]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: add locking to fixed panel edid probing
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pm.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pm.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pm.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pm.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pm.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pm.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 u32 reg = PIPESTAT(pipe);
239 u32 pipestat = I915_READ(reg) & 0x7fff0000;
240
241 assert_spin_locked(&dev_priv->irq_lock);
242
243 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244 POSTING_READ(reg);
245 }
246
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252 DE_PIPEB_FIFO_UNDERRUN;
253
254 if (enable)
255 ironlake_enable_display_irq(dev_priv, bit);
256 else
257 ironlake_disable_display_irq(dev_priv, bit);
258 }
259
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261 enum pipe pipe, bool enable)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 if (enable) {
265 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266
267 if (!ivb_can_enable_err_int(dev))
268 return;
269
270 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271 } else {
272 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273
274 /* Change the state _after_ we've read out the current one. */
275 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276
277 if (!was_enabled &&
278 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280 pipe_name(pipe));
281 }
282 }
283 }
284
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286 enum pipe pipe, bool enable)
287 {
288 struct drm_i915_private *dev_priv = dev->dev_private;
289
290 assert_spin_locked(&dev_priv->irq_lock);
291
292 if (enable)
293 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294 else
295 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299
300 /**
301 * ibx_display_interrupt_update - update SDEIMR
302 * @dev_priv: driver private
303 * @interrupt_mask: mask of interrupt bits to update
304 * @enabled_irq_mask: mask of interrupt bits to enable
305 */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307 uint32_t interrupt_mask,
308 uint32_t enabled_irq_mask)
309 {
310 uint32_t sdeimr = I915_READ(SDEIMR);
311 sdeimr &= ~interrupt_mask;
312 sdeimr |= (~enabled_irq_mask & interrupt_mask);
313
314 assert_spin_locked(&dev_priv->irq_lock);
315
316 if (dev_priv->pm.irqs_disabled &&
317 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318 WARN(1, "IRQs disabled\n");
319 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321 interrupt_mask);
322 return;
323 }
324
325 I915_WRITE(SDEIMR, sdeimr);
326 POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329 ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331 ibx_display_interrupt_update((dev_priv), (bits), 0)
332
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334 enum transcoder pch_transcoder,
335 bool enable)
336 {
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340
341 if (enable)
342 ibx_enable_display_interrupt(dev_priv, bit);
343 else
344 ibx_disable_display_interrupt(dev_priv, bit);
345 }
346
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348 enum transcoder pch_transcoder,
349 bool enable)
350 {
351 struct drm_i915_private *dev_priv = dev->dev_private;
352
353 if (enable) {
354 I915_WRITE(SERR_INT,
355 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356
357 if (!cpt_can_enable_serr_int(dev))
358 return;
359
360 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361 } else {
362 uint32_t tmp = I915_READ(SERR_INT);
363 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364
365 /* Change the state _after_ we've read out the current one. */
366 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367
368 if (!was_enabled &&
369 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371 transcoder_name(pch_transcoder));
372 }
373 }
374 }
375
376 /**
377 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378 * @dev: drm device
379 * @pipe: pipe
380 * @enable: true if we want to report FIFO underrun errors, false otherwise
381 *
382 * This function makes us disable or enable CPU fifo underruns for a specific
383 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384 * reporting for one pipe may also disable all the other CPU error interruts for
385 * the other pipes, due to the fact that there's just one interrupt mask/enable
386 * bit for all the pipes.
387 *
388 * Returns the previous state of underrun reporting.
389 */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391 enum pipe pipe, bool enable)
392 {
393 struct drm_i915_private *dev_priv = dev->dev_private;
394 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396 bool ret;
397
398 assert_spin_locked(&dev_priv->irq_lock);
399
400 ret = !intel_crtc->cpu_fifo_underrun_disabled;
401
402 if (enable == ret)
403 goto done;
404
405 intel_crtc->cpu_fifo_underrun_disabled = !enable;
406
407 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408 i9xx_clear_fifo_underrun(dev, pipe);
409 else if (IS_GEN5(dev) || IS_GEN6(dev))
410 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411 else if (IS_GEN7(dev))
412 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413 else if (IS_GEN8(dev))
414 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415
416 done:
417 return ret;
418 }
419
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421 enum pipe pipe, bool enable)
422 {
423 struct drm_i915_private *dev_priv = dev->dev_private;
424 unsigned long flags;
425 bool ret;
426
427 spin_lock_irqsave(&dev_priv->irq_lock, flags);
428 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430
431 return ret;
432 }
433
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435 enum pipe pipe)
436 {
437 struct drm_i915_private *dev_priv = dev->dev_private;
438 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440
441 return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443
444 /**
445 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446 * @dev: drm device
447 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448 * @enable: true if we want to report FIFO underrun errors, false otherwise
449 *
450 * This function makes us disable or enable PCH fifo underruns for a specific
451 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452 * underrun reporting for one transcoder may also disable all the other PCH
453 * error interruts for the other transcoders, due to the fact that there's just
454 * one interrupt mask/enable bit for all the transcoders.
455 *
456 * Returns the previous state of underrun reporting.
457 */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459 enum transcoder pch_transcoder,
460 bool enable)
461 {
462 struct drm_i915_private *dev_priv = dev->dev_private;
463 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465 unsigned long flags;
466 bool ret;
467
468 /*
469 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470 * has only one pch transcoder A that all pipes can use. To avoid racy
471 * pch transcoder -> pipe lookups from interrupt code simply store the
472 * underrun statistics in crtc A. Since we never expose this anywhere
473 * nor use it outside of the fifo underrun code here using the "wrong"
474 * crtc on LPT won't cause issues.
475 */
476
477 spin_lock_irqsave(&dev_priv->irq_lock, flags);
478
479 ret = !intel_crtc->pch_fifo_underrun_disabled;
480
481 if (enable == ret)
482 goto done;
483
484 intel_crtc->pch_fifo_underrun_disabled = !enable;
485
486 if (HAS_PCH_IBX(dev))
487 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488 else
489 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490
491 done:
492 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493 return ret;
494 }
495
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 u32 reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505
506 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507 status_mask & ~PIPESTAT_INT_STATUS_MASK))
508 return;
509
510 if ((pipestat & enable_mask) == enable_mask)
511 return;
512
513 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514
515 /* Enable the interrupt, clear any pending status */
516 pipestat |= enable_mask | status_mask;
517 I915_WRITE(reg, pipestat);
518 POSTING_READ(reg);
519 }
520
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523 u32 enable_mask, u32 status_mask)
524 {
525 u32 reg = PIPESTAT(pipe);
526 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527
528 assert_spin_locked(&dev_priv->irq_lock);
529
530 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 status_mask & ~PIPESTAT_INT_STATUS_MASK))
532 return;
533
534 if ((pipestat & enable_mask) == 0)
535 return;
536
537 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538
539 pipestat &= ~enable_mask;
540 I915_WRITE(reg, pipestat);
541 POSTING_READ(reg);
542 }
543
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546 u32 enable_mask = status_mask << 16;
547
548 /*
549 * On pipe A we don't support the PSR interrupt yet, on pipe B the
550 * same bit MBZ.
551 */
552 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553 return 0;
554
555 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556 SPRITE0_FLIP_DONE_INT_EN_VLV |
557 SPRITE1_FLIP_DONE_INT_EN_VLV);
558 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562
563 return enable_mask;
564 }
565
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568 u32 status_mask)
569 {
570 u32 enable_mask;
571
572 if (IS_VALLEYVIEW(dev_priv->dev))
573 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574 status_mask);
575 else
576 enable_mask = status_mask << 16;
577 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582 u32 status_mask)
583 {
584 u32 enable_mask;
585
586 if (IS_VALLEYVIEW(dev_priv->dev))
587 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588 status_mask);
589 else
590 enable_mask = status_mask << 16;
591 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593
594 /**
595 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596 */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599 drm_i915_private_t *dev_priv = dev->dev_private;
600 unsigned long irqflags;
601
602 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603 return;
604
605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606
607 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 if (INTEL_INFO(dev)->gen >= 4)
609 i915_enable_pipestat(dev_priv, PIPE_A,
610 PIPE_LEGACY_BLC_EVENT_STATUS);
611
612 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614
615 /**
616 * i915_pipe_enabled - check if a pipe is enabled
617 * @dev: DRM device
618 * @pipe: pipe to check
619 *
620 * Reading certain registers when the pipe is disabled can hang the chip.
621 * Use this routine to make sure the PLL is running and the pipe is active
622 * before reading such registers if unsure.
623 */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
628
629 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630 /* Locking is horribly broken here, but whatever. */
631 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634 return intel_crtc->active;
635 } else {
636 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637 }
638 }
639
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642 /* Gen2 doesn't have a hardware frame counter */
643 return 0;
644 }
645
646 /* Called from drm generic code, passed a 'crtc', which
647 * we use as a pipe index
648 */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
652 unsigned long high_frame;
653 unsigned long low_frame;
654 u32 high1, high2, low, pixel, vbl_start;
655
656 if (!i915_pipe_enabled(dev, pipe)) {
657 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658 "pipe %c\n", pipe_name(pipe));
659 return 0;
660 }
661
662 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663 struct intel_crtc *intel_crtc =
664 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665 const struct drm_display_mode *mode =
666 &intel_crtc->config.adjusted_mode;
667
668 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669 } else {
670 enum transcoder cpu_transcoder = (enum transcoder) pipe;
671 u32 htotal;
672
673 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675
676 vbl_start *= htotal;
677 }
678
679 high_frame = PIPEFRAME(pipe);
680 low_frame = PIPEFRAMEPIXEL(pipe);
681
682 /*
683 * High & low register fields aren't synchronized, so make sure
684 * we get a low value that's stable across two reads of the high
685 * register.
686 */
687 do {
688 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689 low = I915_READ(low_frame);
690 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691 } while (high1 != high2);
692
693 high1 >>= PIPE_FRAME_HIGH_SHIFT;
694 pixel = low & PIPE_PIXEL_MASK;
695 low >>= PIPE_FRAME_LOW_SHIFT;
696
697 /*
698 * The frame counter increments at beginning of active.
699 * Cook up a vblank counter by also checking the pixel
700 * counter against vblank start.
701 */
702 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
708 int reg = PIPE_FRMCOUNT_GM45(pipe);
709
710 if (!i915_pipe_enabled(dev, pipe)) {
711 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712 "pipe %c\n", pipe_name(pipe));
713 return 0;
714 }
715
716 return I915_READ(reg);
717 }
718
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721 #define __raw_i915_read16(dev_priv__, reg__) readw((dev_priv__)->regs + (reg__))
722
723 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
724 {
725 struct drm_i915_private *dev_priv = dev->dev_private;
726 uint32_t status;
727
728 if (INTEL_INFO(dev)->gen < 7) {
729 status = pipe == PIPE_A ?
730 DE_PIPEA_VBLANK :
731 DE_PIPEB_VBLANK;
732 } else {
733 switch (pipe) {
734 default:
735 case PIPE_A:
736 status = DE_PIPEA_VBLANK_IVB;
737 break;
738 case PIPE_B:
739 status = DE_PIPEB_VBLANK_IVB;
740 break;
741 case PIPE_C:
742 status = DE_PIPEC_VBLANK_IVB;
743 break;
744 }
745 }
746
747 return __raw_i915_read32(dev_priv, DEISR) & status;
748 }
749
750 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
751 unsigned int flags, int *vpos, int *hpos,
752 ktime_t *stime, ktime_t *etime)
753 {
754 struct drm_i915_private *dev_priv = dev->dev_private;
755 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
758 int position;
759 int vbl_start, vbl_end, htotal, vtotal;
760 bool in_vbl = true;
761 int ret = 0;
762 unsigned long irqflags;
763
764 if (!intel_crtc->active) {
765 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
766 "pipe %c\n", pipe_name(pipe));
767 return 0;
768 }
769
770 htotal = mode->crtc_htotal;
771 vtotal = mode->crtc_vtotal;
772 vbl_start = mode->crtc_vblank_start;
773 vbl_end = mode->crtc_vblank_end;
774
775 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
776 vbl_start = DIV_ROUND_UP(vbl_start, 2);
777 vbl_end /= 2;
778 vtotal /= 2;
779 }
780
781 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
782
783 /*
784 * Lock uncore.lock, as we will do multiple timing critical raw
785 * register reads, potentially with preemption disabled, so the
786 * following code must not block on uncore.lock.
787 */
788 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
789
790 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
791
792 /* Get optional system timestamp before query. */
793 if (stime)
794 *stime = ktime_get();
795
796 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797 /* No obvious pixelcount register. Only query vertical
798 * scanout position from Display scan line register.
799 */
800 if (IS_GEN2(dev))
801 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
802 else
803 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
804
805 if (HAS_PCH_SPLIT(dev)) {
806 /*
807 * The scanline counter increments at the leading edge
808 * of hsync, ie. it completely misses the active portion
809 * of the line. Fix up the counter at both edges of vblank
810 * to get a more accurate picture whether we're in vblank
811 * or not.
812 */
813 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
814 if ((in_vbl && position == vbl_start - 1) ||
815 (!in_vbl && position == vbl_end - 1))
816 position = (position + 1) % vtotal;
817 } else {
818 /*
819 * ISR vblank status bits don't work the way we'd want
820 * them to work on non-PCH platforms (for
821 * ilk_pipe_in_vblank_locked()), and there doesn't
822 * appear any other way to determine if we're currently
823 * in vblank.
824 *
825 * Instead let's assume that we're already in vblank if
826 * we got called from the vblank interrupt and the
827 * scanline counter value indicates that we're on the
828 * line just prior to vblank start. This should result
829 * in the correct answer, unless the vblank interrupt
830 * delivery really got delayed for almost exactly one
831 * full frame/field.
832 */
833 if (flags & DRM_CALLED_FROM_VBLIRQ &&
834 position == vbl_start - 1) {
835 position = (position + 1) % vtotal;
836
837 /* Signal this correction as "applied". */
838 ret |= 0x8;
839 }
840 }
841 } else {
842 /* Have access to pixelcount since start of frame.
843 * We can split this into vertical and horizontal
844 * scanout position.
845 */
846 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
847
848 /* convert to pixel counts */
849 vbl_start *= htotal;
850 vbl_end *= htotal;
851 vtotal *= htotal;
852 }
853
854 /* Get optional system timestamp after query. */
855 if (etime)
856 *etime = ktime_get();
857
858 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
859
860 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
861
862 in_vbl = position >= vbl_start && position < vbl_end;
863
864 /*
865 * While in vblank, position will be negative
866 * counting up towards 0 at vbl_end. And outside
867 * vblank, position will be positive counting
868 * up since vbl_end.
869 */
870 if (position >= vbl_start)
871 position -= vbl_end;
872 else
873 position += vtotal - vbl_end;
874
875 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
876 *vpos = position;
877 *hpos = 0;
878 } else {
879 *vpos = position / htotal;
880 *hpos = position - (*vpos * htotal);
881 }
882
883 /* In vblank? */
884 if (in_vbl)
885 ret |= DRM_SCANOUTPOS_INVBL;
886
887 return ret;
888 }
889
890 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
891 int *max_error,
892 struct timeval *vblank_time,
893 unsigned flags)
894 {
895 struct drm_crtc *crtc;
896
897 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
898 DRM_ERROR("Invalid crtc %d\n", pipe);
899 return -EINVAL;
900 }
901
902 /* Get drm_crtc to timestamp: */
903 crtc = intel_get_crtc_for_pipe(dev, pipe);
904 if (crtc == NULL) {
905 DRM_ERROR("Invalid crtc %d\n", pipe);
906 return -EINVAL;
907 }
908
909 if (!crtc->enabled) {
910 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
911 return -EBUSY;
912 }
913
914 /* Helper routine in DRM core does all the work: */
915 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
916 vblank_time, flags,
917 crtc,
918 &to_intel_crtc(crtc)->config.adjusted_mode);
919 }
920
921 static bool intel_hpd_irq_event(struct drm_device *dev,
922 struct drm_connector *connector)
923 {
924 enum drm_connector_status old_status;
925
926 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
927 old_status = connector->status;
928
929 connector->status = connector->funcs->detect(connector, false);
930 if (old_status == connector->status)
931 return false;
932
933 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
934 connector->base.id,
935 drm_get_connector_name(connector),
936 drm_get_connector_status_name(old_status),
937 drm_get_connector_status_name(connector->status));
938
939 return true;
940 }
941
942 /*
943 * Handle hotplug events outside the interrupt handler proper.
944 */
945 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
946
947 static void i915_hotplug_work_func(struct work_struct *work)
948 {
949 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
950 hotplug_work);
951 struct drm_device *dev = dev_priv->dev;
952 struct drm_mode_config *mode_config = &dev->mode_config;
953 struct intel_connector *intel_connector;
954 struct intel_encoder *intel_encoder;
955 struct drm_connector *connector;
956 unsigned long irqflags;
957 bool hpd_disabled = false;
958 bool changed = false;
959 u32 hpd_event_bits;
960
961 /* HPD irq before everything is fully set up. */
962 if (!dev_priv->enable_hotplug_processing)
963 return;
964
965 mutex_lock(&mode_config->mutex);
966 DRM_DEBUG_KMS("running encoder hotplug functions\n");
967
968 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
969
970 hpd_event_bits = dev_priv->hpd_event_bits;
971 dev_priv->hpd_event_bits = 0;
972 list_for_each_entry(connector, &mode_config->connector_list, head) {
973 intel_connector = to_intel_connector(connector);
974 intel_encoder = intel_connector->encoder;
975 if (intel_encoder->hpd_pin > HPD_NONE &&
976 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
977 connector->polled == DRM_CONNECTOR_POLL_HPD) {
978 DRM_INFO("HPD interrupt storm detected on connector %s: "
979 "switching from hotplug detection to polling\n",
980 drm_get_connector_name(connector));
981 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
982 connector->polled = DRM_CONNECTOR_POLL_CONNECT
983 | DRM_CONNECTOR_POLL_DISCONNECT;
984 hpd_disabled = true;
985 }
986 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
987 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
988 drm_get_connector_name(connector), intel_encoder->hpd_pin);
989 }
990 }
991 /* if there were no outputs to poll, poll was disabled,
992 * therefore make sure it's enabled when disabling HPD on
993 * some connectors */
994 if (hpd_disabled) {
995 drm_kms_helper_poll_enable(dev);
996 mod_timer(&dev_priv->hotplug_reenable_timer,
997 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
998 }
999
1000 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1001
1002 list_for_each_entry(connector, &mode_config->connector_list, head) {
1003 intel_connector = to_intel_connector(connector);
1004 intel_encoder = intel_connector->encoder;
1005 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1006 if (intel_encoder->hot_plug)
1007 intel_encoder->hot_plug(intel_encoder);
1008 if (intel_hpd_irq_event(dev, connector))
1009 changed = true;
1010 }
1011 }
1012 mutex_unlock(&mode_config->mutex);
1013
1014 if (changed)
1015 drm_kms_helper_hotplug_event(dev);
1016 }
1017
1018 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1019 {
1020 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1021 }
1022
1023 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1024 {
1025 drm_i915_private_t *dev_priv = dev->dev_private;
1026 u32 busy_up, busy_down, max_avg, min_avg;
1027 u8 new_delay;
1028
1029 spin_lock(&mchdev_lock);
1030
1031 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1032
1033 new_delay = dev_priv->ips.cur_delay;
1034
1035 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1036 busy_up = I915_READ(RCPREVBSYTUPAVG);
1037 busy_down = I915_READ(RCPREVBSYTDNAVG);
1038 max_avg = I915_READ(RCBMAXAVG);
1039 min_avg = I915_READ(RCBMINAVG);
1040
1041 /* Handle RCS change request from hw */
1042 if (busy_up > max_avg) {
1043 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1044 new_delay = dev_priv->ips.cur_delay - 1;
1045 if (new_delay < dev_priv->ips.max_delay)
1046 new_delay = dev_priv->ips.max_delay;
1047 } else if (busy_down < min_avg) {
1048 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1049 new_delay = dev_priv->ips.cur_delay + 1;
1050 if (new_delay > dev_priv->ips.min_delay)
1051 new_delay = dev_priv->ips.min_delay;
1052 }
1053
1054 if (ironlake_set_drps(dev, new_delay))
1055 dev_priv->ips.cur_delay = new_delay;
1056
1057 spin_unlock(&mchdev_lock);
1058
1059 return;
1060 }
1061
1062 static void notify_ring(struct drm_device *dev,
1063 struct intel_ring_buffer *ring)
1064 {
1065 if (ring->obj == NULL)
1066 return;
1067
1068 trace_i915_gem_request_complete(ring);
1069
1070 wake_up_all(&ring->irq_queue);
1071 i915_queue_hangcheck(dev);
1072 }
1073
1074 void gen6_set_pm_mask(struct drm_i915_private *dev_priv,
1075 u32 pm_iir, int new_delay)
1076 {
1077 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1078 if (new_delay >= dev_priv->rps.max_freq_softlimit) {
1079 /* Mask UP THRESHOLD Interrupts */
1080 I915_WRITE(GEN6_PMINTRMSK,
1081 I915_READ(GEN6_PMINTRMSK) |
1082 GEN6_PM_RP_UP_THRESHOLD);
1083 dev_priv->rps.rp_up_masked = true;
1084 }
1085 if (dev_priv->rps.rp_down_masked) {
1086 /* UnMask DOWN THRESHOLD Interrupts */
1087 I915_WRITE(GEN6_PMINTRMSK,
1088 I915_READ(GEN6_PMINTRMSK) &
1089 ~GEN6_PM_RP_DOWN_THRESHOLD);
1090 dev_priv->rps.rp_down_masked = false;
1091 }
1092 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1093 if (new_delay <= dev_priv->rps.min_freq_softlimit) {
1094 /* Mask DOWN THRESHOLD Interrupts */
1095 I915_WRITE(GEN6_PMINTRMSK,
1096 I915_READ(GEN6_PMINTRMSK) |
1097 GEN6_PM_RP_DOWN_THRESHOLD);
1098 dev_priv->rps.rp_down_masked = true;
1099 }
1100
1101 if (dev_priv->rps.rp_up_masked) {
1102 /* UnMask UP THRESHOLD Interrupts */
1103 I915_WRITE(GEN6_PMINTRMSK,
1104 I915_READ(GEN6_PMINTRMSK) &
1105 ~GEN6_PM_RP_UP_THRESHOLD);
1106 dev_priv->rps.rp_up_masked = false;
1107 }
1108 }
1109 }
1110
1111 static void gen6_pm_rps_work(struct work_struct *work)
1112 {
1113 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1114 rps.work);
1115 u32 pm_iir;
1116 int new_delay, adj;
1117
1118 spin_lock_irq(&dev_priv->irq_lock);
1119 pm_iir = dev_priv->rps.pm_iir;
1120 dev_priv->rps.pm_iir = 0;
1121 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1122 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
1123 spin_unlock_irq(&dev_priv->irq_lock);
1124
1125 /* Make sure we didn't queue anything we're not going to process. */
1126 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
1127
1128 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
1129 return;
1130
1131 mutex_lock(&dev_priv->rps.hw_lock);
1132
1133 adj = dev_priv->rps.last_adj;
1134 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1135 if (adj > 0)
1136 adj *= 2;
1137 else
1138 adj = 1;
1139 new_delay = dev_priv->rps.cur_freq + adj;
1140
1141 /*
1142 * For better performance, jump directly
1143 * to RPe if we're below it.
1144 */
1145 if (new_delay < dev_priv->rps.efficient_freq)
1146 new_delay = dev_priv->rps.efficient_freq;
1147 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1148 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1149 new_delay = dev_priv->rps.efficient_freq;
1150 else
1151 new_delay = dev_priv->rps.min_freq_softlimit;
1152 adj = 0;
1153 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1154 if (adj < 0)
1155 adj *= 2;
1156 else
1157 adj = -1;
1158 new_delay = dev_priv->rps.cur_freq + adj;
1159 } else { /* unknown event */
1160 new_delay = dev_priv->rps.cur_freq;
1161 }
1162
1163 /* sysfs frequency interfaces may have snuck in while servicing the
1164 * interrupt
1165 */
1166 new_delay = clamp_t(int, new_delay,
1167 dev_priv->rps.min_freq_softlimit,
1168 dev_priv->rps.max_freq_softlimit);
1169
1170 gen6_set_pm_mask(dev_priv, pm_iir, new_delay);
1171 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1172
1173 if (IS_VALLEYVIEW(dev_priv->dev))
1174 valleyview_set_rps(dev_priv->dev, new_delay);
1175 else
1176 gen6_set_rps(dev_priv->dev, new_delay);
1177
1178 mutex_unlock(&dev_priv->rps.hw_lock);
1179 }
1180
1181
1182 /**
1183 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1184 * occurred.
1185 * @work: workqueue struct
1186 *
1187 * Doesn't actually do anything except notify userspace. As a consequence of
1188 * this event, userspace should try to remap the bad rows since statistically
1189 * it is likely the same row is more likely to go bad again.
1190 */
1191 static void ivybridge_parity_work(struct work_struct *work)
1192 {
1193 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1194 l3_parity.error_work);
1195 u32 error_status, row, bank, subbank;
1196 char *parity_event[6];
1197 uint32_t misccpctl;
1198 unsigned long flags;
1199 uint8_t slice = 0;
1200
1201 /* We must turn off DOP level clock gating to access the L3 registers.
1202 * In order to prevent a get/put style interface, acquire struct mutex
1203 * any time we access those registers.
1204 */
1205 mutex_lock(&dev_priv->dev->struct_mutex);
1206
1207 /* If we've screwed up tracking, just let the interrupt fire again */
1208 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1209 goto out;
1210
1211 misccpctl = I915_READ(GEN7_MISCCPCTL);
1212 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1213 POSTING_READ(GEN7_MISCCPCTL);
1214
1215 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1216 u32 reg;
1217
1218 slice--;
1219 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1220 break;
1221
1222 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1223
1224 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1225
1226 error_status = I915_READ(reg);
1227 row = GEN7_PARITY_ERROR_ROW(error_status);
1228 bank = GEN7_PARITY_ERROR_BANK(error_status);
1229 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1230
1231 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1232 POSTING_READ(reg);
1233
1234 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1235 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1236 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1237 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1238 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1239 parity_event[5] = NULL;
1240
1241 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1242 KOBJ_CHANGE, parity_event);
1243
1244 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1245 slice, row, bank, subbank);
1246
1247 kfree(parity_event[4]);
1248 kfree(parity_event[3]);
1249 kfree(parity_event[2]);
1250 kfree(parity_event[1]);
1251 }
1252
1253 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1254
1255 out:
1256 WARN_ON(dev_priv->l3_parity.which_slice);
1257 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1258 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1259 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1260
1261 mutex_unlock(&dev_priv->dev->struct_mutex);
1262 }
1263
1264 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1265 {
1266 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1267
1268 if (!HAS_L3_DPF(dev))
1269 return;
1270
1271 spin_lock(&dev_priv->irq_lock);
1272 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1273 spin_unlock(&dev_priv->irq_lock);
1274
1275 iir &= GT_PARITY_ERROR(dev);
1276 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1277 dev_priv->l3_parity.which_slice |= 1 << 1;
1278
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1280 dev_priv->l3_parity.which_slice |= 1 << 0;
1281
1282 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1283 }
1284
1285 static void ilk_gt_irq_handler(struct drm_device *dev,
1286 struct drm_i915_private *dev_priv,
1287 u32 gt_iir)
1288 {
1289 if (gt_iir &
1290 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1291 notify_ring(dev, &dev_priv->ring[RCS]);
1292 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1293 notify_ring(dev, &dev_priv->ring[VCS]);
1294 }
1295
1296 static void snb_gt_irq_handler(struct drm_device *dev,
1297 struct drm_i915_private *dev_priv,
1298 u32 gt_iir)
1299 {
1300
1301 if (gt_iir &
1302 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1303 notify_ring(dev, &dev_priv->ring[RCS]);
1304 if (gt_iir & GT_BSD_USER_INTERRUPT)
1305 notify_ring(dev, &dev_priv->ring[VCS]);
1306 if (gt_iir & GT_BLT_USER_INTERRUPT)
1307 notify_ring(dev, &dev_priv->ring[BCS]);
1308
1309 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1310 GT_BSD_CS_ERROR_INTERRUPT |
1311 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1312 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1313 gt_iir);
1314 }
1315
1316 if (gt_iir & GT_PARITY_ERROR(dev))
1317 ivybridge_parity_error_irq_handler(dev, gt_iir);
1318 }
1319
1320 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1321 struct drm_i915_private *dev_priv,
1322 u32 master_ctl)
1323 {
1324 u32 rcs, bcs, vcs;
1325 uint32_t tmp = 0;
1326 irqreturn_t ret = IRQ_NONE;
1327
1328 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1329 tmp = I915_READ(GEN8_GT_IIR(0));
1330 if (tmp) {
1331 ret = IRQ_HANDLED;
1332 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1333 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1334 if (rcs & GT_RENDER_USER_INTERRUPT)
1335 notify_ring(dev, &dev_priv->ring[RCS]);
1336 if (bcs & GT_RENDER_USER_INTERRUPT)
1337 notify_ring(dev, &dev_priv->ring[BCS]);
1338 I915_WRITE(GEN8_GT_IIR(0), tmp);
1339 } else
1340 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1341 }
1342
1343 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1344 tmp = I915_READ(GEN8_GT_IIR(1));
1345 if (tmp) {
1346 ret = IRQ_HANDLED;
1347 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1348 if (vcs & GT_RENDER_USER_INTERRUPT)
1349 notify_ring(dev, &dev_priv->ring[VCS]);
1350 I915_WRITE(GEN8_GT_IIR(1), tmp);
1351 } else
1352 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1353 }
1354
1355 if (master_ctl & GEN8_GT_VECS_IRQ) {
1356 tmp = I915_READ(GEN8_GT_IIR(3));
1357 if (tmp) {
1358 ret = IRQ_HANDLED;
1359 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1360 if (vcs & GT_RENDER_USER_INTERRUPT)
1361 notify_ring(dev, &dev_priv->ring[VECS]);
1362 I915_WRITE(GEN8_GT_IIR(3), tmp);
1363 } else
1364 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1365 }
1366
1367 return ret;
1368 }
1369
1370 #define HPD_STORM_DETECT_PERIOD 1000
1371 #define HPD_STORM_THRESHOLD 5
1372
1373 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1374 u32 hotplug_trigger,
1375 const u32 *hpd)
1376 {
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 int i;
1379 bool storm_detected = false;
1380
1381 if (!hotplug_trigger)
1382 return;
1383
1384 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1385 hotplug_trigger);
1386
1387 spin_lock(&dev_priv->irq_lock);
1388 for (i = 1; i < HPD_NUM_PINS; i++) {
1389
1390 WARN_ONCE(hpd[i] & hotplug_trigger &&
1391 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1392 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1393 hotplug_trigger, i, hpd[i]);
1394
1395 if (!(hpd[i] & hotplug_trigger) ||
1396 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1397 continue;
1398
1399 dev_priv->hpd_event_bits |= (1 << i);
1400 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1401 dev_priv->hpd_stats[i].hpd_last_jiffies
1402 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1403 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1404 dev_priv->hpd_stats[i].hpd_cnt = 0;
1405 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1406 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1407 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1408 dev_priv->hpd_event_bits &= ~(1 << i);
1409 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1410 storm_detected = true;
1411 } else {
1412 dev_priv->hpd_stats[i].hpd_cnt++;
1413 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1414 dev_priv->hpd_stats[i].hpd_cnt);
1415 }
1416 }
1417
1418 if (storm_detected)
1419 dev_priv->display.hpd_irq_setup(dev);
1420 spin_unlock(&dev_priv->irq_lock);
1421
1422 /*
1423 * Our hotplug handler can grab modeset locks (by calling down into the
1424 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1425 * queue for otherwise the flush_work in the pageflip code will
1426 * deadlock.
1427 */
1428 schedule_work(&dev_priv->hotplug_work);
1429 }
1430
1431 static void gmbus_irq_handler(struct drm_device *dev)
1432 {
1433 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1434
1435 wake_up_all(&dev_priv->gmbus_wait_queue);
1436 }
1437
1438 static void dp_aux_irq_handler(struct drm_device *dev)
1439 {
1440 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1441
1442 wake_up_all(&dev_priv->gmbus_wait_queue);
1443 }
1444
1445 #if defined(CONFIG_DEBUG_FS)
1446 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1447 uint32_t crc0, uint32_t crc1,
1448 uint32_t crc2, uint32_t crc3,
1449 uint32_t crc4)
1450 {
1451 struct drm_i915_private *dev_priv = dev->dev_private;
1452 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1453 struct intel_pipe_crc_entry *entry;
1454 int head, tail;
1455
1456 spin_lock(&pipe_crc->lock);
1457
1458 if (!pipe_crc->entries) {
1459 spin_unlock(&pipe_crc->lock);
1460 DRM_ERROR("spurious interrupt\n");
1461 return;
1462 }
1463
1464 head = pipe_crc->head;
1465 tail = pipe_crc->tail;
1466
1467 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1468 spin_unlock(&pipe_crc->lock);
1469 DRM_ERROR("CRC buffer overflowing\n");
1470 return;
1471 }
1472
1473 entry = &pipe_crc->entries[head];
1474
1475 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1476 entry->crc[0] = crc0;
1477 entry->crc[1] = crc1;
1478 entry->crc[2] = crc2;
1479 entry->crc[3] = crc3;
1480 entry->crc[4] = crc4;
1481
1482 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1483 pipe_crc->head = head;
1484
1485 spin_unlock(&pipe_crc->lock);
1486
1487 wake_up_interruptible(&pipe_crc->wq);
1488 }
1489 #else
1490 static inline void
1491 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1492 uint32_t crc0, uint32_t crc1,
1493 uint32_t crc2, uint32_t crc3,
1494 uint32_t crc4) {}
1495 #endif
1496
1497
1498 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1499 {
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501
1502 display_pipe_crc_irq_handler(dev, pipe,
1503 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1504 0, 0, 0, 0);
1505 }
1506
1507 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1508 {
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510
1511 display_pipe_crc_irq_handler(dev, pipe,
1512 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1513 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1514 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1515 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1516 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1517 }
1518
1519 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1520 {
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 uint32_t res1, res2;
1523
1524 if (INTEL_INFO(dev)->gen >= 3)
1525 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1526 else
1527 res1 = 0;
1528
1529 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1530 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1531 else
1532 res2 = 0;
1533
1534 display_pipe_crc_irq_handler(dev, pipe,
1535 I915_READ(PIPE_CRC_RES_RED(pipe)),
1536 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1537 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1538 res1, res2);
1539 }
1540
1541 /* The RPS events need forcewake, so we add them to a work queue and mask their
1542 * IMR bits until the work is done. Other interrupts can be processed without
1543 * the work queue. */
1544 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1545 {
1546 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1547 spin_lock(&dev_priv->irq_lock);
1548 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1549 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1550 spin_unlock(&dev_priv->irq_lock);
1551
1552 queue_work(dev_priv->wq, &dev_priv->rps.work);
1553 }
1554
1555 if (HAS_VEBOX(dev_priv->dev)) {
1556 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1557 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1558
1559 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1560 i915_handle_error(dev_priv->dev, false,
1561 "VEBOX CS error interrupt 0x%08x",
1562 pm_iir);
1563 }
1564 }
1565 }
1566
1567 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1568 {
1569 struct drm_i915_private *dev_priv = dev->dev_private;
1570 u32 pipe_stats[I915_MAX_PIPES] = { };
1571 int pipe;
1572
1573 spin_lock(&dev_priv->irq_lock);
1574 for_each_pipe(pipe) {
1575 int reg;
1576 u32 mask, iir_bit = 0;
1577
1578 /*
1579 * PIPESTAT bits get signalled even when the interrupt is
1580 * disabled with the mask bits, and some of the status bits do
1581 * not generate interrupts at all (like the underrun bit). Hence
1582 * we need to be careful that we only handle what we want to
1583 * handle.
1584 */
1585 mask = 0;
1586 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1587 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1588
1589 switch (pipe) {
1590 case PIPE_A:
1591 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1592 break;
1593 case PIPE_B:
1594 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1595 break;
1596 }
1597 if (iir & iir_bit)
1598 mask |= dev_priv->pipestat_irq_mask[pipe];
1599
1600 if (!mask)
1601 continue;
1602
1603 reg = PIPESTAT(pipe);
1604 mask |= PIPESTAT_INT_ENABLE_MASK;
1605 pipe_stats[pipe] = I915_READ(reg) & mask;
1606
1607 /*
1608 * Clear the PIPE*STAT regs before the IIR
1609 */
1610 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1611 PIPESTAT_INT_STATUS_MASK))
1612 I915_WRITE(reg, pipe_stats[pipe]);
1613 }
1614 spin_unlock(&dev_priv->irq_lock);
1615
1616 for_each_pipe(pipe) {
1617 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1618 drm_handle_vblank(dev, pipe);
1619
1620 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1621 intel_prepare_page_flip(dev, pipe);
1622 intel_finish_page_flip(dev, pipe);
1623 }
1624
1625 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1626 i9xx_pipe_crc_irq_handler(dev, pipe);
1627
1628 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1629 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1630 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1631 }
1632
1633 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1634 gmbus_irq_handler(dev);
1635 }
1636
1637 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1638 {
1639 struct drm_device *dev = (struct drm_device *) arg;
1640 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1641 u32 iir, gt_iir, pm_iir;
1642 irqreturn_t ret = IRQ_NONE;
1643
1644 while (true) {
1645 iir = I915_READ(VLV_IIR);
1646 gt_iir = I915_READ(GTIIR);
1647 pm_iir = I915_READ(GEN6_PMIIR);
1648
1649 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1650 goto out;
1651
1652 ret = IRQ_HANDLED;
1653
1654 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1655
1656 valleyview_pipestat_irq_handler(dev, iir);
1657
1658 /* Consume port. Then clear IIR or we'll miss events */
1659 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1660 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1661 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1662
1663 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1664
1665 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1666 dp_aux_irq_handler(dev);
1667
1668 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1669 I915_READ(PORT_HOTPLUG_STAT);
1670 }
1671
1672
1673 if (pm_iir)
1674 gen6_rps_irq_handler(dev_priv, pm_iir);
1675
1676 I915_WRITE(GTIIR, gt_iir);
1677 I915_WRITE(GEN6_PMIIR, pm_iir);
1678 I915_WRITE(VLV_IIR, iir);
1679 }
1680
1681 out:
1682 return ret;
1683 }
1684
1685 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1686 {
1687 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1688 int pipe;
1689 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1690
1691 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1692
1693 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1694 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1695 SDE_AUDIO_POWER_SHIFT);
1696 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1697 port_name(port));
1698 }
1699
1700 if (pch_iir & SDE_AUX_MASK)
1701 dp_aux_irq_handler(dev);
1702
1703 if (pch_iir & SDE_GMBUS)
1704 gmbus_irq_handler(dev);
1705
1706 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1707 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1708
1709 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1710 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1711
1712 if (pch_iir & SDE_POISON)
1713 DRM_ERROR("PCH poison interrupt\n");
1714
1715 if (pch_iir & SDE_FDI_MASK)
1716 for_each_pipe(pipe)
1717 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1718 pipe_name(pipe),
1719 I915_READ(FDI_RX_IIR(pipe)));
1720
1721 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1722 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1723
1724 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1725 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1726
1727 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1728 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1729 false))
1730 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1731
1732 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1733 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1734 false))
1735 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1736 }
1737
1738 static void ivb_err_int_handler(struct drm_device *dev)
1739 {
1740 struct drm_i915_private *dev_priv = dev->dev_private;
1741 u32 err_int = I915_READ(GEN7_ERR_INT);
1742 enum pipe pipe;
1743
1744 if (err_int & ERR_INT_POISON)
1745 DRM_ERROR("Poison interrupt\n");
1746
1747 for_each_pipe(pipe) {
1748 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1749 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1750 false))
1751 DRM_ERROR("Pipe %c FIFO underrun\n",
1752 pipe_name(pipe));
1753 }
1754
1755 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1756 if (IS_IVYBRIDGE(dev))
1757 ivb_pipe_crc_irq_handler(dev, pipe);
1758 else
1759 hsw_pipe_crc_irq_handler(dev, pipe);
1760 }
1761 }
1762
1763 I915_WRITE(GEN7_ERR_INT, err_int);
1764 }
1765
1766 static void cpt_serr_int_handler(struct drm_device *dev)
1767 {
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 serr_int = I915_READ(SERR_INT);
1770
1771 if (serr_int & SERR_INT_POISON)
1772 DRM_ERROR("PCH poison interrupt\n");
1773
1774 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1775 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1776 false))
1777 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1778
1779 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1780 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1781 false))
1782 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1783
1784 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1785 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1786 false))
1787 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1788
1789 I915_WRITE(SERR_INT, serr_int);
1790 }
1791
1792 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1793 {
1794 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1795 int pipe;
1796 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1797
1798 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1799
1800 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1801 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1802 SDE_AUDIO_POWER_SHIFT_CPT);
1803 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1804 port_name(port));
1805 }
1806
1807 if (pch_iir & SDE_AUX_MASK_CPT)
1808 dp_aux_irq_handler(dev);
1809
1810 if (pch_iir & SDE_GMBUS_CPT)
1811 gmbus_irq_handler(dev);
1812
1813 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1814 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1815
1816 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1817 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1818
1819 if (pch_iir & SDE_FDI_MASK_CPT)
1820 for_each_pipe(pipe)
1821 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1822 pipe_name(pipe),
1823 I915_READ(FDI_RX_IIR(pipe)));
1824
1825 if (pch_iir & SDE_ERROR_CPT)
1826 cpt_serr_int_handler(dev);
1827 }
1828
1829 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1830 {
1831 struct drm_i915_private *dev_priv = dev->dev_private;
1832 enum pipe pipe;
1833
1834 if (de_iir & DE_AUX_CHANNEL_A)
1835 dp_aux_irq_handler(dev);
1836
1837 if (de_iir & DE_GSE)
1838 intel_opregion_asle_intr(dev);
1839
1840 if (de_iir & DE_POISON)
1841 DRM_ERROR("Poison interrupt\n");
1842
1843 for_each_pipe(pipe) {
1844 if (de_iir & DE_PIPE_VBLANK(pipe))
1845 drm_handle_vblank(dev, pipe);
1846
1847 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1848 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1849 DRM_ERROR("Pipe %c FIFO underrun\n",
1850 pipe_name(pipe));
1851
1852 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1853 i9xx_pipe_crc_irq_handler(dev, pipe);
1854
1855 /* plane/pipes map 1:1 on ilk+ */
1856 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1857 intel_prepare_page_flip(dev, pipe);
1858 intel_finish_page_flip_plane(dev, pipe);
1859 }
1860 }
1861
1862 /* check event from PCH */
1863 if (de_iir & DE_PCH_EVENT) {
1864 u32 pch_iir = I915_READ(SDEIIR);
1865
1866 if (HAS_PCH_CPT(dev))
1867 cpt_irq_handler(dev, pch_iir);
1868 else
1869 ibx_irq_handler(dev, pch_iir);
1870
1871 /* should clear PCH hotplug event before clear CPU irq */
1872 I915_WRITE(SDEIIR, pch_iir);
1873 }
1874
1875 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1876 ironlake_rps_change_irq_handler(dev);
1877 }
1878
1879 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1880 {
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 enum pipe pipe;
1883
1884 if (de_iir & DE_ERR_INT_IVB)
1885 ivb_err_int_handler(dev);
1886
1887 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1888 dp_aux_irq_handler(dev);
1889
1890 if (de_iir & DE_GSE_IVB)
1891 intel_opregion_asle_intr(dev);
1892
1893 for_each_pipe(pipe) {
1894 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1895 drm_handle_vblank(dev, pipe);
1896
1897 /* plane/pipes map 1:1 on ilk+ */
1898 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1899 intel_prepare_page_flip(dev, pipe);
1900 intel_finish_page_flip_plane(dev, pipe);
1901 }
1902 }
1903
1904 /* check event from PCH */
1905 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1906 u32 pch_iir = I915_READ(SDEIIR);
1907
1908 cpt_irq_handler(dev, pch_iir);
1909
1910 /* clear PCH hotplug event before clear CPU irq */
1911 I915_WRITE(SDEIIR, pch_iir);
1912 }
1913 }
1914
1915 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1916 {
1917 struct drm_device *dev = (struct drm_device *) arg;
1918 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1919 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1920 irqreturn_t ret = IRQ_NONE;
1921
1922 /* We get interrupts on unclaimed registers, so check for this before we
1923 * do any I915_{READ,WRITE}. */
1924 intel_uncore_check_errors(dev);
1925
1926 /* disable master interrupt before clearing iir */
1927 de_ier = I915_READ(DEIER);
1928 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1929 POSTING_READ(DEIER);
1930
1931 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1932 * interrupts will will be stored on its back queue, and then we'll be
1933 * able to process them after we restore SDEIER (as soon as we restore
1934 * it, we'll get an interrupt if SDEIIR still has something to process
1935 * due to its back queue). */
1936 if (!HAS_PCH_NOP(dev)) {
1937 sde_ier = I915_READ(SDEIER);
1938 I915_WRITE(SDEIER, 0);
1939 POSTING_READ(SDEIER);
1940 }
1941
1942 gt_iir = I915_READ(GTIIR);
1943 if (gt_iir) {
1944 if (INTEL_INFO(dev)->gen >= 6)
1945 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1946 else
1947 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1948 I915_WRITE(GTIIR, gt_iir);
1949 ret = IRQ_HANDLED;
1950 }
1951
1952 de_iir = I915_READ(DEIIR);
1953 if (de_iir) {
1954 if (INTEL_INFO(dev)->gen >= 7)
1955 ivb_display_irq_handler(dev, de_iir);
1956 else
1957 ilk_display_irq_handler(dev, de_iir);
1958 I915_WRITE(DEIIR, de_iir);
1959 ret = IRQ_HANDLED;
1960 }
1961
1962 if (INTEL_INFO(dev)->gen >= 6) {
1963 u32 pm_iir = I915_READ(GEN6_PMIIR);
1964 if (pm_iir) {
1965 gen6_rps_irq_handler(dev_priv, pm_iir);
1966 I915_WRITE(GEN6_PMIIR, pm_iir);
1967 ret = IRQ_HANDLED;
1968 }
1969 }
1970
1971 I915_WRITE(DEIER, de_ier);
1972 POSTING_READ(DEIER);
1973 if (!HAS_PCH_NOP(dev)) {
1974 I915_WRITE(SDEIER, sde_ier);
1975 POSTING_READ(SDEIER);
1976 }
1977
1978 return ret;
1979 }
1980
1981 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1982 {
1983 struct drm_device *dev = arg;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985 u32 master_ctl;
1986 irqreturn_t ret = IRQ_NONE;
1987 uint32_t tmp = 0;
1988 enum pipe pipe;
1989
1990 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1991 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1992 if (!master_ctl)
1993 return IRQ_NONE;
1994
1995 I915_WRITE(GEN8_MASTER_IRQ, 0);
1996 POSTING_READ(GEN8_MASTER_IRQ);
1997
1998 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1999
2000 if (master_ctl & GEN8_DE_MISC_IRQ) {
2001 tmp = I915_READ(GEN8_DE_MISC_IIR);
2002 if (tmp & GEN8_DE_MISC_GSE)
2003 intel_opregion_asle_intr(dev);
2004 else if (tmp)
2005 DRM_ERROR("Unexpected DE Misc interrupt\n");
2006 else
2007 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2008
2009 if (tmp) {
2010 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2011 ret = IRQ_HANDLED;
2012 }
2013 }
2014
2015 if (master_ctl & GEN8_DE_PORT_IRQ) {
2016 tmp = I915_READ(GEN8_DE_PORT_IIR);
2017 if (tmp & GEN8_AUX_CHANNEL_A)
2018 dp_aux_irq_handler(dev);
2019 else if (tmp)
2020 DRM_ERROR("Unexpected DE Port interrupt\n");
2021 else
2022 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2023
2024 if (tmp) {
2025 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2026 ret = IRQ_HANDLED;
2027 }
2028 }
2029
2030 for_each_pipe(pipe) {
2031 uint32_t pipe_iir;
2032
2033 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2034 continue;
2035
2036 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2037 if (pipe_iir & GEN8_PIPE_VBLANK)
2038 drm_handle_vblank(dev, pipe);
2039
2040 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2041 intel_prepare_page_flip(dev, pipe);
2042 intel_finish_page_flip_plane(dev, pipe);
2043 }
2044
2045 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2046 hsw_pipe_crc_irq_handler(dev, pipe);
2047
2048 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2049 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2050 false))
2051 DRM_ERROR("Pipe %c FIFO underrun\n",
2052 pipe_name(pipe));
2053 }
2054
2055 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2056 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2057 pipe_name(pipe),
2058 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2059 }
2060
2061 if (pipe_iir) {
2062 ret = IRQ_HANDLED;
2063 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2064 } else
2065 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2066 }
2067
2068 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2069 /*
2070 * FIXME(BDW): Assume for now that the new interrupt handling
2071 * scheme also closed the SDE interrupt handling race we've seen
2072 * on older pch-split platforms. But this needs testing.
2073 */
2074 u32 pch_iir = I915_READ(SDEIIR);
2075
2076 cpt_irq_handler(dev, pch_iir);
2077
2078 if (pch_iir) {
2079 I915_WRITE(SDEIIR, pch_iir);
2080 ret = IRQ_HANDLED;
2081 }
2082 }
2083
2084 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2085 POSTING_READ(GEN8_MASTER_IRQ);
2086
2087 return ret;
2088 }
2089
2090 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2091 bool reset_completed)
2092 {
2093 struct intel_ring_buffer *ring;
2094 int i;
2095
2096 /*
2097 * Notify all waiters for GPU completion events that reset state has
2098 * been changed, and that they need to restart their wait after
2099 * checking for potential errors (and bail out to drop locks if there is
2100 * a gpu reset pending so that i915_error_work_func can acquire them).
2101 */
2102
2103 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2104 for_each_ring(ring, dev_priv, i)
2105 wake_up_all(&ring->irq_queue);
2106
2107 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2108 wake_up_all(&dev_priv->pending_flip_queue);
2109
2110 /*
2111 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2112 * reset state is cleared.
2113 */
2114 if (reset_completed)
2115 wake_up_all(&dev_priv->gpu_error.reset_queue);
2116 }
2117
2118 /**
2119 * i915_error_work_func - do process context error handling work
2120 * @work: work struct
2121 *
2122 * Fire an error uevent so userspace can see that a hang or error
2123 * was detected.
2124 */
2125 static void i915_error_work_func(struct work_struct *work)
2126 {
2127 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2128 work);
2129 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
2130 gpu_error);
2131 struct drm_device *dev = dev_priv->dev;
2132 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2133 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2134 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2135 int ret;
2136
2137 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2138
2139 /*
2140 * Note that there's only one work item which does gpu resets, so we
2141 * need not worry about concurrent gpu resets potentially incrementing
2142 * error->reset_counter twice. We only need to take care of another
2143 * racing irq/hangcheck declaring the gpu dead for a second time. A
2144 * quick check for that is good enough: schedule_work ensures the
2145 * correct ordering between hang detection and this work item, and since
2146 * the reset in-progress bit is only ever set by code outside of this
2147 * work we don't need to worry about any other races.
2148 */
2149 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2150 DRM_DEBUG_DRIVER("resetting chip\n");
2151 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2152 reset_event);
2153
2154 /*
2155 * All state reset _must_ be completed before we update the
2156 * reset counter, for otherwise waiters might miss the reset
2157 * pending state and not properly drop locks, resulting in
2158 * deadlocks with the reset work.
2159 */
2160 ret = i915_reset(dev);
2161
2162 intel_display_handle_reset(dev);
2163
2164 if (ret == 0) {
2165 /*
2166 * After all the gem state is reset, increment the reset
2167 * counter and wake up everyone waiting for the reset to
2168 * complete.
2169 *
2170 * Since unlock operations are a one-sided barrier only,
2171 * we need to insert a barrier here to order any seqno
2172 * updates before
2173 * the counter increment.
2174 */
2175 smp_mb__before_atomic_inc();
2176 atomic_inc(&dev_priv->gpu_error.reset_counter);
2177
2178 kobject_uevent_env(&dev->primary->kdev->kobj,
2179 KOBJ_CHANGE, reset_done_event);
2180 } else {
2181 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2182 }
2183
2184 /*
2185 * Note: The wake_up also serves as a memory barrier so that
2186 * waiters see the update value of the reset counter atomic_t.
2187 */
2188 i915_error_wake_up(dev_priv, true);
2189 }
2190 }
2191
2192 static void i915_report_and_clear_eir(struct drm_device *dev)
2193 {
2194 struct drm_i915_private *dev_priv = dev->dev_private;
2195 uint32_t instdone[I915_NUM_INSTDONE_REG];
2196 u32 eir = I915_READ(EIR);
2197 int pipe, i;
2198
2199 if (!eir)
2200 return;
2201
2202 pr_err("render error detected, EIR: 0x%08x\n", eir);
2203
2204 i915_get_extra_instdone(dev, instdone);
2205
2206 if (IS_G4X(dev)) {
2207 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2208 u32 ipeir = I915_READ(IPEIR_I965);
2209
2210 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2211 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2212 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2213 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2214 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2215 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2216 I915_WRITE(IPEIR_I965, ipeir);
2217 POSTING_READ(IPEIR_I965);
2218 }
2219 if (eir & GM45_ERROR_PAGE_TABLE) {
2220 u32 pgtbl_err = I915_READ(PGTBL_ER);
2221 pr_err("page table error\n");
2222 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2223 I915_WRITE(PGTBL_ER, pgtbl_err);
2224 POSTING_READ(PGTBL_ER);
2225 }
2226 }
2227
2228 if (!IS_GEN2(dev)) {
2229 if (eir & I915_ERROR_PAGE_TABLE) {
2230 u32 pgtbl_err = I915_READ(PGTBL_ER);
2231 pr_err("page table error\n");
2232 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2233 I915_WRITE(PGTBL_ER, pgtbl_err);
2234 POSTING_READ(PGTBL_ER);
2235 }
2236 }
2237
2238 if (eir & I915_ERROR_MEMORY_REFRESH) {
2239 pr_err("memory refresh error:\n");
2240 for_each_pipe(pipe)
2241 pr_err("pipe %c stat: 0x%08x\n",
2242 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2243 /* pipestat has already been acked */
2244 }
2245 if (eir & I915_ERROR_INSTRUCTION) {
2246 pr_err("instruction error\n");
2247 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2248 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2249 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2250 if (INTEL_INFO(dev)->gen < 4) {
2251 u32 ipeir = I915_READ(IPEIR);
2252
2253 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2254 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2255 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2256 I915_WRITE(IPEIR, ipeir);
2257 POSTING_READ(IPEIR);
2258 } else {
2259 u32 ipeir = I915_READ(IPEIR_I965);
2260
2261 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2262 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2263 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2264 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2265 I915_WRITE(IPEIR_I965, ipeir);
2266 POSTING_READ(IPEIR_I965);
2267 }
2268 }
2269
2270 I915_WRITE(EIR, eir);
2271 POSTING_READ(EIR);
2272 eir = I915_READ(EIR);
2273 if (eir) {
2274 /*
2275 * some errors might have become stuck,
2276 * mask them.
2277 */
2278 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2279 I915_WRITE(EMR, I915_READ(EMR) | eir);
2280 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2281 }
2282 }
2283
2284 /**
2285 * i915_handle_error - handle an error interrupt
2286 * @dev: drm device
2287 *
2288 * Do some basic checking of regsiter state at error interrupt time and
2289 * dump it to the syslog. Also call i915_capture_error_state() to make
2290 * sure we get a record and make it available in debugfs. Fire a uevent
2291 * so userspace knows something bad happened (should trigger collection
2292 * of a ring dump etc.).
2293 */
2294 void i915_handle_error(struct drm_device *dev, bool wedged,
2295 const char *fmt, ...)
2296 {
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298 va_list args;
2299 char error_msg[80];
2300
2301 va_start(args, fmt);
2302 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2303 va_end(args);
2304
2305 i915_capture_error_state(dev, wedged, error_msg);
2306 i915_report_and_clear_eir(dev);
2307
2308 if (wedged) {
2309 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2310 &dev_priv->gpu_error.reset_counter);
2311
2312 /*
2313 * Wakeup waiting processes so that the reset work function
2314 * i915_error_work_func doesn't deadlock trying to grab various
2315 * locks. By bumping the reset counter first, the woken
2316 * processes will see a reset in progress and back off,
2317 * releasing their locks and then wait for the reset completion.
2318 * We must do this for _all_ gpu waiters that might hold locks
2319 * that the reset work needs to acquire.
2320 *
2321 * Note: The wake_up serves as the required memory barrier to
2322 * ensure that the waiters see the updated value of the reset
2323 * counter atomic_t.
2324 */
2325 i915_error_wake_up(dev_priv, false);
2326 }
2327
2328 /*
2329 * Our reset work can grab modeset locks (since it needs to reset the
2330 * state of outstanding pagelips). Hence it must not be run on our own
2331 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2332 * code will deadlock.
2333 */
2334 schedule_work(&dev_priv->gpu_error.work);
2335 }
2336
2337 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2338 {
2339 drm_i915_private_t *dev_priv = dev->dev_private;
2340 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2342 struct drm_i915_gem_object *obj;
2343 struct intel_unpin_work *work;
2344 unsigned long flags;
2345 bool stall_detected;
2346
2347 /* Ignore early vblank irqs */
2348 if (intel_crtc == NULL)
2349 return;
2350
2351 spin_lock_irqsave(&dev->event_lock, flags);
2352 work = intel_crtc->unpin_work;
2353
2354 if (work == NULL ||
2355 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2356 !work->enable_stall_check) {
2357 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2358 spin_unlock_irqrestore(&dev->event_lock, flags);
2359 return;
2360 }
2361
2362 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2363 obj = work->pending_flip_obj;
2364 if (INTEL_INFO(dev)->gen >= 4) {
2365 int dspsurf = DSPSURF(intel_crtc->plane);
2366 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2367 i915_gem_obj_ggtt_offset(obj);
2368 } else {
2369 int dspaddr = DSPADDR(intel_crtc->plane);
2370 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2371 crtc->y * crtc->fb->pitches[0] +
2372 crtc->x * crtc->fb->bits_per_pixel/8);
2373 }
2374
2375 spin_unlock_irqrestore(&dev->event_lock, flags);
2376
2377 if (stall_detected) {
2378 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2379 intel_prepare_page_flip(dev, intel_crtc->plane);
2380 }
2381 }
2382
2383 /* Called from drm generic code, passed 'crtc' which
2384 * we use as a pipe index
2385 */
2386 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2387 {
2388 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2389 unsigned long irqflags;
2390
2391 if (!i915_pipe_enabled(dev, pipe))
2392 return -EINVAL;
2393
2394 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2395 if (INTEL_INFO(dev)->gen >= 4)
2396 i915_enable_pipestat(dev_priv, pipe,
2397 PIPE_START_VBLANK_INTERRUPT_STATUS);
2398 else
2399 i915_enable_pipestat(dev_priv, pipe,
2400 PIPE_VBLANK_INTERRUPT_STATUS);
2401
2402 /* maintain vblank delivery even in deep C-states */
2403 if (INTEL_INFO(dev)->gen == 3)
2404 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2405 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2406
2407 return 0;
2408 }
2409
2410 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2411 {
2412 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2413 unsigned long irqflags;
2414 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2415 DE_PIPE_VBLANK(pipe);
2416
2417 if (!i915_pipe_enabled(dev, pipe))
2418 return -EINVAL;
2419
2420 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2421 ironlake_enable_display_irq(dev_priv, bit);
2422 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2423
2424 return 0;
2425 }
2426
2427 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2428 {
2429 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2430 unsigned long irqflags;
2431
2432 if (!i915_pipe_enabled(dev, pipe))
2433 return -EINVAL;
2434
2435 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2436 i915_enable_pipestat(dev_priv, pipe,
2437 PIPE_START_VBLANK_INTERRUPT_STATUS);
2438 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2439
2440 return 0;
2441 }
2442
2443 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2444 {
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446 unsigned long irqflags;
2447
2448 if (!i915_pipe_enabled(dev, pipe))
2449 return -EINVAL;
2450
2451 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2452 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2453 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2454 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2455 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2456 return 0;
2457 }
2458
2459 /* Called from drm generic code, passed 'crtc' which
2460 * we use as a pipe index
2461 */
2462 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2463 {
2464 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2465 unsigned long irqflags;
2466
2467 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2468 if (INTEL_INFO(dev)->gen == 3)
2469 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2470
2471 i915_disable_pipestat(dev_priv, pipe,
2472 PIPE_VBLANK_INTERRUPT_STATUS |
2473 PIPE_START_VBLANK_INTERRUPT_STATUS);
2474 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2475 }
2476
2477 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2478 {
2479 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2480 unsigned long irqflags;
2481 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2482 DE_PIPE_VBLANK(pipe);
2483
2484 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2485 ironlake_disable_display_irq(dev_priv, bit);
2486 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2487 }
2488
2489 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2490 {
2491 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2492 unsigned long irqflags;
2493
2494 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2495 i915_disable_pipestat(dev_priv, pipe,
2496 PIPE_START_VBLANK_INTERRUPT_STATUS);
2497 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2498 }
2499
2500 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2501 {
2502 struct drm_i915_private *dev_priv = dev->dev_private;
2503 unsigned long irqflags;
2504
2505 if (!i915_pipe_enabled(dev, pipe))
2506 return;
2507
2508 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2509 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2510 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2511 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2512 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2513 }
2514
2515 static u32
2516 ring_last_seqno(struct intel_ring_buffer *ring)
2517 {
2518 return list_entry(ring->request_list.prev,
2519 struct drm_i915_gem_request, list)->seqno;
2520 }
2521
2522 static bool
2523 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2524 {
2525 return (list_empty(&ring->request_list) ||
2526 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2527 }
2528
2529 static struct intel_ring_buffer *
2530 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2531 {
2532 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2533 u32 cmd, ipehr, acthd, acthd_min;
2534
2535 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2536 if ((ipehr & ~(0x3 << 16)) !=
2537 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2538 return NULL;
2539
2540 /* ACTHD is likely pointing to the dword after the actual command,
2541 * so scan backwards until we find the MBOX.
2542 */
2543 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2544 acthd_min = max((int)acthd - 3 * 4, 0);
2545 do {
2546 cmd = ioread32(ring->virtual_start + acthd);
2547 if (cmd == ipehr)
2548 break;
2549
2550 acthd -= 4;
2551 if (acthd < acthd_min)
2552 return NULL;
2553 } while (1);
2554
2555 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2556 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2557 }
2558
2559 static int semaphore_passed(struct intel_ring_buffer *ring)
2560 {
2561 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2562 struct intel_ring_buffer *signaller;
2563 u32 seqno, ctl;
2564
2565 ring->hangcheck.deadlock = true;
2566
2567 signaller = semaphore_waits_for(ring, &seqno);
2568 if (signaller == NULL || signaller->hangcheck.deadlock)
2569 return -1;
2570
2571 /* cursory check for an unkickable deadlock */
2572 ctl = I915_READ_CTL(signaller);
2573 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2574 return -1;
2575
2576 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2577 }
2578
2579 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2580 {
2581 struct intel_ring_buffer *ring;
2582 int i;
2583
2584 for_each_ring(ring, dev_priv, i)
2585 ring->hangcheck.deadlock = false;
2586 }
2587
2588 static enum intel_ring_hangcheck_action
2589 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2590 {
2591 struct drm_device *dev = ring->dev;
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 u32 tmp;
2594
2595 if (ring->hangcheck.acthd != acthd)
2596 return HANGCHECK_ACTIVE;
2597
2598 if (IS_GEN2(dev))
2599 return HANGCHECK_HUNG;
2600
2601 /* Is the chip hanging on a WAIT_FOR_EVENT?
2602 * If so we can simply poke the RB_WAIT bit
2603 * and break the hang. This should work on
2604 * all but the second generation chipsets.
2605 */
2606 tmp = I915_READ_CTL(ring);
2607 if (tmp & RING_WAIT) {
2608 i915_handle_error(dev, false,
2609 "Kicking stuck wait on %s",
2610 ring->name);
2611 I915_WRITE_CTL(ring, tmp);
2612 return HANGCHECK_KICK;
2613 }
2614
2615 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2616 switch (semaphore_passed(ring)) {
2617 default:
2618 return HANGCHECK_HUNG;
2619 case 1:
2620 i915_handle_error(dev, false,
2621 "Kicking stuck semaphore on %s",
2622 ring->name);
2623 I915_WRITE_CTL(ring, tmp);
2624 return HANGCHECK_KICK;
2625 case 0:
2626 return HANGCHECK_WAIT;
2627 }
2628 }
2629
2630 return HANGCHECK_HUNG;
2631 }
2632
2633 /**
2634 * This is called when the chip hasn't reported back with completed
2635 * batchbuffers in a long time. We keep track per ring seqno progress and
2636 * if there are no progress, hangcheck score for that ring is increased.
2637 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2638 * we kick the ring. If we see no progress on three subsequent calls
2639 * we assume chip is wedged and try to fix it by resetting the chip.
2640 */
2641 static void i915_hangcheck_elapsed(unsigned long data)
2642 {
2643 struct drm_device *dev = (struct drm_device *)data;
2644 drm_i915_private_t *dev_priv = dev->dev_private;
2645 struct intel_ring_buffer *ring;
2646 int i;
2647 int busy_count = 0, rings_hung = 0;
2648 bool stuck[I915_NUM_RINGS] = { 0 };
2649 #define BUSY 1
2650 #define KICK 5
2651 #define HUNG 20
2652
2653 if (!i915.enable_hangcheck)
2654 return;
2655
2656 for_each_ring(ring, dev_priv, i) {
2657 u32 seqno, acthd;
2658 bool busy = true;
2659
2660 semaphore_clear_deadlocks(dev_priv);
2661
2662 seqno = ring->get_seqno(ring, false);
2663 acthd = intel_ring_get_active_head(ring);
2664
2665 if (ring->hangcheck.seqno == seqno) {
2666 if (ring_idle(ring, seqno)) {
2667 ring->hangcheck.action = HANGCHECK_IDLE;
2668
2669 if (waitqueue_active(&ring->irq_queue)) {
2670 /* Issue a wake-up to catch stuck h/w. */
2671 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2672 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2673 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2674 ring->name);
2675 else
2676 DRM_INFO("Fake missed irq on %s\n",
2677 ring->name);
2678 wake_up_all(&ring->irq_queue);
2679 }
2680 /* Safeguard against driver failure */
2681 ring->hangcheck.score += BUSY;
2682 } else
2683 busy = false;
2684 } else {
2685 /* We always increment the hangcheck score
2686 * if the ring is busy and still processing
2687 * the same request, so that no single request
2688 * can run indefinitely (such as a chain of
2689 * batches). The only time we do not increment
2690 * the hangcheck score on this ring, if this
2691 * ring is in a legitimate wait for another
2692 * ring. In that case the waiting ring is a
2693 * victim and we want to be sure we catch the
2694 * right culprit. Then every time we do kick
2695 * the ring, add a small increment to the
2696 * score so that we can catch a batch that is
2697 * being repeatedly kicked and so responsible
2698 * for stalling the machine.
2699 */
2700 ring->hangcheck.action = ring_stuck(ring,
2701 acthd);
2702
2703 switch (ring->hangcheck.action) {
2704 case HANGCHECK_IDLE:
2705 case HANGCHECK_WAIT:
2706 break;
2707 case HANGCHECK_ACTIVE:
2708 ring->hangcheck.score += BUSY;
2709 break;
2710 case HANGCHECK_KICK:
2711 ring->hangcheck.score += KICK;
2712 break;
2713 case HANGCHECK_HUNG:
2714 ring->hangcheck.score += HUNG;
2715 stuck[i] = true;
2716 break;
2717 }
2718 }
2719 } else {
2720 ring->hangcheck.action = HANGCHECK_ACTIVE;
2721
2722 /* Gradually reduce the count so that we catch DoS
2723 * attempts across multiple batches.
2724 */
2725 if (ring->hangcheck.score > 0)
2726 ring->hangcheck.score--;
2727 }
2728
2729 ring->hangcheck.seqno = seqno;
2730 ring->hangcheck.acthd = acthd;
2731 busy_count += busy;
2732 }
2733
2734 for_each_ring(ring, dev_priv, i) {
2735 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2736 DRM_INFO("%s on %s\n",
2737 stuck[i] ? "stuck" : "no progress",
2738 ring->name);
2739 rings_hung++;
2740 }
2741 }
2742
2743 if (rings_hung)
2744 return i915_handle_error(dev, true, "Ring hung");
2745
2746 if (busy_count)
2747 /* Reset timer case chip hangs without another request
2748 * being added */
2749 i915_queue_hangcheck(dev);
2750 }
2751
2752 void i915_queue_hangcheck(struct drm_device *dev)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 if (!i915.enable_hangcheck)
2756 return;
2757
2758 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2759 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2760 }
2761
2762 static void ibx_irq_preinstall(struct drm_device *dev)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765
2766 if (HAS_PCH_NOP(dev))
2767 return;
2768
2769 /* south display irq */
2770 I915_WRITE(SDEIMR, 0xffffffff);
2771 /*
2772 * SDEIER is also touched by the interrupt handler to work around missed
2773 * PCH interrupts. Hence we can't update it after the interrupt handler
2774 * is enabled - instead we unconditionally enable all PCH interrupt
2775 * sources here, but then only unmask them as needed with SDEIMR.
2776 */
2777 I915_WRITE(SDEIER, 0xffffffff);
2778 POSTING_READ(SDEIER);
2779 }
2780
2781 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785 /* and GT */
2786 I915_WRITE(GTIMR, 0xffffffff);
2787 I915_WRITE(GTIER, 0x0);
2788 POSTING_READ(GTIER);
2789
2790 if (INTEL_INFO(dev)->gen >= 6) {
2791 /* and PM */
2792 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2793 I915_WRITE(GEN6_PMIER, 0x0);
2794 POSTING_READ(GEN6_PMIER);
2795 }
2796 }
2797
2798 /* drm_dma.h hooks
2799 */
2800 static void ironlake_irq_preinstall(struct drm_device *dev)
2801 {
2802 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2803
2804 I915_WRITE(HWSTAM, 0xeffe);
2805
2806 I915_WRITE(DEIMR, 0xffffffff);
2807 I915_WRITE(DEIER, 0x0);
2808 POSTING_READ(DEIER);
2809
2810 gen5_gt_irq_preinstall(dev);
2811
2812 ibx_irq_preinstall(dev);
2813 }
2814
2815 static void valleyview_irq_preinstall(struct drm_device *dev)
2816 {
2817 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2818 int pipe;
2819
2820 /* VLV magic */
2821 I915_WRITE(VLV_IMR, 0);
2822 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2823 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2824 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2825
2826 /* and GT */
2827 I915_WRITE(GTIIR, I915_READ(GTIIR));
2828 I915_WRITE(GTIIR, I915_READ(GTIIR));
2829
2830 gen5_gt_irq_preinstall(dev);
2831
2832 I915_WRITE(DPINVGTT, 0xff);
2833
2834 I915_WRITE(PORT_HOTPLUG_EN, 0);
2835 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2836 for_each_pipe(pipe)
2837 I915_WRITE(PIPESTAT(pipe), 0xffff);
2838 I915_WRITE(VLV_IIR, 0xffffffff);
2839 I915_WRITE(VLV_IMR, 0xffffffff);
2840 I915_WRITE(VLV_IER, 0x0);
2841 POSTING_READ(VLV_IER);
2842 }
2843
2844 static void gen8_irq_preinstall(struct drm_device *dev)
2845 {
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 int pipe;
2848
2849 I915_WRITE(GEN8_MASTER_IRQ, 0);
2850 POSTING_READ(GEN8_MASTER_IRQ);
2851
2852 /* IIR can theoretically queue up two events. Be paranoid */
2853 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2854 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2855 POSTING_READ(GEN8_##type##_IMR(which)); \
2856 I915_WRITE(GEN8_##type##_IER(which), 0); \
2857 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2858 POSTING_READ(GEN8_##type##_IIR(which)); \
2859 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2860 } while (0)
2861
2862 #define GEN8_IRQ_INIT(type) do { \
2863 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2864 POSTING_READ(GEN8_##type##_IMR); \
2865 I915_WRITE(GEN8_##type##_IER, 0); \
2866 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2867 POSTING_READ(GEN8_##type##_IIR); \
2868 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2869 } while (0)
2870
2871 GEN8_IRQ_INIT_NDX(GT, 0);
2872 GEN8_IRQ_INIT_NDX(GT, 1);
2873 GEN8_IRQ_INIT_NDX(GT, 2);
2874 GEN8_IRQ_INIT_NDX(GT, 3);
2875
2876 for_each_pipe(pipe) {
2877 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2878 }
2879
2880 GEN8_IRQ_INIT(DE_PORT);
2881 GEN8_IRQ_INIT(DE_MISC);
2882 GEN8_IRQ_INIT(PCU);
2883 #undef GEN8_IRQ_INIT
2884 #undef GEN8_IRQ_INIT_NDX
2885
2886 POSTING_READ(GEN8_PCU_IIR);
2887
2888 ibx_irq_preinstall(dev);
2889 }
2890
2891 static void ibx_hpd_irq_setup(struct drm_device *dev)
2892 {
2893 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2894 struct drm_mode_config *mode_config = &dev->mode_config;
2895 struct intel_encoder *intel_encoder;
2896 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2897
2898 if (HAS_PCH_IBX(dev)) {
2899 hotplug_irqs = SDE_HOTPLUG_MASK;
2900 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2901 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2902 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2903 } else {
2904 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2905 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2906 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2907 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2908 }
2909
2910 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2911
2912 /*
2913 * Enable digital hotplug on the PCH, and configure the DP short pulse
2914 * duration to 2ms (which is the minimum in the Display Port spec)
2915 *
2916 * This register is the same on all known PCH chips.
2917 */
2918 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2919 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2920 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2921 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2922 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2923 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2924 }
2925
2926 static void ibx_irq_postinstall(struct drm_device *dev)
2927 {
2928 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2929 u32 mask;
2930
2931 if (HAS_PCH_NOP(dev))
2932 return;
2933
2934 if (HAS_PCH_IBX(dev)) {
2935 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2936 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2937 } else {
2938 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2939
2940 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2941 }
2942
2943 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2944 I915_WRITE(SDEIMR, ~mask);
2945 }
2946
2947 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2948 {
2949 struct drm_i915_private *dev_priv = dev->dev_private;
2950 u32 pm_irqs, gt_irqs;
2951
2952 pm_irqs = gt_irqs = 0;
2953
2954 dev_priv->gt_irq_mask = ~0;
2955 if (HAS_L3_DPF(dev)) {
2956 /* L3 parity interrupt is always unmasked. */
2957 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2958 gt_irqs |= GT_PARITY_ERROR(dev);
2959 }
2960
2961 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2962 if (IS_GEN5(dev)) {
2963 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2964 ILK_BSD_USER_INTERRUPT;
2965 } else {
2966 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2967 }
2968
2969 I915_WRITE(GTIIR, I915_READ(GTIIR));
2970 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2971 I915_WRITE(GTIER, gt_irqs);
2972 POSTING_READ(GTIER);
2973
2974 if (INTEL_INFO(dev)->gen >= 6) {
2975 pm_irqs |= GEN6_PM_RPS_EVENTS;
2976
2977 if (HAS_VEBOX(dev))
2978 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2979
2980 dev_priv->pm_irq_mask = 0xffffffff;
2981 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2982 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2983 I915_WRITE(GEN6_PMIER, pm_irqs);
2984 POSTING_READ(GEN6_PMIER);
2985 }
2986 }
2987
2988 static int ironlake_irq_postinstall(struct drm_device *dev)
2989 {
2990 unsigned long irqflags;
2991 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2992 u32 display_mask, extra_mask;
2993
2994 if (INTEL_INFO(dev)->gen >= 7) {
2995 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2996 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2997 DE_PLANEB_FLIP_DONE_IVB |
2998 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2999 DE_ERR_INT_IVB);
3000 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3001 DE_PIPEA_VBLANK_IVB);
3002
3003 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3004 } else {
3005 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3006 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3007 DE_AUX_CHANNEL_A |
3008 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3009 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3010 DE_POISON);
3011 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
3012 }
3013
3014 dev_priv->irq_mask = ~display_mask;
3015
3016 /* should always can generate irq */
3017 I915_WRITE(DEIIR, I915_READ(DEIIR));
3018 I915_WRITE(DEIMR, dev_priv->irq_mask);
3019 I915_WRITE(DEIER, display_mask | extra_mask);
3020 POSTING_READ(DEIER);
3021
3022 gen5_gt_irq_postinstall(dev);
3023
3024 ibx_irq_postinstall(dev);
3025
3026 if (IS_IRONLAKE_M(dev)) {
3027 /* Enable PCU event interrupts
3028 *
3029 * spinlocking not required here for correctness since interrupt
3030 * setup is guaranteed to run in single-threaded context. But we
3031 * need it to make the assert_spin_locked happy. */
3032 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3033 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3034 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3035 }
3036
3037 return 0;
3038 }
3039
3040 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3041 {
3042 u32 pipestat_mask;
3043 u32 iir_mask;
3044
3045 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3046 PIPE_FIFO_UNDERRUN_STATUS;
3047
3048 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3049 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3050 POSTING_READ(PIPESTAT(PIPE_A));
3051
3052 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3053 PIPE_CRC_DONE_INTERRUPT_STATUS;
3054
3055 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3056 PIPE_GMBUS_INTERRUPT_STATUS);
3057 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3058
3059 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3060 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3061 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3062 dev_priv->irq_mask &= ~iir_mask;
3063
3064 I915_WRITE(VLV_IIR, iir_mask);
3065 I915_WRITE(VLV_IIR, iir_mask);
3066 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3067 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3068 POSTING_READ(VLV_IER);
3069 }
3070
3071 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3072 {
3073 u32 pipestat_mask;
3074 u32 iir_mask;
3075
3076 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3077 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3078 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3079
3080 dev_priv->irq_mask |= iir_mask;
3081 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3082 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3083 I915_WRITE(VLV_IIR, iir_mask);
3084 I915_WRITE(VLV_IIR, iir_mask);
3085 POSTING_READ(VLV_IIR);
3086
3087 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3088 PIPE_CRC_DONE_INTERRUPT_STATUS;
3089
3090 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3091 PIPE_GMBUS_INTERRUPT_STATUS);
3092 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3093
3094 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3095 PIPE_FIFO_UNDERRUN_STATUS;
3096 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3097 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3098 POSTING_READ(PIPESTAT(PIPE_A));
3099 }
3100
3101 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3102 {
3103 assert_spin_locked(&dev_priv->irq_lock);
3104
3105 if (dev_priv->display_irqs_enabled)
3106 return;
3107
3108 dev_priv->display_irqs_enabled = true;
3109
3110 if (dev_priv->dev->irq_enabled)
3111 valleyview_display_irqs_install(dev_priv);
3112 }
3113
3114 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3115 {
3116 assert_spin_locked(&dev_priv->irq_lock);
3117
3118 if (!dev_priv->display_irqs_enabled)
3119 return;
3120
3121 dev_priv->display_irqs_enabled = false;
3122
3123 if (dev_priv->dev->irq_enabled)
3124 valleyview_display_irqs_uninstall(dev_priv);
3125 }
3126
3127 static int valleyview_irq_postinstall(struct drm_device *dev)
3128 {
3129 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3130 unsigned long irqflags;
3131
3132 dev_priv->irq_mask = ~0;
3133
3134 I915_WRITE(PORT_HOTPLUG_EN, 0);
3135 POSTING_READ(PORT_HOTPLUG_EN);
3136
3137 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3138 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3139 I915_WRITE(VLV_IIR, 0xffffffff);
3140 POSTING_READ(VLV_IER);
3141
3142 /* Interrupt setup is already guaranteed to be single-threaded, this is
3143 * just to make the assert_spin_locked check happy. */
3144 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3145 if (dev_priv->display_irqs_enabled)
3146 valleyview_display_irqs_install(dev_priv);
3147 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3148
3149 I915_WRITE(VLV_IIR, 0xffffffff);
3150 I915_WRITE(VLV_IIR, 0xffffffff);
3151
3152 gen5_gt_irq_postinstall(dev);
3153
3154 /* ack & enable invalid PTE error interrupts */
3155 #if 0 /* FIXME: add support to irq handler for checking these bits */
3156 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3157 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3158 #endif
3159
3160 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3161
3162 return 0;
3163 }
3164
3165 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3166 {
3167 int i;
3168
3169 /* These are interrupts we'll toggle with the ring mask register */
3170 uint32_t gt_interrupts[] = {
3171 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3172 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3173 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3174 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3175 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3176 0,
3177 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3178 };
3179
3180 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3181 u32 tmp = I915_READ(GEN8_GT_IIR(i));
3182 if (tmp)
3183 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3184 i, tmp);
3185 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3186 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3187 }
3188 POSTING_READ(GEN8_GT_IER(0));
3189 }
3190
3191 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3192 {
3193 struct drm_device *dev = dev_priv->dev;
3194 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3195 GEN8_PIPE_CDCLK_CRC_DONE |
3196 GEN8_PIPE_FIFO_UNDERRUN |
3197 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3198 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK;
3199 int pipe;
3200 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3201 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3202 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3203
3204 for_each_pipe(pipe) {
3205 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3206 if (tmp)
3207 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3208 pipe, tmp);
3209 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3210 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3211 }
3212 POSTING_READ(GEN8_DE_PIPE_ISR(0));
3213
3214 I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3215 I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3216 POSTING_READ(GEN8_DE_PORT_IER);
3217 }
3218
3219 static int gen8_irq_postinstall(struct drm_device *dev)
3220 {
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222
3223 gen8_gt_irq_postinstall(dev_priv);
3224 gen8_de_irq_postinstall(dev_priv);
3225
3226 ibx_irq_postinstall(dev);
3227
3228 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3229 POSTING_READ(GEN8_MASTER_IRQ);
3230
3231 return 0;
3232 }
3233
3234 static void gen8_irq_uninstall(struct drm_device *dev)
3235 {
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 int pipe;
3238
3239 if (!dev_priv)
3240 return;
3241
3242 I915_WRITE(GEN8_MASTER_IRQ, 0);
3243
3244 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3245 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3246 I915_WRITE(GEN8_##type##_IER(which), 0); \
3247 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3248 } while (0)
3249
3250 #define GEN8_IRQ_FINI(type) do { \
3251 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3252 I915_WRITE(GEN8_##type##_IER, 0); \
3253 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3254 } while (0)
3255
3256 GEN8_IRQ_FINI_NDX(GT, 0);
3257 GEN8_IRQ_FINI_NDX(GT, 1);
3258 GEN8_IRQ_FINI_NDX(GT, 2);
3259 GEN8_IRQ_FINI_NDX(GT, 3);
3260
3261 for_each_pipe(pipe) {
3262 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3263 }
3264
3265 GEN8_IRQ_FINI(DE_PORT);
3266 GEN8_IRQ_FINI(DE_MISC);
3267 GEN8_IRQ_FINI(PCU);
3268 #undef GEN8_IRQ_FINI
3269 #undef GEN8_IRQ_FINI_NDX
3270
3271 POSTING_READ(GEN8_PCU_IIR);
3272 }
3273
3274 static void valleyview_irq_uninstall(struct drm_device *dev)
3275 {
3276 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3277 unsigned long irqflags;
3278 int pipe;
3279
3280 if (!dev_priv)
3281 return;
3282
3283 intel_hpd_irq_uninstall(dev_priv);
3284
3285 for_each_pipe(pipe)
3286 I915_WRITE(PIPESTAT(pipe), 0xffff);
3287
3288 I915_WRITE(HWSTAM, 0xffffffff);
3289 I915_WRITE(PORT_HOTPLUG_EN, 0);
3290 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3291
3292 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3293 if (dev_priv->display_irqs_enabled)
3294 valleyview_display_irqs_uninstall(dev_priv);
3295 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3296
3297 dev_priv->irq_mask = 0;
3298
3299 I915_WRITE(VLV_IIR, 0xffffffff);
3300 I915_WRITE(VLV_IMR, 0xffffffff);
3301 I915_WRITE(VLV_IER, 0x0);
3302 POSTING_READ(VLV_IER);
3303 }
3304
3305 static void ironlake_irq_uninstall(struct drm_device *dev)
3306 {
3307 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3308
3309 if (!dev_priv)
3310 return;
3311
3312 intel_hpd_irq_uninstall(dev_priv);
3313
3314 I915_WRITE(HWSTAM, 0xffffffff);
3315
3316 I915_WRITE(DEIMR, 0xffffffff);
3317 I915_WRITE(DEIER, 0x0);
3318 I915_WRITE(DEIIR, I915_READ(DEIIR));
3319 if (IS_GEN7(dev))
3320 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3321
3322 I915_WRITE(GTIMR, 0xffffffff);
3323 I915_WRITE(GTIER, 0x0);
3324 I915_WRITE(GTIIR, I915_READ(GTIIR));
3325
3326 if (HAS_PCH_NOP(dev))
3327 return;
3328
3329 I915_WRITE(SDEIMR, 0xffffffff);
3330 I915_WRITE(SDEIER, 0x0);
3331 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3332 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3333 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3334 }
3335
3336 static void i8xx_irq_preinstall(struct drm_device * dev)
3337 {
3338 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3339 int pipe;
3340
3341 for_each_pipe(pipe)
3342 I915_WRITE(PIPESTAT(pipe), 0);
3343 I915_WRITE16(IMR, 0xffff);
3344 I915_WRITE16(IER, 0x0);
3345 POSTING_READ16(IER);
3346 }
3347
3348 static int i8xx_irq_postinstall(struct drm_device *dev)
3349 {
3350 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3351 unsigned long irqflags;
3352
3353 I915_WRITE16(EMR,
3354 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3355
3356 /* Unmask the interrupts that we always want on. */
3357 dev_priv->irq_mask =
3358 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3359 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3360 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3361 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3362 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3363 I915_WRITE16(IMR, dev_priv->irq_mask);
3364
3365 I915_WRITE16(IER,
3366 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3367 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3368 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3369 I915_USER_INTERRUPT);
3370 POSTING_READ16(IER);
3371
3372 /* Interrupt setup is already guaranteed to be single-threaded, this is
3373 * just to make the assert_spin_locked check happy. */
3374 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3375 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3376 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3377 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3378
3379 return 0;
3380 }
3381
3382 /*
3383 * Returns true when a page flip has completed.
3384 */
3385 static bool i8xx_handle_vblank(struct drm_device *dev,
3386 int plane, int pipe, u32 iir)
3387 {
3388 drm_i915_private_t *dev_priv = dev->dev_private;
3389 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3390
3391 if (!drm_handle_vblank(dev, pipe))
3392 return false;
3393
3394 if ((iir & flip_pending) == 0)
3395 return false;
3396
3397 intel_prepare_page_flip(dev, plane);
3398
3399 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3400 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3401 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3402 * the flip is completed (no longer pending). Since this doesn't raise
3403 * an interrupt per se, we watch for the change at vblank.
3404 */
3405 if (I915_READ16(ISR) & flip_pending)
3406 return false;
3407
3408 intel_finish_page_flip(dev, pipe);
3409
3410 return true;
3411 }
3412
3413 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3414 {
3415 struct drm_device *dev = (struct drm_device *) arg;
3416 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3417 u16 iir, new_iir;
3418 u32 pipe_stats[2];
3419 unsigned long irqflags;
3420 int pipe;
3421 u16 flip_mask =
3422 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3423 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3424
3425 iir = I915_READ16(IIR);
3426 if (iir == 0)
3427 return IRQ_NONE;
3428
3429 while (iir & ~flip_mask) {
3430 /* Can't rely on pipestat interrupt bit in iir as it might
3431 * have been cleared after the pipestat interrupt was received.
3432 * It doesn't set the bit in iir again, but it still produces
3433 * interrupts (for non-MSI).
3434 */
3435 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3436 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3437 i915_handle_error(dev, false,
3438 "Command parser error, iir 0x%08x",
3439 iir);
3440
3441 for_each_pipe(pipe) {
3442 int reg = PIPESTAT(pipe);
3443 pipe_stats[pipe] = I915_READ(reg);
3444
3445 /*
3446 * Clear the PIPE*STAT regs before the IIR
3447 */
3448 if (pipe_stats[pipe] & 0x8000ffff)
3449 I915_WRITE(reg, pipe_stats[pipe]);
3450 }
3451 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3452
3453 I915_WRITE16(IIR, iir & ~flip_mask);
3454 new_iir = I915_READ16(IIR); /* Flush posted writes */
3455
3456 i915_update_dri1_breadcrumb(dev);
3457
3458 if (iir & I915_USER_INTERRUPT)
3459 notify_ring(dev, &dev_priv->ring[RCS]);
3460
3461 for_each_pipe(pipe) {
3462 int plane = pipe;
3463 if (HAS_FBC(dev))
3464 plane = !plane;
3465
3466 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3467 i8xx_handle_vblank(dev, plane, pipe, iir))
3468 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3469
3470 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3471 i9xx_pipe_crc_irq_handler(dev, pipe);
3472
3473 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3474 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3475 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3476 }
3477
3478 iir = new_iir;
3479 }
3480
3481 return IRQ_HANDLED;
3482 }
3483
3484 static void i8xx_irq_uninstall(struct drm_device * dev)
3485 {
3486 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3487 int pipe;
3488
3489 for_each_pipe(pipe) {
3490 /* Clear enable bits; then clear status bits */
3491 I915_WRITE(PIPESTAT(pipe), 0);
3492 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3493 }
3494 I915_WRITE16(IMR, 0xffff);
3495 I915_WRITE16(IER, 0x0);
3496 I915_WRITE16(IIR, I915_READ16(IIR));
3497 }
3498
3499 static void i915_irq_preinstall(struct drm_device * dev)
3500 {
3501 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3502 int pipe;
3503
3504 if (I915_HAS_HOTPLUG(dev)) {
3505 I915_WRITE(PORT_HOTPLUG_EN, 0);
3506 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3507 }
3508
3509 I915_WRITE16(HWSTAM, 0xeffe);
3510 for_each_pipe(pipe)
3511 I915_WRITE(PIPESTAT(pipe), 0);
3512 I915_WRITE(IMR, 0xffffffff);
3513 I915_WRITE(IER, 0x0);
3514 POSTING_READ(IER);
3515 }
3516
3517 static int i915_irq_postinstall(struct drm_device *dev)
3518 {
3519 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3520 u32 enable_mask;
3521 unsigned long irqflags;
3522
3523 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3524
3525 /* Unmask the interrupts that we always want on. */
3526 dev_priv->irq_mask =
3527 ~(I915_ASLE_INTERRUPT |
3528 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3529 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3530 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3531 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3532 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3533
3534 enable_mask =
3535 I915_ASLE_INTERRUPT |
3536 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3537 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3538 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3539 I915_USER_INTERRUPT;
3540
3541 if (I915_HAS_HOTPLUG(dev)) {
3542 I915_WRITE(PORT_HOTPLUG_EN, 0);
3543 POSTING_READ(PORT_HOTPLUG_EN);
3544
3545 /* Enable in IER... */
3546 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3547 /* and unmask in IMR */
3548 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3549 }
3550
3551 I915_WRITE(IMR, dev_priv->irq_mask);
3552 I915_WRITE(IER, enable_mask);
3553 POSTING_READ(IER);
3554
3555 i915_enable_asle_pipestat(dev);
3556
3557 /* Interrupt setup is already guaranteed to be single-threaded, this is
3558 * just to make the assert_spin_locked check happy. */
3559 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3560 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3561 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3562 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3563
3564 return 0;
3565 }
3566
3567 /*
3568 * Returns true when a page flip has completed.
3569 */
3570 static bool i915_handle_vblank(struct drm_device *dev,
3571 int plane, int pipe, u32 iir)
3572 {
3573 drm_i915_private_t *dev_priv = dev->dev_private;
3574 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3575
3576 if (!drm_handle_vblank(dev, pipe))
3577 return false;
3578
3579 if ((iir & flip_pending) == 0)
3580 return false;
3581
3582 intel_prepare_page_flip(dev, plane);
3583
3584 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3585 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3586 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3587 * the flip is completed (no longer pending). Since this doesn't raise
3588 * an interrupt per se, we watch for the change at vblank.
3589 */
3590 if (I915_READ(ISR) & flip_pending)
3591 return false;
3592
3593 intel_finish_page_flip(dev, pipe);
3594
3595 return true;
3596 }
3597
3598 static irqreturn_t i915_irq_handler(int irq, void *arg)
3599 {
3600 struct drm_device *dev = (struct drm_device *) arg;
3601 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3602 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3603 unsigned long irqflags;
3604 u32 flip_mask =
3605 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3606 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3607 int pipe, ret = IRQ_NONE;
3608
3609 iir = I915_READ(IIR);
3610 do {
3611 bool irq_received = (iir & ~flip_mask) != 0;
3612 bool blc_event = false;
3613
3614 /* Can't rely on pipestat interrupt bit in iir as it might
3615 * have been cleared after the pipestat interrupt was received.
3616 * It doesn't set the bit in iir again, but it still produces
3617 * interrupts (for non-MSI).
3618 */
3619 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3620 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3621 i915_handle_error(dev, false,
3622 "Command parser error, iir 0x%08x",
3623 iir);
3624
3625 for_each_pipe(pipe) {
3626 int reg = PIPESTAT(pipe);
3627 pipe_stats[pipe] = I915_READ(reg);
3628
3629 /* Clear the PIPE*STAT regs before the IIR */
3630 if (pipe_stats[pipe] & 0x8000ffff) {
3631 I915_WRITE(reg, pipe_stats[pipe]);
3632 irq_received = true;
3633 }
3634 }
3635 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3636
3637 if (!irq_received)
3638 break;
3639
3640 /* Consume port. Then clear IIR or we'll miss events */
3641 if ((I915_HAS_HOTPLUG(dev)) &&
3642 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3643 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3644 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3645
3646 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3647
3648 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3649 POSTING_READ(PORT_HOTPLUG_STAT);
3650 }
3651
3652 I915_WRITE(IIR, iir & ~flip_mask);
3653 new_iir = I915_READ(IIR); /* Flush posted writes */
3654
3655 if (iir & I915_USER_INTERRUPT)
3656 notify_ring(dev, &dev_priv->ring[RCS]);
3657
3658 for_each_pipe(pipe) {
3659 int plane = pipe;
3660 if (HAS_FBC(dev))
3661 plane = !plane;
3662
3663 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3664 i915_handle_vblank(dev, plane, pipe, iir))
3665 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3666
3667 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3668 blc_event = true;
3669
3670 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3671 i9xx_pipe_crc_irq_handler(dev, pipe);
3672
3673 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3674 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3675 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3676 }
3677
3678 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3679 intel_opregion_asle_intr(dev);
3680
3681 /* With MSI, interrupts are only generated when iir
3682 * transitions from zero to nonzero. If another bit got
3683 * set while we were handling the existing iir bits, then
3684 * we would never get another interrupt.
3685 *
3686 * This is fine on non-MSI as well, as if we hit this path
3687 * we avoid exiting the interrupt handler only to generate
3688 * another one.
3689 *
3690 * Note that for MSI this could cause a stray interrupt report
3691 * if an interrupt landed in the time between writing IIR and
3692 * the posting read. This should be rare enough to never
3693 * trigger the 99% of 100,000 interrupts test for disabling
3694 * stray interrupts.
3695 */
3696 ret = IRQ_HANDLED;
3697 iir = new_iir;
3698 } while (iir & ~flip_mask);
3699
3700 i915_update_dri1_breadcrumb(dev);
3701
3702 return ret;
3703 }
3704
3705 static void i915_irq_uninstall(struct drm_device * dev)
3706 {
3707 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3708 int pipe;
3709
3710 intel_hpd_irq_uninstall(dev_priv);
3711
3712 if (I915_HAS_HOTPLUG(dev)) {
3713 I915_WRITE(PORT_HOTPLUG_EN, 0);
3714 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3715 }
3716
3717 I915_WRITE16(HWSTAM, 0xffff);
3718 for_each_pipe(pipe) {
3719 /* Clear enable bits; then clear status bits */
3720 I915_WRITE(PIPESTAT(pipe), 0);
3721 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3722 }
3723 I915_WRITE(IMR, 0xffffffff);
3724 I915_WRITE(IER, 0x0);
3725
3726 I915_WRITE(IIR, I915_READ(IIR));
3727 }
3728
3729 static void i965_irq_preinstall(struct drm_device * dev)
3730 {
3731 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3732 int pipe;
3733
3734 I915_WRITE(PORT_HOTPLUG_EN, 0);
3735 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3736
3737 I915_WRITE(HWSTAM, 0xeffe);
3738 for_each_pipe(pipe)
3739 I915_WRITE(PIPESTAT(pipe), 0);
3740 I915_WRITE(IMR, 0xffffffff);
3741 I915_WRITE(IER, 0x0);
3742 POSTING_READ(IER);
3743 }
3744
3745 static int i965_irq_postinstall(struct drm_device *dev)
3746 {
3747 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3748 u32 enable_mask;
3749 u32 error_mask;
3750 unsigned long irqflags;
3751
3752 /* Unmask the interrupts that we always want on. */
3753 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3754 I915_DISPLAY_PORT_INTERRUPT |
3755 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3756 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3757 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3758 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3759 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3760
3761 enable_mask = ~dev_priv->irq_mask;
3762 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3763 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3764 enable_mask |= I915_USER_INTERRUPT;
3765
3766 if (IS_G4X(dev))
3767 enable_mask |= I915_BSD_USER_INTERRUPT;
3768
3769 /* Interrupt setup is already guaranteed to be single-threaded, this is
3770 * just to make the assert_spin_locked check happy. */
3771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3772 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3773 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3774 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3775 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3776
3777 /*
3778 * Enable some error detection, note the instruction error mask
3779 * bit is reserved, so we leave it masked.
3780 */
3781 if (IS_G4X(dev)) {
3782 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3783 GM45_ERROR_MEM_PRIV |
3784 GM45_ERROR_CP_PRIV |
3785 I915_ERROR_MEMORY_REFRESH);
3786 } else {
3787 error_mask = ~(I915_ERROR_PAGE_TABLE |
3788 I915_ERROR_MEMORY_REFRESH);
3789 }
3790 I915_WRITE(EMR, error_mask);
3791
3792 I915_WRITE(IMR, dev_priv->irq_mask);
3793 I915_WRITE(IER, enable_mask);
3794 POSTING_READ(IER);
3795
3796 I915_WRITE(PORT_HOTPLUG_EN, 0);
3797 POSTING_READ(PORT_HOTPLUG_EN);
3798
3799 i915_enable_asle_pipestat(dev);
3800
3801 return 0;
3802 }
3803
3804 static void i915_hpd_irq_setup(struct drm_device *dev)
3805 {
3806 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3807 struct drm_mode_config *mode_config = &dev->mode_config;
3808 struct intel_encoder *intel_encoder;
3809 u32 hotplug_en;
3810
3811 assert_spin_locked(&dev_priv->irq_lock);
3812
3813 if (I915_HAS_HOTPLUG(dev)) {
3814 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3815 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3816 /* Note HDMI and DP share hotplug bits */
3817 /* enable bits are the same for all generations */
3818 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3819 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3820 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3821 /* Programming the CRT detection parameters tends
3822 to generate a spurious hotplug event about three
3823 seconds later. So just do it once.
3824 */
3825 if (IS_G4X(dev))
3826 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3827 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3828 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3829
3830 /* Ignore TV since it's buggy */
3831 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3832 }
3833 }
3834
3835 static irqreturn_t i965_irq_handler(int irq, void *arg)
3836 {
3837 struct drm_device *dev = (struct drm_device *) arg;
3838 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3839 u32 iir, new_iir;
3840 u32 pipe_stats[I915_MAX_PIPES];
3841 unsigned long irqflags;
3842 int ret = IRQ_NONE, pipe;
3843 u32 flip_mask =
3844 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3845 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3846
3847 iir = I915_READ(IIR);
3848
3849 for (;;) {
3850 bool irq_received = (iir & ~flip_mask) != 0;
3851 bool blc_event = false;
3852
3853 /* Can't rely on pipestat interrupt bit in iir as it might
3854 * have been cleared after the pipestat interrupt was received.
3855 * It doesn't set the bit in iir again, but it still produces
3856 * interrupts (for non-MSI).
3857 */
3858 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3859 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3860 i915_handle_error(dev, false,
3861 "Command parser error, iir 0x%08x",
3862 iir);
3863
3864 for_each_pipe(pipe) {
3865 int reg = PIPESTAT(pipe);
3866 pipe_stats[pipe] = I915_READ(reg);
3867
3868 /*
3869 * Clear the PIPE*STAT regs before the IIR
3870 */
3871 if (pipe_stats[pipe] & 0x8000ffff) {
3872 I915_WRITE(reg, pipe_stats[pipe]);
3873 irq_received = true;
3874 }
3875 }
3876 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3877
3878 if (!irq_received)
3879 break;
3880
3881 ret = IRQ_HANDLED;
3882
3883 /* Consume port. Then clear IIR or we'll miss events */
3884 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3885 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3886 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3887 HOTPLUG_INT_STATUS_G4X :
3888 HOTPLUG_INT_STATUS_I915);
3889
3890 intel_hpd_irq_handler(dev, hotplug_trigger,
3891 IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3892
3893 if (IS_G4X(dev) &&
3894 (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3895 dp_aux_irq_handler(dev);
3896
3897 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3898 I915_READ(PORT_HOTPLUG_STAT);
3899 }
3900
3901 I915_WRITE(IIR, iir & ~flip_mask);
3902 new_iir = I915_READ(IIR); /* Flush posted writes */
3903
3904 if (iir & I915_USER_INTERRUPT)
3905 notify_ring(dev, &dev_priv->ring[RCS]);
3906 if (iir & I915_BSD_USER_INTERRUPT)
3907 notify_ring(dev, &dev_priv->ring[VCS]);
3908
3909 for_each_pipe(pipe) {
3910 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3911 i915_handle_vblank(dev, pipe, pipe, iir))
3912 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3913
3914 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3915 blc_event = true;
3916
3917 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3918 i9xx_pipe_crc_irq_handler(dev, pipe);
3919
3920 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3921 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3922 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3923 }
3924
3925 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3926 intel_opregion_asle_intr(dev);
3927
3928 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3929 gmbus_irq_handler(dev);
3930
3931 /* With MSI, interrupts are only generated when iir
3932 * transitions from zero to nonzero. If another bit got
3933 * set while we were handling the existing iir bits, then
3934 * we would never get another interrupt.
3935 *
3936 * This is fine on non-MSI as well, as if we hit this path
3937 * we avoid exiting the interrupt handler only to generate
3938 * another one.
3939 *
3940 * Note that for MSI this could cause a stray interrupt report
3941 * if an interrupt landed in the time between writing IIR and
3942 * the posting read. This should be rare enough to never
3943 * trigger the 99% of 100,000 interrupts test for disabling
3944 * stray interrupts.
3945 */
3946 iir = new_iir;
3947 }
3948
3949 i915_update_dri1_breadcrumb(dev);
3950
3951 return ret;
3952 }
3953
3954 static void i965_irq_uninstall(struct drm_device * dev)
3955 {
3956 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3957 int pipe;
3958
3959 if (!dev_priv)
3960 return;
3961
3962 intel_hpd_irq_uninstall(dev_priv);
3963
3964 I915_WRITE(PORT_HOTPLUG_EN, 0);
3965 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3966
3967 I915_WRITE(HWSTAM, 0xffffffff);
3968 for_each_pipe(pipe)
3969 I915_WRITE(PIPESTAT(pipe), 0);
3970 I915_WRITE(IMR, 0xffffffff);
3971 I915_WRITE(IER, 0x0);
3972
3973 for_each_pipe(pipe)
3974 I915_WRITE(PIPESTAT(pipe),
3975 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3976 I915_WRITE(IIR, I915_READ(IIR));
3977 }
3978
3979 static void intel_hpd_irq_reenable(unsigned long data)
3980 {
3981 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3982 struct drm_device *dev = dev_priv->dev;
3983 struct drm_mode_config *mode_config = &dev->mode_config;
3984 unsigned long irqflags;
3985 int i;
3986
3987 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3988 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3989 struct drm_connector *connector;
3990
3991 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3992 continue;
3993
3994 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3995
3996 list_for_each_entry(connector, &mode_config->connector_list, head) {
3997 struct intel_connector *intel_connector = to_intel_connector(connector);
3998
3999 if (intel_connector->encoder->hpd_pin == i) {
4000 if (connector->polled != intel_connector->polled)
4001 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4002 drm_get_connector_name(connector));
4003 connector->polled = intel_connector->polled;
4004 if (!connector->polled)
4005 connector->polled = DRM_CONNECTOR_POLL_HPD;
4006 }
4007 }
4008 }
4009 if (dev_priv->display.hpd_irq_setup)
4010 dev_priv->display.hpd_irq_setup(dev);
4011 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4012 }
4013
4014 void intel_irq_init(struct drm_device *dev)
4015 {
4016 struct drm_i915_private *dev_priv = dev->dev_private;
4017
4018 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4019 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4020 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4021 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4022
4023 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4024 i915_hangcheck_elapsed,
4025 (unsigned long) dev);
4026 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4027 (unsigned long) dev_priv);
4028
4029 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4030
4031 if (IS_GEN2(dev)) {
4032 dev->max_vblank_count = 0;
4033 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4034 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4035 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4036 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4037 } else {
4038 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4039 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4040 }
4041
4042 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4043 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4044 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4045 }
4046
4047 if (IS_VALLEYVIEW(dev)) {
4048 dev->driver->irq_handler = valleyview_irq_handler;
4049 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4050 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4051 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4052 dev->driver->enable_vblank = valleyview_enable_vblank;
4053 dev->driver->disable_vblank = valleyview_disable_vblank;
4054 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4055 } else if (IS_GEN8(dev)) {
4056 dev->driver->irq_handler = gen8_irq_handler;
4057 dev->driver->irq_preinstall = gen8_irq_preinstall;
4058 dev->driver->irq_postinstall = gen8_irq_postinstall;
4059 dev->driver->irq_uninstall = gen8_irq_uninstall;
4060 dev->driver->enable_vblank = gen8_enable_vblank;
4061 dev->driver->disable_vblank = gen8_disable_vblank;
4062 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4063 } else if (HAS_PCH_SPLIT(dev)) {
4064 dev->driver->irq_handler = ironlake_irq_handler;
4065 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4066 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4067 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4068 dev->driver->enable_vblank = ironlake_enable_vblank;
4069 dev->driver->disable_vblank = ironlake_disable_vblank;
4070 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4071 } else {
4072 if (INTEL_INFO(dev)->gen == 2) {
4073 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4074 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4075 dev->driver->irq_handler = i8xx_irq_handler;
4076 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4077 } else if (INTEL_INFO(dev)->gen == 3) {
4078 dev->driver->irq_preinstall = i915_irq_preinstall;
4079 dev->driver->irq_postinstall = i915_irq_postinstall;
4080 dev->driver->irq_uninstall = i915_irq_uninstall;
4081 dev->driver->irq_handler = i915_irq_handler;
4082 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4083 } else {
4084 dev->driver->irq_preinstall = i965_irq_preinstall;
4085 dev->driver->irq_postinstall = i965_irq_postinstall;
4086 dev->driver->irq_uninstall = i965_irq_uninstall;
4087 dev->driver->irq_handler = i965_irq_handler;
4088 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4089 }
4090 dev->driver->enable_vblank = i915_enable_vblank;
4091 dev->driver->disable_vblank = i915_disable_vblank;
4092 }
4093 }
4094
4095 void intel_hpd_init(struct drm_device *dev)
4096 {
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct drm_mode_config *mode_config = &dev->mode_config;
4099 struct drm_connector *connector;
4100 unsigned long irqflags;
4101 int i;
4102
4103 for (i = 1; i < HPD_NUM_PINS; i++) {
4104 dev_priv->hpd_stats[i].hpd_cnt = 0;
4105 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4106 }
4107 list_for_each_entry(connector, &mode_config->connector_list, head) {
4108 struct intel_connector *intel_connector = to_intel_connector(connector);
4109 connector->polled = intel_connector->polled;
4110 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4111 connector->polled = DRM_CONNECTOR_POLL_HPD;
4112 }
4113
4114 /* Interrupt setup is already guaranteed to be single-threaded, this is
4115 * just to make the assert_spin_locked checks happy. */
4116 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4117 if (dev_priv->display.hpd_irq_setup)
4118 dev_priv->display.hpd_irq_setup(dev);
4119 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4120 }
4121
4122 /* Disable interrupts so we can allow runtime PM. */
4123 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4124 {
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 unsigned long irqflags;
4127
4128 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4129
4130 dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4131 dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4132 dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4133 dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4134 dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4135
4136 ironlake_disable_display_irq(dev_priv, 0xffffffff);
4137 ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4138 ilk_disable_gt_irq(dev_priv, 0xffffffff);
4139 snb_disable_pm_irq(dev_priv, 0xffffffff);
4140
4141 dev_priv->pm.irqs_disabled = true;
4142
4143 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4144 }
4145
4146 /* Restore interrupts so we can recover from runtime PM. */
4147 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4148 {
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 unsigned long irqflags;
4151 uint32_t val;
4152
4153 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4154
4155 val = I915_READ(DEIMR);
4156 WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4157
4158 val = I915_READ(SDEIMR);
4159 WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4160
4161 val = I915_READ(GTIMR);
4162 WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4163
4164 val = I915_READ(GEN6_PMIMR);
4165 WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4166
4167 dev_priv->pm.irqs_disabled = false;
4168
4169 ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4170 ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4171 ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4172 snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4173 I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4174
4175 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4176 }