]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_perf.c
drm/i915: Make GEM object create and create from data take dev_priv
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf, streaming API for GPU metrics
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 *
49 * The interface was initially inspired by the core Perf infrastructure but
50 * some notable differences are:
51 *
52 * i915 perf file descriptors represent a "stream" instead of an "event"; where
53 * a perf event primarily corresponds to a single 64bit value, while a stream
54 * might sample sets of tightly-coupled counters, depending on the
55 * configuration. For example the Gen OA unit isn't designed to support
56 * orthogonal configurations of individual counters; it's configured for a set
57 * of related counters. Samples for an i915 perf stream capturing OA metrics
58 * will include a set of counter values packed in a compact HW specific format.
59 * The OA unit supports a number of different packing formats which can be
60 * selected by the user opening the stream. Perf has support for grouping
61 * events, but each event in the group is configured, validated and
62 * authenticated individually with separate system calls.
63 *
64 * i915 perf stream configurations are provided as an array of u64 (key,value)
65 * pairs, instead of a fixed struct with multiple miscellaneous config members,
66 * interleaved with event-type specific members.
67 *
68 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
69 * The supported metrics are being written to memory by the GPU unsynchronized
70 * with the CPU, using HW specific packing formats for counter sets. Sometimes
71 * the constraints on HW configuration require reports to be filtered before it
72 * would be acceptable to expose them to unprivileged applications - to hide
73 * the metrics of other processes/contexts. For these use cases a read() based
74 * interface is a good fit, and provides an opportunity to filter data as it
75 * gets copied from the GPU mapped buffers to userspace buffers.
76 *
77 *
78 * Some notes regarding Linux Perf:
79 * --------------------------------
80 *
81 * The first prototype of this driver was based on the core perf
82 * infrastructure, and while we did make that mostly work, with some changes to
83 * perf, we found we were breaking or working around too many assumptions baked
84 * into perf's currently cpu centric design.
85 *
86 * In the end we didn't see a clear benefit to making perf's implementation and
87 * interface more complex by changing design assumptions while we knew we still
88 * wouldn't be able to use any existing perf based userspace tools.
89 *
90 * Also considering the Gen specific nature of the Observability hardware and
91 * how userspace will sometimes need to combine i915 perf OA metrics with
92 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
93 * expecting the interface to be used by a platform specific userspace such as
94 * OpenGL or tools. This is to say; we aren't inherently missing out on having
95 * a standard vendor/architecture agnostic interface by not using perf.
96 *
97 *
98 * For posterity, in case we might re-visit trying to adapt core perf to be
99 * better suited to exposing i915 metrics these were the main pain points we
100 * hit:
101 *
102 * - The perf based OA PMU driver broke some significant design assumptions:
103 *
104 * Existing perf pmus are used for profiling work on a cpu and we were
105 * introducing the idea of _IS_DEVICE pmus with different security
106 * implications, the need to fake cpu-related data (such as user/kernel
107 * registers) to fit with perf's current design, and adding _DEVICE records
108 * as a way to forward device-specific status records.
109 *
110 * The OA unit writes reports of counters into a circular buffer, without
111 * involvement from the CPU, making our PMU driver the first of a kind.
112 *
113 * Given the way we were periodically forward data from the GPU-mapped, OA
114 * buffer to perf's buffer, those bursts of sample writes looked to perf like
115 * we were sampling too fast and so we had to subvert its throttling checks.
116 *
117 * Perf supports groups of counters and allows those to be read via
118 * transactions internally but transactions currently seem designed to be
119 * explicitly initiated from the cpu (say in response to a userspace read())
120 * and while we could pull a report out of the OA buffer we can't
121 * trigger a report from the cpu on demand.
122 *
123 * Related to being report based; the OA counters are configured in HW as a
124 * set while perf generally expects counter configurations to be orthogonal.
125 * Although counters can be associated with a group leader as they are
126 * opened, there's no clear precedent for being able to provide group-wide
127 * configuration attributes (for example we want to let userspace choose the
128 * OA unit report format used to capture all counters in a set, or specify a
129 * GPU context to filter metrics on). We avoided using perf's grouping
130 * feature and forwarded OA reports to userspace via perf's 'raw' sample
131 * field. This suited our userspace well considering how coupled the counters
132 * are when dealing with normalizing. It would be inconvenient to split
133 * counters up into separate events, only to require userspace to recombine
134 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
135 * for combining with the side-band raw reports it captures using
136 * MI_REPORT_PERF_COUNT commands.
137 *
138 * _ As a side note on perf's grouping feature; there was also some concern
139 * that using PERF_FORMAT_GROUP as a way to pack together counter values
140 * would quite drastically inflate our sample sizes, which would likely
141 * lower the effective sampling resolutions we could use when the available
142 * memory bandwidth is limited.
143 *
144 * With the OA unit's report formats, counters are packed together as 32
145 * or 40bit values, with the largest report size being 256 bytes.
146 *
147 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
148 * documented ordering to the values, implying PERF_FORMAT_ID must also be
149 * used to add a 64bit ID before each value; giving 16 bytes per counter.
150 *
151 * Related to counter orthogonality; we can't time share the OA unit, while
152 * event scheduling is a central design idea within perf for allowing
153 * userspace to open + enable more events than can be configured in HW at any
154 * one time. The OA unit is not designed to allow re-configuration while in
155 * use. We can't reconfigure the OA unit without losing internal OA unit
156 * state which we can't access explicitly to save and restore. Reconfiguring
157 * the OA unit is also relatively slow, involving ~100 register writes. From
158 * userspace Mesa also depends on a stable OA configuration when emitting
159 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
160 * disabled while there are outstanding MI_RPC commands lest we hang the
161 * command streamer.
162 *
163 * The contents of sample records aren't extensible by device drivers (i.e.
164 * the sample_type bits). As an example; Sourab Gupta had been looking to
165 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
166 * into sample records by using the 'raw' field, but it's tricky to pack more
167 * than one thing into this field because events/core.c currently only lets a
168 * pmu give a single raw data pointer plus len which will be copied into the
169 * ring buffer. To include more than the OA report we'd have to copy the
170 * report into an intermediate larger buffer. I'd been considering allowing a
171 * vector of data+len values to be specified for copying the raw data, but
172 * it felt like a kludge to being using the raw field for this purpose.
173 *
174 * - It felt like our perf based PMU was making some technical compromises
175 * just for the sake of using perf:
176 *
177 * perf_event_open() requires events to either relate to a pid or a specific
178 * cpu core, while our device pmu related to neither. Events opened with a
179 * pid will be automatically enabled/disabled according to the scheduling of
180 * that process - so not appropriate for us. When an event is related to a
181 * cpu id, perf ensures pmu methods will be invoked via an inter process
182 * interrupt on that core. To avoid invasive changes our userspace opened OA
183 * perf events for a specific cpu. This was workable but it meant the
184 * majority of the OA driver ran in atomic context, including all OA report
185 * forwarding, which wasn't really necessary in our case and seems to make
186 * our locking requirements somewhat complex as we handled the interaction
187 * with the rest of the i915 driver.
188 */
189
190 #include <linux/anon_inodes.h>
191 #include <linux/sizes.h>
192
193 #include "i915_drv.h"
194 #include "i915_oa_hsw.h"
195
196 /* HW requires this to be a power of two, between 128k and 16M, though driver
197 * is currently generally designed assuming the largest 16M size is used such
198 * that the overflow cases are unlikely in normal operation.
199 */
200 #define OA_BUFFER_SIZE SZ_16M
201
202 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
203
204 /* There's a HW race condition between OA unit tail pointer register updates and
205 * writes to memory whereby the tail pointer can sometimes get ahead of what's
206 * been written out to the OA buffer so far.
207 *
208 * Although this can be observed explicitly by checking for a zeroed report-id
209 * field in tail reports, it seems preferable to account for this earlier e.g.
210 * as part of the _oa_buffer_is_empty checks to minimize -EAGAIN polling cycles
211 * in this situation.
212 *
213 * To give time for the most recent reports to land before they may be copied to
214 * userspace, the driver operates as if the tail pointer effectively lags behind
215 * the HW tail pointer by 'tail_margin' bytes. The margin in bytes is calculated
216 * based on this constant in nanoseconds, the current OA sampling exponent
217 * and current report size.
218 *
219 * There is also a fallback check while reading to simply skip over reports with
220 * a zeroed report-id.
221 */
222 #define OA_TAIL_MARGIN_NSEC 100000ULL
223
224 /* frequency for checking whether the OA unit has written new reports to the
225 * circular OA buffer...
226 */
227 #define POLL_FREQUENCY 200
228 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
229
230 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
231 static int zero;
232 static int one = 1;
233 static u32 i915_perf_stream_paranoid = true;
234
235 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
236 * of the 64bit timestamp bits to trigger reports from) but there's currently
237 * no known use case for sampling as infrequently as once per 47 thousand years.
238 *
239 * Since the timestamps included in OA reports are only 32bits it seems
240 * reasonable to limit the OA exponent where it's still possible to account for
241 * overflow in OA report timestamps.
242 */
243 #define OA_EXPONENT_MAX 31
244
245 #define INVALID_CTX_ID 0xffffffff
246
247
248 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
249 *
250 * 160ns is the smallest sampling period we can theoretically program the OA
251 * unit with on Haswell, corresponding to 6.25MHz.
252 */
253 static int oa_sample_rate_hard_limit = 6250000;
254
255 /* Theoretically we can program the OA unit to sample every 160ns but don't
256 * allow that by default unless root...
257 *
258 * The default threshold of 100000Hz is based on perf's similar
259 * kernel.perf_event_max_sample_rate sysctl parameter.
260 */
261 static u32 i915_oa_max_sample_rate = 100000;
262
263 /* XXX: beware if future OA HW adds new report formats that the current
264 * code assumes all reports have a power-of-two size and ~(size - 1) can
265 * be used as a mask to align the OA tail pointer.
266 */
267 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
268 [I915_OA_FORMAT_A13] = { 0, 64 },
269 [I915_OA_FORMAT_A29] = { 1, 128 },
270 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
271 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
272 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
273 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
274 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
275 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
276 };
277
278 #define SAMPLE_OA_REPORT (1<<0)
279
280 struct perf_open_properties {
281 u32 sample_flags;
282
283 u64 single_context:1;
284 u64 ctx_handle;
285
286 /* OA sampling state */
287 int metrics_set;
288 int oa_format;
289 bool oa_periodic;
290 int oa_period_exponent;
291 };
292
293 /* NB: This is either called via fops or the poll check hrtimer (atomic ctx)
294 *
295 * It's safe to read OA config state here unlocked, assuming that this is only
296 * called while the stream is enabled, while the global OA configuration can't
297 * be modified.
298 *
299 * Note: we don't lock around the head/tail reads even though there's the slim
300 * possibility of read() fop errors forcing a re-init of the OA buffer
301 * pointers. A race here could result in a false positive !empty status which
302 * is acceptable.
303 */
304 static bool gen7_oa_buffer_is_empty_fop_unlocked(struct drm_i915_private *dev_priv)
305 {
306 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
307 u32 oastatus2 = I915_READ(GEN7_OASTATUS2);
308 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
309 u32 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
310 u32 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
311
312 return OA_TAKEN(tail, head) <
313 dev_priv->perf.oa.tail_margin + report_size;
314 }
315
316 /**
317 * Appends a status record to a userspace read() buffer.
318 */
319 static int append_oa_status(struct i915_perf_stream *stream,
320 char __user *buf,
321 size_t count,
322 size_t *offset,
323 enum drm_i915_perf_record_type type)
324 {
325 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
326
327 if ((count - *offset) < header.size)
328 return -ENOSPC;
329
330 if (copy_to_user(buf + *offset, &header, sizeof(header)))
331 return -EFAULT;
332
333 (*offset) += header.size;
334
335 return 0;
336 }
337
338 /**
339 * Copies single OA report into userspace read() buffer.
340 */
341 static int append_oa_sample(struct i915_perf_stream *stream,
342 char __user *buf,
343 size_t count,
344 size_t *offset,
345 const u8 *report)
346 {
347 struct drm_i915_private *dev_priv = stream->dev_priv;
348 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
349 struct drm_i915_perf_record_header header;
350 u32 sample_flags = stream->sample_flags;
351
352 header.type = DRM_I915_PERF_RECORD_SAMPLE;
353 header.pad = 0;
354 header.size = stream->sample_size;
355
356 if ((count - *offset) < header.size)
357 return -ENOSPC;
358
359 buf += *offset;
360 if (copy_to_user(buf, &header, sizeof(header)))
361 return -EFAULT;
362 buf += sizeof(header);
363
364 if (sample_flags & SAMPLE_OA_REPORT) {
365 if (copy_to_user(buf, report, report_size))
366 return -EFAULT;
367 }
368
369 (*offset) += header.size;
370
371 return 0;
372 }
373
374 /**
375 * Copies all buffered OA reports into userspace read() buffer.
376 * @stream: An i915-perf stream opened for OA metrics
377 * @buf: destination buffer given by userspace
378 * @count: the number of bytes userspace wants to read
379 * @offset: (inout): the current position for writing into @buf
380 * @head_ptr: (inout): the current oa buffer cpu read position
381 * @tail: the current oa buffer gpu write position
382 *
383 * Returns 0 on success, negative error code on failure.
384 *
385 * Notably any error condition resulting in a short read (-ENOSPC or
386 * -EFAULT) will be returned even though one or more records may
387 * have been successfully copied. In this case it's up to the caller
388 * to decide if the error should be squashed before returning to
389 * userspace.
390 *
391 * Note: reports are consumed from the head, and appended to the
392 * tail, so the head chases the tail?... If you think that's mad
393 * and back-to-front you're not alone, but this follows the
394 * Gen PRM naming convention.
395 */
396 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
397 char __user *buf,
398 size_t count,
399 size_t *offset,
400 u32 *head_ptr,
401 u32 tail)
402 {
403 struct drm_i915_private *dev_priv = stream->dev_priv;
404 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
405 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
406 int tail_margin = dev_priv->perf.oa.tail_margin;
407 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
408 u32 mask = (OA_BUFFER_SIZE - 1);
409 u32 head;
410 u32 taken;
411 int ret = 0;
412
413 if (WARN_ON(!stream->enabled))
414 return -EIO;
415
416 head = *head_ptr - gtt_offset;
417 tail -= gtt_offset;
418
419 /* The OA unit is expected to wrap the tail pointer according to the OA
420 * buffer size and since we should never write a misaligned head
421 * pointer we don't expect to read one back either...
422 */
423 if (tail > OA_BUFFER_SIZE || head > OA_BUFFER_SIZE ||
424 head % report_size) {
425 DRM_ERROR("Inconsistent OA buffer pointer (head = %u, tail = %u): force restart\n",
426 head, tail);
427 dev_priv->perf.oa.ops.oa_disable(dev_priv);
428 dev_priv->perf.oa.ops.oa_enable(dev_priv);
429 *head_ptr = I915_READ(GEN7_OASTATUS2) &
430 GEN7_OASTATUS2_HEAD_MASK;
431 return -EIO;
432 }
433
434
435 /* The tail pointer increases in 64 byte increments, not in report_size
436 * steps...
437 */
438 tail &= ~(report_size - 1);
439
440 /* Move the tail pointer back by the current tail_margin to account for
441 * the possibility that the latest reports may not have really landed
442 * in memory yet...
443 */
444
445 if (OA_TAKEN(tail, head) < report_size + tail_margin)
446 return -EAGAIN;
447
448 tail -= tail_margin;
449 tail &= mask;
450
451 for (/* none */;
452 (taken = OA_TAKEN(tail, head));
453 head = (head + report_size) & mask) {
454 u8 *report = oa_buf_base + head;
455 u32 *report32 = (void *)report;
456
457 /* All the report sizes factor neatly into the buffer
458 * size so we never expect to see a report split
459 * between the beginning and end of the buffer.
460 *
461 * Given the initial alignment check a misalignment
462 * here would imply a driver bug that would result
463 * in an overrun.
464 */
465 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
466 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
467 break;
468 }
469
470 /* The report-ID field for periodic samples includes
471 * some undocumented flags related to what triggered
472 * the report and is never expected to be zero so we
473 * can check that the report isn't invalid before
474 * copying it to userspace...
475 */
476 if (report32[0] == 0) {
477 DRM_ERROR("Skipping spurious, invalid OA report\n");
478 continue;
479 }
480
481 ret = append_oa_sample(stream, buf, count, offset, report);
482 if (ret)
483 break;
484
485 /* The above report-id field sanity check is based on
486 * the assumption that the OA buffer is initially
487 * zeroed and we reset the field after copying so the
488 * check is still meaningful once old reports start
489 * being overwritten.
490 */
491 report32[0] = 0;
492 }
493
494 *head_ptr = gtt_offset + head;
495
496 return ret;
497 }
498
499 static int gen7_oa_read(struct i915_perf_stream *stream,
500 char __user *buf,
501 size_t count,
502 size_t *offset)
503 {
504 struct drm_i915_private *dev_priv = stream->dev_priv;
505 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
506 u32 oastatus2;
507 u32 oastatus1;
508 u32 head;
509 u32 tail;
510 int ret;
511
512 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
513 return -EIO;
514
515 oastatus2 = I915_READ(GEN7_OASTATUS2);
516 oastatus1 = I915_READ(GEN7_OASTATUS1);
517
518 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
519 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
520
521 /* XXX: On Haswell we don't have a safe way to clear oastatus1
522 * bits while the OA unit is enabled (while the tail pointer
523 * may be updated asynchronously) so we ignore status bits
524 * that have already been reported to userspace.
525 */
526 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
527
528 /* We treat OABUFFER_OVERFLOW as a significant error:
529 *
530 * - The status can be interpreted to mean that the buffer is
531 * currently full (with a higher precedence than OA_TAKEN()
532 * which will start to report a near-empty buffer after an
533 * overflow) but it's awkward that we can't clear the status
534 * on Haswell, so without a reset we won't be able to catch
535 * the state again.
536 *
537 * - Since it also implies the HW has started overwriting old
538 * reports it may also affect our sanity checks for invalid
539 * reports when copying to userspace that assume new reports
540 * are being written to cleared memory.
541 *
542 * - In the future we may want to introduce a flight recorder
543 * mode where the driver will automatically maintain a safe
544 * guard band between head/tail, avoiding this overflow
545 * condition, but we avoid the added driver complexity for
546 * now.
547 */
548 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
549 ret = append_oa_status(stream, buf, count, offset,
550 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
551 if (ret)
552 return ret;
553
554 DRM_ERROR("OA buffer overflow: force restart\n");
555
556 dev_priv->perf.oa.ops.oa_disable(dev_priv);
557 dev_priv->perf.oa.ops.oa_enable(dev_priv);
558
559 oastatus2 = I915_READ(GEN7_OASTATUS2);
560 oastatus1 = I915_READ(GEN7_OASTATUS1);
561
562 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
563 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
564 }
565
566 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
567 ret = append_oa_status(stream, buf, count, offset,
568 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
569 if (ret)
570 return ret;
571 dev_priv->perf.oa.gen7_latched_oastatus1 |=
572 GEN7_OASTATUS1_REPORT_LOST;
573 }
574
575 ret = gen7_append_oa_reports(stream, buf, count, offset,
576 &head, tail);
577
578 /* All the report sizes are a power of two and the
579 * head should always be incremented by some multiple
580 * of the report size.
581 *
582 * A warning here, but notably if we later read back a
583 * misaligned pointer we will treat that as a bug since
584 * it could lead to a buffer overrun.
585 */
586 WARN_ONCE(head & (report_size - 1),
587 "i915: Writing misaligned OA head pointer");
588
589 /* Note: we update the head pointer here even if an error
590 * was returned since the error may represent a short read
591 * where some some reports were successfully copied.
592 */
593 I915_WRITE(GEN7_OASTATUS2,
594 ((head & GEN7_OASTATUS2_HEAD_MASK) |
595 OA_MEM_SELECT_GGTT));
596
597 return ret;
598 }
599
600 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
601 {
602 struct drm_i915_private *dev_priv = stream->dev_priv;
603
604 /* We would wait indefinitely if periodic sampling is not enabled */
605 if (!dev_priv->perf.oa.periodic)
606 return -EIO;
607
608 /* Note: the oa_buffer_is_empty() condition is ok to run unlocked as it
609 * just performs mmio reads of the OA buffer head + tail pointers and
610 * it's assumed we're handling some operation that implies the stream
611 * can't be destroyed until completion (such as a read()) that ensures
612 * the device + OA buffer can't disappear
613 */
614 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
615 !dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv));
616 }
617
618 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
619 struct file *file,
620 poll_table *wait)
621 {
622 struct drm_i915_private *dev_priv = stream->dev_priv;
623
624 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
625 }
626
627 static int i915_oa_read(struct i915_perf_stream *stream,
628 char __user *buf,
629 size_t count,
630 size_t *offset)
631 {
632 struct drm_i915_private *dev_priv = stream->dev_priv;
633
634 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
635 }
636
637 /* Determine the render context hw id, and ensure it remains fixed for the
638 * lifetime of the stream. This ensures that we don't have to worry about
639 * updating the context ID in OACONTROL on the fly.
640 */
641 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
642 {
643 struct drm_i915_private *dev_priv = stream->dev_priv;
644 struct i915_vma *vma;
645 int ret;
646
647 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
648 if (ret)
649 return ret;
650
651 /* As the ID is the gtt offset of the context's vma we pin
652 * the vma to ensure the ID remains fixed.
653 *
654 * NB: implied RCS engine...
655 */
656 vma = i915_gem_context_pin_legacy(stream->ctx, 0);
657 if (IS_ERR(vma)) {
658 ret = PTR_ERR(vma);
659 goto unlock;
660 }
661
662 dev_priv->perf.oa.pinned_rcs_vma = vma;
663
664 /* Explicitly track the ID (instead of calling i915_ggtt_offset()
665 * on the fly) considering the difference with gen8+ and
666 * execlists
667 */
668 dev_priv->perf.oa.specific_ctx_id = i915_ggtt_offset(vma);
669
670 unlock:
671 mutex_unlock(&dev_priv->drm.struct_mutex);
672
673 return ret;
674 }
675
676 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
677 {
678 struct drm_i915_private *dev_priv = stream->dev_priv;
679
680 mutex_lock(&dev_priv->drm.struct_mutex);
681
682 i915_vma_unpin(dev_priv->perf.oa.pinned_rcs_vma);
683 dev_priv->perf.oa.pinned_rcs_vma = NULL;
684
685 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
686
687 mutex_unlock(&dev_priv->drm.struct_mutex);
688 }
689
690 static void
691 free_oa_buffer(struct drm_i915_private *i915)
692 {
693 mutex_lock(&i915->drm.struct_mutex);
694
695 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
696 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
697 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
698
699 i915->perf.oa.oa_buffer.vma = NULL;
700 i915->perf.oa.oa_buffer.vaddr = NULL;
701
702 mutex_unlock(&i915->drm.struct_mutex);
703 }
704
705 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
706 {
707 struct drm_i915_private *dev_priv = stream->dev_priv;
708
709 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
710
711 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
712
713 free_oa_buffer(dev_priv);
714
715 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
716 intel_runtime_pm_put(dev_priv);
717
718 if (stream->ctx)
719 oa_put_render_ctx_id(stream);
720
721 dev_priv->perf.oa.exclusive_stream = NULL;
722 }
723
724 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
725 {
726 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
727
728 /* Pre-DevBDW: OABUFFER must be set with counters off,
729 * before OASTATUS1, but after OASTATUS2
730 */
731 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
732 I915_WRITE(GEN7_OABUFFER, gtt_offset);
733 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
734
735 /* On Haswell we have to track which OASTATUS1 flags we've
736 * already seen since they can't be cleared while periodic
737 * sampling is enabled.
738 */
739 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
740
741 /* NB: although the OA buffer will initially be allocated
742 * zeroed via shmfs (and so this memset is redundant when
743 * first allocating), we may re-init the OA buffer, either
744 * when re-enabling a stream or in error/reset paths.
745 *
746 * The reason we clear the buffer for each re-init is for the
747 * sanity check in gen7_append_oa_reports() that looks at the
748 * report-id field to make sure it's non-zero which relies on
749 * the assumption that new reports are being written to zeroed
750 * memory...
751 */
752 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
753
754 /* Maybe make ->pollin per-stream state if we support multiple
755 * concurrent streams in the future.
756 */
757 dev_priv->perf.oa.pollin = false;
758 }
759
760 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
761 {
762 struct drm_i915_gem_object *bo;
763 struct i915_vma *vma;
764 int ret;
765
766 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
767 return -ENODEV;
768
769 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
770 if (ret)
771 return ret;
772
773 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
774 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
775
776 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
777 if (IS_ERR(bo)) {
778 DRM_ERROR("Failed to allocate OA buffer\n");
779 ret = PTR_ERR(bo);
780 goto unlock;
781 }
782
783 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
784 if (ret)
785 goto err_unref;
786
787 /* PreHSW required 512K alignment, HSW requires 16M */
788 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
789 if (IS_ERR(vma)) {
790 ret = PTR_ERR(vma);
791 goto err_unref;
792 }
793 dev_priv->perf.oa.oa_buffer.vma = vma;
794
795 dev_priv->perf.oa.oa_buffer.vaddr =
796 i915_gem_object_pin_map(bo, I915_MAP_WB);
797 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
798 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
799 goto err_unpin;
800 }
801
802 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
803
804 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
805 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
806 dev_priv->perf.oa.oa_buffer.vaddr);
807
808 goto unlock;
809
810 err_unpin:
811 __i915_vma_unpin(vma);
812
813 err_unref:
814 i915_gem_object_put(bo);
815
816 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
817 dev_priv->perf.oa.oa_buffer.vma = NULL;
818
819 unlock:
820 mutex_unlock(&dev_priv->drm.struct_mutex);
821 return ret;
822 }
823
824 static void config_oa_regs(struct drm_i915_private *dev_priv,
825 const struct i915_oa_reg *regs,
826 int n_regs)
827 {
828 int i;
829
830 for (i = 0; i < n_regs; i++) {
831 const struct i915_oa_reg *reg = regs + i;
832
833 I915_WRITE(reg->addr, reg->value);
834 }
835 }
836
837 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
838 {
839 int ret = i915_oa_select_metric_set_hsw(dev_priv);
840
841 if (ret)
842 return ret;
843
844 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
845 GT_NOA_ENABLE));
846
847 /* PRM:
848 *
849 * OA unit is using “crclk” for its functionality. When trunk
850 * level clock gating takes place, OA clock would be gated,
851 * unable to count the events from non-render clock domain.
852 * Render clock gating must be disabled when OA is enabled to
853 * count the events from non-render domain. Unit level clock
854 * gating for RCS should also be disabled.
855 */
856 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
857 ~GEN7_DOP_CLOCK_GATE_ENABLE));
858 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
859 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
860
861 config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs,
862 dev_priv->perf.oa.mux_regs_len);
863
864 /* It apparently takes a fairly long time for a new MUX
865 * configuration to be be applied after these register writes.
866 * This delay duration was derived empirically based on the
867 * render_basic config but hopefully it covers the maximum
868 * configuration latency.
869 *
870 * As a fallback, the checks in _append_oa_reports() to skip
871 * invalid OA reports do also seem to work to discard reports
872 * generated before this config has completed - albeit not
873 * silently.
874 *
875 * Unfortunately this is essentially a magic number, since we
876 * don't currently know of a reliable mechanism for predicting
877 * how long the MUX config will take to apply and besides
878 * seeing invalid reports we don't know of a reliable way to
879 * explicitly check that the MUX config has landed.
880 *
881 * It's even possible we've miss characterized the underlying
882 * problem - it just seems like the simplest explanation why
883 * a delay at this location would mitigate any invalid reports.
884 */
885 usleep_range(15000, 20000);
886
887 config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
888 dev_priv->perf.oa.b_counter_regs_len);
889
890 return 0;
891 }
892
893 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
894 {
895 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
896 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
897 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
898 GEN7_DOP_CLOCK_GATE_ENABLE));
899
900 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
901 ~GT_NOA_ENABLE));
902 }
903
904 static void gen7_update_oacontrol_locked(struct drm_i915_private *dev_priv)
905 {
906 assert_spin_locked(&dev_priv->perf.hook_lock);
907
908 if (dev_priv->perf.oa.exclusive_stream->enabled) {
909 struct i915_gem_context *ctx =
910 dev_priv->perf.oa.exclusive_stream->ctx;
911 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
912
913 bool periodic = dev_priv->perf.oa.periodic;
914 u32 period_exponent = dev_priv->perf.oa.period_exponent;
915 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
916
917 I915_WRITE(GEN7_OACONTROL,
918 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
919 (period_exponent <<
920 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
921 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
922 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
923 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
924 GEN7_OACONTROL_ENABLE);
925 } else
926 I915_WRITE(GEN7_OACONTROL, 0);
927 }
928
929 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
930 {
931 unsigned long flags;
932
933 /* Reset buf pointers so we don't forward reports from before now.
934 *
935 * Think carefully if considering trying to avoid this, since it
936 * also ensures status flags and the buffer itself are cleared
937 * in error paths, and we have checks for invalid reports based
938 * on the assumption that certain fields are written to zeroed
939 * memory which this helps maintains.
940 */
941 gen7_init_oa_buffer(dev_priv);
942
943 spin_lock_irqsave(&dev_priv->perf.hook_lock, flags);
944 gen7_update_oacontrol_locked(dev_priv);
945 spin_unlock_irqrestore(&dev_priv->perf.hook_lock, flags);
946 }
947
948 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
949 {
950 struct drm_i915_private *dev_priv = stream->dev_priv;
951
952 dev_priv->perf.oa.ops.oa_enable(dev_priv);
953
954 if (dev_priv->perf.oa.periodic)
955 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
956 ns_to_ktime(POLL_PERIOD),
957 HRTIMER_MODE_REL_PINNED);
958 }
959
960 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
961 {
962 I915_WRITE(GEN7_OACONTROL, 0);
963 }
964
965 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
966 {
967 struct drm_i915_private *dev_priv = stream->dev_priv;
968
969 dev_priv->perf.oa.ops.oa_disable(dev_priv);
970
971 if (dev_priv->perf.oa.periodic)
972 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
973 }
974
975 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
976 {
977 return div_u64(1000000000ULL * (2ULL << exponent),
978 dev_priv->perf.oa.timestamp_frequency);
979 }
980
981 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
982 .destroy = i915_oa_stream_destroy,
983 .enable = i915_oa_stream_enable,
984 .disable = i915_oa_stream_disable,
985 .wait_unlocked = i915_oa_wait_unlocked,
986 .poll_wait = i915_oa_poll_wait,
987 .read = i915_oa_read,
988 };
989
990 static int i915_oa_stream_init(struct i915_perf_stream *stream,
991 struct drm_i915_perf_open_param *param,
992 struct perf_open_properties *props)
993 {
994 struct drm_i915_private *dev_priv = stream->dev_priv;
995 int format_size;
996 int ret;
997
998 /* If the sysfs metrics/ directory wasn't registered for some
999 * reason then don't let userspace try their luck with config
1000 * IDs
1001 */
1002 if (!dev_priv->perf.metrics_kobj) {
1003 DRM_ERROR("OA metrics weren't advertised via sysfs\n");
1004 return -EINVAL;
1005 }
1006
1007 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
1008 DRM_ERROR("Only OA report sampling supported\n");
1009 return -EINVAL;
1010 }
1011
1012 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
1013 DRM_ERROR("OA unit not supported\n");
1014 return -ENODEV;
1015 }
1016
1017 /* To avoid the complexity of having to accurately filter
1018 * counter reports and marshal to the appropriate client
1019 * we currently only allow exclusive access
1020 */
1021 if (dev_priv->perf.oa.exclusive_stream) {
1022 DRM_ERROR("OA unit already in use\n");
1023 return -EBUSY;
1024 }
1025
1026 if (!props->metrics_set) {
1027 DRM_ERROR("OA metric set not specified\n");
1028 return -EINVAL;
1029 }
1030
1031 if (!props->oa_format) {
1032 DRM_ERROR("OA report format not specified\n");
1033 return -EINVAL;
1034 }
1035
1036 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
1037
1038 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
1039
1040 stream->sample_flags |= SAMPLE_OA_REPORT;
1041 stream->sample_size += format_size;
1042
1043 dev_priv->perf.oa.oa_buffer.format_size = format_size;
1044 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
1045 return -EINVAL;
1046
1047 dev_priv->perf.oa.oa_buffer.format =
1048 dev_priv->perf.oa.oa_formats[props->oa_format].format;
1049
1050 dev_priv->perf.oa.metrics_set = props->metrics_set;
1051
1052 dev_priv->perf.oa.periodic = props->oa_periodic;
1053 if (dev_priv->perf.oa.periodic) {
1054 u32 tail;
1055
1056 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
1057
1058 /* See comment for OA_TAIL_MARGIN_NSEC for details
1059 * about this tail_margin...
1060 */
1061 tail = div64_u64(OA_TAIL_MARGIN_NSEC,
1062 oa_exponent_to_ns(dev_priv,
1063 props->oa_period_exponent));
1064 dev_priv->perf.oa.tail_margin = (tail + 1) * format_size;
1065 }
1066
1067 if (stream->ctx) {
1068 ret = oa_get_render_ctx_id(stream);
1069 if (ret)
1070 return ret;
1071 }
1072
1073 ret = alloc_oa_buffer(dev_priv);
1074 if (ret)
1075 goto err_oa_buf_alloc;
1076
1077 /* PRM - observability performance counters:
1078 *
1079 * OACONTROL, performance counter enable, note:
1080 *
1081 * "When this bit is set, in order to have coherent counts,
1082 * RC6 power state and trunk clock gating must be disabled.
1083 * This can be achieved by programming MMIO registers as
1084 * 0xA094=0 and 0xA090[31]=1"
1085 *
1086 * In our case we are expecting that taking pm + FORCEWAKE
1087 * references will effectively disable RC6.
1088 */
1089 intel_runtime_pm_get(dev_priv);
1090 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1091
1092 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
1093 if (ret)
1094 goto err_enable;
1095
1096 stream->ops = &i915_oa_stream_ops;
1097
1098 dev_priv->perf.oa.exclusive_stream = stream;
1099
1100 return 0;
1101
1102 err_enable:
1103 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1104 intel_runtime_pm_put(dev_priv);
1105 free_oa_buffer(dev_priv);
1106
1107 err_oa_buf_alloc:
1108 if (stream->ctx)
1109 oa_put_render_ctx_id(stream);
1110
1111 return ret;
1112 }
1113
1114 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
1115 struct file *file,
1116 char __user *buf,
1117 size_t count,
1118 loff_t *ppos)
1119 {
1120 /* Note we keep the offset (aka bytes read) separate from any
1121 * error status so that the final check for whether we return
1122 * the bytes read with a higher precedence than any error (see
1123 * comment below) doesn't need to be handled/duplicated in
1124 * stream->ops->read() implementations.
1125 */
1126 size_t offset = 0;
1127 int ret = stream->ops->read(stream, buf, count, &offset);
1128
1129 /* If we've successfully copied any data then reporting that
1130 * takes precedence over any internal error status, so the
1131 * data isn't lost.
1132 *
1133 * For example ret will be -ENOSPC whenever there is more
1134 * buffered data than can be copied to userspace, but that's
1135 * only interesting if we weren't able to copy some data
1136 * because it implies the userspace buffer is too small to
1137 * receive a single record (and we never split records).
1138 *
1139 * Another case with ret == -EFAULT is more of a grey area
1140 * since it would seem like bad form for userspace to ask us
1141 * to overrun its buffer, but the user knows best:
1142 *
1143 * http://yarchive.net/comp/linux/partial_reads_writes.html
1144 */
1145 return offset ?: (ret ?: -EAGAIN);
1146 }
1147
1148 static ssize_t i915_perf_read(struct file *file,
1149 char __user *buf,
1150 size_t count,
1151 loff_t *ppos)
1152 {
1153 struct i915_perf_stream *stream = file->private_data;
1154 struct drm_i915_private *dev_priv = stream->dev_priv;
1155 ssize_t ret;
1156
1157 /* To ensure it's handled consistently we simply treat all reads of a
1158 * disabled stream as an error. In particular it might otherwise lead
1159 * to a deadlock for blocking file descriptors...
1160 */
1161 if (!stream->enabled)
1162 return -EIO;
1163
1164 if (!(file->f_flags & O_NONBLOCK)) {
1165 /* There's the small chance of false positives from
1166 * stream->ops->wait_unlocked.
1167 *
1168 * E.g. with single context filtering since we only wait until
1169 * oabuffer has >= 1 report we don't immediately know whether
1170 * any reports really belong to the current context
1171 */
1172 do {
1173 ret = stream->ops->wait_unlocked(stream);
1174 if (ret)
1175 return ret;
1176
1177 mutex_lock(&dev_priv->perf.lock);
1178 ret = i915_perf_read_locked(stream, file,
1179 buf, count, ppos);
1180 mutex_unlock(&dev_priv->perf.lock);
1181 } while (ret == -EAGAIN);
1182 } else {
1183 mutex_lock(&dev_priv->perf.lock);
1184 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
1185 mutex_unlock(&dev_priv->perf.lock);
1186 }
1187
1188 if (ret >= 0) {
1189 /* Maybe make ->pollin per-stream state if we support multiple
1190 * concurrent streams in the future.
1191 */
1192 dev_priv->perf.oa.pollin = false;
1193 }
1194
1195 return ret;
1196 }
1197
1198 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
1199 {
1200 struct drm_i915_private *dev_priv =
1201 container_of(hrtimer, typeof(*dev_priv),
1202 perf.oa.poll_check_timer);
1203
1204 if (!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv)) {
1205 dev_priv->perf.oa.pollin = true;
1206 wake_up(&dev_priv->perf.oa.poll_wq);
1207 }
1208
1209 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
1210
1211 return HRTIMER_RESTART;
1212 }
1213
1214 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
1215 struct i915_perf_stream *stream,
1216 struct file *file,
1217 poll_table *wait)
1218 {
1219 unsigned int events = 0;
1220
1221 stream->ops->poll_wait(stream, file, wait);
1222
1223 /* Note: we don't explicitly check whether there's something to read
1224 * here since this path may be very hot depending on what else
1225 * userspace is polling, or on the timeout in use. We rely solely on
1226 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
1227 * samples to read.
1228 */
1229 if (dev_priv->perf.oa.pollin)
1230 events |= POLLIN;
1231
1232 return events;
1233 }
1234
1235 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
1236 {
1237 struct i915_perf_stream *stream = file->private_data;
1238 struct drm_i915_private *dev_priv = stream->dev_priv;
1239 int ret;
1240
1241 mutex_lock(&dev_priv->perf.lock);
1242 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
1243 mutex_unlock(&dev_priv->perf.lock);
1244
1245 return ret;
1246 }
1247
1248 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
1249 {
1250 if (stream->enabled)
1251 return;
1252
1253 /* Allow stream->ops->enable() to refer to this */
1254 stream->enabled = true;
1255
1256 if (stream->ops->enable)
1257 stream->ops->enable(stream);
1258 }
1259
1260 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
1261 {
1262 if (!stream->enabled)
1263 return;
1264
1265 /* Allow stream->ops->disable() to refer to this */
1266 stream->enabled = false;
1267
1268 if (stream->ops->disable)
1269 stream->ops->disable(stream);
1270 }
1271
1272 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
1273 unsigned int cmd,
1274 unsigned long arg)
1275 {
1276 switch (cmd) {
1277 case I915_PERF_IOCTL_ENABLE:
1278 i915_perf_enable_locked(stream);
1279 return 0;
1280 case I915_PERF_IOCTL_DISABLE:
1281 i915_perf_disable_locked(stream);
1282 return 0;
1283 }
1284
1285 return -EINVAL;
1286 }
1287
1288 static long i915_perf_ioctl(struct file *file,
1289 unsigned int cmd,
1290 unsigned long arg)
1291 {
1292 struct i915_perf_stream *stream = file->private_data;
1293 struct drm_i915_private *dev_priv = stream->dev_priv;
1294 long ret;
1295
1296 mutex_lock(&dev_priv->perf.lock);
1297 ret = i915_perf_ioctl_locked(stream, cmd, arg);
1298 mutex_unlock(&dev_priv->perf.lock);
1299
1300 return ret;
1301 }
1302
1303 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
1304 {
1305 struct drm_i915_private *dev_priv = stream->dev_priv;
1306
1307 if (stream->enabled)
1308 i915_perf_disable_locked(stream);
1309
1310 if (stream->ops->destroy)
1311 stream->ops->destroy(stream);
1312
1313 list_del(&stream->link);
1314
1315 if (stream->ctx) {
1316 mutex_lock(&dev_priv->drm.struct_mutex);
1317 i915_gem_context_put(stream->ctx);
1318 mutex_unlock(&dev_priv->drm.struct_mutex);
1319 }
1320
1321 kfree(stream);
1322 }
1323
1324 static int i915_perf_release(struct inode *inode, struct file *file)
1325 {
1326 struct i915_perf_stream *stream = file->private_data;
1327 struct drm_i915_private *dev_priv = stream->dev_priv;
1328
1329 mutex_lock(&dev_priv->perf.lock);
1330 i915_perf_destroy_locked(stream);
1331 mutex_unlock(&dev_priv->perf.lock);
1332
1333 return 0;
1334 }
1335
1336
1337 static const struct file_operations fops = {
1338 .owner = THIS_MODULE,
1339 .llseek = no_llseek,
1340 .release = i915_perf_release,
1341 .poll = i915_perf_poll,
1342 .read = i915_perf_read,
1343 .unlocked_ioctl = i915_perf_ioctl,
1344 };
1345
1346
1347 static struct i915_gem_context *
1348 lookup_context(struct drm_i915_private *dev_priv,
1349 struct drm_i915_file_private *file_priv,
1350 u32 ctx_user_handle)
1351 {
1352 struct i915_gem_context *ctx;
1353 int ret;
1354
1355 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1356 if (ret)
1357 return ERR_PTR(ret);
1358
1359 ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
1360 if (!IS_ERR(ctx))
1361 i915_gem_context_get(ctx);
1362
1363 mutex_unlock(&dev_priv->drm.struct_mutex);
1364
1365 return ctx;
1366 }
1367
1368 static int
1369 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
1370 struct drm_i915_perf_open_param *param,
1371 struct perf_open_properties *props,
1372 struct drm_file *file)
1373 {
1374 struct i915_gem_context *specific_ctx = NULL;
1375 struct i915_perf_stream *stream = NULL;
1376 unsigned long f_flags = 0;
1377 int stream_fd;
1378 int ret;
1379
1380 if (props->single_context) {
1381 u32 ctx_handle = props->ctx_handle;
1382 struct drm_i915_file_private *file_priv = file->driver_priv;
1383
1384 specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
1385 if (IS_ERR(specific_ctx)) {
1386 ret = PTR_ERR(specific_ctx);
1387 if (ret != -EINTR)
1388 DRM_ERROR("Failed to look up context with ID %u for opening perf stream\n",
1389 ctx_handle);
1390 goto err;
1391 }
1392 }
1393
1394 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
1395 * we check a dev.i915.perf_stream_paranoid sysctl option
1396 * to determine if it's ok to access system wide OA counters
1397 * without CAP_SYS_ADMIN privileges.
1398 */
1399 if (!specific_ctx &&
1400 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
1401 DRM_ERROR("Insufficient privileges to open system-wide i915 perf stream\n");
1402 ret = -EACCES;
1403 goto err_ctx;
1404 }
1405
1406 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
1407 if (!stream) {
1408 ret = -ENOMEM;
1409 goto err_ctx;
1410 }
1411
1412 stream->dev_priv = dev_priv;
1413 stream->ctx = specific_ctx;
1414
1415 ret = i915_oa_stream_init(stream, param, props);
1416 if (ret)
1417 goto err_alloc;
1418
1419 /* we avoid simply assigning stream->sample_flags = props->sample_flags
1420 * to have _stream_init check the combination of sample flags more
1421 * thoroughly, but still this is the expected result at this point.
1422 */
1423 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
1424 ret = -ENODEV;
1425 goto err_alloc;
1426 }
1427
1428 list_add(&stream->link, &dev_priv->perf.streams);
1429
1430 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
1431 f_flags |= O_CLOEXEC;
1432 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
1433 f_flags |= O_NONBLOCK;
1434
1435 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
1436 if (stream_fd < 0) {
1437 ret = stream_fd;
1438 goto err_open;
1439 }
1440
1441 if (!(param->flags & I915_PERF_FLAG_DISABLED))
1442 i915_perf_enable_locked(stream);
1443
1444 return stream_fd;
1445
1446 err_open:
1447 list_del(&stream->link);
1448 if (stream->ops->destroy)
1449 stream->ops->destroy(stream);
1450 err_alloc:
1451 kfree(stream);
1452 err_ctx:
1453 if (specific_ctx) {
1454 mutex_lock(&dev_priv->drm.struct_mutex);
1455 i915_gem_context_put(specific_ctx);
1456 mutex_unlock(&dev_priv->drm.struct_mutex);
1457 }
1458 err:
1459 return ret;
1460 }
1461
1462 /* Note we copy the properties from userspace outside of the i915 perf
1463 * mutex to avoid an awkward lockdep with mmap_sem.
1464 *
1465 * Note this function only validates properties in isolation it doesn't
1466 * validate that the combination of properties makes sense or that all
1467 * properties necessary for a particular kind of stream have been set.
1468 */
1469 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
1470 u64 __user *uprops,
1471 u32 n_props,
1472 struct perf_open_properties *props)
1473 {
1474 u64 __user *uprop = uprops;
1475 int i;
1476
1477 memset(props, 0, sizeof(struct perf_open_properties));
1478
1479 if (!n_props) {
1480 DRM_ERROR("No i915 perf properties given");
1481 return -EINVAL;
1482 }
1483
1484 /* Considering that ID = 0 is reserved and assuming that we don't
1485 * (currently) expect any configurations to ever specify duplicate
1486 * values for a particular property ID then the last _PROP_MAX value is
1487 * one greater than the maximum number of properties we expect to get
1488 * from userspace.
1489 */
1490 if (n_props >= DRM_I915_PERF_PROP_MAX) {
1491 DRM_ERROR("More i915 perf properties specified than exist");
1492 return -EINVAL;
1493 }
1494
1495 for (i = 0; i < n_props; i++) {
1496 u64 oa_period, oa_freq_hz;
1497 u64 id, value;
1498 int ret;
1499
1500 ret = get_user(id, uprop);
1501 if (ret)
1502 return ret;
1503
1504 ret = get_user(value, uprop + 1);
1505 if (ret)
1506 return ret;
1507
1508 switch ((enum drm_i915_perf_property_id)id) {
1509 case DRM_I915_PERF_PROP_CTX_HANDLE:
1510 props->single_context = 1;
1511 props->ctx_handle = value;
1512 break;
1513 case DRM_I915_PERF_PROP_SAMPLE_OA:
1514 props->sample_flags |= SAMPLE_OA_REPORT;
1515 break;
1516 case DRM_I915_PERF_PROP_OA_METRICS_SET:
1517 if (value == 0 ||
1518 value > dev_priv->perf.oa.n_builtin_sets) {
1519 DRM_ERROR("Unknown OA metric set ID");
1520 return -EINVAL;
1521 }
1522 props->metrics_set = value;
1523 break;
1524 case DRM_I915_PERF_PROP_OA_FORMAT:
1525 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
1526 DRM_ERROR("Invalid OA report format\n");
1527 return -EINVAL;
1528 }
1529 if (!dev_priv->perf.oa.oa_formats[value].size) {
1530 DRM_ERROR("Invalid OA report format\n");
1531 return -EINVAL;
1532 }
1533 props->oa_format = value;
1534 break;
1535 case DRM_I915_PERF_PROP_OA_EXPONENT:
1536 if (value > OA_EXPONENT_MAX) {
1537 DRM_ERROR("OA timer exponent too high (> %u)\n",
1538 OA_EXPONENT_MAX);
1539 return -EINVAL;
1540 }
1541
1542 /* Theoretically we can program the OA unit to sample
1543 * every 160ns but don't allow that by default unless
1544 * root.
1545 *
1546 * On Haswell the period is derived from the exponent
1547 * as:
1548 *
1549 * period = 80ns * 2^(exponent + 1)
1550 */
1551 BUILD_BUG_ON(sizeof(oa_period) != 8);
1552 oa_period = 80ull * (2ull << value);
1553
1554 /* This check is primarily to ensure that oa_period <=
1555 * UINT32_MAX (before passing to do_div which only
1556 * accepts a u32 denominator), but we can also skip
1557 * checking anything < 1Hz which implicitly can't be
1558 * limited via an integer oa_max_sample_rate.
1559 */
1560 if (oa_period <= NSEC_PER_SEC) {
1561 u64 tmp = NSEC_PER_SEC;
1562 do_div(tmp, oa_period);
1563 oa_freq_hz = tmp;
1564 } else
1565 oa_freq_hz = 0;
1566
1567 if (oa_freq_hz > i915_oa_max_sample_rate &&
1568 !capable(CAP_SYS_ADMIN)) {
1569 DRM_ERROR("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
1570 i915_oa_max_sample_rate);
1571 return -EACCES;
1572 }
1573
1574 props->oa_periodic = true;
1575 props->oa_period_exponent = value;
1576 break;
1577 default:
1578 MISSING_CASE(id);
1579 DRM_ERROR("Unknown i915 perf property ID");
1580 return -EINVAL;
1581 }
1582
1583 uprop += 2;
1584 }
1585
1586 return 0;
1587 }
1588
1589 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 struct drm_i915_perf_open_param *param = data;
1594 struct perf_open_properties props;
1595 u32 known_open_flags;
1596 int ret;
1597
1598 if (!dev_priv->perf.initialized) {
1599 DRM_ERROR("i915 perf interface not available for this system");
1600 return -ENOTSUPP;
1601 }
1602
1603 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
1604 I915_PERF_FLAG_FD_NONBLOCK |
1605 I915_PERF_FLAG_DISABLED;
1606 if (param->flags & ~known_open_flags) {
1607 DRM_ERROR("Unknown drm_i915_perf_open_param flag\n");
1608 return -EINVAL;
1609 }
1610
1611 ret = read_properties_unlocked(dev_priv,
1612 u64_to_user_ptr(param->properties_ptr),
1613 param->num_properties,
1614 &props);
1615 if (ret)
1616 return ret;
1617
1618 mutex_lock(&dev_priv->perf.lock);
1619 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
1620 mutex_unlock(&dev_priv->perf.lock);
1621
1622 return ret;
1623 }
1624
1625 void i915_perf_register(struct drm_i915_private *dev_priv)
1626 {
1627 if (!IS_HASWELL(dev_priv))
1628 return;
1629
1630 if (!dev_priv->perf.initialized)
1631 return;
1632
1633 /* To be sure we're synchronized with an attempted
1634 * i915_perf_open_ioctl(); considering that we register after
1635 * being exposed to userspace.
1636 */
1637 mutex_lock(&dev_priv->perf.lock);
1638
1639 dev_priv->perf.metrics_kobj =
1640 kobject_create_and_add("metrics",
1641 &dev_priv->drm.primary->kdev->kobj);
1642 if (!dev_priv->perf.metrics_kobj)
1643 goto exit;
1644
1645 if (i915_perf_register_sysfs_hsw(dev_priv)) {
1646 kobject_put(dev_priv->perf.metrics_kobj);
1647 dev_priv->perf.metrics_kobj = NULL;
1648 }
1649
1650 exit:
1651 mutex_unlock(&dev_priv->perf.lock);
1652 }
1653
1654 void i915_perf_unregister(struct drm_i915_private *dev_priv)
1655 {
1656 if (!IS_HASWELL(dev_priv))
1657 return;
1658
1659 if (!dev_priv->perf.metrics_kobj)
1660 return;
1661
1662 i915_perf_unregister_sysfs_hsw(dev_priv);
1663
1664 kobject_put(dev_priv->perf.metrics_kobj);
1665 dev_priv->perf.metrics_kobj = NULL;
1666 }
1667
1668 static struct ctl_table oa_table[] = {
1669 {
1670 .procname = "perf_stream_paranoid",
1671 .data = &i915_perf_stream_paranoid,
1672 .maxlen = sizeof(i915_perf_stream_paranoid),
1673 .mode = 0644,
1674 .proc_handler = proc_dointvec_minmax,
1675 .extra1 = &zero,
1676 .extra2 = &one,
1677 },
1678 {
1679 .procname = "oa_max_sample_rate",
1680 .data = &i915_oa_max_sample_rate,
1681 .maxlen = sizeof(i915_oa_max_sample_rate),
1682 .mode = 0644,
1683 .proc_handler = proc_dointvec_minmax,
1684 .extra1 = &zero,
1685 .extra2 = &oa_sample_rate_hard_limit,
1686 },
1687 {}
1688 };
1689
1690 static struct ctl_table i915_root[] = {
1691 {
1692 .procname = "i915",
1693 .maxlen = 0,
1694 .mode = 0555,
1695 .child = oa_table,
1696 },
1697 {}
1698 };
1699
1700 static struct ctl_table dev_root[] = {
1701 {
1702 .procname = "dev",
1703 .maxlen = 0,
1704 .mode = 0555,
1705 .child = i915_root,
1706 },
1707 {}
1708 };
1709
1710 void i915_perf_init(struct drm_i915_private *dev_priv)
1711 {
1712 if (!IS_HASWELL(dev_priv))
1713 return;
1714
1715 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
1716 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1717 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
1718 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
1719
1720 INIT_LIST_HEAD(&dev_priv->perf.streams);
1721 mutex_init(&dev_priv->perf.lock);
1722 spin_lock_init(&dev_priv->perf.hook_lock);
1723
1724 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
1725 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
1726 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
1727 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
1728 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
1729 dev_priv->perf.oa.ops.read = gen7_oa_read;
1730 dev_priv->perf.oa.ops.oa_buffer_is_empty =
1731 gen7_oa_buffer_is_empty_fop_unlocked;
1732
1733 dev_priv->perf.oa.timestamp_frequency = 12500000;
1734
1735 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
1736
1737 dev_priv->perf.oa.n_builtin_sets =
1738 i915_oa_n_builtin_metric_sets_hsw;
1739
1740 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
1741
1742 dev_priv->perf.initialized = true;
1743 }
1744
1745 void i915_perf_fini(struct drm_i915_private *dev_priv)
1746 {
1747 if (!dev_priv->perf.initialized)
1748 return;
1749
1750 unregister_sysctl_table(dev_priv->perf.sysctl_header);
1751
1752 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
1753 dev_priv->perf.initialized = false;
1754 }