]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101 struct drm_i915_gem_object *obj,
102 struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125
126 struct intel_limit {
127 struct {
128 int min, max;
129 } dot, vco, n, m, m1, m2, p, p1;
130
131 struct {
132 int dot_limit;
133 int p2_slow, p2_fast;
134 } p2;
135 };
136
137 /* returns HPLL frequency in kHz */
138 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
139 {
140 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142 /* Obtain SKU information */
143 mutex_lock(&dev_priv->sb_lock);
144 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145 CCK_FUSE_HPLL_FREQ_MASK;
146 mutex_unlock(&dev_priv->sb_lock);
147
148 return vco_freq[hpll_freq] * 1000;
149 }
150
151 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
152 const char *name, u32 reg, int ref_freq)
153 {
154 u32 val;
155 int divider;
156
157 mutex_lock(&dev_priv->sb_lock);
158 val = vlv_cck_read(dev_priv, reg);
159 mutex_unlock(&dev_priv->sb_lock);
160
161 divider = val & CCK_FREQUENCY_VALUES;
162
163 WARN((val & CCK_FREQUENCY_STATUS) !=
164 (divider << CCK_FREQUENCY_STATUS_SHIFT),
165 "%s change in progress\n", name);
166
167 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
168 }
169
170 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
171 const char *name, u32 reg)
172 {
173 if (dev_priv->hpll_freq == 0)
174 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
175
176 return vlv_get_cck_clock(dev_priv, name, reg,
177 dev_priv->hpll_freq);
178 }
179
180 static void intel_update_czclk(struct drm_i915_private *dev_priv)
181 {
182 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
183 return;
184
185 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
186 CCK_CZ_CLOCK_CONTROL);
187
188 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
189 }
190
191 static inline u32 /* units of 100MHz */
192 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
193 const struct intel_crtc_state *pipe_config)
194 {
195 if (HAS_DDI(dev_priv))
196 return pipe_config->port_clock; /* SPLL */
197 else if (IS_GEN5(dev_priv))
198 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
199 else
200 return 270000;
201 }
202
203 static const struct intel_limit intel_limits_i8xx_dac = {
204 .dot = { .min = 25000, .max = 350000 },
205 .vco = { .min = 908000, .max = 1512000 },
206 .n = { .min = 2, .max = 16 },
207 .m = { .min = 96, .max = 140 },
208 .m1 = { .min = 18, .max = 26 },
209 .m2 = { .min = 6, .max = 16 },
210 .p = { .min = 4, .max = 128 },
211 .p1 = { .min = 2, .max = 33 },
212 .p2 = { .dot_limit = 165000,
213 .p2_slow = 4, .p2_fast = 2 },
214 };
215
216 static const struct intel_limit intel_limits_i8xx_dvo = {
217 .dot = { .min = 25000, .max = 350000 },
218 .vco = { .min = 908000, .max = 1512000 },
219 .n = { .min = 2, .max = 16 },
220 .m = { .min = 96, .max = 140 },
221 .m1 = { .min = 18, .max = 26 },
222 .m2 = { .min = 6, .max = 16 },
223 .p = { .min = 4, .max = 128 },
224 .p1 = { .min = 2, .max = 33 },
225 .p2 = { .dot_limit = 165000,
226 .p2_slow = 4, .p2_fast = 4 },
227 };
228
229 static const struct intel_limit intel_limits_i8xx_lvds = {
230 .dot = { .min = 25000, .max = 350000 },
231 .vco = { .min = 908000, .max = 1512000 },
232 .n = { .min = 2, .max = 16 },
233 .m = { .min = 96, .max = 140 },
234 .m1 = { .min = 18, .max = 26 },
235 .m2 = { .min = 6, .max = 16 },
236 .p = { .min = 4, .max = 128 },
237 .p1 = { .min = 1, .max = 6 },
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 14, .p2_fast = 7 },
240 };
241
242 static const struct intel_limit intel_limits_i9xx_sdvo = {
243 .dot = { .min = 20000, .max = 400000 },
244 .vco = { .min = 1400000, .max = 2800000 },
245 .n = { .min = 1, .max = 6 },
246 .m = { .min = 70, .max = 120 },
247 .m1 = { .min = 8, .max = 18 },
248 .m2 = { .min = 3, .max = 7 },
249 .p = { .min = 5, .max = 80 },
250 .p1 = { .min = 1, .max = 8 },
251 .p2 = { .dot_limit = 200000,
252 .p2_slow = 10, .p2_fast = 5 },
253 };
254
255 static const struct intel_limit intel_limits_i9xx_lvds = {
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1400000, .max = 2800000 },
258 .n = { .min = 1, .max = 6 },
259 .m = { .min = 70, .max = 120 },
260 .m1 = { .min = 8, .max = 18 },
261 .m2 = { .min = 3, .max = 7 },
262 .p = { .min = 7, .max = 98 },
263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 7 },
266 };
267
268
269 static const struct intel_limit intel_limits_g4x_sdvo = {
270 .dot = { .min = 25000, .max = 270000 },
271 .vco = { .min = 1750000, .max = 3500000},
272 .n = { .min = 1, .max = 4 },
273 .m = { .min = 104, .max = 138 },
274 .m1 = { .min = 17, .max = 23 },
275 .m2 = { .min = 5, .max = 11 },
276 .p = { .min = 10, .max = 30 },
277 .p1 = { .min = 1, .max = 3},
278 .p2 = { .dot_limit = 270000,
279 .p2_slow = 10,
280 .p2_fast = 10
281 },
282 };
283
284 static const struct intel_limit intel_limits_g4x_hdmi = {
285 .dot = { .min = 22000, .max = 400000 },
286 .vco = { .min = 1750000, .max = 3500000},
287 .n = { .min = 1, .max = 4 },
288 .m = { .min = 104, .max = 138 },
289 .m1 = { .min = 16, .max = 23 },
290 .m2 = { .min = 5, .max = 11 },
291 .p = { .min = 5, .max = 80 },
292 .p1 = { .min = 1, .max = 8},
293 .p2 = { .dot_limit = 165000,
294 .p2_slow = 10, .p2_fast = 5 },
295 };
296
297 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
298 .dot = { .min = 20000, .max = 115000 },
299 .vco = { .min = 1750000, .max = 3500000 },
300 .n = { .min = 1, .max = 3 },
301 .m = { .min = 104, .max = 138 },
302 .m1 = { .min = 17, .max = 23 },
303 .m2 = { .min = 5, .max = 11 },
304 .p = { .min = 28, .max = 112 },
305 .p1 = { .min = 2, .max = 8 },
306 .p2 = { .dot_limit = 0,
307 .p2_slow = 14, .p2_fast = 14
308 },
309 };
310
311 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
312 .dot = { .min = 80000, .max = 224000 },
313 .vco = { .min = 1750000, .max = 3500000 },
314 .n = { .min = 1, .max = 3 },
315 .m = { .min = 104, .max = 138 },
316 .m1 = { .min = 17, .max = 23 },
317 .m2 = { .min = 5, .max = 11 },
318 .p = { .min = 14, .max = 42 },
319 .p1 = { .min = 2, .max = 6 },
320 .p2 = { .dot_limit = 0,
321 .p2_slow = 7, .p2_fast = 7
322 },
323 };
324
325 static const struct intel_limit intel_limits_pineview_sdvo = {
326 .dot = { .min = 20000, .max = 400000},
327 .vco = { .min = 1700000, .max = 3500000 },
328 /* Pineview's Ncounter is a ring counter */
329 .n = { .min = 3, .max = 6 },
330 .m = { .min = 2, .max = 256 },
331 /* Pineview only has one combined m divider, which we treat as m2. */
332 .m1 = { .min = 0, .max = 0 },
333 .m2 = { .min = 0, .max = 254 },
334 .p = { .min = 5, .max = 80 },
335 .p1 = { .min = 1, .max = 8 },
336 .p2 = { .dot_limit = 200000,
337 .p2_slow = 10, .p2_fast = 5 },
338 };
339
340 static const struct intel_limit intel_limits_pineview_lvds = {
341 .dot = { .min = 20000, .max = 400000 },
342 .vco = { .min = 1700000, .max = 3500000 },
343 .n = { .min = 3, .max = 6 },
344 .m = { .min = 2, .max = 256 },
345 .m1 = { .min = 0, .max = 0 },
346 .m2 = { .min = 0, .max = 254 },
347 .p = { .min = 7, .max = 112 },
348 .p1 = { .min = 1, .max = 8 },
349 .p2 = { .dot_limit = 112000,
350 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 /* Ironlake / Sandybridge
354 *
355 * We calculate clock using (register_value + 2) for N/M1/M2, so here
356 * the range value for them is (actual_value - 2).
357 */
358 static const struct intel_limit intel_limits_ironlake_dac = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 5 },
362 .m = { .min = 79, .max = 127 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 5, .max = 80 },
366 .p1 = { .min = 1, .max = 8 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 10, .p2_fast = 5 },
369 };
370
371 static const struct intel_limit intel_limits_ironlake_single_lvds = {
372 .dot = { .min = 25000, .max = 350000 },
373 .vco = { .min = 1760000, .max = 3510000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 79, .max = 118 },
376 .m1 = { .min = 12, .max = 22 },
377 .m2 = { .min = 5, .max = 9 },
378 .p = { .min = 28, .max = 112 },
379 .p1 = { .min = 2, .max = 8 },
380 .p2 = { .dot_limit = 225000,
381 .p2_slow = 14, .p2_fast = 14 },
382 };
383
384 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
385 .dot = { .min = 25000, .max = 350000 },
386 .vco = { .min = 1760000, .max = 3510000 },
387 .n = { .min = 1, .max = 3 },
388 .m = { .min = 79, .max = 127 },
389 .m1 = { .min = 12, .max = 22 },
390 .m2 = { .min = 5, .max = 9 },
391 .p = { .min = 14, .max = 56 },
392 .p1 = { .min = 2, .max = 8 },
393 .p2 = { .dot_limit = 225000,
394 .p2_slow = 7, .p2_fast = 7 },
395 };
396
397 /* LVDS 100mhz refclk limits. */
398 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
399 .dot = { .min = 25000, .max = 350000 },
400 .vco = { .min = 1760000, .max = 3510000 },
401 .n = { .min = 1, .max = 2 },
402 .m = { .min = 79, .max = 126 },
403 .m1 = { .min = 12, .max = 22 },
404 .m2 = { .min = 5, .max = 9 },
405 .p = { .min = 28, .max = 112 },
406 .p1 = { .min = 2, .max = 8 },
407 .p2 = { .dot_limit = 225000,
408 .p2_slow = 14, .p2_fast = 14 },
409 };
410
411 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
412 .dot = { .min = 25000, .max = 350000 },
413 .vco = { .min = 1760000, .max = 3510000 },
414 .n = { .min = 1, .max = 3 },
415 .m = { .min = 79, .max = 126 },
416 .m1 = { .min = 12, .max = 22 },
417 .m2 = { .min = 5, .max = 9 },
418 .p = { .min = 14, .max = 42 },
419 .p1 = { .min = 2, .max = 6 },
420 .p2 = { .dot_limit = 225000,
421 .p2_slow = 7, .p2_fast = 7 },
422 };
423
424 static const struct intel_limit intel_limits_vlv = {
425 /*
426 * These are the data rate limits (measured in fast clocks)
427 * since those are the strictest limits we have. The fast
428 * clock and actual rate limits are more relaxed, so checking
429 * them would make no difference.
430 */
431 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
432 .vco = { .min = 4000000, .max = 6000000 },
433 .n = { .min = 1, .max = 7 },
434 .m1 = { .min = 2, .max = 3 },
435 .m2 = { .min = 11, .max = 156 },
436 .p1 = { .min = 2, .max = 3 },
437 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
438 };
439
440 static const struct intel_limit intel_limits_chv = {
441 /*
442 * These are the data rate limits (measured in fast clocks)
443 * since those are the strictest limits we have. The fast
444 * clock and actual rate limits are more relaxed, so checking
445 * them would make no difference.
446 */
447 .dot = { .min = 25000 * 5, .max = 540000 * 5},
448 .vco = { .min = 4800000, .max = 6480000 },
449 .n = { .min = 1, .max = 1 },
450 .m1 = { .min = 2, .max = 2 },
451 .m2 = { .min = 24 << 22, .max = 175 << 22 },
452 .p1 = { .min = 2, .max = 4 },
453 .p2 = { .p2_slow = 1, .p2_fast = 14 },
454 };
455
456 static const struct intel_limit intel_limits_bxt = {
457 /* FIXME: find real dot limits */
458 .dot = { .min = 0, .max = INT_MAX },
459 .vco = { .min = 4800000, .max = 6700000 },
460 .n = { .min = 1, .max = 1 },
461 .m1 = { .min = 2, .max = 2 },
462 /* FIXME: find real m2 limits */
463 .m2 = { .min = 2 << 22, .max = 255 << 22 },
464 .p1 = { .min = 2, .max = 4 },
465 .p2 = { .p2_slow = 1, .p2_fast = 20 },
466 };
467
468 static bool
469 needs_modeset(struct drm_crtc_state *state)
470 {
471 return drm_atomic_crtc_needs_modeset(state);
472 }
473
474 /*
475 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
476 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
477 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
478 * The helpers' return value is the rate of the clock that is fed to the
479 * display engine's pipe which can be the above fast dot clock rate or a
480 * divided-down version of it.
481 */
482 /* m1 is reserved as 0 in Pineview, n is a ring counter */
483 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
484 {
485 clock->m = clock->m2 + 2;
486 clock->p = clock->p1 * clock->p2;
487 if (WARN_ON(clock->n == 0 || clock->p == 0))
488 return 0;
489 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
490 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
491
492 return clock->dot;
493 }
494
495 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
496 {
497 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
498 }
499
500 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
501 {
502 clock->m = i9xx_dpll_compute_m(clock);
503 clock->p = clock->p1 * clock->p2;
504 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
505 return 0;
506 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
507 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
508
509 return clock->dot;
510 }
511
512 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
513 {
514 clock->m = clock->m1 * clock->m2;
515 clock->p = clock->p1 * clock->p2;
516 if (WARN_ON(clock->n == 0 || clock->p == 0))
517 return 0;
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
520
521 return clock->dot / 5;
522 }
523
524 int chv_calc_dpll_params(int refclk, struct dpll *clock)
525 {
526 clock->m = clock->m1 * clock->m2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return 0;
530 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
531 clock->n << 22);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534 return clock->dot / 5;
535 }
536
537 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
538 /**
539 * Returns whether the given set of divisors are valid for a given refclk with
540 * the given connectors.
541 */
542
543 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
544 const struct intel_limit *limit,
545 const struct dpll *clock)
546 {
547 if (clock->n < limit->n.min || limit->n.max < clock->n)
548 INTELPllInvalid("n out of range\n");
549 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
550 INTELPllInvalid("p1 out of range\n");
551 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
552 INTELPllInvalid("m2 out of range\n");
553 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
554 INTELPllInvalid("m1 out of range\n");
555
556 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
557 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
558 if (clock->m1 <= clock->m2)
559 INTELPllInvalid("m1 <= m2\n");
560
561 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
562 !IS_GEN9_LP(dev_priv)) {
563 if (clock->p < limit->p.min || limit->p.max < clock->p)
564 INTELPllInvalid("p out of range\n");
565 if (clock->m < limit->m.min || limit->m.max < clock->m)
566 INTELPllInvalid("m out of range\n");
567 }
568
569 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
570 INTELPllInvalid("vco out of range\n");
571 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
572 * connector, etc., rather than just a single range.
573 */
574 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
575 INTELPllInvalid("dot out of range\n");
576
577 return true;
578 }
579
580 static int
581 i9xx_select_p2_div(const struct intel_limit *limit,
582 const struct intel_crtc_state *crtc_state,
583 int target)
584 {
585 struct drm_device *dev = crtc_state->base.crtc->dev;
586
587 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
588 /*
589 * For LVDS just rely on its current settings for dual-channel.
590 * We haven't figured out how to reliably set up different
591 * single/dual channel state, if we even can.
592 */
593 if (intel_is_dual_link_lvds(dev))
594 return limit->p2.p2_fast;
595 else
596 return limit->p2.p2_slow;
597 } else {
598 if (target < limit->p2.dot_limit)
599 return limit->p2.p2_slow;
600 else
601 return limit->p2.p2_fast;
602 }
603 }
604
605 /*
606 * Returns a set of divisors for the desired target clock with the given
607 * refclk, or FALSE. The returned values represent the clock equation:
608 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
609 *
610 * Target and reference clocks are specified in kHz.
611 *
612 * If match_clock is provided, then best_clock P divider must match the P
613 * divider from @match_clock used for LVDS downclocking.
614 */
615 static bool
616 i9xx_find_best_dpll(const struct intel_limit *limit,
617 struct intel_crtc_state *crtc_state,
618 int target, int refclk, struct dpll *match_clock,
619 struct dpll *best_clock)
620 {
621 struct drm_device *dev = crtc_state->base.crtc->dev;
622 struct dpll clock;
623 int err = target;
624
625 memset(best_clock, 0, sizeof(*best_clock));
626
627 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
628
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
640
641 i9xx_calc_dpll_params(refclk, &clock);
642 if (!intel_PLL_is_valid(to_i915(dev),
643 limit,
644 &clock))
645 continue;
646 if (match_clock &&
647 clock.p != match_clock->p)
648 continue;
649
650 this_err = abs(clock.dot - target);
651 if (this_err < err) {
652 *best_clock = clock;
653 err = this_err;
654 }
655 }
656 }
657 }
658 }
659
660 return (err != target);
661 }
662
663 /*
664 * Returns a set of divisors for the desired target clock with the given
665 * refclk, or FALSE. The returned values represent the clock equation:
666 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667 *
668 * Target and reference clocks are specified in kHz.
669 *
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
672 */
673 static bool
674 pnv_find_best_dpll(const struct intel_limit *limit,
675 struct intel_crtc_state *crtc_state,
676 int target, int refclk, struct dpll *match_clock,
677 struct dpll *best_clock)
678 {
679 struct drm_device *dev = crtc_state->base.crtc->dev;
680 struct dpll clock;
681 int err = target;
682
683 memset(best_clock, 0, sizeof(*best_clock));
684
685 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
696
697 pnv_calc_dpll_params(refclk, &clock);
698 if (!intel_PLL_is_valid(to_i915(dev),
699 limit,
700 &clock))
701 continue;
702 if (match_clock &&
703 clock.p != match_clock->p)
704 continue;
705
706 this_err = abs(clock.dot - target);
707 if (this_err < err) {
708 *best_clock = clock;
709 err = this_err;
710 }
711 }
712 }
713 }
714 }
715
716 return (err != target);
717 }
718
719 /*
720 * Returns a set of divisors for the desired target clock with the given
721 * refclk, or FALSE. The returned values represent the clock equation:
722 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
723 *
724 * Target and reference clocks are specified in kHz.
725 *
726 * If match_clock is provided, then best_clock P divider must match the P
727 * divider from @match_clock used for LVDS downclocking.
728 */
729 static bool
730 g4x_find_best_dpll(const struct intel_limit *limit,
731 struct intel_crtc_state *crtc_state,
732 int target, int refclk, struct dpll *match_clock,
733 struct dpll *best_clock)
734 {
735 struct drm_device *dev = crtc_state->base.crtc->dev;
736 struct dpll clock;
737 int max_n;
738 bool found = false;
739 /* approximately equals target * 0.00585 */
740 int err_most = (target >> 8) + (target >> 9);
741
742 memset(best_clock, 0, sizeof(*best_clock));
743
744 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
745
746 max_n = limit->n.max;
747 /* based on hardware requirement, prefer smaller n to precision */
748 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749 /* based on hardware requirement, prefere larger m1,m2 */
750 for (clock.m1 = limit->m1.max;
751 clock.m1 >= limit->m1.min; clock.m1--) {
752 for (clock.m2 = limit->m2.max;
753 clock.m2 >= limit->m2.min; clock.m2--) {
754 for (clock.p1 = limit->p1.max;
755 clock.p1 >= limit->p1.min; clock.p1--) {
756 int this_err;
757
758 i9xx_calc_dpll_params(refclk, &clock);
759 if (!intel_PLL_is_valid(to_i915(dev),
760 limit,
761 &clock))
762 continue;
763
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
775 return found;
776 }
777
778 /*
779 * Check if the calculated PLL configuration is more optimal compared to the
780 * best configuration and error found so far. Return the calculated error.
781 */
782 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
783 const struct dpll *calculated_clock,
784 const struct dpll *best_clock,
785 unsigned int best_error_ppm,
786 unsigned int *error_ppm)
787 {
788 /*
789 * For CHV ignore the error and consider only the P value.
790 * Prefer a bigger P value based on HW requirements.
791 */
792 if (IS_CHERRYVIEW(to_i915(dev))) {
793 *error_ppm = 0;
794
795 return calculated_clock->p > best_clock->p;
796 }
797
798 if (WARN_ON_ONCE(!target_freq))
799 return false;
800
801 *error_ppm = div_u64(1000000ULL *
802 abs(target_freq - calculated_clock->dot),
803 target_freq);
804 /*
805 * Prefer a better P value over a better (smaller) error if the error
806 * is small. Ensure this preference for future configurations too by
807 * setting the error to 0.
808 */
809 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
810 *error_ppm = 0;
811
812 return true;
813 }
814
815 return *error_ppm + 10 < best_error_ppm;
816 }
817
818 /*
819 * Returns a set of divisors for the desired target clock with the given
820 * refclk, or FALSE. The returned values represent the clock equation:
821 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
822 */
823 static bool
824 vlv_find_best_dpll(const struct intel_limit *limit,
825 struct intel_crtc_state *crtc_state,
826 int target, int refclk, struct dpll *match_clock,
827 struct dpll *best_clock)
828 {
829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
830 struct drm_device *dev = crtc->base.dev;
831 struct dpll clock;
832 unsigned int bestppm = 1000000;
833 /* min update 19.2 MHz */
834 int max_n = min(limit->n.max, refclk / 19200);
835 bool found = false;
836
837 target *= 5; /* fast clock */
838
839 memset(best_clock, 0, sizeof(*best_clock));
840
841 /* based on hardware requirement, prefer smaller n to precision */
842 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
843 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
844 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
845 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
846 clock.p = clock.p1 * clock.p2;
847 /* based on hardware requirement, prefer bigger m1,m2 values */
848 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
849 unsigned int ppm;
850
851 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
852 refclk * clock.m1);
853
854 vlv_calc_dpll_params(refclk, &clock);
855
856 if (!intel_PLL_is_valid(to_i915(dev),
857 limit,
858 &clock))
859 continue;
860
861 if (!vlv_PLL_is_optimal(dev, target,
862 &clock,
863 best_clock,
864 bestppm, &ppm))
865 continue;
866
867 *best_clock = clock;
868 bestppm = ppm;
869 found = true;
870 }
871 }
872 }
873 }
874
875 return found;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 chv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 unsigned int best_error_ppm;
892 struct dpll clock;
893 uint64_t m2;
894 int found = false;
895
896 memset(best_clock, 0, sizeof(*best_clock));
897 best_error_ppm = 1000000;
898
899 /*
900 * Based on hardware doc, the n always set to 1, and m1 always
901 * set to 2. If requires to support 200Mhz refclk, we need to
902 * revisit this because n may not 1 anymore.
903 */
904 clock.n = 1, clock.m1 = 2;
905 target *= 5; /* fast clock */
906
907 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
908 for (clock.p2 = limit->p2.p2_fast;
909 clock.p2 >= limit->p2.p2_slow;
910 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
911 unsigned int error_ppm;
912
913 clock.p = clock.p1 * clock.p2;
914
915 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
916 clock.n) << 22, refclk * clock.m1);
917
918 if (m2 > INT_MAX/clock.m1)
919 continue;
920
921 clock.m2 = m2;
922
923 chv_calc_dpll_params(refclk, &clock);
924
925 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
926 continue;
927
928 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
929 best_error_ppm, &error_ppm))
930 continue;
931
932 *best_clock = clock;
933 best_error_ppm = error_ppm;
934 found = true;
935 }
936 }
937
938 return found;
939 }
940
941 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
942 struct dpll *best_clock)
943 {
944 int refclk = 100000;
945 const struct intel_limit *limit = &intel_limits_bxt;
946
947 return chv_find_best_dpll(limit, crtc_state,
948 target_clock, refclk, NULL, best_clock);
949 }
950
951 bool intel_crtc_active(struct intel_crtc *crtc)
952 {
953 /* Be paranoid as we can arrive here with only partial
954 * state retrieved from the hardware during setup.
955 *
956 * We can ditch the adjusted_mode.crtc_clock check as soon
957 * as Haswell has gained clock readout/fastboot support.
958 *
959 * We can ditch the crtc->primary->fb check as soon as we can
960 * properly reconstruct framebuffers.
961 *
962 * FIXME: The intel_crtc->active here should be switched to
963 * crtc->state->active once we have proper CRTC states wired up
964 * for atomic.
965 */
966 return crtc->active && crtc->base.primary->state->fb &&
967 crtc->config->base.adjusted_mode.crtc_clock;
968 }
969
970 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
971 enum pipe pipe)
972 {
973 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
974
975 return crtc->config->cpu_transcoder;
976 }
977
978 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
979 {
980 i915_reg_t reg = PIPEDSL(pipe);
981 u32 line1, line2;
982 u32 line_mask;
983
984 if (IS_GEN2(dev_priv))
985 line_mask = DSL_LINEMASK_GEN2;
986 else
987 line_mask = DSL_LINEMASK_GEN3;
988
989 line1 = I915_READ(reg) & line_mask;
990 msleep(5);
991 line2 = I915_READ(reg) & line_mask;
992
993 return line1 == line2;
994 }
995
996 /*
997 * intel_wait_for_pipe_off - wait for pipe to turn off
998 * @crtc: crtc whose pipe to wait for
999 *
1000 * After disabling a pipe, we can't wait for vblank in the usual way,
1001 * spinning on the vblank interrupt status bit, since we won't actually
1002 * see an interrupt when the pipe is disabled.
1003 *
1004 * On Gen4 and above:
1005 * wait for the pipe register state bit to turn off
1006 *
1007 * Otherwise:
1008 * wait for the display line value to settle (it usually
1009 * ends up stopping at the start of the next frame).
1010 *
1011 */
1012 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1013 {
1014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1016 enum pipe pipe = crtc->pipe;
1017
1018 if (INTEL_GEN(dev_priv) >= 4) {
1019 i915_reg_t reg = PIPECONF(cpu_transcoder);
1020
1021 /* Wait for the Pipe State to go off */
1022 if (intel_wait_for_register(dev_priv,
1023 reg, I965_PIPECONF_ACTIVE, 0,
1024 100))
1025 WARN(1, "pipe_off wait timed out\n");
1026 } else {
1027 /* Wait for the display line to settle */
1028 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1029 WARN(1, "pipe_off wait timed out\n");
1030 }
1031 }
1032
1033 /* Only for pre-ILK configs */
1034 void assert_pll(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, bool state)
1036 {
1037 u32 val;
1038 bool cur_state;
1039
1040 val = I915_READ(DPLL(pipe));
1041 cur_state = !!(val & DPLL_VCO_ENABLE);
1042 I915_STATE_WARN(cur_state != state,
1043 "PLL state assertion failure (expected %s, current %s)\n",
1044 onoff(state), onoff(cur_state));
1045 }
1046
1047 /* XXX: the dsi pll is shared between MIPI DSI ports */
1048 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1049 {
1050 u32 val;
1051 bool cur_state;
1052
1053 mutex_lock(&dev_priv->sb_lock);
1054 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1055 mutex_unlock(&dev_priv->sb_lock);
1056
1057 cur_state = val & DSI_PLL_VCO_EN;
1058 I915_STATE_WARN(cur_state != state,
1059 "DSI PLL state assertion failure (expected %s, current %s)\n",
1060 onoff(state), onoff(cur_state));
1061 }
1062
1063 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1064 enum pipe pipe, bool state)
1065 {
1066 bool cur_state;
1067 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1068 pipe);
1069
1070 if (HAS_DDI(dev_priv)) {
1071 /* DDI does not have a specific FDI_TX register */
1072 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1073 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1074 } else {
1075 u32 val = I915_READ(FDI_TX_CTL(pipe));
1076 cur_state = !!(val & FDI_TX_ENABLE);
1077 }
1078 I915_STATE_WARN(cur_state != state,
1079 "FDI TX state assertion failure (expected %s, current %s)\n",
1080 onoff(state), onoff(cur_state));
1081 }
1082 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1084
1085 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1087 {
1088 u32 val;
1089 bool cur_state;
1090
1091 val = I915_READ(FDI_RX_CTL(pipe));
1092 cur_state = !!(val & FDI_RX_ENABLE);
1093 I915_STATE_WARN(cur_state != state,
1094 "FDI RX state assertion failure (expected %s, current %s)\n",
1095 onoff(state), onoff(cur_state));
1096 }
1097 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1098 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1099
1100 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1101 enum pipe pipe)
1102 {
1103 u32 val;
1104
1105 /* ILK FDI PLL is always enabled */
1106 if (IS_GEN5(dev_priv))
1107 return;
1108
1109 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1110 if (HAS_DDI(dev_priv))
1111 return;
1112
1113 val = I915_READ(FDI_TX_CTL(pipe));
1114 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1115 }
1116
1117 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1118 enum pipe pipe, bool state)
1119 {
1120 u32 val;
1121 bool cur_state;
1122
1123 val = I915_READ(FDI_RX_CTL(pipe));
1124 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1125 I915_STATE_WARN(cur_state != state,
1126 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1127 onoff(state), onoff(cur_state));
1128 }
1129
1130 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1131 {
1132 i915_reg_t pp_reg;
1133 u32 val;
1134 enum pipe panel_pipe = PIPE_A;
1135 bool locked = true;
1136
1137 if (WARN_ON(HAS_DDI(dev_priv)))
1138 return;
1139
1140 if (HAS_PCH_SPLIT(dev_priv)) {
1141 u32 port_sel;
1142
1143 pp_reg = PP_CONTROL(0);
1144 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1145
1146 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1147 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1148 panel_pipe = PIPE_B;
1149 /* XXX: else fix for eDP */
1150 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1151 /* presumably write lock depends on pipe, not port select */
1152 pp_reg = PP_CONTROL(pipe);
1153 panel_pipe = pipe;
1154 } else {
1155 pp_reg = PP_CONTROL(0);
1156 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1157 panel_pipe = PIPE_B;
1158 }
1159
1160 val = I915_READ(pp_reg);
1161 if (!(val & PANEL_POWER_ON) ||
1162 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1163 locked = false;
1164
1165 I915_STATE_WARN(panel_pipe == pipe && locked,
1166 "panel assertion failure, pipe %c regs locked\n",
1167 pipe_name(pipe));
1168 }
1169
1170 static void assert_cursor(struct drm_i915_private *dev_priv,
1171 enum pipe pipe, bool state)
1172 {
1173 bool cur_state;
1174
1175 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1176 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1177 else
1178 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1179
1180 I915_STATE_WARN(cur_state != state,
1181 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1182 pipe_name(pipe), onoff(state), onoff(cur_state));
1183 }
1184 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1185 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1186
1187 void assert_pipe(struct drm_i915_private *dev_priv,
1188 enum pipe pipe, bool state)
1189 {
1190 bool cur_state;
1191 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192 pipe);
1193 enum intel_display_power_domain power_domain;
1194
1195 /* if we need the pipe quirk it must be always on */
1196 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1197 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1198 state = true;
1199
1200 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205 intel_display_power_put(dev_priv, power_domain);
1206 } else {
1207 cur_state = false;
1208 }
1209
1210 I915_STATE_WARN(cur_state != state,
1211 "pipe %c assertion failure (expected %s, current %s)\n",
1212 pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216 enum plane plane, bool state)
1217 {
1218 u32 val;
1219 bool cur_state;
1220
1221 val = I915_READ(DSPCNTR(plane));
1222 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223 I915_STATE_WARN(cur_state != state,
1224 "plane %c assertion failure (expected %s, current %s)\n",
1225 plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232 enum pipe pipe)
1233 {
1234 int i;
1235
1236 /* Primary planes are fixed to pipes on gen4+ */
1237 if (INTEL_GEN(dev_priv) >= 4) {
1238 u32 val = I915_READ(DSPCNTR(pipe));
1239 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240 "plane %c assertion failure, should be disabled but not\n",
1241 plane_name(pipe));
1242 return;
1243 }
1244
1245 /* Need to check both planes against the pipe */
1246 for_each_pipe(dev_priv, i) {
1247 u32 val = I915_READ(DSPCNTR(i));
1248 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249 DISPPLANE_SEL_PIPE_SHIFT;
1250 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252 plane_name(i), pipe_name(pipe));
1253 }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258 {
1259 int sprite;
1260
1261 if (INTEL_GEN(dev_priv) >= 9) {
1262 for_each_sprite(dev_priv, pipe, sprite) {
1263 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266 sprite, pipe_name(pipe));
1267 }
1268 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269 for_each_sprite(dev_priv, pipe, sprite) {
1270 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271 I915_STATE_WARN(val & SP_ENABLE,
1272 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273 sprite_name(pipe, sprite), pipe_name(pipe));
1274 }
1275 } else if (INTEL_GEN(dev_priv) >= 7) {
1276 u32 val = I915_READ(SPRCTL(pipe));
1277 I915_STATE_WARN(val & SPRITE_ENABLE,
1278 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279 plane_name(pipe), pipe_name(pipe));
1280 } else if (INTEL_GEN(dev_priv) >= 5) {
1281 u32 val = I915_READ(DVSCNTR(pipe));
1282 I915_STATE_WARN(val & DVS_ENABLE,
1283 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284 plane_name(pipe), pipe_name(pipe));
1285 }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 u32 val;
1298 bool enabled;
1299
1300 val = I915_READ(PCH_TRANSCONF(pipe));
1301 enabled = !!(val & TRANS_ENABLE);
1302 I915_STATE_WARN(enabled,
1303 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304 pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310 if ((val & DP_PORT_EN) == 0)
1311 return false;
1312
1313 if (HAS_PCH_CPT(dev_priv)) {
1314 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else if (IS_CHERRYVIEW(dev_priv)) {
1318 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319 return false;
1320 } else {
1321 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322 return false;
1323 }
1324 return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, u32 val)
1329 {
1330 if ((val & SDVO_ENABLE) == 0)
1331 return false;
1332
1333 if (HAS_PCH_CPT(dev_priv)) {
1334 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335 return false;
1336 } else if (IS_CHERRYVIEW(dev_priv)) {
1337 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338 return false;
1339 } else {
1340 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341 return false;
1342 }
1343 return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, u32 val)
1348 {
1349 if ((val & LVDS_PORT_EN) == 0)
1350 return false;
1351
1352 if (HAS_PCH_CPT(dev_priv)) {
1353 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354 return false;
1355 } else {
1356 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357 return false;
1358 }
1359 return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363 enum pipe pipe, u32 val)
1364 {
1365 if ((val & ADPA_DAC_ENABLE) == 0)
1366 return false;
1367 if (HAS_PCH_CPT(dev_priv)) {
1368 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369 return false;
1370 } else {
1371 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372 return false;
1373 }
1374 return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378 enum pipe pipe, i915_reg_t reg,
1379 u32 port_sel)
1380 {
1381 u32 val = I915_READ(reg);
1382 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384 i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387 && (val & DP_PIPEB_SELECT),
1388 "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, i915_reg_t reg)
1393 {
1394 u32 val = I915_READ(reg);
1395 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397 i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400 && (val & SDVO_PIPE_B_SELECT),
1401 "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
1406 {
1407 u32 val;
1408
1409 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413 val = I915_READ(PCH_ADPA);
1414 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415 "PCH VGA enabled on transcoder %c, should be disabled\n",
1416 pipe_name(pipe));
1417
1418 val = I915_READ(PCH_LVDS);
1419 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421 pipe_name(pipe));
1422
1423 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429 const struct intel_crtc_state *pipe_config)
1430 {
1431 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432 enum pipe pipe = crtc->pipe;
1433
1434 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435 POSTING_READ(DPLL(pipe));
1436 udelay(150);
1437
1438 if (intel_wait_for_register(dev_priv,
1439 DPLL(pipe),
1440 DPLL_LOCK_VLV,
1441 DPLL_LOCK_VLV,
1442 1))
1443 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447 const struct intel_crtc_state *pipe_config)
1448 {
1449 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450 enum pipe pipe = crtc->pipe;
1451
1452 assert_pipe_disabled(dev_priv, pipe);
1453
1454 /* PLL is protected by panel, make sure we can write it */
1455 assert_panel_unlocked(dev_priv, pipe);
1456
1457 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458 _vlv_enable_pll(crtc, pipe_config);
1459
1460 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461 POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466 const struct intel_crtc_state *pipe_config)
1467 {
1468 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 enum pipe pipe = crtc->pipe;
1470 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471 u32 tmp;
1472
1473 mutex_lock(&dev_priv->sb_lock);
1474
1475 /* Enable back the 10bit clock to display controller */
1476 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477 tmp |= DPIO_DCLKP_EN;
1478 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480 mutex_unlock(&dev_priv->sb_lock);
1481
1482 /*
1483 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484 */
1485 udelay(1);
1486
1487 /* Enable PLL */
1488 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490 /* Check PLL is locked */
1491 if (intel_wait_for_register(dev_priv,
1492 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493 1))
1494 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498 const struct intel_crtc_state *pipe_config)
1499 {
1500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501 enum pipe pipe = crtc->pipe;
1502
1503 assert_pipe_disabled(dev_priv, pipe);
1504
1505 /* PLL is protected by panel, make sure we can write it */
1506 assert_panel_unlocked(dev_priv, pipe);
1507
1508 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509 _chv_enable_pll(crtc, pipe_config);
1510
1511 if (pipe != PIPE_A) {
1512 /*
1513 * WaPixelRepeatModeFixForC0:chv
1514 *
1515 * DPLLCMD is AWOL. Use chicken bits to propagate
1516 * the value from DPLLBMD to either pipe B or C.
1517 */
1518 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520 I915_WRITE(CBR4_VLV, 0);
1521 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523 /*
1524 * DPLLB VGA mode also seems to cause problems.
1525 * We should always have it disabled.
1526 */
1527 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528 } else {
1529 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530 POSTING_READ(DPLL_MD(pipe));
1531 }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536 struct intel_crtc *crtc;
1537 int count = 0;
1538
1539 for_each_intel_crtc(&dev_priv->drm, crtc) {
1540 count += crtc->base.state->active &&
1541 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542 }
1543
1544 return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 i915_reg_t reg = DPLL(crtc->pipe);
1551 u32 dpll = crtc->config->dpll_hw_state.dpll;
1552
1553 assert_pipe_disabled(dev_priv, crtc->pipe);
1554
1555 /* PLL is protected by panel, make sure we can write it */
1556 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1557 assert_panel_unlocked(dev_priv, crtc->pipe);
1558
1559 /* Enable DVO 2x clock on both PLLs if necessary */
1560 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1561 /*
1562 * It appears to be important that we don't enable this
1563 * for the current pipe before otherwise configuring the
1564 * PLL. No idea how this should be handled if multiple
1565 * DVO outputs are enabled simultaneosly.
1566 */
1567 dpll |= DPLL_DVO_2X_MODE;
1568 I915_WRITE(DPLL(!crtc->pipe),
1569 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1570 }
1571
1572 /*
1573 * Apparently we need to have VGA mode enabled prior to changing
1574 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1575 * dividers, even though the register value does change.
1576 */
1577 I915_WRITE(reg, 0);
1578
1579 I915_WRITE(reg, dpll);
1580
1581 /* Wait for the clocks to stabilize. */
1582 POSTING_READ(reg);
1583 udelay(150);
1584
1585 if (INTEL_GEN(dev_priv) >= 4) {
1586 I915_WRITE(DPLL_MD(crtc->pipe),
1587 crtc->config->dpll_hw_state.dpll_md);
1588 } else {
1589 /* The pixel multiplier can only be updated once the
1590 * DPLL is enabled and the clocks are stable.
1591 *
1592 * So write it again.
1593 */
1594 I915_WRITE(reg, dpll);
1595 }
1596
1597 /* We do this three times for luck */
1598 I915_WRITE(reg, dpll);
1599 POSTING_READ(reg);
1600 udelay(150); /* wait for warmup */
1601 I915_WRITE(reg, dpll);
1602 POSTING_READ(reg);
1603 udelay(150); /* wait for warmup */
1604 I915_WRITE(reg, dpll);
1605 POSTING_READ(reg);
1606 udelay(150); /* wait for warmup */
1607 }
1608
1609 /**
1610 * i9xx_disable_pll - disable a PLL
1611 * @dev_priv: i915 private structure
1612 * @pipe: pipe PLL to disable
1613 *
1614 * Disable the PLL for @pipe, making sure the pipe is off first.
1615 *
1616 * Note! This is for pre-ILK only.
1617 */
1618 static void i9xx_disable_pll(struct intel_crtc *crtc)
1619 {
1620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1621 enum pipe pipe = crtc->pipe;
1622
1623 /* Disable DVO 2x clock on both PLLs if necessary */
1624 if (IS_I830(dev_priv) &&
1625 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1626 !intel_num_dvo_pipes(dev_priv)) {
1627 I915_WRITE(DPLL(PIPE_B),
1628 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1629 I915_WRITE(DPLL(PIPE_A),
1630 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1631 }
1632
1633 /* Don't disable pipe or pipe PLLs if needed */
1634 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1635 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1636 return;
1637
1638 /* Make sure the pipe isn't still relying on us */
1639 assert_pipe_disabled(dev_priv, pipe);
1640
1641 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1642 POSTING_READ(DPLL(pipe));
1643 }
1644
1645 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1646 {
1647 u32 val;
1648
1649 /* Make sure the pipe isn't still relying on us */
1650 assert_pipe_disabled(dev_priv, pipe);
1651
1652 val = DPLL_INTEGRATED_REF_CLK_VLV |
1653 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1654 if (pipe != PIPE_A)
1655 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1656
1657 I915_WRITE(DPLL(pipe), val);
1658 POSTING_READ(DPLL(pipe));
1659 }
1660
1661 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1662 {
1663 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1664 u32 val;
1665
1666 /* Make sure the pipe isn't still relying on us */
1667 assert_pipe_disabled(dev_priv, pipe);
1668
1669 val = DPLL_SSC_REF_CLK_CHV |
1670 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1671 if (pipe != PIPE_A)
1672 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1673
1674 I915_WRITE(DPLL(pipe), val);
1675 POSTING_READ(DPLL(pipe));
1676
1677 mutex_lock(&dev_priv->sb_lock);
1678
1679 /* Disable 10bit clock to display controller */
1680 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1681 val &= ~DPIO_DCLKP_EN;
1682 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1683
1684 mutex_unlock(&dev_priv->sb_lock);
1685 }
1686
1687 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1688 struct intel_digital_port *dport,
1689 unsigned int expected_mask)
1690 {
1691 u32 port_mask;
1692 i915_reg_t dpll_reg;
1693
1694 switch (dport->port) {
1695 case PORT_B:
1696 port_mask = DPLL_PORTB_READY_MASK;
1697 dpll_reg = DPLL(0);
1698 break;
1699 case PORT_C:
1700 port_mask = DPLL_PORTC_READY_MASK;
1701 dpll_reg = DPLL(0);
1702 expected_mask <<= 4;
1703 break;
1704 case PORT_D:
1705 port_mask = DPLL_PORTD_READY_MASK;
1706 dpll_reg = DPIO_PHY_STATUS;
1707 break;
1708 default:
1709 BUG();
1710 }
1711
1712 if (intel_wait_for_register(dev_priv,
1713 dpll_reg, port_mask, expected_mask,
1714 1000))
1715 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1716 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1717 }
1718
1719 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1720 enum pipe pipe)
1721 {
1722 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1723 pipe);
1724 i915_reg_t reg;
1725 uint32_t val, pipeconf_val;
1726
1727 /* Make sure PCH DPLL is enabled */
1728 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1729
1730 /* FDI must be feeding us bits for PCH ports */
1731 assert_fdi_tx_enabled(dev_priv, pipe);
1732 assert_fdi_rx_enabled(dev_priv, pipe);
1733
1734 if (HAS_PCH_CPT(dev_priv)) {
1735 /* Workaround: Set the timing override bit before enabling the
1736 * pch transcoder. */
1737 reg = TRANS_CHICKEN2(pipe);
1738 val = I915_READ(reg);
1739 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1740 I915_WRITE(reg, val);
1741 }
1742
1743 reg = PCH_TRANSCONF(pipe);
1744 val = I915_READ(reg);
1745 pipeconf_val = I915_READ(PIPECONF(pipe));
1746
1747 if (HAS_PCH_IBX(dev_priv)) {
1748 /*
1749 * Make the BPC in transcoder be consistent with
1750 * that in pipeconf reg. For HDMI we must use 8bpc
1751 * here for both 8bpc and 12bpc.
1752 */
1753 val &= ~PIPECONF_BPC_MASK;
1754 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1755 val |= PIPECONF_8BPC;
1756 else
1757 val |= pipeconf_val & PIPECONF_BPC_MASK;
1758 }
1759
1760 val &= ~TRANS_INTERLACE_MASK;
1761 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1762 if (HAS_PCH_IBX(dev_priv) &&
1763 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1764 val |= TRANS_LEGACY_INTERLACED_ILK;
1765 else
1766 val |= TRANS_INTERLACED;
1767 else
1768 val |= TRANS_PROGRESSIVE;
1769
1770 I915_WRITE(reg, val | TRANS_ENABLE);
1771 if (intel_wait_for_register(dev_priv,
1772 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1773 100))
1774 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1775 }
1776
1777 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1778 enum transcoder cpu_transcoder)
1779 {
1780 u32 val, pipeconf_val;
1781
1782 /* FDI must be feeding us bits for PCH ports */
1783 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1784 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1785
1786 /* Workaround: set timing override bit. */
1787 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1788 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1789 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1790
1791 val = TRANS_ENABLE;
1792 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1793
1794 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1795 PIPECONF_INTERLACED_ILK)
1796 val |= TRANS_INTERLACED;
1797 else
1798 val |= TRANS_PROGRESSIVE;
1799
1800 I915_WRITE(LPT_TRANSCONF, val);
1801 if (intel_wait_for_register(dev_priv,
1802 LPT_TRANSCONF,
1803 TRANS_STATE_ENABLE,
1804 TRANS_STATE_ENABLE,
1805 100))
1806 DRM_ERROR("Failed to enable PCH transcoder\n");
1807 }
1808
1809 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1810 enum pipe pipe)
1811 {
1812 i915_reg_t reg;
1813 uint32_t val;
1814
1815 /* FDI relies on the transcoder */
1816 assert_fdi_tx_disabled(dev_priv, pipe);
1817 assert_fdi_rx_disabled(dev_priv, pipe);
1818
1819 /* Ports must be off as well */
1820 assert_pch_ports_disabled(dev_priv, pipe);
1821
1822 reg = PCH_TRANSCONF(pipe);
1823 val = I915_READ(reg);
1824 val &= ~TRANS_ENABLE;
1825 I915_WRITE(reg, val);
1826 /* wait for PCH transcoder off, transcoder state */
1827 if (intel_wait_for_register(dev_priv,
1828 reg, TRANS_STATE_ENABLE, 0,
1829 50))
1830 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1831
1832 if (HAS_PCH_CPT(dev_priv)) {
1833 /* Workaround: Clear the timing override chicken bit again. */
1834 reg = TRANS_CHICKEN2(pipe);
1835 val = I915_READ(reg);
1836 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1837 I915_WRITE(reg, val);
1838 }
1839 }
1840
1841 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1842 {
1843 u32 val;
1844
1845 val = I915_READ(LPT_TRANSCONF);
1846 val &= ~TRANS_ENABLE;
1847 I915_WRITE(LPT_TRANSCONF, val);
1848 /* wait for PCH transcoder off, transcoder state */
1849 if (intel_wait_for_register(dev_priv,
1850 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1851 50))
1852 DRM_ERROR("Failed to disable PCH transcoder\n");
1853
1854 /* Workaround: clear timing override bit. */
1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858 }
1859
1860 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1861 {
1862 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1863
1864 WARN_ON(!crtc->config->has_pch_encoder);
1865
1866 if (HAS_PCH_LPT(dev_priv))
1867 return TRANSCODER_A;
1868 else
1869 return (enum transcoder) crtc->pipe;
1870 }
1871
1872 /**
1873 * intel_enable_pipe - enable a pipe, asserting requirements
1874 * @crtc: crtc responsible for the pipe
1875 *
1876 * Enable @crtc's pipe, making sure that various hardware specific requirements
1877 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1878 */
1879 static void intel_enable_pipe(struct intel_crtc *crtc)
1880 {
1881 struct drm_device *dev = crtc->base.dev;
1882 struct drm_i915_private *dev_priv = to_i915(dev);
1883 enum pipe pipe = crtc->pipe;
1884 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1885 i915_reg_t reg;
1886 u32 val;
1887
1888 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1889
1890 assert_planes_disabled(dev_priv, pipe);
1891 assert_cursor_disabled(dev_priv, pipe);
1892 assert_sprites_disabled(dev_priv, pipe);
1893
1894 /*
1895 * A pipe without a PLL won't actually be able to drive bits from
1896 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1897 * need the check.
1898 */
1899 if (HAS_GMCH_DISPLAY(dev_priv)) {
1900 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1901 assert_dsi_pll_enabled(dev_priv);
1902 else
1903 assert_pll_enabled(dev_priv, pipe);
1904 } else {
1905 if (crtc->config->has_pch_encoder) {
1906 /* if driving the PCH, we need FDI enabled */
1907 assert_fdi_rx_pll_enabled(dev_priv,
1908 (enum pipe) intel_crtc_pch_transcoder(crtc));
1909 assert_fdi_tx_pll_enabled(dev_priv,
1910 (enum pipe) cpu_transcoder);
1911 }
1912 /* FIXME: assert CPU port conditions for SNB+ */
1913 }
1914
1915 reg = PIPECONF(cpu_transcoder);
1916 val = I915_READ(reg);
1917 if (val & PIPECONF_ENABLE) {
1918 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1919 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1920 return;
1921 }
1922
1923 I915_WRITE(reg, val | PIPECONF_ENABLE);
1924 POSTING_READ(reg);
1925
1926 /*
1927 * Until the pipe starts DSL will read as 0, which would cause
1928 * an apparent vblank timestamp jump, which messes up also the
1929 * frame count when it's derived from the timestamps. So let's
1930 * wait for the pipe to start properly before we call
1931 * drm_crtc_vblank_on()
1932 */
1933 if (dev->max_vblank_count == 0 &&
1934 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1935 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1936 }
1937
1938 /**
1939 * intel_disable_pipe - disable a pipe, asserting requirements
1940 * @crtc: crtc whose pipes is to be disabled
1941 *
1942 * Disable the pipe of @crtc, making sure that various hardware
1943 * specific requirements are met, if applicable, e.g. plane
1944 * disabled, panel fitter off, etc.
1945 *
1946 * Will wait until the pipe has shut down before returning.
1947 */
1948 static void intel_disable_pipe(struct intel_crtc *crtc)
1949 {
1950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1952 enum pipe pipe = crtc->pipe;
1953 i915_reg_t reg;
1954 u32 val;
1955
1956 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1957
1958 /*
1959 * Make sure planes won't keep trying to pump pixels to us,
1960 * or we might hang the display.
1961 */
1962 assert_planes_disabled(dev_priv, pipe);
1963 assert_cursor_disabled(dev_priv, pipe);
1964 assert_sprites_disabled(dev_priv, pipe);
1965
1966 reg = PIPECONF(cpu_transcoder);
1967 val = I915_READ(reg);
1968 if ((val & PIPECONF_ENABLE) == 0)
1969 return;
1970
1971 /*
1972 * Double wide has implications for planes
1973 * so best keep it disabled when not needed.
1974 */
1975 if (crtc->config->double_wide)
1976 val &= ~PIPECONF_DOUBLE_WIDE;
1977
1978 /* Don't disable pipe or pipe PLLs if needed */
1979 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
1980 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1981 val &= ~PIPECONF_ENABLE;
1982
1983 I915_WRITE(reg, val);
1984 if ((val & PIPECONF_ENABLE) == 0)
1985 intel_wait_for_pipe_off(crtc);
1986 }
1987
1988 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1989 {
1990 return IS_GEN2(dev_priv) ? 2048 : 4096;
1991 }
1992
1993 static unsigned int
1994 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1995 {
1996 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1997 unsigned int cpp = fb->format->cpp[plane];
1998
1999 switch (fb->modifier) {
2000 case DRM_FORMAT_MOD_LINEAR:
2001 return cpp;
2002 case I915_FORMAT_MOD_X_TILED:
2003 if (IS_GEN2(dev_priv))
2004 return 128;
2005 else
2006 return 512;
2007 case I915_FORMAT_MOD_Y_TILED:
2008 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2009 return 128;
2010 else
2011 return 512;
2012 case I915_FORMAT_MOD_Yf_TILED:
2013 switch (cpp) {
2014 case 1:
2015 return 64;
2016 case 2:
2017 case 4:
2018 return 128;
2019 case 8:
2020 case 16:
2021 return 256;
2022 default:
2023 MISSING_CASE(cpp);
2024 return cpp;
2025 }
2026 break;
2027 default:
2028 MISSING_CASE(fb->modifier);
2029 return cpp;
2030 }
2031 }
2032
2033 static unsigned int
2034 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2035 {
2036 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2037 return 1;
2038 else
2039 return intel_tile_size(to_i915(fb->dev)) /
2040 intel_tile_width_bytes(fb, plane);
2041 }
2042
2043 /* Return the tile dimensions in pixel units */
2044 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2045 unsigned int *tile_width,
2046 unsigned int *tile_height)
2047 {
2048 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2049 unsigned int cpp = fb->format->cpp[plane];
2050
2051 *tile_width = tile_width_bytes / cpp;
2052 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2053 }
2054
2055 unsigned int
2056 intel_fb_align_height(const struct drm_framebuffer *fb,
2057 int plane, unsigned int height)
2058 {
2059 unsigned int tile_height = intel_tile_height(fb, plane);
2060
2061 return ALIGN(height, tile_height);
2062 }
2063
2064 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2065 {
2066 unsigned int size = 0;
2067 int i;
2068
2069 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2070 size += rot_info->plane[i].width * rot_info->plane[i].height;
2071
2072 return size;
2073 }
2074
2075 static void
2076 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2077 const struct drm_framebuffer *fb,
2078 unsigned int rotation)
2079 {
2080 view->type = I915_GGTT_VIEW_NORMAL;
2081 if (drm_rotation_90_or_270(rotation)) {
2082 view->type = I915_GGTT_VIEW_ROTATED;
2083 view->rotated = to_intel_framebuffer(fb)->rot_info;
2084 }
2085 }
2086
2087 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2088 {
2089 if (INTEL_INFO(dev_priv)->gen >= 9)
2090 return 256 * 1024;
2091 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2092 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2093 return 128 * 1024;
2094 else if (INTEL_INFO(dev_priv)->gen >= 4)
2095 return 4 * 1024;
2096 else
2097 return 0;
2098 }
2099
2100 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2101 int plane)
2102 {
2103 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2104
2105 /* AUX_DIST needs only 4K alignment */
2106 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2107 return 4096;
2108
2109 switch (fb->modifier) {
2110 case DRM_FORMAT_MOD_LINEAR:
2111 return intel_linear_alignment(dev_priv);
2112 case I915_FORMAT_MOD_X_TILED:
2113 if (INTEL_GEN(dev_priv) >= 9)
2114 return 256 * 1024;
2115 return 0;
2116 case I915_FORMAT_MOD_Y_TILED:
2117 case I915_FORMAT_MOD_Yf_TILED:
2118 return 1 * 1024 * 1024;
2119 default:
2120 MISSING_CASE(fb->modifier);
2121 return 0;
2122 }
2123 }
2124
2125 struct i915_vma *
2126 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2127 {
2128 struct drm_device *dev = fb->dev;
2129 struct drm_i915_private *dev_priv = to_i915(dev);
2130 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2131 struct i915_ggtt_view view;
2132 struct i915_vma *vma;
2133 u32 alignment;
2134
2135 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2136
2137 alignment = intel_surf_alignment(fb, 0);
2138
2139 intel_fill_fb_ggtt_view(&view, fb, rotation);
2140
2141 /* Note that the w/a also requires 64 PTE of padding following the
2142 * bo. We currently fill all unused PTE with the shadow page and so
2143 * we should always have valid PTE following the scanout preventing
2144 * the VT-d warning.
2145 */
2146 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2147 alignment = 256 * 1024;
2148
2149 /*
2150 * Global gtt pte registers are special registers which actually forward
2151 * writes to a chunk of system memory. Which means that there is no risk
2152 * that the register values disappear as soon as we call
2153 * intel_runtime_pm_put(), so it is correct to wrap only the
2154 * pin/unpin/fence and not more.
2155 */
2156 intel_runtime_pm_get(dev_priv);
2157
2158 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2159 if (IS_ERR(vma))
2160 goto err;
2161
2162 if (i915_vma_is_map_and_fenceable(vma)) {
2163 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2164 * fence, whereas 965+ only requires a fence if using
2165 * framebuffer compression. For simplicity, we always, when
2166 * possible, install a fence as the cost is not that onerous.
2167 *
2168 * If we fail to fence the tiled scanout, then either the
2169 * modeset will reject the change (which is highly unlikely as
2170 * the affected systems, all but one, do not have unmappable
2171 * space) or we will not be able to enable full powersaving
2172 * techniques (also likely not to apply due to various limits
2173 * FBC and the like impose on the size of the buffer, which
2174 * presumably we violated anyway with this unmappable buffer).
2175 * Anyway, it is presumably better to stumble onwards with
2176 * something and try to run the system in a "less than optimal"
2177 * mode that matches the user configuration.
2178 */
2179 if (i915_vma_get_fence(vma) == 0)
2180 i915_vma_pin_fence(vma);
2181 }
2182
2183 i915_vma_get(vma);
2184 err:
2185 intel_runtime_pm_put(dev_priv);
2186 return vma;
2187 }
2188
2189 void intel_unpin_fb_vma(struct i915_vma *vma)
2190 {
2191 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2192
2193 i915_vma_unpin_fence(vma);
2194 i915_gem_object_unpin_from_display_plane(vma);
2195 i915_vma_put(vma);
2196 }
2197
2198 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2199 unsigned int rotation)
2200 {
2201 if (drm_rotation_90_or_270(rotation))
2202 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2203 else
2204 return fb->pitches[plane];
2205 }
2206
2207 /*
2208 * Convert the x/y offsets into a linear offset.
2209 * Only valid with 0/180 degree rotation, which is fine since linear
2210 * offset is only used with linear buffers on pre-hsw and tiled buffers
2211 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2212 */
2213 u32 intel_fb_xy_to_linear(int x, int y,
2214 const struct intel_plane_state *state,
2215 int plane)
2216 {
2217 const struct drm_framebuffer *fb = state->base.fb;
2218 unsigned int cpp = fb->format->cpp[plane];
2219 unsigned int pitch = fb->pitches[plane];
2220
2221 return y * pitch + x * cpp;
2222 }
2223
2224 /*
2225 * Add the x/y offsets derived from fb->offsets[] to the user
2226 * specified plane src x/y offsets. The resulting x/y offsets
2227 * specify the start of scanout from the beginning of the gtt mapping.
2228 */
2229 void intel_add_fb_offsets(int *x, int *y,
2230 const struct intel_plane_state *state,
2231 int plane)
2232
2233 {
2234 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2235 unsigned int rotation = state->base.rotation;
2236
2237 if (drm_rotation_90_or_270(rotation)) {
2238 *x += intel_fb->rotated[plane].x;
2239 *y += intel_fb->rotated[plane].y;
2240 } else {
2241 *x += intel_fb->normal[plane].x;
2242 *y += intel_fb->normal[plane].y;
2243 }
2244 }
2245
2246 /*
2247 * Input tile dimensions and pitch must already be
2248 * rotated to match x and y, and in pixel units.
2249 */
2250 static u32 _intel_adjust_tile_offset(int *x, int *y,
2251 unsigned int tile_width,
2252 unsigned int tile_height,
2253 unsigned int tile_size,
2254 unsigned int pitch_tiles,
2255 u32 old_offset,
2256 u32 new_offset)
2257 {
2258 unsigned int pitch_pixels = pitch_tiles * tile_width;
2259 unsigned int tiles;
2260
2261 WARN_ON(old_offset & (tile_size - 1));
2262 WARN_ON(new_offset & (tile_size - 1));
2263 WARN_ON(new_offset > old_offset);
2264
2265 tiles = (old_offset - new_offset) / tile_size;
2266
2267 *y += tiles / pitch_tiles * tile_height;
2268 *x += tiles % pitch_tiles * tile_width;
2269
2270 /* minimize x in case it got needlessly big */
2271 *y += *x / pitch_pixels * tile_height;
2272 *x %= pitch_pixels;
2273
2274 return new_offset;
2275 }
2276
2277 /*
2278 * Adjust the tile offset by moving the difference into
2279 * the x/y offsets.
2280 */
2281 static u32 intel_adjust_tile_offset(int *x, int *y,
2282 const struct intel_plane_state *state, int plane,
2283 u32 old_offset, u32 new_offset)
2284 {
2285 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2286 const struct drm_framebuffer *fb = state->base.fb;
2287 unsigned int cpp = fb->format->cpp[plane];
2288 unsigned int rotation = state->base.rotation;
2289 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2290
2291 WARN_ON(new_offset > old_offset);
2292
2293 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2294 unsigned int tile_size, tile_width, tile_height;
2295 unsigned int pitch_tiles;
2296
2297 tile_size = intel_tile_size(dev_priv);
2298 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2299
2300 if (drm_rotation_90_or_270(rotation)) {
2301 pitch_tiles = pitch / tile_height;
2302 swap(tile_width, tile_height);
2303 } else {
2304 pitch_tiles = pitch / (tile_width * cpp);
2305 }
2306
2307 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2308 tile_size, pitch_tiles,
2309 old_offset, new_offset);
2310 } else {
2311 old_offset += *y * pitch + *x * cpp;
2312
2313 *y = (old_offset - new_offset) / pitch;
2314 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2315 }
2316
2317 return new_offset;
2318 }
2319
2320 /*
2321 * Computes the linear offset to the base tile and adjusts
2322 * x, y. bytes per pixel is assumed to be a power-of-two.
2323 *
2324 * In the 90/270 rotated case, x and y are assumed
2325 * to be already rotated to match the rotated GTT view, and
2326 * pitch is the tile_height aligned framebuffer height.
2327 *
2328 * This function is used when computing the derived information
2329 * under intel_framebuffer, so using any of that information
2330 * here is not allowed. Anything under drm_framebuffer can be
2331 * used. This is why the user has to pass in the pitch since it
2332 * is specified in the rotated orientation.
2333 */
2334 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2335 int *x, int *y,
2336 const struct drm_framebuffer *fb, int plane,
2337 unsigned int pitch,
2338 unsigned int rotation,
2339 u32 alignment)
2340 {
2341 uint64_t fb_modifier = fb->modifier;
2342 unsigned int cpp = fb->format->cpp[plane];
2343 u32 offset, offset_aligned;
2344
2345 if (alignment)
2346 alignment--;
2347
2348 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2349 unsigned int tile_size, tile_width, tile_height;
2350 unsigned int tile_rows, tiles, pitch_tiles;
2351
2352 tile_size = intel_tile_size(dev_priv);
2353 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2354
2355 if (drm_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 tile_rows = *y / tile_height;
2363 *y %= tile_height;
2364
2365 tiles = *x / tile_width;
2366 *x %= tile_width;
2367
2368 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 offset_aligned = offset & ~alignment;
2370
2371 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 tile_size, pitch_tiles,
2373 offset, offset_aligned);
2374 } else {
2375 offset = *y * pitch + *x * cpp;
2376 offset_aligned = offset & ~alignment;
2377
2378 *y = (offset & alignment) / pitch;
2379 *x = ((offset & alignment) - *y * pitch) / cpp;
2380 }
2381
2382 return offset_aligned;
2383 }
2384
2385 u32 intel_compute_tile_offset(int *x, int *y,
2386 const struct intel_plane_state *state,
2387 int plane)
2388 {
2389 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2390 const struct drm_framebuffer *fb = state->base.fb;
2391 unsigned int rotation = state->base.rotation;
2392 int pitch = intel_fb_pitch(fb, plane, rotation);
2393 u32 alignment = intel_surf_alignment(fb, plane);
2394
2395 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2396 rotation, alignment);
2397 }
2398
2399 /* Convert the fb->offset[] linear offset into x/y offsets */
2400 static void intel_fb_offset_to_xy(int *x, int *y,
2401 const struct drm_framebuffer *fb, int plane)
2402 {
2403 unsigned int cpp = fb->format->cpp[plane];
2404 unsigned int pitch = fb->pitches[plane];
2405 u32 linear_offset = fb->offsets[plane];
2406
2407 *y = linear_offset / pitch;
2408 *x = linear_offset % pitch / cpp;
2409 }
2410
2411 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2412 {
2413 switch (fb_modifier) {
2414 case I915_FORMAT_MOD_X_TILED:
2415 return I915_TILING_X;
2416 case I915_FORMAT_MOD_Y_TILED:
2417 return I915_TILING_Y;
2418 default:
2419 return I915_TILING_NONE;
2420 }
2421 }
2422
2423 static int
2424 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2425 struct drm_framebuffer *fb)
2426 {
2427 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2428 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2429 u32 gtt_offset_rotated = 0;
2430 unsigned int max_size = 0;
2431 int i, num_planes = fb->format->num_planes;
2432 unsigned int tile_size = intel_tile_size(dev_priv);
2433
2434 for (i = 0; i < num_planes; i++) {
2435 unsigned int width, height;
2436 unsigned int cpp, size;
2437 u32 offset;
2438 int x, y;
2439
2440 cpp = fb->format->cpp[i];
2441 width = drm_framebuffer_plane_width(fb->width, fb, i);
2442 height = drm_framebuffer_plane_height(fb->height, fb, i);
2443
2444 intel_fb_offset_to_xy(&x, &y, fb, i);
2445
2446 /*
2447 * The fence (if used) is aligned to the start of the object
2448 * so having the framebuffer wrap around across the edge of the
2449 * fenced region doesn't really work. We have no API to configure
2450 * the fence start offset within the object (nor could we probably
2451 * on gen2/3). So it's just easier if we just require that the
2452 * fb layout agrees with the fence layout. We already check that the
2453 * fb stride matches the fence stride elsewhere.
2454 */
2455 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2456 (x + width) * cpp > fb->pitches[i]) {
2457 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2458 i, fb->offsets[i]);
2459 return -EINVAL;
2460 }
2461
2462 /*
2463 * First pixel of the framebuffer from
2464 * the start of the normal gtt mapping.
2465 */
2466 intel_fb->normal[i].x = x;
2467 intel_fb->normal[i].y = y;
2468
2469 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2470 fb, i, fb->pitches[i],
2471 DRM_ROTATE_0, tile_size);
2472 offset /= tile_size;
2473
2474 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2475 unsigned int tile_width, tile_height;
2476 unsigned int pitch_tiles;
2477 struct drm_rect r;
2478
2479 intel_tile_dims(fb, i, &tile_width, &tile_height);
2480
2481 rot_info->plane[i].offset = offset;
2482 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2483 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2484 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2485
2486 intel_fb->rotated[i].pitch =
2487 rot_info->plane[i].height * tile_height;
2488
2489 /* how many tiles does this plane need */
2490 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2491 /*
2492 * If the plane isn't horizontally tile aligned,
2493 * we need one more tile.
2494 */
2495 if (x != 0)
2496 size++;
2497
2498 /* rotate the x/y offsets to match the GTT view */
2499 r.x1 = x;
2500 r.y1 = y;
2501 r.x2 = x + width;
2502 r.y2 = y + height;
2503 drm_rect_rotate(&r,
2504 rot_info->plane[i].width * tile_width,
2505 rot_info->plane[i].height * tile_height,
2506 DRM_ROTATE_270);
2507 x = r.x1;
2508 y = r.y1;
2509
2510 /* rotate the tile dimensions to match the GTT view */
2511 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2512 swap(tile_width, tile_height);
2513
2514 /*
2515 * We only keep the x/y offsets, so push all of the
2516 * gtt offset into the x/y offsets.
2517 */
2518 _intel_adjust_tile_offset(&x, &y,
2519 tile_width, tile_height,
2520 tile_size, pitch_tiles,
2521 gtt_offset_rotated * tile_size, 0);
2522
2523 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2524
2525 /*
2526 * First pixel of the framebuffer from
2527 * the start of the rotated gtt mapping.
2528 */
2529 intel_fb->rotated[i].x = x;
2530 intel_fb->rotated[i].y = y;
2531 } else {
2532 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2533 x * cpp, tile_size);
2534 }
2535
2536 /* how many tiles in total needed in the bo */
2537 max_size = max(max_size, offset + size);
2538 }
2539
2540 if (max_size * tile_size > intel_fb->obj->base.size) {
2541 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2542 max_size * tile_size, intel_fb->obj->base.size);
2543 return -EINVAL;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static int i9xx_format_to_fourcc(int format)
2550 {
2551 switch (format) {
2552 case DISPPLANE_8BPP:
2553 return DRM_FORMAT_C8;
2554 case DISPPLANE_BGRX555:
2555 return DRM_FORMAT_XRGB1555;
2556 case DISPPLANE_BGRX565:
2557 return DRM_FORMAT_RGB565;
2558 default:
2559 case DISPPLANE_BGRX888:
2560 return DRM_FORMAT_XRGB8888;
2561 case DISPPLANE_RGBX888:
2562 return DRM_FORMAT_XBGR8888;
2563 case DISPPLANE_BGRX101010:
2564 return DRM_FORMAT_XRGB2101010;
2565 case DISPPLANE_RGBX101010:
2566 return DRM_FORMAT_XBGR2101010;
2567 }
2568 }
2569
2570 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2571 {
2572 switch (format) {
2573 case PLANE_CTL_FORMAT_RGB_565:
2574 return DRM_FORMAT_RGB565;
2575 default:
2576 case PLANE_CTL_FORMAT_XRGB_8888:
2577 if (rgb_order) {
2578 if (alpha)
2579 return DRM_FORMAT_ABGR8888;
2580 else
2581 return DRM_FORMAT_XBGR8888;
2582 } else {
2583 if (alpha)
2584 return DRM_FORMAT_ARGB8888;
2585 else
2586 return DRM_FORMAT_XRGB8888;
2587 }
2588 case PLANE_CTL_FORMAT_XRGB_2101010:
2589 if (rgb_order)
2590 return DRM_FORMAT_XBGR2101010;
2591 else
2592 return DRM_FORMAT_XRGB2101010;
2593 }
2594 }
2595
2596 static bool
2597 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2598 struct intel_initial_plane_config *plane_config)
2599 {
2600 struct drm_device *dev = crtc->base.dev;
2601 struct drm_i915_private *dev_priv = to_i915(dev);
2602 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2603 struct drm_i915_gem_object *obj = NULL;
2604 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2605 struct drm_framebuffer *fb = &plane_config->fb->base;
2606 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2607 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2608 PAGE_SIZE);
2609
2610 size_aligned -= base_aligned;
2611
2612 if (plane_config->size == 0)
2613 return false;
2614
2615 /* If the FB is too big, just don't use it since fbdev is not very
2616 * important and we should probably use that space with FBC or other
2617 * features. */
2618 if (size_aligned * 2 > ggtt->stolen_usable_size)
2619 return false;
2620
2621 mutex_lock(&dev->struct_mutex);
2622 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2623 base_aligned,
2624 base_aligned,
2625 size_aligned);
2626 mutex_unlock(&dev->struct_mutex);
2627 if (!obj)
2628 return false;
2629
2630 if (plane_config->tiling == I915_TILING_X)
2631 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2632
2633 mode_cmd.pixel_format = fb->format->format;
2634 mode_cmd.width = fb->width;
2635 mode_cmd.height = fb->height;
2636 mode_cmd.pitches[0] = fb->pitches[0];
2637 mode_cmd.modifier[0] = fb->modifier;
2638 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2639
2640 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2641 DRM_DEBUG_KMS("intel fb init failed\n");
2642 goto out_unref_obj;
2643 }
2644
2645
2646 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2647 return true;
2648
2649 out_unref_obj:
2650 i915_gem_object_put(obj);
2651 return false;
2652 }
2653
2654 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2655 static void
2656 update_state_fb(struct drm_plane *plane)
2657 {
2658 if (plane->fb == plane->state->fb)
2659 return;
2660
2661 if (plane->state->fb)
2662 drm_framebuffer_unreference(plane->state->fb);
2663 plane->state->fb = plane->fb;
2664 if (plane->state->fb)
2665 drm_framebuffer_reference(plane->state->fb);
2666 }
2667
2668 static void
2669 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2670 struct intel_plane_state *plane_state,
2671 bool visible)
2672 {
2673 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2674
2675 plane_state->base.visible = visible;
2676
2677 /* FIXME pre-g4x don't work like this */
2678 if (visible) {
2679 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2680 crtc_state->active_planes |= BIT(plane->id);
2681 } else {
2682 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2683 crtc_state->active_planes &= ~BIT(plane->id);
2684 }
2685
2686 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2687 crtc_state->base.crtc->name,
2688 crtc_state->active_planes);
2689 }
2690
2691 static void
2692 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2693 struct intel_initial_plane_config *plane_config)
2694 {
2695 struct drm_device *dev = intel_crtc->base.dev;
2696 struct drm_i915_private *dev_priv = to_i915(dev);
2697 struct drm_crtc *c;
2698 struct drm_i915_gem_object *obj;
2699 struct drm_plane *primary = intel_crtc->base.primary;
2700 struct drm_plane_state *plane_state = primary->state;
2701 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2702 struct intel_plane *intel_plane = to_intel_plane(primary);
2703 struct intel_plane_state *intel_state =
2704 to_intel_plane_state(plane_state);
2705 struct drm_framebuffer *fb;
2706
2707 if (!plane_config->fb)
2708 return;
2709
2710 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2711 fb = &plane_config->fb->base;
2712 goto valid_fb;
2713 }
2714
2715 kfree(plane_config->fb);
2716
2717 /*
2718 * Failed to alloc the obj, check to see if we should share
2719 * an fb with another CRTC instead
2720 */
2721 for_each_crtc(dev, c) {
2722 struct intel_plane_state *state;
2723
2724 if (c == &intel_crtc->base)
2725 continue;
2726
2727 if (!to_intel_crtc(c)->active)
2728 continue;
2729
2730 state = to_intel_plane_state(c->primary->state);
2731 if (!state->vma)
2732 continue;
2733
2734 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2735 fb = c->primary->fb;
2736 drm_framebuffer_reference(fb);
2737 goto valid_fb;
2738 }
2739 }
2740
2741 /*
2742 * We've failed to reconstruct the BIOS FB. Current display state
2743 * indicates that the primary plane is visible, but has a NULL FB,
2744 * which will lead to problems later if we don't fix it up. The
2745 * simplest solution is to just disable the primary plane now and
2746 * pretend the BIOS never had it enabled.
2747 */
2748 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2749 to_intel_plane_state(plane_state),
2750 false);
2751 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2752 trace_intel_disable_plane(primary, intel_crtc);
2753 intel_plane->disable_plane(primary, &intel_crtc->base);
2754
2755 return;
2756
2757 valid_fb:
2758 mutex_lock(&dev->struct_mutex);
2759 intel_state->vma =
2760 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2761 mutex_unlock(&dev->struct_mutex);
2762 if (IS_ERR(intel_state->vma)) {
2763 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2764 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2765
2766 intel_state->vma = NULL;
2767 drm_framebuffer_unreference(fb);
2768 return;
2769 }
2770
2771 plane_state->src_x = 0;
2772 plane_state->src_y = 0;
2773 plane_state->src_w = fb->width << 16;
2774 plane_state->src_h = fb->height << 16;
2775
2776 plane_state->crtc_x = 0;
2777 plane_state->crtc_y = 0;
2778 plane_state->crtc_w = fb->width;
2779 plane_state->crtc_h = fb->height;
2780
2781 intel_state->base.src = drm_plane_state_src(plane_state);
2782 intel_state->base.dst = drm_plane_state_dest(plane_state);
2783
2784 obj = intel_fb_obj(fb);
2785 if (i915_gem_object_is_tiled(obj))
2786 dev_priv->preserve_bios_swizzle = true;
2787
2788 drm_framebuffer_reference(fb);
2789 primary->fb = primary->state->fb = fb;
2790 primary->crtc = primary->state->crtc = &intel_crtc->base;
2791
2792 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2793 to_intel_plane_state(plane_state),
2794 true);
2795
2796 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2797 &obj->frontbuffer_bits);
2798 }
2799
2800 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2801 unsigned int rotation)
2802 {
2803 int cpp = fb->format->cpp[plane];
2804
2805 switch (fb->modifier) {
2806 case DRM_FORMAT_MOD_LINEAR:
2807 case I915_FORMAT_MOD_X_TILED:
2808 switch (cpp) {
2809 case 8:
2810 return 4096;
2811 case 4:
2812 case 2:
2813 case 1:
2814 return 8192;
2815 default:
2816 MISSING_CASE(cpp);
2817 break;
2818 }
2819 break;
2820 case I915_FORMAT_MOD_Y_TILED:
2821 case I915_FORMAT_MOD_Yf_TILED:
2822 switch (cpp) {
2823 case 8:
2824 return 2048;
2825 case 4:
2826 return 4096;
2827 case 2:
2828 case 1:
2829 return 8192;
2830 default:
2831 MISSING_CASE(cpp);
2832 break;
2833 }
2834 break;
2835 default:
2836 MISSING_CASE(fb->modifier);
2837 }
2838
2839 return 2048;
2840 }
2841
2842 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2843 {
2844 const struct drm_framebuffer *fb = plane_state->base.fb;
2845 unsigned int rotation = plane_state->base.rotation;
2846 int x = plane_state->base.src.x1 >> 16;
2847 int y = plane_state->base.src.y1 >> 16;
2848 int w = drm_rect_width(&plane_state->base.src) >> 16;
2849 int h = drm_rect_height(&plane_state->base.src) >> 16;
2850 int max_width = skl_max_plane_width(fb, 0, rotation);
2851 int max_height = 4096;
2852 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2853
2854 if (w > max_width || h > max_height) {
2855 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2856 w, h, max_width, max_height);
2857 return -EINVAL;
2858 }
2859
2860 intel_add_fb_offsets(&x, &y, plane_state, 0);
2861 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2862 alignment = intel_surf_alignment(fb, 0);
2863
2864 /*
2865 * AUX surface offset is specified as the distance from the
2866 * main surface offset, and it must be non-negative. Make
2867 * sure that is what we will get.
2868 */
2869 if (offset > aux_offset)
2870 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2871 offset, aux_offset & ~(alignment - 1));
2872
2873 /*
2874 * When using an X-tiled surface, the plane blows up
2875 * if the x offset + width exceed the stride.
2876 *
2877 * TODO: linear and Y-tiled seem fine, Yf untested,
2878 */
2879 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2880 int cpp = fb->format->cpp[0];
2881
2882 while ((x + w) * cpp > fb->pitches[0]) {
2883 if (offset == 0) {
2884 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2885 return -EINVAL;
2886 }
2887
2888 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2889 offset, offset - alignment);
2890 }
2891 }
2892
2893 plane_state->main.offset = offset;
2894 plane_state->main.x = x;
2895 plane_state->main.y = y;
2896
2897 return 0;
2898 }
2899
2900 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2901 {
2902 const struct drm_framebuffer *fb = plane_state->base.fb;
2903 unsigned int rotation = plane_state->base.rotation;
2904 int max_width = skl_max_plane_width(fb, 1, rotation);
2905 int max_height = 4096;
2906 int x = plane_state->base.src.x1 >> 17;
2907 int y = plane_state->base.src.y1 >> 17;
2908 int w = drm_rect_width(&plane_state->base.src) >> 17;
2909 int h = drm_rect_height(&plane_state->base.src) >> 17;
2910 u32 offset;
2911
2912 intel_add_fb_offsets(&x, &y, plane_state, 1);
2913 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2914
2915 /* FIXME not quite sure how/if these apply to the chroma plane */
2916 if (w > max_width || h > max_height) {
2917 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2918 w, h, max_width, max_height);
2919 return -EINVAL;
2920 }
2921
2922 plane_state->aux.offset = offset;
2923 plane_state->aux.x = x;
2924 plane_state->aux.y = y;
2925
2926 return 0;
2927 }
2928
2929 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2930 {
2931 const struct drm_framebuffer *fb = plane_state->base.fb;
2932 unsigned int rotation = plane_state->base.rotation;
2933 int ret;
2934
2935 if (!plane_state->base.visible)
2936 return 0;
2937
2938 /* Rotate src coordinates to match rotated GTT view */
2939 if (drm_rotation_90_or_270(rotation))
2940 drm_rect_rotate(&plane_state->base.src,
2941 fb->width << 16, fb->height << 16,
2942 DRM_ROTATE_270);
2943
2944 /*
2945 * Handle the AUX surface first since
2946 * the main surface setup depends on it.
2947 */
2948 if (fb->format->format == DRM_FORMAT_NV12) {
2949 ret = skl_check_nv12_aux_surface(plane_state);
2950 if (ret)
2951 return ret;
2952 } else {
2953 plane_state->aux.offset = ~0xfff;
2954 plane_state->aux.x = 0;
2955 plane_state->aux.y = 0;
2956 }
2957
2958 ret = skl_check_main_surface(plane_state);
2959 if (ret)
2960 return ret;
2961
2962 return 0;
2963 }
2964
2965 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2966 const struct intel_plane_state *plane_state)
2967 {
2968 struct drm_i915_private *dev_priv =
2969 to_i915(plane_state->base.plane->dev);
2970 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2971 const struct drm_framebuffer *fb = plane_state->base.fb;
2972 unsigned int rotation = plane_state->base.rotation;
2973 u32 dspcntr;
2974
2975 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2976
2977 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2978 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2979 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2980
2981 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2982 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2983
2984 if (INTEL_GEN(dev_priv) < 4) {
2985 if (crtc->pipe == PIPE_B)
2986 dspcntr |= DISPPLANE_SEL_PIPE_B;
2987 }
2988
2989 switch (fb->format->format) {
2990 case DRM_FORMAT_C8:
2991 dspcntr |= DISPPLANE_8BPP;
2992 break;
2993 case DRM_FORMAT_XRGB1555:
2994 dspcntr |= DISPPLANE_BGRX555;
2995 break;
2996 case DRM_FORMAT_RGB565:
2997 dspcntr |= DISPPLANE_BGRX565;
2998 break;
2999 case DRM_FORMAT_XRGB8888:
3000 dspcntr |= DISPPLANE_BGRX888;
3001 break;
3002 case DRM_FORMAT_XBGR8888:
3003 dspcntr |= DISPPLANE_RGBX888;
3004 break;
3005 case DRM_FORMAT_XRGB2101010:
3006 dspcntr |= DISPPLANE_BGRX101010;
3007 break;
3008 case DRM_FORMAT_XBGR2101010:
3009 dspcntr |= DISPPLANE_RGBX101010;
3010 break;
3011 default:
3012 MISSING_CASE(fb->format->format);
3013 return 0;
3014 }
3015
3016 if (INTEL_GEN(dev_priv) >= 4 &&
3017 fb->modifier == I915_FORMAT_MOD_X_TILED)
3018 dspcntr |= DISPPLANE_TILED;
3019
3020 if (rotation & DRM_ROTATE_180)
3021 dspcntr |= DISPPLANE_ROTATE_180;
3022
3023 if (rotation & DRM_REFLECT_X)
3024 dspcntr |= DISPPLANE_MIRROR;
3025
3026 return dspcntr;
3027 }
3028
3029 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3030 {
3031 struct drm_i915_private *dev_priv =
3032 to_i915(plane_state->base.plane->dev);
3033 int src_x = plane_state->base.src.x1 >> 16;
3034 int src_y = plane_state->base.src.y1 >> 16;
3035 u32 offset;
3036
3037 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3038
3039 if (INTEL_GEN(dev_priv) >= 4)
3040 offset = intel_compute_tile_offset(&src_x, &src_y,
3041 plane_state, 0);
3042 else
3043 offset = 0;
3044
3045 /* HSW/BDW do this automagically in hardware */
3046 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3047 unsigned int rotation = plane_state->base.rotation;
3048 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3049 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3050
3051 if (rotation & DRM_ROTATE_180) {
3052 src_x += src_w - 1;
3053 src_y += src_h - 1;
3054 } else if (rotation & DRM_REFLECT_X) {
3055 src_x += src_w - 1;
3056 }
3057 }
3058
3059 plane_state->main.offset = offset;
3060 plane_state->main.x = src_x;
3061 plane_state->main.y = src_y;
3062
3063 return 0;
3064 }
3065
3066 static void i9xx_update_primary_plane(struct drm_plane *primary,
3067 const struct intel_crtc_state *crtc_state,
3068 const struct intel_plane_state *plane_state)
3069 {
3070 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3072 struct drm_framebuffer *fb = plane_state->base.fb;
3073 int plane = intel_crtc->plane;
3074 u32 linear_offset;
3075 u32 dspcntr = plane_state->ctl;
3076 i915_reg_t reg = DSPCNTR(plane);
3077 int x = plane_state->main.x;
3078 int y = plane_state->main.y;
3079 unsigned long irqflags;
3080
3081 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3082
3083 if (INTEL_GEN(dev_priv) >= 4)
3084 intel_crtc->dspaddr_offset = plane_state->main.offset;
3085 else
3086 intel_crtc->dspaddr_offset = linear_offset;
3087
3088 intel_crtc->adjusted_x = x;
3089 intel_crtc->adjusted_y = y;
3090
3091 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3092
3093 if (INTEL_GEN(dev_priv) < 4) {
3094 /* pipesrc and dspsize control the size that is scaled from,
3095 * which should always be the user's requested size.
3096 */
3097 I915_WRITE_FW(DSPSIZE(plane),
3098 ((crtc_state->pipe_src_h - 1) << 16) |
3099 (crtc_state->pipe_src_w - 1));
3100 I915_WRITE_FW(DSPPOS(plane), 0);
3101 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3102 I915_WRITE_FW(PRIMSIZE(plane),
3103 ((crtc_state->pipe_src_h - 1) << 16) |
3104 (crtc_state->pipe_src_w - 1));
3105 I915_WRITE_FW(PRIMPOS(plane), 0);
3106 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3107 }
3108
3109 I915_WRITE_FW(reg, dspcntr);
3110
3111 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3112 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3113 I915_WRITE_FW(DSPSURF(plane),
3114 intel_plane_ggtt_offset(plane_state) +
3115 intel_crtc->dspaddr_offset);
3116 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3117 } else if (INTEL_GEN(dev_priv) >= 4) {
3118 I915_WRITE_FW(DSPSURF(plane),
3119 intel_plane_ggtt_offset(plane_state) +
3120 intel_crtc->dspaddr_offset);
3121 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3122 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3123 } else {
3124 I915_WRITE_FW(DSPADDR(plane),
3125 intel_plane_ggtt_offset(plane_state) +
3126 intel_crtc->dspaddr_offset);
3127 }
3128 POSTING_READ_FW(reg);
3129
3130 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3131 }
3132
3133 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3134 struct drm_crtc *crtc)
3135 {
3136 struct drm_device *dev = crtc->dev;
3137 struct drm_i915_private *dev_priv = to_i915(dev);
3138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139 int plane = intel_crtc->plane;
3140 unsigned long irqflags;
3141
3142 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3143
3144 I915_WRITE_FW(DSPCNTR(plane), 0);
3145 if (INTEL_INFO(dev_priv)->gen >= 4)
3146 I915_WRITE_FW(DSPSURF(plane), 0);
3147 else
3148 I915_WRITE_FW(DSPADDR(plane), 0);
3149 POSTING_READ_FW(DSPCNTR(plane));
3150
3151 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3152 }
3153
3154 static u32
3155 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3156 {
3157 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3158 return 64;
3159 else
3160 return intel_tile_width_bytes(fb, plane);
3161 }
3162
3163 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3164 {
3165 struct drm_device *dev = intel_crtc->base.dev;
3166 struct drm_i915_private *dev_priv = to_i915(dev);
3167
3168 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3169 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3170 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3171 }
3172
3173 /*
3174 * This function detaches (aka. unbinds) unused scalers in hardware
3175 */
3176 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3177 {
3178 struct intel_crtc_scaler_state *scaler_state;
3179 int i;
3180
3181 scaler_state = &intel_crtc->config->scaler_state;
3182
3183 /* loop through and disable scalers that aren't in use */
3184 for (i = 0; i < intel_crtc->num_scalers; i++) {
3185 if (!scaler_state->scalers[i].in_use)
3186 skl_detach_scaler(intel_crtc, i);
3187 }
3188 }
3189
3190 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3191 unsigned int rotation)
3192 {
3193 u32 stride;
3194
3195 if (plane >= fb->format->num_planes)
3196 return 0;
3197
3198 stride = intel_fb_pitch(fb, plane, rotation);
3199
3200 /*
3201 * The stride is either expressed as a multiple of 64 bytes chunks for
3202 * linear buffers or in number of tiles for tiled buffers.
3203 */
3204 if (drm_rotation_90_or_270(rotation))
3205 stride /= intel_tile_height(fb, plane);
3206 else
3207 stride /= intel_fb_stride_alignment(fb, plane);
3208
3209 return stride;
3210 }
3211
3212 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3213 {
3214 switch (pixel_format) {
3215 case DRM_FORMAT_C8:
3216 return PLANE_CTL_FORMAT_INDEXED;
3217 case DRM_FORMAT_RGB565:
3218 return PLANE_CTL_FORMAT_RGB_565;
3219 case DRM_FORMAT_XBGR8888:
3220 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3221 case DRM_FORMAT_XRGB8888:
3222 return PLANE_CTL_FORMAT_XRGB_8888;
3223 /*
3224 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3225 * to be already pre-multiplied. We need to add a knob (or a different
3226 * DRM_FORMAT) for user-space to configure that.
3227 */
3228 case DRM_FORMAT_ABGR8888:
3229 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3230 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3231 case DRM_FORMAT_ARGB8888:
3232 return PLANE_CTL_FORMAT_XRGB_8888 |
3233 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3234 case DRM_FORMAT_XRGB2101010:
3235 return PLANE_CTL_FORMAT_XRGB_2101010;
3236 case DRM_FORMAT_XBGR2101010:
3237 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3238 case DRM_FORMAT_YUYV:
3239 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3240 case DRM_FORMAT_YVYU:
3241 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3242 case DRM_FORMAT_UYVY:
3243 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3244 case DRM_FORMAT_VYUY:
3245 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3246 default:
3247 MISSING_CASE(pixel_format);
3248 }
3249
3250 return 0;
3251 }
3252
3253 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3254 {
3255 switch (fb_modifier) {
3256 case DRM_FORMAT_MOD_LINEAR:
3257 break;
3258 case I915_FORMAT_MOD_X_TILED:
3259 return PLANE_CTL_TILED_X;
3260 case I915_FORMAT_MOD_Y_TILED:
3261 return PLANE_CTL_TILED_Y;
3262 case I915_FORMAT_MOD_Yf_TILED:
3263 return PLANE_CTL_TILED_YF;
3264 default:
3265 MISSING_CASE(fb_modifier);
3266 }
3267
3268 return 0;
3269 }
3270
3271 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3272 {
3273 switch (rotation) {
3274 case DRM_ROTATE_0:
3275 break;
3276 /*
3277 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3278 * while i915 HW rotation is clockwise, thats why this swapping.
3279 */
3280 case DRM_ROTATE_90:
3281 return PLANE_CTL_ROTATE_270;
3282 case DRM_ROTATE_180:
3283 return PLANE_CTL_ROTATE_180;
3284 case DRM_ROTATE_270:
3285 return PLANE_CTL_ROTATE_90;
3286 default:
3287 MISSING_CASE(rotation);
3288 }
3289
3290 return 0;
3291 }
3292
3293 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3294 const struct intel_plane_state *plane_state)
3295 {
3296 struct drm_i915_private *dev_priv =
3297 to_i915(plane_state->base.plane->dev);
3298 const struct drm_framebuffer *fb = plane_state->base.fb;
3299 unsigned int rotation = plane_state->base.rotation;
3300 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3301 u32 plane_ctl;
3302
3303 plane_ctl = PLANE_CTL_ENABLE;
3304
3305 if (!IS_GEMINILAKE(dev_priv)) {
3306 plane_ctl |=
3307 PLANE_CTL_PIPE_GAMMA_ENABLE |
3308 PLANE_CTL_PIPE_CSC_ENABLE |
3309 PLANE_CTL_PLANE_GAMMA_DISABLE;
3310 }
3311
3312 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3313 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3314 plane_ctl |= skl_plane_ctl_rotation(rotation);
3315
3316 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3317 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3318 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3319 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3320
3321 return plane_ctl;
3322 }
3323
3324 static void skylake_update_primary_plane(struct drm_plane *plane,
3325 const struct intel_crtc_state *crtc_state,
3326 const struct intel_plane_state *plane_state)
3327 {
3328 struct drm_device *dev = plane->dev;
3329 struct drm_i915_private *dev_priv = to_i915(dev);
3330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3331 struct drm_framebuffer *fb = plane_state->base.fb;
3332 enum plane_id plane_id = to_intel_plane(plane)->id;
3333 enum pipe pipe = to_intel_plane(plane)->pipe;
3334 u32 plane_ctl = plane_state->ctl;
3335 unsigned int rotation = plane_state->base.rotation;
3336 u32 stride = skl_plane_stride(fb, 0, rotation);
3337 u32 surf_addr = plane_state->main.offset;
3338 int scaler_id = plane_state->scaler_id;
3339 int src_x = plane_state->main.x;
3340 int src_y = plane_state->main.y;
3341 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3342 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3343 int dst_x = plane_state->base.dst.x1;
3344 int dst_y = plane_state->base.dst.y1;
3345 int dst_w = drm_rect_width(&plane_state->base.dst);
3346 int dst_h = drm_rect_height(&plane_state->base.dst);
3347 unsigned long irqflags;
3348
3349 /* Sizes are 0 based */
3350 src_w--;
3351 src_h--;
3352 dst_w--;
3353 dst_h--;
3354
3355 intel_crtc->dspaddr_offset = surf_addr;
3356
3357 intel_crtc->adjusted_x = src_x;
3358 intel_crtc->adjusted_y = src_y;
3359
3360 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3361
3362 if (IS_GEMINILAKE(dev_priv)) {
3363 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3364 PLANE_COLOR_PIPE_GAMMA_ENABLE |
3365 PLANE_COLOR_PIPE_CSC_ENABLE |
3366 PLANE_COLOR_PLANE_GAMMA_DISABLE);
3367 }
3368
3369 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3370 I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3371 I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3372 I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3373
3374 if (scaler_id >= 0) {
3375 uint32_t ps_ctrl = 0;
3376
3377 WARN_ON(!dst_w || !dst_h);
3378 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3379 crtc_state->scaler_state.scalers[scaler_id].mode;
3380 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3381 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3382 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3383 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3384 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3385 } else {
3386 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3387 }
3388
3389 I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3390 intel_plane_ggtt_offset(plane_state) + surf_addr);
3391
3392 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3393
3394 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3395 }
3396
3397 static void skylake_disable_primary_plane(struct drm_plane *primary,
3398 struct drm_crtc *crtc)
3399 {
3400 struct drm_device *dev = crtc->dev;
3401 struct drm_i915_private *dev_priv = to_i915(dev);
3402 enum plane_id plane_id = to_intel_plane(primary)->id;
3403 enum pipe pipe = to_intel_plane(primary)->pipe;
3404 unsigned long irqflags;
3405
3406 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3407
3408 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3409 I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3410 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3411
3412 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3413 }
3414
3415 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3416 {
3417 struct intel_crtc *crtc;
3418
3419 for_each_intel_crtc(&dev_priv->drm, crtc)
3420 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3421 }
3422
3423 static void intel_update_primary_planes(struct drm_device *dev)
3424 {
3425 struct drm_crtc *crtc;
3426
3427 for_each_crtc(dev, crtc) {
3428 struct intel_plane *plane = to_intel_plane(crtc->primary);
3429 struct intel_plane_state *plane_state =
3430 to_intel_plane_state(plane->base.state);
3431
3432 if (plane_state->base.visible) {
3433 trace_intel_update_plane(&plane->base,
3434 to_intel_crtc(crtc));
3435
3436 plane->update_plane(&plane->base,
3437 to_intel_crtc_state(crtc->state),
3438 plane_state);
3439 }
3440 }
3441 }
3442
3443 static int
3444 __intel_display_resume(struct drm_device *dev,
3445 struct drm_atomic_state *state,
3446 struct drm_modeset_acquire_ctx *ctx)
3447 {
3448 struct drm_crtc_state *crtc_state;
3449 struct drm_crtc *crtc;
3450 int i, ret;
3451
3452 intel_modeset_setup_hw_state(dev);
3453 i915_redisable_vga(to_i915(dev));
3454
3455 if (!state)
3456 return 0;
3457
3458 /*
3459 * We've duplicated the state, pointers to the old state are invalid.
3460 *
3461 * Don't attempt to use the old state until we commit the duplicated state.
3462 */
3463 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3464 /*
3465 * Force recalculation even if we restore
3466 * current state. With fast modeset this may not result
3467 * in a modeset when the state is compatible.
3468 */
3469 crtc_state->mode_changed = true;
3470 }
3471
3472 /* ignore any reset values/BIOS leftovers in the WM registers */
3473 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3474 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3475
3476 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3477
3478 WARN_ON(ret == -EDEADLK);
3479 return ret;
3480 }
3481
3482 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3483 {
3484 return intel_has_gpu_reset(dev_priv) &&
3485 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3486 }
3487
3488 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3489 {
3490 struct drm_device *dev = &dev_priv->drm;
3491 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3492 struct drm_atomic_state *state;
3493 int ret;
3494
3495 /*
3496 * Need mode_config.mutex so that we don't
3497 * trample ongoing ->detect() and whatnot.
3498 */
3499 mutex_lock(&dev->mode_config.mutex);
3500 drm_modeset_acquire_init(ctx, 0);
3501 while (1) {
3502 ret = drm_modeset_lock_all_ctx(dev, ctx);
3503 if (ret != -EDEADLK)
3504 break;
3505
3506 drm_modeset_backoff(ctx);
3507 }
3508
3509 /* reset doesn't touch the display, but flips might get nuked anyway, */
3510 if (!i915.force_reset_modeset_test &&
3511 !gpu_reset_clobbers_display(dev_priv))
3512 return;
3513
3514 /*
3515 * Disabling the crtcs gracefully seems nicer. Also the
3516 * g33 docs say we should at least disable all the planes.
3517 */
3518 state = drm_atomic_helper_duplicate_state(dev, ctx);
3519 if (IS_ERR(state)) {
3520 ret = PTR_ERR(state);
3521 DRM_ERROR("Duplicating state failed with %i\n", ret);
3522 return;
3523 }
3524
3525 ret = drm_atomic_helper_disable_all(dev, ctx);
3526 if (ret) {
3527 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3528 drm_atomic_state_put(state);
3529 return;
3530 }
3531
3532 dev_priv->modeset_restore_state = state;
3533 state->acquire_ctx = ctx;
3534 }
3535
3536 void intel_finish_reset(struct drm_i915_private *dev_priv)
3537 {
3538 struct drm_device *dev = &dev_priv->drm;
3539 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3540 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3541 int ret;
3542
3543 /*
3544 * Flips in the rings will be nuked by the reset,
3545 * so complete all pending flips so that user space
3546 * will get its events and not get stuck.
3547 */
3548 intel_complete_page_flips(dev_priv);
3549
3550 dev_priv->modeset_restore_state = NULL;
3551
3552 /* reset doesn't touch the display */
3553 if (!gpu_reset_clobbers_display(dev_priv)) {
3554 if (!state) {
3555 /*
3556 * Flips in the rings have been nuked by the reset,
3557 * so update the base address of all primary
3558 * planes to the the last fb to make sure we're
3559 * showing the correct fb after a reset.
3560 *
3561 * FIXME: Atomic will make this obsolete since we won't schedule
3562 * CS-based flips (which might get lost in gpu resets) any more.
3563 */
3564 intel_update_primary_planes(dev);
3565 } else {
3566 ret = __intel_display_resume(dev, state, ctx);
3567 if (ret)
3568 DRM_ERROR("Restoring old state failed with %i\n", ret);
3569 }
3570 } else {
3571 /*
3572 * The display has been reset as well,
3573 * so need a full re-initialization.
3574 */
3575 intel_runtime_pm_disable_interrupts(dev_priv);
3576 intel_runtime_pm_enable_interrupts(dev_priv);
3577
3578 intel_pps_unlock_regs_wa(dev_priv);
3579 intel_modeset_init_hw(dev);
3580
3581 spin_lock_irq(&dev_priv->irq_lock);
3582 if (dev_priv->display.hpd_irq_setup)
3583 dev_priv->display.hpd_irq_setup(dev_priv);
3584 spin_unlock_irq(&dev_priv->irq_lock);
3585
3586 ret = __intel_display_resume(dev, state, ctx);
3587 if (ret)
3588 DRM_ERROR("Restoring old state failed with %i\n", ret);
3589
3590 intel_hpd_init(dev_priv);
3591 }
3592
3593 if (state)
3594 drm_atomic_state_put(state);
3595 drm_modeset_drop_locks(ctx);
3596 drm_modeset_acquire_fini(ctx);
3597 mutex_unlock(&dev->mode_config.mutex);
3598 }
3599
3600 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3601 {
3602 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3603
3604 if (i915_reset_backoff(error))
3605 return true;
3606
3607 if (crtc->reset_count != i915_reset_count(error))
3608 return true;
3609
3610 return false;
3611 }
3612
3613 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3614 {
3615 struct drm_device *dev = crtc->dev;
3616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617 bool pending;
3618
3619 if (abort_flip_on_reset(intel_crtc))
3620 return false;
3621
3622 spin_lock_irq(&dev->event_lock);
3623 pending = to_intel_crtc(crtc)->flip_work != NULL;
3624 spin_unlock_irq(&dev->event_lock);
3625
3626 return pending;
3627 }
3628
3629 static void intel_update_pipe_config(struct intel_crtc *crtc,
3630 struct intel_crtc_state *old_crtc_state)
3631 {
3632 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3633 struct intel_crtc_state *pipe_config =
3634 to_intel_crtc_state(crtc->base.state);
3635
3636 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3637 crtc->base.mode = crtc->base.state->mode;
3638
3639 /*
3640 * Update pipe size and adjust fitter if needed: the reason for this is
3641 * that in compute_mode_changes we check the native mode (not the pfit
3642 * mode) to see if we can flip rather than do a full mode set. In the
3643 * fastboot case, we'll flip, but if we don't update the pipesrc and
3644 * pfit state, we'll end up with a big fb scanned out into the wrong
3645 * sized surface.
3646 */
3647
3648 I915_WRITE(PIPESRC(crtc->pipe),
3649 ((pipe_config->pipe_src_w - 1) << 16) |
3650 (pipe_config->pipe_src_h - 1));
3651
3652 /* on skylake this is done by detaching scalers */
3653 if (INTEL_GEN(dev_priv) >= 9) {
3654 skl_detach_scalers(crtc);
3655
3656 if (pipe_config->pch_pfit.enabled)
3657 skylake_pfit_enable(crtc);
3658 } else if (HAS_PCH_SPLIT(dev_priv)) {
3659 if (pipe_config->pch_pfit.enabled)
3660 ironlake_pfit_enable(crtc);
3661 else if (old_crtc_state->pch_pfit.enabled)
3662 ironlake_pfit_disable(crtc, true);
3663 }
3664 }
3665
3666 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3667 {
3668 struct drm_device *dev = crtc->base.dev;
3669 struct drm_i915_private *dev_priv = to_i915(dev);
3670 int pipe = crtc->pipe;
3671 i915_reg_t reg;
3672 u32 temp;
3673
3674 /* enable normal train */
3675 reg = FDI_TX_CTL(pipe);
3676 temp = I915_READ(reg);
3677 if (IS_IVYBRIDGE(dev_priv)) {
3678 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3679 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3680 } else {
3681 temp &= ~FDI_LINK_TRAIN_NONE;
3682 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3683 }
3684 I915_WRITE(reg, temp);
3685
3686 reg = FDI_RX_CTL(pipe);
3687 temp = I915_READ(reg);
3688 if (HAS_PCH_CPT(dev_priv)) {
3689 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3690 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3691 } else {
3692 temp &= ~FDI_LINK_TRAIN_NONE;
3693 temp |= FDI_LINK_TRAIN_NONE;
3694 }
3695 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3696
3697 /* wait one idle pattern time */
3698 POSTING_READ(reg);
3699 udelay(1000);
3700
3701 /* IVB wants error correction enabled */
3702 if (IS_IVYBRIDGE(dev_priv))
3703 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3704 FDI_FE_ERRC_ENABLE);
3705 }
3706
3707 /* The FDI link training functions for ILK/Ibexpeak. */
3708 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3709 const struct intel_crtc_state *crtc_state)
3710 {
3711 struct drm_device *dev = crtc->base.dev;
3712 struct drm_i915_private *dev_priv = to_i915(dev);
3713 int pipe = crtc->pipe;
3714 i915_reg_t reg;
3715 u32 temp, tries;
3716
3717 /* FDI needs bits from pipe first */
3718 assert_pipe_enabled(dev_priv, pipe);
3719
3720 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3721 for train result */
3722 reg = FDI_RX_IMR(pipe);
3723 temp = I915_READ(reg);
3724 temp &= ~FDI_RX_SYMBOL_LOCK;
3725 temp &= ~FDI_RX_BIT_LOCK;
3726 I915_WRITE(reg, temp);
3727 I915_READ(reg);
3728 udelay(150);
3729
3730 /* enable CPU FDI TX and PCH FDI RX */
3731 reg = FDI_TX_CTL(pipe);
3732 temp = I915_READ(reg);
3733 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3734 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3735 temp &= ~FDI_LINK_TRAIN_NONE;
3736 temp |= FDI_LINK_TRAIN_PATTERN_1;
3737 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3738
3739 reg = FDI_RX_CTL(pipe);
3740 temp = I915_READ(reg);
3741 temp &= ~FDI_LINK_TRAIN_NONE;
3742 temp |= FDI_LINK_TRAIN_PATTERN_1;
3743 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3744
3745 POSTING_READ(reg);
3746 udelay(150);
3747
3748 /* Ironlake workaround, enable clock pointer after FDI enable*/
3749 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3750 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3751 FDI_RX_PHASE_SYNC_POINTER_EN);
3752
3753 reg = FDI_RX_IIR(pipe);
3754 for (tries = 0; tries < 5; tries++) {
3755 temp = I915_READ(reg);
3756 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3757
3758 if ((temp & FDI_RX_BIT_LOCK)) {
3759 DRM_DEBUG_KMS("FDI train 1 done.\n");
3760 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3761 break;
3762 }
3763 }
3764 if (tries == 5)
3765 DRM_ERROR("FDI train 1 fail!\n");
3766
3767 /* Train 2 */
3768 reg = FDI_TX_CTL(pipe);
3769 temp = I915_READ(reg);
3770 temp &= ~FDI_LINK_TRAIN_NONE;
3771 temp |= FDI_LINK_TRAIN_PATTERN_2;
3772 I915_WRITE(reg, temp);
3773
3774 reg = FDI_RX_CTL(pipe);
3775 temp = I915_READ(reg);
3776 temp &= ~FDI_LINK_TRAIN_NONE;
3777 temp |= FDI_LINK_TRAIN_PATTERN_2;
3778 I915_WRITE(reg, temp);
3779
3780 POSTING_READ(reg);
3781 udelay(150);
3782
3783 reg = FDI_RX_IIR(pipe);
3784 for (tries = 0; tries < 5; tries++) {
3785 temp = I915_READ(reg);
3786 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3787
3788 if (temp & FDI_RX_SYMBOL_LOCK) {
3789 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3790 DRM_DEBUG_KMS("FDI train 2 done.\n");
3791 break;
3792 }
3793 }
3794 if (tries == 5)
3795 DRM_ERROR("FDI train 2 fail!\n");
3796
3797 DRM_DEBUG_KMS("FDI train done\n");
3798
3799 }
3800
3801 static const int snb_b_fdi_train_param[] = {
3802 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3803 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3804 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3805 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3806 };
3807
3808 /* The FDI link training functions for SNB/Cougarpoint. */
3809 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3810 const struct intel_crtc_state *crtc_state)
3811 {
3812 struct drm_device *dev = crtc->base.dev;
3813 struct drm_i915_private *dev_priv = to_i915(dev);
3814 int pipe = crtc->pipe;
3815 i915_reg_t reg;
3816 u32 temp, i, retry;
3817
3818 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3819 for train result */
3820 reg = FDI_RX_IMR(pipe);
3821 temp = I915_READ(reg);
3822 temp &= ~FDI_RX_SYMBOL_LOCK;
3823 temp &= ~FDI_RX_BIT_LOCK;
3824 I915_WRITE(reg, temp);
3825
3826 POSTING_READ(reg);
3827 udelay(150);
3828
3829 /* enable CPU FDI TX and PCH FDI RX */
3830 reg = FDI_TX_CTL(pipe);
3831 temp = I915_READ(reg);
3832 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3833 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3837 /* SNB-B */
3838 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3839 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3840
3841 I915_WRITE(FDI_RX_MISC(pipe),
3842 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3843
3844 reg = FDI_RX_CTL(pipe);
3845 temp = I915_READ(reg);
3846 if (HAS_PCH_CPT(dev_priv)) {
3847 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3848 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3849 } else {
3850 temp &= ~FDI_LINK_TRAIN_NONE;
3851 temp |= FDI_LINK_TRAIN_PATTERN_1;
3852 }
3853 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3854
3855 POSTING_READ(reg);
3856 udelay(150);
3857
3858 for (i = 0; i < 4; i++) {
3859 reg = FDI_TX_CTL(pipe);
3860 temp = I915_READ(reg);
3861 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3862 temp |= snb_b_fdi_train_param[i];
3863 I915_WRITE(reg, temp);
3864
3865 POSTING_READ(reg);
3866 udelay(500);
3867
3868 for (retry = 0; retry < 5; retry++) {
3869 reg = FDI_RX_IIR(pipe);
3870 temp = I915_READ(reg);
3871 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3872 if (temp & FDI_RX_BIT_LOCK) {
3873 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3874 DRM_DEBUG_KMS("FDI train 1 done.\n");
3875 break;
3876 }
3877 udelay(50);
3878 }
3879 if (retry < 5)
3880 break;
3881 }
3882 if (i == 4)
3883 DRM_ERROR("FDI train 1 fail!\n");
3884
3885 /* Train 2 */
3886 reg = FDI_TX_CTL(pipe);
3887 temp = I915_READ(reg);
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_2;
3890 if (IS_GEN6(dev_priv)) {
3891 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3892 /* SNB-B */
3893 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3894 }
3895 I915_WRITE(reg, temp);
3896
3897 reg = FDI_RX_CTL(pipe);
3898 temp = I915_READ(reg);
3899 if (HAS_PCH_CPT(dev_priv)) {
3900 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3901 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3902 } else {
3903 temp &= ~FDI_LINK_TRAIN_NONE;
3904 temp |= FDI_LINK_TRAIN_PATTERN_2;
3905 }
3906 I915_WRITE(reg, temp);
3907
3908 POSTING_READ(reg);
3909 udelay(150);
3910
3911 for (i = 0; i < 4; i++) {
3912 reg = FDI_TX_CTL(pipe);
3913 temp = I915_READ(reg);
3914 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3915 temp |= snb_b_fdi_train_param[i];
3916 I915_WRITE(reg, temp);
3917
3918 POSTING_READ(reg);
3919 udelay(500);
3920
3921 for (retry = 0; retry < 5; retry++) {
3922 reg = FDI_RX_IIR(pipe);
3923 temp = I915_READ(reg);
3924 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3925 if (temp & FDI_RX_SYMBOL_LOCK) {
3926 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3927 DRM_DEBUG_KMS("FDI train 2 done.\n");
3928 break;
3929 }
3930 udelay(50);
3931 }
3932 if (retry < 5)
3933 break;
3934 }
3935 if (i == 4)
3936 DRM_ERROR("FDI train 2 fail!\n");
3937
3938 DRM_DEBUG_KMS("FDI train done.\n");
3939 }
3940
3941 /* Manual link training for Ivy Bridge A0 parts */
3942 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3943 const struct intel_crtc_state *crtc_state)
3944 {
3945 struct drm_device *dev = crtc->base.dev;
3946 struct drm_i915_private *dev_priv = to_i915(dev);
3947 int pipe = crtc->pipe;
3948 i915_reg_t reg;
3949 u32 temp, i, j;
3950
3951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3952 for train result */
3953 reg = FDI_RX_IMR(pipe);
3954 temp = I915_READ(reg);
3955 temp &= ~FDI_RX_SYMBOL_LOCK;
3956 temp &= ~FDI_RX_BIT_LOCK;
3957 I915_WRITE(reg, temp);
3958
3959 POSTING_READ(reg);
3960 udelay(150);
3961
3962 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3963 I915_READ(FDI_RX_IIR(pipe)));
3964
3965 /* Try each vswing and preemphasis setting twice before moving on */
3966 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3967 /* disable first in case we need to retry */
3968 reg = FDI_TX_CTL(pipe);
3969 temp = I915_READ(reg);
3970 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3971 temp &= ~FDI_TX_ENABLE;
3972 I915_WRITE(reg, temp);
3973
3974 reg = FDI_RX_CTL(pipe);
3975 temp = I915_READ(reg);
3976 temp &= ~FDI_LINK_TRAIN_AUTO;
3977 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3978 temp &= ~FDI_RX_ENABLE;
3979 I915_WRITE(reg, temp);
3980
3981 /* enable CPU FDI TX and PCH FDI RX */
3982 reg = FDI_TX_CTL(pipe);
3983 temp = I915_READ(reg);
3984 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3985 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3986 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3987 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3988 temp |= snb_b_fdi_train_param[j/2];
3989 temp |= FDI_COMPOSITE_SYNC;
3990 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3991
3992 I915_WRITE(FDI_RX_MISC(pipe),
3993 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3994
3995 reg = FDI_RX_CTL(pipe);
3996 temp = I915_READ(reg);
3997 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3998 temp |= FDI_COMPOSITE_SYNC;
3999 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4000
4001 POSTING_READ(reg);
4002 udelay(1); /* should be 0.5us */
4003
4004 for (i = 0; i < 4; i++) {
4005 reg = FDI_RX_IIR(pipe);
4006 temp = I915_READ(reg);
4007 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4008
4009 if (temp & FDI_RX_BIT_LOCK ||
4010 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4011 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4012 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4013 i);
4014 break;
4015 }
4016 udelay(1); /* should be 0.5us */
4017 }
4018 if (i == 4) {
4019 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4020 continue;
4021 }
4022
4023 /* Train 2 */
4024 reg = FDI_TX_CTL(pipe);
4025 temp = I915_READ(reg);
4026 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4027 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4028 I915_WRITE(reg, temp);
4029
4030 reg = FDI_RX_CTL(pipe);
4031 temp = I915_READ(reg);
4032 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4033 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4034 I915_WRITE(reg, temp);
4035
4036 POSTING_READ(reg);
4037 udelay(2); /* should be 1.5us */
4038
4039 for (i = 0; i < 4; i++) {
4040 reg = FDI_RX_IIR(pipe);
4041 temp = I915_READ(reg);
4042 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4043
4044 if (temp & FDI_RX_SYMBOL_LOCK ||
4045 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4046 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4047 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4048 i);
4049 goto train_done;
4050 }
4051 udelay(2); /* should be 1.5us */
4052 }
4053 if (i == 4)
4054 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4055 }
4056
4057 train_done:
4058 DRM_DEBUG_KMS("FDI train done.\n");
4059 }
4060
4061 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4062 {
4063 struct drm_device *dev = intel_crtc->base.dev;
4064 struct drm_i915_private *dev_priv = to_i915(dev);
4065 int pipe = intel_crtc->pipe;
4066 i915_reg_t reg;
4067 u32 temp;
4068
4069 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4070 reg = FDI_RX_CTL(pipe);
4071 temp = I915_READ(reg);
4072 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4073 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4074 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4075 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4076
4077 POSTING_READ(reg);
4078 udelay(200);
4079
4080 /* Switch from Rawclk to PCDclk */
4081 temp = I915_READ(reg);
4082 I915_WRITE(reg, temp | FDI_PCDCLK);
4083
4084 POSTING_READ(reg);
4085 udelay(200);
4086
4087 /* Enable CPU FDI TX PLL, always on for Ironlake */
4088 reg = FDI_TX_CTL(pipe);
4089 temp = I915_READ(reg);
4090 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4091 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4092
4093 POSTING_READ(reg);
4094 udelay(100);
4095 }
4096 }
4097
4098 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4099 {
4100 struct drm_device *dev = intel_crtc->base.dev;
4101 struct drm_i915_private *dev_priv = to_i915(dev);
4102 int pipe = intel_crtc->pipe;
4103 i915_reg_t reg;
4104 u32 temp;
4105
4106 /* Switch from PCDclk to Rawclk */
4107 reg = FDI_RX_CTL(pipe);
4108 temp = I915_READ(reg);
4109 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4110
4111 /* Disable CPU FDI TX PLL */
4112 reg = FDI_TX_CTL(pipe);
4113 temp = I915_READ(reg);
4114 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4115
4116 POSTING_READ(reg);
4117 udelay(100);
4118
4119 reg = FDI_RX_CTL(pipe);
4120 temp = I915_READ(reg);
4121 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4122
4123 /* Wait for the clocks to turn off. */
4124 POSTING_READ(reg);
4125 udelay(100);
4126 }
4127
4128 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4129 {
4130 struct drm_device *dev = crtc->dev;
4131 struct drm_i915_private *dev_priv = to_i915(dev);
4132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4133 int pipe = intel_crtc->pipe;
4134 i915_reg_t reg;
4135 u32 temp;
4136
4137 /* disable CPU FDI tx and PCH FDI rx */
4138 reg = FDI_TX_CTL(pipe);
4139 temp = I915_READ(reg);
4140 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4141 POSTING_READ(reg);
4142
4143 reg = FDI_RX_CTL(pipe);
4144 temp = I915_READ(reg);
4145 temp &= ~(0x7 << 16);
4146 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4147 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4148
4149 POSTING_READ(reg);
4150 udelay(100);
4151
4152 /* Ironlake workaround, disable clock pointer after downing FDI */
4153 if (HAS_PCH_IBX(dev_priv))
4154 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4155
4156 /* still set train pattern 1 */
4157 reg = FDI_TX_CTL(pipe);
4158 temp = I915_READ(reg);
4159 temp &= ~FDI_LINK_TRAIN_NONE;
4160 temp |= FDI_LINK_TRAIN_PATTERN_1;
4161 I915_WRITE(reg, temp);
4162
4163 reg = FDI_RX_CTL(pipe);
4164 temp = I915_READ(reg);
4165 if (HAS_PCH_CPT(dev_priv)) {
4166 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4167 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4168 } else {
4169 temp &= ~FDI_LINK_TRAIN_NONE;
4170 temp |= FDI_LINK_TRAIN_PATTERN_1;
4171 }
4172 /* BPC in FDI rx is consistent with that in PIPECONF */
4173 temp &= ~(0x07 << 16);
4174 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4175 I915_WRITE(reg, temp);
4176
4177 POSTING_READ(reg);
4178 udelay(100);
4179 }
4180
4181 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4182 {
4183 struct intel_crtc *crtc;
4184
4185 /* Note that we don't need to be called with mode_config.lock here
4186 * as our list of CRTC objects is static for the lifetime of the
4187 * device and so cannot disappear as we iterate. Similarly, we can
4188 * happily treat the predicates as racy, atomic checks as userspace
4189 * cannot claim and pin a new fb without at least acquring the
4190 * struct_mutex and so serialising with us.
4191 */
4192 for_each_intel_crtc(&dev_priv->drm, crtc) {
4193 if (atomic_read(&crtc->unpin_work_count) == 0)
4194 continue;
4195
4196 if (crtc->flip_work)
4197 intel_wait_for_vblank(dev_priv, crtc->pipe);
4198
4199 return true;
4200 }
4201
4202 return false;
4203 }
4204
4205 static void page_flip_completed(struct intel_crtc *intel_crtc)
4206 {
4207 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4208 struct intel_flip_work *work = intel_crtc->flip_work;
4209
4210 intel_crtc->flip_work = NULL;
4211
4212 if (work->event)
4213 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4214
4215 drm_crtc_vblank_put(&intel_crtc->base);
4216
4217 wake_up_all(&dev_priv->pending_flip_queue);
4218 trace_i915_flip_complete(intel_crtc->plane,
4219 work->pending_flip_obj);
4220
4221 queue_work(dev_priv->wq, &work->unpin_work);
4222 }
4223
4224 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4225 {
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = to_i915(dev);
4228 long ret;
4229
4230 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4231
4232 ret = wait_event_interruptible_timeout(
4233 dev_priv->pending_flip_queue,
4234 !intel_crtc_has_pending_flip(crtc),
4235 60*HZ);
4236
4237 if (ret < 0)
4238 return ret;
4239
4240 if (ret == 0) {
4241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4242 struct intel_flip_work *work;
4243
4244 spin_lock_irq(&dev->event_lock);
4245 work = intel_crtc->flip_work;
4246 if (work && !is_mmio_work(work)) {
4247 WARN_ONCE(1, "Removing stuck page flip\n");
4248 page_flip_completed(intel_crtc);
4249 }
4250 spin_unlock_irq(&dev->event_lock);
4251 }
4252
4253 return 0;
4254 }
4255
4256 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4257 {
4258 u32 temp;
4259
4260 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4261
4262 mutex_lock(&dev_priv->sb_lock);
4263
4264 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4265 temp |= SBI_SSCCTL_DISABLE;
4266 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4267
4268 mutex_unlock(&dev_priv->sb_lock);
4269 }
4270
4271 /* Program iCLKIP clock to the desired frequency */
4272 static void lpt_program_iclkip(struct intel_crtc *crtc)
4273 {
4274 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4275 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4276 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4277 u32 temp;
4278
4279 lpt_disable_iclkip(dev_priv);
4280
4281 /* The iCLK virtual clock root frequency is in MHz,
4282 * but the adjusted_mode->crtc_clock in in KHz. To get the
4283 * divisors, it is necessary to divide one by another, so we
4284 * convert the virtual clock precision to KHz here for higher
4285 * precision.
4286 */
4287 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4288 u32 iclk_virtual_root_freq = 172800 * 1000;
4289 u32 iclk_pi_range = 64;
4290 u32 desired_divisor;
4291
4292 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4293 clock << auxdiv);
4294 divsel = (desired_divisor / iclk_pi_range) - 2;
4295 phaseinc = desired_divisor % iclk_pi_range;
4296
4297 /*
4298 * Near 20MHz is a corner case which is
4299 * out of range for the 7-bit divisor
4300 */
4301 if (divsel <= 0x7f)
4302 break;
4303 }
4304
4305 /* This should not happen with any sane values */
4306 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4307 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4308 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4309 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4310
4311 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4312 clock,
4313 auxdiv,
4314 divsel,
4315 phasedir,
4316 phaseinc);
4317
4318 mutex_lock(&dev_priv->sb_lock);
4319
4320 /* Program SSCDIVINTPHASE6 */
4321 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4322 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4323 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4324 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4325 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4326 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4327 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4328 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4329
4330 /* Program SSCAUXDIV */
4331 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4332 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4333 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4334 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4335
4336 /* Enable modulator and associated divider */
4337 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4338 temp &= ~SBI_SSCCTL_DISABLE;
4339 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4340
4341 mutex_unlock(&dev_priv->sb_lock);
4342
4343 /* Wait for initialization time */
4344 udelay(24);
4345
4346 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4347 }
4348
4349 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4350 {
4351 u32 divsel, phaseinc, auxdiv;
4352 u32 iclk_virtual_root_freq = 172800 * 1000;
4353 u32 iclk_pi_range = 64;
4354 u32 desired_divisor;
4355 u32 temp;
4356
4357 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4358 return 0;
4359
4360 mutex_lock(&dev_priv->sb_lock);
4361
4362 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4363 if (temp & SBI_SSCCTL_DISABLE) {
4364 mutex_unlock(&dev_priv->sb_lock);
4365 return 0;
4366 }
4367
4368 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4369 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4370 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4371 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4372 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4373
4374 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4375 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4376 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4377
4378 mutex_unlock(&dev_priv->sb_lock);
4379
4380 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4381
4382 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4383 desired_divisor << auxdiv);
4384 }
4385
4386 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4387 enum pipe pch_transcoder)
4388 {
4389 struct drm_device *dev = crtc->base.dev;
4390 struct drm_i915_private *dev_priv = to_i915(dev);
4391 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4392
4393 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4394 I915_READ(HTOTAL(cpu_transcoder)));
4395 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4396 I915_READ(HBLANK(cpu_transcoder)));
4397 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4398 I915_READ(HSYNC(cpu_transcoder)));
4399
4400 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4401 I915_READ(VTOTAL(cpu_transcoder)));
4402 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4403 I915_READ(VBLANK(cpu_transcoder)));
4404 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4405 I915_READ(VSYNC(cpu_transcoder)));
4406 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4407 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4408 }
4409
4410 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4411 {
4412 struct drm_i915_private *dev_priv = to_i915(dev);
4413 uint32_t temp;
4414
4415 temp = I915_READ(SOUTH_CHICKEN1);
4416 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4417 return;
4418
4419 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4420 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4421
4422 temp &= ~FDI_BC_BIFURCATION_SELECT;
4423 if (enable)
4424 temp |= FDI_BC_BIFURCATION_SELECT;
4425
4426 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4427 I915_WRITE(SOUTH_CHICKEN1, temp);
4428 POSTING_READ(SOUTH_CHICKEN1);
4429 }
4430
4431 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4432 {
4433 struct drm_device *dev = intel_crtc->base.dev;
4434
4435 switch (intel_crtc->pipe) {
4436 case PIPE_A:
4437 break;
4438 case PIPE_B:
4439 if (intel_crtc->config->fdi_lanes > 2)
4440 cpt_set_fdi_bc_bifurcation(dev, false);
4441 else
4442 cpt_set_fdi_bc_bifurcation(dev, true);
4443
4444 break;
4445 case PIPE_C:
4446 cpt_set_fdi_bc_bifurcation(dev, true);
4447
4448 break;
4449 default:
4450 BUG();
4451 }
4452 }
4453
4454 /* Return which DP Port should be selected for Transcoder DP control */
4455 static enum port
4456 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4457 {
4458 struct drm_device *dev = crtc->base.dev;
4459 struct intel_encoder *encoder;
4460
4461 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4462 if (encoder->type == INTEL_OUTPUT_DP ||
4463 encoder->type == INTEL_OUTPUT_EDP)
4464 return enc_to_dig_port(&encoder->base)->port;
4465 }
4466
4467 return -1;
4468 }
4469
4470 /*
4471 * Enable PCH resources required for PCH ports:
4472 * - PCH PLLs
4473 * - FDI training & RX/TX
4474 * - update transcoder timings
4475 * - DP transcoding bits
4476 * - transcoder
4477 */
4478 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4479 {
4480 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4481 struct drm_device *dev = crtc->base.dev;
4482 struct drm_i915_private *dev_priv = to_i915(dev);
4483 int pipe = crtc->pipe;
4484 u32 temp;
4485
4486 assert_pch_transcoder_disabled(dev_priv, pipe);
4487
4488 if (IS_IVYBRIDGE(dev_priv))
4489 ivybridge_update_fdi_bc_bifurcation(crtc);
4490
4491 /* Write the TU size bits before fdi link training, so that error
4492 * detection works. */
4493 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4494 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4495
4496 /* For PCH output, training FDI link */
4497 dev_priv->display.fdi_link_train(crtc, crtc_state);
4498
4499 /* We need to program the right clock selection before writing the pixel
4500 * mutliplier into the DPLL. */
4501 if (HAS_PCH_CPT(dev_priv)) {
4502 u32 sel;
4503
4504 temp = I915_READ(PCH_DPLL_SEL);
4505 temp |= TRANS_DPLL_ENABLE(pipe);
4506 sel = TRANS_DPLLB_SEL(pipe);
4507 if (crtc_state->shared_dpll ==
4508 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4509 temp |= sel;
4510 else
4511 temp &= ~sel;
4512 I915_WRITE(PCH_DPLL_SEL, temp);
4513 }
4514
4515 /* XXX: pch pll's can be enabled any time before we enable the PCH
4516 * transcoder, and we actually should do this to not upset any PCH
4517 * transcoder that already use the clock when we share it.
4518 *
4519 * Note that enable_shared_dpll tries to do the right thing, but
4520 * get_shared_dpll unconditionally resets the pll - we need that to have
4521 * the right LVDS enable sequence. */
4522 intel_enable_shared_dpll(crtc);
4523
4524 /* set transcoder timing, panel must allow it */
4525 assert_panel_unlocked(dev_priv, pipe);
4526 ironlake_pch_transcoder_set_timings(crtc, pipe);
4527
4528 intel_fdi_normal_train(crtc);
4529
4530 /* For PCH DP, enable TRANS_DP_CTL */
4531 if (HAS_PCH_CPT(dev_priv) &&
4532 intel_crtc_has_dp_encoder(crtc_state)) {
4533 const struct drm_display_mode *adjusted_mode =
4534 &crtc_state->base.adjusted_mode;
4535 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4536 i915_reg_t reg = TRANS_DP_CTL(pipe);
4537 temp = I915_READ(reg);
4538 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4539 TRANS_DP_SYNC_MASK |
4540 TRANS_DP_BPC_MASK);
4541 temp |= TRANS_DP_OUTPUT_ENABLE;
4542 temp |= bpc << 9; /* same format but at 11:9 */
4543
4544 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4545 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4546 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4547 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4548
4549 switch (intel_trans_dp_port_sel(crtc)) {
4550 case PORT_B:
4551 temp |= TRANS_DP_PORT_SEL_B;
4552 break;
4553 case PORT_C:
4554 temp |= TRANS_DP_PORT_SEL_C;
4555 break;
4556 case PORT_D:
4557 temp |= TRANS_DP_PORT_SEL_D;
4558 break;
4559 default:
4560 BUG();
4561 }
4562
4563 I915_WRITE(reg, temp);
4564 }
4565
4566 ironlake_enable_pch_transcoder(dev_priv, pipe);
4567 }
4568
4569 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4570 {
4571 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4572 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4573 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4574
4575 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4576
4577 lpt_program_iclkip(crtc);
4578
4579 /* Set transcoder timing. */
4580 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4581
4582 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4583 }
4584
4585 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4586 {
4587 struct drm_i915_private *dev_priv = to_i915(dev);
4588 i915_reg_t dslreg = PIPEDSL(pipe);
4589 u32 temp;
4590
4591 temp = I915_READ(dslreg);
4592 udelay(500);
4593 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4594 if (wait_for(I915_READ(dslreg) != temp, 5))
4595 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4596 }
4597 }
4598
4599 static int
4600 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4601 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4602 int src_w, int src_h, int dst_w, int dst_h)
4603 {
4604 struct intel_crtc_scaler_state *scaler_state =
4605 &crtc_state->scaler_state;
4606 struct intel_crtc *intel_crtc =
4607 to_intel_crtc(crtc_state->base.crtc);
4608 int need_scaling;
4609
4610 need_scaling = drm_rotation_90_or_270(rotation) ?
4611 (src_h != dst_w || src_w != dst_h):
4612 (src_w != dst_w || src_h != dst_h);
4613
4614 /*
4615 * if plane is being disabled or scaler is no more required or force detach
4616 * - free scaler binded to this plane/crtc
4617 * - in order to do this, update crtc->scaler_usage
4618 *
4619 * Here scaler state in crtc_state is set free so that
4620 * scaler can be assigned to other user. Actual register
4621 * update to free the scaler is done in plane/panel-fit programming.
4622 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4623 */
4624 if (force_detach || !need_scaling) {
4625 if (*scaler_id >= 0) {
4626 scaler_state->scaler_users &= ~(1 << scaler_user);
4627 scaler_state->scalers[*scaler_id].in_use = 0;
4628
4629 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4630 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4631 intel_crtc->pipe, scaler_user, *scaler_id,
4632 scaler_state->scaler_users);
4633 *scaler_id = -1;
4634 }
4635 return 0;
4636 }
4637
4638 /* range checks */
4639 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4640 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4641
4642 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4643 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4644 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4645 "size is out of scaler range\n",
4646 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4647 return -EINVAL;
4648 }
4649
4650 /* mark this plane as a scaler user in crtc_state */
4651 scaler_state->scaler_users |= (1 << scaler_user);
4652 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4653 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4654 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4655 scaler_state->scaler_users);
4656
4657 return 0;
4658 }
4659
4660 /**
4661 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4662 *
4663 * @state: crtc's scaler state
4664 *
4665 * Return
4666 * 0 - scaler_usage updated successfully
4667 * error - requested scaling cannot be supported or other error condition
4668 */
4669 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4670 {
4671 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4672
4673 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4674 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4675 state->pipe_src_w, state->pipe_src_h,
4676 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4677 }
4678
4679 /**
4680 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4681 *
4682 * @state: crtc's scaler state
4683 * @plane_state: atomic plane state to update
4684 *
4685 * Return
4686 * 0 - scaler_usage updated successfully
4687 * error - requested scaling cannot be supported or other error condition
4688 */
4689 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4690 struct intel_plane_state *plane_state)
4691 {
4692
4693 struct intel_plane *intel_plane =
4694 to_intel_plane(plane_state->base.plane);
4695 struct drm_framebuffer *fb = plane_state->base.fb;
4696 int ret;
4697
4698 bool force_detach = !fb || !plane_state->base.visible;
4699
4700 ret = skl_update_scaler(crtc_state, force_detach,
4701 drm_plane_index(&intel_plane->base),
4702 &plane_state->scaler_id,
4703 plane_state->base.rotation,
4704 drm_rect_width(&plane_state->base.src) >> 16,
4705 drm_rect_height(&plane_state->base.src) >> 16,
4706 drm_rect_width(&plane_state->base.dst),
4707 drm_rect_height(&plane_state->base.dst));
4708
4709 if (ret || plane_state->scaler_id < 0)
4710 return ret;
4711
4712 /* check colorkey */
4713 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4714 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4715 intel_plane->base.base.id,
4716 intel_plane->base.name);
4717 return -EINVAL;
4718 }
4719
4720 /* Check src format */
4721 switch (fb->format->format) {
4722 case DRM_FORMAT_RGB565:
4723 case DRM_FORMAT_XBGR8888:
4724 case DRM_FORMAT_XRGB8888:
4725 case DRM_FORMAT_ABGR8888:
4726 case DRM_FORMAT_ARGB8888:
4727 case DRM_FORMAT_XRGB2101010:
4728 case DRM_FORMAT_XBGR2101010:
4729 case DRM_FORMAT_YUYV:
4730 case DRM_FORMAT_YVYU:
4731 case DRM_FORMAT_UYVY:
4732 case DRM_FORMAT_VYUY:
4733 break;
4734 default:
4735 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4736 intel_plane->base.base.id, intel_plane->base.name,
4737 fb->base.id, fb->format->format);
4738 return -EINVAL;
4739 }
4740
4741 return 0;
4742 }
4743
4744 static void skylake_scaler_disable(struct intel_crtc *crtc)
4745 {
4746 int i;
4747
4748 for (i = 0; i < crtc->num_scalers; i++)
4749 skl_detach_scaler(crtc, i);
4750 }
4751
4752 static void skylake_pfit_enable(struct intel_crtc *crtc)
4753 {
4754 struct drm_device *dev = crtc->base.dev;
4755 struct drm_i915_private *dev_priv = to_i915(dev);
4756 int pipe = crtc->pipe;
4757 struct intel_crtc_scaler_state *scaler_state =
4758 &crtc->config->scaler_state;
4759
4760 if (crtc->config->pch_pfit.enabled) {
4761 int id;
4762
4763 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4764 return;
4765
4766 id = scaler_state->scaler_id;
4767 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4768 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4769 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4770 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4771 }
4772 }
4773
4774 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4775 {
4776 struct drm_device *dev = crtc->base.dev;
4777 struct drm_i915_private *dev_priv = to_i915(dev);
4778 int pipe = crtc->pipe;
4779
4780 if (crtc->config->pch_pfit.enabled) {
4781 /* Force use of hard-coded filter coefficients
4782 * as some pre-programmed values are broken,
4783 * e.g. x201.
4784 */
4785 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4786 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4787 PF_PIPE_SEL_IVB(pipe));
4788 else
4789 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4790 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4791 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4792 }
4793 }
4794
4795 void hsw_enable_ips(struct intel_crtc *crtc)
4796 {
4797 struct drm_device *dev = crtc->base.dev;
4798 struct drm_i915_private *dev_priv = to_i915(dev);
4799
4800 if (!crtc->config->ips_enabled)
4801 return;
4802
4803 /*
4804 * We can only enable IPS after we enable a plane and wait for a vblank
4805 * This function is called from post_plane_update, which is run after
4806 * a vblank wait.
4807 */
4808
4809 assert_plane_enabled(dev_priv, crtc->plane);
4810 if (IS_BROADWELL(dev_priv)) {
4811 mutex_lock(&dev_priv->rps.hw_lock);
4812 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4813 mutex_unlock(&dev_priv->rps.hw_lock);
4814 /* Quoting Art Runyan: "its not safe to expect any particular
4815 * value in IPS_CTL bit 31 after enabling IPS through the
4816 * mailbox." Moreover, the mailbox may return a bogus state,
4817 * so we need to just enable it and continue on.
4818 */
4819 } else {
4820 I915_WRITE(IPS_CTL, IPS_ENABLE);
4821 /* The bit only becomes 1 in the next vblank, so this wait here
4822 * is essentially intel_wait_for_vblank. If we don't have this
4823 * and don't wait for vblanks until the end of crtc_enable, then
4824 * the HW state readout code will complain that the expected
4825 * IPS_CTL value is not the one we read. */
4826 if (intel_wait_for_register(dev_priv,
4827 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4828 50))
4829 DRM_ERROR("Timed out waiting for IPS enable\n");
4830 }
4831 }
4832
4833 void hsw_disable_ips(struct intel_crtc *crtc)
4834 {
4835 struct drm_device *dev = crtc->base.dev;
4836 struct drm_i915_private *dev_priv = to_i915(dev);
4837
4838 if (!crtc->config->ips_enabled)
4839 return;
4840
4841 assert_plane_enabled(dev_priv, crtc->plane);
4842 if (IS_BROADWELL(dev_priv)) {
4843 mutex_lock(&dev_priv->rps.hw_lock);
4844 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4845 mutex_unlock(&dev_priv->rps.hw_lock);
4846 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4847 if (intel_wait_for_register(dev_priv,
4848 IPS_CTL, IPS_ENABLE, 0,
4849 42))
4850 DRM_ERROR("Timed out waiting for IPS disable\n");
4851 } else {
4852 I915_WRITE(IPS_CTL, 0);
4853 POSTING_READ(IPS_CTL);
4854 }
4855
4856 /* We need to wait for a vblank before we can disable the plane. */
4857 intel_wait_for_vblank(dev_priv, crtc->pipe);
4858 }
4859
4860 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4861 {
4862 if (intel_crtc->overlay) {
4863 struct drm_device *dev = intel_crtc->base.dev;
4864 struct drm_i915_private *dev_priv = to_i915(dev);
4865
4866 mutex_lock(&dev->struct_mutex);
4867 dev_priv->mm.interruptible = false;
4868 (void) intel_overlay_switch_off(intel_crtc->overlay);
4869 dev_priv->mm.interruptible = true;
4870 mutex_unlock(&dev->struct_mutex);
4871 }
4872
4873 /* Let userspace switch the overlay on again. In most cases userspace
4874 * has to recompute where to put it anyway.
4875 */
4876 }
4877
4878 /**
4879 * intel_post_enable_primary - Perform operations after enabling primary plane
4880 * @crtc: the CRTC whose primary plane was just enabled
4881 *
4882 * Performs potentially sleeping operations that must be done after the primary
4883 * plane is enabled, such as updating FBC and IPS. Note that this may be
4884 * called due to an explicit primary plane update, or due to an implicit
4885 * re-enable that is caused when a sprite plane is updated to no longer
4886 * completely hide the primary plane.
4887 */
4888 static void
4889 intel_post_enable_primary(struct drm_crtc *crtc)
4890 {
4891 struct drm_device *dev = crtc->dev;
4892 struct drm_i915_private *dev_priv = to_i915(dev);
4893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4894 int pipe = intel_crtc->pipe;
4895
4896 /*
4897 * FIXME IPS should be fine as long as one plane is
4898 * enabled, but in practice it seems to have problems
4899 * when going from primary only to sprite only and vice
4900 * versa.
4901 */
4902 hsw_enable_ips(intel_crtc);
4903
4904 /*
4905 * Gen2 reports pipe underruns whenever all planes are disabled.
4906 * So don't enable underrun reporting before at least some planes
4907 * are enabled.
4908 * FIXME: Need to fix the logic to work when we turn off all planes
4909 * but leave the pipe running.
4910 */
4911 if (IS_GEN2(dev_priv))
4912 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4913
4914 /* Underruns don't always raise interrupts, so check manually. */
4915 intel_check_cpu_fifo_underruns(dev_priv);
4916 intel_check_pch_fifo_underruns(dev_priv);
4917 }
4918
4919 /* FIXME move all this to pre_plane_update() with proper state tracking */
4920 static void
4921 intel_pre_disable_primary(struct drm_crtc *crtc)
4922 {
4923 struct drm_device *dev = crtc->dev;
4924 struct drm_i915_private *dev_priv = to_i915(dev);
4925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4926 int pipe = intel_crtc->pipe;
4927
4928 /*
4929 * Gen2 reports pipe underruns whenever all planes are disabled.
4930 * So diasble underrun reporting before all the planes get disabled.
4931 * FIXME: Need to fix the logic to work when we turn off all planes
4932 * but leave the pipe running.
4933 */
4934 if (IS_GEN2(dev_priv))
4935 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4936
4937 /*
4938 * FIXME IPS should be fine as long as one plane is
4939 * enabled, but in practice it seems to have problems
4940 * when going from primary only to sprite only and vice
4941 * versa.
4942 */
4943 hsw_disable_ips(intel_crtc);
4944 }
4945
4946 /* FIXME get rid of this and use pre_plane_update */
4947 static void
4948 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4949 {
4950 struct drm_device *dev = crtc->dev;
4951 struct drm_i915_private *dev_priv = to_i915(dev);
4952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4953 int pipe = intel_crtc->pipe;
4954
4955 intel_pre_disable_primary(crtc);
4956
4957 /*
4958 * Vblank time updates from the shadow to live plane control register
4959 * are blocked if the memory self-refresh mode is active at that
4960 * moment. So to make sure the plane gets truly disabled, disable
4961 * first the self-refresh mode. The self-refresh enable bit in turn
4962 * will be checked/applied by the HW only at the next frame start
4963 * event which is after the vblank start event, so we need to have a
4964 * wait-for-vblank between disabling the plane and the pipe.
4965 */
4966 if (HAS_GMCH_DISPLAY(dev_priv) &&
4967 intel_set_memory_cxsr(dev_priv, false))
4968 intel_wait_for_vblank(dev_priv, pipe);
4969 }
4970
4971 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4972 {
4973 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4974 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4975 struct intel_crtc_state *pipe_config =
4976 to_intel_crtc_state(crtc->base.state);
4977 struct drm_plane *primary = crtc->base.primary;
4978 struct drm_plane_state *old_pri_state =
4979 drm_atomic_get_existing_plane_state(old_state, primary);
4980
4981 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4982
4983 if (pipe_config->update_wm_post && pipe_config->base.active)
4984 intel_update_watermarks(crtc);
4985
4986 if (old_pri_state) {
4987 struct intel_plane_state *primary_state =
4988 to_intel_plane_state(primary->state);
4989 struct intel_plane_state *old_primary_state =
4990 to_intel_plane_state(old_pri_state);
4991
4992 intel_fbc_post_update(crtc);
4993
4994 if (primary_state->base.visible &&
4995 (needs_modeset(&pipe_config->base) ||
4996 !old_primary_state->base.visible))
4997 intel_post_enable_primary(&crtc->base);
4998 }
4999 }
5000
5001 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5002 struct intel_crtc_state *pipe_config)
5003 {
5004 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5005 struct drm_device *dev = crtc->base.dev;
5006 struct drm_i915_private *dev_priv = to_i915(dev);
5007 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5008 struct drm_plane *primary = crtc->base.primary;
5009 struct drm_plane_state *old_pri_state =
5010 drm_atomic_get_existing_plane_state(old_state, primary);
5011 bool modeset = needs_modeset(&pipe_config->base);
5012 struct intel_atomic_state *old_intel_state =
5013 to_intel_atomic_state(old_state);
5014
5015 if (old_pri_state) {
5016 struct intel_plane_state *primary_state =
5017 to_intel_plane_state(primary->state);
5018 struct intel_plane_state *old_primary_state =
5019 to_intel_plane_state(old_pri_state);
5020
5021 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5022
5023 if (old_primary_state->base.visible &&
5024 (modeset || !primary_state->base.visible))
5025 intel_pre_disable_primary(&crtc->base);
5026 }
5027
5028 /*
5029 * Vblank time updates from the shadow to live plane control register
5030 * are blocked if the memory self-refresh mode is active at that
5031 * moment. So to make sure the plane gets truly disabled, disable
5032 * first the self-refresh mode. The self-refresh enable bit in turn
5033 * will be checked/applied by the HW only at the next frame start
5034 * event which is after the vblank start event, so we need to have a
5035 * wait-for-vblank between disabling the plane and the pipe.
5036 */
5037 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5038 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5039 intel_wait_for_vblank(dev_priv, crtc->pipe);
5040
5041 /*
5042 * IVB workaround: must disable low power watermarks for at least
5043 * one frame before enabling scaling. LP watermarks can be re-enabled
5044 * when scaling is disabled.
5045 *
5046 * WaCxSRDisabledForSpriteScaling:ivb
5047 */
5048 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5049 intel_wait_for_vblank(dev_priv, crtc->pipe);
5050
5051 /*
5052 * If we're doing a modeset, we're done. No need to do any pre-vblank
5053 * watermark programming here.
5054 */
5055 if (needs_modeset(&pipe_config->base))
5056 return;
5057
5058 /*
5059 * For platforms that support atomic watermarks, program the
5060 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5061 * will be the intermediate values that are safe for both pre- and
5062 * post- vblank; when vblank happens, the 'active' values will be set
5063 * to the final 'target' values and we'll do this again to get the
5064 * optimal watermarks. For gen9+ platforms, the values we program here
5065 * will be the final target values which will get automatically latched
5066 * at vblank time; no further programming will be necessary.
5067 *
5068 * If a platform hasn't been transitioned to atomic watermarks yet,
5069 * we'll continue to update watermarks the old way, if flags tell
5070 * us to.
5071 */
5072 if (dev_priv->display.initial_watermarks != NULL)
5073 dev_priv->display.initial_watermarks(old_intel_state,
5074 pipe_config);
5075 else if (pipe_config->update_wm_pre)
5076 intel_update_watermarks(crtc);
5077 }
5078
5079 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5080 {
5081 struct drm_device *dev = crtc->dev;
5082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083 struct drm_plane *p;
5084 int pipe = intel_crtc->pipe;
5085
5086 intel_crtc_dpms_overlay_disable(intel_crtc);
5087
5088 drm_for_each_plane_mask(p, dev, plane_mask)
5089 to_intel_plane(p)->disable_plane(p, crtc);
5090
5091 /*
5092 * FIXME: Once we grow proper nuclear flip support out of this we need
5093 * to compute the mask of flip planes precisely. For the time being
5094 * consider this a flip to a NULL plane.
5095 */
5096 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5097 }
5098
5099 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5100 struct intel_crtc_state *crtc_state,
5101 struct drm_atomic_state *old_state)
5102 {
5103 struct drm_connector_state *conn_state;
5104 struct drm_connector *conn;
5105 int i;
5106
5107 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5108 struct intel_encoder *encoder =
5109 to_intel_encoder(conn_state->best_encoder);
5110
5111 if (conn_state->crtc != crtc)
5112 continue;
5113
5114 if (encoder->pre_pll_enable)
5115 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5116 }
5117 }
5118
5119 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5120 struct intel_crtc_state *crtc_state,
5121 struct drm_atomic_state *old_state)
5122 {
5123 struct drm_connector_state *conn_state;
5124 struct drm_connector *conn;
5125 int i;
5126
5127 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5128 struct intel_encoder *encoder =
5129 to_intel_encoder(conn_state->best_encoder);
5130
5131 if (conn_state->crtc != crtc)
5132 continue;
5133
5134 if (encoder->pre_enable)
5135 encoder->pre_enable(encoder, crtc_state, conn_state);
5136 }
5137 }
5138
5139 static void intel_encoders_enable(struct drm_crtc *crtc,
5140 struct intel_crtc_state *crtc_state,
5141 struct drm_atomic_state *old_state)
5142 {
5143 struct drm_connector_state *conn_state;
5144 struct drm_connector *conn;
5145 int i;
5146
5147 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5148 struct intel_encoder *encoder =
5149 to_intel_encoder(conn_state->best_encoder);
5150
5151 if (conn_state->crtc != crtc)
5152 continue;
5153
5154 encoder->enable(encoder, crtc_state, conn_state);
5155 intel_opregion_notify_encoder(encoder, true);
5156 }
5157 }
5158
5159 static void intel_encoders_disable(struct drm_crtc *crtc,
5160 struct intel_crtc_state *old_crtc_state,
5161 struct drm_atomic_state *old_state)
5162 {
5163 struct drm_connector_state *old_conn_state;
5164 struct drm_connector *conn;
5165 int i;
5166
5167 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5168 struct intel_encoder *encoder =
5169 to_intel_encoder(old_conn_state->best_encoder);
5170
5171 if (old_conn_state->crtc != crtc)
5172 continue;
5173
5174 intel_opregion_notify_encoder(encoder, false);
5175 encoder->disable(encoder, old_crtc_state, old_conn_state);
5176 }
5177 }
5178
5179 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5180 struct intel_crtc_state *old_crtc_state,
5181 struct drm_atomic_state *old_state)
5182 {
5183 struct drm_connector_state *old_conn_state;
5184 struct drm_connector *conn;
5185 int i;
5186
5187 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5188 struct intel_encoder *encoder =
5189 to_intel_encoder(old_conn_state->best_encoder);
5190
5191 if (old_conn_state->crtc != crtc)
5192 continue;
5193
5194 if (encoder->post_disable)
5195 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5196 }
5197 }
5198
5199 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5200 struct intel_crtc_state *old_crtc_state,
5201 struct drm_atomic_state *old_state)
5202 {
5203 struct drm_connector_state *old_conn_state;
5204 struct drm_connector *conn;
5205 int i;
5206
5207 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5208 struct intel_encoder *encoder =
5209 to_intel_encoder(old_conn_state->best_encoder);
5210
5211 if (old_conn_state->crtc != crtc)
5212 continue;
5213
5214 if (encoder->post_pll_disable)
5215 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5216 }
5217 }
5218
5219 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5220 struct drm_atomic_state *old_state)
5221 {
5222 struct drm_crtc *crtc = pipe_config->base.crtc;
5223 struct drm_device *dev = crtc->dev;
5224 struct drm_i915_private *dev_priv = to_i915(dev);
5225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5226 int pipe = intel_crtc->pipe;
5227 struct intel_atomic_state *old_intel_state =
5228 to_intel_atomic_state(old_state);
5229
5230 if (WARN_ON(intel_crtc->active))
5231 return;
5232
5233 /*
5234 * Sometimes spurious CPU pipe underruns happen during FDI
5235 * training, at least with VGA+HDMI cloning. Suppress them.
5236 *
5237 * On ILK we get an occasional spurious CPU pipe underruns
5238 * between eDP port A enable and vdd enable. Also PCH port
5239 * enable seems to result in the occasional CPU pipe underrun.
5240 *
5241 * Spurious PCH underruns also occur during PCH enabling.
5242 */
5243 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5244 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5245 if (intel_crtc->config->has_pch_encoder)
5246 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5247
5248 if (intel_crtc->config->has_pch_encoder)
5249 intel_prepare_shared_dpll(intel_crtc);
5250
5251 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5252 intel_dp_set_m_n(intel_crtc, M1_N1);
5253
5254 intel_set_pipe_timings(intel_crtc);
5255 intel_set_pipe_src_size(intel_crtc);
5256
5257 if (intel_crtc->config->has_pch_encoder) {
5258 intel_cpu_transcoder_set_m_n(intel_crtc,
5259 &intel_crtc->config->fdi_m_n, NULL);
5260 }
5261
5262 ironlake_set_pipeconf(crtc);
5263
5264 intel_crtc->active = true;
5265
5266 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5267
5268 if (intel_crtc->config->has_pch_encoder) {
5269 /* Note: FDI PLL enabling _must_ be done before we enable the
5270 * cpu pipes, hence this is separate from all the other fdi/pch
5271 * enabling. */
5272 ironlake_fdi_pll_enable(intel_crtc);
5273 } else {
5274 assert_fdi_tx_disabled(dev_priv, pipe);
5275 assert_fdi_rx_disabled(dev_priv, pipe);
5276 }
5277
5278 ironlake_pfit_enable(intel_crtc);
5279
5280 /*
5281 * On ILK+ LUT must be loaded before the pipe is running but with
5282 * clocks enabled
5283 */
5284 intel_color_load_luts(&pipe_config->base);
5285
5286 if (dev_priv->display.initial_watermarks != NULL)
5287 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5288 intel_enable_pipe(intel_crtc);
5289
5290 if (intel_crtc->config->has_pch_encoder)
5291 ironlake_pch_enable(pipe_config);
5292
5293 assert_vblank_disabled(crtc);
5294 drm_crtc_vblank_on(crtc);
5295
5296 intel_encoders_enable(crtc, pipe_config, old_state);
5297
5298 if (HAS_PCH_CPT(dev_priv))
5299 cpt_verify_modeset(dev, intel_crtc->pipe);
5300
5301 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5302 if (intel_crtc->config->has_pch_encoder)
5303 intel_wait_for_vblank(dev_priv, pipe);
5304 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5305 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5306 }
5307
5308 /* IPS only exists on ULT machines and is tied to pipe A. */
5309 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5310 {
5311 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5312 }
5313
5314 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5315 struct drm_atomic_state *old_state)
5316 {
5317 struct drm_crtc *crtc = pipe_config->base.crtc;
5318 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5320 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5321 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5322 struct intel_atomic_state *old_intel_state =
5323 to_intel_atomic_state(old_state);
5324
5325 if (WARN_ON(intel_crtc->active))
5326 return;
5327
5328 if (intel_crtc->config->has_pch_encoder)
5329 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5330 false);
5331
5332 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5333
5334 if (intel_crtc->config->shared_dpll)
5335 intel_enable_shared_dpll(intel_crtc);
5336
5337 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5338 intel_dp_set_m_n(intel_crtc, M1_N1);
5339
5340 if (!transcoder_is_dsi(cpu_transcoder))
5341 intel_set_pipe_timings(intel_crtc);
5342
5343 intel_set_pipe_src_size(intel_crtc);
5344
5345 if (cpu_transcoder != TRANSCODER_EDP &&
5346 !transcoder_is_dsi(cpu_transcoder)) {
5347 I915_WRITE(PIPE_MULT(cpu_transcoder),
5348 intel_crtc->config->pixel_multiplier - 1);
5349 }
5350
5351 if (intel_crtc->config->has_pch_encoder) {
5352 intel_cpu_transcoder_set_m_n(intel_crtc,
5353 &intel_crtc->config->fdi_m_n, NULL);
5354 }
5355
5356 if (!transcoder_is_dsi(cpu_transcoder))
5357 haswell_set_pipeconf(crtc);
5358
5359 haswell_set_pipemisc(crtc);
5360
5361 intel_color_set_csc(&pipe_config->base);
5362
5363 intel_crtc->active = true;
5364
5365 if (intel_crtc->config->has_pch_encoder)
5366 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5367 else
5368 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5369
5370 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5371
5372 if (intel_crtc->config->has_pch_encoder)
5373 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5374
5375 if (!transcoder_is_dsi(cpu_transcoder))
5376 intel_ddi_enable_pipe_clock(pipe_config);
5377
5378 if (INTEL_GEN(dev_priv) >= 9)
5379 skylake_pfit_enable(intel_crtc);
5380 else
5381 ironlake_pfit_enable(intel_crtc);
5382
5383 /*
5384 * On ILK+ LUT must be loaded before the pipe is running but with
5385 * clocks enabled
5386 */
5387 intel_color_load_luts(&pipe_config->base);
5388
5389 intel_ddi_set_pipe_settings(pipe_config);
5390 if (!transcoder_is_dsi(cpu_transcoder))
5391 intel_ddi_enable_transcoder_func(pipe_config);
5392
5393 if (dev_priv->display.initial_watermarks != NULL)
5394 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5395
5396 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5397 if (!transcoder_is_dsi(cpu_transcoder))
5398 intel_enable_pipe(intel_crtc);
5399
5400 if (intel_crtc->config->has_pch_encoder)
5401 lpt_pch_enable(pipe_config);
5402
5403 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5404 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5405
5406 assert_vblank_disabled(crtc);
5407 drm_crtc_vblank_on(crtc);
5408
5409 intel_encoders_enable(crtc, pipe_config, old_state);
5410
5411 if (intel_crtc->config->has_pch_encoder) {
5412 intel_wait_for_vblank(dev_priv, pipe);
5413 intel_wait_for_vblank(dev_priv, pipe);
5414 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5415 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5416 true);
5417 }
5418
5419 /* If we change the relative order between pipe/planes enabling, we need
5420 * to change the workaround. */
5421 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5422 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5423 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5424 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5425 }
5426 }
5427
5428 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5429 {
5430 struct drm_device *dev = crtc->base.dev;
5431 struct drm_i915_private *dev_priv = to_i915(dev);
5432 int pipe = crtc->pipe;
5433
5434 /* To avoid upsetting the power well on haswell only disable the pfit if
5435 * it's in use. The hw state code will make sure we get this right. */
5436 if (force || crtc->config->pch_pfit.enabled) {
5437 I915_WRITE(PF_CTL(pipe), 0);
5438 I915_WRITE(PF_WIN_POS(pipe), 0);
5439 I915_WRITE(PF_WIN_SZ(pipe), 0);
5440 }
5441 }
5442
5443 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5444 struct drm_atomic_state *old_state)
5445 {
5446 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5447 struct drm_device *dev = crtc->dev;
5448 struct drm_i915_private *dev_priv = to_i915(dev);
5449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5450 int pipe = intel_crtc->pipe;
5451
5452 /*
5453 * Sometimes spurious CPU pipe underruns happen when the
5454 * pipe is already disabled, but FDI RX/TX is still enabled.
5455 * Happens at least with VGA+HDMI cloning. Suppress them.
5456 */
5457 if (intel_crtc->config->has_pch_encoder) {
5458 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5459 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5460 }
5461
5462 intel_encoders_disable(crtc, old_crtc_state, old_state);
5463
5464 drm_crtc_vblank_off(crtc);
5465 assert_vblank_disabled(crtc);
5466
5467 intel_disable_pipe(intel_crtc);
5468
5469 ironlake_pfit_disable(intel_crtc, false);
5470
5471 if (intel_crtc->config->has_pch_encoder)
5472 ironlake_fdi_disable(crtc);
5473
5474 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5475
5476 if (intel_crtc->config->has_pch_encoder) {
5477 ironlake_disable_pch_transcoder(dev_priv, pipe);
5478
5479 if (HAS_PCH_CPT(dev_priv)) {
5480 i915_reg_t reg;
5481 u32 temp;
5482
5483 /* disable TRANS_DP_CTL */
5484 reg = TRANS_DP_CTL(pipe);
5485 temp = I915_READ(reg);
5486 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5487 TRANS_DP_PORT_SEL_MASK);
5488 temp |= TRANS_DP_PORT_SEL_NONE;
5489 I915_WRITE(reg, temp);
5490
5491 /* disable DPLL_SEL */
5492 temp = I915_READ(PCH_DPLL_SEL);
5493 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5494 I915_WRITE(PCH_DPLL_SEL, temp);
5495 }
5496
5497 ironlake_fdi_pll_disable(intel_crtc);
5498 }
5499
5500 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5501 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5502 }
5503
5504 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5505 struct drm_atomic_state *old_state)
5506 {
5507 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5508 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5510 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5511
5512 if (intel_crtc->config->has_pch_encoder)
5513 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5514 false);
5515
5516 intel_encoders_disable(crtc, old_crtc_state, old_state);
5517
5518 drm_crtc_vblank_off(crtc);
5519 assert_vblank_disabled(crtc);
5520
5521 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5522 if (!transcoder_is_dsi(cpu_transcoder))
5523 intel_disable_pipe(intel_crtc);
5524
5525 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5526 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5527
5528 if (!transcoder_is_dsi(cpu_transcoder))
5529 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5530
5531 if (INTEL_GEN(dev_priv) >= 9)
5532 skylake_scaler_disable(intel_crtc);
5533 else
5534 ironlake_pfit_disable(intel_crtc, false);
5535
5536 if (!transcoder_is_dsi(cpu_transcoder))
5537 intel_ddi_disable_pipe_clock(intel_crtc->config);
5538
5539 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5540
5541 if (old_crtc_state->has_pch_encoder)
5542 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5543 true);
5544 }
5545
5546 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5547 {
5548 struct drm_device *dev = crtc->base.dev;
5549 struct drm_i915_private *dev_priv = to_i915(dev);
5550 struct intel_crtc_state *pipe_config = crtc->config;
5551
5552 if (!pipe_config->gmch_pfit.control)
5553 return;
5554
5555 /*
5556 * The panel fitter should only be adjusted whilst the pipe is disabled,
5557 * according to register description and PRM.
5558 */
5559 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5560 assert_pipe_disabled(dev_priv, crtc->pipe);
5561
5562 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5563 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5564
5565 /* Border color in case we don't scale up to the full screen. Black by
5566 * default, change to something else for debugging. */
5567 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5568 }
5569
5570 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5571 {
5572 switch (port) {
5573 case PORT_A:
5574 return POWER_DOMAIN_PORT_DDI_A_LANES;
5575 case PORT_B:
5576 return POWER_DOMAIN_PORT_DDI_B_LANES;
5577 case PORT_C:
5578 return POWER_DOMAIN_PORT_DDI_C_LANES;
5579 case PORT_D:
5580 return POWER_DOMAIN_PORT_DDI_D_LANES;
5581 case PORT_E:
5582 return POWER_DOMAIN_PORT_DDI_E_LANES;
5583 default:
5584 MISSING_CASE(port);
5585 return POWER_DOMAIN_PORT_OTHER;
5586 }
5587 }
5588
5589 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5590 struct intel_crtc_state *crtc_state)
5591 {
5592 struct drm_device *dev = crtc->dev;
5593 struct drm_i915_private *dev_priv = to_i915(dev);
5594 struct drm_encoder *encoder;
5595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5596 enum pipe pipe = intel_crtc->pipe;
5597 u64 mask;
5598 enum transcoder transcoder = crtc_state->cpu_transcoder;
5599
5600 if (!crtc_state->base.active)
5601 return 0;
5602
5603 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5604 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5605 if (crtc_state->pch_pfit.enabled ||
5606 crtc_state->pch_pfit.force_thru)
5607 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5608
5609 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5610 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5611
5612 mask |= BIT_ULL(intel_encoder->power_domain);
5613 }
5614
5615 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5616 mask |= BIT(POWER_DOMAIN_AUDIO);
5617
5618 if (crtc_state->shared_dpll)
5619 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5620
5621 return mask;
5622 }
5623
5624 static u64
5625 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5626 struct intel_crtc_state *crtc_state)
5627 {
5628 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5630 enum intel_display_power_domain domain;
5631 u64 domains, new_domains, old_domains;
5632
5633 old_domains = intel_crtc->enabled_power_domains;
5634 intel_crtc->enabled_power_domains = new_domains =
5635 get_crtc_power_domains(crtc, crtc_state);
5636
5637 domains = new_domains & ~old_domains;
5638
5639 for_each_power_domain(domain, domains)
5640 intel_display_power_get(dev_priv, domain);
5641
5642 return old_domains & ~new_domains;
5643 }
5644
5645 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5646 u64 domains)
5647 {
5648 enum intel_display_power_domain domain;
5649
5650 for_each_power_domain(domain, domains)
5651 intel_display_power_put(dev_priv, domain);
5652 }
5653
5654 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5655 struct drm_atomic_state *old_state)
5656 {
5657 struct intel_atomic_state *old_intel_state =
5658 to_intel_atomic_state(old_state);
5659 struct drm_crtc *crtc = pipe_config->base.crtc;
5660 struct drm_device *dev = crtc->dev;
5661 struct drm_i915_private *dev_priv = to_i915(dev);
5662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5663 int pipe = intel_crtc->pipe;
5664
5665 if (WARN_ON(intel_crtc->active))
5666 return;
5667
5668 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5669 intel_dp_set_m_n(intel_crtc, M1_N1);
5670
5671 intel_set_pipe_timings(intel_crtc);
5672 intel_set_pipe_src_size(intel_crtc);
5673
5674 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5675 struct drm_i915_private *dev_priv = to_i915(dev);
5676
5677 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5678 I915_WRITE(CHV_CANVAS(pipe), 0);
5679 }
5680
5681 i9xx_set_pipeconf(intel_crtc);
5682
5683 intel_crtc->active = true;
5684
5685 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5686
5687 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5688
5689 if (IS_CHERRYVIEW(dev_priv)) {
5690 chv_prepare_pll(intel_crtc, intel_crtc->config);
5691 chv_enable_pll(intel_crtc, intel_crtc->config);
5692 } else {
5693 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5694 vlv_enable_pll(intel_crtc, intel_crtc->config);
5695 }
5696
5697 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5698
5699 i9xx_pfit_enable(intel_crtc);
5700
5701 intel_color_load_luts(&pipe_config->base);
5702
5703 dev_priv->display.initial_watermarks(old_intel_state,
5704 pipe_config);
5705 intel_enable_pipe(intel_crtc);
5706
5707 assert_vblank_disabled(crtc);
5708 drm_crtc_vblank_on(crtc);
5709
5710 intel_encoders_enable(crtc, pipe_config, old_state);
5711 }
5712
5713 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5714 {
5715 struct drm_device *dev = crtc->base.dev;
5716 struct drm_i915_private *dev_priv = to_i915(dev);
5717
5718 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5719 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5720 }
5721
5722 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5723 struct drm_atomic_state *old_state)
5724 {
5725 struct drm_crtc *crtc = pipe_config->base.crtc;
5726 struct drm_device *dev = crtc->dev;
5727 struct drm_i915_private *dev_priv = to_i915(dev);
5728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5729 enum pipe pipe = intel_crtc->pipe;
5730
5731 if (WARN_ON(intel_crtc->active))
5732 return;
5733
5734 i9xx_set_pll_dividers(intel_crtc);
5735
5736 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5737 intel_dp_set_m_n(intel_crtc, M1_N1);
5738
5739 intel_set_pipe_timings(intel_crtc);
5740 intel_set_pipe_src_size(intel_crtc);
5741
5742 i9xx_set_pipeconf(intel_crtc);
5743
5744 intel_crtc->active = true;
5745
5746 if (!IS_GEN2(dev_priv))
5747 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5748
5749 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5750
5751 i9xx_enable_pll(intel_crtc);
5752
5753 i9xx_pfit_enable(intel_crtc);
5754
5755 intel_color_load_luts(&pipe_config->base);
5756
5757 intel_update_watermarks(intel_crtc);
5758 intel_enable_pipe(intel_crtc);
5759
5760 assert_vblank_disabled(crtc);
5761 drm_crtc_vblank_on(crtc);
5762
5763 intel_encoders_enable(crtc, pipe_config, old_state);
5764 }
5765
5766 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5767 {
5768 struct drm_device *dev = crtc->base.dev;
5769 struct drm_i915_private *dev_priv = to_i915(dev);
5770
5771 if (!crtc->config->gmch_pfit.control)
5772 return;
5773
5774 assert_pipe_disabled(dev_priv, crtc->pipe);
5775
5776 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5777 I915_READ(PFIT_CONTROL));
5778 I915_WRITE(PFIT_CONTROL, 0);
5779 }
5780
5781 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5782 struct drm_atomic_state *old_state)
5783 {
5784 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5785 struct drm_device *dev = crtc->dev;
5786 struct drm_i915_private *dev_priv = to_i915(dev);
5787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5788 int pipe = intel_crtc->pipe;
5789
5790 /*
5791 * On gen2 planes are double buffered but the pipe isn't, so we must
5792 * wait for planes to fully turn off before disabling the pipe.
5793 */
5794 if (IS_GEN2(dev_priv))
5795 intel_wait_for_vblank(dev_priv, pipe);
5796
5797 intel_encoders_disable(crtc, old_crtc_state, old_state);
5798
5799 drm_crtc_vblank_off(crtc);
5800 assert_vblank_disabled(crtc);
5801
5802 intel_disable_pipe(intel_crtc);
5803
5804 i9xx_pfit_disable(intel_crtc);
5805
5806 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5807
5808 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5809 if (IS_CHERRYVIEW(dev_priv))
5810 chv_disable_pll(dev_priv, pipe);
5811 else if (IS_VALLEYVIEW(dev_priv))
5812 vlv_disable_pll(dev_priv, pipe);
5813 else
5814 i9xx_disable_pll(intel_crtc);
5815 }
5816
5817 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5818
5819 if (!IS_GEN2(dev_priv))
5820 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5821
5822 if (!dev_priv->display.initial_watermarks)
5823 intel_update_watermarks(intel_crtc);
5824 }
5825
5826 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
5827 {
5828 struct intel_encoder *encoder;
5829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5830 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5831 enum intel_display_power_domain domain;
5832 u64 domains;
5833 struct drm_atomic_state *state;
5834 struct intel_crtc_state *crtc_state;
5835 int ret;
5836
5837 if (!intel_crtc->active)
5838 return;
5839
5840 if (crtc->primary->state->visible) {
5841 WARN_ON(intel_crtc->flip_work);
5842
5843 intel_pre_disable_primary_noatomic(crtc);
5844
5845 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5846 crtc->primary->state->visible = false;
5847 }
5848
5849 state = drm_atomic_state_alloc(crtc->dev);
5850 if (!state) {
5851 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5852 crtc->base.id, crtc->name);
5853 return;
5854 }
5855
5856 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
5857
5858 /* Everything's already locked, -EDEADLK can't happen. */
5859 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5860 ret = drm_atomic_add_affected_connectors(state, crtc);
5861
5862 WARN_ON(IS_ERR(crtc_state) || ret);
5863
5864 dev_priv->display.crtc_disable(crtc_state, state);
5865
5866 drm_atomic_state_put(state);
5867
5868 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5869 crtc->base.id, crtc->name);
5870
5871 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5872 crtc->state->active = false;
5873 intel_crtc->active = false;
5874 crtc->enabled = false;
5875 crtc->state->connector_mask = 0;
5876 crtc->state->encoder_mask = 0;
5877
5878 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5879 encoder->base.crtc = NULL;
5880
5881 intel_fbc_disable(intel_crtc);
5882 intel_update_watermarks(intel_crtc);
5883 intel_disable_shared_dpll(intel_crtc);
5884
5885 domains = intel_crtc->enabled_power_domains;
5886 for_each_power_domain(domain, domains)
5887 intel_display_power_put(dev_priv, domain);
5888 intel_crtc->enabled_power_domains = 0;
5889
5890 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5891 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5892 }
5893
5894 /*
5895 * turn all crtc's off, but do not adjust state
5896 * This has to be paired with a call to intel_modeset_setup_hw_state.
5897 */
5898 int intel_display_suspend(struct drm_device *dev)
5899 {
5900 struct drm_i915_private *dev_priv = to_i915(dev);
5901 struct drm_atomic_state *state;
5902 int ret;
5903
5904 state = drm_atomic_helper_suspend(dev);
5905 ret = PTR_ERR_OR_ZERO(state);
5906 if (ret)
5907 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5908 else
5909 dev_priv->modeset_restore_state = state;
5910 return ret;
5911 }
5912
5913 void intel_encoder_destroy(struct drm_encoder *encoder)
5914 {
5915 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5916
5917 drm_encoder_cleanup(encoder);
5918 kfree(intel_encoder);
5919 }
5920
5921 /* Cross check the actual hw state with our own modeset state tracking (and it's
5922 * internal consistency). */
5923 static void intel_connector_verify_state(struct intel_connector *connector)
5924 {
5925 struct drm_crtc *crtc = connector->base.state->crtc;
5926
5927 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5928 connector->base.base.id,
5929 connector->base.name);
5930
5931 if (connector->get_hw_state(connector)) {
5932 struct intel_encoder *encoder = connector->encoder;
5933 struct drm_connector_state *conn_state = connector->base.state;
5934
5935 I915_STATE_WARN(!crtc,
5936 "connector enabled without attached crtc\n");
5937
5938 if (!crtc)
5939 return;
5940
5941 I915_STATE_WARN(!crtc->state->active,
5942 "connector is active, but attached crtc isn't\n");
5943
5944 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5945 return;
5946
5947 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5948 "atomic encoder doesn't match attached encoder\n");
5949
5950 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5951 "attached encoder crtc differs from connector crtc\n");
5952 } else {
5953 I915_STATE_WARN(crtc && crtc->state->active,
5954 "attached crtc is active, but connector isn't\n");
5955 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
5956 "best encoder set without crtc!\n");
5957 }
5958 }
5959
5960 int intel_connector_init(struct intel_connector *connector)
5961 {
5962 drm_atomic_helper_connector_reset(&connector->base);
5963
5964 if (!connector->base.state)
5965 return -ENOMEM;
5966
5967 return 0;
5968 }
5969
5970 struct intel_connector *intel_connector_alloc(void)
5971 {
5972 struct intel_connector *connector;
5973
5974 connector = kzalloc(sizeof *connector, GFP_KERNEL);
5975 if (!connector)
5976 return NULL;
5977
5978 if (intel_connector_init(connector) < 0) {
5979 kfree(connector);
5980 return NULL;
5981 }
5982
5983 return connector;
5984 }
5985
5986 /* Simple connector->get_hw_state implementation for encoders that support only
5987 * one connector and no cloning and hence the encoder state determines the state
5988 * of the connector. */
5989 bool intel_connector_get_hw_state(struct intel_connector *connector)
5990 {
5991 enum pipe pipe = 0;
5992 struct intel_encoder *encoder = connector->encoder;
5993
5994 return encoder->get_hw_state(encoder, &pipe);
5995 }
5996
5997 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
5998 {
5999 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6000 return crtc_state->fdi_lanes;
6001
6002 return 0;
6003 }
6004
6005 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6006 struct intel_crtc_state *pipe_config)
6007 {
6008 struct drm_i915_private *dev_priv = to_i915(dev);
6009 struct drm_atomic_state *state = pipe_config->base.state;
6010 struct intel_crtc *other_crtc;
6011 struct intel_crtc_state *other_crtc_state;
6012
6013 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6014 pipe_name(pipe), pipe_config->fdi_lanes);
6015 if (pipe_config->fdi_lanes > 4) {
6016 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6017 pipe_name(pipe), pipe_config->fdi_lanes);
6018 return -EINVAL;
6019 }
6020
6021 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6022 if (pipe_config->fdi_lanes > 2) {
6023 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6024 pipe_config->fdi_lanes);
6025 return -EINVAL;
6026 } else {
6027 return 0;
6028 }
6029 }
6030
6031 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6032 return 0;
6033
6034 /* Ivybridge 3 pipe is really complicated */
6035 switch (pipe) {
6036 case PIPE_A:
6037 return 0;
6038 case PIPE_B:
6039 if (pipe_config->fdi_lanes <= 2)
6040 return 0;
6041
6042 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6043 other_crtc_state =
6044 intel_atomic_get_crtc_state(state, other_crtc);
6045 if (IS_ERR(other_crtc_state))
6046 return PTR_ERR(other_crtc_state);
6047
6048 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6049 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6050 pipe_name(pipe), pipe_config->fdi_lanes);
6051 return -EINVAL;
6052 }
6053 return 0;
6054 case PIPE_C:
6055 if (pipe_config->fdi_lanes > 2) {
6056 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6057 pipe_name(pipe), pipe_config->fdi_lanes);
6058 return -EINVAL;
6059 }
6060
6061 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6062 other_crtc_state =
6063 intel_atomic_get_crtc_state(state, other_crtc);
6064 if (IS_ERR(other_crtc_state))
6065 return PTR_ERR(other_crtc_state);
6066
6067 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6068 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6069 return -EINVAL;
6070 }
6071 return 0;
6072 default:
6073 BUG();
6074 }
6075 }
6076
6077 #define RETRY 1
6078 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6079 struct intel_crtc_state *pipe_config)
6080 {
6081 struct drm_device *dev = intel_crtc->base.dev;
6082 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6083 int lane, link_bw, fdi_dotclock, ret;
6084 bool needs_recompute = false;
6085
6086 retry:
6087 /* FDI is a binary signal running at ~2.7GHz, encoding
6088 * each output octet as 10 bits. The actual frequency
6089 * is stored as a divider into a 100MHz clock, and the
6090 * mode pixel clock is stored in units of 1KHz.
6091 * Hence the bw of each lane in terms of the mode signal
6092 * is:
6093 */
6094 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6095
6096 fdi_dotclock = adjusted_mode->crtc_clock;
6097
6098 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6099 pipe_config->pipe_bpp);
6100
6101 pipe_config->fdi_lanes = lane;
6102
6103 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6104 link_bw, &pipe_config->fdi_m_n);
6105
6106 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6107 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6108 pipe_config->pipe_bpp -= 2*3;
6109 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6110 pipe_config->pipe_bpp);
6111 needs_recompute = true;
6112 pipe_config->bw_constrained = true;
6113
6114 goto retry;
6115 }
6116
6117 if (needs_recompute)
6118 return RETRY;
6119
6120 return ret;
6121 }
6122
6123 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6124 struct intel_crtc_state *pipe_config)
6125 {
6126 if (pipe_config->pipe_bpp > 24)
6127 return false;
6128
6129 /* HSW can handle pixel rate up to cdclk? */
6130 if (IS_HASWELL(dev_priv))
6131 return true;
6132
6133 /*
6134 * We compare against max which means we must take
6135 * the increased cdclk requirement into account when
6136 * calculating the new cdclk.
6137 *
6138 * Should measure whether using a lower cdclk w/o IPS
6139 */
6140 return pipe_config->pixel_rate <=
6141 dev_priv->max_cdclk_freq * 95 / 100;
6142 }
6143
6144 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6145 struct intel_crtc_state *pipe_config)
6146 {
6147 struct drm_device *dev = crtc->base.dev;
6148 struct drm_i915_private *dev_priv = to_i915(dev);
6149
6150 pipe_config->ips_enabled = i915.enable_ips &&
6151 hsw_crtc_supports_ips(crtc) &&
6152 pipe_config_supports_ips(dev_priv, pipe_config);
6153 }
6154
6155 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6156 {
6157 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6158
6159 /* GDG double wide on either pipe, otherwise pipe A only */
6160 return INTEL_INFO(dev_priv)->gen < 4 &&
6161 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6162 }
6163
6164 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6165 {
6166 uint32_t pixel_rate;
6167
6168 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6169
6170 /*
6171 * We only use IF-ID interlacing. If we ever use
6172 * PF-ID we'll need to adjust the pixel_rate here.
6173 */
6174
6175 if (pipe_config->pch_pfit.enabled) {
6176 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6177 uint32_t pfit_size = pipe_config->pch_pfit.size;
6178
6179 pipe_w = pipe_config->pipe_src_w;
6180 pipe_h = pipe_config->pipe_src_h;
6181
6182 pfit_w = (pfit_size >> 16) & 0xFFFF;
6183 pfit_h = pfit_size & 0xFFFF;
6184 if (pipe_w < pfit_w)
6185 pipe_w = pfit_w;
6186 if (pipe_h < pfit_h)
6187 pipe_h = pfit_h;
6188
6189 if (WARN_ON(!pfit_w || !pfit_h))
6190 return pixel_rate;
6191
6192 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6193 pfit_w * pfit_h);
6194 }
6195
6196 return pixel_rate;
6197 }
6198
6199 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6200 {
6201 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6202
6203 if (HAS_GMCH_DISPLAY(dev_priv))
6204 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6205 crtc_state->pixel_rate =
6206 crtc_state->base.adjusted_mode.crtc_clock;
6207 else
6208 crtc_state->pixel_rate =
6209 ilk_pipe_pixel_rate(crtc_state);
6210 }
6211
6212 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6213 struct intel_crtc_state *pipe_config)
6214 {
6215 struct drm_device *dev = crtc->base.dev;
6216 struct drm_i915_private *dev_priv = to_i915(dev);
6217 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6218 int clock_limit = dev_priv->max_dotclk_freq;
6219
6220 if (INTEL_GEN(dev_priv) < 4) {
6221 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6222
6223 /*
6224 * Enable double wide mode when the dot clock
6225 * is > 90% of the (display) core speed.
6226 */
6227 if (intel_crtc_supports_double_wide(crtc) &&
6228 adjusted_mode->crtc_clock > clock_limit) {
6229 clock_limit = dev_priv->max_dotclk_freq;
6230 pipe_config->double_wide = true;
6231 }
6232 }
6233
6234 if (adjusted_mode->crtc_clock > clock_limit) {
6235 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6236 adjusted_mode->crtc_clock, clock_limit,
6237 yesno(pipe_config->double_wide));
6238 return -EINVAL;
6239 }
6240
6241 /*
6242 * Pipe horizontal size must be even in:
6243 * - DVO ganged mode
6244 * - LVDS dual channel mode
6245 * - Double wide pipe
6246 */
6247 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6248 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6249 pipe_config->pipe_src_w &= ~1;
6250
6251 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6252 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6253 */
6254 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6255 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6256 return -EINVAL;
6257
6258 intel_crtc_compute_pixel_rate(pipe_config);
6259
6260 if (HAS_IPS(dev_priv))
6261 hsw_compute_ips_config(crtc, pipe_config);
6262
6263 if (pipe_config->has_pch_encoder)
6264 return ironlake_fdi_compute_config(crtc, pipe_config);
6265
6266 return 0;
6267 }
6268
6269 static void
6270 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6271 {
6272 while (*num > DATA_LINK_M_N_MASK ||
6273 *den > DATA_LINK_M_N_MASK) {
6274 *num >>= 1;
6275 *den >>= 1;
6276 }
6277 }
6278
6279 static void compute_m_n(unsigned int m, unsigned int n,
6280 uint32_t *ret_m, uint32_t *ret_n)
6281 {
6282 /*
6283 * Reduce M/N as much as possible without loss in precision. Several DP
6284 * dongles in particular seem to be fussy about too large *link* M/N
6285 * values. The passed in values are more likely to have the least
6286 * significant bits zero than M after rounding below, so do this first.
6287 */
6288 while ((m & 1) == 0 && (n & 1) == 0) {
6289 m >>= 1;
6290 n >>= 1;
6291 }
6292
6293 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6294 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6295 intel_reduce_m_n_ratio(ret_m, ret_n);
6296 }
6297
6298 void
6299 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6300 int pixel_clock, int link_clock,
6301 struct intel_link_m_n *m_n)
6302 {
6303 m_n->tu = 64;
6304
6305 compute_m_n(bits_per_pixel * pixel_clock,
6306 link_clock * nlanes * 8,
6307 &m_n->gmch_m, &m_n->gmch_n);
6308
6309 compute_m_n(pixel_clock, link_clock,
6310 &m_n->link_m, &m_n->link_n);
6311 }
6312
6313 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6314 {
6315 if (i915.panel_use_ssc >= 0)
6316 return i915.panel_use_ssc != 0;
6317 return dev_priv->vbt.lvds_use_ssc
6318 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6319 }
6320
6321 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6322 {
6323 return (1 << dpll->n) << 16 | dpll->m2;
6324 }
6325
6326 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6327 {
6328 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6329 }
6330
6331 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6332 struct intel_crtc_state *crtc_state,
6333 struct dpll *reduced_clock)
6334 {
6335 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6336 u32 fp, fp2 = 0;
6337
6338 if (IS_PINEVIEW(dev_priv)) {
6339 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6340 if (reduced_clock)
6341 fp2 = pnv_dpll_compute_fp(reduced_clock);
6342 } else {
6343 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6344 if (reduced_clock)
6345 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6346 }
6347
6348 crtc_state->dpll_hw_state.fp0 = fp;
6349
6350 crtc->lowfreq_avail = false;
6351 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6352 reduced_clock) {
6353 crtc_state->dpll_hw_state.fp1 = fp2;
6354 crtc->lowfreq_avail = true;
6355 } else {
6356 crtc_state->dpll_hw_state.fp1 = fp;
6357 }
6358 }
6359
6360 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6361 pipe)
6362 {
6363 u32 reg_val;
6364
6365 /*
6366 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6367 * and set it to a reasonable value instead.
6368 */
6369 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6370 reg_val &= 0xffffff00;
6371 reg_val |= 0x00000030;
6372 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6373
6374 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6375 reg_val &= 0x8cffffff;
6376 reg_val = 0x8c000000;
6377 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6378
6379 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6380 reg_val &= 0xffffff00;
6381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6382
6383 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6384 reg_val &= 0x00ffffff;
6385 reg_val |= 0xb0000000;
6386 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6387 }
6388
6389 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6390 struct intel_link_m_n *m_n)
6391 {
6392 struct drm_device *dev = crtc->base.dev;
6393 struct drm_i915_private *dev_priv = to_i915(dev);
6394 int pipe = crtc->pipe;
6395
6396 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6397 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6398 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6399 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6400 }
6401
6402 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6403 struct intel_link_m_n *m_n,
6404 struct intel_link_m_n *m2_n2)
6405 {
6406 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6407 int pipe = crtc->pipe;
6408 enum transcoder transcoder = crtc->config->cpu_transcoder;
6409
6410 if (INTEL_GEN(dev_priv) >= 5) {
6411 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6412 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6413 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6414 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6415 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6416 * for gen < 8) and if DRRS is supported (to make sure the
6417 * registers are not unnecessarily accessed).
6418 */
6419 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6420 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6421 I915_WRITE(PIPE_DATA_M2(transcoder),
6422 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6423 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6424 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6425 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6426 }
6427 } else {
6428 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6429 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6430 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6431 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6432 }
6433 }
6434
6435 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6436 {
6437 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6438
6439 if (m_n == M1_N1) {
6440 dp_m_n = &crtc->config->dp_m_n;
6441 dp_m2_n2 = &crtc->config->dp_m2_n2;
6442 } else if (m_n == M2_N2) {
6443
6444 /*
6445 * M2_N2 registers are not supported. Hence m2_n2 divider value
6446 * needs to be programmed into M1_N1.
6447 */
6448 dp_m_n = &crtc->config->dp_m2_n2;
6449 } else {
6450 DRM_ERROR("Unsupported divider value\n");
6451 return;
6452 }
6453
6454 if (crtc->config->has_pch_encoder)
6455 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6456 else
6457 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6458 }
6459
6460 static void vlv_compute_dpll(struct intel_crtc *crtc,
6461 struct intel_crtc_state *pipe_config)
6462 {
6463 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6464 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6465 if (crtc->pipe != PIPE_A)
6466 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6467
6468 /* DPLL not used with DSI, but still need the rest set up */
6469 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6470 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6471 DPLL_EXT_BUFFER_ENABLE_VLV;
6472
6473 pipe_config->dpll_hw_state.dpll_md =
6474 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6475 }
6476
6477 static void chv_compute_dpll(struct intel_crtc *crtc,
6478 struct intel_crtc_state *pipe_config)
6479 {
6480 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6481 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6482 if (crtc->pipe != PIPE_A)
6483 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6484
6485 /* DPLL not used with DSI, but still need the rest set up */
6486 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6487 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6488
6489 pipe_config->dpll_hw_state.dpll_md =
6490 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6491 }
6492
6493 static void vlv_prepare_pll(struct intel_crtc *crtc,
6494 const struct intel_crtc_state *pipe_config)
6495 {
6496 struct drm_device *dev = crtc->base.dev;
6497 struct drm_i915_private *dev_priv = to_i915(dev);
6498 enum pipe pipe = crtc->pipe;
6499 u32 mdiv;
6500 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6501 u32 coreclk, reg_val;
6502
6503 /* Enable Refclk */
6504 I915_WRITE(DPLL(pipe),
6505 pipe_config->dpll_hw_state.dpll &
6506 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6507
6508 /* No need to actually set up the DPLL with DSI */
6509 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6510 return;
6511
6512 mutex_lock(&dev_priv->sb_lock);
6513
6514 bestn = pipe_config->dpll.n;
6515 bestm1 = pipe_config->dpll.m1;
6516 bestm2 = pipe_config->dpll.m2;
6517 bestp1 = pipe_config->dpll.p1;
6518 bestp2 = pipe_config->dpll.p2;
6519
6520 /* See eDP HDMI DPIO driver vbios notes doc */
6521
6522 /* PLL B needs special handling */
6523 if (pipe == PIPE_B)
6524 vlv_pllb_recal_opamp(dev_priv, pipe);
6525
6526 /* Set up Tx target for periodic Rcomp update */
6527 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6528
6529 /* Disable target IRef on PLL */
6530 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6531 reg_val &= 0x00ffffff;
6532 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6533
6534 /* Disable fast lock */
6535 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6536
6537 /* Set idtafcrecal before PLL is enabled */
6538 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6539 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6540 mdiv |= ((bestn << DPIO_N_SHIFT));
6541 mdiv |= (1 << DPIO_K_SHIFT);
6542
6543 /*
6544 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6545 * but we don't support that).
6546 * Note: don't use the DAC post divider as it seems unstable.
6547 */
6548 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6549 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6550
6551 mdiv |= DPIO_ENABLE_CALIBRATION;
6552 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6553
6554 /* Set HBR and RBR LPF coefficients */
6555 if (pipe_config->port_clock == 162000 ||
6556 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6557 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6558 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6559 0x009f0003);
6560 else
6561 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6562 0x00d0000f);
6563
6564 if (intel_crtc_has_dp_encoder(pipe_config)) {
6565 /* Use SSC source */
6566 if (pipe == PIPE_A)
6567 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6568 0x0df40000);
6569 else
6570 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6571 0x0df70000);
6572 } else { /* HDMI or VGA */
6573 /* Use bend source */
6574 if (pipe == PIPE_A)
6575 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6576 0x0df70000);
6577 else
6578 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6579 0x0df40000);
6580 }
6581
6582 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6583 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6584 if (intel_crtc_has_dp_encoder(crtc->config))
6585 coreclk |= 0x01000000;
6586 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6587
6588 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6589 mutex_unlock(&dev_priv->sb_lock);
6590 }
6591
6592 static void chv_prepare_pll(struct intel_crtc *crtc,
6593 const struct intel_crtc_state *pipe_config)
6594 {
6595 struct drm_device *dev = crtc->base.dev;
6596 struct drm_i915_private *dev_priv = to_i915(dev);
6597 enum pipe pipe = crtc->pipe;
6598 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6599 u32 loopfilter, tribuf_calcntr;
6600 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6601 u32 dpio_val;
6602 int vco;
6603
6604 /* Enable Refclk and SSC */
6605 I915_WRITE(DPLL(pipe),
6606 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6607
6608 /* No need to actually set up the DPLL with DSI */
6609 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6610 return;
6611
6612 bestn = pipe_config->dpll.n;
6613 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6614 bestm1 = pipe_config->dpll.m1;
6615 bestm2 = pipe_config->dpll.m2 >> 22;
6616 bestp1 = pipe_config->dpll.p1;
6617 bestp2 = pipe_config->dpll.p2;
6618 vco = pipe_config->dpll.vco;
6619 dpio_val = 0;
6620 loopfilter = 0;
6621
6622 mutex_lock(&dev_priv->sb_lock);
6623
6624 /* p1 and p2 divider */
6625 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6626 5 << DPIO_CHV_S1_DIV_SHIFT |
6627 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6628 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6629 1 << DPIO_CHV_K_DIV_SHIFT);
6630
6631 /* Feedback post-divider - m2 */
6632 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6633
6634 /* Feedback refclk divider - n and m1 */
6635 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6636 DPIO_CHV_M1_DIV_BY_2 |
6637 1 << DPIO_CHV_N_DIV_SHIFT);
6638
6639 /* M2 fraction division */
6640 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6641
6642 /* M2 fraction division enable */
6643 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6644 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6645 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6646 if (bestm2_frac)
6647 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6648 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6649
6650 /* Program digital lock detect threshold */
6651 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6652 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6653 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6654 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6655 if (!bestm2_frac)
6656 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6657 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6658
6659 /* Loop filter */
6660 if (vco == 5400000) {
6661 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6662 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6663 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6664 tribuf_calcntr = 0x9;
6665 } else if (vco <= 6200000) {
6666 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6667 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6668 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6669 tribuf_calcntr = 0x9;
6670 } else if (vco <= 6480000) {
6671 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6672 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6673 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6674 tribuf_calcntr = 0x8;
6675 } else {
6676 /* Not supported. Apply the same limits as in the max case */
6677 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6678 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6679 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6680 tribuf_calcntr = 0;
6681 }
6682 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6683
6684 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6685 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6686 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6687 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6688
6689 /* AFC Recal */
6690 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6691 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6692 DPIO_AFC_RECAL);
6693
6694 mutex_unlock(&dev_priv->sb_lock);
6695 }
6696
6697 /**
6698 * vlv_force_pll_on - forcibly enable just the PLL
6699 * @dev_priv: i915 private structure
6700 * @pipe: pipe PLL to enable
6701 * @dpll: PLL configuration
6702 *
6703 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6704 * in cases where we need the PLL enabled even when @pipe is not going to
6705 * be enabled.
6706 */
6707 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6708 const struct dpll *dpll)
6709 {
6710 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6711 struct intel_crtc_state *pipe_config;
6712
6713 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6714 if (!pipe_config)
6715 return -ENOMEM;
6716
6717 pipe_config->base.crtc = &crtc->base;
6718 pipe_config->pixel_multiplier = 1;
6719 pipe_config->dpll = *dpll;
6720
6721 if (IS_CHERRYVIEW(dev_priv)) {
6722 chv_compute_dpll(crtc, pipe_config);
6723 chv_prepare_pll(crtc, pipe_config);
6724 chv_enable_pll(crtc, pipe_config);
6725 } else {
6726 vlv_compute_dpll(crtc, pipe_config);
6727 vlv_prepare_pll(crtc, pipe_config);
6728 vlv_enable_pll(crtc, pipe_config);
6729 }
6730
6731 kfree(pipe_config);
6732
6733 return 0;
6734 }
6735
6736 /**
6737 * vlv_force_pll_off - forcibly disable just the PLL
6738 * @dev_priv: i915 private structure
6739 * @pipe: pipe PLL to disable
6740 *
6741 * Disable the PLL for @pipe. To be used in cases where we need
6742 * the PLL enabled even when @pipe is not going to be enabled.
6743 */
6744 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6745 {
6746 if (IS_CHERRYVIEW(dev_priv))
6747 chv_disable_pll(dev_priv, pipe);
6748 else
6749 vlv_disable_pll(dev_priv, pipe);
6750 }
6751
6752 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6753 struct intel_crtc_state *crtc_state,
6754 struct dpll *reduced_clock)
6755 {
6756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6757 u32 dpll;
6758 struct dpll *clock = &crtc_state->dpll;
6759
6760 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6761
6762 dpll = DPLL_VGA_MODE_DIS;
6763
6764 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6765 dpll |= DPLLB_MODE_LVDS;
6766 else
6767 dpll |= DPLLB_MODE_DAC_SERIAL;
6768
6769 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6770 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6771 dpll |= (crtc_state->pixel_multiplier - 1)
6772 << SDVO_MULTIPLIER_SHIFT_HIRES;
6773 }
6774
6775 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6776 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6777 dpll |= DPLL_SDVO_HIGH_SPEED;
6778
6779 if (intel_crtc_has_dp_encoder(crtc_state))
6780 dpll |= DPLL_SDVO_HIGH_SPEED;
6781
6782 /* compute bitmask from p1 value */
6783 if (IS_PINEVIEW(dev_priv))
6784 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6785 else {
6786 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6787 if (IS_G4X(dev_priv) && reduced_clock)
6788 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6789 }
6790 switch (clock->p2) {
6791 case 5:
6792 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6793 break;
6794 case 7:
6795 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6796 break;
6797 case 10:
6798 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6799 break;
6800 case 14:
6801 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6802 break;
6803 }
6804 if (INTEL_GEN(dev_priv) >= 4)
6805 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6806
6807 if (crtc_state->sdvo_tv_clock)
6808 dpll |= PLL_REF_INPUT_TVCLKINBC;
6809 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6810 intel_panel_use_ssc(dev_priv))
6811 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6812 else
6813 dpll |= PLL_REF_INPUT_DREFCLK;
6814
6815 dpll |= DPLL_VCO_ENABLE;
6816 crtc_state->dpll_hw_state.dpll = dpll;
6817
6818 if (INTEL_GEN(dev_priv) >= 4) {
6819 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6820 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6821 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6822 }
6823 }
6824
6825 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6826 struct intel_crtc_state *crtc_state,
6827 struct dpll *reduced_clock)
6828 {
6829 struct drm_device *dev = crtc->base.dev;
6830 struct drm_i915_private *dev_priv = to_i915(dev);
6831 u32 dpll;
6832 struct dpll *clock = &crtc_state->dpll;
6833
6834 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6835
6836 dpll = DPLL_VGA_MODE_DIS;
6837
6838 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6839 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6840 } else {
6841 if (clock->p1 == 2)
6842 dpll |= PLL_P1_DIVIDE_BY_TWO;
6843 else
6844 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6845 if (clock->p2 == 4)
6846 dpll |= PLL_P2_DIVIDE_BY_4;
6847 }
6848
6849 if (!IS_I830(dev_priv) &&
6850 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6851 dpll |= DPLL_DVO_2X_MODE;
6852
6853 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6854 intel_panel_use_ssc(dev_priv))
6855 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6856 else
6857 dpll |= PLL_REF_INPUT_DREFCLK;
6858
6859 dpll |= DPLL_VCO_ENABLE;
6860 crtc_state->dpll_hw_state.dpll = dpll;
6861 }
6862
6863 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6864 {
6865 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6866 enum pipe pipe = intel_crtc->pipe;
6867 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6868 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6869 uint32_t crtc_vtotal, crtc_vblank_end;
6870 int vsyncshift = 0;
6871
6872 /* We need to be careful not to changed the adjusted mode, for otherwise
6873 * the hw state checker will get angry at the mismatch. */
6874 crtc_vtotal = adjusted_mode->crtc_vtotal;
6875 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6876
6877 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6878 /* the chip adds 2 halflines automatically */
6879 crtc_vtotal -= 1;
6880 crtc_vblank_end -= 1;
6881
6882 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6883 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6884 else
6885 vsyncshift = adjusted_mode->crtc_hsync_start -
6886 adjusted_mode->crtc_htotal / 2;
6887 if (vsyncshift < 0)
6888 vsyncshift += adjusted_mode->crtc_htotal;
6889 }
6890
6891 if (INTEL_GEN(dev_priv) > 3)
6892 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6893
6894 I915_WRITE(HTOTAL(cpu_transcoder),
6895 (adjusted_mode->crtc_hdisplay - 1) |
6896 ((adjusted_mode->crtc_htotal - 1) << 16));
6897 I915_WRITE(HBLANK(cpu_transcoder),
6898 (adjusted_mode->crtc_hblank_start - 1) |
6899 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6900 I915_WRITE(HSYNC(cpu_transcoder),
6901 (adjusted_mode->crtc_hsync_start - 1) |
6902 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6903
6904 I915_WRITE(VTOTAL(cpu_transcoder),
6905 (adjusted_mode->crtc_vdisplay - 1) |
6906 ((crtc_vtotal - 1) << 16));
6907 I915_WRITE(VBLANK(cpu_transcoder),
6908 (adjusted_mode->crtc_vblank_start - 1) |
6909 ((crtc_vblank_end - 1) << 16));
6910 I915_WRITE(VSYNC(cpu_transcoder),
6911 (adjusted_mode->crtc_vsync_start - 1) |
6912 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6913
6914 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6915 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6916 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6917 * bits. */
6918 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6919 (pipe == PIPE_B || pipe == PIPE_C))
6920 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6921
6922 }
6923
6924 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6925 {
6926 struct drm_device *dev = intel_crtc->base.dev;
6927 struct drm_i915_private *dev_priv = to_i915(dev);
6928 enum pipe pipe = intel_crtc->pipe;
6929
6930 /* pipesrc controls the size that is scaled from, which should
6931 * always be the user's requested size.
6932 */
6933 I915_WRITE(PIPESRC(pipe),
6934 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6935 (intel_crtc->config->pipe_src_h - 1));
6936 }
6937
6938 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6939 struct intel_crtc_state *pipe_config)
6940 {
6941 struct drm_device *dev = crtc->base.dev;
6942 struct drm_i915_private *dev_priv = to_i915(dev);
6943 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6944 uint32_t tmp;
6945
6946 tmp = I915_READ(HTOTAL(cpu_transcoder));
6947 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6948 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6949 tmp = I915_READ(HBLANK(cpu_transcoder));
6950 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6951 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6952 tmp = I915_READ(HSYNC(cpu_transcoder));
6953 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6954 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6955
6956 tmp = I915_READ(VTOTAL(cpu_transcoder));
6957 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6958 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6959 tmp = I915_READ(VBLANK(cpu_transcoder));
6960 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6961 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6962 tmp = I915_READ(VSYNC(cpu_transcoder));
6963 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6964 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6965
6966 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6967 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6968 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6969 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6970 }
6971 }
6972
6973 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6974 struct intel_crtc_state *pipe_config)
6975 {
6976 struct drm_device *dev = crtc->base.dev;
6977 struct drm_i915_private *dev_priv = to_i915(dev);
6978 u32 tmp;
6979
6980 tmp = I915_READ(PIPESRC(crtc->pipe));
6981 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6982 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6983
6984 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6985 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6986 }
6987
6988 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6989 struct intel_crtc_state *pipe_config)
6990 {
6991 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6992 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6993 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6994 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6995
6996 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6997 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6998 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6999 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7000
7001 mode->flags = pipe_config->base.adjusted_mode.flags;
7002 mode->type = DRM_MODE_TYPE_DRIVER;
7003
7004 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7005
7006 mode->hsync = drm_mode_hsync(mode);
7007 mode->vrefresh = drm_mode_vrefresh(mode);
7008 drm_mode_set_name(mode);
7009 }
7010
7011 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7012 {
7013 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7014 uint32_t pipeconf;
7015
7016 pipeconf = 0;
7017
7018 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7019 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7020 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7021
7022 if (intel_crtc->config->double_wide)
7023 pipeconf |= PIPECONF_DOUBLE_WIDE;
7024
7025 /* only g4x and later have fancy bpc/dither controls */
7026 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7027 IS_CHERRYVIEW(dev_priv)) {
7028 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7029 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7030 pipeconf |= PIPECONF_DITHER_EN |
7031 PIPECONF_DITHER_TYPE_SP;
7032
7033 switch (intel_crtc->config->pipe_bpp) {
7034 case 18:
7035 pipeconf |= PIPECONF_6BPC;
7036 break;
7037 case 24:
7038 pipeconf |= PIPECONF_8BPC;
7039 break;
7040 case 30:
7041 pipeconf |= PIPECONF_10BPC;
7042 break;
7043 default:
7044 /* Case prevented by intel_choose_pipe_bpp_dither. */
7045 BUG();
7046 }
7047 }
7048
7049 if (HAS_PIPE_CXSR(dev_priv)) {
7050 if (intel_crtc->lowfreq_avail) {
7051 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7052 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7053 } else {
7054 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7055 }
7056 }
7057
7058 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7059 if (INTEL_GEN(dev_priv) < 4 ||
7060 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7061 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7062 else
7063 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7064 } else
7065 pipeconf |= PIPECONF_PROGRESSIVE;
7066
7067 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7068 intel_crtc->config->limited_color_range)
7069 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7070
7071 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7072 POSTING_READ(PIPECONF(intel_crtc->pipe));
7073 }
7074
7075 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7076 struct intel_crtc_state *crtc_state)
7077 {
7078 struct drm_device *dev = crtc->base.dev;
7079 struct drm_i915_private *dev_priv = to_i915(dev);
7080 const struct intel_limit *limit;
7081 int refclk = 48000;
7082
7083 memset(&crtc_state->dpll_hw_state, 0,
7084 sizeof(crtc_state->dpll_hw_state));
7085
7086 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7087 if (intel_panel_use_ssc(dev_priv)) {
7088 refclk = dev_priv->vbt.lvds_ssc_freq;
7089 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7090 }
7091
7092 limit = &intel_limits_i8xx_lvds;
7093 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7094 limit = &intel_limits_i8xx_dvo;
7095 } else {
7096 limit = &intel_limits_i8xx_dac;
7097 }
7098
7099 if (!crtc_state->clock_set &&
7100 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7101 refclk, NULL, &crtc_state->dpll)) {
7102 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7103 return -EINVAL;
7104 }
7105
7106 i8xx_compute_dpll(crtc, crtc_state, NULL);
7107
7108 return 0;
7109 }
7110
7111 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7112 struct intel_crtc_state *crtc_state)
7113 {
7114 struct drm_device *dev = crtc->base.dev;
7115 struct drm_i915_private *dev_priv = to_i915(dev);
7116 const struct intel_limit *limit;
7117 int refclk = 96000;
7118
7119 memset(&crtc_state->dpll_hw_state, 0,
7120 sizeof(crtc_state->dpll_hw_state));
7121
7122 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7123 if (intel_panel_use_ssc(dev_priv)) {
7124 refclk = dev_priv->vbt.lvds_ssc_freq;
7125 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7126 }
7127
7128 if (intel_is_dual_link_lvds(dev))
7129 limit = &intel_limits_g4x_dual_channel_lvds;
7130 else
7131 limit = &intel_limits_g4x_single_channel_lvds;
7132 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7133 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7134 limit = &intel_limits_g4x_hdmi;
7135 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7136 limit = &intel_limits_g4x_sdvo;
7137 } else {
7138 /* The option is for other outputs */
7139 limit = &intel_limits_i9xx_sdvo;
7140 }
7141
7142 if (!crtc_state->clock_set &&
7143 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7144 refclk, NULL, &crtc_state->dpll)) {
7145 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7146 return -EINVAL;
7147 }
7148
7149 i9xx_compute_dpll(crtc, crtc_state, NULL);
7150
7151 return 0;
7152 }
7153
7154 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7155 struct intel_crtc_state *crtc_state)
7156 {
7157 struct drm_device *dev = crtc->base.dev;
7158 struct drm_i915_private *dev_priv = to_i915(dev);
7159 const struct intel_limit *limit;
7160 int refclk = 96000;
7161
7162 memset(&crtc_state->dpll_hw_state, 0,
7163 sizeof(crtc_state->dpll_hw_state));
7164
7165 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7166 if (intel_panel_use_ssc(dev_priv)) {
7167 refclk = dev_priv->vbt.lvds_ssc_freq;
7168 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7169 }
7170
7171 limit = &intel_limits_pineview_lvds;
7172 } else {
7173 limit = &intel_limits_pineview_sdvo;
7174 }
7175
7176 if (!crtc_state->clock_set &&
7177 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7178 refclk, NULL, &crtc_state->dpll)) {
7179 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7180 return -EINVAL;
7181 }
7182
7183 i9xx_compute_dpll(crtc, crtc_state, NULL);
7184
7185 return 0;
7186 }
7187
7188 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7189 struct intel_crtc_state *crtc_state)
7190 {
7191 struct drm_device *dev = crtc->base.dev;
7192 struct drm_i915_private *dev_priv = to_i915(dev);
7193 const struct intel_limit *limit;
7194 int refclk = 96000;
7195
7196 memset(&crtc_state->dpll_hw_state, 0,
7197 sizeof(crtc_state->dpll_hw_state));
7198
7199 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7200 if (intel_panel_use_ssc(dev_priv)) {
7201 refclk = dev_priv->vbt.lvds_ssc_freq;
7202 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7203 }
7204
7205 limit = &intel_limits_i9xx_lvds;
7206 } else {
7207 limit = &intel_limits_i9xx_sdvo;
7208 }
7209
7210 if (!crtc_state->clock_set &&
7211 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7212 refclk, NULL, &crtc_state->dpll)) {
7213 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7214 return -EINVAL;
7215 }
7216
7217 i9xx_compute_dpll(crtc, crtc_state, NULL);
7218
7219 return 0;
7220 }
7221
7222 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7223 struct intel_crtc_state *crtc_state)
7224 {
7225 int refclk = 100000;
7226 const struct intel_limit *limit = &intel_limits_chv;
7227
7228 memset(&crtc_state->dpll_hw_state, 0,
7229 sizeof(crtc_state->dpll_hw_state));
7230
7231 if (!crtc_state->clock_set &&
7232 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7233 refclk, NULL, &crtc_state->dpll)) {
7234 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7235 return -EINVAL;
7236 }
7237
7238 chv_compute_dpll(crtc, crtc_state);
7239
7240 return 0;
7241 }
7242
7243 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7244 struct intel_crtc_state *crtc_state)
7245 {
7246 int refclk = 100000;
7247 const struct intel_limit *limit = &intel_limits_vlv;
7248
7249 memset(&crtc_state->dpll_hw_state, 0,
7250 sizeof(crtc_state->dpll_hw_state));
7251
7252 if (!crtc_state->clock_set &&
7253 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7254 refclk, NULL, &crtc_state->dpll)) {
7255 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7256 return -EINVAL;
7257 }
7258
7259 vlv_compute_dpll(crtc, crtc_state);
7260
7261 return 0;
7262 }
7263
7264 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7265 struct intel_crtc_state *pipe_config)
7266 {
7267 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7268 uint32_t tmp;
7269
7270 if (INTEL_GEN(dev_priv) <= 3 &&
7271 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7272 return;
7273
7274 tmp = I915_READ(PFIT_CONTROL);
7275 if (!(tmp & PFIT_ENABLE))
7276 return;
7277
7278 /* Check whether the pfit is attached to our pipe. */
7279 if (INTEL_GEN(dev_priv) < 4) {
7280 if (crtc->pipe != PIPE_B)
7281 return;
7282 } else {
7283 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7284 return;
7285 }
7286
7287 pipe_config->gmch_pfit.control = tmp;
7288 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7289 }
7290
7291 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7292 struct intel_crtc_state *pipe_config)
7293 {
7294 struct drm_device *dev = crtc->base.dev;
7295 struct drm_i915_private *dev_priv = to_i915(dev);
7296 int pipe = pipe_config->cpu_transcoder;
7297 struct dpll clock;
7298 u32 mdiv;
7299 int refclk = 100000;
7300
7301 /* In case of DSI, DPLL will not be used */
7302 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7303 return;
7304
7305 mutex_lock(&dev_priv->sb_lock);
7306 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7307 mutex_unlock(&dev_priv->sb_lock);
7308
7309 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7310 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7311 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7312 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7313 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7314
7315 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7316 }
7317
7318 static void
7319 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7320 struct intel_initial_plane_config *plane_config)
7321 {
7322 struct drm_device *dev = crtc->base.dev;
7323 struct drm_i915_private *dev_priv = to_i915(dev);
7324 u32 val, base, offset;
7325 int pipe = crtc->pipe, plane = crtc->plane;
7326 int fourcc, pixel_format;
7327 unsigned int aligned_height;
7328 struct drm_framebuffer *fb;
7329 struct intel_framebuffer *intel_fb;
7330
7331 val = I915_READ(DSPCNTR(plane));
7332 if (!(val & DISPLAY_PLANE_ENABLE))
7333 return;
7334
7335 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7336 if (!intel_fb) {
7337 DRM_DEBUG_KMS("failed to alloc fb\n");
7338 return;
7339 }
7340
7341 fb = &intel_fb->base;
7342
7343 fb->dev = dev;
7344
7345 if (INTEL_GEN(dev_priv) >= 4) {
7346 if (val & DISPPLANE_TILED) {
7347 plane_config->tiling = I915_TILING_X;
7348 fb->modifier = I915_FORMAT_MOD_X_TILED;
7349 }
7350 }
7351
7352 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7353 fourcc = i9xx_format_to_fourcc(pixel_format);
7354 fb->format = drm_format_info(fourcc);
7355
7356 if (INTEL_GEN(dev_priv) >= 4) {
7357 if (plane_config->tiling)
7358 offset = I915_READ(DSPTILEOFF(plane));
7359 else
7360 offset = I915_READ(DSPLINOFF(plane));
7361 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7362 } else {
7363 base = I915_READ(DSPADDR(plane));
7364 }
7365 plane_config->base = base;
7366
7367 val = I915_READ(PIPESRC(pipe));
7368 fb->width = ((val >> 16) & 0xfff) + 1;
7369 fb->height = ((val >> 0) & 0xfff) + 1;
7370
7371 val = I915_READ(DSPSTRIDE(pipe));
7372 fb->pitches[0] = val & 0xffffffc0;
7373
7374 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7375
7376 plane_config->size = fb->pitches[0] * aligned_height;
7377
7378 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7379 pipe_name(pipe), plane, fb->width, fb->height,
7380 fb->format->cpp[0] * 8, base, fb->pitches[0],
7381 plane_config->size);
7382
7383 plane_config->fb = intel_fb;
7384 }
7385
7386 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7387 struct intel_crtc_state *pipe_config)
7388 {
7389 struct drm_device *dev = crtc->base.dev;
7390 struct drm_i915_private *dev_priv = to_i915(dev);
7391 int pipe = pipe_config->cpu_transcoder;
7392 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7393 struct dpll clock;
7394 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7395 int refclk = 100000;
7396
7397 /* In case of DSI, DPLL will not be used */
7398 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7399 return;
7400
7401 mutex_lock(&dev_priv->sb_lock);
7402 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7403 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7404 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7405 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7406 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7407 mutex_unlock(&dev_priv->sb_lock);
7408
7409 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7410 clock.m2 = (pll_dw0 & 0xff) << 22;
7411 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7412 clock.m2 |= pll_dw2 & 0x3fffff;
7413 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7414 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7415 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7416
7417 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7418 }
7419
7420 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7421 struct intel_crtc_state *pipe_config)
7422 {
7423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7424 enum intel_display_power_domain power_domain;
7425 uint32_t tmp;
7426 bool ret;
7427
7428 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7429 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7430 return false;
7431
7432 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7433 pipe_config->shared_dpll = NULL;
7434
7435 ret = false;
7436
7437 tmp = I915_READ(PIPECONF(crtc->pipe));
7438 if (!(tmp & PIPECONF_ENABLE))
7439 goto out;
7440
7441 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7442 IS_CHERRYVIEW(dev_priv)) {
7443 switch (tmp & PIPECONF_BPC_MASK) {
7444 case PIPECONF_6BPC:
7445 pipe_config->pipe_bpp = 18;
7446 break;
7447 case PIPECONF_8BPC:
7448 pipe_config->pipe_bpp = 24;
7449 break;
7450 case PIPECONF_10BPC:
7451 pipe_config->pipe_bpp = 30;
7452 break;
7453 default:
7454 break;
7455 }
7456 }
7457
7458 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7459 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7460 pipe_config->limited_color_range = true;
7461
7462 if (INTEL_GEN(dev_priv) < 4)
7463 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7464
7465 intel_get_pipe_timings(crtc, pipe_config);
7466 intel_get_pipe_src_size(crtc, pipe_config);
7467
7468 i9xx_get_pfit_config(crtc, pipe_config);
7469
7470 if (INTEL_GEN(dev_priv) >= 4) {
7471 /* No way to read it out on pipes B and C */
7472 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7473 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7474 else
7475 tmp = I915_READ(DPLL_MD(crtc->pipe));
7476 pipe_config->pixel_multiplier =
7477 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7478 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7479 pipe_config->dpll_hw_state.dpll_md = tmp;
7480 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7481 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7482 tmp = I915_READ(DPLL(crtc->pipe));
7483 pipe_config->pixel_multiplier =
7484 ((tmp & SDVO_MULTIPLIER_MASK)
7485 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7486 } else {
7487 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7488 * port and will be fixed up in the encoder->get_config
7489 * function. */
7490 pipe_config->pixel_multiplier = 1;
7491 }
7492 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7493 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7494 /*
7495 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7496 * on 830. Filter it out here so that we don't
7497 * report errors due to that.
7498 */
7499 if (IS_I830(dev_priv))
7500 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7501
7502 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7503 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7504 } else {
7505 /* Mask out read-only status bits. */
7506 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7507 DPLL_PORTC_READY_MASK |
7508 DPLL_PORTB_READY_MASK);
7509 }
7510
7511 if (IS_CHERRYVIEW(dev_priv))
7512 chv_crtc_clock_get(crtc, pipe_config);
7513 else if (IS_VALLEYVIEW(dev_priv))
7514 vlv_crtc_clock_get(crtc, pipe_config);
7515 else
7516 i9xx_crtc_clock_get(crtc, pipe_config);
7517
7518 /*
7519 * Normally the dotclock is filled in by the encoder .get_config()
7520 * but in case the pipe is enabled w/o any ports we need a sane
7521 * default.
7522 */
7523 pipe_config->base.adjusted_mode.crtc_clock =
7524 pipe_config->port_clock / pipe_config->pixel_multiplier;
7525
7526 ret = true;
7527
7528 out:
7529 intel_display_power_put(dev_priv, power_domain);
7530
7531 return ret;
7532 }
7533
7534 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7535 {
7536 struct intel_encoder *encoder;
7537 int i;
7538 u32 val, final;
7539 bool has_lvds = false;
7540 bool has_cpu_edp = false;
7541 bool has_panel = false;
7542 bool has_ck505 = false;
7543 bool can_ssc = false;
7544 bool using_ssc_source = false;
7545
7546 /* We need to take the global config into account */
7547 for_each_intel_encoder(&dev_priv->drm, encoder) {
7548 switch (encoder->type) {
7549 case INTEL_OUTPUT_LVDS:
7550 has_panel = true;
7551 has_lvds = true;
7552 break;
7553 case INTEL_OUTPUT_EDP:
7554 has_panel = true;
7555 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7556 has_cpu_edp = true;
7557 break;
7558 default:
7559 break;
7560 }
7561 }
7562
7563 if (HAS_PCH_IBX(dev_priv)) {
7564 has_ck505 = dev_priv->vbt.display_clock_mode;
7565 can_ssc = has_ck505;
7566 } else {
7567 has_ck505 = false;
7568 can_ssc = true;
7569 }
7570
7571 /* Check if any DPLLs are using the SSC source */
7572 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7573 u32 temp = I915_READ(PCH_DPLL(i));
7574
7575 if (!(temp & DPLL_VCO_ENABLE))
7576 continue;
7577
7578 if ((temp & PLL_REF_INPUT_MASK) ==
7579 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7580 using_ssc_source = true;
7581 break;
7582 }
7583 }
7584
7585 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7586 has_panel, has_lvds, has_ck505, using_ssc_source);
7587
7588 /* Ironlake: try to setup display ref clock before DPLL
7589 * enabling. This is only under driver's control after
7590 * PCH B stepping, previous chipset stepping should be
7591 * ignoring this setting.
7592 */
7593 val = I915_READ(PCH_DREF_CONTROL);
7594
7595 /* As we must carefully and slowly disable/enable each source in turn,
7596 * compute the final state we want first and check if we need to
7597 * make any changes at all.
7598 */
7599 final = val;
7600 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7601 if (has_ck505)
7602 final |= DREF_NONSPREAD_CK505_ENABLE;
7603 else
7604 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7605
7606 final &= ~DREF_SSC_SOURCE_MASK;
7607 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7608 final &= ~DREF_SSC1_ENABLE;
7609
7610 if (has_panel) {
7611 final |= DREF_SSC_SOURCE_ENABLE;
7612
7613 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7614 final |= DREF_SSC1_ENABLE;
7615
7616 if (has_cpu_edp) {
7617 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7618 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7619 else
7620 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7621 } else
7622 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7623 } else if (using_ssc_source) {
7624 final |= DREF_SSC_SOURCE_ENABLE;
7625 final |= DREF_SSC1_ENABLE;
7626 }
7627
7628 if (final == val)
7629 return;
7630
7631 /* Always enable nonspread source */
7632 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7633
7634 if (has_ck505)
7635 val |= DREF_NONSPREAD_CK505_ENABLE;
7636 else
7637 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7638
7639 if (has_panel) {
7640 val &= ~DREF_SSC_SOURCE_MASK;
7641 val |= DREF_SSC_SOURCE_ENABLE;
7642
7643 /* SSC must be turned on before enabling the CPU output */
7644 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7645 DRM_DEBUG_KMS("Using SSC on panel\n");
7646 val |= DREF_SSC1_ENABLE;
7647 } else
7648 val &= ~DREF_SSC1_ENABLE;
7649
7650 /* Get SSC going before enabling the outputs */
7651 I915_WRITE(PCH_DREF_CONTROL, val);
7652 POSTING_READ(PCH_DREF_CONTROL);
7653 udelay(200);
7654
7655 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7656
7657 /* Enable CPU source on CPU attached eDP */
7658 if (has_cpu_edp) {
7659 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7660 DRM_DEBUG_KMS("Using SSC on eDP\n");
7661 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7662 } else
7663 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7664 } else
7665 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7666
7667 I915_WRITE(PCH_DREF_CONTROL, val);
7668 POSTING_READ(PCH_DREF_CONTROL);
7669 udelay(200);
7670 } else {
7671 DRM_DEBUG_KMS("Disabling CPU source output\n");
7672
7673 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7674
7675 /* Turn off CPU output */
7676 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7677
7678 I915_WRITE(PCH_DREF_CONTROL, val);
7679 POSTING_READ(PCH_DREF_CONTROL);
7680 udelay(200);
7681
7682 if (!using_ssc_source) {
7683 DRM_DEBUG_KMS("Disabling SSC source\n");
7684
7685 /* Turn off the SSC source */
7686 val &= ~DREF_SSC_SOURCE_MASK;
7687 val |= DREF_SSC_SOURCE_DISABLE;
7688
7689 /* Turn off SSC1 */
7690 val &= ~DREF_SSC1_ENABLE;
7691
7692 I915_WRITE(PCH_DREF_CONTROL, val);
7693 POSTING_READ(PCH_DREF_CONTROL);
7694 udelay(200);
7695 }
7696 }
7697
7698 BUG_ON(val != final);
7699 }
7700
7701 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7702 {
7703 uint32_t tmp;
7704
7705 tmp = I915_READ(SOUTH_CHICKEN2);
7706 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7707 I915_WRITE(SOUTH_CHICKEN2, tmp);
7708
7709 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7710 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7711 DRM_ERROR("FDI mPHY reset assert timeout\n");
7712
7713 tmp = I915_READ(SOUTH_CHICKEN2);
7714 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7715 I915_WRITE(SOUTH_CHICKEN2, tmp);
7716
7717 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7718 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7719 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7720 }
7721
7722 /* WaMPhyProgramming:hsw */
7723 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7724 {
7725 uint32_t tmp;
7726
7727 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7728 tmp &= ~(0xFF << 24);
7729 tmp |= (0x12 << 24);
7730 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7731
7732 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7733 tmp |= (1 << 11);
7734 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7735
7736 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7737 tmp |= (1 << 11);
7738 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7739
7740 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7741 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7742 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7743
7744 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7745 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7746 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7747
7748 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7749 tmp &= ~(7 << 13);
7750 tmp |= (5 << 13);
7751 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7752
7753 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7754 tmp &= ~(7 << 13);
7755 tmp |= (5 << 13);
7756 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7757
7758 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7759 tmp &= ~0xFF;
7760 tmp |= 0x1C;
7761 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7762
7763 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7764 tmp &= ~0xFF;
7765 tmp |= 0x1C;
7766 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7767
7768 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7769 tmp &= ~(0xFF << 16);
7770 tmp |= (0x1C << 16);
7771 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7772
7773 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7774 tmp &= ~(0xFF << 16);
7775 tmp |= (0x1C << 16);
7776 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7777
7778 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7779 tmp |= (1 << 27);
7780 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7781
7782 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7783 tmp |= (1 << 27);
7784 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7785
7786 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7787 tmp &= ~(0xF << 28);
7788 tmp |= (4 << 28);
7789 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7790
7791 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7792 tmp &= ~(0xF << 28);
7793 tmp |= (4 << 28);
7794 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7795 }
7796
7797 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7798 * Programming" based on the parameters passed:
7799 * - Sequence to enable CLKOUT_DP
7800 * - Sequence to enable CLKOUT_DP without spread
7801 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7802 */
7803 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7804 bool with_spread, bool with_fdi)
7805 {
7806 uint32_t reg, tmp;
7807
7808 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7809 with_spread = true;
7810 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7811 with_fdi, "LP PCH doesn't have FDI\n"))
7812 with_fdi = false;
7813
7814 mutex_lock(&dev_priv->sb_lock);
7815
7816 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7817 tmp &= ~SBI_SSCCTL_DISABLE;
7818 tmp |= SBI_SSCCTL_PATHALT;
7819 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7820
7821 udelay(24);
7822
7823 if (with_spread) {
7824 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7825 tmp &= ~SBI_SSCCTL_PATHALT;
7826 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7827
7828 if (with_fdi) {
7829 lpt_reset_fdi_mphy(dev_priv);
7830 lpt_program_fdi_mphy(dev_priv);
7831 }
7832 }
7833
7834 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7835 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7836 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7837 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7838
7839 mutex_unlock(&dev_priv->sb_lock);
7840 }
7841
7842 /* Sequence to disable CLKOUT_DP */
7843 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7844 {
7845 uint32_t reg, tmp;
7846
7847 mutex_lock(&dev_priv->sb_lock);
7848
7849 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7850 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7851 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7852 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7853
7854 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7855 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7856 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7857 tmp |= SBI_SSCCTL_PATHALT;
7858 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7859 udelay(32);
7860 }
7861 tmp |= SBI_SSCCTL_DISABLE;
7862 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7863 }
7864
7865 mutex_unlock(&dev_priv->sb_lock);
7866 }
7867
7868 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7869
7870 static const uint16_t sscdivintphase[] = {
7871 [BEND_IDX( 50)] = 0x3B23,
7872 [BEND_IDX( 45)] = 0x3B23,
7873 [BEND_IDX( 40)] = 0x3C23,
7874 [BEND_IDX( 35)] = 0x3C23,
7875 [BEND_IDX( 30)] = 0x3D23,
7876 [BEND_IDX( 25)] = 0x3D23,
7877 [BEND_IDX( 20)] = 0x3E23,
7878 [BEND_IDX( 15)] = 0x3E23,
7879 [BEND_IDX( 10)] = 0x3F23,
7880 [BEND_IDX( 5)] = 0x3F23,
7881 [BEND_IDX( 0)] = 0x0025,
7882 [BEND_IDX( -5)] = 0x0025,
7883 [BEND_IDX(-10)] = 0x0125,
7884 [BEND_IDX(-15)] = 0x0125,
7885 [BEND_IDX(-20)] = 0x0225,
7886 [BEND_IDX(-25)] = 0x0225,
7887 [BEND_IDX(-30)] = 0x0325,
7888 [BEND_IDX(-35)] = 0x0325,
7889 [BEND_IDX(-40)] = 0x0425,
7890 [BEND_IDX(-45)] = 0x0425,
7891 [BEND_IDX(-50)] = 0x0525,
7892 };
7893
7894 /*
7895 * Bend CLKOUT_DP
7896 * steps -50 to 50 inclusive, in steps of 5
7897 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7898 * change in clock period = -(steps / 10) * 5.787 ps
7899 */
7900 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7901 {
7902 uint32_t tmp;
7903 int idx = BEND_IDX(steps);
7904
7905 if (WARN_ON(steps % 5 != 0))
7906 return;
7907
7908 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7909 return;
7910
7911 mutex_lock(&dev_priv->sb_lock);
7912
7913 if (steps % 10 != 0)
7914 tmp = 0xAAAAAAAB;
7915 else
7916 tmp = 0x00000000;
7917 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7918
7919 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7920 tmp &= 0xffff0000;
7921 tmp |= sscdivintphase[idx];
7922 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7923
7924 mutex_unlock(&dev_priv->sb_lock);
7925 }
7926
7927 #undef BEND_IDX
7928
7929 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7930 {
7931 struct intel_encoder *encoder;
7932 bool has_vga = false;
7933
7934 for_each_intel_encoder(&dev_priv->drm, encoder) {
7935 switch (encoder->type) {
7936 case INTEL_OUTPUT_ANALOG:
7937 has_vga = true;
7938 break;
7939 default:
7940 break;
7941 }
7942 }
7943
7944 if (has_vga) {
7945 lpt_bend_clkout_dp(dev_priv, 0);
7946 lpt_enable_clkout_dp(dev_priv, true, true);
7947 } else {
7948 lpt_disable_clkout_dp(dev_priv);
7949 }
7950 }
7951
7952 /*
7953 * Initialize reference clocks when the driver loads
7954 */
7955 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7956 {
7957 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7958 ironlake_init_pch_refclk(dev_priv);
7959 else if (HAS_PCH_LPT(dev_priv))
7960 lpt_init_pch_refclk(dev_priv);
7961 }
7962
7963 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7964 {
7965 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7967 int pipe = intel_crtc->pipe;
7968 uint32_t val;
7969
7970 val = 0;
7971
7972 switch (intel_crtc->config->pipe_bpp) {
7973 case 18:
7974 val |= PIPECONF_6BPC;
7975 break;
7976 case 24:
7977 val |= PIPECONF_8BPC;
7978 break;
7979 case 30:
7980 val |= PIPECONF_10BPC;
7981 break;
7982 case 36:
7983 val |= PIPECONF_12BPC;
7984 break;
7985 default:
7986 /* Case prevented by intel_choose_pipe_bpp_dither. */
7987 BUG();
7988 }
7989
7990 if (intel_crtc->config->dither)
7991 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7992
7993 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7994 val |= PIPECONF_INTERLACED_ILK;
7995 else
7996 val |= PIPECONF_PROGRESSIVE;
7997
7998 if (intel_crtc->config->limited_color_range)
7999 val |= PIPECONF_COLOR_RANGE_SELECT;
8000
8001 I915_WRITE(PIPECONF(pipe), val);
8002 POSTING_READ(PIPECONF(pipe));
8003 }
8004
8005 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8006 {
8007 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8009 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8010 u32 val = 0;
8011
8012 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8013 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8014
8015 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8016 val |= PIPECONF_INTERLACED_ILK;
8017 else
8018 val |= PIPECONF_PROGRESSIVE;
8019
8020 I915_WRITE(PIPECONF(cpu_transcoder), val);
8021 POSTING_READ(PIPECONF(cpu_transcoder));
8022 }
8023
8024 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8025 {
8026 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8028
8029 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8030 u32 val = 0;
8031
8032 switch (intel_crtc->config->pipe_bpp) {
8033 case 18:
8034 val |= PIPEMISC_DITHER_6_BPC;
8035 break;
8036 case 24:
8037 val |= PIPEMISC_DITHER_8_BPC;
8038 break;
8039 case 30:
8040 val |= PIPEMISC_DITHER_10_BPC;
8041 break;
8042 case 36:
8043 val |= PIPEMISC_DITHER_12_BPC;
8044 break;
8045 default:
8046 /* Case prevented by pipe_config_set_bpp. */
8047 BUG();
8048 }
8049
8050 if (intel_crtc->config->dither)
8051 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8052
8053 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8054 }
8055 }
8056
8057 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8058 {
8059 /*
8060 * Account for spread spectrum to avoid
8061 * oversubscribing the link. Max center spread
8062 * is 2.5%; use 5% for safety's sake.
8063 */
8064 u32 bps = target_clock * bpp * 21 / 20;
8065 return DIV_ROUND_UP(bps, link_bw * 8);
8066 }
8067
8068 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8069 {
8070 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8071 }
8072
8073 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8074 struct intel_crtc_state *crtc_state,
8075 struct dpll *reduced_clock)
8076 {
8077 struct drm_crtc *crtc = &intel_crtc->base;
8078 struct drm_device *dev = crtc->dev;
8079 struct drm_i915_private *dev_priv = to_i915(dev);
8080 u32 dpll, fp, fp2;
8081 int factor;
8082
8083 /* Enable autotuning of the PLL clock (if permissible) */
8084 factor = 21;
8085 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8086 if ((intel_panel_use_ssc(dev_priv) &&
8087 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8088 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8089 factor = 25;
8090 } else if (crtc_state->sdvo_tv_clock)
8091 factor = 20;
8092
8093 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8094
8095 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8096 fp |= FP_CB_TUNE;
8097
8098 if (reduced_clock) {
8099 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8100
8101 if (reduced_clock->m < factor * reduced_clock->n)
8102 fp2 |= FP_CB_TUNE;
8103 } else {
8104 fp2 = fp;
8105 }
8106
8107 dpll = 0;
8108
8109 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8110 dpll |= DPLLB_MODE_LVDS;
8111 else
8112 dpll |= DPLLB_MODE_DAC_SERIAL;
8113
8114 dpll |= (crtc_state->pixel_multiplier - 1)
8115 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8116
8117 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8118 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8119 dpll |= DPLL_SDVO_HIGH_SPEED;
8120
8121 if (intel_crtc_has_dp_encoder(crtc_state))
8122 dpll |= DPLL_SDVO_HIGH_SPEED;
8123
8124 /*
8125 * The high speed IO clock is only really required for
8126 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8127 * possible to share the DPLL between CRT and HDMI. Enabling
8128 * the clock needlessly does no real harm, except use up a
8129 * bit of power potentially.
8130 *
8131 * We'll limit this to IVB with 3 pipes, since it has only two
8132 * DPLLs and so DPLL sharing is the only way to get three pipes
8133 * driving PCH ports at the same time. On SNB we could do this,
8134 * and potentially avoid enabling the second DPLL, but it's not
8135 * clear if it''s a win or loss power wise. No point in doing
8136 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8137 */
8138 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8139 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8140 dpll |= DPLL_SDVO_HIGH_SPEED;
8141
8142 /* compute bitmask from p1 value */
8143 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8144 /* also FPA1 */
8145 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8146
8147 switch (crtc_state->dpll.p2) {
8148 case 5:
8149 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8150 break;
8151 case 7:
8152 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8153 break;
8154 case 10:
8155 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8156 break;
8157 case 14:
8158 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8159 break;
8160 }
8161
8162 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8163 intel_panel_use_ssc(dev_priv))
8164 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8165 else
8166 dpll |= PLL_REF_INPUT_DREFCLK;
8167
8168 dpll |= DPLL_VCO_ENABLE;
8169
8170 crtc_state->dpll_hw_state.dpll = dpll;
8171 crtc_state->dpll_hw_state.fp0 = fp;
8172 crtc_state->dpll_hw_state.fp1 = fp2;
8173 }
8174
8175 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8176 struct intel_crtc_state *crtc_state)
8177 {
8178 struct drm_device *dev = crtc->base.dev;
8179 struct drm_i915_private *dev_priv = to_i915(dev);
8180 struct dpll reduced_clock;
8181 bool has_reduced_clock = false;
8182 struct intel_shared_dpll *pll;
8183 const struct intel_limit *limit;
8184 int refclk = 120000;
8185
8186 memset(&crtc_state->dpll_hw_state, 0,
8187 sizeof(crtc_state->dpll_hw_state));
8188
8189 crtc->lowfreq_avail = false;
8190
8191 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8192 if (!crtc_state->has_pch_encoder)
8193 return 0;
8194
8195 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8196 if (intel_panel_use_ssc(dev_priv)) {
8197 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8198 dev_priv->vbt.lvds_ssc_freq);
8199 refclk = dev_priv->vbt.lvds_ssc_freq;
8200 }
8201
8202 if (intel_is_dual_link_lvds(dev)) {
8203 if (refclk == 100000)
8204 limit = &intel_limits_ironlake_dual_lvds_100m;
8205 else
8206 limit = &intel_limits_ironlake_dual_lvds;
8207 } else {
8208 if (refclk == 100000)
8209 limit = &intel_limits_ironlake_single_lvds_100m;
8210 else
8211 limit = &intel_limits_ironlake_single_lvds;
8212 }
8213 } else {
8214 limit = &intel_limits_ironlake_dac;
8215 }
8216
8217 if (!crtc_state->clock_set &&
8218 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8219 refclk, NULL, &crtc_state->dpll)) {
8220 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8221 return -EINVAL;
8222 }
8223
8224 ironlake_compute_dpll(crtc, crtc_state,
8225 has_reduced_clock ? &reduced_clock : NULL);
8226
8227 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8228 if (pll == NULL) {
8229 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8230 pipe_name(crtc->pipe));
8231 return -EINVAL;
8232 }
8233
8234 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8235 has_reduced_clock)
8236 crtc->lowfreq_avail = true;
8237
8238 return 0;
8239 }
8240
8241 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8242 struct intel_link_m_n *m_n)
8243 {
8244 struct drm_device *dev = crtc->base.dev;
8245 struct drm_i915_private *dev_priv = to_i915(dev);
8246 enum pipe pipe = crtc->pipe;
8247
8248 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8249 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8250 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8251 & ~TU_SIZE_MASK;
8252 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8253 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8254 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8255 }
8256
8257 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8258 enum transcoder transcoder,
8259 struct intel_link_m_n *m_n,
8260 struct intel_link_m_n *m2_n2)
8261 {
8262 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8263 enum pipe pipe = crtc->pipe;
8264
8265 if (INTEL_GEN(dev_priv) >= 5) {
8266 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8267 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8268 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8269 & ~TU_SIZE_MASK;
8270 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8271 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8272 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8273 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8274 * gen < 8) and if DRRS is supported (to make sure the
8275 * registers are not unnecessarily read).
8276 */
8277 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8278 crtc->config->has_drrs) {
8279 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8280 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8281 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8282 & ~TU_SIZE_MASK;
8283 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8284 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8285 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8286 }
8287 } else {
8288 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8289 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8290 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8291 & ~TU_SIZE_MASK;
8292 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8293 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8294 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8295 }
8296 }
8297
8298 void intel_dp_get_m_n(struct intel_crtc *crtc,
8299 struct intel_crtc_state *pipe_config)
8300 {
8301 if (pipe_config->has_pch_encoder)
8302 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8303 else
8304 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8305 &pipe_config->dp_m_n,
8306 &pipe_config->dp_m2_n2);
8307 }
8308
8309 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8310 struct intel_crtc_state *pipe_config)
8311 {
8312 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8313 &pipe_config->fdi_m_n, NULL);
8314 }
8315
8316 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8317 struct intel_crtc_state *pipe_config)
8318 {
8319 struct drm_device *dev = crtc->base.dev;
8320 struct drm_i915_private *dev_priv = to_i915(dev);
8321 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8322 uint32_t ps_ctrl = 0;
8323 int id = -1;
8324 int i;
8325
8326 /* find scaler attached to this pipe */
8327 for (i = 0; i < crtc->num_scalers; i++) {
8328 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8329 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8330 id = i;
8331 pipe_config->pch_pfit.enabled = true;
8332 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8333 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8334 break;
8335 }
8336 }
8337
8338 scaler_state->scaler_id = id;
8339 if (id >= 0) {
8340 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8341 } else {
8342 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8343 }
8344 }
8345
8346 static void
8347 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8348 struct intel_initial_plane_config *plane_config)
8349 {
8350 struct drm_device *dev = crtc->base.dev;
8351 struct drm_i915_private *dev_priv = to_i915(dev);
8352 u32 val, base, offset, stride_mult, tiling;
8353 int pipe = crtc->pipe;
8354 int fourcc, pixel_format;
8355 unsigned int aligned_height;
8356 struct drm_framebuffer *fb;
8357 struct intel_framebuffer *intel_fb;
8358
8359 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8360 if (!intel_fb) {
8361 DRM_DEBUG_KMS("failed to alloc fb\n");
8362 return;
8363 }
8364
8365 fb = &intel_fb->base;
8366
8367 fb->dev = dev;
8368
8369 val = I915_READ(PLANE_CTL(pipe, 0));
8370 if (!(val & PLANE_CTL_ENABLE))
8371 goto error;
8372
8373 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8374 fourcc = skl_format_to_fourcc(pixel_format,
8375 val & PLANE_CTL_ORDER_RGBX,
8376 val & PLANE_CTL_ALPHA_MASK);
8377 fb->format = drm_format_info(fourcc);
8378
8379 tiling = val & PLANE_CTL_TILED_MASK;
8380 switch (tiling) {
8381 case PLANE_CTL_TILED_LINEAR:
8382 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8383 break;
8384 case PLANE_CTL_TILED_X:
8385 plane_config->tiling = I915_TILING_X;
8386 fb->modifier = I915_FORMAT_MOD_X_TILED;
8387 break;
8388 case PLANE_CTL_TILED_Y:
8389 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8390 break;
8391 case PLANE_CTL_TILED_YF:
8392 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8393 break;
8394 default:
8395 MISSING_CASE(tiling);
8396 goto error;
8397 }
8398
8399 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8400 plane_config->base = base;
8401
8402 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8403
8404 val = I915_READ(PLANE_SIZE(pipe, 0));
8405 fb->height = ((val >> 16) & 0xfff) + 1;
8406 fb->width = ((val >> 0) & 0x1fff) + 1;
8407
8408 val = I915_READ(PLANE_STRIDE(pipe, 0));
8409 stride_mult = intel_fb_stride_alignment(fb, 0);
8410 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8411
8412 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8413
8414 plane_config->size = fb->pitches[0] * aligned_height;
8415
8416 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8417 pipe_name(pipe), fb->width, fb->height,
8418 fb->format->cpp[0] * 8, base, fb->pitches[0],
8419 plane_config->size);
8420
8421 plane_config->fb = intel_fb;
8422 return;
8423
8424 error:
8425 kfree(intel_fb);
8426 }
8427
8428 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8429 struct intel_crtc_state *pipe_config)
8430 {
8431 struct drm_device *dev = crtc->base.dev;
8432 struct drm_i915_private *dev_priv = to_i915(dev);
8433 uint32_t tmp;
8434
8435 tmp = I915_READ(PF_CTL(crtc->pipe));
8436
8437 if (tmp & PF_ENABLE) {
8438 pipe_config->pch_pfit.enabled = true;
8439 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8440 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8441
8442 /* We currently do not free assignements of panel fitters on
8443 * ivb/hsw (since we don't use the higher upscaling modes which
8444 * differentiates them) so just WARN about this case for now. */
8445 if (IS_GEN7(dev_priv)) {
8446 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8447 PF_PIPE_SEL_IVB(crtc->pipe));
8448 }
8449 }
8450 }
8451
8452 static void
8453 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8454 struct intel_initial_plane_config *plane_config)
8455 {
8456 struct drm_device *dev = crtc->base.dev;
8457 struct drm_i915_private *dev_priv = to_i915(dev);
8458 u32 val, base, offset;
8459 int pipe = crtc->pipe;
8460 int fourcc, pixel_format;
8461 unsigned int aligned_height;
8462 struct drm_framebuffer *fb;
8463 struct intel_framebuffer *intel_fb;
8464
8465 val = I915_READ(DSPCNTR(pipe));
8466 if (!(val & DISPLAY_PLANE_ENABLE))
8467 return;
8468
8469 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8470 if (!intel_fb) {
8471 DRM_DEBUG_KMS("failed to alloc fb\n");
8472 return;
8473 }
8474
8475 fb = &intel_fb->base;
8476
8477 fb->dev = dev;
8478
8479 if (INTEL_GEN(dev_priv) >= 4) {
8480 if (val & DISPPLANE_TILED) {
8481 plane_config->tiling = I915_TILING_X;
8482 fb->modifier = I915_FORMAT_MOD_X_TILED;
8483 }
8484 }
8485
8486 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8487 fourcc = i9xx_format_to_fourcc(pixel_format);
8488 fb->format = drm_format_info(fourcc);
8489
8490 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8491 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8492 offset = I915_READ(DSPOFFSET(pipe));
8493 } else {
8494 if (plane_config->tiling)
8495 offset = I915_READ(DSPTILEOFF(pipe));
8496 else
8497 offset = I915_READ(DSPLINOFF(pipe));
8498 }
8499 plane_config->base = base;
8500
8501 val = I915_READ(PIPESRC(pipe));
8502 fb->width = ((val >> 16) & 0xfff) + 1;
8503 fb->height = ((val >> 0) & 0xfff) + 1;
8504
8505 val = I915_READ(DSPSTRIDE(pipe));
8506 fb->pitches[0] = val & 0xffffffc0;
8507
8508 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8509
8510 plane_config->size = fb->pitches[0] * aligned_height;
8511
8512 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8513 pipe_name(pipe), fb->width, fb->height,
8514 fb->format->cpp[0] * 8, base, fb->pitches[0],
8515 plane_config->size);
8516
8517 plane_config->fb = intel_fb;
8518 }
8519
8520 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8521 struct intel_crtc_state *pipe_config)
8522 {
8523 struct drm_device *dev = crtc->base.dev;
8524 struct drm_i915_private *dev_priv = to_i915(dev);
8525 enum intel_display_power_domain power_domain;
8526 uint32_t tmp;
8527 bool ret;
8528
8529 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8530 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8531 return false;
8532
8533 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8534 pipe_config->shared_dpll = NULL;
8535
8536 ret = false;
8537 tmp = I915_READ(PIPECONF(crtc->pipe));
8538 if (!(tmp & PIPECONF_ENABLE))
8539 goto out;
8540
8541 switch (tmp & PIPECONF_BPC_MASK) {
8542 case PIPECONF_6BPC:
8543 pipe_config->pipe_bpp = 18;
8544 break;
8545 case PIPECONF_8BPC:
8546 pipe_config->pipe_bpp = 24;
8547 break;
8548 case PIPECONF_10BPC:
8549 pipe_config->pipe_bpp = 30;
8550 break;
8551 case PIPECONF_12BPC:
8552 pipe_config->pipe_bpp = 36;
8553 break;
8554 default:
8555 break;
8556 }
8557
8558 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8559 pipe_config->limited_color_range = true;
8560
8561 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8562 struct intel_shared_dpll *pll;
8563 enum intel_dpll_id pll_id;
8564
8565 pipe_config->has_pch_encoder = true;
8566
8567 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8568 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8569 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8570
8571 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8572
8573 if (HAS_PCH_IBX(dev_priv)) {
8574 /*
8575 * The pipe->pch transcoder and pch transcoder->pll
8576 * mapping is fixed.
8577 */
8578 pll_id = (enum intel_dpll_id) crtc->pipe;
8579 } else {
8580 tmp = I915_READ(PCH_DPLL_SEL);
8581 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8582 pll_id = DPLL_ID_PCH_PLL_B;
8583 else
8584 pll_id= DPLL_ID_PCH_PLL_A;
8585 }
8586
8587 pipe_config->shared_dpll =
8588 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8589 pll = pipe_config->shared_dpll;
8590
8591 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8592 &pipe_config->dpll_hw_state));
8593
8594 tmp = pipe_config->dpll_hw_state.dpll;
8595 pipe_config->pixel_multiplier =
8596 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8597 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8598
8599 ironlake_pch_clock_get(crtc, pipe_config);
8600 } else {
8601 pipe_config->pixel_multiplier = 1;
8602 }
8603
8604 intel_get_pipe_timings(crtc, pipe_config);
8605 intel_get_pipe_src_size(crtc, pipe_config);
8606
8607 ironlake_get_pfit_config(crtc, pipe_config);
8608
8609 ret = true;
8610
8611 out:
8612 intel_display_power_put(dev_priv, power_domain);
8613
8614 return ret;
8615 }
8616
8617 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8618 {
8619 struct drm_device *dev = &dev_priv->drm;
8620 struct intel_crtc *crtc;
8621
8622 for_each_intel_crtc(dev, crtc)
8623 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8624 pipe_name(crtc->pipe));
8625
8626 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8627 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8628 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8629 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8630 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8631 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8632 "CPU PWM1 enabled\n");
8633 if (IS_HASWELL(dev_priv))
8634 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8635 "CPU PWM2 enabled\n");
8636 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8637 "PCH PWM1 enabled\n");
8638 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8639 "Utility pin enabled\n");
8640 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8641
8642 /*
8643 * In theory we can still leave IRQs enabled, as long as only the HPD
8644 * interrupts remain enabled. We used to check for that, but since it's
8645 * gen-specific and since we only disable LCPLL after we fully disable
8646 * the interrupts, the check below should be enough.
8647 */
8648 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8649 }
8650
8651 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8652 {
8653 if (IS_HASWELL(dev_priv))
8654 return I915_READ(D_COMP_HSW);
8655 else
8656 return I915_READ(D_COMP_BDW);
8657 }
8658
8659 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8660 {
8661 if (IS_HASWELL(dev_priv)) {
8662 mutex_lock(&dev_priv->rps.hw_lock);
8663 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8664 val))
8665 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8666 mutex_unlock(&dev_priv->rps.hw_lock);
8667 } else {
8668 I915_WRITE(D_COMP_BDW, val);
8669 POSTING_READ(D_COMP_BDW);
8670 }
8671 }
8672
8673 /*
8674 * This function implements pieces of two sequences from BSpec:
8675 * - Sequence for display software to disable LCPLL
8676 * - Sequence for display software to allow package C8+
8677 * The steps implemented here are just the steps that actually touch the LCPLL
8678 * register. Callers should take care of disabling all the display engine
8679 * functions, doing the mode unset, fixing interrupts, etc.
8680 */
8681 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8682 bool switch_to_fclk, bool allow_power_down)
8683 {
8684 uint32_t val;
8685
8686 assert_can_disable_lcpll(dev_priv);
8687
8688 val = I915_READ(LCPLL_CTL);
8689
8690 if (switch_to_fclk) {
8691 val |= LCPLL_CD_SOURCE_FCLK;
8692 I915_WRITE(LCPLL_CTL, val);
8693
8694 if (wait_for_us(I915_READ(LCPLL_CTL) &
8695 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8696 DRM_ERROR("Switching to FCLK failed\n");
8697
8698 val = I915_READ(LCPLL_CTL);
8699 }
8700
8701 val |= LCPLL_PLL_DISABLE;
8702 I915_WRITE(LCPLL_CTL, val);
8703 POSTING_READ(LCPLL_CTL);
8704
8705 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8706 DRM_ERROR("LCPLL still locked\n");
8707
8708 val = hsw_read_dcomp(dev_priv);
8709 val |= D_COMP_COMP_DISABLE;
8710 hsw_write_dcomp(dev_priv, val);
8711 ndelay(100);
8712
8713 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8714 1))
8715 DRM_ERROR("D_COMP RCOMP still in progress\n");
8716
8717 if (allow_power_down) {
8718 val = I915_READ(LCPLL_CTL);
8719 val |= LCPLL_POWER_DOWN_ALLOW;
8720 I915_WRITE(LCPLL_CTL, val);
8721 POSTING_READ(LCPLL_CTL);
8722 }
8723 }
8724
8725 /*
8726 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8727 * source.
8728 */
8729 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8730 {
8731 uint32_t val;
8732
8733 val = I915_READ(LCPLL_CTL);
8734
8735 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8736 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8737 return;
8738
8739 /*
8740 * Make sure we're not on PC8 state before disabling PC8, otherwise
8741 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8742 */
8743 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8744
8745 if (val & LCPLL_POWER_DOWN_ALLOW) {
8746 val &= ~LCPLL_POWER_DOWN_ALLOW;
8747 I915_WRITE(LCPLL_CTL, val);
8748 POSTING_READ(LCPLL_CTL);
8749 }
8750
8751 val = hsw_read_dcomp(dev_priv);
8752 val |= D_COMP_COMP_FORCE;
8753 val &= ~D_COMP_COMP_DISABLE;
8754 hsw_write_dcomp(dev_priv, val);
8755
8756 val = I915_READ(LCPLL_CTL);
8757 val &= ~LCPLL_PLL_DISABLE;
8758 I915_WRITE(LCPLL_CTL, val);
8759
8760 if (intel_wait_for_register(dev_priv,
8761 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8762 5))
8763 DRM_ERROR("LCPLL not locked yet\n");
8764
8765 if (val & LCPLL_CD_SOURCE_FCLK) {
8766 val = I915_READ(LCPLL_CTL);
8767 val &= ~LCPLL_CD_SOURCE_FCLK;
8768 I915_WRITE(LCPLL_CTL, val);
8769
8770 if (wait_for_us((I915_READ(LCPLL_CTL) &
8771 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8772 DRM_ERROR("Switching back to LCPLL failed\n");
8773 }
8774
8775 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8776 intel_update_cdclk(dev_priv);
8777 }
8778
8779 /*
8780 * Package states C8 and deeper are really deep PC states that can only be
8781 * reached when all the devices on the system allow it, so even if the graphics
8782 * device allows PC8+, it doesn't mean the system will actually get to these
8783 * states. Our driver only allows PC8+ when going into runtime PM.
8784 *
8785 * The requirements for PC8+ are that all the outputs are disabled, the power
8786 * well is disabled and most interrupts are disabled, and these are also
8787 * requirements for runtime PM. When these conditions are met, we manually do
8788 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8789 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8790 * hang the machine.
8791 *
8792 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8793 * the state of some registers, so when we come back from PC8+ we need to
8794 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8795 * need to take care of the registers kept by RC6. Notice that this happens even
8796 * if we don't put the device in PCI D3 state (which is what currently happens
8797 * because of the runtime PM support).
8798 *
8799 * For more, read "Display Sequences for Package C8" on the hardware
8800 * documentation.
8801 */
8802 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8803 {
8804 uint32_t val;
8805
8806 DRM_DEBUG_KMS("Enabling package C8+\n");
8807
8808 if (HAS_PCH_LPT_LP(dev_priv)) {
8809 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8810 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8811 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8812 }
8813
8814 lpt_disable_clkout_dp(dev_priv);
8815 hsw_disable_lcpll(dev_priv, true, true);
8816 }
8817
8818 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8819 {
8820 uint32_t val;
8821
8822 DRM_DEBUG_KMS("Disabling package C8+\n");
8823
8824 hsw_restore_lcpll(dev_priv);
8825 lpt_init_pch_refclk(dev_priv);
8826
8827 if (HAS_PCH_LPT_LP(dev_priv)) {
8828 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8829 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8830 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8831 }
8832 }
8833
8834 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8835 struct intel_crtc_state *crtc_state)
8836 {
8837 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8838 struct intel_encoder *encoder =
8839 intel_ddi_get_crtc_new_encoder(crtc_state);
8840
8841 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8842 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8843 pipe_name(crtc->pipe));
8844 return -EINVAL;
8845 }
8846 }
8847
8848 crtc->lowfreq_avail = false;
8849
8850 return 0;
8851 }
8852
8853 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8854 enum port port,
8855 struct intel_crtc_state *pipe_config)
8856 {
8857 enum intel_dpll_id id;
8858
8859 switch (port) {
8860 case PORT_A:
8861 id = DPLL_ID_SKL_DPLL0;
8862 break;
8863 case PORT_B:
8864 id = DPLL_ID_SKL_DPLL1;
8865 break;
8866 case PORT_C:
8867 id = DPLL_ID_SKL_DPLL2;
8868 break;
8869 default:
8870 DRM_ERROR("Incorrect port type\n");
8871 return;
8872 }
8873
8874 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8875 }
8876
8877 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8878 enum port port,
8879 struct intel_crtc_state *pipe_config)
8880 {
8881 enum intel_dpll_id id;
8882 u32 temp;
8883
8884 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8885 id = temp >> (port * 3 + 1);
8886
8887 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8888 return;
8889
8890 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8891 }
8892
8893 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8894 enum port port,
8895 struct intel_crtc_state *pipe_config)
8896 {
8897 enum intel_dpll_id id;
8898 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8899
8900 switch (ddi_pll_sel) {
8901 case PORT_CLK_SEL_WRPLL1:
8902 id = DPLL_ID_WRPLL1;
8903 break;
8904 case PORT_CLK_SEL_WRPLL2:
8905 id = DPLL_ID_WRPLL2;
8906 break;
8907 case PORT_CLK_SEL_SPLL:
8908 id = DPLL_ID_SPLL;
8909 break;
8910 case PORT_CLK_SEL_LCPLL_810:
8911 id = DPLL_ID_LCPLL_810;
8912 break;
8913 case PORT_CLK_SEL_LCPLL_1350:
8914 id = DPLL_ID_LCPLL_1350;
8915 break;
8916 case PORT_CLK_SEL_LCPLL_2700:
8917 id = DPLL_ID_LCPLL_2700;
8918 break;
8919 default:
8920 MISSING_CASE(ddi_pll_sel);
8921 /* fall through */
8922 case PORT_CLK_SEL_NONE:
8923 return;
8924 }
8925
8926 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8927 }
8928
8929 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8930 struct intel_crtc_state *pipe_config,
8931 u64 *power_domain_mask)
8932 {
8933 struct drm_device *dev = crtc->base.dev;
8934 struct drm_i915_private *dev_priv = to_i915(dev);
8935 enum intel_display_power_domain power_domain;
8936 u32 tmp;
8937
8938 /*
8939 * The pipe->transcoder mapping is fixed with the exception of the eDP
8940 * transcoder handled below.
8941 */
8942 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8943
8944 /*
8945 * XXX: Do intel_display_power_get_if_enabled before reading this (for
8946 * consistency and less surprising code; it's in always on power).
8947 */
8948 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8949 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8950 enum pipe trans_edp_pipe;
8951 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8952 default:
8953 WARN(1, "unknown pipe linked to edp transcoder\n");
8954 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8955 case TRANS_DDI_EDP_INPUT_A_ON:
8956 trans_edp_pipe = PIPE_A;
8957 break;
8958 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8959 trans_edp_pipe = PIPE_B;
8960 break;
8961 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8962 trans_edp_pipe = PIPE_C;
8963 break;
8964 }
8965
8966 if (trans_edp_pipe == crtc->pipe)
8967 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8968 }
8969
8970 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8971 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8972 return false;
8973 *power_domain_mask |= BIT_ULL(power_domain);
8974
8975 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8976
8977 return tmp & PIPECONF_ENABLE;
8978 }
8979
8980 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
8981 struct intel_crtc_state *pipe_config,
8982 u64 *power_domain_mask)
8983 {
8984 struct drm_device *dev = crtc->base.dev;
8985 struct drm_i915_private *dev_priv = to_i915(dev);
8986 enum intel_display_power_domain power_domain;
8987 enum port port;
8988 enum transcoder cpu_transcoder;
8989 u32 tmp;
8990
8991 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
8992 if (port == PORT_A)
8993 cpu_transcoder = TRANSCODER_DSI_A;
8994 else
8995 cpu_transcoder = TRANSCODER_DSI_C;
8996
8997 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
8998 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8999 continue;
9000 *power_domain_mask |= BIT_ULL(power_domain);
9001
9002 /*
9003 * The PLL needs to be enabled with a valid divider
9004 * configuration, otherwise accessing DSI registers will hang
9005 * the machine. See BSpec North Display Engine
9006 * registers/MIPI[BXT]. We can break out here early, since we
9007 * need the same DSI PLL to be enabled for both DSI ports.
9008 */
9009 if (!intel_dsi_pll_is_enabled(dev_priv))
9010 break;
9011
9012 /* XXX: this works for video mode only */
9013 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9014 if (!(tmp & DPI_ENABLE))
9015 continue;
9016
9017 tmp = I915_READ(MIPI_CTRL(port));
9018 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9019 continue;
9020
9021 pipe_config->cpu_transcoder = cpu_transcoder;
9022 break;
9023 }
9024
9025 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9026 }
9027
9028 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9029 struct intel_crtc_state *pipe_config)
9030 {
9031 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9032 struct intel_shared_dpll *pll;
9033 enum port port;
9034 uint32_t tmp;
9035
9036 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9037
9038 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9039
9040 if (IS_GEN9_BC(dev_priv))
9041 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9042 else if (IS_GEN9_LP(dev_priv))
9043 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9044 else
9045 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9046
9047 pll = pipe_config->shared_dpll;
9048 if (pll) {
9049 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9050 &pipe_config->dpll_hw_state));
9051 }
9052
9053 /*
9054 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9055 * DDI E. So just check whether this pipe is wired to DDI E and whether
9056 * the PCH transcoder is on.
9057 */
9058 if (INTEL_GEN(dev_priv) < 9 &&
9059 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9060 pipe_config->has_pch_encoder = true;
9061
9062 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9063 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9064 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9065
9066 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9067 }
9068 }
9069
9070 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9071 struct intel_crtc_state *pipe_config)
9072 {
9073 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9074 enum intel_display_power_domain power_domain;
9075 u64 power_domain_mask;
9076 bool active;
9077
9078 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9079 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9080 return false;
9081 power_domain_mask = BIT_ULL(power_domain);
9082
9083 pipe_config->shared_dpll = NULL;
9084
9085 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9086
9087 if (IS_GEN9_LP(dev_priv) &&
9088 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9089 WARN_ON(active);
9090 active = true;
9091 }
9092
9093 if (!active)
9094 goto out;
9095
9096 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9097 haswell_get_ddi_port_state(crtc, pipe_config);
9098 intel_get_pipe_timings(crtc, pipe_config);
9099 }
9100
9101 intel_get_pipe_src_size(crtc, pipe_config);
9102
9103 pipe_config->gamma_mode =
9104 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9105
9106 if (INTEL_GEN(dev_priv) >= 9) {
9107 intel_crtc_init_scalers(crtc, pipe_config);
9108
9109 pipe_config->scaler_state.scaler_id = -1;
9110 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9111 }
9112
9113 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9114 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9115 power_domain_mask |= BIT_ULL(power_domain);
9116 if (INTEL_GEN(dev_priv) >= 9)
9117 skylake_get_pfit_config(crtc, pipe_config);
9118 else
9119 ironlake_get_pfit_config(crtc, pipe_config);
9120 }
9121
9122 if (IS_HASWELL(dev_priv))
9123 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9124 (I915_READ(IPS_CTL) & IPS_ENABLE);
9125
9126 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9127 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9128 pipe_config->pixel_multiplier =
9129 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9130 } else {
9131 pipe_config->pixel_multiplier = 1;
9132 }
9133
9134 out:
9135 for_each_power_domain(power_domain, power_domain_mask)
9136 intel_display_power_put(dev_priv, power_domain);
9137
9138 return active;
9139 }
9140
9141 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9142 const struct intel_plane_state *plane_state)
9143 {
9144 unsigned int width = plane_state->base.crtc_w;
9145 unsigned int stride = roundup_pow_of_two(width) * 4;
9146
9147 switch (stride) {
9148 default:
9149 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9150 width, stride);
9151 stride = 256;
9152 /* fallthrough */
9153 case 256:
9154 case 512:
9155 case 1024:
9156 case 2048:
9157 break;
9158 }
9159
9160 return CURSOR_ENABLE |
9161 CURSOR_GAMMA_ENABLE |
9162 CURSOR_FORMAT_ARGB |
9163 CURSOR_STRIDE(stride);
9164 }
9165
9166 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9167 const struct intel_plane_state *plane_state)
9168 {
9169 struct drm_device *dev = crtc->dev;
9170 struct drm_i915_private *dev_priv = to_i915(dev);
9171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9172 uint32_t cntl = 0, size = 0;
9173
9174 if (plane_state && plane_state->base.visible) {
9175 unsigned int width = plane_state->base.crtc_w;
9176 unsigned int height = plane_state->base.crtc_h;
9177
9178 cntl = plane_state->ctl;
9179 size = (height << 12) | width;
9180 }
9181
9182 if (intel_crtc->cursor_cntl != 0 &&
9183 (intel_crtc->cursor_base != base ||
9184 intel_crtc->cursor_size != size ||
9185 intel_crtc->cursor_cntl != cntl)) {
9186 /* On these chipsets we can only modify the base/size/stride
9187 * whilst the cursor is disabled.
9188 */
9189 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9190 POSTING_READ_FW(CURCNTR(PIPE_A));
9191 intel_crtc->cursor_cntl = 0;
9192 }
9193
9194 if (intel_crtc->cursor_base != base) {
9195 I915_WRITE_FW(CURBASE(PIPE_A), base);
9196 intel_crtc->cursor_base = base;
9197 }
9198
9199 if (intel_crtc->cursor_size != size) {
9200 I915_WRITE_FW(CURSIZE, size);
9201 intel_crtc->cursor_size = size;
9202 }
9203
9204 if (intel_crtc->cursor_cntl != cntl) {
9205 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9206 POSTING_READ_FW(CURCNTR(PIPE_A));
9207 intel_crtc->cursor_cntl = cntl;
9208 }
9209 }
9210
9211 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9212 const struct intel_plane_state *plane_state)
9213 {
9214 struct drm_i915_private *dev_priv =
9215 to_i915(plane_state->base.plane->dev);
9216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9217 enum pipe pipe = crtc->pipe;
9218 u32 cntl;
9219
9220 cntl = MCURSOR_GAMMA_ENABLE;
9221
9222 if (HAS_DDI(dev_priv))
9223 cntl |= CURSOR_PIPE_CSC_ENABLE;
9224
9225 cntl |= pipe << 28; /* Connect to correct pipe */
9226
9227 switch (plane_state->base.crtc_w) {
9228 case 64:
9229 cntl |= CURSOR_MODE_64_ARGB_AX;
9230 break;
9231 case 128:
9232 cntl |= CURSOR_MODE_128_ARGB_AX;
9233 break;
9234 case 256:
9235 cntl |= CURSOR_MODE_256_ARGB_AX;
9236 break;
9237 default:
9238 MISSING_CASE(plane_state->base.crtc_w);
9239 return 0;
9240 }
9241
9242 if (plane_state->base.rotation & DRM_ROTATE_180)
9243 cntl |= CURSOR_ROTATE_180;
9244
9245 return cntl;
9246 }
9247
9248 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
9249 const struct intel_plane_state *plane_state)
9250 {
9251 struct drm_device *dev = crtc->dev;
9252 struct drm_i915_private *dev_priv = to_i915(dev);
9253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9254 int pipe = intel_crtc->pipe;
9255 uint32_t cntl = 0;
9256
9257 if (plane_state && plane_state->base.visible)
9258 cntl = plane_state->ctl;
9259
9260 if (intel_crtc->cursor_cntl != cntl) {
9261 I915_WRITE_FW(CURCNTR(pipe), cntl);
9262 POSTING_READ_FW(CURCNTR(pipe));
9263 intel_crtc->cursor_cntl = cntl;
9264 }
9265
9266 /* and commit changes on next vblank */
9267 I915_WRITE_FW(CURBASE(pipe), base);
9268 POSTING_READ_FW(CURBASE(pipe));
9269
9270 intel_crtc->cursor_base = base;
9271 }
9272
9273 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9274 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9275 const struct intel_plane_state *plane_state)
9276 {
9277 struct drm_device *dev = crtc->dev;
9278 struct drm_i915_private *dev_priv = to_i915(dev);
9279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9280 int pipe = intel_crtc->pipe;
9281 u32 base = intel_crtc->cursor_addr;
9282 unsigned long irqflags;
9283 u32 pos = 0;
9284
9285 if (plane_state) {
9286 int x = plane_state->base.crtc_x;
9287 int y = plane_state->base.crtc_y;
9288
9289 if (x < 0) {
9290 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9291 x = -x;
9292 }
9293 pos |= x << CURSOR_X_SHIFT;
9294
9295 if (y < 0) {
9296 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9297 y = -y;
9298 }
9299 pos |= y << CURSOR_Y_SHIFT;
9300
9301 /* ILK+ do this automagically */
9302 if (HAS_GMCH_DISPLAY(dev_priv) &&
9303 plane_state->base.rotation & DRM_ROTATE_180) {
9304 base += (plane_state->base.crtc_h *
9305 plane_state->base.crtc_w - 1) * 4;
9306 }
9307 }
9308
9309 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9310
9311 I915_WRITE_FW(CURPOS(pipe), pos);
9312
9313 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
9314 i845_update_cursor(crtc, base, plane_state);
9315 else
9316 i9xx_update_cursor(crtc, base, plane_state);
9317
9318 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9319 }
9320
9321 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
9322 uint32_t width, uint32_t height)
9323 {
9324 if (width == 0 || height == 0)
9325 return false;
9326
9327 /*
9328 * 845g/865g are special in that they are only limited by
9329 * the width of their cursors, the height is arbitrary up to
9330 * the precision of the register. Everything else requires
9331 * square cursors, limited to a few power-of-two sizes.
9332 */
9333 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
9334 if ((width & 63) != 0)
9335 return false;
9336
9337 if (width > (IS_I845G(dev_priv) ? 64 : 512))
9338 return false;
9339
9340 if (height > 1023)
9341 return false;
9342 } else {
9343 switch (width | height) {
9344 case 256:
9345 case 128:
9346 if (IS_GEN2(dev_priv))
9347 return false;
9348 case 64:
9349 break;
9350 default:
9351 return false;
9352 }
9353 }
9354
9355 return true;
9356 }
9357
9358 /* VESA 640x480x72Hz mode to set on the pipe */
9359 static struct drm_display_mode load_detect_mode = {
9360 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9361 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9362 };
9363
9364 struct drm_framebuffer *
9365 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9366 struct drm_mode_fb_cmd2 *mode_cmd)
9367 {
9368 struct intel_framebuffer *intel_fb;
9369 int ret;
9370
9371 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9372 if (!intel_fb)
9373 return ERR_PTR(-ENOMEM);
9374
9375 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9376 if (ret)
9377 goto err;
9378
9379 return &intel_fb->base;
9380
9381 err:
9382 kfree(intel_fb);
9383 return ERR_PTR(ret);
9384 }
9385
9386 static u32
9387 intel_framebuffer_pitch_for_width(int width, int bpp)
9388 {
9389 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9390 return ALIGN(pitch, 64);
9391 }
9392
9393 static u32
9394 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9395 {
9396 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9397 return PAGE_ALIGN(pitch * mode->vdisplay);
9398 }
9399
9400 static struct drm_framebuffer *
9401 intel_framebuffer_create_for_mode(struct drm_device *dev,
9402 struct drm_display_mode *mode,
9403 int depth, int bpp)
9404 {
9405 struct drm_framebuffer *fb;
9406 struct drm_i915_gem_object *obj;
9407 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9408
9409 obj = i915_gem_object_create(to_i915(dev),
9410 intel_framebuffer_size_for_mode(mode, bpp));
9411 if (IS_ERR(obj))
9412 return ERR_CAST(obj);
9413
9414 mode_cmd.width = mode->hdisplay;
9415 mode_cmd.height = mode->vdisplay;
9416 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9417 bpp);
9418 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9419
9420 fb = intel_framebuffer_create(obj, &mode_cmd);
9421 if (IS_ERR(fb))
9422 i915_gem_object_put(obj);
9423
9424 return fb;
9425 }
9426
9427 static struct drm_framebuffer *
9428 mode_fits_in_fbdev(struct drm_device *dev,
9429 struct drm_display_mode *mode)
9430 {
9431 #ifdef CONFIG_DRM_FBDEV_EMULATION
9432 struct drm_i915_private *dev_priv = to_i915(dev);
9433 struct drm_i915_gem_object *obj;
9434 struct drm_framebuffer *fb;
9435
9436 if (!dev_priv->fbdev)
9437 return NULL;
9438
9439 if (!dev_priv->fbdev->fb)
9440 return NULL;
9441
9442 obj = dev_priv->fbdev->fb->obj;
9443 BUG_ON(!obj);
9444
9445 fb = &dev_priv->fbdev->fb->base;
9446 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9447 fb->format->cpp[0] * 8))
9448 return NULL;
9449
9450 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9451 return NULL;
9452
9453 drm_framebuffer_reference(fb);
9454 return fb;
9455 #else
9456 return NULL;
9457 #endif
9458 }
9459
9460 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9461 struct drm_crtc *crtc,
9462 struct drm_display_mode *mode,
9463 struct drm_framebuffer *fb,
9464 int x, int y)
9465 {
9466 struct drm_plane_state *plane_state;
9467 int hdisplay, vdisplay;
9468 int ret;
9469
9470 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9471 if (IS_ERR(plane_state))
9472 return PTR_ERR(plane_state);
9473
9474 if (mode)
9475 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9476 else
9477 hdisplay = vdisplay = 0;
9478
9479 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9480 if (ret)
9481 return ret;
9482 drm_atomic_set_fb_for_plane(plane_state, fb);
9483 plane_state->crtc_x = 0;
9484 plane_state->crtc_y = 0;
9485 plane_state->crtc_w = hdisplay;
9486 plane_state->crtc_h = vdisplay;
9487 plane_state->src_x = x << 16;
9488 plane_state->src_y = y << 16;
9489 plane_state->src_w = hdisplay << 16;
9490 plane_state->src_h = vdisplay << 16;
9491
9492 return 0;
9493 }
9494
9495 int intel_get_load_detect_pipe(struct drm_connector *connector,
9496 struct drm_display_mode *mode,
9497 struct intel_load_detect_pipe *old,
9498 struct drm_modeset_acquire_ctx *ctx)
9499 {
9500 struct intel_crtc *intel_crtc;
9501 struct intel_encoder *intel_encoder =
9502 intel_attached_encoder(connector);
9503 struct drm_crtc *possible_crtc;
9504 struct drm_encoder *encoder = &intel_encoder->base;
9505 struct drm_crtc *crtc = NULL;
9506 struct drm_device *dev = encoder->dev;
9507 struct drm_i915_private *dev_priv = to_i915(dev);
9508 struct drm_framebuffer *fb;
9509 struct drm_mode_config *config = &dev->mode_config;
9510 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9511 struct drm_connector_state *connector_state;
9512 struct intel_crtc_state *crtc_state;
9513 int ret, i = -1;
9514
9515 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9516 connector->base.id, connector->name,
9517 encoder->base.id, encoder->name);
9518
9519 old->restore_state = NULL;
9520
9521 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9522
9523 /*
9524 * Algorithm gets a little messy:
9525 *
9526 * - if the connector already has an assigned crtc, use it (but make
9527 * sure it's on first)
9528 *
9529 * - try to find the first unused crtc that can drive this connector,
9530 * and use that if we find one
9531 */
9532
9533 /* See if we already have a CRTC for this connector */
9534 if (connector->state->crtc) {
9535 crtc = connector->state->crtc;
9536
9537 ret = drm_modeset_lock(&crtc->mutex, ctx);
9538 if (ret)
9539 goto fail;
9540
9541 /* Make sure the crtc and connector are running */
9542 goto found;
9543 }
9544
9545 /* Find an unused one (if possible) */
9546 for_each_crtc(dev, possible_crtc) {
9547 i++;
9548 if (!(encoder->possible_crtcs & (1 << i)))
9549 continue;
9550
9551 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9552 if (ret)
9553 goto fail;
9554
9555 if (possible_crtc->state->enable) {
9556 drm_modeset_unlock(&possible_crtc->mutex);
9557 continue;
9558 }
9559
9560 crtc = possible_crtc;
9561 break;
9562 }
9563
9564 /*
9565 * If we didn't find an unused CRTC, don't use any.
9566 */
9567 if (!crtc) {
9568 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9569 goto fail;
9570 }
9571
9572 found:
9573 intel_crtc = to_intel_crtc(crtc);
9574
9575 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9576 if (ret)
9577 goto fail;
9578
9579 state = drm_atomic_state_alloc(dev);
9580 restore_state = drm_atomic_state_alloc(dev);
9581 if (!state || !restore_state) {
9582 ret = -ENOMEM;
9583 goto fail;
9584 }
9585
9586 state->acquire_ctx = ctx;
9587 restore_state->acquire_ctx = ctx;
9588
9589 connector_state = drm_atomic_get_connector_state(state, connector);
9590 if (IS_ERR(connector_state)) {
9591 ret = PTR_ERR(connector_state);
9592 goto fail;
9593 }
9594
9595 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9596 if (ret)
9597 goto fail;
9598
9599 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9600 if (IS_ERR(crtc_state)) {
9601 ret = PTR_ERR(crtc_state);
9602 goto fail;
9603 }
9604
9605 crtc_state->base.active = crtc_state->base.enable = true;
9606
9607 if (!mode)
9608 mode = &load_detect_mode;
9609
9610 /* We need a framebuffer large enough to accommodate all accesses
9611 * that the plane may generate whilst we perform load detection.
9612 * We can not rely on the fbcon either being present (we get called
9613 * during its initialisation to detect all boot displays, or it may
9614 * not even exist) or that it is large enough to satisfy the
9615 * requested mode.
9616 */
9617 fb = mode_fits_in_fbdev(dev, mode);
9618 if (fb == NULL) {
9619 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9620 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9621 } else
9622 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9623 if (IS_ERR(fb)) {
9624 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9625 goto fail;
9626 }
9627
9628 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9629 if (ret)
9630 goto fail;
9631
9632 drm_framebuffer_unreference(fb);
9633
9634 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9635 if (ret)
9636 goto fail;
9637
9638 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9639 if (!ret)
9640 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9641 if (!ret)
9642 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9643 if (ret) {
9644 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9645 goto fail;
9646 }
9647
9648 ret = drm_atomic_commit(state);
9649 if (ret) {
9650 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9651 goto fail;
9652 }
9653
9654 old->restore_state = restore_state;
9655 drm_atomic_state_put(state);
9656
9657 /* let the connector get through one full cycle before testing */
9658 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9659 return true;
9660
9661 fail:
9662 if (state) {
9663 drm_atomic_state_put(state);
9664 state = NULL;
9665 }
9666 if (restore_state) {
9667 drm_atomic_state_put(restore_state);
9668 restore_state = NULL;
9669 }
9670
9671 if (ret == -EDEADLK)
9672 return ret;
9673
9674 return false;
9675 }
9676
9677 void intel_release_load_detect_pipe(struct drm_connector *connector,
9678 struct intel_load_detect_pipe *old,
9679 struct drm_modeset_acquire_ctx *ctx)
9680 {
9681 struct intel_encoder *intel_encoder =
9682 intel_attached_encoder(connector);
9683 struct drm_encoder *encoder = &intel_encoder->base;
9684 struct drm_atomic_state *state = old->restore_state;
9685 int ret;
9686
9687 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9688 connector->base.id, connector->name,
9689 encoder->base.id, encoder->name);
9690
9691 if (!state)
9692 return;
9693
9694 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9695 if (ret)
9696 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9697 drm_atomic_state_put(state);
9698 }
9699
9700 static int i9xx_pll_refclk(struct drm_device *dev,
9701 const struct intel_crtc_state *pipe_config)
9702 {
9703 struct drm_i915_private *dev_priv = to_i915(dev);
9704 u32 dpll = pipe_config->dpll_hw_state.dpll;
9705
9706 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9707 return dev_priv->vbt.lvds_ssc_freq;
9708 else if (HAS_PCH_SPLIT(dev_priv))
9709 return 120000;
9710 else if (!IS_GEN2(dev_priv))
9711 return 96000;
9712 else
9713 return 48000;
9714 }
9715
9716 /* Returns the clock of the currently programmed mode of the given pipe. */
9717 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9718 struct intel_crtc_state *pipe_config)
9719 {
9720 struct drm_device *dev = crtc->base.dev;
9721 struct drm_i915_private *dev_priv = to_i915(dev);
9722 int pipe = pipe_config->cpu_transcoder;
9723 u32 dpll = pipe_config->dpll_hw_state.dpll;
9724 u32 fp;
9725 struct dpll clock;
9726 int port_clock;
9727 int refclk = i9xx_pll_refclk(dev, pipe_config);
9728
9729 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9730 fp = pipe_config->dpll_hw_state.fp0;
9731 else
9732 fp = pipe_config->dpll_hw_state.fp1;
9733
9734 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9735 if (IS_PINEVIEW(dev_priv)) {
9736 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9737 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9738 } else {
9739 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9740 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9741 }
9742
9743 if (!IS_GEN2(dev_priv)) {
9744 if (IS_PINEVIEW(dev_priv))
9745 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9746 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9747 else
9748 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9749 DPLL_FPA01_P1_POST_DIV_SHIFT);
9750
9751 switch (dpll & DPLL_MODE_MASK) {
9752 case DPLLB_MODE_DAC_SERIAL:
9753 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9754 5 : 10;
9755 break;
9756 case DPLLB_MODE_LVDS:
9757 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9758 7 : 14;
9759 break;
9760 default:
9761 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9762 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9763 return;
9764 }
9765
9766 if (IS_PINEVIEW(dev_priv))
9767 port_clock = pnv_calc_dpll_params(refclk, &clock);
9768 else
9769 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9770 } else {
9771 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9772 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9773
9774 if (is_lvds) {
9775 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9776 DPLL_FPA01_P1_POST_DIV_SHIFT);
9777
9778 if (lvds & LVDS_CLKB_POWER_UP)
9779 clock.p2 = 7;
9780 else
9781 clock.p2 = 14;
9782 } else {
9783 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9784 clock.p1 = 2;
9785 else {
9786 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9787 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9788 }
9789 if (dpll & PLL_P2_DIVIDE_BY_4)
9790 clock.p2 = 4;
9791 else
9792 clock.p2 = 2;
9793 }
9794
9795 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9796 }
9797
9798 /*
9799 * This value includes pixel_multiplier. We will use
9800 * port_clock to compute adjusted_mode.crtc_clock in the
9801 * encoder's get_config() function.
9802 */
9803 pipe_config->port_clock = port_clock;
9804 }
9805
9806 int intel_dotclock_calculate(int link_freq,
9807 const struct intel_link_m_n *m_n)
9808 {
9809 /*
9810 * The calculation for the data clock is:
9811 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9812 * But we want to avoid losing precison if possible, so:
9813 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9814 *
9815 * and the link clock is simpler:
9816 * link_clock = (m * link_clock) / n
9817 */
9818
9819 if (!m_n->link_n)
9820 return 0;
9821
9822 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9823 }
9824
9825 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9826 struct intel_crtc_state *pipe_config)
9827 {
9828 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9829
9830 /* read out port_clock from the DPLL */
9831 i9xx_crtc_clock_get(crtc, pipe_config);
9832
9833 /*
9834 * In case there is an active pipe without active ports,
9835 * we may need some idea for the dotclock anyway.
9836 * Calculate one based on the FDI configuration.
9837 */
9838 pipe_config->base.adjusted_mode.crtc_clock =
9839 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
9840 &pipe_config->fdi_m_n);
9841 }
9842
9843 /** Returns the currently programmed mode of the given pipe. */
9844 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9845 struct drm_crtc *crtc)
9846 {
9847 struct drm_i915_private *dev_priv = to_i915(dev);
9848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9849 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9850 struct drm_display_mode *mode;
9851 struct intel_crtc_state *pipe_config;
9852 int htot = I915_READ(HTOTAL(cpu_transcoder));
9853 int hsync = I915_READ(HSYNC(cpu_transcoder));
9854 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9855 int vsync = I915_READ(VSYNC(cpu_transcoder));
9856 enum pipe pipe = intel_crtc->pipe;
9857
9858 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9859 if (!mode)
9860 return NULL;
9861
9862 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9863 if (!pipe_config) {
9864 kfree(mode);
9865 return NULL;
9866 }
9867
9868 /*
9869 * Construct a pipe_config sufficient for getting the clock info
9870 * back out of crtc_clock_get.
9871 *
9872 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9873 * to use a real value here instead.
9874 */
9875 pipe_config->cpu_transcoder = (enum transcoder) pipe;
9876 pipe_config->pixel_multiplier = 1;
9877 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9878 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9879 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9880 i9xx_crtc_clock_get(intel_crtc, pipe_config);
9881
9882 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
9883 mode->hdisplay = (htot & 0xffff) + 1;
9884 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9885 mode->hsync_start = (hsync & 0xffff) + 1;
9886 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9887 mode->vdisplay = (vtot & 0xffff) + 1;
9888 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9889 mode->vsync_start = (vsync & 0xffff) + 1;
9890 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9891
9892 drm_mode_set_name(mode);
9893
9894 kfree(pipe_config);
9895
9896 return mode;
9897 }
9898
9899 static void intel_crtc_destroy(struct drm_crtc *crtc)
9900 {
9901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9902 struct drm_device *dev = crtc->dev;
9903 struct intel_flip_work *work;
9904
9905 spin_lock_irq(&dev->event_lock);
9906 work = intel_crtc->flip_work;
9907 intel_crtc->flip_work = NULL;
9908 spin_unlock_irq(&dev->event_lock);
9909
9910 if (work) {
9911 cancel_work_sync(&work->mmio_work);
9912 cancel_work_sync(&work->unpin_work);
9913 kfree(work);
9914 }
9915
9916 drm_crtc_cleanup(crtc);
9917
9918 kfree(intel_crtc);
9919 }
9920
9921 static void intel_unpin_work_fn(struct work_struct *__work)
9922 {
9923 struct intel_flip_work *work =
9924 container_of(__work, struct intel_flip_work, unpin_work);
9925 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
9926 struct drm_device *dev = crtc->base.dev;
9927 struct drm_plane *primary = crtc->base.primary;
9928
9929 if (is_mmio_work(work))
9930 flush_work(&work->mmio_work);
9931
9932 mutex_lock(&dev->struct_mutex);
9933 intel_unpin_fb_vma(work->old_vma);
9934 i915_gem_object_put(work->pending_flip_obj);
9935 mutex_unlock(&dev->struct_mutex);
9936
9937 i915_gem_request_put(work->flip_queued_req);
9938
9939 intel_frontbuffer_flip_complete(to_i915(dev),
9940 to_intel_plane(primary)->frontbuffer_bit);
9941 intel_fbc_post_update(crtc);
9942 drm_framebuffer_unreference(work->old_fb);
9943
9944 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
9945 atomic_dec(&crtc->unpin_work_count);
9946
9947 kfree(work);
9948 }
9949
9950 /* Is 'a' after or equal to 'b'? */
9951 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9952 {
9953 return !((a - b) & 0x80000000);
9954 }
9955
9956 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
9957 struct intel_flip_work *work)
9958 {
9959 struct drm_device *dev = crtc->base.dev;
9960 struct drm_i915_private *dev_priv = to_i915(dev);
9961
9962 if (abort_flip_on_reset(crtc))
9963 return true;
9964
9965 /*
9966 * The relevant registers doen't exist on pre-ctg.
9967 * As the flip done interrupt doesn't trigger for mmio
9968 * flips on gmch platforms, a flip count check isn't
9969 * really needed there. But since ctg has the registers,
9970 * include it in the check anyway.
9971 */
9972 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
9973 return true;
9974
9975 /*
9976 * BDW signals flip done immediately if the plane
9977 * is disabled, even if the plane enable is already
9978 * armed to occur at the next vblank :(
9979 */
9980
9981 /*
9982 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9983 * used the same base address. In that case the mmio flip might
9984 * have completed, but the CS hasn't even executed the flip yet.
9985 *
9986 * A flip count check isn't enough as the CS might have updated
9987 * the base address just after start of vblank, but before we
9988 * managed to process the interrupt. This means we'd complete the
9989 * CS flip too soon.
9990 *
9991 * Combining both checks should get us a good enough result. It may
9992 * still happen that the CS flip has been executed, but has not
9993 * yet actually completed. But in case the base address is the same
9994 * anyway, we don't really care.
9995 */
9996 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9997 crtc->flip_work->gtt_offset &&
9998 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
9999 crtc->flip_work->flip_count);
10000 }
10001
10002 static bool
10003 __pageflip_finished_mmio(struct intel_crtc *crtc,
10004 struct intel_flip_work *work)
10005 {
10006 /*
10007 * MMIO work completes when vblank is different from
10008 * flip_queued_vblank.
10009 *
10010 * Reset counter value doesn't matter, this is handled by
10011 * i915_wait_request finishing early, so no need to handle
10012 * reset here.
10013 */
10014 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10015 }
10016
10017
10018 static bool pageflip_finished(struct intel_crtc *crtc,
10019 struct intel_flip_work *work)
10020 {
10021 if (!atomic_read(&work->pending))
10022 return false;
10023
10024 smp_rmb();
10025
10026 if (is_mmio_work(work))
10027 return __pageflip_finished_mmio(crtc, work);
10028 else
10029 return __pageflip_finished_cs(crtc, work);
10030 }
10031
10032 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10033 {
10034 struct drm_device *dev = &dev_priv->drm;
10035 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10036 struct intel_flip_work *work;
10037 unsigned long flags;
10038
10039 /* Ignore early vblank irqs */
10040 if (!crtc)
10041 return;
10042
10043 /*
10044 * This is called both by irq handlers and the reset code (to complete
10045 * lost pageflips) so needs the full irqsave spinlocks.
10046 */
10047 spin_lock_irqsave(&dev->event_lock, flags);
10048 work = crtc->flip_work;
10049
10050 if (work != NULL &&
10051 !is_mmio_work(work) &&
10052 pageflip_finished(crtc, work))
10053 page_flip_completed(crtc);
10054
10055 spin_unlock_irqrestore(&dev->event_lock, flags);
10056 }
10057
10058 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10059 {
10060 struct drm_device *dev = &dev_priv->drm;
10061 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10062 struct intel_flip_work *work;
10063 unsigned long flags;
10064
10065 /* Ignore early vblank irqs */
10066 if (!crtc)
10067 return;
10068
10069 /*
10070 * This is called both by irq handlers and the reset code (to complete
10071 * lost pageflips) so needs the full irqsave spinlocks.
10072 */
10073 spin_lock_irqsave(&dev->event_lock, flags);
10074 work = crtc->flip_work;
10075
10076 if (work != NULL &&
10077 is_mmio_work(work) &&
10078 pageflip_finished(crtc, work))
10079 page_flip_completed(crtc);
10080
10081 spin_unlock_irqrestore(&dev->event_lock, flags);
10082 }
10083
10084 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10085 struct intel_flip_work *work)
10086 {
10087 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10088
10089 /* Ensure that the work item is consistent when activating it ... */
10090 smp_mb__before_atomic();
10091 atomic_set(&work->pending, 1);
10092 }
10093
10094 static int intel_gen2_queue_flip(struct drm_device *dev,
10095 struct drm_crtc *crtc,
10096 struct drm_framebuffer *fb,
10097 struct drm_i915_gem_object *obj,
10098 struct drm_i915_gem_request *req,
10099 uint32_t flags)
10100 {
10101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10102 u32 flip_mask, *cs;
10103
10104 cs = intel_ring_begin(req, 6);
10105 if (IS_ERR(cs))
10106 return PTR_ERR(cs);
10107
10108 /* Can't queue multiple flips, so wait for the previous
10109 * one to finish before executing the next.
10110 */
10111 if (intel_crtc->plane)
10112 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10113 else
10114 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10115 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10116 *cs++ = MI_NOOP;
10117 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10118 *cs++ = fb->pitches[0];
10119 *cs++ = intel_crtc->flip_work->gtt_offset;
10120 *cs++ = 0; /* aux display base address, unused */
10121
10122 return 0;
10123 }
10124
10125 static int intel_gen3_queue_flip(struct drm_device *dev,
10126 struct drm_crtc *crtc,
10127 struct drm_framebuffer *fb,
10128 struct drm_i915_gem_object *obj,
10129 struct drm_i915_gem_request *req,
10130 uint32_t flags)
10131 {
10132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10133 u32 flip_mask, *cs;
10134
10135 cs = intel_ring_begin(req, 6);
10136 if (IS_ERR(cs))
10137 return PTR_ERR(cs);
10138
10139 if (intel_crtc->plane)
10140 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10141 else
10142 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10143 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10144 *cs++ = MI_NOOP;
10145 *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10146 *cs++ = fb->pitches[0];
10147 *cs++ = intel_crtc->flip_work->gtt_offset;
10148 *cs++ = MI_NOOP;
10149
10150 return 0;
10151 }
10152
10153 static int intel_gen4_queue_flip(struct drm_device *dev,
10154 struct drm_crtc *crtc,
10155 struct drm_framebuffer *fb,
10156 struct drm_i915_gem_object *obj,
10157 struct drm_i915_gem_request *req,
10158 uint32_t flags)
10159 {
10160 struct drm_i915_private *dev_priv = to_i915(dev);
10161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10162 u32 pf, pipesrc, *cs;
10163
10164 cs = intel_ring_begin(req, 4);
10165 if (IS_ERR(cs))
10166 return PTR_ERR(cs);
10167
10168 /* i965+ uses the linear or tiled offsets from the
10169 * Display Registers (which do not change across a page-flip)
10170 * so we need only reprogram the base address.
10171 */
10172 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10173 *cs++ = fb->pitches[0];
10174 *cs++ = intel_crtc->flip_work->gtt_offset |
10175 intel_fb_modifier_to_tiling(fb->modifier);
10176
10177 /* XXX Enabling the panel-fitter across page-flip is so far
10178 * untested on non-native modes, so ignore it for now.
10179 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10180 */
10181 pf = 0;
10182 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10183 *cs++ = pf | pipesrc;
10184
10185 return 0;
10186 }
10187
10188 static int intel_gen6_queue_flip(struct drm_device *dev,
10189 struct drm_crtc *crtc,
10190 struct drm_framebuffer *fb,
10191 struct drm_i915_gem_object *obj,
10192 struct drm_i915_gem_request *req,
10193 uint32_t flags)
10194 {
10195 struct drm_i915_private *dev_priv = to_i915(dev);
10196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10197 u32 pf, pipesrc, *cs;
10198
10199 cs = intel_ring_begin(req, 4);
10200 if (IS_ERR(cs))
10201 return PTR_ERR(cs);
10202
10203 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10204 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10205 *cs++ = intel_crtc->flip_work->gtt_offset;
10206
10207 /* Contrary to the suggestions in the documentation,
10208 * "Enable Panel Fitter" does not seem to be required when page
10209 * flipping with a non-native mode, and worse causes a normal
10210 * modeset to fail.
10211 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10212 */
10213 pf = 0;
10214 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10215 *cs++ = pf | pipesrc;
10216
10217 return 0;
10218 }
10219
10220 static int intel_gen7_queue_flip(struct drm_device *dev,
10221 struct drm_crtc *crtc,
10222 struct drm_framebuffer *fb,
10223 struct drm_i915_gem_object *obj,
10224 struct drm_i915_gem_request *req,
10225 uint32_t flags)
10226 {
10227 struct drm_i915_private *dev_priv = to_i915(dev);
10228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10229 u32 *cs, plane_bit = 0;
10230 int len, ret;
10231
10232 switch (intel_crtc->plane) {
10233 case PLANE_A:
10234 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10235 break;
10236 case PLANE_B:
10237 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10238 break;
10239 case PLANE_C:
10240 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10241 break;
10242 default:
10243 WARN_ONCE(1, "unknown plane in flip command\n");
10244 return -ENODEV;
10245 }
10246
10247 len = 4;
10248 if (req->engine->id == RCS) {
10249 len += 6;
10250 /*
10251 * On Gen 8, SRM is now taking an extra dword to accommodate
10252 * 48bits addresses, and we need a NOOP for the batch size to
10253 * stay even.
10254 */
10255 if (IS_GEN8(dev_priv))
10256 len += 2;
10257 }
10258
10259 /*
10260 * BSpec MI_DISPLAY_FLIP for IVB:
10261 * "The full packet must be contained within the same cache line."
10262 *
10263 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10264 * cacheline, if we ever start emitting more commands before
10265 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10266 * then do the cacheline alignment, and finally emit the
10267 * MI_DISPLAY_FLIP.
10268 */
10269 ret = intel_ring_cacheline_align(req);
10270 if (ret)
10271 return ret;
10272
10273 cs = intel_ring_begin(req, len);
10274 if (IS_ERR(cs))
10275 return PTR_ERR(cs);
10276
10277 /* Unmask the flip-done completion message. Note that the bspec says that
10278 * we should do this for both the BCS and RCS, and that we must not unmask
10279 * more than one flip event at any time (or ensure that one flip message
10280 * can be sent by waiting for flip-done prior to queueing new flips).
10281 * Experimentation says that BCS works despite DERRMR masking all
10282 * flip-done completion events and that unmasking all planes at once
10283 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10284 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10285 */
10286 if (req->engine->id == RCS) {
10287 *cs++ = MI_LOAD_REGISTER_IMM(1);
10288 *cs++ = i915_mmio_reg_offset(DERRMR);
10289 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10290 DERRMR_PIPEB_PRI_FLIP_DONE |
10291 DERRMR_PIPEC_PRI_FLIP_DONE);
10292 if (IS_GEN8(dev_priv))
10293 *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10294 MI_SRM_LRM_GLOBAL_GTT;
10295 else
10296 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10297 *cs++ = i915_mmio_reg_offset(DERRMR);
10298 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10299 if (IS_GEN8(dev_priv)) {
10300 *cs++ = 0;
10301 *cs++ = MI_NOOP;
10302 }
10303 }
10304
10305 *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10306 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10307 *cs++ = intel_crtc->flip_work->gtt_offset;
10308 *cs++ = MI_NOOP;
10309
10310 return 0;
10311 }
10312
10313 static bool use_mmio_flip(struct intel_engine_cs *engine,
10314 struct drm_i915_gem_object *obj)
10315 {
10316 /*
10317 * This is not being used for older platforms, because
10318 * non-availability of flip done interrupt forces us to use
10319 * CS flips. Older platforms derive flip done using some clever
10320 * tricks involving the flip_pending status bits and vblank irqs.
10321 * So using MMIO flips there would disrupt this mechanism.
10322 */
10323
10324 if (engine == NULL)
10325 return true;
10326
10327 if (INTEL_GEN(engine->i915) < 5)
10328 return false;
10329
10330 if (i915.use_mmio_flip < 0)
10331 return false;
10332 else if (i915.use_mmio_flip > 0)
10333 return true;
10334 else if (i915.enable_execlists)
10335 return true;
10336
10337 return engine != i915_gem_object_last_write_engine(obj);
10338 }
10339
10340 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10341 unsigned int rotation,
10342 struct intel_flip_work *work)
10343 {
10344 struct drm_device *dev = intel_crtc->base.dev;
10345 struct drm_i915_private *dev_priv = to_i915(dev);
10346 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10347 const enum pipe pipe = intel_crtc->pipe;
10348 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10349
10350 ctl = I915_READ(PLANE_CTL(pipe, 0));
10351 ctl &= ~PLANE_CTL_TILED_MASK;
10352 switch (fb->modifier) {
10353 case DRM_FORMAT_MOD_LINEAR:
10354 break;
10355 case I915_FORMAT_MOD_X_TILED:
10356 ctl |= PLANE_CTL_TILED_X;
10357 break;
10358 case I915_FORMAT_MOD_Y_TILED:
10359 ctl |= PLANE_CTL_TILED_Y;
10360 break;
10361 case I915_FORMAT_MOD_Yf_TILED:
10362 ctl |= PLANE_CTL_TILED_YF;
10363 break;
10364 default:
10365 MISSING_CASE(fb->modifier);
10366 }
10367
10368 /*
10369 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10370 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10371 */
10372 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10373 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10374
10375 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10376 POSTING_READ(PLANE_SURF(pipe, 0));
10377 }
10378
10379 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10380 struct intel_flip_work *work)
10381 {
10382 struct drm_device *dev = intel_crtc->base.dev;
10383 struct drm_i915_private *dev_priv = to_i915(dev);
10384 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10385 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10386 u32 dspcntr;
10387
10388 dspcntr = I915_READ(reg);
10389
10390 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10391 dspcntr |= DISPPLANE_TILED;
10392 else
10393 dspcntr &= ~DISPPLANE_TILED;
10394
10395 I915_WRITE(reg, dspcntr);
10396
10397 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10398 POSTING_READ(DSPSURF(intel_crtc->plane));
10399 }
10400
10401 static void intel_mmio_flip_work_func(struct work_struct *w)
10402 {
10403 struct intel_flip_work *work =
10404 container_of(w, struct intel_flip_work, mmio_work);
10405 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10406 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10407 struct intel_framebuffer *intel_fb =
10408 to_intel_framebuffer(crtc->base.primary->fb);
10409 struct drm_i915_gem_object *obj = intel_fb->obj;
10410
10411 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10412
10413 intel_pipe_update_start(crtc);
10414
10415 if (INTEL_GEN(dev_priv) >= 9)
10416 skl_do_mmio_flip(crtc, work->rotation, work);
10417 else
10418 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10419 ilk_do_mmio_flip(crtc, work);
10420
10421 intel_pipe_update_end(crtc, work);
10422 }
10423
10424 static int intel_default_queue_flip(struct drm_device *dev,
10425 struct drm_crtc *crtc,
10426 struct drm_framebuffer *fb,
10427 struct drm_i915_gem_object *obj,
10428 struct drm_i915_gem_request *req,
10429 uint32_t flags)
10430 {
10431 return -ENODEV;
10432 }
10433
10434 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10435 struct intel_crtc *intel_crtc,
10436 struct intel_flip_work *work)
10437 {
10438 u32 addr, vblank;
10439
10440 if (!atomic_read(&work->pending))
10441 return false;
10442
10443 smp_rmb();
10444
10445 vblank = intel_crtc_get_vblank_counter(intel_crtc);
10446 if (work->flip_ready_vblank == 0) {
10447 if (work->flip_queued_req &&
10448 !i915_gem_request_completed(work->flip_queued_req))
10449 return false;
10450
10451 work->flip_ready_vblank = vblank;
10452 }
10453
10454 if (vblank - work->flip_ready_vblank < 3)
10455 return false;
10456
10457 /* Potential stall - if we see that the flip has happened,
10458 * assume a missed interrupt. */
10459 if (INTEL_GEN(dev_priv) >= 4)
10460 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10461 else
10462 addr = I915_READ(DSPADDR(intel_crtc->plane));
10463
10464 /* There is a potential issue here with a false positive after a flip
10465 * to the same address. We could address this by checking for a
10466 * non-incrementing frame counter.
10467 */
10468 return addr == work->gtt_offset;
10469 }
10470
10471 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10472 {
10473 struct drm_device *dev = &dev_priv->drm;
10474 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10475 struct intel_flip_work *work;
10476
10477 WARN_ON(!in_interrupt());
10478
10479 if (crtc == NULL)
10480 return;
10481
10482 spin_lock(&dev->event_lock);
10483 work = crtc->flip_work;
10484
10485 if (work != NULL && !is_mmio_work(work) &&
10486 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10487 WARN_ONCE(1,
10488 "Kicking stuck page flip: queued at %d, now %d\n",
10489 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10490 page_flip_completed(crtc);
10491 work = NULL;
10492 }
10493
10494 if (work != NULL && !is_mmio_work(work) &&
10495 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10496 intel_queue_rps_boost_for_request(work->flip_queued_req);
10497 spin_unlock(&dev->event_lock);
10498 }
10499
10500 __maybe_unused
10501 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10502 struct drm_framebuffer *fb,
10503 struct drm_pending_vblank_event *event,
10504 uint32_t page_flip_flags)
10505 {
10506 struct drm_device *dev = crtc->dev;
10507 struct drm_i915_private *dev_priv = to_i915(dev);
10508 struct drm_framebuffer *old_fb = crtc->primary->fb;
10509 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10511 struct drm_plane *primary = crtc->primary;
10512 enum pipe pipe = intel_crtc->pipe;
10513 struct intel_flip_work *work;
10514 struct intel_engine_cs *engine;
10515 bool mmio_flip;
10516 struct drm_i915_gem_request *request;
10517 struct i915_vma *vma;
10518 int ret;
10519
10520 /*
10521 * drm_mode_page_flip_ioctl() should already catch this, but double
10522 * check to be safe. In the future we may enable pageflipping from
10523 * a disabled primary plane.
10524 */
10525 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10526 return -EBUSY;
10527
10528 /* Can't change pixel format via MI display flips. */
10529 if (fb->format != crtc->primary->fb->format)
10530 return -EINVAL;
10531
10532 /*
10533 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10534 * Note that pitch changes could also affect these register.
10535 */
10536 if (INTEL_GEN(dev_priv) > 3 &&
10537 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10538 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10539 return -EINVAL;
10540
10541 if (i915_terminally_wedged(&dev_priv->gpu_error))
10542 goto out_hang;
10543
10544 work = kzalloc(sizeof(*work), GFP_KERNEL);
10545 if (work == NULL)
10546 return -ENOMEM;
10547
10548 work->event = event;
10549 work->crtc = crtc;
10550 work->old_fb = old_fb;
10551 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10552
10553 ret = drm_crtc_vblank_get(crtc);
10554 if (ret)
10555 goto free_work;
10556
10557 /* We borrow the event spin lock for protecting flip_work */
10558 spin_lock_irq(&dev->event_lock);
10559 if (intel_crtc->flip_work) {
10560 /* Before declaring the flip queue wedged, check if
10561 * the hardware completed the operation behind our backs.
10562 */
10563 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10564 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10565 page_flip_completed(intel_crtc);
10566 } else {
10567 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10568 spin_unlock_irq(&dev->event_lock);
10569
10570 drm_crtc_vblank_put(crtc);
10571 kfree(work);
10572 return -EBUSY;
10573 }
10574 }
10575 intel_crtc->flip_work = work;
10576 spin_unlock_irq(&dev->event_lock);
10577
10578 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10579 flush_workqueue(dev_priv->wq);
10580
10581 /* Reference the objects for the scheduled work. */
10582 drm_framebuffer_reference(work->old_fb);
10583
10584 crtc->primary->fb = fb;
10585 update_state_fb(crtc->primary);
10586
10587 work->pending_flip_obj = i915_gem_object_get(obj);
10588
10589 ret = i915_mutex_lock_interruptible(dev);
10590 if (ret)
10591 goto cleanup;
10592
10593 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10594 if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10595 ret = -EIO;
10596 goto unlock;
10597 }
10598
10599 atomic_inc(&intel_crtc->unpin_work_count);
10600
10601 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10602 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10603
10604 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10605 engine = dev_priv->engine[BCS];
10606 if (fb->modifier != old_fb->modifier)
10607 /* vlv: DISPLAY_FLIP fails to change tiling */
10608 engine = NULL;
10609 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10610 engine = dev_priv->engine[BCS];
10611 } else if (INTEL_GEN(dev_priv) >= 7) {
10612 engine = i915_gem_object_last_write_engine(obj);
10613 if (engine == NULL || engine->id != RCS)
10614 engine = dev_priv->engine[BCS];
10615 } else {
10616 engine = dev_priv->engine[RCS];
10617 }
10618
10619 mmio_flip = use_mmio_flip(engine, obj);
10620
10621 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10622 if (IS_ERR(vma)) {
10623 ret = PTR_ERR(vma);
10624 goto cleanup_pending;
10625 }
10626
10627 work->old_vma = to_intel_plane_state(primary->state)->vma;
10628 to_intel_plane_state(primary->state)->vma = vma;
10629
10630 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10631 work->rotation = crtc->primary->state->rotation;
10632
10633 /*
10634 * There's the potential that the next frame will not be compatible with
10635 * FBC, so we want to call pre_update() before the actual page flip.
10636 * The problem is that pre_update() caches some information about the fb
10637 * object, so we want to do this only after the object is pinned. Let's
10638 * be on the safe side and do this immediately before scheduling the
10639 * flip.
10640 */
10641 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10642 to_intel_plane_state(primary->state));
10643
10644 if (mmio_flip) {
10645 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10646 queue_work(system_unbound_wq, &work->mmio_work);
10647 } else {
10648 request = i915_gem_request_alloc(engine,
10649 dev_priv->kernel_context);
10650 if (IS_ERR(request)) {
10651 ret = PTR_ERR(request);
10652 goto cleanup_unpin;
10653 }
10654
10655 ret = i915_gem_request_await_object(request, obj, false);
10656 if (ret)
10657 goto cleanup_request;
10658
10659 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10660 page_flip_flags);
10661 if (ret)
10662 goto cleanup_request;
10663
10664 intel_mark_page_flip_active(intel_crtc, work);
10665
10666 work->flip_queued_req = i915_gem_request_get(request);
10667 i915_add_request(request);
10668 }
10669
10670 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10671 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10672 to_intel_plane(primary)->frontbuffer_bit);
10673 mutex_unlock(&dev->struct_mutex);
10674
10675 intel_frontbuffer_flip_prepare(to_i915(dev),
10676 to_intel_plane(primary)->frontbuffer_bit);
10677
10678 trace_i915_flip_request(intel_crtc->plane, obj);
10679
10680 return 0;
10681
10682 cleanup_request:
10683 i915_add_request(request);
10684 cleanup_unpin:
10685 to_intel_plane_state(primary->state)->vma = work->old_vma;
10686 intel_unpin_fb_vma(vma);
10687 cleanup_pending:
10688 atomic_dec(&intel_crtc->unpin_work_count);
10689 unlock:
10690 mutex_unlock(&dev->struct_mutex);
10691 cleanup:
10692 crtc->primary->fb = old_fb;
10693 update_state_fb(crtc->primary);
10694
10695 i915_gem_object_put(obj);
10696 drm_framebuffer_unreference(work->old_fb);
10697
10698 spin_lock_irq(&dev->event_lock);
10699 intel_crtc->flip_work = NULL;
10700 spin_unlock_irq(&dev->event_lock);
10701
10702 drm_crtc_vblank_put(crtc);
10703 free_work:
10704 kfree(work);
10705
10706 if (ret == -EIO) {
10707 struct drm_atomic_state *state;
10708 struct drm_plane_state *plane_state;
10709
10710 out_hang:
10711 state = drm_atomic_state_alloc(dev);
10712 if (!state)
10713 return -ENOMEM;
10714 state->acquire_ctx = dev->mode_config.acquire_ctx;
10715
10716 retry:
10717 plane_state = drm_atomic_get_plane_state(state, primary);
10718 ret = PTR_ERR_OR_ZERO(plane_state);
10719 if (!ret) {
10720 drm_atomic_set_fb_for_plane(plane_state, fb);
10721
10722 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10723 if (!ret)
10724 ret = drm_atomic_commit(state);
10725 }
10726
10727 if (ret == -EDEADLK) {
10728 drm_modeset_backoff(state->acquire_ctx);
10729 drm_atomic_state_clear(state);
10730 goto retry;
10731 }
10732
10733 drm_atomic_state_put(state);
10734
10735 if (ret == 0 && event) {
10736 spin_lock_irq(&dev->event_lock);
10737 drm_crtc_send_vblank_event(crtc, event);
10738 spin_unlock_irq(&dev->event_lock);
10739 }
10740 }
10741 return ret;
10742 }
10743
10744
10745 /**
10746 * intel_wm_need_update - Check whether watermarks need updating
10747 * @plane: drm plane
10748 * @state: new plane state
10749 *
10750 * Check current plane state versus the new one to determine whether
10751 * watermarks need to be recalculated.
10752 *
10753 * Returns true or false.
10754 */
10755 static bool intel_wm_need_update(struct drm_plane *plane,
10756 struct drm_plane_state *state)
10757 {
10758 struct intel_plane_state *new = to_intel_plane_state(state);
10759 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10760
10761 /* Update watermarks on tiling or size changes. */
10762 if (new->base.visible != cur->base.visible)
10763 return true;
10764
10765 if (!cur->base.fb || !new->base.fb)
10766 return false;
10767
10768 if (cur->base.fb->modifier != new->base.fb->modifier ||
10769 cur->base.rotation != new->base.rotation ||
10770 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10771 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10772 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10773 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10774 return true;
10775
10776 return false;
10777 }
10778
10779 static bool needs_scaling(struct intel_plane_state *state)
10780 {
10781 int src_w = drm_rect_width(&state->base.src) >> 16;
10782 int src_h = drm_rect_height(&state->base.src) >> 16;
10783 int dst_w = drm_rect_width(&state->base.dst);
10784 int dst_h = drm_rect_height(&state->base.dst);
10785
10786 return (src_w != dst_w || src_h != dst_h);
10787 }
10788
10789 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10790 struct drm_plane_state *plane_state)
10791 {
10792 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10793 struct drm_crtc *crtc = crtc_state->crtc;
10794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10795 struct intel_plane *plane = to_intel_plane(plane_state->plane);
10796 struct drm_device *dev = crtc->dev;
10797 struct drm_i915_private *dev_priv = to_i915(dev);
10798 struct intel_plane_state *old_plane_state =
10799 to_intel_plane_state(plane->base.state);
10800 bool mode_changed = needs_modeset(crtc_state);
10801 bool was_crtc_enabled = crtc->state->active;
10802 bool is_crtc_enabled = crtc_state->active;
10803 bool turn_off, turn_on, visible, was_visible;
10804 struct drm_framebuffer *fb = plane_state->fb;
10805 int ret;
10806
10807 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10808 ret = skl_update_scaler_plane(
10809 to_intel_crtc_state(crtc_state),
10810 to_intel_plane_state(plane_state));
10811 if (ret)
10812 return ret;
10813 }
10814
10815 was_visible = old_plane_state->base.visible;
10816 visible = plane_state->visible;
10817
10818 if (!was_crtc_enabled && WARN_ON(was_visible))
10819 was_visible = false;
10820
10821 /*
10822 * Visibility is calculated as if the crtc was on, but
10823 * after scaler setup everything depends on it being off
10824 * when the crtc isn't active.
10825 *
10826 * FIXME this is wrong for watermarks. Watermarks should also
10827 * be computed as if the pipe would be active. Perhaps move
10828 * per-plane wm computation to the .check_plane() hook, and
10829 * only combine the results from all planes in the current place?
10830 */
10831 if (!is_crtc_enabled) {
10832 plane_state->visible = visible = false;
10833 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10834 }
10835
10836 if (!was_visible && !visible)
10837 return 0;
10838
10839 if (fb != old_plane_state->base.fb)
10840 pipe_config->fb_changed = true;
10841
10842 turn_off = was_visible && (!visible || mode_changed);
10843 turn_on = visible && (!was_visible || mode_changed);
10844
10845 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10846 intel_crtc->base.base.id, intel_crtc->base.name,
10847 plane->base.base.id, plane->base.name,
10848 fb ? fb->base.id : -1);
10849
10850 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10851 plane->base.base.id, plane->base.name,
10852 was_visible, visible,
10853 turn_off, turn_on, mode_changed);
10854
10855 if (turn_on) {
10856 if (INTEL_GEN(dev_priv) < 5)
10857 pipe_config->update_wm_pre = true;
10858
10859 /* must disable cxsr around plane enable/disable */
10860 if (plane->id != PLANE_CURSOR)
10861 pipe_config->disable_cxsr = true;
10862 } else if (turn_off) {
10863 if (INTEL_GEN(dev_priv) < 5)
10864 pipe_config->update_wm_post = true;
10865
10866 /* must disable cxsr around plane enable/disable */
10867 if (plane->id != PLANE_CURSOR)
10868 pipe_config->disable_cxsr = true;
10869 } else if (intel_wm_need_update(&plane->base, plane_state)) {
10870 if (INTEL_GEN(dev_priv) < 5) {
10871 /* FIXME bollocks */
10872 pipe_config->update_wm_pre = true;
10873 pipe_config->update_wm_post = true;
10874 }
10875 }
10876
10877 if (visible || was_visible)
10878 pipe_config->fb_bits |= plane->frontbuffer_bit;
10879
10880 /*
10881 * WaCxSRDisabledForSpriteScaling:ivb
10882 *
10883 * cstate->update_wm was already set above, so this flag will
10884 * take effect when we commit and program watermarks.
10885 */
10886 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10887 needs_scaling(to_intel_plane_state(plane_state)) &&
10888 !needs_scaling(old_plane_state))
10889 pipe_config->disable_lp_wm = true;
10890
10891 return 0;
10892 }
10893
10894 static bool encoders_cloneable(const struct intel_encoder *a,
10895 const struct intel_encoder *b)
10896 {
10897 /* masks could be asymmetric, so check both ways */
10898 return a == b || (a->cloneable & (1 << b->type) &&
10899 b->cloneable & (1 << a->type));
10900 }
10901
10902 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10903 struct intel_crtc *crtc,
10904 struct intel_encoder *encoder)
10905 {
10906 struct intel_encoder *source_encoder;
10907 struct drm_connector *connector;
10908 struct drm_connector_state *connector_state;
10909 int i;
10910
10911 for_each_new_connector_in_state(state, connector, connector_state, i) {
10912 if (connector_state->crtc != &crtc->base)
10913 continue;
10914
10915 source_encoder =
10916 to_intel_encoder(connector_state->best_encoder);
10917 if (!encoders_cloneable(encoder, source_encoder))
10918 return false;
10919 }
10920
10921 return true;
10922 }
10923
10924 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10925 struct drm_crtc_state *crtc_state)
10926 {
10927 struct drm_device *dev = crtc->dev;
10928 struct drm_i915_private *dev_priv = to_i915(dev);
10929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10930 struct intel_crtc_state *pipe_config =
10931 to_intel_crtc_state(crtc_state);
10932 struct drm_atomic_state *state = crtc_state->state;
10933 int ret;
10934 bool mode_changed = needs_modeset(crtc_state);
10935
10936 if (mode_changed && !crtc_state->active)
10937 pipe_config->update_wm_post = true;
10938
10939 if (mode_changed && crtc_state->enable &&
10940 dev_priv->display.crtc_compute_clock &&
10941 !WARN_ON(pipe_config->shared_dpll)) {
10942 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10943 pipe_config);
10944 if (ret)
10945 return ret;
10946 }
10947
10948 if (crtc_state->color_mgmt_changed) {
10949 ret = intel_color_check(crtc, crtc_state);
10950 if (ret)
10951 return ret;
10952
10953 /*
10954 * Changing color management on Intel hardware is
10955 * handled as part of planes update.
10956 */
10957 crtc_state->planes_changed = true;
10958 }
10959
10960 ret = 0;
10961 if (dev_priv->display.compute_pipe_wm) {
10962 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10963 if (ret) {
10964 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10965 return ret;
10966 }
10967 }
10968
10969 if (dev_priv->display.compute_intermediate_wm &&
10970 !to_intel_atomic_state(state)->skip_intermediate_wm) {
10971 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10972 return 0;
10973
10974 /*
10975 * Calculate 'intermediate' watermarks that satisfy both the
10976 * old state and the new state. We can program these
10977 * immediately.
10978 */
10979 ret = dev_priv->display.compute_intermediate_wm(dev,
10980 intel_crtc,
10981 pipe_config);
10982 if (ret) {
10983 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10984 return ret;
10985 }
10986 } else if (dev_priv->display.compute_intermediate_wm) {
10987 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10988 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10989 }
10990
10991 if (INTEL_GEN(dev_priv) >= 9) {
10992 if (mode_changed)
10993 ret = skl_update_scaler_crtc(pipe_config);
10994
10995 if (!ret)
10996 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10997 pipe_config);
10998 }
10999
11000 return ret;
11001 }
11002
11003 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11004 .atomic_begin = intel_begin_crtc_commit,
11005 .atomic_flush = intel_finish_crtc_commit,
11006 .atomic_check = intel_crtc_atomic_check,
11007 };
11008
11009 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11010 {
11011 struct intel_connector *connector;
11012 struct drm_connector_list_iter conn_iter;
11013
11014 drm_connector_list_iter_begin(dev, &conn_iter);
11015 for_each_intel_connector_iter(connector, &conn_iter) {
11016 if (connector->base.state->crtc)
11017 drm_connector_unreference(&connector->base);
11018
11019 if (connector->base.encoder) {
11020 connector->base.state->best_encoder =
11021 connector->base.encoder;
11022 connector->base.state->crtc =
11023 connector->base.encoder->crtc;
11024
11025 drm_connector_reference(&connector->base);
11026 } else {
11027 connector->base.state->best_encoder = NULL;
11028 connector->base.state->crtc = NULL;
11029 }
11030 }
11031 drm_connector_list_iter_end(&conn_iter);
11032 }
11033
11034 static void
11035 connected_sink_compute_bpp(struct intel_connector *connector,
11036 struct intel_crtc_state *pipe_config)
11037 {
11038 const struct drm_display_info *info = &connector->base.display_info;
11039 int bpp = pipe_config->pipe_bpp;
11040
11041 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11042 connector->base.base.id,
11043 connector->base.name);
11044
11045 /* Don't use an invalid EDID bpc value */
11046 if (info->bpc != 0 && info->bpc * 3 < bpp) {
11047 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11048 bpp, info->bpc * 3);
11049 pipe_config->pipe_bpp = info->bpc * 3;
11050 }
11051
11052 /* Clamp bpp to 8 on screens without EDID 1.4 */
11053 if (info->bpc == 0 && bpp > 24) {
11054 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11055 bpp);
11056 pipe_config->pipe_bpp = 24;
11057 }
11058 }
11059
11060 static int
11061 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11062 struct intel_crtc_state *pipe_config)
11063 {
11064 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11065 struct drm_atomic_state *state;
11066 struct drm_connector *connector;
11067 struct drm_connector_state *connector_state;
11068 int bpp, i;
11069
11070 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11071 IS_CHERRYVIEW(dev_priv)))
11072 bpp = 10*3;
11073 else if (INTEL_GEN(dev_priv) >= 5)
11074 bpp = 12*3;
11075 else
11076 bpp = 8*3;
11077
11078
11079 pipe_config->pipe_bpp = bpp;
11080
11081 state = pipe_config->base.state;
11082
11083 /* Clamp display bpp to EDID value */
11084 for_each_new_connector_in_state(state, connector, connector_state, i) {
11085 if (connector_state->crtc != &crtc->base)
11086 continue;
11087
11088 connected_sink_compute_bpp(to_intel_connector(connector),
11089 pipe_config);
11090 }
11091
11092 return bpp;
11093 }
11094
11095 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11096 {
11097 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11098 "type: 0x%x flags: 0x%x\n",
11099 mode->crtc_clock,
11100 mode->crtc_hdisplay, mode->crtc_hsync_start,
11101 mode->crtc_hsync_end, mode->crtc_htotal,
11102 mode->crtc_vdisplay, mode->crtc_vsync_start,
11103 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11104 }
11105
11106 static inline void
11107 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11108 unsigned int lane_count, struct intel_link_m_n *m_n)
11109 {
11110 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11111 id, lane_count,
11112 m_n->gmch_m, m_n->gmch_n,
11113 m_n->link_m, m_n->link_n, m_n->tu);
11114 }
11115
11116 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11117 struct intel_crtc_state *pipe_config,
11118 const char *context)
11119 {
11120 struct drm_device *dev = crtc->base.dev;
11121 struct drm_i915_private *dev_priv = to_i915(dev);
11122 struct drm_plane *plane;
11123 struct intel_plane *intel_plane;
11124 struct intel_plane_state *state;
11125 struct drm_framebuffer *fb;
11126
11127 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11128 crtc->base.base.id, crtc->base.name, context);
11129
11130 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11131 transcoder_name(pipe_config->cpu_transcoder),
11132 pipe_config->pipe_bpp, pipe_config->dither);
11133
11134 if (pipe_config->has_pch_encoder)
11135 intel_dump_m_n_config(pipe_config, "fdi",
11136 pipe_config->fdi_lanes,
11137 &pipe_config->fdi_m_n);
11138
11139 if (intel_crtc_has_dp_encoder(pipe_config)) {
11140 intel_dump_m_n_config(pipe_config, "dp m_n",
11141 pipe_config->lane_count, &pipe_config->dp_m_n);
11142 if (pipe_config->has_drrs)
11143 intel_dump_m_n_config(pipe_config, "dp m2_n2",
11144 pipe_config->lane_count,
11145 &pipe_config->dp_m2_n2);
11146 }
11147
11148 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11149 pipe_config->has_audio, pipe_config->has_infoframe);
11150
11151 DRM_DEBUG_KMS("requested mode:\n");
11152 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11153 DRM_DEBUG_KMS("adjusted mode:\n");
11154 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11155 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11156 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11157 pipe_config->port_clock,
11158 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11159 pipe_config->pixel_rate);
11160
11161 if (INTEL_GEN(dev_priv) >= 9)
11162 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11163 crtc->num_scalers,
11164 pipe_config->scaler_state.scaler_users,
11165 pipe_config->scaler_state.scaler_id);
11166
11167 if (HAS_GMCH_DISPLAY(dev_priv))
11168 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11169 pipe_config->gmch_pfit.control,
11170 pipe_config->gmch_pfit.pgm_ratios,
11171 pipe_config->gmch_pfit.lvds_border_bits);
11172 else
11173 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11174 pipe_config->pch_pfit.pos,
11175 pipe_config->pch_pfit.size,
11176 enableddisabled(pipe_config->pch_pfit.enabled));
11177
11178 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11179 pipe_config->ips_enabled, pipe_config->double_wide);
11180
11181 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11182
11183 DRM_DEBUG_KMS("planes on this crtc\n");
11184 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11185 struct drm_format_name_buf format_name;
11186 intel_plane = to_intel_plane(plane);
11187 if (intel_plane->pipe != crtc->pipe)
11188 continue;
11189
11190 state = to_intel_plane_state(plane->state);
11191 fb = state->base.fb;
11192 if (!fb) {
11193 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11194 plane->base.id, plane->name, state->scaler_id);
11195 continue;
11196 }
11197
11198 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11199 plane->base.id, plane->name,
11200 fb->base.id, fb->width, fb->height,
11201 drm_get_format_name(fb->format->format, &format_name));
11202 if (INTEL_GEN(dev_priv) >= 9)
11203 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11204 state->scaler_id,
11205 state->base.src.x1 >> 16,
11206 state->base.src.y1 >> 16,
11207 drm_rect_width(&state->base.src) >> 16,
11208 drm_rect_height(&state->base.src) >> 16,
11209 state->base.dst.x1, state->base.dst.y1,
11210 drm_rect_width(&state->base.dst),
11211 drm_rect_height(&state->base.dst));
11212 }
11213 }
11214
11215 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11216 {
11217 struct drm_device *dev = state->dev;
11218 struct drm_connector *connector;
11219 unsigned int used_ports = 0;
11220 unsigned int used_mst_ports = 0;
11221
11222 /*
11223 * Walk the connector list instead of the encoder
11224 * list to detect the problem on ddi platforms
11225 * where there's just one encoder per digital port.
11226 */
11227 drm_for_each_connector(connector, dev) {
11228 struct drm_connector_state *connector_state;
11229 struct intel_encoder *encoder;
11230
11231 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11232 if (!connector_state)
11233 connector_state = connector->state;
11234
11235 if (!connector_state->best_encoder)
11236 continue;
11237
11238 encoder = to_intel_encoder(connector_state->best_encoder);
11239
11240 WARN_ON(!connector_state->crtc);
11241
11242 switch (encoder->type) {
11243 unsigned int port_mask;
11244 case INTEL_OUTPUT_UNKNOWN:
11245 if (WARN_ON(!HAS_DDI(to_i915(dev))))
11246 break;
11247 case INTEL_OUTPUT_DP:
11248 case INTEL_OUTPUT_HDMI:
11249 case INTEL_OUTPUT_EDP:
11250 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11251
11252 /* the same port mustn't appear more than once */
11253 if (used_ports & port_mask)
11254 return false;
11255
11256 used_ports |= port_mask;
11257 break;
11258 case INTEL_OUTPUT_DP_MST:
11259 used_mst_ports |=
11260 1 << enc_to_mst(&encoder->base)->primary->port;
11261 break;
11262 default:
11263 break;
11264 }
11265 }
11266
11267 /* can't mix MST and SST/HDMI on the same port */
11268 if (used_ports & used_mst_ports)
11269 return false;
11270
11271 return true;
11272 }
11273
11274 static void
11275 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11276 {
11277 struct drm_i915_private *dev_priv =
11278 to_i915(crtc_state->base.crtc->dev);
11279 struct intel_crtc_scaler_state scaler_state;
11280 struct intel_dpll_hw_state dpll_hw_state;
11281 struct intel_shared_dpll *shared_dpll;
11282 struct intel_crtc_wm_state wm_state;
11283 bool force_thru;
11284
11285 /* FIXME: before the switch to atomic started, a new pipe_config was
11286 * kzalloc'd. Code that depends on any field being zero should be
11287 * fixed, so that the crtc_state can be safely duplicated. For now,
11288 * only fields that are know to not cause problems are preserved. */
11289
11290 scaler_state = crtc_state->scaler_state;
11291 shared_dpll = crtc_state->shared_dpll;
11292 dpll_hw_state = crtc_state->dpll_hw_state;
11293 force_thru = crtc_state->pch_pfit.force_thru;
11294 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11295 wm_state = crtc_state->wm;
11296
11297 /* Keep base drm_crtc_state intact, only clear our extended struct */
11298 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11299 memset(&crtc_state->base + 1, 0,
11300 sizeof(*crtc_state) - sizeof(crtc_state->base));
11301
11302 crtc_state->scaler_state = scaler_state;
11303 crtc_state->shared_dpll = shared_dpll;
11304 crtc_state->dpll_hw_state = dpll_hw_state;
11305 crtc_state->pch_pfit.force_thru = force_thru;
11306 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11307 crtc_state->wm = wm_state;
11308 }
11309
11310 static int
11311 intel_modeset_pipe_config(struct drm_crtc *crtc,
11312 struct intel_crtc_state *pipe_config)
11313 {
11314 struct drm_atomic_state *state = pipe_config->base.state;
11315 struct intel_encoder *encoder;
11316 struct drm_connector *connector;
11317 struct drm_connector_state *connector_state;
11318 int base_bpp, ret = -EINVAL;
11319 int i;
11320 bool retry = true;
11321
11322 clear_intel_crtc_state(pipe_config);
11323
11324 pipe_config->cpu_transcoder =
11325 (enum transcoder) to_intel_crtc(crtc)->pipe;
11326
11327 /*
11328 * Sanitize sync polarity flags based on requested ones. If neither
11329 * positive or negative polarity is requested, treat this as meaning
11330 * negative polarity.
11331 */
11332 if (!(pipe_config->base.adjusted_mode.flags &
11333 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11334 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11335
11336 if (!(pipe_config->base.adjusted_mode.flags &
11337 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11338 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11339
11340 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11341 pipe_config);
11342 if (base_bpp < 0)
11343 goto fail;
11344
11345 /*
11346 * Determine the real pipe dimensions. Note that stereo modes can
11347 * increase the actual pipe size due to the frame doubling and
11348 * insertion of additional space for blanks between the frame. This
11349 * is stored in the crtc timings. We use the requested mode to do this
11350 * computation to clearly distinguish it from the adjusted mode, which
11351 * can be changed by the connectors in the below retry loop.
11352 */
11353 drm_mode_get_hv_timing(&pipe_config->base.mode,
11354 &pipe_config->pipe_src_w,
11355 &pipe_config->pipe_src_h);
11356
11357 for_each_new_connector_in_state(state, connector, connector_state, i) {
11358 if (connector_state->crtc != crtc)
11359 continue;
11360
11361 encoder = to_intel_encoder(connector_state->best_encoder);
11362
11363 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11364 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11365 goto fail;
11366 }
11367
11368 /*
11369 * Determine output_types before calling the .compute_config()
11370 * hooks so that the hooks can use this information safely.
11371 */
11372 pipe_config->output_types |= 1 << encoder->type;
11373 }
11374
11375 encoder_retry:
11376 /* Ensure the port clock defaults are reset when retrying. */
11377 pipe_config->port_clock = 0;
11378 pipe_config->pixel_multiplier = 1;
11379
11380 /* Fill in default crtc timings, allow encoders to overwrite them. */
11381 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11382 CRTC_STEREO_DOUBLE);
11383
11384 /* Pass our mode to the connectors and the CRTC to give them a chance to
11385 * adjust it according to limitations or connector properties, and also
11386 * a chance to reject the mode entirely.
11387 */
11388 for_each_new_connector_in_state(state, connector, connector_state, i) {
11389 if (connector_state->crtc != crtc)
11390 continue;
11391
11392 encoder = to_intel_encoder(connector_state->best_encoder);
11393
11394 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11395 DRM_DEBUG_KMS("Encoder config failure\n");
11396 goto fail;
11397 }
11398 }
11399
11400 /* Set default port clock if not overwritten by the encoder. Needs to be
11401 * done afterwards in case the encoder adjusts the mode. */
11402 if (!pipe_config->port_clock)
11403 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11404 * pipe_config->pixel_multiplier;
11405
11406 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11407 if (ret < 0) {
11408 DRM_DEBUG_KMS("CRTC fixup failed\n");
11409 goto fail;
11410 }
11411
11412 if (ret == RETRY) {
11413 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11414 ret = -EINVAL;
11415 goto fail;
11416 }
11417
11418 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11419 retry = false;
11420 goto encoder_retry;
11421 }
11422
11423 /* Dithering seems to not pass-through bits correctly when it should, so
11424 * only enable it on 6bpc panels and when its not a compliance
11425 * test requesting 6bpc video pattern.
11426 */
11427 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11428 !pipe_config->dither_force_disable;
11429 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11430 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11431
11432 fail:
11433 return ret;
11434 }
11435
11436 static void
11437 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11438 {
11439 struct drm_crtc *crtc;
11440 struct drm_crtc_state *new_crtc_state;
11441 int i;
11442
11443 /* Double check state. */
11444 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11445 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11446
11447 /* Update hwmode for vblank functions */
11448 if (new_crtc_state->active)
11449 crtc->hwmode = new_crtc_state->adjusted_mode;
11450 else
11451 crtc->hwmode.crtc_clock = 0;
11452
11453 /*
11454 * Update legacy state to satisfy fbc code. This can
11455 * be removed when fbc uses the atomic state.
11456 */
11457 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11458 struct drm_plane_state *plane_state = crtc->primary->state;
11459
11460 crtc->primary->fb = plane_state->fb;
11461 crtc->x = plane_state->src_x >> 16;
11462 crtc->y = plane_state->src_y >> 16;
11463 }
11464 }
11465 }
11466
11467 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11468 {
11469 int diff;
11470
11471 if (clock1 == clock2)
11472 return true;
11473
11474 if (!clock1 || !clock2)
11475 return false;
11476
11477 diff = abs(clock1 - clock2);
11478
11479 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11480 return true;
11481
11482 return false;
11483 }
11484
11485 static bool
11486 intel_compare_m_n(unsigned int m, unsigned int n,
11487 unsigned int m2, unsigned int n2,
11488 bool exact)
11489 {
11490 if (m == m2 && n == n2)
11491 return true;
11492
11493 if (exact || !m || !n || !m2 || !n2)
11494 return false;
11495
11496 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11497
11498 if (n > n2) {
11499 while (n > n2) {
11500 m2 <<= 1;
11501 n2 <<= 1;
11502 }
11503 } else if (n < n2) {
11504 while (n < n2) {
11505 m <<= 1;
11506 n <<= 1;
11507 }
11508 }
11509
11510 if (n != n2)
11511 return false;
11512
11513 return intel_fuzzy_clock_check(m, m2);
11514 }
11515
11516 static bool
11517 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11518 struct intel_link_m_n *m2_n2,
11519 bool adjust)
11520 {
11521 if (m_n->tu == m2_n2->tu &&
11522 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11523 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11524 intel_compare_m_n(m_n->link_m, m_n->link_n,
11525 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11526 if (adjust)
11527 *m2_n2 = *m_n;
11528
11529 return true;
11530 }
11531
11532 return false;
11533 }
11534
11535 static void __printf(3, 4)
11536 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11537 {
11538 char *level;
11539 unsigned int category;
11540 struct va_format vaf;
11541 va_list args;
11542
11543 if (adjust) {
11544 level = KERN_DEBUG;
11545 category = DRM_UT_KMS;
11546 } else {
11547 level = KERN_ERR;
11548 category = DRM_UT_NONE;
11549 }
11550
11551 va_start(args, format);
11552 vaf.fmt = format;
11553 vaf.va = &args;
11554
11555 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11556
11557 va_end(args);
11558 }
11559
11560 static bool
11561 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11562 struct intel_crtc_state *current_config,
11563 struct intel_crtc_state *pipe_config,
11564 bool adjust)
11565 {
11566 bool ret = true;
11567
11568 #define PIPE_CONF_CHECK_X(name) \
11569 if (current_config->name != pipe_config->name) { \
11570 pipe_config_err(adjust, __stringify(name), \
11571 "(expected 0x%08x, found 0x%08x)\n", \
11572 current_config->name, \
11573 pipe_config->name); \
11574 ret = false; \
11575 }
11576
11577 #define PIPE_CONF_CHECK_I(name) \
11578 if (current_config->name != pipe_config->name) { \
11579 pipe_config_err(adjust, __stringify(name), \
11580 "(expected %i, found %i)\n", \
11581 current_config->name, \
11582 pipe_config->name); \
11583 ret = false; \
11584 }
11585
11586 #define PIPE_CONF_CHECK_P(name) \
11587 if (current_config->name != pipe_config->name) { \
11588 pipe_config_err(adjust, __stringify(name), \
11589 "(expected %p, found %p)\n", \
11590 current_config->name, \
11591 pipe_config->name); \
11592 ret = false; \
11593 }
11594
11595 #define PIPE_CONF_CHECK_M_N(name) \
11596 if (!intel_compare_link_m_n(&current_config->name, \
11597 &pipe_config->name,\
11598 adjust)) { \
11599 pipe_config_err(adjust, __stringify(name), \
11600 "(expected tu %i gmch %i/%i link %i/%i, " \
11601 "found tu %i, gmch %i/%i link %i/%i)\n", \
11602 current_config->name.tu, \
11603 current_config->name.gmch_m, \
11604 current_config->name.gmch_n, \
11605 current_config->name.link_m, \
11606 current_config->name.link_n, \
11607 pipe_config->name.tu, \
11608 pipe_config->name.gmch_m, \
11609 pipe_config->name.gmch_n, \
11610 pipe_config->name.link_m, \
11611 pipe_config->name.link_n); \
11612 ret = false; \
11613 }
11614
11615 /* This is required for BDW+ where there is only one set of registers for
11616 * switching between high and low RR.
11617 * This macro can be used whenever a comparison has to be made between one
11618 * hw state and multiple sw state variables.
11619 */
11620 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11621 if (!intel_compare_link_m_n(&current_config->name, \
11622 &pipe_config->name, adjust) && \
11623 !intel_compare_link_m_n(&current_config->alt_name, \
11624 &pipe_config->name, adjust)) { \
11625 pipe_config_err(adjust, __stringify(name), \
11626 "(expected tu %i gmch %i/%i link %i/%i, " \
11627 "or tu %i gmch %i/%i link %i/%i, " \
11628 "found tu %i, gmch %i/%i link %i/%i)\n", \
11629 current_config->name.tu, \
11630 current_config->name.gmch_m, \
11631 current_config->name.gmch_n, \
11632 current_config->name.link_m, \
11633 current_config->name.link_n, \
11634 current_config->alt_name.tu, \
11635 current_config->alt_name.gmch_m, \
11636 current_config->alt_name.gmch_n, \
11637 current_config->alt_name.link_m, \
11638 current_config->alt_name.link_n, \
11639 pipe_config->name.tu, \
11640 pipe_config->name.gmch_m, \
11641 pipe_config->name.gmch_n, \
11642 pipe_config->name.link_m, \
11643 pipe_config->name.link_n); \
11644 ret = false; \
11645 }
11646
11647 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11648 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11649 pipe_config_err(adjust, __stringify(name), \
11650 "(%x) (expected %i, found %i)\n", \
11651 (mask), \
11652 current_config->name & (mask), \
11653 pipe_config->name & (mask)); \
11654 ret = false; \
11655 }
11656
11657 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11658 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11659 pipe_config_err(adjust, __stringify(name), \
11660 "(expected %i, found %i)\n", \
11661 current_config->name, \
11662 pipe_config->name); \
11663 ret = false; \
11664 }
11665
11666 #define PIPE_CONF_QUIRK(quirk) \
11667 ((current_config->quirks | pipe_config->quirks) & (quirk))
11668
11669 PIPE_CONF_CHECK_I(cpu_transcoder);
11670
11671 PIPE_CONF_CHECK_I(has_pch_encoder);
11672 PIPE_CONF_CHECK_I(fdi_lanes);
11673 PIPE_CONF_CHECK_M_N(fdi_m_n);
11674
11675 PIPE_CONF_CHECK_I(lane_count);
11676 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11677
11678 if (INTEL_GEN(dev_priv) < 8) {
11679 PIPE_CONF_CHECK_M_N(dp_m_n);
11680
11681 if (current_config->has_drrs)
11682 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11683 } else
11684 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11685
11686 PIPE_CONF_CHECK_X(output_types);
11687
11688 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11689 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11690 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11691 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11692 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11693 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11694
11695 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11696 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11697 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11698 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11699 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11700 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11701
11702 PIPE_CONF_CHECK_I(pixel_multiplier);
11703 PIPE_CONF_CHECK_I(has_hdmi_sink);
11704 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11705 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11706 PIPE_CONF_CHECK_I(limited_color_range);
11707
11708 PIPE_CONF_CHECK_I(hdmi_scrambling);
11709 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11710 PIPE_CONF_CHECK_I(has_infoframe);
11711
11712 PIPE_CONF_CHECK_I(has_audio);
11713
11714 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11715 DRM_MODE_FLAG_INTERLACE);
11716
11717 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11718 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11719 DRM_MODE_FLAG_PHSYNC);
11720 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11721 DRM_MODE_FLAG_NHSYNC);
11722 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11723 DRM_MODE_FLAG_PVSYNC);
11724 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11725 DRM_MODE_FLAG_NVSYNC);
11726 }
11727
11728 PIPE_CONF_CHECK_X(gmch_pfit.control);
11729 /* pfit ratios are autocomputed by the hw on gen4+ */
11730 if (INTEL_GEN(dev_priv) < 4)
11731 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11732 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11733
11734 if (!adjust) {
11735 PIPE_CONF_CHECK_I(pipe_src_w);
11736 PIPE_CONF_CHECK_I(pipe_src_h);
11737
11738 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11739 if (current_config->pch_pfit.enabled) {
11740 PIPE_CONF_CHECK_X(pch_pfit.pos);
11741 PIPE_CONF_CHECK_X(pch_pfit.size);
11742 }
11743
11744 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11745 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11746 }
11747
11748 /* BDW+ don't expose a synchronous way to read the state */
11749 if (IS_HASWELL(dev_priv))
11750 PIPE_CONF_CHECK_I(ips_enabled);
11751
11752 PIPE_CONF_CHECK_I(double_wide);
11753
11754 PIPE_CONF_CHECK_P(shared_dpll);
11755 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11756 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11757 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11758 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11759 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11760 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11761 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11762 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11763 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11764
11765 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11766 PIPE_CONF_CHECK_X(dsi_pll.div);
11767
11768 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11769 PIPE_CONF_CHECK_I(pipe_bpp);
11770
11771 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11772 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11773
11774 #undef PIPE_CONF_CHECK_X
11775 #undef PIPE_CONF_CHECK_I
11776 #undef PIPE_CONF_CHECK_P
11777 #undef PIPE_CONF_CHECK_FLAGS
11778 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11779 #undef PIPE_CONF_QUIRK
11780
11781 return ret;
11782 }
11783
11784 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11785 const struct intel_crtc_state *pipe_config)
11786 {
11787 if (pipe_config->has_pch_encoder) {
11788 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11789 &pipe_config->fdi_m_n);
11790 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11791
11792 /*
11793 * FDI already provided one idea for the dotclock.
11794 * Yell if the encoder disagrees.
11795 */
11796 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11797 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11798 fdi_dotclock, dotclock);
11799 }
11800 }
11801
11802 static void verify_wm_state(struct drm_crtc *crtc,
11803 struct drm_crtc_state *new_state)
11804 {
11805 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11806 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11807 struct skl_pipe_wm hw_wm, *sw_wm;
11808 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11809 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11811 const enum pipe pipe = intel_crtc->pipe;
11812 int plane, level, max_level = ilk_wm_max_level(dev_priv);
11813
11814 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11815 return;
11816
11817 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11818 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11819
11820 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11821 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11822
11823 /* planes */
11824 for_each_universal_plane(dev_priv, pipe, plane) {
11825 hw_plane_wm = &hw_wm.planes[plane];
11826 sw_plane_wm = &sw_wm->planes[plane];
11827
11828 /* Watermarks */
11829 for (level = 0; level <= max_level; level++) {
11830 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11831 &sw_plane_wm->wm[level]))
11832 continue;
11833
11834 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11835 pipe_name(pipe), plane + 1, level,
11836 sw_plane_wm->wm[level].plane_en,
11837 sw_plane_wm->wm[level].plane_res_b,
11838 sw_plane_wm->wm[level].plane_res_l,
11839 hw_plane_wm->wm[level].plane_en,
11840 hw_plane_wm->wm[level].plane_res_b,
11841 hw_plane_wm->wm[level].plane_res_l);
11842 }
11843
11844 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11845 &sw_plane_wm->trans_wm)) {
11846 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11847 pipe_name(pipe), plane + 1,
11848 sw_plane_wm->trans_wm.plane_en,
11849 sw_plane_wm->trans_wm.plane_res_b,
11850 sw_plane_wm->trans_wm.plane_res_l,
11851 hw_plane_wm->trans_wm.plane_en,
11852 hw_plane_wm->trans_wm.plane_res_b,
11853 hw_plane_wm->trans_wm.plane_res_l);
11854 }
11855
11856 /* DDB */
11857 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11858 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11859
11860 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11861 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11862 pipe_name(pipe), plane + 1,
11863 sw_ddb_entry->start, sw_ddb_entry->end,
11864 hw_ddb_entry->start, hw_ddb_entry->end);
11865 }
11866 }
11867
11868 /*
11869 * cursor
11870 * If the cursor plane isn't active, we may not have updated it's ddb
11871 * allocation. In that case since the ddb allocation will be updated
11872 * once the plane becomes visible, we can skip this check
11873 */
11874 if (intel_crtc->cursor_addr) {
11875 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11876 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11877
11878 /* Watermarks */
11879 for (level = 0; level <= max_level; level++) {
11880 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11881 &sw_plane_wm->wm[level]))
11882 continue;
11883
11884 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11885 pipe_name(pipe), level,
11886 sw_plane_wm->wm[level].plane_en,
11887 sw_plane_wm->wm[level].plane_res_b,
11888 sw_plane_wm->wm[level].plane_res_l,
11889 hw_plane_wm->wm[level].plane_en,
11890 hw_plane_wm->wm[level].plane_res_b,
11891 hw_plane_wm->wm[level].plane_res_l);
11892 }
11893
11894 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11895 &sw_plane_wm->trans_wm)) {
11896 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11897 pipe_name(pipe),
11898 sw_plane_wm->trans_wm.plane_en,
11899 sw_plane_wm->trans_wm.plane_res_b,
11900 sw_plane_wm->trans_wm.plane_res_l,
11901 hw_plane_wm->trans_wm.plane_en,
11902 hw_plane_wm->trans_wm.plane_res_b,
11903 hw_plane_wm->trans_wm.plane_res_l);
11904 }
11905
11906 /* DDB */
11907 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11908 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11909
11910 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11911 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11912 pipe_name(pipe),
11913 sw_ddb_entry->start, sw_ddb_entry->end,
11914 hw_ddb_entry->start, hw_ddb_entry->end);
11915 }
11916 }
11917 }
11918
11919 static void
11920 verify_connector_state(struct drm_device *dev,
11921 struct drm_atomic_state *state,
11922 struct drm_crtc *crtc)
11923 {
11924 struct drm_connector *connector;
11925 struct drm_connector_state *new_conn_state;
11926 int i;
11927
11928 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11929 struct drm_encoder *encoder = connector->encoder;
11930
11931 if (new_conn_state->crtc != crtc)
11932 continue;
11933
11934 intel_connector_verify_state(to_intel_connector(connector));
11935
11936 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11937 "connector's atomic encoder doesn't match legacy encoder\n");
11938 }
11939 }
11940
11941 static void
11942 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11943 {
11944 struct intel_encoder *encoder;
11945 struct drm_connector *connector;
11946 struct drm_connector_state *old_conn_state, *new_conn_state;
11947 int i;
11948
11949 for_each_intel_encoder(dev, encoder) {
11950 bool enabled = false, found = false;
11951 enum pipe pipe;
11952
11953 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11954 encoder->base.base.id,
11955 encoder->base.name);
11956
11957 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11958 new_conn_state, i) {
11959 if (old_conn_state->best_encoder == &encoder->base)
11960 found = true;
11961
11962 if (new_conn_state->best_encoder != &encoder->base)
11963 continue;
11964 found = enabled = true;
11965
11966 I915_STATE_WARN(new_conn_state->crtc !=
11967 encoder->base.crtc,
11968 "connector's crtc doesn't match encoder crtc\n");
11969 }
11970
11971 if (!found)
11972 continue;
11973
11974 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11975 "encoder's enabled state mismatch "
11976 "(expected %i, found %i)\n",
11977 !!encoder->base.crtc, enabled);
11978
11979 if (!encoder->base.crtc) {
11980 bool active;
11981
11982 active = encoder->get_hw_state(encoder, &pipe);
11983 I915_STATE_WARN(active,
11984 "encoder detached but still enabled on pipe %c.\n",
11985 pipe_name(pipe));
11986 }
11987 }
11988 }
11989
11990 static void
11991 verify_crtc_state(struct drm_crtc *crtc,
11992 struct drm_crtc_state *old_crtc_state,
11993 struct drm_crtc_state *new_crtc_state)
11994 {
11995 struct drm_device *dev = crtc->dev;
11996 struct drm_i915_private *dev_priv = to_i915(dev);
11997 struct intel_encoder *encoder;
11998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11999 struct intel_crtc_state *pipe_config, *sw_config;
12000 struct drm_atomic_state *old_state;
12001 bool active;
12002
12003 old_state = old_crtc_state->state;
12004 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12005 pipe_config = to_intel_crtc_state(old_crtc_state);
12006 memset(pipe_config, 0, sizeof(*pipe_config));
12007 pipe_config->base.crtc = crtc;
12008 pipe_config->base.state = old_state;
12009
12010 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12011
12012 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12013
12014 /* hw state is inconsistent with the pipe quirk */
12015 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12016 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12017 active = new_crtc_state->active;
12018
12019 I915_STATE_WARN(new_crtc_state->active != active,
12020 "crtc active state doesn't match with hw state "
12021 "(expected %i, found %i)\n", new_crtc_state->active, active);
12022
12023 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12024 "transitional active state does not match atomic hw state "
12025 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12026
12027 for_each_encoder_on_crtc(dev, crtc, encoder) {
12028 enum pipe pipe;
12029
12030 active = encoder->get_hw_state(encoder, &pipe);
12031 I915_STATE_WARN(active != new_crtc_state->active,
12032 "[ENCODER:%i] active %i with crtc active %i\n",
12033 encoder->base.base.id, active, new_crtc_state->active);
12034
12035 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12036 "Encoder connected to wrong pipe %c\n",
12037 pipe_name(pipe));
12038
12039 if (active) {
12040 pipe_config->output_types |= 1 << encoder->type;
12041 encoder->get_config(encoder, pipe_config);
12042 }
12043 }
12044
12045 intel_crtc_compute_pixel_rate(pipe_config);
12046
12047 if (!new_crtc_state->active)
12048 return;
12049
12050 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12051
12052 sw_config = to_intel_crtc_state(crtc->state);
12053 if (!intel_pipe_config_compare(dev_priv, sw_config,
12054 pipe_config, false)) {
12055 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12056 intel_dump_pipe_config(intel_crtc, pipe_config,
12057 "[hw state]");
12058 intel_dump_pipe_config(intel_crtc, sw_config,
12059 "[sw state]");
12060 }
12061 }
12062
12063 static void
12064 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12065 struct intel_shared_dpll *pll,
12066 struct drm_crtc *crtc,
12067 struct drm_crtc_state *new_state)
12068 {
12069 struct intel_dpll_hw_state dpll_hw_state;
12070 unsigned crtc_mask;
12071 bool active;
12072
12073 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12074
12075 DRM_DEBUG_KMS("%s\n", pll->name);
12076
12077 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12078
12079 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12080 I915_STATE_WARN(!pll->on && pll->active_mask,
12081 "pll in active use but not on in sw tracking\n");
12082 I915_STATE_WARN(pll->on && !pll->active_mask,
12083 "pll is on but not used by any active crtc\n");
12084 I915_STATE_WARN(pll->on != active,
12085 "pll on state mismatch (expected %i, found %i)\n",
12086 pll->on, active);
12087 }
12088
12089 if (!crtc) {
12090 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12091 "more active pll users than references: %x vs %x\n",
12092 pll->active_mask, pll->state.crtc_mask);
12093
12094 return;
12095 }
12096
12097 crtc_mask = 1 << drm_crtc_index(crtc);
12098
12099 if (new_state->active)
12100 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12101 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12102 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12103 else
12104 I915_STATE_WARN(pll->active_mask & crtc_mask,
12105 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12106 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12107
12108 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12109 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12110 crtc_mask, pll->state.crtc_mask);
12111
12112 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12113 &dpll_hw_state,
12114 sizeof(dpll_hw_state)),
12115 "pll hw state mismatch\n");
12116 }
12117
12118 static void
12119 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12120 struct drm_crtc_state *old_crtc_state,
12121 struct drm_crtc_state *new_crtc_state)
12122 {
12123 struct drm_i915_private *dev_priv = to_i915(dev);
12124 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12125 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12126
12127 if (new_state->shared_dpll)
12128 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12129
12130 if (old_state->shared_dpll &&
12131 old_state->shared_dpll != new_state->shared_dpll) {
12132 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12133 struct intel_shared_dpll *pll = old_state->shared_dpll;
12134
12135 I915_STATE_WARN(pll->active_mask & crtc_mask,
12136 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12137 pipe_name(drm_crtc_index(crtc)));
12138 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12139 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12140 pipe_name(drm_crtc_index(crtc)));
12141 }
12142 }
12143
12144 static void
12145 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12146 struct drm_atomic_state *state,
12147 struct drm_crtc_state *old_state,
12148 struct drm_crtc_state *new_state)
12149 {
12150 if (!needs_modeset(new_state) &&
12151 !to_intel_crtc_state(new_state)->update_pipe)
12152 return;
12153
12154 verify_wm_state(crtc, new_state);
12155 verify_connector_state(crtc->dev, state, crtc);
12156 verify_crtc_state(crtc, old_state, new_state);
12157 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12158 }
12159
12160 static void
12161 verify_disabled_dpll_state(struct drm_device *dev)
12162 {
12163 struct drm_i915_private *dev_priv = to_i915(dev);
12164 int i;
12165
12166 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12167 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12168 }
12169
12170 static void
12171 intel_modeset_verify_disabled(struct drm_device *dev,
12172 struct drm_atomic_state *state)
12173 {
12174 verify_encoder_state(dev, state);
12175 verify_connector_state(dev, state, NULL);
12176 verify_disabled_dpll_state(dev);
12177 }
12178
12179 static void update_scanline_offset(struct intel_crtc *crtc)
12180 {
12181 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12182
12183 /*
12184 * The scanline counter increments at the leading edge of hsync.
12185 *
12186 * On most platforms it starts counting from vtotal-1 on the
12187 * first active line. That means the scanline counter value is
12188 * always one less than what we would expect. Ie. just after
12189 * start of vblank, which also occurs at start of hsync (on the
12190 * last active line), the scanline counter will read vblank_start-1.
12191 *
12192 * On gen2 the scanline counter starts counting from 1 instead
12193 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12194 * to keep the value positive), instead of adding one.
12195 *
12196 * On HSW+ the behaviour of the scanline counter depends on the output
12197 * type. For DP ports it behaves like most other platforms, but on HDMI
12198 * there's an extra 1 line difference. So we need to add two instead of
12199 * one to the value.
12200 */
12201 if (IS_GEN2(dev_priv)) {
12202 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12203 int vtotal;
12204
12205 vtotal = adjusted_mode->crtc_vtotal;
12206 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12207 vtotal /= 2;
12208
12209 crtc->scanline_offset = vtotal - 1;
12210 } else if (HAS_DDI(dev_priv) &&
12211 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12212 crtc->scanline_offset = 2;
12213 } else
12214 crtc->scanline_offset = 1;
12215 }
12216
12217 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12218 {
12219 struct drm_device *dev = state->dev;
12220 struct drm_i915_private *dev_priv = to_i915(dev);
12221 struct drm_crtc *crtc;
12222 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12223 int i;
12224
12225 if (!dev_priv->display.crtc_compute_clock)
12226 return;
12227
12228 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12230 struct intel_shared_dpll *old_dpll =
12231 to_intel_crtc_state(old_crtc_state)->shared_dpll;
12232
12233 if (!needs_modeset(new_crtc_state))
12234 continue;
12235
12236 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12237
12238 if (!old_dpll)
12239 continue;
12240
12241 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12242 }
12243 }
12244
12245 /*
12246 * This implements the workaround described in the "notes" section of the mode
12247 * set sequence documentation. When going from no pipes or single pipe to
12248 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12249 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12250 */
12251 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12252 {
12253 struct drm_crtc_state *crtc_state;
12254 struct intel_crtc *intel_crtc;
12255 struct drm_crtc *crtc;
12256 struct intel_crtc_state *first_crtc_state = NULL;
12257 struct intel_crtc_state *other_crtc_state = NULL;
12258 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12259 int i;
12260
12261 /* look at all crtc's that are going to be enabled in during modeset */
12262 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12263 intel_crtc = to_intel_crtc(crtc);
12264
12265 if (!crtc_state->active || !needs_modeset(crtc_state))
12266 continue;
12267
12268 if (first_crtc_state) {
12269 other_crtc_state = to_intel_crtc_state(crtc_state);
12270 break;
12271 } else {
12272 first_crtc_state = to_intel_crtc_state(crtc_state);
12273 first_pipe = intel_crtc->pipe;
12274 }
12275 }
12276
12277 /* No workaround needed? */
12278 if (!first_crtc_state)
12279 return 0;
12280
12281 /* w/a possibly needed, check how many crtc's are already enabled. */
12282 for_each_intel_crtc(state->dev, intel_crtc) {
12283 struct intel_crtc_state *pipe_config;
12284
12285 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12286 if (IS_ERR(pipe_config))
12287 return PTR_ERR(pipe_config);
12288
12289 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12290
12291 if (!pipe_config->base.active ||
12292 needs_modeset(&pipe_config->base))
12293 continue;
12294
12295 /* 2 or more enabled crtcs means no need for w/a */
12296 if (enabled_pipe != INVALID_PIPE)
12297 return 0;
12298
12299 enabled_pipe = intel_crtc->pipe;
12300 }
12301
12302 if (enabled_pipe != INVALID_PIPE)
12303 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12304 else if (other_crtc_state)
12305 other_crtc_state->hsw_workaround_pipe = first_pipe;
12306
12307 return 0;
12308 }
12309
12310 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12311 {
12312 struct drm_crtc *crtc;
12313
12314 /* Add all pipes to the state */
12315 for_each_crtc(state->dev, crtc) {
12316 struct drm_crtc_state *crtc_state;
12317
12318 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12319 if (IS_ERR(crtc_state))
12320 return PTR_ERR(crtc_state);
12321 }
12322
12323 return 0;
12324 }
12325
12326 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12327 {
12328 struct drm_crtc *crtc;
12329
12330 /*
12331 * Add all pipes to the state, and force
12332 * a modeset on all the active ones.
12333 */
12334 for_each_crtc(state->dev, crtc) {
12335 struct drm_crtc_state *crtc_state;
12336 int ret;
12337
12338 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12339 if (IS_ERR(crtc_state))
12340 return PTR_ERR(crtc_state);
12341
12342 if (!crtc_state->active || needs_modeset(crtc_state))
12343 continue;
12344
12345 crtc_state->mode_changed = true;
12346
12347 ret = drm_atomic_add_affected_connectors(state, crtc);
12348 if (ret)
12349 return ret;
12350
12351 ret = drm_atomic_add_affected_planes(state, crtc);
12352 if (ret)
12353 return ret;
12354 }
12355
12356 return 0;
12357 }
12358
12359 static int intel_modeset_checks(struct drm_atomic_state *state)
12360 {
12361 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12362 struct drm_i915_private *dev_priv = to_i915(state->dev);
12363 struct drm_crtc *crtc;
12364 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12365 int ret = 0, i;
12366
12367 if (!check_digital_port_conflicts(state)) {
12368 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12369 return -EINVAL;
12370 }
12371
12372 intel_state->modeset = true;
12373 intel_state->active_crtcs = dev_priv->active_crtcs;
12374 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12375 intel_state->cdclk.actual = dev_priv->cdclk.actual;
12376
12377 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12378 if (new_crtc_state->active)
12379 intel_state->active_crtcs |= 1 << i;
12380 else
12381 intel_state->active_crtcs &= ~(1 << i);
12382
12383 if (old_crtc_state->active != new_crtc_state->active)
12384 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12385 }
12386
12387 /*
12388 * See if the config requires any additional preparation, e.g.
12389 * to adjust global state with pipes off. We need to do this
12390 * here so we can get the modeset_pipe updated config for the new
12391 * mode set on this crtc. For other crtcs we need to use the
12392 * adjusted_mode bits in the crtc directly.
12393 */
12394 if (dev_priv->display.modeset_calc_cdclk) {
12395 ret = dev_priv->display.modeset_calc_cdclk(state);
12396 if (ret < 0)
12397 return ret;
12398
12399 /*
12400 * Writes to dev_priv->cdclk.logical must protected by
12401 * holding all the crtc locks, even if we don't end up
12402 * touching the hardware
12403 */
12404 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12405 &intel_state->cdclk.logical)) {
12406 ret = intel_lock_all_pipes(state);
12407 if (ret < 0)
12408 return ret;
12409 }
12410
12411 /* All pipes must be switched off while we change the cdclk. */
12412 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12413 &intel_state->cdclk.actual)) {
12414 ret = intel_modeset_all_pipes(state);
12415 if (ret < 0)
12416 return ret;
12417 }
12418
12419 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12420 intel_state->cdclk.logical.cdclk,
12421 intel_state->cdclk.actual.cdclk);
12422 } else {
12423 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12424 }
12425
12426 intel_modeset_clear_plls(state);
12427
12428 if (IS_HASWELL(dev_priv))
12429 return haswell_mode_set_planes_workaround(state);
12430
12431 return 0;
12432 }
12433
12434 /*
12435 * Handle calculation of various watermark data at the end of the atomic check
12436 * phase. The code here should be run after the per-crtc and per-plane 'check'
12437 * handlers to ensure that all derived state has been updated.
12438 */
12439 static int calc_watermark_data(struct drm_atomic_state *state)
12440 {
12441 struct drm_device *dev = state->dev;
12442 struct drm_i915_private *dev_priv = to_i915(dev);
12443
12444 /* Is there platform-specific watermark information to calculate? */
12445 if (dev_priv->display.compute_global_watermarks)
12446 return dev_priv->display.compute_global_watermarks(state);
12447
12448 return 0;
12449 }
12450
12451 /**
12452 * intel_atomic_check - validate state object
12453 * @dev: drm device
12454 * @state: state to validate
12455 */
12456 static int intel_atomic_check(struct drm_device *dev,
12457 struct drm_atomic_state *state)
12458 {
12459 struct drm_i915_private *dev_priv = to_i915(dev);
12460 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12461 struct drm_crtc *crtc;
12462 struct drm_crtc_state *old_crtc_state, *crtc_state;
12463 int ret, i;
12464 bool any_ms = false;
12465
12466 ret = drm_atomic_helper_check_modeset(dev, state);
12467 if (ret)
12468 return ret;
12469
12470 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12471 struct intel_crtc_state *pipe_config =
12472 to_intel_crtc_state(crtc_state);
12473
12474 /* Catch I915_MODE_FLAG_INHERITED */
12475 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12476 crtc_state->mode_changed = true;
12477
12478 if (!needs_modeset(crtc_state))
12479 continue;
12480
12481 if (!crtc_state->enable) {
12482 any_ms = true;
12483 continue;
12484 }
12485
12486 /* FIXME: For only active_changed we shouldn't need to do any
12487 * state recomputation at all. */
12488
12489 ret = drm_atomic_add_affected_connectors(state, crtc);
12490 if (ret)
12491 return ret;
12492
12493 ret = intel_modeset_pipe_config(crtc, pipe_config);
12494 if (ret) {
12495 intel_dump_pipe_config(to_intel_crtc(crtc),
12496 pipe_config, "[failed]");
12497 return ret;
12498 }
12499
12500 if (i915.fastboot &&
12501 intel_pipe_config_compare(dev_priv,
12502 to_intel_crtc_state(old_crtc_state),
12503 pipe_config, true)) {
12504 crtc_state->mode_changed = false;
12505 pipe_config->update_pipe = true;
12506 }
12507
12508 if (needs_modeset(crtc_state))
12509 any_ms = true;
12510
12511 ret = drm_atomic_add_affected_planes(state, crtc);
12512 if (ret)
12513 return ret;
12514
12515 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12516 needs_modeset(crtc_state) ?
12517 "[modeset]" : "[fastset]");
12518 }
12519
12520 if (any_ms) {
12521 ret = intel_modeset_checks(state);
12522
12523 if (ret)
12524 return ret;
12525 } else {
12526 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12527 }
12528
12529 ret = drm_atomic_helper_check_planes(dev, state);
12530 if (ret)
12531 return ret;
12532
12533 intel_fbc_choose_crtc(dev_priv, state);
12534 return calc_watermark_data(state);
12535 }
12536
12537 static int intel_atomic_prepare_commit(struct drm_device *dev,
12538 struct drm_atomic_state *state)
12539 {
12540 struct drm_i915_private *dev_priv = to_i915(dev);
12541 struct drm_crtc_state *crtc_state;
12542 struct drm_crtc *crtc;
12543 int i, ret;
12544
12545 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12546 if (state->legacy_cursor_update)
12547 continue;
12548
12549 ret = intel_crtc_wait_for_pending_flips(crtc);
12550 if (ret)
12551 return ret;
12552
12553 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12554 flush_workqueue(dev_priv->wq);
12555 }
12556
12557 ret = mutex_lock_interruptible(&dev->struct_mutex);
12558 if (ret)
12559 return ret;
12560
12561 ret = drm_atomic_helper_prepare_planes(dev, state);
12562 mutex_unlock(&dev->struct_mutex);
12563
12564 return ret;
12565 }
12566
12567 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12568 {
12569 struct drm_device *dev = crtc->base.dev;
12570
12571 if (!dev->max_vblank_count)
12572 return drm_accurate_vblank_count(&crtc->base);
12573
12574 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12575 }
12576
12577 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12578 struct drm_i915_private *dev_priv,
12579 unsigned crtc_mask)
12580 {
12581 unsigned last_vblank_count[I915_MAX_PIPES];
12582 enum pipe pipe;
12583 int ret;
12584
12585 if (!crtc_mask)
12586 return;
12587
12588 for_each_pipe(dev_priv, pipe) {
12589 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12590 pipe);
12591
12592 if (!((1 << pipe) & crtc_mask))
12593 continue;
12594
12595 ret = drm_crtc_vblank_get(&crtc->base);
12596 if (WARN_ON(ret != 0)) {
12597 crtc_mask &= ~(1 << pipe);
12598 continue;
12599 }
12600
12601 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12602 }
12603
12604 for_each_pipe(dev_priv, pipe) {
12605 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12606 pipe);
12607 long lret;
12608
12609 if (!((1 << pipe) & crtc_mask))
12610 continue;
12611
12612 lret = wait_event_timeout(dev->vblank[pipe].queue,
12613 last_vblank_count[pipe] !=
12614 drm_crtc_vblank_count(&crtc->base),
12615 msecs_to_jiffies(50));
12616
12617 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12618
12619 drm_crtc_vblank_put(&crtc->base);
12620 }
12621 }
12622
12623 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12624 {
12625 /* fb updated, need to unpin old fb */
12626 if (crtc_state->fb_changed)
12627 return true;
12628
12629 /* wm changes, need vblank before final wm's */
12630 if (crtc_state->update_wm_post)
12631 return true;
12632
12633 if (crtc_state->wm.need_postvbl_update)
12634 return true;
12635
12636 return false;
12637 }
12638
12639 static void intel_update_crtc(struct drm_crtc *crtc,
12640 struct drm_atomic_state *state,
12641 struct drm_crtc_state *old_crtc_state,
12642 struct drm_crtc_state *new_crtc_state,
12643 unsigned int *crtc_vblank_mask)
12644 {
12645 struct drm_device *dev = crtc->dev;
12646 struct drm_i915_private *dev_priv = to_i915(dev);
12647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12648 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12649 bool modeset = needs_modeset(new_crtc_state);
12650
12651 if (modeset) {
12652 update_scanline_offset(intel_crtc);
12653 dev_priv->display.crtc_enable(pipe_config, state);
12654 } else {
12655 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12656 pipe_config);
12657 }
12658
12659 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12660 intel_fbc_enable(
12661 intel_crtc, pipe_config,
12662 to_intel_plane_state(crtc->primary->state));
12663 }
12664
12665 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12666
12667 if (needs_vblank_wait(pipe_config))
12668 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12669 }
12670
12671 static void intel_update_crtcs(struct drm_atomic_state *state,
12672 unsigned int *crtc_vblank_mask)
12673 {
12674 struct drm_crtc *crtc;
12675 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12676 int i;
12677
12678 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12679 if (!new_crtc_state->active)
12680 continue;
12681
12682 intel_update_crtc(crtc, state, old_crtc_state,
12683 new_crtc_state, crtc_vblank_mask);
12684 }
12685 }
12686
12687 static void skl_update_crtcs(struct drm_atomic_state *state,
12688 unsigned int *crtc_vblank_mask)
12689 {
12690 struct drm_i915_private *dev_priv = to_i915(state->dev);
12691 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12692 struct drm_crtc *crtc;
12693 struct intel_crtc *intel_crtc;
12694 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12695 struct intel_crtc_state *cstate;
12696 unsigned int updated = 0;
12697 bool progress;
12698 enum pipe pipe;
12699 int i;
12700
12701 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12702
12703 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12704 /* ignore allocations for crtc's that have been turned off. */
12705 if (new_crtc_state->active)
12706 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12707
12708 /*
12709 * Whenever the number of active pipes changes, we need to make sure we
12710 * update the pipes in the right order so that their ddb allocations
12711 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12712 * cause pipe underruns and other bad stuff.
12713 */
12714 do {
12715 progress = false;
12716
12717 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12718 bool vbl_wait = false;
12719 unsigned int cmask = drm_crtc_mask(crtc);
12720
12721 intel_crtc = to_intel_crtc(crtc);
12722 cstate = to_intel_crtc_state(crtc->state);
12723 pipe = intel_crtc->pipe;
12724
12725 if (updated & cmask || !cstate->base.active)
12726 continue;
12727
12728 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12729 continue;
12730
12731 updated |= cmask;
12732 entries[i] = &cstate->wm.skl.ddb;
12733
12734 /*
12735 * If this is an already active pipe, it's DDB changed,
12736 * and this isn't the last pipe that needs updating
12737 * then we need to wait for a vblank to pass for the
12738 * new ddb allocation to take effect.
12739 */
12740 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12741 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12742 !new_crtc_state->active_changed &&
12743 intel_state->wm_results.dirty_pipes != updated)
12744 vbl_wait = true;
12745
12746 intel_update_crtc(crtc, state, old_crtc_state,
12747 new_crtc_state, crtc_vblank_mask);
12748
12749 if (vbl_wait)
12750 intel_wait_for_vblank(dev_priv, pipe);
12751
12752 progress = true;
12753 }
12754 } while (progress);
12755 }
12756
12757 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12758 {
12759 struct intel_atomic_state *state, *next;
12760 struct llist_node *freed;
12761
12762 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12763 llist_for_each_entry_safe(state, next, freed, freed)
12764 drm_atomic_state_put(&state->base);
12765 }
12766
12767 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12768 {
12769 struct drm_i915_private *dev_priv =
12770 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12771
12772 intel_atomic_helper_free_state(dev_priv);
12773 }
12774
12775 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12776 {
12777 struct drm_device *dev = state->dev;
12778 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12779 struct drm_i915_private *dev_priv = to_i915(dev);
12780 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12781 struct drm_crtc *crtc;
12782 struct intel_crtc_state *intel_cstate;
12783 bool hw_check = intel_state->modeset;
12784 u64 put_domains[I915_MAX_PIPES] = {};
12785 unsigned crtc_vblank_mask = 0;
12786 int i;
12787
12788 drm_atomic_helper_wait_for_dependencies(state);
12789
12790 if (intel_state->modeset)
12791 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12792
12793 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12795
12796 if (needs_modeset(new_crtc_state) ||
12797 to_intel_crtc_state(new_crtc_state)->update_pipe) {
12798 hw_check = true;
12799
12800 put_domains[to_intel_crtc(crtc)->pipe] =
12801 modeset_get_crtc_power_domains(crtc,
12802 to_intel_crtc_state(new_crtc_state));
12803 }
12804
12805 if (!needs_modeset(new_crtc_state))
12806 continue;
12807
12808 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12809 to_intel_crtc_state(new_crtc_state));
12810
12811 if (old_crtc_state->active) {
12812 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12813 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12814 intel_crtc->active = false;
12815 intel_fbc_disable(intel_crtc);
12816 intel_disable_shared_dpll(intel_crtc);
12817
12818 /*
12819 * Underruns don't always raise
12820 * interrupts, so check manually.
12821 */
12822 intel_check_cpu_fifo_underruns(dev_priv);
12823 intel_check_pch_fifo_underruns(dev_priv);
12824
12825 if (!crtc->state->active) {
12826 /*
12827 * Make sure we don't call initial_watermarks
12828 * for ILK-style watermark updates.
12829 *
12830 * No clue what this is supposed to achieve.
12831 */
12832 if (INTEL_GEN(dev_priv) >= 9)
12833 dev_priv->display.initial_watermarks(intel_state,
12834 to_intel_crtc_state(crtc->state));
12835 }
12836 }
12837 }
12838
12839 /* Only after disabling all output pipelines that will be changed can we
12840 * update the the output configuration. */
12841 intel_modeset_update_crtc_state(state);
12842
12843 if (intel_state->modeset) {
12844 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12845
12846 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12847
12848 /*
12849 * SKL workaround: bspec recommends we disable the SAGV when we
12850 * have more then one pipe enabled
12851 */
12852 if (!intel_can_enable_sagv(state))
12853 intel_disable_sagv(dev_priv);
12854
12855 intel_modeset_verify_disabled(dev, state);
12856 }
12857
12858 /* Complete the events for pipes that have now been disabled */
12859 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12860 bool modeset = needs_modeset(new_crtc_state);
12861
12862 /* Complete events for now disable pipes here. */
12863 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12864 spin_lock_irq(&dev->event_lock);
12865 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12866 spin_unlock_irq(&dev->event_lock);
12867
12868 new_crtc_state->event = NULL;
12869 }
12870 }
12871
12872 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12873 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12874
12875 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12876 * already, but still need the state for the delayed optimization. To
12877 * fix this:
12878 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12879 * - schedule that vblank worker _before_ calling hw_done
12880 * - at the start of commit_tail, cancel it _synchrously
12881 * - switch over to the vblank wait helper in the core after that since
12882 * we don't need out special handling any more.
12883 */
12884 if (!state->legacy_cursor_update)
12885 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12886
12887 /*
12888 * Now that the vblank has passed, we can go ahead and program the
12889 * optimal watermarks on platforms that need two-step watermark
12890 * programming.
12891 *
12892 * TODO: Move this (and other cleanup) to an async worker eventually.
12893 */
12894 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12895 intel_cstate = to_intel_crtc_state(new_crtc_state);
12896
12897 if (dev_priv->display.optimize_watermarks)
12898 dev_priv->display.optimize_watermarks(intel_state,
12899 intel_cstate);
12900 }
12901
12902 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12903 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12904
12905 if (put_domains[i])
12906 modeset_put_power_domains(dev_priv, put_domains[i]);
12907
12908 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12909 }
12910
12911 if (intel_state->modeset && intel_can_enable_sagv(state))
12912 intel_enable_sagv(dev_priv);
12913
12914 drm_atomic_helper_commit_hw_done(state);
12915
12916 if (intel_state->modeset)
12917 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12918
12919 mutex_lock(&dev->struct_mutex);
12920 drm_atomic_helper_cleanup_planes(dev, state);
12921 mutex_unlock(&dev->struct_mutex);
12922
12923 drm_atomic_helper_commit_cleanup_done(state);
12924
12925 drm_atomic_state_put(state);
12926
12927 /* As one of the primary mmio accessors, KMS has a high likelihood
12928 * of triggering bugs in unclaimed access. After we finish
12929 * modesetting, see if an error has been flagged, and if so
12930 * enable debugging for the next modeset - and hope we catch
12931 * the culprit.
12932 *
12933 * XXX note that we assume display power is on at this point.
12934 * This might hold true now but we need to add pm helper to check
12935 * unclaimed only when the hardware is on, as atomic commits
12936 * can happen also when the device is completely off.
12937 */
12938 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12939
12940 intel_atomic_helper_free_state(dev_priv);
12941 }
12942
12943 static void intel_atomic_commit_work(struct work_struct *work)
12944 {
12945 struct drm_atomic_state *state =
12946 container_of(work, struct drm_atomic_state, commit_work);
12947
12948 intel_atomic_commit_tail(state);
12949 }
12950
12951 static int __i915_sw_fence_call
12952 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12953 enum i915_sw_fence_notify notify)
12954 {
12955 struct intel_atomic_state *state =
12956 container_of(fence, struct intel_atomic_state, commit_ready);
12957
12958 switch (notify) {
12959 case FENCE_COMPLETE:
12960 if (state->base.commit_work.func)
12961 queue_work(system_unbound_wq, &state->base.commit_work);
12962 break;
12963
12964 case FENCE_FREE:
12965 {
12966 struct intel_atomic_helper *helper =
12967 &to_i915(state->base.dev)->atomic_helper;
12968
12969 if (llist_add(&state->freed, &helper->free_list))
12970 schedule_work(&helper->free_work);
12971 break;
12972 }
12973 }
12974
12975 return NOTIFY_DONE;
12976 }
12977
12978 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12979 {
12980 struct drm_plane_state *old_plane_state, *new_plane_state;
12981 struct drm_plane *plane;
12982 int i;
12983
12984 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12985 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12986 intel_fb_obj(new_plane_state->fb),
12987 to_intel_plane(plane)->frontbuffer_bit);
12988 }
12989
12990 /**
12991 * intel_atomic_commit - commit validated state object
12992 * @dev: DRM device
12993 * @state: the top-level driver state object
12994 * @nonblock: nonblocking commit
12995 *
12996 * This function commits a top-level state object that has been validated
12997 * with drm_atomic_helper_check().
12998 *
12999 * RETURNS
13000 * Zero for success or -errno.
13001 */
13002 static int intel_atomic_commit(struct drm_device *dev,
13003 struct drm_atomic_state *state,
13004 bool nonblock)
13005 {
13006 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13007 struct drm_i915_private *dev_priv = to_i915(dev);
13008 int ret = 0;
13009
13010 ret = drm_atomic_helper_setup_commit(state, nonblock);
13011 if (ret)
13012 return ret;
13013
13014 drm_atomic_state_get(state);
13015 i915_sw_fence_init(&intel_state->commit_ready,
13016 intel_atomic_commit_ready);
13017
13018 ret = intel_atomic_prepare_commit(dev, state);
13019 if (ret) {
13020 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13021 i915_sw_fence_commit(&intel_state->commit_ready);
13022 return ret;
13023 }
13024
13025 /*
13026 * The intel_legacy_cursor_update() fast path takes care
13027 * of avoiding the vblank waits for simple cursor
13028 * movement and flips. For cursor on/off and size changes,
13029 * we want to perform the vblank waits so that watermark
13030 * updates happen during the correct frames. Gen9+ have
13031 * double buffered watermarks and so shouldn't need this.
13032 *
13033 * Do this after drm_atomic_helper_setup_commit() and
13034 * intel_atomic_prepare_commit() because we still want
13035 * to skip the flip and fb cleanup waits. Although that
13036 * does risk yanking the mapping from under the display
13037 * engine.
13038 *
13039 * FIXME doing watermarks and fb cleanup from a vblank worker
13040 * (assuming we had any) would solve these problems.
13041 */
13042 if (INTEL_GEN(dev_priv) < 9)
13043 state->legacy_cursor_update = false;
13044
13045 drm_atomic_helper_swap_state(state, true);
13046 dev_priv->wm.distrust_bios_wm = false;
13047 intel_shared_dpll_swap_state(state);
13048 intel_atomic_track_fbs(state);
13049
13050 if (intel_state->modeset) {
13051 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13052 sizeof(intel_state->min_pixclk));
13053 dev_priv->active_crtcs = intel_state->active_crtcs;
13054 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13055 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13056 }
13057
13058 drm_atomic_state_get(state);
13059 INIT_WORK(&state->commit_work,
13060 nonblock ? intel_atomic_commit_work : NULL);
13061
13062 i915_sw_fence_commit(&intel_state->commit_ready);
13063 if (!nonblock) {
13064 i915_sw_fence_wait(&intel_state->commit_ready);
13065 intel_atomic_commit_tail(state);
13066 }
13067
13068 return 0;
13069 }
13070
13071 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13072 {
13073 struct drm_device *dev = crtc->dev;
13074 struct drm_atomic_state *state;
13075 struct drm_crtc_state *crtc_state;
13076 int ret;
13077
13078 state = drm_atomic_state_alloc(dev);
13079 if (!state) {
13080 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13081 crtc->base.id, crtc->name);
13082 return;
13083 }
13084
13085 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
13086
13087 retry:
13088 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13089 ret = PTR_ERR_OR_ZERO(crtc_state);
13090 if (!ret) {
13091 if (!crtc_state->active)
13092 goto out;
13093
13094 crtc_state->mode_changed = true;
13095 ret = drm_atomic_commit(state);
13096 }
13097
13098 if (ret == -EDEADLK) {
13099 drm_atomic_state_clear(state);
13100 drm_modeset_backoff(state->acquire_ctx);
13101 goto retry;
13102 }
13103
13104 out:
13105 drm_atomic_state_put(state);
13106 }
13107
13108 static const struct drm_crtc_funcs intel_crtc_funcs = {
13109 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13110 .set_config = drm_atomic_helper_set_config,
13111 .set_property = drm_atomic_helper_crtc_set_property,
13112 .destroy = intel_crtc_destroy,
13113 .page_flip = drm_atomic_helper_page_flip,
13114 .atomic_duplicate_state = intel_crtc_duplicate_state,
13115 .atomic_destroy_state = intel_crtc_destroy_state,
13116 .set_crc_source = intel_crtc_set_crc_source,
13117 };
13118
13119 /**
13120 * intel_prepare_plane_fb - Prepare fb for usage on plane
13121 * @plane: drm plane to prepare for
13122 * @fb: framebuffer to prepare for presentation
13123 *
13124 * Prepares a framebuffer for usage on a display plane. Generally this
13125 * involves pinning the underlying object and updating the frontbuffer tracking
13126 * bits. Some older platforms need special physical address handling for
13127 * cursor planes.
13128 *
13129 * Must be called with struct_mutex held.
13130 *
13131 * Returns 0 on success, negative error code on failure.
13132 */
13133 int
13134 intel_prepare_plane_fb(struct drm_plane *plane,
13135 struct drm_plane_state *new_state)
13136 {
13137 struct intel_atomic_state *intel_state =
13138 to_intel_atomic_state(new_state->state);
13139 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13140 struct drm_framebuffer *fb = new_state->fb;
13141 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13142 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13143 int ret;
13144
13145 if (obj) {
13146 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13147 INTEL_INFO(dev_priv)->cursor_needs_physical) {
13148 const int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13149
13150 ret = i915_gem_object_attach_phys(obj, align);
13151 if (ret) {
13152 DRM_DEBUG_KMS("failed to attach phys object\n");
13153 return ret;
13154 }
13155 } else {
13156 struct i915_vma *vma;
13157
13158 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13159 if (IS_ERR(vma)) {
13160 DRM_DEBUG_KMS("failed to pin object\n");
13161 return PTR_ERR(vma);
13162 }
13163
13164 to_intel_plane_state(new_state)->vma = vma;
13165 }
13166 }
13167
13168 if (!obj && !old_obj)
13169 return 0;
13170
13171 if (old_obj) {
13172 struct drm_crtc_state *crtc_state =
13173 drm_atomic_get_existing_crtc_state(new_state->state,
13174 plane->state->crtc);
13175
13176 /* Big Hammer, we also need to ensure that any pending
13177 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13178 * current scanout is retired before unpinning the old
13179 * framebuffer. Note that we rely on userspace rendering
13180 * into the buffer attached to the pipe they are waiting
13181 * on. If not, userspace generates a GPU hang with IPEHR
13182 * point to the MI_WAIT_FOR_EVENT.
13183 *
13184 * This should only fail upon a hung GPU, in which case we
13185 * can safely continue.
13186 */
13187 if (needs_modeset(crtc_state)) {
13188 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13189 old_obj->resv, NULL,
13190 false, 0,
13191 GFP_KERNEL);
13192 if (ret < 0)
13193 return ret;
13194 }
13195 }
13196
13197 if (new_state->fence) { /* explicit fencing */
13198 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13199 new_state->fence,
13200 I915_FENCE_TIMEOUT,
13201 GFP_KERNEL);
13202 if (ret < 0)
13203 return ret;
13204 }
13205
13206 if (!obj)
13207 return 0;
13208
13209 if (!new_state->fence) { /* implicit fencing */
13210 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13211 obj->resv, NULL,
13212 false, I915_FENCE_TIMEOUT,
13213 GFP_KERNEL);
13214 if (ret < 0)
13215 return ret;
13216
13217 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13218 }
13219
13220 return 0;
13221 }
13222
13223 /**
13224 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13225 * @plane: drm plane to clean up for
13226 * @fb: old framebuffer that was on plane
13227 *
13228 * Cleans up a framebuffer that has just been removed from a plane.
13229 *
13230 * Must be called with struct_mutex held.
13231 */
13232 void
13233 intel_cleanup_plane_fb(struct drm_plane *plane,
13234 struct drm_plane_state *old_state)
13235 {
13236 struct i915_vma *vma;
13237
13238 /* Should only be called after a successful intel_prepare_plane_fb()! */
13239 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13240 if (vma)
13241 intel_unpin_fb_vma(vma);
13242 }
13243
13244 int
13245 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13246 {
13247 struct drm_i915_private *dev_priv;
13248 int max_scale;
13249 int crtc_clock, max_dotclk;
13250
13251 if (!intel_crtc || !crtc_state->base.enable)
13252 return DRM_PLANE_HELPER_NO_SCALING;
13253
13254 dev_priv = to_i915(intel_crtc->base.dev);
13255
13256 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13257 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13258
13259 if (IS_GEMINILAKE(dev_priv))
13260 max_dotclk *= 2;
13261
13262 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13263 return DRM_PLANE_HELPER_NO_SCALING;
13264
13265 /*
13266 * skl max scale is lower of:
13267 * close to 3 but not 3, -1 is for that purpose
13268 * or
13269 * cdclk/crtc_clock
13270 */
13271 max_scale = min((1 << 16) * 3 - 1,
13272 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13273
13274 return max_scale;
13275 }
13276
13277 static int
13278 intel_check_primary_plane(struct drm_plane *plane,
13279 struct intel_crtc_state *crtc_state,
13280 struct intel_plane_state *state)
13281 {
13282 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13283 struct drm_crtc *crtc = state->base.crtc;
13284 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13285 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13286 bool can_position = false;
13287 int ret;
13288
13289 if (INTEL_GEN(dev_priv) >= 9) {
13290 /* use scaler when colorkey is not required */
13291 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13292 min_scale = 1;
13293 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13294 }
13295 can_position = true;
13296 }
13297
13298 ret = drm_plane_helper_check_state(&state->base,
13299 &state->clip,
13300 min_scale, max_scale,
13301 can_position, true);
13302 if (ret)
13303 return ret;
13304
13305 if (!state->base.fb)
13306 return 0;
13307
13308 if (INTEL_GEN(dev_priv) >= 9) {
13309 ret = skl_check_plane_surface(state);
13310 if (ret)
13311 return ret;
13312
13313 state->ctl = skl_plane_ctl(crtc_state, state);
13314 } else {
13315 ret = i9xx_check_plane_surface(state);
13316 if (ret)
13317 return ret;
13318
13319 state->ctl = i9xx_plane_ctl(crtc_state, state);
13320 }
13321
13322 return 0;
13323 }
13324
13325 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13326 struct drm_crtc_state *old_crtc_state)
13327 {
13328 struct drm_device *dev = crtc->dev;
13329 struct drm_i915_private *dev_priv = to_i915(dev);
13330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13331 struct intel_crtc_state *intel_cstate =
13332 to_intel_crtc_state(crtc->state);
13333 struct intel_crtc_state *old_intel_cstate =
13334 to_intel_crtc_state(old_crtc_state);
13335 struct intel_atomic_state *old_intel_state =
13336 to_intel_atomic_state(old_crtc_state->state);
13337 bool modeset = needs_modeset(crtc->state);
13338
13339 if (!modeset &&
13340 (intel_cstate->base.color_mgmt_changed ||
13341 intel_cstate->update_pipe)) {
13342 intel_color_set_csc(crtc->state);
13343 intel_color_load_luts(crtc->state);
13344 }
13345
13346 /* Perform vblank evasion around commit operation */
13347 intel_pipe_update_start(intel_crtc);
13348
13349 if (modeset)
13350 goto out;
13351
13352 if (intel_cstate->update_pipe)
13353 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13354 else if (INTEL_GEN(dev_priv) >= 9)
13355 skl_detach_scalers(intel_crtc);
13356
13357 out:
13358 if (dev_priv->display.atomic_update_watermarks)
13359 dev_priv->display.atomic_update_watermarks(old_intel_state,
13360 intel_cstate);
13361 }
13362
13363 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13364 struct drm_crtc_state *old_crtc_state)
13365 {
13366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13367
13368 intel_pipe_update_end(intel_crtc, NULL);
13369 }
13370
13371 /**
13372 * intel_plane_destroy - destroy a plane
13373 * @plane: plane to destroy
13374 *
13375 * Common destruction function for all types of planes (primary, cursor,
13376 * sprite).
13377 */
13378 void intel_plane_destroy(struct drm_plane *plane)
13379 {
13380 drm_plane_cleanup(plane);
13381 kfree(to_intel_plane(plane));
13382 }
13383
13384 const struct drm_plane_funcs intel_plane_funcs = {
13385 .update_plane = drm_atomic_helper_update_plane,
13386 .disable_plane = drm_atomic_helper_disable_plane,
13387 .destroy = intel_plane_destroy,
13388 .set_property = drm_atomic_helper_plane_set_property,
13389 .atomic_get_property = intel_plane_atomic_get_property,
13390 .atomic_set_property = intel_plane_atomic_set_property,
13391 .atomic_duplicate_state = intel_plane_duplicate_state,
13392 .atomic_destroy_state = intel_plane_destroy_state,
13393 };
13394
13395 static int
13396 intel_legacy_cursor_update(struct drm_plane *plane,
13397 struct drm_crtc *crtc,
13398 struct drm_framebuffer *fb,
13399 int crtc_x, int crtc_y,
13400 unsigned int crtc_w, unsigned int crtc_h,
13401 uint32_t src_x, uint32_t src_y,
13402 uint32_t src_w, uint32_t src_h,
13403 struct drm_modeset_acquire_ctx *ctx)
13404 {
13405 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13406 int ret;
13407 struct drm_plane_state *old_plane_state, *new_plane_state;
13408 struct intel_plane *intel_plane = to_intel_plane(plane);
13409 struct drm_framebuffer *old_fb;
13410 struct drm_crtc_state *crtc_state = crtc->state;
13411 struct i915_vma *old_vma;
13412
13413 /*
13414 * When crtc is inactive or there is a modeset pending,
13415 * wait for it to complete in the slowpath
13416 */
13417 if (!crtc_state->active || needs_modeset(crtc_state) ||
13418 to_intel_crtc_state(crtc_state)->update_pipe)
13419 goto slow;
13420
13421 old_plane_state = plane->state;
13422
13423 /*
13424 * If any parameters change that may affect watermarks,
13425 * take the slowpath. Only changing fb or position should be
13426 * in the fastpath.
13427 */
13428 if (old_plane_state->crtc != crtc ||
13429 old_plane_state->src_w != src_w ||
13430 old_plane_state->src_h != src_h ||
13431 old_plane_state->crtc_w != crtc_w ||
13432 old_plane_state->crtc_h != crtc_h ||
13433 !old_plane_state->fb != !fb)
13434 goto slow;
13435
13436 new_plane_state = intel_plane_duplicate_state(plane);
13437 if (!new_plane_state)
13438 return -ENOMEM;
13439
13440 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13441
13442 new_plane_state->src_x = src_x;
13443 new_plane_state->src_y = src_y;
13444 new_plane_state->src_w = src_w;
13445 new_plane_state->src_h = src_h;
13446 new_plane_state->crtc_x = crtc_x;
13447 new_plane_state->crtc_y = crtc_y;
13448 new_plane_state->crtc_w = crtc_w;
13449 new_plane_state->crtc_h = crtc_h;
13450
13451 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13452 to_intel_plane_state(new_plane_state));
13453 if (ret)
13454 goto out_free;
13455
13456 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13457 if (ret)
13458 goto out_free;
13459
13460 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13461 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13462
13463 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13464 if (ret) {
13465 DRM_DEBUG_KMS("failed to attach phys object\n");
13466 goto out_unlock;
13467 }
13468 } else {
13469 struct i915_vma *vma;
13470
13471 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13472 if (IS_ERR(vma)) {
13473 DRM_DEBUG_KMS("failed to pin object\n");
13474
13475 ret = PTR_ERR(vma);
13476 goto out_unlock;
13477 }
13478
13479 to_intel_plane_state(new_plane_state)->vma = vma;
13480 }
13481
13482 old_fb = old_plane_state->fb;
13483 old_vma = to_intel_plane_state(old_plane_state)->vma;
13484
13485 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13486 intel_plane->frontbuffer_bit);
13487
13488 /* Swap plane state */
13489 new_plane_state->fence = old_plane_state->fence;
13490 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13491 new_plane_state->fence = NULL;
13492 new_plane_state->fb = old_fb;
13493 to_intel_plane_state(new_plane_state)->vma = old_vma;
13494
13495 if (plane->state->visible) {
13496 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13497 intel_plane->update_plane(plane,
13498 to_intel_crtc_state(crtc->state),
13499 to_intel_plane_state(plane->state));
13500 } else {
13501 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13502 intel_plane->disable_plane(plane, crtc);
13503 }
13504
13505 intel_cleanup_plane_fb(plane, new_plane_state);
13506
13507 out_unlock:
13508 mutex_unlock(&dev_priv->drm.struct_mutex);
13509 out_free:
13510 intel_plane_destroy_state(plane, new_plane_state);
13511 return ret;
13512
13513 slow:
13514 return drm_atomic_helper_update_plane(plane, crtc, fb,
13515 crtc_x, crtc_y, crtc_w, crtc_h,
13516 src_x, src_y, src_w, src_h, ctx);
13517 }
13518
13519 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13520 .update_plane = intel_legacy_cursor_update,
13521 .disable_plane = drm_atomic_helper_disable_plane,
13522 .destroy = intel_plane_destroy,
13523 .set_property = drm_atomic_helper_plane_set_property,
13524 .atomic_get_property = intel_plane_atomic_get_property,
13525 .atomic_set_property = intel_plane_atomic_set_property,
13526 .atomic_duplicate_state = intel_plane_duplicate_state,
13527 .atomic_destroy_state = intel_plane_destroy_state,
13528 };
13529
13530 static struct intel_plane *
13531 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13532 {
13533 struct intel_plane *primary = NULL;
13534 struct intel_plane_state *state = NULL;
13535 const uint32_t *intel_primary_formats;
13536 unsigned int supported_rotations;
13537 unsigned int num_formats;
13538 int ret;
13539
13540 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13541 if (!primary) {
13542 ret = -ENOMEM;
13543 goto fail;
13544 }
13545
13546 state = intel_create_plane_state(&primary->base);
13547 if (!state) {
13548 ret = -ENOMEM;
13549 goto fail;
13550 }
13551
13552 primary->base.state = &state->base;
13553
13554 primary->can_scale = false;
13555 primary->max_downscale = 1;
13556 if (INTEL_GEN(dev_priv) >= 9) {
13557 primary->can_scale = true;
13558 state->scaler_id = -1;
13559 }
13560 primary->pipe = pipe;
13561 /*
13562 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13563 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13564 */
13565 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13566 primary->plane = (enum plane) !pipe;
13567 else
13568 primary->plane = (enum plane) pipe;
13569 primary->id = PLANE_PRIMARY;
13570 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13571 primary->check_plane = intel_check_primary_plane;
13572
13573 if (INTEL_GEN(dev_priv) >= 9) {
13574 intel_primary_formats = skl_primary_formats;
13575 num_formats = ARRAY_SIZE(skl_primary_formats);
13576
13577 primary->update_plane = skylake_update_primary_plane;
13578 primary->disable_plane = skylake_disable_primary_plane;
13579 } else if (INTEL_GEN(dev_priv) >= 4) {
13580 intel_primary_formats = i965_primary_formats;
13581 num_formats = ARRAY_SIZE(i965_primary_formats);
13582
13583 primary->update_plane = i9xx_update_primary_plane;
13584 primary->disable_plane = i9xx_disable_primary_plane;
13585 } else {
13586 intel_primary_formats = i8xx_primary_formats;
13587 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13588
13589 primary->update_plane = i9xx_update_primary_plane;
13590 primary->disable_plane = i9xx_disable_primary_plane;
13591 }
13592
13593 if (INTEL_GEN(dev_priv) >= 9)
13594 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13595 0, &intel_plane_funcs,
13596 intel_primary_formats, num_formats,
13597 DRM_PLANE_TYPE_PRIMARY,
13598 "plane 1%c", pipe_name(pipe));
13599 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13600 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13601 0, &intel_plane_funcs,
13602 intel_primary_formats, num_formats,
13603 DRM_PLANE_TYPE_PRIMARY,
13604 "primary %c", pipe_name(pipe));
13605 else
13606 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13607 0, &intel_plane_funcs,
13608 intel_primary_formats, num_formats,
13609 DRM_PLANE_TYPE_PRIMARY,
13610 "plane %c", plane_name(primary->plane));
13611 if (ret)
13612 goto fail;
13613
13614 if (INTEL_GEN(dev_priv) >= 9) {
13615 supported_rotations =
13616 DRM_ROTATE_0 | DRM_ROTATE_90 |
13617 DRM_ROTATE_180 | DRM_ROTATE_270;
13618 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13619 supported_rotations =
13620 DRM_ROTATE_0 | DRM_ROTATE_180 |
13621 DRM_REFLECT_X;
13622 } else if (INTEL_GEN(dev_priv) >= 4) {
13623 supported_rotations =
13624 DRM_ROTATE_0 | DRM_ROTATE_180;
13625 } else {
13626 supported_rotations = DRM_ROTATE_0;
13627 }
13628
13629 if (INTEL_GEN(dev_priv) >= 4)
13630 drm_plane_create_rotation_property(&primary->base,
13631 DRM_ROTATE_0,
13632 supported_rotations);
13633
13634 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13635
13636 return primary;
13637
13638 fail:
13639 kfree(state);
13640 kfree(primary);
13641
13642 return ERR_PTR(ret);
13643 }
13644
13645 static int
13646 intel_check_cursor_plane(struct drm_plane *plane,
13647 struct intel_crtc_state *crtc_state,
13648 struct intel_plane_state *state)
13649 {
13650 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13651 struct drm_framebuffer *fb = state->base.fb;
13652 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13653 enum pipe pipe = to_intel_plane(plane)->pipe;
13654 unsigned stride;
13655 int ret;
13656
13657 ret = drm_plane_helper_check_state(&state->base,
13658 &state->clip,
13659 DRM_PLANE_HELPER_NO_SCALING,
13660 DRM_PLANE_HELPER_NO_SCALING,
13661 true, true);
13662 if (ret)
13663 return ret;
13664
13665 /* if we want to turn off the cursor ignore width and height */
13666 if (!obj)
13667 return 0;
13668
13669 /* Check for which cursor types we support */
13670 if (!cursor_size_ok(dev_priv, state->base.crtc_w,
13671 state->base.crtc_h)) {
13672 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13673 state->base.crtc_w, state->base.crtc_h);
13674 return -EINVAL;
13675 }
13676
13677 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13678 if (obj->base.size < stride * state->base.crtc_h) {
13679 DRM_DEBUG_KMS("buffer is too small\n");
13680 return -ENOMEM;
13681 }
13682
13683 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
13684 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13685 return -EINVAL;
13686 }
13687
13688 /*
13689 * There's something wrong with the cursor on CHV pipe C.
13690 * If it straddles the left edge of the screen then
13691 * moving it away from the edge or disabling it often
13692 * results in a pipe underrun, and often that can lead to
13693 * dead pipe (constant underrun reported, and it scans
13694 * out just a solid color). To recover from that, the
13695 * display power well must be turned off and on again.
13696 * Refuse the put the cursor into that compromised position.
13697 */
13698 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
13699 state->base.visible && state->base.crtc_x < 0) {
13700 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13701 return -EINVAL;
13702 }
13703
13704 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
13705 state->ctl = i845_cursor_ctl(crtc_state, state);
13706 else
13707 state->ctl = i9xx_cursor_ctl(crtc_state, state);
13708
13709 return 0;
13710 }
13711
13712 static void
13713 intel_disable_cursor_plane(struct drm_plane *plane,
13714 struct drm_crtc *crtc)
13715 {
13716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13717
13718 intel_crtc->cursor_addr = 0;
13719 intel_crtc_update_cursor(crtc, NULL);
13720 }
13721
13722 static void
13723 intel_update_cursor_plane(struct drm_plane *plane,
13724 const struct intel_crtc_state *crtc_state,
13725 const struct intel_plane_state *state)
13726 {
13727 struct drm_crtc *crtc = crtc_state->base.crtc;
13728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13729 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13730 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13731 uint32_t addr;
13732
13733 if (!obj)
13734 addr = 0;
13735 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
13736 addr = intel_plane_ggtt_offset(state);
13737 else
13738 addr = obj->phys_handle->busaddr;
13739
13740 intel_crtc->cursor_addr = addr;
13741 intel_crtc_update_cursor(crtc, state);
13742 }
13743
13744 static struct intel_plane *
13745 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13746 {
13747 struct intel_plane *cursor = NULL;
13748 struct intel_plane_state *state = NULL;
13749 int ret;
13750
13751 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13752 if (!cursor) {
13753 ret = -ENOMEM;
13754 goto fail;
13755 }
13756
13757 state = intel_create_plane_state(&cursor->base);
13758 if (!state) {
13759 ret = -ENOMEM;
13760 goto fail;
13761 }
13762
13763 cursor->base.state = &state->base;
13764
13765 cursor->can_scale = false;
13766 cursor->max_downscale = 1;
13767 cursor->pipe = pipe;
13768 cursor->plane = pipe;
13769 cursor->id = PLANE_CURSOR;
13770 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13771 cursor->check_plane = intel_check_cursor_plane;
13772 cursor->update_plane = intel_update_cursor_plane;
13773 cursor->disable_plane = intel_disable_cursor_plane;
13774
13775 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13776 0, &intel_cursor_plane_funcs,
13777 intel_cursor_formats,
13778 ARRAY_SIZE(intel_cursor_formats),
13779 DRM_PLANE_TYPE_CURSOR,
13780 "cursor %c", pipe_name(pipe));
13781 if (ret)
13782 goto fail;
13783
13784 if (INTEL_GEN(dev_priv) >= 4)
13785 drm_plane_create_rotation_property(&cursor->base,
13786 DRM_ROTATE_0,
13787 DRM_ROTATE_0 |
13788 DRM_ROTATE_180);
13789
13790 if (INTEL_GEN(dev_priv) >= 9)
13791 state->scaler_id = -1;
13792
13793 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13794
13795 return cursor;
13796
13797 fail:
13798 kfree(state);
13799 kfree(cursor);
13800
13801 return ERR_PTR(ret);
13802 }
13803
13804 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13805 struct intel_crtc_state *crtc_state)
13806 {
13807 struct intel_crtc_scaler_state *scaler_state =
13808 &crtc_state->scaler_state;
13809 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13810 int i;
13811
13812 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13813 if (!crtc->num_scalers)
13814 return;
13815
13816 for (i = 0; i < crtc->num_scalers; i++) {
13817 struct intel_scaler *scaler = &scaler_state->scalers[i];
13818
13819 scaler->in_use = 0;
13820 scaler->mode = PS_SCALER_MODE_DYN;
13821 }
13822
13823 scaler_state->scaler_id = -1;
13824 }
13825
13826 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13827 {
13828 struct intel_crtc *intel_crtc;
13829 struct intel_crtc_state *crtc_state = NULL;
13830 struct intel_plane *primary = NULL;
13831 struct intel_plane *cursor = NULL;
13832 int sprite, ret;
13833
13834 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13835 if (!intel_crtc)
13836 return -ENOMEM;
13837
13838 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13839 if (!crtc_state) {
13840 ret = -ENOMEM;
13841 goto fail;
13842 }
13843 intel_crtc->config = crtc_state;
13844 intel_crtc->base.state = &crtc_state->base;
13845 crtc_state->base.crtc = &intel_crtc->base;
13846
13847 primary = intel_primary_plane_create(dev_priv, pipe);
13848 if (IS_ERR(primary)) {
13849 ret = PTR_ERR(primary);
13850 goto fail;
13851 }
13852 intel_crtc->plane_ids_mask |= BIT(primary->id);
13853
13854 for_each_sprite(dev_priv, pipe, sprite) {
13855 struct intel_plane *plane;
13856
13857 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13858 if (IS_ERR(plane)) {
13859 ret = PTR_ERR(plane);
13860 goto fail;
13861 }
13862 intel_crtc->plane_ids_mask |= BIT(plane->id);
13863 }
13864
13865 cursor = intel_cursor_plane_create(dev_priv, pipe);
13866 if (IS_ERR(cursor)) {
13867 ret = PTR_ERR(cursor);
13868 goto fail;
13869 }
13870 intel_crtc->plane_ids_mask |= BIT(cursor->id);
13871
13872 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13873 &primary->base, &cursor->base,
13874 &intel_crtc_funcs,
13875 "pipe %c", pipe_name(pipe));
13876 if (ret)
13877 goto fail;
13878
13879 intel_crtc->pipe = pipe;
13880 intel_crtc->plane = primary->plane;
13881
13882 intel_crtc->cursor_base = ~0;
13883 intel_crtc->cursor_cntl = ~0;
13884 intel_crtc->cursor_size = ~0;
13885
13886 /* initialize shared scalers */
13887 intel_crtc_init_scalers(intel_crtc, crtc_state);
13888
13889 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13890 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13891 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13892 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13893
13894 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13895
13896 intel_color_init(&intel_crtc->base);
13897
13898 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13899
13900 return 0;
13901
13902 fail:
13903 /*
13904 * drm_mode_config_cleanup() will free up any
13905 * crtcs/planes already initialized.
13906 */
13907 kfree(crtc_state);
13908 kfree(intel_crtc);
13909
13910 return ret;
13911 }
13912
13913 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13914 {
13915 struct drm_device *dev = connector->base.dev;
13916
13917 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13918
13919 if (!connector->base.state->crtc)
13920 return INVALID_PIPE;
13921
13922 return to_intel_crtc(connector->base.state->crtc)->pipe;
13923 }
13924
13925 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13926 struct drm_file *file)
13927 {
13928 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13929 struct drm_crtc *drmmode_crtc;
13930 struct intel_crtc *crtc;
13931
13932 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13933 if (!drmmode_crtc)
13934 return -ENOENT;
13935
13936 crtc = to_intel_crtc(drmmode_crtc);
13937 pipe_from_crtc_id->pipe = crtc->pipe;
13938
13939 return 0;
13940 }
13941
13942 static int intel_encoder_clones(struct intel_encoder *encoder)
13943 {
13944 struct drm_device *dev = encoder->base.dev;
13945 struct intel_encoder *source_encoder;
13946 int index_mask = 0;
13947 int entry = 0;
13948
13949 for_each_intel_encoder(dev, source_encoder) {
13950 if (encoders_cloneable(encoder, source_encoder))
13951 index_mask |= (1 << entry);
13952
13953 entry++;
13954 }
13955
13956 return index_mask;
13957 }
13958
13959 static bool has_edp_a(struct drm_i915_private *dev_priv)
13960 {
13961 if (!IS_MOBILE(dev_priv))
13962 return false;
13963
13964 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13965 return false;
13966
13967 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13968 return false;
13969
13970 return true;
13971 }
13972
13973 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13974 {
13975 if (INTEL_GEN(dev_priv) >= 9)
13976 return false;
13977
13978 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13979 return false;
13980
13981 if (IS_CHERRYVIEW(dev_priv))
13982 return false;
13983
13984 if (HAS_PCH_LPT_H(dev_priv) &&
13985 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13986 return false;
13987
13988 /* DDI E can't be used if DDI A requires 4 lanes */
13989 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13990 return false;
13991
13992 if (!dev_priv->vbt.int_crt_support)
13993 return false;
13994
13995 return true;
13996 }
13997
13998 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13999 {
14000 int pps_num;
14001 int pps_idx;
14002
14003 if (HAS_DDI(dev_priv))
14004 return;
14005 /*
14006 * This w/a is needed at least on CPT/PPT, but to be sure apply it
14007 * everywhere where registers can be write protected.
14008 */
14009 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14010 pps_num = 2;
14011 else
14012 pps_num = 1;
14013
14014 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14015 u32 val = I915_READ(PP_CONTROL(pps_idx));
14016
14017 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14018 I915_WRITE(PP_CONTROL(pps_idx), val);
14019 }
14020 }
14021
14022 static void intel_pps_init(struct drm_i915_private *dev_priv)
14023 {
14024 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14025 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14026 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14027 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14028 else
14029 dev_priv->pps_mmio_base = PPS_BASE;
14030
14031 intel_pps_unlock_regs_wa(dev_priv);
14032 }
14033
14034 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14035 {
14036 struct intel_encoder *encoder;
14037 bool dpd_is_edp = false;
14038
14039 intel_pps_init(dev_priv);
14040
14041 /*
14042 * intel_edp_init_connector() depends on this completing first, to
14043 * prevent the registeration of both eDP and LVDS and the incorrect
14044 * sharing of the PPS.
14045 */
14046 intel_lvds_init(dev_priv);
14047
14048 if (intel_crt_present(dev_priv))
14049 intel_crt_init(dev_priv);
14050
14051 if (IS_GEN9_LP(dev_priv)) {
14052 /*
14053 * FIXME: Broxton doesn't support port detection via the
14054 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14055 * detect the ports.
14056 */
14057 intel_ddi_init(dev_priv, PORT_A);
14058 intel_ddi_init(dev_priv, PORT_B);
14059 intel_ddi_init(dev_priv, PORT_C);
14060
14061 intel_dsi_init(dev_priv);
14062 } else if (HAS_DDI(dev_priv)) {
14063 int found;
14064
14065 /*
14066 * Haswell uses DDI functions to detect digital outputs.
14067 * On SKL pre-D0 the strap isn't connected, so we assume
14068 * it's there.
14069 */
14070 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14071 /* WaIgnoreDDIAStrap: skl */
14072 if (found || IS_GEN9_BC(dev_priv))
14073 intel_ddi_init(dev_priv, PORT_A);
14074
14075 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14076 * register */
14077 found = I915_READ(SFUSE_STRAP);
14078
14079 if (found & SFUSE_STRAP_DDIB_DETECTED)
14080 intel_ddi_init(dev_priv, PORT_B);
14081 if (found & SFUSE_STRAP_DDIC_DETECTED)
14082 intel_ddi_init(dev_priv, PORT_C);
14083 if (found & SFUSE_STRAP_DDID_DETECTED)
14084 intel_ddi_init(dev_priv, PORT_D);
14085 /*
14086 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14087 */
14088 if (IS_GEN9_BC(dev_priv) &&
14089 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14090 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14091 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14092 intel_ddi_init(dev_priv, PORT_E);
14093
14094 } else if (HAS_PCH_SPLIT(dev_priv)) {
14095 int found;
14096 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14097
14098 if (has_edp_a(dev_priv))
14099 intel_dp_init(dev_priv, DP_A, PORT_A);
14100
14101 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14102 /* PCH SDVOB multiplex with HDMIB */
14103 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14104 if (!found)
14105 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14106 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14107 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14108 }
14109
14110 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14111 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14112
14113 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14114 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14115
14116 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14117 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14118
14119 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14120 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14121 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14122 bool has_edp, has_port;
14123
14124 /*
14125 * The DP_DETECTED bit is the latched state of the DDC
14126 * SDA pin at boot. However since eDP doesn't require DDC
14127 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14128 * eDP ports may have been muxed to an alternate function.
14129 * Thus we can't rely on the DP_DETECTED bit alone to detect
14130 * eDP ports. Consult the VBT as well as DP_DETECTED to
14131 * detect eDP ports.
14132 *
14133 * Sadly the straps seem to be missing sometimes even for HDMI
14134 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14135 * and VBT for the presence of the port. Additionally we can't
14136 * trust the port type the VBT declares as we've seen at least
14137 * HDMI ports that the VBT claim are DP or eDP.
14138 */
14139 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14140 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14141 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14142 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14143 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14144 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14145
14146 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14147 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14148 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14149 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14150 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14151 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14152
14153 if (IS_CHERRYVIEW(dev_priv)) {
14154 /*
14155 * eDP not supported on port D,
14156 * so no need to worry about it
14157 */
14158 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14159 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14160 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14161 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14162 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14163 }
14164
14165 intel_dsi_init(dev_priv);
14166 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14167 bool found = false;
14168
14169 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14170 DRM_DEBUG_KMS("probing SDVOB\n");
14171 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14172 if (!found && IS_G4X(dev_priv)) {
14173 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14174 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14175 }
14176
14177 if (!found && IS_G4X(dev_priv))
14178 intel_dp_init(dev_priv, DP_B, PORT_B);
14179 }
14180
14181 /* Before G4X SDVOC doesn't have its own detect register */
14182
14183 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14184 DRM_DEBUG_KMS("probing SDVOC\n");
14185 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14186 }
14187
14188 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14189
14190 if (IS_G4X(dev_priv)) {
14191 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14192 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14193 }
14194 if (IS_G4X(dev_priv))
14195 intel_dp_init(dev_priv, DP_C, PORT_C);
14196 }
14197
14198 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14199 intel_dp_init(dev_priv, DP_D, PORT_D);
14200 } else if (IS_GEN2(dev_priv))
14201 intel_dvo_init(dev_priv);
14202
14203 if (SUPPORTS_TV(dev_priv))
14204 intel_tv_init(dev_priv);
14205
14206 intel_psr_init(dev_priv);
14207
14208 for_each_intel_encoder(&dev_priv->drm, encoder) {
14209 encoder->base.possible_crtcs = encoder->crtc_mask;
14210 encoder->base.possible_clones =
14211 intel_encoder_clones(encoder);
14212 }
14213
14214 intel_init_pch_refclk(dev_priv);
14215
14216 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14217 }
14218
14219 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14220 {
14221 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14222
14223 drm_framebuffer_cleanup(fb);
14224
14225 i915_gem_object_lock(intel_fb->obj);
14226 WARN_ON(!intel_fb->obj->framebuffer_references--);
14227 i915_gem_object_unlock(intel_fb->obj);
14228
14229 i915_gem_object_put(intel_fb->obj);
14230
14231 kfree(intel_fb);
14232 }
14233
14234 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14235 struct drm_file *file,
14236 unsigned int *handle)
14237 {
14238 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14239 struct drm_i915_gem_object *obj = intel_fb->obj;
14240
14241 if (obj->userptr.mm) {
14242 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14243 return -EINVAL;
14244 }
14245
14246 return drm_gem_handle_create(file, &obj->base, handle);
14247 }
14248
14249 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14250 struct drm_file *file,
14251 unsigned flags, unsigned color,
14252 struct drm_clip_rect *clips,
14253 unsigned num_clips)
14254 {
14255 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14256
14257 i915_gem_object_flush_if_display(obj);
14258 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14259
14260 return 0;
14261 }
14262
14263 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14264 .destroy = intel_user_framebuffer_destroy,
14265 .create_handle = intel_user_framebuffer_create_handle,
14266 .dirty = intel_user_framebuffer_dirty,
14267 };
14268
14269 static
14270 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14271 uint64_t fb_modifier, uint32_t pixel_format)
14272 {
14273 u32 gen = INTEL_GEN(dev_priv);
14274
14275 if (gen >= 9) {
14276 int cpp = drm_format_plane_cpp(pixel_format, 0);
14277
14278 /* "The stride in bytes must not exceed the of the size of 8K
14279 * pixels and 32K bytes."
14280 */
14281 return min(8192 * cpp, 32768);
14282 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14283 return 32*1024;
14284 } else if (gen >= 4) {
14285 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14286 return 16*1024;
14287 else
14288 return 32*1024;
14289 } else if (gen >= 3) {
14290 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14291 return 8*1024;
14292 else
14293 return 16*1024;
14294 } else {
14295 /* XXX DSPC is limited to 4k tiled */
14296 return 8*1024;
14297 }
14298 }
14299
14300 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14301 struct drm_i915_gem_object *obj,
14302 struct drm_mode_fb_cmd2 *mode_cmd)
14303 {
14304 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14305 struct drm_format_name_buf format_name;
14306 u32 pitch_limit, stride_alignment;
14307 unsigned int tiling, stride;
14308 int ret = -EINVAL;
14309
14310 i915_gem_object_lock(obj);
14311 obj->framebuffer_references++;
14312 tiling = i915_gem_object_get_tiling(obj);
14313 stride = i915_gem_object_get_stride(obj);
14314 i915_gem_object_unlock(obj);
14315
14316 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14317 /*
14318 * If there's a fence, enforce that
14319 * the fb modifier and tiling mode match.
14320 */
14321 if (tiling != I915_TILING_NONE &&
14322 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14323 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14324 goto err;
14325 }
14326 } else {
14327 if (tiling == I915_TILING_X) {
14328 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14329 } else if (tiling == I915_TILING_Y) {
14330 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14331 goto err;
14332 }
14333 }
14334
14335 /* Passed in modifier sanity checking. */
14336 switch (mode_cmd->modifier[0]) {
14337 case I915_FORMAT_MOD_Y_TILED:
14338 case I915_FORMAT_MOD_Yf_TILED:
14339 if (INTEL_GEN(dev_priv) < 9) {
14340 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14341 mode_cmd->modifier[0]);
14342 goto err;
14343 }
14344 case DRM_FORMAT_MOD_LINEAR:
14345 case I915_FORMAT_MOD_X_TILED:
14346 break;
14347 default:
14348 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14349 mode_cmd->modifier[0]);
14350 goto err;
14351 }
14352
14353 /*
14354 * gen2/3 display engine uses the fence if present,
14355 * so the tiling mode must match the fb modifier exactly.
14356 */
14357 if (INTEL_INFO(dev_priv)->gen < 4 &&
14358 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14359 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14360 goto err;
14361 }
14362
14363 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14364 mode_cmd->pixel_format);
14365 if (mode_cmd->pitches[0] > pitch_limit) {
14366 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14367 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14368 "tiled" : "linear",
14369 mode_cmd->pitches[0], pitch_limit);
14370 goto err;
14371 }
14372
14373 /*
14374 * If there's a fence, enforce that
14375 * the fb pitch and fence stride match.
14376 */
14377 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14378 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14379 mode_cmd->pitches[0], stride);
14380 goto err;
14381 }
14382
14383 /* Reject formats not supported by any plane early. */
14384 switch (mode_cmd->pixel_format) {
14385 case DRM_FORMAT_C8:
14386 case DRM_FORMAT_RGB565:
14387 case DRM_FORMAT_XRGB8888:
14388 case DRM_FORMAT_ARGB8888:
14389 break;
14390 case DRM_FORMAT_XRGB1555:
14391 if (INTEL_GEN(dev_priv) > 3) {
14392 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14393 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14394 goto err;
14395 }
14396 break;
14397 case DRM_FORMAT_ABGR8888:
14398 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14399 INTEL_GEN(dev_priv) < 9) {
14400 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14401 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14402 goto err;
14403 }
14404 break;
14405 case DRM_FORMAT_XBGR8888:
14406 case DRM_FORMAT_XRGB2101010:
14407 case DRM_FORMAT_XBGR2101010:
14408 if (INTEL_GEN(dev_priv) < 4) {
14409 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14410 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14411 goto err;
14412 }
14413 break;
14414 case DRM_FORMAT_ABGR2101010:
14415 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14416 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14417 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14418 goto err;
14419 }
14420 break;
14421 case DRM_FORMAT_YUYV:
14422 case DRM_FORMAT_UYVY:
14423 case DRM_FORMAT_YVYU:
14424 case DRM_FORMAT_VYUY:
14425 if (INTEL_GEN(dev_priv) < 5) {
14426 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14427 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14428 goto err;
14429 }
14430 break;
14431 default:
14432 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14433 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14434 goto err;
14435 }
14436
14437 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14438 if (mode_cmd->offsets[0] != 0)
14439 goto err;
14440
14441 drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14442 &intel_fb->base, mode_cmd);
14443
14444 stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14445 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14446 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14447 mode_cmd->pitches[0], stride_alignment);
14448 goto err;
14449 }
14450
14451 intel_fb->obj = obj;
14452
14453 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14454 if (ret)
14455 goto err;
14456
14457 ret = drm_framebuffer_init(obj->base.dev,
14458 &intel_fb->base,
14459 &intel_fb_funcs);
14460 if (ret) {
14461 DRM_ERROR("framebuffer init failed %d\n", ret);
14462 goto err;
14463 }
14464
14465 return 0;
14466
14467 err:
14468 i915_gem_object_lock(obj);
14469 obj->framebuffer_references--;
14470 i915_gem_object_unlock(obj);
14471 return ret;
14472 }
14473
14474 static struct drm_framebuffer *
14475 intel_user_framebuffer_create(struct drm_device *dev,
14476 struct drm_file *filp,
14477 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14478 {
14479 struct drm_framebuffer *fb;
14480 struct drm_i915_gem_object *obj;
14481 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14482
14483 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14484 if (!obj)
14485 return ERR_PTR(-ENOENT);
14486
14487 fb = intel_framebuffer_create(obj, &mode_cmd);
14488 if (IS_ERR(fb))
14489 i915_gem_object_put(obj);
14490
14491 return fb;
14492 }
14493
14494 static void intel_atomic_state_free(struct drm_atomic_state *state)
14495 {
14496 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14497
14498 drm_atomic_state_default_release(state);
14499
14500 i915_sw_fence_fini(&intel_state->commit_ready);
14501
14502 kfree(state);
14503 }
14504
14505 static const struct drm_mode_config_funcs intel_mode_funcs = {
14506 .fb_create = intel_user_framebuffer_create,
14507 .output_poll_changed = intel_fbdev_output_poll_changed,
14508 .atomic_check = intel_atomic_check,
14509 .atomic_commit = intel_atomic_commit,
14510 .atomic_state_alloc = intel_atomic_state_alloc,
14511 .atomic_state_clear = intel_atomic_state_clear,
14512 .atomic_state_free = intel_atomic_state_free,
14513 };
14514
14515 /**
14516 * intel_init_display_hooks - initialize the display modesetting hooks
14517 * @dev_priv: device private
14518 */
14519 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14520 {
14521 intel_init_cdclk_hooks(dev_priv);
14522
14523 if (INTEL_INFO(dev_priv)->gen >= 9) {
14524 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14525 dev_priv->display.get_initial_plane_config =
14526 skylake_get_initial_plane_config;
14527 dev_priv->display.crtc_compute_clock =
14528 haswell_crtc_compute_clock;
14529 dev_priv->display.crtc_enable = haswell_crtc_enable;
14530 dev_priv->display.crtc_disable = haswell_crtc_disable;
14531 } else if (HAS_DDI(dev_priv)) {
14532 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14533 dev_priv->display.get_initial_plane_config =
14534 ironlake_get_initial_plane_config;
14535 dev_priv->display.crtc_compute_clock =
14536 haswell_crtc_compute_clock;
14537 dev_priv->display.crtc_enable = haswell_crtc_enable;
14538 dev_priv->display.crtc_disable = haswell_crtc_disable;
14539 } else if (HAS_PCH_SPLIT(dev_priv)) {
14540 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14541 dev_priv->display.get_initial_plane_config =
14542 ironlake_get_initial_plane_config;
14543 dev_priv->display.crtc_compute_clock =
14544 ironlake_crtc_compute_clock;
14545 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14546 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14547 } else if (IS_CHERRYVIEW(dev_priv)) {
14548 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14549 dev_priv->display.get_initial_plane_config =
14550 i9xx_get_initial_plane_config;
14551 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14552 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14553 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14554 } else if (IS_VALLEYVIEW(dev_priv)) {
14555 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14556 dev_priv->display.get_initial_plane_config =
14557 i9xx_get_initial_plane_config;
14558 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14559 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14560 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14561 } else if (IS_G4X(dev_priv)) {
14562 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14563 dev_priv->display.get_initial_plane_config =
14564 i9xx_get_initial_plane_config;
14565 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14566 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14567 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14568 } else if (IS_PINEVIEW(dev_priv)) {
14569 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14570 dev_priv->display.get_initial_plane_config =
14571 i9xx_get_initial_plane_config;
14572 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14573 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14574 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14575 } else if (!IS_GEN2(dev_priv)) {
14576 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14577 dev_priv->display.get_initial_plane_config =
14578 i9xx_get_initial_plane_config;
14579 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14580 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14581 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14582 } else {
14583 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14584 dev_priv->display.get_initial_plane_config =
14585 i9xx_get_initial_plane_config;
14586 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14587 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14588 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14589 }
14590
14591 if (IS_GEN5(dev_priv)) {
14592 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14593 } else if (IS_GEN6(dev_priv)) {
14594 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14595 } else if (IS_IVYBRIDGE(dev_priv)) {
14596 /* FIXME: detect B0+ stepping and use auto training */
14597 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14598 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14599 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14600 }
14601
14602 if (dev_priv->info.gen >= 9)
14603 dev_priv->display.update_crtcs = skl_update_crtcs;
14604 else
14605 dev_priv->display.update_crtcs = intel_update_crtcs;
14606
14607 switch (INTEL_INFO(dev_priv)->gen) {
14608 case 2:
14609 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14610 break;
14611
14612 case 3:
14613 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14614 break;
14615
14616 case 4:
14617 case 5:
14618 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14619 break;
14620
14621 case 6:
14622 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14623 break;
14624 case 7:
14625 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14626 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14627 break;
14628 case 9:
14629 /* Drop through - unsupported since execlist only. */
14630 default:
14631 /* Default just returns -ENODEV to indicate unsupported */
14632 dev_priv->display.queue_flip = intel_default_queue_flip;
14633 }
14634 }
14635
14636 /*
14637 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14638 * resume, or other times. This quirk makes sure that's the case for
14639 * affected systems.
14640 */
14641 static void quirk_pipea_force(struct drm_device *dev)
14642 {
14643 struct drm_i915_private *dev_priv = to_i915(dev);
14644
14645 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14646 DRM_INFO("applying pipe a force quirk\n");
14647 }
14648
14649 static void quirk_pipeb_force(struct drm_device *dev)
14650 {
14651 struct drm_i915_private *dev_priv = to_i915(dev);
14652
14653 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14654 DRM_INFO("applying pipe b force quirk\n");
14655 }
14656
14657 /*
14658 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14659 */
14660 static void quirk_ssc_force_disable(struct drm_device *dev)
14661 {
14662 struct drm_i915_private *dev_priv = to_i915(dev);
14663 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14664 DRM_INFO("applying lvds SSC disable quirk\n");
14665 }
14666
14667 /*
14668 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14669 * brightness value
14670 */
14671 static void quirk_invert_brightness(struct drm_device *dev)
14672 {
14673 struct drm_i915_private *dev_priv = to_i915(dev);
14674 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14675 DRM_INFO("applying inverted panel brightness quirk\n");
14676 }
14677
14678 /* Some VBT's incorrectly indicate no backlight is present */
14679 static void quirk_backlight_present(struct drm_device *dev)
14680 {
14681 struct drm_i915_private *dev_priv = to_i915(dev);
14682 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14683 DRM_INFO("applying backlight present quirk\n");
14684 }
14685
14686 struct intel_quirk {
14687 int device;
14688 int subsystem_vendor;
14689 int subsystem_device;
14690 void (*hook)(struct drm_device *dev);
14691 };
14692
14693 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14694 struct intel_dmi_quirk {
14695 void (*hook)(struct drm_device *dev);
14696 const struct dmi_system_id (*dmi_id_list)[];
14697 };
14698
14699 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14700 {
14701 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14702 return 1;
14703 }
14704
14705 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14706 {
14707 .dmi_id_list = &(const struct dmi_system_id[]) {
14708 {
14709 .callback = intel_dmi_reverse_brightness,
14710 .ident = "NCR Corporation",
14711 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14712 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14713 },
14714 },
14715 { } /* terminating entry */
14716 },
14717 .hook = quirk_invert_brightness,
14718 },
14719 };
14720
14721 static struct intel_quirk intel_quirks[] = {
14722 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14723 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14724
14725 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14726 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14727
14728 /* 830 needs to leave pipe A & dpll A up */
14729 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14730
14731 /* 830 needs to leave pipe B & dpll B up */
14732 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14733
14734 /* Lenovo U160 cannot use SSC on LVDS */
14735 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14736
14737 /* Sony Vaio Y cannot use SSC on LVDS */
14738 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14739
14740 /* Acer Aspire 5734Z must invert backlight brightness */
14741 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14742
14743 /* Acer/eMachines G725 */
14744 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14745
14746 /* Acer/eMachines e725 */
14747 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14748
14749 /* Acer/Packard Bell NCL20 */
14750 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14751
14752 /* Acer Aspire 4736Z */
14753 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14754
14755 /* Acer Aspire 5336 */
14756 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14757
14758 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14759 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14760
14761 /* Acer C720 Chromebook (Core i3 4005U) */
14762 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14763
14764 /* Apple Macbook 2,1 (Core 2 T7400) */
14765 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14766
14767 /* Apple Macbook 4,1 */
14768 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14769
14770 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14771 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14772
14773 /* HP Chromebook 14 (Celeron 2955U) */
14774 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14775
14776 /* Dell Chromebook 11 */
14777 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14778
14779 /* Dell Chromebook 11 (2015 version) */
14780 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14781 };
14782
14783 static void intel_init_quirks(struct drm_device *dev)
14784 {
14785 struct pci_dev *d = dev->pdev;
14786 int i;
14787
14788 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14789 struct intel_quirk *q = &intel_quirks[i];
14790
14791 if (d->device == q->device &&
14792 (d->subsystem_vendor == q->subsystem_vendor ||
14793 q->subsystem_vendor == PCI_ANY_ID) &&
14794 (d->subsystem_device == q->subsystem_device ||
14795 q->subsystem_device == PCI_ANY_ID))
14796 q->hook(dev);
14797 }
14798 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14799 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14800 intel_dmi_quirks[i].hook(dev);
14801 }
14802 }
14803
14804 /* Disable the VGA plane that we never use */
14805 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14806 {
14807 struct pci_dev *pdev = dev_priv->drm.pdev;
14808 u8 sr1;
14809 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14810
14811 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14812 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14813 outb(SR01, VGA_SR_INDEX);
14814 sr1 = inb(VGA_SR_DATA);
14815 outb(sr1 | 1<<5, VGA_SR_DATA);
14816 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14817 udelay(300);
14818
14819 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14820 POSTING_READ(vga_reg);
14821 }
14822
14823 void intel_modeset_init_hw(struct drm_device *dev)
14824 {
14825 struct drm_i915_private *dev_priv = to_i915(dev);
14826
14827 intel_update_cdclk(dev_priv);
14828 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14829
14830 intel_init_clock_gating(dev_priv);
14831 }
14832
14833 /*
14834 * Calculate what we think the watermarks should be for the state we've read
14835 * out of the hardware and then immediately program those watermarks so that
14836 * we ensure the hardware settings match our internal state.
14837 *
14838 * We can calculate what we think WM's should be by creating a duplicate of the
14839 * current state (which was constructed during hardware readout) and running it
14840 * through the atomic check code to calculate new watermark values in the
14841 * state object.
14842 */
14843 static void sanitize_watermarks(struct drm_device *dev)
14844 {
14845 struct drm_i915_private *dev_priv = to_i915(dev);
14846 struct drm_atomic_state *state;
14847 struct intel_atomic_state *intel_state;
14848 struct drm_crtc *crtc;
14849 struct drm_crtc_state *cstate;
14850 struct drm_modeset_acquire_ctx ctx;
14851 int ret;
14852 int i;
14853
14854 /* Only supported on platforms that use atomic watermark design */
14855 if (!dev_priv->display.optimize_watermarks)
14856 return;
14857
14858 /*
14859 * We need to hold connection_mutex before calling duplicate_state so
14860 * that the connector loop is protected.
14861 */
14862 drm_modeset_acquire_init(&ctx, 0);
14863 retry:
14864 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14865 if (ret == -EDEADLK) {
14866 drm_modeset_backoff(&ctx);
14867 goto retry;
14868 } else if (WARN_ON(ret)) {
14869 goto fail;
14870 }
14871
14872 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14873 if (WARN_ON(IS_ERR(state)))
14874 goto fail;
14875
14876 intel_state = to_intel_atomic_state(state);
14877
14878 /*
14879 * Hardware readout is the only time we don't want to calculate
14880 * intermediate watermarks (since we don't trust the current
14881 * watermarks).
14882 */
14883 if (!HAS_GMCH_DISPLAY(dev_priv))
14884 intel_state->skip_intermediate_wm = true;
14885
14886 ret = intel_atomic_check(dev, state);
14887 if (ret) {
14888 /*
14889 * If we fail here, it means that the hardware appears to be
14890 * programmed in a way that shouldn't be possible, given our
14891 * understanding of watermark requirements. This might mean a
14892 * mistake in the hardware readout code or a mistake in the
14893 * watermark calculations for a given platform. Raise a WARN
14894 * so that this is noticeable.
14895 *
14896 * If this actually happens, we'll have to just leave the
14897 * BIOS-programmed watermarks untouched and hope for the best.
14898 */
14899 WARN(true, "Could not determine valid watermarks for inherited state\n");
14900 goto put_state;
14901 }
14902
14903 /* Write calculated watermark values back */
14904 for_each_new_crtc_in_state(state, crtc, cstate, i) {
14905 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14906
14907 cs->wm.need_postvbl_update = true;
14908 dev_priv->display.optimize_watermarks(intel_state, cs);
14909 }
14910
14911 put_state:
14912 drm_atomic_state_put(state);
14913 fail:
14914 drm_modeset_drop_locks(&ctx);
14915 drm_modeset_acquire_fini(&ctx);
14916 }
14917
14918 int intel_modeset_init(struct drm_device *dev)
14919 {
14920 struct drm_i915_private *dev_priv = to_i915(dev);
14921 struct i915_ggtt *ggtt = &dev_priv->ggtt;
14922 enum pipe pipe;
14923 struct intel_crtc *crtc;
14924
14925 drm_mode_config_init(dev);
14926
14927 dev->mode_config.min_width = 0;
14928 dev->mode_config.min_height = 0;
14929
14930 dev->mode_config.preferred_depth = 24;
14931 dev->mode_config.prefer_shadow = 1;
14932
14933 dev->mode_config.allow_fb_modifiers = true;
14934
14935 dev->mode_config.funcs = &intel_mode_funcs;
14936
14937 INIT_WORK(&dev_priv->atomic_helper.free_work,
14938 intel_atomic_helper_free_state_worker);
14939
14940 intel_init_quirks(dev);
14941
14942 intel_init_pm(dev_priv);
14943
14944 if (INTEL_INFO(dev_priv)->num_pipes == 0)
14945 return 0;
14946
14947 /*
14948 * There may be no VBT; and if the BIOS enabled SSC we can
14949 * just keep using it to avoid unnecessary flicker. Whereas if the
14950 * BIOS isn't using it, don't assume it will work even if the VBT
14951 * indicates as much.
14952 */
14953 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14954 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14955 DREF_SSC1_ENABLE);
14956
14957 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14958 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14959 bios_lvds_use_ssc ? "en" : "dis",
14960 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14961 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14962 }
14963 }
14964
14965 if (IS_GEN2(dev_priv)) {
14966 dev->mode_config.max_width = 2048;
14967 dev->mode_config.max_height = 2048;
14968 } else if (IS_GEN3(dev_priv)) {
14969 dev->mode_config.max_width = 4096;
14970 dev->mode_config.max_height = 4096;
14971 } else {
14972 dev->mode_config.max_width = 8192;
14973 dev->mode_config.max_height = 8192;
14974 }
14975
14976 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14977 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14978 dev->mode_config.cursor_height = 1023;
14979 } else if (IS_GEN2(dev_priv)) {
14980 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14981 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14982 } else {
14983 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14984 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14985 }
14986
14987 dev->mode_config.fb_base = ggtt->mappable_base;
14988
14989 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14990 INTEL_INFO(dev_priv)->num_pipes,
14991 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14992
14993 for_each_pipe(dev_priv, pipe) {
14994 int ret;
14995
14996 ret = intel_crtc_init(dev_priv, pipe);
14997 if (ret) {
14998 drm_mode_config_cleanup(dev);
14999 return ret;
15000 }
15001 }
15002
15003 intel_shared_dpll_init(dev);
15004
15005 intel_update_czclk(dev_priv);
15006 intel_modeset_init_hw(dev);
15007
15008 if (dev_priv->max_cdclk_freq == 0)
15009 intel_update_max_cdclk(dev_priv);
15010
15011 /* Just disable it once at startup */
15012 i915_disable_vga(dev_priv);
15013 intel_setup_outputs(dev_priv);
15014
15015 drm_modeset_lock_all(dev);
15016 intel_modeset_setup_hw_state(dev);
15017 drm_modeset_unlock_all(dev);
15018
15019 for_each_intel_crtc(dev, crtc) {
15020 struct intel_initial_plane_config plane_config = {};
15021
15022 if (!crtc->active)
15023 continue;
15024
15025 /*
15026 * Note that reserving the BIOS fb up front prevents us
15027 * from stuffing other stolen allocations like the ring
15028 * on top. This prevents some ugliness at boot time, and
15029 * can even allow for smooth boot transitions if the BIOS
15030 * fb is large enough for the active pipe configuration.
15031 */
15032 dev_priv->display.get_initial_plane_config(crtc,
15033 &plane_config);
15034
15035 /*
15036 * If the fb is shared between multiple heads, we'll
15037 * just get the first one.
15038 */
15039 intel_find_initial_plane_obj(crtc, &plane_config);
15040 }
15041
15042 /*
15043 * Make sure hardware watermarks really match the state we read out.
15044 * Note that we need to do this after reconstructing the BIOS fb's
15045 * since the watermark calculation done here will use pstate->fb.
15046 */
15047 if (!HAS_GMCH_DISPLAY(dev_priv))
15048 sanitize_watermarks(dev);
15049
15050 return 0;
15051 }
15052
15053 static void intel_enable_pipe_a(struct drm_device *dev)
15054 {
15055 struct intel_connector *connector;
15056 struct drm_connector_list_iter conn_iter;
15057 struct drm_connector *crt = NULL;
15058 struct intel_load_detect_pipe load_detect_temp;
15059 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15060 int ret;
15061
15062 /* We can't just switch on the pipe A, we need to set things up with a
15063 * proper mode and output configuration. As a gross hack, enable pipe A
15064 * by enabling the load detect pipe once. */
15065 drm_connector_list_iter_begin(dev, &conn_iter);
15066 for_each_intel_connector_iter(connector, &conn_iter) {
15067 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15068 crt = &connector->base;
15069 break;
15070 }
15071 }
15072 drm_connector_list_iter_end(&conn_iter);
15073
15074 if (!crt)
15075 return;
15076
15077 ret = intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx);
15078 WARN(ret < 0, "All modeset mutexes are locked, but intel_get_load_detect_pipe failed\n");
15079
15080 if (ret > 0)
15081 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15082 }
15083
15084 static bool
15085 intel_check_plane_mapping(struct intel_crtc *crtc)
15086 {
15087 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15088 u32 val;
15089
15090 if (INTEL_INFO(dev_priv)->num_pipes == 1)
15091 return true;
15092
15093 val = I915_READ(DSPCNTR(!crtc->plane));
15094
15095 if ((val & DISPLAY_PLANE_ENABLE) &&
15096 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15097 return false;
15098
15099 return true;
15100 }
15101
15102 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15103 {
15104 struct drm_device *dev = crtc->base.dev;
15105 struct intel_encoder *encoder;
15106
15107 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15108 return true;
15109
15110 return false;
15111 }
15112
15113 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15114 {
15115 struct drm_device *dev = encoder->base.dev;
15116 struct intel_connector *connector;
15117
15118 for_each_connector_on_encoder(dev, &encoder->base, connector)
15119 return connector;
15120
15121 return NULL;
15122 }
15123
15124 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15125 enum transcoder pch_transcoder)
15126 {
15127 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15128 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15129 }
15130
15131 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15132 {
15133 struct drm_device *dev = crtc->base.dev;
15134 struct drm_i915_private *dev_priv = to_i915(dev);
15135 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15136
15137 /* Clear any frame start delays used for debugging left by the BIOS */
15138 if (!transcoder_is_dsi(cpu_transcoder)) {
15139 i915_reg_t reg = PIPECONF(cpu_transcoder);
15140
15141 I915_WRITE(reg,
15142 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15143 }
15144
15145 /* restore vblank interrupts to correct state */
15146 drm_crtc_vblank_reset(&crtc->base);
15147 if (crtc->active) {
15148 struct intel_plane *plane;
15149
15150 drm_crtc_vblank_on(&crtc->base);
15151
15152 /* Disable everything but the primary plane */
15153 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15154 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15155 continue;
15156
15157 trace_intel_disable_plane(&plane->base, crtc);
15158 plane->disable_plane(&plane->base, &crtc->base);
15159 }
15160 }
15161
15162 /* We need to sanitize the plane -> pipe mapping first because this will
15163 * disable the crtc (and hence change the state) if it is wrong. Note
15164 * that gen4+ has a fixed plane -> pipe mapping. */
15165 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15166 bool plane;
15167
15168 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15169 crtc->base.base.id, crtc->base.name);
15170
15171 /* Pipe has the wrong plane attached and the plane is active.
15172 * Temporarily change the plane mapping and disable everything
15173 * ... */
15174 plane = crtc->plane;
15175 crtc->base.primary->state->visible = true;
15176 crtc->plane = !plane;
15177 intel_crtc_disable_noatomic(&crtc->base);
15178 crtc->plane = plane;
15179 }
15180
15181 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15182 crtc->pipe == PIPE_A && !crtc->active) {
15183 /* BIOS forgot to enable pipe A, this mostly happens after
15184 * resume. Force-enable the pipe to fix this, the update_dpms
15185 * call below we restore the pipe to the right state, but leave
15186 * the required bits on. */
15187 intel_enable_pipe_a(dev);
15188 }
15189
15190 /* Adjust the state of the output pipe according to whether we
15191 * have active connectors/encoders. */
15192 if (crtc->active && !intel_crtc_has_encoders(crtc))
15193 intel_crtc_disable_noatomic(&crtc->base);
15194
15195 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15196 /*
15197 * We start out with underrun reporting disabled to avoid races.
15198 * For correct bookkeeping mark this on active crtcs.
15199 *
15200 * Also on gmch platforms we dont have any hardware bits to
15201 * disable the underrun reporting. Which means we need to start
15202 * out with underrun reporting disabled also on inactive pipes,
15203 * since otherwise we'll complain about the garbage we read when
15204 * e.g. coming up after runtime pm.
15205 *
15206 * No protection against concurrent access is required - at
15207 * worst a fifo underrun happens which also sets this to false.
15208 */
15209 crtc->cpu_fifo_underrun_disabled = true;
15210 /*
15211 * We track the PCH trancoder underrun reporting state
15212 * within the crtc. With crtc for pipe A housing the underrun
15213 * reporting state for PCH transcoder A, crtc for pipe B housing
15214 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15215 * and marking underrun reporting as disabled for the non-existing
15216 * PCH transcoders B and C would prevent enabling the south
15217 * error interrupt (see cpt_can_enable_serr_int()).
15218 */
15219 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15220 crtc->pch_fifo_underrun_disabled = true;
15221 }
15222 }
15223
15224 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15225 {
15226 struct intel_connector *connector;
15227
15228 /* We need to check both for a crtc link (meaning that the
15229 * encoder is active and trying to read from a pipe) and the
15230 * pipe itself being active. */
15231 bool has_active_crtc = encoder->base.crtc &&
15232 to_intel_crtc(encoder->base.crtc)->active;
15233
15234 connector = intel_encoder_find_connector(encoder);
15235 if (connector && !has_active_crtc) {
15236 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15237 encoder->base.base.id,
15238 encoder->base.name);
15239
15240 /* Connector is active, but has no active pipe. This is
15241 * fallout from our resume register restoring. Disable
15242 * the encoder manually again. */
15243 if (encoder->base.crtc) {
15244 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15245
15246 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15247 encoder->base.base.id,
15248 encoder->base.name);
15249 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15250 if (encoder->post_disable)
15251 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15252 }
15253 encoder->base.crtc = NULL;
15254
15255 /* Inconsistent output/port/pipe state happens presumably due to
15256 * a bug in one of the get_hw_state functions. Or someplace else
15257 * in our code, like the register restore mess on resume. Clamp
15258 * things to off as a safer default. */
15259
15260 connector->base.dpms = DRM_MODE_DPMS_OFF;
15261 connector->base.encoder = NULL;
15262 }
15263 /* Enabled encoders without active connectors will be fixed in
15264 * the crtc fixup. */
15265 }
15266
15267 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15268 {
15269 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15270
15271 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15272 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15273 i915_disable_vga(dev_priv);
15274 }
15275 }
15276
15277 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15278 {
15279 /* This function can be called both from intel_modeset_setup_hw_state or
15280 * at a very early point in our resume sequence, where the power well
15281 * structures are not yet restored. Since this function is at a very
15282 * paranoid "someone might have enabled VGA while we were not looking"
15283 * level, just check if the power well is enabled instead of trying to
15284 * follow the "don't touch the power well if we don't need it" policy
15285 * the rest of the driver uses. */
15286 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15287 return;
15288
15289 i915_redisable_vga_power_on(dev_priv);
15290
15291 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15292 }
15293
15294 static bool primary_get_hw_state(struct intel_plane *plane)
15295 {
15296 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15297
15298 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15299 }
15300
15301 /* FIXME read out full plane state for all planes */
15302 static void readout_plane_state(struct intel_crtc *crtc)
15303 {
15304 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15305 bool visible;
15306
15307 visible = crtc->active && primary_get_hw_state(primary);
15308
15309 intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15310 to_intel_plane_state(primary->base.state),
15311 visible);
15312 }
15313
15314 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15315 {
15316 struct drm_i915_private *dev_priv = to_i915(dev);
15317 enum pipe pipe;
15318 struct intel_crtc *crtc;
15319 struct intel_encoder *encoder;
15320 struct intel_connector *connector;
15321 struct drm_connector_list_iter conn_iter;
15322 int i;
15323
15324 dev_priv->active_crtcs = 0;
15325
15326 for_each_intel_crtc(dev, crtc) {
15327 struct intel_crtc_state *crtc_state =
15328 to_intel_crtc_state(crtc->base.state);
15329
15330 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15331 memset(crtc_state, 0, sizeof(*crtc_state));
15332 crtc_state->base.crtc = &crtc->base;
15333
15334 crtc_state->base.active = crtc_state->base.enable =
15335 dev_priv->display.get_pipe_config(crtc, crtc_state);
15336
15337 crtc->base.enabled = crtc_state->base.enable;
15338 crtc->active = crtc_state->base.active;
15339
15340 if (crtc_state->base.active)
15341 dev_priv->active_crtcs |= 1 << crtc->pipe;
15342
15343 readout_plane_state(crtc);
15344
15345 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15346 crtc->base.base.id, crtc->base.name,
15347 enableddisabled(crtc_state->base.active));
15348 }
15349
15350 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15351 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15352
15353 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15354 &pll->state.hw_state);
15355 pll->state.crtc_mask = 0;
15356 for_each_intel_crtc(dev, crtc) {
15357 struct intel_crtc_state *crtc_state =
15358 to_intel_crtc_state(crtc->base.state);
15359
15360 if (crtc_state->base.active &&
15361 crtc_state->shared_dpll == pll)
15362 pll->state.crtc_mask |= 1 << crtc->pipe;
15363 }
15364 pll->active_mask = pll->state.crtc_mask;
15365
15366 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15367 pll->name, pll->state.crtc_mask, pll->on);
15368 }
15369
15370 for_each_intel_encoder(dev, encoder) {
15371 pipe = 0;
15372
15373 if (encoder->get_hw_state(encoder, &pipe)) {
15374 struct intel_crtc_state *crtc_state;
15375
15376 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15377 crtc_state = to_intel_crtc_state(crtc->base.state);
15378
15379 encoder->base.crtc = &crtc->base;
15380 crtc_state->output_types |= 1 << encoder->type;
15381 encoder->get_config(encoder, crtc_state);
15382 } else {
15383 encoder->base.crtc = NULL;
15384 }
15385
15386 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15387 encoder->base.base.id, encoder->base.name,
15388 enableddisabled(encoder->base.crtc),
15389 pipe_name(pipe));
15390 }
15391
15392 drm_connector_list_iter_begin(dev, &conn_iter);
15393 for_each_intel_connector_iter(connector, &conn_iter) {
15394 if (connector->get_hw_state(connector)) {
15395 connector->base.dpms = DRM_MODE_DPMS_ON;
15396
15397 encoder = connector->encoder;
15398 connector->base.encoder = &encoder->base;
15399
15400 if (encoder->base.crtc &&
15401 encoder->base.crtc->state->active) {
15402 /*
15403 * This has to be done during hardware readout
15404 * because anything calling .crtc_disable may
15405 * rely on the connector_mask being accurate.
15406 */
15407 encoder->base.crtc->state->connector_mask |=
15408 1 << drm_connector_index(&connector->base);
15409 encoder->base.crtc->state->encoder_mask |=
15410 1 << drm_encoder_index(&encoder->base);
15411 }
15412
15413 } else {
15414 connector->base.dpms = DRM_MODE_DPMS_OFF;
15415 connector->base.encoder = NULL;
15416 }
15417 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15418 connector->base.base.id, connector->base.name,
15419 enableddisabled(connector->base.encoder));
15420 }
15421 drm_connector_list_iter_end(&conn_iter);
15422
15423 for_each_intel_crtc(dev, crtc) {
15424 struct intel_crtc_state *crtc_state =
15425 to_intel_crtc_state(crtc->base.state);
15426 int pixclk = 0;
15427
15428 crtc->base.hwmode = crtc_state->base.adjusted_mode;
15429
15430 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15431 if (crtc_state->base.active) {
15432 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15433 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15434 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15435
15436 /*
15437 * The initial mode needs to be set in order to keep
15438 * the atomic core happy. It wants a valid mode if the
15439 * crtc's enabled, so we do the above call.
15440 *
15441 * But we don't set all the derived state fully, hence
15442 * set a flag to indicate that a full recalculation is
15443 * needed on the next commit.
15444 */
15445 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15446
15447 intel_crtc_compute_pixel_rate(crtc_state);
15448
15449 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15450 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15451 pixclk = crtc_state->pixel_rate;
15452 else
15453 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15454
15455 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15456 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15457 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15458
15459 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15460 update_scanline_offset(crtc);
15461 }
15462
15463 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15464
15465 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15466 }
15467 }
15468
15469 static void
15470 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15471 {
15472 struct intel_encoder *encoder;
15473
15474 for_each_intel_encoder(&dev_priv->drm, encoder) {
15475 u64 get_domains;
15476 enum intel_display_power_domain domain;
15477
15478 if (!encoder->get_power_domains)
15479 continue;
15480
15481 get_domains = encoder->get_power_domains(encoder);
15482 for_each_power_domain(domain, get_domains)
15483 intel_display_power_get(dev_priv, domain);
15484 }
15485 }
15486
15487 /* Scan out the current hw modeset state,
15488 * and sanitizes it to the current state
15489 */
15490 static void
15491 intel_modeset_setup_hw_state(struct drm_device *dev)
15492 {
15493 struct drm_i915_private *dev_priv = to_i915(dev);
15494 enum pipe pipe;
15495 struct intel_crtc *crtc;
15496 struct intel_encoder *encoder;
15497 int i;
15498
15499 intel_modeset_readout_hw_state(dev);
15500
15501 /* HW state is read out, now we need to sanitize this mess. */
15502 get_encoder_power_domains(dev_priv);
15503
15504 for_each_intel_encoder(dev, encoder) {
15505 intel_sanitize_encoder(encoder);
15506 }
15507
15508 for_each_pipe(dev_priv, pipe) {
15509 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15510
15511 intel_sanitize_crtc(crtc);
15512 intel_dump_pipe_config(crtc, crtc->config,
15513 "[setup_hw_state]");
15514 }
15515
15516 intel_modeset_update_connector_atomic_state(dev);
15517
15518 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15519 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15520
15521 if (!pll->on || pll->active_mask)
15522 continue;
15523
15524 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15525
15526 pll->funcs.disable(dev_priv, pll);
15527 pll->on = false;
15528 }
15529
15530 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15531 vlv_wm_get_hw_state(dev);
15532 vlv_wm_sanitize(dev_priv);
15533 } else if (IS_GEN9(dev_priv)) {
15534 skl_wm_get_hw_state(dev);
15535 } else if (HAS_PCH_SPLIT(dev_priv)) {
15536 ilk_wm_get_hw_state(dev);
15537 }
15538
15539 for_each_intel_crtc(dev, crtc) {
15540 u64 put_domains;
15541
15542 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15543 if (WARN_ON(put_domains))
15544 modeset_put_power_domains(dev_priv, put_domains);
15545 }
15546 intel_display_set_init_power(dev_priv, false);
15547
15548 intel_power_domains_verify_state(dev_priv);
15549
15550 intel_fbc_init_pipe_state(dev_priv);
15551 }
15552
15553 void intel_display_resume(struct drm_device *dev)
15554 {
15555 struct drm_i915_private *dev_priv = to_i915(dev);
15556 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15557 struct drm_modeset_acquire_ctx ctx;
15558 int ret;
15559
15560 dev_priv->modeset_restore_state = NULL;
15561 if (state)
15562 state->acquire_ctx = &ctx;
15563
15564 /*
15565 * This is a cludge because with real atomic modeset mode_config.mutex
15566 * won't be taken. Unfortunately some probed state like
15567 * audio_codec_enable is still protected by mode_config.mutex, so lock
15568 * it here for now.
15569 */
15570 mutex_lock(&dev->mode_config.mutex);
15571 drm_modeset_acquire_init(&ctx, 0);
15572
15573 while (1) {
15574 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15575 if (ret != -EDEADLK)
15576 break;
15577
15578 drm_modeset_backoff(&ctx);
15579 }
15580
15581 if (!ret)
15582 ret = __intel_display_resume(dev, state, &ctx);
15583
15584 drm_modeset_drop_locks(&ctx);
15585 drm_modeset_acquire_fini(&ctx);
15586 mutex_unlock(&dev->mode_config.mutex);
15587
15588 if (ret)
15589 DRM_ERROR("Restoring old state failed with %i\n", ret);
15590 if (state)
15591 drm_atomic_state_put(state);
15592 }
15593
15594 void intel_modeset_gem_init(struct drm_device *dev)
15595 {
15596 struct drm_i915_private *dev_priv = to_i915(dev);
15597
15598 intel_init_gt_powersave(dev_priv);
15599
15600 intel_setup_overlay(dev_priv);
15601 }
15602
15603 int intel_connector_register(struct drm_connector *connector)
15604 {
15605 struct intel_connector *intel_connector = to_intel_connector(connector);
15606 int ret;
15607
15608 ret = intel_backlight_device_register(intel_connector);
15609 if (ret)
15610 goto err;
15611
15612 return 0;
15613
15614 err:
15615 return ret;
15616 }
15617
15618 void intel_connector_unregister(struct drm_connector *connector)
15619 {
15620 struct intel_connector *intel_connector = to_intel_connector(connector);
15621
15622 intel_backlight_device_unregister(intel_connector);
15623 intel_panel_destroy_backlight(connector);
15624 }
15625
15626 void intel_modeset_cleanup(struct drm_device *dev)
15627 {
15628 struct drm_i915_private *dev_priv = to_i915(dev);
15629
15630 flush_work(&dev_priv->atomic_helper.free_work);
15631 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15632
15633 intel_disable_gt_powersave(dev_priv);
15634
15635 /*
15636 * Interrupts and polling as the first thing to avoid creating havoc.
15637 * Too much stuff here (turning of connectors, ...) would
15638 * experience fancy races otherwise.
15639 */
15640 intel_irq_uninstall(dev_priv);
15641
15642 /*
15643 * Due to the hpd irq storm handling the hotplug work can re-arm the
15644 * poll handlers. Hence disable polling after hpd handling is shut down.
15645 */
15646 drm_kms_helper_poll_fini(dev);
15647
15648 intel_unregister_dsm_handler();
15649
15650 intel_fbc_global_disable(dev_priv);
15651
15652 /* flush any delayed tasks or pending work */
15653 flush_scheduled_work();
15654
15655 drm_mode_config_cleanup(dev);
15656
15657 intel_cleanup_overlay(dev_priv);
15658
15659 intel_cleanup_gt_powersave(dev_priv);
15660
15661 intel_teardown_gmbus(dev_priv);
15662 }
15663
15664 void intel_connector_attach_encoder(struct intel_connector *connector,
15665 struct intel_encoder *encoder)
15666 {
15667 connector->encoder = encoder;
15668 drm_mode_connector_attach_encoder(&connector->base,
15669 &encoder->base);
15670 }
15671
15672 /*
15673 * set vga decode state - true == enable VGA decode
15674 */
15675 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15676 {
15677 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15678 u16 gmch_ctrl;
15679
15680 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15681 DRM_ERROR("failed to read control word\n");
15682 return -EIO;
15683 }
15684
15685 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15686 return 0;
15687
15688 if (state)
15689 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15690 else
15691 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15692
15693 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15694 DRM_ERROR("failed to write control word\n");
15695 return -EIO;
15696 }
15697
15698 return 0;
15699 }
15700
15701 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15702
15703 struct intel_display_error_state {
15704
15705 u32 power_well_driver;
15706
15707 int num_transcoders;
15708
15709 struct intel_cursor_error_state {
15710 u32 control;
15711 u32 position;
15712 u32 base;
15713 u32 size;
15714 } cursor[I915_MAX_PIPES];
15715
15716 struct intel_pipe_error_state {
15717 bool power_domain_on;
15718 u32 source;
15719 u32 stat;
15720 } pipe[I915_MAX_PIPES];
15721
15722 struct intel_plane_error_state {
15723 u32 control;
15724 u32 stride;
15725 u32 size;
15726 u32 pos;
15727 u32 addr;
15728 u32 surface;
15729 u32 tile_offset;
15730 } plane[I915_MAX_PIPES];
15731
15732 struct intel_transcoder_error_state {
15733 bool power_domain_on;
15734 enum transcoder cpu_transcoder;
15735
15736 u32 conf;
15737
15738 u32 htotal;
15739 u32 hblank;
15740 u32 hsync;
15741 u32 vtotal;
15742 u32 vblank;
15743 u32 vsync;
15744 } transcoder[4];
15745 };
15746
15747 struct intel_display_error_state *
15748 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15749 {
15750 struct intel_display_error_state *error;
15751 int transcoders[] = {
15752 TRANSCODER_A,
15753 TRANSCODER_B,
15754 TRANSCODER_C,
15755 TRANSCODER_EDP,
15756 };
15757 int i;
15758
15759 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15760 return NULL;
15761
15762 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15763 if (error == NULL)
15764 return NULL;
15765
15766 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15767 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15768
15769 for_each_pipe(dev_priv, i) {
15770 error->pipe[i].power_domain_on =
15771 __intel_display_power_is_enabled(dev_priv,
15772 POWER_DOMAIN_PIPE(i));
15773 if (!error->pipe[i].power_domain_on)
15774 continue;
15775
15776 error->cursor[i].control = I915_READ(CURCNTR(i));
15777 error->cursor[i].position = I915_READ(CURPOS(i));
15778 error->cursor[i].base = I915_READ(CURBASE(i));
15779
15780 error->plane[i].control = I915_READ(DSPCNTR(i));
15781 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15782 if (INTEL_GEN(dev_priv) <= 3) {
15783 error->plane[i].size = I915_READ(DSPSIZE(i));
15784 error->plane[i].pos = I915_READ(DSPPOS(i));
15785 }
15786 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15787 error->plane[i].addr = I915_READ(DSPADDR(i));
15788 if (INTEL_GEN(dev_priv) >= 4) {
15789 error->plane[i].surface = I915_READ(DSPSURF(i));
15790 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15791 }
15792
15793 error->pipe[i].source = I915_READ(PIPESRC(i));
15794
15795 if (HAS_GMCH_DISPLAY(dev_priv))
15796 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15797 }
15798
15799 /* Note: this does not include DSI transcoders. */
15800 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15801 if (HAS_DDI(dev_priv))
15802 error->num_transcoders++; /* Account for eDP. */
15803
15804 for (i = 0; i < error->num_transcoders; i++) {
15805 enum transcoder cpu_transcoder = transcoders[i];
15806
15807 error->transcoder[i].power_domain_on =
15808 __intel_display_power_is_enabled(dev_priv,
15809 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15810 if (!error->transcoder[i].power_domain_on)
15811 continue;
15812
15813 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15814
15815 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15816 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15817 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15818 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15819 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15820 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15821 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15822 }
15823
15824 return error;
15825 }
15826
15827 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15828
15829 void
15830 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15831 struct intel_display_error_state *error)
15832 {
15833 struct drm_i915_private *dev_priv = m->i915;
15834 int i;
15835
15836 if (!error)
15837 return;
15838
15839 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15840 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15841 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15842 error->power_well_driver);
15843 for_each_pipe(dev_priv, i) {
15844 err_printf(m, "Pipe [%d]:\n", i);
15845 err_printf(m, " Power: %s\n",
15846 onoff(error->pipe[i].power_domain_on));
15847 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15848 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15849
15850 err_printf(m, "Plane [%d]:\n", i);
15851 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15852 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15853 if (INTEL_GEN(dev_priv) <= 3) {
15854 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15855 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15856 }
15857 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15858 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15859 if (INTEL_GEN(dev_priv) >= 4) {
15860 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15861 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15862 }
15863
15864 err_printf(m, "Cursor [%d]:\n", i);
15865 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15866 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15867 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15868 }
15869
15870 for (i = 0; i < error->num_transcoders; i++) {
15871 err_printf(m, "CPU transcoder: %s\n",
15872 transcoder_name(error->transcoder[i].cpu_transcoder));
15873 err_printf(m, " Power: %s\n",
15874 onoff(error->transcoder[i].power_domain_on));
15875 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15876 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15877 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15878 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15879 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15880 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15881 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15882 }
15883 }
15884
15885 #endif