]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge remote-tracking branch 'asoc/topic/dapm' into asoc-next
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (!intel_irqs_enabled(dev_priv))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 /**
252 * bdw_update_pm_irq - update GT interrupt 2
253 * @dev_priv: driver private
254 * @interrupt_mask: mask of interrupt bits to update
255 * @enabled_irq_mask: mask of interrupt bits to enable
256 *
257 * Copied from the snb function, updated with relevant register offsets
258 */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 uint32_t new_val;
264
265 assert_spin_locked(&dev_priv->irq_lock);
266
267 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 return;
269
270 new_val = dev_priv->pm_irq_mask;
271 new_val &= ~interrupt_mask;
272 new_val |= (~enabled_irq_mask & interrupt_mask);
273
274 if (new_val != dev_priv->pm_irq_mask) {
275 dev_priv->pm_irq_mask = new_val;
276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 POSTING_READ(GEN8_GT_IMR(2));
278 }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 enum pipe pipe;
295 struct intel_crtc *crtc;
296
297 assert_spin_locked(&dev_priv->irq_lock);
298
299 for_each_pipe(pipe) {
300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302 if (crtc->pch_fifo_underrun_disabled)
303 return false;
304 }
305
306 return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *crtc;
313 unsigned long flags;
314
315 spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317 for_each_intel_crtc(dev, crtc) {
318 u32 reg = PIPESTAT(crtc->pipe);
319 u32 pipestat;
320
321 if (crtc->cpu_fifo_underrun_disabled)
322 continue;
323
324 pipestat = I915_READ(reg) & 0xffff0000;
325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 continue;
327
328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 POSTING_READ(reg);
330
331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 }
333
334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 enum pipe pipe,
339 bool enable, bool old)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 u32 reg = PIPESTAT(pipe);
343 u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345 assert_spin_locked(&dev_priv->irq_lock);
346
347 if (enable) {
348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 POSTING_READ(reg);
350 } else {
351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 enum pipe pipe, bool enable)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 DE_PIPEB_FIFO_UNDERRUN;
362
363 if (enable)
364 ironlake_enable_display_irq(dev_priv, bit);
365 else
366 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 enum pipe pipe,
371 bool enable, bool old)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 if (enable) {
375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377 if (!ivb_can_enable_err_int(dev))
378 return;
379
380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 } else {
382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384 if (old &&
385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 pipe_name(pipe));
388 }
389 }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 enum pipe pipe, bool enable)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 assert_spin_locked(&dev_priv->irq_lock);
398
399 if (enable)
400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 else
402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408 * ibx_display_interrupt_update - update SDEIMR
409 * @dev_priv: driver private
410 * @interrupt_mask: mask of interrupt bits to update
411 * @enabled_irq_mask: mask of interrupt bits to enable
412 */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 uint32_t interrupt_mask,
415 uint32_t enabled_irq_mask)
416 {
417 uint32_t sdeimr = I915_READ(SDEIMR);
418 sdeimr &= ~interrupt_mask;
419 sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 return;
425
426 I915_WRITE(SDEIMR, sdeimr);
427 POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 enum transcoder pch_transcoder,
436 bool enable)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442 if (enable)
443 ibx_enable_display_interrupt(dev_priv, bit);
444 else
445 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 enum transcoder pch_transcoder,
450 bool enable, bool old)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453
454 if (enable) {
455 I915_WRITE(SERR_INT,
456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458 if (!cpt_can_enable_serr_int(dev))
459 return;
460
461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 } else {
463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465 if (old && I915_READ(SERR_INT) &
466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 transcoder_name(pch_transcoder));
469 }
470 }
471 }
472
473 /**
474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475 * @dev: drm device
476 * @pipe: pipe
477 * @enable: true if we want to report FIFO underrun errors, false otherwise
478 *
479 * This function makes us disable or enable CPU fifo underruns for a specific
480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481 * reporting for one pipe may also disable all the other CPU error interruts for
482 * the other pipes, due to the fact that there's just one interrupt mask/enable
483 * bit for all the pipes.
484 *
485 * Returns the previous state of underrun reporting.
486 */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 enum pipe pipe, bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 bool old;
494
495 assert_spin_locked(&dev_priv->irq_lock);
496
497 old = !intel_crtc->cpu_fifo_underrun_disabled;
498 intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500 if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 else if (IS_GEN5(dev) || IS_GEN6(dev))
503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 else if (IS_GEN7(dev))
505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 else if (IS_GEN8(dev))
507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509 return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 enum pipe pipe, bool enable)
514 {
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 unsigned long flags;
517 bool ret;
518
519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523 return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 enum pipe pipe)
528 {
529 struct drm_i915_private *dev_priv = dev->dev_private;
530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533 return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538 * @dev: drm device
539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540 * @enable: true if we want to report FIFO underrun errors, false otherwise
541 *
542 * This function makes us disable or enable PCH fifo underruns for a specific
543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544 * underrun reporting for one transcoder may also disable all the other PCH
545 * error interruts for the other transcoders, due to the fact that there's just
546 * one interrupt mask/enable bit for all the transcoders.
547 *
548 * Returns the previous state of underrun reporting.
549 */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 enum transcoder pch_transcoder,
552 bool enable)
553 {
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 unsigned long flags;
558 bool old;
559
560 /*
561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 * has only one pch transcoder A that all pipes can use. To avoid racy
563 * pch transcoder -> pipe lookups from interrupt code simply store the
564 * underrun statistics in crtc A. Since we never expose this anywhere
565 * nor use it outside of the fifo underrun code here using the "wrong"
566 * crtc on LPT won't cause issues.
567 */
568
569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571 old = !intel_crtc->pch_fifo_underrun_disabled;
572 intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574 if (HAS_PCH_IBX(dev))
575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 else
577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 u32 enable_mask, u32 status_mask)
587 {
588 u32 reg = PIPESTAT(pipe);
589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591 assert_spin_locked(&dev_priv->irq_lock);
592
593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 pipe_name(pipe), enable_mask, status_mask))
597 return;
598
599 if ((pipestat & enable_mask) == enable_mask)
600 return;
601
602 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604 /* Enable the interrupt, clear any pending status */
605 pipestat |= enable_mask | status_mask;
606 I915_WRITE(reg, pipestat);
607 POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 u32 enable_mask, u32 status_mask)
613 {
614 u32 reg = PIPESTAT(pipe);
615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617 assert_spin_locked(&dev_priv->irq_lock);
618
619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 pipe_name(pipe), enable_mask, status_mask))
623 return;
624
625 if ((pipestat & enable_mask) == 0)
626 return;
627
628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630 pipestat &= ~enable_mask;
631 I915_WRITE(reg, pipestat);
632 POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 u32 enable_mask = status_mask << 16;
638
639 /*
640 * On pipe A we don't support the PSR interrupt yet,
641 * on pipe B and C the same bit MBZ.
642 */
643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 return 0;
645 /*
646 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 * A the same bit is for perf counters which we don't use either.
648 */
649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 return 0;
651
652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660 return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 u32 status_mask)
666 {
667 u32 enable_mask;
668
669 if (IS_VALLEYVIEW(dev_priv->dev))
670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 status_mask);
672 else
673 enable_mask = status_mask << 16;
674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 u32 status_mask)
680 {
681 u32 enable_mask;
682
683 if (IS_VALLEYVIEW(dev_priv->dev))
684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 status_mask);
686 else
687 enable_mask = status_mask << 16;
688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693 */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 unsigned long irqflags;
698
699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 return;
701
702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 if (INTEL_INFO(dev)->gen >= 4)
706 i915_enable_pipestat(dev_priv, PIPE_A,
707 PIPE_LEGACY_BLC_EVENT_STATUS);
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713 * i915_pipe_enabled - check if a pipe is enabled
714 * @dev: DRM device
715 * @pipe: pipe to check
716 *
717 * Reading certain registers when the pipe is disabled can hang the chip.
718 * Use this routine to make sure the PLL is running and the pipe is active
719 * before reading such registers if unsure.
720 */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 /* Locking is horribly broken here, but whatever. */
728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731 return intel_crtc->active;
732 } else {
733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 }
735 }
736
737 /*
738 * This timing diagram depicts the video signal in and
739 * around the vertical blanking period.
740 *
741 * Assumptions about the fictitious mode used in this example:
742 * vblank_start >= 3
743 * vsync_start = vblank_start + 1
744 * vsync_end = vblank_start + 2
745 * vtotal = vblank_start + 3
746 *
747 * start of vblank:
748 * latch double buffered registers
749 * increment frame counter (ctg+)
750 * generate start of vblank interrupt (gen4+)
751 * |
752 * | frame start:
753 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
754 * | may be shifted forward 1-3 extra lines via PIPECONF
755 * | |
756 * | | start of vsync:
757 * | | generate vsync interrupt
758 * | | |
759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
761 * ----va---> <-----------------vb--------------------> <--------va-------------
762 * | | <----vs-----> |
763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766 * | | |
767 * last visible pixel first visible pixel
768 * | increment frame counter (gen3/4)
769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
770 *
771 * x = horizontal active
772 * _ = horizontal blanking
773 * hs = horizontal sync
774 * va = vertical active
775 * vb = vertical blanking
776 * vs = vertical sync
777 * vbs = vblank_start (number)
778 *
779 * Summary:
780 * - most events happen at the start of horizontal sync
781 * - frame start happens at the start of horizontal blank, 1-4 lines
782 * (depending on PIPECONF settings) after the start of vblank
783 * - gen3/4 pixel and frame counter are synchronized with the start
784 * of horizontal active on the first line of vertical active
785 */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 /* Gen2 doesn't have a hardware frame counter */
790 return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794 * we use as a pipe index
795 */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 unsigned long high_frame;
800 unsigned long low_frame;
801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803 if (!i915_pipe_enabled(dev, pipe)) {
804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 "pipe %c\n", pipe_name(pipe));
806 return 0;
807 }
808
809 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 struct intel_crtc *intel_crtc =
811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 const struct drm_display_mode *mode =
813 &intel_crtc->config.adjusted_mode;
814
815 htotal = mode->crtc_htotal;
816 hsync_start = mode->crtc_hsync_start;
817 vbl_start = mode->crtc_vblank_start;
818 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 } else {
821 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 }
830
831 /* Convert to pixel count */
832 vbl_start *= htotal;
833
834 /* Start of vblank event occurs at start of hsync */
835 vbl_start -= htotal - hsync_start;
836
837 high_frame = PIPEFRAME(pipe);
838 low_frame = PIPEFRAMEPIXEL(pipe);
839
840 /*
841 * High & low register fields aren't synchronized, so make sure
842 * we get a low value that's stable across two reads of the high
843 * register.
844 */
845 do {
846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 low = I915_READ(low_frame);
848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 } while (high1 != high2);
850
851 high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 pixel = low & PIPE_PIXEL_MASK;
853 low >>= PIPE_FRAME_LOW_SHIFT;
854
855 /*
856 * The frame counter increments at beginning of active.
857 * Cook up a vblank counter by also checking the pixel
858 * counter against vblank start.
859 */
860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868 if (!i915_pipe_enabled(dev, pipe)) {
869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 "pipe %c\n", pipe_name(pipe));
871 return 0;
872 }
873
874 return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 struct drm_device *dev = crtc->base.dev;
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 enum pipe pipe = crtc->pipe;
886 int position, vtotal;
887
888 vtotal = mode->crtc_vtotal;
889 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 vtotal /= 2;
891
892 if (IS_GEN2(dev))
893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 else
895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897 /*
898 * See update_scanline_offset() for the details on the
899 * scanline_offset adjustment.
900 */
901 return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 unsigned int flags, int *vpos, int *hpos,
906 ktime_t *stime, ktime_t *etime)
907 {
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 int position;
913 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 bool in_vbl = true;
915 int ret = 0;
916 unsigned long irqflags;
917
918 if (!intel_crtc->active) {
919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 "pipe %c\n", pipe_name(pipe));
921 return 0;
922 }
923
924 htotal = mode->crtc_htotal;
925 hsync_start = mode->crtc_hsync_start;
926 vtotal = mode->crtc_vtotal;
927 vbl_start = mode->crtc_vblank_start;
928 vbl_end = mode->crtc_vblank_end;
929
930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 vbl_end /= 2;
933 vtotal /= 2;
934 }
935
936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938 /*
939 * Lock uncore.lock, as we will do multiple timing critical raw
940 * register reads, potentially with preemption disabled, so the
941 * following code must not block on uncore.lock.
942 */
943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947 /* Get optional system timestamp before query. */
948 if (stime)
949 *stime = ktime_get();
950
951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 /* No obvious pixelcount register. Only query vertical
953 * scanout position from Display scan line register.
954 */
955 position = __intel_get_crtc_scanline(intel_crtc);
956 } else {
957 /* Have access to pixelcount since start of frame.
958 * We can split this into vertical and horizontal
959 * scanout position.
960 */
961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963 /* convert to pixel counts */
964 vbl_start *= htotal;
965 vbl_end *= htotal;
966 vtotal *= htotal;
967
968 /*
969 * In interlaced modes, the pixel counter counts all pixels,
970 * so one field will have htotal more pixels. In order to avoid
971 * the reported position from jumping backwards when the pixel
972 * counter is beyond the length of the shorter field, just
973 * clamp the position the length of the shorter field. This
974 * matches how the scanline counter based position works since
975 * the scanline counter doesn't count the two half lines.
976 */
977 if (position >= vtotal)
978 position = vtotal - 1;
979
980 /*
981 * Start of vblank interrupt is triggered at start of hsync,
982 * just prior to the first active line of vblank. However we
983 * consider lines to start at the leading edge of horizontal
984 * active. So, should we get here before we've crossed into
985 * the horizontal active of the first line in vblank, we would
986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 * always add htotal-hsync_start to the current pixel position.
988 */
989 position = (position + htotal - hsync_start) % vtotal;
990 }
991
992 /* Get optional system timestamp after query. */
993 if (etime)
994 *etime = ktime_get();
995
996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000 in_vbl = position >= vbl_start && position < vbl_end;
1001
1002 /*
1003 * While in vblank, position will be negative
1004 * counting up towards 0 at vbl_end. And outside
1005 * vblank, position will be positive counting
1006 * up since vbl_end.
1007 */
1008 if (position >= vbl_start)
1009 position -= vbl_end;
1010 else
1011 position += vtotal - vbl_end;
1012
1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 *vpos = position;
1015 *hpos = 0;
1016 } else {
1017 *vpos = position / htotal;
1018 *hpos = position - (*vpos * htotal);
1019 }
1020
1021 /* In vblank? */
1022 if (in_vbl)
1023 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025 return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 unsigned long irqflags;
1032 int position;
1033
1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 position = __intel_get_crtc_scanline(crtc);
1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038 return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 int *max_error,
1043 struct timeval *vblank_time,
1044 unsigned flags)
1045 {
1046 struct drm_crtc *crtc;
1047
1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 DRM_ERROR("Invalid crtc %d\n", pipe);
1050 return -EINVAL;
1051 }
1052
1053 /* Get drm_crtc to timestamp: */
1054 crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 if (crtc == NULL) {
1056 DRM_ERROR("Invalid crtc %d\n", pipe);
1057 return -EINVAL;
1058 }
1059
1060 if (!crtc->enabled) {
1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 return -EBUSY;
1063 }
1064
1065 /* Helper routine in DRM core does all the work: */
1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 vblank_time, flags,
1068 crtc,
1069 &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 struct drm_connector *connector)
1074 {
1075 enum drm_connector_status old_status;
1076
1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 old_status = connector->status;
1079
1080 connector->status = connector->funcs->detect(connector, false);
1081 if (old_status == connector->status)
1082 return false;
1083
1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 connector->base.id,
1086 connector->name,
1087 drm_get_connector_status_name(old_status),
1088 drm_get_connector_status_name(connector->status));
1089
1090 return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 struct drm_i915_private *dev_priv =
1096 container_of(work, struct drm_i915_private, dig_port_work);
1097 unsigned long irqflags;
1098 u32 long_port_mask, short_port_mask;
1099 struct intel_digital_port *intel_dig_port;
1100 int i, ret;
1101 u32 old_bits = 0;
1102
1103 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 long_port_mask = dev_priv->long_hpd_port_mask;
1105 dev_priv->long_hpd_port_mask = 0;
1106 short_port_mask = dev_priv->short_hpd_port_mask;
1107 dev_priv->short_hpd_port_mask = 0;
1108 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110 for (i = 0; i < I915_MAX_PORTS; i++) {
1111 bool valid = false;
1112 bool long_hpd = false;
1113 intel_dig_port = dev_priv->hpd_irq_port[i];
1114 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 continue;
1116
1117 if (long_port_mask & (1 << i)) {
1118 valid = true;
1119 long_hpd = true;
1120 } else if (short_port_mask & (1 << i))
1121 valid = true;
1122
1123 if (valid) {
1124 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 if (ret == true) {
1126 /* if we get true fallback to old school hpd */
1127 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 }
1129 }
1130 }
1131
1132 if (old_bits) {
1133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 dev_priv->hpd_event_bits |= old_bits;
1135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 schedule_work(&dev_priv->hotplug_work);
1137 }
1138 }
1139
1140 /*
1141 * Handle hotplug events outside the interrupt handler proper.
1142 */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 struct drm_i915_private *dev_priv =
1148 container_of(work, struct drm_i915_private, hotplug_work);
1149 struct drm_device *dev = dev_priv->dev;
1150 struct drm_mode_config *mode_config = &dev->mode_config;
1151 struct intel_connector *intel_connector;
1152 struct intel_encoder *intel_encoder;
1153 struct drm_connector *connector;
1154 unsigned long irqflags;
1155 bool hpd_disabled = false;
1156 bool changed = false;
1157 u32 hpd_event_bits;
1158
1159 mutex_lock(&mode_config->mutex);
1160 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164 hpd_event_bits = dev_priv->hpd_event_bits;
1165 dev_priv->hpd_event_bits = 0;
1166 list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 intel_connector = to_intel_connector(connector);
1168 if (!intel_connector->encoder)
1169 continue;
1170 intel_encoder = intel_connector->encoder;
1171 if (intel_encoder->hpd_pin > HPD_NONE &&
1172 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 "switching from hotplug detection to polling\n",
1176 connector->name);
1177 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 | DRM_CONNECTOR_POLL_DISCONNECT;
1180 hpd_disabled = true;
1181 }
1182 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 connector->name, intel_encoder->hpd_pin);
1185 }
1186 }
1187 /* if there were no outputs to poll, poll was disabled,
1188 * therefore make sure it's enabled when disabling HPD on
1189 * some connectors */
1190 if (hpd_disabled) {
1191 drm_kms_helper_poll_enable(dev);
1192 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 }
1195
1196 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198 list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 intel_connector = to_intel_connector(connector);
1200 if (!intel_connector->encoder)
1201 continue;
1202 intel_encoder = intel_connector->encoder;
1203 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 if (intel_encoder->hot_plug)
1205 intel_encoder->hot_plug(intel_encoder);
1206 if (intel_hpd_irq_event(dev, connector))
1207 changed = true;
1208 }
1209 }
1210 mutex_unlock(&mode_config->mutex);
1211
1212 if (changed)
1213 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 struct drm_i915_private *dev_priv = dev->dev_private;
1219 u32 busy_up, busy_down, max_avg, min_avg;
1220 u8 new_delay;
1221
1222 spin_lock(&mchdev_lock);
1223
1224 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226 new_delay = dev_priv->ips.cur_delay;
1227
1228 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 max_avg = I915_READ(RCBMAXAVG);
1232 min_avg = I915_READ(RCBMINAVG);
1233
1234 /* Handle RCS change request from hw */
1235 if (busy_up > max_avg) {
1236 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 new_delay = dev_priv->ips.cur_delay - 1;
1238 if (new_delay < dev_priv->ips.max_delay)
1239 new_delay = dev_priv->ips.max_delay;
1240 } else if (busy_down < min_avg) {
1241 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 new_delay = dev_priv->ips.cur_delay + 1;
1243 if (new_delay > dev_priv->ips.min_delay)
1244 new_delay = dev_priv->ips.min_delay;
1245 }
1246
1247 if (ironlake_set_drps(dev, new_delay))
1248 dev_priv->ips.cur_delay = new_delay;
1249
1250 spin_unlock(&mchdev_lock);
1251
1252 return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256 struct intel_engine_cs *ring)
1257 {
1258 if (!intel_ring_initialized(ring))
1259 return;
1260
1261 trace_i915_gem_request_complete(ring);
1262
1263 if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 intel_notify_mmio_flip(ring);
1265
1266 wake_up_all(&ring->irq_queue);
1267 i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 struct intel_rps_ei *rps_ei)
1272 {
1273 u32 cz_ts, cz_freq_khz;
1274 u32 render_count, media_count;
1275 u32 elapsed_render, elapsed_media, elapsed_time;
1276 u32 residency = 0;
1277
1278 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284 if (rps_ei->cz_clock == 0) {
1285 rps_ei->cz_clock = cz_ts;
1286 rps_ei->render_c0 = render_count;
1287 rps_ei->media_c0 = media_count;
1288
1289 return dev_priv->rps.cur_freq;
1290 }
1291
1292 elapsed_time = cz_ts - rps_ei->cz_clock;
1293 rps_ei->cz_clock = cz_ts;
1294
1295 elapsed_render = render_count - rps_ei->render_c0;
1296 rps_ei->render_c0 = render_count;
1297
1298 elapsed_media = media_count - rps_ei->media_c0;
1299 rps_ei->media_c0 = media_count;
1300
1301 /* Convert all the counters into common unit of milli sec */
1302 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 elapsed_render /= cz_freq_khz;
1304 elapsed_media /= cz_freq_khz;
1305
1306 /*
1307 * Calculate overall C0 residency percentage
1308 * only if elapsed time is non zero
1309 */
1310 if (elapsed_time) {
1311 residency =
1312 ((max(elapsed_render, elapsed_media) * 100)
1313 / elapsed_time);
1314 }
1315
1316 return residency;
1317 }
1318
1319 /**
1320 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321 * busy-ness calculated from C0 counters of render & media power wells
1322 * @dev_priv: DRM device private
1323 *
1324 */
1325 static u32 vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 u32 residency_C0_up = 0, residency_C0_down = 0;
1328 u8 new_delay, adj;
1329
1330 dev_priv->rps.ei_interrupt_count++;
1331
1332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335 if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 return dev_priv->rps.cur_freq;
1339 }
1340
1341
1342 /*
1343 * To down throttle, C0 residency should be less than down threshold
1344 * for continous EI intervals. So calculate down EI counters
1345 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 */
1347 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349 dev_priv->rps.ei_interrupt_count = 0;
1350
1351 residency_C0_down = vlv_c0_residency(dev_priv,
1352 &dev_priv->rps.down_ei);
1353 } else {
1354 residency_C0_up = vlv_c0_residency(dev_priv,
1355 &dev_priv->rps.up_ei);
1356 }
1357
1358 new_delay = dev_priv->rps.cur_freq;
1359
1360 adj = dev_priv->rps.last_adj;
1361 /* C0 residency is greater than UP threshold. Increase Frequency */
1362 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 if (adj > 0)
1364 adj *= 2;
1365 else
1366 adj = 1;
1367
1368 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 new_delay = dev_priv->rps.cur_freq + adj;
1370
1371 /*
1372 * For better performance, jump directly
1373 * to RPe if we're below it.
1374 */
1375 if (new_delay < dev_priv->rps.efficient_freq)
1376 new_delay = dev_priv->rps.efficient_freq;
1377
1378 } else if (!dev_priv->rps.ei_interrupt_count &&
1379 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 if (adj < 0)
1381 adj *= 2;
1382 else
1383 adj = -1;
1384 /*
1385 * This means, C0 residency is less than down threshold over
1386 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 */
1388 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 new_delay = dev_priv->rps.cur_freq + adj;
1390 }
1391
1392 return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 struct drm_i915_private *dev_priv =
1398 container_of(work, struct drm_i915_private, rps.work);
1399 u32 pm_iir;
1400 int new_delay, adj;
1401
1402 spin_lock_irq(&dev_priv->irq_lock);
1403 pm_iir = dev_priv->rps.pm_iir;
1404 dev_priv->rps.pm_iir = 0;
1405 if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 else {
1408 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 }
1411 spin_unlock_irq(&dev_priv->irq_lock);
1412
1413 /* Make sure we didn't queue anything we're not going to process. */
1414 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 return;
1418
1419 mutex_lock(&dev_priv->rps.hw_lock);
1420
1421 adj = dev_priv->rps.last_adj;
1422 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 if (adj > 0)
1424 adj *= 2;
1425 else {
1426 /* CHV needs even encode values */
1427 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 }
1429 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431 /*
1432 * For better performance, jump directly
1433 * to RPe if we're below it.
1434 */
1435 if (new_delay < dev_priv->rps.efficient_freq)
1436 new_delay = dev_priv->rps.efficient_freq;
1437 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 new_delay = dev_priv->rps.efficient_freq;
1440 else
1441 new_delay = dev_priv->rps.min_freq_softlimit;
1442 adj = 0;
1443 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 if (adj < 0)
1447 adj *= 2;
1448 else {
1449 /* CHV needs even encode values */
1450 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 }
1452 new_delay = dev_priv->rps.cur_freq + adj;
1453 } else { /* unknown event */
1454 new_delay = dev_priv->rps.cur_freq;
1455 }
1456
1457 /* sysfs frequency interfaces may have snuck in while servicing the
1458 * interrupt
1459 */
1460 new_delay = clamp_t(int, new_delay,
1461 dev_priv->rps.min_freq_softlimit,
1462 dev_priv->rps.max_freq_softlimit);
1463
1464 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466 if (IS_VALLEYVIEW(dev_priv->dev))
1467 valleyview_set_rps(dev_priv->dev, new_delay);
1468 else
1469 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471 mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477 * occurred.
1478 * @work: workqueue struct
1479 *
1480 * Doesn't actually do anything except notify userspace. As a consequence of
1481 * this event, userspace should try to remap the bad rows since statistically
1482 * it is likely the same row is more likely to go bad again.
1483 */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 struct drm_i915_private *dev_priv =
1487 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 u32 error_status, row, bank, subbank;
1489 char *parity_event[6];
1490 uint32_t misccpctl;
1491 unsigned long flags;
1492 uint8_t slice = 0;
1493
1494 /* We must turn off DOP level clock gating to access the L3 registers.
1495 * In order to prevent a get/put style interface, acquire struct mutex
1496 * any time we access those registers.
1497 */
1498 mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500 /* If we've screwed up tracking, just let the interrupt fire again */
1501 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 goto out;
1503
1504 misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 POSTING_READ(GEN7_MISCCPCTL);
1507
1508 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 u32 reg;
1510
1511 slice--;
1512 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 break;
1514
1515 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519 error_status = I915_READ(reg);
1520 row = GEN7_PARITY_ERROR_ROW(error_status);
1521 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 POSTING_READ(reg);
1526
1527 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 parity_event[5] = NULL;
1533
1534 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 KOBJ_CHANGE, parity_event);
1536
1537 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 slice, row, bank, subbank);
1539
1540 kfree(parity_event[4]);
1541 kfree(parity_event[3]);
1542 kfree(parity_event[2]);
1543 kfree(parity_event[1]);
1544 }
1545
1546 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549 WARN_ON(dev_priv->l3_parity.which_slice);
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554 mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561 if (!HAS_L3_DPF(dev))
1562 return;
1563
1564 spin_lock(&dev_priv->irq_lock);
1565 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 spin_unlock(&dev_priv->irq_lock);
1567
1568 iir &= GT_PARITY_ERROR(dev);
1569 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 struct drm_i915_private *dev_priv,
1580 u32 gt_iir)
1581 {
1582 if (gt_iir &
1583 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 notify_ring(dev, &dev_priv->ring[RCS]);
1585 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 struct drm_i915_private *dev_priv,
1591 u32 gt_iir)
1592 {
1593
1594 if (gt_iir &
1595 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 notify_ring(dev, &dev_priv->ring[RCS]);
1597 if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 notify_ring(dev, &dev_priv->ring[VCS]);
1599 if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 GT_BSD_CS_ERROR_INTERRUPT |
1604 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 gt_iir);
1607 }
1608
1609 if (gt_iir & GT_PARITY_ERROR(dev))
1610 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 return;
1617
1618 spin_lock(&dev_priv->irq_lock);
1619 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 spin_unlock(&dev_priv->irq_lock);
1622
1623 queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 struct drm_i915_private *dev_priv,
1628 u32 master_ctl)
1629 {
1630 u32 rcs, bcs, vcs;
1631 uint32_t tmp = 0;
1632 irqreturn_t ret = IRQ_NONE;
1633
1634 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1635 tmp = I915_READ(GEN8_GT_IIR(0));
1636 if (tmp) {
1637 I915_WRITE(GEN8_GT_IIR(0), tmp);
1638 ret = IRQ_HANDLED;
1639 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1640 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1641 if (rcs & GT_RENDER_USER_INTERRUPT)
1642 notify_ring(dev, &dev_priv->ring[RCS]);
1643 if (bcs & GT_RENDER_USER_INTERRUPT)
1644 notify_ring(dev, &dev_priv->ring[BCS]);
1645 } else
1646 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1647 }
1648
1649 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1650 tmp = I915_READ(GEN8_GT_IIR(1));
1651 if (tmp) {
1652 I915_WRITE(GEN8_GT_IIR(1), tmp);
1653 ret = IRQ_HANDLED;
1654 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1655 if (vcs & GT_RENDER_USER_INTERRUPT)
1656 notify_ring(dev, &dev_priv->ring[VCS]);
1657 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1658 if (vcs & GT_RENDER_USER_INTERRUPT)
1659 notify_ring(dev, &dev_priv->ring[VCS2]);
1660 } else
1661 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1662 }
1663
1664 if (master_ctl & GEN8_GT_PM_IRQ) {
1665 tmp = I915_READ(GEN8_GT_IIR(2));
1666 if (tmp & dev_priv->pm_rps_events) {
1667 I915_WRITE(GEN8_GT_IIR(2),
1668 tmp & dev_priv->pm_rps_events);
1669 ret = IRQ_HANDLED;
1670 gen8_rps_irq_handler(dev_priv, tmp);
1671 } else
1672 DRM_ERROR("The master control interrupt lied (PM)!\n");
1673 }
1674
1675 if (master_ctl & GEN8_GT_VECS_IRQ) {
1676 tmp = I915_READ(GEN8_GT_IIR(3));
1677 if (tmp) {
1678 I915_WRITE(GEN8_GT_IIR(3), tmp);
1679 ret = IRQ_HANDLED;
1680 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1681 if (vcs & GT_RENDER_USER_INTERRUPT)
1682 notify_ring(dev, &dev_priv->ring[VECS]);
1683 } else
1684 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1685 }
1686
1687 return ret;
1688 }
1689
1690 #define HPD_STORM_DETECT_PERIOD 1000
1691 #define HPD_STORM_THRESHOLD 5
1692
1693 static int ilk_port_to_hotplug_shift(enum port port)
1694 {
1695 switch (port) {
1696 case PORT_A:
1697 case PORT_E:
1698 default:
1699 return -1;
1700 case PORT_B:
1701 return 0;
1702 case PORT_C:
1703 return 8;
1704 case PORT_D:
1705 return 16;
1706 }
1707 }
1708
1709 static int g4x_port_to_hotplug_shift(enum port port)
1710 {
1711 switch (port) {
1712 case PORT_A:
1713 case PORT_E:
1714 default:
1715 return -1;
1716 case PORT_B:
1717 return 17;
1718 case PORT_C:
1719 return 19;
1720 case PORT_D:
1721 return 21;
1722 }
1723 }
1724
1725 static inline enum port get_port_from_pin(enum hpd_pin pin)
1726 {
1727 switch (pin) {
1728 case HPD_PORT_B:
1729 return PORT_B;
1730 case HPD_PORT_C:
1731 return PORT_C;
1732 case HPD_PORT_D:
1733 return PORT_D;
1734 default:
1735 return PORT_A; /* no hpd */
1736 }
1737 }
1738
1739 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1740 u32 hotplug_trigger,
1741 u32 dig_hotplug_reg,
1742 const u32 *hpd)
1743 {
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 int i;
1746 enum port port;
1747 bool storm_detected = false;
1748 bool queue_dig = false, queue_hp = false;
1749 u32 dig_shift;
1750 u32 dig_port_mask = 0;
1751
1752 if (!hotplug_trigger)
1753 return;
1754
1755 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1756 hotplug_trigger, dig_hotplug_reg);
1757
1758 spin_lock(&dev_priv->irq_lock);
1759 for (i = 1; i < HPD_NUM_PINS; i++) {
1760 if (!(hpd[i] & hotplug_trigger))
1761 continue;
1762
1763 port = get_port_from_pin(i);
1764 if (port && dev_priv->hpd_irq_port[port]) {
1765 bool long_hpd;
1766
1767 if (IS_G4X(dev)) {
1768 dig_shift = g4x_port_to_hotplug_shift(port);
1769 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1770 } else {
1771 dig_shift = ilk_port_to_hotplug_shift(port);
1772 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1773 }
1774
1775 DRM_DEBUG_DRIVER("digital hpd port %d %d\n", port, long_hpd);
1776 /* for long HPD pulses we want to have the digital queue happen,
1777 but we still want HPD storm detection to function. */
1778 if (long_hpd) {
1779 dev_priv->long_hpd_port_mask |= (1 << port);
1780 dig_port_mask |= hpd[i];
1781 } else {
1782 /* for short HPD just trigger the digital queue */
1783 dev_priv->short_hpd_port_mask |= (1 << port);
1784 hotplug_trigger &= ~hpd[i];
1785 }
1786 queue_dig = true;
1787 }
1788 }
1789
1790 for (i = 1; i < HPD_NUM_PINS; i++) {
1791 if (hpd[i] & hotplug_trigger &&
1792 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1793 /*
1794 * On GMCH platforms the interrupt mask bits only
1795 * prevent irq generation, not the setting of the
1796 * hotplug bits itself. So only WARN about unexpected
1797 * interrupts on saner platforms.
1798 */
1799 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1800 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1801 hotplug_trigger, i, hpd[i]);
1802
1803 continue;
1804 }
1805
1806 if (!(hpd[i] & hotplug_trigger) ||
1807 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1808 continue;
1809
1810 if (!(dig_port_mask & hpd[i])) {
1811 dev_priv->hpd_event_bits |= (1 << i);
1812 queue_hp = true;
1813 }
1814
1815 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1816 dev_priv->hpd_stats[i].hpd_last_jiffies
1817 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1818 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1819 dev_priv->hpd_stats[i].hpd_cnt = 0;
1820 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1821 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1822 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1823 dev_priv->hpd_event_bits &= ~(1 << i);
1824 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1825 storm_detected = true;
1826 } else {
1827 dev_priv->hpd_stats[i].hpd_cnt++;
1828 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1829 dev_priv->hpd_stats[i].hpd_cnt);
1830 }
1831 }
1832
1833 if (storm_detected)
1834 dev_priv->display.hpd_irq_setup(dev);
1835 spin_unlock(&dev_priv->irq_lock);
1836
1837 /*
1838 * Our hotplug handler can grab modeset locks (by calling down into the
1839 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1840 * queue for otherwise the flush_work in the pageflip code will
1841 * deadlock.
1842 */
1843 if (queue_dig)
1844 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1845 if (queue_hp)
1846 schedule_work(&dev_priv->hotplug_work);
1847 }
1848
1849 static void gmbus_irq_handler(struct drm_device *dev)
1850 {
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852
1853 wake_up_all(&dev_priv->gmbus_wait_queue);
1854 }
1855
1856 static void dp_aux_irq_handler(struct drm_device *dev)
1857 {
1858 struct drm_i915_private *dev_priv = dev->dev_private;
1859
1860 wake_up_all(&dev_priv->gmbus_wait_queue);
1861 }
1862
1863 #if defined(CONFIG_DEBUG_FS)
1864 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1865 uint32_t crc0, uint32_t crc1,
1866 uint32_t crc2, uint32_t crc3,
1867 uint32_t crc4)
1868 {
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1871 struct intel_pipe_crc_entry *entry;
1872 int head, tail;
1873
1874 spin_lock(&pipe_crc->lock);
1875
1876 if (!pipe_crc->entries) {
1877 spin_unlock(&pipe_crc->lock);
1878 DRM_ERROR("spurious interrupt\n");
1879 return;
1880 }
1881
1882 head = pipe_crc->head;
1883 tail = pipe_crc->tail;
1884
1885 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1886 spin_unlock(&pipe_crc->lock);
1887 DRM_ERROR("CRC buffer overflowing\n");
1888 return;
1889 }
1890
1891 entry = &pipe_crc->entries[head];
1892
1893 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1894 entry->crc[0] = crc0;
1895 entry->crc[1] = crc1;
1896 entry->crc[2] = crc2;
1897 entry->crc[3] = crc3;
1898 entry->crc[4] = crc4;
1899
1900 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1901 pipe_crc->head = head;
1902
1903 spin_unlock(&pipe_crc->lock);
1904
1905 wake_up_interruptible(&pipe_crc->wq);
1906 }
1907 #else
1908 static inline void
1909 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1910 uint32_t crc0, uint32_t crc1,
1911 uint32_t crc2, uint32_t crc3,
1912 uint32_t crc4) {}
1913 #endif
1914
1915
1916 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1917 {
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919
1920 display_pipe_crc_irq_handler(dev, pipe,
1921 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1922 0, 0, 0, 0);
1923 }
1924
1925 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1926 {
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928
1929 display_pipe_crc_irq_handler(dev, pipe,
1930 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1931 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1932 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1933 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1934 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1935 }
1936
1937 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1938 {
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 uint32_t res1, res2;
1941
1942 if (INTEL_INFO(dev)->gen >= 3)
1943 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1944 else
1945 res1 = 0;
1946
1947 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1948 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1949 else
1950 res2 = 0;
1951
1952 display_pipe_crc_irq_handler(dev, pipe,
1953 I915_READ(PIPE_CRC_RES_RED(pipe)),
1954 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1955 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1956 res1, res2);
1957 }
1958
1959 /* The RPS events need forcewake, so we add them to a work queue and mask their
1960 * IMR bits until the work is done. Other interrupts can be processed without
1961 * the work queue. */
1962 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1963 {
1964 if (pm_iir & dev_priv->pm_rps_events) {
1965 spin_lock(&dev_priv->irq_lock);
1966 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1967 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1968 spin_unlock(&dev_priv->irq_lock);
1969
1970 queue_work(dev_priv->wq, &dev_priv->rps.work);
1971 }
1972
1973 if (HAS_VEBOX(dev_priv->dev)) {
1974 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1975 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1976
1977 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1978 i915_handle_error(dev_priv->dev, false,
1979 "VEBOX CS error interrupt 0x%08x",
1980 pm_iir);
1981 }
1982 }
1983 }
1984
1985 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1986 {
1987 struct intel_crtc *crtc;
1988
1989 if (!drm_handle_vblank(dev, pipe))
1990 return false;
1991
1992 crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1993 wake_up(&crtc->vbl_wait);
1994
1995 return true;
1996 }
1997
1998 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1999 {
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 u32 pipe_stats[I915_MAX_PIPES] = { };
2002 int pipe;
2003
2004 spin_lock(&dev_priv->irq_lock);
2005 for_each_pipe(pipe) {
2006 int reg;
2007 u32 mask, iir_bit = 0;
2008
2009 /*
2010 * PIPESTAT bits get signalled even when the interrupt is
2011 * disabled with the mask bits, and some of the status bits do
2012 * not generate interrupts at all (like the underrun bit). Hence
2013 * we need to be careful that we only handle what we want to
2014 * handle.
2015 */
2016 mask = 0;
2017 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2018 mask |= PIPE_FIFO_UNDERRUN_STATUS;
2019
2020 switch (pipe) {
2021 case PIPE_A:
2022 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2023 break;
2024 case PIPE_B:
2025 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2026 break;
2027 case PIPE_C:
2028 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2029 break;
2030 }
2031 if (iir & iir_bit)
2032 mask |= dev_priv->pipestat_irq_mask[pipe];
2033
2034 if (!mask)
2035 continue;
2036
2037 reg = PIPESTAT(pipe);
2038 mask |= PIPESTAT_INT_ENABLE_MASK;
2039 pipe_stats[pipe] = I915_READ(reg) & mask;
2040
2041 /*
2042 * Clear the PIPE*STAT regs before the IIR
2043 */
2044 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2045 PIPESTAT_INT_STATUS_MASK))
2046 I915_WRITE(reg, pipe_stats[pipe]);
2047 }
2048 spin_unlock(&dev_priv->irq_lock);
2049
2050 for_each_pipe(pipe) {
2051 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2052 intel_pipe_handle_vblank(dev, pipe);
2053
2054 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2055 intel_prepare_page_flip(dev, pipe);
2056 intel_finish_page_flip(dev, pipe);
2057 }
2058
2059 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2060 i9xx_pipe_crc_irq_handler(dev, pipe);
2061
2062 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2063 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2064 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2065 }
2066
2067 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2068 gmbus_irq_handler(dev);
2069 }
2070
2071 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2072 {
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2075
2076 if (hotplug_status) {
2077 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2078 /*
2079 * Make sure hotplug status is cleared before we clear IIR, or else we
2080 * may miss hotplug events.
2081 */
2082 POSTING_READ(PORT_HOTPLUG_STAT);
2083
2084 if (IS_G4X(dev)) {
2085 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2086
2087 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2088 } else {
2089 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2090
2091 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2092 }
2093
2094 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2095 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2096 dp_aux_irq_handler(dev);
2097 }
2098 }
2099
2100 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2101 {
2102 struct drm_device *dev = arg;
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104 u32 iir, gt_iir, pm_iir;
2105 irqreturn_t ret = IRQ_NONE;
2106
2107 while (true) {
2108 /* Find, clear, then process each source of interrupt */
2109
2110 gt_iir = I915_READ(GTIIR);
2111 if (gt_iir)
2112 I915_WRITE(GTIIR, gt_iir);
2113
2114 pm_iir = I915_READ(GEN6_PMIIR);
2115 if (pm_iir)
2116 I915_WRITE(GEN6_PMIIR, pm_iir);
2117
2118 iir = I915_READ(VLV_IIR);
2119 if (iir) {
2120 /* Consume port before clearing IIR or we'll miss events */
2121 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2122 i9xx_hpd_irq_handler(dev);
2123 I915_WRITE(VLV_IIR, iir);
2124 }
2125
2126 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2127 goto out;
2128
2129 ret = IRQ_HANDLED;
2130
2131 if (gt_iir)
2132 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2133 if (pm_iir)
2134 gen6_rps_irq_handler(dev_priv, pm_iir);
2135 /* Call regardless, as some status bits might not be
2136 * signalled in iir */
2137 valleyview_pipestat_irq_handler(dev, iir);
2138 }
2139
2140 out:
2141 return ret;
2142 }
2143
2144 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2145 {
2146 struct drm_device *dev = arg;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 u32 master_ctl, iir;
2149 irqreturn_t ret = IRQ_NONE;
2150
2151 for (;;) {
2152 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2153 iir = I915_READ(VLV_IIR);
2154
2155 if (master_ctl == 0 && iir == 0)
2156 break;
2157
2158 ret = IRQ_HANDLED;
2159
2160 I915_WRITE(GEN8_MASTER_IRQ, 0);
2161
2162 /* Find, clear, then process each source of interrupt */
2163
2164 if (iir) {
2165 /* Consume port before clearing IIR or we'll miss events */
2166 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2167 i9xx_hpd_irq_handler(dev);
2168 I915_WRITE(VLV_IIR, iir);
2169 }
2170
2171 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2172
2173 /* Call regardless, as some status bits might not be
2174 * signalled in iir */
2175 valleyview_pipestat_irq_handler(dev, iir);
2176
2177 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2178 POSTING_READ(GEN8_MASTER_IRQ);
2179 }
2180
2181 return ret;
2182 }
2183
2184 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2185 {
2186 struct drm_i915_private *dev_priv = dev->dev_private;
2187 int pipe;
2188 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2189 u32 dig_hotplug_reg;
2190
2191 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2192 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2193
2194 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2195
2196 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2197 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2198 SDE_AUDIO_POWER_SHIFT);
2199 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2200 port_name(port));
2201 }
2202
2203 if (pch_iir & SDE_AUX_MASK)
2204 dp_aux_irq_handler(dev);
2205
2206 if (pch_iir & SDE_GMBUS)
2207 gmbus_irq_handler(dev);
2208
2209 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2210 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2211
2212 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2213 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2214
2215 if (pch_iir & SDE_POISON)
2216 DRM_ERROR("PCH poison interrupt\n");
2217
2218 if (pch_iir & SDE_FDI_MASK)
2219 for_each_pipe(pipe)
2220 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2221 pipe_name(pipe),
2222 I915_READ(FDI_RX_IIR(pipe)));
2223
2224 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2225 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2226
2227 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2228 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2229
2230 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2231 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2232 false))
2233 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2234
2235 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2236 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2237 false))
2238 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2239 }
2240
2241 static void ivb_err_int_handler(struct drm_device *dev)
2242 {
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 u32 err_int = I915_READ(GEN7_ERR_INT);
2245 enum pipe pipe;
2246
2247 if (err_int & ERR_INT_POISON)
2248 DRM_ERROR("Poison interrupt\n");
2249
2250 for_each_pipe(pipe) {
2251 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2252 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2253 false))
2254 DRM_ERROR("Pipe %c FIFO underrun\n",
2255 pipe_name(pipe));
2256 }
2257
2258 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2259 if (IS_IVYBRIDGE(dev))
2260 ivb_pipe_crc_irq_handler(dev, pipe);
2261 else
2262 hsw_pipe_crc_irq_handler(dev, pipe);
2263 }
2264 }
2265
2266 I915_WRITE(GEN7_ERR_INT, err_int);
2267 }
2268
2269 static void cpt_serr_int_handler(struct drm_device *dev)
2270 {
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 u32 serr_int = I915_READ(SERR_INT);
2273
2274 if (serr_int & SERR_INT_POISON)
2275 DRM_ERROR("PCH poison interrupt\n");
2276
2277 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2278 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2279 false))
2280 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2281
2282 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2283 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2284 false))
2285 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2286
2287 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2288 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2289 false))
2290 DRM_ERROR("PCH transcoder C FIFO underrun\n");
2291
2292 I915_WRITE(SERR_INT, serr_int);
2293 }
2294
2295 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2296 {
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298 int pipe;
2299 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2300 u32 dig_hotplug_reg;
2301
2302 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2303 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2304
2305 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2306
2307 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2308 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2309 SDE_AUDIO_POWER_SHIFT_CPT);
2310 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2311 port_name(port));
2312 }
2313
2314 if (pch_iir & SDE_AUX_MASK_CPT)
2315 dp_aux_irq_handler(dev);
2316
2317 if (pch_iir & SDE_GMBUS_CPT)
2318 gmbus_irq_handler(dev);
2319
2320 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2321 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2322
2323 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2324 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2325
2326 if (pch_iir & SDE_FDI_MASK_CPT)
2327 for_each_pipe(pipe)
2328 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2329 pipe_name(pipe),
2330 I915_READ(FDI_RX_IIR(pipe)));
2331
2332 if (pch_iir & SDE_ERROR_CPT)
2333 cpt_serr_int_handler(dev);
2334 }
2335
2336 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2337 {
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 enum pipe pipe;
2340
2341 if (de_iir & DE_AUX_CHANNEL_A)
2342 dp_aux_irq_handler(dev);
2343
2344 if (de_iir & DE_GSE)
2345 intel_opregion_asle_intr(dev);
2346
2347 if (de_iir & DE_POISON)
2348 DRM_ERROR("Poison interrupt\n");
2349
2350 for_each_pipe(pipe) {
2351 if (de_iir & DE_PIPE_VBLANK(pipe))
2352 intel_pipe_handle_vblank(dev, pipe);
2353
2354 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2355 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2356 DRM_ERROR("Pipe %c FIFO underrun\n",
2357 pipe_name(pipe));
2358
2359 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2360 i9xx_pipe_crc_irq_handler(dev, pipe);
2361
2362 /* plane/pipes map 1:1 on ilk+ */
2363 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2364 intel_prepare_page_flip(dev, pipe);
2365 intel_finish_page_flip_plane(dev, pipe);
2366 }
2367 }
2368
2369 /* check event from PCH */
2370 if (de_iir & DE_PCH_EVENT) {
2371 u32 pch_iir = I915_READ(SDEIIR);
2372
2373 if (HAS_PCH_CPT(dev))
2374 cpt_irq_handler(dev, pch_iir);
2375 else
2376 ibx_irq_handler(dev, pch_iir);
2377
2378 /* should clear PCH hotplug event before clear CPU irq */
2379 I915_WRITE(SDEIIR, pch_iir);
2380 }
2381
2382 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2383 ironlake_rps_change_irq_handler(dev);
2384 }
2385
2386 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2387 {
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 enum pipe pipe;
2390
2391 if (de_iir & DE_ERR_INT_IVB)
2392 ivb_err_int_handler(dev);
2393
2394 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2395 dp_aux_irq_handler(dev);
2396
2397 if (de_iir & DE_GSE_IVB)
2398 intel_opregion_asle_intr(dev);
2399
2400 for_each_pipe(pipe) {
2401 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2402 intel_pipe_handle_vblank(dev, pipe);
2403
2404 /* plane/pipes map 1:1 on ilk+ */
2405 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2406 intel_prepare_page_flip(dev, pipe);
2407 intel_finish_page_flip_plane(dev, pipe);
2408 }
2409 }
2410
2411 /* check event from PCH */
2412 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2413 u32 pch_iir = I915_READ(SDEIIR);
2414
2415 cpt_irq_handler(dev, pch_iir);
2416
2417 /* clear PCH hotplug event before clear CPU irq */
2418 I915_WRITE(SDEIIR, pch_iir);
2419 }
2420 }
2421
2422 /*
2423 * To handle irqs with the minimum potential races with fresh interrupts, we:
2424 * 1 - Disable Master Interrupt Control.
2425 * 2 - Find the source(s) of the interrupt.
2426 * 3 - Clear the Interrupt Identity bits (IIR).
2427 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2428 * 5 - Re-enable Master Interrupt Control.
2429 */
2430 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2431 {
2432 struct drm_device *dev = arg;
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2435 irqreturn_t ret = IRQ_NONE;
2436
2437 /* We get interrupts on unclaimed registers, so check for this before we
2438 * do any I915_{READ,WRITE}. */
2439 intel_uncore_check_errors(dev);
2440
2441 /* disable master interrupt before clearing iir */
2442 de_ier = I915_READ(DEIER);
2443 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2444 POSTING_READ(DEIER);
2445
2446 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2447 * interrupts will will be stored on its back queue, and then we'll be
2448 * able to process them after we restore SDEIER (as soon as we restore
2449 * it, we'll get an interrupt if SDEIIR still has something to process
2450 * due to its back queue). */
2451 if (!HAS_PCH_NOP(dev)) {
2452 sde_ier = I915_READ(SDEIER);
2453 I915_WRITE(SDEIER, 0);
2454 POSTING_READ(SDEIER);
2455 }
2456
2457 /* Find, clear, then process each source of interrupt */
2458
2459 gt_iir = I915_READ(GTIIR);
2460 if (gt_iir) {
2461 I915_WRITE(GTIIR, gt_iir);
2462 ret = IRQ_HANDLED;
2463 if (INTEL_INFO(dev)->gen >= 6)
2464 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2465 else
2466 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2467 }
2468
2469 de_iir = I915_READ(DEIIR);
2470 if (de_iir) {
2471 I915_WRITE(DEIIR, de_iir);
2472 ret = IRQ_HANDLED;
2473 if (INTEL_INFO(dev)->gen >= 7)
2474 ivb_display_irq_handler(dev, de_iir);
2475 else
2476 ilk_display_irq_handler(dev, de_iir);
2477 }
2478
2479 if (INTEL_INFO(dev)->gen >= 6) {
2480 u32 pm_iir = I915_READ(GEN6_PMIIR);
2481 if (pm_iir) {
2482 I915_WRITE(GEN6_PMIIR, pm_iir);
2483 ret = IRQ_HANDLED;
2484 gen6_rps_irq_handler(dev_priv, pm_iir);
2485 }
2486 }
2487
2488 I915_WRITE(DEIER, de_ier);
2489 POSTING_READ(DEIER);
2490 if (!HAS_PCH_NOP(dev)) {
2491 I915_WRITE(SDEIER, sde_ier);
2492 POSTING_READ(SDEIER);
2493 }
2494
2495 return ret;
2496 }
2497
2498 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2499 {
2500 struct drm_device *dev = arg;
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 u32 master_ctl;
2503 irqreturn_t ret = IRQ_NONE;
2504 uint32_t tmp = 0;
2505 enum pipe pipe;
2506
2507 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2508 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2509 if (!master_ctl)
2510 return IRQ_NONE;
2511
2512 I915_WRITE(GEN8_MASTER_IRQ, 0);
2513 POSTING_READ(GEN8_MASTER_IRQ);
2514
2515 /* Find, clear, then process each source of interrupt */
2516
2517 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2518
2519 if (master_ctl & GEN8_DE_MISC_IRQ) {
2520 tmp = I915_READ(GEN8_DE_MISC_IIR);
2521 if (tmp) {
2522 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2523 ret = IRQ_HANDLED;
2524 if (tmp & GEN8_DE_MISC_GSE)
2525 intel_opregion_asle_intr(dev);
2526 else
2527 DRM_ERROR("Unexpected DE Misc interrupt\n");
2528 }
2529 else
2530 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2531 }
2532
2533 if (master_ctl & GEN8_DE_PORT_IRQ) {
2534 tmp = I915_READ(GEN8_DE_PORT_IIR);
2535 if (tmp) {
2536 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2537 ret = IRQ_HANDLED;
2538 if (tmp & GEN8_AUX_CHANNEL_A)
2539 dp_aux_irq_handler(dev);
2540 else
2541 DRM_ERROR("Unexpected DE Port interrupt\n");
2542 }
2543 else
2544 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2545 }
2546
2547 for_each_pipe(pipe) {
2548 uint32_t pipe_iir;
2549
2550 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2551 continue;
2552
2553 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2554 if (pipe_iir) {
2555 ret = IRQ_HANDLED;
2556 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2557 if (pipe_iir & GEN8_PIPE_VBLANK)
2558 intel_pipe_handle_vblank(dev, pipe);
2559
2560 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2561 intel_prepare_page_flip(dev, pipe);
2562 intel_finish_page_flip_plane(dev, pipe);
2563 }
2564
2565 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2566 hsw_pipe_crc_irq_handler(dev, pipe);
2567
2568 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2569 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2570 false))
2571 DRM_ERROR("Pipe %c FIFO underrun\n",
2572 pipe_name(pipe));
2573 }
2574
2575 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2576 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2577 pipe_name(pipe),
2578 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2579 }
2580 } else
2581 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2582 }
2583
2584 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2585 /*
2586 * FIXME(BDW): Assume for now that the new interrupt handling
2587 * scheme also closed the SDE interrupt handling race we've seen
2588 * on older pch-split platforms. But this needs testing.
2589 */
2590 u32 pch_iir = I915_READ(SDEIIR);
2591 if (pch_iir) {
2592 I915_WRITE(SDEIIR, pch_iir);
2593 ret = IRQ_HANDLED;
2594 cpt_irq_handler(dev, pch_iir);
2595 } else
2596 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2597
2598 }
2599
2600 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2601 POSTING_READ(GEN8_MASTER_IRQ);
2602
2603 return ret;
2604 }
2605
2606 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2607 bool reset_completed)
2608 {
2609 struct intel_engine_cs *ring;
2610 int i;
2611
2612 /*
2613 * Notify all waiters for GPU completion events that reset state has
2614 * been changed, and that they need to restart their wait after
2615 * checking for potential errors (and bail out to drop locks if there is
2616 * a gpu reset pending so that i915_error_work_func can acquire them).
2617 */
2618
2619 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2620 for_each_ring(ring, dev_priv, i)
2621 wake_up_all(&ring->irq_queue);
2622
2623 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2624 wake_up_all(&dev_priv->pending_flip_queue);
2625
2626 /*
2627 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2628 * reset state is cleared.
2629 */
2630 if (reset_completed)
2631 wake_up_all(&dev_priv->gpu_error.reset_queue);
2632 }
2633
2634 /**
2635 * i915_error_work_func - do process context error handling work
2636 * @work: work struct
2637 *
2638 * Fire an error uevent so userspace can see that a hang or error
2639 * was detected.
2640 */
2641 static void i915_error_work_func(struct work_struct *work)
2642 {
2643 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2644 work);
2645 struct drm_i915_private *dev_priv =
2646 container_of(error, struct drm_i915_private, gpu_error);
2647 struct drm_device *dev = dev_priv->dev;
2648 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2649 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2650 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2651 int ret;
2652
2653 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2654
2655 /*
2656 * Note that there's only one work item which does gpu resets, so we
2657 * need not worry about concurrent gpu resets potentially incrementing
2658 * error->reset_counter twice. We only need to take care of another
2659 * racing irq/hangcheck declaring the gpu dead for a second time. A
2660 * quick check for that is good enough: schedule_work ensures the
2661 * correct ordering between hang detection and this work item, and since
2662 * the reset in-progress bit is only ever set by code outside of this
2663 * work we don't need to worry about any other races.
2664 */
2665 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2666 DRM_DEBUG_DRIVER("resetting chip\n");
2667 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2668 reset_event);
2669
2670 /*
2671 * In most cases it's guaranteed that we get here with an RPM
2672 * reference held, for example because there is a pending GPU
2673 * request that won't finish until the reset is done. This
2674 * isn't the case at least when we get here by doing a
2675 * simulated reset via debugs, so get an RPM reference.
2676 */
2677 intel_runtime_pm_get(dev_priv);
2678 /*
2679 * All state reset _must_ be completed before we update the
2680 * reset counter, for otherwise waiters might miss the reset
2681 * pending state and not properly drop locks, resulting in
2682 * deadlocks with the reset work.
2683 */
2684 ret = i915_reset(dev);
2685
2686 intel_display_handle_reset(dev);
2687
2688 intel_runtime_pm_put(dev_priv);
2689
2690 if (ret == 0) {
2691 /*
2692 * After all the gem state is reset, increment the reset
2693 * counter and wake up everyone waiting for the reset to
2694 * complete.
2695 *
2696 * Since unlock operations are a one-sided barrier only,
2697 * we need to insert a barrier here to order any seqno
2698 * updates before
2699 * the counter increment.
2700 */
2701 smp_mb__before_atomic();
2702 atomic_inc(&dev_priv->gpu_error.reset_counter);
2703
2704 kobject_uevent_env(&dev->primary->kdev->kobj,
2705 KOBJ_CHANGE, reset_done_event);
2706 } else {
2707 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2708 }
2709
2710 /*
2711 * Note: The wake_up also serves as a memory barrier so that
2712 * waiters see the update value of the reset counter atomic_t.
2713 */
2714 i915_error_wake_up(dev_priv, true);
2715 }
2716 }
2717
2718 static void i915_report_and_clear_eir(struct drm_device *dev)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 uint32_t instdone[I915_NUM_INSTDONE_REG];
2722 u32 eir = I915_READ(EIR);
2723 int pipe, i;
2724
2725 if (!eir)
2726 return;
2727
2728 pr_err("render error detected, EIR: 0x%08x\n", eir);
2729
2730 i915_get_extra_instdone(dev, instdone);
2731
2732 if (IS_G4X(dev)) {
2733 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2734 u32 ipeir = I915_READ(IPEIR_I965);
2735
2736 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2737 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2738 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2739 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2740 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2741 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2742 I915_WRITE(IPEIR_I965, ipeir);
2743 POSTING_READ(IPEIR_I965);
2744 }
2745 if (eir & GM45_ERROR_PAGE_TABLE) {
2746 u32 pgtbl_err = I915_READ(PGTBL_ER);
2747 pr_err("page table error\n");
2748 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2749 I915_WRITE(PGTBL_ER, pgtbl_err);
2750 POSTING_READ(PGTBL_ER);
2751 }
2752 }
2753
2754 if (!IS_GEN2(dev)) {
2755 if (eir & I915_ERROR_PAGE_TABLE) {
2756 u32 pgtbl_err = I915_READ(PGTBL_ER);
2757 pr_err("page table error\n");
2758 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2759 I915_WRITE(PGTBL_ER, pgtbl_err);
2760 POSTING_READ(PGTBL_ER);
2761 }
2762 }
2763
2764 if (eir & I915_ERROR_MEMORY_REFRESH) {
2765 pr_err("memory refresh error:\n");
2766 for_each_pipe(pipe)
2767 pr_err("pipe %c stat: 0x%08x\n",
2768 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2769 /* pipestat has already been acked */
2770 }
2771 if (eir & I915_ERROR_INSTRUCTION) {
2772 pr_err("instruction error\n");
2773 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2774 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2775 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2776 if (INTEL_INFO(dev)->gen < 4) {
2777 u32 ipeir = I915_READ(IPEIR);
2778
2779 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2780 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2781 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2782 I915_WRITE(IPEIR, ipeir);
2783 POSTING_READ(IPEIR);
2784 } else {
2785 u32 ipeir = I915_READ(IPEIR_I965);
2786
2787 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2788 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2789 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2790 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2791 I915_WRITE(IPEIR_I965, ipeir);
2792 POSTING_READ(IPEIR_I965);
2793 }
2794 }
2795
2796 I915_WRITE(EIR, eir);
2797 POSTING_READ(EIR);
2798 eir = I915_READ(EIR);
2799 if (eir) {
2800 /*
2801 * some errors might have become stuck,
2802 * mask them.
2803 */
2804 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2805 I915_WRITE(EMR, I915_READ(EMR) | eir);
2806 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2807 }
2808 }
2809
2810 /**
2811 * i915_handle_error - handle an error interrupt
2812 * @dev: drm device
2813 *
2814 * Do some basic checking of regsiter state at error interrupt time and
2815 * dump it to the syslog. Also call i915_capture_error_state() to make
2816 * sure we get a record and make it available in debugfs. Fire a uevent
2817 * so userspace knows something bad happened (should trigger collection
2818 * of a ring dump etc.).
2819 */
2820 void i915_handle_error(struct drm_device *dev, bool wedged,
2821 const char *fmt, ...)
2822 {
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 va_list args;
2825 char error_msg[80];
2826
2827 va_start(args, fmt);
2828 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2829 va_end(args);
2830
2831 i915_capture_error_state(dev, wedged, error_msg);
2832 i915_report_and_clear_eir(dev);
2833
2834 if (wedged) {
2835 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2836 &dev_priv->gpu_error.reset_counter);
2837
2838 /*
2839 * Wakeup waiting processes so that the reset work function
2840 * i915_error_work_func doesn't deadlock trying to grab various
2841 * locks. By bumping the reset counter first, the woken
2842 * processes will see a reset in progress and back off,
2843 * releasing their locks and then wait for the reset completion.
2844 * We must do this for _all_ gpu waiters that might hold locks
2845 * that the reset work needs to acquire.
2846 *
2847 * Note: The wake_up serves as the required memory barrier to
2848 * ensure that the waiters see the updated value of the reset
2849 * counter atomic_t.
2850 */
2851 i915_error_wake_up(dev_priv, false);
2852 }
2853
2854 /*
2855 * Our reset work can grab modeset locks (since it needs to reset the
2856 * state of outstanding pagelips). Hence it must not be run on our own
2857 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2858 * code will deadlock.
2859 */
2860 schedule_work(&dev_priv->gpu_error.work);
2861 }
2862
2863 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2864 {
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2868 struct drm_i915_gem_object *obj;
2869 struct intel_unpin_work *work;
2870 unsigned long flags;
2871 bool stall_detected;
2872
2873 /* Ignore early vblank irqs */
2874 if (intel_crtc == NULL)
2875 return;
2876
2877 spin_lock_irqsave(&dev->event_lock, flags);
2878 work = intel_crtc->unpin_work;
2879
2880 if (work == NULL ||
2881 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2882 !work->enable_stall_check) {
2883 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2884 spin_unlock_irqrestore(&dev->event_lock, flags);
2885 return;
2886 }
2887
2888 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2889 obj = work->pending_flip_obj;
2890 if (INTEL_INFO(dev)->gen >= 4) {
2891 int dspsurf = DSPSURF(intel_crtc->plane);
2892 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2893 i915_gem_obj_ggtt_offset(obj);
2894 } else {
2895 int dspaddr = DSPADDR(intel_crtc->plane);
2896 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2897 crtc->y * crtc->primary->fb->pitches[0] +
2898 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2899 }
2900
2901 spin_unlock_irqrestore(&dev->event_lock, flags);
2902
2903 if (stall_detected) {
2904 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2905 intel_prepare_page_flip(dev, intel_crtc->plane);
2906 }
2907 }
2908
2909 /* Called from drm generic code, passed 'crtc' which
2910 * we use as a pipe index
2911 */
2912 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2913 {
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 unsigned long irqflags;
2916
2917 if (!i915_pipe_enabled(dev, pipe))
2918 return -EINVAL;
2919
2920 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2921 if (INTEL_INFO(dev)->gen >= 4)
2922 i915_enable_pipestat(dev_priv, pipe,
2923 PIPE_START_VBLANK_INTERRUPT_STATUS);
2924 else
2925 i915_enable_pipestat(dev_priv, pipe,
2926 PIPE_VBLANK_INTERRUPT_STATUS);
2927 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2928
2929 return 0;
2930 }
2931
2932 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2933 {
2934 struct drm_i915_private *dev_priv = dev->dev_private;
2935 unsigned long irqflags;
2936 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2937 DE_PIPE_VBLANK(pipe);
2938
2939 if (!i915_pipe_enabled(dev, pipe))
2940 return -EINVAL;
2941
2942 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2943 ironlake_enable_display_irq(dev_priv, bit);
2944 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2945
2946 return 0;
2947 }
2948
2949 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2950 {
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 unsigned long irqflags;
2953
2954 if (!i915_pipe_enabled(dev, pipe))
2955 return -EINVAL;
2956
2957 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2958 i915_enable_pipestat(dev_priv, pipe,
2959 PIPE_START_VBLANK_INTERRUPT_STATUS);
2960 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2961
2962 return 0;
2963 }
2964
2965 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2966 {
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 unsigned long irqflags;
2969
2970 if (!i915_pipe_enabled(dev, pipe))
2971 return -EINVAL;
2972
2973 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2974 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2975 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2976 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2977 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978 return 0;
2979 }
2980
2981 /* Called from drm generic code, passed 'crtc' which
2982 * we use as a pipe index
2983 */
2984 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 unsigned long irqflags;
2988
2989 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990 i915_disable_pipestat(dev_priv, pipe,
2991 PIPE_VBLANK_INTERRUPT_STATUS |
2992 PIPE_START_VBLANK_INTERRUPT_STATUS);
2993 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2994 }
2995
2996 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2997 {
2998 struct drm_i915_private *dev_priv = dev->dev_private;
2999 unsigned long irqflags;
3000 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3001 DE_PIPE_VBLANK(pipe);
3002
3003 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004 ironlake_disable_display_irq(dev_priv, bit);
3005 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3006 }
3007
3008 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3009 {
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 unsigned long irqflags;
3012
3013 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3014 i915_disable_pipestat(dev_priv, pipe,
3015 PIPE_START_VBLANK_INTERRUPT_STATUS);
3016 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3017 }
3018
3019 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3020 {
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 unsigned long irqflags;
3023
3024 if (!i915_pipe_enabled(dev, pipe))
3025 return;
3026
3027 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3028 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3029 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3030 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3031 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3032 }
3033
3034 static u32
3035 ring_last_seqno(struct intel_engine_cs *ring)
3036 {
3037 return list_entry(ring->request_list.prev,
3038 struct drm_i915_gem_request, list)->seqno;
3039 }
3040
3041 static bool
3042 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3043 {
3044 return (list_empty(&ring->request_list) ||
3045 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3046 }
3047
3048 static bool
3049 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3050 {
3051 if (INTEL_INFO(dev)->gen >= 8) {
3052 return (ipehr >> 23) == 0x1c;
3053 } else {
3054 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3055 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3056 MI_SEMAPHORE_REGISTER);
3057 }
3058 }
3059
3060 static struct intel_engine_cs *
3061 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3062 {
3063 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3064 struct intel_engine_cs *signaller;
3065 int i;
3066
3067 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3068 for_each_ring(signaller, dev_priv, i) {
3069 if (ring == signaller)
3070 continue;
3071
3072 if (offset == signaller->semaphore.signal_ggtt[ring->id])
3073 return signaller;
3074 }
3075 } else {
3076 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3077
3078 for_each_ring(signaller, dev_priv, i) {
3079 if(ring == signaller)
3080 continue;
3081
3082 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3083 return signaller;
3084 }
3085 }
3086
3087 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3088 ring->id, ipehr, offset);
3089
3090 return NULL;
3091 }
3092
3093 static struct intel_engine_cs *
3094 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3095 {
3096 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3097 u32 cmd, ipehr, head;
3098 u64 offset = 0;
3099 int i, backwards;
3100
3101 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3102 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3103 return NULL;
3104
3105 /*
3106 * HEAD is likely pointing to the dword after the actual command,
3107 * so scan backwards until we find the MBOX. But limit it to just 3
3108 * or 4 dwords depending on the semaphore wait command size.
3109 * Note that we don't care about ACTHD here since that might
3110 * point at at batch, and semaphores are always emitted into the
3111 * ringbuffer itself.
3112 */
3113 head = I915_READ_HEAD(ring) & HEAD_ADDR;
3114 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3115
3116 for (i = backwards; i; --i) {
3117 /*
3118 * Be paranoid and presume the hw has gone off into the wild -
3119 * our ring is smaller than what the hardware (and hence
3120 * HEAD_ADDR) allows. Also handles wrap-around.
3121 */
3122 head &= ring->buffer->size - 1;
3123
3124 /* This here seems to blow up */
3125 cmd = ioread32(ring->buffer->virtual_start + head);
3126 if (cmd == ipehr)
3127 break;
3128
3129 head -= 4;
3130 }
3131
3132 if (!i)
3133 return NULL;
3134
3135 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3136 if (INTEL_INFO(ring->dev)->gen >= 8) {
3137 offset = ioread32(ring->buffer->virtual_start + head + 12);
3138 offset <<= 32;
3139 offset = ioread32(ring->buffer->virtual_start + head + 8);
3140 }
3141 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3142 }
3143
3144 static int semaphore_passed(struct intel_engine_cs *ring)
3145 {
3146 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3147 struct intel_engine_cs *signaller;
3148 u32 seqno;
3149
3150 ring->hangcheck.deadlock++;
3151
3152 signaller = semaphore_waits_for(ring, &seqno);
3153 if (signaller == NULL)
3154 return -1;
3155
3156 /* Prevent pathological recursion due to driver bugs */
3157 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3158 return -1;
3159
3160 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3161 return 1;
3162
3163 /* cursory check for an unkickable deadlock */
3164 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3165 semaphore_passed(signaller) < 0)
3166 return -1;
3167
3168 return 0;
3169 }
3170
3171 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3172 {
3173 struct intel_engine_cs *ring;
3174 int i;
3175
3176 for_each_ring(ring, dev_priv, i)
3177 ring->hangcheck.deadlock = 0;
3178 }
3179
3180 static enum intel_ring_hangcheck_action
3181 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3182 {
3183 struct drm_device *dev = ring->dev;
3184 struct drm_i915_private *dev_priv = dev->dev_private;
3185 u32 tmp;
3186
3187 if (acthd != ring->hangcheck.acthd) {
3188 if (acthd > ring->hangcheck.max_acthd) {
3189 ring->hangcheck.max_acthd = acthd;
3190 return HANGCHECK_ACTIVE;
3191 }
3192
3193 return HANGCHECK_ACTIVE_LOOP;
3194 }
3195
3196 if (IS_GEN2(dev))
3197 return HANGCHECK_HUNG;
3198
3199 /* Is the chip hanging on a WAIT_FOR_EVENT?
3200 * If so we can simply poke the RB_WAIT bit
3201 * and break the hang. This should work on
3202 * all but the second generation chipsets.
3203 */
3204 tmp = I915_READ_CTL(ring);
3205 if (tmp & RING_WAIT) {
3206 i915_handle_error(dev, false,
3207 "Kicking stuck wait on %s",
3208 ring->name);
3209 I915_WRITE_CTL(ring, tmp);
3210 return HANGCHECK_KICK;
3211 }
3212
3213 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3214 switch (semaphore_passed(ring)) {
3215 default:
3216 return HANGCHECK_HUNG;
3217 case 1:
3218 i915_handle_error(dev, false,
3219 "Kicking stuck semaphore on %s",
3220 ring->name);
3221 I915_WRITE_CTL(ring, tmp);
3222 return HANGCHECK_KICK;
3223 case 0:
3224 return HANGCHECK_WAIT;
3225 }
3226 }
3227
3228 return HANGCHECK_HUNG;
3229 }
3230
3231 /**
3232 * This is called when the chip hasn't reported back with completed
3233 * batchbuffers in a long time. We keep track per ring seqno progress and
3234 * if there are no progress, hangcheck score for that ring is increased.
3235 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3236 * we kick the ring. If we see no progress on three subsequent calls
3237 * we assume chip is wedged and try to fix it by resetting the chip.
3238 */
3239 static void i915_hangcheck_elapsed(unsigned long data)
3240 {
3241 struct drm_device *dev = (struct drm_device *)data;
3242 struct drm_i915_private *dev_priv = dev->dev_private;
3243 struct intel_engine_cs *ring;
3244 int i;
3245 int busy_count = 0, rings_hung = 0;
3246 bool stuck[I915_NUM_RINGS] = { 0 };
3247 #define BUSY 1
3248 #define KICK 5
3249 #define HUNG 20
3250
3251 if (!i915.enable_hangcheck)
3252 return;
3253
3254 for_each_ring(ring, dev_priv, i) {
3255 u64 acthd;
3256 u32 seqno;
3257 bool busy = true;
3258
3259 semaphore_clear_deadlocks(dev_priv);
3260
3261 seqno = ring->get_seqno(ring, false);
3262 acthd = intel_ring_get_active_head(ring);
3263
3264 if (ring->hangcheck.seqno == seqno) {
3265 if (ring_idle(ring, seqno)) {
3266 ring->hangcheck.action = HANGCHECK_IDLE;
3267
3268 if (waitqueue_active(&ring->irq_queue)) {
3269 /* Issue a wake-up to catch stuck h/w. */
3270 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3271 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3272 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3273 ring->name);
3274 else
3275 DRM_INFO("Fake missed irq on %s\n",
3276 ring->name);
3277 wake_up_all(&ring->irq_queue);
3278 }
3279 /* Safeguard against driver failure */
3280 ring->hangcheck.score += BUSY;
3281 } else
3282 busy = false;
3283 } else {
3284 /* We always increment the hangcheck score
3285 * if the ring is busy and still processing
3286 * the same request, so that no single request
3287 * can run indefinitely (such as a chain of
3288 * batches). The only time we do not increment
3289 * the hangcheck score on this ring, if this
3290 * ring is in a legitimate wait for another
3291 * ring. In that case the waiting ring is a
3292 * victim and we want to be sure we catch the
3293 * right culprit. Then every time we do kick
3294 * the ring, add a small increment to the
3295 * score so that we can catch a batch that is
3296 * being repeatedly kicked and so responsible
3297 * for stalling the machine.
3298 */
3299 ring->hangcheck.action = ring_stuck(ring,
3300 acthd);
3301
3302 switch (ring->hangcheck.action) {
3303 case HANGCHECK_IDLE:
3304 case HANGCHECK_WAIT:
3305 case HANGCHECK_ACTIVE:
3306 break;
3307 case HANGCHECK_ACTIVE_LOOP:
3308 ring->hangcheck.score += BUSY;
3309 break;
3310 case HANGCHECK_KICK:
3311 ring->hangcheck.score += KICK;
3312 break;
3313 case HANGCHECK_HUNG:
3314 ring->hangcheck.score += HUNG;
3315 stuck[i] = true;
3316 break;
3317 }
3318 }
3319 } else {
3320 ring->hangcheck.action = HANGCHECK_ACTIVE;
3321
3322 /* Gradually reduce the count so that we catch DoS
3323 * attempts across multiple batches.
3324 */
3325 if (ring->hangcheck.score > 0)
3326 ring->hangcheck.score--;
3327
3328 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3329 }
3330
3331 ring->hangcheck.seqno = seqno;
3332 ring->hangcheck.acthd = acthd;
3333 busy_count += busy;
3334 }
3335
3336 for_each_ring(ring, dev_priv, i) {
3337 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3338 DRM_INFO("%s on %s\n",
3339 stuck[i] ? "stuck" : "no progress",
3340 ring->name);
3341 rings_hung++;
3342 }
3343 }
3344
3345 if (rings_hung)
3346 return i915_handle_error(dev, true, "Ring hung");
3347
3348 if (busy_count)
3349 /* Reset timer case chip hangs without another request
3350 * being added */
3351 i915_queue_hangcheck(dev);
3352 }
3353
3354 void i915_queue_hangcheck(struct drm_device *dev)
3355 {
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357 if (!i915.enable_hangcheck)
3358 return;
3359
3360 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3361 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3362 }
3363
3364 static void ibx_irq_reset(struct drm_device *dev)
3365 {
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367
3368 if (HAS_PCH_NOP(dev))
3369 return;
3370
3371 GEN5_IRQ_RESET(SDE);
3372
3373 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3374 I915_WRITE(SERR_INT, 0xffffffff);
3375 }
3376
3377 /*
3378 * SDEIER is also touched by the interrupt handler to work around missed PCH
3379 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3380 * instead we unconditionally enable all PCH interrupt sources here, but then
3381 * only unmask them as needed with SDEIMR.
3382 *
3383 * This function needs to be called before interrupts are enabled.
3384 */
3385 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3386 {
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388
3389 if (HAS_PCH_NOP(dev))
3390 return;
3391
3392 WARN_ON(I915_READ(SDEIER) != 0);
3393 I915_WRITE(SDEIER, 0xffffffff);
3394 POSTING_READ(SDEIER);
3395 }
3396
3397 static void gen5_gt_irq_reset(struct drm_device *dev)
3398 {
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400
3401 GEN5_IRQ_RESET(GT);
3402 if (INTEL_INFO(dev)->gen >= 6)
3403 GEN5_IRQ_RESET(GEN6_PM);
3404 }
3405
3406 /* drm_dma.h hooks
3407 */
3408 static void ironlake_irq_reset(struct drm_device *dev)
3409 {
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412 I915_WRITE(HWSTAM, 0xffffffff);
3413
3414 GEN5_IRQ_RESET(DE);
3415 if (IS_GEN7(dev))
3416 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3417
3418 gen5_gt_irq_reset(dev);
3419
3420 ibx_irq_reset(dev);
3421 }
3422
3423 static void valleyview_irq_preinstall(struct drm_device *dev)
3424 {
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 int pipe;
3427
3428 /* VLV magic */
3429 I915_WRITE(VLV_IMR, 0);
3430 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3431 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3432 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3433
3434 /* and GT */
3435 I915_WRITE(GTIIR, I915_READ(GTIIR));
3436 I915_WRITE(GTIIR, I915_READ(GTIIR));
3437
3438 gen5_gt_irq_reset(dev);
3439
3440 I915_WRITE(DPINVGTT, 0xff);
3441
3442 I915_WRITE(PORT_HOTPLUG_EN, 0);
3443 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3444 for_each_pipe(pipe)
3445 I915_WRITE(PIPESTAT(pipe), 0xffff);
3446 I915_WRITE(VLV_IIR, 0xffffffff);
3447 I915_WRITE(VLV_IMR, 0xffffffff);
3448 I915_WRITE(VLV_IER, 0x0);
3449 POSTING_READ(VLV_IER);
3450 }
3451
3452 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3453 {
3454 GEN8_IRQ_RESET_NDX(GT, 0);
3455 GEN8_IRQ_RESET_NDX(GT, 1);
3456 GEN8_IRQ_RESET_NDX(GT, 2);
3457 GEN8_IRQ_RESET_NDX(GT, 3);
3458 }
3459
3460 static void gen8_irq_reset(struct drm_device *dev)
3461 {
3462 struct drm_i915_private *dev_priv = dev->dev_private;
3463 int pipe;
3464
3465 I915_WRITE(GEN8_MASTER_IRQ, 0);
3466 POSTING_READ(GEN8_MASTER_IRQ);
3467
3468 gen8_gt_irq_reset(dev_priv);
3469
3470 for_each_pipe(pipe)
3471 if (intel_display_power_enabled(dev_priv,
3472 POWER_DOMAIN_PIPE(pipe)))
3473 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3474
3475 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3476 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3477 GEN5_IRQ_RESET(GEN8_PCU_);
3478
3479 ibx_irq_reset(dev);
3480 }
3481
3482 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3483 {
3484 unsigned long irqflags;
3485
3486 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3487 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3488 ~dev_priv->de_irq_mask[PIPE_B]);
3489 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3490 ~dev_priv->de_irq_mask[PIPE_C]);
3491 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3492 }
3493
3494 static void cherryview_irq_preinstall(struct drm_device *dev)
3495 {
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 int pipe;
3498
3499 I915_WRITE(GEN8_MASTER_IRQ, 0);
3500 POSTING_READ(GEN8_MASTER_IRQ);
3501
3502 gen8_gt_irq_reset(dev_priv);
3503
3504 GEN5_IRQ_RESET(GEN8_PCU_);
3505
3506 POSTING_READ(GEN8_PCU_IIR);
3507
3508 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3509
3510 I915_WRITE(PORT_HOTPLUG_EN, 0);
3511 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3512
3513 for_each_pipe(pipe)
3514 I915_WRITE(PIPESTAT(pipe), 0xffff);
3515
3516 I915_WRITE(VLV_IMR, 0xffffffff);
3517 I915_WRITE(VLV_IER, 0x0);
3518 I915_WRITE(VLV_IIR, 0xffffffff);
3519 POSTING_READ(VLV_IIR);
3520 }
3521
3522 static void ibx_hpd_irq_setup(struct drm_device *dev)
3523 {
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct drm_mode_config *mode_config = &dev->mode_config;
3526 struct intel_encoder *intel_encoder;
3527 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3528
3529 if (HAS_PCH_IBX(dev)) {
3530 hotplug_irqs = SDE_HOTPLUG_MASK;
3531 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3532 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3533 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3534 } else {
3535 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3536 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3537 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3538 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3539 }
3540
3541 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3542
3543 /*
3544 * Enable digital hotplug on the PCH, and configure the DP short pulse
3545 * duration to 2ms (which is the minimum in the Display Port spec)
3546 *
3547 * This register is the same on all known PCH chips.
3548 */
3549 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3550 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3551 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3552 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3553 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3554 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3555 }
3556
3557 static void ibx_irq_postinstall(struct drm_device *dev)
3558 {
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 u32 mask;
3561
3562 if (HAS_PCH_NOP(dev))
3563 return;
3564
3565 if (HAS_PCH_IBX(dev))
3566 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3567 else
3568 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3569
3570 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3571 I915_WRITE(SDEIMR, ~mask);
3572 }
3573
3574 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 u32 pm_irqs, gt_irqs;
3578
3579 pm_irqs = gt_irqs = 0;
3580
3581 dev_priv->gt_irq_mask = ~0;
3582 if (HAS_L3_DPF(dev)) {
3583 /* L3 parity interrupt is always unmasked. */
3584 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3585 gt_irqs |= GT_PARITY_ERROR(dev);
3586 }
3587
3588 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3589 if (IS_GEN5(dev)) {
3590 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3591 ILK_BSD_USER_INTERRUPT;
3592 } else {
3593 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3594 }
3595
3596 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3597
3598 if (INTEL_INFO(dev)->gen >= 6) {
3599 pm_irqs |= dev_priv->pm_rps_events;
3600
3601 if (HAS_VEBOX(dev))
3602 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3603
3604 dev_priv->pm_irq_mask = 0xffffffff;
3605 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3606 }
3607 }
3608
3609 static int ironlake_irq_postinstall(struct drm_device *dev)
3610 {
3611 unsigned long irqflags;
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613 u32 display_mask, extra_mask;
3614
3615 if (INTEL_INFO(dev)->gen >= 7) {
3616 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3617 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3618 DE_PLANEB_FLIP_DONE_IVB |
3619 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3620 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3621 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3622 } else {
3623 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3624 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3625 DE_AUX_CHANNEL_A |
3626 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3627 DE_POISON);
3628 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3629 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3630 }
3631
3632 dev_priv->irq_mask = ~display_mask;
3633
3634 I915_WRITE(HWSTAM, 0xeffe);
3635
3636 ibx_irq_pre_postinstall(dev);
3637
3638 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3639
3640 gen5_gt_irq_postinstall(dev);
3641
3642 ibx_irq_postinstall(dev);
3643
3644 if (IS_IRONLAKE_M(dev)) {
3645 /* Enable PCU event interrupts
3646 *
3647 * spinlocking not required here for correctness since interrupt
3648 * setup is guaranteed to run in single-threaded context. But we
3649 * need it to make the assert_spin_locked happy. */
3650 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3651 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3652 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3653 }
3654
3655 return 0;
3656 }
3657
3658 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3659 {
3660 u32 pipestat_mask;
3661 u32 iir_mask;
3662
3663 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3664 PIPE_FIFO_UNDERRUN_STATUS;
3665
3666 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3667 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3668 POSTING_READ(PIPESTAT(PIPE_A));
3669
3670 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3671 PIPE_CRC_DONE_INTERRUPT_STATUS;
3672
3673 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3674 PIPE_GMBUS_INTERRUPT_STATUS);
3675 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3676
3677 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3678 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3679 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3680 dev_priv->irq_mask &= ~iir_mask;
3681
3682 I915_WRITE(VLV_IIR, iir_mask);
3683 I915_WRITE(VLV_IIR, iir_mask);
3684 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3685 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3686 POSTING_READ(VLV_IER);
3687 }
3688
3689 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3690 {
3691 u32 pipestat_mask;
3692 u32 iir_mask;
3693
3694 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3695 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3697
3698 dev_priv->irq_mask |= iir_mask;
3699 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3700 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3701 I915_WRITE(VLV_IIR, iir_mask);
3702 I915_WRITE(VLV_IIR, iir_mask);
3703 POSTING_READ(VLV_IIR);
3704
3705 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3706 PIPE_CRC_DONE_INTERRUPT_STATUS;
3707
3708 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3709 PIPE_GMBUS_INTERRUPT_STATUS);
3710 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3711
3712 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3713 PIPE_FIFO_UNDERRUN_STATUS;
3714 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3715 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3716 POSTING_READ(PIPESTAT(PIPE_A));
3717 }
3718
3719 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3720 {
3721 assert_spin_locked(&dev_priv->irq_lock);
3722
3723 if (dev_priv->display_irqs_enabled)
3724 return;
3725
3726 dev_priv->display_irqs_enabled = true;
3727
3728 if (dev_priv->dev->irq_enabled)
3729 valleyview_display_irqs_install(dev_priv);
3730 }
3731
3732 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3733 {
3734 assert_spin_locked(&dev_priv->irq_lock);
3735
3736 if (!dev_priv->display_irqs_enabled)
3737 return;
3738
3739 dev_priv->display_irqs_enabled = false;
3740
3741 if (dev_priv->dev->irq_enabled)
3742 valleyview_display_irqs_uninstall(dev_priv);
3743 }
3744
3745 static int valleyview_irq_postinstall(struct drm_device *dev)
3746 {
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748 unsigned long irqflags;
3749
3750 dev_priv->irq_mask = ~0;
3751
3752 I915_WRITE(PORT_HOTPLUG_EN, 0);
3753 POSTING_READ(PORT_HOTPLUG_EN);
3754
3755 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3756 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3757 I915_WRITE(VLV_IIR, 0xffffffff);
3758 POSTING_READ(VLV_IER);
3759
3760 /* Interrupt setup is already guaranteed to be single-threaded, this is
3761 * just to make the assert_spin_locked check happy. */
3762 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3763 if (dev_priv->display_irqs_enabled)
3764 valleyview_display_irqs_install(dev_priv);
3765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3766
3767 I915_WRITE(VLV_IIR, 0xffffffff);
3768 I915_WRITE(VLV_IIR, 0xffffffff);
3769
3770 gen5_gt_irq_postinstall(dev);
3771
3772 /* ack & enable invalid PTE error interrupts */
3773 #if 0 /* FIXME: add support to irq handler for checking these bits */
3774 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3775 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3776 #endif
3777
3778 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3779
3780 return 0;
3781 }
3782
3783 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785 int i;
3786
3787 /* These are interrupts we'll toggle with the ring mask register */
3788 uint32_t gt_interrupts[] = {
3789 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3790 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3791 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3792 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3793 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3794 0,
3795 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3796 };
3797
3798 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3799 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3800
3801 dev_priv->pm_irq_mask = 0xffffffff;
3802 }
3803
3804 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3805 {
3806 struct drm_device *dev = dev_priv->dev;
3807 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3808 GEN8_PIPE_CDCLK_CRC_DONE |
3809 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3810 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3811 GEN8_PIPE_FIFO_UNDERRUN;
3812 int pipe;
3813 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3814 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3815 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3816
3817 for_each_pipe(pipe)
3818 if (intel_display_power_enabled(dev_priv,
3819 POWER_DOMAIN_PIPE(pipe)))
3820 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3821 dev_priv->de_irq_mask[pipe],
3822 de_pipe_enables);
3823
3824 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3825 }
3826
3827 static int gen8_irq_postinstall(struct drm_device *dev)
3828 {
3829 struct drm_i915_private *dev_priv = dev->dev_private;
3830
3831 ibx_irq_pre_postinstall(dev);
3832
3833 gen8_gt_irq_postinstall(dev_priv);
3834 gen8_de_irq_postinstall(dev_priv);
3835
3836 ibx_irq_postinstall(dev);
3837
3838 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3839 POSTING_READ(GEN8_MASTER_IRQ);
3840
3841 return 0;
3842 }
3843
3844 static int cherryview_irq_postinstall(struct drm_device *dev)
3845 {
3846 struct drm_i915_private *dev_priv = dev->dev_private;
3847 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3848 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3851 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3852 PIPE_CRC_DONE_INTERRUPT_STATUS;
3853 unsigned long irqflags;
3854 int pipe;
3855
3856 /*
3857 * Leave vblank interrupts masked initially. enable/disable will
3858 * toggle them based on usage.
3859 */
3860 dev_priv->irq_mask = ~enable_mask;
3861
3862 for_each_pipe(pipe)
3863 I915_WRITE(PIPESTAT(pipe), 0xffff);
3864
3865 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3866 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3867 for_each_pipe(pipe)
3868 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3869 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3870
3871 I915_WRITE(VLV_IIR, 0xffffffff);
3872 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3873 I915_WRITE(VLV_IER, enable_mask);
3874
3875 gen8_gt_irq_postinstall(dev_priv);
3876
3877 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3878 POSTING_READ(GEN8_MASTER_IRQ);
3879
3880 return 0;
3881 }
3882
3883 static void gen8_irq_uninstall(struct drm_device *dev)
3884 {
3885 struct drm_i915_private *dev_priv = dev->dev_private;
3886
3887 if (!dev_priv)
3888 return;
3889
3890 gen8_irq_reset(dev);
3891 }
3892
3893 static void valleyview_irq_uninstall(struct drm_device *dev)
3894 {
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 unsigned long irqflags;
3897 int pipe;
3898
3899 if (!dev_priv)
3900 return;
3901
3902 I915_WRITE(VLV_MASTER_IER, 0);
3903
3904 for_each_pipe(pipe)
3905 I915_WRITE(PIPESTAT(pipe), 0xffff);
3906
3907 I915_WRITE(HWSTAM, 0xffffffff);
3908 I915_WRITE(PORT_HOTPLUG_EN, 0);
3909 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3910
3911 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3912 if (dev_priv->display_irqs_enabled)
3913 valleyview_display_irqs_uninstall(dev_priv);
3914 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3915
3916 dev_priv->irq_mask = 0;
3917
3918 I915_WRITE(VLV_IIR, 0xffffffff);
3919 I915_WRITE(VLV_IMR, 0xffffffff);
3920 I915_WRITE(VLV_IER, 0x0);
3921 POSTING_READ(VLV_IER);
3922 }
3923
3924 static void cherryview_irq_uninstall(struct drm_device *dev)
3925 {
3926 struct drm_i915_private *dev_priv = dev->dev_private;
3927 int pipe;
3928
3929 if (!dev_priv)
3930 return;
3931
3932 I915_WRITE(GEN8_MASTER_IRQ, 0);
3933 POSTING_READ(GEN8_MASTER_IRQ);
3934
3935 #define GEN8_IRQ_FINI_NDX(type, which) \
3936 do { \
3937 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3938 I915_WRITE(GEN8_##type##_IER(which), 0); \
3939 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3940 POSTING_READ(GEN8_##type##_IIR(which)); \
3941 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3942 } while (0)
3943
3944 #define GEN8_IRQ_FINI(type) \
3945 do { \
3946 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3947 I915_WRITE(GEN8_##type##_IER, 0); \
3948 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3949 POSTING_READ(GEN8_##type##_IIR); \
3950 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3951 } while (0)
3952
3953 GEN8_IRQ_FINI_NDX(GT, 0);
3954 GEN8_IRQ_FINI_NDX(GT, 1);
3955 GEN8_IRQ_FINI_NDX(GT, 2);
3956 GEN8_IRQ_FINI_NDX(GT, 3);
3957
3958 GEN8_IRQ_FINI(PCU);
3959
3960 #undef GEN8_IRQ_FINI
3961 #undef GEN8_IRQ_FINI_NDX
3962
3963 I915_WRITE(PORT_HOTPLUG_EN, 0);
3964 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965
3966 for_each_pipe(pipe)
3967 I915_WRITE(PIPESTAT(pipe), 0xffff);
3968
3969 I915_WRITE(VLV_IMR, 0xffffffff);
3970 I915_WRITE(VLV_IER, 0x0);
3971 I915_WRITE(VLV_IIR, 0xffffffff);
3972 POSTING_READ(VLV_IIR);
3973 }
3974
3975 static void ironlake_irq_uninstall(struct drm_device *dev)
3976 {
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979 if (!dev_priv)
3980 return;
3981
3982 ironlake_irq_reset(dev);
3983 }
3984
3985 static void i8xx_irq_preinstall(struct drm_device * dev)
3986 {
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 int pipe;
3989
3990 for_each_pipe(pipe)
3991 I915_WRITE(PIPESTAT(pipe), 0);
3992 I915_WRITE16(IMR, 0xffff);
3993 I915_WRITE16(IER, 0x0);
3994 POSTING_READ16(IER);
3995 }
3996
3997 static int i8xx_irq_postinstall(struct drm_device *dev)
3998 {
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 unsigned long irqflags;
4001
4002 I915_WRITE16(EMR,
4003 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4004
4005 /* Unmask the interrupts that we always want on. */
4006 dev_priv->irq_mask =
4007 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4008 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4009 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4011 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4012 I915_WRITE16(IMR, dev_priv->irq_mask);
4013
4014 I915_WRITE16(IER,
4015 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4016 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4017 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4018 I915_USER_INTERRUPT);
4019 POSTING_READ16(IER);
4020
4021 /* Interrupt setup is already guaranteed to be single-threaded, this is
4022 * just to make the assert_spin_locked check happy. */
4023 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4024 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4025 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4026 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4027
4028 return 0;
4029 }
4030
4031 /*
4032 * Returns true when a page flip has completed.
4033 */
4034 static bool i8xx_handle_vblank(struct drm_device *dev,
4035 int plane, int pipe, u32 iir)
4036 {
4037 struct drm_i915_private *dev_priv = dev->dev_private;
4038 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4039
4040 if (!intel_pipe_handle_vblank(dev, pipe))
4041 return false;
4042
4043 if ((iir & flip_pending) == 0)
4044 return false;
4045
4046 intel_prepare_page_flip(dev, plane);
4047
4048 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4049 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4050 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4051 * the flip is completed (no longer pending). Since this doesn't raise
4052 * an interrupt per se, we watch for the change at vblank.
4053 */
4054 if (I915_READ16(ISR) & flip_pending)
4055 return false;
4056
4057 intel_finish_page_flip(dev, pipe);
4058
4059 return true;
4060 }
4061
4062 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4063 {
4064 struct drm_device *dev = arg;
4065 struct drm_i915_private *dev_priv = dev->dev_private;
4066 u16 iir, new_iir;
4067 u32 pipe_stats[2];
4068 unsigned long irqflags;
4069 int pipe;
4070 u16 flip_mask =
4071 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4072 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4073
4074 iir = I915_READ16(IIR);
4075 if (iir == 0)
4076 return IRQ_NONE;
4077
4078 while (iir & ~flip_mask) {
4079 /* Can't rely on pipestat interrupt bit in iir as it might
4080 * have been cleared after the pipestat interrupt was received.
4081 * It doesn't set the bit in iir again, but it still produces
4082 * interrupts (for non-MSI).
4083 */
4084 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4085 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4086 i915_handle_error(dev, false,
4087 "Command parser error, iir 0x%08x",
4088 iir);
4089
4090 for_each_pipe(pipe) {
4091 int reg = PIPESTAT(pipe);
4092 pipe_stats[pipe] = I915_READ(reg);
4093
4094 /*
4095 * Clear the PIPE*STAT regs before the IIR
4096 */
4097 if (pipe_stats[pipe] & 0x8000ffff)
4098 I915_WRITE(reg, pipe_stats[pipe]);
4099 }
4100 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4101
4102 I915_WRITE16(IIR, iir & ~flip_mask);
4103 new_iir = I915_READ16(IIR); /* Flush posted writes */
4104
4105 i915_update_dri1_breadcrumb(dev);
4106
4107 if (iir & I915_USER_INTERRUPT)
4108 notify_ring(dev, &dev_priv->ring[RCS]);
4109
4110 for_each_pipe(pipe) {
4111 int plane = pipe;
4112 if (HAS_FBC(dev))
4113 plane = !plane;
4114
4115 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4116 i8xx_handle_vblank(dev, plane, pipe, iir))
4117 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4118
4119 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4120 i9xx_pipe_crc_irq_handler(dev, pipe);
4121
4122 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4123 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4124 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4125 }
4126
4127 iir = new_iir;
4128 }
4129
4130 return IRQ_HANDLED;
4131 }
4132
4133 static void i8xx_irq_uninstall(struct drm_device * dev)
4134 {
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136 int pipe;
4137
4138 for_each_pipe(pipe) {
4139 /* Clear enable bits; then clear status bits */
4140 I915_WRITE(PIPESTAT(pipe), 0);
4141 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4142 }
4143 I915_WRITE16(IMR, 0xffff);
4144 I915_WRITE16(IER, 0x0);
4145 I915_WRITE16(IIR, I915_READ16(IIR));
4146 }
4147
4148 static void i915_irq_preinstall(struct drm_device * dev)
4149 {
4150 struct drm_i915_private *dev_priv = dev->dev_private;
4151 int pipe;
4152
4153 if (I915_HAS_HOTPLUG(dev)) {
4154 I915_WRITE(PORT_HOTPLUG_EN, 0);
4155 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4156 }
4157
4158 I915_WRITE16(HWSTAM, 0xeffe);
4159 for_each_pipe(pipe)
4160 I915_WRITE(PIPESTAT(pipe), 0);
4161 I915_WRITE(IMR, 0xffffffff);
4162 I915_WRITE(IER, 0x0);
4163 POSTING_READ(IER);
4164 }
4165
4166 static int i915_irq_postinstall(struct drm_device *dev)
4167 {
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 u32 enable_mask;
4170 unsigned long irqflags;
4171
4172 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4173
4174 /* Unmask the interrupts that we always want on. */
4175 dev_priv->irq_mask =
4176 ~(I915_ASLE_INTERRUPT |
4177 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4178 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4179 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4180 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4181 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4182
4183 enable_mask =
4184 I915_ASLE_INTERRUPT |
4185 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4186 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4187 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4188 I915_USER_INTERRUPT;
4189
4190 if (I915_HAS_HOTPLUG(dev)) {
4191 I915_WRITE(PORT_HOTPLUG_EN, 0);
4192 POSTING_READ(PORT_HOTPLUG_EN);
4193
4194 /* Enable in IER... */
4195 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4196 /* and unmask in IMR */
4197 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4198 }
4199
4200 I915_WRITE(IMR, dev_priv->irq_mask);
4201 I915_WRITE(IER, enable_mask);
4202 POSTING_READ(IER);
4203
4204 i915_enable_asle_pipestat(dev);
4205
4206 /* Interrupt setup is already guaranteed to be single-threaded, this is
4207 * just to make the assert_spin_locked check happy. */
4208 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4209 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4210 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4211 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4212
4213 return 0;
4214 }
4215
4216 /*
4217 * Returns true when a page flip has completed.
4218 */
4219 static bool i915_handle_vblank(struct drm_device *dev,
4220 int plane, int pipe, u32 iir)
4221 {
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4224
4225 if (!intel_pipe_handle_vblank(dev, pipe))
4226 return false;
4227
4228 if ((iir & flip_pending) == 0)
4229 return false;
4230
4231 intel_prepare_page_flip(dev, plane);
4232
4233 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4234 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4235 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4236 * the flip is completed (no longer pending). Since this doesn't raise
4237 * an interrupt per se, we watch for the change at vblank.
4238 */
4239 if (I915_READ(ISR) & flip_pending)
4240 return false;
4241
4242 intel_finish_page_flip(dev, pipe);
4243
4244 return true;
4245 }
4246
4247 static irqreturn_t i915_irq_handler(int irq, void *arg)
4248 {
4249 struct drm_device *dev = arg;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4252 unsigned long irqflags;
4253 u32 flip_mask =
4254 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4255 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4256 int pipe, ret = IRQ_NONE;
4257
4258 iir = I915_READ(IIR);
4259 do {
4260 bool irq_received = (iir & ~flip_mask) != 0;
4261 bool blc_event = false;
4262
4263 /* Can't rely on pipestat interrupt bit in iir as it might
4264 * have been cleared after the pipestat interrupt was received.
4265 * It doesn't set the bit in iir again, but it still produces
4266 * interrupts (for non-MSI).
4267 */
4268 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4269 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4270 i915_handle_error(dev, false,
4271 "Command parser error, iir 0x%08x",
4272 iir);
4273
4274 for_each_pipe(pipe) {
4275 int reg = PIPESTAT(pipe);
4276 pipe_stats[pipe] = I915_READ(reg);
4277
4278 /* Clear the PIPE*STAT regs before the IIR */
4279 if (pipe_stats[pipe] & 0x8000ffff) {
4280 I915_WRITE(reg, pipe_stats[pipe]);
4281 irq_received = true;
4282 }
4283 }
4284 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4285
4286 if (!irq_received)
4287 break;
4288
4289 /* Consume port. Then clear IIR or we'll miss events */
4290 if (I915_HAS_HOTPLUG(dev) &&
4291 iir & I915_DISPLAY_PORT_INTERRUPT)
4292 i9xx_hpd_irq_handler(dev);
4293
4294 I915_WRITE(IIR, iir & ~flip_mask);
4295 new_iir = I915_READ(IIR); /* Flush posted writes */
4296
4297 if (iir & I915_USER_INTERRUPT)
4298 notify_ring(dev, &dev_priv->ring[RCS]);
4299
4300 for_each_pipe(pipe) {
4301 int plane = pipe;
4302 if (HAS_FBC(dev))
4303 plane = !plane;
4304
4305 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4306 i915_handle_vblank(dev, plane, pipe, iir))
4307 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4308
4309 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4310 blc_event = true;
4311
4312 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4313 i9xx_pipe_crc_irq_handler(dev, pipe);
4314
4315 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4316 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4317 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4318 }
4319
4320 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4321 intel_opregion_asle_intr(dev);
4322
4323 /* With MSI, interrupts are only generated when iir
4324 * transitions from zero to nonzero. If another bit got
4325 * set while we were handling the existing iir bits, then
4326 * we would never get another interrupt.
4327 *
4328 * This is fine on non-MSI as well, as if we hit this path
4329 * we avoid exiting the interrupt handler only to generate
4330 * another one.
4331 *
4332 * Note that for MSI this could cause a stray interrupt report
4333 * if an interrupt landed in the time between writing IIR and
4334 * the posting read. This should be rare enough to never
4335 * trigger the 99% of 100,000 interrupts test for disabling
4336 * stray interrupts.
4337 */
4338 ret = IRQ_HANDLED;
4339 iir = new_iir;
4340 } while (iir & ~flip_mask);
4341
4342 i915_update_dri1_breadcrumb(dev);
4343
4344 return ret;
4345 }
4346
4347 static void i915_irq_uninstall(struct drm_device * dev)
4348 {
4349 struct drm_i915_private *dev_priv = dev->dev_private;
4350 int pipe;
4351
4352 if (I915_HAS_HOTPLUG(dev)) {
4353 I915_WRITE(PORT_HOTPLUG_EN, 0);
4354 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4355 }
4356
4357 I915_WRITE16(HWSTAM, 0xffff);
4358 for_each_pipe(pipe) {
4359 /* Clear enable bits; then clear status bits */
4360 I915_WRITE(PIPESTAT(pipe), 0);
4361 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4362 }
4363 I915_WRITE(IMR, 0xffffffff);
4364 I915_WRITE(IER, 0x0);
4365
4366 I915_WRITE(IIR, I915_READ(IIR));
4367 }
4368
4369 static void i965_irq_preinstall(struct drm_device * dev)
4370 {
4371 struct drm_i915_private *dev_priv = dev->dev_private;
4372 int pipe;
4373
4374 I915_WRITE(PORT_HOTPLUG_EN, 0);
4375 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4376
4377 I915_WRITE(HWSTAM, 0xeffe);
4378 for_each_pipe(pipe)
4379 I915_WRITE(PIPESTAT(pipe), 0);
4380 I915_WRITE(IMR, 0xffffffff);
4381 I915_WRITE(IER, 0x0);
4382 POSTING_READ(IER);
4383 }
4384
4385 static int i965_irq_postinstall(struct drm_device *dev)
4386 {
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 u32 enable_mask;
4389 u32 error_mask;
4390 unsigned long irqflags;
4391
4392 /* Unmask the interrupts that we always want on. */
4393 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4394 I915_DISPLAY_PORT_INTERRUPT |
4395 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4396 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4397 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4398 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4399 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4400
4401 enable_mask = ~dev_priv->irq_mask;
4402 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4403 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4404 enable_mask |= I915_USER_INTERRUPT;
4405
4406 if (IS_G4X(dev))
4407 enable_mask |= I915_BSD_USER_INTERRUPT;
4408
4409 /* Interrupt setup is already guaranteed to be single-threaded, this is
4410 * just to make the assert_spin_locked check happy. */
4411 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4412 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4413 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4414 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4415 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4416
4417 /*
4418 * Enable some error detection, note the instruction error mask
4419 * bit is reserved, so we leave it masked.
4420 */
4421 if (IS_G4X(dev)) {
4422 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4423 GM45_ERROR_MEM_PRIV |
4424 GM45_ERROR_CP_PRIV |
4425 I915_ERROR_MEMORY_REFRESH);
4426 } else {
4427 error_mask = ~(I915_ERROR_PAGE_TABLE |
4428 I915_ERROR_MEMORY_REFRESH);
4429 }
4430 I915_WRITE(EMR, error_mask);
4431
4432 I915_WRITE(IMR, dev_priv->irq_mask);
4433 I915_WRITE(IER, enable_mask);
4434 POSTING_READ(IER);
4435
4436 I915_WRITE(PORT_HOTPLUG_EN, 0);
4437 POSTING_READ(PORT_HOTPLUG_EN);
4438
4439 i915_enable_asle_pipestat(dev);
4440
4441 return 0;
4442 }
4443
4444 static void i915_hpd_irq_setup(struct drm_device *dev)
4445 {
4446 struct drm_i915_private *dev_priv = dev->dev_private;
4447 struct drm_mode_config *mode_config = &dev->mode_config;
4448 struct intel_encoder *intel_encoder;
4449 u32 hotplug_en;
4450
4451 assert_spin_locked(&dev_priv->irq_lock);
4452
4453 if (I915_HAS_HOTPLUG(dev)) {
4454 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4455 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4456 /* Note HDMI and DP share hotplug bits */
4457 /* enable bits are the same for all generations */
4458 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4459 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4460 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4461 /* Programming the CRT detection parameters tends
4462 to generate a spurious hotplug event about three
4463 seconds later. So just do it once.
4464 */
4465 if (IS_G4X(dev))
4466 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4467 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4468 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4469
4470 /* Ignore TV since it's buggy */
4471 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4472 }
4473 }
4474
4475 static irqreturn_t i965_irq_handler(int irq, void *arg)
4476 {
4477 struct drm_device *dev = arg;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 u32 iir, new_iir;
4480 u32 pipe_stats[I915_MAX_PIPES];
4481 unsigned long irqflags;
4482 int ret = IRQ_NONE, pipe;
4483 u32 flip_mask =
4484 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4485 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4486
4487 iir = I915_READ(IIR);
4488
4489 for (;;) {
4490 bool irq_received = (iir & ~flip_mask) != 0;
4491 bool blc_event = false;
4492
4493 /* Can't rely on pipestat interrupt bit in iir as it might
4494 * have been cleared after the pipestat interrupt was received.
4495 * It doesn't set the bit in iir again, but it still produces
4496 * interrupts (for non-MSI).
4497 */
4498 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4499 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4500 i915_handle_error(dev, false,
4501 "Command parser error, iir 0x%08x",
4502 iir);
4503
4504 for_each_pipe(pipe) {
4505 int reg = PIPESTAT(pipe);
4506 pipe_stats[pipe] = I915_READ(reg);
4507
4508 /*
4509 * Clear the PIPE*STAT regs before the IIR
4510 */
4511 if (pipe_stats[pipe] & 0x8000ffff) {
4512 I915_WRITE(reg, pipe_stats[pipe]);
4513 irq_received = true;
4514 }
4515 }
4516 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4517
4518 if (!irq_received)
4519 break;
4520
4521 ret = IRQ_HANDLED;
4522
4523 /* Consume port. Then clear IIR or we'll miss events */
4524 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4525 i9xx_hpd_irq_handler(dev);
4526
4527 I915_WRITE(IIR, iir & ~flip_mask);
4528 new_iir = I915_READ(IIR); /* Flush posted writes */
4529
4530 if (iir & I915_USER_INTERRUPT)
4531 notify_ring(dev, &dev_priv->ring[RCS]);
4532 if (iir & I915_BSD_USER_INTERRUPT)
4533 notify_ring(dev, &dev_priv->ring[VCS]);
4534
4535 for_each_pipe(pipe) {
4536 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4537 i915_handle_vblank(dev, pipe, pipe, iir))
4538 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4539
4540 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4541 blc_event = true;
4542
4543 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4544 i9xx_pipe_crc_irq_handler(dev, pipe);
4545
4546 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4547 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4548 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4549 }
4550
4551 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4552 intel_opregion_asle_intr(dev);
4553
4554 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4555 gmbus_irq_handler(dev);
4556
4557 /* With MSI, interrupts are only generated when iir
4558 * transitions from zero to nonzero. If another bit got
4559 * set while we were handling the existing iir bits, then
4560 * we would never get another interrupt.
4561 *
4562 * This is fine on non-MSI as well, as if we hit this path
4563 * we avoid exiting the interrupt handler only to generate
4564 * another one.
4565 *
4566 * Note that for MSI this could cause a stray interrupt report
4567 * if an interrupt landed in the time between writing IIR and
4568 * the posting read. This should be rare enough to never
4569 * trigger the 99% of 100,000 interrupts test for disabling
4570 * stray interrupts.
4571 */
4572 iir = new_iir;
4573 }
4574
4575 i915_update_dri1_breadcrumb(dev);
4576
4577 return ret;
4578 }
4579
4580 static void i965_irq_uninstall(struct drm_device * dev)
4581 {
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583 int pipe;
4584
4585 if (!dev_priv)
4586 return;
4587
4588 I915_WRITE(PORT_HOTPLUG_EN, 0);
4589 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4590
4591 I915_WRITE(HWSTAM, 0xffffffff);
4592 for_each_pipe(pipe)
4593 I915_WRITE(PIPESTAT(pipe), 0);
4594 I915_WRITE(IMR, 0xffffffff);
4595 I915_WRITE(IER, 0x0);
4596
4597 for_each_pipe(pipe)
4598 I915_WRITE(PIPESTAT(pipe),
4599 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4600 I915_WRITE(IIR, I915_READ(IIR));
4601 }
4602
4603 static void intel_hpd_irq_reenable(struct work_struct *work)
4604 {
4605 struct drm_i915_private *dev_priv =
4606 container_of(work, typeof(*dev_priv),
4607 hotplug_reenable_work.work);
4608 struct drm_device *dev = dev_priv->dev;
4609 struct drm_mode_config *mode_config = &dev->mode_config;
4610 unsigned long irqflags;
4611 int i;
4612
4613 intel_runtime_pm_get(dev_priv);
4614
4615 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4616 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4617 struct drm_connector *connector;
4618
4619 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4620 continue;
4621
4622 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4623
4624 list_for_each_entry(connector, &mode_config->connector_list, head) {
4625 struct intel_connector *intel_connector = to_intel_connector(connector);
4626
4627 if (intel_connector->encoder->hpd_pin == i) {
4628 if (connector->polled != intel_connector->polled)
4629 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4630 connector->name);
4631 connector->polled = intel_connector->polled;
4632 if (!connector->polled)
4633 connector->polled = DRM_CONNECTOR_POLL_HPD;
4634 }
4635 }
4636 }
4637 if (dev_priv->display.hpd_irq_setup)
4638 dev_priv->display.hpd_irq_setup(dev);
4639 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4640
4641 intel_runtime_pm_put(dev_priv);
4642 }
4643
4644 void intel_irq_init(struct drm_device *dev)
4645 {
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647
4648 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4649 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4650 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4651 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4652 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4653
4654 /* Let's track the enabled rps events */
4655 if (IS_VALLEYVIEW(dev))
4656 /* WaGsvRC0ResidenncyMethod:VLV */
4657 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4658 else
4659 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4660
4661 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4662 i915_hangcheck_elapsed,
4663 (unsigned long) dev);
4664 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4665 intel_hpd_irq_reenable);
4666
4667 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4668
4669 /* Haven't installed the IRQ handler yet */
4670 dev_priv->pm._irqs_disabled = true;
4671
4672 if (IS_GEN2(dev)) {
4673 dev->max_vblank_count = 0;
4674 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4675 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4676 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4677 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4678 } else {
4679 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4680 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4681 }
4682
4683 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4684 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4685 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4686 }
4687
4688 if (IS_CHERRYVIEW(dev)) {
4689 dev->driver->irq_handler = cherryview_irq_handler;
4690 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4691 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4692 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4693 dev->driver->enable_vblank = valleyview_enable_vblank;
4694 dev->driver->disable_vblank = valleyview_disable_vblank;
4695 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4696 } else if (IS_VALLEYVIEW(dev)) {
4697 dev->driver->irq_handler = valleyview_irq_handler;
4698 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4699 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4700 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4701 dev->driver->enable_vblank = valleyview_enable_vblank;
4702 dev->driver->disable_vblank = valleyview_disable_vblank;
4703 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4704 } else if (IS_GEN8(dev)) {
4705 dev->driver->irq_handler = gen8_irq_handler;
4706 dev->driver->irq_preinstall = gen8_irq_reset;
4707 dev->driver->irq_postinstall = gen8_irq_postinstall;
4708 dev->driver->irq_uninstall = gen8_irq_uninstall;
4709 dev->driver->enable_vblank = gen8_enable_vblank;
4710 dev->driver->disable_vblank = gen8_disable_vblank;
4711 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4712 } else if (HAS_PCH_SPLIT(dev)) {
4713 dev->driver->irq_handler = ironlake_irq_handler;
4714 dev->driver->irq_preinstall = ironlake_irq_reset;
4715 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4716 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4717 dev->driver->enable_vblank = ironlake_enable_vblank;
4718 dev->driver->disable_vblank = ironlake_disable_vblank;
4719 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4720 } else {
4721 if (INTEL_INFO(dev)->gen == 2) {
4722 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4723 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4724 dev->driver->irq_handler = i8xx_irq_handler;
4725 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4726 } else if (INTEL_INFO(dev)->gen == 3) {
4727 dev->driver->irq_preinstall = i915_irq_preinstall;
4728 dev->driver->irq_postinstall = i915_irq_postinstall;
4729 dev->driver->irq_uninstall = i915_irq_uninstall;
4730 dev->driver->irq_handler = i915_irq_handler;
4731 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4732 } else {
4733 dev->driver->irq_preinstall = i965_irq_preinstall;
4734 dev->driver->irq_postinstall = i965_irq_postinstall;
4735 dev->driver->irq_uninstall = i965_irq_uninstall;
4736 dev->driver->irq_handler = i965_irq_handler;
4737 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4738 }
4739 dev->driver->enable_vblank = i915_enable_vblank;
4740 dev->driver->disable_vblank = i915_disable_vblank;
4741 }
4742 }
4743
4744 void intel_hpd_init(struct drm_device *dev)
4745 {
4746 struct drm_i915_private *dev_priv = dev->dev_private;
4747 struct drm_mode_config *mode_config = &dev->mode_config;
4748 struct drm_connector *connector;
4749 unsigned long irqflags;
4750 int i;
4751
4752 for (i = 1; i < HPD_NUM_PINS; i++) {
4753 dev_priv->hpd_stats[i].hpd_cnt = 0;
4754 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4755 }
4756 list_for_each_entry(connector, &mode_config->connector_list, head) {
4757 struct intel_connector *intel_connector = to_intel_connector(connector);
4758 connector->polled = intel_connector->polled;
4759 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4760 connector->polled = DRM_CONNECTOR_POLL_HPD;
4761 if (intel_connector->mst_port)
4762 connector->polled = DRM_CONNECTOR_POLL_HPD;
4763 }
4764
4765 /* Interrupt setup is already guaranteed to be single-threaded, this is
4766 * just to make the assert_spin_locked checks happy. */
4767 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4768 if (dev_priv->display.hpd_irq_setup)
4769 dev_priv->display.hpd_irq_setup(dev);
4770 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4771 }
4772
4773 /* Disable interrupts so we can allow runtime PM. */
4774 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4775 {
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777
4778 dev->driver->irq_uninstall(dev);
4779 dev_priv->pm._irqs_disabled = true;
4780 }
4781
4782 /* Restore interrupts so we can recover from runtime PM. */
4783 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4784 {
4785 struct drm_i915_private *dev_priv = dev->dev_private;
4786
4787 dev_priv->pm._irqs_disabled = false;
4788 dev->driver->irq_preinstall(dev);
4789 dev->driver->irq_postinstall(dev);
4790 }