]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_perf.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196
197 #include "i915_drv.h"
198 #include "i915_oa_hsw.h"
199 #include "i915_oa_bdw.h"
200 #include "i915_oa_chv.h"
201 #include "i915_oa_sklgt2.h"
202 #include "i915_oa_sklgt3.h"
203 #include "i915_oa_sklgt4.h"
204 #include "i915_oa_bxt.h"
205 #include "i915_oa_kblgt2.h"
206 #include "i915_oa_kblgt3.h"
207 #include "i915_oa_glk.h"
208
209 /* HW requires this to be a power of two, between 128k and 16M, though driver
210 * is currently generally designed assuming the largest 16M size is used such
211 * that the overflow cases are unlikely in normal operation.
212 */
213 #define OA_BUFFER_SIZE SZ_16M
214
215 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
216
217 /**
218 * DOC: OA Tail Pointer Race
219 *
220 * There's a HW race condition between OA unit tail pointer register updates and
221 * writes to memory whereby the tail pointer can sometimes get ahead of what's
222 * been written out to the OA buffer so far (in terms of what's visible to the
223 * CPU).
224 *
225 * Although this can be observed explicitly while copying reports to userspace
226 * by checking for a zeroed report-id field in tail reports, we want to account
227 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
228 * read() attempts.
229 *
230 * In effect we define a tail pointer for reading that lags the real tail
231 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
232 * time for the corresponding reports to become visible to the CPU.
233 *
234 * To manage this we actually track two tail pointers:
235 * 1) An 'aging' tail with an associated timestamp that is tracked until we
236 * can trust the corresponding data is visible to the CPU; at which point
237 * it is considered 'aged'.
238 * 2) An 'aged' tail that can be used for read()ing.
239 *
240 * The two separate pointers let us decouple read()s from tail pointer aging.
241 *
242 * The tail pointers are checked and updated at a limited rate within a hrtimer
243 * callback (the same callback that is used for delivering POLLIN events)
244 *
245 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
246 * indicates that an updated tail pointer is needed.
247 *
248 * Most of the implementation details for this workaround are in
249 * oa_buffer_check_unlocked() and _append_oa_reports()
250 *
251 * Note for posterity: previously the driver used to define an effective tail
252 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
253 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
254 * This was flawed considering that the OA unit may also automatically generate
255 * non-periodic reports (such as on context switch) or the OA unit may be
256 * enabled without any periodic sampling.
257 */
258 #define OA_TAIL_MARGIN_NSEC 100000ULL
259 #define INVALID_TAIL_PTR 0xffffffff
260
261 /* frequency for checking whether the OA unit has written new reports to the
262 * circular OA buffer...
263 */
264 #define POLL_FREQUENCY 200
265 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
266
267 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
268 static int zero;
269 static int one = 1;
270 static u32 i915_perf_stream_paranoid = true;
271
272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
273 * of the 64bit timestamp bits to trigger reports from) but there's currently
274 * no known use case for sampling as infrequently as once per 47 thousand years.
275 *
276 * Since the timestamps included in OA reports are only 32bits it seems
277 * reasonable to limit the OA exponent where it's still possible to account for
278 * overflow in OA report timestamps.
279 */
280 #define OA_EXPONENT_MAX 31
281
282 #define INVALID_CTX_ID 0xffffffff
283
284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
285 #define OAREPORT_REASON_MASK 0x3f
286 #define OAREPORT_REASON_SHIFT 19
287 #define OAREPORT_REASON_TIMER (1<<0)
288 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
289 #define OAREPORT_REASON_CLK_RATIO (1<<5)
290
291
292 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
293 *
294 * The highest sampling frequency we can theoretically program the OA unit
295 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
296 *
297 * Initialized just before we register the sysctl parameter.
298 */
299 static int oa_sample_rate_hard_limit;
300
301 /* Theoretically we can program the OA unit to sample every 160ns but don't
302 * allow that by default unless root...
303 *
304 * The default threshold of 100000Hz is based on perf's similar
305 * kernel.perf_event_max_sample_rate sysctl parameter.
306 */
307 static u32 i915_oa_max_sample_rate = 100000;
308
309 /* XXX: beware if future OA HW adds new report formats that the current
310 * code assumes all reports have a power-of-two size and ~(size - 1) can
311 * be used as a mask to align the OA tail pointer.
312 */
313 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
314 [I915_OA_FORMAT_A13] = { 0, 64 },
315 [I915_OA_FORMAT_A29] = { 1, 128 },
316 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
317 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
318 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
319 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
320 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
321 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
322 };
323
324 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
325 [I915_OA_FORMAT_A12] = { 0, 64 },
326 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
327 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
328 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
329 };
330
331 #define SAMPLE_OA_REPORT (1<<0)
332
333 /**
334 * struct perf_open_properties - for validated properties given to open a stream
335 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
336 * @single_context: Whether a single or all gpu contexts should be monitored
337 * @ctx_handle: A gem ctx handle for use with @single_context
338 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
339 * @oa_format: An OA unit HW report format
340 * @oa_periodic: Whether to enable periodic OA unit sampling
341 * @oa_period_exponent: The OA unit sampling period is derived from this
342 *
343 * As read_properties_unlocked() enumerates and validates the properties given
344 * to open a stream of metrics the configuration is built up in the structure
345 * which starts out zero initialized.
346 */
347 struct perf_open_properties {
348 u32 sample_flags;
349
350 u64 single_context:1;
351 u64 ctx_handle;
352
353 /* OA sampling state */
354 int metrics_set;
355 int oa_format;
356 bool oa_periodic;
357 int oa_period_exponent;
358 };
359
360 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
361 {
362 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
363 }
364
365 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
366 {
367 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
368
369 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
370 }
371
372 /**
373 * oa_buffer_check_unlocked - check for data and update tail ptr state
374 * @dev_priv: i915 device instance
375 *
376 * This is either called via fops (for blocking reads in user ctx) or the poll
377 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
378 * if there is data available for userspace to read.
379 *
380 * This function is central to providing a workaround for the OA unit tail
381 * pointer having a race with respect to what data is visible to the CPU.
382 * It is responsible for reading tail pointers from the hardware and giving
383 * the pointers time to 'age' before they are made available for reading.
384 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
385 *
386 * Besides returning true when there is data available to read() this function
387 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
388 * and .aged_tail_idx state used for reading.
389 *
390 * Note: It's safe to read OA config state here unlocked, assuming that this is
391 * only called while the stream is enabled, while the global OA configuration
392 * can't be modified.
393 *
394 * Returns: %true if the OA buffer contains data, else %false
395 */
396 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
397 {
398 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
399 unsigned long flags;
400 unsigned int aged_idx;
401 u32 head, hw_tail, aged_tail, aging_tail;
402 u64 now;
403
404 /* We have to consider the (unlikely) possibility that read() errors
405 * could result in an OA buffer reset which might reset the head,
406 * tails[] and aged_tail state.
407 */
408 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
409
410 /* NB: The head we observe here might effectively be a little out of
411 * date (between head and tails[aged_idx].offset if there is currently
412 * a read() in progress.
413 */
414 head = dev_priv->perf.oa.oa_buffer.head;
415
416 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
417 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
418 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
419
420 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
421
422 /* The tail pointer increases in 64 byte increments,
423 * not in report_size steps...
424 */
425 hw_tail &= ~(report_size - 1);
426
427 now = ktime_get_mono_fast_ns();
428
429 /* Update the aged tail
430 *
431 * Flip the tail pointer available for read()s once the aging tail is
432 * old enough to trust that the corresponding data will be visible to
433 * the CPU...
434 *
435 * Do this before updating the aging pointer in case we may be able to
436 * immediately start aging a new pointer too (if new data has become
437 * available) without needing to wait for a later hrtimer callback.
438 */
439 if (aging_tail != INVALID_TAIL_PTR &&
440 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
441 OA_TAIL_MARGIN_NSEC)) {
442
443 aged_idx ^= 1;
444 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
445
446 aged_tail = aging_tail;
447
448 /* Mark that we need a new pointer to start aging... */
449 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
450 aging_tail = INVALID_TAIL_PTR;
451 }
452
453 /* Update the aging tail
454 *
455 * We throttle aging tail updates until we have a new tail that
456 * represents >= one report more data than is already available for
457 * reading. This ensures there will be enough data for a successful
458 * read once this new pointer has aged and ensures we will give the new
459 * pointer time to age.
460 */
461 if (aging_tail == INVALID_TAIL_PTR &&
462 (aged_tail == INVALID_TAIL_PTR ||
463 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
464 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
465 u32 gtt_offset = i915_ggtt_offset(vma);
466
467 /* Be paranoid and do a bounds check on the pointer read back
468 * from hardware, just in case some spurious hardware condition
469 * could put the tail out of bounds...
470 */
471 if (hw_tail >= gtt_offset &&
472 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
473 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
474 aging_tail = hw_tail;
475 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
476 } else {
477 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
478 hw_tail);
479 }
480 }
481
482 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
483
484 return aged_tail == INVALID_TAIL_PTR ?
485 false : OA_TAKEN(aged_tail, head) >= report_size;
486 }
487
488 /**
489 * append_oa_status - Appends a status record to a userspace read() buffer.
490 * @stream: An i915-perf stream opened for OA metrics
491 * @buf: destination buffer given by userspace
492 * @count: the number of bytes userspace wants to read
493 * @offset: (inout): the current position for writing into @buf
494 * @type: The kind of status to report to userspace
495 *
496 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
497 * into the userspace read() buffer.
498 *
499 * The @buf @offset will only be updated on success.
500 *
501 * Returns: 0 on success, negative error code on failure.
502 */
503 static int append_oa_status(struct i915_perf_stream *stream,
504 char __user *buf,
505 size_t count,
506 size_t *offset,
507 enum drm_i915_perf_record_type type)
508 {
509 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
510
511 if ((count - *offset) < header.size)
512 return -ENOSPC;
513
514 if (copy_to_user(buf + *offset, &header, sizeof(header)))
515 return -EFAULT;
516
517 (*offset) += header.size;
518
519 return 0;
520 }
521
522 /**
523 * append_oa_sample - Copies single OA report into userspace read() buffer.
524 * @stream: An i915-perf stream opened for OA metrics
525 * @buf: destination buffer given by userspace
526 * @count: the number of bytes userspace wants to read
527 * @offset: (inout): the current position for writing into @buf
528 * @report: A single OA report to (optionally) include as part of the sample
529 *
530 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
531 * properties when opening a stream, tracked as `stream->sample_flags`. This
532 * function copies the requested components of a single sample to the given
533 * read() @buf.
534 *
535 * The @buf @offset will only be updated on success.
536 *
537 * Returns: 0 on success, negative error code on failure.
538 */
539 static int append_oa_sample(struct i915_perf_stream *stream,
540 char __user *buf,
541 size_t count,
542 size_t *offset,
543 const u8 *report)
544 {
545 struct drm_i915_private *dev_priv = stream->dev_priv;
546 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
547 struct drm_i915_perf_record_header header;
548 u32 sample_flags = stream->sample_flags;
549
550 header.type = DRM_I915_PERF_RECORD_SAMPLE;
551 header.pad = 0;
552 header.size = stream->sample_size;
553
554 if ((count - *offset) < header.size)
555 return -ENOSPC;
556
557 buf += *offset;
558 if (copy_to_user(buf, &header, sizeof(header)))
559 return -EFAULT;
560 buf += sizeof(header);
561
562 if (sample_flags & SAMPLE_OA_REPORT) {
563 if (copy_to_user(buf, report, report_size))
564 return -EFAULT;
565 }
566
567 (*offset) += header.size;
568
569 return 0;
570 }
571
572 /**
573 * Copies all buffered OA reports into userspace read() buffer.
574 * @stream: An i915-perf stream opened for OA metrics
575 * @buf: destination buffer given by userspace
576 * @count: the number of bytes userspace wants to read
577 * @offset: (inout): the current position for writing into @buf
578 *
579 * Notably any error condition resulting in a short read (-%ENOSPC or
580 * -%EFAULT) will be returned even though one or more records may
581 * have been successfully copied. In this case it's up to the caller
582 * to decide if the error should be squashed before returning to
583 * userspace.
584 *
585 * Note: reports are consumed from the head, and appended to the
586 * tail, so the tail chases the head?... If you think that's mad
587 * and back-to-front you're not alone, but this follows the
588 * Gen PRM naming convention.
589 *
590 * Returns: 0 on success, negative error code on failure.
591 */
592 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
593 char __user *buf,
594 size_t count,
595 size_t *offset)
596 {
597 struct drm_i915_private *dev_priv = stream->dev_priv;
598 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
599 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
600 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
601 u32 mask = (OA_BUFFER_SIZE - 1);
602 size_t start_offset = *offset;
603 unsigned long flags;
604 unsigned int aged_tail_idx;
605 u32 head, tail;
606 u32 taken;
607 int ret = 0;
608
609 if (WARN_ON(!stream->enabled))
610 return -EIO;
611
612 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
613
614 head = dev_priv->perf.oa.oa_buffer.head;
615 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
616 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
617
618 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
619
620 /*
621 * An invalid tail pointer here means we're still waiting for the poll
622 * hrtimer callback to give us a pointer
623 */
624 if (tail == INVALID_TAIL_PTR)
625 return -EAGAIN;
626
627 /*
628 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
629 * while indexing relative to oa_buf_base.
630 */
631 head -= gtt_offset;
632 tail -= gtt_offset;
633
634 /*
635 * An out of bounds or misaligned head or tail pointer implies a driver
636 * bug since we validate + align the tail pointers we read from the
637 * hardware and we are in full control of the head pointer which should
638 * only be incremented by multiples of the report size (notably also
639 * all a power of two).
640 */
641 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
642 tail > OA_BUFFER_SIZE || tail % report_size,
643 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
644 head, tail))
645 return -EIO;
646
647
648 for (/* none */;
649 (taken = OA_TAKEN(tail, head));
650 head = (head + report_size) & mask) {
651 u8 *report = oa_buf_base + head;
652 u32 *report32 = (void *)report;
653 u32 ctx_id;
654 u32 reason;
655
656 /*
657 * All the report sizes factor neatly into the buffer
658 * size so we never expect to see a report split
659 * between the beginning and end of the buffer.
660 *
661 * Given the initial alignment check a misalignment
662 * here would imply a driver bug that would result
663 * in an overrun.
664 */
665 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
666 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
667 break;
668 }
669
670 /*
671 * The reason field includes flags identifying what
672 * triggered this specific report (mostly timer
673 * triggered or e.g. due to a context switch).
674 *
675 * This field is never expected to be zero so we can
676 * check that the report isn't invalid before copying
677 * it to userspace...
678 */
679 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
680 OAREPORT_REASON_MASK);
681 if (reason == 0) {
682 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
683 DRM_NOTE("Skipping spurious, invalid OA report\n");
684 continue;
685 }
686
687 /*
688 * XXX: Just keep the lower 21 bits for now since I'm not
689 * entirely sure if the HW touches any of the higher bits in
690 * this field
691 */
692 ctx_id = report32[2] & 0x1fffff;
693
694 /*
695 * Squash whatever is in the CTX_ID field if it's marked as
696 * invalid to be sure we avoid false-positive, single-context
697 * filtering below...
698 *
699 * Note: that we don't clear the valid_ctx_bit so userspace can
700 * understand that the ID has been squashed by the kernel.
701 */
702 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
703 ctx_id = report32[2] = INVALID_CTX_ID;
704
705 /*
706 * NB: For Gen 8 the OA unit no longer supports clock gating
707 * off for a specific context and the kernel can't securely
708 * stop the counters from updating as system-wide / global
709 * values.
710 *
711 * Automatic reports now include a context ID so reports can be
712 * filtered on the cpu but it's not worth trying to
713 * automatically subtract/hide counter progress for other
714 * contexts while filtering since we can't stop userspace
715 * issuing MI_REPORT_PERF_COUNT commands which would still
716 * provide a side-band view of the real values.
717 *
718 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
719 * to normalize counters for a single filtered context then it
720 * needs be forwarded bookend context-switch reports so that it
721 * can track switches in between MI_REPORT_PERF_COUNT commands
722 * and can itself subtract/ignore the progress of counters
723 * associated with other contexts. Note that the hardware
724 * automatically triggers reports when switching to a new
725 * context which are tagged with the ID of the newly active
726 * context. To avoid the complexity (and likely fragility) of
727 * reading ahead while parsing reports to try and minimize
728 * forwarding redundant context switch reports (i.e. between
729 * other, unrelated contexts) we simply elect to forward them
730 * all.
731 *
732 * We don't rely solely on the reason field to identify context
733 * switches since it's not-uncommon for periodic samples to
734 * identify a switch before any 'context switch' report.
735 */
736 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
737 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
738 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
739 dev_priv->perf.oa.specific_ctx_id) ||
740 reason & OAREPORT_REASON_CTX_SWITCH) {
741
742 /*
743 * While filtering for a single context we avoid
744 * leaking the IDs of other contexts.
745 */
746 if (dev_priv->perf.oa.exclusive_stream->ctx &&
747 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
748 report32[2] = INVALID_CTX_ID;
749 }
750
751 ret = append_oa_sample(stream, buf, count, offset,
752 report);
753 if (ret)
754 break;
755
756 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
757 }
758
759 /*
760 * The above reason field sanity check is based on
761 * the assumption that the OA buffer is initially
762 * zeroed and we reset the field after copying so the
763 * check is still meaningful once old reports start
764 * being overwritten.
765 */
766 report32[0] = 0;
767 }
768
769 if (start_offset != *offset) {
770 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
771
772 /*
773 * We removed the gtt_offset for the copy loop above, indexing
774 * relative to oa_buf_base so put back here...
775 */
776 head += gtt_offset;
777
778 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
779 dev_priv->perf.oa.oa_buffer.head = head;
780
781 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
782 }
783
784 return ret;
785 }
786
787 /**
788 * gen8_oa_read - copy status records then buffered OA reports
789 * @stream: An i915-perf stream opened for OA metrics
790 * @buf: destination buffer given by userspace
791 * @count: the number of bytes userspace wants to read
792 * @offset: (inout): the current position for writing into @buf
793 *
794 * Checks OA unit status registers and if necessary appends corresponding
795 * status records for userspace (such as for a buffer full condition) and then
796 * initiate appending any buffered OA reports.
797 *
798 * Updates @offset according to the number of bytes successfully copied into
799 * the userspace buffer.
800 *
801 * NB: some data may be successfully copied to the userspace buffer
802 * even if an error is returned, and this is reflected in the
803 * updated @offset.
804 *
805 * Returns: zero on success or a negative error code
806 */
807 static int gen8_oa_read(struct i915_perf_stream *stream,
808 char __user *buf,
809 size_t count,
810 size_t *offset)
811 {
812 struct drm_i915_private *dev_priv = stream->dev_priv;
813 u32 oastatus;
814 int ret;
815
816 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
817 return -EIO;
818
819 oastatus = I915_READ(GEN8_OASTATUS);
820
821 /*
822 * We treat OABUFFER_OVERFLOW as a significant error:
823 *
824 * Although theoretically we could handle this more gracefully
825 * sometimes, some Gens don't correctly suppress certain
826 * automatically triggered reports in this condition and so we
827 * have to assume that old reports are now being trampled
828 * over.
829 *
830 * Considering how we don't currently give userspace control
831 * over the OA buffer size and always configure a large 16MB
832 * buffer, then a buffer overflow does anyway likely indicate
833 * that something has gone quite badly wrong.
834 */
835 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
836 ret = append_oa_status(stream, buf, count, offset,
837 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
838 if (ret)
839 return ret;
840
841 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
842 dev_priv->perf.oa.period_exponent);
843
844 dev_priv->perf.oa.ops.oa_disable(dev_priv);
845 dev_priv->perf.oa.ops.oa_enable(dev_priv);
846
847 /*
848 * Note: .oa_enable() is expected to re-init the oabuffer and
849 * reset GEN8_OASTATUS for us
850 */
851 oastatus = I915_READ(GEN8_OASTATUS);
852 }
853
854 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
855 ret = append_oa_status(stream, buf, count, offset,
856 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
857 if (ret)
858 return ret;
859 I915_WRITE(GEN8_OASTATUS,
860 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
861 }
862
863 return gen8_append_oa_reports(stream, buf, count, offset);
864 }
865
866 /**
867 * Copies all buffered OA reports into userspace read() buffer.
868 * @stream: An i915-perf stream opened for OA metrics
869 * @buf: destination buffer given by userspace
870 * @count: the number of bytes userspace wants to read
871 * @offset: (inout): the current position for writing into @buf
872 *
873 * Notably any error condition resulting in a short read (-%ENOSPC or
874 * -%EFAULT) will be returned even though one or more records may
875 * have been successfully copied. In this case it's up to the caller
876 * to decide if the error should be squashed before returning to
877 * userspace.
878 *
879 * Note: reports are consumed from the head, and appended to the
880 * tail, so the tail chases the head?... If you think that's mad
881 * and back-to-front you're not alone, but this follows the
882 * Gen PRM naming convention.
883 *
884 * Returns: 0 on success, negative error code on failure.
885 */
886 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
887 char __user *buf,
888 size_t count,
889 size_t *offset)
890 {
891 struct drm_i915_private *dev_priv = stream->dev_priv;
892 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
893 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
894 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
895 u32 mask = (OA_BUFFER_SIZE - 1);
896 size_t start_offset = *offset;
897 unsigned long flags;
898 unsigned int aged_tail_idx;
899 u32 head, tail;
900 u32 taken;
901 int ret = 0;
902
903 if (WARN_ON(!stream->enabled))
904 return -EIO;
905
906 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
907
908 head = dev_priv->perf.oa.oa_buffer.head;
909 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
910 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
911
912 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
913
914 /* An invalid tail pointer here means we're still waiting for the poll
915 * hrtimer callback to give us a pointer
916 */
917 if (tail == INVALID_TAIL_PTR)
918 return -EAGAIN;
919
920 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
921 * while indexing relative to oa_buf_base.
922 */
923 head -= gtt_offset;
924 tail -= gtt_offset;
925
926 /* An out of bounds or misaligned head or tail pointer implies a driver
927 * bug since we validate + align the tail pointers we read from the
928 * hardware and we are in full control of the head pointer which should
929 * only be incremented by multiples of the report size (notably also
930 * all a power of two).
931 */
932 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
933 tail > OA_BUFFER_SIZE || tail % report_size,
934 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
935 head, tail))
936 return -EIO;
937
938
939 for (/* none */;
940 (taken = OA_TAKEN(tail, head));
941 head = (head + report_size) & mask) {
942 u8 *report = oa_buf_base + head;
943 u32 *report32 = (void *)report;
944
945 /* All the report sizes factor neatly into the buffer
946 * size so we never expect to see a report split
947 * between the beginning and end of the buffer.
948 *
949 * Given the initial alignment check a misalignment
950 * here would imply a driver bug that would result
951 * in an overrun.
952 */
953 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
954 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
955 break;
956 }
957
958 /* The report-ID field for periodic samples includes
959 * some undocumented flags related to what triggered
960 * the report and is never expected to be zero so we
961 * can check that the report isn't invalid before
962 * copying it to userspace...
963 */
964 if (report32[0] == 0) {
965 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
966 DRM_NOTE("Skipping spurious, invalid OA report\n");
967 continue;
968 }
969
970 ret = append_oa_sample(stream, buf, count, offset, report);
971 if (ret)
972 break;
973
974 /* The above report-id field sanity check is based on
975 * the assumption that the OA buffer is initially
976 * zeroed and we reset the field after copying so the
977 * check is still meaningful once old reports start
978 * being overwritten.
979 */
980 report32[0] = 0;
981 }
982
983 if (start_offset != *offset) {
984 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
985
986 /* We removed the gtt_offset for the copy loop above, indexing
987 * relative to oa_buf_base so put back here...
988 */
989 head += gtt_offset;
990
991 I915_WRITE(GEN7_OASTATUS2,
992 ((head & GEN7_OASTATUS2_HEAD_MASK) |
993 OA_MEM_SELECT_GGTT));
994 dev_priv->perf.oa.oa_buffer.head = head;
995
996 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
997 }
998
999 return ret;
1000 }
1001
1002 /**
1003 * gen7_oa_read - copy status records then buffered OA reports
1004 * @stream: An i915-perf stream opened for OA metrics
1005 * @buf: destination buffer given by userspace
1006 * @count: the number of bytes userspace wants to read
1007 * @offset: (inout): the current position for writing into @buf
1008 *
1009 * Checks Gen 7 specific OA unit status registers and if necessary appends
1010 * corresponding status records for userspace (such as for a buffer full
1011 * condition) and then initiate appending any buffered OA reports.
1012 *
1013 * Updates @offset according to the number of bytes successfully copied into
1014 * the userspace buffer.
1015 *
1016 * Returns: zero on success or a negative error code
1017 */
1018 static int gen7_oa_read(struct i915_perf_stream *stream,
1019 char __user *buf,
1020 size_t count,
1021 size_t *offset)
1022 {
1023 struct drm_i915_private *dev_priv = stream->dev_priv;
1024 u32 oastatus1;
1025 int ret;
1026
1027 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1028 return -EIO;
1029
1030 oastatus1 = I915_READ(GEN7_OASTATUS1);
1031
1032 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1033 * bits while the OA unit is enabled (while the tail pointer
1034 * may be updated asynchronously) so we ignore status bits
1035 * that have already been reported to userspace.
1036 */
1037 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1038
1039 /* We treat OABUFFER_OVERFLOW as a significant error:
1040 *
1041 * - The status can be interpreted to mean that the buffer is
1042 * currently full (with a higher precedence than OA_TAKEN()
1043 * which will start to report a near-empty buffer after an
1044 * overflow) but it's awkward that we can't clear the status
1045 * on Haswell, so without a reset we won't be able to catch
1046 * the state again.
1047 *
1048 * - Since it also implies the HW has started overwriting old
1049 * reports it may also affect our sanity checks for invalid
1050 * reports when copying to userspace that assume new reports
1051 * are being written to cleared memory.
1052 *
1053 * - In the future we may want to introduce a flight recorder
1054 * mode where the driver will automatically maintain a safe
1055 * guard band between head/tail, avoiding this overflow
1056 * condition, but we avoid the added driver complexity for
1057 * now.
1058 */
1059 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1060 ret = append_oa_status(stream, buf, count, offset,
1061 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1062 if (ret)
1063 return ret;
1064
1065 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1066 dev_priv->perf.oa.period_exponent);
1067
1068 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1069 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1070
1071 oastatus1 = I915_READ(GEN7_OASTATUS1);
1072 }
1073
1074 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1075 ret = append_oa_status(stream, buf, count, offset,
1076 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1077 if (ret)
1078 return ret;
1079 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1080 GEN7_OASTATUS1_REPORT_LOST;
1081 }
1082
1083 return gen7_append_oa_reports(stream, buf, count, offset);
1084 }
1085
1086 /**
1087 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1088 * @stream: An i915-perf stream opened for OA metrics
1089 *
1090 * Called when userspace tries to read() from a blocking stream FD opened
1091 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1092 * OA buffer and wakes us.
1093 *
1094 * Note: it's acceptable to have this return with some false positives
1095 * since any subsequent read handling will return -EAGAIN if there isn't
1096 * really data ready for userspace yet.
1097 *
1098 * Returns: zero on success or a negative error code
1099 */
1100 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1101 {
1102 struct drm_i915_private *dev_priv = stream->dev_priv;
1103
1104 /* We would wait indefinitely if periodic sampling is not enabled */
1105 if (!dev_priv->perf.oa.periodic)
1106 return -EIO;
1107
1108 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1109 oa_buffer_check_unlocked(dev_priv));
1110 }
1111
1112 /**
1113 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1114 * @stream: An i915-perf stream opened for OA metrics
1115 * @file: An i915 perf stream file
1116 * @wait: poll() state table
1117 *
1118 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1119 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1120 * when it sees data ready to read in the circular OA buffer.
1121 */
1122 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1123 struct file *file,
1124 poll_table *wait)
1125 {
1126 struct drm_i915_private *dev_priv = stream->dev_priv;
1127
1128 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1129 }
1130
1131 /**
1132 * i915_oa_read - just calls through to &i915_oa_ops->read
1133 * @stream: An i915-perf stream opened for OA metrics
1134 * @buf: destination buffer given by userspace
1135 * @count: the number of bytes userspace wants to read
1136 * @offset: (inout): the current position for writing into @buf
1137 *
1138 * Updates @offset according to the number of bytes successfully copied into
1139 * the userspace buffer.
1140 *
1141 * Returns: zero on success or a negative error code
1142 */
1143 static int i915_oa_read(struct i915_perf_stream *stream,
1144 char __user *buf,
1145 size_t count,
1146 size_t *offset)
1147 {
1148 struct drm_i915_private *dev_priv = stream->dev_priv;
1149
1150 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1151 }
1152
1153 /**
1154 * oa_get_render_ctx_id - determine and hold ctx hw id
1155 * @stream: An i915-perf stream opened for OA metrics
1156 *
1157 * Determine the render context hw id, and ensure it remains fixed for the
1158 * lifetime of the stream. This ensures that we don't have to worry about
1159 * updating the context ID in OACONTROL on the fly.
1160 *
1161 * Returns: zero on success or a negative error code
1162 */
1163 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1164 {
1165 struct drm_i915_private *dev_priv = stream->dev_priv;
1166
1167 if (i915.enable_execlists)
1168 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1169 else {
1170 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1171 struct intel_ring *ring;
1172 int ret;
1173
1174 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1175 if (ret)
1176 return ret;
1177
1178 /*
1179 * As the ID is the gtt offset of the context's vma we
1180 * pin the vma to ensure the ID remains fixed.
1181 *
1182 * NB: implied RCS engine...
1183 */
1184 ring = engine->context_pin(engine, stream->ctx);
1185 mutex_unlock(&dev_priv->drm.struct_mutex);
1186 if (IS_ERR(ring))
1187 return PTR_ERR(ring);
1188
1189
1190 /*
1191 * Explicitly track the ID (instead of calling
1192 * i915_ggtt_offset() on the fly) considering the difference
1193 * with gen8+ and execlists
1194 */
1195 dev_priv->perf.oa.specific_ctx_id =
1196 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1197 }
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1204 * @stream: An i915-perf stream opened for OA metrics
1205 *
1206 * In case anything needed doing to ensure the context HW ID would remain valid
1207 * for the lifetime of the stream, then that can be undone here.
1208 */
1209 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1210 {
1211 struct drm_i915_private *dev_priv = stream->dev_priv;
1212
1213 if (i915.enable_execlists) {
1214 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1215 } else {
1216 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1217
1218 mutex_lock(&dev_priv->drm.struct_mutex);
1219
1220 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1221 engine->context_unpin(engine, stream->ctx);
1222
1223 mutex_unlock(&dev_priv->drm.struct_mutex);
1224 }
1225 }
1226
1227 static void
1228 free_oa_buffer(struct drm_i915_private *i915)
1229 {
1230 mutex_lock(&i915->drm.struct_mutex);
1231
1232 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1233 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1234 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1235
1236 i915->perf.oa.oa_buffer.vma = NULL;
1237 i915->perf.oa.oa_buffer.vaddr = NULL;
1238
1239 mutex_unlock(&i915->drm.struct_mutex);
1240 }
1241
1242 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1243 {
1244 struct drm_i915_private *dev_priv = stream->dev_priv;
1245
1246 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1247
1248 /*
1249 * Unset exclusive_stream first, it might be checked while
1250 * disabling the metric set on gen8+.
1251 */
1252 dev_priv->perf.oa.exclusive_stream = NULL;
1253
1254 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1255
1256 free_oa_buffer(dev_priv);
1257
1258 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1259 intel_runtime_pm_put(dev_priv);
1260
1261 if (stream->ctx)
1262 oa_put_render_ctx_id(stream);
1263
1264 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1265 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1266 dev_priv->perf.oa.spurious_report_rs.missed);
1267 }
1268 }
1269
1270 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1271 {
1272 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1273 unsigned long flags;
1274
1275 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1276
1277 /* Pre-DevBDW: OABUFFER must be set with counters off,
1278 * before OASTATUS1, but after OASTATUS2
1279 */
1280 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1281 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1282
1283 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1284
1285 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1286
1287 /* Mark that we need updated tail pointers to read from... */
1288 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1289 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1290
1291 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1292
1293 /* On Haswell we have to track which OASTATUS1 flags we've
1294 * already seen since they can't be cleared while periodic
1295 * sampling is enabled.
1296 */
1297 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1298
1299 /* NB: although the OA buffer will initially be allocated
1300 * zeroed via shmfs (and so this memset is redundant when
1301 * first allocating), we may re-init the OA buffer, either
1302 * when re-enabling a stream or in error/reset paths.
1303 *
1304 * The reason we clear the buffer for each re-init is for the
1305 * sanity check in gen7_append_oa_reports() that looks at the
1306 * report-id field to make sure it's non-zero which relies on
1307 * the assumption that new reports are being written to zeroed
1308 * memory...
1309 */
1310 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1311
1312 /* Maybe make ->pollin per-stream state if we support multiple
1313 * concurrent streams in the future.
1314 */
1315 dev_priv->perf.oa.pollin = false;
1316 }
1317
1318 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1319 {
1320 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1321 unsigned long flags;
1322
1323 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1324
1325 I915_WRITE(GEN8_OASTATUS, 0);
1326 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1327 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1328
1329 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1330
1331 /*
1332 * PRM says:
1333 *
1334 * "This MMIO must be set before the OATAILPTR
1335 * register and after the OAHEADPTR register. This is
1336 * to enable proper functionality of the overflow
1337 * bit."
1338 */
1339 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1340 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1341 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1342
1343 /* Mark that we need updated tail pointers to read from... */
1344 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1345 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1346
1347 /*
1348 * Reset state used to recognise context switches, affecting which
1349 * reports we will forward to userspace while filtering for a single
1350 * context.
1351 */
1352 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1353
1354 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1355
1356 /*
1357 * NB: although the OA buffer will initially be allocated
1358 * zeroed via shmfs (and so this memset is redundant when
1359 * first allocating), we may re-init the OA buffer, either
1360 * when re-enabling a stream or in error/reset paths.
1361 *
1362 * The reason we clear the buffer for each re-init is for the
1363 * sanity check in gen8_append_oa_reports() that looks at the
1364 * reason field to make sure it's non-zero which relies on
1365 * the assumption that new reports are being written to zeroed
1366 * memory...
1367 */
1368 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1369
1370 /*
1371 * Maybe make ->pollin per-stream state if we support multiple
1372 * concurrent streams in the future.
1373 */
1374 dev_priv->perf.oa.pollin = false;
1375 }
1376
1377 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1378 {
1379 struct drm_i915_gem_object *bo;
1380 struct i915_vma *vma;
1381 int ret;
1382
1383 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1384 return -ENODEV;
1385
1386 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1387 if (ret)
1388 return ret;
1389
1390 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1391 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1392
1393 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1394 if (IS_ERR(bo)) {
1395 DRM_ERROR("Failed to allocate OA buffer\n");
1396 ret = PTR_ERR(bo);
1397 goto unlock;
1398 }
1399
1400 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1401 if (ret)
1402 goto err_unref;
1403
1404 /* PreHSW required 512K alignment, HSW requires 16M */
1405 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1406 if (IS_ERR(vma)) {
1407 ret = PTR_ERR(vma);
1408 goto err_unref;
1409 }
1410 dev_priv->perf.oa.oa_buffer.vma = vma;
1411
1412 dev_priv->perf.oa.oa_buffer.vaddr =
1413 i915_gem_object_pin_map(bo, I915_MAP_WB);
1414 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1415 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1416 goto err_unpin;
1417 }
1418
1419 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1420
1421 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1422 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1423 dev_priv->perf.oa.oa_buffer.vaddr);
1424
1425 goto unlock;
1426
1427 err_unpin:
1428 __i915_vma_unpin(vma);
1429
1430 err_unref:
1431 i915_gem_object_put(bo);
1432
1433 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1434 dev_priv->perf.oa.oa_buffer.vma = NULL;
1435
1436 unlock:
1437 mutex_unlock(&dev_priv->drm.struct_mutex);
1438 return ret;
1439 }
1440
1441 static void config_oa_regs(struct drm_i915_private *dev_priv,
1442 const struct i915_oa_reg *regs,
1443 int n_regs)
1444 {
1445 int i;
1446
1447 for (i = 0; i < n_regs; i++) {
1448 const struct i915_oa_reg *reg = regs + i;
1449
1450 I915_WRITE(reg->addr, reg->value);
1451 }
1452 }
1453
1454 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
1455 {
1456 int ret = i915_oa_select_metric_set_hsw(dev_priv);
1457 int i;
1458
1459 if (ret)
1460 return ret;
1461
1462 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
1463 GT_NOA_ENABLE));
1464
1465 /* PRM:
1466 *
1467 * OA unit is using “crclk” for its functionality. When trunk
1468 * level clock gating takes place, OA clock would be gated,
1469 * unable to count the events from non-render clock domain.
1470 * Render clock gating must be disabled when OA is enabled to
1471 * count the events from non-render domain. Unit level clock
1472 * gating for RCS should also be disabled.
1473 */
1474 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1475 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1476 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1477 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1478
1479 for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
1480 config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
1481 dev_priv->perf.oa.mux_regs_lens[i]);
1482 }
1483
1484 /* It apparently takes a fairly long time for a new MUX
1485 * configuration to be be applied after these register writes.
1486 * This delay duration was derived empirically based on the
1487 * render_basic config but hopefully it covers the maximum
1488 * configuration latency.
1489 *
1490 * As a fallback, the checks in _append_oa_reports() to skip
1491 * invalid OA reports do also seem to work to discard reports
1492 * generated before this config has completed - albeit not
1493 * silently.
1494 *
1495 * Unfortunately this is essentially a magic number, since we
1496 * don't currently know of a reliable mechanism for predicting
1497 * how long the MUX config will take to apply and besides
1498 * seeing invalid reports we don't know of a reliable way to
1499 * explicitly check that the MUX config has landed.
1500 *
1501 * It's even possible we've miss characterized the underlying
1502 * problem - it just seems like the simplest explanation why
1503 * a delay at this location would mitigate any invalid reports.
1504 */
1505 usleep_range(15000, 20000);
1506
1507 config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
1508 dev_priv->perf.oa.b_counter_regs_len);
1509
1510 return 0;
1511 }
1512
1513 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1514 {
1515 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1516 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1517 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1518 GEN7_DOP_CLOCK_GATE_ENABLE));
1519
1520 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1521 ~GT_NOA_ENABLE));
1522 }
1523
1524 /*
1525 * NB: It must always remain pointer safe to run this even if the OA unit
1526 * has been disabled.
1527 *
1528 * It's fine to put out-of-date values into these per-context registers
1529 * in the case that the OA unit has been disabled.
1530 */
1531 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1532 u32 *reg_state)
1533 {
1534 struct drm_i915_private *dev_priv = ctx->i915;
1535 const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
1536 int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
1537 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1538 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1539 /* The MMIO offsets for Flex EU registers aren't contiguous */
1540 u32 flex_mmio[] = {
1541 i915_mmio_reg_offset(EU_PERF_CNTL0),
1542 i915_mmio_reg_offset(EU_PERF_CNTL1),
1543 i915_mmio_reg_offset(EU_PERF_CNTL2),
1544 i915_mmio_reg_offset(EU_PERF_CNTL3),
1545 i915_mmio_reg_offset(EU_PERF_CNTL4),
1546 i915_mmio_reg_offset(EU_PERF_CNTL5),
1547 i915_mmio_reg_offset(EU_PERF_CNTL6),
1548 };
1549 int i;
1550
1551 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1552 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1553 GEN8_OA_TIMER_PERIOD_SHIFT) |
1554 (dev_priv->perf.oa.periodic ?
1555 GEN8_OA_TIMER_ENABLE : 0) |
1556 GEN8_OA_COUNTER_RESUME;
1557
1558 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1559 u32 state_offset = ctx_flexeu0 + i * 2;
1560 u32 mmio = flex_mmio[i];
1561
1562 /*
1563 * This arbitrary default will select the 'EU FPU0 Pipeline
1564 * Active' event. In the future it's anticipated that there
1565 * will be an explicit 'No Event' we can select, but not yet...
1566 */
1567 u32 value = 0;
1568 int j;
1569
1570 for (j = 0; j < n_flex_regs; j++) {
1571 if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
1572 value = flex_regs[j].value;
1573 break;
1574 }
1575 }
1576
1577 reg_state[state_offset] = mmio;
1578 reg_state[state_offset+1] = value;
1579 }
1580 }
1581
1582 /*
1583 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1584 * is only used by the kernel context.
1585 */
1586 static int gen8_emit_oa_config(struct drm_i915_gem_request *req)
1587 {
1588 struct drm_i915_private *dev_priv = req->i915;
1589 const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
1590 int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
1591 /* The MMIO offsets for Flex EU registers aren't contiguous */
1592 u32 flex_mmio[] = {
1593 i915_mmio_reg_offset(EU_PERF_CNTL0),
1594 i915_mmio_reg_offset(EU_PERF_CNTL1),
1595 i915_mmio_reg_offset(EU_PERF_CNTL2),
1596 i915_mmio_reg_offset(EU_PERF_CNTL3),
1597 i915_mmio_reg_offset(EU_PERF_CNTL4),
1598 i915_mmio_reg_offset(EU_PERF_CNTL5),
1599 i915_mmio_reg_offset(EU_PERF_CNTL6),
1600 };
1601 u32 *cs;
1602 int i;
1603
1604 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
1605 if (IS_ERR(cs))
1606 return PTR_ERR(cs);
1607
1608 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1609
1610 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1611 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1612 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1613 GEN8_OA_COUNTER_RESUME;
1614
1615 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1616 u32 mmio = flex_mmio[i];
1617
1618 /*
1619 * This arbitrary default will select the 'EU FPU0 Pipeline
1620 * Active' event. In the future it's anticipated that there
1621 * will be an explicit 'No Event' we can select, but not
1622 * yet...
1623 */
1624 u32 value = 0;
1625 int j;
1626
1627 for (j = 0; j < n_flex_regs; j++) {
1628 if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
1629 value = flex_regs[j].value;
1630 break;
1631 }
1632 }
1633
1634 *cs++ = mmio;
1635 *cs++ = value;
1636 }
1637
1638 *cs++ = MI_NOOP;
1639 intel_ring_advance(req, cs);
1640
1641 return 0;
1642 }
1643
1644 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv)
1645 {
1646 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1647 struct i915_gem_timeline *timeline;
1648 struct drm_i915_gem_request *req;
1649 int ret;
1650
1651 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1652
1653 i915_gem_retire_requests(dev_priv);
1654
1655 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1656 if (IS_ERR(req))
1657 return PTR_ERR(req);
1658
1659 ret = gen8_emit_oa_config(req);
1660 if (ret) {
1661 i915_add_request(req);
1662 return ret;
1663 }
1664
1665 /* Queue this switch after all other activity */
1666 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1667 struct drm_i915_gem_request *prev;
1668 struct intel_timeline *tl;
1669
1670 tl = &timeline->engine[engine->id];
1671 prev = i915_gem_active_raw(&tl->last_request,
1672 &dev_priv->drm.struct_mutex);
1673 if (prev)
1674 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1675 &prev->submit,
1676 GFP_KERNEL);
1677 }
1678
1679 ret = i915_switch_context(req);
1680 i915_add_request(req);
1681
1682 return ret;
1683 }
1684
1685 /*
1686 * Manages updating the per-context aspects of the OA stream
1687 * configuration across all contexts.
1688 *
1689 * The awkward consideration here is that OACTXCONTROL controls the
1690 * exponent for periodic sampling which is primarily used for system
1691 * wide profiling where we'd like a consistent sampling period even in
1692 * the face of context switches.
1693 *
1694 * Our approach of updating the register state context (as opposed to
1695 * say using a workaround batch buffer) ensures that the hardware
1696 * won't automatically reload an out-of-date timer exponent even
1697 * transiently before a WA BB could be parsed.
1698 *
1699 * This function needs to:
1700 * - Ensure the currently running context's per-context OA state is
1701 * updated
1702 * - Ensure that all existing contexts will have the correct per-context
1703 * OA state if they are scheduled for use.
1704 * - Ensure any new contexts will be initialized with the correct
1705 * per-context OA state.
1706 *
1707 * Note: it's only the RCS/Render context that has any OA state.
1708 */
1709 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1710 bool interruptible)
1711 {
1712 struct i915_gem_context *ctx;
1713 int ret;
1714 unsigned int wait_flags = I915_WAIT_LOCKED;
1715
1716 if (interruptible) {
1717 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1718 if (ret)
1719 return ret;
1720
1721 wait_flags |= I915_WAIT_INTERRUPTIBLE;
1722 } else {
1723 mutex_lock(&dev_priv->drm.struct_mutex);
1724 }
1725
1726 /* Switch away from any user context. */
1727 ret = gen8_switch_to_updated_kernel_context(dev_priv);
1728 if (ret)
1729 goto out;
1730
1731 /*
1732 * The OA register config is setup through the context image. This image
1733 * might be written to by the GPU on context switch (in particular on
1734 * lite-restore). This means we can't safely update a context's image,
1735 * if this context is scheduled/submitted to run on the GPU.
1736 *
1737 * We could emit the OA register config through the batch buffer but
1738 * this might leave small interval of time where the OA unit is
1739 * configured at an invalid sampling period.
1740 *
1741 * So far the best way to work around this issue seems to be draining
1742 * the GPU from any submitted work.
1743 */
1744 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1745 if (ret)
1746 goto out;
1747
1748 /* Update all contexts now that we've stalled the submission. */
1749 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1750 struct intel_context *ce = &ctx->engine[RCS];
1751 u32 *regs;
1752
1753 /* OA settings will be set upon first use */
1754 if (!ce->state)
1755 continue;
1756
1757 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1758 if (IS_ERR(regs)) {
1759 ret = PTR_ERR(regs);
1760 goto out;
1761 }
1762
1763 ce->state->obj->mm.dirty = true;
1764 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1765
1766 gen8_update_reg_state_unlocked(ctx, regs);
1767
1768 i915_gem_object_unpin_map(ce->state->obj);
1769 }
1770
1771 out:
1772 mutex_unlock(&dev_priv->drm.struct_mutex);
1773
1774 return ret;
1775 }
1776
1777 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv)
1778 {
1779 int ret = dev_priv->perf.oa.ops.select_metric_set(dev_priv);
1780 int i;
1781
1782 if (ret)
1783 return ret;
1784
1785 /*
1786 * We disable slice/unslice clock ratio change reports on SKL since
1787 * they are too noisy. The HW generates a lot of redundant reports
1788 * where the ratio hasn't really changed causing a lot of redundant
1789 * work to processes and increasing the chances we'll hit buffer
1790 * overruns.
1791 *
1792 * Although we don't currently use the 'disable overrun' OABUFFER
1793 * feature it's worth noting that clock ratio reports have to be
1794 * disabled before considering to use that feature since the HW doesn't
1795 * correctly block these reports.
1796 *
1797 * Currently none of the high-level metrics we have depend on knowing
1798 * this ratio to normalize.
1799 *
1800 * Note: This register is not power context saved and restored, but
1801 * that's OK considering that we disable RC6 while the OA unit is
1802 * enabled.
1803 *
1804 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1805 * be read back from automatically triggered reports, as part of the
1806 * RPT_ID field.
1807 */
1808 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
1809 IS_KABYLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
1810 I915_WRITE(GEN8_OA_DEBUG,
1811 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1812 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1813 }
1814
1815 /*
1816 * Update all contexts prior writing the mux configurations as we need
1817 * to make sure all slices/subslices are ON before writing to NOA
1818 * registers.
1819 */
1820 ret = gen8_configure_all_contexts(dev_priv, true);
1821 if (ret)
1822 return ret;
1823
1824 I915_WRITE(GDT_CHICKEN_BITS, 0xA0);
1825 for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
1826 config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
1827 dev_priv->perf.oa.mux_regs_lens[i]);
1828 }
1829 I915_WRITE(GDT_CHICKEN_BITS, 0x80);
1830
1831 config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
1832 dev_priv->perf.oa.b_counter_regs_len);
1833
1834 return 0;
1835 }
1836
1837 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1838 {
1839 /* Reset all contexts' slices/subslices configurations. */
1840 gen8_configure_all_contexts(dev_priv, false);
1841 }
1842
1843 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1844 {
1845 /*
1846 * Reset buf pointers so we don't forward reports from before now.
1847 *
1848 * Think carefully if considering trying to avoid this, since it
1849 * also ensures status flags and the buffer itself are cleared
1850 * in error paths, and we have checks for invalid reports based
1851 * on the assumption that certain fields are written to zeroed
1852 * memory which this helps maintains.
1853 */
1854 gen7_init_oa_buffer(dev_priv);
1855
1856 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1857 struct i915_gem_context *ctx =
1858 dev_priv->perf.oa.exclusive_stream->ctx;
1859 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1860
1861 bool periodic = dev_priv->perf.oa.periodic;
1862 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1863 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1864
1865 I915_WRITE(GEN7_OACONTROL,
1866 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1867 (period_exponent <<
1868 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1869 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1870 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1871 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1872 GEN7_OACONTROL_ENABLE);
1873 } else
1874 I915_WRITE(GEN7_OACONTROL, 0);
1875 }
1876
1877 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1878 {
1879 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1880
1881 /*
1882 * Reset buf pointers so we don't forward reports from before now.
1883 *
1884 * Think carefully if considering trying to avoid this, since it
1885 * also ensures status flags and the buffer itself are cleared
1886 * in error paths, and we have checks for invalid reports based
1887 * on the assumption that certain fields are written to zeroed
1888 * memory which this helps maintains.
1889 */
1890 gen8_init_oa_buffer(dev_priv);
1891
1892 /*
1893 * Note: we don't rely on the hardware to perform single context
1894 * filtering and instead filter on the cpu based on the context-id
1895 * field of reports
1896 */
1897 I915_WRITE(GEN8_OACONTROL, (report_format <<
1898 GEN8_OA_REPORT_FORMAT_SHIFT) |
1899 GEN8_OA_COUNTER_ENABLE);
1900 }
1901
1902 /**
1903 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1904 * @stream: An i915 perf stream opened for OA metrics
1905 *
1906 * [Re]enables hardware periodic sampling according to the period configured
1907 * when opening the stream. This also starts a hrtimer that will periodically
1908 * check for data in the circular OA buffer for notifying userspace (e.g.
1909 * during a read() or poll()).
1910 */
1911 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1912 {
1913 struct drm_i915_private *dev_priv = stream->dev_priv;
1914
1915 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1916
1917 if (dev_priv->perf.oa.periodic)
1918 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1919 ns_to_ktime(POLL_PERIOD),
1920 HRTIMER_MODE_REL_PINNED);
1921 }
1922
1923 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1924 {
1925 I915_WRITE(GEN7_OACONTROL, 0);
1926 }
1927
1928 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1929 {
1930 I915_WRITE(GEN8_OACONTROL, 0);
1931 }
1932
1933 /**
1934 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1935 * @stream: An i915 perf stream opened for OA metrics
1936 *
1937 * Stops the OA unit from periodically writing counter reports into the
1938 * circular OA buffer. This also stops the hrtimer that periodically checks for
1939 * data in the circular OA buffer, for notifying userspace.
1940 */
1941 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1942 {
1943 struct drm_i915_private *dev_priv = stream->dev_priv;
1944
1945 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1946
1947 if (dev_priv->perf.oa.periodic)
1948 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1949 }
1950
1951 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1952 .destroy = i915_oa_stream_destroy,
1953 .enable = i915_oa_stream_enable,
1954 .disable = i915_oa_stream_disable,
1955 .wait_unlocked = i915_oa_wait_unlocked,
1956 .poll_wait = i915_oa_poll_wait,
1957 .read = i915_oa_read,
1958 };
1959
1960 /**
1961 * i915_oa_stream_init - validate combined props for OA stream and init
1962 * @stream: An i915 perf stream
1963 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1964 * @props: The property state that configures stream (individually validated)
1965 *
1966 * While read_properties_unlocked() validates properties in isolation it
1967 * doesn't ensure that the combination necessarily makes sense.
1968 *
1969 * At this point it has been determined that userspace wants a stream of
1970 * OA metrics, but still we need to further validate the combined
1971 * properties are OK.
1972 *
1973 * If the configuration makes sense then we can allocate memory for
1974 * a circular OA buffer and apply the requested metric set configuration.
1975 *
1976 * Returns: zero on success or a negative error code.
1977 */
1978 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1979 struct drm_i915_perf_open_param *param,
1980 struct perf_open_properties *props)
1981 {
1982 struct drm_i915_private *dev_priv = stream->dev_priv;
1983 int format_size;
1984 int ret;
1985
1986 /* If the sysfs metrics/ directory wasn't registered for some
1987 * reason then don't let userspace try their luck with config
1988 * IDs
1989 */
1990 if (!dev_priv->perf.metrics_kobj) {
1991 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
1992 return -EINVAL;
1993 }
1994
1995 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
1996 DRM_DEBUG("Only OA report sampling supported\n");
1997 return -EINVAL;
1998 }
1999
2000 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2001 DRM_DEBUG("OA unit not supported\n");
2002 return -ENODEV;
2003 }
2004
2005 /* To avoid the complexity of having to accurately filter
2006 * counter reports and marshal to the appropriate client
2007 * we currently only allow exclusive access
2008 */
2009 if (dev_priv->perf.oa.exclusive_stream) {
2010 DRM_DEBUG("OA unit already in use\n");
2011 return -EBUSY;
2012 }
2013
2014 if (!props->metrics_set) {
2015 DRM_DEBUG("OA metric set not specified\n");
2016 return -EINVAL;
2017 }
2018
2019 if (!props->oa_format) {
2020 DRM_DEBUG("OA report format not specified\n");
2021 return -EINVAL;
2022 }
2023
2024 /* We set up some ratelimit state to potentially throttle any _NOTES
2025 * about spurious, invalid OA reports which we don't forward to
2026 * userspace.
2027 *
2028 * The initialization is associated with opening the stream (not driver
2029 * init) considering we print a _NOTE about any throttling when closing
2030 * the stream instead of waiting until driver _fini which no one would
2031 * ever see.
2032 *
2033 * Using the same limiting factors as printk_ratelimit()
2034 */
2035 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2036 5 * HZ, 10);
2037 /* Since we use a DRM_NOTE for spurious reports it would be
2038 * inconsistent to let __ratelimit() automatically print a warning for
2039 * throttling.
2040 */
2041 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2042 RATELIMIT_MSG_ON_RELEASE);
2043
2044 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2045
2046 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2047
2048 stream->sample_flags |= SAMPLE_OA_REPORT;
2049 stream->sample_size += format_size;
2050
2051 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2052 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2053 return -EINVAL;
2054
2055 dev_priv->perf.oa.oa_buffer.format =
2056 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2057
2058 dev_priv->perf.oa.metrics_set = props->metrics_set;
2059
2060 dev_priv->perf.oa.periodic = props->oa_periodic;
2061 if (dev_priv->perf.oa.periodic)
2062 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2063
2064 if (stream->ctx) {
2065 ret = oa_get_render_ctx_id(stream);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 /* PRM - observability performance counters:
2071 *
2072 * OACONTROL, performance counter enable, note:
2073 *
2074 * "When this bit is set, in order to have coherent counts,
2075 * RC6 power state and trunk clock gating must be disabled.
2076 * This can be achieved by programming MMIO registers as
2077 * 0xA094=0 and 0xA090[31]=1"
2078 *
2079 * In our case we are expecting that taking pm + FORCEWAKE
2080 * references will effectively disable RC6.
2081 */
2082 intel_runtime_pm_get(dev_priv);
2083 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2084
2085 ret = alloc_oa_buffer(dev_priv);
2086 if (ret)
2087 goto err_oa_buf_alloc;
2088
2089 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
2090 if (ret)
2091 goto err_enable;
2092
2093 stream->ops = &i915_oa_stream_ops;
2094
2095 dev_priv->perf.oa.exclusive_stream = stream;
2096
2097 return 0;
2098
2099 err_enable:
2100 free_oa_buffer(dev_priv);
2101
2102 err_oa_buf_alloc:
2103 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2104 intel_runtime_pm_put(dev_priv);
2105 if (stream->ctx)
2106 oa_put_render_ctx_id(stream);
2107
2108 return ret;
2109 }
2110
2111 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2112 struct i915_gem_context *ctx,
2113 u32 *reg_state)
2114 {
2115 struct drm_i915_private *dev_priv = engine->i915;
2116
2117 if (engine->id != RCS)
2118 return;
2119
2120 if (!dev_priv->perf.initialized)
2121 return;
2122
2123 gen8_update_reg_state_unlocked(ctx, reg_state);
2124 }
2125
2126 /**
2127 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2128 * @stream: An i915 perf stream
2129 * @file: An i915 perf stream file
2130 * @buf: destination buffer given by userspace
2131 * @count: the number of bytes userspace wants to read
2132 * @ppos: (inout) file seek position (unused)
2133 *
2134 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2135 * ensure that if we've successfully copied any data then reporting that takes
2136 * precedence over any internal error status, so the data isn't lost.
2137 *
2138 * For example ret will be -ENOSPC whenever there is more buffered data than
2139 * can be copied to userspace, but that's only interesting if we weren't able
2140 * to copy some data because it implies the userspace buffer is too small to
2141 * receive a single record (and we never split records).
2142 *
2143 * Another case with ret == -EFAULT is more of a grey area since it would seem
2144 * like bad form for userspace to ask us to overrun its buffer, but the user
2145 * knows best:
2146 *
2147 * http://yarchive.net/comp/linux/partial_reads_writes.html
2148 *
2149 * Returns: The number of bytes copied or a negative error code on failure.
2150 */
2151 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2152 struct file *file,
2153 char __user *buf,
2154 size_t count,
2155 loff_t *ppos)
2156 {
2157 /* Note we keep the offset (aka bytes read) separate from any
2158 * error status so that the final check for whether we return
2159 * the bytes read with a higher precedence than any error (see
2160 * comment below) doesn't need to be handled/duplicated in
2161 * stream->ops->read() implementations.
2162 */
2163 size_t offset = 0;
2164 int ret = stream->ops->read(stream, buf, count, &offset);
2165
2166 return offset ?: (ret ?: -EAGAIN);
2167 }
2168
2169 /**
2170 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2171 * @file: An i915 perf stream file
2172 * @buf: destination buffer given by userspace
2173 * @count: the number of bytes userspace wants to read
2174 * @ppos: (inout) file seek position (unused)
2175 *
2176 * The entry point for handling a read() on a stream file descriptor from
2177 * userspace. Most of the work is left to the i915_perf_read_locked() and
2178 * &i915_perf_stream_ops->read but to save having stream implementations (of
2179 * which we might have multiple later) we handle blocking read here.
2180 *
2181 * We can also consistently treat trying to read from a disabled stream
2182 * as an IO error so implementations can assume the stream is enabled
2183 * while reading.
2184 *
2185 * Returns: The number of bytes copied or a negative error code on failure.
2186 */
2187 static ssize_t i915_perf_read(struct file *file,
2188 char __user *buf,
2189 size_t count,
2190 loff_t *ppos)
2191 {
2192 struct i915_perf_stream *stream = file->private_data;
2193 struct drm_i915_private *dev_priv = stream->dev_priv;
2194 ssize_t ret;
2195
2196 /* To ensure it's handled consistently we simply treat all reads of a
2197 * disabled stream as an error. In particular it might otherwise lead
2198 * to a deadlock for blocking file descriptors...
2199 */
2200 if (!stream->enabled)
2201 return -EIO;
2202
2203 if (!(file->f_flags & O_NONBLOCK)) {
2204 /* There's the small chance of false positives from
2205 * stream->ops->wait_unlocked.
2206 *
2207 * E.g. with single context filtering since we only wait until
2208 * oabuffer has >= 1 report we don't immediately know whether
2209 * any reports really belong to the current context
2210 */
2211 do {
2212 ret = stream->ops->wait_unlocked(stream);
2213 if (ret)
2214 return ret;
2215
2216 mutex_lock(&dev_priv->perf.lock);
2217 ret = i915_perf_read_locked(stream, file,
2218 buf, count, ppos);
2219 mutex_unlock(&dev_priv->perf.lock);
2220 } while (ret == -EAGAIN);
2221 } else {
2222 mutex_lock(&dev_priv->perf.lock);
2223 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2224 mutex_unlock(&dev_priv->perf.lock);
2225 }
2226
2227 /* We allow the poll checking to sometimes report false positive POLLIN
2228 * events where we might actually report EAGAIN on read() if there's
2229 * not really any data available. In this situation though we don't
2230 * want to enter a busy loop between poll() reporting a POLLIN event
2231 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2232 * effectively ensures we back off until the next hrtimer callback
2233 * before reporting another POLLIN event.
2234 */
2235 if (ret >= 0 || ret == -EAGAIN) {
2236 /* Maybe make ->pollin per-stream state if we support multiple
2237 * concurrent streams in the future.
2238 */
2239 dev_priv->perf.oa.pollin = false;
2240 }
2241
2242 return ret;
2243 }
2244
2245 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2246 {
2247 struct drm_i915_private *dev_priv =
2248 container_of(hrtimer, typeof(*dev_priv),
2249 perf.oa.poll_check_timer);
2250
2251 if (oa_buffer_check_unlocked(dev_priv)) {
2252 dev_priv->perf.oa.pollin = true;
2253 wake_up(&dev_priv->perf.oa.poll_wq);
2254 }
2255
2256 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2257
2258 return HRTIMER_RESTART;
2259 }
2260
2261 /**
2262 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2263 * @dev_priv: i915 device instance
2264 * @stream: An i915 perf stream
2265 * @file: An i915 perf stream file
2266 * @wait: poll() state table
2267 *
2268 * For handling userspace polling on an i915 perf stream, this calls through to
2269 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2270 * will be woken for new stream data.
2271 *
2272 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2273 * with any non-file-operation driver hooks.
2274 *
2275 * Returns: any poll events that are ready without sleeping
2276 */
2277 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2278 struct i915_perf_stream *stream,
2279 struct file *file,
2280 poll_table *wait)
2281 {
2282 unsigned int events = 0;
2283
2284 stream->ops->poll_wait(stream, file, wait);
2285
2286 /* Note: we don't explicitly check whether there's something to read
2287 * here since this path may be very hot depending on what else
2288 * userspace is polling, or on the timeout in use. We rely solely on
2289 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2290 * samples to read.
2291 */
2292 if (dev_priv->perf.oa.pollin)
2293 events |= POLLIN;
2294
2295 return events;
2296 }
2297
2298 /**
2299 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2300 * @file: An i915 perf stream file
2301 * @wait: poll() state table
2302 *
2303 * For handling userspace polling on an i915 perf stream, this ensures
2304 * poll_wait() gets called with a wait queue that will be woken for new stream
2305 * data.
2306 *
2307 * Note: Implementation deferred to i915_perf_poll_locked()
2308 *
2309 * Returns: any poll events that are ready without sleeping
2310 */
2311 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2312 {
2313 struct i915_perf_stream *stream = file->private_data;
2314 struct drm_i915_private *dev_priv = stream->dev_priv;
2315 int ret;
2316
2317 mutex_lock(&dev_priv->perf.lock);
2318 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2319 mutex_unlock(&dev_priv->perf.lock);
2320
2321 return ret;
2322 }
2323
2324 /**
2325 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2326 * @stream: A disabled i915 perf stream
2327 *
2328 * [Re]enables the associated capture of data for this stream.
2329 *
2330 * If a stream was previously enabled then there's currently no intention
2331 * to provide userspace any guarantee about the preservation of previously
2332 * buffered data.
2333 */
2334 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2335 {
2336 if (stream->enabled)
2337 return;
2338
2339 /* Allow stream->ops->enable() to refer to this */
2340 stream->enabled = true;
2341
2342 if (stream->ops->enable)
2343 stream->ops->enable(stream);
2344 }
2345
2346 /**
2347 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2348 * @stream: An enabled i915 perf stream
2349 *
2350 * Disables the associated capture of data for this stream.
2351 *
2352 * The intention is that disabling an re-enabling a stream will ideally be
2353 * cheaper than destroying and re-opening a stream with the same configuration,
2354 * though there are no formal guarantees about what state or buffered data
2355 * must be retained between disabling and re-enabling a stream.
2356 *
2357 * Note: while a stream is disabled it's considered an error for userspace
2358 * to attempt to read from the stream (-EIO).
2359 */
2360 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2361 {
2362 if (!stream->enabled)
2363 return;
2364
2365 /* Allow stream->ops->disable() to refer to this */
2366 stream->enabled = false;
2367
2368 if (stream->ops->disable)
2369 stream->ops->disable(stream);
2370 }
2371
2372 /**
2373 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2374 * @stream: An i915 perf stream
2375 * @cmd: the ioctl request
2376 * @arg: the ioctl data
2377 *
2378 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2379 * with any non-file-operation driver hooks.
2380 *
2381 * Returns: zero on success or a negative error code. Returns -EINVAL for
2382 * an unknown ioctl request.
2383 */
2384 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2385 unsigned int cmd,
2386 unsigned long arg)
2387 {
2388 switch (cmd) {
2389 case I915_PERF_IOCTL_ENABLE:
2390 i915_perf_enable_locked(stream);
2391 return 0;
2392 case I915_PERF_IOCTL_DISABLE:
2393 i915_perf_disable_locked(stream);
2394 return 0;
2395 }
2396
2397 return -EINVAL;
2398 }
2399
2400 /**
2401 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2402 * @file: An i915 perf stream file
2403 * @cmd: the ioctl request
2404 * @arg: the ioctl data
2405 *
2406 * Implementation deferred to i915_perf_ioctl_locked().
2407 *
2408 * Returns: zero on success or a negative error code. Returns -EINVAL for
2409 * an unknown ioctl request.
2410 */
2411 static long i915_perf_ioctl(struct file *file,
2412 unsigned int cmd,
2413 unsigned long arg)
2414 {
2415 struct i915_perf_stream *stream = file->private_data;
2416 struct drm_i915_private *dev_priv = stream->dev_priv;
2417 long ret;
2418
2419 mutex_lock(&dev_priv->perf.lock);
2420 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2421 mutex_unlock(&dev_priv->perf.lock);
2422
2423 return ret;
2424 }
2425
2426 /**
2427 * i915_perf_destroy_locked - destroy an i915 perf stream
2428 * @stream: An i915 perf stream
2429 *
2430 * Frees all resources associated with the given i915 perf @stream, disabling
2431 * any associated data capture in the process.
2432 *
2433 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2434 * with any non-file-operation driver hooks.
2435 */
2436 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2437 {
2438 if (stream->enabled)
2439 i915_perf_disable_locked(stream);
2440
2441 if (stream->ops->destroy)
2442 stream->ops->destroy(stream);
2443
2444 list_del(&stream->link);
2445
2446 if (stream->ctx)
2447 i915_gem_context_put_unlocked(stream->ctx);
2448
2449 kfree(stream);
2450 }
2451
2452 /**
2453 * i915_perf_release - handles userspace close() of a stream file
2454 * @inode: anonymous inode associated with file
2455 * @file: An i915 perf stream file
2456 *
2457 * Cleans up any resources associated with an open i915 perf stream file.
2458 *
2459 * NB: close() can't really fail from the userspace point of view.
2460 *
2461 * Returns: zero on success or a negative error code.
2462 */
2463 static int i915_perf_release(struct inode *inode, struct file *file)
2464 {
2465 struct i915_perf_stream *stream = file->private_data;
2466 struct drm_i915_private *dev_priv = stream->dev_priv;
2467
2468 mutex_lock(&dev_priv->perf.lock);
2469 i915_perf_destroy_locked(stream);
2470 mutex_unlock(&dev_priv->perf.lock);
2471
2472 return 0;
2473 }
2474
2475
2476 static const struct file_operations fops = {
2477 .owner = THIS_MODULE,
2478 .llseek = no_llseek,
2479 .release = i915_perf_release,
2480 .poll = i915_perf_poll,
2481 .read = i915_perf_read,
2482 .unlocked_ioctl = i915_perf_ioctl,
2483 };
2484
2485
2486 static struct i915_gem_context *
2487 lookup_context(struct drm_i915_private *dev_priv,
2488 struct drm_i915_file_private *file_priv,
2489 u32 ctx_user_handle)
2490 {
2491 struct i915_gem_context *ctx;
2492 int ret;
2493
2494 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2495 if (ret)
2496 return ERR_PTR(ret);
2497
2498 ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
2499 if (!IS_ERR(ctx))
2500 i915_gem_context_get(ctx);
2501
2502 mutex_unlock(&dev_priv->drm.struct_mutex);
2503
2504 return ctx;
2505 }
2506
2507 /**
2508 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2509 * @dev_priv: i915 device instance
2510 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2511 * @props: individually validated u64 property value pairs
2512 * @file: drm file
2513 *
2514 * See i915_perf_ioctl_open() for interface details.
2515 *
2516 * Implements further stream config validation and stream initialization on
2517 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2518 * taken to serialize with any non-file-operation driver hooks.
2519 *
2520 * Note: at this point the @props have only been validated in isolation and
2521 * it's still necessary to validate that the combination of properties makes
2522 * sense.
2523 *
2524 * In the case where userspace is interested in OA unit metrics then further
2525 * config validation and stream initialization details will be handled by
2526 * i915_oa_stream_init(). The code here should only validate config state that
2527 * will be relevant to all stream types / backends.
2528 *
2529 * Returns: zero on success or a negative error code.
2530 */
2531 static int
2532 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2533 struct drm_i915_perf_open_param *param,
2534 struct perf_open_properties *props,
2535 struct drm_file *file)
2536 {
2537 struct i915_gem_context *specific_ctx = NULL;
2538 struct i915_perf_stream *stream = NULL;
2539 unsigned long f_flags = 0;
2540 bool privileged_op = true;
2541 int stream_fd;
2542 int ret;
2543
2544 if (props->single_context) {
2545 u32 ctx_handle = props->ctx_handle;
2546 struct drm_i915_file_private *file_priv = file->driver_priv;
2547
2548 specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
2549 if (IS_ERR(specific_ctx)) {
2550 ret = PTR_ERR(specific_ctx);
2551 if (ret != -EINTR)
2552 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2553 ctx_handle);
2554 goto err;
2555 }
2556 }
2557
2558 /*
2559 * On Haswell the OA unit supports clock gating off for a specific
2560 * context and in this mode there's no visibility of metrics for the
2561 * rest of the system, which we consider acceptable for a
2562 * non-privileged client.
2563 *
2564 * For Gen8+ the OA unit no longer supports clock gating off for a
2565 * specific context and the kernel can't securely stop the counters
2566 * from updating as system-wide / global values. Even though we can
2567 * filter reports based on the included context ID we can't block
2568 * clients from seeing the raw / global counter values via
2569 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2570 * enable the OA unit by default.
2571 */
2572 if (IS_HASWELL(dev_priv) && specific_ctx)
2573 privileged_op = false;
2574
2575 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2576 * we check a dev.i915.perf_stream_paranoid sysctl option
2577 * to determine if it's ok to access system wide OA counters
2578 * without CAP_SYS_ADMIN privileges.
2579 */
2580 if (privileged_op &&
2581 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2582 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2583 ret = -EACCES;
2584 goto err_ctx;
2585 }
2586
2587 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2588 if (!stream) {
2589 ret = -ENOMEM;
2590 goto err_ctx;
2591 }
2592
2593 stream->dev_priv = dev_priv;
2594 stream->ctx = specific_ctx;
2595
2596 ret = i915_oa_stream_init(stream, param, props);
2597 if (ret)
2598 goto err_alloc;
2599
2600 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2601 * to have _stream_init check the combination of sample flags more
2602 * thoroughly, but still this is the expected result at this point.
2603 */
2604 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2605 ret = -ENODEV;
2606 goto err_flags;
2607 }
2608
2609 list_add(&stream->link, &dev_priv->perf.streams);
2610
2611 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2612 f_flags |= O_CLOEXEC;
2613 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2614 f_flags |= O_NONBLOCK;
2615
2616 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2617 if (stream_fd < 0) {
2618 ret = stream_fd;
2619 goto err_open;
2620 }
2621
2622 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2623 i915_perf_enable_locked(stream);
2624
2625 return stream_fd;
2626
2627 err_open:
2628 list_del(&stream->link);
2629 err_flags:
2630 if (stream->ops->destroy)
2631 stream->ops->destroy(stream);
2632 err_alloc:
2633 kfree(stream);
2634 err_ctx:
2635 if (specific_ctx)
2636 i915_gem_context_put_unlocked(specific_ctx);
2637 err:
2638 return ret;
2639 }
2640
2641 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2642 {
2643 return div_u64(1000000000ULL * (2ULL << exponent),
2644 dev_priv->perf.oa.timestamp_frequency);
2645 }
2646
2647 /**
2648 * read_properties_unlocked - validate + copy userspace stream open properties
2649 * @dev_priv: i915 device instance
2650 * @uprops: The array of u64 key value pairs given by userspace
2651 * @n_props: The number of key value pairs expected in @uprops
2652 * @props: The stream configuration built up while validating properties
2653 *
2654 * Note this function only validates properties in isolation it doesn't
2655 * validate that the combination of properties makes sense or that all
2656 * properties necessary for a particular kind of stream have been set.
2657 *
2658 * Note that there currently aren't any ordering requirements for properties so
2659 * we shouldn't validate or assume anything about ordering here. This doesn't
2660 * rule out defining new properties with ordering requirements in the future.
2661 */
2662 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2663 u64 __user *uprops,
2664 u32 n_props,
2665 struct perf_open_properties *props)
2666 {
2667 u64 __user *uprop = uprops;
2668 int i;
2669
2670 memset(props, 0, sizeof(struct perf_open_properties));
2671
2672 if (!n_props) {
2673 DRM_DEBUG("No i915 perf properties given\n");
2674 return -EINVAL;
2675 }
2676
2677 /* Considering that ID = 0 is reserved and assuming that we don't
2678 * (currently) expect any configurations to ever specify duplicate
2679 * values for a particular property ID then the last _PROP_MAX value is
2680 * one greater than the maximum number of properties we expect to get
2681 * from userspace.
2682 */
2683 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2684 DRM_DEBUG("More i915 perf properties specified than exist\n");
2685 return -EINVAL;
2686 }
2687
2688 for (i = 0; i < n_props; i++) {
2689 u64 oa_period, oa_freq_hz;
2690 u64 id, value;
2691 int ret;
2692
2693 ret = get_user(id, uprop);
2694 if (ret)
2695 return ret;
2696
2697 ret = get_user(value, uprop + 1);
2698 if (ret)
2699 return ret;
2700
2701 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2702 DRM_DEBUG("Unknown i915 perf property ID\n");
2703 return -EINVAL;
2704 }
2705
2706 switch ((enum drm_i915_perf_property_id)id) {
2707 case DRM_I915_PERF_PROP_CTX_HANDLE:
2708 props->single_context = 1;
2709 props->ctx_handle = value;
2710 break;
2711 case DRM_I915_PERF_PROP_SAMPLE_OA:
2712 props->sample_flags |= SAMPLE_OA_REPORT;
2713 break;
2714 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2715 if (value == 0 ||
2716 value > dev_priv->perf.oa.n_builtin_sets) {
2717 DRM_DEBUG("Unknown OA metric set ID\n");
2718 return -EINVAL;
2719 }
2720 props->metrics_set = value;
2721 break;
2722 case DRM_I915_PERF_PROP_OA_FORMAT:
2723 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2724 DRM_DEBUG("Out-of-range OA report format %llu\n",
2725 value);
2726 return -EINVAL;
2727 }
2728 if (!dev_priv->perf.oa.oa_formats[value].size) {
2729 DRM_DEBUG("Unsupported OA report format %llu\n",
2730 value);
2731 return -EINVAL;
2732 }
2733 props->oa_format = value;
2734 break;
2735 case DRM_I915_PERF_PROP_OA_EXPONENT:
2736 if (value > OA_EXPONENT_MAX) {
2737 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2738 OA_EXPONENT_MAX);
2739 return -EINVAL;
2740 }
2741
2742 /* Theoretically we can program the OA unit to sample
2743 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2744 * for BXT. We don't allow such high sampling
2745 * frequencies by default unless root.
2746 */
2747
2748 BUILD_BUG_ON(sizeof(oa_period) != 8);
2749 oa_period = oa_exponent_to_ns(dev_priv, value);
2750
2751 /* This check is primarily to ensure that oa_period <=
2752 * UINT32_MAX (before passing to do_div which only
2753 * accepts a u32 denominator), but we can also skip
2754 * checking anything < 1Hz which implicitly can't be
2755 * limited via an integer oa_max_sample_rate.
2756 */
2757 if (oa_period <= NSEC_PER_SEC) {
2758 u64 tmp = NSEC_PER_SEC;
2759 do_div(tmp, oa_period);
2760 oa_freq_hz = tmp;
2761 } else
2762 oa_freq_hz = 0;
2763
2764 if (oa_freq_hz > i915_oa_max_sample_rate &&
2765 !capable(CAP_SYS_ADMIN)) {
2766 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2767 i915_oa_max_sample_rate);
2768 return -EACCES;
2769 }
2770
2771 props->oa_periodic = true;
2772 props->oa_period_exponent = value;
2773 break;
2774 case DRM_I915_PERF_PROP_MAX:
2775 MISSING_CASE(id);
2776 return -EINVAL;
2777 }
2778
2779 uprop += 2;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /**
2786 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2787 * @dev: drm device
2788 * @data: ioctl data copied from userspace (unvalidated)
2789 * @file: drm file
2790 *
2791 * Validates the stream open parameters given by userspace including flags
2792 * and an array of u64 key, value pair properties.
2793 *
2794 * Very little is assumed up front about the nature of the stream being
2795 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2796 * i915-perf stream is expected to be a suitable interface for other forms of
2797 * buffered data written by the GPU besides periodic OA metrics.
2798 *
2799 * Note we copy the properties from userspace outside of the i915 perf
2800 * mutex to avoid an awkward lockdep with mmap_sem.
2801 *
2802 * Most of the implementation details are handled by
2803 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2804 * mutex for serializing with any non-file-operation driver hooks.
2805 *
2806 * Return: A newly opened i915 Perf stream file descriptor or negative
2807 * error code on failure.
2808 */
2809 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2810 struct drm_file *file)
2811 {
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 struct drm_i915_perf_open_param *param = data;
2814 struct perf_open_properties props;
2815 u32 known_open_flags;
2816 int ret;
2817
2818 if (!dev_priv->perf.initialized) {
2819 DRM_DEBUG("i915 perf interface not available for this system\n");
2820 return -ENOTSUPP;
2821 }
2822
2823 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2824 I915_PERF_FLAG_FD_NONBLOCK |
2825 I915_PERF_FLAG_DISABLED;
2826 if (param->flags & ~known_open_flags) {
2827 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2828 return -EINVAL;
2829 }
2830
2831 ret = read_properties_unlocked(dev_priv,
2832 u64_to_user_ptr(param->properties_ptr),
2833 param->num_properties,
2834 &props);
2835 if (ret)
2836 return ret;
2837
2838 mutex_lock(&dev_priv->perf.lock);
2839 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2840 mutex_unlock(&dev_priv->perf.lock);
2841
2842 return ret;
2843 }
2844
2845 /**
2846 * i915_perf_register - exposes i915-perf to userspace
2847 * @dev_priv: i915 device instance
2848 *
2849 * In particular OA metric sets are advertised under a sysfs metrics/
2850 * directory allowing userspace to enumerate valid IDs that can be
2851 * used to open an i915-perf stream.
2852 */
2853 void i915_perf_register(struct drm_i915_private *dev_priv)
2854 {
2855 if (!dev_priv->perf.initialized)
2856 return;
2857
2858 /* To be sure we're synchronized with an attempted
2859 * i915_perf_open_ioctl(); considering that we register after
2860 * being exposed to userspace.
2861 */
2862 mutex_lock(&dev_priv->perf.lock);
2863
2864 dev_priv->perf.metrics_kobj =
2865 kobject_create_and_add("metrics",
2866 &dev_priv->drm.primary->kdev->kobj);
2867 if (!dev_priv->perf.metrics_kobj)
2868 goto exit;
2869
2870 if (IS_HASWELL(dev_priv)) {
2871 if (i915_perf_register_sysfs_hsw(dev_priv))
2872 goto sysfs_error;
2873 } else if (IS_BROADWELL(dev_priv)) {
2874 if (i915_perf_register_sysfs_bdw(dev_priv))
2875 goto sysfs_error;
2876 } else if (IS_CHERRYVIEW(dev_priv)) {
2877 if (i915_perf_register_sysfs_chv(dev_priv))
2878 goto sysfs_error;
2879 } else if (IS_SKYLAKE(dev_priv)) {
2880 if (IS_SKL_GT2(dev_priv)) {
2881 if (i915_perf_register_sysfs_sklgt2(dev_priv))
2882 goto sysfs_error;
2883 } else if (IS_SKL_GT3(dev_priv)) {
2884 if (i915_perf_register_sysfs_sklgt3(dev_priv))
2885 goto sysfs_error;
2886 } else if (IS_SKL_GT4(dev_priv)) {
2887 if (i915_perf_register_sysfs_sklgt4(dev_priv))
2888 goto sysfs_error;
2889 } else
2890 goto sysfs_error;
2891 } else if (IS_BROXTON(dev_priv)) {
2892 if (i915_perf_register_sysfs_bxt(dev_priv))
2893 goto sysfs_error;
2894 } else if (IS_KABYLAKE(dev_priv)) {
2895 if (IS_KBL_GT2(dev_priv)) {
2896 if (i915_perf_register_sysfs_kblgt2(dev_priv))
2897 goto sysfs_error;
2898 } else if (IS_KBL_GT3(dev_priv)) {
2899 if (i915_perf_register_sysfs_kblgt3(dev_priv))
2900 goto sysfs_error;
2901 } else
2902 goto sysfs_error;
2903 } else if (IS_GEMINILAKE(dev_priv)) {
2904 if (i915_perf_register_sysfs_glk(dev_priv))
2905 goto sysfs_error;
2906 }
2907
2908 goto exit;
2909
2910 sysfs_error:
2911 kobject_put(dev_priv->perf.metrics_kobj);
2912 dev_priv->perf.metrics_kobj = NULL;
2913
2914 exit:
2915 mutex_unlock(&dev_priv->perf.lock);
2916 }
2917
2918 /**
2919 * i915_perf_unregister - hide i915-perf from userspace
2920 * @dev_priv: i915 device instance
2921 *
2922 * i915-perf state cleanup is split up into an 'unregister' and
2923 * 'deinit' phase where the interface is first hidden from
2924 * userspace by i915_perf_unregister() before cleaning up
2925 * remaining state in i915_perf_fini().
2926 */
2927 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2928 {
2929 if (!dev_priv->perf.metrics_kobj)
2930 return;
2931
2932 if (IS_HASWELL(dev_priv))
2933 i915_perf_unregister_sysfs_hsw(dev_priv);
2934 else if (IS_BROADWELL(dev_priv))
2935 i915_perf_unregister_sysfs_bdw(dev_priv);
2936 else if (IS_CHERRYVIEW(dev_priv))
2937 i915_perf_unregister_sysfs_chv(dev_priv);
2938 else if (IS_SKYLAKE(dev_priv)) {
2939 if (IS_SKL_GT2(dev_priv))
2940 i915_perf_unregister_sysfs_sklgt2(dev_priv);
2941 else if (IS_SKL_GT3(dev_priv))
2942 i915_perf_unregister_sysfs_sklgt3(dev_priv);
2943 else if (IS_SKL_GT4(dev_priv))
2944 i915_perf_unregister_sysfs_sklgt4(dev_priv);
2945 } else if (IS_BROXTON(dev_priv))
2946 i915_perf_unregister_sysfs_bxt(dev_priv);
2947 else if (IS_KABYLAKE(dev_priv)) {
2948 if (IS_KBL_GT2(dev_priv))
2949 i915_perf_unregister_sysfs_kblgt2(dev_priv);
2950 else if (IS_KBL_GT3(dev_priv))
2951 i915_perf_unregister_sysfs_kblgt3(dev_priv);
2952 } else if (IS_GEMINILAKE(dev_priv))
2953 i915_perf_unregister_sysfs_glk(dev_priv);
2954
2955
2956 kobject_put(dev_priv->perf.metrics_kobj);
2957 dev_priv->perf.metrics_kobj = NULL;
2958 }
2959
2960 static struct ctl_table oa_table[] = {
2961 {
2962 .procname = "perf_stream_paranoid",
2963 .data = &i915_perf_stream_paranoid,
2964 .maxlen = sizeof(i915_perf_stream_paranoid),
2965 .mode = 0644,
2966 .proc_handler = proc_dointvec_minmax,
2967 .extra1 = &zero,
2968 .extra2 = &one,
2969 },
2970 {
2971 .procname = "oa_max_sample_rate",
2972 .data = &i915_oa_max_sample_rate,
2973 .maxlen = sizeof(i915_oa_max_sample_rate),
2974 .mode = 0644,
2975 .proc_handler = proc_dointvec_minmax,
2976 .extra1 = &zero,
2977 .extra2 = &oa_sample_rate_hard_limit,
2978 },
2979 {}
2980 };
2981
2982 static struct ctl_table i915_root[] = {
2983 {
2984 .procname = "i915",
2985 .maxlen = 0,
2986 .mode = 0555,
2987 .child = oa_table,
2988 },
2989 {}
2990 };
2991
2992 static struct ctl_table dev_root[] = {
2993 {
2994 .procname = "dev",
2995 .maxlen = 0,
2996 .mode = 0555,
2997 .child = i915_root,
2998 },
2999 {}
3000 };
3001
3002 /**
3003 * i915_perf_init - initialize i915-perf state on module load
3004 * @dev_priv: i915 device instance
3005 *
3006 * Initializes i915-perf state without exposing anything to userspace.
3007 *
3008 * Note: i915-perf initialization is split into an 'init' and 'register'
3009 * phase with the i915_perf_register() exposing state to userspace.
3010 */
3011 void i915_perf_init(struct drm_i915_private *dev_priv)
3012 {
3013 dev_priv->perf.oa.n_builtin_sets = 0;
3014
3015 if (IS_HASWELL(dev_priv)) {
3016 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3017 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3018 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3019 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3020 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3021 dev_priv->perf.oa.ops.read = gen7_oa_read;
3022 dev_priv->perf.oa.ops.oa_hw_tail_read =
3023 gen7_oa_hw_tail_read;
3024
3025 dev_priv->perf.oa.timestamp_frequency = 12500000;
3026
3027 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3028
3029 dev_priv->perf.oa.n_builtin_sets =
3030 i915_oa_n_builtin_metric_sets_hsw;
3031 } else if (i915.enable_execlists) {
3032 /* Note: that although we could theoretically also support the
3033 * legacy ringbuffer mode on BDW (and earlier iterations of
3034 * this driver, before upstreaming did this) it didn't seem
3035 * worth the complexity to maintain now that BDW+ enable
3036 * execlist mode by default.
3037 */
3038
3039 if (IS_GEN8(dev_priv)) {
3040 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3041 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3042
3043 dev_priv->perf.oa.timestamp_frequency = 12500000;
3044
3045 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3046
3047 if (IS_BROADWELL(dev_priv)) {
3048 dev_priv->perf.oa.n_builtin_sets =
3049 i915_oa_n_builtin_metric_sets_bdw;
3050 dev_priv->perf.oa.ops.select_metric_set =
3051 i915_oa_select_metric_set_bdw;
3052 } else if (IS_CHERRYVIEW(dev_priv)) {
3053 dev_priv->perf.oa.n_builtin_sets =
3054 i915_oa_n_builtin_metric_sets_chv;
3055 dev_priv->perf.oa.ops.select_metric_set =
3056 i915_oa_select_metric_set_chv;
3057 }
3058 } else if (IS_GEN9(dev_priv)) {
3059 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3060 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3061
3062 dev_priv->perf.oa.timestamp_frequency = 12000000;
3063
3064 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3065
3066 if (IS_SKL_GT2(dev_priv)) {
3067 dev_priv->perf.oa.n_builtin_sets =
3068 i915_oa_n_builtin_metric_sets_sklgt2;
3069 dev_priv->perf.oa.ops.select_metric_set =
3070 i915_oa_select_metric_set_sklgt2;
3071 } else if (IS_SKL_GT3(dev_priv)) {
3072 dev_priv->perf.oa.n_builtin_sets =
3073 i915_oa_n_builtin_metric_sets_sklgt3;
3074 dev_priv->perf.oa.ops.select_metric_set =
3075 i915_oa_select_metric_set_sklgt3;
3076 } else if (IS_SKL_GT4(dev_priv)) {
3077 dev_priv->perf.oa.n_builtin_sets =
3078 i915_oa_n_builtin_metric_sets_sklgt4;
3079 dev_priv->perf.oa.ops.select_metric_set =
3080 i915_oa_select_metric_set_sklgt4;
3081 } else if (IS_BROXTON(dev_priv)) {
3082 dev_priv->perf.oa.timestamp_frequency = 19200000;
3083
3084 dev_priv->perf.oa.n_builtin_sets =
3085 i915_oa_n_builtin_metric_sets_bxt;
3086 dev_priv->perf.oa.ops.select_metric_set =
3087 i915_oa_select_metric_set_bxt;
3088 } else if (IS_KBL_GT2(dev_priv)) {
3089 dev_priv->perf.oa.n_builtin_sets =
3090 i915_oa_n_builtin_metric_sets_kblgt2;
3091 dev_priv->perf.oa.ops.select_metric_set =
3092 i915_oa_select_metric_set_kblgt2;
3093 } else if (IS_KBL_GT3(dev_priv)) {
3094 dev_priv->perf.oa.n_builtin_sets =
3095 i915_oa_n_builtin_metric_sets_kblgt3;
3096 dev_priv->perf.oa.ops.select_metric_set =
3097 i915_oa_select_metric_set_kblgt3;
3098 } else if (IS_GEMINILAKE(dev_priv)) {
3099 dev_priv->perf.oa.timestamp_frequency = 19200000;
3100
3101 dev_priv->perf.oa.n_builtin_sets =
3102 i915_oa_n_builtin_metric_sets_glk;
3103 dev_priv->perf.oa.ops.select_metric_set =
3104 i915_oa_select_metric_set_glk;
3105 }
3106 }
3107
3108 if (dev_priv->perf.oa.n_builtin_sets) {
3109 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3110 dev_priv->perf.oa.ops.enable_metric_set =
3111 gen8_enable_metric_set;
3112 dev_priv->perf.oa.ops.disable_metric_set =
3113 gen8_disable_metric_set;
3114 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3115 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3116 dev_priv->perf.oa.ops.read = gen8_oa_read;
3117 dev_priv->perf.oa.ops.oa_hw_tail_read =
3118 gen8_oa_hw_tail_read;
3119
3120 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3121 }
3122 }
3123
3124 if (dev_priv->perf.oa.n_builtin_sets) {
3125 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3126 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3127 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3128 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3129
3130 INIT_LIST_HEAD(&dev_priv->perf.streams);
3131 mutex_init(&dev_priv->perf.lock);
3132 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3133
3134 oa_sample_rate_hard_limit =
3135 dev_priv->perf.oa.timestamp_frequency / 2;
3136 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3137
3138 dev_priv->perf.initialized = true;
3139 }
3140 }
3141
3142 /**
3143 * i915_perf_fini - Counter part to i915_perf_init()
3144 * @dev_priv: i915 device instance
3145 */
3146 void i915_perf_fini(struct drm_i915_private *dev_priv)
3147 {
3148 if (!dev_priv->perf.initialized)
3149 return;
3150
3151 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3152
3153 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3154
3155 dev_priv->perf.initialized = false;
3156 }