]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_BROXTON(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644 {
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663 }
664
665 /*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680 {
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 /*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738 {
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777 }
778
779 /*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794 {
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836 }
837
838 /*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847 {
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936 }
937
938 /*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003 {
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct drm_crtc *crtc)
1012 {
1013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1014
1015 /* Be paranoid as we can arrive here with only partial
1016 * state retrieved from the hardware during setup.
1017 *
1018 * We can ditch the adjusted_mode.crtc_clock check as soon
1019 * as Haswell has gained clock readout/fastboot support.
1020 *
1021 * We can ditch the crtc->primary->fb check as soon as we can
1022 * properly reconstruct framebuffers.
1023 *
1024 * FIXME: The intel_crtc->active here should be switched to
1025 * crtc->state->active once we have proper CRTC states wired up
1026 * for atomic.
1027 */
1028 return intel_crtc->active && crtc->primary->state->fb &&
1029 intel_crtc->config->base.adjusted_mode.crtc_clock;
1030 }
1031
1032 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1033 enum pipe pipe)
1034 {
1035 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1037
1038 return intel_crtc->config->cpu_transcoder;
1039 }
1040
1041 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1042 {
1043 struct drm_i915_private *dev_priv = to_i915(dev);
1044 i915_reg_t reg = PIPEDSL(pipe);
1045 u32 line1, line2;
1046 u32 line_mask;
1047
1048 if (IS_GEN2(dev_priv))
1049 line_mask = DSL_LINEMASK_GEN2;
1050 else
1051 line_mask = DSL_LINEMASK_GEN3;
1052
1053 line1 = I915_READ(reg) & line_mask;
1054 msleep(5);
1055 line2 = I915_READ(reg) & line_mask;
1056
1057 return line1 == line2;
1058 }
1059
1060 /*
1061 * intel_wait_for_pipe_off - wait for pipe to turn off
1062 * @crtc: crtc whose pipe to wait for
1063 *
1064 * After disabling a pipe, we can't wait for vblank in the usual way,
1065 * spinning on the vblank interrupt status bit, since we won't actually
1066 * see an interrupt when the pipe is disabled.
1067 *
1068 * On Gen4 and above:
1069 * wait for the pipe register state bit to turn off
1070 *
1071 * Otherwise:
1072 * wait for the display line value to settle (it usually
1073 * ends up stopping at the start of the next frame).
1074 *
1075 */
1076 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1077 {
1078 struct drm_device *dev = crtc->base.dev;
1079 struct drm_i915_private *dev_priv = to_i915(dev);
1080 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1081 enum pipe pipe = crtc->pipe;
1082
1083 if (INTEL_INFO(dev)->gen >= 4) {
1084 i915_reg_t reg = PIPECONF(cpu_transcoder);
1085
1086 /* Wait for the Pipe State to go off */
1087 if (intel_wait_for_register(dev_priv,
1088 reg, I965_PIPECONF_ACTIVE, 0,
1089 100))
1090 WARN(1, "pipe_off wait timed out\n");
1091 } else {
1092 /* Wait for the display line to settle */
1093 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1094 WARN(1, "pipe_off wait timed out\n");
1095 }
1096 }
1097
1098 /* Only for pre-ILK configs */
1099 void assert_pll(struct drm_i915_private *dev_priv,
1100 enum pipe pipe, bool state)
1101 {
1102 u32 val;
1103 bool cur_state;
1104
1105 val = I915_READ(DPLL(pipe));
1106 cur_state = !!(val & DPLL_VCO_ENABLE);
1107 I915_STATE_WARN(cur_state != state,
1108 "PLL state assertion failure (expected %s, current %s)\n",
1109 onoff(state), onoff(cur_state));
1110 }
1111
1112 /* XXX: the dsi pll is shared between MIPI DSI ports */
1113 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1114 {
1115 u32 val;
1116 bool cur_state;
1117
1118 mutex_lock(&dev_priv->sb_lock);
1119 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1120 mutex_unlock(&dev_priv->sb_lock);
1121
1122 cur_state = val & DSI_PLL_VCO_EN;
1123 I915_STATE_WARN(cur_state != state,
1124 "DSI PLL state assertion failure (expected %s, current %s)\n",
1125 onoff(state), onoff(cur_state));
1126 }
1127
1128 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1129 enum pipe pipe, bool state)
1130 {
1131 bool cur_state;
1132 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1133 pipe);
1134
1135 if (HAS_DDI(dev_priv)) {
1136 /* DDI does not have a specific FDI_TX register */
1137 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1138 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1139 } else {
1140 u32 val = I915_READ(FDI_TX_CTL(pipe));
1141 cur_state = !!(val & FDI_TX_ENABLE);
1142 }
1143 I915_STATE_WARN(cur_state != state,
1144 "FDI TX state assertion failure (expected %s, current %s)\n",
1145 onoff(state), onoff(cur_state));
1146 }
1147 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1148 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1149
1150 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1151 enum pipe pipe, bool state)
1152 {
1153 u32 val;
1154 bool cur_state;
1155
1156 val = I915_READ(FDI_RX_CTL(pipe));
1157 cur_state = !!(val & FDI_RX_ENABLE);
1158 I915_STATE_WARN(cur_state != state,
1159 "FDI RX state assertion failure (expected %s, current %s)\n",
1160 onoff(state), onoff(cur_state));
1161 }
1162 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1163 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1164
1165 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 u32 val;
1169
1170 /* ILK FDI PLL is always enabled */
1171 if (IS_GEN5(dev_priv))
1172 return;
1173
1174 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1175 if (HAS_DDI(dev_priv))
1176 return;
1177
1178 val = I915_READ(FDI_TX_CTL(pipe));
1179 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1180 }
1181
1182 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1183 enum pipe pipe, bool state)
1184 {
1185 u32 val;
1186 bool cur_state;
1187
1188 val = I915_READ(FDI_RX_CTL(pipe));
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 I915_STATE_WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 onoff(state), onoff(cur_state));
1193 }
1194
1195 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1196 {
1197 i915_reg_t pp_reg;
1198 u32 val;
1199 enum pipe panel_pipe = PIPE_A;
1200 bool locked = true;
1201
1202 if (WARN_ON(HAS_DDI(dev_priv)))
1203 return;
1204
1205 if (HAS_PCH_SPLIT(dev_priv)) {
1206 u32 port_sel;
1207
1208 pp_reg = PP_CONTROL(0);
1209 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1210
1211 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1212 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1213 panel_pipe = PIPE_B;
1214 /* XXX: else fix for eDP */
1215 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1216 /* presumably write lock depends on pipe, not port select */
1217 pp_reg = PP_CONTROL(pipe);
1218 panel_pipe = pipe;
1219 } else {
1220 pp_reg = PP_CONTROL(0);
1221 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1222 panel_pipe = PIPE_B;
1223 }
1224
1225 val = I915_READ(pp_reg);
1226 if (!(val & PANEL_POWER_ON) ||
1227 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1228 locked = false;
1229
1230 I915_STATE_WARN(panel_pipe == pipe && locked,
1231 "panel assertion failure, pipe %c regs locked\n",
1232 pipe_name(pipe));
1233 }
1234
1235 static void assert_cursor(struct drm_i915_private *dev_priv,
1236 enum pipe pipe, bool state)
1237 {
1238 bool cur_state;
1239
1240 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1241 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1242 else
1243 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1244
1245 I915_STATE_WARN(cur_state != state,
1246 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1247 pipe_name(pipe), onoff(state), onoff(cur_state));
1248 }
1249 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1250 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1251
1252 void assert_pipe(struct drm_i915_private *dev_priv,
1253 enum pipe pipe, bool state)
1254 {
1255 bool cur_state;
1256 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1257 pipe);
1258 enum intel_display_power_domain power_domain;
1259
1260 /* if we need the pipe quirk it must be always on */
1261 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1262 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1263 state = true;
1264
1265 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1266 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1267 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1268 cur_state = !!(val & PIPECONF_ENABLE);
1269
1270 intel_display_power_put(dev_priv, power_domain);
1271 } else {
1272 cur_state = false;
1273 }
1274
1275 I915_STATE_WARN(cur_state != state,
1276 "pipe %c assertion failure (expected %s, current %s)\n",
1277 pipe_name(pipe), onoff(state), onoff(cur_state));
1278 }
1279
1280 static void assert_plane(struct drm_i915_private *dev_priv,
1281 enum plane plane, bool state)
1282 {
1283 u32 val;
1284 bool cur_state;
1285
1286 val = I915_READ(DSPCNTR(plane));
1287 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1288 I915_STATE_WARN(cur_state != state,
1289 "plane %c assertion failure (expected %s, current %s)\n",
1290 plane_name(plane), onoff(state), onoff(cur_state));
1291 }
1292
1293 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1294 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1295
1296 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1297 enum pipe pipe)
1298 {
1299 struct drm_device *dev = &dev_priv->drm;
1300 int i;
1301
1302 /* Primary planes are fixed to pipes on gen4+ */
1303 if (INTEL_INFO(dev)->gen >= 4) {
1304 u32 val = I915_READ(DSPCNTR(pipe));
1305 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1306 "plane %c assertion failure, should be disabled but not\n",
1307 plane_name(pipe));
1308 return;
1309 }
1310
1311 /* Need to check both planes against the pipe */
1312 for_each_pipe(dev_priv, i) {
1313 u32 val = I915_READ(DSPCNTR(i));
1314 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1315 DISPPLANE_SEL_PIPE_SHIFT;
1316 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1317 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1318 plane_name(i), pipe_name(pipe));
1319 }
1320 }
1321
1322 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1323 enum pipe pipe)
1324 {
1325 struct drm_device *dev = &dev_priv->drm;
1326 int sprite;
1327
1328 if (INTEL_INFO(dev)->gen >= 9) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1331 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1332 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1333 sprite, pipe_name(pipe));
1334 }
1335 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1336 for_each_sprite(dev_priv, pipe, sprite) {
1337 u32 val = I915_READ(SPCNTR(pipe, sprite));
1338 I915_STATE_WARN(val & SP_ENABLE,
1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340 sprite_name(pipe, sprite), pipe_name(pipe));
1341 }
1342 } else if (INTEL_INFO(dev)->gen >= 7) {
1343 u32 val = I915_READ(SPRCTL(pipe));
1344 I915_STATE_WARN(val & SPRITE_ENABLE,
1345 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1346 plane_name(pipe), pipe_name(pipe));
1347 } else if (INTEL_INFO(dev)->gen >= 5) {
1348 u32 val = I915_READ(DVSCNTR(pipe));
1349 I915_STATE_WARN(val & DVS_ENABLE,
1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351 plane_name(pipe), pipe_name(pipe));
1352 }
1353 }
1354
1355 static void assert_vblank_disabled(struct drm_crtc *crtc)
1356 {
1357 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1358 drm_crtc_vblank_put(crtc);
1359 }
1360
1361 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1362 enum pipe pipe)
1363 {
1364 u32 val;
1365 bool enabled;
1366
1367 val = I915_READ(PCH_TRANSCONF(pipe));
1368 enabled = !!(val & TRANS_ENABLE);
1369 I915_STATE_WARN(enabled,
1370 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1371 pipe_name(pipe));
1372 }
1373
1374 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1375 enum pipe pipe, u32 port_sel, u32 val)
1376 {
1377 if ((val & DP_PORT_EN) == 0)
1378 return false;
1379
1380 if (HAS_PCH_CPT(dev_priv)) {
1381 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1382 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1383 return false;
1384 } else if (IS_CHERRYVIEW(dev_priv)) {
1385 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1386 return false;
1387 } else {
1388 if ((val & DP_PIPE_MASK) != (pipe << 30))
1389 return false;
1390 }
1391 return true;
1392 }
1393
1394 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe, u32 val)
1396 {
1397 if ((val & SDVO_ENABLE) == 0)
1398 return false;
1399
1400 if (HAS_PCH_CPT(dev_priv)) {
1401 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1402 return false;
1403 } else if (IS_CHERRYVIEW(dev_priv)) {
1404 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1405 return false;
1406 } else {
1407 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1408 return false;
1409 }
1410 return true;
1411 }
1412
1413 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe, u32 val)
1415 {
1416 if ((val & LVDS_PORT_EN) == 0)
1417 return false;
1418
1419 if (HAS_PCH_CPT(dev_priv)) {
1420 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1421 return false;
1422 } else {
1423 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1424 return false;
1425 }
1426 return true;
1427 }
1428
1429 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1430 enum pipe pipe, u32 val)
1431 {
1432 if ((val & ADPA_DAC_ENABLE) == 0)
1433 return false;
1434 if (HAS_PCH_CPT(dev_priv)) {
1435 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 return false;
1437 } else {
1438 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1439 return false;
1440 }
1441 return true;
1442 }
1443
1444 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1445 enum pipe pipe, i915_reg_t reg,
1446 u32 port_sel)
1447 {
1448 u32 val = I915_READ(reg);
1449 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1450 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1451 i915_mmio_reg_offset(reg), pipe_name(pipe));
1452
1453 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1454 && (val & DP_PIPEB_SELECT),
1455 "IBX PCH dp port still using transcoder B\n");
1456 }
1457
1458 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1459 enum pipe pipe, i915_reg_t reg)
1460 {
1461 u32 val = I915_READ(reg);
1462 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1463 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1464 i915_mmio_reg_offset(reg), pipe_name(pipe));
1465
1466 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1467 && (val & SDVO_PIPE_B_SELECT),
1468 "IBX PCH hdmi port still using transcoder B\n");
1469 }
1470
1471 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1472 enum pipe pipe)
1473 {
1474 u32 val;
1475
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1478 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1479
1480 val = I915_READ(PCH_ADPA);
1481 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1484
1485 val = I915_READ(PCH_LVDS);
1486 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1487 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1488 pipe_name(pipe));
1489
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1493 }
1494
1495 static void _vlv_enable_pll(struct intel_crtc *crtc,
1496 const struct intel_crtc_state *pipe_config)
1497 {
1498 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1499 enum pipe pipe = crtc->pipe;
1500
1501 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1502 POSTING_READ(DPLL(pipe));
1503 udelay(150);
1504
1505 if (intel_wait_for_register(dev_priv,
1506 DPLL(pipe),
1507 DPLL_LOCK_VLV,
1508 DPLL_LOCK_VLV,
1509 1))
1510 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1511 }
1512
1513 static void vlv_enable_pll(struct intel_crtc *crtc,
1514 const struct intel_crtc_state *pipe_config)
1515 {
1516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1517 enum pipe pipe = crtc->pipe;
1518
1519 assert_pipe_disabled(dev_priv, pipe);
1520
1521 /* PLL is protected by panel, make sure we can write it */
1522 assert_panel_unlocked(dev_priv, pipe);
1523
1524 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1525 _vlv_enable_pll(crtc, pipe_config);
1526
1527 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1528 POSTING_READ(DPLL_MD(pipe));
1529 }
1530
1531
1532 static void _chv_enable_pll(struct intel_crtc *crtc,
1533 const struct intel_crtc_state *pipe_config)
1534 {
1535 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1536 enum pipe pipe = crtc->pipe;
1537 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1538 u32 tmp;
1539
1540 mutex_lock(&dev_priv->sb_lock);
1541
1542 /* Enable back the 10bit clock to display controller */
1543 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1544 tmp |= DPIO_DCLKP_EN;
1545 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1546
1547 mutex_unlock(&dev_priv->sb_lock);
1548
1549 /*
1550 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1551 */
1552 udelay(1);
1553
1554 /* Enable PLL */
1555 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1556
1557 /* Check PLL is locked */
1558 if (intel_wait_for_register(dev_priv,
1559 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1560 1))
1561 DRM_ERROR("PLL %d failed to lock\n", pipe);
1562 }
1563
1564 static void chv_enable_pll(struct intel_crtc *crtc,
1565 const struct intel_crtc_state *pipe_config)
1566 {
1567 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1568 enum pipe pipe = crtc->pipe;
1569
1570 assert_pipe_disabled(dev_priv, pipe);
1571
1572 /* PLL is protected by panel, make sure we can write it */
1573 assert_panel_unlocked(dev_priv, pipe);
1574
1575 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1576 _chv_enable_pll(crtc, pipe_config);
1577
1578 if (pipe != PIPE_A) {
1579 /*
1580 * WaPixelRepeatModeFixForC0:chv
1581 *
1582 * DPLLCMD is AWOL. Use chicken bits to propagate
1583 * the value from DPLLBMD to either pipe B or C.
1584 */
1585 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1586 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1587 I915_WRITE(CBR4_VLV, 0);
1588 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1589
1590 /*
1591 * DPLLB VGA mode also seems to cause problems.
1592 * We should always have it disabled.
1593 */
1594 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1595 } else {
1596 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1597 POSTING_READ(DPLL_MD(pipe));
1598 }
1599 }
1600
1601 static int intel_num_dvo_pipes(struct drm_device *dev)
1602 {
1603 struct intel_crtc *crtc;
1604 int count = 0;
1605
1606 for_each_intel_crtc(dev, crtc) {
1607 count += crtc->base.state->active &&
1608 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1609 }
1610
1611 return count;
1612 }
1613
1614 static void i9xx_enable_pll(struct intel_crtc *crtc)
1615 {
1616 struct drm_device *dev = crtc->base.dev;
1617 struct drm_i915_private *dev_priv = to_i915(dev);
1618 i915_reg_t reg = DPLL(crtc->pipe);
1619 u32 dpll = crtc->config->dpll_hw_state.dpll;
1620
1621 assert_pipe_disabled(dev_priv, crtc->pipe);
1622
1623 /* PLL is protected by panel, make sure we can write it */
1624 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1625 assert_panel_unlocked(dev_priv, crtc->pipe);
1626
1627 /* Enable DVO 2x clock on both PLLs if necessary */
1628 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev) > 0) {
1629 /*
1630 * It appears to be important that we don't enable this
1631 * for the current pipe before otherwise configuring the
1632 * PLL. No idea how this should be handled if multiple
1633 * DVO outputs are enabled simultaneosly.
1634 */
1635 dpll |= DPLL_DVO_2X_MODE;
1636 I915_WRITE(DPLL(!crtc->pipe),
1637 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1638 }
1639
1640 /*
1641 * Apparently we need to have VGA mode enabled prior to changing
1642 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1643 * dividers, even though the register value does change.
1644 */
1645 I915_WRITE(reg, 0);
1646
1647 I915_WRITE(reg, dpll);
1648
1649 /* Wait for the clocks to stabilize. */
1650 POSTING_READ(reg);
1651 udelay(150);
1652
1653 if (INTEL_INFO(dev)->gen >= 4) {
1654 I915_WRITE(DPLL_MD(crtc->pipe),
1655 crtc->config->dpll_hw_state.dpll_md);
1656 } else {
1657 /* The pixel multiplier can only be updated once the
1658 * DPLL is enabled and the clocks are stable.
1659 *
1660 * So write it again.
1661 */
1662 I915_WRITE(reg, dpll);
1663 }
1664
1665 /* We do this three times for luck */
1666 I915_WRITE(reg, dpll);
1667 POSTING_READ(reg);
1668 udelay(150); /* wait for warmup */
1669 I915_WRITE(reg, dpll);
1670 POSTING_READ(reg);
1671 udelay(150); /* wait for warmup */
1672 I915_WRITE(reg, dpll);
1673 POSTING_READ(reg);
1674 udelay(150); /* wait for warmup */
1675 }
1676
1677 /**
1678 * i9xx_disable_pll - disable a PLL
1679 * @dev_priv: i915 private structure
1680 * @pipe: pipe PLL to disable
1681 *
1682 * Disable the PLL for @pipe, making sure the pipe is off first.
1683 *
1684 * Note! This is for pre-ILK only.
1685 */
1686 static void i9xx_disable_pll(struct intel_crtc *crtc)
1687 {
1688 struct drm_device *dev = crtc->base.dev;
1689 struct drm_i915_private *dev_priv = to_i915(dev);
1690 enum pipe pipe = crtc->pipe;
1691
1692 /* Disable DVO 2x clock on both PLLs if necessary */
1693 if (IS_I830(dev_priv) &&
1694 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1695 !intel_num_dvo_pipes(dev)) {
1696 I915_WRITE(DPLL(PIPE_B),
1697 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1698 I915_WRITE(DPLL(PIPE_A),
1699 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1700 }
1701
1702 /* Don't disable pipe or pipe PLLs if needed */
1703 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1704 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1705 return;
1706
1707 /* Make sure the pipe isn't still relying on us */
1708 assert_pipe_disabled(dev_priv, pipe);
1709
1710 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1711 POSTING_READ(DPLL(pipe));
1712 }
1713
1714 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1715 {
1716 u32 val;
1717
1718 /* Make sure the pipe isn't still relying on us */
1719 assert_pipe_disabled(dev_priv, pipe);
1720
1721 val = DPLL_INTEGRATED_REF_CLK_VLV |
1722 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1723 if (pipe != PIPE_A)
1724 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1725
1726 I915_WRITE(DPLL(pipe), val);
1727 POSTING_READ(DPLL(pipe));
1728 }
1729
1730 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1731 {
1732 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1733 u32 val;
1734
1735 /* Make sure the pipe isn't still relying on us */
1736 assert_pipe_disabled(dev_priv, pipe);
1737
1738 val = DPLL_SSC_REF_CLK_CHV |
1739 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1740 if (pipe != PIPE_A)
1741 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1742
1743 I915_WRITE(DPLL(pipe), val);
1744 POSTING_READ(DPLL(pipe));
1745
1746 mutex_lock(&dev_priv->sb_lock);
1747
1748 /* Disable 10bit clock to display controller */
1749 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1750 val &= ~DPIO_DCLKP_EN;
1751 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1752
1753 mutex_unlock(&dev_priv->sb_lock);
1754 }
1755
1756 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1757 struct intel_digital_port *dport,
1758 unsigned int expected_mask)
1759 {
1760 u32 port_mask;
1761 i915_reg_t dpll_reg;
1762
1763 switch (dport->port) {
1764 case PORT_B:
1765 port_mask = DPLL_PORTB_READY_MASK;
1766 dpll_reg = DPLL(0);
1767 break;
1768 case PORT_C:
1769 port_mask = DPLL_PORTC_READY_MASK;
1770 dpll_reg = DPLL(0);
1771 expected_mask <<= 4;
1772 break;
1773 case PORT_D:
1774 port_mask = DPLL_PORTD_READY_MASK;
1775 dpll_reg = DPIO_PHY_STATUS;
1776 break;
1777 default:
1778 BUG();
1779 }
1780
1781 if (intel_wait_for_register(dev_priv,
1782 dpll_reg, port_mask, expected_mask,
1783 1000))
1784 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1785 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1786 }
1787
1788 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1789 enum pipe pipe)
1790 {
1791 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1793 i915_reg_t reg;
1794 uint32_t val, pipeconf_val;
1795
1796 /* Make sure PCH DPLL is enabled */
1797 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1798
1799 /* FDI must be feeding us bits for PCH ports */
1800 assert_fdi_tx_enabled(dev_priv, pipe);
1801 assert_fdi_rx_enabled(dev_priv, pipe);
1802
1803 if (HAS_PCH_CPT(dev_priv)) {
1804 /* Workaround: Set the timing override bit before enabling the
1805 * pch transcoder. */
1806 reg = TRANS_CHICKEN2(pipe);
1807 val = I915_READ(reg);
1808 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1809 I915_WRITE(reg, val);
1810 }
1811
1812 reg = PCH_TRANSCONF(pipe);
1813 val = I915_READ(reg);
1814 pipeconf_val = I915_READ(PIPECONF(pipe));
1815
1816 if (HAS_PCH_IBX(dev_priv)) {
1817 /*
1818 * Make the BPC in transcoder be consistent with
1819 * that in pipeconf reg. For HDMI we must use 8bpc
1820 * here for both 8bpc and 12bpc.
1821 */
1822 val &= ~PIPECONF_BPC_MASK;
1823 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1824 val |= PIPECONF_8BPC;
1825 else
1826 val |= pipeconf_val & PIPECONF_BPC_MASK;
1827 }
1828
1829 val &= ~TRANS_INTERLACE_MASK;
1830 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1831 if (HAS_PCH_IBX(dev_priv) &&
1832 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1833 val |= TRANS_LEGACY_INTERLACED_ILK;
1834 else
1835 val |= TRANS_INTERLACED;
1836 else
1837 val |= TRANS_PROGRESSIVE;
1838
1839 I915_WRITE(reg, val | TRANS_ENABLE);
1840 if (intel_wait_for_register(dev_priv,
1841 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1842 100))
1843 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1844 }
1845
1846 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1847 enum transcoder cpu_transcoder)
1848 {
1849 u32 val, pipeconf_val;
1850
1851 /* FDI must be feeding us bits for PCH ports */
1852 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1853 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1854
1855 /* Workaround: set timing override bit. */
1856 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1857 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1858 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1859
1860 val = TRANS_ENABLE;
1861 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1862
1863 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1864 PIPECONF_INTERLACED_ILK)
1865 val |= TRANS_INTERLACED;
1866 else
1867 val |= TRANS_PROGRESSIVE;
1868
1869 I915_WRITE(LPT_TRANSCONF, val);
1870 if (intel_wait_for_register(dev_priv,
1871 LPT_TRANSCONF,
1872 TRANS_STATE_ENABLE,
1873 TRANS_STATE_ENABLE,
1874 100))
1875 DRM_ERROR("Failed to enable PCH transcoder\n");
1876 }
1877
1878 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1879 enum pipe pipe)
1880 {
1881 i915_reg_t reg;
1882 uint32_t val;
1883
1884 /* FDI relies on the transcoder */
1885 assert_fdi_tx_disabled(dev_priv, pipe);
1886 assert_fdi_rx_disabled(dev_priv, pipe);
1887
1888 /* Ports must be off as well */
1889 assert_pch_ports_disabled(dev_priv, pipe);
1890
1891 reg = PCH_TRANSCONF(pipe);
1892 val = I915_READ(reg);
1893 val &= ~TRANS_ENABLE;
1894 I915_WRITE(reg, val);
1895 /* wait for PCH transcoder off, transcoder state */
1896 if (intel_wait_for_register(dev_priv,
1897 reg, TRANS_STATE_ENABLE, 0,
1898 50))
1899 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900
1901 if (HAS_PCH_CPT(dev_priv)) {
1902 /* Workaround: Clear the timing override chicken bit again. */
1903 reg = TRANS_CHICKEN2(pipe);
1904 val = I915_READ(reg);
1905 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 I915_WRITE(reg, val);
1907 }
1908 }
1909
1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 u32 val;
1913
1914 val = I915_READ(LPT_TRANSCONF);
1915 val &= ~TRANS_ENABLE;
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 /* wait for PCH transcoder off, transcoder state */
1918 if (intel_wait_for_register(dev_priv,
1919 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 50))
1921 DRM_ERROR("Failed to disable PCH transcoder\n");
1922
1923 /* Workaround: clear timing override bit. */
1924 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928
1929 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1930 {
1931 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1932
1933 WARN_ON(!crtc->config->has_pch_encoder);
1934
1935 if (HAS_PCH_LPT(dev_priv))
1936 return TRANSCODER_A;
1937 else
1938 return (enum transcoder) crtc->pipe;
1939 }
1940
1941 /**
1942 * intel_enable_pipe - enable a pipe, asserting requirements
1943 * @crtc: crtc responsible for the pipe
1944 *
1945 * Enable @crtc's pipe, making sure that various hardware specific requirements
1946 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1947 */
1948 static void intel_enable_pipe(struct intel_crtc *crtc)
1949 {
1950 struct drm_device *dev = crtc->base.dev;
1951 struct drm_i915_private *dev_priv = to_i915(dev);
1952 enum pipe pipe = crtc->pipe;
1953 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1954 i915_reg_t reg;
1955 u32 val;
1956
1957 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1958
1959 assert_planes_disabled(dev_priv, pipe);
1960 assert_cursor_disabled(dev_priv, pipe);
1961 assert_sprites_disabled(dev_priv, pipe);
1962
1963 /*
1964 * A pipe without a PLL won't actually be able to drive bits from
1965 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1966 * need the check.
1967 */
1968 if (HAS_GMCH_DISPLAY(dev_priv)) {
1969 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1970 assert_dsi_pll_enabled(dev_priv);
1971 else
1972 assert_pll_enabled(dev_priv, pipe);
1973 } else {
1974 if (crtc->config->has_pch_encoder) {
1975 /* if driving the PCH, we need FDI enabled */
1976 assert_fdi_rx_pll_enabled(dev_priv,
1977 (enum pipe) intel_crtc_pch_transcoder(crtc));
1978 assert_fdi_tx_pll_enabled(dev_priv,
1979 (enum pipe) cpu_transcoder);
1980 }
1981 /* FIXME: assert CPU port conditions for SNB+ */
1982 }
1983
1984 reg = PIPECONF(cpu_transcoder);
1985 val = I915_READ(reg);
1986 if (val & PIPECONF_ENABLE) {
1987 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1988 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1989 return;
1990 }
1991
1992 I915_WRITE(reg, val | PIPECONF_ENABLE);
1993 POSTING_READ(reg);
1994
1995 /*
1996 * Until the pipe starts DSL will read as 0, which would cause
1997 * an apparent vblank timestamp jump, which messes up also the
1998 * frame count when it's derived from the timestamps. So let's
1999 * wait for the pipe to start properly before we call
2000 * drm_crtc_vblank_on()
2001 */
2002 if (dev->max_vblank_count == 0 &&
2003 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2004 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2005 }
2006
2007 /**
2008 * intel_disable_pipe - disable a pipe, asserting requirements
2009 * @crtc: crtc whose pipes is to be disabled
2010 *
2011 * Disable the pipe of @crtc, making sure that various hardware
2012 * specific requirements are met, if applicable, e.g. plane
2013 * disabled, panel fitter off, etc.
2014 *
2015 * Will wait until the pipe has shut down before returning.
2016 */
2017 static void intel_disable_pipe(struct intel_crtc *crtc)
2018 {
2019 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2020 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2021 enum pipe pipe = crtc->pipe;
2022 i915_reg_t reg;
2023 u32 val;
2024
2025 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2026
2027 /*
2028 * Make sure planes won't keep trying to pump pixels to us,
2029 * or we might hang the display.
2030 */
2031 assert_planes_disabled(dev_priv, pipe);
2032 assert_cursor_disabled(dev_priv, pipe);
2033 assert_sprites_disabled(dev_priv, pipe);
2034
2035 reg = PIPECONF(cpu_transcoder);
2036 val = I915_READ(reg);
2037 if ((val & PIPECONF_ENABLE) == 0)
2038 return;
2039
2040 /*
2041 * Double wide has implications for planes
2042 * so best keep it disabled when not needed.
2043 */
2044 if (crtc->config->double_wide)
2045 val &= ~PIPECONF_DOUBLE_WIDE;
2046
2047 /* Don't disable pipe or pipe PLLs if needed */
2048 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2049 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2050 val &= ~PIPECONF_ENABLE;
2051
2052 I915_WRITE(reg, val);
2053 if ((val & PIPECONF_ENABLE) == 0)
2054 intel_wait_for_pipe_off(crtc);
2055 }
2056
2057 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2058 {
2059 return IS_GEN2(dev_priv) ? 2048 : 4096;
2060 }
2061
2062 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2063 uint64_t fb_modifier, unsigned int cpp)
2064 {
2065 switch (fb_modifier) {
2066 case DRM_FORMAT_MOD_NONE:
2067 return cpp;
2068 case I915_FORMAT_MOD_X_TILED:
2069 if (IS_GEN2(dev_priv))
2070 return 128;
2071 else
2072 return 512;
2073 case I915_FORMAT_MOD_Y_TILED:
2074 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2075 return 128;
2076 else
2077 return 512;
2078 case I915_FORMAT_MOD_Yf_TILED:
2079 switch (cpp) {
2080 case 1:
2081 return 64;
2082 case 2:
2083 case 4:
2084 return 128;
2085 case 8:
2086 case 16:
2087 return 256;
2088 default:
2089 MISSING_CASE(cpp);
2090 return cpp;
2091 }
2092 break;
2093 default:
2094 MISSING_CASE(fb_modifier);
2095 return cpp;
2096 }
2097 }
2098
2099 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2100 uint64_t fb_modifier, unsigned int cpp)
2101 {
2102 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2103 return 1;
2104 else
2105 return intel_tile_size(dev_priv) /
2106 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2107 }
2108
2109 /* Return the tile dimensions in pixel units */
2110 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2111 unsigned int *tile_width,
2112 unsigned int *tile_height,
2113 uint64_t fb_modifier,
2114 unsigned int cpp)
2115 {
2116 unsigned int tile_width_bytes =
2117 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2118
2119 *tile_width = tile_width_bytes / cpp;
2120 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2121 }
2122
2123 unsigned int
2124 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2125 uint32_t pixel_format, uint64_t fb_modifier)
2126 {
2127 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2128 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2129
2130 return ALIGN(height, tile_height);
2131 }
2132
2133 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2134 {
2135 unsigned int size = 0;
2136 int i;
2137
2138 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2139 size += rot_info->plane[i].width * rot_info->plane[i].height;
2140
2141 return size;
2142 }
2143
2144 static void
2145 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2146 const struct drm_framebuffer *fb,
2147 unsigned int rotation)
2148 {
2149 if (drm_rotation_90_or_270(rotation)) {
2150 *view = i915_ggtt_view_rotated;
2151 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2152 } else {
2153 *view = i915_ggtt_view_normal;
2154 }
2155 }
2156
2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 if (INTEL_INFO(dev_priv)->gen >= 9)
2160 return 256 * 1024;
2161 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 return 128 * 1024;
2164 else if (INTEL_INFO(dev_priv)->gen >= 4)
2165 return 4 * 1024;
2166 else
2167 return 0;
2168 }
2169
2170 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2171 uint64_t fb_modifier)
2172 {
2173 switch (fb_modifier) {
2174 case DRM_FORMAT_MOD_NONE:
2175 return intel_linear_alignment(dev_priv);
2176 case I915_FORMAT_MOD_X_TILED:
2177 if (INTEL_INFO(dev_priv)->gen >= 9)
2178 return 256 * 1024;
2179 return 0;
2180 case I915_FORMAT_MOD_Y_TILED:
2181 case I915_FORMAT_MOD_Yf_TILED:
2182 return 1 * 1024 * 1024;
2183 default:
2184 MISSING_CASE(fb_modifier);
2185 return 0;
2186 }
2187 }
2188
2189 struct i915_vma *
2190 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2191 {
2192 struct drm_device *dev = fb->dev;
2193 struct drm_i915_private *dev_priv = to_i915(dev);
2194 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2195 struct i915_ggtt_view view;
2196 struct i915_vma *vma;
2197 u32 alignment;
2198
2199 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2200
2201 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2202
2203 intel_fill_fb_ggtt_view(&view, fb, rotation);
2204
2205 /* Note that the w/a also requires 64 PTE of padding following the
2206 * bo. We currently fill all unused PTE with the shadow page and so
2207 * we should always have valid PTE following the scanout preventing
2208 * the VT-d warning.
2209 */
2210 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2211 alignment = 256 * 1024;
2212
2213 /*
2214 * Global gtt pte registers are special registers which actually forward
2215 * writes to a chunk of system memory. Which means that there is no risk
2216 * that the register values disappear as soon as we call
2217 * intel_runtime_pm_put(), so it is correct to wrap only the
2218 * pin/unpin/fence and not more.
2219 */
2220 intel_runtime_pm_get(dev_priv);
2221
2222 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2223 if (IS_ERR(vma))
2224 goto err;
2225
2226 if (i915_vma_is_map_and_fenceable(vma)) {
2227 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2228 * fence, whereas 965+ only requires a fence if using
2229 * framebuffer compression. For simplicity, we always, when
2230 * possible, install a fence as the cost is not that onerous.
2231 *
2232 * If we fail to fence the tiled scanout, then either the
2233 * modeset will reject the change (which is highly unlikely as
2234 * the affected systems, all but one, do not have unmappable
2235 * space) or we will not be able to enable full powersaving
2236 * techniques (also likely not to apply due to various limits
2237 * FBC and the like impose on the size of the buffer, which
2238 * presumably we violated anyway with this unmappable buffer).
2239 * Anyway, it is presumably better to stumble onwards with
2240 * something and try to run the system in a "less than optimal"
2241 * mode that matches the user configuration.
2242 */
2243 if (i915_vma_get_fence(vma) == 0)
2244 i915_vma_pin_fence(vma);
2245 }
2246
2247 err:
2248 intel_runtime_pm_put(dev_priv);
2249 return vma;
2250 }
2251
2252 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2253 {
2254 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2255 struct i915_ggtt_view view;
2256 struct i915_vma *vma;
2257
2258 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2259
2260 intel_fill_fb_ggtt_view(&view, fb, rotation);
2261 vma = i915_gem_object_to_ggtt(obj, &view);
2262
2263 i915_vma_unpin_fence(vma);
2264 i915_gem_object_unpin_from_display_plane(vma);
2265 }
2266
2267 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2268 unsigned int rotation)
2269 {
2270 if (drm_rotation_90_or_270(rotation))
2271 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2272 else
2273 return fb->pitches[plane];
2274 }
2275
2276 /*
2277 * Convert the x/y offsets into a linear offset.
2278 * Only valid with 0/180 degree rotation, which is fine since linear
2279 * offset is only used with linear buffers on pre-hsw and tiled buffers
2280 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2281 */
2282 u32 intel_fb_xy_to_linear(int x, int y,
2283 const struct intel_plane_state *state,
2284 int plane)
2285 {
2286 const struct drm_framebuffer *fb = state->base.fb;
2287 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2288 unsigned int pitch = fb->pitches[plane];
2289
2290 return y * pitch + x * cpp;
2291 }
2292
2293 /*
2294 * Add the x/y offsets derived from fb->offsets[] to the user
2295 * specified plane src x/y offsets. The resulting x/y offsets
2296 * specify the start of scanout from the beginning of the gtt mapping.
2297 */
2298 void intel_add_fb_offsets(int *x, int *y,
2299 const struct intel_plane_state *state,
2300 int plane)
2301
2302 {
2303 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2304 unsigned int rotation = state->base.rotation;
2305
2306 if (drm_rotation_90_or_270(rotation)) {
2307 *x += intel_fb->rotated[plane].x;
2308 *y += intel_fb->rotated[plane].y;
2309 } else {
2310 *x += intel_fb->normal[plane].x;
2311 *y += intel_fb->normal[plane].y;
2312 }
2313 }
2314
2315 /*
2316 * Input tile dimensions and pitch must already be
2317 * rotated to match x and y, and in pixel units.
2318 */
2319 static u32 _intel_adjust_tile_offset(int *x, int *y,
2320 unsigned int tile_width,
2321 unsigned int tile_height,
2322 unsigned int tile_size,
2323 unsigned int pitch_tiles,
2324 u32 old_offset,
2325 u32 new_offset)
2326 {
2327 unsigned int pitch_pixels = pitch_tiles * tile_width;
2328 unsigned int tiles;
2329
2330 WARN_ON(old_offset & (tile_size - 1));
2331 WARN_ON(new_offset & (tile_size - 1));
2332 WARN_ON(new_offset > old_offset);
2333
2334 tiles = (old_offset - new_offset) / tile_size;
2335
2336 *y += tiles / pitch_tiles * tile_height;
2337 *x += tiles % pitch_tiles * tile_width;
2338
2339 /* minimize x in case it got needlessly big */
2340 *y += *x / pitch_pixels * tile_height;
2341 *x %= pitch_pixels;
2342
2343 return new_offset;
2344 }
2345
2346 /*
2347 * Adjust the tile offset by moving the difference into
2348 * the x/y offsets.
2349 */
2350 static u32 intel_adjust_tile_offset(int *x, int *y,
2351 const struct intel_plane_state *state, int plane,
2352 u32 old_offset, u32 new_offset)
2353 {
2354 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2355 const struct drm_framebuffer *fb = state->base.fb;
2356 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2357 unsigned int rotation = state->base.rotation;
2358 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2359
2360 WARN_ON(new_offset > old_offset);
2361
2362 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2363 unsigned int tile_size, tile_width, tile_height;
2364 unsigned int pitch_tiles;
2365
2366 tile_size = intel_tile_size(dev_priv);
2367 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2368 fb->modifier[plane], cpp);
2369
2370 if (drm_rotation_90_or_270(rotation)) {
2371 pitch_tiles = pitch / tile_height;
2372 swap(tile_width, tile_height);
2373 } else {
2374 pitch_tiles = pitch / (tile_width * cpp);
2375 }
2376
2377 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2378 tile_size, pitch_tiles,
2379 old_offset, new_offset);
2380 } else {
2381 old_offset += *y * pitch + *x * cpp;
2382
2383 *y = (old_offset - new_offset) / pitch;
2384 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2385 }
2386
2387 return new_offset;
2388 }
2389
2390 /*
2391 * Computes the linear offset to the base tile and adjusts
2392 * x, y. bytes per pixel is assumed to be a power-of-two.
2393 *
2394 * In the 90/270 rotated case, x and y are assumed
2395 * to be already rotated to match the rotated GTT view, and
2396 * pitch is the tile_height aligned framebuffer height.
2397 *
2398 * This function is used when computing the derived information
2399 * under intel_framebuffer, so using any of that information
2400 * here is not allowed. Anything under drm_framebuffer can be
2401 * used. This is why the user has to pass in the pitch since it
2402 * is specified in the rotated orientation.
2403 */
2404 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2405 int *x, int *y,
2406 const struct drm_framebuffer *fb, int plane,
2407 unsigned int pitch,
2408 unsigned int rotation,
2409 u32 alignment)
2410 {
2411 uint64_t fb_modifier = fb->modifier[plane];
2412 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2413 u32 offset, offset_aligned;
2414
2415 if (alignment)
2416 alignment--;
2417
2418 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2419 unsigned int tile_size, tile_width, tile_height;
2420 unsigned int tile_rows, tiles, pitch_tiles;
2421
2422 tile_size = intel_tile_size(dev_priv);
2423 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2424 fb_modifier, cpp);
2425
2426 if (drm_rotation_90_or_270(rotation)) {
2427 pitch_tiles = pitch / tile_height;
2428 swap(tile_width, tile_height);
2429 } else {
2430 pitch_tiles = pitch / (tile_width * cpp);
2431 }
2432
2433 tile_rows = *y / tile_height;
2434 *y %= tile_height;
2435
2436 tiles = *x / tile_width;
2437 *x %= tile_width;
2438
2439 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2440 offset_aligned = offset & ~alignment;
2441
2442 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2443 tile_size, pitch_tiles,
2444 offset, offset_aligned);
2445 } else {
2446 offset = *y * pitch + *x * cpp;
2447 offset_aligned = offset & ~alignment;
2448
2449 *y = (offset & alignment) / pitch;
2450 *x = ((offset & alignment) - *y * pitch) / cpp;
2451 }
2452
2453 return offset_aligned;
2454 }
2455
2456 u32 intel_compute_tile_offset(int *x, int *y,
2457 const struct intel_plane_state *state,
2458 int plane)
2459 {
2460 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2461 const struct drm_framebuffer *fb = state->base.fb;
2462 unsigned int rotation = state->base.rotation;
2463 int pitch = intel_fb_pitch(fb, plane, rotation);
2464 u32 alignment;
2465
2466 /* AUX_DIST needs only 4K alignment */
2467 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2468 alignment = 4096;
2469 else
2470 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2471
2472 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2473 rotation, alignment);
2474 }
2475
2476 /* Convert the fb->offset[] linear offset into x/y offsets */
2477 static void intel_fb_offset_to_xy(int *x, int *y,
2478 const struct drm_framebuffer *fb, int plane)
2479 {
2480 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2481 unsigned int pitch = fb->pitches[plane];
2482 u32 linear_offset = fb->offsets[plane];
2483
2484 *y = linear_offset / pitch;
2485 *x = linear_offset % pitch / cpp;
2486 }
2487
2488 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2489 {
2490 switch (fb_modifier) {
2491 case I915_FORMAT_MOD_X_TILED:
2492 return I915_TILING_X;
2493 case I915_FORMAT_MOD_Y_TILED:
2494 return I915_TILING_Y;
2495 default:
2496 return I915_TILING_NONE;
2497 }
2498 }
2499
2500 static int
2501 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2502 struct drm_framebuffer *fb)
2503 {
2504 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2505 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2506 u32 gtt_offset_rotated = 0;
2507 unsigned int max_size = 0;
2508 uint32_t format = fb->pixel_format;
2509 int i, num_planes = drm_format_num_planes(format);
2510 unsigned int tile_size = intel_tile_size(dev_priv);
2511
2512 for (i = 0; i < num_planes; i++) {
2513 unsigned int width, height;
2514 unsigned int cpp, size;
2515 u32 offset;
2516 int x, y;
2517
2518 cpp = drm_format_plane_cpp(format, i);
2519 width = drm_format_plane_width(fb->width, format, i);
2520 height = drm_format_plane_height(fb->height, format, i);
2521
2522 intel_fb_offset_to_xy(&x, &y, fb, i);
2523
2524 /*
2525 * The fence (if used) is aligned to the start of the object
2526 * so having the framebuffer wrap around across the edge of the
2527 * fenced region doesn't really work. We have no API to configure
2528 * the fence start offset within the object (nor could we probably
2529 * on gen2/3). So it's just easier if we just require that the
2530 * fb layout agrees with the fence layout. We already check that the
2531 * fb stride matches the fence stride elsewhere.
2532 */
2533 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2534 (x + width) * cpp > fb->pitches[i]) {
2535 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2536 i, fb->offsets[i]);
2537 return -EINVAL;
2538 }
2539
2540 /*
2541 * First pixel of the framebuffer from
2542 * the start of the normal gtt mapping.
2543 */
2544 intel_fb->normal[i].x = x;
2545 intel_fb->normal[i].y = y;
2546
2547 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2548 fb, 0, fb->pitches[i],
2549 DRM_ROTATE_0, tile_size);
2550 offset /= tile_size;
2551
2552 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2553 unsigned int tile_width, tile_height;
2554 unsigned int pitch_tiles;
2555 struct drm_rect r;
2556
2557 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2558 fb->modifier[i], cpp);
2559
2560 rot_info->plane[i].offset = offset;
2561 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2562 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2563 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2564
2565 intel_fb->rotated[i].pitch =
2566 rot_info->plane[i].height * tile_height;
2567
2568 /* how many tiles does this plane need */
2569 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2570 /*
2571 * If the plane isn't horizontally tile aligned,
2572 * we need one more tile.
2573 */
2574 if (x != 0)
2575 size++;
2576
2577 /* rotate the x/y offsets to match the GTT view */
2578 r.x1 = x;
2579 r.y1 = y;
2580 r.x2 = x + width;
2581 r.y2 = y + height;
2582 drm_rect_rotate(&r,
2583 rot_info->plane[i].width * tile_width,
2584 rot_info->plane[i].height * tile_height,
2585 DRM_ROTATE_270);
2586 x = r.x1;
2587 y = r.y1;
2588
2589 /* rotate the tile dimensions to match the GTT view */
2590 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2591 swap(tile_width, tile_height);
2592
2593 /*
2594 * We only keep the x/y offsets, so push all of the
2595 * gtt offset into the x/y offsets.
2596 */
2597 _intel_adjust_tile_offset(&x, &y, tile_size,
2598 tile_width, tile_height, pitch_tiles,
2599 gtt_offset_rotated * tile_size, 0);
2600
2601 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2602
2603 /*
2604 * First pixel of the framebuffer from
2605 * the start of the rotated gtt mapping.
2606 */
2607 intel_fb->rotated[i].x = x;
2608 intel_fb->rotated[i].y = y;
2609 } else {
2610 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2611 x * cpp, tile_size);
2612 }
2613
2614 /* how many tiles in total needed in the bo */
2615 max_size = max(max_size, offset + size);
2616 }
2617
2618 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2619 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2620 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2621 return -EINVAL;
2622 }
2623
2624 return 0;
2625 }
2626
2627 static int i9xx_format_to_fourcc(int format)
2628 {
2629 switch (format) {
2630 case DISPPLANE_8BPP:
2631 return DRM_FORMAT_C8;
2632 case DISPPLANE_BGRX555:
2633 return DRM_FORMAT_XRGB1555;
2634 case DISPPLANE_BGRX565:
2635 return DRM_FORMAT_RGB565;
2636 default:
2637 case DISPPLANE_BGRX888:
2638 return DRM_FORMAT_XRGB8888;
2639 case DISPPLANE_RGBX888:
2640 return DRM_FORMAT_XBGR8888;
2641 case DISPPLANE_BGRX101010:
2642 return DRM_FORMAT_XRGB2101010;
2643 case DISPPLANE_RGBX101010:
2644 return DRM_FORMAT_XBGR2101010;
2645 }
2646 }
2647
2648 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2649 {
2650 switch (format) {
2651 case PLANE_CTL_FORMAT_RGB_565:
2652 return DRM_FORMAT_RGB565;
2653 default:
2654 case PLANE_CTL_FORMAT_XRGB_8888:
2655 if (rgb_order) {
2656 if (alpha)
2657 return DRM_FORMAT_ABGR8888;
2658 else
2659 return DRM_FORMAT_XBGR8888;
2660 } else {
2661 if (alpha)
2662 return DRM_FORMAT_ARGB8888;
2663 else
2664 return DRM_FORMAT_XRGB8888;
2665 }
2666 case PLANE_CTL_FORMAT_XRGB_2101010:
2667 if (rgb_order)
2668 return DRM_FORMAT_XBGR2101010;
2669 else
2670 return DRM_FORMAT_XRGB2101010;
2671 }
2672 }
2673
2674 static bool
2675 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2676 struct intel_initial_plane_config *plane_config)
2677 {
2678 struct drm_device *dev = crtc->base.dev;
2679 struct drm_i915_private *dev_priv = to_i915(dev);
2680 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2681 struct drm_i915_gem_object *obj = NULL;
2682 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2683 struct drm_framebuffer *fb = &plane_config->fb->base;
2684 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2685 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2686 PAGE_SIZE);
2687
2688 size_aligned -= base_aligned;
2689
2690 if (plane_config->size == 0)
2691 return false;
2692
2693 /* If the FB is too big, just don't use it since fbdev is not very
2694 * important and we should probably use that space with FBC or other
2695 * features. */
2696 if (size_aligned * 2 > ggtt->stolen_usable_size)
2697 return false;
2698
2699 mutex_lock(&dev->struct_mutex);
2700
2701 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2702 base_aligned,
2703 base_aligned,
2704 size_aligned);
2705 if (!obj) {
2706 mutex_unlock(&dev->struct_mutex);
2707 return false;
2708 }
2709
2710 if (plane_config->tiling == I915_TILING_X)
2711 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2712
2713 mode_cmd.pixel_format = fb->pixel_format;
2714 mode_cmd.width = fb->width;
2715 mode_cmd.height = fb->height;
2716 mode_cmd.pitches[0] = fb->pitches[0];
2717 mode_cmd.modifier[0] = fb->modifier[0];
2718 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2719
2720 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2721 &mode_cmd, obj)) {
2722 DRM_DEBUG_KMS("intel fb init failed\n");
2723 goto out_unref_obj;
2724 }
2725
2726 mutex_unlock(&dev->struct_mutex);
2727
2728 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2729 return true;
2730
2731 out_unref_obj:
2732 i915_gem_object_put(obj);
2733 mutex_unlock(&dev->struct_mutex);
2734 return false;
2735 }
2736
2737 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2738 static void
2739 update_state_fb(struct drm_plane *plane)
2740 {
2741 if (plane->fb == plane->state->fb)
2742 return;
2743
2744 if (plane->state->fb)
2745 drm_framebuffer_unreference(plane->state->fb);
2746 plane->state->fb = plane->fb;
2747 if (plane->state->fb)
2748 drm_framebuffer_reference(plane->state->fb);
2749 }
2750
2751 static void
2752 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2753 struct intel_initial_plane_config *plane_config)
2754 {
2755 struct drm_device *dev = intel_crtc->base.dev;
2756 struct drm_i915_private *dev_priv = to_i915(dev);
2757 struct drm_crtc *c;
2758 struct intel_crtc *i;
2759 struct drm_i915_gem_object *obj;
2760 struct drm_plane *primary = intel_crtc->base.primary;
2761 struct drm_plane_state *plane_state = primary->state;
2762 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2763 struct intel_plane *intel_plane = to_intel_plane(primary);
2764 struct intel_plane_state *intel_state =
2765 to_intel_plane_state(plane_state);
2766 struct drm_framebuffer *fb;
2767
2768 if (!plane_config->fb)
2769 return;
2770
2771 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2772 fb = &plane_config->fb->base;
2773 goto valid_fb;
2774 }
2775
2776 kfree(plane_config->fb);
2777
2778 /*
2779 * Failed to alloc the obj, check to see if we should share
2780 * an fb with another CRTC instead
2781 */
2782 for_each_crtc(dev, c) {
2783 i = to_intel_crtc(c);
2784
2785 if (c == &intel_crtc->base)
2786 continue;
2787
2788 if (!i->active)
2789 continue;
2790
2791 fb = c->primary->fb;
2792 if (!fb)
2793 continue;
2794
2795 obj = intel_fb_obj(fb);
2796 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2797 drm_framebuffer_reference(fb);
2798 goto valid_fb;
2799 }
2800 }
2801
2802 /*
2803 * We've failed to reconstruct the BIOS FB. Current display state
2804 * indicates that the primary plane is visible, but has a NULL FB,
2805 * which will lead to problems later if we don't fix it up. The
2806 * simplest solution is to just disable the primary plane now and
2807 * pretend the BIOS never had it enabled.
2808 */
2809 to_intel_plane_state(plane_state)->base.visible = false;
2810 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2811 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2812 intel_plane->disable_plane(primary, &intel_crtc->base);
2813
2814 return;
2815
2816 valid_fb:
2817 plane_state->src_x = 0;
2818 plane_state->src_y = 0;
2819 plane_state->src_w = fb->width << 16;
2820 plane_state->src_h = fb->height << 16;
2821
2822 plane_state->crtc_x = 0;
2823 plane_state->crtc_y = 0;
2824 plane_state->crtc_w = fb->width;
2825 plane_state->crtc_h = fb->height;
2826
2827 intel_state->base.src.x1 = plane_state->src_x;
2828 intel_state->base.src.y1 = plane_state->src_y;
2829 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2830 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2831 intel_state->base.dst.x1 = plane_state->crtc_x;
2832 intel_state->base.dst.y1 = plane_state->crtc_y;
2833 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2834 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2835
2836 obj = intel_fb_obj(fb);
2837 if (i915_gem_object_is_tiled(obj))
2838 dev_priv->preserve_bios_swizzle = true;
2839
2840 drm_framebuffer_reference(fb);
2841 primary->fb = primary->state->fb = fb;
2842 primary->crtc = primary->state->crtc = &intel_crtc->base;
2843 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2844 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2845 &obj->frontbuffer_bits);
2846 }
2847
2848 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2849 unsigned int rotation)
2850 {
2851 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2852
2853 switch (fb->modifier[plane]) {
2854 case DRM_FORMAT_MOD_NONE:
2855 case I915_FORMAT_MOD_X_TILED:
2856 switch (cpp) {
2857 case 8:
2858 return 4096;
2859 case 4:
2860 case 2:
2861 case 1:
2862 return 8192;
2863 default:
2864 MISSING_CASE(cpp);
2865 break;
2866 }
2867 break;
2868 case I915_FORMAT_MOD_Y_TILED:
2869 case I915_FORMAT_MOD_Yf_TILED:
2870 switch (cpp) {
2871 case 8:
2872 return 2048;
2873 case 4:
2874 return 4096;
2875 case 2:
2876 case 1:
2877 return 8192;
2878 default:
2879 MISSING_CASE(cpp);
2880 break;
2881 }
2882 break;
2883 default:
2884 MISSING_CASE(fb->modifier[plane]);
2885 }
2886
2887 return 2048;
2888 }
2889
2890 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2891 {
2892 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2893 const struct drm_framebuffer *fb = plane_state->base.fb;
2894 unsigned int rotation = plane_state->base.rotation;
2895 int x = plane_state->base.src.x1 >> 16;
2896 int y = plane_state->base.src.y1 >> 16;
2897 int w = drm_rect_width(&plane_state->base.src) >> 16;
2898 int h = drm_rect_height(&plane_state->base.src) >> 16;
2899 int max_width = skl_max_plane_width(fb, 0, rotation);
2900 int max_height = 4096;
2901 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2902
2903 if (w > max_width || h > max_height) {
2904 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2905 w, h, max_width, max_height);
2906 return -EINVAL;
2907 }
2908
2909 intel_add_fb_offsets(&x, &y, plane_state, 0);
2910 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2911
2912 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2913
2914 /*
2915 * AUX surface offset is specified as the distance from the
2916 * main surface offset, and it must be non-negative. Make
2917 * sure that is what we will get.
2918 */
2919 if (offset > aux_offset)
2920 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2921 offset, aux_offset & ~(alignment - 1));
2922
2923 /*
2924 * When using an X-tiled surface, the plane blows up
2925 * if the x offset + width exceed the stride.
2926 *
2927 * TODO: linear and Y-tiled seem fine, Yf untested,
2928 */
2929 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2930 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2931
2932 while ((x + w) * cpp > fb->pitches[0]) {
2933 if (offset == 0) {
2934 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2935 return -EINVAL;
2936 }
2937
2938 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2939 offset, offset - alignment);
2940 }
2941 }
2942
2943 plane_state->main.offset = offset;
2944 plane_state->main.x = x;
2945 plane_state->main.y = y;
2946
2947 return 0;
2948 }
2949
2950 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2951 {
2952 const struct drm_framebuffer *fb = plane_state->base.fb;
2953 unsigned int rotation = plane_state->base.rotation;
2954 int max_width = skl_max_plane_width(fb, 1, rotation);
2955 int max_height = 4096;
2956 int x = plane_state->base.src.x1 >> 17;
2957 int y = plane_state->base.src.y1 >> 17;
2958 int w = drm_rect_width(&plane_state->base.src) >> 17;
2959 int h = drm_rect_height(&plane_state->base.src) >> 17;
2960 u32 offset;
2961
2962 intel_add_fb_offsets(&x, &y, plane_state, 1);
2963 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2964
2965 /* FIXME not quite sure how/if these apply to the chroma plane */
2966 if (w > max_width || h > max_height) {
2967 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2968 w, h, max_width, max_height);
2969 return -EINVAL;
2970 }
2971
2972 plane_state->aux.offset = offset;
2973 plane_state->aux.x = x;
2974 plane_state->aux.y = y;
2975
2976 return 0;
2977 }
2978
2979 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2980 {
2981 const struct drm_framebuffer *fb = plane_state->base.fb;
2982 unsigned int rotation = plane_state->base.rotation;
2983 int ret;
2984
2985 /* Rotate src coordinates to match rotated GTT view */
2986 if (drm_rotation_90_or_270(rotation))
2987 drm_rect_rotate(&plane_state->base.src,
2988 fb->width, fb->height, DRM_ROTATE_270);
2989
2990 /*
2991 * Handle the AUX surface first since
2992 * the main surface setup depends on it.
2993 */
2994 if (fb->pixel_format == DRM_FORMAT_NV12) {
2995 ret = skl_check_nv12_aux_surface(plane_state);
2996 if (ret)
2997 return ret;
2998 } else {
2999 plane_state->aux.offset = ~0xfff;
3000 plane_state->aux.x = 0;
3001 plane_state->aux.y = 0;
3002 }
3003
3004 ret = skl_check_main_surface(plane_state);
3005 if (ret)
3006 return ret;
3007
3008 return 0;
3009 }
3010
3011 static void i9xx_update_primary_plane(struct drm_plane *primary,
3012 const struct intel_crtc_state *crtc_state,
3013 const struct intel_plane_state *plane_state)
3014 {
3015 struct drm_device *dev = primary->dev;
3016 struct drm_i915_private *dev_priv = to_i915(dev);
3017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3018 struct drm_framebuffer *fb = plane_state->base.fb;
3019 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3020 int plane = intel_crtc->plane;
3021 u32 linear_offset;
3022 u32 dspcntr;
3023 i915_reg_t reg = DSPCNTR(plane);
3024 unsigned int rotation = plane_state->base.rotation;
3025 int x = plane_state->base.src.x1 >> 16;
3026 int y = plane_state->base.src.y1 >> 16;
3027
3028 dspcntr = DISPPLANE_GAMMA_ENABLE;
3029
3030 dspcntr |= DISPLAY_PLANE_ENABLE;
3031
3032 if (INTEL_INFO(dev)->gen < 4) {
3033 if (intel_crtc->pipe == PIPE_B)
3034 dspcntr |= DISPPLANE_SEL_PIPE_B;
3035
3036 /* pipesrc and dspsize control the size that is scaled from,
3037 * which should always be the user's requested size.
3038 */
3039 I915_WRITE(DSPSIZE(plane),
3040 ((crtc_state->pipe_src_h - 1) << 16) |
3041 (crtc_state->pipe_src_w - 1));
3042 I915_WRITE(DSPPOS(plane), 0);
3043 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3044 I915_WRITE(PRIMSIZE(plane),
3045 ((crtc_state->pipe_src_h - 1) << 16) |
3046 (crtc_state->pipe_src_w - 1));
3047 I915_WRITE(PRIMPOS(plane), 0);
3048 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3049 }
3050
3051 switch (fb->pixel_format) {
3052 case DRM_FORMAT_C8:
3053 dspcntr |= DISPPLANE_8BPP;
3054 break;
3055 case DRM_FORMAT_XRGB1555:
3056 dspcntr |= DISPPLANE_BGRX555;
3057 break;
3058 case DRM_FORMAT_RGB565:
3059 dspcntr |= DISPPLANE_BGRX565;
3060 break;
3061 case DRM_FORMAT_XRGB8888:
3062 dspcntr |= DISPPLANE_BGRX888;
3063 break;
3064 case DRM_FORMAT_XBGR8888:
3065 dspcntr |= DISPPLANE_RGBX888;
3066 break;
3067 case DRM_FORMAT_XRGB2101010:
3068 dspcntr |= DISPPLANE_BGRX101010;
3069 break;
3070 case DRM_FORMAT_XBGR2101010:
3071 dspcntr |= DISPPLANE_RGBX101010;
3072 break;
3073 default:
3074 BUG();
3075 }
3076
3077 if (INTEL_GEN(dev_priv) >= 4 &&
3078 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3079 dspcntr |= DISPPLANE_TILED;
3080
3081 if (IS_G4X(dev_priv))
3082 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3083
3084 intel_add_fb_offsets(&x, &y, plane_state, 0);
3085
3086 if (INTEL_INFO(dev)->gen >= 4)
3087 intel_crtc->dspaddr_offset =
3088 intel_compute_tile_offset(&x, &y, plane_state, 0);
3089
3090 if (rotation == DRM_ROTATE_180) {
3091 dspcntr |= DISPPLANE_ROTATE_180;
3092
3093 x += (crtc_state->pipe_src_w - 1);
3094 y += (crtc_state->pipe_src_h - 1);
3095 }
3096
3097 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3098
3099 if (INTEL_INFO(dev)->gen < 4)
3100 intel_crtc->dspaddr_offset = linear_offset;
3101
3102 intel_crtc->adjusted_x = x;
3103 intel_crtc->adjusted_y = y;
3104
3105 I915_WRITE(reg, dspcntr);
3106
3107 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3108 if (INTEL_INFO(dev)->gen >= 4) {
3109 I915_WRITE(DSPSURF(plane),
3110 intel_fb_gtt_offset(fb, rotation) +
3111 intel_crtc->dspaddr_offset);
3112 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3113 I915_WRITE(DSPLINOFF(plane), linear_offset);
3114 } else
3115 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3116 POSTING_READ(reg);
3117 }
3118
3119 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3120 struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = to_i915(dev);
3124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125 int plane = intel_crtc->plane;
3126
3127 I915_WRITE(DSPCNTR(plane), 0);
3128 if (INTEL_INFO(dev_priv)->gen >= 4)
3129 I915_WRITE(DSPSURF(plane), 0);
3130 else
3131 I915_WRITE(DSPADDR(plane), 0);
3132 POSTING_READ(DSPCNTR(plane));
3133 }
3134
3135 static void ironlake_update_primary_plane(struct drm_plane *primary,
3136 const struct intel_crtc_state *crtc_state,
3137 const struct intel_plane_state *plane_state)
3138 {
3139 struct drm_device *dev = primary->dev;
3140 struct drm_i915_private *dev_priv = to_i915(dev);
3141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3142 struct drm_framebuffer *fb = plane_state->base.fb;
3143 int plane = intel_crtc->plane;
3144 u32 linear_offset;
3145 u32 dspcntr;
3146 i915_reg_t reg = DSPCNTR(plane);
3147 unsigned int rotation = plane_state->base.rotation;
3148 int x = plane_state->base.src.x1 >> 16;
3149 int y = plane_state->base.src.y1 >> 16;
3150
3151 dspcntr = DISPPLANE_GAMMA_ENABLE;
3152 dspcntr |= DISPLAY_PLANE_ENABLE;
3153
3154 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3155 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3156
3157 switch (fb->pixel_format) {
3158 case DRM_FORMAT_C8:
3159 dspcntr |= DISPPLANE_8BPP;
3160 break;
3161 case DRM_FORMAT_RGB565:
3162 dspcntr |= DISPPLANE_BGRX565;
3163 break;
3164 case DRM_FORMAT_XRGB8888:
3165 dspcntr |= DISPPLANE_BGRX888;
3166 break;
3167 case DRM_FORMAT_XBGR8888:
3168 dspcntr |= DISPPLANE_RGBX888;
3169 break;
3170 case DRM_FORMAT_XRGB2101010:
3171 dspcntr |= DISPPLANE_BGRX101010;
3172 break;
3173 case DRM_FORMAT_XBGR2101010:
3174 dspcntr |= DISPPLANE_RGBX101010;
3175 break;
3176 default:
3177 BUG();
3178 }
3179
3180 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3181 dspcntr |= DISPPLANE_TILED;
3182
3183 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3184 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3185
3186 intel_add_fb_offsets(&x, &y, plane_state, 0);
3187
3188 intel_crtc->dspaddr_offset =
3189 intel_compute_tile_offset(&x, &y, plane_state, 0);
3190
3191 if (rotation == DRM_ROTATE_180) {
3192 dspcntr |= DISPPLANE_ROTATE_180;
3193
3194 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3195 x += (crtc_state->pipe_src_w - 1);
3196 y += (crtc_state->pipe_src_h - 1);
3197 }
3198 }
3199
3200 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3201
3202 intel_crtc->adjusted_x = x;
3203 intel_crtc->adjusted_y = y;
3204
3205 I915_WRITE(reg, dspcntr);
3206
3207 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3208 I915_WRITE(DSPSURF(plane),
3209 intel_fb_gtt_offset(fb, rotation) +
3210 intel_crtc->dspaddr_offset);
3211 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3212 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3213 } else {
3214 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3215 I915_WRITE(DSPLINOFF(plane), linear_offset);
3216 }
3217 POSTING_READ(reg);
3218 }
3219
3220 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3221 uint64_t fb_modifier, uint32_t pixel_format)
3222 {
3223 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3224 return 64;
3225 } else {
3226 int cpp = drm_format_plane_cpp(pixel_format, 0);
3227
3228 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3229 }
3230 }
3231
3232 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3233 unsigned int rotation)
3234 {
3235 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3236 struct i915_ggtt_view view;
3237 struct i915_vma *vma;
3238
3239 intel_fill_fb_ggtt_view(&view, fb, rotation);
3240
3241 vma = i915_gem_object_to_ggtt(obj, &view);
3242 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3243 view.type))
3244 return -1;
3245
3246 return i915_ggtt_offset(vma);
3247 }
3248
3249 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3250 {
3251 struct drm_device *dev = intel_crtc->base.dev;
3252 struct drm_i915_private *dev_priv = to_i915(dev);
3253
3254 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3255 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3256 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3257 }
3258
3259 /*
3260 * This function detaches (aka. unbinds) unused scalers in hardware
3261 */
3262 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3263 {
3264 struct intel_crtc_scaler_state *scaler_state;
3265 int i;
3266
3267 scaler_state = &intel_crtc->config->scaler_state;
3268
3269 /* loop through and disable scalers that aren't in use */
3270 for (i = 0; i < intel_crtc->num_scalers; i++) {
3271 if (!scaler_state->scalers[i].in_use)
3272 skl_detach_scaler(intel_crtc, i);
3273 }
3274 }
3275
3276 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3277 unsigned int rotation)
3278 {
3279 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3280 u32 stride = intel_fb_pitch(fb, plane, rotation);
3281
3282 /*
3283 * The stride is either expressed as a multiple of 64 bytes chunks for
3284 * linear buffers or in number of tiles for tiled buffers.
3285 */
3286 if (drm_rotation_90_or_270(rotation)) {
3287 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3288
3289 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3290 } else {
3291 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3292 fb->pixel_format);
3293 }
3294
3295 return stride;
3296 }
3297
3298 u32 skl_plane_ctl_format(uint32_t pixel_format)
3299 {
3300 switch (pixel_format) {
3301 case DRM_FORMAT_C8:
3302 return PLANE_CTL_FORMAT_INDEXED;
3303 case DRM_FORMAT_RGB565:
3304 return PLANE_CTL_FORMAT_RGB_565;
3305 case DRM_FORMAT_XBGR8888:
3306 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3307 case DRM_FORMAT_XRGB8888:
3308 return PLANE_CTL_FORMAT_XRGB_8888;
3309 /*
3310 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3311 * to be already pre-multiplied. We need to add a knob (or a different
3312 * DRM_FORMAT) for user-space to configure that.
3313 */
3314 case DRM_FORMAT_ABGR8888:
3315 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3316 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3317 case DRM_FORMAT_ARGB8888:
3318 return PLANE_CTL_FORMAT_XRGB_8888 |
3319 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3320 case DRM_FORMAT_XRGB2101010:
3321 return PLANE_CTL_FORMAT_XRGB_2101010;
3322 case DRM_FORMAT_XBGR2101010:
3323 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3324 case DRM_FORMAT_YUYV:
3325 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3326 case DRM_FORMAT_YVYU:
3327 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3328 case DRM_FORMAT_UYVY:
3329 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3330 case DRM_FORMAT_VYUY:
3331 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3332 default:
3333 MISSING_CASE(pixel_format);
3334 }
3335
3336 return 0;
3337 }
3338
3339 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3340 {
3341 switch (fb_modifier) {
3342 case DRM_FORMAT_MOD_NONE:
3343 break;
3344 case I915_FORMAT_MOD_X_TILED:
3345 return PLANE_CTL_TILED_X;
3346 case I915_FORMAT_MOD_Y_TILED:
3347 return PLANE_CTL_TILED_Y;
3348 case I915_FORMAT_MOD_Yf_TILED:
3349 return PLANE_CTL_TILED_YF;
3350 default:
3351 MISSING_CASE(fb_modifier);
3352 }
3353
3354 return 0;
3355 }
3356
3357 u32 skl_plane_ctl_rotation(unsigned int rotation)
3358 {
3359 switch (rotation) {
3360 case DRM_ROTATE_0:
3361 break;
3362 /*
3363 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3364 * while i915 HW rotation is clockwise, thats why this swapping.
3365 */
3366 case DRM_ROTATE_90:
3367 return PLANE_CTL_ROTATE_270;
3368 case DRM_ROTATE_180:
3369 return PLANE_CTL_ROTATE_180;
3370 case DRM_ROTATE_270:
3371 return PLANE_CTL_ROTATE_90;
3372 default:
3373 MISSING_CASE(rotation);
3374 }
3375
3376 return 0;
3377 }
3378
3379 static void skylake_update_primary_plane(struct drm_plane *plane,
3380 const struct intel_crtc_state *crtc_state,
3381 const struct intel_plane_state *plane_state)
3382 {
3383 struct drm_device *dev = plane->dev;
3384 struct drm_i915_private *dev_priv = to_i915(dev);
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3386 struct drm_framebuffer *fb = plane_state->base.fb;
3387 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3388 const struct skl_plane_wm *p_wm =
3389 &crtc_state->wm.skl.optimal.planes[0];
3390 int pipe = intel_crtc->pipe;
3391 u32 plane_ctl;
3392 unsigned int rotation = plane_state->base.rotation;
3393 u32 stride = skl_plane_stride(fb, 0, rotation);
3394 u32 surf_addr = plane_state->main.offset;
3395 int scaler_id = plane_state->scaler_id;
3396 int src_x = plane_state->main.x;
3397 int src_y = plane_state->main.y;
3398 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3399 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3400 int dst_x = plane_state->base.dst.x1;
3401 int dst_y = plane_state->base.dst.y1;
3402 int dst_w = drm_rect_width(&plane_state->base.dst);
3403 int dst_h = drm_rect_height(&plane_state->base.dst);
3404
3405 plane_ctl = PLANE_CTL_ENABLE |
3406 PLANE_CTL_PIPE_GAMMA_ENABLE |
3407 PLANE_CTL_PIPE_CSC_ENABLE;
3408
3409 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3410 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3411 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3412 plane_ctl |= skl_plane_ctl_rotation(rotation);
3413
3414 /* Sizes are 0 based */
3415 src_w--;
3416 src_h--;
3417 dst_w--;
3418 dst_h--;
3419
3420 intel_crtc->dspaddr_offset = surf_addr;
3421
3422 intel_crtc->adjusted_x = src_x;
3423 intel_crtc->adjusted_y = src_y;
3424
3425 if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3426 skl_write_plane_wm(intel_crtc, p_wm, &wm->ddb, 0);
3427
3428 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3429 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3430 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3431 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3432
3433 if (scaler_id >= 0) {
3434 uint32_t ps_ctrl = 0;
3435
3436 WARN_ON(!dst_w || !dst_h);
3437 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3438 crtc_state->scaler_state.scalers[scaler_id].mode;
3439 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3440 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3441 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3442 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3443 I915_WRITE(PLANE_POS(pipe, 0), 0);
3444 } else {
3445 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3446 }
3447
3448 I915_WRITE(PLANE_SURF(pipe, 0),
3449 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3450
3451 POSTING_READ(PLANE_SURF(pipe, 0));
3452 }
3453
3454 static void skylake_disable_primary_plane(struct drm_plane *primary,
3455 struct drm_crtc *crtc)
3456 {
3457 struct drm_device *dev = crtc->dev;
3458 struct drm_i915_private *dev_priv = to_i915(dev);
3459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3460 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3461 const struct skl_plane_wm *p_wm = &cstate->wm.skl.optimal.planes[0];
3462 int pipe = intel_crtc->pipe;
3463
3464 /*
3465 * We only populate skl_results on watermark updates, and if the
3466 * plane's visiblity isn't actually changing neither is its watermarks.
3467 */
3468 if (!crtc->primary->state->visible)
3469 skl_write_plane_wm(intel_crtc, p_wm,
3470 &dev_priv->wm.skl_results.ddb, 0);
3471
3472 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3473 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3474 POSTING_READ(PLANE_SURF(pipe, 0));
3475 }
3476
3477 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3478 static int
3479 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3480 int x, int y, enum mode_set_atomic state)
3481 {
3482 /* Support for kgdboc is disabled, this needs a major rework. */
3483 DRM_ERROR("legacy panic handler not supported any more.\n");
3484
3485 return -ENODEV;
3486 }
3487
3488 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3489 {
3490 struct intel_crtc *crtc;
3491
3492 for_each_intel_crtc(&dev_priv->drm, crtc)
3493 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3494 }
3495
3496 static void intel_update_primary_planes(struct drm_device *dev)
3497 {
3498 struct drm_crtc *crtc;
3499
3500 for_each_crtc(dev, crtc) {
3501 struct intel_plane *plane = to_intel_plane(crtc->primary);
3502 struct intel_plane_state *plane_state =
3503 to_intel_plane_state(plane->base.state);
3504
3505 if (plane_state->base.visible)
3506 plane->update_plane(&plane->base,
3507 to_intel_crtc_state(crtc->state),
3508 plane_state);
3509 }
3510 }
3511
3512 static int
3513 __intel_display_resume(struct drm_device *dev,
3514 struct drm_atomic_state *state)
3515 {
3516 struct drm_crtc_state *crtc_state;
3517 struct drm_crtc *crtc;
3518 int i, ret;
3519
3520 intel_modeset_setup_hw_state(dev);
3521 i915_redisable_vga(dev);
3522
3523 if (!state)
3524 return 0;
3525
3526 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3527 /*
3528 * Force recalculation even if we restore
3529 * current state. With fast modeset this may not result
3530 * in a modeset when the state is compatible.
3531 */
3532 crtc_state->mode_changed = true;
3533 }
3534
3535 /* ignore any reset values/BIOS leftovers in the WM registers */
3536 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3537
3538 ret = drm_atomic_commit(state);
3539
3540 WARN_ON(ret == -EDEADLK);
3541 return ret;
3542 }
3543
3544 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3545 {
3546 return intel_has_gpu_reset(dev_priv) &&
3547 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3548 }
3549
3550 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3551 {
3552 struct drm_device *dev = &dev_priv->drm;
3553 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3554 struct drm_atomic_state *state;
3555 int ret;
3556
3557 /*
3558 * Need mode_config.mutex so that we don't
3559 * trample ongoing ->detect() and whatnot.
3560 */
3561 mutex_lock(&dev->mode_config.mutex);
3562 drm_modeset_acquire_init(ctx, 0);
3563 while (1) {
3564 ret = drm_modeset_lock_all_ctx(dev, ctx);
3565 if (ret != -EDEADLK)
3566 break;
3567
3568 drm_modeset_backoff(ctx);
3569 }
3570
3571 /* reset doesn't touch the display, but flips might get nuked anyway, */
3572 if (!i915.force_reset_modeset_test &&
3573 !gpu_reset_clobbers_display(dev_priv))
3574 return;
3575
3576 /*
3577 * Disabling the crtcs gracefully seems nicer. Also the
3578 * g33 docs say we should at least disable all the planes.
3579 */
3580 state = drm_atomic_helper_duplicate_state(dev, ctx);
3581 if (IS_ERR(state)) {
3582 ret = PTR_ERR(state);
3583 state = NULL;
3584 DRM_ERROR("Duplicating state failed with %i\n", ret);
3585 goto err;
3586 }
3587
3588 ret = drm_atomic_helper_disable_all(dev, ctx);
3589 if (ret) {
3590 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3591 goto err;
3592 }
3593
3594 dev_priv->modeset_restore_state = state;
3595 state->acquire_ctx = ctx;
3596 return;
3597
3598 err:
3599 drm_atomic_state_put(state);
3600 }
3601
3602 void intel_finish_reset(struct drm_i915_private *dev_priv)
3603 {
3604 struct drm_device *dev = &dev_priv->drm;
3605 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3606 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3607 int ret;
3608
3609 /*
3610 * Flips in the rings will be nuked by the reset,
3611 * so complete all pending flips so that user space
3612 * will get its events and not get stuck.
3613 */
3614 intel_complete_page_flips(dev_priv);
3615
3616 dev_priv->modeset_restore_state = NULL;
3617
3618 /* reset doesn't touch the display */
3619 if (!gpu_reset_clobbers_display(dev_priv)) {
3620 if (!state) {
3621 /*
3622 * Flips in the rings have been nuked by the reset,
3623 * so update the base address of all primary
3624 * planes to the the last fb to make sure we're
3625 * showing the correct fb after a reset.
3626 *
3627 * FIXME: Atomic will make this obsolete since we won't schedule
3628 * CS-based flips (which might get lost in gpu resets) any more.
3629 */
3630 intel_update_primary_planes(dev);
3631 } else {
3632 ret = __intel_display_resume(dev, state);
3633 if (ret)
3634 DRM_ERROR("Restoring old state failed with %i\n", ret);
3635 }
3636 } else {
3637 /*
3638 * The display has been reset as well,
3639 * so need a full re-initialization.
3640 */
3641 intel_runtime_pm_disable_interrupts(dev_priv);
3642 intel_runtime_pm_enable_interrupts(dev_priv);
3643
3644 intel_pps_unlock_regs_wa(dev_priv);
3645 intel_modeset_init_hw(dev);
3646
3647 spin_lock_irq(&dev_priv->irq_lock);
3648 if (dev_priv->display.hpd_irq_setup)
3649 dev_priv->display.hpd_irq_setup(dev_priv);
3650 spin_unlock_irq(&dev_priv->irq_lock);
3651
3652 ret = __intel_display_resume(dev, state);
3653 if (ret)
3654 DRM_ERROR("Restoring old state failed with %i\n", ret);
3655
3656 intel_hpd_init(dev_priv);
3657 }
3658
3659 if (state)
3660 drm_atomic_state_put(state);
3661 drm_modeset_drop_locks(ctx);
3662 drm_modeset_acquire_fini(ctx);
3663 mutex_unlock(&dev->mode_config.mutex);
3664 }
3665
3666 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3667 {
3668 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3669
3670 if (i915_reset_in_progress(error))
3671 return true;
3672
3673 if (crtc->reset_count != i915_reset_count(error))
3674 return true;
3675
3676 return false;
3677 }
3678
3679 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3680 {
3681 struct drm_device *dev = crtc->dev;
3682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3683 bool pending;
3684
3685 if (abort_flip_on_reset(intel_crtc))
3686 return false;
3687
3688 spin_lock_irq(&dev->event_lock);
3689 pending = to_intel_crtc(crtc)->flip_work != NULL;
3690 spin_unlock_irq(&dev->event_lock);
3691
3692 return pending;
3693 }
3694
3695 static void intel_update_pipe_config(struct intel_crtc *crtc,
3696 struct intel_crtc_state *old_crtc_state)
3697 {
3698 struct drm_device *dev = crtc->base.dev;
3699 struct drm_i915_private *dev_priv = to_i915(dev);
3700 struct intel_crtc_state *pipe_config =
3701 to_intel_crtc_state(crtc->base.state);
3702
3703 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3704 crtc->base.mode = crtc->base.state->mode;
3705
3706 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3707 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3708 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3709
3710 /*
3711 * Update pipe size and adjust fitter if needed: the reason for this is
3712 * that in compute_mode_changes we check the native mode (not the pfit
3713 * mode) to see if we can flip rather than do a full mode set. In the
3714 * fastboot case, we'll flip, but if we don't update the pipesrc and
3715 * pfit state, we'll end up with a big fb scanned out into the wrong
3716 * sized surface.
3717 */
3718
3719 I915_WRITE(PIPESRC(crtc->pipe),
3720 ((pipe_config->pipe_src_w - 1) << 16) |
3721 (pipe_config->pipe_src_h - 1));
3722
3723 /* on skylake this is done by detaching scalers */
3724 if (INTEL_INFO(dev)->gen >= 9) {
3725 skl_detach_scalers(crtc);
3726
3727 if (pipe_config->pch_pfit.enabled)
3728 skylake_pfit_enable(crtc);
3729 } else if (HAS_PCH_SPLIT(dev_priv)) {
3730 if (pipe_config->pch_pfit.enabled)
3731 ironlake_pfit_enable(crtc);
3732 else if (old_crtc_state->pch_pfit.enabled)
3733 ironlake_pfit_disable(crtc, true);
3734 }
3735 }
3736
3737 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3738 {
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = to_i915(dev);
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 int pipe = intel_crtc->pipe;
3743 i915_reg_t reg;
3744 u32 temp;
3745
3746 /* enable normal train */
3747 reg = FDI_TX_CTL(pipe);
3748 temp = I915_READ(reg);
3749 if (IS_IVYBRIDGE(dev_priv)) {
3750 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3751 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3752 } else {
3753 temp &= ~FDI_LINK_TRAIN_NONE;
3754 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3755 }
3756 I915_WRITE(reg, temp);
3757
3758 reg = FDI_RX_CTL(pipe);
3759 temp = I915_READ(reg);
3760 if (HAS_PCH_CPT(dev_priv)) {
3761 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3762 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3763 } else {
3764 temp &= ~FDI_LINK_TRAIN_NONE;
3765 temp |= FDI_LINK_TRAIN_NONE;
3766 }
3767 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3768
3769 /* wait one idle pattern time */
3770 POSTING_READ(reg);
3771 udelay(1000);
3772
3773 /* IVB wants error correction enabled */
3774 if (IS_IVYBRIDGE(dev_priv))
3775 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3776 FDI_FE_ERRC_ENABLE);
3777 }
3778
3779 /* The FDI link training functions for ILK/Ibexpeak. */
3780 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3781 {
3782 struct drm_device *dev = crtc->dev;
3783 struct drm_i915_private *dev_priv = to_i915(dev);
3784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3785 int pipe = intel_crtc->pipe;
3786 i915_reg_t reg;
3787 u32 temp, tries;
3788
3789 /* FDI needs bits from pipe first */
3790 assert_pipe_enabled(dev_priv, pipe);
3791
3792 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3793 for train result */
3794 reg = FDI_RX_IMR(pipe);
3795 temp = I915_READ(reg);
3796 temp &= ~FDI_RX_SYMBOL_LOCK;
3797 temp &= ~FDI_RX_BIT_LOCK;
3798 I915_WRITE(reg, temp);
3799 I915_READ(reg);
3800 udelay(150);
3801
3802 /* enable CPU FDI TX and PCH FDI RX */
3803 reg = FDI_TX_CTL(pipe);
3804 temp = I915_READ(reg);
3805 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3806 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3807 temp &= ~FDI_LINK_TRAIN_NONE;
3808 temp |= FDI_LINK_TRAIN_PATTERN_1;
3809 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3810
3811 reg = FDI_RX_CTL(pipe);
3812 temp = I915_READ(reg);
3813 temp &= ~FDI_LINK_TRAIN_NONE;
3814 temp |= FDI_LINK_TRAIN_PATTERN_1;
3815 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3816
3817 POSTING_READ(reg);
3818 udelay(150);
3819
3820 /* Ironlake workaround, enable clock pointer after FDI enable*/
3821 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3822 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3823 FDI_RX_PHASE_SYNC_POINTER_EN);
3824
3825 reg = FDI_RX_IIR(pipe);
3826 for (tries = 0; tries < 5; tries++) {
3827 temp = I915_READ(reg);
3828 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3829
3830 if ((temp & FDI_RX_BIT_LOCK)) {
3831 DRM_DEBUG_KMS("FDI train 1 done.\n");
3832 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3833 break;
3834 }
3835 }
3836 if (tries == 5)
3837 DRM_ERROR("FDI train 1 fail!\n");
3838
3839 /* Train 2 */
3840 reg = FDI_TX_CTL(pipe);
3841 temp = I915_READ(reg);
3842 temp &= ~FDI_LINK_TRAIN_NONE;
3843 temp |= FDI_LINK_TRAIN_PATTERN_2;
3844 I915_WRITE(reg, temp);
3845
3846 reg = FDI_RX_CTL(pipe);
3847 temp = I915_READ(reg);
3848 temp &= ~FDI_LINK_TRAIN_NONE;
3849 temp |= FDI_LINK_TRAIN_PATTERN_2;
3850 I915_WRITE(reg, temp);
3851
3852 POSTING_READ(reg);
3853 udelay(150);
3854
3855 reg = FDI_RX_IIR(pipe);
3856 for (tries = 0; tries < 5; tries++) {
3857 temp = I915_READ(reg);
3858 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3859
3860 if (temp & FDI_RX_SYMBOL_LOCK) {
3861 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3862 DRM_DEBUG_KMS("FDI train 2 done.\n");
3863 break;
3864 }
3865 }
3866 if (tries == 5)
3867 DRM_ERROR("FDI train 2 fail!\n");
3868
3869 DRM_DEBUG_KMS("FDI train done\n");
3870
3871 }
3872
3873 static const int snb_b_fdi_train_param[] = {
3874 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3875 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3876 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3877 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3878 };
3879
3880 /* The FDI link training functions for SNB/Cougarpoint. */
3881 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3882 {
3883 struct drm_device *dev = crtc->dev;
3884 struct drm_i915_private *dev_priv = to_i915(dev);
3885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3886 int pipe = intel_crtc->pipe;
3887 i915_reg_t reg;
3888 u32 temp, i, retry;
3889
3890 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3891 for train result */
3892 reg = FDI_RX_IMR(pipe);
3893 temp = I915_READ(reg);
3894 temp &= ~FDI_RX_SYMBOL_LOCK;
3895 temp &= ~FDI_RX_BIT_LOCK;
3896 I915_WRITE(reg, temp);
3897
3898 POSTING_READ(reg);
3899 udelay(150);
3900
3901 /* enable CPU FDI TX and PCH FDI RX */
3902 reg = FDI_TX_CTL(pipe);
3903 temp = I915_READ(reg);
3904 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3905 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3906 temp &= ~FDI_LINK_TRAIN_NONE;
3907 temp |= FDI_LINK_TRAIN_PATTERN_1;
3908 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3909 /* SNB-B */
3910 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3911 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3912
3913 I915_WRITE(FDI_RX_MISC(pipe),
3914 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3915
3916 reg = FDI_RX_CTL(pipe);
3917 temp = I915_READ(reg);
3918 if (HAS_PCH_CPT(dev_priv)) {
3919 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3920 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3921 } else {
3922 temp &= ~FDI_LINK_TRAIN_NONE;
3923 temp |= FDI_LINK_TRAIN_PATTERN_1;
3924 }
3925 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3926
3927 POSTING_READ(reg);
3928 udelay(150);
3929
3930 for (i = 0; i < 4; i++) {
3931 reg = FDI_TX_CTL(pipe);
3932 temp = I915_READ(reg);
3933 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3934 temp |= snb_b_fdi_train_param[i];
3935 I915_WRITE(reg, temp);
3936
3937 POSTING_READ(reg);
3938 udelay(500);
3939
3940 for (retry = 0; retry < 5; retry++) {
3941 reg = FDI_RX_IIR(pipe);
3942 temp = I915_READ(reg);
3943 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3944 if (temp & FDI_RX_BIT_LOCK) {
3945 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3946 DRM_DEBUG_KMS("FDI train 1 done.\n");
3947 break;
3948 }
3949 udelay(50);
3950 }
3951 if (retry < 5)
3952 break;
3953 }
3954 if (i == 4)
3955 DRM_ERROR("FDI train 1 fail!\n");
3956
3957 /* Train 2 */
3958 reg = FDI_TX_CTL(pipe);
3959 temp = I915_READ(reg);
3960 temp &= ~FDI_LINK_TRAIN_NONE;
3961 temp |= FDI_LINK_TRAIN_PATTERN_2;
3962 if (IS_GEN6(dev_priv)) {
3963 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3964 /* SNB-B */
3965 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3966 }
3967 I915_WRITE(reg, temp);
3968
3969 reg = FDI_RX_CTL(pipe);
3970 temp = I915_READ(reg);
3971 if (HAS_PCH_CPT(dev_priv)) {
3972 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3973 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3974 } else {
3975 temp &= ~FDI_LINK_TRAIN_NONE;
3976 temp |= FDI_LINK_TRAIN_PATTERN_2;
3977 }
3978 I915_WRITE(reg, temp);
3979
3980 POSTING_READ(reg);
3981 udelay(150);
3982
3983 for (i = 0; i < 4; i++) {
3984 reg = FDI_TX_CTL(pipe);
3985 temp = I915_READ(reg);
3986 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3987 temp |= snb_b_fdi_train_param[i];
3988 I915_WRITE(reg, temp);
3989
3990 POSTING_READ(reg);
3991 udelay(500);
3992
3993 for (retry = 0; retry < 5; retry++) {
3994 reg = FDI_RX_IIR(pipe);
3995 temp = I915_READ(reg);
3996 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3997 if (temp & FDI_RX_SYMBOL_LOCK) {
3998 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3999 DRM_DEBUG_KMS("FDI train 2 done.\n");
4000 break;
4001 }
4002 udelay(50);
4003 }
4004 if (retry < 5)
4005 break;
4006 }
4007 if (i == 4)
4008 DRM_ERROR("FDI train 2 fail!\n");
4009
4010 DRM_DEBUG_KMS("FDI train done.\n");
4011 }
4012
4013 /* Manual link training for Ivy Bridge A0 parts */
4014 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
4015 {
4016 struct drm_device *dev = crtc->dev;
4017 struct drm_i915_private *dev_priv = to_i915(dev);
4018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4019 int pipe = intel_crtc->pipe;
4020 i915_reg_t reg;
4021 u32 temp, i, j;
4022
4023 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4024 for train result */
4025 reg = FDI_RX_IMR(pipe);
4026 temp = I915_READ(reg);
4027 temp &= ~FDI_RX_SYMBOL_LOCK;
4028 temp &= ~FDI_RX_BIT_LOCK;
4029 I915_WRITE(reg, temp);
4030
4031 POSTING_READ(reg);
4032 udelay(150);
4033
4034 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4035 I915_READ(FDI_RX_IIR(pipe)));
4036
4037 /* Try each vswing and preemphasis setting twice before moving on */
4038 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4039 /* disable first in case we need to retry */
4040 reg = FDI_TX_CTL(pipe);
4041 temp = I915_READ(reg);
4042 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4043 temp &= ~FDI_TX_ENABLE;
4044 I915_WRITE(reg, temp);
4045
4046 reg = FDI_RX_CTL(pipe);
4047 temp = I915_READ(reg);
4048 temp &= ~FDI_LINK_TRAIN_AUTO;
4049 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4050 temp &= ~FDI_RX_ENABLE;
4051 I915_WRITE(reg, temp);
4052
4053 /* enable CPU FDI TX and PCH FDI RX */
4054 reg = FDI_TX_CTL(pipe);
4055 temp = I915_READ(reg);
4056 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4057 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4058 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4059 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4060 temp |= snb_b_fdi_train_param[j/2];
4061 temp |= FDI_COMPOSITE_SYNC;
4062 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4063
4064 I915_WRITE(FDI_RX_MISC(pipe),
4065 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4066
4067 reg = FDI_RX_CTL(pipe);
4068 temp = I915_READ(reg);
4069 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4070 temp |= FDI_COMPOSITE_SYNC;
4071 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4072
4073 POSTING_READ(reg);
4074 udelay(1); /* should be 0.5us */
4075
4076 for (i = 0; i < 4; i++) {
4077 reg = FDI_RX_IIR(pipe);
4078 temp = I915_READ(reg);
4079 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4080
4081 if (temp & FDI_RX_BIT_LOCK ||
4082 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4083 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4084 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4085 i);
4086 break;
4087 }
4088 udelay(1); /* should be 0.5us */
4089 }
4090 if (i == 4) {
4091 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4092 continue;
4093 }
4094
4095 /* Train 2 */
4096 reg = FDI_TX_CTL(pipe);
4097 temp = I915_READ(reg);
4098 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4099 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4100 I915_WRITE(reg, temp);
4101
4102 reg = FDI_RX_CTL(pipe);
4103 temp = I915_READ(reg);
4104 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4105 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4106 I915_WRITE(reg, temp);
4107
4108 POSTING_READ(reg);
4109 udelay(2); /* should be 1.5us */
4110
4111 for (i = 0; i < 4; i++) {
4112 reg = FDI_RX_IIR(pipe);
4113 temp = I915_READ(reg);
4114 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4115
4116 if (temp & FDI_RX_SYMBOL_LOCK ||
4117 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4118 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4119 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4120 i);
4121 goto train_done;
4122 }
4123 udelay(2); /* should be 1.5us */
4124 }
4125 if (i == 4)
4126 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4127 }
4128
4129 train_done:
4130 DRM_DEBUG_KMS("FDI train done.\n");
4131 }
4132
4133 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4134 {
4135 struct drm_device *dev = intel_crtc->base.dev;
4136 struct drm_i915_private *dev_priv = to_i915(dev);
4137 int pipe = intel_crtc->pipe;
4138 i915_reg_t reg;
4139 u32 temp;
4140
4141 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4142 reg = FDI_RX_CTL(pipe);
4143 temp = I915_READ(reg);
4144 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4145 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4146 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4147 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4148
4149 POSTING_READ(reg);
4150 udelay(200);
4151
4152 /* Switch from Rawclk to PCDclk */
4153 temp = I915_READ(reg);
4154 I915_WRITE(reg, temp | FDI_PCDCLK);
4155
4156 POSTING_READ(reg);
4157 udelay(200);
4158
4159 /* Enable CPU FDI TX PLL, always on for Ironlake */
4160 reg = FDI_TX_CTL(pipe);
4161 temp = I915_READ(reg);
4162 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4163 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4164
4165 POSTING_READ(reg);
4166 udelay(100);
4167 }
4168 }
4169
4170 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4171 {
4172 struct drm_device *dev = intel_crtc->base.dev;
4173 struct drm_i915_private *dev_priv = to_i915(dev);
4174 int pipe = intel_crtc->pipe;
4175 i915_reg_t reg;
4176 u32 temp;
4177
4178 /* Switch from PCDclk to Rawclk */
4179 reg = FDI_RX_CTL(pipe);
4180 temp = I915_READ(reg);
4181 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4182
4183 /* Disable CPU FDI TX PLL */
4184 reg = FDI_TX_CTL(pipe);
4185 temp = I915_READ(reg);
4186 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4187
4188 POSTING_READ(reg);
4189 udelay(100);
4190
4191 reg = FDI_RX_CTL(pipe);
4192 temp = I915_READ(reg);
4193 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4194
4195 /* Wait for the clocks to turn off. */
4196 POSTING_READ(reg);
4197 udelay(100);
4198 }
4199
4200 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4201 {
4202 struct drm_device *dev = crtc->dev;
4203 struct drm_i915_private *dev_priv = to_i915(dev);
4204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4205 int pipe = intel_crtc->pipe;
4206 i915_reg_t reg;
4207 u32 temp;
4208
4209 /* disable CPU FDI tx and PCH FDI rx */
4210 reg = FDI_TX_CTL(pipe);
4211 temp = I915_READ(reg);
4212 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4213 POSTING_READ(reg);
4214
4215 reg = FDI_RX_CTL(pipe);
4216 temp = I915_READ(reg);
4217 temp &= ~(0x7 << 16);
4218 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4219 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4220
4221 POSTING_READ(reg);
4222 udelay(100);
4223
4224 /* Ironlake workaround, disable clock pointer after downing FDI */
4225 if (HAS_PCH_IBX(dev_priv))
4226 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4227
4228 /* still set train pattern 1 */
4229 reg = FDI_TX_CTL(pipe);
4230 temp = I915_READ(reg);
4231 temp &= ~FDI_LINK_TRAIN_NONE;
4232 temp |= FDI_LINK_TRAIN_PATTERN_1;
4233 I915_WRITE(reg, temp);
4234
4235 reg = FDI_RX_CTL(pipe);
4236 temp = I915_READ(reg);
4237 if (HAS_PCH_CPT(dev_priv)) {
4238 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4239 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4240 } else {
4241 temp &= ~FDI_LINK_TRAIN_NONE;
4242 temp |= FDI_LINK_TRAIN_PATTERN_1;
4243 }
4244 /* BPC in FDI rx is consistent with that in PIPECONF */
4245 temp &= ~(0x07 << 16);
4246 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4247 I915_WRITE(reg, temp);
4248
4249 POSTING_READ(reg);
4250 udelay(100);
4251 }
4252
4253 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4254 {
4255 struct intel_crtc *crtc;
4256
4257 /* Note that we don't need to be called with mode_config.lock here
4258 * as our list of CRTC objects is static for the lifetime of the
4259 * device and so cannot disappear as we iterate. Similarly, we can
4260 * happily treat the predicates as racy, atomic checks as userspace
4261 * cannot claim and pin a new fb without at least acquring the
4262 * struct_mutex and so serialising with us.
4263 */
4264 for_each_intel_crtc(dev, crtc) {
4265 if (atomic_read(&crtc->unpin_work_count) == 0)
4266 continue;
4267
4268 if (crtc->flip_work)
4269 intel_wait_for_vblank(dev, crtc->pipe);
4270
4271 return true;
4272 }
4273
4274 return false;
4275 }
4276
4277 static void page_flip_completed(struct intel_crtc *intel_crtc)
4278 {
4279 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4280 struct intel_flip_work *work = intel_crtc->flip_work;
4281
4282 intel_crtc->flip_work = NULL;
4283
4284 if (work->event)
4285 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4286
4287 drm_crtc_vblank_put(&intel_crtc->base);
4288
4289 wake_up_all(&dev_priv->pending_flip_queue);
4290 queue_work(dev_priv->wq, &work->unpin_work);
4291
4292 trace_i915_flip_complete(intel_crtc->plane,
4293 work->pending_flip_obj);
4294 }
4295
4296 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4297 {
4298 struct drm_device *dev = crtc->dev;
4299 struct drm_i915_private *dev_priv = to_i915(dev);
4300 long ret;
4301
4302 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4303
4304 ret = wait_event_interruptible_timeout(
4305 dev_priv->pending_flip_queue,
4306 !intel_crtc_has_pending_flip(crtc),
4307 60*HZ);
4308
4309 if (ret < 0)
4310 return ret;
4311
4312 if (ret == 0) {
4313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4314 struct intel_flip_work *work;
4315
4316 spin_lock_irq(&dev->event_lock);
4317 work = intel_crtc->flip_work;
4318 if (work && !is_mmio_work(work)) {
4319 WARN_ONCE(1, "Removing stuck page flip\n");
4320 page_flip_completed(intel_crtc);
4321 }
4322 spin_unlock_irq(&dev->event_lock);
4323 }
4324
4325 return 0;
4326 }
4327
4328 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4329 {
4330 u32 temp;
4331
4332 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4333
4334 mutex_lock(&dev_priv->sb_lock);
4335
4336 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4337 temp |= SBI_SSCCTL_DISABLE;
4338 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4339
4340 mutex_unlock(&dev_priv->sb_lock);
4341 }
4342
4343 /* Program iCLKIP clock to the desired frequency */
4344 static void lpt_program_iclkip(struct drm_crtc *crtc)
4345 {
4346 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4347 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4348 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4349 u32 temp;
4350
4351 lpt_disable_iclkip(dev_priv);
4352
4353 /* The iCLK virtual clock root frequency is in MHz,
4354 * but the adjusted_mode->crtc_clock in in KHz. To get the
4355 * divisors, it is necessary to divide one by another, so we
4356 * convert the virtual clock precision to KHz here for higher
4357 * precision.
4358 */
4359 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4360 u32 iclk_virtual_root_freq = 172800 * 1000;
4361 u32 iclk_pi_range = 64;
4362 u32 desired_divisor;
4363
4364 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4365 clock << auxdiv);
4366 divsel = (desired_divisor / iclk_pi_range) - 2;
4367 phaseinc = desired_divisor % iclk_pi_range;
4368
4369 /*
4370 * Near 20MHz is a corner case which is
4371 * out of range for the 7-bit divisor
4372 */
4373 if (divsel <= 0x7f)
4374 break;
4375 }
4376
4377 /* This should not happen with any sane values */
4378 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4379 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4380 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4381 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4382
4383 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4384 clock,
4385 auxdiv,
4386 divsel,
4387 phasedir,
4388 phaseinc);
4389
4390 mutex_lock(&dev_priv->sb_lock);
4391
4392 /* Program SSCDIVINTPHASE6 */
4393 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4394 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4395 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4396 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4397 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4398 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4399 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4400 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4401
4402 /* Program SSCAUXDIV */
4403 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4404 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4405 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4406 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4407
4408 /* Enable modulator and associated divider */
4409 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4410 temp &= ~SBI_SSCCTL_DISABLE;
4411 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4412
4413 mutex_unlock(&dev_priv->sb_lock);
4414
4415 /* Wait for initialization time */
4416 udelay(24);
4417
4418 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4419 }
4420
4421 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4422 {
4423 u32 divsel, phaseinc, auxdiv;
4424 u32 iclk_virtual_root_freq = 172800 * 1000;
4425 u32 iclk_pi_range = 64;
4426 u32 desired_divisor;
4427 u32 temp;
4428
4429 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4430 return 0;
4431
4432 mutex_lock(&dev_priv->sb_lock);
4433
4434 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4435 if (temp & SBI_SSCCTL_DISABLE) {
4436 mutex_unlock(&dev_priv->sb_lock);
4437 return 0;
4438 }
4439
4440 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4441 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4442 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4443 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4444 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4445
4446 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4447 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4448 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4449
4450 mutex_unlock(&dev_priv->sb_lock);
4451
4452 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4453
4454 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4455 desired_divisor << auxdiv);
4456 }
4457
4458 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4459 enum pipe pch_transcoder)
4460 {
4461 struct drm_device *dev = crtc->base.dev;
4462 struct drm_i915_private *dev_priv = to_i915(dev);
4463 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4464
4465 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4466 I915_READ(HTOTAL(cpu_transcoder)));
4467 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4468 I915_READ(HBLANK(cpu_transcoder)));
4469 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4470 I915_READ(HSYNC(cpu_transcoder)));
4471
4472 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4473 I915_READ(VTOTAL(cpu_transcoder)));
4474 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4475 I915_READ(VBLANK(cpu_transcoder)));
4476 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4477 I915_READ(VSYNC(cpu_transcoder)));
4478 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4479 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4480 }
4481
4482 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4483 {
4484 struct drm_i915_private *dev_priv = to_i915(dev);
4485 uint32_t temp;
4486
4487 temp = I915_READ(SOUTH_CHICKEN1);
4488 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4489 return;
4490
4491 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4492 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4493
4494 temp &= ~FDI_BC_BIFURCATION_SELECT;
4495 if (enable)
4496 temp |= FDI_BC_BIFURCATION_SELECT;
4497
4498 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4499 I915_WRITE(SOUTH_CHICKEN1, temp);
4500 POSTING_READ(SOUTH_CHICKEN1);
4501 }
4502
4503 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4504 {
4505 struct drm_device *dev = intel_crtc->base.dev;
4506
4507 switch (intel_crtc->pipe) {
4508 case PIPE_A:
4509 break;
4510 case PIPE_B:
4511 if (intel_crtc->config->fdi_lanes > 2)
4512 cpt_set_fdi_bc_bifurcation(dev, false);
4513 else
4514 cpt_set_fdi_bc_bifurcation(dev, true);
4515
4516 break;
4517 case PIPE_C:
4518 cpt_set_fdi_bc_bifurcation(dev, true);
4519
4520 break;
4521 default:
4522 BUG();
4523 }
4524 }
4525
4526 /* Return which DP Port should be selected for Transcoder DP control */
4527 static enum port
4528 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4529 {
4530 struct drm_device *dev = crtc->dev;
4531 struct intel_encoder *encoder;
4532
4533 for_each_encoder_on_crtc(dev, crtc, encoder) {
4534 if (encoder->type == INTEL_OUTPUT_DP ||
4535 encoder->type == INTEL_OUTPUT_EDP)
4536 return enc_to_dig_port(&encoder->base)->port;
4537 }
4538
4539 return -1;
4540 }
4541
4542 /*
4543 * Enable PCH resources required for PCH ports:
4544 * - PCH PLLs
4545 * - FDI training & RX/TX
4546 * - update transcoder timings
4547 * - DP transcoding bits
4548 * - transcoder
4549 */
4550 static void ironlake_pch_enable(struct drm_crtc *crtc)
4551 {
4552 struct drm_device *dev = crtc->dev;
4553 struct drm_i915_private *dev_priv = to_i915(dev);
4554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4555 int pipe = intel_crtc->pipe;
4556 u32 temp;
4557
4558 assert_pch_transcoder_disabled(dev_priv, pipe);
4559
4560 if (IS_IVYBRIDGE(dev_priv))
4561 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4562
4563 /* Write the TU size bits before fdi link training, so that error
4564 * detection works. */
4565 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4566 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4567
4568 /* For PCH output, training FDI link */
4569 dev_priv->display.fdi_link_train(crtc);
4570
4571 /* We need to program the right clock selection before writing the pixel
4572 * mutliplier into the DPLL. */
4573 if (HAS_PCH_CPT(dev_priv)) {
4574 u32 sel;
4575
4576 temp = I915_READ(PCH_DPLL_SEL);
4577 temp |= TRANS_DPLL_ENABLE(pipe);
4578 sel = TRANS_DPLLB_SEL(pipe);
4579 if (intel_crtc->config->shared_dpll ==
4580 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4581 temp |= sel;
4582 else
4583 temp &= ~sel;
4584 I915_WRITE(PCH_DPLL_SEL, temp);
4585 }
4586
4587 /* XXX: pch pll's can be enabled any time before we enable the PCH
4588 * transcoder, and we actually should do this to not upset any PCH
4589 * transcoder that already use the clock when we share it.
4590 *
4591 * Note that enable_shared_dpll tries to do the right thing, but
4592 * get_shared_dpll unconditionally resets the pll - we need that to have
4593 * the right LVDS enable sequence. */
4594 intel_enable_shared_dpll(intel_crtc);
4595
4596 /* set transcoder timing, panel must allow it */
4597 assert_panel_unlocked(dev_priv, pipe);
4598 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4599
4600 intel_fdi_normal_train(crtc);
4601
4602 /* For PCH DP, enable TRANS_DP_CTL */
4603 if (HAS_PCH_CPT(dev_priv) &&
4604 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4605 const struct drm_display_mode *adjusted_mode =
4606 &intel_crtc->config->base.adjusted_mode;
4607 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4608 i915_reg_t reg = TRANS_DP_CTL(pipe);
4609 temp = I915_READ(reg);
4610 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4611 TRANS_DP_SYNC_MASK |
4612 TRANS_DP_BPC_MASK);
4613 temp |= TRANS_DP_OUTPUT_ENABLE;
4614 temp |= bpc << 9; /* same format but at 11:9 */
4615
4616 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4617 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4618 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4619 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4620
4621 switch (intel_trans_dp_port_sel(crtc)) {
4622 case PORT_B:
4623 temp |= TRANS_DP_PORT_SEL_B;
4624 break;
4625 case PORT_C:
4626 temp |= TRANS_DP_PORT_SEL_C;
4627 break;
4628 case PORT_D:
4629 temp |= TRANS_DP_PORT_SEL_D;
4630 break;
4631 default:
4632 BUG();
4633 }
4634
4635 I915_WRITE(reg, temp);
4636 }
4637
4638 ironlake_enable_pch_transcoder(dev_priv, pipe);
4639 }
4640
4641 static void lpt_pch_enable(struct drm_crtc *crtc)
4642 {
4643 struct drm_device *dev = crtc->dev;
4644 struct drm_i915_private *dev_priv = to_i915(dev);
4645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4646 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4647
4648 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4649
4650 lpt_program_iclkip(crtc);
4651
4652 /* Set transcoder timing. */
4653 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4654
4655 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4656 }
4657
4658 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4659 {
4660 struct drm_i915_private *dev_priv = to_i915(dev);
4661 i915_reg_t dslreg = PIPEDSL(pipe);
4662 u32 temp;
4663
4664 temp = I915_READ(dslreg);
4665 udelay(500);
4666 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4667 if (wait_for(I915_READ(dslreg) != temp, 5))
4668 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4669 }
4670 }
4671
4672 static int
4673 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4674 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4675 int src_w, int src_h, int dst_w, int dst_h)
4676 {
4677 struct intel_crtc_scaler_state *scaler_state =
4678 &crtc_state->scaler_state;
4679 struct intel_crtc *intel_crtc =
4680 to_intel_crtc(crtc_state->base.crtc);
4681 int need_scaling;
4682
4683 need_scaling = drm_rotation_90_or_270(rotation) ?
4684 (src_h != dst_w || src_w != dst_h):
4685 (src_w != dst_w || src_h != dst_h);
4686
4687 /*
4688 * if plane is being disabled or scaler is no more required or force detach
4689 * - free scaler binded to this plane/crtc
4690 * - in order to do this, update crtc->scaler_usage
4691 *
4692 * Here scaler state in crtc_state is set free so that
4693 * scaler can be assigned to other user. Actual register
4694 * update to free the scaler is done in plane/panel-fit programming.
4695 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4696 */
4697 if (force_detach || !need_scaling) {
4698 if (*scaler_id >= 0) {
4699 scaler_state->scaler_users &= ~(1 << scaler_user);
4700 scaler_state->scalers[*scaler_id].in_use = 0;
4701
4702 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4703 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4704 intel_crtc->pipe, scaler_user, *scaler_id,
4705 scaler_state->scaler_users);
4706 *scaler_id = -1;
4707 }
4708 return 0;
4709 }
4710
4711 /* range checks */
4712 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4713 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4714
4715 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4716 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4717 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4718 "size is out of scaler range\n",
4719 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4720 return -EINVAL;
4721 }
4722
4723 /* mark this plane as a scaler user in crtc_state */
4724 scaler_state->scaler_users |= (1 << scaler_user);
4725 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4726 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4727 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4728 scaler_state->scaler_users);
4729
4730 return 0;
4731 }
4732
4733 /**
4734 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4735 *
4736 * @state: crtc's scaler state
4737 *
4738 * Return
4739 * 0 - scaler_usage updated successfully
4740 * error - requested scaling cannot be supported or other error condition
4741 */
4742 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4743 {
4744 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4745 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4746
4747 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4748 intel_crtc->base.base.id, intel_crtc->base.name,
4749 intel_crtc->pipe, SKL_CRTC_INDEX);
4750
4751 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4752 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4753 state->pipe_src_w, state->pipe_src_h,
4754 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4755 }
4756
4757 /**
4758 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4759 *
4760 * @state: crtc's scaler state
4761 * @plane_state: atomic plane state to update
4762 *
4763 * Return
4764 * 0 - scaler_usage updated successfully
4765 * error - requested scaling cannot be supported or other error condition
4766 */
4767 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4768 struct intel_plane_state *plane_state)
4769 {
4770
4771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4772 struct intel_plane *intel_plane =
4773 to_intel_plane(plane_state->base.plane);
4774 struct drm_framebuffer *fb = plane_state->base.fb;
4775 int ret;
4776
4777 bool force_detach = !fb || !plane_state->base.visible;
4778
4779 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4780 intel_plane->base.base.id, intel_plane->base.name,
4781 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4782
4783 ret = skl_update_scaler(crtc_state, force_detach,
4784 drm_plane_index(&intel_plane->base),
4785 &plane_state->scaler_id,
4786 plane_state->base.rotation,
4787 drm_rect_width(&plane_state->base.src) >> 16,
4788 drm_rect_height(&plane_state->base.src) >> 16,
4789 drm_rect_width(&plane_state->base.dst),
4790 drm_rect_height(&plane_state->base.dst));
4791
4792 if (ret || plane_state->scaler_id < 0)
4793 return ret;
4794
4795 /* check colorkey */
4796 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4797 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4798 intel_plane->base.base.id,
4799 intel_plane->base.name);
4800 return -EINVAL;
4801 }
4802
4803 /* Check src format */
4804 switch (fb->pixel_format) {
4805 case DRM_FORMAT_RGB565:
4806 case DRM_FORMAT_XBGR8888:
4807 case DRM_FORMAT_XRGB8888:
4808 case DRM_FORMAT_ABGR8888:
4809 case DRM_FORMAT_ARGB8888:
4810 case DRM_FORMAT_XRGB2101010:
4811 case DRM_FORMAT_XBGR2101010:
4812 case DRM_FORMAT_YUYV:
4813 case DRM_FORMAT_YVYU:
4814 case DRM_FORMAT_UYVY:
4815 case DRM_FORMAT_VYUY:
4816 break;
4817 default:
4818 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4819 intel_plane->base.base.id, intel_plane->base.name,
4820 fb->base.id, fb->pixel_format);
4821 return -EINVAL;
4822 }
4823
4824 return 0;
4825 }
4826
4827 static void skylake_scaler_disable(struct intel_crtc *crtc)
4828 {
4829 int i;
4830
4831 for (i = 0; i < crtc->num_scalers; i++)
4832 skl_detach_scaler(crtc, i);
4833 }
4834
4835 static void skylake_pfit_enable(struct intel_crtc *crtc)
4836 {
4837 struct drm_device *dev = crtc->base.dev;
4838 struct drm_i915_private *dev_priv = to_i915(dev);
4839 int pipe = crtc->pipe;
4840 struct intel_crtc_scaler_state *scaler_state =
4841 &crtc->config->scaler_state;
4842
4843 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4844
4845 if (crtc->config->pch_pfit.enabled) {
4846 int id;
4847
4848 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4849 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4850 return;
4851 }
4852
4853 id = scaler_state->scaler_id;
4854 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4855 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4856 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4857 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4858
4859 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4860 }
4861 }
4862
4863 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4864 {
4865 struct drm_device *dev = crtc->base.dev;
4866 struct drm_i915_private *dev_priv = to_i915(dev);
4867 int pipe = crtc->pipe;
4868
4869 if (crtc->config->pch_pfit.enabled) {
4870 /* Force use of hard-coded filter coefficients
4871 * as some pre-programmed values are broken,
4872 * e.g. x201.
4873 */
4874 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4875 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4876 PF_PIPE_SEL_IVB(pipe));
4877 else
4878 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4879 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4880 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4881 }
4882 }
4883
4884 void hsw_enable_ips(struct intel_crtc *crtc)
4885 {
4886 struct drm_device *dev = crtc->base.dev;
4887 struct drm_i915_private *dev_priv = to_i915(dev);
4888
4889 if (!crtc->config->ips_enabled)
4890 return;
4891
4892 /*
4893 * We can only enable IPS after we enable a plane and wait for a vblank
4894 * This function is called from post_plane_update, which is run after
4895 * a vblank wait.
4896 */
4897
4898 assert_plane_enabled(dev_priv, crtc->plane);
4899 if (IS_BROADWELL(dev_priv)) {
4900 mutex_lock(&dev_priv->rps.hw_lock);
4901 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4902 mutex_unlock(&dev_priv->rps.hw_lock);
4903 /* Quoting Art Runyan: "its not safe to expect any particular
4904 * value in IPS_CTL bit 31 after enabling IPS through the
4905 * mailbox." Moreover, the mailbox may return a bogus state,
4906 * so we need to just enable it and continue on.
4907 */
4908 } else {
4909 I915_WRITE(IPS_CTL, IPS_ENABLE);
4910 /* The bit only becomes 1 in the next vblank, so this wait here
4911 * is essentially intel_wait_for_vblank. If we don't have this
4912 * and don't wait for vblanks until the end of crtc_enable, then
4913 * the HW state readout code will complain that the expected
4914 * IPS_CTL value is not the one we read. */
4915 if (intel_wait_for_register(dev_priv,
4916 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4917 50))
4918 DRM_ERROR("Timed out waiting for IPS enable\n");
4919 }
4920 }
4921
4922 void hsw_disable_ips(struct intel_crtc *crtc)
4923 {
4924 struct drm_device *dev = crtc->base.dev;
4925 struct drm_i915_private *dev_priv = to_i915(dev);
4926
4927 if (!crtc->config->ips_enabled)
4928 return;
4929
4930 assert_plane_enabled(dev_priv, crtc->plane);
4931 if (IS_BROADWELL(dev_priv)) {
4932 mutex_lock(&dev_priv->rps.hw_lock);
4933 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4934 mutex_unlock(&dev_priv->rps.hw_lock);
4935 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4936 if (intel_wait_for_register(dev_priv,
4937 IPS_CTL, IPS_ENABLE, 0,
4938 42))
4939 DRM_ERROR("Timed out waiting for IPS disable\n");
4940 } else {
4941 I915_WRITE(IPS_CTL, 0);
4942 POSTING_READ(IPS_CTL);
4943 }
4944
4945 /* We need to wait for a vblank before we can disable the plane. */
4946 intel_wait_for_vblank(dev, crtc->pipe);
4947 }
4948
4949 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4950 {
4951 if (intel_crtc->overlay) {
4952 struct drm_device *dev = intel_crtc->base.dev;
4953 struct drm_i915_private *dev_priv = to_i915(dev);
4954
4955 mutex_lock(&dev->struct_mutex);
4956 dev_priv->mm.interruptible = false;
4957 (void) intel_overlay_switch_off(intel_crtc->overlay);
4958 dev_priv->mm.interruptible = true;
4959 mutex_unlock(&dev->struct_mutex);
4960 }
4961
4962 /* Let userspace switch the overlay on again. In most cases userspace
4963 * has to recompute where to put it anyway.
4964 */
4965 }
4966
4967 /**
4968 * intel_post_enable_primary - Perform operations after enabling primary plane
4969 * @crtc: the CRTC whose primary plane was just enabled
4970 *
4971 * Performs potentially sleeping operations that must be done after the primary
4972 * plane is enabled, such as updating FBC and IPS. Note that this may be
4973 * called due to an explicit primary plane update, or due to an implicit
4974 * re-enable that is caused when a sprite plane is updated to no longer
4975 * completely hide the primary plane.
4976 */
4977 static void
4978 intel_post_enable_primary(struct drm_crtc *crtc)
4979 {
4980 struct drm_device *dev = crtc->dev;
4981 struct drm_i915_private *dev_priv = to_i915(dev);
4982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4983 int pipe = intel_crtc->pipe;
4984
4985 /*
4986 * FIXME IPS should be fine as long as one plane is
4987 * enabled, but in practice it seems to have problems
4988 * when going from primary only to sprite only and vice
4989 * versa.
4990 */
4991 hsw_enable_ips(intel_crtc);
4992
4993 /*
4994 * Gen2 reports pipe underruns whenever all planes are disabled.
4995 * So don't enable underrun reporting before at least some planes
4996 * are enabled.
4997 * FIXME: Need to fix the logic to work when we turn off all planes
4998 * but leave the pipe running.
4999 */
5000 if (IS_GEN2(dev_priv))
5001 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5002
5003 /* Underruns don't always raise interrupts, so check manually. */
5004 intel_check_cpu_fifo_underruns(dev_priv);
5005 intel_check_pch_fifo_underruns(dev_priv);
5006 }
5007
5008 /* FIXME move all this to pre_plane_update() with proper state tracking */
5009 static void
5010 intel_pre_disable_primary(struct drm_crtc *crtc)
5011 {
5012 struct drm_device *dev = crtc->dev;
5013 struct drm_i915_private *dev_priv = to_i915(dev);
5014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015 int pipe = intel_crtc->pipe;
5016
5017 /*
5018 * Gen2 reports pipe underruns whenever all planes are disabled.
5019 * So diasble underrun reporting before all the planes get disabled.
5020 * FIXME: Need to fix the logic to work when we turn off all planes
5021 * but leave the pipe running.
5022 */
5023 if (IS_GEN2(dev_priv))
5024 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5025
5026 /*
5027 * FIXME IPS should be fine as long as one plane is
5028 * enabled, but in practice it seems to have problems
5029 * when going from primary only to sprite only and vice
5030 * versa.
5031 */
5032 hsw_disable_ips(intel_crtc);
5033 }
5034
5035 /* FIXME get rid of this and use pre_plane_update */
5036 static void
5037 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5038 {
5039 struct drm_device *dev = crtc->dev;
5040 struct drm_i915_private *dev_priv = to_i915(dev);
5041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5042 int pipe = intel_crtc->pipe;
5043
5044 intel_pre_disable_primary(crtc);
5045
5046 /*
5047 * Vblank time updates from the shadow to live plane control register
5048 * are blocked if the memory self-refresh mode is active at that
5049 * moment. So to make sure the plane gets truly disabled, disable
5050 * first the self-refresh mode. The self-refresh enable bit in turn
5051 * will be checked/applied by the HW only at the next frame start
5052 * event which is after the vblank start event, so we need to have a
5053 * wait-for-vblank between disabling the plane and the pipe.
5054 */
5055 if (HAS_GMCH_DISPLAY(dev_priv)) {
5056 intel_set_memory_cxsr(dev_priv, false);
5057 dev_priv->wm.vlv.cxsr = false;
5058 intel_wait_for_vblank(dev, pipe);
5059 }
5060 }
5061
5062 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5063 {
5064 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5065 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5066 struct intel_crtc_state *pipe_config =
5067 to_intel_crtc_state(crtc->base.state);
5068 struct drm_plane *primary = crtc->base.primary;
5069 struct drm_plane_state *old_pri_state =
5070 drm_atomic_get_existing_plane_state(old_state, primary);
5071
5072 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5073
5074 crtc->wm.cxsr_allowed = true;
5075
5076 if (pipe_config->update_wm_post && pipe_config->base.active)
5077 intel_update_watermarks(&crtc->base);
5078
5079 if (old_pri_state) {
5080 struct intel_plane_state *primary_state =
5081 to_intel_plane_state(primary->state);
5082 struct intel_plane_state *old_primary_state =
5083 to_intel_plane_state(old_pri_state);
5084
5085 intel_fbc_post_update(crtc);
5086
5087 if (primary_state->base.visible &&
5088 (needs_modeset(&pipe_config->base) ||
5089 !old_primary_state->base.visible))
5090 intel_post_enable_primary(&crtc->base);
5091 }
5092 }
5093
5094 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5095 {
5096 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5097 struct drm_device *dev = crtc->base.dev;
5098 struct drm_i915_private *dev_priv = to_i915(dev);
5099 struct intel_crtc_state *pipe_config =
5100 to_intel_crtc_state(crtc->base.state);
5101 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5102 struct drm_plane *primary = crtc->base.primary;
5103 struct drm_plane_state *old_pri_state =
5104 drm_atomic_get_existing_plane_state(old_state, primary);
5105 bool modeset = needs_modeset(&pipe_config->base);
5106
5107 if (old_pri_state) {
5108 struct intel_plane_state *primary_state =
5109 to_intel_plane_state(primary->state);
5110 struct intel_plane_state *old_primary_state =
5111 to_intel_plane_state(old_pri_state);
5112
5113 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5114
5115 if (old_primary_state->base.visible &&
5116 (modeset || !primary_state->base.visible))
5117 intel_pre_disable_primary(&crtc->base);
5118 }
5119
5120 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5121 crtc->wm.cxsr_allowed = false;
5122
5123 /*
5124 * Vblank time updates from the shadow to live plane control register
5125 * are blocked if the memory self-refresh mode is active at that
5126 * moment. So to make sure the plane gets truly disabled, disable
5127 * first the self-refresh mode. The self-refresh enable bit in turn
5128 * will be checked/applied by the HW only at the next frame start
5129 * event which is after the vblank start event, so we need to have a
5130 * wait-for-vblank between disabling the plane and the pipe.
5131 */
5132 if (old_crtc_state->base.active) {
5133 intel_set_memory_cxsr(dev_priv, false);
5134 dev_priv->wm.vlv.cxsr = false;
5135 intel_wait_for_vblank(dev, crtc->pipe);
5136 }
5137 }
5138
5139 /*
5140 * IVB workaround: must disable low power watermarks for at least
5141 * one frame before enabling scaling. LP watermarks can be re-enabled
5142 * when scaling is disabled.
5143 *
5144 * WaCxSRDisabledForSpriteScaling:ivb
5145 */
5146 if (pipe_config->disable_lp_wm) {
5147 ilk_disable_lp_wm(dev);
5148 intel_wait_for_vblank(dev, crtc->pipe);
5149 }
5150
5151 /*
5152 * If we're doing a modeset, we're done. No need to do any pre-vblank
5153 * watermark programming here.
5154 */
5155 if (needs_modeset(&pipe_config->base))
5156 return;
5157
5158 /*
5159 * For platforms that support atomic watermarks, program the
5160 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5161 * will be the intermediate values that are safe for both pre- and
5162 * post- vblank; when vblank happens, the 'active' values will be set
5163 * to the final 'target' values and we'll do this again to get the
5164 * optimal watermarks. For gen9+ platforms, the values we program here
5165 * will be the final target values which will get automatically latched
5166 * at vblank time; no further programming will be necessary.
5167 *
5168 * If a platform hasn't been transitioned to atomic watermarks yet,
5169 * we'll continue to update watermarks the old way, if flags tell
5170 * us to.
5171 */
5172 if (dev_priv->display.initial_watermarks != NULL)
5173 dev_priv->display.initial_watermarks(pipe_config);
5174 else if (pipe_config->update_wm_pre)
5175 intel_update_watermarks(&crtc->base);
5176 }
5177
5178 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5179 {
5180 struct drm_device *dev = crtc->dev;
5181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5182 struct drm_plane *p;
5183 int pipe = intel_crtc->pipe;
5184
5185 intel_crtc_dpms_overlay_disable(intel_crtc);
5186
5187 drm_for_each_plane_mask(p, dev, plane_mask)
5188 to_intel_plane(p)->disable_plane(p, crtc);
5189
5190 /*
5191 * FIXME: Once we grow proper nuclear flip support out of this we need
5192 * to compute the mask of flip planes precisely. For the time being
5193 * consider this a flip to a NULL plane.
5194 */
5195 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5196 }
5197
5198 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5199 struct intel_crtc_state *crtc_state,
5200 struct drm_atomic_state *old_state)
5201 {
5202 struct drm_connector_state *old_conn_state;
5203 struct drm_connector *conn;
5204 int i;
5205
5206 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5207 struct drm_connector_state *conn_state = conn->state;
5208 struct intel_encoder *encoder =
5209 to_intel_encoder(conn_state->best_encoder);
5210
5211 if (conn_state->crtc != crtc)
5212 continue;
5213
5214 if (encoder->pre_pll_enable)
5215 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5216 }
5217 }
5218
5219 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5220 struct intel_crtc_state *crtc_state,
5221 struct drm_atomic_state *old_state)
5222 {
5223 struct drm_connector_state *old_conn_state;
5224 struct drm_connector *conn;
5225 int i;
5226
5227 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5228 struct drm_connector_state *conn_state = conn->state;
5229 struct intel_encoder *encoder =
5230 to_intel_encoder(conn_state->best_encoder);
5231
5232 if (conn_state->crtc != crtc)
5233 continue;
5234
5235 if (encoder->pre_enable)
5236 encoder->pre_enable(encoder, crtc_state, conn_state);
5237 }
5238 }
5239
5240 static void intel_encoders_enable(struct drm_crtc *crtc,
5241 struct intel_crtc_state *crtc_state,
5242 struct drm_atomic_state *old_state)
5243 {
5244 struct drm_connector_state *old_conn_state;
5245 struct drm_connector *conn;
5246 int i;
5247
5248 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5249 struct drm_connector_state *conn_state = conn->state;
5250 struct intel_encoder *encoder =
5251 to_intel_encoder(conn_state->best_encoder);
5252
5253 if (conn_state->crtc != crtc)
5254 continue;
5255
5256 encoder->enable(encoder, crtc_state, conn_state);
5257 intel_opregion_notify_encoder(encoder, true);
5258 }
5259 }
5260
5261 static void intel_encoders_disable(struct drm_crtc *crtc,
5262 struct intel_crtc_state *old_crtc_state,
5263 struct drm_atomic_state *old_state)
5264 {
5265 struct drm_connector_state *old_conn_state;
5266 struct drm_connector *conn;
5267 int i;
5268
5269 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5270 struct intel_encoder *encoder =
5271 to_intel_encoder(old_conn_state->best_encoder);
5272
5273 if (old_conn_state->crtc != crtc)
5274 continue;
5275
5276 intel_opregion_notify_encoder(encoder, false);
5277 encoder->disable(encoder, old_crtc_state, old_conn_state);
5278 }
5279 }
5280
5281 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5282 struct intel_crtc_state *old_crtc_state,
5283 struct drm_atomic_state *old_state)
5284 {
5285 struct drm_connector_state *old_conn_state;
5286 struct drm_connector *conn;
5287 int i;
5288
5289 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5290 struct intel_encoder *encoder =
5291 to_intel_encoder(old_conn_state->best_encoder);
5292
5293 if (old_conn_state->crtc != crtc)
5294 continue;
5295
5296 if (encoder->post_disable)
5297 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5298 }
5299 }
5300
5301 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5302 struct intel_crtc_state *old_crtc_state,
5303 struct drm_atomic_state *old_state)
5304 {
5305 struct drm_connector_state *old_conn_state;
5306 struct drm_connector *conn;
5307 int i;
5308
5309 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5310 struct intel_encoder *encoder =
5311 to_intel_encoder(old_conn_state->best_encoder);
5312
5313 if (old_conn_state->crtc != crtc)
5314 continue;
5315
5316 if (encoder->post_pll_disable)
5317 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5318 }
5319 }
5320
5321 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5322 struct drm_atomic_state *old_state)
5323 {
5324 struct drm_crtc *crtc = pipe_config->base.crtc;
5325 struct drm_device *dev = crtc->dev;
5326 struct drm_i915_private *dev_priv = to_i915(dev);
5327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328 int pipe = intel_crtc->pipe;
5329
5330 if (WARN_ON(intel_crtc->active))
5331 return;
5332
5333 /*
5334 * Sometimes spurious CPU pipe underruns happen during FDI
5335 * training, at least with VGA+HDMI cloning. Suppress them.
5336 *
5337 * On ILK we get an occasional spurious CPU pipe underruns
5338 * between eDP port A enable and vdd enable. Also PCH port
5339 * enable seems to result in the occasional CPU pipe underrun.
5340 *
5341 * Spurious PCH underruns also occur during PCH enabling.
5342 */
5343 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5345 if (intel_crtc->config->has_pch_encoder)
5346 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5347
5348 if (intel_crtc->config->has_pch_encoder)
5349 intel_prepare_shared_dpll(intel_crtc);
5350
5351 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5352 intel_dp_set_m_n(intel_crtc, M1_N1);
5353
5354 intel_set_pipe_timings(intel_crtc);
5355 intel_set_pipe_src_size(intel_crtc);
5356
5357 if (intel_crtc->config->has_pch_encoder) {
5358 intel_cpu_transcoder_set_m_n(intel_crtc,
5359 &intel_crtc->config->fdi_m_n, NULL);
5360 }
5361
5362 ironlake_set_pipeconf(crtc);
5363
5364 intel_crtc->active = true;
5365
5366 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5367
5368 if (intel_crtc->config->has_pch_encoder) {
5369 /* Note: FDI PLL enabling _must_ be done before we enable the
5370 * cpu pipes, hence this is separate from all the other fdi/pch
5371 * enabling. */
5372 ironlake_fdi_pll_enable(intel_crtc);
5373 } else {
5374 assert_fdi_tx_disabled(dev_priv, pipe);
5375 assert_fdi_rx_disabled(dev_priv, pipe);
5376 }
5377
5378 ironlake_pfit_enable(intel_crtc);
5379
5380 /*
5381 * On ILK+ LUT must be loaded before the pipe is running but with
5382 * clocks enabled
5383 */
5384 intel_color_load_luts(&pipe_config->base);
5385
5386 if (dev_priv->display.initial_watermarks != NULL)
5387 dev_priv->display.initial_watermarks(intel_crtc->config);
5388 intel_enable_pipe(intel_crtc);
5389
5390 if (intel_crtc->config->has_pch_encoder)
5391 ironlake_pch_enable(crtc);
5392
5393 assert_vblank_disabled(crtc);
5394 drm_crtc_vblank_on(crtc);
5395
5396 intel_encoders_enable(crtc, pipe_config, old_state);
5397
5398 if (HAS_PCH_CPT(dev_priv))
5399 cpt_verify_modeset(dev, intel_crtc->pipe);
5400
5401 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5402 if (intel_crtc->config->has_pch_encoder)
5403 intel_wait_for_vblank(dev, pipe);
5404 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5405 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5406 }
5407
5408 /* IPS only exists on ULT machines and is tied to pipe A. */
5409 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5410 {
5411 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5412 }
5413
5414 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5415 struct drm_atomic_state *old_state)
5416 {
5417 struct drm_crtc *crtc = pipe_config->base.crtc;
5418 struct drm_device *dev = crtc->dev;
5419 struct drm_i915_private *dev_priv = to_i915(dev);
5420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5422 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5423
5424 if (WARN_ON(intel_crtc->active))
5425 return;
5426
5427 if (intel_crtc->config->has_pch_encoder)
5428 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5429 false);
5430
5431 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5432
5433 if (intel_crtc->config->shared_dpll)
5434 intel_enable_shared_dpll(intel_crtc);
5435
5436 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5437 intel_dp_set_m_n(intel_crtc, M1_N1);
5438
5439 if (!transcoder_is_dsi(cpu_transcoder))
5440 intel_set_pipe_timings(intel_crtc);
5441
5442 intel_set_pipe_src_size(intel_crtc);
5443
5444 if (cpu_transcoder != TRANSCODER_EDP &&
5445 !transcoder_is_dsi(cpu_transcoder)) {
5446 I915_WRITE(PIPE_MULT(cpu_transcoder),
5447 intel_crtc->config->pixel_multiplier - 1);
5448 }
5449
5450 if (intel_crtc->config->has_pch_encoder) {
5451 intel_cpu_transcoder_set_m_n(intel_crtc,
5452 &intel_crtc->config->fdi_m_n, NULL);
5453 }
5454
5455 if (!transcoder_is_dsi(cpu_transcoder))
5456 haswell_set_pipeconf(crtc);
5457
5458 haswell_set_pipemisc(crtc);
5459
5460 intel_color_set_csc(&pipe_config->base);
5461
5462 intel_crtc->active = true;
5463
5464 if (intel_crtc->config->has_pch_encoder)
5465 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5466 else
5467 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5468
5469 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5470
5471 if (intel_crtc->config->has_pch_encoder)
5472 dev_priv->display.fdi_link_train(crtc);
5473
5474 if (!transcoder_is_dsi(cpu_transcoder))
5475 intel_ddi_enable_pipe_clock(intel_crtc);
5476
5477 if (INTEL_INFO(dev)->gen >= 9)
5478 skylake_pfit_enable(intel_crtc);
5479 else
5480 ironlake_pfit_enable(intel_crtc);
5481
5482 /*
5483 * On ILK+ LUT must be loaded before the pipe is running but with
5484 * clocks enabled
5485 */
5486 intel_color_load_luts(&pipe_config->base);
5487
5488 intel_ddi_set_pipe_settings(crtc);
5489 if (!transcoder_is_dsi(cpu_transcoder))
5490 intel_ddi_enable_transcoder_func(crtc);
5491
5492 if (dev_priv->display.initial_watermarks != NULL)
5493 dev_priv->display.initial_watermarks(pipe_config);
5494 else
5495 intel_update_watermarks(crtc);
5496
5497 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5498 if (!transcoder_is_dsi(cpu_transcoder))
5499 intel_enable_pipe(intel_crtc);
5500
5501 if (intel_crtc->config->has_pch_encoder)
5502 lpt_pch_enable(crtc);
5503
5504 if (intel_crtc->config->dp_encoder_is_mst)
5505 intel_ddi_set_vc_payload_alloc(crtc, true);
5506
5507 assert_vblank_disabled(crtc);
5508 drm_crtc_vblank_on(crtc);
5509
5510 intel_encoders_enable(crtc, pipe_config, old_state);
5511
5512 if (intel_crtc->config->has_pch_encoder) {
5513 intel_wait_for_vblank(dev, pipe);
5514 intel_wait_for_vblank(dev, pipe);
5515 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5516 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5517 true);
5518 }
5519
5520 /* If we change the relative order between pipe/planes enabling, we need
5521 * to change the workaround. */
5522 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5523 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5524 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5525 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5526 }
5527 }
5528
5529 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5530 {
5531 struct drm_device *dev = crtc->base.dev;
5532 struct drm_i915_private *dev_priv = to_i915(dev);
5533 int pipe = crtc->pipe;
5534
5535 /* To avoid upsetting the power well on haswell only disable the pfit if
5536 * it's in use. The hw state code will make sure we get this right. */
5537 if (force || crtc->config->pch_pfit.enabled) {
5538 I915_WRITE(PF_CTL(pipe), 0);
5539 I915_WRITE(PF_WIN_POS(pipe), 0);
5540 I915_WRITE(PF_WIN_SZ(pipe), 0);
5541 }
5542 }
5543
5544 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5545 struct drm_atomic_state *old_state)
5546 {
5547 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5548 struct drm_device *dev = crtc->dev;
5549 struct drm_i915_private *dev_priv = to_i915(dev);
5550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5551 int pipe = intel_crtc->pipe;
5552
5553 /*
5554 * Sometimes spurious CPU pipe underruns happen when the
5555 * pipe is already disabled, but FDI RX/TX is still enabled.
5556 * Happens at least with VGA+HDMI cloning. Suppress them.
5557 */
5558 if (intel_crtc->config->has_pch_encoder) {
5559 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5560 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5561 }
5562
5563 intel_encoders_disable(crtc, old_crtc_state, old_state);
5564
5565 drm_crtc_vblank_off(crtc);
5566 assert_vblank_disabled(crtc);
5567
5568 intel_disable_pipe(intel_crtc);
5569
5570 ironlake_pfit_disable(intel_crtc, false);
5571
5572 if (intel_crtc->config->has_pch_encoder)
5573 ironlake_fdi_disable(crtc);
5574
5575 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5576
5577 if (intel_crtc->config->has_pch_encoder) {
5578 ironlake_disable_pch_transcoder(dev_priv, pipe);
5579
5580 if (HAS_PCH_CPT(dev_priv)) {
5581 i915_reg_t reg;
5582 u32 temp;
5583
5584 /* disable TRANS_DP_CTL */
5585 reg = TRANS_DP_CTL(pipe);
5586 temp = I915_READ(reg);
5587 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5588 TRANS_DP_PORT_SEL_MASK);
5589 temp |= TRANS_DP_PORT_SEL_NONE;
5590 I915_WRITE(reg, temp);
5591
5592 /* disable DPLL_SEL */
5593 temp = I915_READ(PCH_DPLL_SEL);
5594 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5595 I915_WRITE(PCH_DPLL_SEL, temp);
5596 }
5597
5598 ironlake_fdi_pll_disable(intel_crtc);
5599 }
5600
5601 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5602 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5603 }
5604
5605 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5606 struct drm_atomic_state *old_state)
5607 {
5608 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5609 struct drm_device *dev = crtc->dev;
5610 struct drm_i915_private *dev_priv = to_i915(dev);
5611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5612 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5613
5614 if (intel_crtc->config->has_pch_encoder)
5615 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5616 false);
5617
5618 intel_encoders_disable(crtc, old_crtc_state, old_state);
5619
5620 drm_crtc_vblank_off(crtc);
5621 assert_vblank_disabled(crtc);
5622
5623 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5624 if (!transcoder_is_dsi(cpu_transcoder))
5625 intel_disable_pipe(intel_crtc);
5626
5627 if (intel_crtc->config->dp_encoder_is_mst)
5628 intel_ddi_set_vc_payload_alloc(crtc, false);
5629
5630 if (!transcoder_is_dsi(cpu_transcoder))
5631 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5632
5633 if (INTEL_INFO(dev)->gen >= 9)
5634 skylake_scaler_disable(intel_crtc);
5635 else
5636 ironlake_pfit_disable(intel_crtc, false);
5637
5638 if (!transcoder_is_dsi(cpu_transcoder))
5639 intel_ddi_disable_pipe_clock(intel_crtc);
5640
5641 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5642
5643 if (old_crtc_state->has_pch_encoder)
5644 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5645 true);
5646 }
5647
5648 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5649 {
5650 struct drm_device *dev = crtc->base.dev;
5651 struct drm_i915_private *dev_priv = to_i915(dev);
5652 struct intel_crtc_state *pipe_config = crtc->config;
5653
5654 if (!pipe_config->gmch_pfit.control)
5655 return;
5656
5657 /*
5658 * The panel fitter should only be adjusted whilst the pipe is disabled,
5659 * according to register description and PRM.
5660 */
5661 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5662 assert_pipe_disabled(dev_priv, crtc->pipe);
5663
5664 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5665 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5666
5667 /* Border color in case we don't scale up to the full screen. Black by
5668 * default, change to something else for debugging. */
5669 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5670 }
5671
5672 static enum intel_display_power_domain port_to_power_domain(enum port port)
5673 {
5674 switch (port) {
5675 case PORT_A:
5676 return POWER_DOMAIN_PORT_DDI_A_LANES;
5677 case PORT_B:
5678 return POWER_DOMAIN_PORT_DDI_B_LANES;
5679 case PORT_C:
5680 return POWER_DOMAIN_PORT_DDI_C_LANES;
5681 case PORT_D:
5682 return POWER_DOMAIN_PORT_DDI_D_LANES;
5683 case PORT_E:
5684 return POWER_DOMAIN_PORT_DDI_E_LANES;
5685 default:
5686 MISSING_CASE(port);
5687 return POWER_DOMAIN_PORT_OTHER;
5688 }
5689 }
5690
5691 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5692 {
5693 switch (port) {
5694 case PORT_A:
5695 return POWER_DOMAIN_AUX_A;
5696 case PORT_B:
5697 return POWER_DOMAIN_AUX_B;
5698 case PORT_C:
5699 return POWER_DOMAIN_AUX_C;
5700 case PORT_D:
5701 return POWER_DOMAIN_AUX_D;
5702 case PORT_E:
5703 /* FIXME: Check VBT for actual wiring of PORT E */
5704 return POWER_DOMAIN_AUX_D;
5705 default:
5706 MISSING_CASE(port);
5707 return POWER_DOMAIN_AUX_A;
5708 }
5709 }
5710
5711 enum intel_display_power_domain
5712 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5713 {
5714 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5715 struct intel_digital_port *intel_dig_port;
5716
5717 switch (intel_encoder->type) {
5718 case INTEL_OUTPUT_UNKNOWN:
5719 /* Only DDI platforms should ever use this output type */
5720 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5721 case INTEL_OUTPUT_DP:
5722 case INTEL_OUTPUT_HDMI:
5723 case INTEL_OUTPUT_EDP:
5724 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5725 return port_to_power_domain(intel_dig_port->port);
5726 case INTEL_OUTPUT_DP_MST:
5727 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5728 return port_to_power_domain(intel_dig_port->port);
5729 case INTEL_OUTPUT_ANALOG:
5730 return POWER_DOMAIN_PORT_CRT;
5731 case INTEL_OUTPUT_DSI:
5732 return POWER_DOMAIN_PORT_DSI;
5733 default:
5734 return POWER_DOMAIN_PORT_OTHER;
5735 }
5736 }
5737
5738 enum intel_display_power_domain
5739 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5740 {
5741 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5742 struct intel_digital_port *intel_dig_port;
5743
5744 switch (intel_encoder->type) {
5745 case INTEL_OUTPUT_UNKNOWN:
5746 case INTEL_OUTPUT_HDMI:
5747 /*
5748 * Only DDI platforms should ever use these output types.
5749 * We can get here after the HDMI detect code has already set
5750 * the type of the shared encoder. Since we can't be sure
5751 * what's the status of the given connectors, play safe and
5752 * run the DP detection too.
5753 */
5754 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5755 case INTEL_OUTPUT_DP:
5756 case INTEL_OUTPUT_EDP:
5757 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5758 return port_to_aux_power_domain(intel_dig_port->port);
5759 case INTEL_OUTPUT_DP_MST:
5760 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5761 return port_to_aux_power_domain(intel_dig_port->port);
5762 default:
5763 MISSING_CASE(intel_encoder->type);
5764 return POWER_DOMAIN_AUX_A;
5765 }
5766 }
5767
5768 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5769 struct intel_crtc_state *crtc_state)
5770 {
5771 struct drm_device *dev = crtc->dev;
5772 struct drm_encoder *encoder;
5773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5774 enum pipe pipe = intel_crtc->pipe;
5775 unsigned long mask;
5776 enum transcoder transcoder = crtc_state->cpu_transcoder;
5777
5778 if (!crtc_state->base.active)
5779 return 0;
5780
5781 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5782 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5783 if (crtc_state->pch_pfit.enabled ||
5784 crtc_state->pch_pfit.force_thru)
5785 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5786
5787 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5788 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5789
5790 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5791 }
5792
5793 if (crtc_state->shared_dpll)
5794 mask |= BIT(POWER_DOMAIN_PLLS);
5795
5796 return mask;
5797 }
5798
5799 static unsigned long
5800 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5801 struct intel_crtc_state *crtc_state)
5802 {
5803 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5805 enum intel_display_power_domain domain;
5806 unsigned long domains, new_domains, old_domains;
5807
5808 old_domains = intel_crtc->enabled_power_domains;
5809 intel_crtc->enabled_power_domains = new_domains =
5810 get_crtc_power_domains(crtc, crtc_state);
5811
5812 domains = new_domains & ~old_domains;
5813
5814 for_each_power_domain(domain, domains)
5815 intel_display_power_get(dev_priv, domain);
5816
5817 return old_domains & ~new_domains;
5818 }
5819
5820 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5821 unsigned long domains)
5822 {
5823 enum intel_display_power_domain domain;
5824
5825 for_each_power_domain(domain, domains)
5826 intel_display_power_put(dev_priv, domain);
5827 }
5828
5829 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5830 {
5831 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5832
5833 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5834 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5835 return max_cdclk_freq;
5836 else if (IS_CHERRYVIEW(dev_priv))
5837 return max_cdclk_freq*95/100;
5838 else if (INTEL_INFO(dev_priv)->gen < 4)
5839 return 2*max_cdclk_freq*90/100;
5840 else
5841 return max_cdclk_freq*90/100;
5842 }
5843
5844 static int skl_calc_cdclk(int max_pixclk, int vco);
5845
5846 static void intel_update_max_cdclk(struct drm_device *dev)
5847 {
5848 struct drm_i915_private *dev_priv = to_i915(dev);
5849
5850 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5851 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5852 int max_cdclk, vco;
5853
5854 vco = dev_priv->skl_preferred_vco_freq;
5855 WARN_ON(vco != 8100000 && vco != 8640000);
5856
5857 /*
5858 * Use the lower (vco 8640) cdclk values as a
5859 * first guess. skl_calc_cdclk() will correct it
5860 * if the preferred vco is 8100 instead.
5861 */
5862 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5863 max_cdclk = 617143;
5864 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5865 max_cdclk = 540000;
5866 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5867 max_cdclk = 432000;
5868 else
5869 max_cdclk = 308571;
5870
5871 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5872 } else if (IS_BROXTON(dev_priv)) {
5873 dev_priv->max_cdclk_freq = 624000;
5874 } else if (IS_BROADWELL(dev_priv)) {
5875 /*
5876 * FIXME with extra cooling we can allow
5877 * 540 MHz for ULX and 675 Mhz for ULT.
5878 * How can we know if extra cooling is
5879 * available? PCI ID, VTB, something else?
5880 */
5881 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5882 dev_priv->max_cdclk_freq = 450000;
5883 else if (IS_BDW_ULX(dev_priv))
5884 dev_priv->max_cdclk_freq = 450000;
5885 else if (IS_BDW_ULT(dev_priv))
5886 dev_priv->max_cdclk_freq = 540000;
5887 else
5888 dev_priv->max_cdclk_freq = 675000;
5889 } else if (IS_CHERRYVIEW(dev_priv)) {
5890 dev_priv->max_cdclk_freq = 320000;
5891 } else if (IS_VALLEYVIEW(dev_priv)) {
5892 dev_priv->max_cdclk_freq = 400000;
5893 } else {
5894 /* otherwise assume cdclk is fixed */
5895 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5896 }
5897
5898 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5899
5900 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5901 dev_priv->max_cdclk_freq);
5902
5903 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5904 dev_priv->max_dotclk_freq);
5905 }
5906
5907 static void intel_update_cdclk(struct drm_device *dev)
5908 {
5909 struct drm_i915_private *dev_priv = to_i915(dev);
5910
5911 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5912
5913 if (INTEL_GEN(dev_priv) >= 9)
5914 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5915 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5916 dev_priv->cdclk_pll.ref);
5917 else
5918 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5919 dev_priv->cdclk_freq);
5920
5921 /*
5922 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5923 * Programmng [sic] note: bit[9:2] should be programmed to the number
5924 * of cdclk that generates 4MHz reference clock freq which is used to
5925 * generate GMBus clock. This will vary with the cdclk freq.
5926 */
5927 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5928 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5929 }
5930
5931 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5932 static int skl_cdclk_decimal(int cdclk)
5933 {
5934 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5935 }
5936
5937 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5938 {
5939 int ratio;
5940
5941 if (cdclk == dev_priv->cdclk_pll.ref)
5942 return 0;
5943
5944 switch (cdclk) {
5945 default:
5946 MISSING_CASE(cdclk);
5947 case 144000:
5948 case 288000:
5949 case 384000:
5950 case 576000:
5951 ratio = 60;
5952 break;
5953 case 624000:
5954 ratio = 65;
5955 break;
5956 }
5957
5958 return dev_priv->cdclk_pll.ref * ratio;
5959 }
5960
5961 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5962 {
5963 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5964
5965 /* Timeout 200us */
5966 if (intel_wait_for_register(dev_priv,
5967 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5968 1))
5969 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5970
5971 dev_priv->cdclk_pll.vco = 0;
5972 }
5973
5974 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5975 {
5976 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5977 u32 val;
5978
5979 val = I915_READ(BXT_DE_PLL_CTL);
5980 val &= ~BXT_DE_PLL_RATIO_MASK;
5981 val |= BXT_DE_PLL_RATIO(ratio);
5982 I915_WRITE(BXT_DE_PLL_CTL, val);
5983
5984 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5985
5986 /* Timeout 200us */
5987 if (intel_wait_for_register(dev_priv,
5988 BXT_DE_PLL_ENABLE,
5989 BXT_DE_PLL_LOCK,
5990 BXT_DE_PLL_LOCK,
5991 1))
5992 DRM_ERROR("timeout waiting for DE PLL lock\n");
5993
5994 dev_priv->cdclk_pll.vco = vco;
5995 }
5996
5997 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5998 {
5999 u32 val, divider;
6000 int vco, ret;
6001
6002 vco = bxt_de_pll_vco(dev_priv, cdclk);
6003
6004 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6005
6006 /* cdclk = vco / 2 / div{1,1.5,2,4} */
6007 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
6008 case 8:
6009 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
6010 break;
6011 case 4:
6012 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
6013 break;
6014 case 3:
6015 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
6016 break;
6017 case 2:
6018 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6019 break;
6020 default:
6021 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6022 WARN_ON(vco != 0);
6023
6024 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6025 break;
6026 }
6027
6028 /* Inform power controller of upcoming frequency change */
6029 mutex_lock(&dev_priv->rps.hw_lock);
6030 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6031 0x80000000);
6032 mutex_unlock(&dev_priv->rps.hw_lock);
6033
6034 if (ret) {
6035 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6036 ret, cdclk);
6037 return;
6038 }
6039
6040 if (dev_priv->cdclk_pll.vco != 0 &&
6041 dev_priv->cdclk_pll.vco != vco)
6042 bxt_de_pll_disable(dev_priv);
6043
6044 if (dev_priv->cdclk_pll.vco != vco)
6045 bxt_de_pll_enable(dev_priv, vco);
6046
6047 val = divider | skl_cdclk_decimal(cdclk);
6048 /*
6049 * FIXME if only the cd2x divider needs changing, it could be done
6050 * without shutting off the pipe (if only one pipe is active).
6051 */
6052 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6053 /*
6054 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6055 * enable otherwise.
6056 */
6057 if (cdclk >= 500000)
6058 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6059 I915_WRITE(CDCLK_CTL, val);
6060
6061 mutex_lock(&dev_priv->rps.hw_lock);
6062 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6063 DIV_ROUND_UP(cdclk, 25000));
6064 mutex_unlock(&dev_priv->rps.hw_lock);
6065
6066 if (ret) {
6067 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6068 ret, cdclk);
6069 return;
6070 }
6071
6072 intel_update_cdclk(&dev_priv->drm);
6073 }
6074
6075 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6076 {
6077 u32 cdctl, expected;
6078
6079 intel_update_cdclk(&dev_priv->drm);
6080
6081 if (dev_priv->cdclk_pll.vco == 0 ||
6082 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6083 goto sanitize;
6084
6085 /* DPLL okay; verify the cdclock
6086 *
6087 * Some BIOS versions leave an incorrect decimal frequency value and
6088 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6089 * so sanitize this register.
6090 */
6091 cdctl = I915_READ(CDCLK_CTL);
6092 /*
6093 * Let's ignore the pipe field, since BIOS could have configured the
6094 * dividers both synching to an active pipe, or asynchronously
6095 * (PIPE_NONE).
6096 */
6097 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6098
6099 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6100 skl_cdclk_decimal(dev_priv->cdclk_freq);
6101 /*
6102 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6103 * enable otherwise.
6104 */
6105 if (dev_priv->cdclk_freq >= 500000)
6106 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6107
6108 if (cdctl == expected)
6109 /* All well; nothing to sanitize */
6110 return;
6111
6112 sanitize:
6113 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6114
6115 /* force cdclk programming */
6116 dev_priv->cdclk_freq = 0;
6117
6118 /* force full PLL disable + enable */
6119 dev_priv->cdclk_pll.vco = -1;
6120 }
6121
6122 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6123 {
6124 bxt_sanitize_cdclk(dev_priv);
6125
6126 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6127 return;
6128
6129 /*
6130 * FIXME:
6131 * - The initial CDCLK needs to be read from VBT.
6132 * Need to make this change after VBT has changes for BXT.
6133 */
6134 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6135 }
6136
6137 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6138 {
6139 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6140 }
6141
6142 static int skl_calc_cdclk(int max_pixclk, int vco)
6143 {
6144 if (vco == 8640000) {
6145 if (max_pixclk > 540000)
6146 return 617143;
6147 else if (max_pixclk > 432000)
6148 return 540000;
6149 else if (max_pixclk > 308571)
6150 return 432000;
6151 else
6152 return 308571;
6153 } else {
6154 if (max_pixclk > 540000)
6155 return 675000;
6156 else if (max_pixclk > 450000)
6157 return 540000;
6158 else if (max_pixclk > 337500)
6159 return 450000;
6160 else
6161 return 337500;
6162 }
6163 }
6164
6165 static void
6166 skl_dpll0_update(struct drm_i915_private *dev_priv)
6167 {
6168 u32 val;
6169
6170 dev_priv->cdclk_pll.ref = 24000;
6171 dev_priv->cdclk_pll.vco = 0;
6172
6173 val = I915_READ(LCPLL1_CTL);
6174 if ((val & LCPLL_PLL_ENABLE) == 0)
6175 return;
6176
6177 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6178 return;
6179
6180 val = I915_READ(DPLL_CTRL1);
6181
6182 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6183 DPLL_CTRL1_SSC(SKL_DPLL0) |
6184 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6185 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6186 return;
6187
6188 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6189 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6190 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6191 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6192 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6193 dev_priv->cdclk_pll.vco = 8100000;
6194 break;
6195 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6196 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6197 dev_priv->cdclk_pll.vco = 8640000;
6198 break;
6199 default:
6200 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6201 break;
6202 }
6203 }
6204
6205 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6206 {
6207 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6208
6209 dev_priv->skl_preferred_vco_freq = vco;
6210
6211 if (changed)
6212 intel_update_max_cdclk(&dev_priv->drm);
6213 }
6214
6215 static void
6216 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6217 {
6218 int min_cdclk = skl_calc_cdclk(0, vco);
6219 u32 val;
6220
6221 WARN_ON(vco != 8100000 && vco != 8640000);
6222
6223 /* select the minimum CDCLK before enabling DPLL 0 */
6224 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6225 I915_WRITE(CDCLK_CTL, val);
6226 POSTING_READ(CDCLK_CTL);
6227
6228 /*
6229 * We always enable DPLL0 with the lowest link rate possible, but still
6230 * taking into account the VCO required to operate the eDP panel at the
6231 * desired frequency. The usual DP link rates operate with a VCO of
6232 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6233 * The modeset code is responsible for the selection of the exact link
6234 * rate later on, with the constraint of choosing a frequency that
6235 * works with vco.
6236 */
6237 val = I915_READ(DPLL_CTRL1);
6238
6239 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6240 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6241 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6242 if (vco == 8640000)
6243 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6244 SKL_DPLL0);
6245 else
6246 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6247 SKL_DPLL0);
6248
6249 I915_WRITE(DPLL_CTRL1, val);
6250 POSTING_READ(DPLL_CTRL1);
6251
6252 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6253
6254 if (intel_wait_for_register(dev_priv,
6255 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6256 5))
6257 DRM_ERROR("DPLL0 not locked\n");
6258
6259 dev_priv->cdclk_pll.vco = vco;
6260
6261 /* We'll want to keep using the current vco from now on. */
6262 skl_set_preferred_cdclk_vco(dev_priv, vco);
6263 }
6264
6265 static void
6266 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6267 {
6268 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6269 if (intel_wait_for_register(dev_priv,
6270 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6271 1))
6272 DRM_ERROR("Couldn't disable DPLL0\n");
6273
6274 dev_priv->cdclk_pll.vco = 0;
6275 }
6276
6277 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6278 {
6279 int ret;
6280 u32 val;
6281
6282 /* inform PCU we want to change CDCLK */
6283 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6284 mutex_lock(&dev_priv->rps.hw_lock);
6285 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6286 mutex_unlock(&dev_priv->rps.hw_lock);
6287
6288 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6289 }
6290
6291 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6292 {
6293 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6294 }
6295
6296 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6297 {
6298 struct drm_device *dev = &dev_priv->drm;
6299 u32 freq_select, pcu_ack;
6300
6301 WARN_ON((cdclk == 24000) != (vco == 0));
6302
6303 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6304
6305 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6306 DRM_ERROR("failed to inform PCU about cdclk change\n");
6307 return;
6308 }
6309
6310 /* set CDCLK_CTL */
6311 switch (cdclk) {
6312 case 450000:
6313 case 432000:
6314 freq_select = CDCLK_FREQ_450_432;
6315 pcu_ack = 1;
6316 break;
6317 case 540000:
6318 freq_select = CDCLK_FREQ_540;
6319 pcu_ack = 2;
6320 break;
6321 case 308571:
6322 case 337500:
6323 default:
6324 freq_select = CDCLK_FREQ_337_308;
6325 pcu_ack = 0;
6326 break;
6327 case 617143:
6328 case 675000:
6329 freq_select = CDCLK_FREQ_675_617;
6330 pcu_ack = 3;
6331 break;
6332 }
6333
6334 if (dev_priv->cdclk_pll.vco != 0 &&
6335 dev_priv->cdclk_pll.vco != vco)
6336 skl_dpll0_disable(dev_priv);
6337
6338 if (dev_priv->cdclk_pll.vco != vco)
6339 skl_dpll0_enable(dev_priv, vco);
6340
6341 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6342 POSTING_READ(CDCLK_CTL);
6343
6344 /* inform PCU of the change */
6345 mutex_lock(&dev_priv->rps.hw_lock);
6346 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6347 mutex_unlock(&dev_priv->rps.hw_lock);
6348
6349 intel_update_cdclk(dev);
6350 }
6351
6352 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6353
6354 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6355 {
6356 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6357 }
6358
6359 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6360 {
6361 int cdclk, vco;
6362
6363 skl_sanitize_cdclk(dev_priv);
6364
6365 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6366 /*
6367 * Use the current vco as our initial
6368 * guess as to what the preferred vco is.
6369 */
6370 if (dev_priv->skl_preferred_vco_freq == 0)
6371 skl_set_preferred_cdclk_vco(dev_priv,
6372 dev_priv->cdclk_pll.vco);
6373 return;
6374 }
6375
6376 vco = dev_priv->skl_preferred_vco_freq;
6377 if (vco == 0)
6378 vco = 8100000;
6379 cdclk = skl_calc_cdclk(0, vco);
6380
6381 skl_set_cdclk(dev_priv, cdclk, vco);
6382 }
6383
6384 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6385 {
6386 uint32_t cdctl, expected;
6387
6388 /*
6389 * check if the pre-os intialized the display
6390 * There is SWF18 scratchpad register defined which is set by the
6391 * pre-os which can be used by the OS drivers to check the status
6392 */
6393 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6394 goto sanitize;
6395
6396 intel_update_cdclk(&dev_priv->drm);
6397 /* Is PLL enabled and locked ? */
6398 if (dev_priv->cdclk_pll.vco == 0 ||
6399 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6400 goto sanitize;
6401
6402 /* DPLL okay; verify the cdclock
6403 *
6404 * Noticed in some instances that the freq selection is correct but
6405 * decimal part is programmed wrong from BIOS where pre-os does not
6406 * enable display. Verify the same as well.
6407 */
6408 cdctl = I915_READ(CDCLK_CTL);
6409 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6410 skl_cdclk_decimal(dev_priv->cdclk_freq);
6411 if (cdctl == expected)
6412 /* All well; nothing to sanitize */
6413 return;
6414
6415 sanitize:
6416 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6417
6418 /* force cdclk programming */
6419 dev_priv->cdclk_freq = 0;
6420 /* force full PLL disable + enable */
6421 dev_priv->cdclk_pll.vco = -1;
6422 }
6423
6424 /* Adjust CDclk dividers to allow high res or save power if possible */
6425 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6426 {
6427 struct drm_i915_private *dev_priv = to_i915(dev);
6428 u32 val, cmd;
6429
6430 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6431 != dev_priv->cdclk_freq);
6432
6433 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6434 cmd = 2;
6435 else if (cdclk == 266667)
6436 cmd = 1;
6437 else
6438 cmd = 0;
6439
6440 mutex_lock(&dev_priv->rps.hw_lock);
6441 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6442 val &= ~DSPFREQGUAR_MASK;
6443 val |= (cmd << DSPFREQGUAR_SHIFT);
6444 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6445 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6446 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6447 50)) {
6448 DRM_ERROR("timed out waiting for CDclk change\n");
6449 }
6450 mutex_unlock(&dev_priv->rps.hw_lock);
6451
6452 mutex_lock(&dev_priv->sb_lock);
6453
6454 if (cdclk == 400000) {
6455 u32 divider;
6456
6457 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6458
6459 /* adjust cdclk divider */
6460 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6461 val &= ~CCK_FREQUENCY_VALUES;
6462 val |= divider;
6463 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6464
6465 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6466 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6467 50))
6468 DRM_ERROR("timed out waiting for CDclk change\n");
6469 }
6470
6471 /* adjust self-refresh exit latency value */
6472 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6473 val &= ~0x7f;
6474
6475 /*
6476 * For high bandwidth configs, we set a higher latency in the bunit
6477 * so that the core display fetch happens in time to avoid underruns.
6478 */
6479 if (cdclk == 400000)
6480 val |= 4500 / 250; /* 4.5 usec */
6481 else
6482 val |= 3000 / 250; /* 3.0 usec */
6483 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6484
6485 mutex_unlock(&dev_priv->sb_lock);
6486
6487 intel_update_cdclk(dev);
6488 }
6489
6490 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6491 {
6492 struct drm_i915_private *dev_priv = to_i915(dev);
6493 u32 val, cmd;
6494
6495 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6496 != dev_priv->cdclk_freq);
6497
6498 switch (cdclk) {
6499 case 333333:
6500 case 320000:
6501 case 266667:
6502 case 200000:
6503 break;
6504 default:
6505 MISSING_CASE(cdclk);
6506 return;
6507 }
6508
6509 /*
6510 * Specs are full of misinformation, but testing on actual
6511 * hardware has shown that we just need to write the desired
6512 * CCK divider into the Punit register.
6513 */
6514 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6515
6516 mutex_lock(&dev_priv->rps.hw_lock);
6517 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6518 val &= ~DSPFREQGUAR_MASK_CHV;
6519 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6520 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6521 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6522 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6523 50)) {
6524 DRM_ERROR("timed out waiting for CDclk change\n");
6525 }
6526 mutex_unlock(&dev_priv->rps.hw_lock);
6527
6528 intel_update_cdclk(dev);
6529 }
6530
6531 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6532 int max_pixclk)
6533 {
6534 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6535 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6536
6537 /*
6538 * Really only a few cases to deal with, as only 4 CDclks are supported:
6539 * 200MHz
6540 * 267MHz
6541 * 320/333MHz (depends on HPLL freq)
6542 * 400MHz (VLV only)
6543 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6544 * of the lower bin and adjust if needed.
6545 *
6546 * We seem to get an unstable or solid color picture at 200MHz.
6547 * Not sure what's wrong. For now use 200MHz only when all pipes
6548 * are off.
6549 */
6550 if (!IS_CHERRYVIEW(dev_priv) &&
6551 max_pixclk > freq_320*limit/100)
6552 return 400000;
6553 else if (max_pixclk > 266667*limit/100)
6554 return freq_320;
6555 else if (max_pixclk > 0)
6556 return 266667;
6557 else
6558 return 200000;
6559 }
6560
6561 static int bxt_calc_cdclk(int max_pixclk)
6562 {
6563 if (max_pixclk > 576000)
6564 return 624000;
6565 else if (max_pixclk > 384000)
6566 return 576000;
6567 else if (max_pixclk > 288000)
6568 return 384000;
6569 else if (max_pixclk > 144000)
6570 return 288000;
6571 else
6572 return 144000;
6573 }
6574
6575 /* Compute the max pixel clock for new configuration. */
6576 static int intel_mode_max_pixclk(struct drm_device *dev,
6577 struct drm_atomic_state *state)
6578 {
6579 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6580 struct drm_i915_private *dev_priv = to_i915(dev);
6581 struct drm_crtc *crtc;
6582 struct drm_crtc_state *crtc_state;
6583 unsigned max_pixclk = 0, i;
6584 enum pipe pipe;
6585
6586 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6587 sizeof(intel_state->min_pixclk));
6588
6589 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6590 int pixclk = 0;
6591
6592 if (crtc_state->enable)
6593 pixclk = crtc_state->adjusted_mode.crtc_clock;
6594
6595 intel_state->min_pixclk[i] = pixclk;
6596 }
6597
6598 for_each_pipe(dev_priv, pipe)
6599 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6600
6601 return max_pixclk;
6602 }
6603
6604 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6605 {
6606 struct drm_device *dev = state->dev;
6607 struct drm_i915_private *dev_priv = to_i915(dev);
6608 int max_pixclk = intel_mode_max_pixclk(dev, state);
6609 struct intel_atomic_state *intel_state =
6610 to_intel_atomic_state(state);
6611
6612 intel_state->cdclk = intel_state->dev_cdclk =
6613 valleyview_calc_cdclk(dev_priv, max_pixclk);
6614
6615 if (!intel_state->active_crtcs)
6616 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6617
6618 return 0;
6619 }
6620
6621 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6622 {
6623 int max_pixclk = ilk_max_pixel_rate(state);
6624 struct intel_atomic_state *intel_state =
6625 to_intel_atomic_state(state);
6626
6627 intel_state->cdclk = intel_state->dev_cdclk =
6628 bxt_calc_cdclk(max_pixclk);
6629
6630 if (!intel_state->active_crtcs)
6631 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6632
6633 return 0;
6634 }
6635
6636 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6637 {
6638 unsigned int credits, default_credits;
6639
6640 if (IS_CHERRYVIEW(dev_priv))
6641 default_credits = PFI_CREDIT(12);
6642 else
6643 default_credits = PFI_CREDIT(8);
6644
6645 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6646 /* CHV suggested value is 31 or 63 */
6647 if (IS_CHERRYVIEW(dev_priv))
6648 credits = PFI_CREDIT_63;
6649 else
6650 credits = PFI_CREDIT(15);
6651 } else {
6652 credits = default_credits;
6653 }
6654
6655 /*
6656 * WA - write default credits before re-programming
6657 * FIXME: should we also set the resend bit here?
6658 */
6659 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6660 default_credits);
6661
6662 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6663 credits | PFI_CREDIT_RESEND);
6664
6665 /*
6666 * FIXME is this guaranteed to clear
6667 * immediately or should we poll for it?
6668 */
6669 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6670 }
6671
6672 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6673 {
6674 struct drm_device *dev = old_state->dev;
6675 struct drm_i915_private *dev_priv = to_i915(dev);
6676 struct intel_atomic_state *old_intel_state =
6677 to_intel_atomic_state(old_state);
6678 unsigned req_cdclk = old_intel_state->dev_cdclk;
6679
6680 /*
6681 * FIXME: We can end up here with all power domains off, yet
6682 * with a CDCLK frequency other than the minimum. To account
6683 * for this take the PIPE-A power domain, which covers the HW
6684 * blocks needed for the following programming. This can be
6685 * removed once it's guaranteed that we get here either with
6686 * the minimum CDCLK set, or the required power domains
6687 * enabled.
6688 */
6689 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6690
6691 if (IS_CHERRYVIEW(dev_priv))
6692 cherryview_set_cdclk(dev, req_cdclk);
6693 else
6694 valleyview_set_cdclk(dev, req_cdclk);
6695
6696 vlv_program_pfi_credits(dev_priv);
6697
6698 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6699 }
6700
6701 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6702 struct drm_atomic_state *old_state)
6703 {
6704 struct drm_crtc *crtc = pipe_config->base.crtc;
6705 struct drm_device *dev = crtc->dev;
6706 struct drm_i915_private *dev_priv = to_i915(dev);
6707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6708 int pipe = intel_crtc->pipe;
6709
6710 if (WARN_ON(intel_crtc->active))
6711 return;
6712
6713 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6714 intel_dp_set_m_n(intel_crtc, M1_N1);
6715
6716 intel_set_pipe_timings(intel_crtc);
6717 intel_set_pipe_src_size(intel_crtc);
6718
6719 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6720 struct drm_i915_private *dev_priv = to_i915(dev);
6721
6722 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6723 I915_WRITE(CHV_CANVAS(pipe), 0);
6724 }
6725
6726 i9xx_set_pipeconf(intel_crtc);
6727
6728 intel_crtc->active = true;
6729
6730 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6731
6732 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6733
6734 if (IS_CHERRYVIEW(dev_priv)) {
6735 chv_prepare_pll(intel_crtc, intel_crtc->config);
6736 chv_enable_pll(intel_crtc, intel_crtc->config);
6737 } else {
6738 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6739 vlv_enable_pll(intel_crtc, intel_crtc->config);
6740 }
6741
6742 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6743
6744 i9xx_pfit_enable(intel_crtc);
6745
6746 intel_color_load_luts(&pipe_config->base);
6747
6748 intel_update_watermarks(crtc);
6749 intel_enable_pipe(intel_crtc);
6750
6751 assert_vblank_disabled(crtc);
6752 drm_crtc_vblank_on(crtc);
6753
6754 intel_encoders_enable(crtc, pipe_config, old_state);
6755 }
6756
6757 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6758 {
6759 struct drm_device *dev = crtc->base.dev;
6760 struct drm_i915_private *dev_priv = to_i915(dev);
6761
6762 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6763 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6764 }
6765
6766 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6767 struct drm_atomic_state *old_state)
6768 {
6769 struct drm_crtc *crtc = pipe_config->base.crtc;
6770 struct drm_device *dev = crtc->dev;
6771 struct drm_i915_private *dev_priv = to_i915(dev);
6772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6773 enum pipe pipe = intel_crtc->pipe;
6774
6775 if (WARN_ON(intel_crtc->active))
6776 return;
6777
6778 i9xx_set_pll_dividers(intel_crtc);
6779
6780 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6781 intel_dp_set_m_n(intel_crtc, M1_N1);
6782
6783 intel_set_pipe_timings(intel_crtc);
6784 intel_set_pipe_src_size(intel_crtc);
6785
6786 i9xx_set_pipeconf(intel_crtc);
6787
6788 intel_crtc->active = true;
6789
6790 if (!IS_GEN2(dev_priv))
6791 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6792
6793 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6794
6795 i9xx_enable_pll(intel_crtc);
6796
6797 i9xx_pfit_enable(intel_crtc);
6798
6799 intel_color_load_luts(&pipe_config->base);
6800
6801 intel_update_watermarks(crtc);
6802 intel_enable_pipe(intel_crtc);
6803
6804 assert_vblank_disabled(crtc);
6805 drm_crtc_vblank_on(crtc);
6806
6807 intel_encoders_enable(crtc, pipe_config, old_state);
6808 }
6809
6810 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6811 {
6812 struct drm_device *dev = crtc->base.dev;
6813 struct drm_i915_private *dev_priv = to_i915(dev);
6814
6815 if (!crtc->config->gmch_pfit.control)
6816 return;
6817
6818 assert_pipe_disabled(dev_priv, crtc->pipe);
6819
6820 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6821 I915_READ(PFIT_CONTROL));
6822 I915_WRITE(PFIT_CONTROL, 0);
6823 }
6824
6825 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6826 struct drm_atomic_state *old_state)
6827 {
6828 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6829 struct drm_device *dev = crtc->dev;
6830 struct drm_i915_private *dev_priv = to_i915(dev);
6831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6832 int pipe = intel_crtc->pipe;
6833
6834 /*
6835 * On gen2 planes are double buffered but the pipe isn't, so we must
6836 * wait for planes to fully turn off before disabling the pipe.
6837 */
6838 if (IS_GEN2(dev_priv))
6839 intel_wait_for_vblank(dev, pipe);
6840
6841 intel_encoders_disable(crtc, old_crtc_state, old_state);
6842
6843 drm_crtc_vblank_off(crtc);
6844 assert_vblank_disabled(crtc);
6845
6846 intel_disable_pipe(intel_crtc);
6847
6848 i9xx_pfit_disable(intel_crtc);
6849
6850 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6851
6852 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6853 if (IS_CHERRYVIEW(dev_priv))
6854 chv_disable_pll(dev_priv, pipe);
6855 else if (IS_VALLEYVIEW(dev_priv))
6856 vlv_disable_pll(dev_priv, pipe);
6857 else
6858 i9xx_disable_pll(intel_crtc);
6859 }
6860
6861 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6862
6863 if (!IS_GEN2(dev_priv))
6864 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6865 }
6866
6867 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6868 {
6869 struct intel_encoder *encoder;
6870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6871 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6872 enum intel_display_power_domain domain;
6873 unsigned long domains;
6874 struct drm_atomic_state *state;
6875 struct intel_crtc_state *crtc_state;
6876 int ret;
6877
6878 if (!intel_crtc->active)
6879 return;
6880
6881 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6882 WARN_ON(intel_crtc->flip_work);
6883
6884 intel_pre_disable_primary_noatomic(crtc);
6885
6886 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6887 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6888 }
6889
6890 state = drm_atomic_state_alloc(crtc->dev);
6891 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6892
6893 /* Everything's already locked, -EDEADLK can't happen. */
6894 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6895 ret = drm_atomic_add_affected_connectors(state, crtc);
6896
6897 WARN_ON(IS_ERR(crtc_state) || ret);
6898
6899 dev_priv->display.crtc_disable(crtc_state, state);
6900
6901 drm_atomic_state_put(state);
6902
6903 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6904 crtc->base.id, crtc->name);
6905
6906 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6907 crtc->state->active = false;
6908 intel_crtc->active = false;
6909 crtc->enabled = false;
6910 crtc->state->connector_mask = 0;
6911 crtc->state->encoder_mask = 0;
6912
6913 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6914 encoder->base.crtc = NULL;
6915
6916 intel_fbc_disable(intel_crtc);
6917 intel_update_watermarks(crtc);
6918 intel_disable_shared_dpll(intel_crtc);
6919
6920 domains = intel_crtc->enabled_power_domains;
6921 for_each_power_domain(domain, domains)
6922 intel_display_power_put(dev_priv, domain);
6923 intel_crtc->enabled_power_domains = 0;
6924
6925 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6926 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6927 }
6928
6929 /*
6930 * turn all crtc's off, but do not adjust state
6931 * This has to be paired with a call to intel_modeset_setup_hw_state.
6932 */
6933 int intel_display_suspend(struct drm_device *dev)
6934 {
6935 struct drm_i915_private *dev_priv = to_i915(dev);
6936 struct drm_atomic_state *state;
6937 int ret;
6938
6939 state = drm_atomic_helper_suspend(dev);
6940 ret = PTR_ERR_OR_ZERO(state);
6941 if (ret)
6942 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6943 else
6944 dev_priv->modeset_restore_state = state;
6945 return ret;
6946 }
6947
6948 void intel_encoder_destroy(struct drm_encoder *encoder)
6949 {
6950 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6951
6952 drm_encoder_cleanup(encoder);
6953 kfree(intel_encoder);
6954 }
6955
6956 /* Cross check the actual hw state with our own modeset state tracking (and it's
6957 * internal consistency). */
6958 static void intel_connector_verify_state(struct intel_connector *connector)
6959 {
6960 struct drm_crtc *crtc = connector->base.state->crtc;
6961
6962 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6963 connector->base.base.id,
6964 connector->base.name);
6965
6966 if (connector->get_hw_state(connector)) {
6967 struct intel_encoder *encoder = connector->encoder;
6968 struct drm_connector_state *conn_state = connector->base.state;
6969
6970 I915_STATE_WARN(!crtc,
6971 "connector enabled without attached crtc\n");
6972
6973 if (!crtc)
6974 return;
6975
6976 I915_STATE_WARN(!crtc->state->active,
6977 "connector is active, but attached crtc isn't\n");
6978
6979 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6980 return;
6981
6982 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6983 "atomic encoder doesn't match attached encoder\n");
6984
6985 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6986 "attached encoder crtc differs from connector crtc\n");
6987 } else {
6988 I915_STATE_WARN(crtc && crtc->state->active,
6989 "attached crtc is active, but connector isn't\n");
6990 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6991 "best encoder set without crtc!\n");
6992 }
6993 }
6994
6995 int intel_connector_init(struct intel_connector *connector)
6996 {
6997 drm_atomic_helper_connector_reset(&connector->base);
6998
6999 if (!connector->base.state)
7000 return -ENOMEM;
7001
7002 return 0;
7003 }
7004
7005 struct intel_connector *intel_connector_alloc(void)
7006 {
7007 struct intel_connector *connector;
7008
7009 connector = kzalloc(sizeof *connector, GFP_KERNEL);
7010 if (!connector)
7011 return NULL;
7012
7013 if (intel_connector_init(connector) < 0) {
7014 kfree(connector);
7015 return NULL;
7016 }
7017
7018 return connector;
7019 }
7020
7021 /* Simple connector->get_hw_state implementation for encoders that support only
7022 * one connector and no cloning and hence the encoder state determines the state
7023 * of the connector. */
7024 bool intel_connector_get_hw_state(struct intel_connector *connector)
7025 {
7026 enum pipe pipe = 0;
7027 struct intel_encoder *encoder = connector->encoder;
7028
7029 return encoder->get_hw_state(encoder, &pipe);
7030 }
7031
7032 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7033 {
7034 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7035 return crtc_state->fdi_lanes;
7036
7037 return 0;
7038 }
7039
7040 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7041 struct intel_crtc_state *pipe_config)
7042 {
7043 struct drm_i915_private *dev_priv = to_i915(dev);
7044 struct drm_atomic_state *state = pipe_config->base.state;
7045 struct intel_crtc *other_crtc;
7046 struct intel_crtc_state *other_crtc_state;
7047
7048 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7049 pipe_name(pipe), pipe_config->fdi_lanes);
7050 if (pipe_config->fdi_lanes > 4) {
7051 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7052 pipe_name(pipe), pipe_config->fdi_lanes);
7053 return -EINVAL;
7054 }
7055
7056 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7057 if (pipe_config->fdi_lanes > 2) {
7058 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7059 pipe_config->fdi_lanes);
7060 return -EINVAL;
7061 } else {
7062 return 0;
7063 }
7064 }
7065
7066 if (INTEL_INFO(dev)->num_pipes == 2)
7067 return 0;
7068
7069 /* Ivybridge 3 pipe is really complicated */
7070 switch (pipe) {
7071 case PIPE_A:
7072 return 0;
7073 case PIPE_B:
7074 if (pipe_config->fdi_lanes <= 2)
7075 return 0;
7076
7077 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7078 other_crtc_state =
7079 intel_atomic_get_crtc_state(state, other_crtc);
7080 if (IS_ERR(other_crtc_state))
7081 return PTR_ERR(other_crtc_state);
7082
7083 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7084 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7085 pipe_name(pipe), pipe_config->fdi_lanes);
7086 return -EINVAL;
7087 }
7088 return 0;
7089 case PIPE_C:
7090 if (pipe_config->fdi_lanes > 2) {
7091 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7092 pipe_name(pipe), pipe_config->fdi_lanes);
7093 return -EINVAL;
7094 }
7095
7096 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7097 other_crtc_state =
7098 intel_atomic_get_crtc_state(state, other_crtc);
7099 if (IS_ERR(other_crtc_state))
7100 return PTR_ERR(other_crtc_state);
7101
7102 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7103 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7104 return -EINVAL;
7105 }
7106 return 0;
7107 default:
7108 BUG();
7109 }
7110 }
7111
7112 #define RETRY 1
7113 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7114 struct intel_crtc_state *pipe_config)
7115 {
7116 struct drm_device *dev = intel_crtc->base.dev;
7117 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7118 int lane, link_bw, fdi_dotclock, ret;
7119 bool needs_recompute = false;
7120
7121 retry:
7122 /* FDI is a binary signal running at ~2.7GHz, encoding
7123 * each output octet as 10 bits. The actual frequency
7124 * is stored as a divider into a 100MHz clock, and the
7125 * mode pixel clock is stored in units of 1KHz.
7126 * Hence the bw of each lane in terms of the mode signal
7127 * is:
7128 */
7129 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7130
7131 fdi_dotclock = adjusted_mode->crtc_clock;
7132
7133 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7134 pipe_config->pipe_bpp);
7135
7136 pipe_config->fdi_lanes = lane;
7137
7138 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7139 link_bw, &pipe_config->fdi_m_n);
7140
7141 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7142 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7143 pipe_config->pipe_bpp -= 2*3;
7144 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7145 pipe_config->pipe_bpp);
7146 needs_recompute = true;
7147 pipe_config->bw_constrained = true;
7148
7149 goto retry;
7150 }
7151
7152 if (needs_recompute)
7153 return RETRY;
7154
7155 return ret;
7156 }
7157
7158 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7159 struct intel_crtc_state *pipe_config)
7160 {
7161 if (pipe_config->pipe_bpp > 24)
7162 return false;
7163
7164 /* HSW can handle pixel rate up to cdclk? */
7165 if (IS_HASWELL(dev_priv))
7166 return true;
7167
7168 /*
7169 * We compare against max which means we must take
7170 * the increased cdclk requirement into account when
7171 * calculating the new cdclk.
7172 *
7173 * Should measure whether using a lower cdclk w/o IPS
7174 */
7175 return ilk_pipe_pixel_rate(pipe_config) <=
7176 dev_priv->max_cdclk_freq * 95 / 100;
7177 }
7178
7179 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7180 struct intel_crtc_state *pipe_config)
7181 {
7182 struct drm_device *dev = crtc->base.dev;
7183 struct drm_i915_private *dev_priv = to_i915(dev);
7184
7185 pipe_config->ips_enabled = i915.enable_ips &&
7186 hsw_crtc_supports_ips(crtc) &&
7187 pipe_config_supports_ips(dev_priv, pipe_config);
7188 }
7189
7190 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7191 {
7192 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7193
7194 /* GDG double wide on either pipe, otherwise pipe A only */
7195 return INTEL_INFO(dev_priv)->gen < 4 &&
7196 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7197 }
7198
7199 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7200 struct intel_crtc_state *pipe_config)
7201 {
7202 struct drm_device *dev = crtc->base.dev;
7203 struct drm_i915_private *dev_priv = to_i915(dev);
7204 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7205 int clock_limit = dev_priv->max_dotclk_freq;
7206
7207 if (INTEL_INFO(dev)->gen < 4) {
7208 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7209
7210 /*
7211 * Enable double wide mode when the dot clock
7212 * is > 90% of the (display) core speed.
7213 */
7214 if (intel_crtc_supports_double_wide(crtc) &&
7215 adjusted_mode->crtc_clock > clock_limit) {
7216 clock_limit = dev_priv->max_dotclk_freq;
7217 pipe_config->double_wide = true;
7218 }
7219 }
7220
7221 if (adjusted_mode->crtc_clock > clock_limit) {
7222 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7223 adjusted_mode->crtc_clock, clock_limit,
7224 yesno(pipe_config->double_wide));
7225 return -EINVAL;
7226 }
7227
7228 /*
7229 * Pipe horizontal size must be even in:
7230 * - DVO ganged mode
7231 * - LVDS dual channel mode
7232 * - Double wide pipe
7233 */
7234 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7235 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7236 pipe_config->pipe_src_w &= ~1;
7237
7238 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7239 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7240 */
7241 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7242 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7243 return -EINVAL;
7244
7245 if (HAS_IPS(dev_priv))
7246 hsw_compute_ips_config(crtc, pipe_config);
7247
7248 if (pipe_config->has_pch_encoder)
7249 return ironlake_fdi_compute_config(crtc, pipe_config);
7250
7251 return 0;
7252 }
7253
7254 static int skylake_get_display_clock_speed(struct drm_device *dev)
7255 {
7256 struct drm_i915_private *dev_priv = to_i915(dev);
7257 uint32_t cdctl;
7258
7259 skl_dpll0_update(dev_priv);
7260
7261 if (dev_priv->cdclk_pll.vco == 0)
7262 return dev_priv->cdclk_pll.ref;
7263
7264 cdctl = I915_READ(CDCLK_CTL);
7265
7266 if (dev_priv->cdclk_pll.vco == 8640000) {
7267 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7268 case CDCLK_FREQ_450_432:
7269 return 432000;
7270 case CDCLK_FREQ_337_308:
7271 return 308571;
7272 case CDCLK_FREQ_540:
7273 return 540000;
7274 case CDCLK_FREQ_675_617:
7275 return 617143;
7276 default:
7277 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7278 }
7279 } else {
7280 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7281 case CDCLK_FREQ_450_432:
7282 return 450000;
7283 case CDCLK_FREQ_337_308:
7284 return 337500;
7285 case CDCLK_FREQ_540:
7286 return 540000;
7287 case CDCLK_FREQ_675_617:
7288 return 675000;
7289 default:
7290 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7291 }
7292 }
7293
7294 return dev_priv->cdclk_pll.ref;
7295 }
7296
7297 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7298 {
7299 u32 val;
7300
7301 dev_priv->cdclk_pll.ref = 19200;
7302 dev_priv->cdclk_pll.vco = 0;
7303
7304 val = I915_READ(BXT_DE_PLL_ENABLE);
7305 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7306 return;
7307
7308 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7309 return;
7310
7311 val = I915_READ(BXT_DE_PLL_CTL);
7312 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7313 dev_priv->cdclk_pll.ref;
7314 }
7315
7316 static int broxton_get_display_clock_speed(struct drm_device *dev)
7317 {
7318 struct drm_i915_private *dev_priv = to_i915(dev);
7319 u32 divider;
7320 int div, vco;
7321
7322 bxt_de_pll_update(dev_priv);
7323
7324 vco = dev_priv->cdclk_pll.vco;
7325 if (vco == 0)
7326 return dev_priv->cdclk_pll.ref;
7327
7328 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7329
7330 switch (divider) {
7331 case BXT_CDCLK_CD2X_DIV_SEL_1:
7332 div = 2;
7333 break;
7334 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7335 div = 3;
7336 break;
7337 case BXT_CDCLK_CD2X_DIV_SEL_2:
7338 div = 4;
7339 break;
7340 case BXT_CDCLK_CD2X_DIV_SEL_4:
7341 div = 8;
7342 break;
7343 default:
7344 MISSING_CASE(divider);
7345 return dev_priv->cdclk_pll.ref;
7346 }
7347
7348 return DIV_ROUND_CLOSEST(vco, div);
7349 }
7350
7351 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7352 {
7353 struct drm_i915_private *dev_priv = to_i915(dev);
7354 uint32_t lcpll = I915_READ(LCPLL_CTL);
7355 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7356
7357 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7358 return 800000;
7359 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7360 return 450000;
7361 else if (freq == LCPLL_CLK_FREQ_450)
7362 return 450000;
7363 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7364 return 540000;
7365 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7366 return 337500;
7367 else
7368 return 675000;
7369 }
7370
7371 static int haswell_get_display_clock_speed(struct drm_device *dev)
7372 {
7373 struct drm_i915_private *dev_priv = to_i915(dev);
7374 uint32_t lcpll = I915_READ(LCPLL_CTL);
7375 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7376
7377 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7378 return 800000;
7379 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7380 return 450000;
7381 else if (freq == LCPLL_CLK_FREQ_450)
7382 return 450000;
7383 else if (IS_HSW_ULT(dev_priv))
7384 return 337500;
7385 else
7386 return 540000;
7387 }
7388
7389 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7390 {
7391 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7392 CCK_DISPLAY_CLOCK_CONTROL);
7393 }
7394
7395 static int ilk_get_display_clock_speed(struct drm_device *dev)
7396 {
7397 return 450000;
7398 }
7399
7400 static int i945_get_display_clock_speed(struct drm_device *dev)
7401 {
7402 return 400000;
7403 }
7404
7405 static int i915_get_display_clock_speed(struct drm_device *dev)
7406 {
7407 return 333333;
7408 }
7409
7410 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7411 {
7412 return 200000;
7413 }
7414
7415 static int pnv_get_display_clock_speed(struct drm_device *dev)
7416 {
7417 struct pci_dev *pdev = dev->pdev;
7418 u16 gcfgc = 0;
7419
7420 pci_read_config_word(pdev, GCFGC, &gcfgc);
7421
7422 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7423 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7424 return 266667;
7425 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7426 return 333333;
7427 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7428 return 444444;
7429 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7430 return 200000;
7431 default:
7432 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7433 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7434 return 133333;
7435 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7436 return 166667;
7437 }
7438 }
7439
7440 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7441 {
7442 struct pci_dev *pdev = dev->pdev;
7443 u16 gcfgc = 0;
7444
7445 pci_read_config_word(pdev, GCFGC, &gcfgc);
7446
7447 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7448 return 133333;
7449 else {
7450 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7451 case GC_DISPLAY_CLOCK_333_MHZ:
7452 return 333333;
7453 default:
7454 case GC_DISPLAY_CLOCK_190_200_MHZ:
7455 return 190000;
7456 }
7457 }
7458 }
7459
7460 static int i865_get_display_clock_speed(struct drm_device *dev)
7461 {
7462 return 266667;
7463 }
7464
7465 static int i85x_get_display_clock_speed(struct drm_device *dev)
7466 {
7467 struct pci_dev *pdev = dev->pdev;
7468 u16 hpllcc = 0;
7469
7470 /*
7471 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7472 * encoding is different :(
7473 * FIXME is this the right way to detect 852GM/852GMV?
7474 */
7475 if (pdev->revision == 0x1)
7476 return 133333;
7477
7478 pci_bus_read_config_word(pdev->bus,
7479 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7480
7481 /* Assume that the hardware is in the high speed state. This
7482 * should be the default.
7483 */
7484 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7485 case GC_CLOCK_133_200:
7486 case GC_CLOCK_133_200_2:
7487 case GC_CLOCK_100_200:
7488 return 200000;
7489 case GC_CLOCK_166_250:
7490 return 250000;
7491 case GC_CLOCK_100_133:
7492 return 133333;
7493 case GC_CLOCK_133_266:
7494 case GC_CLOCK_133_266_2:
7495 case GC_CLOCK_166_266:
7496 return 266667;
7497 }
7498
7499 /* Shouldn't happen */
7500 return 0;
7501 }
7502
7503 static int i830_get_display_clock_speed(struct drm_device *dev)
7504 {
7505 return 133333;
7506 }
7507
7508 static unsigned int intel_hpll_vco(struct drm_device *dev)
7509 {
7510 struct drm_i915_private *dev_priv = to_i915(dev);
7511 static const unsigned int blb_vco[8] = {
7512 [0] = 3200000,
7513 [1] = 4000000,
7514 [2] = 5333333,
7515 [3] = 4800000,
7516 [4] = 6400000,
7517 };
7518 static const unsigned int pnv_vco[8] = {
7519 [0] = 3200000,
7520 [1] = 4000000,
7521 [2] = 5333333,
7522 [3] = 4800000,
7523 [4] = 2666667,
7524 };
7525 static const unsigned int cl_vco[8] = {
7526 [0] = 3200000,
7527 [1] = 4000000,
7528 [2] = 5333333,
7529 [3] = 6400000,
7530 [4] = 3333333,
7531 [5] = 3566667,
7532 [6] = 4266667,
7533 };
7534 static const unsigned int elk_vco[8] = {
7535 [0] = 3200000,
7536 [1] = 4000000,
7537 [2] = 5333333,
7538 [3] = 4800000,
7539 };
7540 static const unsigned int ctg_vco[8] = {
7541 [0] = 3200000,
7542 [1] = 4000000,
7543 [2] = 5333333,
7544 [3] = 6400000,
7545 [4] = 2666667,
7546 [5] = 4266667,
7547 };
7548 const unsigned int *vco_table;
7549 unsigned int vco;
7550 uint8_t tmp = 0;
7551
7552 /* FIXME other chipsets? */
7553 if (IS_GM45(dev_priv))
7554 vco_table = ctg_vco;
7555 else if (IS_G4X(dev_priv))
7556 vco_table = elk_vco;
7557 else if (IS_CRESTLINE(dev))
7558 vco_table = cl_vco;
7559 else if (IS_PINEVIEW(dev))
7560 vco_table = pnv_vco;
7561 else if (IS_G33(dev))
7562 vco_table = blb_vco;
7563 else
7564 return 0;
7565
7566 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7567
7568 vco = vco_table[tmp & 0x7];
7569 if (vco == 0)
7570 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7571 else
7572 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7573
7574 return vco;
7575 }
7576
7577 static int gm45_get_display_clock_speed(struct drm_device *dev)
7578 {
7579 struct pci_dev *pdev = dev->pdev;
7580 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7581 uint16_t tmp = 0;
7582
7583 pci_read_config_word(pdev, GCFGC, &tmp);
7584
7585 cdclk_sel = (tmp >> 12) & 0x1;
7586
7587 switch (vco) {
7588 case 2666667:
7589 case 4000000:
7590 case 5333333:
7591 return cdclk_sel ? 333333 : 222222;
7592 case 3200000:
7593 return cdclk_sel ? 320000 : 228571;
7594 default:
7595 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7596 return 222222;
7597 }
7598 }
7599
7600 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7601 {
7602 struct pci_dev *pdev = dev->pdev;
7603 static const uint8_t div_3200[] = { 16, 10, 8 };
7604 static const uint8_t div_4000[] = { 20, 12, 10 };
7605 static const uint8_t div_5333[] = { 24, 16, 14 };
7606 const uint8_t *div_table;
7607 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7608 uint16_t tmp = 0;
7609
7610 pci_read_config_word(pdev, GCFGC, &tmp);
7611
7612 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7613
7614 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7615 goto fail;
7616
7617 switch (vco) {
7618 case 3200000:
7619 div_table = div_3200;
7620 break;
7621 case 4000000:
7622 div_table = div_4000;
7623 break;
7624 case 5333333:
7625 div_table = div_5333;
7626 break;
7627 default:
7628 goto fail;
7629 }
7630
7631 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7632
7633 fail:
7634 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7635 return 200000;
7636 }
7637
7638 static int g33_get_display_clock_speed(struct drm_device *dev)
7639 {
7640 struct pci_dev *pdev = dev->pdev;
7641 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7642 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7643 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7644 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7645 const uint8_t *div_table;
7646 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7647 uint16_t tmp = 0;
7648
7649 pci_read_config_word(pdev, GCFGC, &tmp);
7650
7651 cdclk_sel = (tmp >> 4) & 0x7;
7652
7653 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7654 goto fail;
7655
7656 switch (vco) {
7657 case 3200000:
7658 div_table = div_3200;
7659 break;
7660 case 4000000:
7661 div_table = div_4000;
7662 break;
7663 case 4800000:
7664 div_table = div_4800;
7665 break;
7666 case 5333333:
7667 div_table = div_5333;
7668 break;
7669 default:
7670 goto fail;
7671 }
7672
7673 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7674
7675 fail:
7676 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7677 return 190476;
7678 }
7679
7680 static void
7681 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7682 {
7683 while (*num > DATA_LINK_M_N_MASK ||
7684 *den > DATA_LINK_M_N_MASK) {
7685 *num >>= 1;
7686 *den >>= 1;
7687 }
7688 }
7689
7690 static void compute_m_n(unsigned int m, unsigned int n,
7691 uint32_t *ret_m, uint32_t *ret_n)
7692 {
7693 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7694 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7695 intel_reduce_m_n_ratio(ret_m, ret_n);
7696 }
7697
7698 void
7699 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7700 int pixel_clock, int link_clock,
7701 struct intel_link_m_n *m_n)
7702 {
7703 m_n->tu = 64;
7704
7705 compute_m_n(bits_per_pixel * pixel_clock,
7706 link_clock * nlanes * 8,
7707 &m_n->gmch_m, &m_n->gmch_n);
7708
7709 compute_m_n(pixel_clock, link_clock,
7710 &m_n->link_m, &m_n->link_n);
7711 }
7712
7713 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7714 {
7715 if (i915.panel_use_ssc >= 0)
7716 return i915.panel_use_ssc != 0;
7717 return dev_priv->vbt.lvds_use_ssc
7718 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7719 }
7720
7721 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7722 {
7723 return (1 << dpll->n) << 16 | dpll->m2;
7724 }
7725
7726 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7727 {
7728 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7729 }
7730
7731 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7732 struct intel_crtc_state *crtc_state,
7733 struct dpll *reduced_clock)
7734 {
7735 struct drm_device *dev = crtc->base.dev;
7736 u32 fp, fp2 = 0;
7737
7738 if (IS_PINEVIEW(dev)) {
7739 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7740 if (reduced_clock)
7741 fp2 = pnv_dpll_compute_fp(reduced_clock);
7742 } else {
7743 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7744 if (reduced_clock)
7745 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7746 }
7747
7748 crtc_state->dpll_hw_state.fp0 = fp;
7749
7750 crtc->lowfreq_avail = false;
7751 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7752 reduced_clock) {
7753 crtc_state->dpll_hw_state.fp1 = fp2;
7754 crtc->lowfreq_avail = true;
7755 } else {
7756 crtc_state->dpll_hw_state.fp1 = fp;
7757 }
7758 }
7759
7760 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7761 pipe)
7762 {
7763 u32 reg_val;
7764
7765 /*
7766 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7767 * and set it to a reasonable value instead.
7768 */
7769 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7770 reg_val &= 0xffffff00;
7771 reg_val |= 0x00000030;
7772 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7773
7774 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7775 reg_val &= 0x8cffffff;
7776 reg_val = 0x8c000000;
7777 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7778
7779 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7780 reg_val &= 0xffffff00;
7781 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7782
7783 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7784 reg_val &= 0x00ffffff;
7785 reg_val |= 0xb0000000;
7786 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7787 }
7788
7789 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7790 struct intel_link_m_n *m_n)
7791 {
7792 struct drm_device *dev = crtc->base.dev;
7793 struct drm_i915_private *dev_priv = to_i915(dev);
7794 int pipe = crtc->pipe;
7795
7796 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7797 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7798 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7799 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7800 }
7801
7802 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7803 struct intel_link_m_n *m_n,
7804 struct intel_link_m_n *m2_n2)
7805 {
7806 struct drm_device *dev = crtc->base.dev;
7807 struct drm_i915_private *dev_priv = to_i915(dev);
7808 int pipe = crtc->pipe;
7809 enum transcoder transcoder = crtc->config->cpu_transcoder;
7810
7811 if (INTEL_INFO(dev)->gen >= 5) {
7812 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7813 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7814 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7815 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7816 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7817 * for gen < 8) and if DRRS is supported (to make sure the
7818 * registers are not unnecessarily accessed).
7819 */
7820 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7821 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7822 I915_WRITE(PIPE_DATA_M2(transcoder),
7823 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7824 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7825 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7826 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7827 }
7828 } else {
7829 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7830 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7831 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7832 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7833 }
7834 }
7835
7836 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7837 {
7838 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7839
7840 if (m_n == M1_N1) {
7841 dp_m_n = &crtc->config->dp_m_n;
7842 dp_m2_n2 = &crtc->config->dp_m2_n2;
7843 } else if (m_n == M2_N2) {
7844
7845 /*
7846 * M2_N2 registers are not supported. Hence m2_n2 divider value
7847 * needs to be programmed into M1_N1.
7848 */
7849 dp_m_n = &crtc->config->dp_m2_n2;
7850 } else {
7851 DRM_ERROR("Unsupported divider value\n");
7852 return;
7853 }
7854
7855 if (crtc->config->has_pch_encoder)
7856 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7857 else
7858 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7859 }
7860
7861 static void vlv_compute_dpll(struct intel_crtc *crtc,
7862 struct intel_crtc_state *pipe_config)
7863 {
7864 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7865 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7866 if (crtc->pipe != PIPE_A)
7867 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7868
7869 /* DPLL not used with DSI, but still need the rest set up */
7870 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7871 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7872 DPLL_EXT_BUFFER_ENABLE_VLV;
7873
7874 pipe_config->dpll_hw_state.dpll_md =
7875 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7876 }
7877
7878 static void chv_compute_dpll(struct intel_crtc *crtc,
7879 struct intel_crtc_state *pipe_config)
7880 {
7881 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7882 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7883 if (crtc->pipe != PIPE_A)
7884 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7885
7886 /* DPLL not used with DSI, but still need the rest set up */
7887 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7888 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7889
7890 pipe_config->dpll_hw_state.dpll_md =
7891 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7892 }
7893
7894 static void vlv_prepare_pll(struct intel_crtc *crtc,
7895 const struct intel_crtc_state *pipe_config)
7896 {
7897 struct drm_device *dev = crtc->base.dev;
7898 struct drm_i915_private *dev_priv = to_i915(dev);
7899 enum pipe pipe = crtc->pipe;
7900 u32 mdiv;
7901 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7902 u32 coreclk, reg_val;
7903
7904 /* Enable Refclk */
7905 I915_WRITE(DPLL(pipe),
7906 pipe_config->dpll_hw_state.dpll &
7907 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7908
7909 /* No need to actually set up the DPLL with DSI */
7910 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7911 return;
7912
7913 mutex_lock(&dev_priv->sb_lock);
7914
7915 bestn = pipe_config->dpll.n;
7916 bestm1 = pipe_config->dpll.m1;
7917 bestm2 = pipe_config->dpll.m2;
7918 bestp1 = pipe_config->dpll.p1;
7919 bestp2 = pipe_config->dpll.p2;
7920
7921 /* See eDP HDMI DPIO driver vbios notes doc */
7922
7923 /* PLL B needs special handling */
7924 if (pipe == PIPE_B)
7925 vlv_pllb_recal_opamp(dev_priv, pipe);
7926
7927 /* Set up Tx target for periodic Rcomp update */
7928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7929
7930 /* Disable target IRef on PLL */
7931 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7932 reg_val &= 0x00ffffff;
7933 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7934
7935 /* Disable fast lock */
7936 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7937
7938 /* Set idtafcrecal before PLL is enabled */
7939 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7940 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7941 mdiv |= ((bestn << DPIO_N_SHIFT));
7942 mdiv |= (1 << DPIO_K_SHIFT);
7943
7944 /*
7945 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7946 * but we don't support that).
7947 * Note: don't use the DAC post divider as it seems unstable.
7948 */
7949 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7950 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7951
7952 mdiv |= DPIO_ENABLE_CALIBRATION;
7953 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7954
7955 /* Set HBR and RBR LPF coefficients */
7956 if (pipe_config->port_clock == 162000 ||
7957 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7958 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7959 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7960 0x009f0003);
7961 else
7962 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7963 0x00d0000f);
7964
7965 if (intel_crtc_has_dp_encoder(pipe_config)) {
7966 /* Use SSC source */
7967 if (pipe == PIPE_A)
7968 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7969 0x0df40000);
7970 else
7971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7972 0x0df70000);
7973 } else { /* HDMI or VGA */
7974 /* Use bend source */
7975 if (pipe == PIPE_A)
7976 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7977 0x0df70000);
7978 else
7979 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7980 0x0df40000);
7981 }
7982
7983 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7984 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7985 if (intel_crtc_has_dp_encoder(crtc->config))
7986 coreclk |= 0x01000000;
7987 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7988
7989 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7990 mutex_unlock(&dev_priv->sb_lock);
7991 }
7992
7993 static void chv_prepare_pll(struct intel_crtc *crtc,
7994 const struct intel_crtc_state *pipe_config)
7995 {
7996 struct drm_device *dev = crtc->base.dev;
7997 struct drm_i915_private *dev_priv = to_i915(dev);
7998 enum pipe pipe = crtc->pipe;
7999 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8000 u32 loopfilter, tribuf_calcntr;
8001 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8002 u32 dpio_val;
8003 int vco;
8004
8005 /* Enable Refclk and SSC */
8006 I915_WRITE(DPLL(pipe),
8007 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8008
8009 /* No need to actually set up the DPLL with DSI */
8010 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8011 return;
8012
8013 bestn = pipe_config->dpll.n;
8014 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8015 bestm1 = pipe_config->dpll.m1;
8016 bestm2 = pipe_config->dpll.m2 >> 22;
8017 bestp1 = pipe_config->dpll.p1;
8018 bestp2 = pipe_config->dpll.p2;
8019 vco = pipe_config->dpll.vco;
8020 dpio_val = 0;
8021 loopfilter = 0;
8022
8023 mutex_lock(&dev_priv->sb_lock);
8024
8025 /* p1 and p2 divider */
8026 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8027 5 << DPIO_CHV_S1_DIV_SHIFT |
8028 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8029 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8030 1 << DPIO_CHV_K_DIV_SHIFT);
8031
8032 /* Feedback post-divider - m2 */
8033 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8034
8035 /* Feedback refclk divider - n and m1 */
8036 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8037 DPIO_CHV_M1_DIV_BY_2 |
8038 1 << DPIO_CHV_N_DIV_SHIFT);
8039
8040 /* M2 fraction division */
8041 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8042
8043 /* M2 fraction division enable */
8044 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8045 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8046 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8047 if (bestm2_frac)
8048 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8049 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8050
8051 /* Program digital lock detect threshold */
8052 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8053 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8054 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8055 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8056 if (!bestm2_frac)
8057 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8058 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8059
8060 /* Loop filter */
8061 if (vco == 5400000) {
8062 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8063 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8064 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8065 tribuf_calcntr = 0x9;
8066 } else if (vco <= 6200000) {
8067 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8068 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8069 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8070 tribuf_calcntr = 0x9;
8071 } else if (vco <= 6480000) {
8072 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8073 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8074 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8075 tribuf_calcntr = 0x8;
8076 } else {
8077 /* Not supported. Apply the same limits as in the max case */
8078 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8079 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8080 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8081 tribuf_calcntr = 0;
8082 }
8083 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8084
8085 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8086 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8087 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8088 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8089
8090 /* AFC Recal */
8091 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8092 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8093 DPIO_AFC_RECAL);
8094
8095 mutex_unlock(&dev_priv->sb_lock);
8096 }
8097
8098 /**
8099 * vlv_force_pll_on - forcibly enable just the PLL
8100 * @dev_priv: i915 private structure
8101 * @pipe: pipe PLL to enable
8102 * @dpll: PLL configuration
8103 *
8104 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8105 * in cases where we need the PLL enabled even when @pipe is not going to
8106 * be enabled.
8107 */
8108 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8109 const struct dpll *dpll)
8110 {
8111 struct intel_crtc *crtc =
8112 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8113 struct intel_crtc_state *pipe_config;
8114
8115 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8116 if (!pipe_config)
8117 return -ENOMEM;
8118
8119 pipe_config->base.crtc = &crtc->base;
8120 pipe_config->pixel_multiplier = 1;
8121 pipe_config->dpll = *dpll;
8122
8123 if (IS_CHERRYVIEW(to_i915(dev))) {
8124 chv_compute_dpll(crtc, pipe_config);
8125 chv_prepare_pll(crtc, pipe_config);
8126 chv_enable_pll(crtc, pipe_config);
8127 } else {
8128 vlv_compute_dpll(crtc, pipe_config);
8129 vlv_prepare_pll(crtc, pipe_config);
8130 vlv_enable_pll(crtc, pipe_config);
8131 }
8132
8133 kfree(pipe_config);
8134
8135 return 0;
8136 }
8137
8138 /**
8139 * vlv_force_pll_off - forcibly disable just the PLL
8140 * @dev_priv: i915 private structure
8141 * @pipe: pipe PLL to disable
8142 *
8143 * Disable the PLL for @pipe. To be used in cases where we need
8144 * the PLL enabled even when @pipe is not going to be enabled.
8145 */
8146 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8147 {
8148 if (IS_CHERRYVIEW(to_i915(dev)))
8149 chv_disable_pll(to_i915(dev), pipe);
8150 else
8151 vlv_disable_pll(to_i915(dev), pipe);
8152 }
8153
8154 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8155 struct intel_crtc_state *crtc_state,
8156 struct dpll *reduced_clock)
8157 {
8158 struct drm_device *dev = crtc->base.dev;
8159 struct drm_i915_private *dev_priv = to_i915(dev);
8160 u32 dpll;
8161 struct dpll *clock = &crtc_state->dpll;
8162
8163 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8164
8165 dpll = DPLL_VGA_MODE_DIS;
8166
8167 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8168 dpll |= DPLLB_MODE_LVDS;
8169 else
8170 dpll |= DPLLB_MODE_DAC_SERIAL;
8171
8172 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8173 dpll |= (crtc_state->pixel_multiplier - 1)
8174 << SDVO_MULTIPLIER_SHIFT_HIRES;
8175 }
8176
8177 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8178 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8179 dpll |= DPLL_SDVO_HIGH_SPEED;
8180
8181 if (intel_crtc_has_dp_encoder(crtc_state))
8182 dpll |= DPLL_SDVO_HIGH_SPEED;
8183
8184 /* compute bitmask from p1 value */
8185 if (IS_PINEVIEW(dev))
8186 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8187 else {
8188 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8189 if (IS_G4X(dev_priv) && reduced_clock)
8190 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8191 }
8192 switch (clock->p2) {
8193 case 5:
8194 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8195 break;
8196 case 7:
8197 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8198 break;
8199 case 10:
8200 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8201 break;
8202 case 14:
8203 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8204 break;
8205 }
8206 if (INTEL_INFO(dev)->gen >= 4)
8207 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8208
8209 if (crtc_state->sdvo_tv_clock)
8210 dpll |= PLL_REF_INPUT_TVCLKINBC;
8211 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8212 intel_panel_use_ssc(dev_priv))
8213 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8214 else
8215 dpll |= PLL_REF_INPUT_DREFCLK;
8216
8217 dpll |= DPLL_VCO_ENABLE;
8218 crtc_state->dpll_hw_state.dpll = dpll;
8219
8220 if (INTEL_INFO(dev)->gen >= 4) {
8221 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8222 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8223 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8224 }
8225 }
8226
8227 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8228 struct intel_crtc_state *crtc_state,
8229 struct dpll *reduced_clock)
8230 {
8231 struct drm_device *dev = crtc->base.dev;
8232 struct drm_i915_private *dev_priv = to_i915(dev);
8233 u32 dpll;
8234 struct dpll *clock = &crtc_state->dpll;
8235
8236 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8237
8238 dpll = DPLL_VGA_MODE_DIS;
8239
8240 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8241 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8242 } else {
8243 if (clock->p1 == 2)
8244 dpll |= PLL_P1_DIVIDE_BY_TWO;
8245 else
8246 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8247 if (clock->p2 == 4)
8248 dpll |= PLL_P2_DIVIDE_BY_4;
8249 }
8250
8251 if (!IS_I830(dev_priv) &&
8252 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8253 dpll |= DPLL_DVO_2X_MODE;
8254
8255 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8256 intel_panel_use_ssc(dev_priv))
8257 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8258 else
8259 dpll |= PLL_REF_INPUT_DREFCLK;
8260
8261 dpll |= DPLL_VCO_ENABLE;
8262 crtc_state->dpll_hw_state.dpll = dpll;
8263 }
8264
8265 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8266 {
8267 struct drm_device *dev = intel_crtc->base.dev;
8268 struct drm_i915_private *dev_priv = to_i915(dev);
8269 enum pipe pipe = intel_crtc->pipe;
8270 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8271 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8272 uint32_t crtc_vtotal, crtc_vblank_end;
8273 int vsyncshift = 0;
8274
8275 /* We need to be careful not to changed the adjusted mode, for otherwise
8276 * the hw state checker will get angry at the mismatch. */
8277 crtc_vtotal = adjusted_mode->crtc_vtotal;
8278 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8279
8280 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8281 /* the chip adds 2 halflines automatically */
8282 crtc_vtotal -= 1;
8283 crtc_vblank_end -= 1;
8284
8285 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8286 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8287 else
8288 vsyncshift = adjusted_mode->crtc_hsync_start -
8289 adjusted_mode->crtc_htotal / 2;
8290 if (vsyncshift < 0)
8291 vsyncshift += adjusted_mode->crtc_htotal;
8292 }
8293
8294 if (INTEL_INFO(dev)->gen > 3)
8295 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8296
8297 I915_WRITE(HTOTAL(cpu_transcoder),
8298 (adjusted_mode->crtc_hdisplay - 1) |
8299 ((adjusted_mode->crtc_htotal - 1) << 16));
8300 I915_WRITE(HBLANK(cpu_transcoder),
8301 (adjusted_mode->crtc_hblank_start - 1) |
8302 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8303 I915_WRITE(HSYNC(cpu_transcoder),
8304 (adjusted_mode->crtc_hsync_start - 1) |
8305 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8306
8307 I915_WRITE(VTOTAL(cpu_transcoder),
8308 (adjusted_mode->crtc_vdisplay - 1) |
8309 ((crtc_vtotal - 1) << 16));
8310 I915_WRITE(VBLANK(cpu_transcoder),
8311 (adjusted_mode->crtc_vblank_start - 1) |
8312 ((crtc_vblank_end - 1) << 16));
8313 I915_WRITE(VSYNC(cpu_transcoder),
8314 (adjusted_mode->crtc_vsync_start - 1) |
8315 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8316
8317 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8318 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8319 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8320 * bits. */
8321 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8322 (pipe == PIPE_B || pipe == PIPE_C))
8323 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8324
8325 }
8326
8327 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8328 {
8329 struct drm_device *dev = intel_crtc->base.dev;
8330 struct drm_i915_private *dev_priv = to_i915(dev);
8331 enum pipe pipe = intel_crtc->pipe;
8332
8333 /* pipesrc controls the size that is scaled from, which should
8334 * always be the user's requested size.
8335 */
8336 I915_WRITE(PIPESRC(pipe),
8337 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8338 (intel_crtc->config->pipe_src_h - 1));
8339 }
8340
8341 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8342 struct intel_crtc_state *pipe_config)
8343 {
8344 struct drm_device *dev = crtc->base.dev;
8345 struct drm_i915_private *dev_priv = to_i915(dev);
8346 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8347 uint32_t tmp;
8348
8349 tmp = I915_READ(HTOTAL(cpu_transcoder));
8350 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8351 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8352 tmp = I915_READ(HBLANK(cpu_transcoder));
8353 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8354 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8355 tmp = I915_READ(HSYNC(cpu_transcoder));
8356 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8357 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8358
8359 tmp = I915_READ(VTOTAL(cpu_transcoder));
8360 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8361 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8362 tmp = I915_READ(VBLANK(cpu_transcoder));
8363 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8364 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8365 tmp = I915_READ(VSYNC(cpu_transcoder));
8366 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8367 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8368
8369 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8370 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8371 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8372 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8373 }
8374 }
8375
8376 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8377 struct intel_crtc_state *pipe_config)
8378 {
8379 struct drm_device *dev = crtc->base.dev;
8380 struct drm_i915_private *dev_priv = to_i915(dev);
8381 u32 tmp;
8382
8383 tmp = I915_READ(PIPESRC(crtc->pipe));
8384 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8385 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8386
8387 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8388 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8389 }
8390
8391 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8392 struct intel_crtc_state *pipe_config)
8393 {
8394 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8395 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8396 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8397 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8398
8399 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8400 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8401 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8402 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8403
8404 mode->flags = pipe_config->base.adjusted_mode.flags;
8405 mode->type = DRM_MODE_TYPE_DRIVER;
8406
8407 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8408 mode->flags |= pipe_config->base.adjusted_mode.flags;
8409
8410 mode->hsync = drm_mode_hsync(mode);
8411 mode->vrefresh = drm_mode_vrefresh(mode);
8412 drm_mode_set_name(mode);
8413 }
8414
8415 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8416 {
8417 struct drm_device *dev = intel_crtc->base.dev;
8418 struct drm_i915_private *dev_priv = to_i915(dev);
8419 uint32_t pipeconf;
8420
8421 pipeconf = 0;
8422
8423 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8424 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8425 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8426
8427 if (intel_crtc->config->double_wide)
8428 pipeconf |= PIPECONF_DOUBLE_WIDE;
8429
8430 /* only g4x and later have fancy bpc/dither controls */
8431 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8432 IS_CHERRYVIEW(dev_priv)) {
8433 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8434 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8435 pipeconf |= PIPECONF_DITHER_EN |
8436 PIPECONF_DITHER_TYPE_SP;
8437
8438 switch (intel_crtc->config->pipe_bpp) {
8439 case 18:
8440 pipeconf |= PIPECONF_6BPC;
8441 break;
8442 case 24:
8443 pipeconf |= PIPECONF_8BPC;
8444 break;
8445 case 30:
8446 pipeconf |= PIPECONF_10BPC;
8447 break;
8448 default:
8449 /* Case prevented by intel_choose_pipe_bpp_dither. */
8450 BUG();
8451 }
8452 }
8453
8454 if (HAS_PIPE_CXSR(dev)) {
8455 if (intel_crtc->lowfreq_avail) {
8456 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8457 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8458 } else {
8459 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8460 }
8461 }
8462
8463 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8464 if (INTEL_INFO(dev)->gen < 4 ||
8465 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8466 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8467 else
8468 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8469 } else
8470 pipeconf |= PIPECONF_PROGRESSIVE;
8471
8472 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8473 intel_crtc->config->limited_color_range)
8474 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8475
8476 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8477 POSTING_READ(PIPECONF(intel_crtc->pipe));
8478 }
8479
8480 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8481 struct intel_crtc_state *crtc_state)
8482 {
8483 struct drm_device *dev = crtc->base.dev;
8484 struct drm_i915_private *dev_priv = to_i915(dev);
8485 const struct intel_limit *limit;
8486 int refclk = 48000;
8487
8488 memset(&crtc_state->dpll_hw_state, 0,
8489 sizeof(crtc_state->dpll_hw_state));
8490
8491 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8492 if (intel_panel_use_ssc(dev_priv)) {
8493 refclk = dev_priv->vbt.lvds_ssc_freq;
8494 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8495 }
8496
8497 limit = &intel_limits_i8xx_lvds;
8498 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8499 limit = &intel_limits_i8xx_dvo;
8500 } else {
8501 limit = &intel_limits_i8xx_dac;
8502 }
8503
8504 if (!crtc_state->clock_set &&
8505 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8506 refclk, NULL, &crtc_state->dpll)) {
8507 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8508 return -EINVAL;
8509 }
8510
8511 i8xx_compute_dpll(crtc, crtc_state, NULL);
8512
8513 return 0;
8514 }
8515
8516 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8517 struct intel_crtc_state *crtc_state)
8518 {
8519 struct drm_device *dev = crtc->base.dev;
8520 struct drm_i915_private *dev_priv = to_i915(dev);
8521 const struct intel_limit *limit;
8522 int refclk = 96000;
8523
8524 memset(&crtc_state->dpll_hw_state, 0,
8525 sizeof(crtc_state->dpll_hw_state));
8526
8527 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8528 if (intel_panel_use_ssc(dev_priv)) {
8529 refclk = dev_priv->vbt.lvds_ssc_freq;
8530 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8531 }
8532
8533 if (intel_is_dual_link_lvds(dev))
8534 limit = &intel_limits_g4x_dual_channel_lvds;
8535 else
8536 limit = &intel_limits_g4x_single_channel_lvds;
8537 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8538 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8539 limit = &intel_limits_g4x_hdmi;
8540 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8541 limit = &intel_limits_g4x_sdvo;
8542 } else {
8543 /* The option is for other outputs */
8544 limit = &intel_limits_i9xx_sdvo;
8545 }
8546
8547 if (!crtc_state->clock_set &&
8548 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8549 refclk, NULL, &crtc_state->dpll)) {
8550 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8551 return -EINVAL;
8552 }
8553
8554 i9xx_compute_dpll(crtc, crtc_state, NULL);
8555
8556 return 0;
8557 }
8558
8559 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8560 struct intel_crtc_state *crtc_state)
8561 {
8562 struct drm_device *dev = crtc->base.dev;
8563 struct drm_i915_private *dev_priv = to_i915(dev);
8564 const struct intel_limit *limit;
8565 int refclk = 96000;
8566
8567 memset(&crtc_state->dpll_hw_state, 0,
8568 sizeof(crtc_state->dpll_hw_state));
8569
8570 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8571 if (intel_panel_use_ssc(dev_priv)) {
8572 refclk = dev_priv->vbt.lvds_ssc_freq;
8573 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8574 }
8575
8576 limit = &intel_limits_pineview_lvds;
8577 } else {
8578 limit = &intel_limits_pineview_sdvo;
8579 }
8580
8581 if (!crtc_state->clock_set &&
8582 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8583 refclk, NULL, &crtc_state->dpll)) {
8584 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8585 return -EINVAL;
8586 }
8587
8588 i9xx_compute_dpll(crtc, crtc_state, NULL);
8589
8590 return 0;
8591 }
8592
8593 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8594 struct intel_crtc_state *crtc_state)
8595 {
8596 struct drm_device *dev = crtc->base.dev;
8597 struct drm_i915_private *dev_priv = to_i915(dev);
8598 const struct intel_limit *limit;
8599 int refclk = 96000;
8600
8601 memset(&crtc_state->dpll_hw_state, 0,
8602 sizeof(crtc_state->dpll_hw_state));
8603
8604 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8605 if (intel_panel_use_ssc(dev_priv)) {
8606 refclk = dev_priv->vbt.lvds_ssc_freq;
8607 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8608 }
8609
8610 limit = &intel_limits_i9xx_lvds;
8611 } else {
8612 limit = &intel_limits_i9xx_sdvo;
8613 }
8614
8615 if (!crtc_state->clock_set &&
8616 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8617 refclk, NULL, &crtc_state->dpll)) {
8618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8619 return -EINVAL;
8620 }
8621
8622 i9xx_compute_dpll(crtc, crtc_state, NULL);
8623
8624 return 0;
8625 }
8626
8627 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8628 struct intel_crtc_state *crtc_state)
8629 {
8630 int refclk = 100000;
8631 const struct intel_limit *limit = &intel_limits_chv;
8632
8633 memset(&crtc_state->dpll_hw_state, 0,
8634 sizeof(crtc_state->dpll_hw_state));
8635
8636 if (!crtc_state->clock_set &&
8637 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8638 refclk, NULL, &crtc_state->dpll)) {
8639 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8640 return -EINVAL;
8641 }
8642
8643 chv_compute_dpll(crtc, crtc_state);
8644
8645 return 0;
8646 }
8647
8648 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8649 struct intel_crtc_state *crtc_state)
8650 {
8651 int refclk = 100000;
8652 const struct intel_limit *limit = &intel_limits_vlv;
8653
8654 memset(&crtc_state->dpll_hw_state, 0,
8655 sizeof(crtc_state->dpll_hw_state));
8656
8657 if (!crtc_state->clock_set &&
8658 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8659 refclk, NULL, &crtc_state->dpll)) {
8660 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8661 return -EINVAL;
8662 }
8663
8664 vlv_compute_dpll(crtc, crtc_state);
8665
8666 return 0;
8667 }
8668
8669 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8670 struct intel_crtc_state *pipe_config)
8671 {
8672 struct drm_device *dev = crtc->base.dev;
8673 struct drm_i915_private *dev_priv = to_i915(dev);
8674 uint32_t tmp;
8675
8676 if (INTEL_GEN(dev_priv) <= 3 &&
8677 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8678 return;
8679
8680 tmp = I915_READ(PFIT_CONTROL);
8681 if (!(tmp & PFIT_ENABLE))
8682 return;
8683
8684 /* Check whether the pfit is attached to our pipe. */
8685 if (INTEL_INFO(dev)->gen < 4) {
8686 if (crtc->pipe != PIPE_B)
8687 return;
8688 } else {
8689 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8690 return;
8691 }
8692
8693 pipe_config->gmch_pfit.control = tmp;
8694 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8695 }
8696
8697 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8698 struct intel_crtc_state *pipe_config)
8699 {
8700 struct drm_device *dev = crtc->base.dev;
8701 struct drm_i915_private *dev_priv = to_i915(dev);
8702 int pipe = pipe_config->cpu_transcoder;
8703 struct dpll clock;
8704 u32 mdiv;
8705 int refclk = 100000;
8706
8707 /* In case of DSI, DPLL will not be used */
8708 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8709 return;
8710
8711 mutex_lock(&dev_priv->sb_lock);
8712 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8713 mutex_unlock(&dev_priv->sb_lock);
8714
8715 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8716 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8717 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8718 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8719 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8720
8721 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8722 }
8723
8724 static void
8725 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8726 struct intel_initial_plane_config *plane_config)
8727 {
8728 struct drm_device *dev = crtc->base.dev;
8729 struct drm_i915_private *dev_priv = to_i915(dev);
8730 u32 val, base, offset;
8731 int pipe = crtc->pipe, plane = crtc->plane;
8732 int fourcc, pixel_format;
8733 unsigned int aligned_height;
8734 struct drm_framebuffer *fb;
8735 struct intel_framebuffer *intel_fb;
8736
8737 val = I915_READ(DSPCNTR(plane));
8738 if (!(val & DISPLAY_PLANE_ENABLE))
8739 return;
8740
8741 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8742 if (!intel_fb) {
8743 DRM_DEBUG_KMS("failed to alloc fb\n");
8744 return;
8745 }
8746
8747 fb = &intel_fb->base;
8748
8749 if (INTEL_INFO(dev)->gen >= 4) {
8750 if (val & DISPPLANE_TILED) {
8751 plane_config->tiling = I915_TILING_X;
8752 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8753 }
8754 }
8755
8756 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8757 fourcc = i9xx_format_to_fourcc(pixel_format);
8758 fb->pixel_format = fourcc;
8759 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8760
8761 if (INTEL_INFO(dev)->gen >= 4) {
8762 if (plane_config->tiling)
8763 offset = I915_READ(DSPTILEOFF(plane));
8764 else
8765 offset = I915_READ(DSPLINOFF(plane));
8766 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8767 } else {
8768 base = I915_READ(DSPADDR(plane));
8769 }
8770 plane_config->base = base;
8771
8772 val = I915_READ(PIPESRC(pipe));
8773 fb->width = ((val >> 16) & 0xfff) + 1;
8774 fb->height = ((val >> 0) & 0xfff) + 1;
8775
8776 val = I915_READ(DSPSTRIDE(pipe));
8777 fb->pitches[0] = val & 0xffffffc0;
8778
8779 aligned_height = intel_fb_align_height(dev, fb->height,
8780 fb->pixel_format,
8781 fb->modifier[0]);
8782
8783 plane_config->size = fb->pitches[0] * aligned_height;
8784
8785 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8786 pipe_name(pipe), plane, fb->width, fb->height,
8787 fb->bits_per_pixel, base, fb->pitches[0],
8788 plane_config->size);
8789
8790 plane_config->fb = intel_fb;
8791 }
8792
8793 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8794 struct intel_crtc_state *pipe_config)
8795 {
8796 struct drm_device *dev = crtc->base.dev;
8797 struct drm_i915_private *dev_priv = to_i915(dev);
8798 int pipe = pipe_config->cpu_transcoder;
8799 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8800 struct dpll clock;
8801 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8802 int refclk = 100000;
8803
8804 /* In case of DSI, DPLL will not be used */
8805 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8806 return;
8807
8808 mutex_lock(&dev_priv->sb_lock);
8809 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8810 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8811 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8812 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8813 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8814 mutex_unlock(&dev_priv->sb_lock);
8815
8816 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8817 clock.m2 = (pll_dw0 & 0xff) << 22;
8818 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8819 clock.m2 |= pll_dw2 & 0x3fffff;
8820 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8821 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8822 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8823
8824 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8825 }
8826
8827 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8828 struct intel_crtc_state *pipe_config)
8829 {
8830 struct drm_device *dev = crtc->base.dev;
8831 struct drm_i915_private *dev_priv = to_i915(dev);
8832 enum intel_display_power_domain power_domain;
8833 uint32_t tmp;
8834 bool ret;
8835
8836 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8837 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8838 return false;
8839
8840 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8841 pipe_config->shared_dpll = NULL;
8842
8843 ret = false;
8844
8845 tmp = I915_READ(PIPECONF(crtc->pipe));
8846 if (!(tmp & PIPECONF_ENABLE))
8847 goto out;
8848
8849 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8850 IS_CHERRYVIEW(dev_priv)) {
8851 switch (tmp & PIPECONF_BPC_MASK) {
8852 case PIPECONF_6BPC:
8853 pipe_config->pipe_bpp = 18;
8854 break;
8855 case PIPECONF_8BPC:
8856 pipe_config->pipe_bpp = 24;
8857 break;
8858 case PIPECONF_10BPC:
8859 pipe_config->pipe_bpp = 30;
8860 break;
8861 default:
8862 break;
8863 }
8864 }
8865
8866 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8867 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8868 pipe_config->limited_color_range = true;
8869
8870 if (INTEL_INFO(dev)->gen < 4)
8871 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8872
8873 intel_get_pipe_timings(crtc, pipe_config);
8874 intel_get_pipe_src_size(crtc, pipe_config);
8875
8876 i9xx_get_pfit_config(crtc, pipe_config);
8877
8878 if (INTEL_INFO(dev)->gen >= 4) {
8879 /* No way to read it out on pipes B and C */
8880 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8881 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8882 else
8883 tmp = I915_READ(DPLL_MD(crtc->pipe));
8884 pipe_config->pixel_multiplier =
8885 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8886 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8887 pipe_config->dpll_hw_state.dpll_md = tmp;
8888 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8889 IS_G33(dev_priv)) {
8890 tmp = I915_READ(DPLL(crtc->pipe));
8891 pipe_config->pixel_multiplier =
8892 ((tmp & SDVO_MULTIPLIER_MASK)
8893 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8894 } else {
8895 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8896 * port and will be fixed up in the encoder->get_config
8897 * function. */
8898 pipe_config->pixel_multiplier = 1;
8899 }
8900 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8901 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8902 /*
8903 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8904 * on 830. Filter it out here so that we don't
8905 * report errors due to that.
8906 */
8907 if (IS_I830(dev_priv))
8908 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8909
8910 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8911 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8912 } else {
8913 /* Mask out read-only status bits. */
8914 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8915 DPLL_PORTC_READY_MASK |
8916 DPLL_PORTB_READY_MASK);
8917 }
8918
8919 if (IS_CHERRYVIEW(dev_priv))
8920 chv_crtc_clock_get(crtc, pipe_config);
8921 else if (IS_VALLEYVIEW(dev_priv))
8922 vlv_crtc_clock_get(crtc, pipe_config);
8923 else
8924 i9xx_crtc_clock_get(crtc, pipe_config);
8925
8926 /*
8927 * Normally the dotclock is filled in by the encoder .get_config()
8928 * but in case the pipe is enabled w/o any ports we need a sane
8929 * default.
8930 */
8931 pipe_config->base.adjusted_mode.crtc_clock =
8932 pipe_config->port_clock / pipe_config->pixel_multiplier;
8933
8934 ret = true;
8935
8936 out:
8937 intel_display_power_put(dev_priv, power_domain);
8938
8939 return ret;
8940 }
8941
8942 static void ironlake_init_pch_refclk(struct drm_device *dev)
8943 {
8944 struct drm_i915_private *dev_priv = to_i915(dev);
8945 struct intel_encoder *encoder;
8946 int i;
8947 u32 val, final;
8948 bool has_lvds = false;
8949 bool has_cpu_edp = false;
8950 bool has_panel = false;
8951 bool has_ck505 = false;
8952 bool can_ssc = false;
8953 bool using_ssc_source = false;
8954
8955 /* We need to take the global config into account */
8956 for_each_intel_encoder(dev, encoder) {
8957 switch (encoder->type) {
8958 case INTEL_OUTPUT_LVDS:
8959 has_panel = true;
8960 has_lvds = true;
8961 break;
8962 case INTEL_OUTPUT_EDP:
8963 has_panel = true;
8964 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8965 has_cpu_edp = true;
8966 break;
8967 default:
8968 break;
8969 }
8970 }
8971
8972 if (HAS_PCH_IBX(dev_priv)) {
8973 has_ck505 = dev_priv->vbt.display_clock_mode;
8974 can_ssc = has_ck505;
8975 } else {
8976 has_ck505 = false;
8977 can_ssc = true;
8978 }
8979
8980 /* Check if any DPLLs are using the SSC source */
8981 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8982 u32 temp = I915_READ(PCH_DPLL(i));
8983
8984 if (!(temp & DPLL_VCO_ENABLE))
8985 continue;
8986
8987 if ((temp & PLL_REF_INPUT_MASK) ==
8988 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8989 using_ssc_source = true;
8990 break;
8991 }
8992 }
8993
8994 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8995 has_panel, has_lvds, has_ck505, using_ssc_source);
8996
8997 /* Ironlake: try to setup display ref clock before DPLL
8998 * enabling. This is only under driver's control after
8999 * PCH B stepping, previous chipset stepping should be
9000 * ignoring this setting.
9001 */
9002 val = I915_READ(PCH_DREF_CONTROL);
9003
9004 /* As we must carefully and slowly disable/enable each source in turn,
9005 * compute the final state we want first and check if we need to
9006 * make any changes at all.
9007 */
9008 final = val;
9009 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9010 if (has_ck505)
9011 final |= DREF_NONSPREAD_CK505_ENABLE;
9012 else
9013 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9014
9015 final &= ~DREF_SSC_SOURCE_MASK;
9016 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9017 final &= ~DREF_SSC1_ENABLE;
9018
9019 if (has_panel) {
9020 final |= DREF_SSC_SOURCE_ENABLE;
9021
9022 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9023 final |= DREF_SSC1_ENABLE;
9024
9025 if (has_cpu_edp) {
9026 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9027 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9028 else
9029 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9030 } else
9031 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9032 } else if (using_ssc_source) {
9033 final |= DREF_SSC_SOURCE_ENABLE;
9034 final |= DREF_SSC1_ENABLE;
9035 }
9036
9037 if (final == val)
9038 return;
9039
9040 /* Always enable nonspread source */
9041 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9042
9043 if (has_ck505)
9044 val |= DREF_NONSPREAD_CK505_ENABLE;
9045 else
9046 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9047
9048 if (has_panel) {
9049 val &= ~DREF_SSC_SOURCE_MASK;
9050 val |= DREF_SSC_SOURCE_ENABLE;
9051
9052 /* SSC must be turned on before enabling the CPU output */
9053 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9054 DRM_DEBUG_KMS("Using SSC on panel\n");
9055 val |= DREF_SSC1_ENABLE;
9056 } else
9057 val &= ~DREF_SSC1_ENABLE;
9058
9059 /* Get SSC going before enabling the outputs */
9060 I915_WRITE(PCH_DREF_CONTROL, val);
9061 POSTING_READ(PCH_DREF_CONTROL);
9062 udelay(200);
9063
9064 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9065
9066 /* Enable CPU source on CPU attached eDP */
9067 if (has_cpu_edp) {
9068 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9069 DRM_DEBUG_KMS("Using SSC on eDP\n");
9070 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9071 } else
9072 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9073 } else
9074 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9075
9076 I915_WRITE(PCH_DREF_CONTROL, val);
9077 POSTING_READ(PCH_DREF_CONTROL);
9078 udelay(200);
9079 } else {
9080 DRM_DEBUG_KMS("Disabling CPU source output\n");
9081
9082 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9083
9084 /* Turn off CPU output */
9085 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9086
9087 I915_WRITE(PCH_DREF_CONTROL, val);
9088 POSTING_READ(PCH_DREF_CONTROL);
9089 udelay(200);
9090
9091 if (!using_ssc_source) {
9092 DRM_DEBUG_KMS("Disabling SSC source\n");
9093
9094 /* Turn off the SSC source */
9095 val &= ~DREF_SSC_SOURCE_MASK;
9096 val |= DREF_SSC_SOURCE_DISABLE;
9097
9098 /* Turn off SSC1 */
9099 val &= ~DREF_SSC1_ENABLE;
9100
9101 I915_WRITE(PCH_DREF_CONTROL, val);
9102 POSTING_READ(PCH_DREF_CONTROL);
9103 udelay(200);
9104 }
9105 }
9106
9107 BUG_ON(val != final);
9108 }
9109
9110 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9111 {
9112 uint32_t tmp;
9113
9114 tmp = I915_READ(SOUTH_CHICKEN2);
9115 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9116 I915_WRITE(SOUTH_CHICKEN2, tmp);
9117
9118 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9119 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9120 DRM_ERROR("FDI mPHY reset assert timeout\n");
9121
9122 tmp = I915_READ(SOUTH_CHICKEN2);
9123 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9124 I915_WRITE(SOUTH_CHICKEN2, tmp);
9125
9126 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9127 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9128 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9129 }
9130
9131 /* WaMPhyProgramming:hsw */
9132 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9133 {
9134 uint32_t tmp;
9135
9136 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9137 tmp &= ~(0xFF << 24);
9138 tmp |= (0x12 << 24);
9139 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9140
9141 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9142 tmp |= (1 << 11);
9143 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9144
9145 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9146 tmp |= (1 << 11);
9147 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9148
9149 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9150 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9151 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9152
9153 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9154 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9155 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9156
9157 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9158 tmp &= ~(7 << 13);
9159 tmp |= (5 << 13);
9160 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9161
9162 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9163 tmp &= ~(7 << 13);
9164 tmp |= (5 << 13);
9165 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9166
9167 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9168 tmp &= ~0xFF;
9169 tmp |= 0x1C;
9170 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9171
9172 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9173 tmp &= ~0xFF;
9174 tmp |= 0x1C;
9175 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9176
9177 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9178 tmp &= ~(0xFF << 16);
9179 tmp |= (0x1C << 16);
9180 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9181
9182 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9183 tmp &= ~(0xFF << 16);
9184 tmp |= (0x1C << 16);
9185 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9186
9187 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9188 tmp |= (1 << 27);
9189 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9190
9191 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9192 tmp |= (1 << 27);
9193 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9194
9195 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9196 tmp &= ~(0xF << 28);
9197 tmp |= (4 << 28);
9198 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9199
9200 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9201 tmp &= ~(0xF << 28);
9202 tmp |= (4 << 28);
9203 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9204 }
9205
9206 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9207 * Programming" based on the parameters passed:
9208 * - Sequence to enable CLKOUT_DP
9209 * - Sequence to enable CLKOUT_DP without spread
9210 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9211 */
9212 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9213 bool with_fdi)
9214 {
9215 struct drm_i915_private *dev_priv = to_i915(dev);
9216 uint32_t reg, tmp;
9217
9218 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9219 with_spread = true;
9220 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9221 with_fdi, "LP PCH doesn't have FDI\n"))
9222 with_fdi = false;
9223
9224 mutex_lock(&dev_priv->sb_lock);
9225
9226 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9227 tmp &= ~SBI_SSCCTL_DISABLE;
9228 tmp |= SBI_SSCCTL_PATHALT;
9229 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9230
9231 udelay(24);
9232
9233 if (with_spread) {
9234 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9235 tmp &= ~SBI_SSCCTL_PATHALT;
9236 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9237
9238 if (with_fdi) {
9239 lpt_reset_fdi_mphy(dev_priv);
9240 lpt_program_fdi_mphy(dev_priv);
9241 }
9242 }
9243
9244 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9245 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9246 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9247 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9248
9249 mutex_unlock(&dev_priv->sb_lock);
9250 }
9251
9252 /* Sequence to disable CLKOUT_DP */
9253 static void lpt_disable_clkout_dp(struct drm_device *dev)
9254 {
9255 struct drm_i915_private *dev_priv = to_i915(dev);
9256 uint32_t reg, tmp;
9257
9258 mutex_lock(&dev_priv->sb_lock);
9259
9260 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9261 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9262 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9263 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9264
9265 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9266 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9267 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9268 tmp |= SBI_SSCCTL_PATHALT;
9269 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9270 udelay(32);
9271 }
9272 tmp |= SBI_SSCCTL_DISABLE;
9273 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9274 }
9275
9276 mutex_unlock(&dev_priv->sb_lock);
9277 }
9278
9279 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9280
9281 static const uint16_t sscdivintphase[] = {
9282 [BEND_IDX( 50)] = 0x3B23,
9283 [BEND_IDX( 45)] = 0x3B23,
9284 [BEND_IDX( 40)] = 0x3C23,
9285 [BEND_IDX( 35)] = 0x3C23,
9286 [BEND_IDX( 30)] = 0x3D23,
9287 [BEND_IDX( 25)] = 0x3D23,
9288 [BEND_IDX( 20)] = 0x3E23,
9289 [BEND_IDX( 15)] = 0x3E23,
9290 [BEND_IDX( 10)] = 0x3F23,
9291 [BEND_IDX( 5)] = 0x3F23,
9292 [BEND_IDX( 0)] = 0x0025,
9293 [BEND_IDX( -5)] = 0x0025,
9294 [BEND_IDX(-10)] = 0x0125,
9295 [BEND_IDX(-15)] = 0x0125,
9296 [BEND_IDX(-20)] = 0x0225,
9297 [BEND_IDX(-25)] = 0x0225,
9298 [BEND_IDX(-30)] = 0x0325,
9299 [BEND_IDX(-35)] = 0x0325,
9300 [BEND_IDX(-40)] = 0x0425,
9301 [BEND_IDX(-45)] = 0x0425,
9302 [BEND_IDX(-50)] = 0x0525,
9303 };
9304
9305 /*
9306 * Bend CLKOUT_DP
9307 * steps -50 to 50 inclusive, in steps of 5
9308 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9309 * change in clock period = -(steps / 10) * 5.787 ps
9310 */
9311 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9312 {
9313 uint32_t tmp;
9314 int idx = BEND_IDX(steps);
9315
9316 if (WARN_ON(steps % 5 != 0))
9317 return;
9318
9319 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9320 return;
9321
9322 mutex_lock(&dev_priv->sb_lock);
9323
9324 if (steps % 10 != 0)
9325 tmp = 0xAAAAAAAB;
9326 else
9327 tmp = 0x00000000;
9328 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9329
9330 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9331 tmp &= 0xffff0000;
9332 tmp |= sscdivintphase[idx];
9333 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9334
9335 mutex_unlock(&dev_priv->sb_lock);
9336 }
9337
9338 #undef BEND_IDX
9339
9340 static void lpt_init_pch_refclk(struct drm_device *dev)
9341 {
9342 struct intel_encoder *encoder;
9343 bool has_vga = false;
9344
9345 for_each_intel_encoder(dev, encoder) {
9346 switch (encoder->type) {
9347 case INTEL_OUTPUT_ANALOG:
9348 has_vga = true;
9349 break;
9350 default:
9351 break;
9352 }
9353 }
9354
9355 if (has_vga) {
9356 lpt_bend_clkout_dp(to_i915(dev), 0);
9357 lpt_enable_clkout_dp(dev, true, true);
9358 } else {
9359 lpt_disable_clkout_dp(dev);
9360 }
9361 }
9362
9363 /*
9364 * Initialize reference clocks when the driver loads
9365 */
9366 void intel_init_pch_refclk(struct drm_device *dev)
9367 {
9368 struct drm_i915_private *dev_priv = to_i915(dev);
9369
9370 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9371 ironlake_init_pch_refclk(dev);
9372 else if (HAS_PCH_LPT(dev_priv))
9373 lpt_init_pch_refclk(dev);
9374 }
9375
9376 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9377 {
9378 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9380 int pipe = intel_crtc->pipe;
9381 uint32_t val;
9382
9383 val = 0;
9384
9385 switch (intel_crtc->config->pipe_bpp) {
9386 case 18:
9387 val |= PIPECONF_6BPC;
9388 break;
9389 case 24:
9390 val |= PIPECONF_8BPC;
9391 break;
9392 case 30:
9393 val |= PIPECONF_10BPC;
9394 break;
9395 case 36:
9396 val |= PIPECONF_12BPC;
9397 break;
9398 default:
9399 /* Case prevented by intel_choose_pipe_bpp_dither. */
9400 BUG();
9401 }
9402
9403 if (intel_crtc->config->dither)
9404 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9405
9406 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9407 val |= PIPECONF_INTERLACED_ILK;
9408 else
9409 val |= PIPECONF_PROGRESSIVE;
9410
9411 if (intel_crtc->config->limited_color_range)
9412 val |= PIPECONF_COLOR_RANGE_SELECT;
9413
9414 I915_WRITE(PIPECONF(pipe), val);
9415 POSTING_READ(PIPECONF(pipe));
9416 }
9417
9418 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9419 {
9420 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9422 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9423 u32 val = 0;
9424
9425 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9426 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9427
9428 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9429 val |= PIPECONF_INTERLACED_ILK;
9430 else
9431 val |= PIPECONF_PROGRESSIVE;
9432
9433 I915_WRITE(PIPECONF(cpu_transcoder), val);
9434 POSTING_READ(PIPECONF(cpu_transcoder));
9435 }
9436
9437 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9438 {
9439 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9441
9442 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9443 u32 val = 0;
9444
9445 switch (intel_crtc->config->pipe_bpp) {
9446 case 18:
9447 val |= PIPEMISC_DITHER_6_BPC;
9448 break;
9449 case 24:
9450 val |= PIPEMISC_DITHER_8_BPC;
9451 break;
9452 case 30:
9453 val |= PIPEMISC_DITHER_10_BPC;
9454 break;
9455 case 36:
9456 val |= PIPEMISC_DITHER_12_BPC;
9457 break;
9458 default:
9459 /* Case prevented by pipe_config_set_bpp. */
9460 BUG();
9461 }
9462
9463 if (intel_crtc->config->dither)
9464 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9465
9466 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9467 }
9468 }
9469
9470 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9471 {
9472 /*
9473 * Account for spread spectrum to avoid
9474 * oversubscribing the link. Max center spread
9475 * is 2.5%; use 5% for safety's sake.
9476 */
9477 u32 bps = target_clock * bpp * 21 / 20;
9478 return DIV_ROUND_UP(bps, link_bw * 8);
9479 }
9480
9481 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9482 {
9483 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9484 }
9485
9486 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9487 struct intel_crtc_state *crtc_state,
9488 struct dpll *reduced_clock)
9489 {
9490 struct drm_crtc *crtc = &intel_crtc->base;
9491 struct drm_device *dev = crtc->dev;
9492 struct drm_i915_private *dev_priv = to_i915(dev);
9493 u32 dpll, fp, fp2;
9494 int factor;
9495
9496 /* Enable autotuning of the PLL clock (if permissible) */
9497 factor = 21;
9498 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9499 if ((intel_panel_use_ssc(dev_priv) &&
9500 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9501 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9502 factor = 25;
9503 } else if (crtc_state->sdvo_tv_clock)
9504 factor = 20;
9505
9506 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9507
9508 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9509 fp |= FP_CB_TUNE;
9510
9511 if (reduced_clock) {
9512 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9513
9514 if (reduced_clock->m < factor * reduced_clock->n)
9515 fp2 |= FP_CB_TUNE;
9516 } else {
9517 fp2 = fp;
9518 }
9519
9520 dpll = 0;
9521
9522 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9523 dpll |= DPLLB_MODE_LVDS;
9524 else
9525 dpll |= DPLLB_MODE_DAC_SERIAL;
9526
9527 dpll |= (crtc_state->pixel_multiplier - 1)
9528 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9529
9530 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9531 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9532 dpll |= DPLL_SDVO_HIGH_SPEED;
9533
9534 if (intel_crtc_has_dp_encoder(crtc_state))
9535 dpll |= DPLL_SDVO_HIGH_SPEED;
9536
9537 /*
9538 * The high speed IO clock is only really required for
9539 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9540 * possible to share the DPLL between CRT and HDMI. Enabling
9541 * the clock needlessly does no real harm, except use up a
9542 * bit of power potentially.
9543 *
9544 * We'll limit this to IVB with 3 pipes, since it has only two
9545 * DPLLs and so DPLL sharing is the only way to get three pipes
9546 * driving PCH ports at the same time. On SNB we could do this,
9547 * and potentially avoid enabling the second DPLL, but it's not
9548 * clear if it''s a win or loss power wise. No point in doing
9549 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9550 */
9551 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9552 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9553 dpll |= DPLL_SDVO_HIGH_SPEED;
9554
9555 /* compute bitmask from p1 value */
9556 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9557 /* also FPA1 */
9558 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9559
9560 switch (crtc_state->dpll.p2) {
9561 case 5:
9562 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9563 break;
9564 case 7:
9565 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9566 break;
9567 case 10:
9568 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9569 break;
9570 case 14:
9571 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9572 break;
9573 }
9574
9575 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9576 intel_panel_use_ssc(dev_priv))
9577 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9578 else
9579 dpll |= PLL_REF_INPUT_DREFCLK;
9580
9581 dpll |= DPLL_VCO_ENABLE;
9582
9583 crtc_state->dpll_hw_state.dpll = dpll;
9584 crtc_state->dpll_hw_state.fp0 = fp;
9585 crtc_state->dpll_hw_state.fp1 = fp2;
9586 }
9587
9588 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9589 struct intel_crtc_state *crtc_state)
9590 {
9591 struct drm_device *dev = crtc->base.dev;
9592 struct drm_i915_private *dev_priv = to_i915(dev);
9593 struct dpll reduced_clock;
9594 bool has_reduced_clock = false;
9595 struct intel_shared_dpll *pll;
9596 const struct intel_limit *limit;
9597 int refclk = 120000;
9598
9599 memset(&crtc_state->dpll_hw_state, 0,
9600 sizeof(crtc_state->dpll_hw_state));
9601
9602 crtc->lowfreq_avail = false;
9603
9604 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9605 if (!crtc_state->has_pch_encoder)
9606 return 0;
9607
9608 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9609 if (intel_panel_use_ssc(dev_priv)) {
9610 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9611 dev_priv->vbt.lvds_ssc_freq);
9612 refclk = dev_priv->vbt.lvds_ssc_freq;
9613 }
9614
9615 if (intel_is_dual_link_lvds(dev)) {
9616 if (refclk == 100000)
9617 limit = &intel_limits_ironlake_dual_lvds_100m;
9618 else
9619 limit = &intel_limits_ironlake_dual_lvds;
9620 } else {
9621 if (refclk == 100000)
9622 limit = &intel_limits_ironlake_single_lvds_100m;
9623 else
9624 limit = &intel_limits_ironlake_single_lvds;
9625 }
9626 } else {
9627 limit = &intel_limits_ironlake_dac;
9628 }
9629
9630 if (!crtc_state->clock_set &&
9631 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9632 refclk, NULL, &crtc_state->dpll)) {
9633 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9634 return -EINVAL;
9635 }
9636
9637 ironlake_compute_dpll(crtc, crtc_state,
9638 has_reduced_clock ? &reduced_clock : NULL);
9639
9640 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9641 if (pll == NULL) {
9642 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9643 pipe_name(crtc->pipe));
9644 return -EINVAL;
9645 }
9646
9647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9648 has_reduced_clock)
9649 crtc->lowfreq_avail = true;
9650
9651 return 0;
9652 }
9653
9654 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9655 struct intel_link_m_n *m_n)
9656 {
9657 struct drm_device *dev = crtc->base.dev;
9658 struct drm_i915_private *dev_priv = to_i915(dev);
9659 enum pipe pipe = crtc->pipe;
9660
9661 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9662 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9663 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9664 & ~TU_SIZE_MASK;
9665 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9666 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9667 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9668 }
9669
9670 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9671 enum transcoder transcoder,
9672 struct intel_link_m_n *m_n,
9673 struct intel_link_m_n *m2_n2)
9674 {
9675 struct drm_device *dev = crtc->base.dev;
9676 struct drm_i915_private *dev_priv = to_i915(dev);
9677 enum pipe pipe = crtc->pipe;
9678
9679 if (INTEL_INFO(dev)->gen >= 5) {
9680 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9681 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9682 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9683 & ~TU_SIZE_MASK;
9684 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9685 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9686 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9687 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9688 * gen < 8) and if DRRS is supported (to make sure the
9689 * registers are not unnecessarily read).
9690 */
9691 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9692 crtc->config->has_drrs) {
9693 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9694 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9695 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9696 & ~TU_SIZE_MASK;
9697 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9698 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9699 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9700 }
9701 } else {
9702 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9703 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9704 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9705 & ~TU_SIZE_MASK;
9706 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9707 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9708 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9709 }
9710 }
9711
9712 void intel_dp_get_m_n(struct intel_crtc *crtc,
9713 struct intel_crtc_state *pipe_config)
9714 {
9715 if (pipe_config->has_pch_encoder)
9716 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9717 else
9718 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9719 &pipe_config->dp_m_n,
9720 &pipe_config->dp_m2_n2);
9721 }
9722
9723 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9724 struct intel_crtc_state *pipe_config)
9725 {
9726 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9727 &pipe_config->fdi_m_n, NULL);
9728 }
9729
9730 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9731 struct intel_crtc_state *pipe_config)
9732 {
9733 struct drm_device *dev = crtc->base.dev;
9734 struct drm_i915_private *dev_priv = to_i915(dev);
9735 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9736 uint32_t ps_ctrl = 0;
9737 int id = -1;
9738 int i;
9739
9740 /* find scaler attached to this pipe */
9741 for (i = 0; i < crtc->num_scalers; i++) {
9742 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9743 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9744 id = i;
9745 pipe_config->pch_pfit.enabled = true;
9746 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9747 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9748 break;
9749 }
9750 }
9751
9752 scaler_state->scaler_id = id;
9753 if (id >= 0) {
9754 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9755 } else {
9756 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9757 }
9758 }
9759
9760 static void
9761 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9762 struct intel_initial_plane_config *plane_config)
9763 {
9764 struct drm_device *dev = crtc->base.dev;
9765 struct drm_i915_private *dev_priv = to_i915(dev);
9766 u32 val, base, offset, stride_mult, tiling;
9767 int pipe = crtc->pipe;
9768 int fourcc, pixel_format;
9769 unsigned int aligned_height;
9770 struct drm_framebuffer *fb;
9771 struct intel_framebuffer *intel_fb;
9772
9773 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9774 if (!intel_fb) {
9775 DRM_DEBUG_KMS("failed to alloc fb\n");
9776 return;
9777 }
9778
9779 fb = &intel_fb->base;
9780
9781 val = I915_READ(PLANE_CTL(pipe, 0));
9782 if (!(val & PLANE_CTL_ENABLE))
9783 goto error;
9784
9785 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9786 fourcc = skl_format_to_fourcc(pixel_format,
9787 val & PLANE_CTL_ORDER_RGBX,
9788 val & PLANE_CTL_ALPHA_MASK);
9789 fb->pixel_format = fourcc;
9790 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9791
9792 tiling = val & PLANE_CTL_TILED_MASK;
9793 switch (tiling) {
9794 case PLANE_CTL_TILED_LINEAR:
9795 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9796 break;
9797 case PLANE_CTL_TILED_X:
9798 plane_config->tiling = I915_TILING_X;
9799 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9800 break;
9801 case PLANE_CTL_TILED_Y:
9802 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9803 break;
9804 case PLANE_CTL_TILED_YF:
9805 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9806 break;
9807 default:
9808 MISSING_CASE(tiling);
9809 goto error;
9810 }
9811
9812 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9813 plane_config->base = base;
9814
9815 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9816
9817 val = I915_READ(PLANE_SIZE(pipe, 0));
9818 fb->height = ((val >> 16) & 0xfff) + 1;
9819 fb->width = ((val >> 0) & 0x1fff) + 1;
9820
9821 val = I915_READ(PLANE_STRIDE(pipe, 0));
9822 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9823 fb->pixel_format);
9824 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9825
9826 aligned_height = intel_fb_align_height(dev, fb->height,
9827 fb->pixel_format,
9828 fb->modifier[0]);
9829
9830 plane_config->size = fb->pitches[0] * aligned_height;
9831
9832 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9833 pipe_name(pipe), fb->width, fb->height,
9834 fb->bits_per_pixel, base, fb->pitches[0],
9835 plane_config->size);
9836
9837 plane_config->fb = intel_fb;
9838 return;
9839
9840 error:
9841 kfree(intel_fb);
9842 }
9843
9844 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9845 struct intel_crtc_state *pipe_config)
9846 {
9847 struct drm_device *dev = crtc->base.dev;
9848 struct drm_i915_private *dev_priv = to_i915(dev);
9849 uint32_t tmp;
9850
9851 tmp = I915_READ(PF_CTL(crtc->pipe));
9852
9853 if (tmp & PF_ENABLE) {
9854 pipe_config->pch_pfit.enabled = true;
9855 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9856 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9857
9858 /* We currently do not free assignements of panel fitters on
9859 * ivb/hsw (since we don't use the higher upscaling modes which
9860 * differentiates them) so just WARN about this case for now. */
9861 if (IS_GEN7(dev_priv)) {
9862 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9863 PF_PIPE_SEL_IVB(crtc->pipe));
9864 }
9865 }
9866 }
9867
9868 static void
9869 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9870 struct intel_initial_plane_config *plane_config)
9871 {
9872 struct drm_device *dev = crtc->base.dev;
9873 struct drm_i915_private *dev_priv = to_i915(dev);
9874 u32 val, base, offset;
9875 int pipe = crtc->pipe;
9876 int fourcc, pixel_format;
9877 unsigned int aligned_height;
9878 struct drm_framebuffer *fb;
9879 struct intel_framebuffer *intel_fb;
9880
9881 val = I915_READ(DSPCNTR(pipe));
9882 if (!(val & DISPLAY_PLANE_ENABLE))
9883 return;
9884
9885 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9886 if (!intel_fb) {
9887 DRM_DEBUG_KMS("failed to alloc fb\n");
9888 return;
9889 }
9890
9891 fb = &intel_fb->base;
9892
9893 if (INTEL_INFO(dev)->gen >= 4) {
9894 if (val & DISPPLANE_TILED) {
9895 plane_config->tiling = I915_TILING_X;
9896 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9897 }
9898 }
9899
9900 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9901 fourcc = i9xx_format_to_fourcc(pixel_format);
9902 fb->pixel_format = fourcc;
9903 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9904
9905 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9906 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9907 offset = I915_READ(DSPOFFSET(pipe));
9908 } else {
9909 if (plane_config->tiling)
9910 offset = I915_READ(DSPTILEOFF(pipe));
9911 else
9912 offset = I915_READ(DSPLINOFF(pipe));
9913 }
9914 plane_config->base = base;
9915
9916 val = I915_READ(PIPESRC(pipe));
9917 fb->width = ((val >> 16) & 0xfff) + 1;
9918 fb->height = ((val >> 0) & 0xfff) + 1;
9919
9920 val = I915_READ(DSPSTRIDE(pipe));
9921 fb->pitches[0] = val & 0xffffffc0;
9922
9923 aligned_height = intel_fb_align_height(dev, fb->height,
9924 fb->pixel_format,
9925 fb->modifier[0]);
9926
9927 plane_config->size = fb->pitches[0] * aligned_height;
9928
9929 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9930 pipe_name(pipe), fb->width, fb->height,
9931 fb->bits_per_pixel, base, fb->pitches[0],
9932 plane_config->size);
9933
9934 plane_config->fb = intel_fb;
9935 }
9936
9937 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9938 struct intel_crtc_state *pipe_config)
9939 {
9940 struct drm_device *dev = crtc->base.dev;
9941 struct drm_i915_private *dev_priv = to_i915(dev);
9942 enum intel_display_power_domain power_domain;
9943 uint32_t tmp;
9944 bool ret;
9945
9946 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9947 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9948 return false;
9949
9950 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9951 pipe_config->shared_dpll = NULL;
9952
9953 ret = false;
9954 tmp = I915_READ(PIPECONF(crtc->pipe));
9955 if (!(tmp & PIPECONF_ENABLE))
9956 goto out;
9957
9958 switch (tmp & PIPECONF_BPC_MASK) {
9959 case PIPECONF_6BPC:
9960 pipe_config->pipe_bpp = 18;
9961 break;
9962 case PIPECONF_8BPC:
9963 pipe_config->pipe_bpp = 24;
9964 break;
9965 case PIPECONF_10BPC:
9966 pipe_config->pipe_bpp = 30;
9967 break;
9968 case PIPECONF_12BPC:
9969 pipe_config->pipe_bpp = 36;
9970 break;
9971 default:
9972 break;
9973 }
9974
9975 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9976 pipe_config->limited_color_range = true;
9977
9978 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9979 struct intel_shared_dpll *pll;
9980 enum intel_dpll_id pll_id;
9981
9982 pipe_config->has_pch_encoder = true;
9983
9984 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9985 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9986 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9987
9988 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9989
9990 if (HAS_PCH_IBX(dev_priv)) {
9991 /*
9992 * The pipe->pch transcoder and pch transcoder->pll
9993 * mapping is fixed.
9994 */
9995 pll_id = (enum intel_dpll_id) crtc->pipe;
9996 } else {
9997 tmp = I915_READ(PCH_DPLL_SEL);
9998 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9999 pll_id = DPLL_ID_PCH_PLL_B;
10000 else
10001 pll_id= DPLL_ID_PCH_PLL_A;
10002 }
10003
10004 pipe_config->shared_dpll =
10005 intel_get_shared_dpll_by_id(dev_priv, pll_id);
10006 pll = pipe_config->shared_dpll;
10007
10008 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10009 &pipe_config->dpll_hw_state));
10010
10011 tmp = pipe_config->dpll_hw_state.dpll;
10012 pipe_config->pixel_multiplier =
10013 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10014 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10015
10016 ironlake_pch_clock_get(crtc, pipe_config);
10017 } else {
10018 pipe_config->pixel_multiplier = 1;
10019 }
10020
10021 intel_get_pipe_timings(crtc, pipe_config);
10022 intel_get_pipe_src_size(crtc, pipe_config);
10023
10024 ironlake_get_pfit_config(crtc, pipe_config);
10025
10026 ret = true;
10027
10028 out:
10029 intel_display_power_put(dev_priv, power_domain);
10030
10031 return ret;
10032 }
10033
10034 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10035 {
10036 struct drm_device *dev = &dev_priv->drm;
10037 struct intel_crtc *crtc;
10038
10039 for_each_intel_crtc(dev, crtc)
10040 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10041 pipe_name(crtc->pipe));
10042
10043 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10044 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10045 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10046 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10047 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10048 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10049 "CPU PWM1 enabled\n");
10050 if (IS_HASWELL(dev_priv))
10051 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10052 "CPU PWM2 enabled\n");
10053 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10054 "PCH PWM1 enabled\n");
10055 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10056 "Utility pin enabled\n");
10057 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10058
10059 /*
10060 * In theory we can still leave IRQs enabled, as long as only the HPD
10061 * interrupts remain enabled. We used to check for that, but since it's
10062 * gen-specific and since we only disable LCPLL after we fully disable
10063 * the interrupts, the check below should be enough.
10064 */
10065 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10066 }
10067
10068 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10069 {
10070 if (IS_HASWELL(dev_priv))
10071 return I915_READ(D_COMP_HSW);
10072 else
10073 return I915_READ(D_COMP_BDW);
10074 }
10075
10076 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10077 {
10078 if (IS_HASWELL(dev_priv)) {
10079 mutex_lock(&dev_priv->rps.hw_lock);
10080 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10081 val))
10082 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10083 mutex_unlock(&dev_priv->rps.hw_lock);
10084 } else {
10085 I915_WRITE(D_COMP_BDW, val);
10086 POSTING_READ(D_COMP_BDW);
10087 }
10088 }
10089
10090 /*
10091 * This function implements pieces of two sequences from BSpec:
10092 * - Sequence for display software to disable LCPLL
10093 * - Sequence for display software to allow package C8+
10094 * The steps implemented here are just the steps that actually touch the LCPLL
10095 * register. Callers should take care of disabling all the display engine
10096 * functions, doing the mode unset, fixing interrupts, etc.
10097 */
10098 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10099 bool switch_to_fclk, bool allow_power_down)
10100 {
10101 uint32_t val;
10102
10103 assert_can_disable_lcpll(dev_priv);
10104
10105 val = I915_READ(LCPLL_CTL);
10106
10107 if (switch_to_fclk) {
10108 val |= LCPLL_CD_SOURCE_FCLK;
10109 I915_WRITE(LCPLL_CTL, val);
10110
10111 if (wait_for_us(I915_READ(LCPLL_CTL) &
10112 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10113 DRM_ERROR("Switching to FCLK failed\n");
10114
10115 val = I915_READ(LCPLL_CTL);
10116 }
10117
10118 val |= LCPLL_PLL_DISABLE;
10119 I915_WRITE(LCPLL_CTL, val);
10120 POSTING_READ(LCPLL_CTL);
10121
10122 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10123 DRM_ERROR("LCPLL still locked\n");
10124
10125 val = hsw_read_dcomp(dev_priv);
10126 val |= D_COMP_COMP_DISABLE;
10127 hsw_write_dcomp(dev_priv, val);
10128 ndelay(100);
10129
10130 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10131 1))
10132 DRM_ERROR("D_COMP RCOMP still in progress\n");
10133
10134 if (allow_power_down) {
10135 val = I915_READ(LCPLL_CTL);
10136 val |= LCPLL_POWER_DOWN_ALLOW;
10137 I915_WRITE(LCPLL_CTL, val);
10138 POSTING_READ(LCPLL_CTL);
10139 }
10140 }
10141
10142 /*
10143 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10144 * source.
10145 */
10146 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10147 {
10148 uint32_t val;
10149
10150 val = I915_READ(LCPLL_CTL);
10151
10152 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10153 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10154 return;
10155
10156 /*
10157 * Make sure we're not on PC8 state before disabling PC8, otherwise
10158 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10159 */
10160 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10161
10162 if (val & LCPLL_POWER_DOWN_ALLOW) {
10163 val &= ~LCPLL_POWER_DOWN_ALLOW;
10164 I915_WRITE(LCPLL_CTL, val);
10165 POSTING_READ(LCPLL_CTL);
10166 }
10167
10168 val = hsw_read_dcomp(dev_priv);
10169 val |= D_COMP_COMP_FORCE;
10170 val &= ~D_COMP_COMP_DISABLE;
10171 hsw_write_dcomp(dev_priv, val);
10172
10173 val = I915_READ(LCPLL_CTL);
10174 val &= ~LCPLL_PLL_DISABLE;
10175 I915_WRITE(LCPLL_CTL, val);
10176
10177 if (intel_wait_for_register(dev_priv,
10178 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10179 5))
10180 DRM_ERROR("LCPLL not locked yet\n");
10181
10182 if (val & LCPLL_CD_SOURCE_FCLK) {
10183 val = I915_READ(LCPLL_CTL);
10184 val &= ~LCPLL_CD_SOURCE_FCLK;
10185 I915_WRITE(LCPLL_CTL, val);
10186
10187 if (wait_for_us((I915_READ(LCPLL_CTL) &
10188 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10189 DRM_ERROR("Switching back to LCPLL failed\n");
10190 }
10191
10192 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10193 intel_update_cdclk(&dev_priv->drm);
10194 }
10195
10196 /*
10197 * Package states C8 and deeper are really deep PC states that can only be
10198 * reached when all the devices on the system allow it, so even if the graphics
10199 * device allows PC8+, it doesn't mean the system will actually get to these
10200 * states. Our driver only allows PC8+ when going into runtime PM.
10201 *
10202 * The requirements for PC8+ are that all the outputs are disabled, the power
10203 * well is disabled and most interrupts are disabled, and these are also
10204 * requirements for runtime PM. When these conditions are met, we manually do
10205 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10206 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10207 * hang the machine.
10208 *
10209 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10210 * the state of some registers, so when we come back from PC8+ we need to
10211 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10212 * need to take care of the registers kept by RC6. Notice that this happens even
10213 * if we don't put the device in PCI D3 state (which is what currently happens
10214 * because of the runtime PM support).
10215 *
10216 * For more, read "Display Sequences for Package C8" on the hardware
10217 * documentation.
10218 */
10219 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10220 {
10221 struct drm_device *dev = &dev_priv->drm;
10222 uint32_t val;
10223
10224 DRM_DEBUG_KMS("Enabling package C8+\n");
10225
10226 if (HAS_PCH_LPT_LP(dev_priv)) {
10227 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10228 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10229 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10230 }
10231
10232 lpt_disable_clkout_dp(dev);
10233 hsw_disable_lcpll(dev_priv, true, true);
10234 }
10235
10236 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10237 {
10238 struct drm_device *dev = &dev_priv->drm;
10239 uint32_t val;
10240
10241 DRM_DEBUG_KMS("Disabling package C8+\n");
10242
10243 hsw_restore_lcpll(dev_priv);
10244 lpt_init_pch_refclk(dev);
10245
10246 if (HAS_PCH_LPT_LP(dev_priv)) {
10247 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10248 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10249 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10250 }
10251 }
10252
10253 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10254 {
10255 struct drm_device *dev = old_state->dev;
10256 struct intel_atomic_state *old_intel_state =
10257 to_intel_atomic_state(old_state);
10258 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10259
10260 bxt_set_cdclk(to_i915(dev), req_cdclk);
10261 }
10262
10263 /* compute the max rate for new configuration */
10264 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10265 {
10266 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10267 struct drm_i915_private *dev_priv = to_i915(state->dev);
10268 struct drm_crtc *crtc;
10269 struct drm_crtc_state *cstate;
10270 struct intel_crtc_state *crtc_state;
10271 unsigned max_pixel_rate = 0, i;
10272 enum pipe pipe;
10273
10274 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10275 sizeof(intel_state->min_pixclk));
10276
10277 for_each_crtc_in_state(state, crtc, cstate, i) {
10278 int pixel_rate;
10279
10280 crtc_state = to_intel_crtc_state(cstate);
10281 if (!crtc_state->base.enable) {
10282 intel_state->min_pixclk[i] = 0;
10283 continue;
10284 }
10285
10286 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10287
10288 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10289 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10290 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10291
10292 intel_state->min_pixclk[i] = pixel_rate;
10293 }
10294
10295 for_each_pipe(dev_priv, pipe)
10296 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10297
10298 return max_pixel_rate;
10299 }
10300
10301 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10302 {
10303 struct drm_i915_private *dev_priv = to_i915(dev);
10304 uint32_t val, data;
10305 int ret;
10306
10307 if (WARN((I915_READ(LCPLL_CTL) &
10308 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10309 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10310 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10311 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10312 "trying to change cdclk frequency with cdclk not enabled\n"))
10313 return;
10314
10315 mutex_lock(&dev_priv->rps.hw_lock);
10316 ret = sandybridge_pcode_write(dev_priv,
10317 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10318 mutex_unlock(&dev_priv->rps.hw_lock);
10319 if (ret) {
10320 DRM_ERROR("failed to inform pcode about cdclk change\n");
10321 return;
10322 }
10323
10324 val = I915_READ(LCPLL_CTL);
10325 val |= LCPLL_CD_SOURCE_FCLK;
10326 I915_WRITE(LCPLL_CTL, val);
10327
10328 if (wait_for_us(I915_READ(LCPLL_CTL) &
10329 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10330 DRM_ERROR("Switching to FCLK failed\n");
10331
10332 val = I915_READ(LCPLL_CTL);
10333 val &= ~LCPLL_CLK_FREQ_MASK;
10334
10335 switch (cdclk) {
10336 case 450000:
10337 val |= LCPLL_CLK_FREQ_450;
10338 data = 0;
10339 break;
10340 case 540000:
10341 val |= LCPLL_CLK_FREQ_54O_BDW;
10342 data = 1;
10343 break;
10344 case 337500:
10345 val |= LCPLL_CLK_FREQ_337_5_BDW;
10346 data = 2;
10347 break;
10348 case 675000:
10349 val |= LCPLL_CLK_FREQ_675_BDW;
10350 data = 3;
10351 break;
10352 default:
10353 WARN(1, "invalid cdclk frequency\n");
10354 return;
10355 }
10356
10357 I915_WRITE(LCPLL_CTL, val);
10358
10359 val = I915_READ(LCPLL_CTL);
10360 val &= ~LCPLL_CD_SOURCE_FCLK;
10361 I915_WRITE(LCPLL_CTL, val);
10362
10363 if (wait_for_us((I915_READ(LCPLL_CTL) &
10364 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10365 DRM_ERROR("Switching back to LCPLL failed\n");
10366
10367 mutex_lock(&dev_priv->rps.hw_lock);
10368 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10369 mutex_unlock(&dev_priv->rps.hw_lock);
10370
10371 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10372
10373 intel_update_cdclk(dev);
10374
10375 WARN(cdclk != dev_priv->cdclk_freq,
10376 "cdclk requested %d kHz but got %d kHz\n",
10377 cdclk, dev_priv->cdclk_freq);
10378 }
10379
10380 static int broadwell_calc_cdclk(int max_pixclk)
10381 {
10382 if (max_pixclk > 540000)
10383 return 675000;
10384 else if (max_pixclk > 450000)
10385 return 540000;
10386 else if (max_pixclk > 337500)
10387 return 450000;
10388 else
10389 return 337500;
10390 }
10391
10392 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10393 {
10394 struct drm_i915_private *dev_priv = to_i915(state->dev);
10395 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10396 int max_pixclk = ilk_max_pixel_rate(state);
10397 int cdclk;
10398
10399 /*
10400 * FIXME should also account for plane ratio
10401 * once 64bpp pixel formats are supported.
10402 */
10403 cdclk = broadwell_calc_cdclk(max_pixclk);
10404
10405 if (cdclk > dev_priv->max_cdclk_freq) {
10406 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10407 cdclk, dev_priv->max_cdclk_freq);
10408 return -EINVAL;
10409 }
10410
10411 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10412 if (!intel_state->active_crtcs)
10413 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10414
10415 return 0;
10416 }
10417
10418 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10419 {
10420 struct drm_device *dev = old_state->dev;
10421 struct intel_atomic_state *old_intel_state =
10422 to_intel_atomic_state(old_state);
10423 unsigned req_cdclk = old_intel_state->dev_cdclk;
10424
10425 broadwell_set_cdclk(dev, req_cdclk);
10426 }
10427
10428 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10429 {
10430 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10431 struct drm_i915_private *dev_priv = to_i915(state->dev);
10432 const int max_pixclk = ilk_max_pixel_rate(state);
10433 int vco = intel_state->cdclk_pll_vco;
10434 int cdclk;
10435
10436 /*
10437 * FIXME should also account for plane ratio
10438 * once 64bpp pixel formats are supported.
10439 */
10440 cdclk = skl_calc_cdclk(max_pixclk, vco);
10441
10442 /*
10443 * FIXME move the cdclk caclulation to
10444 * compute_config() so we can fail gracegully.
10445 */
10446 if (cdclk > dev_priv->max_cdclk_freq) {
10447 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10448 cdclk, dev_priv->max_cdclk_freq);
10449 cdclk = dev_priv->max_cdclk_freq;
10450 }
10451
10452 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10453 if (!intel_state->active_crtcs)
10454 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10455
10456 return 0;
10457 }
10458
10459 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10460 {
10461 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10462 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10463 unsigned int req_cdclk = intel_state->dev_cdclk;
10464 unsigned int req_vco = intel_state->cdclk_pll_vco;
10465
10466 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10467 }
10468
10469 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10470 struct intel_crtc_state *crtc_state)
10471 {
10472 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10473 if (!intel_ddi_pll_select(crtc, crtc_state))
10474 return -EINVAL;
10475 }
10476
10477 crtc->lowfreq_avail = false;
10478
10479 return 0;
10480 }
10481
10482 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10483 enum port port,
10484 struct intel_crtc_state *pipe_config)
10485 {
10486 enum intel_dpll_id id;
10487
10488 switch (port) {
10489 case PORT_A:
10490 id = DPLL_ID_SKL_DPLL0;
10491 break;
10492 case PORT_B:
10493 id = DPLL_ID_SKL_DPLL1;
10494 break;
10495 case PORT_C:
10496 id = DPLL_ID_SKL_DPLL2;
10497 break;
10498 default:
10499 DRM_ERROR("Incorrect port type\n");
10500 return;
10501 }
10502
10503 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10504 }
10505
10506 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10507 enum port port,
10508 struct intel_crtc_state *pipe_config)
10509 {
10510 enum intel_dpll_id id;
10511 u32 temp;
10512
10513 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10514 id = temp >> (port * 3 + 1);
10515
10516 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10517 return;
10518
10519 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10520 }
10521
10522 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10523 enum port port,
10524 struct intel_crtc_state *pipe_config)
10525 {
10526 enum intel_dpll_id id;
10527 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10528
10529 switch (ddi_pll_sel) {
10530 case PORT_CLK_SEL_WRPLL1:
10531 id = DPLL_ID_WRPLL1;
10532 break;
10533 case PORT_CLK_SEL_WRPLL2:
10534 id = DPLL_ID_WRPLL2;
10535 break;
10536 case PORT_CLK_SEL_SPLL:
10537 id = DPLL_ID_SPLL;
10538 break;
10539 case PORT_CLK_SEL_LCPLL_810:
10540 id = DPLL_ID_LCPLL_810;
10541 break;
10542 case PORT_CLK_SEL_LCPLL_1350:
10543 id = DPLL_ID_LCPLL_1350;
10544 break;
10545 case PORT_CLK_SEL_LCPLL_2700:
10546 id = DPLL_ID_LCPLL_2700;
10547 break;
10548 default:
10549 MISSING_CASE(ddi_pll_sel);
10550 /* fall through */
10551 case PORT_CLK_SEL_NONE:
10552 return;
10553 }
10554
10555 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10556 }
10557
10558 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10559 struct intel_crtc_state *pipe_config,
10560 unsigned long *power_domain_mask)
10561 {
10562 struct drm_device *dev = crtc->base.dev;
10563 struct drm_i915_private *dev_priv = to_i915(dev);
10564 enum intel_display_power_domain power_domain;
10565 u32 tmp;
10566
10567 /*
10568 * The pipe->transcoder mapping is fixed with the exception of the eDP
10569 * transcoder handled below.
10570 */
10571 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10572
10573 /*
10574 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10575 * consistency and less surprising code; it's in always on power).
10576 */
10577 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10578 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10579 enum pipe trans_edp_pipe;
10580 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10581 default:
10582 WARN(1, "unknown pipe linked to edp transcoder\n");
10583 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10584 case TRANS_DDI_EDP_INPUT_A_ON:
10585 trans_edp_pipe = PIPE_A;
10586 break;
10587 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10588 trans_edp_pipe = PIPE_B;
10589 break;
10590 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10591 trans_edp_pipe = PIPE_C;
10592 break;
10593 }
10594
10595 if (trans_edp_pipe == crtc->pipe)
10596 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10597 }
10598
10599 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10600 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10601 return false;
10602 *power_domain_mask |= BIT(power_domain);
10603
10604 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10605
10606 return tmp & PIPECONF_ENABLE;
10607 }
10608
10609 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10610 struct intel_crtc_state *pipe_config,
10611 unsigned long *power_domain_mask)
10612 {
10613 struct drm_device *dev = crtc->base.dev;
10614 struct drm_i915_private *dev_priv = to_i915(dev);
10615 enum intel_display_power_domain power_domain;
10616 enum port port;
10617 enum transcoder cpu_transcoder;
10618 u32 tmp;
10619
10620 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10621 if (port == PORT_A)
10622 cpu_transcoder = TRANSCODER_DSI_A;
10623 else
10624 cpu_transcoder = TRANSCODER_DSI_C;
10625
10626 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10627 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10628 continue;
10629 *power_domain_mask |= BIT(power_domain);
10630
10631 /*
10632 * The PLL needs to be enabled with a valid divider
10633 * configuration, otherwise accessing DSI registers will hang
10634 * the machine. See BSpec North Display Engine
10635 * registers/MIPI[BXT]. We can break out here early, since we
10636 * need the same DSI PLL to be enabled for both DSI ports.
10637 */
10638 if (!intel_dsi_pll_is_enabled(dev_priv))
10639 break;
10640
10641 /* XXX: this works for video mode only */
10642 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10643 if (!(tmp & DPI_ENABLE))
10644 continue;
10645
10646 tmp = I915_READ(MIPI_CTRL(port));
10647 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10648 continue;
10649
10650 pipe_config->cpu_transcoder = cpu_transcoder;
10651 break;
10652 }
10653
10654 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10655 }
10656
10657 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10658 struct intel_crtc_state *pipe_config)
10659 {
10660 struct drm_device *dev = crtc->base.dev;
10661 struct drm_i915_private *dev_priv = to_i915(dev);
10662 struct intel_shared_dpll *pll;
10663 enum port port;
10664 uint32_t tmp;
10665
10666 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10667
10668 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10669
10670 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10671 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10672 else if (IS_BROXTON(dev_priv))
10673 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10674 else
10675 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10676
10677 pll = pipe_config->shared_dpll;
10678 if (pll) {
10679 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10680 &pipe_config->dpll_hw_state));
10681 }
10682
10683 /*
10684 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10685 * DDI E. So just check whether this pipe is wired to DDI E and whether
10686 * the PCH transcoder is on.
10687 */
10688 if (INTEL_INFO(dev)->gen < 9 &&
10689 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10690 pipe_config->has_pch_encoder = true;
10691
10692 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10693 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10694 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10695
10696 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10697 }
10698 }
10699
10700 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10701 struct intel_crtc_state *pipe_config)
10702 {
10703 struct drm_device *dev = crtc->base.dev;
10704 struct drm_i915_private *dev_priv = to_i915(dev);
10705 enum intel_display_power_domain power_domain;
10706 unsigned long power_domain_mask;
10707 bool active;
10708
10709 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10710 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10711 return false;
10712 power_domain_mask = BIT(power_domain);
10713
10714 pipe_config->shared_dpll = NULL;
10715
10716 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10717
10718 if (IS_BROXTON(dev_priv) &&
10719 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10720 WARN_ON(active);
10721 active = true;
10722 }
10723
10724 if (!active)
10725 goto out;
10726
10727 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10728 haswell_get_ddi_port_state(crtc, pipe_config);
10729 intel_get_pipe_timings(crtc, pipe_config);
10730 }
10731
10732 intel_get_pipe_src_size(crtc, pipe_config);
10733
10734 pipe_config->gamma_mode =
10735 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10736
10737 if (INTEL_INFO(dev)->gen >= 9) {
10738 skl_init_scalers(dev, crtc, pipe_config);
10739 }
10740
10741 if (INTEL_INFO(dev)->gen >= 9) {
10742 pipe_config->scaler_state.scaler_id = -1;
10743 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10744 }
10745
10746 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10747 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10748 power_domain_mask |= BIT(power_domain);
10749 if (INTEL_INFO(dev)->gen >= 9)
10750 skylake_get_pfit_config(crtc, pipe_config);
10751 else
10752 ironlake_get_pfit_config(crtc, pipe_config);
10753 }
10754
10755 if (IS_HASWELL(dev_priv))
10756 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10757 (I915_READ(IPS_CTL) & IPS_ENABLE);
10758
10759 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10760 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10761 pipe_config->pixel_multiplier =
10762 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10763 } else {
10764 pipe_config->pixel_multiplier = 1;
10765 }
10766
10767 out:
10768 for_each_power_domain(power_domain, power_domain_mask)
10769 intel_display_power_put(dev_priv, power_domain);
10770
10771 return active;
10772 }
10773
10774 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10775 const struct intel_plane_state *plane_state)
10776 {
10777 struct drm_device *dev = crtc->dev;
10778 struct drm_i915_private *dev_priv = to_i915(dev);
10779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10780 uint32_t cntl = 0, size = 0;
10781
10782 if (plane_state && plane_state->base.visible) {
10783 unsigned int width = plane_state->base.crtc_w;
10784 unsigned int height = plane_state->base.crtc_h;
10785 unsigned int stride = roundup_pow_of_two(width) * 4;
10786
10787 switch (stride) {
10788 default:
10789 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10790 width, stride);
10791 stride = 256;
10792 /* fallthrough */
10793 case 256:
10794 case 512:
10795 case 1024:
10796 case 2048:
10797 break;
10798 }
10799
10800 cntl |= CURSOR_ENABLE |
10801 CURSOR_GAMMA_ENABLE |
10802 CURSOR_FORMAT_ARGB |
10803 CURSOR_STRIDE(stride);
10804
10805 size = (height << 12) | width;
10806 }
10807
10808 if (intel_crtc->cursor_cntl != 0 &&
10809 (intel_crtc->cursor_base != base ||
10810 intel_crtc->cursor_size != size ||
10811 intel_crtc->cursor_cntl != cntl)) {
10812 /* On these chipsets we can only modify the base/size/stride
10813 * whilst the cursor is disabled.
10814 */
10815 I915_WRITE(CURCNTR(PIPE_A), 0);
10816 POSTING_READ(CURCNTR(PIPE_A));
10817 intel_crtc->cursor_cntl = 0;
10818 }
10819
10820 if (intel_crtc->cursor_base != base) {
10821 I915_WRITE(CURBASE(PIPE_A), base);
10822 intel_crtc->cursor_base = base;
10823 }
10824
10825 if (intel_crtc->cursor_size != size) {
10826 I915_WRITE(CURSIZE, size);
10827 intel_crtc->cursor_size = size;
10828 }
10829
10830 if (intel_crtc->cursor_cntl != cntl) {
10831 I915_WRITE(CURCNTR(PIPE_A), cntl);
10832 POSTING_READ(CURCNTR(PIPE_A));
10833 intel_crtc->cursor_cntl = cntl;
10834 }
10835 }
10836
10837 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10838 const struct intel_plane_state *plane_state)
10839 {
10840 struct drm_device *dev = crtc->dev;
10841 struct drm_i915_private *dev_priv = to_i915(dev);
10842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10843 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
10844 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10845 const struct skl_plane_wm *p_wm =
10846 &cstate->wm.skl.optimal.planes[PLANE_CURSOR];
10847 int pipe = intel_crtc->pipe;
10848 uint32_t cntl = 0;
10849
10850 if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10851 skl_write_cursor_wm(intel_crtc, p_wm, &wm->ddb);
10852
10853 if (plane_state && plane_state->base.visible) {
10854 cntl = MCURSOR_GAMMA_ENABLE;
10855 switch (plane_state->base.crtc_w) {
10856 case 64:
10857 cntl |= CURSOR_MODE_64_ARGB_AX;
10858 break;
10859 case 128:
10860 cntl |= CURSOR_MODE_128_ARGB_AX;
10861 break;
10862 case 256:
10863 cntl |= CURSOR_MODE_256_ARGB_AX;
10864 break;
10865 default:
10866 MISSING_CASE(plane_state->base.crtc_w);
10867 return;
10868 }
10869 cntl |= pipe << 28; /* Connect to correct pipe */
10870
10871 if (HAS_DDI(dev_priv))
10872 cntl |= CURSOR_PIPE_CSC_ENABLE;
10873
10874 if (plane_state->base.rotation == DRM_ROTATE_180)
10875 cntl |= CURSOR_ROTATE_180;
10876 }
10877
10878 if (intel_crtc->cursor_cntl != cntl) {
10879 I915_WRITE(CURCNTR(pipe), cntl);
10880 POSTING_READ(CURCNTR(pipe));
10881 intel_crtc->cursor_cntl = cntl;
10882 }
10883
10884 /* and commit changes on next vblank */
10885 I915_WRITE(CURBASE(pipe), base);
10886 POSTING_READ(CURBASE(pipe));
10887
10888 intel_crtc->cursor_base = base;
10889 }
10890
10891 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10892 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10893 const struct intel_plane_state *plane_state)
10894 {
10895 struct drm_device *dev = crtc->dev;
10896 struct drm_i915_private *dev_priv = to_i915(dev);
10897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10898 int pipe = intel_crtc->pipe;
10899 u32 base = intel_crtc->cursor_addr;
10900 u32 pos = 0;
10901
10902 if (plane_state) {
10903 int x = plane_state->base.crtc_x;
10904 int y = plane_state->base.crtc_y;
10905
10906 if (x < 0) {
10907 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10908 x = -x;
10909 }
10910 pos |= x << CURSOR_X_SHIFT;
10911
10912 if (y < 0) {
10913 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10914 y = -y;
10915 }
10916 pos |= y << CURSOR_Y_SHIFT;
10917
10918 /* ILK+ do this automagically */
10919 if (HAS_GMCH_DISPLAY(dev_priv) &&
10920 plane_state->base.rotation == DRM_ROTATE_180) {
10921 base += (plane_state->base.crtc_h *
10922 plane_state->base.crtc_w - 1) * 4;
10923 }
10924 }
10925
10926 I915_WRITE(CURPOS(pipe), pos);
10927
10928 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10929 i845_update_cursor(crtc, base, plane_state);
10930 else
10931 i9xx_update_cursor(crtc, base, plane_state);
10932 }
10933
10934 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10935 uint32_t width, uint32_t height)
10936 {
10937 if (width == 0 || height == 0)
10938 return false;
10939
10940 /*
10941 * 845g/865g are special in that they are only limited by
10942 * the width of their cursors, the height is arbitrary up to
10943 * the precision of the register. Everything else requires
10944 * square cursors, limited to a few power-of-two sizes.
10945 */
10946 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10947 if ((width & 63) != 0)
10948 return false;
10949
10950 if (width > (IS_845G(dev_priv) ? 64 : 512))
10951 return false;
10952
10953 if (height > 1023)
10954 return false;
10955 } else {
10956 switch (width | height) {
10957 case 256:
10958 case 128:
10959 if (IS_GEN2(dev_priv))
10960 return false;
10961 case 64:
10962 break;
10963 default:
10964 return false;
10965 }
10966 }
10967
10968 return true;
10969 }
10970
10971 /* VESA 640x480x72Hz mode to set on the pipe */
10972 static struct drm_display_mode load_detect_mode = {
10973 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10974 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10975 };
10976
10977 struct drm_framebuffer *
10978 __intel_framebuffer_create(struct drm_device *dev,
10979 struct drm_mode_fb_cmd2 *mode_cmd,
10980 struct drm_i915_gem_object *obj)
10981 {
10982 struct intel_framebuffer *intel_fb;
10983 int ret;
10984
10985 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10986 if (!intel_fb)
10987 return ERR_PTR(-ENOMEM);
10988
10989 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10990 if (ret)
10991 goto err;
10992
10993 return &intel_fb->base;
10994
10995 err:
10996 kfree(intel_fb);
10997 return ERR_PTR(ret);
10998 }
10999
11000 static struct drm_framebuffer *
11001 intel_framebuffer_create(struct drm_device *dev,
11002 struct drm_mode_fb_cmd2 *mode_cmd,
11003 struct drm_i915_gem_object *obj)
11004 {
11005 struct drm_framebuffer *fb;
11006 int ret;
11007
11008 ret = i915_mutex_lock_interruptible(dev);
11009 if (ret)
11010 return ERR_PTR(ret);
11011 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11012 mutex_unlock(&dev->struct_mutex);
11013
11014 return fb;
11015 }
11016
11017 static u32
11018 intel_framebuffer_pitch_for_width(int width, int bpp)
11019 {
11020 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11021 return ALIGN(pitch, 64);
11022 }
11023
11024 static u32
11025 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11026 {
11027 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11028 return PAGE_ALIGN(pitch * mode->vdisplay);
11029 }
11030
11031 static struct drm_framebuffer *
11032 intel_framebuffer_create_for_mode(struct drm_device *dev,
11033 struct drm_display_mode *mode,
11034 int depth, int bpp)
11035 {
11036 struct drm_framebuffer *fb;
11037 struct drm_i915_gem_object *obj;
11038 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11039
11040 obj = i915_gem_object_create(dev,
11041 intel_framebuffer_size_for_mode(mode, bpp));
11042 if (IS_ERR(obj))
11043 return ERR_CAST(obj);
11044
11045 mode_cmd.width = mode->hdisplay;
11046 mode_cmd.height = mode->vdisplay;
11047 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11048 bpp);
11049 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11050
11051 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11052 if (IS_ERR(fb))
11053 i915_gem_object_put_unlocked(obj);
11054
11055 return fb;
11056 }
11057
11058 static struct drm_framebuffer *
11059 mode_fits_in_fbdev(struct drm_device *dev,
11060 struct drm_display_mode *mode)
11061 {
11062 #ifdef CONFIG_DRM_FBDEV_EMULATION
11063 struct drm_i915_private *dev_priv = to_i915(dev);
11064 struct drm_i915_gem_object *obj;
11065 struct drm_framebuffer *fb;
11066
11067 if (!dev_priv->fbdev)
11068 return NULL;
11069
11070 if (!dev_priv->fbdev->fb)
11071 return NULL;
11072
11073 obj = dev_priv->fbdev->fb->obj;
11074 BUG_ON(!obj);
11075
11076 fb = &dev_priv->fbdev->fb->base;
11077 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11078 fb->bits_per_pixel))
11079 return NULL;
11080
11081 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11082 return NULL;
11083
11084 drm_framebuffer_reference(fb);
11085 return fb;
11086 #else
11087 return NULL;
11088 #endif
11089 }
11090
11091 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11092 struct drm_crtc *crtc,
11093 struct drm_display_mode *mode,
11094 struct drm_framebuffer *fb,
11095 int x, int y)
11096 {
11097 struct drm_plane_state *plane_state;
11098 int hdisplay, vdisplay;
11099 int ret;
11100
11101 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11102 if (IS_ERR(plane_state))
11103 return PTR_ERR(plane_state);
11104
11105 if (mode)
11106 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11107 else
11108 hdisplay = vdisplay = 0;
11109
11110 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11111 if (ret)
11112 return ret;
11113 drm_atomic_set_fb_for_plane(plane_state, fb);
11114 plane_state->crtc_x = 0;
11115 plane_state->crtc_y = 0;
11116 plane_state->crtc_w = hdisplay;
11117 plane_state->crtc_h = vdisplay;
11118 plane_state->src_x = x << 16;
11119 plane_state->src_y = y << 16;
11120 plane_state->src_w = hdisplay << 16;
11121 plane_state->src_h = vdisplay << 16;
11122
11123 return 0;
11124 }
11125
11126 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11127 struct drm_display_mode *mode,
11128 struct intel_load_detect_pipe *old,
11129 struct drm_modeset_acquire_ctx *ctx)
11130 {
11131 struct intel_crtc *intel_crtc;
11132 struct intel_encoder *intel_encoder =
11133 intel_attached_encoder(connector);
11134 struct drm_crtc *possible_crtc;
11135 struct drm_encoder *encoder = &intel_encoder->base;
11136 struct drm_crtc *crtc = NULL;
11137 struct drm_device *dev = encoder->dev;
11138 struct drm_framebuffer *fb;
11139 struct drm_mode_config *config = &dev->mode_config;
11140 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11141 struct drm_connector_state *connector_state;
11142 struct intel_crtc_state *crtc_state;
11143 int ret, i = -1;
11144
11145 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11146 connector->base.id, connector->name,
11147 encoder->base.id, encoder->name);
11148
11149 old->restore_state = NULL;
11150
11151 retry:
11152 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11153 if (ret)
11154 goto fail;
11155
11156 /*
11157 * Algorithm gets a little messy:
11158 *
11159 * - if the connector already has an assigned crtc, use it (but make
11160 * sure it's on first)
11161 *
11162 * - try to find the first unused crtc that can drive this connector,
11163 * and use that if we find one
11164 */
11165
11166 /* See if we already have a CRTC for this connector */
11167 if (connector->state->crtc) {
11168 crtc = connector->state->crtc;
11169
11170 ret = drm_modeset_lock(&crtc->mutex, ctx);
11171 if (ret)
11172 goto fail;
11173
11174 /* Make sure the crtc and connector are running */
11175 goto found;
11176 }
11177
11178 /* Find an unused one (if possible) */
11179 for_each_crtc(dev, possible_crtc) {
11180 i++;
11181 if (!(encoder->possible_crtcs & (1 << i)))
11182 continue;
11183
11184 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11185 if (ret)
11186 goto fail;
11187
11188 if (possible_crtc->state->enable) {
11189 drm_modeset_unlock(&possible_crtc->mutex);
11190 continue;
11191 }
11192
11193 crtc = possible_crtc;
11194 break;
11195 }
11196
11197 /*
11198 * If we didn't find an unused CRTC, don't use any.
11199 */
11200 if (!crtc) {
11201 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11202 goto fail;
11203 }
11204
11205 found:
11206 intel_crtc = to_intel_crtc(crtc);
11207
11208 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11209 if (ret)
11210 goto fail;
11211
11212 state = drm_atomic_state_alloc(dev);
11213 restore_state = drm_atomic_state_alloc(dev);
11214 if (!state || !restore_state) {
11215 ret = -ENOMEM;
11216 goto fail;
11217 }
11218
11219 state->acquire_ctx = ctx;
11220 restore_state->acquire_ctx = ctx;
11221
11222 connector_state = drm_atomic_get_connector_state(state, connector);
11223 if (IS_ERR(connector_state)) {
11224 ret = PTR_ERR(connector_state);
11225 goto fail;
11226 }
11227
11228 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11229 if (ret)
11230 goto fail;
11231
11232 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11233 if (IS_ERR(crtc_state)) {
11234 ret = PTR_ERR(crtc_state);
11235 goto fail;
11236 }
11237
11238 crtc_state->base.active = crtc_state->base.enable = true;
11239
11240 if (!mode)
11241 mode = &load_detect_mode;
11242
11243 /* We need a framebuffer large enough to accommodate all accesses
11244 * that the plane may generate whilst we perform load detection.
11245 * We can not rely on the fbcon either being present (we get called
11246 * during its initialisation to detect all boot displays, or it may
11247 * not even exist) or that it is large enough to satisfy the
11248 * requested mode.
11249 */
11250 fb = mode_fits_in_fbdev(dev, mode);
11251 if (fb == NULL) {
11252 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11253 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11254 } else
11255 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11256 if (IS_ERR(fb)) {
11257 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11258 goto fail;
11259 }
11260
11261 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11262 if (ret)
11263 goto fail;
11264
11265 drm_framebuffer_unreference(fb);
11266
11267 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11268 if (ret)
11269 goto fail;
11270
11271 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11272 if (!ret)
11273 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11274 if (!ret)
11275 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11276 if (ret) {
11277 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11278 goto fail;
11279 }
11280
11281 ret = drm_atomic_commit(state);
11282 if (ret) {
11283 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11284 goto fail;
11285 }
11286
11287 old->restore_state = restore_state;
11288
11289 /* let the connector get through one full cycle before testing */
11290 intel_wait_for_vblank(dev, intel_crtc->pipe);
11291 return true;
11292
11293 fail:
11294 if (state) {
11295 drm_atomic_state_put(state);
11296 state = NULL;
11297 }
11298 if (restore_state) {
11299 drm_atomic_state_put(restore_state);
11300 restore_state = NULL;
11301 }
11302
11303 if (ret == -EDEADLK) {
11304 drm_modeset_backoff(ctx);
11305 goto retry;
11306 }
11307
11308 return false;
11309 }
11310
11311 void intel_release_load_detect_pipe(struct drm_connector *connector,
11312 struct intel_load_detect_pipe *old,
11313 struct drm_modeset_acquire_ctx *ctx)
11314 {
11315 struct intel_encoder *intel_encoder =
11316 intel_attached_encoder(connector);
11317 struct drm_encoder *encoder = &intel_encoder->base;
11318 struct drm_atomic_state *state = old->restore_state;
11319 int ret;
11320
11321 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11322 connector->base.id, connector->name,
11323 encoder->base.id, encoder->name);
11324
11325 if (!state)
11326 return;
11327
11328 ret = drm_atomic_commit(state);
11329 if (ret)
11330 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11331 drm_atomic_state_put(state);
11332 }
11333
11334 static int i9xx_pll_refclk(struct drm_device *dev,
11335 const struct intel_crtc_state *pipe_config)
11336 {
11337 struct drm_i915_private *dev_priv = to_i915(dev);
11338 u32 dpll = pipe_config->dpll_hw_state.dpll;
11339
11340 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11341 return dev_priv->vbt.lvds_ssc_freq;
11342 else if (HAS_PCH_SPLIT(dev_priv))
11343 return 120000;
11344 else if (!IS_GEN2(dev_priv))
11345 return 96000;
11346 else
11347 return 48000;
11348 }
11349
11350 /* Returns the clock of the currently programmed mode of the given pipe. */
11351 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11352 struct intel_crtc_state *pipe_config)
11353 {
11354 struct drm_device *dev = crtc->base.dev;
11355 struct drm_i915_private *dev_priv = to_i915(dev);
11356 int pipe = pipe_config->cpu_transcoder;
11357 u32 dpll = pipe_config->dpll_hw_state.dpll;
11358 u32 fp;
11359 struct dpll clock;
11360 int port_clock;
11361 int refclk = i9xx_pll_refclk(dev, pipe_config);
11362
11363 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11364 fp = pipe_config->dpll_hw_state.fp0;
11365 else
11366 fp = pipe_config->dpll_hw_state.fp1;
11367
11368 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11369 if (IS_PINEVIEW(dev)) {
11370 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11371 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11372 } else {
11373 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11374 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11375 }
11376
11377 if (!IS_GEN2(dev_priv)) {
11378 if (IS_PINEVIEW(dev))
11379 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11380 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11381 else
11382 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11383 DPLL_FPA01_P1_POST_DIV_SHIFT);
11384
11385 switch (dpll & DPLL_MODE_MASK) {
11386 case DPLLB_MODE_DAC_SERIAL:
11387 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11388 5 : 10;
11389 break;
11390 case DPLLB_MODE_LVDS:
11391 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11392 7 : 14;
11393 break;
11394 default:
11395 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11396 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11397 return;
11398 }
11399
11400 if (IS_PINEVIEW(dev))
11401 port_clock = pnv_calc_dpll_params(refclk, &clock);
11402 else
11403 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11404 } else {
11405 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11406 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11407
11408 if (is_lvds) {
11409 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11410 DPLL_FPA01_P1_POST_DIV_SHIFT);
11411
11412 if (lvds & LVDS_CLKB_POWER_UP)
11413 clock.p2 = 7;
11414 else
11415 clock.p2 = 14;
11416 } else {
11417 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11418 clock.p1 = 2;
11419 else {
11420 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11421 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11422 }
11423 if (dpll & PLL_P2_DIVIDE_BY_4)
11424 clock.p2 = 4;
11425 else
11426 clock.p2 = 2;
11427 }
11428
11429 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11430 }
11431
11432 /*
11433 * This value includes pixel_multiplier. We will use
11434 * port_clock to compute adjusted_mode.crtc_clock in the
11435 * encoder's get_config() function.
11436 */
11437 pipe_config->port_clock = port_clock;
11438 }
11439
11440 int intel_dotclock_calculate(int link_freq,
11441 const struct intel_link_m_n *m_n)
11442 {
11443 /*
11444 * The calculation for the data clock is:
11445 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11446 * But we want to avoid losing precison if possible, so:
11447 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11448 *
11449 * and the link clock is simpler:
11450 * link_clock = (m * link_clock) / n
11451 */
11452
11453 if (!m_n->link_n)
11454 return 0;
11455
11456 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11457 }
11458
11459 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11460 struct intel_crtc_state *pipe_config)
11461 {
11462 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11463
11464 /* read out port_clock from the DPLL */
11465 i9xx_crtc_clock_get(crtc, pipe_config);
11466
11467 /*
11468 * In case there is an active pipe without active ports,
11469 * we may need some idea for the dotclock anyway.
11470 * Calculate one based on the FDI configuration.
11471 */
11472 pipe_config->base.adjusted_mode.crtc_clock =
11473 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11474 &pipe_config->fdi_m_n);
11475 }
11476
11477 /** Returns the currently programmed mode of the given pipe. */
11478 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11479 struct drm_crtc *crtc)
11480 {
11481 struct drm_i915_private *dev_priv = to_i915(dev);
11482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11483 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11484 struct drm_display_mode *mode;
11485 struct intel_crtc_state *pipe_config;
11486 int htot = I915_READ(HTOTAL(cpu_transcoder));
11487 int hsync = I915_READ(HSYNC(cpu_transcoder));
11488 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11489 int vsync = I915_READ(VSYNC(cpu_transcoder));
11490 enum pipe pipe = intel_crtc->pipe;
11491
11492 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11493 if (!mode)
11494 return NULL;
11495
11496 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11497 if (!pipe_config) {
11498 kfree(mode);
11499 return NULL;
11500 }
11501
11502 /*
11503 * Construct a pipe_config sufficient for getting the clock info
11504 * back out of crtc_clock_get.
11505 *
11506 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11507 * to use a real value here instead.
11508 */
11509 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11510 pipe_config->pixel_multiplier = 1;
11511 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11512 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11513 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11514 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11515
11516 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11517 mode->hdisplay = (htot & 0xffff) + 1;
11518 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11519 mode->hsync_start = (hsync & 0xffff) + 1;
11520 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11521 mode->vdisplay = (vtot & 0xffff) + 1;
11522 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11523 mode->vsync_start = (vsync & 0xffff) + 1;
11524 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11525
11526 drm_mode_set_name(mode);
11527
11528 kfree(pipe_config);
11529
11530 return mode;
11531 }
11532
11533 static void intel_crtc_destroy(struct drm_crtc *crtc)
11534 {
11535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11536 struct drm_device *dev = crtc->dev;
11537 struct intel_flip_work *work;
11538
11539 spin_lock_irq(&dev->event_lock);
11540 work = intel_crtc->flip_work;
11541 intel_crtc->flip_work = NULL;
11542 spin_unlock_irq(&dev->event_lock);
11543
11544 if (work) {
11545 cancel_work_sync(&work->mmio_work);
11546 cancel_work_sync(&work->unpin_work);
11547 kfree(work);
11548 }
11549
11550 drm_crtc_cleanup(crtc);
11551
11552 kfree(intel_crtc);
11553 }
11554
11555 static void intel_unpin_work_fn(struct work_struct *__work)
11556 {
11557 struct intel_flip_work *work =
11558 container_of(__work, struct intel_flip_work, unpin_work);
11559 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11560 struct drm_device *dev = crtc->base.dev;
11561 struct drm_plane *primary = crtc->base.primary;
11562
11563 if (is_mmio_work(work))
11564 flush_work(&work->mmio_work);
11565
11566 mutex_lock(&dev->struct_mutex);
11567 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11568 i915_gem_object_put(work->pending_flip_obj);
11569 mutex_unlock(&dev->struct_mutex);
11570
11571 i915_gem_request_put(work->flip_queued_req);
11572
11573 intel_frontbuffer_flip_complete(to_i915(dev),
11574 to_intel_plane(primary)->frontbuffer_bit);
11575 intel_fbc_post_update(crtc);
11576 drm_framebuffer_unreference(work->old_fb);
11577
11578 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11579 atomic_dec(&crtc->unpin_work_count);
11580
11581 kfree(work);
11582 }
11583
11584 /* Is 'a' after or equal to 'b'? */
11585 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11586 {
11587 return !((a - b) & 0x80000000);
11588 }
11589
11590 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11591 struct intel_flip_work *work)
11592 {
11593 struct drm_device *dev = crtc->base.dev;
11594 struct drm_i915_private *dev_priv = to_i915(dev);
11595
11596 if (abort_flip_on_reset(crtc))
11597 return true;
11598
11599 /*
11600 * The relevant registers doen't exist on pre-ctg.
11601 * As the flip done interrupt doesn't trigger for mmio
11602 * flips on gmch platforms, a flip count check isn't
11603 * really needed there. But since ctg has the registers,
11604 * include it in the check anyway.
11605 */
11606 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11607 return true;
11608
11609 /*
11610 * BDW signals flip done immediately if the plane
11611 * is disabled, even if the plane enable is already
11612 * armed to occur at the next vblank :(
11613 */
11614
11615 /*
11616 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11617 * used the same base address. In that case the mmio flip might
11618 * have completed, but the CS hasn't even executed the flip yet.
11619 *
11620 * A flip count check isn't enough as the CS might have updated
11621 * the base address just after start of vblank, but before we
11622 * managed to process the interrupt. This means we'd complete the
11623 * CS flip too soon.
11624 *
11625 * Combining both checks should get us a good enough result. It may
11626 * still happen that the CS flip has been executed, but has not
11627 * yet actually completed. But in case the base address is the same
11628 * anyway, we don't really care.
11629 */
11630 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11631 crtc->flip_work->gtt_offset &&
11632 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11633 crtc->flip_work->flip_count);
11634 }
11635
11636 static bool
11637 __pageflip_finished_mmio(struct intel_crtc *crtc,
11638 struct intel_flip_work *work)
11639 {
11640 /*
11641 * MMIO work completes when vblank is different from
11642 * flip_queued_vblank.
11643 *
11644 * Reset counter value doesn't matter, this is handled by
11645 * i915_wait_request finishing early, so no need to handle
11646 * reset here.
11647 */
11648 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11649 }
11650
11651
11652 static bool pageflip_finished(struct intel_crtc *crtc,
11653 struct intel_flip_work *work)
11654 {
11655 if (!atomic_read(&work->pending))
11656 return false;
11657
11658 smp_rmb();
11659
11660 if (is_mmio_work(work))
11661 return __pageflip_finished_mmio(crtc, work);
11662 else
11663 return __pageflip_finished_cs(crtc, work);
11664 }
11665
11666 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11667 {
11668 struct drm_device *dev = &dev_priv->drm;
11669 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11671 struct intel_flip_work *work;
11672 unsigned long flags;
11673
11674 /* Ignore early vblank irqs */
11675 if (!crtc)
11676 return;
11677
11678 /*
11679 * This is called both by irq handlers and the reset code (to complete
11680 * lost pageflips) so needs the full irqsave spinlocks.
11681 */
11682 spin_lock_irqsave(&dev->event_lock, flags);
11683 work = intel_crtc->flip_work;
11684
11685 if (work != NULL &&
11686 !is_mmio_work(work) &&
11687 pageflip_finished(intel_crtc, work))
11688 page_flip_completed(intel_crtc);
11689
11690 spin_unlock_irqrestore(&dev->event_lock, flags);
11691 }
11692
11693 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11694 {
11695 struct drm_device *dev = &dev_priv->drm;
11696 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11698 struct intel_flip_work *work;
11699 unsigned long flags;
11700
11701 /* Ignore early vblank irqs */
11702 if (!crtc)
11703 return;
11704
11705 /*
11706 * This is called both by irq handlers and the reset code (to complete
11707 * lost pageflips) so needs the full irqsave spinlocks.
11708 */
11709 spin_lock_irqsave(&dev->event_lock, flags);
11710 work = intel_crtc->flip_work;
11711
11712 if (work != NULL &&
11713 is_mmio_work(work) &&
11714 pageflip_finished(intel_crtc, work))
11715 page_flip_completed(intel_crtc);
11716
11717 spin_unlock_irqrestore(&dev->event_lock, flags);
11718 }
11719
11720 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11721 struct intel_flip_work *work)
11722 {
11723 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11724
11725 /* Ensure that the work item is consistent when activating it ... */
11726 smp_mb__before_atomic();
11727 atomic_set(&work->pending, 1);
11728 }
11729
11730 static int intel_gen2_queue_flip(struct drm_device *dev,
11731 struct drm_crtc *crtc,
11732 struct drm_framebuffer *fb,
11733 struct drm_i915_gem_object *obj,
11734 struct drm_i915_gem_request *req,
11735 uint32_t flags)
11736 {
11737 struct intel_ring *ring = req->ring;
11738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11739 u32 flip_mask;
11740 int ret;
11741
11742 ret = intel_ring_begin(req, 6);
11743 if (ret)
11744 return ret;
11745
11746 /* Can't queue multiple flips, so wait for the previous
11747 * one to finish before executing the next.
11748 */
11749 if (intel_crtc->plane)
11750 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11751 else
11752 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11753 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11754 intel_ring_emit(ring, MI_NOOP);
11755 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11756 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11757 intel_ring_emit(ring, fb->pitches[0]);
11758 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11759 intel_ring_emit(ring, 0); /* aux display base address, unused */
11760
11761 return 0;
11762 }
11763
11764 static int intel_gen3_queue_flip(struct drm_device *dev,
11765 struct drm_crtc *crtc,
11766 struct drm_framebuffer *fb,
11767 struct drm_i915_gem_object *obj,
11768 struct drm_i915_gem_request *req,
11769 uint32_t flags)
11770 {
11771 struct intel_ring *ring = req->ring;
11772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11773 u32 flip_mask;
11774 int ret;
11775
11776 ret = intel_ring_begin(req, 6);
11777 if (ret)
11778 return ret;
11779
11780 if (intel_crtc->plane)
11781 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11782 else
11783 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11784 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11785 intel_ring_emit(ring, MI_NOOP);
11786 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11787 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11788 intel_ring_emit(ring, fb->pitches[0]);
11789 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11790 intel_ring_emit(ring, MI_NOOP);
11791
11792 return 0;
11793 }
11794
11795 static int intel_gen4_queue_flip(struct drm_device *dev,
11796 struct drm_crtc *crtc,
11797 struct drm_framebuffer *fb,
11798 struct drm_i915_gem_object *obj,
11799 struct drm_i915_gem_request *req,
11800 uint32_t flags)
11801 {
11802 struct intel_ring *ring = req->ring;
11803 struct drm_i915_private *dev_priv = to_i915(dev);
11804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11805 uint32_t pf, pipesrc;
11806 int ret;
11807
11808 ret = intel_ring_begin(req, 4);
11809 if (ret)
11810 return ret;
11811
11812 /* i965+ uses the linear or tiled offsets from the
11813 * Display Registers (which do not change across a page-flip)
11814 * so we need only reprogram the base address.
11815 */
11816 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11817 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11818 intel_ring_emit(ring, fb->pitches[0]);
11819 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11820 intel_fb_modifier_to_tiling(fb->modifier[0]));
11821
11822 /* XXX Enabling the panel-fitter across page-flip is so far
11823 * untested on non-native modes, so ignore it for now.
11824 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11825 */
11826 pf = 0;
11827 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11828 intel_ring_emit(ring, pf | pipesrc);
11829
11830 return 0;
11831 }
11832
11833 static int intel_gen6_queue_flip(struct drm_device *dev,
11834 struct drm_crtc *crtc,
11835 struct drm_framebuffer *fb,
11836 struct drm_i915_gem_object *obj,
11837 struct drm_i915_gem_request *req,
11838 uint32_t flags)
11839 {
11840 struct intel_ring *ring = req->ring;
11841 struct drm_i915_private *dev_priv = to_i915(dev);
11842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11843 uint32_t pf, pipesrc;
11844 int ret;
11845
11846 ret = intel_ring_begin(req, 4);
11847 if (ret)
11848 return ret;
11849
11850 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11851 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11852 intel_ring_emit(ring, fb->pitches[0] |
11853 intel_fb_modifier_to_tiling(fb->modifier[0]));
11854 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11855
11856 /* Contrary to the suggestions in the documentation,
11857 * "Enable Panel Fitter" does not seem to be required when page
11858 * flipping with a non-native mode, and worse causes a normal
11859 * modeset to fail.
11860 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11861 */
11862 pf = 0;
11863 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11864 intel_ring_emit(ring, pf | pipesrc);
11865
11866 return 0;
11867 }
11868
11869 static int intel_gen7_queue_flip(struct drm_device *dev,
11870 struct drm_crtc *crtc,
11871 struct drm_framebuffer *fb,
11872 struct drm_i915_gem_object *obj,
11873 struct drm_i915_gem_request *req,
11874 uint32_t flags)
11875 {
11876 struct drm_i915_private *dev_priv = to_i915(dev);
11877 struct intel_ring *ring = req->ring;
11878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11879 uint32_t plane_bit = 0;
11880 int len, ret;
11881
11882 switch (intel_crtc->plane) {
11883 case PLANE_A:
11884 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11885 break;
11886 case PLANE_B:
11887 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11888 break;
11889 case PLANE_C:
11890 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11891 break;
11892 default:
11893 WARN_ONCE(1, "unknown plane in flip command\n");
11894 return -ENODEV;
11895 }
11896
11897 len = 4;
11898 if (req->engine->id == RCS) {
11899 len += 6;
11900 /*
11901 * On Gen 8, SRM is now taking an extra dword to accommodate
11902 * 48bits addresses, and we need a NOOP for the batch size to
11903 * stay even.
11904 */
11905 if (IS_GEN8(dev_priv))
11906 len += 2;
11907 }
11908
11909 /*
11910 * BSpec MI_DISPLAY_FLIP for IVB:
11911 * "The full packet must be contained within the same cache line."
11912 *
11913 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11914 * cacheline, if we ever start emitting more commands before
11915 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11916 * then do the cacheline alignment, and finally emit the
11917 * MI_DISPLAY_FLIP.
11918 */
11919 ret = intel_ring_cacheline_align(req);
11920 if (ret)
11921 return ret;
11922
11923 ret = intel_ring_begin(req, len);
11924 if (ret)
11925 return ret;
11926
11927 /* Unmask the flip-done completion message. Note that the bspec says that
11928 * we should do this for both the BCS and RCS, and that we must not unmask
11929 * more than one flip event at any time (or ensure that one flip message
11930 * can be sent by waiting for flip-done prior to queueing new flips).
11931 * Experimentation says that BCS works despite DERRMR masking all
11932 * flip-done completion events and that unmasking all planes at once
11933 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11934 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11935 */
11936 if (req->engine->id == RCS) {
11937 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11938 intel_ring_emit_reg(ring, DERRMR);
11939 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11940 DERRMR_PIPEB_PRI_FLIP_DONE |
11941 DERRMR_PIPEC_PRI_FLIP_DONE));
11942 if (IS_GEN8(dev_priv))
11943 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11944 MI_SRM_LRM_GLOBAL_GTT);
11945 else
11946 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11947 MI_SRM_LRM_GLOBAL_GTT);
11948 intel_ring_emit_reg(ring, DERRMR);
11949 intel_ring_emit(ring,
11950 i915_ggtt_offset(req->engine->scratch) + 256);
11951 if (IS_GEN8(dev_priv)) {
11952 intel_ring_emit(ring, 0);
11953 intel_ring_emit(ring, MI_NOOP);
11954 }
11955 }
11956
11957 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11958 intel_ring_emit(ring, fb->pitches[0] |
11959 intel_fb_modifier_to_tiling(fb->modifier[0]));
11960 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11961 intel_ring_emit(ring, (MI_NOOP));
11962
11963 return 0;
11964 }
11965
11966 static bool use_mmio_flip(struct intel_engine_cs *engine,
11967 struct drm_i915_gem_object *obj)
11968 {
11969 struct reservation_object *resv;
11970
11971 /*
11972 * This is not being used for older platforms, because
11973 * non-availability of flip done interrupt forces us to use
11974 * CS flips. Older platforms derive flip done using some clever
11975 * tricks involving the flip_pending status bits and vblank irqs.
11976 * So using MMIO flips there would disrupt this mechanism.
11977 */
11978
11979 if (engine == NULL)
11980 return true;
11981
11982 if (INTEL_GEN(engine->i915) < 5)
11983 return false;
11984
11985 if (i915.use_mmio_flip < 0)
11986 return false;
11987 else if (i915.use_mmio_flip > 0)
11988 return true;
11989 else if (i915.enable_execlists)
11990 return true;
11991
11992 resv = i915_gem_object_get_dmabuf_resv(obj);
11993 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11994 return true;
11995
11996 return engine != i915_gem_active_get_engine(&obj->last_write,
11997 &obj->base.dev->struct_mutex);
11998 }
11999
12000 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
12001 unsigned int rotation,
12002 struct intel_flip_work *work)
12003 {
12004 struct drm_device *dev = intel_crtc->base.dev;
12005 struct drm_i915_private *dev_priv = to_i915(dev);
12006 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12007 const enum pipe pipe = intel_crtc->pipe;
12008 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
12009
12010 ctl = I915_READ(PLANE_CTL(pipe, 0));
12011 ctl &= ~PLANE_CTL_TILED_MASK;
12012 switch (fb->modifier[0]) {
12013 case DRM_FORMAT_MOD_NONE:
12014 break;
12015 case I915_FORMAT_MOD_X_TILED:
12016 ctl |= PLANE_CTL_TILED_X;
12017 break;
12018 case I915_FORMAT_MOD_Y_TILED:
12019 ctl |= PLANE_CTL_TILED_Y;
12020 break;
12021 case I915_FORMAT_MOD_Yf_TILED:
12022 ctl |= PLANE_CTL_TILED_YF;
12023 break;
12024 default:
12025 MISSING_CASE(fb->modifier[0]);
12026 }
12027
12028 /*
12029 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12030 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12031 */
12032 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12033 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12034
12035 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12036 POSTING_READ(PLANE_SURF(pipe, 0));
12037 }
12038
12039 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12040 struct intel_flip_work *work)
12041 {
12042 struct drm_device *dev = intel_crtc->base.dev;
12043 struct drm_i915_private *dev_priv = to_i915(dev);
12044 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12045 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12046 u32 dspcntr;
12047
12048 dspcntr = I915_READ(reg);
12049
12050 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12051 dspcntr |= DISPPLANE_TILED;
12052 else
12053 dspcntr &= ~DISPPLANE_TILED;
12054
12055 I915_WRITE(reg, dspcntr);
12056
12057 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12058 POSTING_READ(DSPSURF(intel_crtc->plane));
12059 }
12060
12061 static void intel_mmio_flip_work_func(struct work_struct *w)
12062 {
12063 struct intel_flip_work *work =
12064 container_of(w, struct intel_flip_work, mmio_work);
12065 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12067 struct intel_framebuffer *intel_fb =
12068 to_intel_framebuffer(crtc->base.primary->fb);
12069 struct drm_i915_gem_object *obj = intel_fb->obj;
12070 struct reservation_object *resv;
12071
12072 if (work->flip_queued_req)
12073 WARN_ON(i915_wait_request(work->flip_queued_req,
12074 0, NULL, NO_WAITBOOST));
12075
12076 /* For framebuffer backed by dmabuf, wait for fence */
12077 resv = i915_gem_object_get_dmabuf_resv(obj);
12078 if (resv)
12079 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12080 MAX_SCHEDULE_TIMEOUT) < 0);
12081
12082 intel_pipe_update_start(crtc);
12083
12084 if (INTEL_GEN(dev_priv) >= 9)
12085 skl_do_mmio_flip(crtc, work->rotation, work);
12086 else
12087 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12088 ilk_do_mmio_flip(crtc, work);
12089
12090 intel_pipe_update_end(crtc, work);
12091 }
12092
12093 static int intel_default_queue_flip(struct drm_device *dev,
12094 struct drm_crtc *crtc,
12095 struct drm_framebuffer *fb,
12096 struct drm_i915_gem_object *obj,
12097 struct drm_i915_gem_request *req,
12098 uint32_t flags)
12099 {
12100 return -ENODEV;
12101 }
12102
12103 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12104 struct intel_crtc *intel_crtc,
12105 struct intel_flip_work *work)
12106 {
12107 u32 addr, vblank;
12108
12109 if (!atomic_read(&work->pending))
12110 return false;
12111
12112 smp_rmb();
12113
12114 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12115 if (work->flip_ready_vblank == 0) {
12116 if (work->flip_queued_req &&
12117 !i915_gem_request_completed(work->flip_queued_req))
12118 return false;
12119
12120 work->flip_ready_vblank = vblank;
12121 }
12122
12123 if (vblank - work->flip_ready_vblank < 3)
12124 return false;
12125
12126 /* Potential stall - if we see that the flip has happened,
12127 * assume a missed interrupt. */
12128 if (INTEL_GEN(dev_priv) >= 4)
12129 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12130 else
12131 addr = I915_READ(DSPADDR(intel_crtc->plane));
12132
12133 /* There is a potential issue here with a false positive after a flip
12134 * to the same address. We could address this by checking for a
12135 * non-incrementing frame counter.
12136 */
12137 return addr == work->gtt_offset;
12138 }
12139
12140 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12141 {
12142 struct drm_device *dev = &dev_priv->drm;
12143 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12145 struct intel_flip_work *work;
12146
12147 WARN_ON(!in_interrupt());
12148
12149 if (crtc == NULL)
12150 return;
12151
12152 spin_lock(&dev->event_lock);
12153 work = intel_crtc->flip_work;
12154
12155 if (work != NULL && !is_mmio_work(work) &&
12156 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12157 WARN_ONCE(1,
12158 "Kicking stuck page flip: queued at %d, now %d\n",
12159 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12160 page_flip_completed(intel_crtc);
12161 work = NULL;
12162 }
12163
12164 if (work != NULL && !is_mmio_work(work) &&
12165 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12166 intel_queue_rps_boost_for_request(work->flip_queued_req);
12167 spin_unlock(&dev->event_lock);
12168 }
12169
12170 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12171 struct drm_framebuffer *fb,
12172 struct drm_pending_vblank_event *event,
12173 uint32_t page_flip_flags)
12174 {
12175 struct drm_device *dev = crtc->dev;
12176 struct drm_i915_private *dev_priv = to_i915(dev);
12177 struct drm_framebuffer *old_fb = crtc->primary->fb;
12178 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12180 struct drm_plane *primary = crtc->primary;
12181 enum pipe pipe = intel_crtc->pipe;
12182 struct intel_flip_work *work;
12183 struct intel_engine_cs *engine;
12184 bool mmio_flip;
12185 struct drm_i915_gem_request *request;
12186 struct i915_vma *vma;
12187 int ret;
12188
12189 /*
12190 * drm_mode_page_flip_ioctl() should already catch this, but double
12191 * check to be safe. In the future we may enable pageflipping from
12192 * a disabled primary plane.
12193 */
12194 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12195 return -EBUSY;
12196
12197 /* Can't change pixel format via MI display flips. */
12198 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12199 return -EINVAL;
12200
12201 /*
12202 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12203 * Note that pitch changes could also affect these register.
12204 */
12205 if (INTEL_INFO(dev)->gen > 3 &&
12206 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12207 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12208 return -EINVAL;
12209
12210 if (i915_terminally_wedged(&dev_priv->gpu_error))
12211 goto out_hang;
12212
12213 work = kzalloc(sizeof(*work), GFP_KERNEL);
12214 if (work == NULL)
12215 return -ENOMEM;
12216
12217 work->event = event;
12218 work->crtc = crtc;
12219 work->old_fb = old_fb;
12220 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12221
12222 ret = drm_crtc_vblank_get(crtc);
12223 if (ret)
12224 goto free_work;
12225
12226 /* We borrow the event spin lock for protecting flip_work */
12227 spin_lock_irq(&dev->event_lock);
12228 if (intel_crtc->flip_work) {
12229 /* Before declaring the flip queue wedged, check if
12230 * the hardware completed the operation behind our backs.
12231 */
12232 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12233 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12234 page_flip_completed(intel_crtc);
12235 } else {
12236 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12237 spin_unlock_irq(&dev->event_lock);
12238
12239 drm_crtc_vblank_put(crtc);
12240 kfree(work);
12241 return -EBUSY;
12242 }
12243 }
12244 intel_crtc->flip_work = work;
12245 spin_unlock_irq(&dev->event_lock);
12246
12247 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12248 flush_workqueue(dev_priv->wq);
12249
12250 /* Reference the objects for the scheduled work. */
12251 drm_framebuffer_reference(work->old_fb);
12252
12253 crtc->primary->fb = fb;
12254 update_state_fb(crtc->primary);
12255
12256 work->pending_flip_obj = i915_gem_object_get(obj);
12257
12258 ret = i915_mutex_lock_interruptible(dev);
12259 if (ret)
12260 goto cleanup;
12261
12262 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12263 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12264 ret = -EIO;
12265 goto cleanup;
12266 }
12267
12268 atomic_inc(&intel_crtc->unpin_work_count);
12269
12270 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12271 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12272
12273 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12274 engine = dev_priv->engine[BCS];
12275 if (fb->modifier[0] != old_fb->modifier[0])
12276 /* vlv: DISPLAY_FLIP fails to change tiling */
12277 engine = NULL;
12278 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12279 engine = dev_priv->engine[BCS];
12280 } else if (INTEL_INFO(dev)->gen >= 7) {
12281 engine = i915_gem_active_get_engine(&obj->last_write,
12282 &obj->base.dev->struct_mutex);
12283 if (engine == NULL || engine->id != RCS)
12284 engine = dev_priv->engine[BCS];
12285 } else {
12286 engine = dev_priv->engine[RCS];
12287 }
12288
12289 mmio_flip = use_mmio_flip(engine, obj);
12290
12291 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12292 if (IS_ERR(vma)) {
12293 ret = PTR_ERR(vma);
12294 goto cleanup_pending;
12295 }
12296
12297 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12298 work->gtt_offset += intel_crtc->dspaddr_offset;
12299 work->rotation = crtc->primary->state->rotation;
12300
12301 /*
12302 * There's the potential that the next frame will not be compatible with
12303 * FBC, so we want to call pre_update() before the actual page flip.
12304 * The problem is that pre_update() caches some information about the fb
12305 * object, so we want to do this only after the object is pinned. Let's
12306 * be on the safe side and do this immediately before scheduling the
12307 * flip.
12308 */
12309 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12310 to_intel_plane_state(primary->state));
12311
12312 if (mmio_flip) {
12313 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12314
12315 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12316 &obj->base.dev->struct_mutex);
12317 queue_work(system_unbound_wq, &work->mmio_work);
12318 } else {
12319 request = i915_gem_request_alloc(engine, engine->last_context);
12320 if (IS_ERR(request)) {
12321 ret = PTR_ERR(request);
12322 goto cleanup_unpin;
12323 }
12324
12325 ret = i915_gem_request_await_object(request, obj, false);
12326 if (ret)
12327 goto cleanup_request;
12328
12329 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12330 page_flip_flags);
12331 if (ret)
12332 goto cleanup_request;
12333
12334 intel_mark_page_flip_active(intel_crtc, work);
12335
12336 work->flip_queued_req = i915_gem_request_get(request);
12337 i915_add_request_no_flush(request);
12338 }
12339
12340 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12341 to_intel_plane(primary)->frontbuffer_bit);
12342 mutex_unlock(&dev->struct_mutex);
12343
12344 intel_frontbuffer_flip_prepare(to_i915(dev),
12345 to_intel_plane(primary)->frontbuffer_bit);
12346
12347 trace_i915_flip_request(intel_crtc->plane, obj);
12348
12349 return 0;
12350
12351 cleanup_request:
12352 i915_add_request_no_flush(request);
12353 cleanup_unpin:
12354 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12355 cleanup_pending:
12356 atomic_dec(&intel_crtc->unpin_work_count);
12357 mutex_unlock(&dev->struct_mutex);
12358 cleanup:
12359 crtc->primary->fb = old_fb;
12360 update_state_fb(crtc->primary);
12361
12362 i915_gem_object_put_unlocked(obj);
12363 drm_framebuffer_unreference(work->old_fb);
12364
12365 spin_lock_irq(&dev->event_lock);
12366 intel_crtc->flip_work = NULL;
12367 spin_unlock_irq(&dev->event_lock);
12368
12369 drm_crtc_vblank_put(crtc);
12370 free_work:
12371 kfree(work);
12372
12373 if (ret == -EIO) {
12374 struct drm_atomic_state *state;
12375 struct drm_plane_state *plane_state;
12376
12377 out_hang:
12378 state = drm_atomic_state_alloc(dev);
12379 if (!state)
12380 return -ENOMEM;
12381 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12382
12383 retry:
12384 plane_state = drm_atomic_get_plane_state(state, primary);
12385 ret = PTR_ERR_OR_ZERO(plane_state);
12386 if (!ret) {
12387 drm_atomic_set_fb_for_plane(plane_state, fb);
12388
12389 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12390 if (!ret)
12391 ret = drm_atomic_commit(state);
12392 }
12393
12394 if (ret == -EDEADLK) {
12395 drm_modeset_backoff(state->acquire_ctx);
12396 drm_atomic_state_clear(state);
12397 goto retry;
12398 }
12399
12400 drm_atomic_state_put(state);
12401
12402 if (ret == 0 && event) {
12403 spin_lock_irq(&dev->event_lock);
12404 drm_crtc_send_vblank_event(crtc, event);
12405 spin_unlock_irq(&dev->event_lock);
12406 }
12407 }
12408 return ret;
12409 }
12410
12411
12412 /**
12413 * intel_wm_need_update - Check whether watermarks need updating
12414 * @plane: drm plane
12415 * @state: new plane state
12416 *
12417 * Check current plane state versus the new one to determine whether
12418 * watermarks need to be recalculated.
12419 *
12420 * Returns true or false.
12421 */
12422 static bool intel_wm_need_update(struct drm_plane *plane,
12423 struct drm_plane_state *state)
12424 {
12425 struct intel_plane_state *new = to_intel_plane_state(state);
12426 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12427
12428 /* Update watermarks on tiling or size changes. */
12429 if (new->base.visible != cur->base.visible)
12430 return true;
12431
12432 if (!cur->base.fb || !new->base.fb)
12433 return false;
12434
12435 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12436 cur->base.rotation != new->base.rotation ||
12437 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12438 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12439 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12440 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12441 return true;
12442
12443 return false;
12444 }
12445
12446 static bool needs_scaling(struct intel_plane_state *state)
12447 {
12448 int src_w = drm_rect_width(&state->base.src) >> 16;
12449 int src_h = drm_rect_height(&state->base.src) >> 16;
12450 int dst_w = drm_rect_width(&state->base.dst);
12451 int dst_h = drm_rect_height(&state->base.dst);
12452
12453 return (src_w != dst_w || src_h != dst_h);
12454 }
12455
12456 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12457 struct drm_plane_state *plane_state)
12458 {
12459 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12460 struct drm_crtc *crtc = crtc_state->crtc;
12461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12462 struct drm_plane *plane = plane_state->plane;
12463 struct drm_device *dev = crtc->dev;
12464 struct drm_i915_private *dev_priv = to_i915(dev);
12465 struct intel_plane_state *old_plane_state =
12466 to_intel_plane_state(plane->state);
12467 bool mode_changed = needs_modeset(crtc_state);
12468 bool was_crtc_enabled = crtc->state->active;
12469 bool is_crtc_enabled = crtc_state->active;
12470 bool turn_off, turn_on, visible, was_visible;
12471 struct drm_framebuffer *fb = plane_state->fb;
12472 int ret;
12473
12474 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12475 ret = skl_update_scaler_plane(
12476 to_intel_crtc_state(crtc_state),
12477 to_intel_plane_state(plane_state));
12478 if (ret)
12479 return ret;
12480 }
12481
12482 was_visible = old_plane_state->base.visible;
12483 visible = to_intel_plane_state(plane_state)->base.visible;
12484
12485 if (!was_crtc_enabled && WARN_ON(was_visible))
12486 was_visible = false;
12487
12488 /*
12489 * Visibility is calculated as if the crtc was on, but
12490 * after scaler setup everything depends on it being off
12491 * when the crtc isn't active.
12492 *
12493 * FIXME this is wrong for watermarks. Watermarks should also
12494 * be computed as if the pipe would be active. Perhaps move
12495 * per-plane wm computation to the .check_plane() hook, and
12496 * only combine the results from all planes in the current place?
12497 */
12498 if (!is_crtc_enabled)
12499 to_intel_plane_state(plane_state)->base.visible = visible = false;
12500
12501 if (!was_visible && !visible)
12502 return 0;
12503
12504 if (fb != old_plane_state->base.fb)
12505 pipe_config->fb_changed = true;
12506
12507 turn_off = was_visible && (!visible || mode_changed);
12508 turn_on = visible && (!was_visible || mode_changed);
12509
12510 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12511 intel_crtc->base.base.id,
12512 intel_crtc->base.name,
12513 plane->base.id, plane->name,
12514 fb ? fb->base.id : -1);
12515
12516 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12517 plane->base.id, plane->name,
12518 was_visible, visible,
12519 turn_off, turn_on, mode_changed);
12520
12521 if (turn_on) {
12522 pipe_config->update_wm_pre = true;
12523
12524 /* must disable cxsr around plane enable/disable */
12525 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12526 pipe_config->disable_cxsr = true;
12527 } else if (turn_off) {
12528 pipe_config->update_wm_post = true;
12529
12530 /* must disable cxsr around plane enable/disable */
12531 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12532 pipe_config->disable_cxsr = true;
12533 } else if (intel_wm_need_update(plane, plane_state)) {
12534 /* FIXME bollocks */
12535 pipe_config->update_wm_pre = true;
12536 pipe_config->update_wm_post = true;
12537 }
12538
12539 /* Pre-gen9 platforms need two-step watermark updates */
12540 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12541 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12542 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12543
12544 if (visible || was_visible)
12545 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12546
12547 /*
12548 * WaCxSRDisabledForSpriteScaling:ivb
12549 *
12550 * cstate->update_wm was already set above, so this flag will
12551 * take effect when we commit and program watermarks.
12552 */
12553 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12554 needs_scaling(to_intel_plane_state(plane_state)) &&
12555 !needs_scaling(old_plane_state))
12556 pipe_config->disable_lp_wm = true;
12557
12558 return 0;
12559 }
12560
12561 static bool encoders_cloneable(const struct intel_encoder *a,
12562 const struct intel_encoder *b)
12563 {
12564 /* masks could be asymmetric, so check both ways */
12565 return a == b || (a->cloneable & (1 << b->type) &&
12566 b->cloneable & (1 << a->type));
12567 }
12568
12569 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12570 struct intel_crtc *crtc,
12571 struct intel_encoder *encoder)
12572 {
12573 struct intel_encoder *source_encoder;
12574 struct drm_connector *connector;
12575 struct drm_connector_state *connector_state;
12576 int i;
12577
12578 for_each_connector_in_state(state, connector, connector_state, i) {
12579 if (connector_state->crtc != &crtc->base)
12580 continue;
12581
12582 source_encoder =
12583 to_intel_encoder(connector_state->best_encoder);
12584 if (!encoders_cloneable(encoder, source_encoder))
12585 return false;
12586 }
12587
12588 return true;
12589 }
12590
12591 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12592 struct drm_crtc_state *crtc_state)
12593 {
12594 struct drm_device *dev = crtc->dev;
12595 struct drm_i915_private *dev_priv = to_i915(dev);
12596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12597 struct intel_crtc_state *pipe_config =
12598 to_intel_crtc_state(crtc_state);
12599 struct drm_atomic_state *state = crtc_state->state;
12600 int ret;
12601 bool mode_changed = needs_modeset(crtc_state);
12602
12603 if (mode_changed && !crtc_state->active)
12604 pipe_config->update_wm_post = true;
12605
12606 if (mode_changed && crtc_state->enable &&
12607 dev_priv->display.crtc_compute_clock &&
12608 !WARN_ON(pipe_config->shared_dpll)) {
12609 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12610 pipe_config);
12611 if (ret)
12612 return ret;
12613 }
12614
12615 if (crtc_state->color_mgmt_changed) {
12616 ret = intel_color_check(crtc, crtc_state);
12617 if (ret)
12618 return ret;
12619
12620 /*
12621 * Changing color management on Intel hardware is
12622 * handled as part of planes update.
12623 */
12624 crtc_state->planes_changed = true;
12625 }
12626
12627 ret = 0;
12628 if (dev_priv->display.compute_pipe_wm) {
12629 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12630 if (ret) {
12631 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12632 return ret;
12633 }
12634 }
12635
12636 if (dev_priv->display.compute_intermediate_wm &&
12637 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12638 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12639 return 0;
12640
12641 /*
12642 * Calculate 'intermediate' watermarks that satisfy both the
12643 * old state and the new state. We can program these
12644 * immediately.
12645 */
12646 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12647 intel_crtc,
12648 pipe_config);
12649 if (ret) {
12650 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12651 return ret;
12652 }
12653 } else if (dev_priv->display.compute_intermediate_wm) {
12654 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12655 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12656 }
12657
12658 if (INTEL_INFO(dev)->gen >= 9) {
12659 if (mode_changed)
12660 ret = skl_update_scaler_crtc(pipe_config);
12661
12662 if (!ret)
12663 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12664 pipe_config);
12665 }
12666
12667 return ret;
12668 }
12669
12670 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12671 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12672 .atomic_begin = intel_begin_crtc_commit,
12673 .atomic_flush = intel_finish_crtc_commit,
12674 .atomic_check = intel_crtc_atomic_check,
12675 };
12676
12677 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12678 {
12679 struct intel_connector *connector;
12680
12681 for_each_intel_connector(dev, connector) {
12682 if (connector->base.state->crtc)
12683 drm_connector_unreference(&connector->base);
12684
12685 if (connector->base.encoder) {
12686 connector->base.state->best_encoder =
12687 connector->base.encoder;
12688 connector->base.state->crtc =
12689 connector->base.encoder->crtc;
12690
12691 drm_connector_reference(&connector->base);
12692 } else {
12693 connector->base.state->best_encoder = NULL;
12694 connector->base.state->crtc = NULL;
12695 }
12696 }
12697 }
12698
12699 static void
12700 connected_sink_compute_bpp(struct intel_connector *connector,
12701 struct intel_crtc_state *pipe_config)
12702 {
12703 const struct drm_display_info *info = &connector->base.display_info;
12704 int bpp = pipe_config->pipe_bpp;
12705
12706 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12707 connector->base.base.id,
12708 connector->base.name);
12709
12710 /* Don't use an invalid EDID bpc value */
12711 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12712 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12713 bpp, info->bpc * 3);
12714 pipe_config->pipe_bpp = info->bpc * 3;
12715 }
12716
12717 /* Clamp bpp to 8 on screens without EDID 1.4 */
12718 if (info->bpc == 0 && bpp > 24) {
12719 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12720 bpp);
12721 pipe_config->pipe_bpp = 24;
12722 }
12723 }
12724
12725 static int
12726 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12727 struct intel_crtc_state *pipe_config)
12728 {
12729 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12730 struct drm_atomic_state *state;
12731 struct drm_connector *connector;
12732 struct drm_connector_state *connector_state;
12733 int bpp, i;
12734
12735 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12736 IS_CHERRYVIEW(dev_priv)))
12737 bpp = 10*3;
12738 else if (INTEL_GEN(dev_priv) >= 5)
12739 bpp = 12*3;
12740 else
12741 bpp = 8*3;
12742
12743
12744 pipe_config->pipe_bpp = bpp;
12745
12746 state = pipe_config->base.state;
12747
12748 /* Clamp display bpp to EDID value */
12749 for_each_connector_in_state(state, connector, connector_state, i) {
12750 if (connector_state->crtc != &crtc->base)
12751 continue;
12752
12753 connected_sink_compute_bpp(to_intel_connector(connector),
12754 pipe_config);
12755 }
12756
12757 return bpp;
12758 }
12759
12760 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12761 {
12762 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12763 "type: 0x%x flags: 0x%x\n",
12764 mode->crtc_clock,
12765 mode->crtc_hdisplay, mode->crtc_hsync_start,
12766 mode->crtc_hsync_end, mode->crtc_htotal,
12767 mode->crtc_vdisplay, mode->crtc_vsync_start,
12768 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12769 }
12770
12771 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12772 struct intel_crtc_state *pipe_config,
12773 const char *context)
12774 {
12775 struct drm_device *dev = crtc->base.dev;
12776 struct drm_i915_private *dev_priv = to_i915(dev);
12777 struct drm_plane *plane;
12778 struct intel_plane *intel_plane;
12779 struct intel_plane_state *state;
12780 struct drm_framebuffer *fb;
12781
12782 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12783 crtc->base.base.id, crtc->base.name,
12784 context, pipe_config, pipe_name(crtc->pipe));
12785
12786 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12787 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12788 pipe_config->pipe_bpp, pipe_config->dither);
12789 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12790 pipe_config->has_pch_encoder,
12791 pipe_config->fdi_lanes,
12792 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12793 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12794 pipe_config->fdi_m_n.tu);
12795 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12796 intel_crtc_has_dp_encoder(pipe_config),
12797 pipe_config->lane_count,
12798 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12799 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12800 pipe_config->dp_m_n.tu);
12801
12802 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12803 intel_crtc_has_dp_encoder(pipe_config),
12804 pipe_config->lane_count,
12805 pipe_config->dp_m2_n2.gmch_m,
12806 pipe_config->dp_m2_n2.gmch_n,
12807 pipe_config->dp_m2_n2.link_m,
12808 pipe_config->dp_m2_n2.link_n,
12809 pipe_config->dp_m2_n2.tu);
12810
12811 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12812 pipe_config->has_audio,
12813 pipe_config->has_infoframe);
12814
12815 DRM_DEBUG_KMS("requested mode:\n");
12816 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12817 DRM_DEBUG_KMS("adjusted mode:\n");
12818 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12819 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12820 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12821 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12822 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12823 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12824 crtc->num_scalers,
12825 pipe_config->scaler_state.scaler_users,
12826 pipe_config->scaler_state.scaler_id);
12827 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12828 pipe_config->gmch_pfit.control,
12829 pipe_config->gmch_pfit.pgm_ratios,
12830 pipe_config->gmch_pfit.lvds_border_bits);
12831 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12832 pipe_config->pch_pfit.pos,
12833 pipe_config->pch_pfit.size,
12834 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12835 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12836 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12837
12838 if (IS_BROXTON(dev_priv)) {
12839 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12840 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12841 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12842 pipe_config->dpll_hw_state.ebb0,
12843 pipe_config->dpll_hw_state.ebb4,
12844 pipe_config->dpll_hw_state.pll0,
12845 pipe_config->dpll_hw_state.pll1,
12846 pipe_config->dpll_hw_state.pll2,
12847 pipe_config->dpll_hw_state.pll3,
12848 pipe_config->dpll_hw_state.pll6,
12849 pipe_config->dpll_hw_state.pll8,
12850 pipe_config->dpll_hw_state.pll9,
12851 pipe_config->dpll_hw_state.pll10,
12852 pipe_config->dpll_hw_state.pcsdw12);
12853 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12854 DRM_DEBUG_KMS("dpll_hw_state: "
12855 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12856 pipe_config->dpll_hw_state.ctrl1,
12857 pipe_config->dpll_hw_state.cfgcr1,
12858 pipe_config->dpll_hw_state.cfgcr2);
12859 } else if (HAS_DDI(dev_priv)) {
12860 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12861 pipe_config->dpll_hw_state.wrpll,
12862 pipe_config->dpll_hw_state.spll);
12863 } else {
12864 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12865 "fp0: 0x%x, fp1: 0x%x\n",
12866 pipe_config->dpll_hw_state.dpll,
12867 pipe_config->dpll_hw_state.dpll_md,
12868 pipe_config->dpll_hw_state.fp0,
12869 pipe_config->dpll_hw_state.fp1);
12870 }
12871
12872 DRM_DEBUG_KMS("planes on this crtc\n");
12873 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12874 char *format_name;
12875 intel_plane = to_intel_plane(plane);
12876 if (intel_plane->pipe != crtc->pipe)
12877 continue;
12878
12879 state = to_intel_plane_state(plane->state);
12880 fb = state->base.fb;
12881 if (!fb) {
12882 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12883 plane->base.id, plane->name, state->scaler_id);
12884 continue;
12885 }
12886
12887 format_name = drm_get_format_name(fb->pixel_format);
12888
12889 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12890 plane->base.id, plane->name);
12891 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12892 fb->base.id, fb->width, fb->height, format_name);
12893 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12894 state->scaler_id,
12895 state->base.src.x1 >> 16,
12896 state->base.src.y1 >> 16,
12897 drm_rect_width(&state->base.src) >> 16,
12898 drm_rect_height(&state->base.src) >> 16,
12899 state->base.dst.x1, state->base.dst.y1,
12900 drm_rect_width(&state->base.dst),
12901 drm_rect_height(&state->base.dst));
12902
12903 kfree(format_name);
12904 }
12905 }
12906
12907 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12908 {
12909 struct drm_device *dev = state->dev;
12910 struct drm_connector *connector;
12911 unsigned int used_ports = 0;
12912 unsigned int used_mst_ports = 0;
12913
12914 /*
12915 * Walk the connector list instead of the encoder
12916 * list to detect the problem on ddi platforms
12917 * where there's just one encoder per digital port.
12918 */
12919 drm_for_each_connector(connector, dev) {
12920 struct drm_connector_state *connector_state;
12921 struct intel_encoder *encoder;
12922
12923 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12924 if (!connector_state)
12925 connector_state = connector->state;
12926
12927 if (!connector_state->best_encoder)
12928 continue;
12929
12930 encoder = to_intel_encoder(connector_state->best_encoder);
12931
12932 WARN_ON(!connector_state->crtc);
12933
12934 switch (encoder->type) {
12935 unsigned int port_mask;
12936 case INTEL_OUTPUT_UNKNOWN:
12937 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12938 break;
12939 case INTEL_OUTPUT_DP:
12940 case INTEL_OUTPUT_HDMI:
12941 case INTEL_OUTPUT_EDP:
12942 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12943
12944 /* the same port mustn't appear more than once */
12945 if (used_ports & port_mask)
12946 return false;
12947
12948 used_ports |= port_mask;
12949 break;
12950 case INTEL_OUTPUT_DP_MST:
12951 used_mst_ports |=
12952 1 << enc_to_mst(&encoder->base)->primary->port;
12953 break;
12954 default:
12955 break;
12956 }
12957 }
12958
12959 /* can't mix MST and SST/HDMI on the same port */
12960 if (used_ports & used_mst_ports)
12961 return false;
12962
12963 return true;
12964 }
12965
12966 static void
12967 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12968 {
12969 struct drm_crtc_state tmp_state;
12970 struct intel_crtc_scaler_state scaler_state;
12971 struct intel_dpll_hw_state dpll_hw_state;
12972 struct intel_shared_dpll *shared_dpll;
12973 bool force_thru;
12974
12975 /* FIXME: before the switch to atomic started, a new pipe_config was
12976 * kzalloc'd. Code that depends on any field being zero should be
12977 * fixed, so that the crtc_state can be safely duplicated. For now,
12978 * only fields that are know to not cause problems are preserved. */
12979
12980 tmp_state = crtc_state->base;
12981 scaler_state = crtc_state->scaler_state;
12982 shared_dpll = crtc_state->shared_dpll;
12983 dpll_hw_state = crtc_state->dpll_hw_state;
12984 force_thru = crtc_state->pch_pfit.force_thru;
12985
12986 memset(crtc_state, 0, sizeof *crtc_state);
12987
12988 crtc_state->base = tmp_state;
12989 crtc_state->scaler_state = scaler_state;
12990 crtc_state->shared_dpll = shared_dpll;
12991 crtc_state->dpll_hw_state = dpll_hw_state;
12992 crtc_state->pch_pfit.force_thru = force_thru;
12993 }
12994
12995 static int
12996 intel_modeset_pipe_config(struct drm_crtc *crtc,
12997 struct intel_crtc_state *pipe_config)
12998 {
12999 struct drm_atomic_state *state = pipe_config->base.state;
13000 struct intel_encoder *encoder;
13001 struct drm_connector *connector;
13002 struct drm_connector_state *connector_state;
13003 int base_bpp, ret = -EINVAL;
13004 int i;
13005 bool retry = true;
13006
13007 clear_intel_crtc_state(pipe_config);
13008
13009 pipe_config->cpu_transcoder =
13010 (enum transcoder) to_intel_crtc(crtc)->pipe;
13011
13012 /*
13013 * Sanitize sync polarity flags based on requested ones. If neither
13014 * positive or negative polarity is requested, treat this as meaning
13015 * negative polarity.
13016 */
13017 if (!(pipe_config->base.adjusted_mode.flags &
13018 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13019 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13020
13021 if (!(pipe_config->base.adjusted_mode.flags &
13022 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13023 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13024
13025 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13026 pipe_config);
13027 if (base_bpp < 0)
13028 goto fail;
13029
13030 /*
13031 * Determine the real pipe dimensions. Note that stereo modes can
13032 * increase the actual pipe size due to the frame doubling and
13033 * insertion of additional space for blanks between the frame. This
13034 * is stored in the crtc timings. We use the requested mode to do this
13035 * computation to clearly distinguish it from the adjusted mode, which
13036 * can be changed by the connectors in the below retry loop.
13037 */
13038 drm_crtc_get_hv_timing(&pipe_config->base.mode,
13039 &pipe_config->pipe_src_w,
13040 &pipe_config->pipe_src_h);
13041
13042 for_each_connector_in_state(state, connector, connector_state, i) {
13043 if (connector_state->crtc != crtc)
13044 continue;
13045
13046 encoder = to_intel_encoder(connector_state->best_encoder);
13047
13048 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13049 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13050 goto fail;
13051 }
13052
13053 /*
13054 * Determine output_types before calling the .compute_config()
13055 * hooks so that the hooks can use this information safely.
13056 */
13057 pipe_config->output_types |= 1 << encoder->type;
13058 }
13059
13060 encoder_retry:
13061 /* Ensure the port clock defaults are reset when retrying. */
13062 pipe_config->port_clock = 0;
13063 pipe_config->pixel_multiplier = 1;
13064
13065 /* Fill in default crtc timings, allow encoders to overwrite them. */
13066 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13067 CRTC_STEREO_DOUBLE);
13068
13069 /* Pass our mode to the connectors and the CRTC to give them a chance to
13070 * adjust it according to limitations or connector properties, and also
13071 * a chance to reject the mode entirely.
13072 */
13073 for_each_connector_in_state(state, connector, connector_state, i) {
13074 if (connector_state->crtc != crtc)
13075 continue;
13076
13077 encoder = to_intel_encoder(connector_state->best_encoder);
13078
13079 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13080 DRM_DEBUG_KMS("Encoder config failure\n");
13081 goto fail;
13082 }
13083 }
13084
13085 /* Set default port clock if not overwritten by the encoder. Needs to be
13086 * done afterwards in case the encoder adjusts the mode. */
13087 if (!pipe_config->port_clock)
13088 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13089 * pipe_config->pixel_multiplier;
13090
13091 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13092 if (ret < 0) {
13093 DRM_DEBUG_KMS("CRTC fixup failed\n");
13094 goto fail;
13095 }
13096
13097 if (ret == RETRY) {
13098 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13099 ret = -EINVAL;
13100 goto fail;
13101 }
13102
13103 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13104 retry = false;
13105 goto encoder_retry;
13106 }
13107
13108 /* Dithering seems to not pass-through bits correctly when it should, so
13109 * only enable it on 6bpc panels. */
13110 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13111 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13112 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13113
13114 fail:
13115 return ret;
13116 }
13117
13118 static void
13119 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13120 {
13121 struct drm_crtc *crtc;
13122 struct drm_crtc_state *crtc_state;
13123 int i;
13124
13125 /* Double check state. */
13126 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13127 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13128
13129 /* Update hwmode for vblank functions */
13130 if (crtc->state->active)
13131 crtc->hwmode = crtc->state->adjusted_mode;
13132 else
13133 crtc->hwmode.crtc_clock = 0;
13134
13135 /*
13136 * Update legacy state to satisfy fbc code. This can
13137 * be removed when fbc uses the atomic state.
13138 */
13139 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13140 struct drm_plane_state *plane_state = crtc->primary->state;
13141
13142 crtc->primary->fb = plane_state->fb;
13143 crtc->x = plane_state->src_x >> 16;
13144 crtc->y = plane_state->src_y >> 16;
13145 }
13146 }
13147 }
13148
13149 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13150 {
13151 int diff;
13152
13153 if (clock1 == clock2)
13154 return true;
13155
13156 if (!clock1 || !clock2)
13157 return false;
13158
13159 diff = abs(clock1 - clock2);
13160
13161 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13162 return true;
13163
13164 return false;
13165 }
13166
13167 static bool
13168 intel_compare_m_n(unsigned int m, unsigned int n,
13169 unsigned int m2, unsigned int n2,
13170 bool exact)
13171 {
13172 if (m == m2 && n == n2)
13173 return true;
13174
13175 if (exact || !m || !n || !m2 || !n2)
13176 return false;
13177
13178 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13179
13180 if (n > n2) {
13181 while (n > n2) {
13182 m2 <<= 1;
13183 n2 <<= 1;
13184 }
13185 } else if (n < n2) {
13186 while (n < n2) {
13187 m <<= 1;
13188 n <<= 1;
13189 }
13190 }
13191
13192 if (n != n2)
13193 return false;
13194
13195 return intel_fuzzy_clock_check(m, m2);
13196 }
13197
13198 static bool
13199 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13200 struct intel_link_m_n *m2_n2,
13201 bool adjust)
13202 {
13203 if (m_n->tu == m2_n2->tu &&
13204 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13205 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13206 intel_compare_m_n(m_n->link_m, m_n->link_n,
13207 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13208 if (adjust)
13209 *m2_n2 = *m_n;
13210
13211 return true;
13212 }
13213
13214 return false;
13215 }
13216
13217 static bool
13218 intel_pipe_config_compare(struct drm_device *dev,
13219 struct intel_crtc_state *current_config,
13220 struct intel_crtc_state *pipe_config,
13221 bool adjust)
13222 {
13223 struct drm_i915_private *dev_priv = to_i915(dev);
13224 bool ret = true;
13225
13226 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13227 do { \
13228 if (!adjust) \
13229 DRM_ERROR(fmt, ##__VA_ARGS__); \
13230 else \
13231 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13232 } while (0)
13233
13234 #define PIPE_CONF_CHECK_X(name) \
13235 if (current_config->name != pipe_config->name) { \
13236 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13237 "(expected 0x%08x, found 0x%08x)\n", \
13238 current_config->name, \
13239 pipe_config->name); \
13240 ret = false; \
13241 }
13242
13243 #define PIPE_CONF_CHECK_I(name) \
13244 if (current_config->name != pipe_config->name) { \
13245 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13246 "(expected %i, found %i)\n", \
13247 current_config->name, \
13248 pipe_config->name); \
13249 ret = false; \
13250 }
13251
13252 #define PIPE_CONF_CHECK_P(name) \
13253 if (current_config->name != pipe_config->name) { \
13254 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13255 "(expected %p, found %p)\n", \
13256 current_config->name, \
13257 pipe_config->name); \
13258 ret = false; \
13259 }
13260
13261 #define PIPE_CONF_CHECK_M_N(name) \
13262 if (!intel_compare_link_m_n(&current_config->name, \
13263 &pipe_config->name,\
13264 adjust)) { \
13265 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13266 "(expected tu %i gmch %i/%i link %i/%i, " \
13267 "found tu %i, gmch %i/%i link %i/%i)\n", \
13268 current_config->name.tu, \
13269 current_config->name.gmch_m, \
13270 current_config->name.gmch_n, \
13271 current_config->name.link_m, \
13272 current_config->name.link_n, \
13273 pipe_config->name.tu, \
13274 pipe_config->name.gmch_m, \
13275 pipe_config->name.gmch_n, \
13276 pipe_config->name.link_m, \
13277 pipe_config->name.link_n); \
13278 ret = false; \
13279 }
13280
13281 /* This is required for BDW+ where there is only one set of registers for
13282 * switching between high and low RR.
13283 * This macro can be used whenever a comparison has to be made between one
13284 * hw state and multiple sw state variables.
13285 */
13286 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13287 if (!intel_compare_link_m_n(&current_config->name, \
13288 &pipe_config->name, adjust) && \
13289 !intel_compare_link_m_n(&current_config->alt_name, \
13290 &pipe_config->name, adjust)) { \
13291 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13292 "(expected tu %i gmch %i/%i link %i/%i, " \
13293 "or tu %i gmch %i/%i link %i/%i, " \
13294 "found tu %i, gmch %i/%i link %i/%i)\n", \
13295 current_config->name.tu, \
13296 current_config->name.gmch_m, \
13297 current_config->name.gmch_n, \
13298 current_config->name.link_m, \
13299 current_config->name.link_n, \
13300 current_config->alt_name.tu, \
13301 current_config->alt_name.gmch_m, \
13302 current_config->alt_name.gmch_n, \
13303 current_config->alt_name.link_m, \
13304 current_config->alt_name.link_n, \
13305 pipe_config->name.tu, \
13306 pipe_config->name.gmch_m, \
13307 pipe_config->name.gmch_n, \
13308 pipe_config->name.link_m, \
13309 pipe_config->name.link_n); \
13310 ret = false; \
13311 }
13312
13313 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13314 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13315 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13316 "(expected %i, found %i)\n", \
13317 current_config->name & (mask), \
13318 pipe_config->name & (mask)); \
13319 ret = false; \
13320 }
13321
13322 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13323 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13324 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13325 "(expected %i, found %i)\n", \
13326 current_config->name, \
13327 pipe_config->name); \
13328 ret = false; \
13329 }
13330
13331 #define PIPE_CONF_QUIRK(quirk) \
13332 ((current_config->quirks | pipe_config->quirks) & (quirk))
13333
13334 PIPE_CONF_CHECK_I(cpu_transcoder);
13335
13336 PIPE_CONF_CHECK_I(has_pch_encoder);
13337 PIPE_CONF_CHECK_I(fdi_lanes);
13338 PIPE_CONF_CHECK_M_N(fdi_m_n);
13339
13340 PIPE_CONF_CHECK_I(lane_count);
13341 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13342
13343 if (INTEL_INFO(dev)->gen < 8) {
13344 PIPE_CONF_CHECK_M_N(dp_m_n);
13345
13346 if (current_config->has_drrs)
13347 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13348 } else
13349 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13350
13351 PIPE_CONF_CHECK_X(output_types);
13352
13353 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13354 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13355 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13356 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13357 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13358 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13359
13360 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13361 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13362 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13363 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13364 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13365 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13366
13367 PIPE_CONF_CHECK_I(pixel_multiplier);
13368 PIPE_CONF_CHECK_I(has_hdmi_sink);
13369 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13370 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13371 PIPE_CONF_CHECK_I(limited_color_range);
13372 PIPE_CONF_CHECK_I(has_infoframe);
13373
13374 PIPE_CONF_CHECK_I(has_audio);
13375
13376 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13377 DRM_MODE_FLAG_INTERLACE);
13378
13379 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13380 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13381 DRM_MODE_FLAG_PHSYNC);
13382 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13383 DRM_MODE_FLAG_NHSYNC);
13384 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13385 DRM_MODE_FLAG_PVSYNC);
13386 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13387 DRM_MODE_FLAG_NVSYNC);
13388 }
13389
13390 PIPE_CONF_CHECK_X(gmch_pfit.control);
13391 /* pfit ratios are autocomputed by the hw on gen4+ */
13392 if (INTEL_INFO(dev)->gen < 4)
13393 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13394 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13395
13396 if (!adjust) {
13397 PIPE_CONF_CHECK_I(pipe_src_w);
13398 PIPE_CONF_CHECK_I(pipe_src_h);
13399
13400 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13401 if (current_config->pch_pfit.enabled) {
13402 PIPE_CONF_CHECK_X(pch_pfit.pos);
13403 PIPE_CONF_CHECK_X(pch_pfit.size);
13404 }
13405
13406 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13407 }
13408
13409 /* BDW+ don't expose a synchronous way to read the state */
13410 if (IS_HASWELL(dev_priv))
13411 PIPE_CONF_CHECK_I(ips_enabled);
13412
13413 PIPE_CONF_CHECK_I(double_wide);
13414
13415 PIPE_CONF_CHECK_P(shared_dpll);
13416 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13417 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13418 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13419 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13420 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13421 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13422 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13423 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13424 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13425
13426 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13427 PIPE_CONF_CHECK_X(dsi_pll.div);
13428
13429 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13430 PIPE_CONF_CHECK_I(pipe_bpp);
13431
13432 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13433 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13434
13435 #undef PIPE_CONF_CHECK_X
13436 #undef PIPE_CONF_CHECK_I
13437 #undef PIPE_CONF_CHECK_P
13438 #undef PIPE_CONF_CHECK_FLAGS
13439 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13440 #undef PIPE_CONF_QUIRK
13441 #undef INTEL_ERR_OR_DBG_KMS
13442
13443 return ret;
13444 }
13445
13446 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13447 const struct intel_crtc_state *pipe_config)
13448 {
13449 if (pipe_config->has_pch_encoder) {
13450 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13451 &pipe_config->fdi_m_n);
13452 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13453
13454 /*
13455 * FDI already provided one idea for the dotclock.
13456 * Yell if the encoder disagrees.
13457 */
13458 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13459 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13460 fdi_dotclock, dotclock);
13461 }
13462 }
13463
13464 static void verify_wm_state(struct drm_crtc *crtc,
13465 struct drm_crtc_state *new_state)
13466 {
13467 struct drm_device *dev = crtc->dev;
13468 struct drm_i915_private *dev_priv = to_i915(dev);
13469 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13470 struct skl_pipe_wm hw_wm, *sw_wm;
13471 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13472 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13474 const enum pipe pipe = intel_crtc->pipe;
13475 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13476
13477 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13478 return;
13479
13480 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13481 sw_wm = &intel_crtc->wm.active.skl;
13482
13483 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13484 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13485
13486 /* planes */
13487 for_each_plane(dev_priv, pipe, plane) {
13488 hw_plane_wm = &hw_wm.planes[plane];
13489 sw_plane_wm = &sw_wm->planes[plane];
13490
13491 /* Watermarks */
13492 for (level = 0; level <= max_level; level++) {
13493 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13494 &sw_plane_wm->wm[level]))
13495 continue;
13496
13497 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13498 pipe_name(pipe), plane + 1, level,
13499 sw_plane_wm->wm[level].plane_en,
13500 sw_plane_wm->wm[level].plane_res_b,
13501 sw_plane_wm->wm[level].plane_res_l,
13502 hw_plane_wm->wm[level].plane_en,
13503 hw_plane_wm->wm[level].plane_res_b,
13504 hw_plane_wm->wm[level].plane_res_l);
13505 }
13506
13507 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13508 &sw_plane_wm->trans_wm)) {
13509 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13510 pipe_name(pipe), plane + 1,
13511 sw_plane_wm->trans_wm.plane_en,
13512 sw_plane_wm->trans_wm.plane_res_b,
13513 sw_plane_wm->trans_wm.plane_res_l,
13514 hw_plane_wm->trans_wm.plane_en,
13515 hw_plane_wm->trans_wm.plane_res_b,
13516 hw_plane_wm->trans_wm.plane_res_l);
13517 }
13518
13519 /* DDB */
13520 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13521 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13522
13523 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13524 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13525 pipe_name(pipe), plane + 1,
13526 sw_ddb_entry->start, sw_ddb_entry->end,
13527 hw_ddb_entry->start, hw_ddb_entry->end);
13528 }
13529 }
13530
13531 /*
13532 * cursor
13533 * If the cursor plane isn't active, we may not have updated it's ddb
13534 * allocation. In that case since the ddb allocation will be updated
13535 * once the plane becomes visible, we can skip this check
13536 */
13537 if (intel_crtc->cursor_addr) {
13538 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13539 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13540
13541 /* Watermarks */
13542 for (level = 0; level <= max_level; level++) {
13543 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13544 &sw_plane_wm->wm[level]))
13545 continue;
13546
13547 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13548 pipe_name(pipe), level,
13549 sw_plane_wm->wm[level].plane_en,
13550 sw_plane_wm->wm[level].plane_res_b,
13551 sw_plane_wm->wm[level].plane_res_l,
13552 hw_plane_wm->wm[level].plane_en,
13553 hw_plane_wm->wm[level].plane_res_b,
13554 hw_plane_wm->wm[level].plane_res_l);
13555 }
13556
13557 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13558 &sw_plane_wm->trans_wm)) {
13559 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13560 pipe_name(pipe),
13561 sw_plane_wm->trans_wm.plane_en,
13562 sw_plane_wm->trans_wm.plane_res_b,
13563 sw_plane_wm->trans_wm.plane_res_l,
13564 hw_plane_wm->trans_wm.plane_en,
13565 hw_plane_wm->trans_wm.plane_res_b,
13566 hw_plane_wm->trans_wm.plane_res_l);
13567 }
13568
13569 /* DDB */
13570 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13571 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13572
13573 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13574 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13575 pipe_name(pipe),
13576 sw_ddb_entry->start, sw_ddb_entry->end,
13577 hw_ddb_entry->start, hw_ddb_entry->end);
13578 }
13579 }
13580 }
13581
13582 static void
13583 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13584 {
13585 struct drm_connector *connector;
13586
13587 drm_for_each_connector(connector, dev) {
13588 struct drm_encoder *encoder = connector->encoder;
13589 struct drm_connector_state *state = connector->state;
13590
13591 if (state->crtc != crtc)
13592 continue;
13593
13594 intel_connector_verify_state(to_intel_connector(connector));
13595
13596 I915_STATE_WARN(state->best_encoder != encoder,
13597 "connector's atomic encoder doesn't match legacy encoder\n");
13598 }
13599 }
13600
13601 static void
13602 verify_encoder_state(struct drm_device *dev)
13603 {
13604 struct intel_encoder *encoder;
13605 struct intel_connector *connector;
13606
13607 for_each_intel_encoder(dev, encoder) {
13608 bool enabled = false;
13609 enum pipe pipe;
13610
13611 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13612 encoder->base.base.id,
13613 encoder->base.name);
13614
13615 for_each_intel_connector(dev, connector) {
13616 if (connector->base.state->best_encoder != &encoder->base)
13617 continue;
13618 enabled = true;
13619
13620 I915_STATE_WARN(connector->base.state->crtc !=
13621 encoder->base.crtc,
13622 "connector's crtc doesn't match encoder crtc\n");
13623 }
13624
13625 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13626 "encoder's enabled state mismatch "
13627 "(expected %i, found %i)\n",
13628 !!encoder->base.crtc, enabled);
13629
13630 if (!encoder->base.crtc) {
13631 bool active;
13632
13633 active = encoder->get_hw_state(encoder, &pipe);
13634 I915_STATE_WARN(active,
13635 "encoder detached but still enabled on pipe %c.\n",
13636 pipe_name(pipe));
13637 }
13638 }
13639 }
13640
13641 static void
13642 verify_crtc_state(struct drm_crtc *crtc,
13643 struct drm_crtc_state *old_crtc_state,
13644 struct drm_crtc_state *new_crtc_state)
13645 {
13646 struct drm_device *dev = crtc->dev;
13647 struct drm_i915_private *dev_priv = to_i915(dev);
13648 struct intel_encoder *encoder;
13649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13650 struct intel_crtc_state *pipe_config, *sw_config;
13651 struct drm_atomic_state *old_state;
13652 bool active;
13653
13654 old_state = old_crtc_state->state;
13655 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13656 pipe_config = to_intel_crtc_state(old_crtc_state);
13657 memset(pipe_config, 0, sizeof(*pipe_config));
13658 pipe_config->base.crtc = crtc;
13659 pipe_config->base.state = old_state;
13660
13661 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13662
13663 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13664
13665 /* hw state is inconsistent with the pipe quirk */
13666 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13667 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13668 active = new_crtc_state->active;
13669
13670 I915_STATE_WARN(new_crtc_state->active != active,
13671 "crtc active state doesn't match with hw state "
13672 "(expected %i, found %i)\n", new_crtc_state->active, active);
13673
13674 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13675 "transitional active state does not match atomic hw state "
13676 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13677
13678 for_each_encoder_on_crtc(dev, crtc, encoder) {
13679 enum pipe pipe;
13680
13681 active = encoder->get_hw_state(encoder, &pipe);
13682 I915_STATE_WARN(active != new_crtc_state->active,
13683 "[ENCODER:%i] active %i with crtc active %i\n",
13684 encoder->base.base.id, active, new_crtc_state->active);
13685
13686 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13687 "Encoder connected to wrong pipe %c\n",
13688 pipe_name(pipe));
13689
13690 if (active) {
13691 pipe_config->output_types |= 1 << encoder->type;
13692 encoder->get_config(encoder, pipe_config);
13693 }
13694 }
13695
13696 if (!new_crtc_state->active)
13697 return;
13698
13699 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13700
13701 sw_config = to_intel_crtc_state(crtc->state);
13702 if (!intel_pipe_config_compare(dev, sw_config,
13703 pipe_config, false)) {
13704 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13705 intel_dump_pipe_config(intel_crtc, pipe_config,
13706 "[hw state]");
13707 intel_dump_pipe_config(intel_crtc, sw_config,
13708 "[sw state]");
13709 }
13710 }
13711
13712 static void
13713 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13714 struct intel_shared_dpll *pll,
13715 struct drm_crtc *crtc,
13716 struct drm_crtc_state *new_state)
13717 {
13718 struct intel_dpll_hw_state dpll_hw_state;
13719 unsigned crtc_mask;
13720 bool active;
13721
13722 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13723
13724 DRM_DEBUG_KMS("%s\n", pll->name);
13725
13726 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13727
13728 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13729 I915_STATE_WARN(!pll->on && pll->active_mask,
13730 "pll in active use but not on in sw tracking\n");
13731 I915_STATE_WARN(pll->on && !pll->active_mask,
13732 "pll is on but not used by any active crtc\n");
13733 I915_STATE_WARN(pll->on != active,
13734 "pll on state mismatch (expected %i, found %i)\n",
13735 pll->on, active);
13736 }
13737
13738 if (!crtc) {
13739 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13740 "more active pll users than references: %x vs %x\n",
13741 pll->active_mask, pll->config.crtc_mask);
13742
13743 return;
13744 }
13745
13746 crtc_mask = 1 << drm_crtc_index(crtc);
13747
13748 if (new_state->active)
13749 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13750 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13751 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13752 else
13753 I915_STATE_WARN(pll->active_mask & crtc_mask,
13754 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13755 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13756
13757 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13758 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13759 crtc_mask, pll->config.crtc_mask);
13760
13761 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13762 &dpll_hw_state,
13763 sizeof(dpll_hw_state)),
13764 "pll hw state mismatch\n");
13765 }
13766
13767 static void
13768 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13769 struct drm_crtc_state *old_crtc_state,
13770 struct drm_crtc_state *new_crtc_state)
13771 {
13772 struct drm_i915_private *dev_priv = to_i915(dev);
13773 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13774 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13775
13776 if (new_state->shared_dpll)
13777 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13778
13779 if (old_state->shared_dpll &&
13780 old_state->shared_dpll != new_state->shared_dpll) {
13781 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13782 struct intel_shared_dpll *pll = old_state->shared_dpll;
13783
13784 I915_STATE_WARN(pll->active_mask & crtc_mask,
13785 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13786 pipe_name(drm_crtc_index(crtc)));
13787 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13788 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13789 pipe_name(drm_crtc_index(crtc)));
13790 }
13791 }
13792
13793 static void
13794 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13795 struct drm_crtc_state *old_state,
13796 struct drm_crtc_state *new_state)
13797 {
13798 if (!needs_modeset(new_state) &&
13799 !to_intel_crtc_state(new_state)->update_pipe)
13800 return;
13801
13802 verify_wm_state(crtc, new_state);
13803 verify_connector_state(crtc->dev, crtc);
13804 verify_crtc_state(crtc, old_state, new_state);
13805 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13806 }
13807
13808 static void
13809 verify_disabled_dpll_state(struct drm_device *dev)
13810 {
13811 struct drm_i915_private *dev_priv = to_i915(dev);
13812 int i;
13813
13814 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13815 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13816 }
13817
13818 static void
13819 intel_modeset_verify_disabled(struct drm_device *dev)
13820 {
13821 verify_encoder_state(dev);
13822 verify_connector_state(dev, NULL);
13823 verify_disabled_dpll_state(dev);
13824 }
13825
13826 static void update_scanline_offset(struct intel_crtc *crtc)
13827 {
13828 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13829
13830 /*
13831 * The scanline counter increments at the leading edge of hsync.
13832 *
13833 * On most platforms it starts counting from vtotal-1 on the
13834 * first active line. That means the scanline counter value is
13835 * always one less than what we would expect. Ie. just after
13836 * start of vblank, which also occurs at start of hsync (on the
13837 * last active line), the scanline counter will read vblank_start-1.
13838 *
13839 * On gen2 the scanline counter starts counting from 1 instead
13840 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13841 * to keep the value positive), instead of adding one.
13842 *
13843 * On HSW+ the behaviour of the scanline counter depends on the output
13844 * type. For DP ports it behaves like most other platforms, but on HDMI
13845 * there's an extra 1 line difference. So we need to add two instead of
13846 * one to the value.
13847 */
13848 if (IS_GEN2(dev_priv)) {
13849 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13850 int vtotal;
13851
13852 vtotal = adjusted_mode->crtc_vtotal;
13853 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13854 vtotal /= 2;
13855
13856 crtc->scanline_offset = vtotal - 1;
13857 } else if (HAS_DDI(dev_priv) &&
13858 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13859 crtc->scanline_offset = 2;
13860 } else
13861 crtc->scanline_offset = 1;
13862 }
13863
13864 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13865 {
13866 struct drm_device *dev = state->dev;
13867 struct drm_i915_private *dev_priv = to_i915(dev);
13868 struct intel_shared_dpll_config *shared_dpll = NULL;
13869 struct drm_crtc *crtc;
13870 struct drm_crtc_state *crtc_state;
13871 int i;
13872
13873 if (!dev_priv->display.crtc_compute_clock)
13874 return;
13875
13876 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13878 struct intel_shared_dpll *old_dpll =
13879 to_intel_crtc_state(crtc->state)->shared_dpll;
13880
13881 if (!needs_modeset(crtc_state))
13882 continue;
13883
13884 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13885
13886 if (!old_dpll)
13887 continue;
13888
13889 if (!shared_dpll)
13890 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13891
13892 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13893 }
13894 }
13895
13896 /*
13897 * This implements the workaround described in the "notes" section of the mode
13898 * set sequence documentation. When going from no pipes or single pipe to
13899 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13900 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13901 */
13902 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13903 {
13904 struct drm_crtc_state *crtc_state;
13905 struct intel_crtc *intel_crtc;
13906 struct drm_crtc *crtc;
13907 struct intel_crtc_state *first_crtc_state = NULL;
13908 struct intel_crtc_state *other_crtc_state = NULL;
13909 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13910 int i;
13911
13912 /* look at all crtc's that are going to be enabled in during modeset */
13913 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13914 intel_crtc = to_intel_crtc(crtc);
13915
13916 if (!crtc_state->active || !needs_modeset(crtc_state))
13917 continue;
13918
13919 if (first_crtc_state) {
13920 other_crtc_state = to_intel_crtc_state(crtc_state);
13921 break;
13922 } else {
13923 first_crtc_state = to_intel_crtc_state(crtc_state);
13924 first_pipe = intel_crtc->pipe;
13925 }
13926 }
13927
13928 /* No workaround needed? */
13929 if (!first_crtc_state)
13930 return 0;
13931
13932 /* w/a possibly needed, check how many crtc's are already enabled. */
13933 for_each_intel_crtc(state->dev, intel_crtc) {
13934 struct intel_crtc_state *pipe_config;
13935
13936 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13937 if (IS_ERR(pipe_config))
13938 return PTR_ERR(pipe_config);
13939
13940 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13941
13942 if (!pipe_config->base.active ||
13943 needs_modeset(&pipe_config->base))
13944 continue;
13945
13946 /* 2 or more enabled crtcs means no need for w/a */
13947 if (enabled_pipe != INVALID_PIPE)
13948 return 0;
13949
13950 enabled_pipe = intel_crtc->pipe;
13951 }
13952
13953 if (enabled_pipe != INVALID_PIPE)
13954 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13955 else if (other_crtc_state)
13956 other_crtc_state->hsw_workaround_pipe = first_pipe;
13957
13958 return 0;
13959 }
13960
13961 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13962 {
13963 struct drm_crtc *crtc;
13964 struct drm_crtc_state *crtc_state;
13965 int ret = 0;
13966
13967 /* add all active pipes to the state */
13968 for_each_crtc(state->dev, crtc) {
13969 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13970 if (IS_ERR(crtc_state))
13971 return PTR_ERR(crtc_state);
13972
13973 if (!crtc_state->active || needs_modeset(crtc_state))
13974 continue;
13975
13976 crtc_state->mode_changed = true;
13977
13978 ret = drm_atomic_add_affected_connectors(state, crtc);
13979 if (ret)
13980 break;
13981
13982 ret = drm_atomic_add_affected_planes(state, crtc);
13983 if (ret)
13984 break;
13985 }
13986
13987 return ret;
13988 }
13989
13990 static int intel_modeset_checks(struct drm_atomic_state *state)
13991 {
13992 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13993 struct drm_i915_private *dev_priv = to_i915(state->dev);
13994 struct drm_crtc *crtc;
13995 struct drm_crtc_state *crtc_state;
13996 int ret = 0, i;
13997
13998 if (!check_digital_port_conflicts(state)) {
13999 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14000 return -EINVAL;
14001 }
14002
14003 intel_state->modeset = true;
14004 intel_state->active_crtcs = dev_priv->active_crtcs;
14005
14006 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14007 if (crtc_state->active)
14008 intel_state->active_crtcs |= 1 << i;
14009 else
14010 intel_state->active_crtcs &= ~(1 << i);
14011
14012 if (crtc_state->active != crtc->state->active)
14013 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
14014 }
14015
14016 /*
14017 * See if the config requires any additional preparation, e.g.
14018 * to adjust global state with pipes off. We need to do this
14019 * here so we can get the modeset_pipe updated config for the new
14020 * mode set on this crtc. For other crtcs we need to use the
14021 * adjusted_mode bits in the crtc directly.
14022 */
14023 if (dev_priv->display.modeset_calc_cdclk) {
14024 if (!intel_state->cdclk_pll_vco)
14025 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
14026 if (!intel_state->cdclk_pll_vco)
14027 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
14028
14029 ret = dev_priv->display.modeset_calc_cdclk(state);
14030 if (ret < 0)
14031 return ret;
14032
14033 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14034 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
14035 ret = intel_modeset_all_pipes(state);
14036
14037 if (ret < 0)
14038 return ret;
14039
14040 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14041 intel_state->cdclk, intel_state->dev_cdclk);
14042 } else
14043 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14044
14045 intel_modeset_clear_plls(state);
14046
14047 if (IS_HASWELL(dev_priv))
14048 return haswell_mode_set_planes_workaround(state);
14049
14050 return 0;
14051 }
14052
14053 /*
14054 * Handle calculation of various watermark data at the end of the atomic check
14055 * phase. The code here should be run after the per-crtc and per-plane 'check'
14056 * handlers to ensure that all derived state has been updated.
14057 */
14058 static int calc_watermark_data(struct drm_atomic_state *state)
14059 {
14060 struct drm_device *dev = state->dev;
14061 struct drm_i915_private *dev_priv = to_i915(dev);
14062
14063 /* Is there platform-specific watermark information to calculate? */
14064 if (dev_priv->display.compute_global_watermarks)
14065 return dev_priv->display.compute_global_watermarks(state);
14066
14067 return 0;
14068 }
14069
14070 /**
14071 * intel_atomic_check - validate state object
14072 * @dev: drm device
14073 * @state: state to validate
14074 */
14075 static int intel_atomic_check(struct drm_device *dev,
14076 struct drm_atomic_state *state)
14077 {
14078 struct drm_i915_private *dev_priv = to_i915(dev);
14079 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14080 struct drm_crtc *crtc;
14081 struct drm_crtc_state *crtc_state;
14082 int ret, i;
14083 bool any_ms = false;
14084
14085 ret = drm_atomic_helper_check_modeset(dev, state);
14086 if (ret)
14087 return ret;
14088
14089 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14090 struct intel_crtc_state *pipe_config =
14091 to_intel_crtc_state(crtc_state);
14092
14093 /* Catch I915_MODE_FLAG_INHERITED */
14094 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14095 crtc_state->mode_changed = true;
14096
14097 if (!needs_modeset(crtc_state))
14098 continue;
14099
14100 if (!crtc_state->enable) {
14101 any_ms = true;
14102 continue;
14103 }
14104
14105 /* FIXME: For only active_changed we shouldn't need to do any
14106 * state recomputation at all. */
14107
14108 ret = drm_atomic_add_affected_connectors(state, crtc);
14109 if (ret)
14110 return ret;
14111
14112 ret = intel_modeset_pipe_config(crtc, pipe_config);
14113 if (ret) {
14114 intel_dump_pipe_config(to_intel_crtc(crtc),
14115 pipe_config, "[failed]");
14116 return ret;
14117 }
14118
14119 if (i915.fastboot &&
14120 intel_pipe_config_compare(dev,
14121 to_intel_crtc_state(crtc->state),
14122 pipe_config, true)) {
14123 crtc_state->mode_changed = false;
14124 to_intel_crtc_state(crtc_state)->update_pipe = true;
14125 }
14126
14127 if (needs_modeset(crtc_state))
14128 any_ms = true;
14129
14130 ret = drm_atomic_add_affected_planes(state, crtc);
14131 if (ret)
14132 return ret;
14133
14134 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14135 needs_modeset(crtc_state) ?
14136 "[modeset]" : "[fastset]");
14137 }
14138
14139 if (any_ms) {
14140 ret = intel_modeset_checks(state);
14141
14142 if (ret)
14143 return ret;
14144 } else
14145 intel_state->cdclk = dev_priv->cdclk_freq;
14146
14147 ret = drm_atomic_helper_check_planes(dev, state);
14148 if (ret)
14149 return ret;
14150
14151 intel_fbc_choose_crtc(dev_priv, state);
14152 return calc_watermark_data(state);
14153 }
14154
14155 static int intel_atomic_prepare_commit(struct drm_device *dev,
14156 struct drm_atomic_state *state,
14157 bool nonblock)
14158 {
14159 struct drm_i915_private *dev_priv = to_i915(dev);
14160 struct drm_plane_state *plane_state;
14161 struct drm_crtc_state *crtc_state;
14162 struct drm_plane *plane;
14163 struct drm_crtc *crtc;
14164 int i, ret;
14165
14166 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14167 if (state->legacy_cursor_update)
14168 continue;
14169
14170 ret = intel_crtc_wait_for_pending_flips(crtc);
14171 if (ret)
14172 return ret;
14173
14174 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14175 flush_workqueue(dev_priv->wq);
14176 }
14177
14178 ret = mutex_lock_interruptible(&dev->struct_mutex);
14179 if (ret)
14180 return ret;
14181
14182 ret = drm_atomic_helper_prepare_planes(dev, state);
14183 mutex_unlock(&dev->struct_mutex);
14184
14185 if (!ret && !nonblock) {
14186 for_each_plane_in_state(state, plane, plane_state, i) {
14187 struct intel_plane_state *intel_plane_state =
14188 to_intel_plane_state(plane_state);
14189
14190 if (!intel_plane_state->wait_req)
14191 continue;
14192
14193 ret = i915_wait_request(intel_plane_state->wait_req,
14194 I915_WAIT_INTERRUPTIBLE,
14195 NULL, NULL);
14196 if (ret) {
14197 /* Any hang should be swallowed by the wait */
14198 WARN_ON(ret == -EIO);
14199 mutex_lock(&dev->struct_mutex);
14200 drm_atomic_helper_cleanup_planes(dev, state);
14201 mutex_unlock(&dev->struct_mutex);
14202 break;
14203 }
14204 }
14205 }
14206
14207 return ret;
14208 }
14209
14210 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14211 {
14212 struct drm_device *dev = crtc->base.dev;
14213
14214 if (!dev->max_vblank_count)
14215 return drm_accurate_vblank_count(&crtc->base);
14216
14217 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14218 }
14219
14220 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14221 struct drm_i915_private *dev_priv,
14222 unsigned crtc_mask)
14223 {
14224 unsigned last_vblank_count[I915_MAX_PIPES];
14225 enum pipe pipe;
14226 int ret;
14227
14228 if (!crtc_mask)
14229 return;
14230
14231 for_each_pipe(dev_priv, pipe) {
14232 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14233
14234 if (!((1 << pipe) & crtc_mask))
14235 continue;
14236
14237 ret = drm_crtc_vblank_get(crtc);
14238 if (WARN_ON(ret != 0)) {
14239 crtc_mask &= ~(1 << pipe);
14240 continue;
14241 }
14242
14243 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14244 }
14245
14246 for_each_pipe(dev_priv, pipe) {
14247 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14248 long lret;
14249
14250 if (!((1 << pipe) & crtc_mask))
14251 continue;
14252
14253 lret = wait_event_timeout(dev->vblank[pipe].queue,
14254 last_vblank_count[pipe] !=
14255 drm_crtc_vblank_count(crtc),
14256 msecs_to_jiffies(50));
14257
14258 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14259
14260 drm_crtc_vblank_put(crtc);
14261 }
14262 }
14263
14264 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14265 {
14266 /* fb updated, need to unpin old fb */
14267 if (crtc_state->fb_changed)
14268 return true;
14269
14270 /* wm changes, need vblank before final wm's */
14271 if (crtc_state->update_wm_post)
14272 return true;
14273
14274 /*
14275 * cxsr is re-enabled after vblank.
14276 * This is already handled by crtc_state->update_wm_post,
14277 * but added for clarity.
14278 */
14279 if (crtc_state->disable_cxsr)
14280 return true;
14281
14282 return false;
14283 }
14284
14285 static void intel_update_crtc(struct drm_crtc *crtc,
14286 struct drm_atomic_state *state,
14287 struct drm_crtc_state *old_crtc_state,
14288 unsigned int *crtc_vblank_mask)
14289 {
14290 struct drm_device *dev = crtc->dev;
14291 struct drm_i915_private *dev_priv = to_i915(dev);
14292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14293 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14294 bool modeset = needs_modeset(crtc->state);
14295
14296 if (modeset) {
14297 update_scanline_offset(intel_crtc);
14298 dev_priv->display.crtc_enable(pipe_config, state);
14299 } else {
14300 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14301 }
14302
14303 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14304 intel_fbc_enable(
14305 intel_crtc, pipe_config,
14306 to_intel_plane_state(crtc->primary->state));
14307 }
14308
14309 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14310
14311 if (needs_vblank_wait(pipe_config))
14312 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14313 }
14314
14315 static void intel_update_crtcs(struct drm_atomic_state *state,
14316 unsigned int *crtc_vblank_mask)
14317 {
14318 struct drm_crtc *crtc;
14319 struct drm_crtc_state *old_crtc_state;
14320 int i;
14321
14322 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14323 if (!crtc->state->active)
14324 continue;
14325
14326 intel_update_crtc(crtc, state, old_crtc_state,
14327 crtc_vblank_mask);
14328 }
14329 }
14330
14331 static void skl_update_crtcs(struct drm_atomic_state *state,
14332 unsigned int *crtc_vblank_mask)
14333 {
14334 struct drm_device *dev = state->dev;
14335 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14336 struct drm_crtc *crtc;
14337 struct intel_crtc *intel_crtc;
14338 struct drm_crtc_state *old_crtc_state;
14339 struct intel_crtc_state *cstate;
14340 unsigned int updated = 0;
14341 bool progress;
14342 enum pipe pipe;
14343
14344 /*
14345 * Whenever the number of active pipes changes, we need to make sure we
14346 * update the pipes in the right order so that their ddb allocations
14347 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14348 * cause pipe underruns and other bad stuff.
14349 */
14350 do {
14351 int i;
14352 progress = false;
14353
14354 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14355 bool vbl_wait = false;
14356 unsigned int cmask = drm_crtc_mask(crtc);
14357
14358 intel_crtc = to_intel_crtc(crtc);
14359 cstate = to_intel_crtc_state(crtc->state);
14360 pipe = intel_crtc->pipe;
14361
14362 if (updated & cmask || !crtc->state->active)
14363 continue;
14364 if (skl_ddb_allocation_overlaps(state, intel_crtc))
14365 continue;
14366
14367 updated |= cmask;
14368
14369 /*
14370 * If this is an already active pipe, it's DDB changed,
14371 * and this isn't the last pipe that needs updating
14372 * then we need to wait for a vblank to pass for the
14373 * new ddb allocation to take effect.
14374 */
14375 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14376 &intel_crtc->hw_ddb) &&
14377 !crtc->state->active_changed &&
14378 intel_state->wm_results.dirty_pipes != updated)
14379 vbl_wait = true;
14380
14381 intel_update_crtc(crtc, state, old_crtc_state,
14382 crtc_vblank_mask);
14383
14384 if (vbl_wait)
14385 intel_wait_for_vblank(dev, pipe);
14386
14387 progress = true;
14388 }
14389 } while (progress);
14390 }
14391
14392 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14393 {
14394 struct drm_device *dev = state->dev;
14395 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14396 struct drm_i915_private *dev_priv = to_i915(dev);
14397 struct drm_crtc_state *old_crtc_state;
14398 struct drm_crtc *crtc;
14399 struct intel_crtc_state *intel_cstate;
14400 struct drm_plane *plane;
14401 struct drm_plane_state *plane_state;
14402 bool hw_check = intel_state->modeset;
14403 unsigned long put_domains[I915_MAX_PIPES] = {};
14404 unsigned crtc_vblank_mask = 0;
14405 int i, ret;
14406
14407 for_each_plane_in_state(state, plane, plane_state, i) {
14408 struct intel_plane_state *intel_plane_state =
14409 to_intel_plane_state(plane->state);
14410
14411 if (!intel_plane_state->wait_req)
14412 continue;
14413
14414 ret = i915_wait_request(intel_plane_state->wait_req,
14415 0, NULL, NULL);
14416 /* EIO should be eaten, and we can't get interrupted in the
14417 * worker, and blocking commits have waited already. */
14418 WARN_ON(ret);
14419 }
14420
14421 drm_atomic_helper_wait_for_dependencies(state);
14422
14423 if (intel_state->modeset) {
14424 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14425 sizeof(intel_state->min_pixclk));
14426 dev_priv->active_crtcs = intel_state->active_crtcs;
14427 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14428
14429 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14430 }
14431
14432 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14434
14435 if (needs_modeset(crtc->state) ||
14436 to_intel_crtc_state(crtc->state)->update_pipe) {
14437 hw_check = true;
14438
14439 put_domains[to_intel_crtc(crtc)->pipe] =
14440 modeset_get_crtc_power_domains(crtc,
14441 to_intel_crtc_state(crtc->state));
14442 }
14443
14444 if (!needs_modeset(crtc->state))
14445 continue;
14446
14447 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14448
14449 if (old_crtc_state->active) {
14450 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14451 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14452 intel_crtc->active = false;
14453 intel_fbc_disable(intel_crtc);
14454 intel_disable_shared_dpll(intel_crtc);
14455
14456 /*
14457 * Underruns don't always raise
14458 * interrupts, so check manually.
14459 */
14460 intel_check_cpu_fifo_underruns(dev_priv);
14461 intel_check_pch_fifo_underruns(dev_priv);
14462
14463 if (!crtc->state->active)
14464 intel_update_watermarks(crtc);
14465 }
14466 }
14467
14468 /* Only after disabling all output pipelines that will be changed can we
14469 * update the the output configuration. */
14470 intel_modeset_update_crtc_state(state);
14471
14472 if (intel_state->modeset) {
14473 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14474
14475 if (dev_priv->display.modeset_commit_cdclk &&
14476 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14477 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14478 dev_priv->display.modeset_commit_cdclk(state);
14479
14480 /*
14481 * SKL workaround: bspec recommends we disable the SAGV when we
14482 * have more then one pipe enabled
14483 */
14484 if (!intel_can_enable_sagv(state))
14485 intel_disable_sagv(dev_priv);
14486
14487 intel_modeset_verify_disabled(dev);
14488 }
14489
14490 /* Complete the events for pipes that have now been disabled */
14491 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14492 bool modeset = needs_modeset(crtc->state);
14493
14494 /* Complete events for now disable pipes here. */
14495 if (modeset && !crtc->state->active && crtc->state->event) {
14496 spin_lock_irq(&dev->event_lock);
14497 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14498 spin_unlock_irq(&dev->event_lock);
14499
14500 crtc->state->event = NULL;
14501 }
14502 }
14503
14504 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14505 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14506
14507 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14508 * already, but still need the state for the delayed optimization. To
14509 * fix this:
14510 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14511 * - schedule that vblank worker _before_ calling hw_done
14512 * - at the start of commit_tail, cancel it _synchrously
14513 * - switch over to the vblank wait helper in the core after that since
14514 * we don't need out special handling any more.
14515 */
14516 if (!state->legacy_cursor_update)
14517 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14518
14519 /*
14520 * Now that the vblank has passed, we can go ahead and program the
14521 * optimal watermarks on platforms that need two-step watermark
14522 * programming.
14523 *
14524 * TODO: Move this (and other cleanup) to an async worker eventually.
14525 */
14526 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14527 intel_cstate = to_intel_crtc_state(crtc->state);
14528
14529 if (dev_priv->display.optimize_watermarks)
14530 dev_priv->display.optimize_watermarks(intel_cstate);
14531 }
14532
14533 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14534 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14535
14536 if (put_domains[i])
14537 modeset_put_power_domains(dev_priv, put_domains[i]);
14538
14539 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14540 }
14541
14542 if (intel_state->modeset && intel_can_enable_sagv(state))
14543 intel_enable_sagv(dev_priv);
14544
14545 drm_atomic_helper_commit_hw_done(state);
14546
14547 if (intel_state->modeset)
14548 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14549
14550 mutex_lock(&dev->struct_mutex);
14551 drm_atomic_helper_cleanup_planes(dev, state);
14552 mutex_unlock(&dev->struct_mutex);
14553
14554 drm_atomic_helper_commit_cleanup_done(state);
14555
14556 drm_atomic_state_put(state);
14557
14558 /* As one of the primary mmio accessors, KMS has a high likelihood
14559 * of triggering bugs in unclaimed access. After we finish
14560 * modesetting, see if an error has been flagged, and if so
14561 * enable debugging for the next modeset - and hope we catch
14562 * the culprit.
14563 *
14564 * XXX note that we assume display power is on at this point.
14565 * This might hold true now but we need to add pm helper to check
14566 * unclaimed only when the hardware is on, as atomic commits
14567 * can happen also when the device is completely off.
14568 */
14569 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14570 }
14571
14572 static void intel_atomic_commit_work(struct work_struct *work)
14573 {
14574 struct drm_atomic_state *state = container_of(work,
14575 struct drm_atomic_state,
14576 commit_work);
14577 intel_atomic_commit_tail(state);
14578 }
14579
14580 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14581 {
14582 struct drm_plane_state *old_plane_state;
14583 struct drm_plane *plane;
14584 int i;
14585
14586 for_each_plane_in_state(state, plane, old_plane_state, i)
14587 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14588 intel_fb_obj(plane->state->fb),
14589 to_intel_plane(plane)->frontbuffer_bit);
14590 }
14591
14592 /**
14593 * intel_atomic_commit - commit validated state object
14594 * @dev: DRM device
14595 * @state: the top-level driver state object
14596 * @nonblock: nonblocking commit
14597 *
14598 * This function commits a top-level state object that has been validated
14599 * with drm_atomic_helper_check().
14600 *
14601 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14602 * nonblocking commits are only safe for pure plane updates. Everything else
14603 * should work though.
14604 *
14605 * RETURNS
14606 * Zero for success or -errno.
14607 */
14608 static int intel_atomic_commit(struct drm_device *dev,
14609 struct drm_atomic_state *state,
14610 bool nonblock)
14611 {
14612 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14613 struct drm_i915_private *dev_priv = to_i915(dev);
14614 int ret = 0;
14615
14616 if (intel_state->modeset && nonblock) {
14617 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14618 return -EINVAL;
14619 }
14620
14621 ret = drm_atomic_helper_setup_commit(state, nonblock);
14622 if (ret)
14623 return ret;
14624
14625 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14626
14627 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14628 if (ret) {
14629 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14630 return ret;
14631 }
14632
14633 drm_atomic_helper_swap_state(state, true);
14634 dev_priv->wm.distrust_bios_wm = false;
14635 dev_priv->wm.skl_results = intel_state->wm_results;
14636 intel_shared_dpll_commit(state);
14637 intel_atomic_track_fbs(state);
14638
14639 drm_atomic_state_get(state);
14640 if (nonblock)
14641 queue_work(system_unbound_wq, &state->commit_work);
14642 else
14643 intel_atomic_commit_tail(state);
14644
14645 return 0;
14646 }
14647
14648 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14649 {
14650 struct drm_device *dev = crtc->dev;
14651 struct drm_atomic_state *state;
14652 struct drm_crtc_state *crtc_state;
14653 int ret;
14654
14655 state = drm_atomic_state_alloc(dev);
14656 if (!state) {
14657 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14658 crtc->base.id, crtc->name);
14659 return;
14660 }
14661
14662 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14663
14664 retry:
14665 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14666 ret = PTR_ERR_OR_ZERO(crtc_state);
14667 if (!ret) {
14668 if (!crtc_state->active)
14669 goto out;
14670
14671 crtc_state->mode_changed = true;
14672 ret = drm_atomic_commit(state);
14673 }
14674
14675 if (ret == -EDEADLK) {
14676 drm_atomic_state_clear(state);
14677 drm_modeset_backoff(state->acquire_ctx);
14678 goto retry;
14679 }
14680
14681 out:
14682 drm_atomic_state_put(state);
14683 }
14684
14685 /*
14686 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14687 * drm_atomic_helper_legacy_gamma_set() directly.
14688 */
14689 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14690 u16 *red, u16 *green, u16 *blue,
14691 uint32_t size)
14692 {
14693 struct drm_device *dev = crtc->dev;
14694 struct drm_mode_config *config = &dev->mode_config;
14695 struct drm_crtc_state *state;
14696 int ret;
14697
14698 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14699 if (ret)
14700 return ret;
14701
14702 /*
14703 * Make sure we update the legacy properties so this works when
14704 * atomic is not enabled.
14705 */
14706
14707 state = crtc->state;
14708
14709 drm_object_property_set_value(&crtc->base,
14710 config->degamma_lut_property,
14711 (state->degamma_lut) ?
14712 state->degamma_lut->base.id : 0);
14713
14714 drm_object_property_set_value(&crtc->base,
14715 config->ctm_property,
14716 (state->ctm) ?
14717 state->ctm->base.id : 0);
14718
14719 drm_object_property_set_value(&crtc->base,
14720 config->gamma_lut_property,
14721 (state->gamma_lut) ?
14722 state->gamma_lut->base.id : 0);
14723
14724 return 0;
14725 }
14726
14727 static const struct drm_crtc_funcs intel_crtc_funcs = {
14728 .gamma_set = intel_atomic_legacy_gamma_set,
14729 .set_config = drm_atomic_helper_set_config,
14730 .set_property = drm_atomic_helper_crtc_set_property,
14731 .destroy = intel_crtc_destroy,
14732 .page_flip = intel_crtc_page_flip,
14733 .atomic_duplicate_state = intel_crtc_duplicate_state,
14734 .atomic_destroy_state = intel_crtc_destroy_state,
14735 };
14736
14737 /**
14738 * intel_prepare_plane_fb - Prepare fb for usage on plane
14739 * @plane: drm plane to prepare for
14740 * @fb: framebuffer to prepare for presentation
14741 *
14742 * Prepares a framebuffer for usage on a display plane. Generally this
14743 * involves pinning the underlying object and updating the frontbuffer tracking
14744 * bits. Some older platforms need special physical address handling for
14745 * cursor planes.
14746 *
14747 * Must be called with struct_mutex held.
14748 *
14749 * Returns 0 on success, negative error code on failure.
14750 */
14751 int
14752 intel_prepare_plane_fb(struct drm_plane *plane,
14753 struct drm_plane_state *new_state)
14754 {
14755 struct drm_device *dev = plane->dev;
14756 struct drm_i915_private *dev_priv = to_i915(dev);
14757 struct drm_framebuffer *fb = new_state->fb;
14758 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14759 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14760 struct reservation_object *resv;
14761 int ret = 0;
14762
14763 if (!obj && !old_obj)
14764 return 0;
14765
14766 if (old_obj) {
14767 struct drm_crtc_state *crtc_state =
14768 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14769
14770 /* Big Hammer, we also need to ensure that any pending
14771 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14772 * current scanout is retired before unpinning the old
14773 * framebuffer. Note that we rely on userspace rendering
14774 * into the buffer attached to the pipe they are waiting
14775 * on. If not, userspace generates a GPU hang with IPEHR
14776 * point to the MI_WAIT_FOR_EVENT.
14777 *
14778 * This should only fail upon a hung GPU, in which case we
14779 * can safely continue.
14780 */
14781 if (needs_modeset(crtc_state))
14782 ret = i915_gem_object_wait_rendering(old_obj, true);
14783 if (ret) {
14784 /* GPU hangs should have been swallowed by the wait */
14785 WARN_ON(ret == -EIO);
14786 return ret;
14787 }
14788 }
14789
14790 if (!obj)
14791 return 0;
14792
14793 /* For framebuffer backed by dmabuf, wait for fence */
14794 resv = i915_gem_object_get_dmabuf_resv(obj);
14795 if (resv) {
14796 long lret;
14797
14798 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14799 MAX_SCHEDULE_TIMEOUT);
14800 if (lret == -ERESTARTSYS)
14801 return lret;
14802
14803 WARN(lret < 0, "waiting returns %li\n", lret);
14804 }
14805
14806 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14807 INTEL_INFO(dev)->cursor_needs_physical) {
14808 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14809 ret = i915_gem_object_attach_phys(obj, align);
14810 if (ret)
14811 DRM_DEBUG_KMS("failed to attach phys object\n");
14812 } else {
14813 struct i915_vma *vma;
14814
14815 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14816 if (IS_ERR(vma))
14817 ret = PTR_ERR(vma);
14818 }
14819
14820 if (ret == 0) {
14821 to_intel_plane_state(new_state)->wait_req =
14822 i915_gem_active_get(&obj->last_write,
14823 &obj->base.dev->struct_mutex);
14824 }
14825
14826 return ret;
14827 }
14828
14829 /**
14830 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14831 * @plane: drm plane to clean up for
14832 * @fb: old framebuffer that was on plane
14833 *
14834 * Cleans up a framebuffer that has just been removed from a plane.
14835 *
14836 * Must be called with struct_mutex held.
14837 */
14838 void
14839 intel_cleanup_plane_fb(struct drm_plane *plane,
14840 struct drm_plane_state *old_state)
14841 {
14842 struct drm_device *dev = plane->dev;
14843 struct intel_plane_state *old_intel_state;
14844 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14845 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14846 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14847
14848 old_intel_state = to_intel_plane_state(old_state);
14849
14850 if (!obj && !old_obj)
14851 return;
14852
14853 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14854 !INTEL_INFO(dev)->cursor_needs_physical))
14855 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14856
14857 i915_gem_request_assign(&intel_state->wait_req, NULL);
14858 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14859 }
14860
14861 int
14862 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14863 {
14864 int max_scale;
14865 int crtc_clock, cdclk;
14866
14867 if (!intel_crtc || !crtc_state->base.enable)
14868 return DRM_PLANE_HELPER_NO_SCALING;
14869
14870 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14871 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14872
14873 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14874 return DRM_PLANE_HELPER_NO_SCALING;
14875
14876 /*
14877 * skl max scale is lower of:
14878 * close to 3 but not 3, -1 is for that purpose
14879 * or
14880 * cdclk/crtc_clock
14881 */
14882 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14883
14884 return max_scale;
14885 }
14886
14887 static int
14888 intel_check_primary_plane(struct drm_plane *plane,
14889 struct intel_crtc_state *crtc_state,
14890 struct intel_plane_state *state)
14891 {
14892 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14893 struct drm_crtc *crtc = state->base.crtc;
14894 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14895 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14896 bool can_position = false;
14897 int ret;
14898
14899 if (INTEL_GEN(dev_priv) >= 9) {
14900 /* use scaler when colorkey is not required */
14901 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14902 min_scale = 1;
14903 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14904 }
14905 can_position = true;
14906 }
14907
14908 ret = drm_plane_helper_check_state(&state->base,
14909 &state->clip,
14910 min_scale, max_scale,
14911 can_position, true);
14912 if (ret)
14913 return ret;
14914
14915 if (!state->base.fb)
14916 return 0;
14917
14918 if (INTEL_GEN(dev_priv) >= 9) {
14919 ret = skl_check_plane_surface(state);
14920 if (ret)
14921 return ret;
14922 }
14923
14924 return 0;
14925 }
14926
14927 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14928 struct drm_crtc_state *old_crtc_state)
14929 {
14930 struct drm_device *dev = crtc->dev;
14931 struct drm_i915_private *dev_priv = to_i915(dev);
14932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14933 struct intel_crtc_state *intel_cstate =
14934 to_intel_crtc_state(crtc->state);
14935 struct intel_crtc_state *old_intel_state =
14936 to_intel_crtc_state(old_crtc_state);
14937 bool modeset = needs_modeset(crtc->state);
14938 enum pipe pipe = intel_crtc->pipe;
14939
14940 /* Perform vblank evasion around commit operation */
14941 intel_pipe_update_start(intel_crtc);
14942
14943 if (modeset)
14944 return;
14945
14946 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14947 intel_color_set_csc(crtc->state);
14948 intel_color_load_luts(crtc->state);
14949 }
14950
14951 if (intel_cstate->update_pipe) {
14952 intel_update_pipe_config(intel_crtc, old_intel_state);
14953 } else if (INTEL_GEN(dev_priv) >= 9) {
14954 skl_detach_scalers(intel_crtc);
14955
14956 I915_WRITE(PIPE_WM_LINETIME(pipe),
14957 intel_cstate->wm.skl.optimal.linetime);
14958 }
14959 }
14960
14961 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14962 struct drm_crtc_state *old_crtc_state)
14963 {
14964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14965
14966 intel_pipe_update_end(intel_crtc, NULL);
14967 }
14968
14969 /**
14970 * intel_plane_destroy - destroy a plane
14971 * @plane: plane to destroy
14972 *
14973 * Common destruction function for all types of planes (primary, cursor,
14974 * sprite).
14975 */
14976 void intel_plane_destroy(struct drm_plane *plane)
14977 {
14978 if (!plane)
14979 return;
14980
14981 drm_plane_cleanup(plane);
14982 kfree(to_intel_plane(plane));
14983 }
14984
14985 const struct drm_plane_funcs intel_plane_funcs = {
14986 .update_plane = drm_atomic_helper_update_plane,
14987 .disable_plane = drm_atomic_helper_disable_plane,
14988 .destroy = intel_plane_destroy,
14989 .set_property = drm_atomic_helper_plane_set_property,
14990 .atomic_get_property = intel_plane_atomic_get_property,
14991 .atomic_set_property = intel_plane_atomic_set_property,
14992 .atomic_duplicate_state = intel_plane_duplicate_state,
14993 .atomic_destroy_state = intel_plane_destroy_state,
14994
14995 };
14996
14997 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14998 int pipe)
14999 {
15000 struct drm_i915_private *dev_priv = to_i915(dev);
15001 struct intel_plane *primary = NULL;
15002 struct intel_plane_state *state = NULL;
15003 const uint32_t *intel_primary_formats;
15004 unsigned int supported_rotations;
15005 unsigned int num_formats;
15006 int ret;
15007
15008 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
15009 if (!primary)
15010 goto fail;
15011
15012 state = intel_create_plane_state(&primary->base);
15013 if (!state)
15014 goto fail;
15015 primary->base.state = &state->base;
15016
15017 primary->can_scale = false;
15018 primary->max_downscale = 1;
15019 if (INTEL_INFO(dev)->gen >= 9) {
15020 primary->can_scale = true;
15021 state->scaler_id = -1;
15022 }
15023 primary->pipe = pipe;
15024 primary->plane = pipe;
15025 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15026 primary->check_plane = intel_check_primary_plane;
15027 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
15028 primary->plane = !pipe;
15029
15030 if (INTEL_INFO(dev)->gen >= 9) {
15031 intel_primary_formats = skl_primary_formats;
15032 num_formats = ARRAY_SIZE(skl_primary_formats);
15033
15034 primary->update_plane = skylake_update_primary_plane;
15035 primary->disable_plane = skylake_disable_primary_plane;
15036 } else if (HAS_PCH_SPLIT(dev_priv)) {
15037 intel_primary_formats = i965_primary_formats;
15038 num_formats = ARRAY_SIZE(i965_primary_formats);
15039
15040 primary->update_plane = ironlake_update_primary_plane;
15041 primary->disable_plane = i9xx_disable_primary_plane;
15042 } else if (INTEL_INFO(dev)->gen >= 4) {
15043 intel_primary_formats = i965_primary_formats;
15044 num_formats = ARRAY_SIZE(i965_primary_formats);
15045
15046 primary->update_plane = i9xx_update_primary_plane;
15047 primary->disable_plane = i9xx_disable_primary_plane;
15048 } else {
15049 intel_primary_formats = i8xx_primary_formats;
15050 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15051
15052 primary->update_plane = i9xx_update_primary_plane;
15053 primary->disable_plane = i9xx_disable_primary_plane;
15054 }
15055
15056 if (INTEL_INFO(dev)->gen >= 9)
15057 ret = drm_universal_plane_init(dev, &primary->base, 0,
15058 &intel_plane_funcs,
15059 intel_primary_formats, num_formats,
15060 DRM_PLANE_TYPE_PRIMARY,
15061 "plane 1%c", pipe_name(pipe));
15062 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15063 ret = drm_universal_plane_init(dev, &primary->base, 0,
15064 &intel_plane_funcs,
15065 intel_primary_formats, num_formats,
15066 DRM_PLANE_TYPE_PRIMARY,
15067 "primary %c", pipe_name(pipe));
15068 else
15069 ret = drm_universal_plane_init(dev, &primary->base, 0,
15070 &intel_plane_funcs,
15071 intel_primary_formats, num_formats,
15072 DRM_PLANE_TYPE_PRIMARY,
15073 "plane %c", plane_name(primary->plane));
15074 if (ret)
15075 goto fail;
15076
15077 if (INTEL_GEN(dev_priv) >= 9) {
15078 supported_rotations =
15079 DRM_ROTATE_0 | DRM_ROTATE_90 |
15080 DRM_ROTATE_180 | DRM_ROTATE_270;
15081 } else if (INTEL_GEN(dev_priv) >= 4) {
15082 supported_rotations =
15083 DRM_ROTATE_0 | DRM_ROTATE_180;
15084 } else {
15085 supported_rotations = DRM_ROTATE_0;
15086 }
15087
15088 if (INTEL_GEN(dev_priv) >= 4)
15089 drm_plane_create_rotation_property(&primary->base,
15090 DRM_ROTATE_0,
15091 supported_rotations);
15092
15093 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15094
15095 return &primary->base;
15096
15097 fail:
15098 kfree(state);
15099 kfree(primary);
15100
15101 return NULL;
15102 }
15103
15104 static int
15105 intel_check_cursor_plane(struct drm_plane *plane,
15106 struct intel_crtc_state *crtc_state,
15107 struct intel_plane_state *state)
15108 {
15109 struct drm_framebuffer *fb = state->base.fb;
15110 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15111 enum pipe pipe = to_intel_plane(plane)->pipe;
15112 unsigned stride;
15113 int ret;
15114
15115 ret = drm_plane_helper_check_state(&state->base,
15116 &state->clip,
15117 DRM_PLANE_HELPER_NO_SCALING,
15118 DRM_PLANE_HELPER_NO_SCALING,
15119 true, true);
15120 if (ret)
15121 return ret;
15122
15123 /* if we want to turn off the cursor ignore width and height */
15124 if (!obj)
15125 return 0;
15126
15127 /* Check for which cursor types we support */
15128 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15129 state->base.crtc_h)) {
15130 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15131 state->base.crtc_w, state->base.crtc_h);
15132 return -EINVAL;
15133 }
15134
15135 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15136 if (obj->base.size < stride * state->base.crtc_h) {
15137 DRM_DEBUG_KMS("buffer is too small\n");
15138 return -ENOMEM;
15139 }
15140
15141 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15142 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15143 return -EINVAL;
15144 }
15145
15146 /*
15147 * There's something wrong with the cursor on CHV pipe C.
15148 * If it straddles the left edge of the screen then
15149 * moving it away from the edge or disabling it often
15150 * results in a pipe underrun, and often that can lead to
15151 * dead pipe (constant underrun reported, and it scans
15152 * out just a solid color). To recover from that, the
15153 * display power well must be turned off and on again.
15154 * Refuse the put the cursor into that compromised position.
15155 */
15156 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15157 state->base.visible && state->base.crtc_x < 0) {
15158 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15159 return -EINVAL;
15160 }
15161
15162 return 0;
15163 }
15164
15165 static void
15166 intel_disable_cursor_plane(struct drm_plane *plane,
15167 struct drm_crtc *crtc)
15168 {
15169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15170
15171 intel_crtc->cursor_addr = 0;
15172 intel_crtc_update_cursor(crtc, NULL);
15173 }
15174
15175 static void
15176 intel_update_cursor_plane(struct drm_plane *plane,
15177 const struct intel_crtc_state *crtc_state,
15178 const struct intel_plane_state *state)
15179 {
15180 struct drm_crtc *crtc = crtc_state->base.crtc;
15181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15182 struct drm_device *dev = plane->dev;
15183 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15184 uint32_t addr;
15185
15186 if (!obj)
15187 addr = 0;
15188 else if (!INTEL_INFO(dev)->cursor_needs_physical)
15189 addr = i915_gem_object_ggtt_offset(obj, NULL);
15190 else
15191 addr = obj->phys_handle->busaddr;
15192
15193 intel_crtc->cursor_addr = addr;
15194 intel_crtc_update_cursor(crtc, state);
15195 }
15196
15197 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15198 int pipe)
15199 {
15200 struct drm_i915_private *dev_priv = to_i915(dev);
15201 struct intel_plane *cursor = NULL;
15202 struct intel_plane_state *state = NULL;
15203 int ret;
15204
15205 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15206 if (!cursor)
15207 goto fail;
15208
15209 state = intel_create_plane_state(&cursor->base);
15210 if (!state)
15211 goto fail;
15212 cursor->base.state = &state->base;
15213
15214 cursor->can_scale = false;
15215 cursor->max_downscale = 1;
15216 cursor->pipe = pipe;
15217 cursor->plane = pipe;
15218 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15219 cursor->check_plane = intel_check_cursor_plane;
15220 cursor->update_plane = intel_update_cursor_plane;
15221 cursor->disable_plane = intel_disable_cursor_plane;
15222
15223 ret = drm_universal_plane_init(dev, &cursor->base, 0,
15224 &intel_plane_funcs,
15225 intel_cursor_formats,
15226 ARRAY_SIZE(intel_cursor_formats),
15227 DRM_PLANE_TYPE_CURSOR,
15228 "cursor %c", pipe_name(pipe));
15229 if (ret)
15230 goto fail;
15231
15232 if (INTEL_GEN(dev_priv) >= 4)
15233 drm_plane_create_rotation_property(&cursor->base,
15234 DRM_ROTATE_0,
15235 DRM_ROTATE_0 |
15236 DRM_ROTATE_180);
15237
15238 if (INTEL_INFO(dev)->gen >=9)
15239 state->scaler_id = -1;
15240
15241 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15242
15243 return &cursor->base;
15244
15245 fail:
15246 kfree(state);
15247 kfree(cursor);
15248
15249 return NULL;
15250 }
15251
15252 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15253 struct intel_crtc_state *crtc_state)
15254 {
15255 int i;
15256 struct intel_scaler *intel_scaler;
15257 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15258
15259 for (i = 0; i < intel_crtc->num_scalers; i++) {
15260 intel_scaler = &scaler_state->scalers[i];
15261 intel_scaler->in_use = 0;
15262 intel_scaler->mode = PS_SCALER_MODE_DYN;
15263 }
15264
15265 scaler_state->scaler_id = -1;
15266 }
15267
15268 static void intel_crtc_init(struct drm_device *dev, int pipe)
15269 {
15270 struct drm_i915_private *dev_priv = to_i915(dev);
15271 struct intel_crtc *intel_crtc;
15272 struct intel_crtc_state *crtc_state = NULL;
15273 struct drm_plane *primary = NULL;
15274 struct drm_plane *cursor = NULL;
15275 int ret;
15276
15277 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15278 if (intel_crtc == NULL)
15279 return;
15280
15281 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15282 if (!crtc_state)
15283 goto fail;
15284 intel_crtc->config = crtc_state;
15285 intel_crtc->base.state = &crtc_state->base;
15286 crtc_state->base.crtc = &intel_crtc->base;
15287
15288 /* initialize shared scalers */
15289 if (INTEL_INFO(dev)->gen >= 9) {
15290 if (pipe == PIPE_C)
15291 intel_crtc->num_scalers = 1;
15292 else
15293 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15294
15295 skl_init_scalers(dev, intel_crtc, crtc_state);
15296 }
15297
15298 primary = intel_primary_plane_create(dev, pipe);
15299 if (!primary)
15300 goto fail;
15301
15302 cursor = intel_cursor_plane_create(dev, pipe);
15303 if (!cursor)
15304 goto fail;
15305
15306 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15307 cursor, &intel_crtc_funcs,
15308 "pipe %c", pipe_name(pipe));
15309 if (ret)
15310 goto fail;
15311
15312 /*
15313 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15314 * is hooked to pipe B. Hence we want plane A feeding pipe B.
15315 */
15316 intel_crtc->pipe = pipe;
15317 intel_crtc->plane = pipe;
15318 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15319 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15320 intel_crtc->plane = !pipe;
15321 }
15322
15323 intel_crtc->cursor_base = ~0;
15324 intel_crtc->cursor_cntl = ~0;
15325 intel_crtc->cursor_size = ~0;
15326
15327 intel_crtc->wm.cxsr_allowed = true;
15328
15329 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15330 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15331 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15332 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15333
15334 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15335
15336 intel_color_init(&intel_crtc->base);
15337
15338 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15339 return;
15340
15341 fail:
15342 intel_plane_destroy(primary);
15343 intel_plane_destroy(cursor);
15344 kfree(crtc_state);
15345 kfree(intel_crtc);
15346 }
15347
15348 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15349 {
15350 struct drm_encoder *encoder = connector->base.encoder;
15351 struct drm_device *dev = connector->base.dev;
15352
15353 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15354
15355 if (!encoder || WARN_ON(!encoder->crtc))
15356 return INVALID_PIPE;
15357
15358 return to_intel_crtc(encoder->crtc)->pipe;
15359 }
15360
15361 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15362 struct drm_file *file)
15363 {
15364 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15365 struct drm_crtc *drmmode_crtc;
15366 struct intel_crtc *crtc;
15367
15368 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15369 if (!drmmode_crtc)
15370 return -ENOENT;
15371
15372 crtc = to_intel_crtc(drmmode_crtc);
15373 pipe_from_crtc_id->pipe = crtc->pipe;
15374
15375 return 0;
15376 }
15377
15378 static int intel_encoder_clones(struct intel_encoder *encoder)
15379 {
15380 struct drm_device *dev = encoder->base.dev;
15381 struct intel_encoder *source_encoder;
15382 int index_mask = 0;
15383 int entry = 0;
15384
15385 for_each_intel_encoder(dev, source_encoder) {
15386 if (encoders_cloneable(encoder, source_encoder))
15387 index_mask |= (1 << entry);
15388
15389 entry++;
15390 }
15391
15392 return index_mask;
15393 }
15394
15395 static bool has_edp_a(struct drm_device *dev)
15396 {
15397 struct drm_i915_private *dev_priv = to_i915(dev);
15398
15399 if (!IS_MOBILE(dev))
15400 return false;
15401
15402 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15403 return false;
15404
15405 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15406 return false;
15407
15408 return true;
15409 }
15410
15411 static bool intel_crt_present(struct drm_device *dev)
15412 {
15413 struct drm_i915_private *dev_priv = to_i915(dev);
15414
15415 if (INTEL_INFO(dev)->gen >= 9)
15416 return false;
15417
15418 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15419 return false;
15420
15421 if (IS_CHERRYVIEW(dev_priv))
15422 return false;
15423
15424 if (HAS_PCH_LPT_H(dev_priv) &&
15425 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15426 return false;
15427
15428 /* DDI E can't be used if DDI A requires 4 lanes */
15429 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15430 return false;
15431
15432 if (!dev_priv->vbt.int_crt_support)
15433 return false;
15434
15435 return true;
15436 }
15437
15438 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15439 {
15440 int pps_num;
15441 int pps_idx;
15442
15443 if (HAS_DDI(dev_priv))
15444 return;
15445 /*
15446 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15447 * everywhere where registers can be write protected.
15448 */
15449 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15450 pps_num = 2;
15451 else
15452 pps_num = 1;
15453
15454 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15455 u32 val = I915_READ(PP_CONTROL(pps_idx));
15456
15457 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15458 I915_WRITE(PP_CONTROL(pps_idx), val);
15459 }
15460 }
15461
15462 static void intel_pps_init(struct drm_i915_private *dev_priv)
15463 {
15464 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15465 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15466 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15467 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15468 else
15469 dev_priv->pps_mmio_base = PPS_BASE;
15470
15471 intel_pps_unlock_regs_wa(dev_priv);
15472 }
15473
15474 static void intel_setup_outputs(struct drm_device *dev)
15475 {
15476 struct drm_i915_private *dev_priv = to_i915(dev);
15477 struct intel_encoder *encoder;
15478 bool dpd_is_edp = false;
15479
15480 intel_pps_init(dev_priv);
15481
15482 /*
15483 * intel_edp_init_connector() depends on this completing first, to
15484 * prevent the registeration of both eDP and LVDS and the incorrect
15485 * sharing of the PPS.
15486 */
15487 intel_lvds_init(dev);
15488
15489 if (intel_crt_present(dev))
15490 intel_crt_init(dev);
15491
15492 if (IS_BROXTON(dev_priv)) {
15493 /*
15494 * FIXME: Broxton doesn't support port detection via the
15495 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15496 * detect the ports.
15497 */
15498 intel_ddi_init(dev, PORT_A);
15499 intel_ddi_init(dev, PORT_B);
15500 intel_ddi_init(dev, PORT_C);
15501
15502 intel_dsi_init(dev);
15503 } else if (HAS_DDI(dev_priv)) {
15504 int found;
15505
15506 /*
15507 * Haswell uses DDI functions to detect digital outputs.
15508 * On SKL pre-D0 the strap isn't connected, so we assume
15509 * it's there.
15510 */
15511 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15512 /* WaIgnoreDDIAStrap: skl */
15513 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15514 intel_ddi_init(dev, PORT_A);
15515
15516 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15517 * register */
15518 found = I915_READ(SFUSE_STRAP);
15519
15520 if (found & SFUSE_STRAP_DDIB_DETECTED)
15521 intel_ddi_init(dev, PORT_B);
15522 if (found & SFUSE_STRAP_DDIC_DETECTED)
15523 intel_ddi_init(dev, PORT_C);
15524 if (found & SFUSE_STRAP_DDID_DETECTED)
15525 intel_ddi_init(dev, PORT_D);
15526 /*
15527 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15528 */
15529 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15530 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15531 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15532 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15533 intel_ddi_init(dev, PORT_E);
15534
15535 } else if (HAS_PCH_SPLIT(dev_priv)) {
15536 int found;
15537 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15538
15539 if (has_edp_a(dev))
15540 intel_dp_init(dev, DP_A, PORT_A);
15541
15542 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15543 /* PCH SDVOB multiplex with HDMIB */
15544 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15545 if (!found)
15546 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15547 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15548 intel_dp_init(dev, PCH_DP_B, PORT_B);
15549 }
15550
15551 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15552 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15553
15554 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15555 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15556
15557 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15558 intel_dp_init(dev, PCH_DP_C, PORT_C);
15559
15560 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15561 intel_dp_init(dev, PCH_DP_D, PORT_D);
15562 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15563 bool has_edp, has_port;
15564
15565 /*
15566 * The DP_DETECTED bit is the latched state of the DDC
15567 * SDA pin at boot. However since eDP doesn't require DDC
15568 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15569 * eDP ports may have been muxed to an alternate function.
15570 * Thus we can't rely on the DP_DETECTED bit alone to detect
15571 * eDP ports. Consult the VBT as well as DP_DETECTED to
15572 * detect eDP ports.
15573 *
15574 * Sadly the straps seem to be missing sometimes even for HDMI
15575 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15576 * and VBT for the presence of the port. Additionally we can't
15577 * trust the port type the VBT declares as we've seen at least
15578 * HDMI ports that the VBT claim are DP or eDP.
15579 */
15580 has_edp = intel_dp_is_edp(dev, PORT_B);
15581 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15582 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15583 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15584 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15585 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15586
15587 has_edp = intel_dp_is_edp(dev, PORT_C);
15588 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15589 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15590 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15591 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15592 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15593
15594 if (IS_CHERRYVIEW(dev_priv)) {
15595 /*
15596 * eDP not supported on port D,
15597 * so no need to worry about it
15598 */
15599 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15600 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15601 intel_dp_init(dev, CHV_DP_D, PORT_D);
15602 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15603 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15604 }
15605
15606 intel_dsi_init(dev);
15607 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15608 bool found = false;
15609
15610 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15611 DRM_DEBUG_KMS("probing SDVOB\n");
15612 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15613 if (!found && IS_G4X(dev_priv)) {
15614 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15615 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15616 }
15617
15618 if (!found && IS_G4X(dev_priv))
15619 intel_dp_init(dev, DP_B, PORT_B);
15620 }
15621
15622 /* Before G4X SDVOC doesn't have its own detect register */
15623
15624 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15625 DRM_DEBUG_KMS("probing SDVOC\n");
15626 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15627 }
15628
15629 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15630
15631 if (IS_G4X(dev_priv)) {
15632 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15633 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15634 }
15635 if (IS_G4X(dev_priv))
15636 intel_dp_init(dev, DP_C, PORT_C);
15637 }
15638
15639 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15640 intel_dp_init(dev, DP_D, PORT_D);
15641 } else if (IS_GEN2(dev_priv))
15642 intel_dvo_init(dev);
15643
15644 if (SUPPORTS_TV(dev))
15645 intel_tv_init(dev);
15646
15647 intel_psr_init(dev);
15648
15649 for_each_intel_encoder(dev, encoder) {
15650 encoder->base.possible_crtcs = encoder->crtc_mask;
15651 encoder->base.possible_clones =
15652 intel_encoder_clones(encoder);
15653 }
15654
15655 intel_init_pch_refclk(dev);
15656
15657 drm_helper_move_panel_connectors_to_head(dev);
15658 }
15659
15660 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15661 {
15662 struct drm_device *dev = fb->dev;
15663 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15664
15665 drm_framebuffer_cleanup(fb);
15666 mutex_lock(&dev->struct_mutex);
15667 WARN_ON(!intel_fb->obj->framebuffer_references--);
15668 i915_gem_object_put(intel_fb->obj);
15669 mutex_unlock(&dev->struct_mutex);
15670 kfree(intel_fb);
15671 }
15672
15673 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15674 struct drm_file *file,
15675 unsigned int *handle)
15676 {
15677 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15678 struct drm_i915_gem_object *obj = intel_fb->obj;
15679
15680 if (obj->userptr.mm) {
15681 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15682 return -EINVAL;
15683 }
15684
15685 return drm_gem_handle_create(file, &obj->base, handle);
15686 }
15687
15688 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15689 struct drm_file *file,
15690 unsigned flags, unsigned color,
15691 struct drm_clip_rect *clips,
15692 unsigned num_clips)
15693 {
15694 struct drm_device *dev = fb->dev;
15695 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15696 struct drm_i915_gem_object *obj = intel_fb->obj;
15697
15698 mutex_lock(&dev->struct_mutex);
15699 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15700 mutex_unlock(&dev->struct_mutex);
15701
15702 return 0;
15703 }
15704
15705 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15706 .destroy = intel_user_framebuffer_destroy,
15707 .create_handle = intel_user_framebuffer_create_handle,
15708 .dirty = intel_user_framebuffer_dirty,
15709 };
15710
15711 static
15712 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15713 uint64_t fb_modifier, uint32_t pixel_format)
15714 {
15715 u32 gen = INTEL_INFO(dev_priv)->gen;
15716
15717 if (gen >= 9) {
15718 int cpp = drm_format_plane_cpp(pixel_format, 0);
15719
15720 /* "The stride in bytes must not exceed the of the size of 8K
15721 * pixels and 32K bytes."
15722 */
15723 return min(8192 * cpp, 32768);
15724 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15725 !IS_CHERRYVIEW(dev_priv)) {
15726 return 32*1024;
15727 } else if (gen >= 4) {
15728 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15729 return 16*1024;
15730 else
15731 return 32*1024;
15732 } else if (gen >= 3) {
15733 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15734 return 8*1024;
15735 else
15736 return 16*1024;
15737 } else {
15738 /* XXX DSPC is limited to 4k tiled */
15739 return 8*1024;
15740 }
15741 }
15742
15743 static int intel_framebuffer_init(struct drm_device *dev,
15744 struct intel_framebuffer *intel_fb,
15745 struct drm_mode_fb_cmd2 *mode_cmd,
15746 struct drm_i915_gem_object *obj)
15747 {
15748 struct drm_i915_private *dev_priv = to_i915(dev);
15749 unsigned int tiling = i915_gem_object_get_tiling(obj);
15750 int ret;
15751 u32 pitch_limit, stride_alignment;
15752 char *format_name;
15753
15754 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15755
15756 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15757 /*
15758 * If there's a fence, enforce that
15759 * the fb modifier and tiling mode match.
15760 */
15761 if (tiling != I915_TILING_NONE &&
15762 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15763 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15764 return -EINVAL;
15765 }
15766 } else {
15767 if (tiling == I915_TILING_X) {
15768 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15769 } else if (tiling == I915_TILING_Y) {
15770 DRM_DEBUG("No Y tiling for legacy addfb\n");
15771 return -EINVAL;
15772 }
15773 }
15774
15775 /* Passed in modifier sanity checking. */
15776 switch (mode_cmd->modifier[0]) {
15777 case I915_FORMAT_MOD_Y_TILED:
15778 case I915_FORMAT_MOD_Yf_TILED:
15779 if (INTEL_INFO(dev)->gen < 9) {
15780 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15781 mode_cmd->modifier[0]);
15782 return -EINVAL;
15783 }
15784 case DRM_FORMAT_MOD_NONE:
15785 case I915_FORMAT_MOD_X_TILED:
15786 break;
15787 default:
15788 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15789 mode_cmd->modifier[0]);
15790 return -EINVAL;
15791 }
15792
15793 /*
15794 * gen2/3 display engine uses the fence if present,
15795 * so the tiling mode must match the fb modifier exactly.
15796 */
15797 if (INTEL_INFO(dev_priv)->gen < 4 &&
15798 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15799 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15800 return -EINVAL;
15801 }
15802
15803 stride_alignment = intel_fb_stride_alignment(dev_priv,
15804 mode_cmd->modifier[0],
15805 mode_cmd->pixel_format);
15806 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15807 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15808 mode_cmd->pitches[0], stride_alignment);
15809 return -EINVAL;
15810 }
15811
15812 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15813 mode_cmd->pixel_format);
15814 if (mode_cmd->pitches[0] > pitch_limit) {
15815 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15816 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15817 "tiled" : "linear",
15818 mode_cmd->pitches[0], pitch_limit);
15819 return -EINVAL;
15820 }
15821
15822 /*
15823 * If there's a fence, enforce that
15824 * the fb pitch and fence stride match.
15825 */
15826 if (tiling != I915_TILING_NONE &&
15827 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15828 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15829 mode_cmd->pitches[0],
15830 i915_gem_object_get_stride(obj));
15831 return -EINVAL;
15832 }
15833
15834 /* Reject formats not supported by any plane early. */
15835 switch (mode_cmd->pixel_format) {
15836 case DRM_FORMAT_C8:
15837 case DRM_FORMAT_RGB565:
15838 case DRM_FORMAT_XRGB8888:
15839 case DRM_FORMAT_ARGB8888:
15840 break;
15841 case DRM_FORMAT_XRGB1555:
15842 if (INTEL_INFO(dev)->gen > 3) {
15843 format_name = drm_get_format_name(mode_cmd->pixel_format);
15844 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15845 kfree(format_name);
15846 return -EINVAL;
15847 }
15848 break;
15849 case DRM_FORMAT_ABGR8888:
15850 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15851 INTEL_INFO(dev)->gen < 9) {
15852 format_name = drm_get_format_name(mode_cmd->pixel_format);
15853 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15854 kfree(format_name);
15855 return -EINVAL;
15856 }
15857 break;
15858 case DRM_FORMAT_XBGR8888:
15859 case DRM_FORMAT_XRGB2101010:
15860 case DRM_FORMAT_XBGR2101010:
15861 if (INTEL_INFO(dev)->gen < 4) {
15862 format_name = drm_get_format_name(mode_cmd->pixel_format);
15863 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15864 kfree(format_name);
15865 return -EINVAL;
15866 }
15867 break;
15868 case DRM_FORMAT_ABGR2101010:
15869 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15870 format_name = drm_get_format_name(mode_cmd->pixel_format);
15871 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15872 kfree(format_name);
15873 return -EINVAL;
15874 }
15875 break;
15876 case DRM_FORMAT_YUYV:
15877 case DRM_FORMAT_UYVY:
15878 case DRM_FORMAT_YVYU:
15879 case DRM_FORMAT_VYUY:
15880 if (INTEL_INFO(dev)->gen < 5) {
15881 format_name = drm_get_format_name(mode_cmd->pixel_format);
15882 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15883 kfree(format_name);
15884 return -EINVAL;
15885 }
15886 break;
15887 default:
15888 format_name = drm_get_format_name(mode_cmd->pixel_format);
15889 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15890 kfree(format_name);
15891 return -EINVAL;
15892 }
15893
15894 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15895 if (mode_cmd->offsets[0] != 0)
15896 return -EINVAL;
15897
15898 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15899 intel_fb->obj = obj;
15900
15901 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15902 if (ret)
15903 return ret;
15904
15905 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15906 if (ret) {
15907 DRM_ERROR("framebuffer init failed %d\n", ret);
15908 return ret;
15909 }
15910
15911 intel_fb->obj->framebuffer_references++;
15912
15913 return 0;
15914 }
15915
15916 static struct drm_framebuffer *
15917 intel_user_framebuffer_create(struct drm_device *dev,
15918 struct drm_file *filp,
15919 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15920 {
15921 struct drm_framebuffer *fb;
15922 struct drm_i915_gem_object *obj;
15923 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15924
15925 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15926 if (!obj)
15927 return ERR_PTR(-ENOENT);
15928
15929 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15930 if (IS_ERR(fb))
15931 i915_gem_object_put_unlocked(obj);
15932
15933 return fb;
15934 }
15935
15936 static const struct drm_mode_config_funcs intel_mode_funcs = {
15937 .fb_create = intel_user_framebuffer_create,
15938 .output_poll_changed = intel_fbdev_output_poll_changed,
15939 .atomic_check = intel_atomic_check,
15940 .atomic_commit = intel_atomic_commit,
15941 .atomic_state_alloc = intel_atomic_state_alloc,
15942 .atomic_state_clear = intel_atomic_state_clear,
15943 };
15944
15945 /**
15946 * intel_init_display_hooks - initialize the display modesetting hooks
15947 * @dev_priv: device private
15948 */
15949 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15950 {
15951 if (INTEL_INFO(dev_priv)->gen >= 9) {
15952 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15953 dev_priv->display.get_initial_plane_config =
15954 skylake_get_initial_plane_config;
15955 dev_priv->display.crtc_compute_clock =
15956 haswell_crtc_compute_clock;
15957 dev_priv->display.crtc_enable = haswell_crtc_enable;
15958 dev_priv->display.crtc_disable = haswell_crtc_disable;
15959 } else if (HAS_DDI(dev_priv)) {
15960 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15961 dev_priv->display.get_initial_plane_config =
15962 ironlake_get_initial_plane_config;
15963 dev_priv->display.crtc_compute_clock =
15964 haswell_crtc_compute_clock;
15965 dev_priv->display.crtc_enable = haswell_crtc_enable;
15966 dev_priv->display.crtc_disable = haswell_crtc_disable;
15967 } else if (HAS_PCH_SPLIT(dev_priv)) {
15968 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15969 dev_priv->display.get_initial_plane_config =
15970 ironlake_get_initial_plane_config;
15971 dev_priv->display.crtc_compute_clock =
15972 ironlake_crtc_compute_clock;
15973 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15974 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15975 } else if (IS_CHERRYVIEW(dev_priv)) {
15976 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15977 dev_priv->display.get_initial_plane_config =
15978 i9xx_get_initial_plane_config;
15979 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15980 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15981 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15982 } else if (IS_VALLEYVIEW(dev_priv)) {
15983 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15984 dev_priv->display.get_initial_plane_config =
15985 i9xx_get_initial_plane_config;
15986 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15987 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15988 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15989 } else if (IS_G4X(dev_priv)) {
15990 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15991 dev_priv->display.get_initial_plane_config =
15992 i9xx_get_initial_plane_config;
15993 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15994 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15995 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15996 } else if (IS_PINEVIEW(dev_priv)) {
15997 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15998 dev_priv->display.get_initial_plane_config =
15999 i9xx_get_initial_plane_config;
16000 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16001 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16002 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16003 } else if (!IS_GEN2(dev_priv)) {
16004 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16005 dev_priv->display.get_initial_plane_config =
16006 i9xx_get_initial_plane_config;
16007 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16008 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16009 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16010 } else {
16011 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16012 dev_priv->display.get_initial_plane_config =
16013 i9xx_get_initial_plane_config;
16014 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16015 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16016 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16017 }
16018
16019 /* Returns the core display clock speed */
16020 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16021 dev_priv->display.get_display_clock_speed =
16022 skylake_get_display_clock_speed;
16023 else if (IS_BROXTON(dev_priv))
16024 dev_priv->display.get_display_clock_speed =
16025 broxton_get_display_clock_speed;
16026 else if (IS_BROADWELL(dev_priv))
16027 dev_priv->display.get_display_clock_speed =
16028 broadwell_get_display_clock_speed;
16029 else if (IS_HASWELL(dev_priv))
16030 dev_priv->display.get_display_clock_speed =
16031 haswell_get_display_clock_speed;
16032 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16033 dev_priv->display.get_display_clock_speed =
16034 valleyview_get_display_clock_speed;
16035 else if (IS_GEN5(dev_priv))
16036 dev_priv->display.get_display_clock_speed =
16037 ilk_get_display_clock_speed;
16038 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16039 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16040 dev_priv->display.get_display_clock_speed =
16041 i945_get_display_clock_speed;
16042 else if (IS_GM45(dev_priv))
16043 dev_priv->display.get_display_clock_speed =
16044 gm45_get_display_clock_speed;
16045 else if (IS_CRESTLINE(dev_priv))
16046 dev_priv->display.get_display_clock_speed =
16047 i965gm_get_display_clock_speed;
16048 else if (IS_PINEVIEW(dev_priv))
16049 dev_priv->display.get_display_clock_speed =
16050 pnv_get_display_clock_speed;
16051 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16052 dev_priv->display.get_display_clock_speed =
16053 g33_get_display_clock_speed;
16054 else if (IS_I915G(dev_priv))
16055 dev_priv->display.get_display_clock_speed =
16056 i915_get_display_clock_speed;
16057 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16058 dev_priv->display.get_display_clock_speed =
16059 i9xx_misc_get_display_clock_speed;
16060 else if (IS_I915GM(dev_priv))
16061 dev_priv->display.get_display_clock_speed =
16062 i915gm_get_display_clock_speed;
16063 else if (IS_I865G(dev_priv))
16064 dev_priv->display.get_display_clock_speed =
16065 i865_get_display_clock_speed;
16066 else if (IS_I85X(dev_priv))
16067 dev_priv->display.get_display_clock_speed =
16068 i85x_get_display_clock_speed;
16069 else { /* 830 */
16070 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16071 dev_priv->display.get_display_clock_speed =
16072 i830_get_display_clock_speed;
16073 }
16074
16075 if (IS_GEN5(dev_priv)) {
16076 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16077 } else if (IS_GEN6(dev_priv)) {
16078 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16079 } else if (IS_IVYBRIDGE(dev_priv)) {
16080 /* FIXME: detect B0+ stepping and use auto training */
16081 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16082 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16083 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16084 }
16085
16086 if (IS_BROADWELL(dev_priv)) {
16087 dev_priv->display.modeset_commit_cdclk =
16088 broadwell_modeset_commit_cdclk;
16089 dev_priv->display.modeset_calc_cdclk =
16090 broadwell_modeset_calc_cdclk;
16091 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16092 dev_priv->display.modeset_commit_cdclk =
16093 valleyview_modeset_commit_cdclk;
16094 dev_priv->display.modeset_calc_cdclk =
16095 valleyview_modeset_calc_cdclk;
16096 } else if (IS_BROXTON(dev_priv)) {
16097 dev_priv->display.modeset_commit_cdclk =
16098 bxt_modeset_commit_cdclk;
16099 dev_priv->display.modeset_calc_cdclk =
16100 bxt_modeset_calc_cdclk;
16101 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16102 dev_priv->display.modeset_commit_cdclk =
16103 skl_modeset_commit_cdclk;
16104 dev_priv->display.modeset_calc_cdclk =
16105 skl_modeset_calc_cdclk;
16106 }
16107
16108 if (dev_priv->info.gen >= 9)
16109 dev_priv->display.update_crtcs = skl_update_crtcs;
16110 else
16111 dev_priv->display.update_crtcs = intel_update_crtcs;
16112
16113 switch (INTEL_INFO(dev_priv)->gen) {
16114 case 2:
16115 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16116 break;
16117
16118 case 3:
16119 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16120 break;
16121
16122 case 4:
16123 case 5:
16124 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16125 break;
16126
16127 case 6:
16128 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16129 break;
16130 case 7:
16131 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16132 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16133 break;
16134 case 9:
16135 /* Drop through - unsupported since execlist only. */
16136 default:
16137 /* Default just returns -ENODEV to indicate unsupported */
16138 dev_priv->display.queue_flip = intel_default_queue_flip;
16139 }
16140 }
16141
16142 /*
16143 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16144 * resume, or other times. This quirk makes sure that's the case for
16145 * affected systems.
16146 */
16147 static void quirk_pipea_force(struct drm_device *dev)
16148 {
16149 struct drm_i915_private *dev_priv = to_i915(dev);
16150
16151 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16152 DRM_INFO("applying pipe a force quirk\n");
16153 }
16154
16155 static void quirk_pipeb_force(struct drm_device *dev)
16156 {
16157 struct drm_i915_private *dev_priv = to_i915(dev);
16158
16159 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16160 DRM_INFO("applying pipe b force quirk\n");
16161 }
16162
16163 /*
16164 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16165 */
16166 static void quirk_ssc_force_disable(struct drm_device *dev)
16167 {
16168 struct drm_i915_private *dev_priv = to_i915(dev);
16169 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16170 DRM_INFO("applying lvds SSC disable quirk\n");
16171 }
16172
16173 /*
16174 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16175 * brightness value
16176 */
16177 static void quirk_invert_brightness(struct drm_device *dev)
16178 {
16179 struct drm_i915_private *dev_priv = to_i915(dev);
16180 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16181 DRM_INFO("applying inverted panel brightness quirk\n");
16182 }
16183
16184 /* Some VBT's incorrectly indicate no backlight is present */
16185 static void quirk_backlight_present(struct drm_device *dev)
16186 {
16187 struct drm_i915_private *dev_priv = to_i915(dev);
16188 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16189 DRM_INFO("applying backlight present quirk\n");
16190 }
16191
16192 struct intel_quirk {
16193 int device;
16194 int subsystem_vendor;
16195 int subsystem_device;
16196 void (*hook)(struct drm_device *dev);
16197 };
16198
16199 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16200 struct intel_dmi_quirk {
16201 void (*hook)(struct drm_device *dev);
16202 const struct dmi_system_id (*dmi_id_list)[];
16203 };
16204
16205 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16206 {
16207 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16208 return 1;
16209 }
16210
16211 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16212 {
16213 .dmi_id_list = &(const struct dmi_system_id[]) {
16214 {
16215 .callback = intel_dmi_reverse_brightness,
16216 .ident = "NCR Corporation",
16217 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16218 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16219 },
16220 },
16221 { } /* terminating entry */
16222 },
16223 .hook = quirk_invert_brightness,
16224 },
16225 };
16226
16227 static struct intel_quirk intel_quirks[] = {
16228 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16229 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16230
16231 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16232 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16233
16234 /* 830 needs to leave pipe A & dpll A up */
16235 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16236
16237 /* 830 needs to leave pipe B & dpll B up */
16238 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16239
16240 /* Lenovo U160 cannot use SSC on LVDS */
16241 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16242
16243 /* Sony Vaio Y cannot use SSC on LVDS */
16244 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16245
16246 /* Acer Aspire 5734Z must invert backlight brightness */
16247 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16248
16249 /* Acer/eMachines G725 */
16250 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16251
16252 /* Acer/eMachines e725 */
16253 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16254
16255 /* Acer/Packard Bell NCL20 */
16256 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16257
16258 /* Acer Aspire 4736Z */
16259 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16260
16261 /* Acer Aspire 5336 */
16262 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16263
16264 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16265 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16266
16267 /* Acer C720 Chromebook (Core i3 4005U) */
16268 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16269
16270 /* Apple Macbook 2,1 (Core 2 T7400) */
16271 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16272
16273 /* Apple Macbook 4,1 */
16274 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16275
16276 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16277 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16278
16279 /* HP Chromebook 14 (Celeron 2955U) */
16280 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16281
16282 /* Dell Chromebook 11 */
16283 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16284
16285 /* Dell Chromebook 11 (2015 version) */
16286 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16287 };
16288
16289 static void intel_init_quirks(struct drm_device *dev)
16290 {
16291 struct pci_dev *d = dev->pdev;
16292 int i;
16293
16294 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16295 struct intel_quirk *q = &intel_quirks[i];
16296
16297 if (d->device == q->device &&
16298 (d->subsystem_vendor == q->subsystem_vendor ||
16299 q->subsystem_vendor == PCI_ANY_ID) &&
16300 (d->subsystem_device == q->subsystem_device ||
16301 q->subsystem_device == PCI_ANY_ID))
16302 q->hook(dev);
16303 }
16304 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16305 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16306 intel_dmi_quirks[i].hook(dev);
16307 }
16308 }
16309
16310 /* Disable the VGA plane that we never use */
16311 static void i915_disable_vga(struct drm_device *dev)
16312 {
16313 struct drm_i915_private *dev_priv = to_i915(dev);
16314 struct pci_dev *pdev = dev_priv->drm.pdev;
16315 u8 sr1;
16316 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16317
16318 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16319 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16320 outb(SR01, VGA_SR_INDEX);
16321 sr1 = inb(VGA_SR_DATA);
16322 outb(sr1 | 1<<5, VGA_SR_DATA);
16323 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16324 udelay(300);
16325
16326 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16327 POSTING_READ(vga_reg);
16328 }
16329
16330 void intel_modeset_init_hw(struct drm_device *dev)
16331 {
16332 struct drm_i915_private *dev_priv = to_i915(dev);
16333
16334 intel_update_cdclk(dev);
16335
16336 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16337
16338 intel_init_clock_gating(dev);
16339 }
16340
16341 /*
16342 * Calculate what we think the watermarks should be for the state we've read
16343 * out of the hardware and then immediately program those watermarks so that
16344 * we ensure the hardware settings match our internal state.
16345 *
16346 * We can calculate what we think WM's should be by creating a duplicate of the
16347 * current state (which was constructed during hardware readout) and running it
16348 * through the atomic check code to calculate new watermark values in the
16349 * state object.
16350 */
16351 static void sanitize_watermarks(struct drm_device *dev)
16352 {
16353 struct drm_i915_private *dev_priv = to_i915(dev);
16354 struct drm_atomic_state *state;
16355 struct drm_crtc *crtc;
16356 struct drm_crtc_state *cstate;
16357 struct drm_modeset_acquire_ctx ctx;
16358 int ret;
16359 int i;
16360
16361 /* Only supported on platforms that use atomic watermark design */
16362 if (!dev_priv->display.optimize_watermarks)
16363 return;
16364
16365 /*
16366 * We need to hold connection_mutex before calling duplicate_state so
16367 * that the connector loop is protected.
16368 */
16369 drm_modeset_acquire_init(&ctx, 0);
16370 retry:
16371 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16372 if (ret == -EDEADLK) {
16373 drm_modeset_backoff(&ctx);
16374 goto retry;
16375 } else if (WARN_ON(ret)) {
16376 goto fail;
16377 }
16378
16379 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16380 if (WARN_ON(IS_ERR(state)))
16381 goto fail;
16382
16383 /*
16384 * Hardware readout is the only time we don't want to calculate
16385 * intermediate watermarks (since we don't trust the current
16386 * watermarks).
16387 */
16388 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16389
16390 ret = intel_atomic_check(dev, state);
16391 if (ret) {
16392 /*
16393 * If we fail here, it means that the hardware appears to be
16394 * programmed in a way that shouldn't be possible, given our
16395 * understanding of watermark requirements. This might mean a
16396 * mistake in the hardware readout code or a mistake in the
16397 * watermark calculations for a given platform. Raise a WARN
16398 * so that this is noticeable.
16399 *
16400 * If this actually happens, we'll have to just leave the
16401 * BIOS-programmed watermarks untouched and hope for the best.
16402 */
16403 WARN(true, "Could not determine valid watermarks for inherited state\n");
16404 goto put_state;
16405 }
16406
16407 /* Write calculated watermark values back */
16408 for_each_crtc_in_state(state, crtc, cstate, i) {
16409 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16410
16411 cs->wm.need_postvbl_update = true;
16412 dev_priv->display.optimize_watermarks(cs);
16413 }
16414
16415 put_state:
16416 drm_atomic_state_put(state);
16417 fail:
16418 drm_modeset_drop_locks(&ctx);
16419 drm_modeset_acquire_fini(&ctx);
16420 }
16421
16422 void intel_modeset_init(struct drm_device *dev)
16423 {
16424 struct drm_i915_private *dev_priv = to_i915(dev);
16425 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16426 int sprite, ret;
16427 enum pipe pipe;
16428 struct intel_crtc *crtc;
16429
16430 drm_mode_config_init(dev);
16431
16432 dev->mode_config.min_width = 0;
16433 dev->mode_config.min_height = 0;
16434
16435 dev->mode_config.preferred_depth = 24;
16436 dev->mode_config.prefer_shadow = 1;
16437
16438 dev->mode_config.allow_fb_modifiers = true;
16439
16440 dev->mode_config.funcs = &intel_mode_funcs;
16441
16442 intel_init_quirks(dev);
16443
16444 intel_init_pm(dev);
16445
16446 if (INTEL_INFO(dev)->num_pipes == 0)
16447 return;
16448
16449 /*
16450 * There may be no VBT; and if the BIOS enabled SSC we can
16451 * just keep using it to avoid unnecessary flicker. Whereas if the
16452 * BIOS isn't using it, don't assume it will work even if the VBT
16453 * indicates as much.
16454 */
16455 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16456 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16457 DREF_SSC1_ENABLE);
16458
16459 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16460 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16461 bios_lvds_use_ssc ? "en" : "dis",
16462 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16463 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16464 }
16465 }
16466
16467 if (IS_GEN2(dev_priv)) {
16468 dev->mode_config.max_width = 2048;
16469 dev->mode_config.max_height = 2048;
16470 } else if (IS_GEN3(dev_priv)) {
16471 dev->mode_config.max_width = 4096;
16472 dev->mode_config.max_height = 4096;
16473 } else {
16474 dev->mode_config.max_width = 8192;
16475 dev->mode_config.max_height = 8192;
16476 }
16477
16478 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16479 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16480 dev->mode_config.cursor_height = 1023;
16481 } else if (IS_GEN2(dev_priv)) {
16482 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16483 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16484 } else {
16485 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16486 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16487 }
16488
16489 dev->mode_config.fb_base = ggtt->mappable_base;
16490
16491 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16492 INTEL_INFO(dev)->num_pipes,
16493 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16494
16495 for_each_pipe(dev_priv, pipe) {
16496 intel_crtc_init(dev, pipe);
16497 for_each_sprite(dev_priv, pipe, sprite) {
16498 ret = intel_plane_init(dev, pipe, sprite);
16499 if (ret)
16500 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16501 pipe_name(pipe), sprite_name(pipe, sprite), ret);
16502 }
16503 }
16504
16505 intel_update_czclk(dev_priv);
16506 intel_update_cdclk(dev);
16507
16508 intel_shared_dpll_init(dev);
16509
16510 if (dev_priv->max_cdclk_freq == 0)
16511 intel_update_max_cdclk(dev);
16512
16513 /* Just disable it once at startup */
16514 i915_disable_vga(dev);
16515 intel_setup_outputs(dev);
16516
16517 drm_modeset_lock_all(dev);
16518 intel_modeset_setup_hw_state(dev);
16519 drm_modeset_unlock_all(dev);
16520
16521 for_each_intel_crtc(dev, crtc) {
16522 struct intel_initial_plane_config plane_config = {};
16523
16524 if (!crtc->active)
16525 continue;
16526
16527 /*
16528 * Note that reserving the BIOS fb up front prevents us
16529 * from stuffing other stolen allocations like the ring
16530 * on top. This prevents some ugliness at boot time, and
16531 * can even allow for smooth boot transitions if the BIOS
16532 * fb is large enough for the active pipe configuration.
16533 */
16534 dev_priv->display.get_initial_plane_config(crtc,
16535 &plane_config);
16536
16537 /*
16538 * If the fb is shared between multiple heads, we'll
16539 * just get the first one.
16540 */
16541 intel_find_initial_plane_obj(crtc, &plane_config);
16542 }
16543
16544 /*
16545 * Make sure hardware watermarks really match the state we read out.
16546 * Note that we need to do this after reconstructing the BIOS fb's
16547 * since the watermark calculation done here will use pstate->fb.
16548 */
16549 sanitize_watermarks(dev);
16550 }
16551
16552 static void intel_enable_pipe_a(struct drm_device *dev)
16553 {
16554 struct intel_connector *connector;
16555 struct drm_connector *crt = NULL;
16556 struct intel_load_detect_pipe load_detect_temp;
16557 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16558
16559 /* We can't just switch on the pipe A, we need to set things up with a
16560 * proper mode and output configuration. As a gross hack, enable pipe A
16561 * by enabling the load detect pipe once. */
16562 for_each_intel_connector(dev, connector) {
16563 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16564 crt = &connector->base;
16565 break;
16566 }
16567 }
16568
16569 if (!crt)
16570 return;
16571
16572 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16573 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16574 }
16575
16576 static bool
16577 intel_check_plane_mapping(struct intel_crtc *crtc)
16578 {
16579 struct drm_device *dev = crtc->base.dev;
16580 struct drm_i915_private *dev_priv = to_i915(dev);
16581 u32 val;
16582
16583 if (INTEL_INFO(dev)->num_pipes == 1)
16584 return true;
16585
16586 val = I915_READ(DSPCNTR(!crtc->plane));
16587
16588 if ((val & DISPLAY_PLANE_ENABLE) &&
16589 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16590 return false;
16591
16592 return true;
16593 }
16594
16595 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16596 {
16597 struct drm_device *dev = crtc->base.dev;
16598 struct intel_encoder *encoder;
16599
16600 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16601 return true;
16602
16603 return false;
16604 }
16605
16606 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16607 {
16608 struct drm_device *dev = encoder->base.dev;
16609 struct intel_connector *connector;
16610
16611 for_each_connector_on_encoder(dev, &encoder->base, connector)
16612 return connector;
16613
16614 return NULL;
16615 }
16616
16617 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16618 enum transcoder pch_transcoder)
16619 {
16620 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16621 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16622 }
16623
16624 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16625 {
16626 struct drm_device *dev = crtc->base.dev;
16627 struct drm_i915_private *dev_priv = to_i915(dev);
16628 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16629
16630 /* Clear any frame start delays used for debugging left by the BIOS */
16631 if (!transcoder_is_dsi(cpu_transcoder)) {
16632 i915_reg_t reg = PIPECONF(cpu_transcoder);
16633
16634 I915_WRITE(reg,
16635 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16636 }
16637
16638 /* restore vblank interrupts to correct state */
16639 drm_crtc_vblank_reset(&crtc->base);
16640 if (crtc->active) {
16641 struct intel_plane *plane;
16642
16643 drm_crtc_vblank_on(&crtc->base);
16644
16645 /* Disable everything but the primary plane */
16646 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16647 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16648 continue;
16649
16650 plane->disable_plane(&plane->base, &crtc->base);
16651 }
16652 }
16653
16654 /* We need to sanitize the plane -> pipe mapping first because this will
16655 * disable the crtc (and hence change the state) if it is wrong. Note
16656 * that gen4+ has a fixed plane -> pipe mapping. */
16657 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16658 bool plane;
16659
16660 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16661 crtc->base.base.id, crtc->base.name);
16662
16663 /* Pipe has the wrong plane attached and the plane is active.
16664 * Temporarily change the plane mapping and disable everything
16665 * ... */
16666 plane = crtc->plane;
16667 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16668 crtc->plane = !plane;
16669 intel_crtc_disable_noatomic(&crtc->base);
16670 crtc->plane = plane;
16671 }
16672
16673 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16674 crtc->pipe == PIPE_A && !crtc->active) {
16675 /* BIOS forgot to enable pipe A, this mostly happens after
16676 * resume. Force-enable the pipe to fix this, the update_dpms
16677 * call below we restore the pipe to the right state, but leave
16678 * the required bits on. */
16679 intel_enable_pipe_a(dev);
16680 }
16681
16682 /* Adjust the state of the output pipe according to whether we
16683 * have active connectors/encoders. */
16684 if (crtc->active && !intel_crtc_has_encoders(crtc))
16685 intel_crtc_disable_noatomic(&crtc->base);
16686
16687 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16688 /*
16689 * We start out with underrun reporting disabled to avoid races.
16690 * For correct bookkeeping mark this on active crtcs.
16691 *
16692 * Also on gmch platforms we dont have any hardware bits to
16693 * disable the underrun reporting. Which means we need to start
16694 * out with underrun reporting disabled also on inactive pipes,
16695 * since otherwise we'll complain about the garbage we read when
16696 * e.g. coming up after runtime pm.
16697 *
16698 * No protection against concurrent access is required - at
16699 * worst a fifo underrun happens which also sets this to false.
16700 */
16701 crtc->cpu_fifo_underrun_disabled = true;
16702 /*
16703 * We track the PCH trancoder underrun reporting state
16704 * within the crtc. With crtc for pipe A housing the underrun
16705 * reporting state for PCH transcoder A, crtc for pipe B housing
16706 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16707 * and marking underrun reporting as disabled for the non-existing
16708 * PCH transcoders B and C would prevent enabling the south
16709 * error interrupt (see cpt_can_enable_serr_int()).
16710 */
16711 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16712 crtc->pch_fifo_underrun_disabled = true;
16713 }
16714 }
16715
16716 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16717 {
16718 struct intel_connector *connector;
16719
16720 /* We need to check both for a crtc link (meaning that the
16721 * encoder is active and trying to read from a pipe) and the
16722 * pipe itself being active. */
16723 bool has_active_crtc = encoder->base.crtc &&
16724 to_intel_crtc(encoder->base.crtc)->active;
16725
16726 connector = intel_encoder_find_connector(encoder);
16727 if (connector && !has_active_crtc) {
16728 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16729 encoder->base.base.id,
16730 encoder->base.name);
16731
16732 /* Connector is active, but has no active pipe. This is
16733 * fallout from our resume register restoring. Disable
16734 * the encoder manually again. */
16735 if (encoder->base.crtc) {
16736 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16737
16738 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16739 encoder->base.base.id,
16740 encoder->base.name);
16741 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16742 if (encoder->post_disable)
16743 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16744 }
16745 encoder->base.crtc = NULL;
16746
16747 /* Inconsistent output/port/pipe state happens presumably due to
16748 * a bug in one of the get_hw_state functions. Or someplace else
16749 * in our code, like the register restore mess on resume. Clamp
16750 * things to off as a safer default. */
16751
16752 connector->base.dpms = DRM_MODE_DPMS_OFF;
16753 connector->base.encoder = NULL;
16754 }
16755 /* Enabled encoders without active connectors will be fixed in
16756 * the crtc fixup. */
16757 }
16758
16759 void i915_redisable_vga_power_on(struct drm_device *dev)
16760 {
16761 struct drm_i915_private *dev_priv = to_i915(dev);
16762 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16763
16764 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16765 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16766 i915_disable_vga(dev);
16767 }
16768 }
16769
16770 void i915_redisable_vga(struct drm_device *dev)
16771 {
16772 struct drm_i915_private *dev_priv = to_i915(dev);
16773
16774 /* This function can be called both from intel_modeset_setup_hw_state or
16775 * at a very early point in our resume sequence, where the power well
16776 * structures are not yet restored. Since this function is at a very
16777 * paranoid "someone might have enabled VGA while we were not looking"
16778 * level, just check if the power well is enabled instead of trying to
16779 * follow the "don't touch the power well if we don't need it" policy
16780 * the rest of the driver uses. */
16781 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16782 return;
16783
16784 i915_redisable_vga_power_on(dev);
16785
16786 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16787 }
16788
16789 static bool primary_get_hw_state(struct intel_plane *plane)
16790 {
16791 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16792
16793 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16794 }
16795
16796 /* FIXME read out full plane state for all planes */
16797 static void readout_plane_state(struct intel_crtc *crtc)
16798 {
16799 struct drm_plane *primary = crtc->base.primary;
16800 struct intel_plane_state *plane_state =
16801 to_intel_plane_state(primary->state);
16802
16803 plane_state->base.visible = crtc->active &&
16804 primary_get_hw_state(to_intel_plane(primary));
16805
16806 if (plane_state->base.visible)
16807 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16808 }
16809
16810 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16811 {
16812 struct drm_i915_private *dev_priv = to_i915(dev);
16813 enum pipe pipe;
16814 struct intel_crtc *crtc;
16815 struct intel_encoder *encoder;
16816 struct intel_connector *connector;
16817 int i;
16818
16819 dev_priv->active_crtcs = 0;
16820
16821 for_each_intel_crtc(dev, crtc) {
16822 struct intel_crtc_state *crtc_state = crtc->config;
16823 int pixclk = 0;
16824
16825 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16826 memset(crtc_state, 0, sizeof(*crtc_state));
16827 crtc_state->base.crtc = &crtc->base;
16828
16829 crtc_state->base.active = crtc_state->base.enable =
16830 dev_priv->display.get_pipe_config(crtc, crtc_state);
16831
16832 crtc->base.enabled = crtc_state->base.enable;
16833 crtc->active = crtc_state->base.active;
16834
16835 if (crtc_state->base.active) {
16836 dev_priv->active_crtcs |= 1 << crtc->pipe;
16837
16838 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16839 pixclk = ilk_pipe_pixel_rate(crtc_state);
16840 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16841 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16842 else
16843 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16844
16845 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16846 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16847 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16848 }
16849
16850 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16851
16852 readout_plane_state(crtc);
16853
16854 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16855 crtc->base.base.id, crtc->base.name,
16856 crtc->active ? "enabled" : "disabled");
16857 }
16858
16859 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16860 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16861
16862 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16863 &pll->config.hw_state);
16864 pll->config.crtc_mask = 0;
16865 for_each_intel_crtc(dev, crtc) {
16866 if (crtc->active && crtc->config->shared_dpll == pll)
16867 pll->config.crtc_mask |= 1 << crtc->pipe;
16868 }
16869 pll->active_mask = pll->config.crtc_mask;
16870
16871 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16872 pll->name, pll->config.crtc_mask, pll->on);
16873 }
16874
16875 for_each_intel_encoder(dev, encoder) {
16876 pipe = 0;
16877
16878 if (encoder->get_hw_state(encoder, &pipe)) {
16879 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16880 encoder->base.crtc = &crtc->base;
16881 crtc->config->output_types |= 1 << encoder->type;
16882 encoder->get_config(encoder, crtc->config);
16883 } else {
16884 encoder->base.crtc = NULL;
16885 }
16886
16887 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16888 encoder->base.base.id,
16889 encoder->base.name,
16890 encoder->base.crtc ? "enabled" : "disabled",
16891 pipe_name(pipe));
16892 }
16893
16894 for_each_intel_connector(dev, connector) {
16895 if (connector->get_hw_state(connector)) {
16896 connector->base.dpms = DRM_MODE_DPMS_ON;
16897
16898 encoder = connector->encoder;
16899 connector->base.encoder = &encoder->base;
16900
16901 if (encoder->base.crtc &&
16902 encoder->base.crtc->state->active) {
16903 /*
16904 * This has to be done during hardware readout
16905 * because anything calling .crtc_disable may
16906 * rely on the connector_mask being accurate.
16907 */
16908 encoder->base.crtc->state->connector_mask |=
16909 1 << drm_connector_index(&connector->base);
16910 encoder->base.crtc->state->encoder_mask |=
16911 1 << drm_encoder_index(&encoder->base);
16912 }
16913
16914 } else {
16915 connector->base.dpms = DRM_MODE_DPMS_OFF;
16916 connector->base.encoder = NULL;
16917 }
16918 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16919 connector->base.base.id,
16920 connector->base.name,
16921 connector->base.encoder ? "enabled" : "disabled");
16922 }
16923
16924 for_each_intel_crtc(dev, crtc) {
16925 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16926
16927 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16928 if (crtc->base.state->active) {
16929 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16930 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16931 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16932
16933 /*
16934 * The initial mode needs to be set in order to keep
16935 * the atomic core happy. It wants a valid mode if the
16936 * crtc's enabled, so we do the above call.
16937 *
16938 * At this point some state updated by the connectors
16939 * in their ->detect() callback has not run yet, so
16940 * no recalculation can be done yet.
16941 *
16942 * Even if we could do a recalculation and modeset
16943 * right now it would cause a double modeset if
16944 * fbdev or userspace chooses a different initial mode.
16945 *
16946 * If that happens, someone indicated they wanted a
16947 * mode change, which means it's safe to do a full
16948 * recalculation.
16949 */
16950 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16951
16952 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16953 update_scanline_offset(crtc);
16954 }
16955
16956 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16957 }
16958 }
16959
16960 /* Scan out the current hw modeset state,
16961 * and sanitizes it to the current state
16962 */
16963 static void
16964 intel_modeset_setup_hw_state(struct drm_device *dev)
16965 {
16966 struct drm_i915_private *dev_priv = to_i915(dev);
16967 enum pipe pipe;
16968 struct intel_crtc *crtc;
16969 struct intel_encoder *encoder;
16970 int i;
16971
16972 intel_modeset_readout_hw_state(dev);
16973
16974 /* HW state is read out, now we need to sanitize this mess. */
16975 for_each_intel_encoder(dev, encoder) {
16976 intel_sanitize_encoder(encoder);
16977 }
16978
16979 for_each_pipe(dev_priv, pipe) {
16980 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16981 intel_sanitize_crtc(crtc);
16982 intel_dump_pipe_config(crtc, crtc->config,
16983 "[setup_hw_state]");
16984 }
16985
16986 intel_modeset_update_connector_atomic_state(dev);
16987
16988 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16989 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16990
16991 if (!pll->on || pll->active_mask)
16992 continue;
16993
16994 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16995
16996 pll->funcs.disable(dev_priv, pll);
16997 pll->on = false;
16998 }
16999
17000 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17001 vlv_wm_get_hw_state(dev);
17002 else if (IS_GEN9(dev_priv))
17003 skl_wm_get_hw_state(dev);
17004 else if (HAS_PCH_SPLIT(dev_priv))
17005 ilk_wm_get_hw_state(dev);
17006
17007 for_each_intel_crtc(dev, crtc) {
17008 unsigned long put_domains;
17009
17010 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17011 if (WARN_ON(put_domains))
17012 modeset_put_power_domains(dev_priv, put_domains);
17013 }
17014 intel_display_set_init_power(dev_priv, false);
17015
17016 intel_fbc_init_pipe_state(dev_priv);
17017 }
17018
17019 void intel_display_resume(struct drm_device *dev)
17020 {
17021 struct drm_i915_private *dev_priv = to_i915(dev);
17022 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17023 struct drm_modeset_acquire_ctx ctx;
17024 int ret;
17025
17026 dev_priv->modeset_restore_state = NULL;
17027 if (state)
17028 state->acquire_ctx = &ctx;
17029
17030 /*
17031 * This is a cludge because with real atomic modeset mode_config.mutex
17032 * won't be taken. Unfortunately some probed state like
17033 * audio_codec_enable is still protected by mode_config.mutex, so lock
17034 * it here for now.
17035 */
17036 mutex_lock(&dev->mode_config.mutex);
17037 drm_modeset_acquire_init(&ctx, 0);
17038
17039 while (1) {
17040 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17041 if (ret != -EDEADLK)
17042 break;
17043
17044 drm_modeset_backoff(&ctx);
17045 }
17046
17047 if (!ret)
17048 ret = __intel_display_resume(dev, state);
17049
17050 drm_modeset_drop_locks(&ctx);
17051 drm_modeset_acquire_fini(&ctx);
17052 mutex_unlock(&dev->mode_config.mutex);
17053
17054 if (ret)
17055 DRM_ERROR("Restoring old state failed with %i\n", ret);
17056 drm_atomic_state_put(state);
17057 }
17058
17059 void intel_modeset_gem_init(struct drm_device *dev)
17060 {
17061 struct drm_i915_private *dev_priv = to_i915(dev);
17062 struct drm_crtc *c;
17063 struct drm_i915_gem_object *obj;
17064
17065 intel_init_gt_powersave(dev_priv);
17066
17067 intel_modeset_init_hw(dev);
17068
17069 intel_setup_overlay(dev_priv);
17070
17071 /*
17072 * Make sure any fbs we allocated at startup are properly
17073 * pinned & fenced. When we do the allocation it's too early
17074 * for this.
17075 */
17076 for_each_crtc(dev, c) {
17077 struct i915_vma *vma;
17078
17079 obj = intel_fb_obj(c->primary->fb);
17080 if (obj == NULL)
17081 continue;
17082
17083 mutex_lock(&dev->struct_mutex);
17084 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17085 c->primary->state->rotation);
17086 mutex_unlock(&dev->struct_mutex);
17087 if (IS_ERR(vma)) {
17088 DRM_ERROR("failed to pin boot fb on pipe %d\n",
17089 to_intel_crtc(c)->pipe);
17090 drm_framebuffer_unreference(c->primary->fb);
17091 c->primary->fb = NULL;
17092 c->primary->crtc = c->primary->state->crtc = NULL;
17093 update_state_fb(c->primary);
17094 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17095 }
17096 }
17097 }
17098
17099 int intel_connector_register(struct drm_connector *connector)
17100 {
17101 struct intel_connector *intel_connector = to_intel_connector(connector);
17102 int ret;
17103
17104 ret = intel_backlight_device_register(intel_connector);
17105 if (ret)
17106 goto err;
17107
17108 return 0;
17109
17110 err:
17111 return ret;
17112 }
17113
17114 void intel_connector_unregister(struct drm_connector *connector)
17115 {
17116 struct intel_connector *intel_connector = to_intel_connector(connector);
17117
17118 intel_backlight_device_unregister(intel_connector);
17119 intel_panel_destroy_backlight(connector);
17120 }
17121
17122 void intel_modeset_cleanup(struct drm_device *dev)
17123 {
17124 struct drm_i915_private *dev_priv = to_i915(dev);
17125
17126 intel_disable_gt_powersave(dev_priv);
17127
17128 /*
17129 * Interrupts and polling as the first thing to avoid creating havoc.
17130 * Too much stuff here (turning of connectors, ...) would
17131 * experience fancy races otherwise.
17132 */
17133 intel_irq_uninstall(dev_priv);
17134
17135 /*
17136 * Due to the hpd irq storm handling the hotplug work can re-arm the
17137 * poll handlers. Hence disable polling after hpd handling is shut down.
17138 */
17139 drm_kms_helper_poll_fini(dev);
17140
17141 intel_unregister_dsm_handler();
17142
17143 intel_fbc_global_disable(dev_priv);
17144
17145 /* flush any delayed tasks or pending work */
17146 flush_scheduled_work();
17147
17148 drm_mode_config_cleanup(dev);
17149
17150 intel_cleanup_overlay(dev_priv);
17151
17152 intel_cleanup_gt_powersave(dev_priv);
17153
17154 intel_teardown_gmbus(dev);
17155 }
17156
17157 void intel_connector_attach_encoder(struct intel_connector *connector,
17158 struct intel_encoder *encoder)
17159 {
17160 connector->encoder = encoder;
17161 drm_mode_connector_attach_encoder(&connector->base,
17162 &encoder->base);
17163 }
17164
17165 /*
17166 * set vga decode state - true == enable VGA decode
17167 */
17168 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17169 {
17170 struct drm_i915_private *dev_priv = to_i915(dev);
17171 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17172 u16 gmch_ctrl;
17173
17174 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17175 DRM_ERROR("failed to read control word\n");
17176 return -EIO;
17177 }
17178
17179 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17180 return 0;
17181
17182 if (state)
17183 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17184 else
17185 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17186
17187 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17188 DRM_ERROR("failed to write control word\n");
17189 return -EIO;
17190 }
17191
17192 return 0;
17193 }
17194
17195 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17196
17197 struct intel_display_error_state {
17198
17199 u32 power_well_driver;
17200
17201 int num_transcoders;
17202
17203 struct intel_cursor_error_state {
17204 u32 control;
17205 u32 position;
17206 u32 base;
17207 u32 size;
17208 } cursor[I915_MAX_PIPES];
17209
17210 struct intel_pipe_error_state {
17211 bool power_domain_on;
17212 u32 source;
17213 u32 stat;
17214 } pipe[I915_MAX_PIPES];
17215
17216 struct intel_plane_error_state {
17217 u32 control;
17218 u32 stride;
17219 u32 size;
17220 u32 pos;
17221 u32 addr;
17222 u32 surface;
17223 u32 tile_offset;
17224 } plane[I915_MAX_PIPES];
17225
17226 struct intel_transcoder_error_state {
17227 bool power_domain_on;
17228 enum transcoder cpu_transcoder;
17229
17230 u32 conf;
17231
17232 u32 htotal;
17233 u32 hblank;
17234 u32 hsync;
17235 u32 vtotal;
17236 u32 vblank;
17237 u32 vsync;
17238 } transcoder[4];
17239 };
17240
17241 struct intel_display_error_state *
17242 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17243 {
17244 struct intel_display_error_state *error;
17245 int transcoders[] = {
17246 TRANSCODER_A,
17247 TRANSCODER_B,
17248 TRANSCODER_C,
17249 TRANSCODER_EDP,
17250 };
17251 int i;
17252
17253 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17254 return NULL;
17255
17256 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17257 if (error == NULL)
17258 return NULL;
17259
17260 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17261 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17262
17263 for_each_pipe(dev_priv, i) {
17264 error->pipe[i].power_domain_on =
17265 __intel_display_power_is_enabled(dev_priv,
17266 POWER_DOMAIN_PIPE(i));
17267 if (!error->pipe[i].power_domain_on)
17268 continue;
17269
17270 error->cursor[i].control = I915_READ(CURCNTR(i));
17271 error->cursor[i].position = I915_READ(CURPOS(i));
17272 error->cursor[i].base = I915_READ(CURBASE(i));
17273
17274 error->plane[i].control = I915_READ(DSPCNTR(i));
17275 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17276 if (INTEL_GEN(dev_priv) <= 3) {
17277 error->plane[i].size = I915_READ(DSPSIZE(i));
17278 error->plane[i].pos = I915_READ(DSPPOS(i));
17279 }
17280 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17281 error->plane[i].addr = I915_READ(DSPADDR(i));
17282 if (INTEL_GEN(dev_priv) >= 4) {
17283 error->plane[i].surface = I915_READ(DSPSURF(i));
17284 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17285 }
17286
17287 error->pipe[i].source = I915_READ(PIPESRC(i));
17288
17289 if (HAS_GMCH_DISPLAY(dev_priv))
17290 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17291 }
17292
17293 /* Note: this does not include DSI transcoders. */
17294 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17295 if (HAS_DDI(dev_priv))
17296 error->num_transcoders++; /* Account for eDP. */
17297
17298 for (i = 0; i < error->num_transcoders; i++) {
17299 enum transcoder cpu_transcoder = transcoders[i];
17300
17301 error->transcoder[i].power_domain_on =
17302 __intel_display_power_is_enabled(dev_priv,
17303 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17304 if (!error->transcoder[i].power_domain_on)
17305 continue;
17306
17307 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17308
17309 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17310 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17311 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17312 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17313 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17314 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17315 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17316 }
17317
17318 return error;
17319 }
17320
17321 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17322
17323 void
17324 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17325 struct drm_device *dev,
17326 struct intel_display_error_state *error)
17327 {
17328 struct drm_i915_private *dev_priv = to_i915(dev);
17329 int i;
17330
17331 if (!error)
17332 return;
17333
17334 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17335 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17336 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17337 error->power_well_driver);
17338 for_each_pipe(dev_priv, i) {
17339 err_printf(m, "Pipe [%d]:\n", i);
17340 err_printf(m, " Power: %s\n",
17341 onoff(error->pipe[i].power_domain_on));
17342 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17343 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17344
17345 err_printf(m, "Plane [%d]:\n", i);
17346 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17347 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17348 if (INTEL_INFO(dev)->gen <= 3) {
17349 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17350 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17351 }
17352 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17353 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17354 if (INTEL_INFO(dev)->gen >= 4) {
17355 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17356 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17357 }
17358
17359 err_printf(m, "Cursor [%d]:\n", i);
17360 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17361 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17362 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17363 }
17364
17365 for (i = 0; i < error->num_transcoders; i++) {
17366 err_printf(m, "CPU transcoder: %s\n",
17367 transcoder_name(error->transcoder[i].cpu_transcoder));
17368 err_printf(m, " Power: %s\n",
17369 onoff(error->transcoder[i].power_domain_on));
17370 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17371 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17372 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17373 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17374 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17375 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17376 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17377 }
17378 }
17379
17380 #endif