]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_breadcrumbs.c
Merge tag 'drm-intel-next-2017-03-06' of git://anongit.freedesktop.org/git/drm-intel...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31 {
32 struct intel_wait *wait;
33 unsigned int result = 0;
34
35 lockdep_assert_held(&b->irq_lock);
36
37 wait = b->irq_wait;
38 if (wait) {
39 result = ENGINE_WAKEUP_WAITER;
40 if (wake_up_process(wait->tsk))
41 result |= ENGINE_WAKEUP_ASLEEP;
42 }
43
44 return result;
45 }
46
47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
48 {
49 struct intel_breadcrumbs *b = &engine->breadcrumbs;
50 unsigned long flags;
51 unsigned int result;
52
53 spin_lock_irqsave(&b->irq_lock, flags);
54 result = __intel_breadcrumbs_wakeup(b);
55 spin_unlock_irqrestore(&b->irq_lock, flags);
56
57 return result;
58 }
59
60 static unsigned long wait_timeout(void)
61 {
62 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
63 }
64
65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
66 {
67 DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
68 engine->name, __builtin_return_address(0),
69 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70 &engine->irq_posted)));
71
72 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
73 }
74
75 static void intel_breadcrumbs_hangcheck(unsigned long data)
76 {
77 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
78 struct intel_breadcrumbs *b = &engine->breadcrumbs;
79
80 if (!b->irq_armed)
81 return;
82
83 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
84 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
85 mod_timer(&b->hangcheck, wait_timeout());
86 return;
87 }
88
89 /* We keep the hangcheck time alive until we disarm the irq, even
90 * if there are no waiters at present.
91 *
92 * If the waiter was currently running, assume it hasn't had a chance
93 * to process the pending interrupt (e.g, low priority task on a loaded
94 * system) and wait until it sleeps before declaring a missed interrupt.
95 *
96 * If the waiter was asleep (and not even pending a wakeup), then we
97 * must have missed an interrupt as the GPU has stopped advancing
98 * but we still have a waiter. Assuming all batches complete within
99 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
100 */
101 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
102 missed_breadcrumb(engine);
103 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
104 } else {
105 mod_timer(&b->hangcheck, wait_timeout());
106 }
107 }
108
109 static void intel_breadcrumbs_fake_irq(unsigned long data)
110 {
111 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
112 struct intel_breadcrumbs *b = &engine->breadcrumbs;
113 unsigned long flags;
114
115 /*
116 * The timer persists in case we cannot enable interrupts,
117 * or if we have previously seen seqno/interrupt incoherency
118 * ("missed interrupt" syndrome). Here the worker will wake up
119 * every jiffie in order to kick the oldest waiter to do the
120 * coherent seqno check.
121 */
122
123 spin_lock_irqsave(&b->irq_lock, flags);
124 if (!__intel_breadcrumbs_wakeup(b))
125 __intel_engine_disarm_breadcrumbs(engine);
126 spin_unlock_irqrestore(&b->irq_lock, flags);
127 if (!b->irq_armed)
128 return;
129
130 mod_timer(&b->fake_irq, jiffies + 1);
131
132 /* Ensure that even if the GPU hangs, we get woken up.
133 *
134 * However, note that if no one is waiting, we never notice
135 * a gpu hang. Eventually, we will have to wait for a resource
136 * held by the GPU and so trigger a hangcheck. In the most
137 * pathological case, this will be upon memory starvation! To
138 * prevent this, we also queue the hangcheck from the retire
139 * worker.
140 */
141 i915_queue_hangcheck(engine->i915);
142 }
143
144 static void irq_enable(struct intel_engine_cs *engine)
145 {
146 /* Enabling the IRQ may miss the generation of the interrupt, but
147 * we still need to force the barrier before reading the seqno,
148 * just in case.
149 */
150 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
151
152 /* Caller disables interrupts */
153 spin_lock(&engine->i915->irq_lock);
154 engine->irq_enable(engine);
155 spin_unlock(&engine->i915->irq_lock);
156 }
157
158 static void irq_disable(struct intel_engine_cs *engine)
159 {
160 /* Caller disables interrupts */
161 spin_lock(&engine->i915->irq_lock);
162 engine->irq_disable(engine);
163 spin_unlock(&engine->i915->irq_lock);
164 }
165
166 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
167 {
168 struct intel_breadcrumbs *b = &engine->breadcrumbs;
169
170 lockdep_assert_held(&b->irq_lock);
171
172 if (b->irq_enabled) {
173 irq_disable(engine);
174 b->irq_enabled = false;
175 }
176
177 b->irq_armed = false;
178 }
179
180 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
181 {
182 struct intel_breadcrumbs *b = &engine->breadcrumbs;
183 unsigned long flags;
184
185 if (!b->irq_armed)
186 return;
187
188 spin_lock_irqsave(&b->irq_lock, flags);
189
190 /* We only disarm the irq when we are idle (all requests completed),
191 * so if there remains a sleeping waiter, it missed the request
192 * completion.
193 */
194 if (__intel_breadcrumbs_wakeup(b) & ENGINE_WAKEUP_ASLEEP)
195 missed_breadcrumb(engine);
196
197 __intel_engine_disarm_breadcrumbs(engine);
198
199 spin_unlock_irqrestore(&b->irq_lock, flags);
200 }
201
202 static bool use_fake_irq(const struct intel_breadcrumbs *b)
203 {
204 const struct intel_engine_cs *engine =
205 container_of(b, struct intel_engine_cs, breadcrumbs);
206
207 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
208 return false;
209
210 /* Only start with the heavy weight fake irq timer if we have not
211 * seen any interrupts since enabling it the first time. If the
212 * interrupts are still arriving, it means we made a mistake in our
213 * engine->seqno_barrier(), a timing error that should be transient
214 * and unlikely to reoccur.
215 */
216 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
217 }
218
219 static void enable_fake_irq(struct intel_breadcrumbs *b)
220 {
221 /* Ensure we never sleep indefinitely */
222 if (!b->irq_enabled || use_fake_irq(b))
223 mod_timer(&b->fake_irq, jiffies + 1);
224 else
225 mod_timer(&b->hangcheck, wait_timeout());
226 }
227
228 static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
229 {
230 struct intel_engine_cs *engine =
231 container_of(b, struct intel_engine_cs, breadcrumbs);
232 struct drm_i915_private *i915 = engine->i915;
233
234 lockdep_assert_held(&b->irq_lock);
235 if (b->irq_armed)
236 return;
237
238 /* The breadcrumb irq will be disarmed on the interrupt after the
239 * waiters are signaled. This gives us a single interrupt window in
240 * which we can add a new waiter and avoid the cost of re-enabling
241 * the irq.
242 */
243 b->irq_armed = true;
244 GEM_BUG_ON(b->irq_enabled);
245
246 if (I915_SELFTEST_ONLY(b->mock)) {
247 /* For our mock objects we want to avoid interaction
248 * with the real hardware (which is not set up). So
249 * we simply pretend we have enabled the powerwell
250 * and the irq, and leave it up to the mock
251 * implementation to call intel_engine_wakeup()
252 * itself when it wants to simulate a user interrupt,
253 */
254 return;
255 }
256
257 /* Since we are waiting on a request, the GPU should be busy
258 * and should have its own rpm reference. This is tracked
259 * by i915->gt.awake, we can forgo holding our own wakref
260 * for the interrupt as before i915->gt.awake is released (when
261 * the driver is idle) we disarm the breadcrumbs.
262 */
263
264 /* No interrupts? Kick the waiter every jiffie! */
265 if (intel_irqs_enabled(i915)) {
266 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
267 irq_enable(engine);
268 b->irq_enabled = true;
269 }
270
271 enable_fake_irq(b);
272 }
273
274 static inline struct intel_wait *to_wait(struct rb_node *node)
275 {
276 return rb_entry(node, struct intel_wait, node);
277 }
278
279 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
280 struct intel_wait *wait)
281 {
282 lockdep_assert_held(&b->rb_lock);
283
284 /* This request is completed, so remove it from the tree, mark it as
285 * complete, and *then* wake up the associated task.
286 */
287 rb_erase(&wait->node, &b->waiters);
288 RB_CLEAR_NODE(&wait->node);
289
290 wake_up_process(wait->tsk); /* implicit smp_wmb() */
291 }
292
293 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
294 struct rb_node *next)
295 {
296 struct intel_breadcrumbs *b = &engine->breadcrumbs;
297
298 spin_lock(&b->irq_lock);
299 GEM_BUG_ON(!b->irq_armed);
300 b->irq_wait = to_wait(next);
301 spin_unlock(&b->irq_lock);
302
303 /* We always wake up the next waiter that takes over as the bottom-half
304 * as we may delegate not only the irq-seqno barrier to the next waiter
305 * but also the task of waking up concurrent waiters.
306 */
307 if (next)
308 wake_up_process(to_wait(next)->tsk);
309 }
310
311 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
312 struct intel_wait *wait)
313 {
314 struct intel_breadcrumbs *b = &engine->breadcrumbs;
315 struct rb_node **p, *parent, *completed;
316 bool first;
317 u32 seqno;
318
319 /* Insert the request into the retirement ordered list
320 * of waiters by walking the rbtree. If we are the oldest
321 * seqno in the tree (the first to be retired), then
322 * set ourselves as the bottom-half.
323 *
324 * As we descend the tree, prune completed branches since we hold the
325 * spinlock we know that the first_waiter must be delayed and can
326 * reduce some of the sequential wake up latency if we take action
327 * ourselves and wake up the completed tasks in parallel. Also, by
328 * removing stale elements in the tree, we may be able to reduce the
329 * ping-pong between the old bottom-half and ourselves as first-waiter.
330 */
331 first = true;
332 parent = NULL;
333 completed = NULL;
334 seqno = intel_engine_get_seqno(engine);
335
336 /* If the request completed before we managed to grab the spinlock,
337 * return now before adding ourselves to the rbtree. We let the
338 * current bottom-half handle any pending wakeups and instead
339 * try and get out of the way quickly.
340 */
341 if (i915_seqno_passed(seqno, wait->seqno)) {
342 RB_CLEAR_NODE(&wait->node);
343 return first;
344 }
345
346 p = &b->waiters.rb_node;
347 while (*p) {
348 parent = *p;
349 if (wait->seqno == to_wait(parent)->seqno) {
350 /* We have multiple waiters on the same seqno, select
351 * the highest priority task (that with the smallest
352 * task->prio) to serve as the bottom-half for this
353 * group.
354 */
355 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
356 p = &parent->rb_right;
357 first = false;
358 } else {
359 p = &parent->rb_left;
360 }
361 } else if (i915_seqno_passed(wait->seqno,
362 to_wait(parent)->seqno)) {
363 p = &parent->rb_right;
364 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
365 completed = parent;
366 else
367 first = false;
368 } else {
369 p = &parent->rb_left;
370 }
371 }
372 rb_link_node(&wait->node, parent, p);
373 rb_insert_color(&wait->node, &b->waiters);
374
375 if (completed) {
376 struct rb_node *next = rb_next(completed);
377
378 GEM_BUG_ON(!next && !first);
379 if (next && next != &wait->node) {
380 GEM_BUG_ON(first);
381 __intel_breadcrumbs_next(engine, next);
382 }
383
384 do {
385 struct intel_wait *crumb = to_wait(completed);
386 completed = rb_prev(completed);
387 __intel_breadcrumbs_finish(b, crumb);
388 } while (completed);
389 }
390
391 if (first) {
392 spin_lock(&b->irq_lock);
393 GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
394 b->irq_wait = wait;
395 /* After assigning ourselves as the new bottom-half, we must
396 * perform a cursory check to prevent a missed interrupt.
397 * Either we miss the interrupt whilst programming the hardware,
398 * or if there was a previous waiter (for a later seqno) they
399 * may be woken instead of us (due to the inherent race
400 * in the unlocked read of b->irq_seqno_bh in the irq handler)
401 * and so we miss the wake up.
402 */
403 __intel_breadcrumbs_enable_irq(b);
404 spin_unlock(&b->irq_lock);
405 }
406 GEM_BUG_ON(!b->irq_wait);
407 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
408
409 return first;
410 }
411
412 bool intel_engine_add_wait(struct intel_engine_cs *engine,
413 struct intel_wait *wait)
414 {
415 struct intel_breadcrumbs *b = &engine->breadcrumbs;
416 bool first;
417
418 spin_lock_irq(&b->rb_lock);
419 first = __intel_engine_add_wait(engine, wait);
420 spin_unlock_irq(&b->rb_lock);
421
422 return first;
423 }
424
425 static inline bool chain_wakeup(struct rb_node *rb, int priority)
426 {
427 return rb && to_wait(rb)->tsk->prio <= priority;
428 }
429
430 static inline int wakeup_priority(struct intel_breadcrumbs *b,
431 struct task_struct *tsk)
432 {
433 if (tsk == b->signaler)
434 return INT_MIN;
435 else
436 return tsk->prio;
437 }
438
439 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
440 struct intel_wait *wait)
441 {
442 struct intel_breadcrumbs *b = &engine->breadcrumbs;
443
444 lockdep_assert_held(&b->rb_lock);
445
446 if (RB_EMPTY_NODE(&wait->node))
447 goto out;
448
449 if (b->irq_wait == wait) {
450 const int priority = wakeup_priority(b, wait->tsk);
451 struct rb_node *next;
452
453 /* We are the current bottom-half. Find the next candidate,
454 * the first waiter in the queue on the remaining oldest
455 * request. As multiple seqnos may complete in the time it
456 * takes us to wake up and find the next waiter, we have to
457 * wake up that waiter for it to perform its own coherent
458 * completion check.
459 */
460 next = rb_next(&wait->node);
461 if (chain_wakeup(next, priority)) {
462 /* If the next waiter is already complete,
463 * wake it up and continue onto the next waiter. So
464 * if have a small herd, they will wake up in parallel
465 * rather than sequentially, which should reduce
466 * the overall latency in waking all the completed
467 * clients.
468 *
469 * However, waking up a chain adds extra latency to
470 * the first_waiter. This is undesirable if that
471 * waiter is a high priority task.
472 */
473 u32 seqno = intel_engine_get_seqno(engine);
474
475 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
476 struct rb_node *n = rb_next(next);
477
478 __intel_breadcrumbs_finish(b, to_wait(next));
479 next = n;
480 if (!chain_wakeup(next, priority))
481 break;
482 }
483 }
484
485 __intel_breadcrumbs_next(engine, next);
486 } else {
487 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
488 }
489
490 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
491 rb_erase(&wait->node, &b->waiters);
492
493 out:
494 GEM_BUG_ON(b->irq_wait == wait);
495 GEM_BUG_ON(rb_first(&b->waiters) !=
496 (b->irq_wait ? &b->irq_wait->node : NULL));
497 }
498
499 void intel_engine_remove_wait(struct intel_engine_cs *engine,
500 struct intel_wait *wait)
501 {
502 struct intel_breadcrumbs *b = &engine->breadcrumbs;
503
504 /* Quick check to see if this waiter was already decoupled from
505 * the tree by the bottom-half to avoid contention on the spinlock
506 * by the herd.
507 */
508 if (RB_EMPTY_NODE(&wait->node))
509 return;
510
511 spin_lock_irq(&b->rb_lock);
512 __intel_engine_remove_wait(engine, wait);
513 spin_unlock_irq(&b->rb_lock);
514 }
515
516 static bool signal_valid(const struct drm_i915_gem_request *request)
517 {
518 return intel_wait_check_request(&request->signaling.wait, request);
519 }
520
521 static bool signal_complete(const struct drm_i915_gem_request *request)
522 {
523 if (!request)
524 return false;
525
526 /* If another process served as the bottom-half it may have already
527 * signalled that this wait is already completed.
528 */
529 if (intel_wait_complete(&request->signaling.wait))
530 return signal_valid(request);
531
532 /* Carefully check if the request is complete, giving time for the
533 * seqno to be visible or if the GPU hung.
534 */
535 if (__i915_request_irq_complete(request))
536 return true;
537
538 return false;
539 }
540
541 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
542 {
543 return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
544 }
545
546 static void signaler_set_rtpriority(void)
547 {
548 struct sched_param param = { .sched_priority = 1 };
549
550 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
551 }
552
553 static int intel_breadcrumbs_signaler(void *arg)
554 {
555 struct intel_engine_cs *engine = arg;
556 struct intel_breadcrumbs *b = &engine->breadcrumbs;
557 struct drm_i915_gem_request *request;
558
559 /* Install ourselves with high priority to reduce signalling latency */
560 signaler_set_rtpriority();
561
562 do {
563 set_current_state(TASK_INTERRUPTIBLE);
564
565 /* We are either woken up by the interrupt bottom-half,
566 * or by a client adding a new signaller. In both cases,
567 * the GPU seqno may have advanced beyond our oldest signal.
568 * If it has, propagate the signal, remove the waiter and
569 * check again with the next oldest signal. Otherwise we
570 * need to wait for a new interrupt from the GPU or for
571 * a new client.
572 */
573 rcu_read_lock();
574 request = rcu_dereference(b->first_signal);
575 if (request)
576 request = i915_gem_request_get_rcu(request);
577 rcu_read_unlock();
578 if (signal_complete(request)) {
579 local_bh_disable();
580 dma_fence_signal(&request->fence);
581 local_bh_enable(); /* kick start the tasklets */
582
583 spin_lock_irq(&b->rb_lock);
584
585 /* Wake up all other completed waiters and select the
586 * next bottom-half for the next user interrupt.
587 */
588 __intel_engine_remove_wait(engine,
589 &request->signaling.wait);
590
591 /* Find the next oldest signal. Note that as we have
592 * not been holding the lock, another client may
593 * have installed an even older signal than the one
594 * we just completed - so double check we are still
595 * the oldest before picking the next one.
596 */
597 if (request == rcu_access_pointer(b->first_signal)) {
598 struct rb_node *rb =
599 rb_next(&request->signaling.node);
600 rcu_assign_pointer(b->first_signal,
601 rb ? to_signaler(rb) : NULL);
602 }
603 rb_erase(&request->signaling.node, &b->signals);
604 RB_CLEAR_NODE(&request->signaling.node);
605
606 spin_unlock_irq(&b->rb_lock);
607
608 i915_gem_request_put(request);
609 } else {
610 DEFINE_WAIT(exec);
611
612 if (kthread_should_stop()) {
613 GEM_BUG_ON(request);
614 break;
615 }
616
617 if (request)
618 add_wait_queue(&request->execute, &exec);
619
620 schedule();
621
622 if (request)
623 remove_wait_queue(&request->execute, &exec);
624
625 if (kthread_should_park())
626 kthread_parkme();
627 }
628 i915_gem_request_put(request);
629 } while (1);
630 __set_current_state(TASK_RUNNING);
631
632 return 0;
633 }
634
635 void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
636 {
637 struct intel_engine_cs *engine = request->engine;
638 struct intel_breadcrumbs *b = &engine->breadcrumbs;
639 struct rb_node *parent, **p;
640 bool first, wakeup;
641 u32 seqno;
642
643 /* Note that we may be called from an interrupt handler on another
644 * device (e.g. nouveau signaling a fence completion causing us
645 * to submit a request, and so enable signaling). As such,
646 * we need to make sure that all other users of b->lock protect
647 * against interrupts, i.e. use spin_lock_irqsave.
648 */
649
650 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
651 GEM_BUG_ON(!irqs_disabled());
652 lockdep_assert_held(&request->lock);
653
654 seqno = i915_gem_request_global_seqno(request);
655 if (!seqno)
656 return;
657
658 request->signaling.wait.tsk = b->signaler;
659 request->signaling.wait.request = request;
660 request->signaling.wait.seqno = seqno;
661 i915_gem_request_get(request);
662
663 spin_lock(&b->rb_lock);
664
665 /* First add ourselves into the list of waiters, but register our
666 * bottom-half as the signaller thread. As per usual, only the oldest
667 * waiter (not just signaller) is tasked as the bottom-half waking
668 * up all completed waiters after the user interrupt.
669 *
670 * If we are the oldest waiter, enable the irq (after which we
671 * must double check that the seqno did not complete).
672 */
673 wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
674
675 /* Now insert ourselves into the retirement ordered list of signals
676 * on this engine. We track the oldest seqno as that will be the
677 * first signal to complete.
678 */
679 parent = NULL;
680 first = true;
681 p = &b->signals.rb_node;
682 while (*p) {
683 parent = *p;
684 if (i915_seqno_passed(seqno,
685 to_signaler(parent)->signaling.wait.seqno)) {
686 p = &parent->rb_right;
687 first = false;
688 } else {
689 p = &parent->rb_left;
690 }
691 }
692 rb_link_node(&request->signaling.node, parent, p);
693 rb_insert_color(&request->signaling.node, &b->signals);
694 if (first)
695 rcu_assign_pointer(b->first_signal, request);
696
697 spin_unlock(&b->rb_lock);
698
699 if (wakeup)
700 wake_up_process(b->signaler);
701 }
702
703 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
704 {
705 struct intel_engine_cs *engine = request->engine;
706 struct intel_breadcrumbs *b = &engine->breadcrumbs;
707
708 GEM_BUG_ON(!irqs_disabled());
709 lockdep_assert_held(&request->lock);
710 GEM_BUG_ON(!request->signaling.wait.seqno);
711
712 spin_lock(&b->rb_lock);
713
714 if (!RB_EMPTY_NODE(&request->signaling.node)) {
715 if (request == rcu_access_pointer(b->first_signal)) {
716 struct rb_node *rb =
717 rb_next(&request->signaling.node);
718 rcu_assign_pointer(b->first_signal,
719 rb ? to_signaler(rb) : NULL);
720 }
721 rb_erase(&request->signaling.node, &b->signals);
722 RB_CLEAR_NODE(&request->signaling.node);
723 i915_gem_request_put(request);
724 }
725
726 __intel_engine_remove_wait(engine, &request->signaling.wait);
727
728 spin_unlock(&b->rb_lock);
729
730 request->signaling.wait.seqno = 0;
731 }
732
733 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
734 {
735 struct intel_breadcrumbs *b = &engine->breadcrumbs;
736 struct task_struct *tsk;
737
738 spin_lock_init(&b->rb_lock);
739 spin_lock_init(&b->irq_lock);
740
741 setup_timer(&b->fake_irq,
742 intel_breadcrumbs_fake_irq,
743 (unsigned long)engine);
744 setup_timer(&b->hangcheck,
745 intel_breadcrumbs_hangcheck,
746 (unsigned long)engine);
747
748 /* Spawn a thread to provide a common bottom-half for all signals.
749 * As this is an asynchronous interface we cannot steal the current
750 * task for handling the bottom-half to the user interrupt, therefore
751 * we create a thread to do the coherent seqno dance after the
752 * interrupt and then signal the waitqueue (via the dma-buf/fence).
753 */
754 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
755 "i915/signal:%d", engine->id);
756 if (IS_ERR(tsk))
757 return PTR_ERR(tsk);
758
759 b->signaler = tsk;
760
761 return 0;
762 }
763
764 static void cancel_fake_irq(struct intel_engine_cs *engine)
765 {
766 struct intel_breadcrumbs *b = &engine->breadcrumbs;
767
768 del_timer_sync(&b->hangcheck);
769 del_timer_sync(&b->fake_irq);
770 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
771 }
772
773 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
774 {
775 struct intel_breadcrumbs *b = &engine->breadcrumbs;
776
777 cancel_fake_irq(engine);
778 spin_lock_irq(&b->irq_lock);
779
780 if (b->irq_enabled)
781 irq_enable(engine);
782 else
783 irq_disable(engine);
784
785 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
786 * GPU is active and may have already executed the MI_USER_INTERRUPT
787 * before the CPU is ready to receive. However, the engine is currently
788 * idle (we haven't started it yet), there is no possibility for a
789 * missed interrupt as we enabled the irq and so we can clear the
790 * immediate wakeup (until a real interrupt arrives for the waiter).
791 */
792 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
793
794 if (b->irq_armed)
795 enable_fake_irq(b);
796
797 spin_unlock_irq(&b->irq_lock);
798 }
799
800 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
801 {
802 struct intel_breadcrumbs *b = &engine->breadcrumbs;
803
804 /* The engines should be idle and all requests accounted for! */
805 WARN_ON(READ_ONCE(b->irq_wait));
806 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
807 WARN_ON(rcu_access_pointer(b->first_signal));
808 WARN_ON(!RB_EMPTY_ROOT(&b->signals));
809
810 if (!IS_ERR_OR_NULL(b->signaler))
811 kthread_stop(b->signaler);
812
813 cancel_fake_irq(engine);
814 }
815
816 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
817 {
818 struct intel_breadcrumbs *b = &engine->breadcrumbs;
819 bool busy = false;
820
821 spin_lock_irq(&b->rb_lock);
822
823 if (b->irq_wait) {
824 wake_up_process(b->irq_wait->tsk);
825 busy |= intel_engine_flag(engine);
826 }
827
828 if (rcu_access_pointer(b->first_signal)) {
829 wake_up_process(b->signaler);
830 busy |= intel_engine_flag(engine);
831 }
832
833 spin_unlock_irq(&b->rb_lock);
834
835 return busy;
836 }
837
838 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
839 #include "selftests/intel_breadcrumbs.c"
840 #endif