]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'drm-misc-next-2017-05-16' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178 uint32_t mask,
179 uint32_t bits)
180 {
181 uint32_t val;
182
183 lockdep_assert_held(&dev_priv->irq_lock);
184 WARN_ON(bits & ~mask);
185
186 val = I915_READ(PORT_HOTPLUG_EN);
187 val &= ~mask;
188 val |= bits;
189 I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193 * i915_hotplug_interrupt_update - update hotplug interrupt enable
194 * @dev_priv: driver private
195 * @mask: bits to update
196 * @bits: bits to enable
197 * NOTE: the HPD enable bits are modified both inside and outside
198 * of an interrupt context. To avoid that read-modify-write cycles
199 * interfer, these bits are protected by a spinlock. Since this
200 * function is usually not called from a context where the lock is
201 * held already, this function acquires the lock itself. A non-locking
202 * version is also available.
203 */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205 uint32_t mask,
206 uint32_t bits)
207 {
208 spin_lock_irq(&dev_priv->irq_lock);
209 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210 spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214 * ilk_update_display_irq - update DEIMR
215 * @dev_priv: driver private
216 * @interrupt_mask: mask of interrupt bits to update
217 * @enabled_irq_mask: mask of interrupt bits to enable
218 */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220 uint32_t interrupt_mask,
221 uint32_t enabled_irq_mask)
222 {
223 uint32_t new_val;
224
225 lockdep_assert_held(&dev_priv->irq_lock);
226
227 WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230 return;
231
232 new_val = dev_priv->irq_mask;
233 new_val &= ~interrupt_mask;
234 new_val |= (~enabled_irq_mask & interrupt_mask);
235
236 if (new_val != dev_priv->irq_mask) {
237 dev_priv->irq_mask = new_val;
238 I915_WRITE(DEIMR, dev_priv->irq_mask);
239 POSTING_READ(DEIMR);
240 }
241 }
242
243 /**
244 * ilk_update_gt_irq - update GTIMR
245 * @dev_priv: driver private
246 * @interrupt_mask: mask of interrupt bits to update
247 * @enabled_irq_mask: mask of interrupt bits to enable
248 */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250 uint32_t interrupt_mask,
251 uint32_t enabled_irq_mask)
252 {
253 lockdep_assert_held(&dev_priv->irq_lock);
254
255 WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 dev_priv->gt_irq_mask &= ~interrupt_mask;
261 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273 ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292 * snb_update_pm_irq - update GEN6_PMIMR
293 * @dev_priv: driver private
294 * @interrupt_mask: mask of interrupt bits to update
295 * @enabled_irq_mask: mask of interrupt bits to enable
296 */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298 uint32_t interrupt_mask,
299 uint32_t enabled_irq_mask)
300 {
301 uint32_t new_val;
302
303 WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305 lockdep_assert_held(&dev_priv->irq_lock);
306
307 new_val = dev_priv->pm_imr;
308 new_val &= ~interrupt_mask;
309 new_val |= (~enabled_irq_mask & interrupt_mask);
310
311 if (new_val != dev_priv->pm_imr) {
312 dev_priv->pm_imr = new_val;
313 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314 POSTING_READ(gen6_pm_imr(dev_priv));
315 }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321 return;
322
323 snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341 i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343 lockdep_assert_held(&dev_priv->irq_lock);
344
345 I915_WRITE(reg, reset_mask);
346 I915_WRITE(reg, reset_mask);
347 POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352 lockdep_assert_held(&dev_priv->irq_lock);
353
354 dev_priv->pm_ier |= enable_mask;
355 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356 gen6_unmask_pm_irq(dev_priv, enable_mask);
357 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362 lockdep_assert_held(&dev_priv->irq_lock);
363
364 dev_priv->pm_ier &= ~disable_mask;
365 __gen6_mask_pm_irq(dev_priv, disable_mask);
366 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367 /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372 spin_lock_irq(&dev_priv->irq_lock);
373 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374 dev_priv->rps.pm_iir = 0;
375 spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380 if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381 return;
382
383 spin_lock_irq(&dev_priv->irq_lock);
384 WARN_ON_ONCE(dev_priv->rps.pm_iir);
385 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386 dev_priv->rps.interrupts_enabled = true;
387 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389 spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394 if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395 return;
396
397 spin_lock_irq(&dev_priv->irq_lock);
398 dev_priv->rps.interrupts_enabled = false;
399
400 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404 spin_unlock_irq(&dev_priv->irq_lock);
405 synchronize_irq(dev_priv->drm.irq);
406
407 /* Now that we will not be generating any more work, flush any
408 * outsanding tasks. As we are called on the RPS idle path,
409 * we will reset the GPU to minimum frequencies, so the current
410 * state of the worker can be discarded.
411 */
412 cancel_work_sync(&dev_priv->rps.work);
413 gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418 spin_lock_irq(&dev_priv->irq_lock);
419 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420 spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425 spin_lock_irq(&dev_priv->irq_lock);
426 if (!dev_priv->guc.interrupts_enabled) {
427 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428 dev_priv->pm_guc_events);
429 dev_priv->guc.interrupts_enabled = true;
430 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431 }
432 spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437 spin_lock_irq(&dev_priv->irq_lock);
438 dev_priv->guc.interrupts_enabled = false;
439
440 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442 spin_unlock_irq(&dev_priv->irq_lock);
443 synchronize_irq(dev_priv->drm.irq);
444
445 gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449 * bdw_update_port_irq - update DE port interrupt
450 * @dev_priv: driver private
451 * @interrupt_mask: mask of interrupt bits to update
452 * @enabled_irq_mask: mask of interrupt bits to enable
453 */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455 uint32_t interrupt_mask,
456 uint32_t enabled_irq_mask)
457 {
458 uint32_t new_val;
459 uint32_t old_val;
460
461 lockdep_assert_held(&dev_priv->irq_lock);
462
463 WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466 return;
467
468 old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470 new_val = old_val;
471 new_val &= ~interrupt_mask;
472 new_val |= (~enabled_irq_mask & interrupt_mask);
473
474 if (new_val != old_val) {
475 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476 POSTING_READ(GEN8_DE_PORT_IMR);
477 }
478 }
479
480 /**
481 * bdw_update_pipe_irq - update DE pipe interrupt
482 * @dev_priv: driver private
483 * @pipe: pipe whose interrupt to update
484 * @interrupt_mask: mask of interrupt bits to update
485 * @enabled_irq_mask: mask of interrupt bits to enable
486 */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488 enum pipe pipe,
489 uint32_t interrupt_mask,
490 uint32_t enabled_irq_mask)
491 {
492 uint32_t new_val;
493
494 lockdep_assert_held(&dev_priv->irq_lock);
495
496 WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499 return;
500
501 new_val = dev_priv->de_irq_mask[pipe];
502 new_val &= ~interrupt_mask;
503 new_val |= (~enabled_irq_mask & interrupt_mask);
504
505 if (new_val != dev_priv->de_irq_mask[pipe]) {
506 dev_priv->de_irq_mask[pipe] = new_val;
507 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509 }
510 }
511
512 /**
513 * ibx_display_interrupt_update - update SDEIMR
514 * @dev_priv: driver private
515 * @interrupt_mask: mask of interrupt bits to update
516 * @enabled_irq_mask: mask of interrupt bits to enable
517 */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519 uint32_t interrupt_mask,
520 uint32_t enabled_irq_mask)
521 {
522 uint32_t sdeimr = I915_READ(SDEIMR);
523 sdeimr &= ~interrupt_mask;
524 sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526 WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528 lockdep_assert_held(&dev_priv->irq_lock);
529
530 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531 return;
532
533 I915_WRITE(SDEIMR, sdeimr);
534 POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539 u32 enable_mask, u32 status_mask)
540 {
541 i915_reg_t reg = PIPESTAT(pipe);
542 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544 lockdep_assert_held(&dev_priv->irq_lock);
545 WARN_ON(!intel_irqs_enabled(dev_priv));
546
547 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548 status_mask & ~PIPESTAT_INT_STATUS_MASK,
549 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550 pipe_name(pipe), enable_mask, status_mask))
551 return;
552
553 if ((pipestat & enable_mask) == enable_mask)
554 return;
555
556 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558 /* Enable the interrupt, clear any pending status */
559 pipestat |= enable_mask | status_mask;
560 I915_WRITE(reg, pipestat);
561 POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566 u32 enable_mask, u32 status_mask)
567 {
568 i915_reg_t reg = PIPESTAT(pipe);
569 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571 lockdep_assert_held(&dev_priv->irq_lock);
572 WARN_ON(!intel_irqs_enabled(dev_priv));
573
574 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575 status_mask & ~PIPESTAT_INT_STATUS_MASK,
576 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577 pipe_name(pipe), enable_mask, status_mask))
578 return;
579
580 if ((pipestat & enable_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585 pipestat &= ~enable_mask;
586 I915_WRITE(reg, pipestat);
587 POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592 u32 enable_mask = status_mask << 16;
593
594 /*
595 * On pipe A we don't support the PSR interrupt yet,
596 * on pipe B and C the same bit MBZ.
597 */
598 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599 return 0;
600 /*
601 * On pipe B and C we don't support the PSR interrupt yet, on pipe
602 * A the same bit is for perf counters which we don't use either.
603 */
604 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605 return 0;
606
607 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608 SPRITE0_FLIP_DONE_INT_EN_VLV |
609 SPRITE1_FLIP_DONE_INT_EN_VLV);
610 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615 return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620 u32 status_mask)
621 {
622 u32 enable_mask;
623
624 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626 status_mask);
627 else
628 enable_mask = status_mask << 16;
629 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634 u32 status_mask)
635 {
636 u32 enable_mask;
637
638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640 status_mask);
641 else
642 enable_mask = status_mask << 16;
643 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648 * @dev_priv: i915 device private
649 */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653 return;
654
655 spin_lock_irq(&dev_priv->irq_lock);
656
657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658 if (INTEL_GEN(dev_priv) >= 4)
659 i915_enable_pipestat(dev_priv, PIPE_A,
660 PIPE_LEGACY_BLC_EVENT_STATUS);
661
662 spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666 * This timing diagram depicts the video signal in and
667 * around the vertical blanking period.
668 *
669 * Assumptions about the fictitious mode used in this example:
670 * vblank_start >= 3
671 * vsync_start = vblank_start + 1
672 * vsync_end = vblank_start + 2
673 * vtotal = vblank_start + 3
674 *
675 * start of vblank:
676 * latch double buffered registers
677 * increment frame counter (ctg+)
678 * generate start of vblank interrupt (gen4+)
679 * |
680 * | frame start:
681 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
682 * | may be shifted forward 1-3 extra lines via PIPECONF
683 * | |
684 * | | start of vsync:
685 * | | generate vsync interrupt
686 * | | |
687 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
688 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
689 * ----va---> <-----------------vb--------------------> <--------va-------------
690 * | | <----vs-----> |
691 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694 * | | |
695 * last visible pixel first visible pixel
696 * | increment frame counter (gen3/4)
697 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
698 *
699 * x = horizontal active
700 * _ = horizontal blanking
701 * hs = horizontal sync
702 * va = vertical active
703 * vb = vertical blanking
704 * vs = vertical sync
705 * vbs = vblank_start (number)
706 *
707 * Summary:
708 * - most events happen at the start of horizontal sync
709 * - frame start happens at the start of horizontal blank, 1-4 lines
710 * (depending on PIPECONF settings) after the start of vblank
711 * - gen3/4 pixel and frame counter are synchronized with the start
712 * of horizontal active on the first line of vertical active
713 */
714
715 /* Called from drm generic code, passed a 'crtc', which
716 * we use as a pipe index
717 */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720 struct drm_i915_private *dev_priv = to_i915(dev);
721 i915_reg_t high_frame, low_frame;
722 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724 unsigned long irqflags;
725
726 htotal = mode->crtc_htotal;
727 hsync_start = mode->crtc_hsync_start;
728 vbl_start = mode->crtc_vblank_start;
729 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732 /* Convert to pixel count */
733 vbl_start *= htotal;
734
735 /* Start of vblank event occurs at start of hsync */
736 vbl_start -= htotal - hsync_start;
737
738 high_frame = PIPEFRAME(pipe);
739 low_frame = PIPEFRAMEPIXEL(pipe);
740
741 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743 /*
744 * High & low register fields aren't synchronized, so make sure
745 * we get a low value that's stable across two reads of the high
746 * register.
747 */
748 do {
749 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750 low = I915_READ_FW(low_frame);
751 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752 } while (high1 != high2);
753
754 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756 high1 >>= PIPE_FRAME_HIGH_SHIFT;
757 pixel = low & PIPE_PIXEL_MASK;
758 low >>= PIPE_FRAME_LOW_SHIFT;
759
760 /*
761 * The frame counter increments at beginning of active.
762 * Cook up a vblank counter by also checking the pixel
763 * counter against vblank start.
764 */
765 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770 struct drm_i915_private *dev_priv = to_i915(dev);
771
772 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778 struct drm_device *dev = crtc->base.dev;
779 struct drm_i915_private *dev_priv = to_i915(dev);
780 const struct drm_display_mode *mode;
781 struct drm_vblank_crtc *vblank;
782 enum pipe pipe = crtc->pipe;
783 int position, vtotal;
784
785 if (!crtc->active)
786 return -1;
787
788 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789 mode = &vblank->hwmode;
790
791 vtotal = mode->crtc_vtotal;
792 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793 vtotal /= 2;
794
795 if (IS_GEN2(dev_priv))
796 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797 else
798 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800 /*
801 * On HSW, the DSL reg (0x70000) appears to return 0 if we
802 * read it just before the start of vblank. So try it again
803 * so we don't accidentally end up spanning a vblank frame
804 * increment, causing the pipe_update_end() code to squak at us.
805 *
806 * The nature of this problem means we can't simply check the ISR
807 * bit and return the vblank start value; nor can we use the scanline
808 * debug register in the transcoder as it appears to have the same
809 * problem. We may need to extend this to include other platforms,
810 * but so far testing only shows the problem on HSW.
811 */
812 if (HAS_DDI(dev_priv) && !position) {
813 int i, temp;
814
815 for (i = 0; i < 100; i++) {
816 udelay(1);
817 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818 if (temp != position) {
819 position = temp;
820 break;
821 }
822 }
823 }
824
825 /*
826 * See update_scanline_offset() for the details on the
827 * scanline_offset adjustment.
828 */
829 return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833 bool in_vblank_irq, int *vpos, int *hpos,
834 ktime_t *stime, ktime_t *etime,
835 const struct drm_display_mode *mode)
836 {
837 struct drm_i915_private *dev_priv = to_i915(dev);
838 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839 pipe);
840 int position;
841 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842 bool in_vbl = true;
843 unsigned long irqflags;
844
845 if (WARN_ON(!mode->crtc_clock)) {
846 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847 "pipe %c\n", pipe_name(pipe));
848 return false;
849 }
850
851 htotal = mode->crtc_htotal;
852 hsync_start = mode->crtc_hsync_start;
853 vtotal = mode->crtc_vtotal;
854 vbl_start = mode->crtc_vblank_start;
855 vbl_end = mode->crtc_vblank_end;
856
857 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859 vbl_end /= 2;
860 vtotal /= 2;
861 }
862
863 /*
864 * Lock uncore.lock, as we will do multiple timing critical raw
865 * register reads, potentially with preemption disabled, so the
866 * following code must not block on uncore.lock.
867 */
868 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872 /* Get optional system timestamp before query. */
873 if (stime)
874 *stime = ktime_get();
875
876 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877 /* No obvious pixelcount register. Only query vertical
878 * scanout position from Display scan line register.
879 */
880 position = __intel_get_crtc_scanline(intel_crtc);
881 } else {
882 /* Have access to pixelcount since start of frame.
883 * We can split this into vertical and horizontal
884 * scanout position.
885 */
886 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888 /* convert to pixel counts */
889 vbl_start *= htotal;
890 vbl_end *= htotal;
891 vtotal *= htotal;
892
893 /*
894 * In interlaced modes, the pixel counter counts all pixels,
895 * so one field will have htotal more pixels. In order to avoid
896 * the reported position from jumping backwards when the pixel
897 * counter is beyond the length of the shorter field, just
898 * clamp the position the length of the shorter field. This
899 * matches how the scanline counter based position works since
900 * the scanline counter doesn't count the two half lines.
901 */
902 if (position >= vtotal)
903 position = vtotal - 1;
904
905 /*
906 * Start of vblank interrupt is triggered at start of hsync,
907 * just prior to the first active line of vblank. However we
908 * consider lines to start at the leading edge of horizontal
909 * active. So, should we get here before we've crossed into
910 * the horizontal active of the first line in vblank, we would
911 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912 * always add htotal-hsync_start to the current pixel position.
913 */
914 position = (position + htotal - hsync_start) % vtotal;
915 }
916
917 /* Get optional system timestamp after query. */
918 if (etime)
919 *etime = ktime_get();
920
921 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 in_vbl = position >= vbl_start && position < vbl_end;
926
927 /*
928 * While in vblank, position will be negative
929 * counting up towards 0 at vbl_end. And outside
930 * vblank, position will be positive counting
931 * up since vbl_end.
932 */
933 if (position >= vbl_start)
934 position -= vbl_end;
935 else
936 position += vtotal - vbl_end;
937
938 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939 *vpos = position;
940 *hpos = 0;
941 } else {
942 *vpos = position / htotal;
943 *hpos = position - (*vpos * htotal);
944 }
945
946 return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952 unsigned long irqflags;
953 int position;
954
955 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956 position = __intel_get_crtc_scanline(crtc);
957 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959 return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964 u32 busy_up, busy_down, max_avg, min_avg;
965 u8 new_delay;
966
967 spin_lock(&mchdev_lock);
968
969 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971 new_delay = dev_priv->ips.cur_delay;
972
973 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974 busy_up = I915_READ(RCPREVBSYTUPAVG);
975 busy_down = I915_READ(RCPREVBSYTDNAVG);
976 max_avg = I915_READ(RCBMAXAVG);
977 min_avg = I915_READ(RCBMINAVG);
978
979 /* Handle RCS change request from hw */
980 if (busy_up > max_avg) {
981 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982 new_delay = dev_priv->ips.cur_delay - 1;
983 if (new_delay < dev_priv->ips.max_delay)
984 new_delay = dev_priv->ips.max_delay;
985 } else if (busy_down < min_avg) {
986 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987 new_delay = dev_priv->ips.cur_delay + 1;
988 if (new_delay > dev_priv->ips.min_delay)
989 new_delay = dev_priv->ips.min_delay;
990 }
991
992 if (ironlake_set_drps(dev_priv, new_delay))
993 dev_priv->ips.cur_delay = new_delay;
994
995 spin_unlock(&mchdev_lock);
996
997 return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002 struct drm_i915_gem_request *rq = NULL;
1003 struct intel_wait *wait;
1004
1005 atomic_inc(&engine->irq_count);
1006 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008 spin_lock(&engine->breadcrumbs.irq_lock);
1009 wait = engine->breadcrumbs.irq_wait;
1010 if (wait) {
1011 /* We use a callback from the dma-fence to submit
1012 * requests after waiting on our own requests. To
1013 * ensure minimum delay in queuing the next request to
1014 * hardware, signal the fence now rather than wait for
1015 * the signaler to be woken up. We still wake up the
1016 * waiter in order to handle the irq-seqno coherency
1017 * issues (we may receive the interrupt before the
1018 * seqno is written, see __i915_request_irq_complete())
1019 * and to handle coalescing of multiple seqno updates
1020 * and many waiters.
1021 */
1022 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023 wait->seqno) &&
1024 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025 &wait->request->fence.flags))
1026 rq = i915_gem_request_get(wait->request);
1027
1028 wake_up_process(wait->tsk);
1029 } else {
1030 __intel_engine_disarm_breadcrumbs(engine);
1031 }
1032 spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034 if (rq) {
1035 dma_fence_signal(&rq->fence);
1036 i915_gem_request_put(rq);
1037 }
1038
1039 trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043 struct intel_rps_ei *ei)
1044 {
1045 ei->ktime = ktime_get_raw();
1046 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052 memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057 const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058 struct intel_rps_ei now;
1059 u32 events = 0;
1060
1061 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062 return 0;
1063
1064 vlv_c0_read(dev_priv, &now);
1065
1066 if (prev->ktime) {
1067 u64 time, c0;
1068 u32 render, media;
1069
1070 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072 time *= dev_priv->czclk_freq;
1073
1074 /* Workload can be split between render + media,
1075 * e.g. SwapBuffers being blitted in X after being rendered in
1076 * mesa. To account for this we need to combine both engines
1077 * into our activity counter.
1078 */
1079 render = now.render_c0 - prev->render_c0;
1080 media = now.media_c0 - prev->media_c0;
1081 c0 = max(render, media);
1082 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084 if (c0 > time * dev_priv->rps.up_threshold)
1085 events = GEN6_PM_RP_UP_THRESHOLD;
1086 else if (c0 < time * dev_priv->rps.down_threshold)
1087 events = GEN6_PM_RP_DOWN_THRESHOLD;
1088 }
1089
1090 dev_priv->rps.ei = now;
1091 return events;
1092 }
1093
1094 static bool any_waiters(struct drm_i915_private *dev_priv)
1095 {
1096 struct intel_engine_cs *engine;
1097 enum intel_engine_id id;
1098
1099 for_each_engine(engine, dev_priv, id)
1100 if (intel_engine_has_waiter(engine))
1101 return true;
1102
1103 return false;
1104 }
1105
1106 static void gen6_pm_rps_work(struct work_struct *work)
1107 {
1108 struct drm_i915_private *dev_priv =
1109 container_of(work, struct drm_i915_private, rps.work);
1110 bool client_boost = false;
1111 int new_delay, adj, min, max;
1112 u32 pm_iir = 0;
1113
1114 spin_lock_irq(&dev_priv->irq_lock);
1115 if (dev_priv->rps.interrupts_enabled) {
1116 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1117 client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1118 }
1119 spin_unlock_irq(&dev_priv->irq_lock);
1120
1121 /* Make sure we didn't queue anything we're not going to process. */
1122 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1123 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1124 goto out;
1125
1126 mutex_lock(&dev_priv->rps.hw_lock);
1127
1128 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1129
1130 adj = dev_priv->rps.last_adj;
1131 new_delay = dev_priv->rps.cur_freq;
1132 min = dev_priv->rps.min_freq_softlimit;
1133 max = dev_priv->rps.max_freq_softlimit;
1134 if (client_boost || any_waiters(dev_priv))
1135 max = dev_priv->rps.max_freq;
1136 if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1137 new_delay = dev_priv->rps.boost_freq;
1138 adj = 0;
1139 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1140 if (adj > 0)
1141 adj *= 2;
1142 else /* CHV needs even encode values */
1143 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1144
1145 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1146 adj = 0;
1147 } else if (client_boost || any_waiters(dev_priv)) {
1148 adj = 0;
1149 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1150 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1151 new_delay = dev_priv->rps.efficient_freq;
1152 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1153 new_delay = dev_priv->rps.min_freq_softlimit;
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1156 if (adj < 0)
1157 adj *= 2;
1158 else /* CHV needs even encode values */
1159 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1160
1161 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1162 adj = 0;
1163 } else { /* unknown event */
1164 adj = 0;
1165 }
1166
1167 dev_priv->rps.last_adj = adj;
1168
1169 /* sysfs frequency interfaces may have snuck in while servicing the
1170 * interrupt
1171 */
1172 new_delay += adj;
1173 new_delay = clamp_t(int, new_delay, min, max);
1174
1175 if (intel_set_rps(dev_priv, new_delay)) {
1176 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1177 dev_priv->rps.last_adj = 0;
1178 }
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181
1182 out:
1183 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1184 spin_lock_irq(&dev_priv->irq_lock);
1185 if (dev_priv->rps.interrupts_enabled)
1186 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1187 spin_unlock_irq(&dev_priv->irq_lock);
1188 }
1189
1190
1191 /**
1192 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1193 * occurred.
1194 * @work: workqueue struct
1195 *
1196 * Doesn't actually do anything except notify userspace. As a consequence of
1197 * this event, userspace should try to remap the bad rows since statistically
1198 * it is likely the same row is more likely to go bad again.
1199 */
1200 static void ivybridge_parity_work(struct work_struct *work)
1201 {
1202 struct drm_i915_private *dev_priv =
1203 container_of(work, struct drm_i915_private, l3_parity.error_work);
1204 u32 error_status, row, bank, subbank;
1205 char *parity_event[6];
1206 uint32_t misccpctl;
1207 uint8_t slice = 0;
1208
1209 /* We must turn off DOP level clock gating to access the L3 registers.
1210 * In order to prevent a get/put style interface, acquire struct mutex
1211 * any time we access those registers.
1212 */
1213 mutex_lock(&dev_priv->drm.struct_mutex);
1214
1215 /* If we've screwed up tracking, just let the interrupt fire again */
1216 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1217 goto out;
1218
1219 misccpctl = I915_READ(GEN7_MISCCPCTL);
1220 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1221 POSTING_READ(GEN7_MISCCPCTL);
1222
1223 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1224 i915_reg_t reg;
1225
1226 slice--;
1227 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1228 break;
1229
1230 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1231
1232 reg = GEN7_L3CDERRST1(slice);
1233
1234 error_status = I915_READ(reg);
1235 row = GEN7_PARITY_ERROR_ROW(error_status);
1236 bank = GEN7_PARITY_ERROR_BANK(error_status);
1237 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1238
1239 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1240 POSTING_READ(reg);
1241
1242 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1243 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1244 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1245 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1246 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1247 parity_event[5] = NULL;
1248
1249 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1250 KOBJ_CHANGE, parity_event);
1251
1252 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1253 slice, row, bank, subbank);
1254
1255 kfree(parity_event[4]);
1256 kfree(parity_event[3]);
1257 kfree(parity_event[2]);
1258 kfree(parity_event[1]);
1259 }
1260
1261 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1262
1263 out:
1264 WARN_ON(dev_priv->l3_parity.which_slice);
1265 spin_lock_irq(&dev_priv->irq_lock);
1266 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1267 spin_unlock_irq(&dev_priv->irq_lock);
1268
1269 mutex_unlock(&dev_priv->drm.struct_mutex);
1270 }
1271
1272 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1273 u32 iir)
1274 {
1275 if (!HAS_L3_DPF(dev_priv))
1276 return;
1277
1278 spin_lock(&dev_priv->irq_lock);
1279 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1280 spin_unlock(&dev_priv->irq_lock);
1281
1282 iir &= GT_PARITY_ERROR(dev_priv);
1283 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1284 dev_priv->l3_parity.which_slice |= 1 << 1;
1285
1286 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1287 dev_priv->l3_parity.which_slice |= 1 << 0;
1288
1289 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1290 }
1291
1292 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1293 u32 gt_iir)
1294 {
1295 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1296 notify_ring(dev_priv->engine[RCS]);
1297 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1298 notify_ring(dev_priv->engine[VCS]);
1299 }
1300
1301 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1302 u32 gt_iir)
1303 {
1304 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1305 notify_ring(dev_priv->engine[RCS]);
1306 if (gt_iir & GT_BSD_USER_INTERRUPT)
1307 notify_ring(dev_priv->engine[VCS]);
1308 if (gt_iir & GT_BLT_USER_INTERRUPT)
1309 notify_ring(dev_priv->engine[BCS]);
1310
1311 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1312 GT_BSD_CS_ERROR_INTERRUPT |
1313 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1314 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1315
1316 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1317 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1318 }
1319
1320 static __always_inline void
1321 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1322 {
1323 bool tasklet = false;
1324
1325 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1326 set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1327 tasklet = true;
1328 }
1329
1330 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1331 notify_ring(engine);
1332 tasklet |= i915.enable_guc_submission;
1333 }
1334
1335 if (tasklet)
1336 tasklet_hi_schedule(&engine->irq_tasklet);
1337 }
1338
1339 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1340 u32 master_ctl,
1341 u32 gt_iir[4])
1342 {
1343 irqreturn_t ret = IRQ_NONE;
1344
1345 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1346 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1347 if (gt_iir[0]) {
1348 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1349 ret = IRQ_HANDLED;
1350 } else
1351 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1352 }
1353
1354 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1355 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1356 if (gt_iir[1]) {
1357 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1358 ret = IRQ_HANDLED;
1359 } else
1360 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1361 }
1362
1363 if (master_ctl & GEN8_GT_VECS_IRQ) {
1364 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1365 if (gt_iir[3]) {
1366 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1367 ret = IRQ_HANDLED;
1368 } else
1369 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1370 }
1371
1372 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1373 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1374 if (gt_iir[2] & (dev_priv->pm_rps_events |
1375 dev_priv->pm_guc_events)) {
1376 I915_WRITE_FW(GEN8_GT_IIR(2),
1377 gt_iir[2] & (dev_priv->pm_rps_events |
1378 dev_priv->pm_guc_events));
1379 ret = IRQ_HANDLED;
1380 } else
1381 DRM_ERROR("The master control interrupt lied (PM)!\n");
1382 }
1383
1384 return ret;
1385 }
1386
1387 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1388 u32 gt_iir[4])
1389 {
1390 if (gt_iir[0]) {
1391 gen8_cs_irq_handler(dev_priv->engine[RCS],
1392 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1393 gen8_cs_irq_handler(dev_priv->engine[BCS],
1394 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1395 }
1396
1397 if (gt_iir[1]) {
1398 gen8_cs_irq_handler(dev_priv->engine[VCS],
1399 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1400 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1401 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1402 }
1403
1404 if (gt_iir[3])
1405 gen8_cs_irq_handler(dev_priv->engine[VECS],
1406 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1407
1408 if (gt_iir[2] & dev_priv->pm_rps_events)
1409 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1410
1411 if (gt_iir[2] & dev_priv->pm_guc_events)
1412 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1413 }
1414
1415 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 default:
1425 return false;
1426 }
1427 }
1428
1429 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1430 {
1431 switch (port) {
1432 case PORT_E:
1433 return val & PORTE_HOTPLUG_LONG_DETECT;
1434 default:
1435 return false;
1436 }
1437 }
1438
1439 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1440 {
1441 switch (port) {
1442 case PORT_A:
1443 return val & PORTA_HOTPLUG_LONG_DETECT;
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_A:
1459 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1460 default:
1461 return false;
1462 }
1463 }
1464
1465 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1466 {
1467 switch (port) {
1468 case PORT_B:
1469 return val & PORTB_HOTPLUG_LONG_DETECT;
1470 case PORT_C:
1471 return val & PORTC_HOTPLUG_LONG_DETECT;
1472 case PORT_D:
1473 return val & PORTD_HOTPLUG_LONG_DETECT;
1474 default:
1475 return false;
1476 }
1477 }
1478
1479 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1480 {
1481 switch (port) {
1482 case PORT_B:
1483 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1484 case PORT_C:
1485 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1486 case PORT_D:
1487 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1488 default:
1489 return false;
1490 }
1491 }
1492
1493 /*
1494 * Get a bit mask of pins that have triggered, and which ones may be long.
1495 * This can be called multiple times with the same masks to accumulate
1496 * hotplug detection results from several registers.
1497 *
1498 * Note that the caller is expected to zero out the masks initially.
1499 */
1500 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1501 u32 hotplug_trigger, u32 dig_hotplug_reg,
1502 const u32 hpd[HPD_NUM_PINS],
1503 bool long_pulse_detect(enum port port, u32 val))
1504 {
1505 enum port port;
1506 int i;
1507
1508 for_each_hpd_pin(i) {
1509 if ((hpd[i] & hotplug_trigger) == 0)
1510 continue;
1511
1512 *pin_mask |= BIT(i);
1513
1514 if (!intel_hpd_pin_to_port(i, &port))
1515 continue;
1516
1517 if (long_pulse_detect(port, dig_hotplug_reg))
1518 *long_mask |= BIT(i);
1519 }
1520
1521 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1522 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1523
1524 }
1525
1526 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1527 {
1528 wake_up_all(&dev_priv->gmbus_wait_queue);
1529 }
1530
1531 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1532 {
1533 wake_up_all(&dev_priv->gmbus_wait_queue);
1534 }
1535
1536 #if defined(CONFIG_DEBUG_FS)
1537 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1538 enum pipe pipe,
1539 uint32_t crc0, uint32_t crc1,
1540 uint32_t crc2, uint32_t crc3,
1541 uint32_t crc4)
1542 {
1543 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1544 struct intel_pipe_crc_entry *entry;
1545 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1546 struct drm_driver *driver = dev_priv->drm.driver;
1547 uint32_t crcs[5];
1548 int head, tail;
1549
1550 spin_lock(&pipe_crc->lock);
1551 if (pipe_crc->source) {
1552 if (!pipe_crc->entries) {
1553 spin_unlock(&pipe_crc->lock);
1554 DRM_DEBUG_KMS("spurious interrupt\n");
1555 return;
1556 }
1557
1558 head = pipe_crc->head;
1559 tail = pipe_crc->tail;
1560
1561 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1562 spin_unlock(&pipe_crc->lock);
1563 DRM_ERROR("CRC buffer overflowing\n");
1564 return;
1565 }
1566
1567 entry = &pipe_crc->entries[head];
1568
1569 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1570 entry->crc[0] = crc0;
1571 entry->crc[1] = crc1;
1572 entry->crc[2] = crc2;
1573 entry->crc[3] = crc3;
1574 entry->crc[4] = crc4;
1575
1576 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1577 pipe_crc->head = head;
1578
1579 spin_unlock(&pipe_crc->lock);
1580
1581 wake_up_interruptible(&pipe_crc->wq);
1582 } else {
1583 /*
1584 * For some not yet identified reason, the first CRC is
1585 * bonkers. So let's just wait for the next vblank and read
1586 * out the buggy result.
1587 *
1588 * On CHV sometimes the second CRC is bonkers as well, so
1589 * don't trust that one either.
1590 */
1591 if (pipe_crc->skipped == 0 ||
1592 (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1593 pipe_crc->skipped++;
1594 spin_unlock(&pipe_crc->lock);
1595 return;
1596 }
1597 spin_unlock(&pipe_crc->lock);
1598 crcs[0] = crc0;
1599 crcs[1] = crc1;
1600 crcs[2] = crc2;
1601 crcs[3] = crc3;
1602 crcs[4] = crc4;
1603 drm_crtc_add_crc_entry(&crtc->base, true,
1604 drm_accurate_vblank_count(&crtc->base),
1605 crcs);
1606 }
1607 }
1608 #else
1609 static inline void
1610 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1611 enum pipe pipe,
1612 uint32_t crc0, uint32_t crc1,
1613 uint32_t crc2, uint32_t crc3,
1614 uint32_t crc4) {}
1615 #endif
1616
1617
1618 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1619 enum pipe pipe)
1620 {
1621 display_pipe_crc_irq_handler(dev_priv, pipe,
1622 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1623 0, 0, 0, 0);
1624 }
1625
1626 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1627 enum pipe pipe)
1628 {
1629 display_pipe_crc_irq_handler(dev_priv, pipe,
1630 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1631 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1632 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1633 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1634 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1635 }
1636
1637 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1638 enum pipe pipe)
1639 {
1640 uint32_t res1, res2;
1641
1642 if (INTEL_GEN(dev_priv) >= 3)
1643 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1644 else
1645 res1 = 0;
1646
1647 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1648 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1649 else
1650 res2 = 0;
1651
1652 display_pipe_crc_irq_handler(dev_priv, pipe,
1653 I915_READ(PIPE_CRC_RES_RED(pipe)),
1654 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1655 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1656 res1, res2);
1657 }
1658
1659 /* The RPS events need forcewake, so we add them to a work queue and mask their
1660 * IMR bits until the work is done. Other interrupts can be processed without
1661 * the work queue. */
1662 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1663 {
1664 if (pm_iir & dev_priv->pm_rps_events) {
1665 spin_lock(&dev_priv->irq_lock);
1666 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1667 if (dev_priv->rps.interrupts_enabled) {
1668 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1669 schedule_work(&dev_priv->rps.work);
1670 }
1671 spin_unlock(&dev_priv->irq_lock);
1672 }
1673
1674 if (INTEL_INFO(dev_priv)->gen >= 8)
1675 return;
1676
1677 if (HAS_VEBOX(dev_priv)) {
1678 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1679 notify_ring(dev_priv->engine[VECS]);
1680
1681 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1682 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1683 }
1684 }
1685
1686 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1687 {
1688 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1689 /* Sample the log buffer flush related bits & clear them out now
1690 * itself from the message identity register to minimize the
1691 * probability of losing a flush interrupt, when there are back
1692 * to back flush interrupts.
1693 * There can be a new flush interrupt, for different log buffer
1694 * type (like for ISR), whilst Host is handling one (for DPC).
1695 * Since same bit is used in message register for ISR & DPC, it
1696 * could happen that GuC sets the bit for 2nd interrupt but Host
1697 * clears out the bit on handling the 1st interrupt.
1698 */
1699 u32 msg, flush;
1700
1701 msg = I915_READ(SOFT_SCRATCH(15));
1702 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1703 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1704 if (flush) {
1705 /* Clear the message bits that are handled */
1706 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1707
1708 /* Handle flush interrupt in bottom half */
1709 queue_work(dev_priv->guc.log.runtime.flush_wq,
1710 &dev_priv->guc.log.runtime.flush_work);
1711
1712 dev_priv->guc.log.flush_interrupt_count++;
1713 } else {
1714 /* Not clearing of unhandled event bits won't result in
1715 * re-triggering of the interrupt.
1716 */
1717 }
1718 }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1722 enum pipe pipe)
1723 {
1724 bool ret;
1725
1726 ret = drm_handle_vblank(&dev_priv->drm, pipe);
1727 if (ret)
1728 intel_finish_page_flip_mmio(dev_priv, pipe);
1729
1730 return ret;
1731 }
1732
1733 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1734 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1735 {
1736 int pipe;
1737
1738 spin_lock(&dev_priv->irq_lock);
1739
1740 if (!dev_priv->display_irqs_enabled) {
1741 spin_unlock(&dev_priv->irq_lock);
1742 return;
1743 }
1744
1745 for_each_pipe(dev_priv, pipe) {
1746 i915_reg_t reg;
1747 u32 mask, iir_bit = 0;
1748
1749 /*
1750 * PIPESTAT bits get signalled even when the interrupt is
1751 * disabled with the mask bits, and some of the status bits do
1752 * not generate interrupts at all (like the underrun bit). Hence
1753 * we need to be careful that we only handle what we want to
1754 * handle.
1755 */
1756
1757 /* fifo underruns are filterered in the underrun handler. */
1758 mask = PIPE_FIFO_UNDERRUN_STATUS;
1759
1760 switch (pipe) {
1761 case PIPE_A:
1762 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1763 break;
1764 case PIPE_B:
1765 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1766 break;
1767 case PIPE_C:
1768 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1769 break;
1770 }
1771 if (iir & iir_bit)
1772 mask |= dev_priv->pipestat_irq_mask[pipe];
1773
1774 if (!mask)
1775 continue;
1776
1777 reg = PIPESTAT(pipe);
1778 mask |= PIPESTAT_INT_ENABLE_MASK;
1779 pipe_stats[pipe] = I915_READ(reg) & mask;
1780
1781 /*
1782 * Clear the PIPE*STAT regs before the IIR
1783 */
1784 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1785 PIPESTAT_INT_STATUS_MASK))
1786 I915_WRITE(reg, pipe_stats[pipe]);
1787 }
1788 spin_unlock(&dev_priv->irq_lock);
1789 }
1790
1791 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1792 u32 pipe_stats[I915_MAX_PIPES])
1793 {
1794 enum pipe pipe;
1795
1796 for_each_pipe(dev_priv, pipe) {
1797 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1798 intel_pipe_handle_vblank(dev_priv, pipe))
1799 intel_check_page_flip(dev_priv, pipe);
1800
1801 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1802 intel_finish_page_flip_cs(dev_priv, pipe);
1803
1804 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1805 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1806
1807 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1808 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1809 }
1810
1811 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1812 gmbus_irq_handler(dev_priv);
1813 }
1814
1815 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1816 {
1817 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1818
1819 if (hotplug_status)
1820 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1821
1822 return hotplug_status;
1823 }
1824
1825 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1826 u32 hotplug_status)
1827 {
1828 u32 pin_mask = 0, long_mask = 0;
1829
1830 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1831 IS_CHERRYVIEW(dev_priv)) {
1832 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1833
1834 if (hotplug_trigger) {
1835 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1836 hotplug_trigger, hpd_status_g4x,
1837 i9xx_port_hotplug_long_detect);
1838
1839 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1840 }
1841
1842 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1843 dp_aux_irq_handler(dev_priv);
1844 } else {
1845 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1846
1847 if (hotplug_trigger) {
1848 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1849 hotplug_trigger, hpd_status_i915,
1850 i9xx_port_hotplug_long_detect);
1851 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1852 }
1853 }
1854 }
1855
1856 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1857 {
1858 struct drm_device *dev = arg;
1859 struct drm_i915_private *dev_priv = to_i915(dev);
1860 irqreturn_t ret = IRQ_NONE;
1861
1862 if (!intel_irqs_enabled(dev_priv))
1863 return IRQ_NONE;
1864
1865 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866 disable_rpm_wakeref_asserts(dev_priv);
1867
1868 do {
1869 u32 iir, gt_iir, pm_iir;
1870 u32 pipe_stats[I915_MAX_PIPES] = {};
1871 u32 hotplug_status = 0;
1872 u32 ier = 0;
1873
1874 gt_iir = I915_READ(GTIIR);
1875 pm_iir = I915_READ(GEN6_PMIIR);
1876 iir = I915_READ(VLV_IIR);
1877
1878 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879 break;
1880
1881 ret = IRQ_HANDLED;
1882
1883 /*
1884 * Theory on interrupt generation, based on empirical evidence:
1885 *
1886 * x = ((VLV_IIR & VLV_IER) ||
1887 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1888 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1889 *
1890 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1891 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1892 * guarantee the CPU interrupt will be raised again even if we
1893 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1894 * bits this time around.
1895 */
1896 I915_WRITE(VLV_MASTER_IER, 0);
1897 ier = I915_READ(VLV_IER);
1898 I915_WRITE(VLV_IER, 0);
1899
1900 if (gt_iir)
1901 I915_WRITE(GTIIR, gt_iir);
1902 if (pm_iir)
1903 I915_WRITE(GEN6_PMIIR, pm_iir);
1904
1905 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1906 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1907
1908 /* Call regardless, as some status bits might not be
1909 * signalled in iir */
1910 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1911
1912 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1913 I915_LPE_PIPE_B_INTERRUPT))
1914 intel_lpe_audio_irq_handler(dev_priv);
1915
1916 /*
1917 * VLV_IIR is single buffered, and reflects the level
1918 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919 */
1920 if (iir)
1921 I915_WRITE(VLV_IIR, iir);
1922
1923 I915_WRITE(VLV_IER, ier);
1924 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1925 POSTING_READ(VLV_MASTER_IER);
1926
1927 if (gt_iir)
1928 snb_gt_irq_handler(dev_priv, gt_iir);
1929 if (pm_iir)
1930 gen6_rps_irq_handler(dev_priv, pm_iir);
1931
1932 if (hotplug_status)
1933 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1934
1935 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1936 } while (0);
1937
1938 enable_rpm_wakeref_asserts(dev_priv);
1939
1940 return ret;
1941 }
1942
1943 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1944 {
1945 struct drm_device *dev = arg;
1946 struct drm_i915_private *dev_priv = to_i915(dev);
1947 irqreturn_t ret = IRQ_NONE;
1948
1949 if (!intel_irqs_enabled(dev_priv))
1950 return IRQ_NONE;
1951
1952 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1953 disable_rpm_wakeref_asserts(dev_priv);
1954
1955 do {
1956 u32 master_ctl, iir;
1957 u32 gt_iir[4] = {};
1958 u32 pipe_stats[I915_MAX_PIPES] = {};
1959 u32 hotplug_status = 0;
1960 u32 ier = 0;
1961
1962 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1963 iir = I915_READ(VLV_IIR);
1964
1965 if (master_ctl == 0 && iir == 0)
1966 break;
1967
1968 ret = IRQ_HANDLED;
1969
1970 /*
1971 * Theory on interrupt generation, based on empirical evidence:
1972 *
1973 * x = ((VLV_IIR & VLV_IER) ||
1974 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1975 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1976 *
1977 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1978 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1979 * guarantee the CPU interrupt will be raised again even if we
1980 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1981 * bits this time around.
1982 */
1983 I915_WRITE(GEN8_MASTER_IRQ, 0);
1984 ier = I915_READ(VLV_IER);
1985 I915_WRITE(VLV_IER, 0);
1986
1987 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1988
1989 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1990 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1991
1992 /* Call regardless, as some status bits might not be
1993 * signalled in iir */
1994 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1995
1996 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1997 I915_LPE_PIPE_B_INTERRUPT |
1998 I915_LPE_PIPE_C_INTERRUPT))
1999 intel_lpe_audio_irq_handler(dev_priv);
2000
2001 /*
2002 * VLV_IIR is single buffered, and reflects the level
2003 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2004 */
2005 if (iir)
2006 I915_WRITE(VLV_IIR, iir);
2007
2008 I915_WRITE(VLV_IER, ier);
2009 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2010 POSTING_READ(GEN8_MASTER_IRQ);
2011
2012 gen8_gt_irq_handler(dev_priv, gt_iir);
2013
2014 if (hotplug_status)
2015 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 } while (0);
2019
2020 enable_rpm_wakeref_asserts(dev_priv);
2021
2022 return ret;
2023 }
2024
2025 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2026 u32 hotplug_trigger,
2027 const u32 hpd[HPD_NUM_PINS])
2028 {
2029 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2030
2031 /*
2032 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2033 * unless we touch the hotplug register, even if hotplug_trigger is
2034 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2035 * errors.
2036 */
2037 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2038 if (!hotplug_trigger) {
2039 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2040 PORTD_HOTPLUG_STATUS_MASK |
2041 PORTC_HOTPLUG_STATUS_MASK |
2042 PORTB_HOTPLUG_STATUS_MASK;
2043 dig_hotplug_reg &= ~mask;
2044 }
2045
2046 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2047 if (!hotplug_trigger)
2048 return;
2049
2050 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2051 dig_hotplug_reg, hpd,
2052 pch_port_hotplug_long_detect);
2053
2054 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055 }
2056
2057 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059 int pipe;
2060 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2061
2062 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2063
2064 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2065 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2066 SDE_AUDIO_POWER_SHIFT);
2067 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2068 port_name(port));
2069 }
2070
2071 if (pch_iir & SDE_AUX_MASK)
2072 dp_aux_irq_handler(dev_priv);
2073
2074 if (pch_iir & SDE_GMBUS)
2075 gmbus_irq_handler(dev_priv);
2076
2077 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2078 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2079
2080 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2081 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2082
2083 if (pch_iir & SDE_POISON)
2084 DRM_ERROR("PCH poison interrupt\n");
2085
2086 if (pch_iir & SDE_FDI_MASK)
2087 for_each_pipe(dev_priv, pipe)
2088 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2089 pipe_name(pipe),
2090 I915_READ(FDI_RX_IIR(pipe)));
2091
2092 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2093 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2094
2095 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2096 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2097
2098 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2099 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2100
2101 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2102 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2103 }
2104
2105 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2106 {
2107 u32 err_int = I915_READ(GEN7_ERR_INT);
2108 enum pipe pipe;
2109
2110 if (err_int & ERR_INT_POISON)
2111 DRM_ERROR("Poison interrupt\n");
2112
2113 for_each_pipe(dev_priv, pipe) {
2114 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2115 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2116
2117 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2118 if (IS_IVYBRIDGE(dev_priv))
2119 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2120 else
2121 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2122 }
2123 }
2124
2125 I915_WRITE(GEN7_ERR_INT, err_int);
2126 }
2127
2128 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2129 {
2130 u32 serr_int = I915_READ(SERR_INT);
2131
2132 if (serr_int & SERR_INT_POISON)
2133 DRM_ERROR("PCH poison interrupt\n");
2134
2135 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2136 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2137
2138 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2139 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2140
2141 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2142 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2143
2144 I915_WRITE(SERR_INT, serr_int);
2145 }
2146
2147 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2148 {
2149 int pipe;
2150 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2151
2152 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2153
2154 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2155 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2156 SDE_AUDIO_POWER_SHIFT_CPT);
2157 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2158 port_name(port));
2159 }
2160
2161 if (pch_iir & SDE_AUX_MASK_CPT)
2162 dp_aux_irq_handler(dev_priv);
2163
2164 if (pch_iir & SDE_GMBUS_CPT)
2165 gmbus_irq_handler(dev_priv);
2166
2167 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2168 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2169
2170 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2171 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2172
2173 if (pch_iir & SDE_FDI_MASK_CPT)
2174 for_each_pipe(dev_priv, pipe)
2175 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2176 pipe_name(pipe),
2177 I915_READ(FDI_RX_IIR(pipe)));
2178
2179 if (pch_iir & SDE_ERROR_CPT)
2180 cpt_serr_int_handler(dev_priv);
2181 }
2182
2183 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2186 ~SDE_PORTE_HOTPLUG_SPT;
2187 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2188 u32 pin_mask = 0, long_mask = 0;
2189
2190 if (hotplug_trigger) {
2191 u32 dig_hotplug_reg;
2192
2193 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195
2196 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2197 dig_hotplug_reg, hpd_spt,
2198 spt_port_hotplug_long_detect);
2199 }
2200
2201 if (hotplug2_trigger) {
2202 u32 dig_hotplug_reg;
2203
2204 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2205 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2206
2207 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2208 dig_hotplug_reg, hpd_spt,
2209 spt_port_hotplug2_long_detect);
2210 }
2211
2212 if (pin_mask)
2213 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2214
2215 if (pch_iir & SDE_GMBUS_CPT)
2216 gmbus_irq_handler(dev_priv);
2217 }
2218
2219 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2220 u32 hotplug_trigger,
2221 const u32 hpd[HPD_NUM_PINS])
2222 {
2223 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2224
2225 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2226 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2227
2228 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2229 dig_hotplug_reg, hpd,
2230 ilk_port_hotplug_long_detect);
2231
2232 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2233 }
2234
2235 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2236 u32 de_iir)
2237 {
2238 enum pipe pipe;
2239 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2240
2241 if (hotplug_trigger)
2242 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2243
2244 if (de_iir & DE_AUX_CHANNEL_A)
2245 dp_aux_irq_handler(dev_priv);
2246
2247 if (de_iir & DE_GSE)
2248 intel_opregion_asle_intr(dev_priv);
2249
2250 if (de_iir & DE_POISON)
2251 DRM_ERROR("Poison interrupt\n");
2252
2253 for_each_pipe(dev_priv, pipe) {
2254 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2255 intel_pipe_handle_vblank(dev_priv, pipe))
2256 intel_check_page_flip(dev_priv, pipe);
2257
2258 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2259 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2260
2261 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2262 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2263
2264 /* plane/pipes map 1:1 on ilk+ */
2265 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2266 intel_finish_page_flip_cs(dev_priv, pipe);
2267 }
2268
2269 /* check event from PCH */
2270 if (de_iir & DE_PCH_EVENT) {
2271 u32 pch_iir = I915_READ(SDEIIR);
2272
2273 if (HAS_PCH_CPT(dev_priv))
2274 cpt_irq_handler(dev_priv, pch_iir);
2275 else
2276 ibx_irq_handler(dev_priv, pch_iir);
2277
2278 /* should clear PCH hotplug event before clear CPU irq */
2279 I915_WRITE(SDEIIR, pch_iir);
2280 }
2281
2282 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2283 ironlake_rps_change_irq_handler(dev_priv);
2284 }
2285
2286 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2287 u32 de_iir)
2288 {
2289 enum pipe pipe;
2290 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2291
2292 if (hotplug_trigger)
2293 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2294
2295 if (de_iir & DE_ERR_INT_IVB)
2296 ivb_err_int_handler(dev_priv);
2297
2298 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2299 dp_aux_irq_handler(dev_priv);
2300
2301 if (de_iir & DE_GSE_IVB)
2302 intel_opregion_asle_intr(dev_priv);
2303
2304 for_each_pipe(dev_priv, pipe) {
2305 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2306 intel_pipe_handle_vblank(dev_priv, pipe))
2307 intel_check_page_flip(dev_priv, pipe);
2308
2309 /* plane/pipes map 1:1 on ilk+ */
2310 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2311 intel_finish_page_flip_cs(dev_priv, pipe);
2312 }
2313
2314 /* check event from PCH */
2315 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2316 u32 pch_iir = I915_READ(SDEIIR);
2317
2318 cpt_irq_handler(dev_priv, pch_iir);
2319
2320 /* clear PCH hotplug event before clear CPU irq */
2321 I915_WRITE(SDEIIR, pch_iir);
2322 }
2323 }
2324
2325 /*
2326 * To handle irqs with the minimum potential races with fresh interrupts, we:
2327 * 1 - Disable Master Interrupt Control.
2328 * 2 - Find the source(s) of the interrupt.
2329 * 3 - Clear the Interrupt Identity bits (IIR).
2330 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2331 * 5 - Re-enable Master Interrupt Control.
2332 */
2333 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2334 {
2335 struct drm_device *dev = arg;
2336 struct drm_i915_private *dev_priv = to_i915(dev);
2337 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2338 irqreturn_t ret = IRQ_NONE;
2339
2340 if (!intel_irqs_enabled(dev_priv))
2341 return IRQ_NONE;
2342
2343 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2344 disable_rpm_wakeref_asserts(dev_priv);
2345
2346 /* disable master interrupt before clearing iir */
2347 de_ier = I915_READ(DEIER);
2348 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2349 POSTING_READ(DEIER);
2350
2351 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2352 * interrupts will will be stored on its back queue, and then we'll be
2353 * able to process them after we restore SDEIER (as soon as we restore
2354 * it, we'll get an interrupt if SDEIIR still has something to process
2355 * due to its back queue). */
2356 if (!HAS_PCH_NOP(dev_priv)) {
2357 sde_ier = I915_READ(SDEIER);
2358 I915_WRITE(SDEIER, 0);
2359 POSTING_READ(SDEIER);
2360 }
2361
2362 /* Find, clear, then process each source of interrupt */
2363
2364 gt_iir = I915_READ(GTIIR);
2365 if (gt_iir) {
2366 I915_WRITE(GTIIR, gt_iir);
2367 ret = IRQ_HANDLED;
2368 if (INTEL_GEN(dev_priv) >= 6)
2369 snb_gt_irq_handler(dev_priv, gt_iir);
2370 else
2371 ilk_gt_irq_handler(dev_priv, gt_iir);
2372 }
2373
2374 de_iir = I915_READ(DEIIR);
2375 if (de_iir) {
2376 I915_WRITE(DEIIR, de_iir);
2377 ret = IRQ_HANDLED;
2378 if (INTEL_GEN(dev_priv) >= 7)
2379 ivb_display_irq_handler(dev_priv, de_iir);
2380 else
2381 ilk_display_irq_handler(dev_priv, de_iir);
2382 }
2383
2384 if (INTEL_GEN(dev_priv) >= 6) {
2385 u32 pm_iir = I915_READ(GEN6_PMIIR);
2386 if (pm_iir) {
2387 I915_WRITE(GEN6_PMIIR, pm_iir);
2388 ret = IRQ_HANDLED;
2389 gen6_rps_irq_handler(dev_priv, pm_iir);
2390 }
2391 }
2392
2393 I915_WRITE(DEIER, de_ier);
2394 POSTING_READ(DEIER);
2395 if (!HAS_PCH_NOP(dev_priv)) {
2396 I915_WRITE(SDEIER, sde_ier);
2397 POSTING_READ(SDEIER);
2398 }
2399
2400 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2401 enable_rpm_wakeref_asserts(dev_priv);
2402
2403 return ret;
2404 }
2405
2406 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2407 u32 hotplug_trigger,
2408 const u32 hpd[HPD_NUM_PINS])
2409 {
2410 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2411
2412 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2413 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2414
2415 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2416 dig_hotplug_reg, hpd,
2417 bxt_port_hotplug_long_detect);
2418
2419 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2420 }
2421
2422 static irqreturn_t
2423 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2424 {
2425 irqreturn_t ret = IRQ_NONE;
2426 u32 iir;
2427 enum pipe pipe;
2428
2429 if (master_ctl & GEN8_DE_MISC_IRQ) {
2430 iir = I915_READ(GEN8_DE_MISC_IIR);
2431 if (iir) {
2432 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2433 ret = IRQ_HANDLED;
2434 if (iir & GEN8_DE_MISC_GSE)
2435 intel_opregion_asle_intr(dev_priv);
2436 else
2437 DRM_ERROR("Unexpected DE Misc interrupt\n");
2438 }
2439 else
2440 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2441 }
2442
2443 if (master_ctl & GEN8_DE_PORT_IRQ) {
2444 iir = I915_READ(GEN8_DE_PORT_IIR);
2445 if (iir) {
2446 u32 tmp_mask;
2447 bool found = false;
2448
2449 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2450 ret = IRQ_HANDLED;
2451
2452 tmp_mask = GEN8_AUX_CHANNEL_A;
2453 if (INTEL_INFO(dev_priv)->gen >= 9)
2454 tmp_mask |= GEN9_AUX_CHANNEL_B |
2455 GEN9_AUX_CHANNEL_C |
2456 GEN9_AUX_CHANNEL_D;
2457
2458 if (iir & tmp_mask) {
2459 dp_aux_irq_handler(dev_priv);
2460 found = true;
2461 }
2462
2463 if (IS_GEN9_LP(dev_priv)) {
2464 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2465 if (tmp_mask) {
2466 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2467 hpd_bxt);
2468 found = true;
2469 }
2470 } else if (IS_BROADWELL(dev_priv)) {
2471 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2472 if (tmp_mask) {
2473 ilk_hpd_irq_handler(dev_priv,
2474 tmp_mask, hpd_bdw);
2475 found = true;
2476 }
2477 }
2478
2479 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2480 gmbus_irq_handler(dev_priv);
2481 found = true;
2482 }
2483
2484 if (!found)
2485 DRM_ERROR("Unexpected DE Port interrupt\n");
2486 }
2487 else
2488 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2489 }
2490
2491 for_each_pipe(dev_priv, pipe) {
2492 u32 flip_done, fault_errors;
2493
2494 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2495 continue;
2496
2497 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2498 if (!iir) {
2499 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2500 continue;
2501 }
2502
2503 ret = IRQ_HANDLED;
2504 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2505
2506 if (iir & GEN8_PIPE_VBLANK &&
2507 intel_pipe_handle_vblank(dev_priv, pipe))
2508 intel_check_page_flip(dev_priv, pipe);
2509
2510 flip_done = iir;
2511 if (INTEL_INFO(dev_priv)->gen >= 9)
2512 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2513 else
2514 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2515
2516 if (flip_done)
2517 intel_finish_page_flip_cs(dev_priv, pipe);
2518
2519 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2520 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2521
2522 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2523 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2524
2525 fault_errors = iir;
2526 if (INTEL_INFO(dev_priv)->gen >= 9)
2527 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2528 else
2529 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2530
2531 if (fault_errors)
2532 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2533 pipe_name(pipe),
2534 fault_errors);
2535 }
2536
2537 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2538 master_ctl & GEN8_DE_PCH_IRQ) {
2539 /*
2540 * FIXME(BDW): Assume for now that the new interrupt handling
2541 * scheme also closed the SDE interrupt handling race we've seen
2542 * on older pch-split platforms. But this needs testing.
2543 */
2544 iir = I915_READ(SDEIIR);
2545 if (iir) {
2546 I915_WRITE(SDEIIR, iir);
2547 ret = IRQ_HANDLED;
2548
2549 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2550 spt_irq_handler(dev_priv, iir);
2551 else
2552 cpt_irq_handler(dev_priv, iir);
2553 } else {
2554 /*
2555 * Like on previous PCH there seems to be something
2556 * fishy going on with forwarding PCH interrupts.
2557 */
2558 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2559 }
2560 }
2561
2562 return ret;
2563 }
2564
2565 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2566 {
2567 struct drm_device *dev = arg;
2568 struct drm_i915_private *dev_priv = to_i915(dev);
2569 u32 master_ctl;
2570 u32 gt_iir[4] = {};
2571 irqreturn_t ret;
2572
2573 if (!intel_irqs_enabled(dev_priv))
2574 return IRQ_NONE;
2575
2576 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2577 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2578 if (!master_ctl)
2579 return IRQ_NONE;
2580
2581 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2582
2583 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2584 disable_rpm_wakeref_asserts(dev_priv);
2585
2586 /* Find, clear, then process each source of interrupt */
2587 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2588 gen8_gt_irq_handler(dev_priv, gt_iir);
2589 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2590
2591 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2592 POSTING_READ_FW(GEN8_MASTER_IRQ);
2593
2594 enable_rpm_wakeref_asserts(dev_priv);
2595
2596 return ret;
2597 }
2598
2599 /**
2600 * i915_reset_and_wakeup - do process context error handling work
2601 * @dev_priv: i915 device private
2602 *
2603 * Fire an error uevent so userspace can see that a hang or error
2604 * was detected.
2605 */
2606 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2607 {
2608 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2609 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2610 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2611 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2612
2613 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2614
2615 DRM_DEBUG_DRIVER("resetting chip\n");
2616 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2617
2618 intel_prepare_reset(dev_priv);
2619
2620 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2621 wake_up_all(&dev_priv->gpu_error.wait_queue);
2622
2623 do {
2624 /*
2625 * All state reset _must_ be completed before we update the
2626 * reset counter, for otherwise waiters might miss the reset
2627 * pending state and not properly drop locks, resulting in
2628 * deadlocks with the reset work.
2629 */
2630 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2631 i915_reset(dev_priv);
2632 mutex_unlock(&dev_priv->drm.struct_mutex);
2633 }
2634
2635 /* We need to wait for anyone holding the lock to wakeup */
2636 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2637 I915_RESET_HANDOFF,
2638 TASK_UNINTERRUPTIBLE,
2639 HZ));
2640
2641 intel_finish_reset(dev_priv);
2642
2643 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2644 kobject_uevent_env(kobj,
2645 KOBJ_CHANGE, reset_done_event);
2646
2647 /*
2648 * Note: The wake_up also serves as a memory barrier so that
2649 * waiters see the updated value of the dev_priv->gpu_error.
2650 */
2651 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2652 wake_up_all(&dev_priv->gpu_error.reset_queue);
2653 }
2654
2655 static inline void
2656 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2657 struct intel_instdone *instdone)
2658 {
2659 int slice;
2660 int subslice;
2661
2662 pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
2663
2664 if (INTEL_GEN(dev_priv) <= 3)
2665 return;
2666
2667 pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2668
2669 if (INTEL_GEN(dev_priv) <= 6)
2670 return;
2671
2672 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2673 pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2674 slice, subslice, instdone->sampler[slice][subslice]);
2675
2676 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2677 pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
2678 slice, subslice, instdone->row[slice][subslice]);
2679 }
2680
2681 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2682 {
2683 u32 eir;
2684
2685 if (!IS_GEN2(dev_priv))
2686 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2687
2688 if (INTEL_GEN(dev_priv) < 4)
2689 I915_WRITE(IPEIR, I915_READ(IPEIR));
2690 else
2691 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2692
2693 I915_WRITE(EIR, I915_READ(EIR));
2694 eir = I915_READ(EIR);
2695 if (eir) {
2696 /*
2697 * some errors might have become stuck,
2698 * mask them.
2699 */
2700 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2701 I915_WRITE(EMR, I915_READ(EMR) | eir);
2702 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2703 }
2704 }
2705
2706 /**
2707 * i915_handle_error - handle a gpu error
2708 * @dev_priv: i915 device private
2709 * @engine_mask: mask representing engines that are hung
2710 * @fmt: Error message format string
2711 *
2712 * Do some basic checking of register state at error time and
2713 * dump it to the syslog. Also call i915_capture_error_state() to make
2714 * sure we get a record and make it available in debugfs. Fire a uevent
2715 * so userspace knows something bad happened (should trigger collection
2716 * of a ring dump etc.).
2717 */
2718 void i915_handle_error(struct drm_i915_private *dev_priv,
2719 u32 engine_mask,
2720 const char *fmt, ...)
2721 {
2722 va_list args;
2723 char error_msg[80];
2724
2725 va_start(args, fmt);
2726 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2727 va_end(args);
2728
2729 /*
2730 * In most cases it's guaranteed that we get here with an RPM
2731 * reference held, for example because there is a pending GPU
2732 * request that won't finish until the reset is done. This
2733 * isn't the case at least when we get here by doing a
2734 * simulated reset via debugfs, so get an RPM reference.
2735 */
2736 intel_runtime_pm_get(dev_priv);
2737
2738 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2739 i915_clear_error_registers(dev_priv);
2740
2741 if (!engine_mask)
2742 goto out;
2743
2744 if (test_and_set_bit(I915_RESET_BACKOFF,
2745 &dev_priv->gpu_error.flags))
2746 goto out;
2747
2748 i915_reset_and_wakeup(dev_priv);
2749
2750 out:
2751 intel_runtime_pm_put(dev_priv);
2752 }
2753
2754 /* Called from drm generic code, passed 'crtc' which
2755 * we use as a pipe index
2756 */
2757 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2758 {
2759 struct drm_i915_private *dev_priv = to_i915(dev);
2760 unsigned long irqflags;
2761
2762 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2763 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2764 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2765
2766 return 0;
2767 }
2768
2769 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2770 {
2771 struct drm_i915_private *dev_priv = to_i915(dev);
2772 unsigned long irqflags;
2773
2774 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2775 i915_enable_pipestat(dev_priv, pipe,
2776 PIPE_START_VBLANK_INTERRUPT_STATUS);
2777 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2778
2779 return 0;
2780 }
2781
2782 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2783 {
2784 struct drm_i915_private *dev_priv = to_i915(dev);
2785 unsigned long irqflags;
2786 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2787 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2788
2789 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2790 ilk_enable_display_irq(dev_priv, bit);
2791 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2792
2793 return 0;
2794 }
2795
2796 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2797 {
2798 struct drm_i915_private *dev_priv = to_i915(dev);
2799 unsigned long irqflags;
2800
2801 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2803 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2804
2805 return 0;
2806 }
2807
2808 /* Called from drm generic code, passed 'crtc' which
2809 * we use as a pipe index
2810 */
2811 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2812 {
2813 struct drm_i915_private *dev_priv = to_i915(dev);
2814 unsigned long irqflags;
2815
2816 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2817 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2818 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2819 }
2820
2821 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2822 {
2823 struct drm_i915_private *dev_priv = to_i915(dev);
2824 unsigned long irqflags;
2825
2826 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2827 i915_disable_pipestat(dev_priv, pipe,
2828 PIPE_START_VBLANK_INTERRUPT_STATUS);
2829 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2830 }
2831
2832 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2833 {
2834 struct drm_i915_private *dev_priv = to_i915(dev);
2835 unsigned long irqflags;
2836 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2837 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2838
2839 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840 ilk_disable_display_irq(dev_priv, bit);
2841 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842 }
2843
2844 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2845 {
2846 struct drm_i915_private *dev_priv = to_i915(dev);
2847 unsigned long irqflags;
2848
2849 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2850 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2851 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2852 }
2853
2854 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2855 {
2856 if (HAS_PCH_NOP(dev_priv))
2857 return;
2858
2859 GEN5_IRQ_RESET(SDE);
2860
2861 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2862 I915_WRITE(SERR_INT, 0xffffffff);
2863 }
2864
2865 /*
2866 * SDEIER is also touched by the interrupt handler to work around missed PCH
2867 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2868 * instead we unconditionally enable all PCH interrupt sources here, but then
2869 * only unmask them as needed with SDEIMR.
2870 *
2871 * This function needs to be called before interrupts are enabled.
2872 */
2873 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2874 {
2875 struct drm_i915_private *dev_priv = to_i915(dev);
2876
2877 if (HAS_PCH_NOP(dev_priv))
2878 return;
2879
2880 WARN_ON(I915_READ(SDEIER) != 0);
2881 I915_WRITE(SDEIER, 0xffffffff);
2882 POSTING_READ(SDEIER);
2883 }
2884
2885 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2886 {
2887 GEN5_IRQ_RESET(GT);
2888 if (INTEL_GEN(dev_priv) >= 6)
2889 GEN5_IRQ_RESET(GEN6_PM);
2890 }
2891
2892 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2893 {
2894 enum pipe pipe;
2895
2896 if (IS_CHERRYVIEW(dev_priv))
2897 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2898 else
2899 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2900
2901 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2902 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2903
2904 for_each_pipe(dev_priv, pipe) {
2905 I915_WRITE(PIPESTAT(pipe),
2906 PIPE_FIFO_UNDERRUN_STATUS |
2907 PIPESTAT_INT_STATUS_MASK);
2908 dev_priv->pipestat_irq_mask[pipe] = 0;
2909 }
2910
2911 GEN5_IRQ_RESET(VLV_);
2912 dev_priv->irq_mask = ~0;
2913 }
2914
2915 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2916 {
2917 u32 pipestat_mask;
2918 u32 enable_mask;
2919 enum pipe pipe;
2920 u32 val;
2921
2922 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2923 PIPE_CRC_DONE_INTERRUPT_STATUS;
2924
2925 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2926 for_each_pipe(dev_priv, pipe)
2927 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2928
2929 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2930 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2931 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2932 if (IS_CHERRYVIEW(dev_priv))
2933 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2934
2935 WARN_ON(dev_priv->irq_mask != ~0);
2936
2937 val = (I915_LPE_PIPE_A_INTERRUPT |
2938 I915_LPE_PIPE_B_INTERRUPT |
2939 I915_LPE_PIPE_C_INTERRUPT);
2940
2941 enable_mask |= val;
2942
2943 dev_priv->irq_mask = ~enable_mask;
2944
2945 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2946 }
2947
2948 /* drm_dma.h hooks
2949 */
2950 static void ironlake_irq_reset(struct drm_device *dev)
2951 {
2952 struct drm_i915_private *dev_priv = to_i915(dev);
2953
2954 I915_WRITE(HWSTAM, 0xffffffff);
2955
2956 GEN5_IRQ_RESET(DE);
2957 if (IS_GEN7(dev_priv))
2958 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2959
2960 gen5_gt_irq_reset(dev_priv);
2961
2962 ibx_irq_reset(dev_priv);
2963 }
2964
2965 static void valleyview_irq_preinstall(struct drm_device *dev)
2966 {
2967 struct drm_i915_private *dev_priv = to_i915(dev);
2968
2969 I915_WRITE(VLV_MASTER_IER, 0);
2970 POSTING_READ(VLV_MASTER_IER);
2971
2972 gen5_gt_irq_reset(dev_priv);
2973
2974 spin_lock_irq(&dev_priv->irq_lock);
2975 if (dev_priv->display_irqs_enabled)
2976 vlv_display_irq_reset(dev_priv);
2977 spin_unlock_irq(&dev_priv->irq_lock);
2978 }
2979
2980 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2981 {
2982 GEN8_IRQ_RESET_NDX(GT, 0);
2983 GEN8_IRQ_RESET_NDX(GT, 1);
2984 GEN8_IRQ_RESET_NDX(GT, 2);
2985 GEN8_IRQ_RESET_NDX(GT, 3);
2986 }
2987
2988 static void gen8_irq_reset(struct drm_device *dev)
2989 {
2990 struct drm_i915_private *dev_priv = to_i915(dev);
2991 int pipe;
2992
2993 I915_WRITE(GEN8_MASTER_IRQ, 0);
2994 POSTING_READ(GEN8_MASTER_IRQ);
2995
2996 gen8_gt_irq_reset(dev_priv);
2997
2998 for_each_pipe(dev_priv, pipe)
2999 if (intel_display_power_is_enabled(dev_priv,
3000 POWER_DOMAIN_PIPE(pipe)))
3001 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3002
3003 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3004 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3005 GEN5_IRQ_RESET(GEN8_PCU_);
3006
3007 if (HAS_PCH_SPLIT(dev_priv))
3008 ibx_irq_reset(dev_priv);
3009 }
3010
3011 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3012 unsigned int pipe_mask)
3013 {
3014 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3015 enum pipe pipe;
3016
3017 spin_lock_irq(&dev_priv->irq_lock);
3018 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3019 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3020 dev_priv->de_irq_mask[pipe],
3021 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3022 spin_unlock_irq(&dev_priv->irq_lock);
3023 }
3024
3025 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3026 unsigned int pipe_mask)
3027 {
3028 enum pipe pipe;
3029
3030 spin_lock_irq(&dev_priv->irq_lock);
3031 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3032 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3033 spin_unlock_irq(&dev_priv->irq_lock);
3034
3035 /* make sure we're done processing display irqs */
3036 synchronize_irq(dev_priv->drm.irq);
3037 }
3038
3039 static void cherryview_irq_preinstall(struct drm_device *dev)
3040 {
3041 struct drm_i915_private *dev_priv = to_i915(dev);
3042
3043 I915_WRITE(GEN8_MASTER_IRQ, 0);
3044 POSTING_READ(GEN8_MASTER_IRQ);
3045
3046 gen8_gt_irq_reset(dev_priv);
3047
3048 GEN5_IRQ_RESET(GEN8_PCU_);
3049
3050 spin_lock_irq(&dev_priv->irq_lock);
3051 if (dev_priv->display_irqs_enabled)
3052 vlv_display_irq_reset(dev_priv);
3053 spin_unlock_irq(&dev_priv->irq_lock);
3054 }
3055
3056 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3057 const u32 hpd[HPD_NUM_PINS])
3058 {
3059 struct intel_encoder *encoder;
3060 u32 enabled_irqs = 0;
3061
3062 for_each_intel_encoder(&dev_priv->drm, encoder)
3063 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3064 enabled_irqs |= hpd[encoder->hpd_pin];
3065
3066 return enabled_irqs;
3067 }
3068
3069 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3070 {
3071 u32 hotplug;
3072
3073 /*
3074 * Enable digital hotplug on the PCH, and configure the DP short pulse
3075 * duration to 2ms (which is the minimum in the Display Port spec).
3076 * The pulse duration bits are reserved on LPT+.
3077 */
3078 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3079 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3080 PORTC_PULSE_DURATION_MASK |
3081 PORTD_PULSE_DURATION_MASK);
3082 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3083 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3084 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3085 /*
3086 * When CPU and PCH are on the same package, port A
3087 * HPD must be enabled in both north and south.
3088 */
3089 if (HAS_PCH_LPT_LP(dev_priv))
3090 hotplug |= PORTA_HOTPLUG_ENABLE;
3091 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3092 }
3093
3094 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3095 {
3096 u32 hotplug_irqs, enabled_irqs;
3097
3098 if (HAS_PCH_IBX(dev_priv)) {
3099 hotplug_irqs = SDE_HOTPLUG_MASK;
3100 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3101 } else {
3102 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3103 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3104 }
3105
3106 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3107
3108 ibx_hpd_detection_setup(dev_priv);
3109 }
3110
3111 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3112 {
3113 u32 hotplug;
3114
3115 /* Enable digital hotplug on the PCH */
3116 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3117 hotplug |= PORTA_HOTPLUG_ENABLE |
3118 PORTB_HOTPLUG_ENABLE |
3119 PORTC_HOTPLUG_ENABLE |
3120 PORTD_HOTPLUG_ENABLE;
3121 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3122
3123 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3124 hotplug |= PORTE_HOTPLUG_ENABLE;
3125 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3126 }
3127
3128 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3129 {
3130 u32 hotplug_irqs, enabled_irqs;
3131
3132 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3133 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3134
3135 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3136
3137 spt_hpd_detection_setup(dev_priv);
3138 }
3139
3140 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3141 {
3142 u32 hotplug;
3143
3144 /*
3145 * Enable digital hotplug on the CPU, and configure the DP short pulse
3146 * duration to 2ms (which is the minimum in the Display Port spec)
3147 * The pulse duration bits are reserved on HSW+.
3148 */
3149 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3150 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3151 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3152 DIGITAL_PORTA_PULSE_DURATION_2ms;
3153 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3154 }
3155
3156 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3157 {
3158 u32 hotplug_irqs, enabled_irqs;
3159
3160 if (INTEL_GEN(dev_priv) >= 8) {
3161 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3162 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3163
3164 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3165 } else if (INTEL_GEN(dev_priv) >= 7) {
3166 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3167 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3168
3169 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3170 } else {
3171 hotplug_irqs = DE_DP_A_HOTPLUG;
3172 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3173
3174 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3175 }
3176
3177 ilk_hpd_detection_setup(dev_priv);
3178
3179 ibx_hpd_irq_setup(dev_priv);
3180 }
3181
3182 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3183 u32 enabled_irqs)
3184 {
3185 u32 hotplug;
3186
3187 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3188 hotplug |= PORTA_HOTPLUG_ENABLE |
3189 PORTB_HOTPLUG_ENABLE |
3190 PORTC_HOTPLUG_ENABLE;
3191
3192 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3193 hotplug, enabled_irqs);
3194 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3195
3196 /*
3197 * For BXT invert bit has to be set based on AOB design
3198 * for HPD detection logic, update it based on VBT fields.
3199 */
3200 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3201 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3202 hotplug |= BXT_DDIA_HPD_INVERT;
3203 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3204 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3205 hotplug |= BXT_DDIB_HPD_INVERT;
3206 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3207 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3208 hotplug |= BXT_DDIC_HPD_INVERT;
3209
3210 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3211 }
3212
3213 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3214 {
3215 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3216 }
3217
3218 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3219 {
3220 u32 hotplug_irqs, enabled_irqs;
3221
3222 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3223 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3224
3225 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3226
3227 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3228 }
3229
3230 static void ibx_irq_postinstall(struct drm_device *dev)
3231 {
3232 struct drm_i915_private *dev_priv = to_i915(dev);
3233 u32 mask;
3234
3235 if (HAS_PCH_NOP(dev_priv))
3236 return;
3237
3238 if (HAS_PCH_IBX(dev_priv))
3239 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3240 else
3241 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3242
3243 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3244 I915_WRITE(SDEIMR, ~mask);
3245
3246 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3247 HAS_PCH_LPT(dev_priv))
3248 ibx_hpd_detection_setup(dev_priv);
3249 else
3250 spt_hpd_detection_setup(dev_priv);
3251 }
3252
3253 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3254 {
3255 struct drm_i915_private *dev_priv = to_i915(dev);
3256 u32 pm_irqs, gt_irqs;
3257
3258 pm_irqs = gt_irqs = 0;
3259
3260 dev_priv->gt_irq_mask = ~0;
3261 if (HAS_L3_DPF(dev_priv)) {
3262 /* L3 parity interrupt is always unmasked. */
3263 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3264 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3265 }
3266
3267 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3268 if (IS_GEN5(dev_priv)) {
3269 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3270 } else {
3271 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3272 }
3273
3274 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3275
3276 if (INTEL_GEN(dev_priv) >= 6) {
3277 /*
3278 * RPS interrupts will get enabled/disabled on demand when RPS
3279 * itself is enabled/disabled.
3280 */
3281 if (HAS_VEBOX(dev_priv)) {
3282 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3283 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3284 }
3285
3286 dev_priv->pm_imr = 0xffffffff;
3287 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3288 }
3289 }
3290
3291 static int ironlake_irq_postinstall(struct drm_device *dev)
3292 {
3293 struct drm_i915_private *dev_priv = to_i915(dev);
3294 u32 display_mask, extra_mask;
3295
3296 if (INTEL_GEN(dev_priv) >= 7) {
3297 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3298 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3299 DE_PLANEB_FLIP_DONE_IVB |
3300 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3301 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3302 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3303 DE_DP_A_HOTPLUG_IVB);
3304 } else {
3305 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3306 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3307 DE_AUX_CHANNEL_A |
3308 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3309 DE_POISON);
3310 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3311 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3312 DE_DP_A_HOTPLUG);
3313 }
3314
3315 dev_priv->irq_mask = ~display_mask;
3316
3317 I915_WRITE(HWSTAM, 0xeffe);
3318
3319 ibx_irq_pre_postinstall(dev);
3320
3321 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3322
3323 gen5_gt_irq_postinstall(dev);
3324
3325 ilk_hpd_detection_setup(dev_priv);
3326
3327 ibx_irq_postinstall(dev);
3328
3329 if (IS_IRONLAKE_M(dev_priv)) {
3330 /* Enable PCU event interrupts
3331 *
3332 * spinlocking not required here for correctness since interrupt
3333 * setup is guaranteed to run in single-threaded context. But we
3334 * need it to make the assert_spin_locked happy. */
3335 spin_lock_irq(&dev_priv->irq_lock);
3336 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3337 spin_unlock_irq(&dev_priv->irq_lock);
3338 }
3339
3340 return 0;
3341 }
3342
3343 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3344 {
3345 lockdep_assert_held(&dev_priv->irq_lock);
3346
3347 if (dev_priv->display_irqs_enabled)
3348 return;
3349
3350 dev_priv->display_irqs_enabled = true;
3351
3352 if (intel_irqs_enabled(dev_priv)) {
3353 vlv_display_irq_reset(dev_priv);
3354 vlv_display_irq_postinstall(dev_priv);
3355 }
3356 }
3357
3358 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3359 {
3360 lockdep_assert_held(&dev_priv->irq_lock);
3361
3362 if (!dev_priv->display_irqs_enabled)
3363 return;
3364
3365 dev_priv->display_irqs_enabled = false;
3366
3367 if (intel_irqs_enabled(dev_priv))
3368 vlv_display_irq_reset(dev_priv);
3369 }
3370
3371
3372 static int valleyview_irq_postinstall(struct drm_device *dev)
3373 {
3374 struct drm_i915_private *dev_priv = to_i915(dev);
3375
3376 gen5_gt_irq_postinstall(dev);
3377
3378 spin_lock_irq(&dev_priv->irq_lock);
3379 if (dev_priv->display_irqs_enabled)
3380 vlv_display_irq_postinstall(dev_priv);
3381 spin_unlock_irq(&dev_priv->irq_lock);
3382
3383 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3384 POSTING_READ(VLV_MASTER_IER);
3385
3386 return 0;
3387 }
3388
3389 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3390 {
3391 /* These are interrupts we'll toggle with the ring mask register */
3392 uint32_t gt_interrupts[] = {
3393 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3394 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3395 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3396 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3397 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3398 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3399 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3400 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3401 0,
3402 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3403 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3404 };
3405
3406 if (HAS_L3_DPF(dev_priv))
3407 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3408
3409 dev_priv->pm_ier = 0x0;
3410 dev_priv->pm_imr = ~dev_priv->pm_ier;
3411 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3412 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3413 /*
3414 * RPS interrupts will get enabled/disabled on demand when RPS itself
3415 * is enabled/disabled. Same wil be the case for GuC interrupts.
3416 */
3417 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3418 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3419 }
3420
3421 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3422 {
3423 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3424 uint32_t de_pipe_enables;
3425 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3426 u32 de_port_enables;
3427 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3428 enum pipe pipe;
3429
3430 if (INTEL_INFO(dev_priv)->gen >= 9) {
3431 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3432 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3433 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3434 GEN9_AUX_CHANNEL_D;
3435 if (IS_GEN9_LP(dev_priv))
3436 de_port_masked |= BXT_DE_PORT_GMBUS;
3437 } else {
3438 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3439 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3440 }
3441
3442 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3443 GEN8_PIPE_FIFO_UNDERRUN;
3444
3445 de_port_enables = de_port_masked;
3446 if (IS_GEN9_LP(dev_priv))
3447 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3448 else if (IS_BROADWELL(dev_priv))
3449 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3450
3451 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3452 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3453 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3454
3455 for_each_pipe(dev_priv, pipe)
3456 if (intel_display_power_is_enabled(dev_priv,
3457 POWER_DOMAIN_PIPE(pipe)))
3458 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3459 dev_priv->de_irq_mask[pipe],
3460 de_pipe_enables);
3461
3462 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3463 GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3464
3465 if (IS_GEN9_LP(dev_priv))
3466 bxt_hpd_detection_setup(dev_priv);
3467 else if (IS_BROADWELL(dev_priv))
3468 ilk_hpd_detection_setup(dev_priv);
3469 }
3470
3471 static int gen8_irq_postinstall(struct drm_device *dev)
3472 {
3473 struct drm_i915_private *dev_priv = to_i915(dev);
3474
3475 if (HAS_PCH_SPLIT(dev_priv))
3476 ibx_irq_pre_postinstall(dev);
3477
3478 gen8_gt_irq_postinstall(dev_priv);
3479 gen8_de_irq_postinstall(dev_priv);
3480
3481 if (HAS_PCH_SPLIT(dev_priv))
3482 ibx_irq_postinstall(dev);
3483
3484 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3485 POSTING_READ(GEN8_MASTER_IRQ);
3486
3487 return 0;
3488 }
3489
3490 static int cherryview_irq_postinstall(struct drm_device *dev)
3491 {
3492 struct drm_i915_private *dev_priv = to_i915(dev);
3493
3494 gen8_gt_irq_postinstall(dev_priv);
3495
3496 spin_lock_irq(&dev_priv->irq_lock);
3497 if (dev_priv->display_irqs_enabled)
3498 vlv_display_irq_postinstall(dev_priv);
3499 spin_unlock_irq(&dev_priv->irq_lock);
3500
3501 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3502 POSTING_READ(GEN8_MASTER_IRQ);
3503
3504 return 0;
3505 }
3506
3507 static void gen8_irq_uninstall(struct drm_device *dev)
3508 {
3509 struct drm_i915_private *dev_priv = to_i915(dev);
3510
3511 if (!dev_priv)
3512 return;
3513
3514 gen8_irq_reset(dev);
3515 }
3516
3517 static void valleyview_irq_uninstall(struct drm_device *dev)
3518 {
3519 struct drm_i915_private *dev_priv = to_i915(dev);
3520
3521 if (!dev_priv)
3522 return;
3523
3524 I915_WRITE(VLV_MASTER_IER, 0);
3525 POSTING_READ(VLV_MASTER_IER);
3526
3527 gen5_gt_irq_reset(dev_priv);
3528
3529 I915_WRITE(HWSTAM, 0xffffffff);
3530
3531 spin_lock_irq(&dev_priv->irq_lock);
3532 if (dev_priv->display_irqs_enabled)
3533 vlv_display_irq_reset(dev_priv);
3534 spin_unlock_irq(&dev_priv->irq_lock);
3535 }
3536
3537 static void cherryview_irq_uninstall(struct drm_device *dev)
3538 {
3539 struct drm_i915_private *dev_priv = to_i915(dev);
3540
3541 if (!dev_priv)
3542 return;
3543
3544 I915_WRITE(GEN8_MASTER_IRQ, 0);
3545 POSTING_READ(GEN8_MASTER_IRQ);
3546
3547 gen8_gt_irq_reset(dev_priv);
3548
3549 GEN5_IRQ_RESET(GEN8_PCU_);
3550
3551 spin_lock_irq(&dev_priv->irq_lock);
3552 if (dev_priv->display_irqs_enabled)
3553 vlv_display_irq_reset(dev_priv);
3554 spin_unlock_irq(&dev_priv->irq_lock);
3555 }
3556
3557 static void ironlake_irq_uninstall(struct drm_device *dev)
3558 {
3559 struct drm_i915_private *dev_priv = to_i915(dev);
3560
3561 if (!dev_priv)
3562 return;
3563
3564 ironlake_irq_reset(dev);
3565 }
3566
3567 static void i8xx_irq_preinstall(struct drm_device * dev)
3568 {
3569 struct drm_i915_private *dev_priv = to_i915(dev);
3570 int pipe;
3571
3572 for_each_pipe(dev_priv, pipe)
3573 I915_WRITE(PIPESTAT(pipe), 0);
3574 I915_WRITE16(IMR, 0xffff);
3575 I915_WRITE16(IER, 0x0);
3576 POSTING_READ16(IER);
3577 }
3578
3579 static int i8xx_irq_postinstall(struct drm_device *dev)
3580 {
3581 struct drm_i915_private *dev_priv = to_i915(dev);
3582
3583 I915_WRITE16(EMR,
3584 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3585
3586 /* Unmask the interrupts that we always want on. */
3587 dev_priv->irq_mask =
3588 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3589 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3590 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3591 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3592 I915_WRITE16(IMR, dev_priv->irq_mask);
3593
3594 I915_WRITE16(IER,
3595 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3596 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3597 I915_USER_INTERRUPT);
3598 POSTING_READ16(IER);
3599
3600 /* Interrupt setup is already guaranteed to be single-threaded, this is
3601 * just to make the assert_spin_locked check happy. */
3602 spin_lock_irq(&dev_priv->irq_lock);
3603 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3604 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3605 spin_unlock_irq(&dev_priv->irq_lock);
3606
3607 return 0;
3608 }
3609
3610 /*
3611 * Returns true when a page flip has completed.
3612 */
3613 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3614 int plane, int pipe, u32 iir)
3615 {
3616 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3617
3618 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3619 return false;
3620
3621 if ((iir & flip_pending) == 0)
3622 goto check_page_flip;
3623
3624 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3625 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3626 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3627 * the flip is completed (no longer pending). Since this doesn't raise
3628 * an interrupt per se, we watch for the change at vblank.
3629 */
3630 if (I915_READ16(ISR) & flip_pending)
3631 goto check_page_flip;
3632
3633 intel_finish_page_flip_cs(dev_priv, pipe);
3634 return true;
3635
3636 check_page_flip:
3637 intel_check_page_flip(dev_priv, pipe);
3638 return false;
3639 }
3640
3641 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3642 {
3643 struct drm_device *dev = arg;
3644 struct drm_i915_private *dev_priv = to_i915(dev);
3645 u16 iir, new_iir;
3646 u32 pipe_stats[2];
3647 int pipe;
3648 u16 flip_mask =
3649 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3650 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3651 irqreturn_t ret;
3652
3653 if (!intel_irqs_enabled(dev_priv))
3654 return IRQ_NONE;
3655
3656 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3657 disable_rpm_wakeref_asserts(dev_priv);
3658
3659 ret = IRQ_NONE;
3660 iir = I915_READ16(IIR);
3661 if (iir == 0)
3662 goto out;
3663
3664 while (iir & ~flip_mask) {
3665 /* Can't rely on pipestat interrupt bit in iir as it might
3666 * have been cleared after the pipestat interrupt was received.
3667 * It doesn't set the bit in iir again, but it still produces
3668 * interrupts (for non-MSI).
3669 */
3670 spin_lock(&dev_priv->irq_lock);
3671 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3672 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3673
3674 for_each_pipe(dev_priv, pipe) {
3675 i915_reg_t reg = PIPESTAT(pipe);
3676 pipe_stats[pipe] = I915_READ(reg);
3677
3678 /*
3679 * Clear the PIPE*STAT regs before the IIR
3680 */
3681 if (pipe_stats[pipe] & 0x8000ffff)
3682 I915_WRITE(reg, pipe_stats[pipe]);
3683 }
3684 spin_unlock(&dev_priv->irq_lock);
3685
3686 I915_WRITE16(IIR, iir & ~flip_mask);
3687 new_iir = I915_READ16(IIR); /* Flush posted writes */
3688
3689 if (iir & I915_USER_INTERRUPT)
3690 notify_ring(dev_priv->engine[RCS]);
3691
3692 for_each_pipe(dev_priv, pipe) {
3693 int plane = pipe;
3694 if (HAS_FBC(dev_priv))
3695 plane = !plane;
3696
3697 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3698 i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3699 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3700
3701 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3702 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3703
3704 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3705 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3706 pipe);
3707 }
3708
3709 iir = new_iir;
3710 }
3711 ret = IRQ_HANDLED;
3712
3713 out:
3714 enable_rpm_wakeref_asserts(dev_priv);
3715
3716 return ret;
3717 }
3718
3719 static void i8xx_irq_uninstall(struct drm_device * dev)
3720 {
3721 struct drm_i915_private *dev_priv = to_i915(dev);
3722 int pipe;
3723
3724 for_each_pipe(dev_priv, pipe) {
3725 /* Clear enable bits; then clear status bits */
3726 I915_WRITE(PIPESTAT(pipe), 0);
3727 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3728 }
3729 I915_WRITE16(IMR, 0xffff);
3730 I915_WRITE16(IER, 0x0);
3731 I915_WRITE16(IIR, I915_READ16(IIR));
3732 }
3733
3734 static void i915_irq_preinstall(struct drm_device * dev)
3735 {
3736 struct drm_i915_private *dev_priv = to_i915(dev);
3737 int pipe;
3738
3739 if (I915_HAS_HOTPLUG(dev_priv)) {
3740 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3741 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3742 }
3743
3744 I915_WRITE16(HWSTAM, 0xeffe);
3745 for_each_pipe(dev_priv, pipe)
3746 I915_WRITE(PIPESTAT(pipe), 0);
3747 I915_WRITE(IMR, 0xffffffff);
3748 I915_WRITE(IER, 0x0);
3749 POSTING_READ(IER);
3750 }
3751
3752 static int i915_irq_postinstall(struct drm_device *dev)
3753 {
3754 struct drm_i915_private *dev_priv = to_i915(dev);
3755 u32 enable_mask;
3756
3757 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3758
3759 /* Unmask the interrupts that we always want on. */
3760 dev_priv->irq_mask =
3761 ~(I915_ASLE_INTERRUPT |
3762 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3763 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3764 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3765 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3766
3767 enable_mask =
3768 I915_ASLE_INTERRUPT |
3769 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3770 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3771 I915_USER_INTERRUPT;
3772
3773 if (I915_HAS_HOTPLUG(dev_priv)) {
3774 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3775 POSTING_READ(PORT_HOTPLUG_EN);
3776
3777 /* Enable in IER... */
3778 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3779 /* and unmask in IMR */
3780 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3781 }
3782
3783 I915_WRITE(IMR, dev_priv->irq_mask);
3784 I915_WRITE(IER, enable_mask);
3785 POSTING_READ(IER);
3786
3787 i915_enable_asle_pipestat(dev_priv);
3788
3789 /* Interrupt setup is already guaranteed to be single-threaded, this is
3790 * just to make the assert_spin_locked check happy. */
3791 spin_lock_irq(&dev_priv->irq_lock);
3792 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3793 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3794 spin_unlock_irq(&dev_priv->irq_lock);
3795
3796 return 0;
3797 }
3798
3799 /*
3800 * Returns true when a page flip has completed.
3801 */
3802 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3803 int plane, int pipe, u32 iir)
3804 {
3805 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3806
3807 if (!intel_pipe_handle_vblank(dev_priv, pipe))
3808 return false;
3809
3810 if ((iir & flip_pending) == 0)
3811 goto check_page_flip;
3812
3813 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3814 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3815 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3816 * the flip is completed (no longer pending). Since this doesn't raise
3817 * an interrupt per se, we watch for the change at vblank.
3818 */
3819 if (I915_READ(ISR) & flip_pending)
3820 goto check_page_flip;
3821
3822 intel_finish_page_flip_cs(dev_priv, pipe);
3823 return true;
3824
3825 check_page_flip:
3826 intel_check_page_flip(dev_priv, pipe);
3827 return false;
3828 }
3829
3830 static irqreturn_t i915_irq_handler(int irq, void *arg)
3831 {
3832 struct drm_device *dev = arg;
3833 struct drm_i915_private *dev_priv = to_i915(dev);
3834 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3835 u32 flip_mask =
3836 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3837 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3838 int pipe, ret = IRQ_NONE;
3839
3840 if (!intel_irqs_enabled(dev_priv))
3841 return IRQ_NONE;
3842
3843 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3844 disable_rpm_wakeref_asserts(dev_priv);
3845
3846 iir = I915_READ(IIR);
3847 do {
3848 bool irq_received = (iir & ~flip_mask) != 0;
3849 bool blc_event = false;
3850
3851 /* Can't rely on pipestat interrupt bit in iir as it might
3852 * have been cleared after the pipestat interrupt was received.
3853 * It doesn't set the bit in iir again, but it still produces
3854 * interrupts (for non-MSI).
3855 */
3856 spin_lock(&dev_priv->irq_lock);
3857 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3859
3860 for_each_pipe(dev_priv, pipe) {
3861 i915_reg_t reg = PIPESTAT(pipe);
3862 pipe_stats[pipe] = I915_READ(reg);
3863
3864 /* Clear the PIPE*STAT regs before the IIR */
3865 if (pipe_stats[pipe] & 0x8000ffff) {
3866 I915_WRITE(reg, pipe_stats[pipe]);
3867 irq_received = true;
3868 }
3869 }
3870 spin_unlock(&dev_priv->irq_lock);
3871
3872 if (!irq_received)
3873 break;
3874
3875 /* Consume port. Then clear IIR or we'll miss events */
3876 if (I915_HAS_HOTPLUG(dev_priv) &&
3877 iir & I915_DISPLAY_PORT_INTERRUPT) {
3878 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3879 if (hotplug_status)
3880 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3881 }
3882
3883 I915_WRITE(IIR, iir & ~flip_mask);
3884 new_iir = I915_READ(IIR); /* Flush posted writes */
3885
3886 if (iir & I915_USER_INTERRUPT)
3887 notify_ring(dev_priv->engine[RCS]);
3888
3889 for_each_pipe(dev_priv, pipe) {
3890 int plane = pipe;
3891 if (HAS_FBC(dev_priv))
3892 plane = !plane;
3893
3894 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3895 i915_handle_vblank(dev_priv, plane, pipe, iir))
3896 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3897
3898 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3899 blc_event = true;
3900
3901 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3902 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3903
3904 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3905 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3906 pipe);
3907 }
3908
3909 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3910 intel_opregion_asle_intr(dev_priv);
3911
3912 /* With MSI, interrupts are only generated when iir
3913 * transitions from zero to nonzero. If another bit got
3914 * set while we were handling the existing iir bits, then
3915 * we would never get another interrupt.
3916 *
3917 * This is fine on non-MSI as well, as if we hit this path
3918 * we avoid exiting the interrupt handler only to generate
3919 * another one.
3920 *
3921 * Note that for MSI this could cause a stray interrupt report
3922 * if an interrupt landed in the time between writing IIR and
3923 * the posting read. This should be rare enough to never
3924 * trigger the 99% of 100,000 interrupts test for disabling
3925 * stray interrupts.
3926 */
3927 ret = IRQ_HANDLED;
3928 iir = new_iir;
3929 } while (iir & ~flip_mask);
3930
3931 enable_rpm_wakeref_asserts(dev_priv);
3932
3933 return ret;
3934 }
3935
3936 static void i915_irq_uninstall(struct drm_device * dev)
3937 {
3938 struct drm_i915_private *dev_priv = to_i915(dev);
3939 int pipe;
3940
3941 if (I915_HAS_HOTPLUG(dev_priv)) {
3942 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3943 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3944 }
3945
3946 I915_WRITE16(HWSTAM, 0xffff);
3947 for_each_pipe(dev_priv, pipe) {
3948 /* Clear enable bits; then clear status bits */
3949 I915_WRITE(PIPESTAT(pipe), 0);
3950 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3951 }
3952 I915_WRITE(IMR, 0xffffffff);
3953 I915_WRITE(IER, 0x0);
3954
3955 I915_WRITE(IIR, I915_READ(IIR));
3956 }
3957
3958 static void i965_irq_preinstall(struct drm_device * dev)
3959 {
3960 struct drm_i915_private *dev_priv = to_i915(dev);
3961 int pipe;
3962
3963 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3964 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965
3966 I915_WRITE(HWSTAM, 0xeffe);
3967 for_each_pipe(dev_priv, pipe)
3968 I915_WRITE(PIPESTAT(pipe), 0);
3969 I915_WRITE(IMR, 0xffffffff);
3970 I915_WRITE(IER, 0x0);
3971 POSTING_READ(IER);
3972 }
3973
3974 static int i965_irq_postinstall(struct drm_device *dev)
3975 {
3976 struct drm_i915_private *dev_priv = to_i915(dev);
3977 u32 enable_mask;
3978 u32 error_mask;
3979
3980 /* Unmask the interrupts that we always want on. */
3981 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3982 I915_DISPLAY_PORT_INTERRUPT |
3983 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3984 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3985 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3986 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3987 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3988
3989 enable_mask = ~dev_priv->irq_mask;
3990 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3991 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3992 enable_mask |= I915_USER_INTERRUPT;
3993
3994 if (IS_G4X(dev_priv))
3995 enable_mask |= I915_BSD_USER_INTERRUPT;
3996
3997 /* Interrupt setup is already guaranteed to be single-threaded, this is
3998 * just to make the assert_spin_locked check happy. */
3999 spin_lock_irq(&dev_priv->irq_lock);
4000 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4001 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4002 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4003 spin_unlock_irq(&dev_priv->irq_lock);
4004
4005 /*
4006 * Enable some error detection, note the instruction error mask
4007 * bit is reserved, so we leave it masked.
4008 */
4009 if (IS_G4X(dev_priv)) {
4010 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4011 GM45_ERROR_MEM_PRIV |
4012 GM45_ERROR_CP_PRIV |
4013 I915_ERROR_MEMORY_REFRESH);
4014 } else {
4015 error_mask = ~(I915_ERROR_PAGE_TABLE |
4016 I915_ERROR_MEMORY_REFRESH);
4017 }
4018 I915_WRITE(EMR, error_mask);
4019
4020 I915_WRITE(IMR, dev_priv->irq_mask);
4021 I915_WRITE(IER, enable_mask);
4022 POSTING_READ(IER);
4023
4024 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4025 POSTING_READ(PORT_HOTPLUG_EN);
4026
4027 i915_enable_asle_pipestat(dev_priv);
4028
4029 return 0;
4030 }
4031
4032 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4033 {
4034 u32 hotplug_en;
4035
4036 lockdep_assert_held(&dev_priv->irq_lock);
4037
4038 /* Note HDMI and DP share hotplug bits */
4039 /* enable bits are the same for all generations */
4040 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4041 /* Programming the CRT detection parameters tends
4042 to generate a spurious hotplug event about three
4043 seconds later. So just do it once.
4044 */
4045 if (IS_G4X(dev_priv))
4046 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4047 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4048
4049 /* Ignore TV since it's buggy */
4050 i915_hotplug_interrupt_update_locked(dev_priv,
4051 HOTPLUG_INT_EN_MASK |
4052 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4053 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4054 hotplug_en);
4055 }
4056
4057 static irqreturn_t i965_irq_handler(int irq, void *arg)
4058 {
4059 struct drm_device *dev = arg;
4060 struct drm_i915_private *dev_priv = to_i915(dev);
4061 u32 iir, new_iir;
4062 u32 pipe_stats[I915_MAX_PIPES];
4063 int ret = IRQ_NONE, pipe;
4064 u32 flip_mask =
4065 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4066 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4067
4068 if (!intel_irqs_enabled(dev_priv))
4069 return IRQ_NONE;
4070
4071 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4072 disable_rpm_wakeref_asserts(dev_priv);
4073
4074 iir = I915_READ(IIR);
4075
4076 for (;;) {
4077 bool irq_received = (iir & ~flip_mask) != 0;
4078 bool blc_event = false;
4079
4080 /* Can't rely on pipestat interrupt bit in iir as it might
4081 * have been cleared after the pipestat interrupt was received.
4082 * It doesn't set the bit in iir again, but it still produces
4083 * interrupts (for non-MSI).
4084 */
4085 spin_lock(&dev_priv->irq_lock);
4086 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4087 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4088
4089 for_each_pipe(dev_priv, pipe) {
4090 i915_reg_t reg = PIPESTAT(pipe);
4091 pipe_stats[pipe] = I915_READ(reg);
4092
4093 /*
4094 * Clear the PIPE*STAT regs before the IIR
4095 */
4096 if (pipe_stats[pipe] & 0x8000ffff) {
4097 I915_WRITE(reg, pipe_stats[pipe]);
4098 irq_received = true;
4099 }
4100 }
4101 spin_unlock(&dev_priv->irq_lock);
4102
4103 if (!irq_received)
4104 break;
4105
4106 ret = IRQ_HANDLED;
4107
4108 /* Consume port. Then clear IIR or we'll miss events */
4109 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4110 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4111 if (hotplug_status)
4112 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4113 }
4114
4115 I915_WRITE(IIR, iir & ~flip_mask);
4116 new_iir = I915_READ(IIR); /* Flush posted writes */
4117
4118 if (iir & I915_USER_INTERRUPT)
4119 notify_ring(dev_priv->engine[RCS]);
4120 if (iir & I915_BSD_USER_INTERRUPT)
4121 notify_ring(dev_priv->engine[VCS]);
4122
4123 for_each_pipe(dev_priv, pipe) {
4124 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4125 i915_handle_vblank(dev_priv, pipe, pipe, iir))
4126 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4127
4128 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4129 blc_event = true;
4130
4131 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4132 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4133
4134 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4135 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4136 }
4137
4138 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4139 intel_opregion_asle_intr(dev_priv);
4140
4141 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4142 gmbus_irq_handler(dev_priv);
4143
4144 /* With MSI, interrupts are only generated when iir
4145 * transitions from zero to nonzero. If another bit got
4146 * set while we were handling the existing iir bits, then
4147 * we would never get another interrupt.
4148 *
4149 * This is fine on non-MSI as well, as if we hit this path
4150 * we avoid exiting the interrupt handler only to generate
4151 * another one.
4152 *
4153 * Note that for MSI this could cause a stray interrupt report
4154 * if an interrupt landed in the time between writing IIR and
4155 * the posting read. This should be rare enough to never
4156 * trigger the 99% of 100,000 interrupts test for disabling
4157 * stray interrupts.
4158 */
4159 iir = new_iir;
4160 }
4161
4162 enable_rpm_wakeref_asserts(dev_priv);
4163
4164 return ret;
4165 }
4166
4167 static void i965_irq_uninstall(struct drm_device * dev)
4168 {
4169 struct drm_i915_private *dev_priv = to_i915(dev);
4170 int pipe;
4171
4172 if (!dev_priv)
4173 return;
4174
4175 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4176 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4177
4178 I915_WRITE(HWSTAM, 0xffffffff);
4179 for_each_pipe(dev_priv, pipe)
4180 I915_WRITE(PIPESTAT(pipe), 0);
4181 I915_WRITE(IMR, 0xffffffff);
4182 I915_WRITE(IER, 0x0);
4183
4184 for_each_pipe(dev_priv, pipe)
4185 I915_WRITE(PIPESTAT(pipe),
4186 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4187 I915_WRITE(IIR, I915_READ(IIR));
4188 }
4189
4190 /**
4191 * intel_irq_init - initializes irq support
4192 * @dev_priv: i915 device instance
4193 *
4194 * This function initializes all the irq support including work items, timers
4195 * and all the vtables. It does not setup the interrupt itself though.
4196 */
4197 void intel_irq_init(struct drm_i915_private *dev_priv)
4198 {
4199 struct drm_device *dev = &dev_priv->drm;
4200
4201 intel_hpd_init_work(dev_priv);
4202
4203 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4204 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4205
4206 if (HAS_GUC_SCHED(dev_priv))
4207 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4208
4209 /* Let's track the enabled rps events */
4210 if (IS_VALLEYVIEW(dev_priv))
4211 /* WaGsvRC0ResidencyMethod:vlv */
4212 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4213 else
4214 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4215
4216 dev_priv->rps.pm_intrmsk_mbz = 0;
4217
4218 /*
4219 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4220 * if GEN6_PM_UP_EI_EXPIRED is masked.
4221 *
4222 * TODO: verify if this can be reproduced on VLV,CHV.
4223 */
4224 if (INTEL_INFO(dev_priv)->gen <= 7)
4225 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4226
4227 if (INTEL_INFO(dev_priv)->gen >= 8)
4228 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4229
4230 if (IS_GEN2(dev_priv)) {
4231 /* Gen2 doesn't have a hardware frame counter */
4232 dev->max_vblank_count = 0;
4233 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4234 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4235 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4236 } else {
4237 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4238 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4239 }
4240
4241 /*
4242 * Opt out of the vblank disable timer on everything except gen2.
4243 * Gen2 doesn't have a hardware frame counter and so depends on
4244 * vblank interrupts to produce sane vblank seuquence numbers.
4245 */
4246 if (!IS_GEN2(dev_priv))
4247 dev->vblank_disable_immediate = true;
4248
4249 /* Most platforms treat the display irq block as an always-on
4250 * power domain. vlv/chv can disable it at runtime and need
4251 * special care to avoid writing any of the display block registers
4252 * outside of the power domain. We defer setting up the display irqs
4253 * in this case to the runtime pm.
4254 */
4255 dev_priv->display_irqs_enabled = true;
4256 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4257 dev_priv->display_irqs_enabled = false;
4258
4259 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4260
4261 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4262 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4263
4264 if (IS_CHERRYVIEW(dev_priv)) {
4265 dev->driver->irq_handler = cherryview_irq_handler;
4266 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4267 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4268 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4269 dev->driver->enable_vblank = i965_enable_vblank;
4270 dev->driver->disable_vblank = i965_disable_vblank;
4271 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4272 } else if (IS_VALLEYVIEW(dev_priv)) {
4273 dev->driver->irq_handler = valleyview_irq_handler;
4274 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4275 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4276 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4277 dev->driver->enable_vblank = i965_enable_vblank;
4278 dev->driver->disable_vblank = i965_disable_vblank;
4279 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4280 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4281 dev->driver->irq_handler = gen8_irq_handler;
4282 dev->driver->irq_preinstall = gen8_irq_reset;
4283 dev->driver->irq_postinstall = gen8_irq_postinstall;
4284 dev->driver->irq_uninstall = gen8_irq_uninstall;
4285 dev->driver->enable_vblank = gen8_enable_vblank;
4286 dev->driver->disable_vblank = gen8_disable_vblank;
4287 if (IS_GEN9_LP(dev_priv))
4288 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4289 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4290 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4291 else
4292 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4293 } else if (HAS_PCH_SPLIT(dev_priv)) {
4294 dev->driver->irq_handler = ironlake_irq_handler;
4295 dev->driver->irq_preinstall = ironlake_irq_reset;
4296 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4297 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4298 dev->driver->enable_vblank = ironlake_enable_vblank;
4299 dev->driver->disable_vblank = ironlake_disable_vblank;
4300 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4301 } else {
4302 if (IS_GEN2(dev_priv)) {
4303 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4304 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4305 dev->driver->irq_handler = i8xx_irq_handler;
4306 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4307 dev->driver->enable_vblank = i8xx_enable_vblank;
4308 dev->driver->disable_vblank = i8xx_disable_vblank;
4309 } else if (IS_GEN3(dev_priv)) {
4310 dev->driver->irq_preinstall = i915_irq_preinstall;
4311 dev->driver->irq_postinstall = i915_irq_postinstall;
4312 dev->driver->irq_uninstall = i915_irq_uninstall;
4313 dev->driver->irq_handler = i915_irq_handler;
4314 dev->driver->enable_vblank = i8xx_enable_vblank;
4315 dev->driver->disable_vblank = i8xx_disable_vblank;
4316 } else {
4317 dev->driver->irq_preinstall = i965_irq_preinstall;
4318 dev->driver->irq_postinstall = i965_irq_postinstall;
4319 dev->driver->irq_uninstall = i965_irq_uninstall;
4320 dev->driver->irq_handler = i965_irq_handler;
4321 dev->driver->enable_vblank = i965_enable_vblank;
4322 dev->driver->disable_vblank = i965_disable_vblank;
4323 }
4324 if (I915_HAS_HOTPLUG(dev_priv))
4325 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4326 }
4327 }
4328
4329 /**
4330 * intel_irq_install - enables the hardware interrupt
4331 * @dev_priv: i915 device instance
4332 *
4333 * This function enables the hardware interrupt handling, but leaves the hotplug
4334 * handling still disabled. It is called after intel_irq_init().
4335 *
4336 * In the driver load and resume code we need working interrupts in a few places
4337 * but don't want to deal with the hassle of concurrent probe and hotplug
4338 * workers. Hence the split into this two-stage approach.
4339 */
4340 int intel_irq_install(struct drm_i915_private *dev_priv)
4341 {
4342 /*
4343 * We enable some interrupt sources in our postinstall hooks, so mark
4344 * interrupts as enabled _before_ actually enabling them to avoid
4345 * special cases in our ordering checks.
4346 */
4347 dev_priv->pm.irqs_enabled = true;
4348
4349 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4350 }
4351
4352 /**
4353 * intel_irq_uninstall - finilizes all irq handling
4354 * @dev_priv: i915 device instance
4355 *
4356 * This stops interrupt and hotplug handling and unregisters and frees all
4357 * resources acquired in the init functions.
4358 */
4359 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4360 {
4361 drm_irq_uninstall(&dev_priv->drm);
4362 intel_hpd_cancel_work(dev_priv);
4363 dev_priv->pm.irqs_enabled = false;
4364 }
4365
4366 /**
4367 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4368 * @dev_priv: i915 device instance
4369 *
4370 * This function is used to disable interrupts at runtime, both in the runtime
4371 * pm and the system suspend/resume code.
4372 */
4373 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4374 {
4375 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4376 dev_priv->pm.irqs_enabled = false;
4377 synchronize_irq(dev_priv->drm.irq);
4378 }
4379
4380 /**
4381 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4382 * @dev_priv: i915 device instance
4383 *
4384 * This function is used to enable interrupts at runtime, both in the runtime
4385 * pm and the system suspend/resume code.
4386 */
4387 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4388 {
4389 dev_priv->pm.irqs_enabled = true;
4390 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4391 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4392 }