]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_sysfs.c
Merge tag 'pm+acpi-3.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_sysfs.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 *
26 */
27
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34
35 #define dev_to_drm_minor(d) dev_get_drvdata((d))
36
37 #ifdef CONFIG_PM
38 static u32 calc_residency(struct drm_device *dev, const u32 reg)
39 {
40 struct drm_i915_private *dev_priv = dev->dev_private;
41 u64 raw_time; /* 32b value may overflow during fixed point math */
42 u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
43 u32 ret;
44
45 if (!intel_enable_rc6(dev))
46 return 0;
47
48 intel_runtime_pm_get(dev_priv);
49
50 /* On VLV, residency time is in CZ units rather than 1.28us */
51 if (IS_VALLEYVIEW(dev)) {
52 u32 clkctl2;
53
54 clkctl2 = I915_READ(VLV_CLK_CTL2) >>
55 CLK_CTL2_CZCOUNT_30NS_SHIFT;
56 if (!clkctl2) {
57 WARN(!clkctl2, "bogus CZ count value");
58 ret = 0;
59 goto out;
60 }
61 units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
62 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
63 units <<= 8;
64
65 div = 1000000ULL * bias;
66 }
67
68 raw_time = I915_READ(reg) * units;
69 ret = DIV_ROUND_UP_ULL(raw_time, div);
70
71 out:
72 intel_runtime_pm_put(dev_priv);
73 return ret;
74 }
75
76 static ssize_t
77 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
78 {
79 struct drm_minor *dminor = dev_to_drm_minor(kdev);
80 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
81 }
82
83 static ssize_t
84 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
85 {
86 struct drm_minor *dminor = dev_get_drvdata(kdev);
87 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
88 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
89 }
90
91 static ssize_t
92 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
93 {
94 struct drm_minor *dminor = dev_to_drm_minor(kdev);
95 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
96 if (IS_VALLEYVIEW(dminor->dev))
97 rc6p_residency = 0;
98 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
99 }
100
101 static ssize_t
102 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
103 {
104 struct drm_minor *dminor = dev_to_drm_minor(kdev);
105 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
106 if (IS_VALLEYVIEW(dminor->dev))
107 rc6pp_residency = 0;
108 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
109 }
110
111 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
112 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
113 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
114 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
115
116 static struct attribute *rc6_attrs[] = {
117 &dev_attr_rc6_enable.attr,
118 &dev_attr_rc6_residency_ms.attr,
119 &dev_attr_rc6p_residency_ms.attr,
120 &dev_attr_rc6pp_residency_ms.attr,
121 NULL
122 };
123
124 static struct attribute_group rc6_attr_group = {
125 .name = power_group_name,
126 .attrs = rc6_attrs
127 };
128 #endif
129
130 static int l3_access_valid(struct drm_device *dev, loff_t offset)
131 {
132 if (!HAS_L3_DPF(dev))
133 return -EPERM;
134
135 if (offset % 4 != 0)
136 return -EINVAL;
137
138 if (offset >= GEN7_L3LOG_SIZE)
139 return -ENXIO;
140
141 return 0;
142 }
143
144 static ssize_t
145 i915_l3_read(struct file *filp, struct kobject *kobj,
146 struct bin_attribute *attr, char *buf,
147 loff_t offset, size_t count)
148 {
149 struct device *dev = container_of(kobj, struct device, kobj);
150 struct drm_minor *dminor = dev_to_drm_minor(dev);
151 struct drm_device *drm_dev = dminor->dev;
152 struct drm_i915_private *dev_priv = drm_dev->dev_private;
153 int slice = (int)(uintptr_t)attr->private;
154 int ret;
155
156 count = round_down(count, 4);
157
158 ret = l3_access_valid(drm_dev, offset);
159 if (ret)
160 return ret;
161
162 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
163
164 ret = i915_mutex_lock_interruptible(drm_dev);
165 if (ret)
166 return ret;
167
168 if (dev_priv->l3_parity.remap_info[slice])
169 memcpy(buf,
170 dev_priv->l3_parity.remap_info[slice] + (offset/4),
171 count);
172 else
173 memset(buf, 0, count);
174
175 mutex_unlock(&drm_dev->struct_mutex);
176
177 return count;
178 }
179
180 static ssize_t
181 i915_l3_write(struct file *filp, struct kobject *kobj,
182 struct bin_attribute *attr, char *buf,
183 loff_t offset, size_t count)
184 {
185 struct device *dev = container_of(kobj, struct device, kobj);
186 struct drm_minor *dminor = dev_to_drm_minor(dev);
187 struct drm_device *drm_dev = dminor->dev;
188 struct drm_i915_private *dev_priv = drm_dev->dev_private;
189 struct i915_hw_context *ctx;
190 u32 *temp = NULL; /* Just here to make handling failures easy */
191 int slice = (int)(uintptr_t)attr->private;
192 int ret;
193
194 if (!HAS_HW_CONTEXTS(drm_dev))
195 return -ENXIO;
196
197 ret = l3_access_valid(drm_dev, offset);
198 if (ret)
199 return ret;
200
201 ret = i915_mutex_lock_interruptible(drm_dev);
202 if (ret)
203 return ret;
204
205 if (!dev_priv->l3_parity.remap_info[slice]) {
206 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
207 if (!temp) {
208 mutex_unlock(&drm_dev->struct_mutex);
209 return -ENOMEM;
210 }
211 }
212
213 ret = i915_gpu_idle(drm_dev);
214 if (ret) {
215 kfree(temp);
216 mutex_unlock(&drm_dev->struct_mutex);
217 return ret;
218 }
219
220 /* TODO: Ideally we really want a GPU reset here to make sure errors
221 * aren't propagated. Since I cannot find a stable way to reset the GPU
222 * at this point it is left as a TODO.
223 */
224 if (temp)
225 dev_priv->l3_parity.remap_info[slice] = temp;
226
227 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
228
229 /* NB: We defer the remapping until we switch to the context */
230 list_for_each_entry(ctx, &dev_priv->context_list, link)
231 ctx->remap_slice |= (1<<slice);
232
233 mutex_unlock(&drm_dev->struct_mutex);
234
235 return count;
236 }
237
238 static struct bin_attribute dpf_attrs = {
239 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
240 .size = GEN7_L3LOG_SIZE,
241 .read = i915_l3_read,
242 .write = i915_l3_write,
243 .mmap = NULL,
244 .private = (void *)0
245 };
246
247 static struct bin_attribute dpf_attrs_1 = {
248 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
249 .size = GEN7_L3LOG_SIZE,
250 .read = i915_l3_read,
251 .write = i915_l3_write,
252 .mmap = NULL,
253 .private = (void *)1
254 };
255
256 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct drm_minor *minor = dev_to_drm_minor(kdev);
260 struct drm_device *dev = minor->dev;
261 struct drm_i915_private *dev_priv = dev->dev_private;
262 int ret;
263
264 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
265
266 mutex_lock(&dev_priv->rps.hw_lock);
267 if (IS_VALLEYVIEW(dev_priv->dev)) {
268 u32 freq;
269 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
270 ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
271 } else {
272 ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER;
273 }
274 mutex_unlock(&dev_priv->rps.hw_lock);
275
276 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
277 }
278
279 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
280 struct device_attribute *attr, char *buf)
281 {
282 struct drm_minor *minor = dev_to_drm_minor(kdev);
283 struct drm_device *dev = minor->dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
285
286 return snprintf(buf, PAGE_SIZE, "%d\n",
287 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
288 }
289
290 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
291 {
292 struct drm_minor *minor = dev_to_drm_minor(kdev);
293 struct drm_device *dev = minor->dev;
294 struct drm_i915_private *dev_priv = dev->dev_private;
295 int ret;
296
297 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
298
299 mutex_lock(&dev_priv->rps.hw_lock);
300 if (IS_VALLEYVIEW(dev_priv->dev))
301 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
302 else
303 ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
304 mutex_unlock(&dev_priv->rps.hw_lock);
305
306 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
307 }
308
309 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
310 struct device_attribute *attr,
311 const char *buf, size_t count)
312 {
313 struct drm_minor *minor = dev_to_drm_minor(kdev);
314 struct drm_device *dev = minor->dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 u32 val;
317 ssize_t ret;
318
319 ret = kstrtou32(buf, 0, &val);
320 if (ret)
321 return ret;
322
323 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
324
325 mutex_lock(&dev_priv->rps.hw_lock);
326
327 if (IS_VALLEYVIEW(dev_priv->dev))
328 val = vlv_freq_opcode(dev_priv, val);
329 else
330 val /= GT_FREQUENCY_MULTIPLIER;
331
332 if (val < dev_priv->rps.min_freq ||
333 val > dev_priv->rps.max_freq ||
334 val < dev_priv->rps.min_freq_softlimit) {
335 mutex_unlock(&dev_priv->rps.hw_lock);
336 return -EINVAL;
337 }
338
339 if (val > dev_priv->rps.rp0_freq)
340 DRM_DEBUG("User requested overclocking to %d\n",
341 val * GT_FREQUENCY_MULTIPLIER);
342
343 dev_priv->rps.max_freq_softlimit = val;
344
345 if (dev_priv->rps.cur_freq > val) {
346 if (IS_VALLEYVIEW(dev))
347 valleyview_set_rps(dev, val);
348 else
349 gen6_set_rps(dev, val);
350 } else if (!IS_VALLEYVIEW(dev)) {
351 /* We still need gen6_set_rps to process the new max_delay and
352 * update the interrupt limits even though frequency request is
353 * unchanged. */
354 gen6_set_rps(dev, dev_priv->rps.cur_freq);
355 }
356
357 mutex_unlock(&dev_priv->rps.hw_lock);
358
359 return count;
360 }
361
362 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
363 {
364 struct drm_minor *minor = dev_to_drm_minor(kdev);
365 struct drm_device *dev = minor->dev;
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 int ret;
368
369 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
370
371 mutex_lock(&dev_priv->rps.hw_lock);
372 if (IS_VALLEYVIEW(dev_priv->dev))
373 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
374 else
375 ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
376 mutex_unlock(&dev_priv->rps.hw_lock);
377
378 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
379 }
380
381 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
382 struct device_attribute *attr,
383 const char *buf, size_t count)
384 {
385 struct drm_minor *minor = dev_to_drm_minor(kdev);
386 struct drm_device *dev = minor->dev;
387 struct drm_i915_private *dev_priv = dev->dev_private;
388 u32 val;
389 ssize_t ret;
390
391 ret = kstrtou32(buf, 0, &val);
392 if (ret)
393 return ret;
394
395 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
396
397 mutex_lock(&dev_priv->rps.hw_lock);
398
399 if (IS_VALLEYVIEW(dev))
400 val = vlv_freq_opcode(dev_priv, val);
401 else
402 val /= GT_FREQUENCY_MULTIPLIER;
403
404 if (val < dev_priv->rps.min_freq ||
405 val > dev_priv->rps.max_freq ||
406 val > dev_priv->rps.max_freq_softlimit) {
407 mutex_unlock(&dev_priv->rps.hw_lock);
408 return -EINVAL;
409 }
410
411 dev_priv->rps.min_freq_softlimit = val;
412
413 if (dev_priv->rps.cur_freq < val) {
414 if (IS_VALLEYVIEW(dev))
415 valleyview_set_rps(dev, val);
416 else
417 gen6_set_rps(dev, val);
418 } else if (!IS_VALLEYVIEW(dev)) {
419 /* We still need gen6_set_rps to process the new min_delay and
420 * update the interrupt limits even though frequency request is
421 * unchanged. */
422 gen6_set_rps(dev, dev_priv->rps.cur_freq);
423 }
424
425 mutex_unlock(&dev_priv->rps.hw_lock);
426
427 return count;
428
429 }
430
431 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
432 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
433 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
434
435 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
436
437 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
438 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
439 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
440 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
441
442 /* For now we have a static number of RP states */
443 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
444 {
445 struct drm_minor *minor = dev_to_drm_minor(kdev);
446 struct drm_device *dev = minor->dev;
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 u32 val, rp_state_cap;
449 ssize_t ret;
450
451 ret = mutex_lock_interruptible(&dev->struct_mutex);
452 if (ret)
453 return ret;
454 intel_runtime_pm_get(dev_priv);
455 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
456 intel_runtime_pm_put(dev_priv);
457 mutex_unlock(&dev->struct_mutex);
458
459 if (attr == &dev_attr_gt_RP0_freq_mhz) {
460 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
461 } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
462 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
463 } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
464 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
465 } else {
466 BUG();
467 }
468 return snprintf(buf, PAGE_SIZE, "%d\n", val);
469 }
470
471 static const struct attribute *gen6_attrs[] = {
472 &dev_attr_gt_cur_freq_mhz.attr,
473 &dev_attr_gt_max_freq_mhz.attr,
474 &dev_attr_gt_min_freq_mhz.attr,
475 &dev_attr_gt_RP0_freq_mhz.attr,
476 &dev_attr_gt_RP1_freq_mhz.attr,
477 &dev_attr_gt_RPn_freq_mhz.attr,
478 NULL,
479 };
480
481 static const struct attribute *vlv_attrs[] = {
482 &dev_attr_gt_cur_freq_mhz.attr,
483 &dev_attr_gt_max_freq_mhz.attr,
484 &dev_attr_gt_min_freq_mhz.attr,
485 &dev_attr_vlv_rpe_freq_mhz.attr,
486 NULL,
487 };
488
489 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
490 struct bin_attribute *attr, char *buf,
491 loff_t off, size_t count)
492 {
493
494 struct device *kdev = container_of(kobj, struct device, kobj);
495 struct drm_minor *minor = dev_to_drm_minor(kdev);
496 struct drm_device *dev = minor->dev;
497 struct i915_error_state_file_priv error_priv;
498 struct drm_i915_error_state_buf error_str;
499 ssize_t ret_count = 0;
500 int ret;
501
502 memset(&error_priv, 0, sizeof(error_priv));
503
504 ret = i915_error_state_buf_init(&error_str, count, off);
505 if (ret)
506 return ret;
507
508 error_priv.dev = dev;
509 i915_error_state_get(dev, &error_priv);
510
511 ret = i915_error_state_to_str(&error_str, &error_priv);
512 if (ret)
513 goto out;
514
515 ret_count = count < error_str.bytes ? count : error_str.bytes;
516
517 memcpy(buf, error_str.buf, ret_count);
518 out:
519 i915_error_state_put(&error_priv);
520 i915_error_state_buf_release(&error_str);
521
522 return ret ?: ret_count;
523 }
524
525 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
526 struct bin_attribute *attr, char *buf,
527 loff_t off, size_t count)
528 {
529 struct device *kdev = container_of(kobj, struct device, kobj);
530 struct drm_minor *minor = dev_to_drm_minor(kdev);
531 struct drm_device *dev = minor->dev;
532 int ret;
533
534 DRM_DEBUG_DRIVER("Resetting error state\n");
535
536 ret = mutex_lock_interruptible(&dev->struct_mutex);
537 if (ret)
538 return ret;
539
540 i915_destroy_error_state(dev);
541 mutex_unlock(&dev->struct_mutex);
542
543 return count;
544 }
545
546 static struct bin_attribute error_state_attr = {
547 .attr.name = "error",
548 .attr.mode = S_IRUSR | S_IWUSR,
549 .size = 0,
550 .read = error_state_read,
551 .write = error_state_write,
552 };
553
554 void i915_setup_sysfs(struct drm_device *dev)
555 {
556 int ret;
557
558 #ifdef CONFIG_PM
559 if (INTEL_INFO(dev)->gen >= 6) {
560 ret = sysfs_merge_group(&dev->primary->kdev->kobj,
561 &rc6_attr_group);
562 if (ret)
563 DRM_ERROR("RC6 residency sysfs setup failed\n");
564 }
565 #endif
566 if (HAS_L3_DPF(dev)) {
567 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
568 if (ret)
569 DRM_ERROR("l3 parity sysfs setup failed\n");
570
571 if (NUM_L3_SLICES(dev) > 1) {
572 ret = device_create_bin_file(dev->primary->kdev,
573 &dpf_attrs_1);
574 if (ret)
575 DRM_ERROR("l3 parity slice 1 setup failed\n");
576 }
577 }
578
579 ret = 0;
580 if (IS_VALLEYVIEW(dev))
581 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
582 else if (INTEL_INFO(dev)->gen >= 6)
583 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
584 if (ret)
585 DRM_ERROR("RPS sysfs setup failed\n");
586
587 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
588 &error_state_attr);
589 if (ret)
590 DRM_ERROR("error_state sysfs setup failed\n");
591 }
592
593 void i915_teardown_sysfs(struct drm_device *dev)
594 {
595 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
596 if (IS_VALLEYVIEW(dev))
597 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
598 else
599 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
600 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
601 device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
602 #ifdef CONFIG_PM
603 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
604 #endif
605 }