_flip_cs(dev_priv, pipe);
3938 return true;
3939
3940 check_page_flip:
3941 intel_check_page_flip(dev_priv, pipe);
3942 return false;
3943 }
3944
3945 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3946 {
3947 struct drm_device *dev = arg;
3948 struct drm_i915_private *dev_priv = to_i915(dev);
3949 u16 iir, new_iir;
3950 u32 pipe_stats[2];
3951 int pipe;
3952 u16 flip_mask =
3953 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3954 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3955 irqreturn_t ret;
3956
3957 if (!intel_irqs_enabled(dev_priv))
3958 return IRQ_NONE;
3959
3960 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3961 disable_rpm_wakeref_asserts(dev_priv);
3962
3963 ret = IRQ_NONE;
3964 iir = I915_READ16(IIR);
3965 if (iir == 0)
3966 goto out;
3967
3968 while (iir & ~flip_mask) {
3969 /* Can't rely on pipestat interrupt bit in iir as it might
3970 * have been cleared after the pipestat interrupt was received.
3971 * It doesn't set the bit in iir again, but it still produces
3972 * interrupts (for non-MSI).
3973 */
3974 spin_lock(&dev_priv->irq_lock);
3975 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3976 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3977
3978 for_each_pipe(dev_priv, pipe) {
3979 i915_reg_t reg = PIPESTAT(pipe);
3980 pipe_stats[pipe] = I915_READ(reg);
3981
3982 /*
3983 * Clear the PIPE*STAT regs before the IIR
3984 */
3985 if (pipe_stats[pipe] & 0x8000ffff)
3986 I915_WRITE(reg, pipe_stats[pipe]);
3987 }
3988 spin_unlock(&dev_priv->irq_lock);
3989
3990 I915_WRITE16(IIR, iir & ~flip_mask);
3991 new_iir = I915_READ16(IIR); /* Flush posted writes */
3992
3993 if (iir & I915_USER_INTERRUPT)
3994 notify_ring(&dev_priv->engine[RCS]);
3995
3996 for_each_pipe(dev_priv, pipe) {
3997 int plane = pipe;
3998 if (HAS_FBC(dev_priv))
3999 plane = !plane;
4000
4001 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4002 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4003 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4004
4005 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4006 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4007
4008 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4009 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4010 pipe);
4011 }
4012
4013 iir = new_iir;
4014 }
4015 ret = IRQ_HANDLED;
4016
4017 out:
4018 enable_rpm_wakeref_asserts(dev_priv);
4019
4020 return ret;
4021 }
4022
4023 static void i8xx_irq_uninstall(struct drm_device * dev)
4024 {
4025 struct drm_i915_private *dev_priv = to_i915(dev);
4026 int pipe;
4027
4028 for_each_pipe(dev_priv, pipe) {
4029 /* Clear enable bits; then clear status bits */
4030 I915_WRITE(PIPESTAT(pipe), 0);
4031 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4032 }
4033 I915_WRITE16(IMR, 0xffff);
4034 I915_WRITE16(IER, 0x0);
4035 I915_WRITE16(IIR, I915_READ16(IIR));
4036 }
4037
4038 static void i915_irq_preinstall(struct drm_device * dev)
4039 {
4040 struct drm_i915_private *dev_priv = to_i915(dev);
4041 int pipe;
4042
4043 if (I915_HAS_HOTPLUG(dev)) {
4044 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4045 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4046 }
4047
4048 I915_WRITE16(HWSTAM, 0xeffe);
4049 for_each_pipe(dev_priv, pipe)
4050 I915_WRITE(PIPESTAT(pipe), 0);
4051 I915_WRITE(IMR, 0xffffffff);
4052 I915_WRITE(IER, 0x0);
4053 POSTING_READ(IER);
4054 }
4055
4056 static int i915_irq_postinstall(struct drm_device *dev)
4057 {
4058 struct drm_i915_private *dev_priv = to_i915(dev);
4059 u32 enable_mask;
4060
4061 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4062
4063 /* Unmask the interrupts that we always want on. */
4064 dev_priv->irq_mask =
4065 ~(I915_ASLE_INTERRUPT |
4066 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4067 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4068 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4069 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4070
4071 enable_mask =
4072 I915_ASLE_INTERRUPT |
4073 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4074 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4075 I915_USER_INTERRUPT;
4076
4077 if (I915_HAS_HOTPLUG(dev)) {
4078 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4079 POSTING_READ(PORT_HOTPLUG_EN);
4080
4081 /* Enable in IER... */
4082 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4083 /* and unmask in IMR */
4084 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4085 }
4086
4087 I915_WRITE(IMR, dev_priv->irq_mask);
4088 I915_WRITE(IER, enable_mask);
4089 POSTING_READ(IER);
4090
4091 i915_enable_asle_pipestat(dev_priv);
4092
4093 /* Interrupt setup is already guaranteed to be single-threaded, this is
4094 * just to make the assert_spin_locked check happy. */
4095 spin_lock_irq(&dev_priv->irq_lock);
4096 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4098 spin_unlock_irq(&dev_priv->irq_lock);
4099
4100 return 0;
4101 }
4102
4103 /*
4104 * Returns true when a page flip has completed.
4105 */
4106 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4107 int plane, int pipe, u32 iir)
4108 {
4109 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4110
4111 if (!intel_pipe_handle_vblank(dev_priv, pipe))
4112 return false;
4113
4114 if ((iir & flip_pending) == 0)
4115 goto check_page_flip;
4116
4117 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4118 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4119 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4120 * the flip is completed (no longer pending). Since this doesn't raise
4121 * an interrupt per se, we watch for the change at vblank.
4122 */
4123 if (I915_READ(ISR) & flip_pending)
4124 goto check_page_flip;
4125
4126 intel_finish_page_flip_cs(dev_priv, pipe);
4127 return true;
4128
4129 check_page_flip:
4130 intel_check_page_flip(dev_priv, pipe);
4131 return false;
4132 }
4133
4134 static irqreturn_t i915_irq_handler(int irq, void *arg)
4135 {
4136 struct drm_device *dev = arg;
4137 struct drm_i915_private *dev_priv = to_i915(dev);
4138 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4139 u32 flip_mask =
4140 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4141 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4142 int pipe, ret = IRQ_NONE;
4143
4144 if (!intel_irqs_enabled(dev_priv))
4145 return IRQ_NONE;
4146
4147 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4148 disable_rpm_wakeref_asserts(dev_priv);
4149
4150 iir = I915_READ(IIR);
4151 do {
4152 bool irq_received = (iir & ~flip_mask) != 0;
4153 bool blc_event = false;
4154
4155 /* Can't rely on pipestat interrupt bit in iir as it might
4156 * have been cleared after the pipestat interrupt was received.
4157 * It doesn't set the bit in iir again, but it still produces
4158 * interrupts (for non-MSI).
4159 */
4160 spin_lock(&dev_priv->irq_lock);
4161 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4162 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4163
4164 for_each_pipe(dev_priv, pipe) {
4165 i915_reg_t reg = PIPESTAT(pipe);
4166 pipe_stats[pipe] = I915_READ(reg);
4167
4168 /* Clear the PIPE*STAT regs before the IIR */
4169 if (pipe_stats[pipe] & 0x8000ffff) {
4170 I915_WRITE(reg, pipe_stats[pipe]);
4171 irq_received = true;
4172 }
4173 }
4174 spin_unlock(&dev_priv->irq_lock);
4175
4176 if (!irq_received)
4177 break;
4178
4179 /* Consume port. Then clear IIR or we'll miss events */
4180 if (I915_HAS_HOTPLUG(dev_priv) &&
4181 iir & I915_DISPLAY_PORT_INTERRUPT) {
4182 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4183 if (hotplug_status)
4184 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4185 }
4186
4187 I915_WRITE(IIR, iir & ~flip_mask);
4188 new_iir = I915_READ(IIR); /* Flush posted writes */
4189
4190 if (iir & I915_USER_INTERRUPT)
4191 notify_ring(&dev_priv->engine[RCS]);
4192
4193 for_each_pipe(dev_priv, pipe) {
4194 int plane = pipe;
4195 if (HAS_FBC(dev_priv))
4196 plane = !plane;
4197
4198 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4199 i915_handle_vblank(dev_priv, plane, pipe, iir))
4200 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4201
4202 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4203 blc_event = true;
4204
4205 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4206 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4207
4208 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4209 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4210 pipe);
4211 }
4212
4213 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4214 intel_opregion_asle_intr(dev_priv);
4215
4216 /* With MSI, interrupts are only generated when iir
4217 * transitions from zero to nonzero. If another bit got
4218 * set while we were handling the existing iir bits, then
4219 * we would never get another interrupt.
4220 *
4221 * This is fine on non-MSI as well, as if we hit this path
4222 * we avoid exiting the interrupt handler only to generate
4223 * another one.
4224 *
4225 * Note that for MSI this could cause a stray interrupt report
4226 * if an interrupt landed in the time between writing IIR and
4227 * the posting read. This should be rare enough to never
4228 * trigger the 99% of 100,000 interrupts test for disabling
4229 * stray interrupts.
4230 */
4231 ret = IRQ_HANDLED;
4232 iir = new_iir;
4233 } while (iir & ~flip_mask);
4234
4235 enable_rpm_wakeref_asserts(dev_priv);
4236
4237 return ret;
4238 }
4239
4240 static void i915_irq_uninstall(struct drm_device * dev)
4241 {
4242 struct drm_i915_private *dev_priv = to_i915(dev);
4243 int pipe;
4244
4245 if (I915_HAS_HOTPLUG(dev)) {
4246 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4247 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4248 }
4249
4250 I915_WRITE16(HWSTAM, 0xffff);
4251 for_each_pipe(dev_priv, pipe) {
4252 /* Clear enable bits; then clear status bits */
4253 I915_WRITE(PIPESTAT(pipe), 0);
4254 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4255 }
4256 I915_WRITE(IMR, 0xffffffff);
4257 I915_WRITE(IER, 0x0);
4258
4259 I915_WRITE(IIR, I915_READ(IIR));
4260 }
4261
4262 static void i965_irq_preinstall(struct drm_device * dev)
4263 {
4264 struct drm_i915_private *dev_priv = to_i915(dev);
4265 int pipe;
4266
4267 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4268 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4269
4270 I915_WRITE(HWSTAM, 0xeffe);
4271 for_each_pipe(dev_priv, pipe)
4272 I915_WRITE(PIPESTAT(pipe), 0);
4273 I915_WRITE(IMR, 0xffffffff);
4274 I915_WRITE(IER, 0x0);
4275 POSTING_READ(IER);
4276 }
4277
4278 static int i965_irq_postinstall(struct drm_device *dev)
4279 {
4280 struct drm_i915_private *dev_priv = to_i915(dev);
4281 u32 enable_mask;
4282 u32 error_mask;
4283
4284 /* Unmask the interrupts that we always want on. */
4285 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4286 I915_DISPLAY_PORT_INTERRUPT |
4287 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4288 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4289 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4290 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4291 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4292
4293 enable_mask = ~dev_priv->irq_mask;
4294 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4295 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4296 enable_mask |= I915_USER_INTERRUPT;
4297
4298 if (IS_G4X(dev_priv))
4299 enable_mask |= I915_BSD_USER_INTERRUPT;
4300
4301 /* Interrupt setup is already guaranteed to be single-threaded, this is
4302 * just to make the assert_spin_locked check happy. */
4303 spin_lock_irq(&dev_priv->irq_lock);
4304 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4305 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4306 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4307 spin_unlock_irq(&dev_priv->irq_lock);
4308
4309 /*
4310 * Enable some error detection, note the instruction error mask
4311 * bit is reserved, so we leave it masked.
4312 */
4313 if (IS_G4X(dev_priv)) {
4314 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4315 GM45_ERROR_MEM_PRIV |
4316 GM45_ERROR_CP_PRIV |
4317 I915_ERROR_MEMORY_REFRESH);
4318 } else {
4319 error_mask = ~(I915_ERROR_PAGE_TABLE |
4320 I915_ERROR_MEMORY_REFRESH);
4321 }
4322 I915_WRITE(EMR, error_mask);
4323
4324 I915_WRITE(IMR, dev_priv->irq_mask);
4325 I915_WRITE(IER, enable_mask);
4326 POSTING_READ(IER);
4327
4328 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4329 POSTING_READ(PORT_HOTPLUG_EN);
4330
4331 i915_enable_asle_pipestat(dev_priv);
4332
4333 return 0;
4334 }
4335
4336 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4337 {
4338 u32 hotplug_en;
4339
4340 assert_spin_locked(&dev_priv->irq_lock);
4341
4342 /* Note HDMI and DP share hotplug bits */
4343 /* enable bits are the same for all generations */
4344 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4345 /* Programming the CRT detection parameters tends
4346 to generate a spurious hotplug event about three
4347 seconds later. So just do it once.
4348 */
4349 if (IS_G4X(dev_priv))
4350 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4351 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4352
4353 /* Ignore TV since it's buggy */
4354 i915_hotplug_interrupt_update_locked(dev_priv,
4355 HOTPLUG_INT_EN_MASK |
4356 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4357 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4358 hotplug_en);
4359 }
4360
4361 static irqreturn_t i965_irq_handler(int irq, void *arg)
4362 {
4363 struct drm_device *dev = arg;
4364 struct drm_i915_private *dev_priv = to_i915(dev);
4365 u32 iir, new_iir;
4366 u32 pipe_stats[I915_MAX_PIPES];
4367 int ret = IRQ_NONE, pipe;
4368 u32 flip_mask =
4369 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4370 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4371
4372 if (!intel_irqs_enabled(dev_priv))
4373 return IRQ_NONE;
4374
4375 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4376 disable_rpm_wakeref_asserts(dev_priv);
4377
4378 iir = I915_READ(IIR);
4379
4380 for (;;) {
4381 bool irq_received = (iir & ~flip_mask) != 0;
4382 bool blc_event = false;
4383
4384 /* Can't rely on pipestat interrupt bit in iir as it might
4385 * have been cleared after the pipestat interrupt was received.
4386 * It doesn't set the bit in iir again, but it still produces
4387 * interrupts (for non-MSI).
4388 */
4389 spin_lock(&dev_priv->irq_lock);
4390 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4391 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4392
4393 for_each_pipe(dev_priv, pipe) {
4394 i915_reg_t reg = PIPESTAT(pipe);
4395 pipe_stats[pipe] = I915_READ(reg);
4396
4397 /*
4398 * Clear the PIPE*STAT regs before the IIR
4399 */
4400 if (pipe_stats[pipe] & 0x8000ffff) {
4401 I915_WRITE(reg, pipe_stats[pipe]);
4402 irq_received = true;
4403 }
4404 }
4405 spin_unlock(&dev_priv->irq_lock);
4406
4407 if (!irq_received)
4408 break;
4409
4410 ret = IRQ_HANDLED;
4411
4412 /* Consume port. Then clear IIR or we'll miss events */
4413 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4414 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4415 if (hotplug_status)
4416 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4417 }
4418
4419 I915_WRITE(IIR, iir & ~flip_mask);
4420 new_iir = I915_READ(IIR); /* Flush posted writes */
4421
4422 if (iir & I915_USER_INTERRUPT)
4423 notify_ring(&dev_priv->engine[RCS]);
4424 if (iir & I915_BSD_USER_INTERRUPT)
4425 notify_ring(&dev_priv->engine[VCS]);
4426
4427 for_each_pipe(dev_priv, pipe) {
4428 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4429 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4430 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4431
4432 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4433 blc_event = true;
4434
4435 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4436 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4437
4438 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4439 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4440 }
4441
4442 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4443 intel_opregion_asle_intr(dev_priv);
4444
4445 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4446 gmbus_irq_handler(dev_priv);
4447
4448 /* With MSI, interrupts are only generated when iir
4449 * transitions from zero to nonzero. If another bit got
4450 * set while we were handling the existing iir bits, then
4451 * we would never get another interrupt.
4452 *
4453 * This is fine on non-MSI as well, as if we hit this path
4454 * we avoid exiting the interrupt handler only to generate
4455 * another one.
4456 *
4457 * Note that for MSI this could cause a stray interrupt report
4458 * if an interrupt landed in the time between writing IIR and
4459 * the posting read. This should be rare enough to never
4460 * trigger the 99% of 100,000 interrupts test for disabling
4461 * stray interrupts.
4462 */
4463 iir = new_iir;
4464 }
4465
4466 enable_rpm_wakeref_asserts(dev_priv);
4467
4468 return ret;
4469 }
4470
4471 static void i965_irq_uninstall(struct drm_device * dev)
4472 {
4473 struct drm_i915_private *dev_priv = to_i915(dev);
4474 int pipe;
4475
4476 if (!dev_priv)
4477 return;
4478
4479 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4480 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4481
4482 I915_WRITE(HWSTAM, 0xffffffff);
4483 for_each_pipe(dev_priv, pipe)
4484 I915_WRITE(PIPESTAT(pipe), 0);
4485 I915_WRITE(IMR, 0xffffffff);
4486 I915_WRITE(IER, 0x0);
4487
4488 for_each_pipe(dev_priv, pipe)
4489 I915_WRITE(PIPESTAT(pipe),
4490 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4491 I915_WRITE(IIR, I915_READ(IIR));
4492 }
4493
4494 /**
4495 * intel_irq_init - initializes irq support
4496 * @dev_priv: i915 device instance
4497 *
4498 * This function initializes all the irq support including work items, timers
4499 * and all the vtables. It does not setup the interrupt itself though.
4500 */
4501 void intel_irq_init(struct drm_i915_private *dev_priv)
4502 {
4503 struct drm_device *dev = &dev_priv->drm;
4504
4505 intel_hpd_init_work(dev_priv);
4506
4507 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4508 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4509
4510 /* Let's track the enabled rps events */
4511 if (IS_VALLEYVIEW(dev_priv))
4512 /* WaGsvRC0ResidencyMethod:vlv */
4513 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4514 else
4515 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4516
4517 dev_priv->rps.pm_intr_keep = 0;
4518
4519 /*
4520 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4521 * if GEN6_PM_UP_EI_EXPIRED is masked.
4522 *
4523 * TODO: verify if this can be reproduced on VLV,CHV.
4524 */
4525 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4526 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4527
4528 if (INTEL_INFO(dev_priv)->gen >= 8)
4529 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4530
4531 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4532 i915_hangcheck_elapsed);
4533
4534 if (IS_GEN2(dev_priv)) {
4535 /* Gen2 doesn't have a hardware frame counter */
4536 dev->max_vblank_count = 0;
4537 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4538 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4539 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4540 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4541 } else {
4542 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4543 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4544 }
4545
4546 /*
4547 * Opt out of the vblank disable timer on everything except gen2.
4548 * Gen2 doesn't have a hardware frame counter and so depends on
4549 * vblank interrupts to produce sane vblank seuquence numbers.
4550 */
4551 if (!IS_GEN2(dev_priv))
4552 dev->vblank_disable_immediate = true;
4553
4554 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4555 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4556
4557 if (IS_CHERRYVIEW(dev_priv)) {
4558 dev->driver->irq_handler = cherryview_irq_handler;
4559 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4560 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4561 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4562 dev->driver->enable_vblank = valleyview_enable_vblank;
4563 dev->driver->disable_vblank = valleyview_disable_vblank;
4564 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4565 } else if (IS_VALLEYVIEW(dev_priv)) {
4566 dev->driver->irq_handler = valleyview_irq_handler;
4567 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4568 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4569 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4570 dev->driver->enable_vblank = valleyview_enable_vblank;
4571 dev->driver->disable_vblank = valleyview_disable_vblank;
4572 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4573 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4574 dev->driver->irq_handler = gen8_irq_handler;
4575 dev->driver->irq_preinstall = gen8_irq_reset;
4576 dev->driver->irq_postinstall = gen8_irq_postinstall;
4577 dev->driver->irq_uninstall = gen8_irq_uninstall;
4578 dev->driver->enable_vblank = gen8_enable_vblank;
4579 dev->driver->disable_vblank = gen8_disable_vblank;
4580 if (IS_BROXTON(dev))
4581 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4582 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4583 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4584 else
4585 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4586 } else if (HAS_PCH_SPLIT(dev)) {
4587 dev->driver->irq_handler = ironlake_irq_handler;
4588 dev->driver->irq_preinstall = ironlake_irq_reset;
4589 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4590 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4591 dev->driver->enable_vblank = ironlake_enable_vblank;
4592 dev->driver->disable_vblank = ironlake_disable_vblank;
4593 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4594 } else {
4595 if (IS_GEN2(dev_priv)) {
4596 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4597 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4598 dev->driver->irq_handler = i8xx_irq_handler;
4599 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4600 } else if (IS_GEN3(dev_priv)) {
4601 dev->driver->irq_preinstall = i915_irq_preinstall;
4602 dev->driver->irq_postinstall = i915_irq_postinstall;
4603 dev->driver->irq_uninstall = i915_irq_uninstall;
4604 dev->driver->irq_handler = i915_irq_handler;
4605 } else {
4606 dev->driver->irq_preinstall = i965_irq_preinstall;
4607 dev->driver->irq_postinstall = i965_irq_postinstall;
4608 dev->driver->irq_uninstall = i965_irq_uninstall;
4609 dev->driver->irq_handler = i965_irq_handler;
4610 }
4611 if (I915_HAS_HOTPLUG(dev_priv))
4612 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4613 dev->driver->enable_vblank = i915_enable_vblank;
4614 dev->driver->disable_vblank = i915_disable_vblank;
4615 }
4616 }
4617
4618 /**
4619 * intel_irq_install - enables the hardware interrupt
4620 * @dev_priv: i915 device instance
4621 *
4622 * This function enables the hardware interrupt handling, but leaves the hotplug
4623 * handling still disabled. It is called after intel_irq_init().
4624 *
4625 * In the driver load and resume code we need working interrupts in a few places
4626 * but don't want to deal with the hassle of concurrent probe and hotplug
4627 * workers. Hence the split into this two-stage approach.
4628 */
4629 int intel_irq_install(struct drm_i915_private *dev_priv)
4630 {
4631 /*
4632 * We enable some interrupt sources in our postinstall hooks, so mark
4633 * interrupts as enabled _before_ actually enabling them to avoid
4634 * special cases in our ordering checks.
4635 */
4636 dev_priv->pm.irqs_enabled = true;
4637
4638 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4639 }
4640
4641 /**
4642 * intel_irq_uninstall - finilizes all irq handling
4643 * @dev_priv: i915 device instance
4644 *
4645 * This stops interrupt and hotplug handling and unregisters and frees all
4646 * resources acquired in the init functions.
4647 */
4648 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4649 {
4650 drm_irq_uninstall(&dev_priv->drm);
4651 intel_hpd_cancel_work(dev_priv);
4652 dev_priv->pm.irqs_enabled = false;
4653 }
4654
4655 /**
4656 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function is used to disable interrupts at runtime, both in the runtime
4660 * pm and the system suspend/resume code.
4661 */
4662 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4663 {
4664 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4665 dev_priv->pm.irqs_enabled = false;
4666 synchronize_irq(dev_priv->drm.irq);
4667 }
4668
4669 /**
4670 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4671 * @dev_priv: i915 device instance
4672 *
4673 * This function is used to enable interrupts at runtime, both in the runtime
4674 * pm and the system suspend/resume code.
4675 */
4676 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4677 {
4678 dev_priv->pm.irqs_enabled = true;
4679 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4680 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4681 }