]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge tag 'drm-intel-fixes-2014-02-14' of ssh://git.freedesktop.org/git/drm-intel...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57 int min, max;
58 } intel_range_t;
59
60 typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 908000, .max = 1512000 },
94 .n = { .min = 2, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 908000, .max = 1512000 },
107 .n = { .min = 2, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 908000, .max = 1512000 },
120 .n = { .min = 2, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313 /*
314 * These are the data rate limits (measured in fast clocks)
315 * since those are the strictest limits we have. The fast
316 * clock and actual rate limits are more relaxed, so checking
317 * them would make no difference.
318 */
319 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320 .vco = { .min = 4000000, .max = 6000000 },
321 .n = { .min = 1, .max = 7 },
322 .m1 = { .min = 2, .max = 3 },
323 .m2 = { .min = 11, .max = 156 },
324 .p1 = { .min = 2, .max = 3 },
325 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330 clock->m = clock->m1 * clock->m2;
331 clock->p = clock->p1 * clock->p2;
332 if (WARN_ON(clock->n == 0 || clock->p == 0))
333 return;
334 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
335 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
336 }
337
338 /**
339 * Returns whether any output on the specified pipe is of the specified type
340 */
341 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342 {
343 struct drm_device *dev = crtc->dev;
344 struct intel_encoder *encoder;
345
346 for_each_encoder_on_crtc(dev, crtc, encoder)
347 if (encoder->type == type)
348 return true;
349
350 return false;
351 }
352
353 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354 int refclk)
355 {
356 struct drm_device *dev = crtc->dev;
357 const intel_limit_t *limit;
358
359 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360 if (intel_is_dual_link_lvds(dev)) {
361 if (refclk == 100000)
362 limit = &intel_limits_ironlake_dual_lvds_100m;
363 else
364 limit = &intel_limits_ironlake_dual_lvds;
365 } else {
366 if (refclk == 100000)
367 limit = &intel_limits_ironlake_single_lvds_100m;
368 else
369 limit = &intel_limits_ironlake_single_lvds;
370 }
371 } else
372 limit = &intel_limits_ironlake_dac;
373
374 return limit;
375 }
376
377 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378 {
379 struct drm_device *dev = crtc->dev;
380 const intel_limit_t *limit;
381
382 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383 if (intel_is_dual_link_lvds(dev))
384 limit = &intel_limits_g4x_dual_channel_lvds;
385 else
386 limit = &intel_limits_g4x_single_channel_lvds;
387 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389 limit = &intel_limits_g4x_hdmi;
390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391 limit = &intel_limits_g4x_sdvo;
392 } else /* The option is for other outputs */
393 limit = &intel_limits_i9xx_sdvo;
394
395 return limit;
396 }
397
398 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399 {
400 struct drm_device *dev = crtc->dev;
401 const intel_limit_t *limit;
402
403 if (HAS_PCH_SPLIT(dev))
404 limit = intel_ironlake_limit(crtc, refclk);
405 else if (IS_G4X(dev)) {
406 limit = intel_g4x_limit(crtc);
407 } else if (IS_PINEVIEW(dev)) {
408 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409 limit = &intel_limits_pineview_lvds;
410 else
411 limit = &intel_limits_pineview_sdvo;
412 } else if (IS_VALLEYVIEW(dev)) {
413 limit = &intel_limits_vlv;
414 } else if (!IS_GEN2(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
416 limit = &intel_limits_i9xx_lvds;
417 else
418 limit = &intel_limits_i9xx_sdvo;
419 } else {
420 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
421 limit = &intel_limits_i8xx_lvds;
422 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
423 limit = &intel_limits_i8xx_dvo;
424 else
425 limit = &intel_limits_i8xx_dac;
426 }
427 return limit;
428 }
429
430 /* m1 is reserved as 0 in Pineview, n is a ring counter */
431 static void pineview_clock(int refclk, intel_clock_t *clock)
432 {
433 clock->m = clock->m2 + 2;
434 clock->p = clock->p1 * clock->p2;
435 if (WARN_ON(clock->n == 0 || clock->p == 0))
436 return;
437 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
438 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
439 }
440
441 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
442 {
443 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
444 }
445
446 static void i9xx_clock(int refclk, intel_clock_t *clock)
447 {
448 clock->m = i9xx_dpll_compute_m(clock);
449 clock->p = clock->p1 * clock->p2;
450 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
451 return;
452 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
453 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
454 }
455
456 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465 {
466 if (clock->n < limit->n.min || limit->n.max < clock->n)
467 INTELPllInvalid("n out of range\n");
468 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
469 INTELPllInvalid("p1 out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474
475 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
476 if (clock->m1 <= clock->m2)
477 INTELPllInvalid("m1 <= m2\n");
478
479 if (!IS_VALLEYVIEW(dev)) {
480 if (clock->p < limit->p.min || limit->p.max < clock->p)
481 INTELPllInvalid("p out of range\n");
482 if (clock->m < limit->m.min || limit->m.max < clock->m)
483 INTELPllInvalid("m out of range\n");
484 }
485
486 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
487 INTELPllInvalid("vco out of range\n");
488 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
489 * connector, etc., rather than just a single range.
490 */
491 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
492 INTELPllInvalid("dot out of range\n");
493
494 return true;
495 }
496
497 static bool
498 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
499 int target, int refclk, intel_clock_t *match_clock,
500 intel_clock_t *best_clock)
501 {
502 struct drm_device *dev = crtc->dev;
503 intel_clock_t clock;
504 int err = target;
505
506 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
507 /*
508 * For LVDS just rely on its current settings for dual-channel.
509 * We haven't figured out how to reliably set up different
510 * single/dual channel state, if we even can.
511 */
512 if (intel_is_dual_link_lvds(dev))
513 clock.p2 = limit->p2.p2_fast;
514 else
515 clock.p2 = limit->p2.p2_slow;
516 } else {
517 if (target < limit->p2.dot_limit)
518 clock.p2 = limit->p2.p2_slow;
519 else
520 clock.p2 = limit->p2.p2_fast;
521 }
522
523 memset(best_clock, 0, sizeof(*best_clock));
524
525 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
526 clock.m1++) {
527 for (clock.m2 = limit->m2.min;
528 clock.m2 <= limit->m2.max; clock.m2++) {
529 if (clock.m2 >= clock.m1)
530 break;
531 for (clock.n = limit->n.min;
532 clock.n <= limit->n.max; clock.n++) {
533 for (clock.p1 = limit->p1.min;
534 clock.p1 <= limit->p1.max; clock.p1++) {
535 int this_err;
536
537 i9xx_clock(refclk, &clock);
538 if (!intel_PLL_is_valid(dev, limit,
539 &clock))
540 continue;
541 if (match_clock &&
542 clock.p != match_clock->p)
543 continue;
544
545 this_err = abs(clock.dot - target);
546 if (this_err < err) {
547 *best_clock = clock;
548 err = this_err;
549 }
550 }
551 }
552 }
553 }
554
555 return (err != target);
556 }
557
558 static bool
559 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
560 int target, int refclk, intel_clock_t *match_clock,
561 intel_clock_t *best_clock)
562 {
563 struct drm_device *dev = crtc->dev;
564 intel_clock_t clock;
565 int err = target;
566
567 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
568 /*
569 * For LVDS just rely on its current settings for dual-channel.
570 * We haven't figured out how to reliably set up different
571 * single/dual channel state, if we even can.
572 */
573 if (intel_is_dual_link_lvds(dev))
574 clock.p2 = limit->p2.p2_fast;
575 else
576 clock.p2 = limit->p2.p2_slow;
577 } else {
578 if (target < limit->p2.dot_limit)
579 clock.p2 = limit->p2.p2_slow;
580 else
581 clock.p2 = limit->p2.p2_fast;
582 }
583
584 memset(best_clock, 0, sizeof(*best_clock));
585
586 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
587 clock.m1++) {
588 for (clock.m2 = limit->m2.min;
589 clock.m2 <= limit->m2.max; clock.m2++) {
590 for (clock.n = limit->n.min;
591 clock.n <= limit->n.max; clock.n++) {
592 for (clock.p1 = limit->p1.min;
593 clock.p1 <= limit->p1.max; clock.p1++) {
594 int this_err;
595
596 pineview_clock(refclk, &clock);
597 if (!intel_PLL_is_valid(dev, limit,
598 &clock))
599 continue;
600 if (match_clock &&
601 clock.p != match_clock->p)
602 continue;
603
604 this_err = abs(clock.dot - target);
605 if (this_err < err) {
606 *best_clock = clock;
607 err = this_err;
608 }
609 }
610 }
611 }
612 }
613
614 return (err != target);
615 }
616
617 static bool
618 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
619 int target, int refclk, intel_clock_t *match_clock,
620 intel_clock_t *best_clock)
621 {
622 struct drm_device *dev = crtc->dev;
623 intel_clock_t clock;
624 int max_n;
625 bool found;
626 /* approximately equals target * 0.00585 */
627 int err_most = (target >> 8) + (target >> 9);
628 found = false;
629
630 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
631 if (intel_is_dual_link_lvds(dev))
632 clock.p2 = limit->p2.p2_fast;
633 else
634 clock.p2 = limit->p2.p2_slow;
635 } else {
636 if (target < limit->p2.dot_limit)
637 clock.p2 = limit->p2.p2_slow;
638 else
639 clock.p2 = limit->p2.p2_fast;
640 }
641
642 memset(best_clock, 0, sizeof(*best_clock));
643 max_n = limit->n.max;
644 /* based on hardware requirement, prefer smaller n to precision */
645 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
646 /* based on hardware requirement, prefere larger m1,m2 */
647 for (clock.m1 = limit->m1.max;
648 clock.m1 >= limit->m1.min; clock.m1--) {
649 for (clock.m2 = limit->m2.max;
650 clock.m2 >= limit->m2.min; clock.m2--) {
651 for (clock.p1 = limit->p1.max;
652 clock.p1 >= limit->p1.min; clock.p1--) {
653 int this_err;
654
655 i9xx_clock(refclk, &clock);
656 if (!intel_PLL_is_valid(dev, limit,
657 &clock))
658 continue;
659
660 this_err = abs(clock.dot - target);
661 if (this_err < err_most) {
662 *best_clock = clock;
663 err_most = this_err;
664 max_n = clock.n;
665 found = true;
666 }
667 }
668 }
669 }
670 }
671 return found;
672 }
673
674 static bool
675 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678 {
679 struct drm_device *dev = crtc->dev;
680 intel_clock_t clock;
681 unsigned int bestppm = 1000000;
682 /* min update 19.2 MHz */
683 int max_n = min(limit->n.max, refclk / 19200);
684 bool found = false;
685
686 target *= 5; /* fast clock */
687
688 memset(best_clock, 0, sizeof(*best_clock));
689
690 /* based on hardware requirement, prefer smaller n to precision */
691 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
692 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
693 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
694 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
695 clock.p = clock.p1 * clock.p2;
696 /* based on hardware requirement, prefer bigger m1,m2 values */
697 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
698 unsigned int ppm, diff;
699
700 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
701 refclk * clock.m1);
702
703 vlv_clock(refclk, &clock);
704
705 if (!intel_PLL_is_valid(dev, limit,
706 &clock))
707 continue;
708
709 diff = abs(clock.dot - target);
710 ppm = div_u64(1000000ULL * diff, target);
711
712 if (ppm < 100 && clock.p > best_clock->p) {
713 bestppm = 0;
714 *best_clock = clock;
715 found = true;
716 }
717
718 if (bestppm >= 10 && ppm < bestppm - 10) {
719 bestppm = ppm;
720 *best_clock = clock;
721 found = true;
722 }
723 }
724 }
725 }
726 }
727
728 return found;
729 }
730
731 bool intel_crtc_active(struct drm_crtc *crtc)
732 {
733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
734
735 /* Be paranoid as we can arrive here with only partial
736 * state retrieved from the hardware during setup.
737 *
738 * We can ditch the adjusted_mode.crtc_clock check as soon
739 * as Haswell has gained clock readout/fastboot support.
740 *
741 * We can ditch the crtc->fb check as soon as we can
742 * properly reconstruct framebuffers.
743 */
744 return intel_crtc->active && crtc->fb &&
745 intel_crtc->config.adjusted_mode.crtc_clock;
746 }
747
748 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
749 enum pipe pipe)
750 {
751 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753
754 return intel_crtc->config.cpu_transcoder;
755 }
756
757 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
758 {
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
761
762 frame = I915_READ(frame_reg);
763
764 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
765 DRM_DEBUG_KMS("vblank wait timed out\n");
766 }
767
768 /**
769 * intel_wait_for_vblank - wait for vblank on a given pipe
770 * @dev: drm device
771 * @pipe: pipe to wait for
772 *
773 * Wait for vblank to occur on a given pipe. Needed for various bits of
774 * mode setting code.
775 */
776 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
777 {
778 struct drm_i915_private *dev_priv = dev->dev_private;
779 int pipestat_reg = PIPESTAT(pipe);
780
781 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
782 g4x_wait_for_vblank(dev, pipe);
783 return;
784 }
785
786 /* Clear existing vblank status. Note this will clear any other
787 * sticky status fields as well.
788 *
789 * This races with i915_driver_irq_handler() with the result
790 * that either function could miss a vblank event. Here it is not
791 * fatal, as we will either wait upon the next vblank interrupt or
792 * timeout. Generally speaking intel_wait_for_vblank() is only
793 * called during modeset at which time the GPU should be idle and
794 * should *not* be performing page flips and thus not waiting on
795 * vblanks...
796 * Currently, the result of us stealing a vblank from the irq
797 * handler is that a single frame will be skipped during swapbuffers.
798 */
799 I915_WRITE(pipestat_reg,
800 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
801
802 /* Wait for vblank interrupt bit to set */
803 if (wait_for(I915_READ(pipestat_reg) &
804 PIPE_VBLANK_INTERRUPT_STATUS,
805 50))
806 DRM_DEBUG_KMS("vblank wait timed out\n");
807 }
808
809 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
810 {
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 u32 reg = PIPEDSL(pipe);
813 u32 line1, line2;
814 u32 line_mask;
815
816 if (IS_GEN2(dev))
817 line_mask = DSL_LINEMASK_GEN2;
818 else
819 line_mask = DSL_LINEMASK_GEN3;
820
821 line1 = I915_READ(reg) & line_mask;
822 mdelay(5);
823 line2 = I915_READ(reg) & line_mask;
824
825 return line1 == line2;
826 }
827
828 /*
829 * intel_wait_for_pipe_off - wait for pipe to turn off
830 * @dev: drm device
831 * @pipe: pipe to wait for
832 *
833 * After disabling a pipe, we can't wait for vblank in the usual way,
834 * spinning on the vblank interrupt status bit, since we won't actually
835 * see an interrupt when the pipe is disabled.
836 *
837 * On Gen4 and above:
838 * wait for the pipe register state bit to turn off
839 *
840 * Otherwise:
841 * wait for the display line value to settle (it usually
842 * ends up stopping at the start of the next frame).
843 *
844 */
845 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
846 {
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
849 pipe);
850
851 if (INTEL_INFO(dev)->gen >= 4) {
852 int reg = PIPECONF(cpu_transcoder);
853
854 /* Wait for the Pipe State to go off */
855 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
856 100))
857 WARN(1, "pipe_off wait timed out\n");
858 } else {
859 /* Wait for the display line to settle */
860 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
861 WARN(1, "pipe_off wait timed out\n");
862 }
863 }
864
865 /*
866 * ibx_digital_port_connected - is the specified port connected?
867 * @dev_priv: i915 private structure
868 * @port: the port to test
869 *
870 * Returns true if @port is connected, false otherwise.
871 */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873 struct intel_digital_port *port)
874 {
875 u32 bit;
876
877 if (HAS_PCH_IBX(dev_priv->dev)) {
878 switch(port->port) {
879 case PORT_B:
880 bit = SDE_PORTB_HOTPLUG;
881 break;
882 case PORT_C:
883 bit = SDE_PORTC_HOTPLUG;
884 break;
885 case PORT_D:
886 bit = SDE_PORTD_HOTPLUG;
887 break;
888 default:
889 return true;
890 }
891 } else {
892 switch(port->port) {
893 case PORT_B:
894 bit = SDE_PORTB_HOTPLUG_CPT;
895 break;
896 case PORT_C:
897 bit = SDE_PORTC_HOTPLUG_CPT;
898 break;
899 case PORT_D:
900 bit = SDE_PORTD_HOTPLUG_CPT;
901 break;
902 default:
903 return true;
904 }
905 }
906
907 return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912 return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917 enum pipe pipe, bool state)
918 {
919 int reg;
920 u32 val;
921 bool cur_state;
922
923 reg = DPLL(pipe);
924 val = I915_READ(reg);
925 cur_state = !!(val & DPLL_VCO_ENABLE);
926 WARN(cur_state != state,
927 "PLL state assertion failure (expected %s, current %s)\n",
928 state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934 u32 val;
935 bool cur_state;
936
937 mutex_lock(&dev_priv->dpio_lock);
938 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939 mutex_unlock(&dev_priv->dpio_lock);
940
941 cur_state = val & DSI_PLL_VCO_EN;
942 WARN(cur_state != state,
943 "DSI PLL state assertion failure (expected %s, current %s)\n",
944 state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954 if (crtc->config.shared_dpll < 0)
955 return NULL;
956
957 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962 struct intel_shared_dpll *pll,
963 bool state)
964 {
965 bool cur_state;
966 struct intel_dpll_hw_state hw_state;
967
968 if (HAS_PCH_LPT(dev_priv->dev)) {
969 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970 return;
971 }
972
973 if (WARN (!pll,
974 "asserting DPLL %s with no DPLL\n", state_string(state)))
975 return;
976
977 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978 WARN(cur_state != state,
979 "%s assertion failure (expected %s, current %s)\n",
980 pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984 enum pipe pipe, bool state)
985 {
986 int reg;
987 u32 val;
988 bool cur_state;
989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990 pipe);
991
992 if (HAS_DDI(dev_priv->dev)) {
993 /* DDI does not have a specific FDI_TX register */
994 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995 val = I915_READ(reg);
996 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997 } else {
998 reg = FDI_TX_CTL(pipe);
999 val = I915_READ(reg);
1000 cur_state = !!(val & FDI_TX_ENABLE);
1001 }
1002 WARN(cur_state != state,
1003 "FDI TX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010 enum pipe pipe, bool state)
1011 {
1012 int reg;
1013 u32 val;
1014 bool cur_state;
1015
1016 reg = FDI_RX_CTL(pipe);
1017 val = I915_READ(reg);
1018 cur_state = !!(val & FDI_RX_ENABLE);
1019 WARN(cur_state != state,
1020 "FDI RX state assertion failure (expected %s, current %s)\n",
1021 state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 int reg;
1030 u32 val;
1031
1032 /* ILK FDI PLL is always enabled */
1033 if (dev_priv->info->gen == 5)
1034 return;
1035
1036 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037 if (HAS_DDI(dev_priv->dev))
1038 return;
1039
1040 reg = FDI_TX_CTL(pipe);
1041 val = I915_READ(reg);
1042 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = FDI_RX_CTL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055 WARN(cur_state != state,
1056 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061 enum pipe pipe)
1062 {
1063 int pp_reg, lvds_reg;
1064 u32 val;
1065 enum pipe panel_pipe = PIPE_A;
1066 bool locked = true;
1067
1068 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069 pp_reg = PCH_PP_CONTROL;
1070 lvds_reg = PCH_LVDS;
1071 } else {
1072 pp_reg = PP_CONTROL;
1073 lvds_reg = LVDS;
1074 }
1075
1076 val = I915_READ(pp_reg);
1077 if (!(val & PANEL_POWER_ON) ||
1078 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079 locked = false;
1080
1081 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082 panel_pipe = PIPE_B;
1083
1084 WARN(panel_pipe == pipe && locked,
1085 "panel assertion failure, pipe %c regs locked\n",
1086 pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, bool state)
1091 {
1092 struct drm_device *dev = dev_priv->dev;
1093 bool cur_state;
1094
1095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097 else if (IS_845G(dev) || IS_I865G(dev))
1098 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099 else
1100 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102 WARN(cur_state != state,
1103 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104 pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110 enum pipe pipe, bool state)
1111 {
1112 int reg;
1113 u32 val;
1114 bool cur_state;
1115 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116 pipe);
1117
1118 /* if we need the pipe A quirk it must be always on */
1119 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120 state = true;
1121
1122 if (!intel_display_power_enabled(dev_priv->dev,
1123 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124 cur_state = false;
1125 } else {
1126 reg = PIPECONF(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & PIPECONF_ENABLE);
1129 }
1130
1131 WARN(cur_state != state,
1132 "pipe %c assertion failure (expected %s, current %s)\n",
1133 pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137 enum plane plane, bool state)
1138 {
1139 int reg;
1140 u32 val;
1141 bool cur_state;
1142
1143 reg = DSPCNTR(plane);
1144 val = I915_READ(reg);
1145 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146 WARN(cur_state != state,
1147 "plane %c assertion failure (expected %s, current %s)\n",
1148 plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156 {
1157 struct drm_device *dev = dev_priv->dev;
1158 int reg, i;
1159 u32 val;
1160 int cur_pipe;
1161
1162 /* Primary planes are fixed to pipes on gen4+ */
1163 if (INTEL_INFO(dev)->gen >= 4) {
1164 reg = DSPCNTR(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & DISPLAY_PLANE_ENABLE),
1167 "plane %c assertion failure, should be disabled but not\n",
1168 plane_name(pipe));
1169 return;
1170 }
1171
1172 /* Need to check both planes against the pipe */
1173 for_each_pipe(i) {
1174 reg = DSPCNTR(i);
1175 val = I915_READ(reg);
1176 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177 DISPPLANE_SEL_PIPE_SHIFT;
1178 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180 plane_name(i), pipe_name(pipe));
1181 }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186 {
1187 struct drm_device *dev = dev_priv->dev;
1188 int reg, i;
1189 u32 val;
1190
1191 if (IS_VALLEYVIEW(dev)) {
1192 for (i = 0; i < dev_priv->num_plane; i++) {
1193 reg = SPCNTR(pipe, i);
1194 val = I915_READ(reg);
1195 WARN((val & SP_ENABLE),
1196 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197 sprite_name(pipe, i), pipe_name(pipe));
1198 }
1199 } else if (INTEL_INFO(dev)->gen >= 7) {
1200 reg = SPRCTL(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & SPRITE_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 } else if (INTEL_INFO(dev)->gen >= 5) {
1206 reg = DVSCNTR(pipe);
1207 val = I915_READ(reg);
1208 WARN((val & DVS_ENABLE),
1209 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210 plane_name(pipe), pipe_name(pipe));
1211 }
1212 }
1213
1214 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216 u32 val;
1217 bool enabled;
1218
1219 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1220
1221 val = I915_READ(PCH_DREF_CONTROL);
1222 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1223 DREF_SUPERSPREAD_SOURCE_MASK));
1224 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1225 }
1226
1227 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1229 {
1230 int reg;
1231 u32 val;
1232 bool enabled;
1233
1234 reg = PCH_TRANSCONF(pipe);
1235 val = I915_READ(reg);
1236 enabled = !!(val & TRANS_ENABLE);
1237 WARN(enabled,
1238 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1239 pipe_name(pipe));
1240 }
1241
1242 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, u32 port_sel, u32 val)
1244 {
1245 if ((val & DP_PORT_EN) == 0)
1246 return false;
1247
1248 if (HAS_PCH_CPT(dev_priv->dev)) {
1249 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1250 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1251 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1252 return false;
1253 } else {
1254 if ((val & DP_PIPE_MASK) != (pipe << 30))
1255 return false;
1256 }
1257 return true;
1258 }
1259
1260 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1261 enum pipe pipe, u32 val)
1262 {
1263 if ((val & SDVO_ENABLE) == 0)
1264 return false;
1265
1266 if (HAS_PCH_CPT(dev_priv->dev)) {
1267 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1268 return false;
1269 } else {
1270 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1271 return false;
1272 }
1273 return true;
1274 }
1275
1276 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1277 enum pipe pipe, u32 val)
1278 {
1279 if ((val & LVDS_PORT_EN) == 0)
1280 return false;
1281
1282 if (HAS_PCH_CPT(dev_priv->dev)) {
1283 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1284 return false;
1285 } else {
1286 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1287 return false;
1288 }
1289 return true;
1290 }
1291
1292 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, u32 val)
1294 {
1295 if ((val & ADPA_DAC_ENABLE) == 0)
1296 return false;
1297 if (HAS_PCH_CPT(dev_priv->dev)) {
1298 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1299 return false;
1300 } else {
1301 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1302 return false;
1303 }
1304 return true;
1305 }
1306
1307 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, int reg, u32 port_sel)
1309 {
1310 u32 val = I915_READ(reg);
1311 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1312 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1313 reg, pipe_name(pipe));
1314
1315 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1316 && (val & DP_PIPEB_SELECT),
1317 "IBX PCH dp port still using transcoder B\n");
1318 }
1319
1320 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, int reg)
1322 {
1323 u32 val = I915_READ(reg);
1324 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1325 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1326 reg, pipe_name(pipe));
1327
1328 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1329 && (val & SDVO_PIPE_B_SELECT),
1330 "IBX PCH hdmi port still using transcoder B\n");
1331 }
1332
1333 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1334 enum pipe pipe)
1335 {
1336 int reg;
1337 u32 val;
1338
1339 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1340 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1341 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1342
1343 reg = PCH_ADPA;
1344 val = I915_READ(reg);
1345 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1346 "PCH VGA enabled on transcoder %c, should be disabled\n",
1347 pipe_name(pipe));
1348
1349 reg = PCH_LVDS;
1350 val = I915_READ(reg);
1351 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1352 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1353 pipe_name(pipe));
1354
1355 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1356 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1357 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1358 }
1359
1360 static void intel_init_dpio(struct drm_device *dev)
1361 {
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363
1364 if (!IS_VALLEYVIEW(dev))
1365 return;
1366
1367 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1368 }
1369
1370 static void intel_reset_dpio(struct drm_device *dev)
1371 {
1372 struct drm_i915_private *dev_priv = dev->dev_private;
1373
1374 if (!IS_VALLEYVIEW(dev))
1375 return;
1376
1377 /*
1378 * Enable the CRI clock source so we can get at the display and the
1379 * reference clock for VGA hotplug / manual detection.
1380 */
1381 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1382 DPLL_REFA_CLK_ENABLE_VLV |
1383 DPLL_INTEGRATED_CRI_CLK_VLV);
1384
1385 /*
1386 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1387 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1388 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1389 * b. The other bits such as sfr settings / modesel may all be set
1390 * to 0.
1391 *
1392 * This should only be done on init and resume from S3 with both
1393 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1394 */
1395 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1396 }
1397
1398 static void vlv_enable_pll(struct intel_crtc *crtc)
1399 {
1400 struct drm_device *dev = crtc->base.dev;
1401 struct drm_i915_private *dev_priv = dev->dev_private;
1402 int reg = DPLL(crtc->pipe);
1403 u32 dpll = crtc->config.dpll_hw_state.dpll;
1404
1405 assert_pipe_disabled(dev_priv, crtc->pipe);
1406
1407 /* No really, not for ILK+ */
1408 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1409
1410 /* PLL is protected by panel, make sure we can write it */
1411 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1412 assert_panel_unlocked(dev_priv, crtc->pipe);
1413
1414 I915_WRITE(reg, dpll);
1415 POSTING_READ(reg);
1416 udelay(150);
1417
1418 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1419 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1420
1421 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1422 POSTING_READ(DPLL_MD(crtc->pipe));
1423
1424 /* We do this three times for luck */
1425 I915_WRITE(reg, dpll);
1426 POSTING_READ(reg);
1427 udelay(150); /* wait for warmup */
1428 I915_WRITE(reg, dpll);
1429 POSTING_READ(reg);
1430 udelay(150); /* wait for warmup */
1431 I915_WRITE(reg, dpll);
1432 POSTING_READ(reg);
1433 udelay(150); /* wait for warmup */
1434 }
1435
1436 static void i9xx_enable_pll(struct intel_crtc *crtc)
1437 {
1438 struct drm_device *dev = crtc->base.dev;
1439 struct drm_i915_private *dev_priv = dev->dev_private;
1440 int reg = DPLL(crtc->pipe);
1441 u32 dpll = crtc->config.dpll_hw_state.dpll;
1442
1443 assert_pipe_disabled(dev_priv, crtc->pipe);
1444
1445 /* No really, not for ILK+ */
1446 BUG_ON(dev_priv->info->gen >= 5);
1447
1448 /* PLL is protected by panel, make sure we can write it */
1449 if (IS_MOBILE(dev) && !IS_I830(dev))
1450 assert_panel_unlocked(dev_priv, crtc->pipe);
1451
1452 I915_WRITE(reg, dpll);
1453
1454 /* Wait for the clocks to stabilize. */
1455 POSTING_READ(reg);
1456 udelay(150);
1457
1458 if (INTEL_INFO(dev)->gen >= 4) {
1459 I915_WRITE(DPLL_MD(crtc->pipe),
1460 crtc->config.dpll_hw_state.dpll_md);
1461 } else {
1462 /* The pixel multiplier can only be updated once the
1463 * DPLL is enabled and the clocks are stable.
1464 *
1465 * So write it again.
1466 */
1467 I915_WRITE(reg, dpll);
1468 }
1469
1470 /* We do this three times for luck */
1471 I915_WRITE(reg, dpll);
1472 POSTING_READ(reg);
1473 udelay(150); /* wait for warmup */
1474 I915_WRITE(reg, dpll);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477 I915_WRITE(reg, dpll);
1478 POSTING_READ(reg);
1479 udelay(150); /* wait for warmup */
1480 }
1481
1482 /**
1483 * i9xx_disable_pll - disable a PLL
1484 * @dev_priv: i915 private structure
1485 * @pipe: pipe PLL to disable
1486 *
1487 * Disable the PLL for @pipe, making sure the pipe is off first.
1488 *
1489 * Note! This is for pre-ILK only.
1490 */
1491 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1492 {
1493 /* Don't disable pipe A or pipe A PLLs if needed */
1494 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495 return;
1496
1497 /* Make sure the pipe isn't still relying on us */
1498 assert_pipe_disabled(dev_priv, pipe);
1499
1500 I915_WRITE(DPLL(pipe), 0);
1501 POSTING_READ(DPLL(pipe));
1502 }
1503
1504 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1505 {
1506 u32 val = 0;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 /*
1512 * Leave integrated clock source and reference clock enabled for pipe B.
1513 * The latter is needed for VGA hotplug / manual detection.
1514 */
1515 if (pipe == PIPE_B)
1516 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1517 I915_WRITE(DPLL(pipe), val);
1518 POSTING_READ(DPLL(pipe));
1519 }
1520
1521 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1522 struct intel_digital_port *dport)
1523 {
1524 u32 port_mask;
1525
1526 switch (dport->port) {
1527 case PORT_B:
1528 port_mask = DPLL_PORTB_READY_MASK;
1529 break;
1530 case PORT_C:
1531 port_mask = DPLL_PORTC_READY_MASK;
1532 break;
1533 default:
1534 BUG();
1535 }
1536
1537 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1538 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1539 port_name(dport->port), I915_READ(DPLL(0)));
1540 }
1541
1542 /**
1543 * ironlake_enable_shared_dpll - enable PCH PLL
1544 * @dev_priv: i915 private structure
1545 * @pipe: pipe PLL to enable
1546 *
1547 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1548 * drives the transcoder clock.
1549 */
1550 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1551 {
1552 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1553 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1554
1555 /* PCH PLLs only available on ILK, SNB and IVB */
1556 BUG_ON(dev_priv->info->gen < 5);
1557 if (WARN_ON(pll == NULL))
1558 return;
1559
1560 if (WARN_ON(pll->refcount == 0))
1561 return;
1562
1563 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1564 pll->name, pll->active, pll->on,
1565 crtc->base.base.id);
1566
1567 if (pll->active++) {
1568 WARN_ON(!pll->on);
1569 assert_shared_dpll_enabled(dev_priv, pll);
1570 return;
1571 }
1572 WARN_ON(pll->on);
1573
1574 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1575 pll->enable(dev_priv, pll);
1576 pll->on = true;
1577 }
1578
1579 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1580 {
1581 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1582 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1583
1584 /* PCH only available on ILK+ */
1585 BUG_ON(dev_priv->info->gen < 5);
1586 if (WARN_ON(pll == NULL))
1587 return;
1588
1589 if (WARN_ON(pll->refcount == 0))
1590 return;
1591
1592 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1593 pll->name, pll->active, pll->on,
1594 crtc->base.base.id);
1595
1596 if (WARN_ON(pll->active == 0)) {
1597 assert_shared_dpll_disabled(dev_priv, pll);
1598 return;
1599 }
1600
1601 assert_shared_dpll_enabled(dev_priv, pll);
1602 WARN_ON(!pll->on);
1603 if (--pll->active)
1604 return;
1605
1606 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1607 pll->disable(dev_priv, pll);
1608 pll->on = false;
1609 }
1610
1611 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1612 enum pipe pipe)
1613 {
1614 struct drm_device *dev = dev_priv->dev;
1615 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1617 uint32_t reg, val, pipeconf_val;
1618
1619 /* PCH only available on ILK+ */
1620 BUG_ON(dev_priv->info->gen < 5);
1621
1622 /* Make sure PCH DPLL is enabled */
1623 assert_shared_dpll_enabled(dev_priv,
1624 intel_crtc_to_shared_dpll(intel_crtc));
1625
1626 /* FDI must be feeding us bits for PCH ports */
1627 assert_fdi_tx_enabled(dev_priv, pipe);
1628 assert_fdi_rx_enabled(dev_priv, pipe);
1629
1630 if (HAS_PCH_CPT(dev)) {
1631 /* Workaround: Set the timing override bit before enabling the
1632 * pch transcoder. */
1633 reg = TRANS_CHICKEN2(pipe);
1634 val = I915_READ(reg);
1635 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1636 I915_WRITE(reg, val);
1637 }
1638
1639 reg = PCH_TRANSCONF(pipe);
1640 val = I915_READ(reg);
1641 pipeconf_val = I915_READ(PIPECONF(pipe));
1642
1643 if (HAS_PCH_IBX(dev_priv->dev)) {
1644 /*
1645 * make the BPC in transcoder be consistent with
1646 * that in pipeconf reg.
1647 */
1648 val &= ~PIPECONF_BPC_MASK;
1649 val |= pipeconf_val & PIPECONF_BPC_MASK;
1650 }
1651
1652 val &= ~TRANS_INTERLACE_MASK;
1653 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1654 if (HAS_PCH_IBX(dev_priv->dev) &&
1655 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1656 val |= TRANS_LEGACY_INTERLACED_ILK;
1657 else
1658 val |= TRANS_INTERLACED;
1659 else
1660 val |= TRANS_PROGRESSIVE;
1661
1662 I915_WRITE(reg, val | TRANS_ENABLE);
1663 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1664 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1665 }
1666
1667 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1668 enum transcoder cpu_transcoder)
1669 {
1670 u32 val, pipeconf_val;
1671
1672 /* PCH only available on ILK+ */
1673 BUG_ON(dev_priv->info->gen < 5);
1674
1675 /* FDI must be feeding us bits for PCH ports */
1676 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1677 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1678
1679 /* Workaround: set timing override bit. */
1680 val = I915_READ(_TRANSA_CHICKEN2);
1681 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1682 I915_WRITE(_TRANSA_CHICKEN2, val);
1683
1684 val = TRANS_ENABLE;
1685 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1686
1687 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1688 PIPECONF_INTERLACED_ILK)
1689 val |= TRANS_INTERLACED;
1690 else
1691 val |= TRANS_PROGRESSIVE;
1692
1693 I915_WRITE(LPT_TRANSCONF, val);
1694 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1695 DRM_ERROR("Failed to enable PCH transcoder\n");
1696 }
1697
1698 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1699 enum pipe pipe)
1700 {
1701 struct drm_device *dev = dev_priv->dev;
1702 uint32_t reg, val;
1703
1704 /* FDI relies on the transcoder */
1705 assert_fdi_tx_disabled(dev_priv, pipe);
1706 assert_fdi_rx_disabled(dev_priv, pipe);
1707
1708 /* Ports must be off as well */
1709 assert_pch_ports_disabled(dev_priv, pipe);
1710
1711 reg = PCH_TRANSCONF(pipe);
1712 val = I915_READ(reg);
1713 val &= ~TRANS_ENABLE;
1714 I915_WRITE(reg, val);
1715 /* wait for PCH transcoder off, transcoder state */
1716 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1717 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1718
1719 if (!HAS_PCH_IBX(dev)) {
1720 /* Workaround: Clear the timing override chicken bit again. */
1721 reg = TRANS_CHICKEN2(pipe);
1722 val = I915_READ(reg);
1723 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1724 I915_WRITE(reg, val);
1725 }
1726 }
1727
1728 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1729 {
1730 u32 val;
1731
1732 val = I915_READ(LPT_TRANSCONF);
1733 val &= ~TRANS_ENABLE;
1734 I915_WRITE(LPT_TRANSCONF, val);
1735 /* wait for PCH transcoder off, transcoder state */
1736 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1737 DRM_ERROR("Failed to disable PCH transcoder\n");
1738
1739 /* Workaround: clear timing override bit. */
1740 val = I915_READ(_TRANSA_CHICKEN2);
1741 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1742 I915_WRITE(_TRANSA_CHICKEN2, val);
1743 }
1744
1745 /**
1746 * intel_enable_pipe - enable a pipe, asserting requirements
1747 * @dev_priv: i915 private structure
1748 * @pipe: pipe to enable
1749 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1750 *
1751 * Enable @pipe, making sure that various hardware specific requirements
1752 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1753 *
1754 * @pipe should be %PIPE_A or %PIPE_B.
1755 *
1756 * Will wait until the pipe is actually running (i.e. first vblank) before
1757 * returning.
1758 */
1759 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1760 bool pch_port, bool dsi)
1761 {
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 enum pipe pch_transcoder;
1765 int reg;
1766 u32 val;
1767
1768 assert_planes_disabled(dev_priv, pipe);
1769 assert_cursor_disabled(dev_priv, pipe);
1770 assert_sprites_disabled(dev_priv, pipe);
1771
1772 if (HAS_PCH_LPT(dev_priv->dev))
1773 pch_transcoder = TRANSCODER_A;
1774 else
1775 pch_transcoder = pipe;
1776
1777 /*
1778 * A pipe without a PLL won't actually be able to drive bits from
1779 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1780 * need the check.
1781 */
1782 if (!HAS_PCH_SPLIT(dev_priv->dev))
1783 if (dsi)
1784 assert_dsi_pll_enabled(dev_priv);
1785 else
1786 assert_pll_enabled(dev_priv, pipe);
1787 else {
1788 if (pch_port) {
1789 /* if driving the PCH, we need FDI enabled */
1790 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791 assert_fdi_tx_pll_enabled(dev_priv,
1792 (enum pipe) cpu_transcoder);
1793 }
1794 /* FIXME: assert CPU port conditions for SNB+ */
1795 }
1796
1797 reg = PIPECONF(cpu_transcoder);
1798 val = I915_READ(reg);
1799 if (val & PIPECONF_ENABLE)
1800 return;
1801
1802 I915_WRITE(reg, val | PIPECONF_ENABLE);
1803 intel_wait_for_vblank(dev_priv->dev, pipe);
1804 }
1805
1806 /**
1807 * intel_disable_pipe - disable a pipe, asserting requirements
1808 * @dev_priv: i915 private structure
1809 * @pipe: pipe to disable
1810 *
1811 * Disable @pipe, making sure that various hardware specific requirements
1812 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1813 *
1814 * @pipe should be %PIPE_A or %PIPE_B.
1815 *
1816 * Will wait until the pipe has shut down before returning.
1817 */
1818 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1819 enum pipe pipe)
1820 {
1821 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1822 pipe);
1823 int reg;
1824 u32 val;
1825
1826 /*
1827 * Make sure planes won't keep trying to pump pixels to us,
1828 * or we might hang the display.
1829 */
1830 assert_planes_disabled(dev_priv, pipe);
1831 assert_cursor_disabled(dev_priv, pipe);
1832 assert_sprites_disabled(dev_priv, pipe);
1833
1834 /* Don't disable pipe A or pipe A PLLs if needed */
1835 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1836 return;
1837
1838 reg = PIPECONF(cpu_transcoder);
1839 val = I915_READ(reg);
1840 if ((val & PIPECONF_ENABLE) == 0)
1841 return;
1842
1843 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1844 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1845 }
1846
1847 /*
1848 * Plane regs are double buffered, going from enabled->disabled needs a
1849 * trigger in order to latch. The display address reg provides this.
1850 */
1851 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1852 enum plane plane)
1853 {
1854 u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1855
1856 I915_WRITE(reg, I915_READ(reg));
1857 POSTING_READ(reg);
1858 }
1859
1860 /**
1861 * intel_enable_primary_plane - enable the primary plane on a given pipe
1862 * @dev_priv: i915 private structure
1863 * @plane: plane to enable
1864 * @pipe: pipe being fed
1865 *
1866 * Enable @plane on @pipe, making sure that @pipe is running first.
1867 */
1868 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1869 enum plane plane, enum pipe pipe)
1870 {
1871 struct intel_crtc *intel_crtc =
1872 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1873 int reg;
1874 u32 val;
1875
1876 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1877 assert_pipe_enabled(dev_priv, pipe);
1878
1879 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1880
1881 intel_crtc->primary_enabled = true;
1882
1883 reg = DSPCNTR(plane);
1884 val = I915_READ(reg);
1885 if (val & DISPLAY_PLANE_ENABLE)
1886 return;
1887
1888 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1889 intel_flush_primary_plane(dev_priv, plane);
1890 intel_wait_for_vblank(dev_priv->dev, pipe);
1891 }
1892
1893 /**
1894 * intel_disable_primary_plane - disable the primary plane
1895 * @dev_priv: i915 private structure
1896 * @plane: plane to disable
1897 * @pipe: pipe consuming the data
1898 *
1899 * Disable @plane; should be an independent operation.
1900 */
1901 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1902 enum plane plane, enum pipe pipe)
1903 {
1904 struct intel_crtc *intel_crtc =
1905 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1906 int reg;
1907 u32 val;
1908
1909 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1910
1911 intel_crtc->primary_enabled = false;
1912
1913 reg = DSPCNTR(plane);
1914 val = I915_READ(reg);
1915 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1916 return;
1917
1918 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1919 intel_flush_primary_plane(dev_priv, plane);
1920 intel_wait_for_vblank(dev_priv->dev, pipe);
1921 }
1922
1923 static bool need_vtd_wa(struct drm_device *dev)
1924 {
1925 #ifdef CONFIG_INTEL_IOMMU
1926 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1927 return true;
1928 #endif
1929 return false;
1930 }
1931
1932 int
1933 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1934 struct drm_i915_gem_object *obj,
1935 struct intel_ring_buffer *pipelined)
1936 {
1937 struct drm_i915_private *dev_priv = dev->dev_private;
1938 u32 alignment;
1939 int ret;
1940
1941 switch (obj->tiling_mode) {
1942 case I915_TILING_NONE:
1943 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1944 alignment = 128 * 1024;
1945 else if (INTEL_INFO(dev)->gen >= 4)
1946 alignment = 4 * 1024;
1947 else
1948 alignment = 64 * 1024;
1949 break;
1950 case I915_TILING_X:
1951 /* pin() will align the object as required by fence */
1952 alignment = 0;
1953 break;
1954 case I915_TILING_Y:
1955 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1956 return -EINVAL;
1957 default:
1958 BUG();
1959 }
1960
1961 /* Note that the w/a also requires 64 PTE of padding following the
1962 * bo. We currently fill all unused PTE with the shadow page and so
1963 * we should always have valid PTE following the scanout preventing
1964 * the VT-d warning.
1965 */
1966 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1967 alignment = 256 * 1024;
1968
1969 dev_priv->mm.interruptible = false;
1970 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1971 if (ret)
1972 goto err_interruptible;
1973
1974 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1975 * fence, whereas 965+ only requires a fence if using
1976 * framebuffer compression. For simplicity, we always install
1977 * a fence as the cost is not that onerous.
1978 */
1979 ret = i915_gem_object_get_fence(obj);
1980 if (ret)
1981 goto err_unpin;
1982
1983 i915_gem_object_pin_fence(obj);
1984
1985 dev_priv->mm.interruptible = true;
1986 return 0;
1987
1988 err_unpin:
1989 i915_gem_object_unpin_from_display_plane(obj);
1990 err_interruptible:
1991 dev_priv->mm.interruptible = true;
1992 return ret;
1993 }
1994
1995 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1996 {
1997 i915_gem_object_unpin_fence(obj);
1998 i915_gem_object_unpin_from_display_plane(obj);
1999 }
2000
2001 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2002 * is assumed to be a power-of-two. */
2003 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2004 unsigned int tiling_mode,
2005 unsigned int cpp,
2006 unsigned int pitch)
2007 {
2008 if (tiling_mode != I915_TILING_NONE) {
2009 unsigned int tile_rows, tiles;
2010
2011 tile_rows = *y / 8;
2012 *y %= 8;
2013
2014 tiles = *x / (512/cpp);
2015 *x %= 512/cpp;
2016
2017 return tile_rows * pitch * 8 + tiles * 4096;
2018 } else {
2019 unsigned int offset;
2020
2021 offset = *y * pitch + *x * cpp;
2022 *y = 0;
2023 *x = (offset & 4095) / cpp;
2024 return offset & -4096;
2025 }
2026 }
2027
2028 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2029 int x, int y)
2030 {
2031 struct drm_device *dev = crtc->dev;
2032 struct drm_i915_private *dev_priv = dev->dev_private;
2033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2034 struct intel_framebuffer *intel_fb;
2035 struct drm_i915_gem_object *obj;
2036 int plane = intel_crtc->plane;
2037 unsigned long linear_offset;
2038 u32 dspcntr;
2039 u32 reg;
2040
2041 switch (plane) {
2042 case 0:
2043 case 1:
2044 break;
2045 default:
2046 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2047 return -EINVAL;
2048 }
2049
2050 intel_fb = to_intel_framebuffer(fb);
2051 obj = intel_fb->obj;
2052
2053 reg = DSPCNTR(plane);
2054 dspcntr = I915_READ(reg);
2055 /* Mask out pixel format bits in case we change it */
2056 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2057 switch (fb->pixel_format) {
2058 case DRM_FORMAT_C8:
2059 dspcntr |= DISPPLANE_8BPP;
2060 break;
2061 case DRM_FORMAT_XRGB1555:
2062 case DRM_FORMAT_ARGB1555:
2063 dspcntr |= DISPPLANE_BGRX555;
2064 break;
2065 case DRM_FORMAT_RGB565:
2066 dspcntr |= DISPPLANE_BGRX565;
2067 break;
2068 case DRM_FORMAT_XRGB8888:
2069 case DRM_FORMAT_ARGB8888:
2070 dspcntr |= DISPPLANE_BGRX888;
2071 break;
2072 case DRM_FORMAT_XBGR8888:
2073 case DRM_FORMAT_ABGR8888:
2074 dspcntr |= DISPPLANE_RGBX888;
2075 break;
2076 case DRM_FORMAT_XRGB2101010:
2077 case DRM_FORMAT_ARGB2101010:
2078 dspcntr |= DISPPLANE_BGRX101010;
2079 break;
2080 case DRM_FORMAT_XBGR2101010:
2081 case DRM_FORMAT_ABGR2101010:
2082 dspcntr |= DISPPLANE_RGBX101010;
2083 break;
2084 default:
2085 BUG();
2086 }
2087
2088 if (INTEL_INFO(dev)->gen >= 4) {
2089 if (obj->tiling_mode != I915_TILING_NONE)
2090 dspcntr |= DISPPLANE_TILED;
2091 else
2092 dspcntr &= ~DISPPLANE_TILED;
2093 }
2094
2095 if (IS_G4X(dev))
2096 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2097
2098 I915_WRITE(reg, dspcntr);
2099
2100 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2101
2102 if (INTEL_INFO(dev)->gen >= 4) {
2103 intel_crtc->dspaddr_offset =
2104 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2105 fb->bits_per_pixel / 8,
2106 fb->pitches[0]);
2107 linear_offset -= intel_crtc->dspaddr_offset;
2108 } else {
2109 intel_crtc->dspaddr_offset = linear_offset;
2110 }
2111
2112 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2113 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2114 fb->pitches[0]);
2115 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2116 if (INTEL_INFO(dev)->gen >= 4) {
2117 I915_WRITE(DSPSURF(plane),
2118 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2119 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2120 I915_WRITE(DSPLINOFF(plane), linear_offset);
2121 } else
2122 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2123 POSTING_READ(reg);
2124
2125 return 0;
2126 }
2127
2128 static int ironlake_update_plane(struct drm_crtc *crtc,
2129 struct drm_framebuffer *fb, int x, int y)
2130 {
2131 struct drm_device *dev = crtc->dev;
2132 struct drm_i915_private *dev_priv = dev->dev_private;
2133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2134 struct intel_framebuffer *intel_fb;
2135 struct drm_i915_gem_object *obj;
2136 int plane = intel_crtc->plane;
2137 unsigned long linear_offset;
2138 u32 dspcntr;
2139 u32 reg;
2140
2141 switch (plane) {
2142 case 0:
2143 case 1:
2144 case 2:
2145 break;
2146 default:
2147 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2148 return -EINVAL;
2149 }
2150
2151 intel_fb = to_intel_framebuffer(fb);
2152 obj = intel_fb->obj;
2153
2154 reg = DSPCNTR(plane);
2155 dspcntr = I915_READ(reg);
2156 /* Mask out pixel format bits in case we change it */
2157 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2158 switch (fb->pixel_format) {
2159 case DRM_FORMAT_C8:
2160 dspcntr |= DISPPLANE_8BPP;
2161 break;
2162 case DRM_FORMAT_RGB565:
2163 dspcntr |= DISPPLANE_BGRX565;
2164 break;
2165 case DRM_FORMAT_XRGB8888:
2166 case DRM_FORMAT_ARGB8888:
2167 dspcntr |= DISPPLANE_BGRX888;
2168 break;
2169 case DRM_FORMAT_XBGR8888:
2170 case DRM_FORMAT_ABGR8888:
2171 dspcntr |= DISPPLANE_RGBX888;
2172 break;
2173 case DRM_FORMAT_XRGB2101010:
2174 case DRM_FORMAT_ARGB2101010:
2175 dspcntr |= DISPPLANE_BGRX101010;
2176 break;
2177 case DRM_FORMAT_XBGR2101010:
2178 case DRM_FORMAT_ABGR2101010:
2179 dspcntr |= DISPPLANE_RGBX101010;
2180 break;
2181 default:
2182 BUG();
2183 }
2184
2185 if (obj->tiling_mode != I915_TILING_NONE)
2186 dspcntr |= DISPPLANE_TILED;
2187 else
2188 dspcntr &= ~DISPPLANE_TILED;
2189
2190 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2191 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2192 else
2193 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2194
2195 I915_WRITE(reg, dspcntr);
2196
2197 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2198 intel_crtc->dspaddr_offset =
2199 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2200 fb->bits_per_pixel / 8,
2201 fb->pitches[0]);
2202 linear_offset -= intel_crtc->dspaddr_offset;
2203
2204 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2205 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2206 fb->pitches[0]);
2207 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208 I915_WRITE(DSPSURF(plane),
2209 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2210 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2211 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212 } else {
2213 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215 }
2216 POSTING_READ(reg);
2217
2218 return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224 int x, int y, enum mode_set_atomic state)
2225 {
2226 struct drm_device *dev = crtc->dev;
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229 if (dev_priv->display.disable_fbc)
2230 dev_priv->display.disable_fbc(dev);
2231 intel_increase_pllclock(crtc);
2232
2233 return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 void intel_display_handle_reset(struct drm_device *dev)
2237 {
2238 struct drm_i915_private *dev_priv = dev->dev_private;
2239 struct drm_crtc *crtc;
2240
2241 /*
2242 * Flips in the rings have been nuked by the reset,
2243 * so complete all pending flips so that user space
2244 * will get its events and not get stuck.
2245 *
2246 * Also update the base address of all primary
2247 * planes to the the last fb to make sure we're
2248 * showing the correct fb after a reset.
2249 *
2250 * Need to make two loops over the crtcs so that we
2251 * don't try to grab a crtc mutex before the
2252 * pending_flip_queue really got woken up.
2253 */
2254
2255 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2257 enum plane plane = intel_crtc->plane;
2258
2259 intel_prepare_page_flip(dev, plane);
2260 intel_finish_page_flip_plane(dev, plane);
2261 }
2262
2263 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265
2266 mutex_lock(&crtc->mutex);
2267 /*
2268 * FIXME: Once we have proper support for primary planes (and
2269 * disabling them without disabling the entire crtc) allow again
2270 * a NULL crtc->fb.
2271 */
2272 if (intel_crtc->active && crtc->fb)
2273 dev_priv->display.update_plane(crtc, crtc->fb,
2274 crtc->x, crtc->y);
2275 mutex_unlock(&crtc->mutex);
2276 }
2277 }
2278
2279 static int
2280 intel_finish_fb(struct drm_framebuffer *old_fb)
2281 {
2282 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2283 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2284 bool was_interruptible = dev_priv->mm.interruptible;
2285 int ret;
2286
2287 /* Big Hammer, we also need to ensure that any pending
2288 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2289 * current scanout is retired before unpinning the old
2290 * framebuffer.
2291 *
2292 * This should only fail upon a hung GPU, in which case we
2293 * can safely continue.
2294 */
2295 dev_priv->mm.interruptible = false;
2296 ret = i915_gem_object_finish_gpu(obj);
2297 dev_priv->mm.interruptible = was_interruptible;
2298
2299 return ret;
2300 }
2301
2302 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2303 {
2304 struct drm_device *dev = crtc->dev;
2305 struct drm_i915_master_private *master_priv;
2306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2307
2308 if (!dev->primary->master)
2309 return;
2310
2311 master_priv = dev->primary->master->driver_priv;
2312 if (!master_priv->sarea_priv)
2313 return;
2314
2315 switch (intel_crtc->pipe) {
2316 case 0:
2317 master_priv->sarea_priv->pipeA_x = x;
2318 master_priv->sarea_priv->pipeA_y = y;
2319 break;
2320 case 1:
2321 master_priv->sarea_priv->pipeB_x = x;
2322 master_priv->sarea_priv->pipeB_y = y;
2323 break;
2324 default:
2325 break;
2326 }
2327 }
2328
2329 static int
2330 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2331 struct drm_framebuffer *fb)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 struct drm_framebuffer *old_fb;
2337 int ret;
2338
2339 /* no fb bound */
2340 if (!fb) {
2341 DRM_ERROR("No FB bound\n");
2342 return 0;
2343 }
2344
2345 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2346 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2347 plane_name(intel_crtc->plane),
2348 INTEL_INFO(dev)->num_pipes);
2349 return -EINVAL;
2350 }
2351
2352 mutex_lock(&dev->struct_mutex);
2353 ret = intel_pin_and_fence_fb_obj(dev,
2354 to_intel_framebuffer(fb)->obj,
2355 NULL);
2356 if (ret != 0) {
2357 mutex_unlock(&dev->struct_mutex);
2358 DRM_ERROR("pin & fence failed\n");
2359 return ret;
2360 }
2361
2362 /*
2363 * Update pipe size and adjust fitter if needed: the reason for this is
2364 * that in compute_mode_changes we check the native mode (not the pfit
2365 * mode) to see if we can flip rather than do a full mode set. In the
2366 * fastboot case, we'll flip, but if we don't update the pipesrc and
2367 * pfit state, we'll end up with a big fb scanned out into the wrong
2368 * sized surface.
2369 *
2370 * To fix this properly, we need to hoist the checks up into
2371 * compute_mode_changes (or above), check the actual pfit state and
2372 * whether the platform allows pfit disable with pipe active, and only
2373 * then update the pipesrc and pfit state, even on the flip path.
2374 */
2375 if (i915_fastboot) {
2376 const struct drm_display_mode *adjusted_mode =
2377 &intel_crtc->config.adjusted_mode;
2378
2379 I915_WRITE(PIPESRC(intel_crtc->pipe),
2380 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2381 (adjusted_mode->crtc_vdisplay - 1));
2382 if (!intel_crtc->config.pch_pfit.enabled &&
2383 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2384 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2385 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2386 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2387 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2388 }
2389 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2390 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2391 }
2392
2393 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2394 if (ret) {
2395 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2396 mutex_unlock(&dev->struct_mutex);
2397 DRM_ERROR("failed to update base address\n");
2398 return ret;
2399 }
2400
2401 old_fb = crtc->fb;
2402 crtc->fb = fb;
2403 crtc->x = x;
2404 crtc->y = y;
2405
2406 if (old_fb) {
2407 if (intel_crtc->active && old_fb != fb)
2408 intel_wait_for_vblank(dev, intel_crtc->pipe);
2409 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2410 }
2411
2412 intel_update_fbc(dev);
2413 intel_edp_psr_update(dev);
2414 mutex_unlock(&dev->struct_mutex);
2415
2416 intel_crtc_update_sarea_pos(crtc, x, y);
2417
2418 return 0;
2419 }
2420
2421 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2422 {
2423 struct drm_device *dev = crtc->dev;
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426 int pipe = intel_crtc->pipe;
2427 u32 reg, temp;
2428
2429 /* enable normal train */
2430 reg = FDI_TX_CTL(pipe);
2431 temp = I915_READ(reg);
2432 if (IS_IVYBRIDGE(dev)) {
2433 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2434 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2435 } else {
2436 temp &= ~FDI_LINK_TRAIN_NONE;
2437 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2438 }
2439 I915_WRITE(reg, temp);
2440
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 if (HAS_PCH_CPT(dev)) {
2444 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2445 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2446 } else {
2447 temp &= ~FDI_LINK_TRAIN_NONE;
2448 temp |= FDI_LINK_TRAIN_NONE;
2449 }
2450 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2451
2452 /* wait one idle pattern time */
2453 POSTING_READ(reg);
2454 udelay(1000);
2455
2456 /* IVB wants error correction enabled */
2457 if (IS_IVYBRIDGE(dev))
2458 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2459 FDI_FE_ERRC_ENABLE);
2460 }
2461
2462 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2463 {
2464 return crtc->base.enabled && crtc->active &&
2465 crtc->config.has_pch_encoder;
2466 }
2467
2468 static void ivb_modeset_global_resources(struct drm_device *dev)
2469 {
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *pipe_B_crtc =
2472 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2473 struct intel_crtc *pipe_C_crtc =
2474 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2475 uint32_t temp;
2476
2477 /*
2478 * When everything is off disable fdi C so that we could enable fdi B
2479 * with all lanes. Note that we don't care about enabled pipes without
2480 * an enabled pch encoder.
2481 */
2482 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2483 !pipe_has_enabled_pch(pipe_C_crtc)) {
2484 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2485 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2486
2487 temp = I915_READ(SOUTH_CHICKEN1);
2488 temp &= ~FDI_BC_BIFURCATION_SELECT;
2489 DRM_DEBUG_KMS("disabling fdi C rx\n");
2490 I915_WRITE(SOUTH_CHICKEN1, temp);
2491 }
2492 }
2493
2494 /* The FDI link training functions for ILK/Ibexpeak. */
2495 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2496 {
2497 struct drm_device *dev = crtc->dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2500 int pipe = intel_crtc->pipe;
2501 int plane = intel_crtc->plane;
2502 u32 reg, temp, tries;
2503
2504 /* FDI needs bits from pipe & plane first */
2505 assert_pipe_enabled(dev_priv, pipe);
2506 assert_plane_enabled(dev_priv, plane);
2507
2508 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2509 for train result */
2510 reg = FDI_RX_IMR(pipe);
2511 temp = I915_READ(reg);
2512 temp &= ~FDI_RX_SYMBOL_LOCK;
2513 temp &= ~FDI_RX_BIT_LOCK;
2514 I915_WRITE(reg, temp);
2515 I915_READ(reg);
2516 udelay(150);
2517
2518 /* enable CPU FDI TX and PCH FDI RX */
2519 reg = FDI_TX_CTL(pipe);
2520 temp = I915_READ(reg);
2521 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2522 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2523 temp &= ~FDI_LINK_TRAIN_NONE;
2524 temp |= FDI_LINK_TRAIN_PATTERN_1;
2525 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2526
2527 reg = FDI_RX_CTL(pipe);
2528 temp = I915_READ(reg);
2529 temp &= ~FDI_LINK_TRAIN_NONE;
2530 temp |= FDI_LINK_TRAIN_PATTERN_1;
2531 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2532
2533 POSTING_READ(reg);
2534 udelay(150);
2535
2536 /* Ironlake workaround, enable clock pointer after FDI enable*/
2537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2538 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2539 FDI_RX_PHASE_SYNC_POINTER_EN);
2540
2541 reg = FDI_RX_IIR(pipe);
2542 for (tries = 0; tries < 5; tries++) {
2543 temp = I915_READ(reg);
2544 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546 if ((temp & FDI_RX_BIT_LOCK)) {
2547 DRM_DEBUG_KMS("FDI train 1 done.\n");
2548 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2549 break;
2550 }
2551 }
2552 if (tries == 5)
2553 DRM_ERROR("FDI train 1 fail!\n");
2554
2555 /* Train 2 */
2556 reg = FDI_TX_CTL(pipe);
2557 temp = I915_READ(reg);
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_2;
2560 I915_WRITE(reg, temp);
2561
2562 reg = FDI_RX_CTL(pipe);
2563 temp = I915_READ(reg);
2564 temp &= ~FDI_LINK_TRAIN_NONE;
2565 temp |= FDI_LINK_TRAIN_PATTERN_2;
2566 I915_WRITE(reg, temp);
2567
2568 POSTING_READ(reg);
2569 udelay(150);
2570
2571 reg = FDI_RX_IIR(pipe);
2572 for (tries = 0; tries < 5; tries++) {
2573 temp = I915_READ(reg);
2574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575
2576 if (temp & FDI_RX_SYMBOL_LOCK) {
2577 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2578 DRM_DEBUG_KMS("FDI train 2 done.\n");
2579 break;
2580 }
2581 }
2582 if (tries == 5)
2583 DRM_ERROR("FDI train 2 fail!\n");
2584
2585 DRM_DEBUG_KMS("FDI train done\n");
2586
2587 }
2588
2589 static const int snb_b_fdi_train_param[] = {
2590 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2591 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2592 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2593 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2594 };
2595
2596 /* The FDI link training functions for SNB/Cougarpoint. */
2597 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2598 {
2599 struct drm_device *dev = crtc->dev;
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2602 int pipe = intel_crtc->pipe;
2603 u32 reg, temp, i, retry;
2604
2605 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2606 for train result */
2607 reg = FDI_RX_IMR(pipe);
2608 temp = I915_READ(reg);
2609 temp &= ~FDI_RX_SYMBOL_LOCK;
2610 temp &= ~FDI_RX_BIT_LOCK;
2611 I915_WRITE(reg, temp);
2612
2613 POSTING_READ(reg);
2614 udelay(150);
2615
2616 /* enable CPU FDI TX and PCH FDI RX */
2617 reg = FDI_TX_CTL(pipe);
2618 temp = I915_READ(reg);
2619 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2620 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2621 temp &= ~FDI_LINK_TRAIN_NONE;
2622 temp |= FDI_LINK_TRAIN_PATTERN_1;
2623 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624 /* SNB-B */
2625 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2626 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627
2628 I915_WRITE(FDI_RX_MISC(pipe),
2629 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2630
2631 reg = FDI_RX_CTL(pipe);
2632 temp = I915_READ(reg);
2633 if (HAS_PCH_CPT(dev)) {
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636 } else {
2637 temp &= ~FDI_LINK_TRAIN_NONE;
2638 temp |= FDI_LINK_TRAIN_PATTERN_1;
2639 }
2640 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2641
2642 POSTING_READ(reg);
2643 udelay(150);
2644
2645 for (i = 0; i < 4; i++) {
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 temp |= snb_b_fdi_train_param[i];
2650 I915_WRITE(reg, temp);
2651
2652 POSTING_READ(reg);
2653 udelay(500);
2654
2655 for (retry = 0; retry < 5; retry++) {
2656 reg = FDI_RX_IIR(pipe);
2657 temp = I915_READ(reg);
2658 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2659 if (temp & FDI_RX_BIT_LOCK) {
2660 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2661 DRM_DEBUG_KMS("FDI train 1 done.\n");
2662 break;
2663 }
2664 udelay(50);
2665 }
2666 if (retry < 5)
2667 break;
2668 }
2669 if (i == 4)
2670 DRM_ERROR("FDI train 1 fail!\n");
2671
2672 /* Train 2 */
2673 reg = FDI_TX_CTL(pipe);
2674 temp = I915_READ(reg);
2675 temp &= ~FDI_LINK_TRAIN_NONE;
2676 temp |= FDI_LINK_TRAIN_PATTERN_2;
2677 if (IS_GEN6(dev)) {
2678 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2679 /* SNB-B */
2680 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2681 }
2682 I915_WRITE(reg, temp);
2683
2684 reg = FDI_RX_CTL(pipe);
2685 temp = I915_READ(reg);
2686 if (HAS_PCH_CPT(dev)) {
2687 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2688 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2689 } else {
2690 temp &= ~FDI_LINK_TRAIN_NONE;
2691 temp |= FDI_LINK_TRAIN_PATTERN_2;
2692 }
2693 I915_WRITE(reg, temp);
2694
2695 POSTING_READ(reg);
2696 udelay(150);
2697
2698 for (i = 0; i < 4; i++) {
2699 reg = FDI_TX_CTL(pipe);
2700 temp = I915_READ(reg);
2701 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2702 temp |= snb_b_fdi_train_param[i];
2703 I915_WRITE(reg, temp);
2704
2705 POSTING_READ(reg);
2706 udelay(500);
2707
2708 for (retry = 0; retry < 5; retry++) {
2709 reg = FDI_RX_IIR(pipe);
2710 temp = I915_READ(reg);
2711 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2712 if (temp & FDI_RX_SYMBOL_LOCK) {
2713 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2714 DRM_DEBUG_KMS("FDI train 2 done.\n");
2715 break;
2716 }
2717 udelay(50);
2718 }
2719 if (retry < 5)
2720 break;
2721 }
2722 if (i == 4)
2723 DRM_ERROR("FDI train 2 fail!\n");
2724
2725 DRM_DEBUG_KMS("FDI train done.\n");
2726 }
2727
2728 /* Manual link training for Ivy Bridge A0 parts */
2729 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2730 {
2731 struct drm_device *dev = crtc->dev;
2732 struct drm_i915_private *dev_priv = dev->dev_private;
2733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2734 int pipe = intel_crtc->pipe;
2735 u32 reg, temp, i, j;
2736
2737 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2738 for train result */
2739 reg = FDI_RX_IMR(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_RX_SYMBOL_LOCK;
2742 temp &= ~FDI_RX_BIT_LOCK;
2743 I915_WRITE(reg, temp);
2744
2745 POSTING_READ(reg);
2746 udelay(150);
2747
2748 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2749 I915_READ(FDI_RX_IIR(pipe)));
2750
2751 /* Try each vswing and preemphasis setting twice before moving on */
2752 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2753 /* disable first in case we need to retry */
2754 reg = FDI_TX_CTL(pipe);
2755 temp = I915_READ(reg);
2756 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2757 temp &= ~FDI_TX_ENABLE;
2758 I915_WRITE(reg, temp);
2759
2760 reg = FDI_RX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 temp &= ~FDI_LINK_TRAIN_AUTO;
2763 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2764 temp &= ~FDI_RX_ENABLE;
2765 I915_WRITE(reg, temp);
2766
2767 /* enable CPU FDI TX and PCH FDI RX */
2768 reg = FDI_TX_CTL(pipe);
2769 temp = I915_READ(reg);
2770 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2771 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2772 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2773 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2774 temp |= snb_b_fdi_train_param[j/2];
2775 temp |= FDI_COMPOSITE_SYNC;
2776 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2777
2778 I915_WRITE(FDI_RX_MISC(pipe),
2779 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2780
2781 reg = FDI_RX_CTL(pipe);
2782 temp = I915_READ(reg);
2783 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2784 temp |= FDI_COMPOSITE_SYNC;
2785 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2786
2787 POSTING_READ(reg);
2788 udelay(1); /* should be 0.5us */
2789
2790 for (i = 0; i < 4; i++) {
2791 reg = FDI_RX_IIR(pipe);
2792 temp = I915_READ(reg);
2793 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795 if (temp & FDI_RX_BIT_LOCK ||
2796 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2797 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2798 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2799 i);
2800 break;
2801 }
2802 udelay(1); /* should be 0.5us */
2803 }
2804 if (i == 4) {
2805 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2806 continue;
2807 }
2808
2809 /* Train 2 */
2810 reg = FDI_TX_CTL(pipe);
2811 temp = I915_READ(reg);
2812 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2813 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2814 I915_WRITE(reg, temp);
2815
2816 reg = FDI_RX_CTL(pipe);
2817 temp = I915_READ(reg);
2818 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2820 I915_WRITE(reg, temp);
2821
2822 POSTING_READ(reg);
2823 udelay(2); /* should be 1.5us */
2824
2825 for (i = 0; i < 4; i++) {
2826 reg = FDI_RX_IIR(pipe);
2827 temp = I915_READ(reg);
2828 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2829
2830 if (temp & FDI_RX_SYMBOL_LOCK ||
2831 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2832 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2833 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2834 i);
2835 goto train_done;
2836 }
2837 udelay(2); /* should be 1.5us */
2838 }
2839 if (i == 4)
2840 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2841 }
2842
2843 train_done:
2844 DRM_DEBUG_KMS("FDI train done.\n");
2845 }
2846
2847 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2848 {
2849 struct drm_device *dev = intel_crtc->base.dev;
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 int pipe = intel_crtc->pipe;
2852 u32 reg, temp;
2853
2854
2855 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2856 reg = FDI_RX_CTL(pipe);
2857 temp = I915_READ(reg);
2858 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2859 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2860 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2861 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2862
2863 POSTING_READ(reg);
2864 udelay(200);
2865
2866 /* Switch from Rawclk to PCDclk */
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp | FDI_PCDCLK);
2869
2870 POSTING_READ(reg);
2871 udelay(200);
2872
2873 /* Enable CPU FDI TX PLL, always on for Ironlake */
2874 reg = FDI_TX_CTL(pipe);
2875 temp = I915_READ(reg);
2876 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2877 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2878
2879 POSTING_READ(reg);
2880 udelay(100);
2881 }
2882 }
2883
2884 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2885 {
2886 struct drm_device *dev = intel_crtc->base.dev;
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 int pipe = intel_crtc->pipe;
2889 u32 reg, temp;
2890
2891 /* Switch from PCDclk to Rawclk */
2892 reg = FDI_RX_CTL(pipe);
2893 temp = I915_READ(reg);
2894 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2895
2896 /* Disable CPU FDI TX PLL */
2897 reg = FDI_TX_CTL(pipe);
2898 temp = I915_READ(reg);
2899 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2900
2901 POSTING_READ(reg);
2902 udelay(100);
2903
2904 reg = FDI_RX_CTL(pipe);
2905 temp = I915_READ(reg);
2906 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2907
2908 /* Wait for the clocks to turn off. */
2909 POSTING_READ(reg);
2910 udelay(100);
2911 }
2912
2913 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2914 {
2915 struct drm_device *dev = crtc->dev;
2916 struct drm_i915_private *dev_priv = dev->dev_private;
2917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918 int pipe = intel_crtc->pipe;
2919 u32 reg, temp;
2920
2921 /* disable CPU FDI tx and PCH FDI rx */
2922 reg = FDI_TX_CTL(pipe);
2923 temp = I915_READ(reg);
2924 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2925 POSTING_READ(reg);
2926
2927 reg = FDI_RX_CTL(pipe);
2928 temp = I915_READ(reg);
2929 temp &= ~(0x7 << 16);
2930 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2931 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2932
2933 POSTING_READ(reg);
2934 udelay(100);
2935
2936 /* Ironlake workaround, disable clock pointer after downing FDI */
2937 if (HAS_PCH_IBX(dev)) {
2938 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2939 }
2940
2941 /* still set train pattern 1 */
2942 reg = FDI_TX_CTL(pipe);
2943 temp = I915_READ(reg);
2944 temp &= ~FDI_LINK_TRAIN_NONE;
2945 temp |= FDI_LINK_TRAIN_PATTERN_1;
2946 I915_WRITE(reg, temp);
2947
2948 reg = FDI_RX_CTL(pipe);
2949 temp = I915_READ(reg);
2950 if (HAS_PCH_CPT(dev)) {
2951 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2952 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2953 } else {
2954 temp &= ~FDI_LINK_TRAIN_NONE;
2955 temp |= FDI_LINK_TRAIN_PATTERN_1;
2956 }
2957 /* BPC in FDI rx is consistent with that in PIPECONF */
2958 temp &= ~(0x07 << 16);
2959 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2960 I915_WRITE(reg, temp);
2961
2962 POSTING_READ(reg);
2963 udelay(100);
2964 }
2965
2966 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2967 {
2968 struct drm_device *dev = crtc->dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2971 unsigned long flags;
2972 bool pending;
2973
2974 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2975 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2976 return false;
2977
2978 spin_lock_irqsave(&dev->event_lock, flags);
2979 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2980 spin_unlock_irqrestore(&dev->event_lock, flags);
2981
2982 return pending;
2983 }
2984
2985 bool intel_has_pending_fb_unpin(struct drm_device *dev)
2986 {
2987 struct intel_crtc *crtc;
2988
2989 /* Note that we don't need to be called with mode_config.lock here
2990 * as our list of CRTC objects is static for the lifetime of the
2991 * device and so cannot disappear as we iterate. Similarly, we can
2992 * happily treat the predicates as racy, atomic checks as userspace
2993 * cannot claim and pin a new fb without at least acquring the
2994 * struct_mutex and so serialising with us.
2995 */
2996 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2997 if (atomic_read(&crtc->unpin_work_count) == 0)
2998 continue;
2999
3000 if (crtc->unpin_work)
3001 intel_wait_for_vblank(dev, crtc->pipe);
3002
3003 return true;
3004 }
3005
3006 return false;
3007 }
3008
3009 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3010 {
3011 struct drm_device *dev = crtc->dev;
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013
3014 if (crtc->fb == NULL)
3015 return;
3016
3017 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3018
3019 wait_event(dev_priv->pending_flip_queue,
3020 !intel_crtc_has_pending_flip(crtc));
3021
3022 mutex_lock(&dev->struct_mutex);
3023 intel_finish_fb(crtc->fb);
3024 mutex_unlock(&dev->struct_mutex);
3025 }
3026
3027 /* Program iCLKIP clock to the desired frequency */
3028 static void lpt_program_iclkip(struct drm_crtc *crtc)
3029 {
3030 struct drm_device *dev = crtc->dev;
3031 struct drm_i915_private *dev_priv = dev->dev_private;
3032 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3033 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3034 u32 temp;
3035
3036 mutex_lock(&dev_priv->dpio_lock);
3037
3038 /* It is necessary to ungate the pixclk gate prior to programming
3039 * the divisors, and gate it back when it is done.
3040 */
3041 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3042
3043 /* Disable SSCCTL */
3044 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3045 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3046 SBI_SSCCTL_DISABLE,
3047 SBI_ICLK);
3048
3049 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3050 if (clock == 20000) {
3051 auxdiv = 1;
3052 divsel = 0x41;
3053 phaseinc = 0x20;
3054 } else {
3055 /* The iCLK virtual clock root frequency is in MHz,
3056 * but the adjusted_mode->crtc_clock in in KHz. To get the
3057 * divisors, it is necessary to divide one by another, so we
3058 * convert the virtual clock precision to KHz here for higher
3059 * precision.
3060 */
3061 u32 iclk_virtual_root_freq = 172800 * 1000;
3062 u32 iclk_pi_range = 64;
3063 u32 desired_divisor, msb_divisor_value, pi_value;
3064
3065 desired_divisor = (iclk_virtual_root_freq / clock);
3066 msb_divisor_value = desired_divisor / iclk_pi_range;
3067 pi_value = desired_divisor % iclk_pi_range;
3068
3069 auxdiv = 0;
3070 divsel = msb_divisor_value - 2;
3071 phaseinc = pi_value;
3072 }
3073
3074 /* This should not happen with any sane values */
3075 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3076 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3077 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3078 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3079
3080 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3081 clock,
3082 auxdiv,
3083 divsel,
3084 phasedir,
3085 phaseinc);
3086
3087 /* Program SSCDIVINTPHASE6 */
3088 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3089 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3090 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3091 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3092 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3093 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3094 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3095 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3096
3097 /* Program SSCAUXDIV */
3098 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3099 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3100 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3101 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3102
3103 /* Enable modulator and associated divider */
3104 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3105 temp &= ~SBI_SSCCTL_DISABLE;
3106 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3107
3108 /* Wait for initialization time */
3109 udelay(24);
3110
3111 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3112
3113 mutex_unlock(&dev_priv->dpio_lock);
3114 }
3115
3116 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3117 enum pipe pch_transcoder)
3118 {
3119 struct drm_device *dev = crtc->base.dev;
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3122
3123 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3124 I915_READ(HTOTAL(cpu_transcoder)));
3125 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3126 I915_READ(HBLANK(cpu_transcoder)));
3127 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3128 I915_READ(HSYNC(cpu_transcoder)));
3129
3130 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3131 I915_READ(VTOTAL(cpu_transcoder)));
3132 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3133 I915_READ(VBLANK(cpu_transcoder)));
3134 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3135 I915_READ(VSYNC(cpu_transcoder)));
3136 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3137 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3138 }
3139
3140 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3141 {
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 uint32_t temp;
3144
3145 temp = I915_READ(SOUTH_CHICKEN1);
3146 if (temp & FDI_BC_BIFURCATION_SELECT)
3147 return;
3148
3149 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3150 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3151
3152 temp |= FDI_BC_BIFURCATION_SELECT;
3153 DRM_DEBUG_KMS("enabling fdi C rx\n");
3154 I915_WRITE(SOUTH_CHICKEN1, temp);
3155 POSTING_READ(SOUTH_CHICKEN1);
3156 }
3157
3158 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3159 {
3160 struct drm_device *dev = intel_crtc->base.dev;
3161 struct drm_i915_private *dev_priv = dev->dev_private;
3162
3163 switch (intel_crtc->pipe) {
3164 case PIPE_A:
3165 break;
3166 case PIPE_B:
3167 if (intel_crtc->config.fdi_lanes > 2)
3168 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3169 else
3170 cpt_enable_fdi_bc_bifurcation(dev);
3171
3172 break;
3173 case PIPE_C:
3174 cpt_enable_fdi_bc_bifurcation(dev);
3175
3176 break;
3177 default:
3178 BUG();
3179 }
3180 }
3181
3182 /*
3183 * Enable PCH resources required for PCH ports:
3184 * - PCH PLLs
3185 * - FDI training & RX/TX
3186 * - update transcoder timings
3187 * - DP transcoding bits
3188 * - transcoder
3189 */
3190 static void ironlake_pch_enable(struct drm_crtc *crtc)
3191 {
3192 struct drm_device *dev = crtc->dev;
3193 struct drm_i915_private *dev_priv = dev->dev_private;
3194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3195 int pipe = intel_crtc->pipe;
3196 u32 reg, temp;
3197
3198 assert_pch_transcoder_disabled(dev_priv, pipe);
3199
3200 if (IS_IVYBRIDGE(dev))
3201 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3202
3203 /* Write the TU size bits before fdi link training, so that error
3204 * detection works. */
3205 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3206 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3207
3208 /* For PCH output, training FDI link */
3209 dev_priv->display.fdi_link_train(crtc);
3210
3211 /* We need to program the right clock selection before writing the pixel
3212 * mutliplier into the DPLL. */
3213 if (HAS_PCH_CPT(dev)) {
3214 u32 sel;
3215
3216 temp = I915_READ(PCH_DPLL_SEL);
3217 temp |= TRANS_DPLL_ENABLE(pipe);
3218 sel = TRANS_DPLLB_SEL(pipe);
3219 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3220 temp |= sel;
3221 else
3222 temp &= ~sel;
3223 I915_WRITE(PCH_DPLL_SEL, temp);
3224 }
3225
3226 /* XXX: pch pll's can be enabled any time before we enable the PCH
3227 * transcoder, and we actually should do this to not upset any PCH
3228 * transcoder that already use the clock when we share it.
3229 *
3230 * Note that enable_shared_dpll tries to do the right thing, but
3231 * get_shared_dpll unconditionally resets the pll - we need that to have
3232 * the right LVDS enable sequence. */
3233 ironlake_enable_shared_dpll(intel_crtc);
3234
3235 /* set transcoder timing, panel must allow it */
3236 assert_panel_unlocked(dev_priv, pipe);
3237 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3238
3239 intel_fdi_normal_train(crtc);
3240
3241 /* For PCH DP, enable TRANS_DP_CTL */
3242 if (HAS_PCH_CPT(dev) &&
3243 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3244 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3245 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3246 reg = TRANS_DP_CTL(pipe);
3247 temp = I915_READ(reg);
3248 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3249 TRANS_DP_SYNC_MASK |
3250 TRANS_DP_BPC_MASK);
3251 temp |= (TRANS_DP_OUTPUT_ENABLE |
3252 TRANS_DP_ENH_FRAMING);
3253 temp |= bpc << 9; /* same format but at 11:9 */
3254
3255 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3256 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3257 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3258 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3259
3260 switch (intel_trans_dp_port_sel(crtc)) {
3261 case PCH_DP_B:
3262 temp |= TRANS_DP_PORT_SEL_B;
3263 break;
3264 case PCH_DP_C:
3265 temp |= TRANS_DP_PORT_SEL_C;
3266 break;
3267 case PCH_DP_D:
3268 temp |= TRANS_DP_PORT_SEL_D;
3269 break;
3270 default:
3271 BUG();
3272 }
3273
3274 I915_WRITE(reg, temp);
3275 }
3276
3277 ironlake_enable_pch_transcoder(dev_priv, pipe);
3278 }
3279
3280 static void lpt_pch_enable(struct drm_crtc *crtc)
3281 {
3282 struct drm_device *dev = crtc->dev;
3283 struct drm_i915_private *dev_priv = dev->dev_private;
3284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3286
3287 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3288
3289 lpt_program_iclkip(crtc);
3290
3291 /* Set transcoder timing. */
3292 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3293
3294 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3295 }
3296
3297 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3298 {
3299 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3300
3301 if (pll == NULL)
3302 return;
3303
3304 if (pll->refcount == 0) {
3305 WARN(1, "bad %s refcount\n", pll->name);
3306 return;
3307 }
3308
3309 if (--pll->refcount == 0) {
3310 WARN_ON(pll->on);
3311 WARN_ON(pll->active);
3312 }
3313
3314 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3315 }
3316
3317 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3318 {
3319 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3320 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3321 enum intel_dpll_id i;
3322
3323 if (pll) {
3324 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3325 crtc->base.base.id, pll->name);
3326 intel_put_shared_dpll(crtc);
3327 }
3328
3329 if (HAS_PCH_IBX(dev_priv->dev)) {
3330 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3331 i = (enum intel_dpll_id) crtc->pipe;
3332 pll = &dev_priv->shared_dplls[i];
3333
3334 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3335 crtc->base.base.id, pll->name);
3336
3337 goto found;
3338 }
3339
3340 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3341 pll = &dev_priv->shared_dplls[i];
3342
3343 /* Only want to check enabled timings first */
3344 if (pll->refcount == 0)
3345 continue;
3346
3347 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3348 sizeof(pll->hw_state)) == 0) {
3349 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3350 crtc->base.base.id,
3351 pll->name, pll->refcount, pll->active);
3352
3353 goto found;
3354 }
3355 }
3356
3357 /* Ok no matching timings, maybe there's a free one? */
3358 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3359 pll = &dev_priv->shared_dplls[i];
3360 if (pll->refcount == 0) {
3361 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3362 crtc->base.base.id, pll->name);
3363 goto found;
3364 }
3365 }
3366
3367 return NULL;
3368
3369 found:
3370 crtc->config.shared_dpll = i;
3371 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3372 pipe_name(crtc->pipe));
3373
3374 if (pll->active == 0) {
3375 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3376 sizeof(pll->hw_state));
3377
3378 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3379 WARN_ON(pll->on);
3380 assert_shared_dpll_disabled(dev_priv, pll);
3381
3382 pll->mode_set(dev_priv, pll);
3383 }
3384 pll->refcount++;
3385
3386 return pll;
3387 }
3388
3389 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3390 {
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392 int dslreg = PIPEDSL(pipe);
3393 u32 temp;
3394
3395 temp = I915_READ(dslreg);
3396 udelay(500);
3397 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3398 if (wait_for(I915_READ(dslreg) != temp, 5))
3399 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3400 }
3401 }
3402
3403 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3404 {
3405 struct drm_device *dev = crtc->base.dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 int pipe = crtc->pipe;
3408
3409 if (crtc->config.pch_pfit.enabled) {
3410 /* Force use of hard-coded filter coefficients
3411 * as some pre-programmed values are broken,
3412 * e.g. x201.
3413 */
3414 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3415 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3416 PF_PIPE_SEL_IVB(pipe));
3417 else
3418 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3419 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3420 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3421 }
3422 }
3423
3424 static void intel_enable_planes(struct drm_crtc *crtc)
3425 {
3426 struct drm_device *dev = crtc->dev;
3427 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3428 struct intel_plane *intel_plane;
3429
3430 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3431 if (intel_plane->pipe == pipe)
3432 intel_plane_restore(&intel_plane->base);
3433 }
3434
3435 static void intel_disable_planes(struct drm_crtc *crtc)
3436 {
3437 struct drm_device *dev = crtc->dev;
3438 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3439 struct intel_plane *intel_plane;
3440
3441 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3442 if (intel_plane->pipe == pipe)
3443 intel_plane_disable(&intel_plane->base);
3444 }
3445
3446 void hsw_enable_ips(struct intel_crtc *crtc)
3447 {
3448 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3449
3450 if (!crtc->config.ips_enabled)
3451 return;
3452
3453 /* We can only enable IPS after we enable a plane and wait for a vblank.
3454 * We guarantee that the plane is enabled by calling intel_enable_ips
3455 * only after intel_enable_plane. And intel_enable_plane already waits
3456 * for a vblank, so all we need to do here is to enable the IPS bit. */
3457 assert_plane_enabled(dev_priv, crtc->plane);
3458 if (IS_BROADWELL(crtc->base.dev)) {
3459 mutex_lock(&dev_priv->rps.hw_lock);
3460 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3461 mutex_unlock(&dev_priv->rps.hw_lock);
3462 /* Quoting Art Runyan: "its not safe to expect any particular
3463 * value in IPS_CTL bit 31 after enabling IPS through the
3464 * mailbox." Moreover, the mailbox may return a bogus state,
3465 * so we need to just enable it and continue on.
3466 */
3467 } else {
3468 I915_WRITE(IPS_CTL, IPS_ENABLE);
3469 /* The bit only becomes 1 in the next vblank, so this wait here
3470 * is essentially intel_wait_for_vblank. If we don't have this
3471 * and don't wait for vblanks until the end of crtc_enable, then
3472 * the HW state readout code will complain that the expected
3473 * IPS_CTL value is not the one we read. */
3474 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3475 DRM_ERROR("Timed out waiting for IPS enable\n");
3476 }
3477 }
3478
3479 void hsw_disable_ips(struct intel_crtc *crtc)
3480 {
3481 struct drm_device *dev = crtc->base.dev;
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483
3484 if (!crtc->config.ips_enabled)
3485 return;
3486
3487 assert_plane_enabled(dev_priv, crtc->plane);
3488 if (IS_BROADWELL(crtc->base.dev)) {
3489 mutex_lock(&dev_priv->rps.hw_lock);
3490 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3491 mutex_unlock(&dev_priv->rps.hw_lock);
3492 } else {
3493 I915_WRITE(IPS_CTL, 0);
3494 POSTING_READ(IPS_CTL);
3495 }
3496
3497 /* We need to wait for a vblank before we can disable the plane. */
3498 intel_wait_for_vblank(dev, crtc->pipe);
3499 }
3500
3501 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3502 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3503 {
3504 struct drm_device *dev = crtc->dev;
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3507 enum pipe pipe = intel_crtc->pipe;
3508 int palreg = PALETTE(pipe);
3509 int i;
3510 bool reenable_ips = false;
3511
3512 /* The clocks have to be on to load the palette. */
3513 if (!crtc->enabled || !intel_crtc->active)
3514 return;
3515
3516 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3517 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3518 assert_dsi_pll_enabled(dev_priv);
3519 else
3520 assert_pll_enabled(dev_priv, pipe);
3521 }
3522
3523 /* use legacy palette for Ironlake */
3524 if (HAS_PCH_SPLIT(dev))
3525 palreg = LGC_PALETTE(pipe);
3526
3527 /* Workaround : Do not read or write the pipe palette/gamma data while
3528 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3529 */
3530 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3531 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3532 GAMMA_MODE_MODE_SPLIT)) {
3533 hsw_disable_ips(intel_crtc);
3534 reenable_ips = true;
3535 }
3536
3537 for (i = 0; i < 256; i++) {
3538 I915_WRITE(palreg + 4 * i,
3539 (intel_crtc->lut_r[i] << 16) |
3540 (intel_crtc->lut_g[i] << 8) |
3541 intel_crtc->lut_b[i]);
3542 }
3543
3544 if (reenable_ips)
3545 hsw_enable_ips(intel_crtc);
3546 }
3547
3548 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3549 {
3550 struct drm_device *dev = crtc->dev;
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553 struct intel_encoder *encoder;
3554 int pipe = intel_crtc->pipe;
3555 int plane = intel_crtc->plane;
3556
3557 WARN_ON(!crtc->enabled);
3558
3559 if (intel_crtc->active)
3560 return;
3561
3562 intel_crtc->active = true;
3563
3564 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3565 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3566
3567 for_each_encoder_on_crtc(dev, crtc, encoder)
3568 if (encoder->pre_enable)
3569 encoder->pre_enable(encoder);
3570
3571 if (intel_crtc->config.has_pch_encoder) {
3572 /* Note: FDI PLL enabling _must_ be done before we enable the
3573 * cpu pipes, hence this is separate from all the other fdi/pch
3574 * enabling. */
3575 ironlake_fdi_pll_enable(intel_crtc);
3576 } else {
3577 assert_fdi_tx_disabled(dev_priv, pipe);
3578 assert_fdi_rx_disabled(dev_priv, pipe);
3579 }
3580
3581 ironlake_pfit_enable(intel_crtc);
3582
3583 /*
3584 * On ILK+ LUT must be loaded before the pipe is running but with
3585 * clocks enabled
3586 */
3587 intel_crtc_load_lut(crtc);
3588
3589 intel_update_watermarks(crtc);
3590 intel_enable_pipe(dev_priv, pipe,
3591 intel_crtc->config.has_pch_encoder, false);
3592 intel_enable_primary_plane(dev_priv, plane, pipe);
3593 intel_enable_planes(crtc);
3594 intel_crtc_update_cursor(crtc, true);
3595
3596 if (intel_crtc->config.has_pch_encoder)
3597 ironlake_pch_enable(crtc);
3598
3599 mutex_lock(&dev->struct_mutex);
3600 intel_update_fbc(dev);
3601 mutex_unlock(&dev->struct_mutex);
3602
3603 for_each_encoder_on_crtc(dev, crtc, encoder)
3604 encoder->enable(encoder);
3605
3606 if (HAS_PCH_CPT(dev))
3607 cpt_verify_modeset(dev, intel_crtc->pipe);
3608
3609 /*
3610 * There seems to be a race in PCH platform hw (at least on some
3611 * outputs) where an enabled pipe still completes any pageflip right
3612 * away (as if the pipe is off) instead of waiting for vblank. As soon
3613 * as the first vblank happend, everything works as expected. Hence just
3614 * wait for one vblank before returning to avoid strange things
3615 * happening.
3616 */
3617 intel_wait_for_vblank(dev, intel_crtc->pipe);
3618 }
3619
3620 /* IPS only exists on ULT machines and is tied to pipe A. */
3621 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3622 {
3623 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3624 }
3625
3626 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3627 {
3628 struct drm_device *dev = crtc->dev;
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631 int pipe = intel_crtc->pipe;
3632 int plane = intel_crtc->plane;
3633
3634 intel_enable_primary_plane(dev_priv, plane, pipe);
3635 intel_enable_planes(crtc);
3636 intel_crtc_update_cursor(crtc, true);
3637
3638 hsw_enable_ips(intel_crtc);
3639
3640 mutex_lock(&dev->struct_mutex);
3641 intel_update_fbc(dev);
3642 mutex_unlock(&dev->struct_mutex);
3643 }
3644
3645 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 int pipe = intel_crtc->pipe;
3651 int plane = intel_crtc->plane;
3652
3653 intel_crtc_wait_for_pending_flips(crtc);
3654 drm_vblank_off(dev, pipe);
3655
3656 /* FBC must be disabled before disabling the plane on HSW. */
3657 if (dev_priv->fbc.plane == plane)
3658 intel_disable_fbc(dev);
3659
3660 hsw_disable_ips(intel_crtc);
3661
3662 intel_crtc_update_cursor(crtc, false);
3663 intel_disable_planes(crtc);
3664 intel_disable_primary_plane(dev_priv, plane, pipe);
3665 }
3666
3667 /*
3668 * This implements the workaround described in the "notes" section of the mode
3669 * set sequence documentation. When going from no pipes or single pipe to
3670 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3671 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3672 */
3673 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3674 {
3675 struct drm_device *dev = crtc->base.dev;
3676 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3677
3678 /* We want to get the other_active_crtc only if there's only 1 other
3679 * active crtc. */
3680 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3681 if (!crtc_it->active || crtc_it == crtc)
3682 continue;
3683
3684 if (other_active_crtc)
3685 return;
3686
3687 other_active_crtc = crtc_it;
3688 }
3689 if (!other_active_crtc)
3690 return;
3691
3692 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3693 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3694 }
3695
3696 static void haswell_crtc_enable(struct drm_crtc *crtc)
3697 {
3698 struct drm_device *dev = crtc->dev;
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3701 struct intel_encoder *encoder;
3702 int pipe = intel_crtc->pipe;
3703
3704 WARN_ON(!crtc->enabled);
3705
3706 if (intel_crtc->active)
3707 return;
3708
3709 intel_crtc->active = true;
3710
3711 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3712 if (intel_crtc->config.has_pch_encoder)
3713 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3714
3715 if (intel_crtc->config.has_pch_encoder)
3716 dev_priv->display.fdi_link_train(crtc);
3717
3718 for_each_encoder_on_crtc(dev, crtc, encoder)
3719 if (encoder->pre_enable)
3720 encoder->pre_enable(encoder);
3721
3722 intel_ddi_enable_pipe_clock(intel_crtc);
3723
3724 ironlake_pfit_enable(intel_crtc);
3725
3726 /*
3727 * On ILK+ LUT must be loaded before the pipe is running but with
3728 * clocks enabled
3729 */
3730 intel_crtc_load_lut(crtc);
3731
3732 intel_ddi_set_pipe_settings(crtc);
3733 intel_ddi_enable_transcoder_func(crtc);
3734
3735 intel_update_watermarks(crtc);
3736 intel_enable_pipe(dev_priv, pipe,
3737 intel_crtc->config.has_pch_encoder, false);
3738
3739 if (intel_crtc->config.has_pch_encoder)
3740 lpt_pch_enable(crtc);
3741
3742 for_each_encoder_on_crtc(dev, crtc, encoder) {
3743 encoder->enable(encoder);
3744 intel_opregion_notify_encoder(encoder, true);
3745 }
3746
3747 /* If we change the relative order between pipe/planes enabling, we need
3748 * to change the workaround. */
3749 haswell_mode_set_planes_workaround(intel_crtc);
3750 haswell_crtc_enable_planes(crtc);
3751
3752 /*
3753 * There seems to be a race in PCH platform hw (at least on some
3754 * outputs) where an enabled pipe still completes any pageflip right
3755 * away (as if the pipe is off) instead of waiting for vblank. As soon
3756 * as the first vblank happend, everything works as expected. Hence just
3757 * wait for one vblank before returning to avoid strange things
3758 * happening.
3759 */
3760 intel_wait_for_vblank(dev, intel_crtc->pipe);
3761 }
3762
3763 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3764 {
3765 struct drm_device *dev = crtc->base.dev;
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767 int pipe = crtc->pipe;
3768
3769 /* To avoid upsetting the power well on haswell only disable the pfit if
3770 * it's in use. The hw state code will make sure we get this right. */
3771 if (crtc->config.pch_pfit.enabled) {
3772 I915_WRITE(PF_CTL(pipe), 0);
3773 I915_WRITE(PF_WIN_POS(pipe), 0);
3774 I915_WRITE(PF_WIN_SZ(pipe), 0);
3775 }
3776 }
3777
3778 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3779 {
3780 struct drm_device *dev = crtc->dev;
3781 struct drm_i915_private *dev_priv = dev->dev_private;
3782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3783 struct intel_encoder *encoder;
3784 int pipe = intel_crtc->pipe;
3785 int plane = intel_crtc->plane;
3786 u32 reg, temp;
3787
3788
3789 if (!intel_crtc->active)
3790 return;
3791
3792 for_each_encoder_on_crtc(dev, crtc, encoder)
3793 encoder->disable(encoder);
3794
3795 intel_crtc_wait_for_pending_flips(crtc);
3796 drm_vblank_off(dev, pipe);
3797
3798 if (dev_priv->fbc.plane == plane)
3799 intel_disable_fbc(dev);
3800
3801 intel_crtc_update_cursor(crtc, false);
3802 intel_disable_planes(crtc);
3803 intel_disable_primary_plane(dev_priv, plane, pipe);
3804
3805 if (intel_crtc->config.has_pch_encoder)
3806 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3807
3808 intel_disable_pipe(dev_priv, pipe);
3809
3810 ironlake_pfit_disable(intel_crtc);
3811
3812 for_each_encoder_on_crtc(dev, crtc, encoder)
3813 if (encoder->post_disable)
3814 encoder->post_disable(encoder);
3815
3816 if (intel_crtc->config.has_pch_encoder) {
3817 ironlake_fdi_disable(crtc);
3818
3819 ironlake_disable_pch_transcoder(dev_priv, pipe);
3820 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3821
3822 if (HAS_PCH_CPT(dev)) {
3823 /* disable TRANS_DP_CTL */
3824 reg = TRANS_DP_CTL(pipe);
3825 temp = I915_READ(reg);
3826 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3827 TRANS_DP_PORT_SEL_MASK);
3828 temp |= TRANS_DP_PORT_SEL_NONE;
3829 I915_WRITE(reg, temp);
3830
3831 /* disable DPLL_SEL */
3832 temp = I915_READ(PCH_DPLL_SEL);
3833 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3834 I915_WRITE(PCH_DPLL_SEL, temp);
3835 }
3836
3837 /* disable PCH DPLL */
3838 intel_disable_shared_dpll(intel_crtc);
3839
3840 ironlake_fdi_pll_disable(intel_crtc);
3841 }
3842
3843 intel_crtc->active = false;
3844 intel_update_watermarks(crtc);
3845
3846 mutex_lock(&dev->struct_mutex);
3847 intel_update_fbc(dev);
3848 mutex_unlock(&dev->struct_mutex);
3849 }
3850
3851 static void haswell_crtc_disable(struct drm_crtc *crtc)
3852 {
3853 struct drm_device *dev = crtc->dev;
3854 struct drm_i915_private *dev_priv = dev->dev_private;
3855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3856 struct intel_encoder *encoder;
3857 int pipe = intel_crtc->pipe;
3858 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3859
3860 if (!intel_crtc->active)
3861 return;
3862
3863 haswell_crtc_disable_planes(crtc);
3864
3865 for_each_encoder_on_crtc(dev, crtc, encoder) {
3866 intel_opregion_notify_encoder(encoder, false);
3867 encoder->disable(encoder);
3868 }
3869
3870 if (intel_crtc->config.has_pch_encoder)
3871 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3872 intel_disable_pipe(dev_priv, pipe);
3873
3874 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3875
3876 ironlake_pfit_disable(intel_crtc);
3877
3878 intel_ddi_disable_pipe_clock(intel_crtc);
3879
3880 for_each_encoder_on_crtc(dev, crtc, encoder)
3881 if (encoder->post_disable)
3882 encoder->post_disable(encoder);
3883
3884 if (intel_crtc->config.has_pch_encoder) {
3885 lpt_disable_pch_transcoder(dev_priv);
3886 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3887 intel_ddi_fdi_disable(crtc);
3888 }
3889
3890 intel_crtc->active = false;
3891 intel_update_watermarks(crtc);
3892
3893 mutex_lock(&dev->struct_mutex);
3894 intel_update_fbc(dev);
3895 mutex_unlock(&dev->struct_mutex);
3896 }
3897
3898 static void ironlake_crtc_off(struct drm_crtc *crtc)
3899 {
3900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3901 intel_put_shared_dpll(intel_crtc);
3902 }
3903
3904 static void haswell_crtc_off(struct drm_crtc *crtc)
3905 {
3906 intel_ddi_put_crtc_pll(crtc);
3907 }
3908
3909 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3910 {
3911 if (!enable && intel_crtc->overlay) {
3912 struct drm_device *dev = intel_crtc->base.dev;
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914
3915 mutex_lock(&dev->struct_mutex);
3916 dev_priv->mm.interruptible = false;
3917 (void) intel_overlay_switch_off(intel_crtc->overlay);
3918 dev_priv->mm.interruptible = true;
3919 mutex_unlock(&dev->struct_mutex);
3920 }
3921
3922 /* Let userspace switch the overlay on again. In most cases userspace
3923 * has to recompute where to put it anyway.
3924 */
3925 }
3926
3927 /**
3928 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3929 * cursor plane briefly if not already running after enabling the display
3930 * plane.
3931 * This workaround avoids occasional blank screens when self refresh is
3932 * enabled.
3933 */
3934 static void
3935 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3936 {
3937 u32 cntl = I915_READ(CURCNTR(pipe));
3938
3939 if ((cntl & CURSOR_MODE) == 0) {
3940 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3941
3942 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3943 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3944 intel_wait_for_vblank(dev_priv->dev, pipe);
3945 I915_WRITE(CURCNTR(pipe), cntl);
3946 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3947 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3948 }
3949 }
3950
3951 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3952 {
3953 struct drm_device *dev = crtc->base.dev;
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 struct intel_crtc_config *pipe_config = &crtc->config;
3956
3957 if (!crtc->config.gmch_pfit.control)
3958 return;
3959
3960 /*
3961 * The panel fitter should only be adjusted whilst the pipe is disabled,
3962 * according to register description and PRM.
3963 */
3964 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3965 assert_pipe_disabled(dev_priv, crtc->pipe);
3966
3967 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3968 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3969
3970 /* Border color in case we don't scale up to the full screen. Black by
3971 * default, change to something else for debugging. */
3972 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3973 }
3974
3975 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3976 {
3977 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3978
3979 /* Obtain SKU information */
3980 mutex_lock(&dev_priv->dpio_lock);
3981 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3982 CCK_FUSE_HPLL_FREQ_MASK;
3983 mutex_unlock(&dev_priv->dpio_lock);
3984
3985 return vco_freq[hpll_freq];
3986 }
3987
3988 /* Adjust CDclk dividers to allow high res or save power if possible */
3989 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3990 {
3991 struct drm_i915_private *dev_priv = dev->dev_private;
3992 u32 val, cmd;
3993
3994 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3995 cmd = 2;
3996 else if (cdclk == 266)
3997 cmd = 1;
3998 else
3999 cmd = 0;
4000
4001 mutex_lock(&dev_priv->rps.hw_lock);
4002 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4003 val &= ~DSPFREQGUAR_MASK;
4004 val |= (cmd << DSPFREQGUAR_SHIFT);
4005 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4006 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4007 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4008 50)) {
4009 DRM_ERROR("timed out waiting for CDclk change\n");
4010 }
4011 mutex_unlock(&dev_priv->rps.hw_lock);
4012
4013 if (cdclk == 400) {
4014 u32 divider, vco;
4015
4016 vco = valleyview_get_vco(dev_priv);
4017 divider = ((vco << 1) / cdclk) - 1;
4018
4019 mutex_lock(&dev_priv->dpio_lock);
4020 /* adjust cdclk divider */
4021 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4022 val &= ~0xf;
4023 val |= divider;
4024 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4025 mutex_unlock(&dev_priv->dpio_lock);
4026 }
4027
4028 mutex_lock(&dev_priv->dpio_lock);
4029 /* adjust self-refresh exit latency value */
4030 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4031 val &= ~0x7f;
4032
4033 /*
4034 * For high bandwidth configs, we set a higher latency in the bunit
4035 * so that the core display fetch happens in time to avoid underruns.
4036 */
4037 if (cdclk == 400)
4038 val |= 4500 / 250; /* 4.5 usec */
4039 else
4040 val |= 3000 / 250; /* 3.0 usec */
4041 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4042 mutex_unlock(&dev_priv->dpio_lock);
4043
4044 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4045 intel_i2c_reset(dev);
4046 }
4047
4048 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4049 {
4050 int cur_cdclk, vco;
4051 int divider;
4052
4053 vco = valleyview_get_vco(dev_priv);
4054
4055 mutex_lock(&dev_priv->dpio_lock);
4056 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4057 mutex_unlock(&dev_priv->dpio_lock);
4058
4059 divider &= 0xf;
4060
4061 cur_cdclk = (vco << 1) / (divider + 1);
4062
4063 return cur_cdclk;
4064 }
4065
4066 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4067 int max_pixclk)
4068 {
4069 int cur_cdclk;
4070
4071 cur_cdclk = valleyview_cur_cdclk(dev_priv);
4072
4073 /*
4074 * Really only a few cases to deal with, as only 4 CDclks are supported:
4075 * 200MHz
4076 * 267MHz
4077 * 320MHz
4078 * 400MHz
4079 * So we check to see whether we're above 90% of the lower bin and
4080 * adjust if needed.
4081 */
4082 if (max_pixclk > 288000) {
4083 return 400;
4084 } else if (max_pixclk > 240000) {
4085 return 320;
4086 } else
4087 return 266;
4088 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4089 }
4090
4091 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4092 unsigned modeset_pipes,
4093 struct intel_crtc_config *pipe_config)
4094 {
4095 struct drm_device *dev = dev_priv->dev;
4096 struct intel_crtc *intel_crtc;
4097 int max_pixclk = 0;
4098
4099 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4100 base.head) {
4101 if (modeset_pipes & (1 << intel_crtc->pipe))
4102 max_pixclk = max(max_pixclk,
4103 pipe_config->adjusted_mode.crtc_clock);
4104 else if (intel_crtc->base.enabled)
4105 max_pixclk = max(max_pixclk,
4106 intel_crtc->config.adjusted_mode.crtc_clock);
4107 }
4108
4109 return max_pixclk;
4110 }
4111
4112 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4113 unsigned *prepare_pipes,
4114 unsigned modeset_pipes,
4115 struct intel_crtc_config *pipe_config)
4116 {
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc;
4119 int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4120 pipe_config);
4121 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4122
4123 if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4124 return;
4125
4126 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4127 base.head)
4128 if (intel_crtc->base.enabled)
4129 *prepare_pipes |= (1 << intel_crtc->pipe);
4130 }
4131
4132 static void valleyview_modeset_global_resources(struct drm_device *dev)
4133 {
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135 int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4136 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4137 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4138
4139 if (req_cdclk != cur_cdclk)
4140 valleyview_set_cdclk(dev, req_cdclk);
4141 }
4142
4143 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4144 {
4145 struct drm_device *dev = crtc->dev;
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4148 struct intel_encoder *encoder;
4149 int pipe = intel_crtc->pipe;
4150 int plane = intel_crtc->plane;
4151 bool is_dsi;
4152
4153 WARN_ON(!crtc->enabled);
4154
4155 if (intel_crtc->active)
4156 return;
4157
4158 intel_crtc->active = true;
4159
4160 for_each_encoder_on_crtc(dev, crtc, encoder)
4161 if (encoder->pre_pll_enable)
4162 encoder->pre_pll_enable(encoder);
4163
4164 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4165
4166 if (!is_dsi)
4167 vlv_enable_pll(intel_crtc);
4168
4169 for_each_encoder_on_crtc(dev, crtc, encoder)
4170 if (encoder->pre_enable)
4171 encoder->pre_enable(encoder);
4172
4173 i9xx_pfit_enable(intel_crtc);
4174
4175 intel_crtc_load_lut(crtc);
4176
4177 intel_update_watermarks(crtc);
4178 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4179 intel_enable_primary_plane(dev_priv, plane, pipe);
4180 intel_enable_planes(crtc);
4181 intel_crtc_update_cursor(crtc, true);
4182
4183 intel_update_fbc(dev);
4184
4185 for_each_encoder_on_crtc(dev, crtc, encoder)
4186 encoder->enable(encoder);
4187 }
4188
4189 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4190 {
4191 struct drm_device *dev = crtc->dev;
4192 struct drm_i915_private *dev_priv = dev->dev_private;
4193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194 struct intel_encoder *encoder;
4195 int pipe = intel_crtc->pipe;
4196 int plane = intel_crtc->plane;
4197
4198 WARN_ON(!crtc->enabled);
4199
4200 if (intel_crtc->active)
4201 return;
4202
4203 intel_crtc->active = true;
4204
4205 for_each_encoder_on_crtc(dev, crtc, encoder)
4206 if (encoder->pre_enable)
4207 encoder->pre_enable(encoder);
4208
4209 i9xx_enable_pll(intel_crtc);
4210
4211 i9xx_pfit_enable(intel_crtc);
4212
4213 intel_crtc_load_lut(crtc);
4214
4215 intel_update_watermarks(crtc);
4216 intel_enable_pipe(dev_priv, pipe, false, false);
4217 intel_enable_primary_plane(dev_priv, plane, pipe);
4218 intel_enable_planes(crtc);
4219 /* The fixup needs to happen before cursor is enabled */
4220 if (IS_G4X(dev))
4221 g4x_fixup_plane(dev_priv, pipe);
4222 intel_crtc_update_cursor(crtc, true);
4223
4224 /* Give the overlay scaler a chance to enable if it's on this pipe */
4225 intel_crtc_dpms_overlay(intel_crtc, true);
4226
4227 intel_update_fbc(dev);
4228
4229 for_each_encoder_on_crtc(dev, crtc, encoder)
4230 encoder->enable(encoder);
4231 }
4232
4233 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4234 {
4235 struct drm_device *dev = crtc->base.dev;
4236 struct drm_i915_private *dev_priv = dev->dev_private;
4237
4238 if (!crtc->config.gmch_pfit.control)
4239 return;
4240
4241 assert_pipe_disabled(dev_priv, crtc->pipe);
4242
4243 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4244 I915_READ(PFIT_CONTROL));
4245 I915_WRITE(PFIT_CONTROL, 0);
4246 }
4247
4248 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4249 {
4250 struct drm_device *dev = crtc->dev;
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4253 struct intel_encoder *encoder;
4254 int pipe = intel_crtc->pipe;
4255 int plane = intel_crtc->plane;
4256
4257 if (!intel_crtc->active)
4258 return;
4259
4260 for_each_encoder_on_crtc(dev, crtc, encoder)
4261 encoder->disable(encoder);
4262
4263 /* Give the overlay scaler a chance to disable if it's on this pipe */
4264 intel_crtc_wait_for_pending_flips(crtc);
4265 drm_vblank_off(dev, pipe);
4266
4267 if (dev_priv->fbc.plane == plane)
4268 intel_disable_fbc(dev);
4269
4270 intel_crtc_dpms_overlay(intel_crtc, false);
4271 intel_crtc_update_cursor(crtc, false);
4272 intel_disable_planes(crtc);
4273 intel_disable_primary_plane(dev_priv, plane, pipe);
4274
4275 intel_disable_pipe(dev_priv, pipe);
4276
4277 i9xx_pfit_disable(intel_crtc);
4278
4279 for_each_encoder_on_crtc(dev, crtc, encoder)
4280 if (encoder->post_disable)
4281 encoder->post_disable(encoder);
4282
4283 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4284 vlv_disable_pll(dev_priv, pipe);
4285 else if (!IS_VALLEYVIEW(dev))
4286 i9xx_disable_pll(dev_priv, pipe);
4287
4288 intel_crtc->active = false;
4289 intel_update_watermarks(crtc);
4290
4291 intel_update_fbc(dev);
4292 }
4293
4294 static void i9xx_crtc_off(struct drm_crtc *crtc)
4295 {
4296 }
4297
4298 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4299 bool enabled)
4300 {
4301 struct drm_device *dev = crtc->dev;
4302 struct drm_i915_master_private *master_priv;
4303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4304 int pipe = intel_crtc->pipe;
4305
4306 if (!dev->primary->master)
4307 return;
4308
4309 master_priv = dev->primary->master->driver_priv;
4310 if (!master_priv->sarea_priv)
4311 return;
4312
4313 switch (pipe) {
4314 case 0:
4315 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4316 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4317 break;
4318 case 1:
4319 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4320 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4321 break;
4322 default:
4323 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4324 break;
4325 }
4326 }
4327
4328 /**
4329 * Sets the power management mode of the pipe and plane.
4330 */
4331 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4332 {
4333 struct drm_device *dev = crtc->dev;
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335 struct intel_encoder *intel_encoder;
4336 bool enable = false;
4337
4338 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4339 enable |= intel_encoder->connectors_active;
4340
4341 if (enable)
4342 dev_priv->display.crtc_enable(crtc);
4343 else
4344 dev_priv->display.crtc_disable(crtc);
4345
4346 intel_crtc_update_sarea(crtc, enable);
4347 }
4348
4349 static void intel_crtc_disable(struct drm_crtc *crtc)
4350 {
4351 struct drm_device *dev = crtc->dev;
4352 struct drm_connector *connector;
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4355
4356 /* crtc should still be enabled when we disable it. */
4357 WARN_ON(!crtc->enabled);
4358
4359 dev_priv->display.crtc_disable(crtc);
4360 intel_crtc->eld_vld = false;
4361 intel_crtc_update_sarea(crtc, false);
4362 dev_priv->display.off(crtc);
4363
4364 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4365 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4366 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4367
4368 if (crtc->fb) {
4369 mutex_lock(&dev->struct_mutex);
4370 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4371 mutex_unlock(&dev->struct_mutex);
4372 crtc->fb = NULL;
4373 }
4374
4375 /* Update computed state. */
4376 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4377 if (!connector->encoder || !connector->encoder->crtc)
4378 continue;
4379
4380 if (connector->encoder->crtc != crtc)
4381 continue;
4382
4383 connector->dpms = DRM_MODE_DPMS_OFF;
4384 to_intel_encoder(connector->encoder)->connectors_active = false;
4385 }
4386 }
4387
4388 void intel_encoder_destroy(struct drm_encoder *encoder)
4389 {
4390 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4391
4392 drm_encoder_cleanup(encoder);
4393 kfree(intel_encoder);
4394 }
4395
4396 /* Simple dpms helper for encoders with just one connector, no cloning and only
4397 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4398 * state of the entire output pipe. */
4399 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4400 {
4401 if (mode == DRM_MODE_DPMS_ON) {
4402 encoder->connectors_active = true;
4403
4404 intel_crtc_update_dpms(encoder->base.crtc);
4405 } else {
4406 encoder->connectors_active = false;
4407
4408 intel_crtc_update_dpms(encoder->base.crtc);
4409 }
4410 }
4411
4412 /* Cross check the actual hw state with our own modeset state tracking (and it's
4413 * internal consistency). */
4414 static void intel_connector_check_state(struct intel_connector *connector)
4415 {
4416 if (connector->get_hw_state(connector)) {
4417 struct intel_encoder *encoder = connector->encoder;
4418 struct drm_crtc *crtc;
4419 bool encoder_enabled;
4420 enum pipe pipe;
4421
4422 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4423 connector->base.base.id,
4424 drm_get_connector_name(&connector->base));
4425
4426 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4427 "wrong connector dpms state\n");
4428 WARN(connector->base.encoder != &encoder->base,
4429 "active connector not linked to encoder\n");
4430 WARN(!encoder->connectors_active,
4431 "encoder->connectors_active not set\n");
4432
4433 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4434 WARN(!encoder_enabled, "encoder not enabled\n");
4435 if (WARN_ON(!encoder->base.crtc))
4436 return;
4437
4438 crtc = encoder->base.crtc;
4439
4440 WARN(!crtc->enabled, "crtc not enabled\n");
4441 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4442 WARN(pipe != to_intel_crtc(crtc)->pipe,
4443 "encoder active on the wrong pipe\n");
4444 }
4445 }
4446
4447 /* Even simpler default implementation, if there's really no special case to
4448 * consider. */
4449 void intel_connector_dpms(struct drm_connector *connector, int mode)
4450 {
4451 /* All the simple cases only support two dpms states. */
4452 if (mode != DRM_MODE_DPMS_ON)
4453 mode = DRM_MODE_DPMS_OFF;
4454
4455 if (mode == connector->dpms)
4456 return;
4457
4458 connector->dpms = mode;
4459
4460 /* Only need to change hw state when actually enabled */
4461 if (connector->encoder)
4462 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4463
4464 intel_modeset_check_state(connector->dev);
4465 }
4466
4467 /* Simple connector->get_hw_state implementation for encoders that support only
4468 * one connector and no cloning and hence the encoder state determines the state
4469 * of the connector. */
4470 bool intel_connector_get_hw_state(struct intel_connector *connector)
4471 {
4472 enum pipe pipe = 0;
4473 struct intel_encoder *encoder = connector->encoder;
4474
4475 return encoder->get_hw_state(encoder, &pipe);
4476 }
4477
4478 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4479 struct intel_crtc_config *pipe_config)
4480 {
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482 struct intel_crtc *pipe_B_crtc =
4483 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4484
4485 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4486 pipe_name(pipe), pipe_config->fdi_lanes);
4487 if (pipe_config->fdi_lanes > 4) {
4488 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4489 pipe_name(pipe), pipe_config->fdi_lanes);
4490 return false;
4491 }
4492
4493 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4494 if (pipe_config->fdi_lanes > 2) {
4495 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4496 pipe_config->fdi_lanes);
4497 return false;
4498 } else {
4499 return true;
4500 }
4501 }
4502
4503 if (INTEL_INFO(dev)->num_pipes == 2)
4504 return true;
4505
4506 /* Ivybridge 3 pipe is really complicated */
4507 switch (pipe) {
4508 case PIPE_A:
4509 return true;
4510 case PIPE_B:
4511 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4512 pipe_config->fdi_lanes > 2) {
4513 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4514 pipe_name(pipe), pipe_config->fdi_lanes);
4515 return false;
4516 }
4517 return true;
4518 case PIPE_C:
4519 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4520 pipe_B_crtc->config.fdi_lanes <= 2) {
4521 if (pipe_config->fdi_lanes > 2) {
4522 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4523 pipe_name(pipe), pipe_config->fdi_lanes);
4524 return false;
4525 }
4526 } else {
4527 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4528 return false;
4529 }
4530 return true;
4531 default:
4532 BUG();
4533 }
4534 }
4535
4536 #define RETRY 1
4537 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4538 struct intel_crtc_config *pipe_config)
4539 {
4540 struct drm_device *dev = intel_crtc->base.dev;
4541 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4542 int lane, link_bw, fdi_dotclock;
4543 bool setup_ok, needs_recompute = false;
4544
4545 retry:
4546 /* FDI is a binary signal running at ~2.7GHz, encoding
4547 * each output octet as 10 bits. The actual frequency
4548 * is stored as a divider into a 100MHz clock, and the
4549 * mode pixel clock is stored in units of 1KHz.
4550 * Hence the bw of each lane in terms of the mode signal
4551 * is:
4552 */
4553 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4554
4555 fdi_dotclock = adjusted_mode->crtc_clock;
4556
4557 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4558 pipe_config->pipe_bpp);
4559
4560 pipe_config->fdi_lanes = lane;
4561
4562 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4563 link_bw, &pipe_config->fdi_m_n);
4564
4565 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4566 intel_crtc->pipe, pipe_config);
4567 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4568 pipe_config->pipe_bpp -= 2*3;
4569 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4570 pipe_config->pipe_bpp);
4571 needs_recompute = true;
4572 pipe_config->bw_constrained = true;
4573
4574 goto retry;
4575 }
4576
4577 if (needs_recompute)
4578 return RETRY;
4579
4580 return setup_ok ? 0 : -EINVAL;
4581 }
4582
4583 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4584 struct intel_crtc_config *pipe_config)
4585 {
4586 pipe_config->ips_enabled = i915_enable_ips &&
4587 hsw_crtc_supports_ips(crtc) &&
4588 pipe_config->pipe_bpp <= 24;
4589 }
4590
4591 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4592 struct intel_crtc_config *pipe_config)
4593 {
4594 struct drm_device *dev = crtc->base.dev;
4595 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4596
4597 /* FIXME should check pixel clock limits on all platforms */
4598 if (INTEL_INFO(dev)->gen < 4) {
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600 int clock_limit =
4601 dev_priv->display.get_display_clock_speed(dev);
4602
4603 /*
4604 * Enable pixel doubling when the dot clock
4605 * is > 90% of the (display) core speed.
4606 *
4607 * GDG double wide on either pipe,
4608 * otherwise pipe A only.
4609 */
4610 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4611 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4612 clock_limit *= 2;
4613 pipe_config->double_wide = true;
4614 }
4615
4616 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4617 return -EINVAL;
4618 }
4619
4620 /*
4621 * Pipe horizontal size must be even in:
4622 * - DVO ganged mode
4623 * - LVDS dual channel mode
4624 * - Double wide pipe
4625 */
4626 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4627 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4628 pipe_config->pipe_src_w &= ~1;
4629
4630 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4631 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4632 */
4633 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4634 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4635 return -EINVAL;
4636
4637 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4638 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4639 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4640 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4641 * for lvds. */
4642 pipe_config->pipe_bpp = 8*3;
4643 }
4644
4645 if (HAS_IPS(dev))
4646 hsw_compute_ips_config(crtc, pipe_config);
4647
4648 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4649 * clock survives for now. */
4650 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4651 pipe_config->shared_dpll = crtc->config.shared_dpll;
4652
4653 if (pipe_config->has_pch_encoder)
4654 return ironlake_fdi_compute_config(crtc, pipe_config);
4655
4656 return 0;
4657 }
4658
4659 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4660 {
4661 return 400000; /* FIXME */
4662 }
4663
4664 static int i945_get_display_clock_speed(struct drm_device *dev)
4665 {
4666 return 400000;
4667 }
4668
4669 static int i915_get_display_clock_speed(struct drm_device *dev)
4670 {
4671 return 333000;
4672 }
4673
4674 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4675 {
4676 return 200000;
4677 }
4678
4679 static int pnv_get_display_clock_speed(struct drm_device *dev)
4680 {
4681 u16 gcfgc = 0;
4682
4683 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4684
4685 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4686 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4687 return 267000;
4688 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4689 return 333000;
4690 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4691 return 444000;
4692 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4693 return 200000;
4694 default:
4695 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4696 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4697 return 133000;
4698 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4699 return 167000;
4700 }
4701 }
4702
4703 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4704 {
4705 u16 gcfgc = 0;
4706
4707 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4708
4709 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4710 return 133000;
4711 else {
4712 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4713 case GC_DISPLAY_CLOCK_333_MHZ:
4714 return 333000;
4715 default:
4716 case GC_DISPLAY_CLOCK_190_200_MHZ:
4717 return 190000;
4718 }
4719 }
4720 }
4721
4722 static int i865_get_display_clock_speed(struct drm_device *dev)
4723 {
4724 return 266000;
4725 }
4726
4727 static int i855_get_display_clock_speed(struct drm_device *dev)
4728 {
4729 u16 hpllcc = 0;
4730 /* Assume that the hardware is in the high speed state. This
4731 * should be the default.
4732 */
4733 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4734 case GC_CLOCK_133_200:
4735 case GC_CLOCK_100_200:
4736 return 200000;
4737 case GC_CLOCK_166_250:
4738 return 250000;
4739 case GC_CLOCK_100_133:
4740 return 133000;
4741 }
4742
4743 /* Shouldn't happen */
4744 return 0;
4745 }
4746
4747 static int i830_get_display_clock_speed(struct drm_device *dev)
4748 {
4749 return 133000;
4750 }
4751
4752 static void
4753 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4754 {
4755 while (*num > DATA_LINK_M_N_MASK ||
4756 *den > DATA_LINK_M_N_MASK) {
4757 *num >>= 1;
4758 *den >>= 1;
4759 }
4760 }
4761
4762 static void compute_m_n(unsigned int m, unsigned int n,
4763 uint32_t *ret_m, uint32_t *ret_n)
4764 {
4765 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4766 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4767 intel_reduce_m_n_ratio(ret_m, ret_n);
4768 }
4769
4770 void
4771 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4772 int pixel_clock, int link_clock,
4773 struct intel_link_m_n *m_n)
4774 {
4775 m_n->tu = 64;
4776
4777 compute_m_n(bits_per_pixel * pixel_clock,
4778 link_clock * nlanes * 8,
4779 &m_n->gmch_m, &m_n->gmch_n);
4780
4781 compute_m_n(pixel_clock, link_clock,
4782 &m_n->link_m, &m_n->link_n);
4783 }
4784
4785 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4786 {
4787 if (i915_panel_use_ssc >= 0)
4788 return i915_panel_use_ssc != 0;
4789 return dev_priv->vbt.lvds_use_ssc
4790 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4791 }
4792
4793 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4794 {
4795 struct drm_device *dev = crtc->dev;
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 int refclk;
4798
4799 if (IS_VALLEYVIEW(dev)) {
4800 refclk = 100000;
4801 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4802 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4803 refclk = dev_priv->vbt.lvds_ssc_freq;
4804 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
4805 } else if (!IS_GEN2(dev)) {
4806 refclk = 96000;
4807 } else {
4808 refclk = 48000;
4809 }
4810
4811 return refclk;
4812 }
4813
4814 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4815 {
4816 return (1 << dpll->n) << 16 | dpll->m2;
4817 }
4818
4819 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4820 {
4821 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4822 }
4823
4824 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4825 intel_clock_t *reduced_clock)
4826 {
4827 struct drm_device *dev = crtc->base.dev;
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 int pipe = crtc->pipe;
4830 u32 fp, fp2 = 0;
4831
4832 if (IS_PINEVIEW(dev)) {
4833 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4834 if (reduced_clock)
4835 fp2 = pnv_dpll_compute_fp(reduced_clock);
4836 } else {
4837 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4838 if (reduced_clock)
4839 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4840 }
4841
4842 I915_WRITE(FP0(pipe), fp);
4843 crtc->config.dpll_hw_state.fp0 = fp;
4844
4845 crtc->lowfreq_avail = false;
4846 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4847 reduced_clock && i915_powersave) {
4848 I915_WRITE(FP1(pipe), fp2);
4849 crtc->config.dpll_hw_state.fp1 = fp2;
4850 crtc->lowfreq_avail = true;
4851 } else {
4852 I915_WRITE(FP1(pipe), fp);
4853 crtc->config.dpll_hw_state.fp1 = fp;
4854 }
4855 }
4856
4857 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4858 pipe)
4859 {
4860 u32 reg_val;
4861
4862 /*
4863 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4864 * and set it to a reasonable value instead.
4865 */
4866 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4867 reg_val &= 0xffffff00;
4868 reg_val |= 0x00000030;
4869 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4870
4871 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4872 reg_val &= 0x8cffffff;
4873 reg_val = 0x8c000000;
4874 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4875
4876 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4877 reg_val &= 0xffffff00;
4878 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4879
4880 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4881 reg_val &= 0x00ffffff;
4882 reg_val |= 0xb0000000;
4883 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4884 }
4885
4886 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4887 struct intel_link_m_n *m_n)
4888 {
4889 struct drm_device *dev = crtc->base.dev;
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 int pipe = crtc->pipe;
4892
4893 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4894 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4895 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4896 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4897 }
4898
4899 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4900 struct intel_link_m_n *m_n)
4901 {
4902 struct drm_device *dev = crtc->base.dev;
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 int pipe = crtc->pipe;
4905 enum transcoder transcoder = crtc->config.cpu_transcoder;
4906
4907 if (INTEL_INFO(dev)->gen >= 5) {
4908 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4909 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4910 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4911 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4912 } else {
4913 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4914 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4915 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4916 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4917 }
4918 }
4919
4920 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4921 {
4922 if (crtc->config.has_pch_encoder)
4923 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4924 else
4925 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4926 }
4927
4928 static void vlv_update_pll(struct intel_crtc *crtc)
4929 {
4930 struct drm_device *dev = crtc->base.dev;
4931 struct drm_i915_private *dev_priv = dev->dev_private;
4932 int pipe = crtc->pipe;
4933 u32 dpll, mdiv;
4934 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4935 u32 coreclk, reg_val, dpll_md;
4936
4937 mutex_lock(&dev_priv->dpio_lock);
4938
4939 bestn = crtc->config.dpll.n;
4940 bestm1 = crtc->config.dpll.m1;
4941 bestm2 = crtc->config.dpll.m2;
4942 bestp1 = crtc->config.dpll.p1;
4943 bestp2 = crtc->config.dpll.p2;
4944
4945 /* See eDP HDMI DPIO driver vbios notes doc */
4946
4947 /* PLL B needs special handling */
4948 if (pipe)
4949 vlv_pllb_recal_opamp(dev_priv, pipe);
4950
4951 /* Set up Tx target for periodic Rcomp update */
4952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4953
4954 /* Disable target IRef on PLL */
4955 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4956 reg_val &= 0x00ffffff;
4957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4958
4959 /* Disable fast lock */
4960 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4961
4962 /* Set idtafcrecal before PLL is enabled */
4963 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4964 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4965 mdiv |= ((bestn << DPIO_N_SHIFT));
4966 mdiv |= (1 << DPIO_K_SHIFT);
4967
4968 /*
4969 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4970 * but we don't support that).
4971 * Note: don't use the DAC post divider as it seems unstable.
4972 */
4973 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4974 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4975
4976 mdiv |= DPIO_ENABLE_CALIBRATION;
4977 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4978
4979 /* Set HBR and RBR LPF coefficients */
4980 if (crtc->config.port_clock == 162000 ||
4981 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4982 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4984 0x009f0003);
4985 else
4986 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4987 0x00d0000f);
4988
4989 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4990 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4991 /* Use SSC source */
4992 if (!pipe)
4993 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4994 0x0df40000);
4995 else
4996 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4997 0x0df70000);
4998 } else { /* HDMI or VGA */
4999 /* Use bend source */
5000 if (!pipe)
5001 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5002 0x0df70000);
5003 else
5004 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5005 0x0df40000);
5006 }
5007
5008 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5009 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5010 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5011 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5012 coreclk |= 0x01000000;
5013 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5014
5015 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5016
5017 /*
5018 * Enable DPIO clock input. We should never disable the reference
5019 * clock for pipe B, since VGA hotplug / manual detection depends
5020 * on it.
5021 */
5022 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5023 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5024 /* We should never disable this, set it here for state tracking */
5025 if (pipe == PIPE_B)
5026 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5027 dpll |= DPLL_VCO_ENABLE;
5028 crtc->config.dpll_hw_state.dpll = dpll;
5029
5030 dpll_md = (crtc->config.pixel_multiplier - 1)
5031 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5032 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5033
5034 if (crtc->config.has_dp_encoder)
5035 intel_dp_set_m_n(crtc);
5036
5037 mutex_unlock(&dev_priv->dpio_lock);
5038 }
5039
5040 static void i9xx_update_pll(struct intel_crtc *crtc,
5041 intel_clock_t *reduced_clock,
5042 int num_connectors)
5043 {
5044 struct drm_device *dev = crtc->base.dev;
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 u32 dpll;
5047 bool is_sdvo;
5048 struct dpll *clock = &crtc->config.dpll;
5049
5050 i9xx_update_pll_dividers(crtc, reduced_clock);
5051
5052 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5053 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5054
5055 dpll = DPLL_VGA_MODE_DIS;
5056
5057 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5058 dpll |= DPLLB_MODE_LVDS;
5059 else
5060 dpll |= DPLLB_MODE_DAC_SERIAL;
5061
5062 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5063 dpll |= (crtc->config.pixel_multiplier - 1)
5064 << SDVO_MULTIPLIER_SHIFT_HIRES;
5065 }
5066
5067 if (is_sdvo)
5068 dpll |= DPLL_SDVO_HIGH_SPEED;
5069
5070 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5071 dpll |= DPLL_SDVO_HIGH_SPEED;
5072
5073 /* compute bitmask from p1 value */
5074 if (IS_PINEVIEW(dev))
5075 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5076 else {
5077 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5078 if (IS_G4X(dev) && reduced_clock)
5079 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5080 }
5081 switch (clock->p2) {
5082 case 5:
5083 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5084 break;
5085 case 7:
5086 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5087 break;
5088 case 10:
5089 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5090 break;
5091 case 14:
5092 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5093 break;
5094 }
5095 if (INTEL_INFO(dev)->gen >= 4)
5096 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5097
5098 if (crtc->config.sdvo_tv_clock)
5099 dpll |= PLL_REF_INPUT_TVCLKINBC;
5100 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5101 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5102 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5103 else
5104 dpll |= PLL_REF_INPUT_DREFCLK;
5105
5106 dpll |= DPLL_VCO_ENABLE;
5107 crtc->config.dpll_hw_state.dpll = dpll;
5108
5109 if (INTEL_INFO(dev)->gen >= 4) {
5110 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5111 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5112 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5113 }
5114
5115 if (crtc->config.has_dp_encoder)
5116 intel_dp_set_m_n(crtc);
5117 }
5118
5119 static void i8xx_update_pll(struct intel_crtc *crtc,
5120 intel_clock_t *reduced_clock,
5121 int num_connectors)
5122 {
5123 struct drm_device *dev = crtc->base.dev;
5124 struct drm_i915_private *dev_priv = dev->dev_private;
5125 u32 dpll;
5126 struct dpll *clock = &crtc->config.dpll;
5127
5128 i9xx_update_pll_dividers(crtc, reduced_clock);
5129
5130 dpll = DPLL_VGA_MODE_DIS;
5131
5132 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5133 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5134 } else {
5135 if (clock->p1 == 2)
5136 dpll |= PLL_P1_DIVIDE_BY_TWO;
5137 else
5138 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5139 if (clock->p2 == 4)
5140 dpll |= PLL_P2_DIVIDE_BY_4;
5141 }
5142
5143 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5144 dpll |= DPLL_DVO_2X_MODE;
5145
5146 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5147 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5148 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5149 else
5150 dpll |= PLL_REF_INPUT_DREFCLK;
5151
5152 dpll |= DPLL_VCO_ENABLE;
5153 crtc->config.dpll_hw_state.dpll = dpll;
5154 }
5155
5156 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5157 {
5158 struct drm_device *dev = intel_crtc->base.dev;
5159 struct drm_i915_private *dev_priv = dev->dev_private;
5160 enum pipe pipe = intel_crtc->pipe;
5161 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5162 struct drm_display_mode *adjusted_mode =
5163 &intel_crtc->config.adjusted_mode;
5164 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5165
5166 /* We need to be careful not to changed the adjusted mode, for otherwise
5167 * the hw state checker will get angry at the mismatch. */
5168 crtc_vtotal = adjusted_mode->crtc_vtotal;
5169 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5170
5171 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5172 /* the chip adds 2 halflines automatically */
5173 crtc_vtotal -= 1;
5174 crtc_vblank_end -= 1;
5175 vsyncshift = adjusted_mode->crtc_hsync_start
5176 - adjusted_mode->crtc_htotal / 2;
5177 } else {
5178 vsyncshift = 0;
5179 }
5180
5181 if (INTEL_INFO(dev)->gen > 3)
5182 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5183
5184 I915_WRITE(HTOTAL(cpu_transcoder),
5185 (adjusted_mode->crtc_hdisplay - 1) |
5186 ((adjusted_mode->crtc_htotal - 1) << 16));
5187 I915_WRITE(HBLANK(cpu_transcoder),
5188 (adjusted_mode->crtc_hblank_start - 1) |
5189 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5190 I915_WRITE(HSYNC(cpu_transcoder),
5191 (adjusted_mode->crtc_hsync_start - 1) |
5192 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5193
5194 I915_WRITE(VTOTAL(cpu_transcoder),
5195 (adjusted_mode->crtc_vdisplay - 1) |
5196 ((crtc_vtotal - 1) << 16));
5197 I915_WRITE(VBLANK(cpu_transcoder),
5198 (adjusted_mode->crtc_vblank_start - 1) |
5199 ((crtc_vblank_end - 1) << 16));
5200 I915_WRITE(VSYNC(cpu_transcoder),
5201 (adjusted_mode->crtc_vsync_start - 1) |
5202 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5203
5204 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5205 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5206 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5207 * bits. */
5208 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5209 (pipe == PIPE_B || pipe == PIPE_C))
5210 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5211
5212 /* pipesrc controls the size that is scaled from, which should
5213 * always be the user's requested size.
5214 */
5215 I915_WRITE(PIPESRC(pipe),
5216 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5217 (intel_crtc->config.pipe_src_h - 1));
5218 }
5219
5220 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5221 struct intel_crtc_config *pipe_config)
5222 {
5223 struct drm_device *dev = crtc->base.dev;
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5226 uint32_t tmp;
5227
5228 tmp = I915_READ(HTOTAL(cpu_transcoder));
5229 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5230 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5231 tmp = I915_READ(HBLANK(cpu_transcoder));
5232 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5233 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5234 tmp = I915_READ(HSYNC(cpu_transcoder));
5235 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5236 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5237
5238 tmp = I915_READ(VTOTAL(cpu_transcoder));
5239 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5240 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5241 tmp = I915_READ(VBLANK(cpu_transcoder));
5242 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5243 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5244 tmp = I915_READ(VSYNC(cpu_transcoder));
5245 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5246 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5247
5248 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5249 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5250 pipe_config->adjusted_mode.crtc_vtotal += 1;
5251 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5252 }
5253
5254 tmp = I915_READ(PIPESRC(crtc->pipe));
5255 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5256 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5257
5258 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5259 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5260 }
5261
5262 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5263 struct intel_crtc_config *pipe_config)
5264 {
5265 struct drm_crtc *crtc = &intel_crtc->base;
5266
5267 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5268 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5269 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5270 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5271
5272 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5273 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5274 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5275 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5276
5277 crtc->mode.flags = pipe_config->adjusted_mode.flags;
5278
5279 crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5280 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5281 }
5282
5283 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5284 {
5285 struct drm_device *dev = intel_crtc->base.dev;
5286 struct drm_i915_private *dev_priv = dev->dev_private;
5287 uint32_t pipeconf;
5288
5289 pipeconf = 0;
5290
5291 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5292 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5293 pipeconf |= PIPECONF_ENABLE;
5294
5295 if (intel_crtc->config.double_wide)
5296 pipeconf |= PIPECONF_DOUBLE_WIDE;
5297
5298 /* only g4x and later have fancy bpc/dither controls */
5299 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5300 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5301 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5302 pipeconf |= PIPECONF_DITHER_EN |
5303 PIPECONF_DITHER_TYPE_SP;
5304
5305 switch (intel_crtc->config.pipe_bpp) {
5306 case 18:
5307 pipeconf |= PIPECONF_6BPC;
5308 break;
5309 case 24:
5310 pipeconf |= PIPECONF_8BPC;
5311 break;
5312 case 30:
5313 pipeconf |= PIPECONF_10BPC;
5314 break;
5315 default:
5316 /* Case prevented by intel_choose_pipe_bpp_dither. */
5317 BUG();
5318 }
5319 }
5320
5321 if (HAS_PIPE_CXSR(dev)) {
5322 if (intel_crtc->lowfreq_avail) {
5323 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5324 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5325 } else {
5326 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5327 }
5328 }
5329
5330 if (!IS_GEN2(dev) &&
5331 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5332 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5333 else
5334 pipeconf |= PIPECONF_PROGRESSIVE;
5335
5336 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5337 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5338
5339 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5340 POSTING_READ(PIPECONF(intel_crtc->pipe));
5341 }
5342
5343 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5344 int x, int y,
5345 struct drm_framebuffer *fb)
5346 {
5347 struct drm_device *dev = crtc->dev;
5348 struct drm_i915_private *dev_priv = dev->dev_private;
5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350 int pipe = intel_crtc->pipe;
5351 int plane = intel_crtc->plane;
5352 int refclk, num_connectors = 0;
5353 intel_clock_t clock, reduced_clock;
5354 u32 dspcntr;
5355 bool ok, has_reduced_clock = false;
5356 bool is_lvds = false, is_dsi = false;
5357 struct intel_encoder *encoder;
5358 const intel_limit_t *limit;
5359 int ret;
5360
5361 for_each_encoder_on_crtc(dev, crtc, encoder) {
5362 switch (encoder->type) {
5363 case INTEL_OUTPUT_LVDS:
5364 is_lvds = true;
5365 break;
5366 case INTEL_OUTPUT_DSI:
5367 is_dsi = true;
5368 break;
5369 }
5370
5371 num_connectors++;
5372 }
5373
5374 if (is_dsi)
5375 goto skip_dpll;
5376
5377 if (!intel_crtc->config.clock_set) {
5378 refclk = i9xx_get_refclk(crtc, num_connectors);
5379
5380 /*
5381 * Returns a set of divisors for the desired target clock with
5382 * the given refclk, or FALSE. The returned values represent
5383 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5384 * 2) / p1 / p2.
5385 */
5386 limit = intel_limit(crtc, refclk);
5387 ok = dev_priv->display.find_dpll(limit, crtc,
5388 intel_crtc->config.port_clock,
5389 refclk, NULL, &clock);
5390 if (!ok) {
5391 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5392 return -EINVAL;
5393 }
5394
5395 if (is_lvds && dev_priv->lvds_downclock_avail) {
5396 /*
5397 * Ensure we match the reduced clock's P to the target
5398 * clock. If the clocks don't match, we can't switch
5399 * the display clock by using the FP0/FP1. In such case
5400 * we will disable the LVDS downclock feature.
5401 */
5402 has_reduced_clock =
5403 dev_priv->display.find_dpll(limit, crtc,
5404 dev_priv->lvds_downclock,
5405 refclk, &clock,
5406 &reduced_clock);
5407 }
5408 /* Compat-code for transition, will disappear. */
5409 intel_crtc->config.dpll.n = clock.n;
5410 intel_crtc->config.dpll.m1 = clock.m1;
5411 intel_crtc->config.dpll.m2 = clock.m2;
5412 intel_crtc->config.dpll.p1 = clock.p1;
5413 intel_crtc->config.dpll.p2 = clock.p2;
5414 }
5415
5416 if (IS_GEN2(dev)) {
5417 i8xx_update_pll(intel_crtc,
5418 has_reduced_clock ? &reduced_clock : NULL,
5419 num_connectors);
5420 } else if (IS_VALLEYVIEW(dev)) {
5421 vlv_update_pll(intel_crtc);
5422 } else {
5423 i9xx_update_pll(intel_crtc,
5424 has_reduced_clock ? &reduced_clock : NULL,
5425 num_connectors);
5426 }
5427
5428 skip_dpll:
5429 /* Set up the display plane register */
5430 dspcntr = DISPPLANE_GAMMA_ENABLE;
5431
5432 if (!IS_VALLEYVIEW(dev)) {
5433 if (pipe == 0)
5434 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5435 else
5436 dspcntr |= DISPPLANE_SEL_PIPE_B;
5437 }
5438
5439 intel_set_pipe_timings(intel_crtc);
5440
5441 /* pipesrc and dspsize control the size that is scaled from,
5442 * which should always be the user's requested size.
5443 */
5444 I915_WRITE(DSPSIZE(plane),
5445 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5446 (intel_crtc->config.pipe_src_w - 1));
5447 I915_WRITE(DSPPOS(plane), 0);
5448
5449 i9xx_set_pipeconf(intel_crtc);
5450
5451 I915_WRITE(DSPCNTR(plane), dspcntr);
5452 POSTING_READ(DSPCNTR(plane));
5453
5454 ret = intel_pipe_set_base(crtc, x, y, fb);
5455
5456 return ret;
5457 }
5458
5459 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5460 struct intel_crtc_config *pipe_config)
5461 {
5462 struct drm_device *dev = crtc->base.dev;
5463 struct drm_i915_private *dev_priv = dev->dev_private;
5464 uint32_t tmp;
5465
5466 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5467 return;
5468
5469 tmp = I915_READ(PFIT_CONTROL);
5470 if (!(tmp & PFIT_ENABLE))
5471 return;
5472
5473 /* Check whether the pfit is attached to our pipe. */
5474 if (INTEL_INFO(dev)->gen < 4) {
5475 if (crtc->pipe != PIPE_B)
5476 return;
5477 } else {
5478 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5479 return;
5480 }
5481
5482 pipe_config->gmch_pfit.control = tmp;
5483 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5484 if (INTEL_INFO(dev)->gen < 5)
5485 pipe_config->gmch_pfit.lvds_border_bits =
5486 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5487 }
5488
5489 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5490 struct intel_crtc_config *pipe_config)
5491 {
5492 struct drm_device *dev = crtc->base.dev;
5493 struct drm_i915_private *dev_priv = dev->dev_private;
5494 int pipe = pipe_config->cpu_transcoder;
5495 intel_clock_t clock;
5496 u32 mdiv;
5497 int refclk = 100000;
5498
5499 mutex_lock(&dev_priv->dpio_lock);
5500 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5501 mutex_unlock(&dev_priv->dpio_lock);
5502
5503 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5504 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5505 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5506 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5507 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5508
5509 vlv_clock(refclk, &clock);
5510
5511 /* clock.dot is the fast clock */
5512 pipe_config->port_clock = clock.dot / 5;
5513 }
5514
5515 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5516 struct intel_crtc_config *pipe_config)
5517 {
5518 struct drm_device *dev = crtc->base.dev;
5519 struct drm_i915_private *dev_priv = dev->dev_private;
5520 uint32_t tmp;
5521
5522 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5523 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5524
5525 tmp = I915_READ(PIPECONF(crtc->pipe));
5526 if (!(tmp & PIPECONF_ENABLE))
5527 return false;
5528
5529 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5530 switch (tmp & PIPECONF_BPC_MASK) {
5531 case PIPECONF_6BPC:
5532 pipe_config->pipe_bpp = 18;
5533 break;
5534 case PIPECONF_8BPC:
5535 pipe_config->pipe_bpp = 24;
5536 break;
5537 case PIPECONF_10BPC:
5538 pipe_config->pipe_bpp = 30;
5539 break;
5540 default:
5541 break;
5542 }
5543 }
5544
5545 if (INTEL_INFO(dev)->gen < 4)
5546 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5547
5548 intel_get_pipe_timings(crtc, pipe_config);
5549
5550 i9xx_get_pfit_config(crtc, pipe_config);
5551
5552 if (INTEL_INFO(dev)->gen >= 4) {
5553 tmp = I915_READ(DPLL_MD(crtc->pipe));
5554 pipe_config->pixel_multiplier =
5555 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5556 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5557 pipe_config->dpll_hw_state.dpll_md = tmp;
5558 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5559 tmp = I915_READ(DPLL(crtc->pipe));
5560 pipe_config->pixel_multiplier =
5561 ((tmp & SDVO_MULTIPLIER_MASK)
5562 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5563 } else {
5564 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5565 * port and will be fixed up in the encoder->get_config
5566 * function. */
5567 pipe_config->pixel_multiplier = 1;
5568 }
5569 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5570 if (!IS_VALLEYVIEW(dev)) {
5571 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5572 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5573 } else {
5574 /* Mask out read-only status bits. */
5575 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5576 DPLL_PORTC_READY_MASK |
5577 DPLL_PORTB_READY_MASK);
5578 }
5579
5580 if (IS_VALLEYVIEW(dev))
5581 vlv_crtc_clock_get(crtc, pipe_config);
5582 else
5583 i9xx_crtc_clock_get(crtc, pipe_config);
5584
5585 return true;
5586 }
5587
5588 static void ironlake_init_pch_refclk(struct drm_device *dev)
5589 {
5590 struct drm_i915_private *dev_priv = dev->dev_private;
5591 struct drm_mode_config *mode_config = &dev->mode_config;
5592 struct intel_encoder *encoder;
5593 u32 val, final;
5594 bool has_lvds = false;
5595 bool has_cpu_edp = false;
5596 bool has_panel = false;
5597 bool has_ck505 = false;
5598 bool can_ssc = false;
5599
5600 /* We need to take the global config into account */
5601 list_for_each_entry(encoder, &mode_config->encoder_list,
5602 base.head) {
5603 switch (encoder->type) {
5604 case INTEL_OUTPUT_LVDS:
5605 has_panel = true;
5606 has_lvds = true;
5607 break;
5608 case INTEL_OUTPUT_EDP:
5609 has_panel = true;
5610 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5611 has_cpu_edp = true;
5612 break;
5613 }
5614 }
5615
5616 if (HAS_PCH_IBX(dev)) {
5617 has_ck505 = dev_priv->vbt.display_clock_mode;
5618 can_ssc = has_ck505;
5619 } else {
5620 has_ck505 = false;
5621 can_ssc = true;
5622 }
5623
5624 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5625 has_panel, has_lvds, has_ck505);
5626
5627 /* Ironlake: try to setup display ref clock before DPLL
5628 * enabling. This is only under driver's control after
5629 * PCH B stepping, previous chipset stepping should be
5630 * ignoring this setting.
5631 */
5632 val = I915_READ(PCH_DREF_CONTROL);
5633
5634 /* As we must carefully and slowly disable/enable each source in turn,
5635 * compute the final state we want first and check if we need to
5636 * make any changes at all.
5637 */
5638 final = val;
5639 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5640 if (has_ck505)
5641 final |= DREF_NONSPREAD_CK505_ENABLE;
5642 else
5643 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5644
5645 final &= ~DREF_SSC_SOURCE_MASK;
5646 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5647 final &= ~DREF_SSC1_ENABLE;
5648
5649 if (has_panel) {
5650 final |= DREF_SSC_SOURCE_ENABLE;
5651
5652 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5653 final |= DREF_SSC1_ENABLE;
5654
5655 if (has_cpu_edp) {
5656 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5657 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5658 else
5659 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5660 } else
5661 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5662 } else {
5663 final |= DREF_SSC_SOURCE_DISABLE;
5664 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5665 }
5666
5667 if (final == val)
5668 return;
5669
5670 /* Always enable nonspread source */
5671 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5672
5673 if (has_ck505)
5674 val |= DREF_NONSPREAD_CK505_ENABLE;
5675 else
5676 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5677
5678 if (has_panel) {
5679 val &= ~DREF_SSC_SOURCE_MASK;
5680 val |= DREF_SSC_SOURCE_ENABLE;
5681
5682 /* SSC must be turned on before enabling the CPU output */
5683 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5684 DRM_DEBUG_KMS("Using SSC on panel\n");
5685 val |= DREF_SSC1_ENABLE;
5686 } else
5687 val &= ~DREF_SSC1_ENABLE;
5688
5689 /* Get SSC going before enabling the outputs */
5690 I915_WRITE(PCH_DREF_CONTROL, val);
5691 POSTING_READ(PCH_DREF_CONTROL);
5692 udelay(200);
5693
5694 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5695
5696 /* Enable CPU source on CPU attached eDP */
5697 if (has_cpu_edp) {
5698 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5699 DRM_DEBUG_KMS("Using SSC on eDP\n");
5700 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5701 }
5702 else
5703 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5704 } else
5705 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5706
5707 I915_WRITE(PCH_DREF_CONTROL, val);
5708 POSTING_READ(PCH_DREF_CONTROL);
5709 udelay(200);
5710 } else {
5711 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5712
5713 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5714
5715 /* Turn off CPU output */
5716 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5717
5718 I915_WRITE(PCH_DREF_CONTROL, val);
5719 POSTING_READ(PCH_DREF_CONTROL);
5720 udelay(200);
5721
5722 /* Turn off the SSC source */
5723 val &= ~DREF_SSC_SOURCE_MASK;
5724 val |= DREF_SSC_SOURCE_DISABLE;
5725
5726 /* Turn off SSC1 */
5727 val &= ~DREF_SSC1_ENABLE;
5728
5729 I915_WRITE(PCH_DREF_CONTROL, val);
5730 POSTING_READ(PCH_DREF_CONTROL);
5731 udelay(200);
5732 }
5733
5734 BUG_ON(val != final);
5735 }
5736
5737 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5738 {
5739 uint32_t tmp;
5740
5741 tmp = I915_READ(SOUTH_CHICKEN2);
5742 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5743 I915_WRITE(SOUTH_CHICKEN2, tmp);
5744
5745 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5746 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5747 DRM_ERROR("FDI mPHY reset assert timeout\n");
5748
5749 tmp = I915_READ(SOUTH_CHICKEN2);
5750 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5751 I915_WRITE(SOUTH_CHICKEN2, tmp);
5752
5753 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5754 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5755 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5756 }
5757
5758 /* WaMPhyProgramming:hsw */
5759 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5760 {
5761 uint32_t tmp;
5762
5763 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5764 tmp &= ~(0xFF << 24);
5765 tmp |= (0x12 << 24);
5766 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5767
5768 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5769 tmp |= (1 << 11);
5770 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5771
5772 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5773 tmp |= (1 << 11);
5774 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5775
5776 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5777 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5778 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5779
5780 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5781 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5782 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5783
5784 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5785 tmp &= ~(7 << 13);
5786 tmp |= (5 << 13);
5787 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5788
5789 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5790 tmp &= ~(7 << 13);
5791 tmp |= (5 << 13);
5792 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5793
5794 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5795 tmp &= ~0xFF;
5796 tmp |= 0x1C;
5797 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5798
5799 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5800 tmp &= ~0xFF;
5801 tmp |= 0x1C;
5802 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5803
5804 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5805 tmp &= ~(0xFF << 16);
5806 tmp |= (0x1C << 16);
5807 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5808
5809 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5810 tmp &= ~(0xFF << 16);
5811 tmp |= (0x1C << 16);
5812 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5813
5814 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5815 tmp |= (1 << 27);
5816 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5817
5818 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5819 tmp |= (1 << 27);
5820 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5821
5822 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5823 tmp &= ~(0xF << 28);
5824 tmp |= (4 << 28);
5825 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5826
5827 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5828 tmp &= ~(0xF << 28);
5829 tmp |= (4 << 28);
5830 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5831 }
5832
5833 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5834 * Programming" based on the parameters passed:
5835 * - Sequence to enable CLKOUT_DP
5836 * - Sequence to enable CLKOUT_DP without spread
5837 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5838 */
5839 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5840 bool with_fdi)
5841 {
5842 struct drm_i915_private *dev_priv = dev->dev_private;
5843 uint32_t reg, tmp;
5844
5845 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5846 with_spread = true;
5847 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5848 with_fdi, "LP PCH doesn't have FDI\n"))
5849 with_fdi = false;
5850
5851 mutex_lock(&dev_priv->dpio_lock);
5852
5853 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5854 tmp &= ~SBI_SSCCTL_DISABLE;
5855 tmp |= SBI_SSCCTL_PATHALT;
5856 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5857
5858 udelay(24);
5859
5860 if (with_spread) {
5861 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5862 tmp &= ~SBI_SSCCTL_PATHALT;
5863 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5864
5865 if (with_fdi) {
5866 lpt_reset_fdi_mphy(dev_priv);
5867 lpt_program_fdi_mphy(dev_priv);
5868 }
5869 }
5870
5871 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5872 SBI_GEN0 : SBI_DBUFF0;
5873 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5874 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5875 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5876
5877 mutex_unlock(&dev_priv->dpio_lock);
5878 }
5879
5880 /* Sequence to disable CLKOUT_DP */
5881 static void lpt_disable_clkout_dp(struct drm_device *dev)
5882 {
5883 struct drm_i915_private *dev_priv = dev->dev_private;
5884 uint32_t reg, tmp;
5885
5886 mutex_lock(&dev_priv->dpio_lock);
5887
5888 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5889 SBI_GEN0 : SBI_DBUFF0;
5890 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5891 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5892 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5893
5894 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5895 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5896 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5897 tmp |= SBI_SSCCTL_PATHALT;
5898 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5899 udelay(32);
5900 }
5901 tmp |= SBI_SSCCTL_DISABLE;
5902 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5903 }
5904
5905 mutex_unlock(&dev_priv->dpio_lock);
5906 }
5907
5908 static void lpt_init_pch_refclk(struct drm_device *dev)
5909 {
5910 struct drm_mode_config *mode_config = &dev->mode_config;
5911 struct intel_encoder *encoder;
5912 bool has_vga = false;
5913
5914 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5915 switch (encoder->type) {
5916 case INTEL_OUTPUT_ANALOG:
5917 has_vga = true;
5918 break;
5919 }
5920 }
5921
5922 if (has_vga)
5923 lpt_enable_clkout_dp(dev, true, true);
5924 else
5925 lpt_disable_clkout_dp(dev);
5926 }
5927
5928 /*
5929 * Initialize reference clocks when the driver loads
5930 */
5931 void intel_init_pch_refclk(struct drm_device *dev)
5932 {
5933 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5934 ironlake_init_pch_refclk(dev);
5935 else if (HAS_PCH_LPT(dev))
5936 lpt_init_pch_refclk(dev);
5937 }
5938
5939 static int ironlake_get_refclk(struct drm_crtc *crtc)
5940 {
5941 struct drm_device *dev = crtc->dev;
5942 struct drm_i915_private *dev_priv = dev->dev_private;
5943 struct intel_encoder *encoder;
5944 int num_connectors = 0;
5945 bool is_lvds = false;
5946
5947 for_each_encoder_on_crtc(dev, crtc, encoder) {
5948 switch (encoder->type) {
5949 case INTEL_OUTPUT_LVDS:
5950 is_lvds = true;
5951 break;
5952 }
5953 num_connectors++;
5954 }
5955
5956 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5957 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
5958 dev_priv->vbt.lvds_ssc_freq);
5959 return dev_priv->vbt.lvds_ssc_freq;
5960 }
5961
5962 return 120000;
5963 }
5964
5965 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5966 {
5967 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5969 int pipe = intel_crtc->pipe;
5970 uint32_t val;
5971
5972 val = 0;
5973
5974 switch (intel_crtc->config.pipe_bpp) {
5975 case 18:
5976 val |= PIPECONF_6BPC;
5977 break;
5978 case 24:
5979 val |= PIPECONF_8BPC;
5980 break;
5981 case 30:
5982 val |= PIPECONF_10BPC;
5983 break;
5984 case 36:
5985 val |= PIPECONF_12BPC;
5986 break;
5987 default:
5988 /* Case prevented by intel_choose_pipe_bpp_dither. */
5989 BUG();
5990 }
5991
5992 if (intel_crtc->config.dither)
5993 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5994
5995 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5996 val |= PIPECONF_INTERLACED_ILK;
5997 else
5998 val |= PIPECONF_PROGRESSIVE;
5999
6000 if (intel_crtc->config.limited_color_range)
6001 val |= PIPECONF_COLOR_RANGE_SELECT;
6002
6003 I915_WRITE(PIPECONF(pipe), val);
6004 POSTING_READ(PIPECONF(pipe));
6005 }
6006
6007 /*
6008 * Set up the pipe CSC unit.
6009 *
6010 * Currently only full range RGB to limited range RGB conversion
6011 * is supported, but eventually this should handle various
6012 * RGB<->YCbCr scenarios as well.
6013 */
6014 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6015 {
6016 struct drm_device *dev = crtc->dev;
6017 struct drm_i915_private *dev_priv = dev->dev_private;
6018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6019 int pipe = intel_crtc->pipe;
6020 uint16_t coeff = 0x7800; /* 1.0 */
6021
6022 /*
6023 * TODO: Check what kind of values actually come out of the pipe
6024 * with these coeff/postoff values and adjust to get the best
6025 * accuracy. Perhaps we even need to take the bpc value into
6026 * consideration.
6027 */
6028
6029 if (intel_crtc->config.limited_color_range)
6030 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6031
6032 /*
6033 * GY/GU and RY/RU should be the other way around according
6034 * to BSpec, but reality doesn't agree. Just set them up in
6035 * a way that results in the correct picture.
6036 */
6037 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6038 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6039
6040 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6041 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6042
6043 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6044 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6045
6046 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6047 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6048 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6049
6050 if (INTEL_INFO(dev)->gen > 6) {
6051 uint16_t postoff = 0;
6052
6053 if (intel_crtc->config.limited_color_range)
6054 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6055
6056 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6057 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6058 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6059
6060 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6061 } else {
6062 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6063
6064 if (intel_crtc->config.limited_color_range)
6065 mode |= CSC_BLACK_SCREEN_OFFSET;
6066
6067 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6068 }
6069 }
6070
6071 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6072 {
6073 struct drm_device *dev = crtc->dev;
6074 struct drm_i915_private *dev_priv = dev->dev_private;
6075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6076 enum pipe pipe = intel_crtc->pipe;
6077 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6078 uint32_t val;
6079
6080 val = 0;
6081
6082 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6083 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6084
6085 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6086 val |= PIPECONF_INTERLACED_ILK;
6087 else
6088 val |= PIPECONF_PROGRESSIVE;
6089
6090 I915_WRITE(PIPECONF(cpu_transcoder), val);
6091 POSTING_READ(PIPECONF(cpu_transcoder));
6092
6093 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6094 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6095
6096 if (IS_BROADWELL(dev)) {
6097 val = 0;
6098
6099 switch (intel_crtc->config.pipe_bpp) {
6100 case 18:
6101 val |= PIPEMISC_DITHER_6_BPC;
6102 break;
6103 case 24:
6104 val |= PIPEMISC_DITHER_8_BPC;
6105 break;
6106 case 30:
6107 val |= PIPEMISC_DITHER_10_BPC;
6108 break;
6109 case 36:
6110 val |= PIPEMISC_DITHER_12_BPC;
6111 break;
6112 default:
6113 /* Case prevented by pipe_config_set_bpp. */
6114 BUG();
6115 }
6116
6117 if (intel_crtc->config.dither)
6118 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6119
6120 I915_WRITE(PIPEMISC(pipe), val);
6121 }
6122 }
6123
6124 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6125 intel_clock_t *clock,
6126 bool *has_reduced_clock,
6127 intel_clock_t *reduced_clock)
6128 {
6129 struct drm_device *dev = crtc->dev;
6130 struct drm_i915_private *dev_priv = dev->dev_private;
6131 struct intel_encoder *intel_encoder;
6132 int refclk;
6133 const intel_limit_t *limit;
6134 bool ret, is_lvds = false;
6135
6136 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6137 switch (intel_encoder->type) {
6138 case INTEL_OUTPUT_LVDS:
6139 is_lvds = true;
6140 break;
6141 }
6142 }
6143
6144 refclk = ironlake_get_refclk(crtc);
6145
6146 /*
6147 * Returns a set of divisors for the desired target clock with the given
6148 * refclk, or FALSE. The returned values represent the clock equation:
6149 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6150 */
6151 limit = intel_limit(crtc, refclk);
6152 ret = dev_priv->display.find_dpll(limit, crtc,
6153 to_intel_crtc(crtc)->config.port_clock,
6154 refclk, NULL, clock);
6155 if (!ret)
6156 return false;
6157
6158 if (is_lvds && dev_priv->lvds_downclock_avail) {
6159 /*
6160 * Ensure we match the reduced clock's P to the target clock.
6161 * If the clocks don't match, we can't switch the display clock
6162 * by using the FP0/FP1. In such case we will disable the LVDS
6163 * downclock feature.
6164 */
6165 *has_reduced_clock =
6166 dev_priv->display.find_dpll(limit, crtc,
6167 dev_priv->lvds_downclock,
6168 refclk, clock,
6169 reduced_clock);
6170 }
6171
6172 return true;
6173 }
6174
6175 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6176 {
6177 /*
6178 * Account for spread spectrum to avoid
6179 * oversubscribing the link. Max center spread
6180 * is 2.5%; use 5% for safety's sake.
6181 */
6182 u32 bps = target_clock * bpp * 21 / 20;
6183 return bps / (link_bw * 8) + 1;
6184 }
6185
6186 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6187 {
6188 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6189 }
6190
6191 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6192 u32 *fp,
6193 intel_clock_t *reduced_clock, u32 *fp2)
6194 {
6195 struct drm_crtc *crtc = &intel_crtc->base;
6196 struct drm_device *dev = crtc->dev;
6197 struct drm_i915_private *dev_priv = dev->dev_private;
6198 struct intel_encoder *intel_encoder;
6199 uint32_t dpll;
6200 int factor, num_connectors = 0;
6201 bool is_lvds = false, is_sdvo = false;
6202
6203 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6204 switch (intel_encoder->type) {
6205 case INTEL_OUTPUT_LVDS:
6206 is_lvds = true;
6207 break;
6208 case INTEL_OUTPUT_SDVO:
6209 case INTEL_OUTPUT_HDMI:
6210 is_sdvo = true;
6211 break;
6212 }
6213
6214 num_connectors++;
6215 }
6216
6217 /* Enable autotuning of the PLL clock (if permissible) */
6218 factor = 21;
6219 if (is_lvds) {
6220 if ((intel_panel_use_ssc(dev_priv) &&
6221 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6222 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6223 factor = 25;
6224 } else if (intel_crtc->config.sdvo_tv_clock)
6225 factor = 20;
6226
6227 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6228 *fp |= FP_CB_TUNE;
6229
6230 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6231 *fp2 |= FP_CB_TUNE;
6232
6233 dpll = 0;
6234
6235 if (is_lvds)
6236 dpll |= DPLLB_MODE_LVDS;
6237 else
6238 dpll |= DPLLB_MODE_DAC_SERIAL;
6239
6240 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6241 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6242
6243 if (is_sdvo)
6244 dpll |= DPLL_SDVO_HIGH_SPEED;
6245 if (intel_crtc->config.has_dp_encoder)
6246 dpll |= DPLL_SDVO_HIGH_SPEED;
6247
6248 /* compute bitmask from p1 value */
6249 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6250 /* also FPA1 */
6251 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6252
6253 switch (intel_crtc->config.dpll.p2) {
6254 case 5:
6255 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6256 break;
6257 case 7:
6258 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6259 break;
6260 case 10:
6261 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6262 break;
6263 case 14:
6264 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6265 break;
6266 }
6267
6268 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6269 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6270 else
6271 dpll |= PLL_REF_INPUT_DREFCLK;
6272
6273 return dpll | DPLL_VCO_ENABLE;
6274 }
6275
6276 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6277 int x, int y,
6278 struct drm_framebuffer *fb)
6279 {
6280 struct drm_device *dev = crtc->dev;
6281 struct drm_i915_private *dev_priv = dev->dev_private;
6282 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6283 int pipe = intel_crtc->pipe;
6284 int plane = intel_crtc->plane;
6285 int num_connectors = 0;
6286 intel_clock_t clock, reduced_clock;
6287 u32 dpll = 0, fp = 0, fp2 = 0;
6288 bool ok, has_reduced_clock = false;
6289 bool is_lvds = false;
6290 struct intel_encoder *encoder;
6291 struct intel_shared_dpll *pll;
6292 int ret;
6293
6294 for_each_encoder_on_crtc(dev, crtc, encoder) {
6295 switch (encoder->type) {
6296 case INTEL_OUTPUT_LVDS:
6297 is_lvds = true;
6298 break;
6299 }
6300
6301 num_connectors++;
6302 }
6303
6304 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6305 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6306
6307 ok = ironlake_compute_clocks(crtc, &clock,
6308 &has_reduced_clock, &reduced_clock);
6309 if (!ok && !intel_crtc->config.clock_set) {
6310 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6311 return -EINVAL;
6312 }
6313 /* Compat-code for transition, will disappear. */
6314 if (!intel_crtc->config.clock_set) {
6315 intel_crtc->config.dpll.n = clock.n;
6316 intel_crtc->config.dpll.m1 = clock.m1;
6317 intel_crtc->config.dpll.m2 = clock.m2;
6318 intel_crtc->config.dpll.p1 = clock.p1;
6319 intel_crtc->config.dpll.p2 = clock.p2;
6320 }
6321
6322 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6323 if (intel_crtc->config.has_pch_encoder) {
6324 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6325 if (has_reduced_clock)
6326 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6327
6328 dpll = ironlake_compute_dpll(intel_crtc,
6329 &fp, &reduced_clock,
6330 has_reduced_clock ? &fp2 : NULL);
6331
6332 intel_crtc->config.dpll_hw_state.dpll = dpll;
6333 intel_crtc->config.dpll_hw_state.fp0 = fp;
6334 if (has_reduced_clock)
6335 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6336 else
6337 intel_crtc->config.dpll_hw_state.fp1 = fp;
6338
6339 pll = intel_get_shared_dpll(intel_crtc);
6340 if (pll == NULL) {
6341 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6342 pipe_name(pipe));
6343 return -EINVAL;
6344 }
6345 } else
6346 intel_put_shared_dpll(intel_crtc);
6347
6348 if (intel_crtc->config.has_dp_encoder)
6349 intel_dp_set_m_n(intel_crtc);
6350
6351 if (is_lvds && has_reduced_clock && i915_powersave)
6352 intel_crtc->lowfreq_avail = true;
6353 else
6354 intel_crtc->lowfreq_avail = false;
6355
6356 intel_set_pipe_timings(intel_crtc);
6357
6358 if (intel_crtc->config.has_pch_encoder) {
6359 intel_cpu_transcoder_set_m_n(intel_crtc,
6360 &intel_crtc->config.fdi_m_n);
6361 }
6362
6363 ironlake_set_pipeconf(crtc);
6364
6365 /* Set up the display plane register */
6366 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6367 POSTING_READ(DSPCNTR(plane));
6368
6369 ret = intel_pipe_set_base(crtc, x, y, fb);
6370
6371 return ret;
6372 }
6373
6374 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6375 struct intel_link_m_n *m_n)
6376 {
6377 struct drm_device *dev = crtc->base.dev;
6378 struct drm_i915_private *dev_priv = dev->dev_private;
6379 enum pipe pipe = crtc->pipe;
6380
6381 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6382 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6383 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6384 & ~TU_SIZE_MASK;
6385 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6386 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6387 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6388 }
6389
6390 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6391 enum transcoder transcoder,
6392 struct intel_link_m_n *m_n)
6393 {
6394 struct drm_device *dev = crtc->base.dev;
6395 struct drm_i915_private *dev_priv = dev->dev_private;
6396 enum pipe pipe = crtc->pipe;
6397
6398 if (INTEL_INFO(dev)->gen >= 5) {
6399 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6400 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6401 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6402 & ~TU_SIZE_MASK;
6403 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6404 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6405 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6406 } else {
6407 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6408 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6409 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6410 & ~TU_SIZE_MASK;
6411 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6412 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6413 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6414 }
6415 }
6416
6417 void intel_dp_get_m_n(struct intel_crtc *crtc,
6418 struct intel_crtc_config *pipe_config)
6419 {
6420 if (crtc->config.has_pch_encoder)
6421 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6422 else
6423 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6424 &pipe_config->dp_m_n);
6425 }
6426
6427 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6428 struct intel_crtc_config *pipe_config)
6429 {
6430 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6431 &pipe_config->fdi_m_n);
6432 }
6433
6434 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6435 struct intel_crtc_config *pipe_config)
6436 {
6437 struct drm_device *dev = crtc->base.dev;
6438 struct drm_i915_private *dev_priv = dev->dev_private;
6439 uint32_t tmp;
6440
6441 tmp = I915_READ(PF_CTL(crtc->pipe));
6442
6443 if (tmp & PF_ENABLE) {
6444 pipe_config->pch_pfit.enabled = true;
6445 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6446 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6447
6448 /* We currently do not free assignements of panel fitters on
6449 * ivb/hsw (since we don't use the higher upscaling modes which
6450 * differentiates them) so just WARN about this case for now. */
6451 if (IS_GEN7(dev)) {
6452 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6453 PF_PIPE_SEL_IVB(crtc->pipe));
6454 }
6455 }
6456 }
6457
6458 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6459 struct intel_crtc_config *pipe_config)
6460 {
6461 struct drm_device *dev = crtc->base.dev;
6462 struct drm_i915_private *dev_priv = dev->dev_private;
6463 uint32_t tmp;
6464
6465 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6466 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6467
6468 tmp = I915_READ(PIPECONF(crtc->pipe));
6469 if (!(tmp & PIPECONF_ENABLE))
6470 return false;
6471
6472 switch (tmp & PIPECONF_BPC_MASK) {
6473 case PIPECONF_6BPC:
6474 pipe_config->pipe_bpp = 18;
6475 break;
6476 case PIPECONF_8BPC:
6477 pipe_config->pipe_bpp = 24;
6478 break;
6479 case PIPECONF_10BPC:
6480 pipe_config->pipe_bpp = 30;
6481 break;
6482 case PIPECONF_12BPC:
6483 pipe_config->pipe_bpp = 36;
6484 break;
6485 default:
6486 break;
6487 }
6488
6489 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6490 struct intel_shared_dpll *pll;
6491
6492 pipe_config->has_pch_encoder = true;
6493
6494 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6495 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6496 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6497
6498 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6499
6500 if (HAS_PCH_IBX(dev_priv->dev)) {
6501 pipe_config->shared_dpll =
6502 (enum intel_dpll_id) crtc->pipe;
6503 } else {
6504 tmp = I915_READ(PCH_DPLL_SEL);
6505 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6506 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6507 else
6508 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6509 }
6510
6511 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6512
6513 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6514 &pipe_config->dpll_hw_state));
6515
6516 tmp = pipe_config->dpll_hw_state.dpll;
6517 pipe_config->pixel_multiplier =
6518 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6519 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6520
6521 ironlake_pch_clock_get(crtc, pipe_config);
6522 } else {
6523 pipe_config->pixel_multiplier = 1;
6524 }
6525
6526 intel_get_pipe_timings(crtc, pipe_config);
6527
6528 ironlake_get_pfit_config(crtc, pipe_config);
6529
6530 return true;
6531 }
6532
6533 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6534 {
6535 struct drm_device *dev = dev_priv->dev;
6536 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6537 struct intel_crtc *crtc;
6538 unsigned long irqflags;
6539 uint32_t val;
6540
6541 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6542 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6543 pipe_name(crtc->pipe));
6544
6545 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6546 WARN(plls->spll_refcount, "SPLL enabled\n");
6547 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6548 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6549 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6550 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6551 "CPU PWM1 enabled\n");
6552 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6553 "CPU PWM2 enabled\n");
6554 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6555 "PCH PWM1 enabled\n");
6556 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6557 "Utility pin enabled\n");
6558 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6559
6560 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6561 val = I915_READ(DEIMR);
6562 WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6563 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6564 val = I915_READ(SDEIMR);
6565 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6566 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6567 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6568 }
6569
6570 /*
6571 * This function implements pieces of two sequences from BSpec:
6572 * - Sequence for display software to disable LCPLL
6573 * - Sequence for display software to allow package C8+
6574 * The steps implemented here are just the steps that actually touch the LCPLL
6575 * register. Callers should take care of disabling all the display engine
6576 * functions, doing the mode unset, fixing interrupts, etc.
6577 */
6578 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6579 bool switch_to_fclk, bool allow_power_down)
6580 {
6581 uint32_t val;
6582
6583 assert_can_disable_lcpll(dev_priv);
6584
6585 val = I915_READ(LCPLL_CTL);
6586
6587 if (switch_to_fclk) {
6588 val |= LCPLL_CD_SOURCE_FCLK;
6589 I915_WRITE(LCPLL_CTL, val);
6590
6591 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6592 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6593 DRM_ERROR("Switching to FCLK failed\n");
6594
6595 val = I915_READ(LCPLL_CTL);
6596 }
6597
6598 val |= LCPLL_PLL_DISABLE;
6599 I915_WRITE(LCPLL_CTL, val);
6600 POSTING_READ(LCPLL_CTL);
6601
6602 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6603 DRM_ERROR("LCPLL still locked\n");
6604
6605 val = I915_READ(D_COMP);
6606 val |= D_COMP_COMP_DISABLE;
6607 mutex_lock(&dev_priv->rps.hw_lock);
6608 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6609 DRM_ERROR("Failed to disable D_COMP\n");
6610 mutex_unlock(&dev_priv->rps.hw_lock);
6611 POSTING_READ(D_COMP);
6612 ndelay(100);
6613
6614 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6615 DRM_ERROR("D_COMP RCOMP still in progress\n");
6616
6617 if (allow_power_down) {
6618 val = I915_READ(LCPLL_CTL);
6619 val |= LCPLL_POWER_DOWN_ALLOW;
6620 I915_WRITE(LCPLL_CTL, val);
6621 POSTING_READ(LCPLL_CTL);
6622 }
6623 }
6624
6625 /*
6626 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6627 * source.
6628 */
6629 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6630 {
6631 uint32_t val;
6632
6633 val = I915_READ(LCPLL_CTL);
6634
6635 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6636 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6637 return;
6638
6639 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6640 * we'll hang the machine! */
6641 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6642
6643 if (val & LCPLL_POWER_DOWN_ALLOW) {
6644 val &= ~LCPLL_POWER_DOWN_ALLOW;
6645 I915_WRITE(LCPLL_CTL, val);
6646 POSTING_READ(LCPLL_CTL);
6647 }
6648
6649 val = I915_READ(D_COMP);
6650 val |= D_COMP_COMP_FORCE;
6651 val &= ~D_COMP_COMP_DISABLE;
6652 mutex_lock(&dev_priv->rps.hw_lock);
6653 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6654 DRM_ERROR("Failed to enable D_COMP\n");
6655 mutex_unlock(&dev_priv->rps.hw_lock);
6656 POSTING_READ(D_COMP);
6657
6658 val = I915_READ(LCPLL_CTL);
6659 val &= ~LCPLL_PLL_DISABLE;
6660 I915_WRITE(LCPLL_CTL, val);
6661
6662 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6663 DRM_ERROR("LCPLL not locked yet\n");
6664
6665 if (val & LCPLL_CD_SOURCE_FCLK) {
6666 val = I915_READ(LCPLL_CTL);
6667 val &= ~LCPLL_CD_SOURCE_FCLK;
6668 I915_WRITE(LCPLL_CTL, val);
6669
6670 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6671 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6672 DRM_ERROR("Switching back to LCPLL failed\n");
6673 }
6674
6675 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6676 }
6677
6678 void hsw_enable_pc8_work(struct work_struct *__work)
6679 {
6680 struct drm_i915_private *dev_priv =
6681 container_of(to_delayed_work(__work), struct drm_i915_private,
6682 pc8.enable_work);
6683 struct drm_device *dev = dev_priv->dev;
6684 uint32_t val;
6685
6686 WARN_ON(!HAS_PC8(dev));
6687
6688 if (dev_priv->pc8.enabled)
6689 return;
6690
6691 DRM_DEBUG_KMS("Enabling package C8+\n");
6692
6693 dev_priv->pc8.enabled = true;
6694
6695 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6696 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6697 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6698 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6699 }
6700
6701 lpt_disable_clkout_dp(dev);
6702 hsw_pc8_disable_interrupts(dev);
6703 hsw_disable_lcpll(dev_priv, true, true);
6704
6705 intel_runtime_pm_put(dev_priv);
6706 }
6707
6708 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6709 {
6710 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6711 WARN(dev_priv->pc8.disable_count < 1,
6712 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6713
6714 dev_priv->pc8.disable_count--;
6715 if (dev_priv->pc8.disable_count != 0)
6716 return;
6717
6718 schedule_delayed_work(&dev_priv->pc8.enable_work,
6719 msecs_to_jiffies(i915_pc8_timeout));
6720 }
6721
6722 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6723 {
6724 struct drm_device *dev = dev_priv->dev;
6725 uint32_t val;
6726
6727 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6728 WARN(dev_priv->pc8.disable_count < 0,
6729 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6730
6731 dev_priv->pc8.disable_count++;
6732 if (dev_priv->pc8.disable_count != 1)
6733 return;
6734
6735 WARN_ON(!HAS_PC8(dev));
6736
6737 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6738 if (!dev_priv->pc8.enabled)
6739 return;
6740
6741 DRM_DEBUG_KMS("Disabling package C8+\n");
6742
6743 intel_runtime_pm_get(dev_priv);
6744
6745 hsw_restore_lcpll(dev_priv);
6746 hsw_pc8_restore_interrupts(dev);
6747 lpt_init_pch_refclk(dev);
6748
6749 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6750 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6751 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6752 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6753 }
6754
6755 intel_prepare_ddi(dev);
6756 i915_gem_init_swizzling(dev);
6757 mutex_lock(&dev_priv->rps.hw_lock);
6758 gen6_update_ring_freq(dev);
6759 mutex_unlock(&dev_priv->rps.hw_lock);
6760 dev_priv->pc8.enabled = false;
6761 }
6762
6763 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6764 {
6765 if (!HAS_PC8(dev_priv->dev))
6766 return;
6767
6768 mutex_lock(&dev_priv->pc8.lock);
6769 __hsw_enable_package_c8(dev_priv);
6770 mutex_unlock(&dev_priv->pc8.lock);
6771 }
6772
6773 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6774 {
6775 if (!HAS_PC8(dev_priv->dev))
6776 return;
6777
6778 mutex_lock(&dev_priv->pc8.lock);
6779 __hsw_disable_package_c8(dev_priv);
6780 mutex_unlock(&dev_priv->pc8.lock);
6781 }
6782
6783 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6784 {
6785 struct drm_device *dev = dev_priv->dev;
6786 struct intel_crtc *crtc;
6787 uint32_t val;
6788
6789 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6790 if (crtc->base.enabled)
6791 return false;
6792
6793 /* This case is still possible since we have the i915.disable_power_well
6794 * parameter and also the KVMr or something else might be requesting the
6795 * power well. */
6796 val = I915_READ(HSW_PWR_WELL_DRIVER);
6797 if (val != 0) {
6798 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6799 return false;
6800 }
6801
6802 return true;
6803 }
6804
6805 /* Since we're called from modeset_global_resources there's no way to
6806 * symmetrically increase and decrease the refcount, so we use
6807 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6808 * or not.
6809 */
6810 static void hsw_update_package_c8(struct drm_device *dev)
6811 {
6812 struct drm_i915_private *dev_priv = dev->dev_private;
6813 bool allow;
6814
6815 if (!HAS_PC8(dev_priv->dev))
6816 return;
6817
6818 if (!i915_enable_pc8)
6819 return;
6820
6821 mutex_lock(&dev_priv->pc8.lock);
6822
6823 allow = hsw_can_enable_package_c8(dev_priv);
6824
6825 if (allow == dev_priv->pc8.requirements_met)
6826 goto done;
6827
6828 dev_priv->pc8.requirements_met = allow;
6829
6830 if (allow)
6831 __hsw_enable_package_c8(dev_priv);
6832 else
6833 __hsw_disable_package_c8(dev_priv);
6834
6835 done:
6836 mutex_unlock(&dev_priv->pc8.lock);
6837 }
6838
6839 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6840 {
6841 if (!HAS_PC8(dev_priv->dev))
6842 return;
6843
6844 mutex_lock(&dev_priv->pc8.lock);
6845 if (!dev_priv->pc8.gpu_idle) {
6846 dev_priv->pc8.gpu_idle = true;
6847 __hsw_enable_package_c8(dev_priv);
6848 }
6849 mutex_unlock(&dev_priv->pc8.lock);
6850 }
6851
6852 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6853 {
6854 if (!HAS_PC8(dev_priv->dev))
6855 return;
6856
6857 mutex_lock(&dev_priv->pc8.lock);
6858 if (dev_priv->pc8.gpu_idle) {
6859 dev_priv->pc8.gpu_idle = false;
6860 __hsw_disable_package_c8(dev_priv);
6861 }
6862 mutex_unlock(&dev_priv->pc8.lock);
6863 }
6864
6865 #define for_each_power_domain(domain, mask) \
6866 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
6867 if ((1 << (domain)) & (mask))
6868
6869 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6870 enum pipe pipe, bool pfit_enabled)
6871 {
6872 unsigned long mask;
6873 enum transcoder transcoder;
6874
6875 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6876
6877 mask = BIT(POWER_DOMAIN_PIPE(pipe));
6878 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6879 if (pfit_enabled)
6880 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6881
6882 return mask;
6883 }
6884
6885 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6886 {
6887 struct drm_i915_private *dev_priv = dev->dev_private;
6888
6889 if (dev_priv->power_domains.init_power_on == enable)
6890 return;
6891
6892 if (enable)
6893 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6894 else
6895 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6896
6897 dev_priv->power_domains.init_power_on = enable;
6898 }
6899
6900 static void modeset_update_power_wells(struct drm_device *dev)
6901 {
6902 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6903 struct intel_crtc *crtc;
6904
6905 /*
6906 * First get all needed power domains, then put all unneeded, to avoid
6907 * any unnecessary toggling of the power wells.
6908 */
6909 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6910 enum intel_display_power_domain domain;
6911
6912 if (!crtc->base.enabled)
6913 continue;
6914
6915 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6916 crtc->pipe,
6917 crtc->config.pch_pfit.enabled);
6918
6919 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6920 intel_display_power_get(dev, domain);
6921 }
6922
6923 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6924 enum intel_display_power_domain domain;
6925
6926 for_each_power_domain(domain, crtc->enabled_power_domains)
6927 intel_display_power_put(dev, domain);
6928
6929 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6930 }
6931
6932 intel_display_set_init_power(dev, false);
6933 }
6934
6935 static void haswell_modeset_global_resources(struct drm_device *dev)
6936 {
6937 modeset_update_power_wells(dev);
6938 hsw_update_package_c8(dev);
6939 }
6940
6941 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6942 int x, int y,
6943 struct drm_framebuffer *fb)
6944 {
6945 struct drm_device *dev = crtc->dev;
6946 struct drm_i915_private *dev_priv = dev->dev_private;
6947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6948 int plane = intel_crtc->plane;
6949 int ret;
6950
6951 if (!intel_ddi_pll_select(intel_crtc))
6952 return -EINVAL;
6953 intel_ddi_pll_enable(intel_crtc);
6954
6955 if (intel_crtc->config.has_dp_encoder)
6956 intel_dp_set_m_n(intel_crtc);
6957
6958 intel_crtc->lowfreq_avail = false;
6959
6960 intel_set_pipe_timings(intel_crtc);
6961
6962 if (intel_crtc->config.has_pch_encoder) {
6963 intel_cpu_transcoder_set_m_n(intel_crtc,
6964 &intel_crtc->config.fdi_m_n);
6965 }
6966
6967 haswell_set_pipeconf(crtc);
6968
6969 intel_set_pipe_csc(crtc);
6970
6971 /* Set up the display plane register */
6972 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6973 POSTING_READ(DSPCNTR(plane));
6974
6975 ret = intel_pipe_set_base(crtc, x, y, fb);
6976
6977 return ret;
6978 }
6979
6980 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6981 struct intel_crtc_config *pipe_config)
6982 {
6983 struct drm_device *dev = crtc->base.dev;
6984 struct drm_i915_private *dev_priv = dev->dev_private;
6985 enum intel_display_power_domain pfit_domain;
6986 uint32_t tmp;
6987
6988 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6989 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6990
6991 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6992 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6993 enum pipe trans_edp_pipe;
6994 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6995 default:
6996 WARN(1, "unknown pipe linked to edp transcoder\n");
6997 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6998 case TRANS_DDI_EDP_INPUT_A_ON:
6999 trans_edp_pipe = PIPE_A;
7000 break;
7001 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7002 trans_edp_pipe = PIPE_B;
7003 break;
7004 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7005 trans_edp_pipe = PIPE_C;
7006 break;
7007 }
7008
7009 if (trans_edp_pipe == crtc->pipe)
7010 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7011 }
7012
7013 if (!intel_display_power_enabled(dev,
7014 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7015 return false;
7016
7017 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7018 if (!(tmp & PIPECONF_ENABLE))
7019 return false;
7020
7021 /*
7022 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7023 * DDI E. So just check whether this pipe is wired to DDI E and whether
7024 * the PCH transcoder is on.
7025 */
7026 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7027 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7028 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7029 pipe_config->has_pch_encoder = true;
7030
7031 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7032 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7033 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7034
7035 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7036 }
7037
7038 intel_get_pipe_timings(crtc, pipe_config);
7039
7040 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7041 if (intel_display_power_enabled(dev, pfit_domain))
7042 ironlake_get_pfit_config(crtc, pipe_config);
7043
7044 if (IS_HASWELL(dev))
7045 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7046 (I915_READ(IPS_CTL) & IPS_ENABLE);
7047
7048 pipe_config->pixel_multiplier = 1;
7049
7050 return true;
7051 }
7052
7053 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7054 int x, int y,
7055 struct drm_framebuffer *fb)
7056 {
7057 struct drm_device *dev = crtc->dev;
7058 struct drm_i915_private *dev_priv = dev->dev_private;
7059 struct intel_encoder *encoder;
7060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7061 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7062 int pipe = intel_crtc->pipe;
7063 int ret;
7064
7065 drm_vblank_pre_modeset(dev, pipe);
7066
7067 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7068
7069 drm_vblank_post_modeset(dev, pipe);
7070
7071 if (ret != 0)
7072 return ret;
7073
7074 for_each_encoder_on_crtc(dev, crtc, encoder) {
7075 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7076 encoder->base.base.id,
7077 drm_get_encoder_name(&encoder->base),
7078 mode->base.id, mode->name);
7079 encoder->mode_set(encoder);
7080 }
7081
7082 return 0;
7083 }
7084
7085 static struct {
7086 int clock;
7087 u32 config;
7088 } hdmi_audio_clock[] = {
7089 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7090 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7091 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7092 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7093 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7094 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7095 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7096 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7097 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7098 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7099 };
7100
7101 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7102 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7103 {
7104 int i;
7105
7106 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7107 if (mode->clock == hdmi_audio_clock[i].clock)
7108 break;
7109 }
7110
7111 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7112 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7113 i = 1;
7114 }
7115
7116 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7117 hdmi_audio_clock[i].clock,
7118 hdmi_audio_clock[i].config);
7119
7120 return hdmi_audio_clock[i].config;
7121 }
7122
7123 static bool intel_eld_uptodate(struct drm_connector *connector,
7124 int reg_eldv, uint32_t bits_eldv,
7125 int reg_elda, uint32_t bits_elda,
7126 int reg_edid)
7127 {
7128 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7129 uint8_t *eld = connector->eld;
7130 uint32_t i;
7131
7132 i = I915_READ(reg_eldv);
7133 i &= bits_eldv;
7134
7135 if (!eld[0])
7136 return !i;
7137
7138 if (!i)
7139 return false;
7140
7141 i = I915_READ(reg_elda);
7142 i &= ~bits_elda;
7143 I915_WRITE(reg_elda, i);
7144
7145 for (i = 0; i < eld[2]; i++)
7146 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7147 return false;
7148
7149 return true;
7150 }
7151
7152 static void g4x_write_eld(struct drm_connector *connector,
7153 struct drm_crtc *crtc,
7154 struct drm_display_mode *mode)
7155 {
7156 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7157 uint8_t *eld = connector->eld;
7158 uint32_t eldv;
7159 uint32_t len;
7160 uint32_t i;
7161
7162 i = I915_READ(G4X_AUD_VID_DID);
7163
7164 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7165 eldv = G4X_ELDV_DEVCL_DEVBLC;
7166 else
7167 eldv = G4X_ELDV_DEVCTG;
7168
7169 if (intel_eld_uptodate(connector,
7170 G4X_AUD_CNTL_ST, eldv,
7171 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7172 G4X_HDMIW_HDMIEDID))
7173 return;
7174
7175 i = I915_READ(G4X_AUD_CNTL_ST);
7176 i &= ~(eldv | G4X_ELD_ADDR);
7177 len = (i >> 9) & 0x1f; /* ELD buffer size */
7178 I915_WRITE(G4X_AUD_CNTL_ST, i);
7179
7180 if (!eld[0])
7181 return;
7182
7183 len = min_t(uint8_t, eld[2], len);
7184 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7185 for (i = 0; i < len; i++)
7186 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7187
7188 i = I915_READ(G4X_AUD_CNTL_ST);
7189 i |= eldv;
7190 I915_WRITE(G4X_AUD_CNTL_ST, i);
7191 }
7192
7193 static void haswell_write_eld(struct drm_connector *connector,
7194 struct drm_crtc *crtc,
7195 struct drm_display_mode *mode)
7196 {
7197 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7198 uint8_t *eld = connector->eld;
7199 struct drm_device *dev = crtc->dev;
7200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7201 uint32_t eldv;
7202 uint32_t i;
7203 int len;
7204 int pipe = to_intel_crtc(crtc)->pipe;
7205 int tmp;
7206
7207 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7208 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7209 int aud_config = HSW_AUD_CFG(pipe);
7210 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7211
7212
7213 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7214
7215 /* Audio output enable */
7216 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7217 tmp = I915_READ(aud_cntrl_st2);
7218 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7219 I915_WRITE(aud_cntrl_st2, tmp);
7220
7221 /* Wait for 1 vertical blank */
7222 intel_wait_for_vblank(dev, pipe);
7223
7224 /* Set ELD valid state */
7225 tmp = I915_READ(aud_cntrl_st2);
7226 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7227 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7228 I915_WRITE(aud_cntrl_st2, tmp);
7229 tmp = I915_READ(aud_cntrl_st2);
7230 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7231
7232 /* Enable HDMI mode */
7233 tmp = I915_READ(aud_config);
7234 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7235 /* clear N_programing_enable and N_value_index */
7236 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7237 I915_WRITE(aud_config, tmp);
7238
7239 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7240
7241 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7242 intel_crtc->eld_vld = true;
7243
7244 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7245 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7246 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7247 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7248 } else {
7249 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7250 }
7251
7252 if (intel_eld_uptodate(connector,
7253 aud_cntrl_st2, eldv,
7254 aud_cntl_st, IBX_ELD_ADDRESS,
7255 hdmiw_hdmiedid))
7256 return;
7257
7258 i = I915_READ(aud_cntrl_st2);
7259 i &= ~eldv;
7260 I915_WRITE(aud_cntrl_st2, i);
7261
7262 if (!eld[0])
7263 return;
7264
7265 i = I915_READ(aud_cntl_st);
7266 i &= ~IBX_ELD_ADDRESS;
7267 I915_WRITE(aud_cntl_st, i);
7268 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7269 DRM_DEBUG_DRIVER("port num:%d\n", i);
7270
7271 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7272 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7273 for (i = 0; i < len; i++)
7274 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7275
7276 i = I915_READ(aud_cntrl_st2);
7277 i |= eldv;
7278 I915_WRITE(aud_cntrl_st2, i);
7279
7280 }
7281
7282 static void ironlake_write_eld(struct drm_connector *connector,
7283 struct drm_crtc *crtc,
7284 struct drm_display_mode *mode)
7285 {
7286 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7287 uint8_t *eld = connector->eld;
7288 uint32_t eldv;
7289 uint32_t i;
7290 int len;
7291 int hdmiw_hdmiedid;
7292 int aud_config;
7293 int aud_cntl_st;
7294 int aud_cntrl_st2;
7295 int pipe = to_intel_crtc(crtc)->pipe;
7296
7297 if (HAS_PCH_IBX(connector->dev)) {
7298 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7299 aud_config = IBX_AUD_CFG(pipe);
7300 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7301 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7302 } else if (IS_VALLEYVIEW(connector->dev)) {
7303 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7304 aud_config = VLV_AUD_CFG(pipe);
7305 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7306 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7307 } else {
7308 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7309 aud_config = CPT_AUD_CFG(pipe);
7310 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7311 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7312 }
7313
7314 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7315
7316 if (IS_VALLEYVIEW(connector->dev)) {
7317 struct intel_encoder *intel_encoder;
7318 struct intel_digital_port *intel_dig_port;
7319
7320 intel_encoder = intel_attached_encoder(connector);
7321 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7322 i = intel_dig_port->port;
7323 } else {
7324 i = I915_READ(aud_cntl_st);
7325 i = (i >> 29) & DIP_PORT_SEL_MASK;
7326 /* DIP_Port_Select, 0x1 = PortB */
7327 }
7328
7329 if (!i) {
7330 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7331 /* operate blindly on all ports */
7332 eldv = IBX_ELD_VALIDB;
7333 eldv |= IBX_ELD_VALIDB << 4;
7334 eldv |= IBX_ELD_VALIDB << 8;
7335 } else {
7336 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7337 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7338 }
7339
7340 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7341 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7342 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7343 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7344 } else {
7345 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7346 }
7347
7348 if (intel_eld_uptodate(connector,
7349 aud_cntrl_st2, eldv,
7350 aud_cntl_st, IBX_ELD_ADDRESS,
7351 hdmiw_hdmiedid))
7352 return;
7353
7354 i = I915_READ(aud_cntrl_st2);
7355 i &= ~eldv;
7356 I915_WRITE(aud_cntrl_st2, i);
7357
7358 if (!eld[0])
7359 return;
7360
7361 i = I915_READ(aud_cntl_st);
7362 i &= ~IBX_ELD_ADDRESS;
7363 I915_WRITE(aud_cntl_st, i);
7364
7365 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7366 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7367 for (i = 0; i < len; i++)
7368 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7369
7370 i = I915_READ(aud_cntrl_st2);
7371 i |= eldv;
7372 I915_WRITE(aud_cntrl_st2, i);
7373 }
7374
7375 void intel_write_eld(struct drm_encoder *encoder,
7376 struct drm_display_mode *mode)
7377 {
7378 struct drm_crtc *crtc = encoder->crtc;
7379 struct drm_connector *connector;
7380 struct drm_device *dev = encoder->dev;
7381 struct drm_i915_private *dev_priv = dev->dev_private;
7382
7383 connector = drm_select_eld(encoder, mode);
7384 if (!connector)
7385 return;
7386
7387 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7388 connector->base.id,
7389 drm_get_connector_name(connector),
7390 connector->encoder->base.id,
7391 drm_get_encoder_name(connector->encoder));
7392
7393 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7394
7395 if (dev_priv->display.write_eld)
7396 dev_priv->display.write_eld(connector, crtc, mode);
7397 }
7398
7399 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7400 {
7401 struct drm_device *dev = crtc->dev;
7402 struct drm_i915_private *dev_priv = dev->dev_private;
7403 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7404 bool visible = base != 0;
7405 u32 cntl;
7406
7407 if (intel_crtc->cursor_visible == visible)
7408 return;
7409
7410 cntl = I915_READ(_CURACNTR);
7411 if (visible) {
7412 /* On these chipsets we can only modify the base whilst
7413 * the cursor is disabled.
7414 */
7415 I915_WRITE(_CURABASE, base);
7416
7417 cntl &= ~(CURSOR_FORMAT_MASK);
7418 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7419 cntl |= CURSOR_ENABLE |
7420 CURSOR_GAMMA_ENABLE |
7421 CURSOR_FORMAT_ARGB;
7422 } else
7423 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7424 I915_WRITE(_CURACNTR, cntl);
7425
7426 intel_crtc->cursor_visible = visible;
7427 }
7428
7429 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7430 {
7431 struct drm_device *dev = crtc->dev;
7432 struct drm_i915_private *dev_priv = dev->dev_private;
7433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7434 int pipe = intel_crtc->pipe;
7435 bool visible = base != 0;
7436
7437 if (intel_crtc->cursor_visible != visible) {
7438 uint32_t cntl = I915_READ(CURCNTR(pipe));
7439 if (base) {
7440 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7441 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7442 cntl |= pipe << 28; /* Connect to correct pipe */
7443 } else {
7444 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7445 cntl |= CURSOR_MODE_DISABLE;
7446 }
7447 I915_WRITE(CURCNTR(pipe), cntl);
7448
7449 intel_crtc->cursor_visible = visible;
7450 }
7451 /* and commit changes on next vblank */
7452 POSTING_READ(CURCNTR(pipe));
7453 I915_WRITE(CURBASE(pipe), base);
7454 POSTING_READ(CURBASE(pipe));
7455 }
7456
7457 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7458 {
7459 struct drm_device *dev = crtc->dev;
7460 struct drm_i915_private *dev_priv = dev->dev_private;
7461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7462 int pipe = intel_crtc->pipe;
7463 bool visible = base != 0;
7464
7465 if (intel_crtc->cursor_visible != visible) {
7466 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7467 if (base) {
7468 cntl &= ~CURSOR_MODE;
7469 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7470 } else {
7471 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7472 cntl |= CURSOR_MODE_DISABLE;
7473 }
7474 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7475 cntl |= CURSOR_PIPE_CSC_ENABLE;
7476 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7477 }
7478 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7479
7480 intel_crtc->cursor_visible = visible;
7481 }
7482 /* and commit changes on next vblank */
7483 POSTING_READ(CURCNTR_IVB(pipe));
7484 I915_WRITE(CURBASE_IVB(pipe), base);
7485 POSTING_READ(CURBASE_IVB(pipe));
7486 }
7487
7488 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7489 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7490 bool on)
7491 {
7492 struct drm_device *dev = crtc->dev;
7493 struct drm_i915_private *dev_priv = dev->dev_private;
7494 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7495 int pipe = intel_crtc->pipe;
7496 int x = intel_crtc->cursor_x;
7497 int y = intel_crtc->cursor_y;
7498 u32 base = 0, pos = 0;
7499 bool visible;
7500
7501 if (on)
7502 base = intel_crtc->cursor_addr;
7503
7504 if (x >= intel_crtc->config.pipe_src_w)
7505 base = 0;
7506
7507 if (y >= intel_crtc->config.pipe_src_h)
7508 base = 0;
7509
7510 if (x < 0) {
7511 if (x + intel_crtc->cursor_width <= 0)
7512 base = 0;
7513
7514 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7515 x = -x;
7516 }
7517 pos |= x << CURSOR_X_SHIFT;
7518
7519 if (y < 0) {
7520 if (y + intel_crtc->cursor_height <= 0)
7521 base = 0;
7522
7523 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7524 y = -y;
7525 }
7526 pos |= y << CURSOR_Y_SHIFT;
7527
7528 visible = base != 0;
7529 if (!visible && !intel_crtc->cursor_visible)
7530 return;
7531
7532 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7533 I915_WRITE(CURPOS_IVB(pipe), pos);
7534 ivb_update_cursor(crtc, base);
7535 } else {
7536 I915_WRITE(CURPOS(pipe), pos);
7537 if (IS_845G(dev) || IS_I865G(dev))
7538 i845_update_cursor(crtc, base);
7539 else
7540 i9xx_update_cursor(crtc, base);
7541 }
7542 }
7543
7544 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7545 struct drm_file *file,
7546 uint32_t handle,
7547 uint32_t width, uint32_t height)
7548 {
7549 struct drm_device *dev = crtc->dev;
7550 struct drm_i915_private *dev_priv = dev->dev_private;
7551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7552 struct drm_i915_gem_object *obj;
7553 uint32_t addr;
7554 int ret;
7555
7556 /* if we want to turn off the cursor ignore width and height */
7557 if (!handle) {
7558 DRM_DEBUG_KMS("cursor off\n");
7559 addr = 0;
7560 obj = NULL;
7561 mutex_lock(&dev->struct_mutex);
7562 goto finish;
7563 }
7564
7565 /* Currently we only support 64x64 cursors */
7566 if (width != 64 || height != 64) {
7567 DRM_ERROR("we currently only support 64x64 cursors\n");
7568 return -EINVAL;
7569 }
7570
7571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7572 if (&obj->base == NULL)
7573 return -ENOENT;
7574
7575 if (obj->base.size < width * height * 4) {
7576 DRM_ERROR("buffer is to small\n");
7577 ret = -ENOMEM;
7578 goto fail;
7579 }
7580
7581 /* we only need to pin inside GTT if cursor is non-phy */
7582 mutex_lock(&dev->struct_mutex);
7583 if (!dev_priv->info->cursor_needs_physical) {
7584 unsigned alignment;
7585
7586 if (obj->tiling_mode) {
7587 DRM_ERROR("cursor cannot be tiled\n");
7588 ret = -EINVAL;
7589 goto fail_locked;
7590 }
7591
7592 /* Note that the w/a also requires 2 PTE of padding following
7593 * the bo. We currently fill all unused PTE with the shadow
7594 * page and so we should always have valid PTE following the
7595 * cursor preventing the VT-d warning.
7596 */
7597 alignment = 0;
7598 if (need_vtd_wa(dev))
7599 alignment = 64*1024;
7600
7601 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7602 if (ret) {
7603 DRM_ERROR("failed to move cursor bo into the GTT\n");
7604 goto fail_locked;
7605 }
7606
7607 ret = i915_gem_object_put_fence(obj);
7608 if (ret) {
7609 DRM_ERROR("failed to release fence for cursor");
7610 goto fail_unpin;
7611 }
7612
7613 addr = i915_gem_obj_ggtt_offset(obj);
7614 } else {
7615 int align = IS_I830(dev) ? 16 * 1024 : 256;
7616 ret = i915_gem_attach_phys_object(dev, obj,
7617 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7618 align);
7619 if (ret) {
7620 DRM_ERROR("failed to attach phys object\n");
7621 goto fail_locked;
7622 }
7623 addr = obj->phys_obj->handle->busaddr;
7624 }
7625
7626 if (IS_GEN2(dev))
7627 I915_WRITE(CURSIZE, (height << 12) | width);
7628
7629 finish:
7630 if (intel_crtc->cursor_bo) {
7631 if (dev_priv->info->cursor_needs_physical) {
7632 if (intel_crtc->cursor_bo != obj)
7633 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7634 } else
7635 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7636 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7637 }
7638
7639 mutex_unlock(&dev->struct_mutex);
7640
7641 intel_crtc->cursor_addr = addr;
7642 intel_crtc->cursor_bo = obj;
7643 intel_crtc->cursor_width = width;
7644 intel_crtc->cursor_height = height;
7645
7646 if (intel_crtc->active)
7647 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7648
7649 return 0;
7650 fail_unpin:
7651 i915_gem_object_unpin_from_display_plane(obj);
7652 fail_locked:
7653 mutex_unlock(&dev->struct_mutex);
7654 fail:
7655 drm_gem_object_unreference_unlocked(&obj->base);
7656 return ret;
7657 }
7658
7659 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7660 {
7661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7662
7663 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7664 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7665
7666 if (intel_crtc->active)
7667 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7668
7669 return 0;
7670 }
7671
7672 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7673 u16 *blue, uint32_t start, uint32_t size)
7674 {
7675 int end = (start + size > 256) ? 256 : start + size, i;
7676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7677
7678 for (i = start; i < end; i++) {
7679 intel_crtc->lut_r[i] = red[i] >> 8;
7680 intel_crtc->lut_g[i] = green[i] >> 8;
7681 intel_crtc->lut_b[i] = blue[i] >> 8;
7682 }
7683
7684 intel_crtc_load_lut(crtc);
7685 }
7686
7687 /* VESA 640x480x72Hz mode to set on the pipe */
7688 static struct drm_display_mode load_detect_mode = {
7689 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7690 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7691 };
7692
7693 static struct drm_framebuffer *
7694 intel_framebuffer_create(struct drm_device *dev,
7695 struct drm_mode_fb_cmd2 *mode_cmd,
7696 struct drm_i915_gem_object *obj)
7697 {
7698 struct intel_framebuffer *intel_fb;
7699 int ret;
7700
7701 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7702 if (!intel_fb) {
7703 drm_gem_object_unreference_unlocked(&obj->base);
7704 return ERR_PTR(-ENOMEM);
7705 }
7706
7707 ret = i915_mutex_lock_interruptible(dev);
7708 if (ret)
7709 goto err;
7710
7711 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7712 mutex_unlock(&dev->struct_mutex);
7713 if (ret)
7714 goto err;
7715
7716 return &intel_fb->base;
7717 err:
7718 drm_gem_object_unreference_unlocked(&obj->base);
7719 kfree(intel_fb);
7720
7721 return ERR_PTR(ret);
7722 }
7723
7724 static u32
7725 intel_framebuffer_pitch_for_width(int width, int bpp)
7726 {
7727 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7728 return ALIGN(pitch, 64);
7729 }
7730
7731 static u32
7732 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7733 {
7734 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7735 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7736 }
7737
7738 static struct drm_framebuffer *
7739 intel_framebuffer_create_for_mode(struct drm_device *dev,
7740 struct drm_display_mode *mode,
7741 int depth, int bpp)
7742 {
7743 struct drm_i915_gem_object *obj;
7744 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7745
7746 obj = i915_gem_alloc_object(dev,
7747 intel_framebuffer_size_for_mode(mode, bpp));
7748 if (obj == NULL)
7749 return ERR_PTR(-ENOMEM);
7750
7751 mode_cmd.width = mode->hdisplay;
7752 mode_cmd.height = mode->vdisplay;
7753 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7754 bpp);
7755 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7756
7757 return intel_framebuffer_create(dev, &mode_cmd, obj);
7758 }
7759
7760 static struct drm_framebuffer *
7761 mode_fits_in_fbdev(struct drm_device *dev,
7762 struct drm_display_mode *mode)
7763 {
7764 #ifdef CONFIG_DRM_I915_FBDEV
7765 struct drm_i915_private *dev_priv = dev->dev_private;
7766 struct drm_i915_gem_object *obj;
7767 struct drm_framebuffer *fb;
7768
7769 if (dev_priv->fbdev == NULL)
7770 return NULL;
7771
7772 obj = dev_priv->fbdev->ifb.obj;
7773 if (obj == NULL)
7774 return NULL;
7775
7776 fb = &dev_priv->fbdev->ifb.base;
7777 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7778 fb->bits_per_pixel))
7779 return NULL;
7780
7781 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7782 return NULL;
7783
7784 return fb;
7785 #else
7786 return NULL;
7787 #endif
7788 }
7789
7790 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7791 struct drm_display_mode *mode,
7792 struct intel_load_detect_pipe *old)
7793 {
7794 struct intel_crtc *intel_crtc;
7795 struct intel_encoder *intel_encoder =
7796 intel_attached_encoder(connector);
7797 struct drm_crtc *possible_crtc;
7798 struct drm_encoder *encoder = &intel_encoder->base;
7799 struct drm_crtc *crtc = NULL;
7800 struct drm_device *dev = encoder->dev;
7801 struct drm_framebuffer *fb;
7802 int i = -1;
7803
7804 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7805 connector->base.id, drm_get_connector_name(connector),
7806 encoder->base.id, drm_get_encoder_name(encoder));
7807
7808 /*
7809 * Algorithm gets a little messy:
7810 *
7811 * - if the connector already has an assigned crtc, use it (but make
7812 * sure it's on first)
7813 *
7814 * - try to find the first unused crtc that can drive this connector,
7815 * and use that if we find one
7816 */
7817
7818 /* See if we already have a CRTC for this connector */
7819 if (encoder->crtc) {
7820 crtc = encoder->crtc;
7821
7822 mutex_lock(&crtc->mutex);
7823
7824 old->dpms_mode = connector->dpms;
7825 old->load_detect_temp = false;
7826
7827 /* Make sure the crtc and connector are running */
7828 if (connector->dpms != DRM_MODE_DPMS_ON)
7829 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7830
7831 return true;
7832 }
7833
7834 /* Find an unused one (if possible) */
7835 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7836 i++;
7837 if (!(encoder->possible_crtcs & (1 << i)))
7838 continue;
7839 if (!possible_crtc->enabled) {
7840 crtc = possible_crtc;
7841 break;
7842 }
7843 }
7844
7845 /*
7846 * If we didn't find an unused CRTC, don't use any.
7847 */
7848 if (!crtc) {
7849 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7850 return false;
7851 }
7852
7853 mutex_lock(&crtc->mutex);
7854 intel_encoder->new_crtc = to_intel_crtc(crtc);
7855 to_intel_connector(connector)->new_encoder = intel_encoder;
7856
7857 intel_crtc = to_intel_crtc(crtc);
7858 old->dpms_mode = connector->dpms;
7859 old->load_detect_temp = true;
7860 old->release_fb = NULL;
7861
7862 if (!mode)
7863 mode = &load_detect_mode;
7864
7865 /* We need a framebuffer large enough to accommodate all accesses
7866 * that the plane may generate whilst we perform load detection.
7867 * We can not rely on the fbcon either being present (we get called
7868 * during its initialisation to detect all boot displays, or it may
7869 * not even exist) or that it is large enough to satisfy the
7870 * requested mode.
7871 */
7872 fb = mode_fits_in_fbdev(dev, mode);
7873 if (fb == NULL) {
7874 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7875 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7876 old->release_fb = fb;
7877 } else
7878 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7879 if (IS_ERR(fb)) {
7880 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7881 mutex_unlock(&crtc->mutex);
7882 return false;
7883 }
7884
7885 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7886 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7887 if (old->release_fb)
7888 old->release_fb->funcs->destroy(old->release_fb);
7889 mutex_unlock(&crtc->mutex);
7890 return false;
7891 }
7892
7893 /* let the connector get through one full cycle before testing */
7894 intel_wait_for_vblank(dev, intel_crtc->pipe);
7895 return true;
7896 }
7897
7898 void intel_release_load_detect_pipe(struct drm_connector *connector,
7899 struct intel_load_detect_pipe *old)
7900 {
7901 struct intel_encoder *intel_encoder =
7902 intel_attached_encoder(connector);
7903 struct drm_encoder *encoder = &intel_encoder->base;
7904 struct drm_crtc *crtc = encoder->crtc;
7905
7906 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7907 connector->base.id, drm_get_connector_name(connector),
7908 encoder->base.id, drm_get_encoder_name(encoder));
7909
7910 if (old->load_detect_temp) {
7911 to_intel_connector(connector)->new_encoder = NULL;
7912 intel_encoder->new_crtc = NULL;
7913 intel_set_mode(crtc, NULL, 0, 0, NULL);
7914
7915 if (old->release_fb) {
7916 drm_framebuffer_unregister_private(old->release_fb);
7917 drm_framebuffer_unreference(old->release_fb);
7918 }
7919
7920 mutex_unlock(&crtc->mutex);
7921 return;
7922 }
7923
7924 /* Switch crtc and encoder back off if necessary */
7925 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7926 connector->funcs->dpms(connector, old->dpms_mode);
7927
7928 mutex_unlock(&crtc->mutex);
7929 }
7930
7931 static int i9xx_pll_refclk(struct drm_device *dev,
7932 const struct intel_crtc_config *pipe_config)
7933 {
7934 struct drm_i915_private *dev_priv = dev->dev_private;
7935 u32 dpll = pipe_config->dpll_hw_state.dpll;
7936
7937 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7938 return dev_priv->vbt.lvds_ssc_freq;
7939 else if (HAS_PCH_SPLIT(dev))
7940 return 120000;
7941 else if (!IS_GEN2(dev))
7942 return 96000;
7943 else
7944 return 48000;
7945 }
7946
7947 /* Returns the clock of the currently programmed mode of the given pipe. */
7948 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7949 struct intel_crtc_config *pipe_config)
7950 {
7951 struct drm_device *dev = crtc->base.dev;
7952 struct drm_i915_private *dev_priv = dev->dev_private;
7953 int pipe = pipe_config->cpu_transcoder;
7954 u32 dpll = pipe_config->dpll_hw_state.dpll;
7955 u32 fp;
7956 intel_clock_t clock;
7957 int refclk = i9xx_pll_refclk(dev, pipe_config);
7958
7959 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7960 fp = pipe_config->dpll_hw_state.fp0;
7961 else
7962 fp = pipe_config->dpll_hw_state.fp1;
7963
7964 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7965 if (IS_PINEVIEW(dev)) {
7966 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7967 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7968 } else {
7969 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7970 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7971 }
7972
7973 if (!IS_GEN2(dev)) {
7974 if (IS_PINEVIEW(dev))
7975 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7976 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7977 else
7978 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7979 DPLL_FPA01_P1_POST_DIV_SHIFT);
7980
7981 switch (dpll & DPLL_MODE_MASK) {
7982 case DPLLB_MODE_DAC_SERIAL:
7983 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7984 5 : 10;
7985 break;
7986 case DPLLB_MODE_LVDS:
7987 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7988 7 : 14;
7989 break;
7990 default:
7991 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7992 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7993 return;
7994 }
7995
7996 if (IS_PINEVIEW(dev))
7997 pineview_clock(refclk, &clock);
7998 else
7999 i9xx_clock(refclk, &clock);
8000 } else {
8001 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8002 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8003
8004 if (is_lvds) {
8005 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8006 DPLL_FPA01_P1_POST_DIV_SHIFT);
8007
8008 if (lvds & LVDS_CLKB_POWER_UP)
8009 clock.p2 = 7;
8010 else
8011 clock.p2 = 14;
8012 } else {
8013 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8014 clock.p1 = 2;
8015 else {
8016 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8017 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8018 }
8019 if (dpll & PLL_P2_DIVIDE_BY_4)
8020 clock.p2 = 4;
8021 else
8022 clock.p2 = 2;
8023 }
8024
8025 i9xx_clock(refclk, &clock);
8026 }
8027
8028 /*
8029 * This value includes pixel_multiplier. We will use
8030 * port_clock to compute adjusted_mode.crtc_clock in the
8031 * encoder's get_config() function.
8032 */
8033 pipe_config->port_clock = clock.dot;
8034 }
8035
8036 int intel_dotclock_calculate(int link_freq,
8037 const struct intel_link_m_n *m_n)
8038 {
8039 /*
8040 * The calculation for the data clock is:
8041 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8042 * But we want to avoid losing precison if possible, so:
8043 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8044 *
8045 * and the link clock is simpler:
8046 * link_clock = (m * link_clock) / n
8047 */
8048
8049 if (!m_n->link_n)
8050 return 0;
8051
8052 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8053 }
8054
8055 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8056 struct intel_crtc_config *pipe_config)
8057 {
8058 struct drm_device *dev = crtc->base.dev;
8059
8060 /* read out port_clock from the DPLL */
8061 i9xx_crtc_clock_get(crtc, pipe_config);
8062
8063 /*
8064 * This value does not include pixel_multiplier.
8065 * We will check that port_clock and adjusted_mode.crtc_clock
8066 * agree once we know their relationship in the encoder's
8067 * get_config() function.
8068 */
8069 pipe_config->adjusted_mode.crtc_clock =
8070 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8071 &pipe_config->fdi_m_n);
8072 }
8073
8074 /** Returns the currently programmed mode of the given pipe. */
8075 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8076 struct drm_crtc *crtc)
8077 {
8078 struct drm_i915_private *dev_priv = dev->dev_private;
8079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8080 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8081 struct drm_display_mode *mode;
8082 struct intel_crtc_config pipe_config;
8083 int htot = I915_READ(HTOTAL(cpu_transcoder));
8084 int hsync = I915_READ(HSYNC(cpu_transcoder));
8085 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8086 int vsync = I915_READ(VSYNC(cpu_transcoder));
8087 enum pipe pipe = intel_crtc->pipe;
8088
8089 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8090 if (!mode)
8091 return NULL;
8092
8093 /*
8094 * Construct a pipe_config sufficient for getting the clock info
8095 * back out of crtc_clock_get.
8096 *
8097 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8098 * to use a real value here instead.
8099 */
8100 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8101 pipe_config.pixel_multiplier = 1;
8102 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8103 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8104 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8105 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8106
8107 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8108 mode->hdisplay = (htot & 0xffff) + 1;
8109 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8110 mode->hsync_start = (hsync & 0xffff) + 1;
8111 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8112 mode->vdisplay = (vtot & 0xffff) + 1;
8113 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8114 mode->vsync_start = (vsync & 0xffff) + 1;
8115 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8116
8117 drm_mode_set_name(mode);
8118
8119 return mode;
8120 }
8121
8122 static void intel_increase_pllclock(struct drm_crtc *crtc)
8123 {
8124 struct drm_device *dev = crtc->dev;
8125 drm_i915_private_t *dev_priv = dev->dev_private;
8126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8127 int pipe = intel_crtc->pipe;
8128 int dpll_reg = DPLL(pipe);
8129 int dpll;
8130
8131 if (HAS_PCH_SPLIT(dev))
8132 return;
8133
8134 if (!dev_priv->lvds_downclock_avail)
8135 return;
8136
8137 dpll = I915_READ(dpll_reg);
8138 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8139 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8140
8141 assert_panel_unlocked(dev_priv, pipe);
8142
8143 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8144 I915_WRITE(dpll_reg, dpll);
8145 intel_wait_for_vblank(dev, pipe);
8146
8147 dpll = I915_READ(dpll_reg);
8148 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8149 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8150 }
8151 }
8152
8153 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8154 {
8155 struct drm_device *dev = crtc->dev;
8156 drm_i915_private_t *dev_priv = dev->dev_private;
8157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8158
8159 if (HAS_PCH_SPLIT(dev))
8160 return;
8161
8162 if (!dev_priv->lvds_downclock_avail)
8163 return;
8164
8165 /*
8166 * Since this is called by a timer, we should never get here in
8167 * the manual case.
8168 */
8169 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8170 int pipe = intel_crtc->pipe;
8171 int dpll_reg = DPLL(pipe);
8172 int dpll;
8173
8174 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8175
8176 assert_panel_unlocked(dev_priv, pipe);
8177
8178 dpll = I915_READ(dpll_reg);
8179 dpll |= DISPLAY_RATE_SELECT_FPA1;
8180 I915_WRITE(dpll_reg, dpll);
8181 intel_wait_for_vblank(dev, pipe);
8182 dpll = I915_READ(dpll_reg);
8183 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8184 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8185 }
8186
8187 }
8188
8189 void intel_mark_busy(struct drm_device *dev)
8190 {
8191 struct drm_i915_private *dev_priv = dev->dev_private;
8192
8193 hsw_package_c8_gpu_busy(dev_priv);
8194 i915_update_gfx_val(dev_priv);
8195 }
8196
8197 void intel_mark_idle(struct drm_device *dev)
8198 {
8199 struct drm_i915_private *dev_priv = dev->dev_private;
8200 struct drm_crtc *crtc;
8201
8202 hsw_package_c8_gpu_idle(dev_priv);
8203
8204 if (!i915_powersave)
8205 return;
8206
8207 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8208 if (!crtc->fb)
8209 continue;
8210
8211 intel_decrease_pllclock(crtc);
8212 }
8213
8214 if (dev_priv->info->gen >= 6)
8215 gen6_rps_idle(dev->dev_private);
8216 }
8217
8218 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8219 struct intel_ring_buffer *ring)
8220 {
8221 struct drm_device *dev = obj->base.dev;
8222 struct drm_crtc *crtc;
8223
8224 if (!i915_powersave)
8225 return;
8226
8227 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8228 if (!crtc->fb)
8229 continue;
8230
8231 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8232 continue;
8233
8234 intel_increase_pllclock(crtc);
8235 if (ring && intel_fbc_enabled(dev))
8236 ring->fbc_dirty = true;
8237 }
8238 }
8239
8240 static void intel_crtc_destroy(struct drm_crtc *crtc)
8241 {
8242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8243 struct drm_device *dev = crtc->dev;
8244 struct intel_unpin_work *work;
8245 unsigned long flags;
8246
8247 spin_lock_irqsave(&dev->event_lock, flags);
8248 work = intel_crtc->unpin_work;
8249 intel_crtc->unpin_work = NULL;
8250 spin_unlock_irqrestore(&dev->event_lock, flags);
8251
8252 if (work) {
8253 cancel_work_sync(&work->work);
8254 kfree(work);
8255 }
8256
8257 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8258
8259 drm_crtc_cleanup(crtc);
8260
8261 kfree(intel_crtc);
8262 }
8263
8264 static void intel_unpin_work_fn(struct work_struct *__work)
8265 {
8266 struct intel_unpin_work *work =
8267 container_of(__work, struct intel_unpin_work, work);
8268 struct drm_device *dev = work->crtc->dev;
8269
8270 mutex_lock(&dev->struct_mutex);
8271 intel_unpin_fb_obj(work->old_fb_obj);
8272 drm_gem_object_unreference(&work->pending_flip_obj->base);
8273 drm_gem_object_unreference(&work->old_fb_obj->base);
8274
8275 intel_update_fbc(dev);
8276 mutex_unlock(&dev->struct_mutex);
8277
8278 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8279 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8280
8281 kfree(work);
8282 }
8283
8284 static void do_intel_finish_page_flip(struct drm_device *dev,
8285 struct drm_crtc *crtc)
8286 {
8287 drm_i915_private_t *dev_priv = dev->dev_private;
8288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8289 struct intel_unpin_work *work;
8290 unsigned long flags;
8291
8292 /* Ignore early vblank irqs */
8293 if (intel_crtc == NULL)
8294 return;
8295
8296 spin_lock_irqsave(&dev->event_lock, flags);
8297 work = intel_crtc->unpin_work;
8298
8299 /* Ensure we don't miss a work->pending update ... */
8300 smp_rmb();
8301
8302 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8303 spin_unlock_irqrestore(&dev->event_lock, flags);
8304 return;
8305 }
8306
8307 /* and that the unpin work is consistent wrt ->pending. */
8308 smp_rmb();
8309
8310 intel_crtc->unpin_work = NULL;
8311
8312 if (work->event)
8313 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8314
8315 drm_vblank_put(dev, intel_crtc->pipe);
8316
8317 spin_unlock_irqrestore(&dev->event_lock, flags);
8318
8319 wake_up_all(&dev_priv->pending_flip_queue);
8320
8321 queue_work(dev_priv->wq, &work->work);
8322
8323 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8324 }
8325
8326 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8327 {
8328 drm_i915_private_t *dev_priv = dev->dev_private;
8329 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8330
8331 do_intel_finish_page_flip(dev, crtc);
8332 }
8333
8334 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8335 {
8336 drm_i915_private_t *dev_priv = dev->dev_private;
8337 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8338
8339 do_intel_finish_page_flip(dev, crtc);
8340 }
8341
8342 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8343 {
8344 drm_i915_private_t *dev_priv = dev->dev_private;
8345 struct intel_crtc *intel_crtc =
8346 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8347 unsigned long flags;
8348
8349 /* NB: An MMIO update of the plane base pointer will also
8350 * generate a page-flip completion irq, i.e. every modeset
8351 * is also accompanied by a spurious intel_prepare_page_flip().
8352 */
8353 spin_lock_irqsave(&dev->event_lock, flags);
8354 if (intel_crtc->unpin_work)
8355 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8356 spin_unlock_irqrestore(&dev->event_lock, flags);
8357 }
8358
8359 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8360 {
8361 /* Ensure that the work item is consistent when activating it ... */
8362 smp_wmb();
8363 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8364 /* and that it is marked active as soon as the irq could fire. */
8365 smp_wmb();
8366 }
8367
8368 static int intel_gen2_queue_flip(struct drm_device *dev,
8369 struct drm_crtc *crtc,
8370 struct drm_framebuffer *fb,
8371 struct drm_i915_gem_object *obj,
8372 uint32_t flags)
8373 {
8374 struct drm_i915_private *dev_priv = dev->dev_private;
8375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8376 u32 flip_mask;
8377 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8378 int ret;
8379
8380 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8381 if (ret)
8382 goto err;
8383
8384 ret = intel_ring_begin(ring, 6);
8385 if (ret)
8386 goto err_unpin;
8387
8388 /* Can't queue multiple flips, so wait for the previous
8389 * one to finish before executing the next.
8390 */
8391 if (intel_crtc->plane)
8392 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8393 else
8394 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8395 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8396 intel_ring_emit(ring, MI_NOOP);
8397 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8398 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8399 intel_ring_emit(ring, fb->pitches[0]);
8400 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8401 intel_ring_emit(ring, 0); /* aux display base address, unused */
8402
8403 intel_mark_page_flip_active(intel_crtc);
8404 __intel_ring_advance(ring);
8405 return 0;
8406
8407 err_unpin:
8408 intel_unpin_fb_obj(obj);
8409 err:
8410 return ret;
8411 }
8412
8413 static int intel_gen3_queue_flip(struct drm_device *dev,
8414 struct drm_crtc *crtc,
8415 struct drm_framebuffer *fb,
8416 struct drm_i915_gem_object *obj,
8417 uint32_t flags)
8418 {
8419 struct drm_i915_private *dev_priv = dev->dev_private;
8420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8421 u32 flip_mask;
8422 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8423 int ret;
8424
8425 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8426 if (ret)
8427 goto err;
8428
8429 ret = intel_ring_begin(ring, 6);
8430 if (ret)
8431 goto err_unpin;
8432
8433 if (intel_crtc->plane)
8434 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8435 else
8436 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8437 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8438 intel_ring_emit(ring, MI_NOOP);
8439 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8440 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8441 intel_ring_emit(ring, fb->pitches[0]);
8442 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8443 intel_ring_emit(ring, MI_NOOP);
8444
8445 intel_mark_page_flip_active(intel_crtc);
8446 __intel_ring_advance(ring);
8447 return 0;
8448
8449 err_unpin:
8450 intel_unpin_fb_obj(obj);
8451 err:
8452 return ret;
8453 }
8454
8455 static int intel_gen4_queue_flip(struct drm_device *dev,
8456 struct drm_crtc *crtc,
8457 struct drm_framebuffer *fb,
8458 struct drm_i915_gem_object *obj,
8459 uint32_t flags)
8460 {
8461 struct drm_i915_private *dev_priv = dev->dev_private;
8462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8463 uint32_t pf, pipesrc;
8464 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8465 int ret;
8466
8467 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8468 if (ret)
8469 goto err;
8470
8471 ret = intel_ring_begin(ring, 4);
8472 if (ret)
8473 goto err_unpin;
8474
8475 /* i965+ uses the linear or tiled offsets from the
8476 * Display Registers (which do not change across a page-flip)
8477 * so we need only reprogram the base address.
8478 */
8479 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8480 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8481 intel_ring_emit(ring, fb->pitches[0]);
8482 intel_ring_emit(ring,
8483 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8484 obj->tiling_mode);
8485
8486 /* XXX Enabling the panel-fitter across page-flip is so far
8487 * untested on non-native modes, so ignore it for now.
8488 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8489 */
8490 pf = 0;
8491 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8492 intel_ring_emit(ring, pf | pipesrc);
8493
8494 intel_mark_page_flip_active(intel_crtc);
8495 __intel_ring_advance(ring);
8496 return 0;
8497
8498 err_unpin:
8499 intel_unpin_fb_obj(obj);
8500 err:
8501 return ret;
8502 }
8503
8504 static int intel_gen6_queue_flip(struct drm_device *dev,
8505 struct drm_crtc *crtc,
8506 struct drm_framebuffer *fb,
8507 struct drm_i915_gem_object *obj,
8508 uint32_t flags)
8509 {
8510 struct drm_i915_private *dev_priv = dev->dev_private;
8511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8512 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8513 uint32_t pf, pipesrc;
8514 int ret;
8515
8516 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8517 if (ret)
8518 goto err;
8519
8520 ret = intel_ring_begin(ring, 4);
8521 if (ret)
8522 goto err_unpin;
8523
8524 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8525 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8526 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8527 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8528
8529 /* Contrary to the suggestions in the documentation,
8530 * "Enable Panel Fitter" does not seem to be required when page
8531 * flipping with a non-native mode, and worse causes a normal
8532 * modeset to fail.
8533 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8534 */
8535 pf = 0;
8536 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8537 intel_ring_emit(ring, pf | pipesrc);
8538
8539 intel_mark_page_flip_active(intel_crtc);
8540 __intel_ring_advance(ring);
8541 return 0;
8542
8543 err_unpin:
8544 intel_unpin_fb_obj(obj);
8545 err:
8546 return ret;
8547 }
8548
8549 static int intel_gen7_queue_flip(struct drm_device *dev,
8550 struct drm_crtc *crtc,
8551 struct drm_framebuffer *fb,
8552 struct drm_i915_gem_object *obj,
8553 uint32_t flags)
8554 {
8555 struct drm_i915_private *dev_priv = dev->dev_private;
8556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8557 struct intel_ring_buffer *ring;
8558 uint32_t plane_bit = 0;
8559 int len, ret;
8560
8561 ring = obj->ring;
8562 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8563 ring = &dev_priv->ring[BCS];
8564
8565 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8566 if (ret)
8567 goto err;
8568
8569 switch(intel_crtc->plane) {
8570 case PLANE_A:
8571 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8572 break;
8573 case PLANE_B:
8574 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8575 break;
8576 case PLANE_C:
8577 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8578 break;
8579 default:
8580 WARN_ONCE(1, "unknown plane in flip command\n");
8581 ret = -ENODEV;
8582 goto err_unpin;
8583 }
8584
8585 len = 4;
8586 if (ring->id == RCS)
8587 len += 6;
8588
8589 /*
8590 * BSpec MI_DISPLAY_FLIP for IVB:
8591 * "The full packet must be contained within the same cache line."
8592 *
8593 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8594 * cacheline, if we ever start emitting more commands before
8595 * the MI_DISPLAY_FLIP we may need to first emit everything else,
8596 * then do the cacheline alignment, and finally emit the
8597 * MI_DISPLAY_FLIP.
8598 */
8599 ret = intel_ring_cacheline_align(ring);
8600 if (ret)
8601 goto err_unpin;
8602
8603 ret = intel_ring_begin(ring, len);
8604 if (ret)
8605 goto err_unpin;
8606
8607 /* Unmask the flip-done completion message. Note that the bspec says that
8608 * we should do this for both the BCS and RCS, and that we must not unmask
8609 * more than one flip event at any time (or ensure that one flip message
8610 * can be sent by waiting for flip-done prior to queueing new flips).
8611 * Experimentation says that BCS works despite DERRMR masking all
8612 * flip-done completion events and that unmasking all planes at once
8613 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8614 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8615 */
8616 if (ring->id == RCS) {
8617 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8618 intel_ring_emit(ring, DERRMR);
8619 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8620 DERRMR_PIPEB_PRI_FLIP_DONE |
8621 DERRMR_PIPEC_PRI_FLIP_DONE));
8622 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8623 MI_SRM_LRM_GLOBAL_GTT);
8624 intel_ring_emit(ring, DERRMR);
8625 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8626 }
8627
8628 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8629 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8630 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8631 intel_ring_emit(ring, (MI_NOOP));
8632
8633 intel_mark_page_flip_active(intel_crtc);
8634 __intel_ring_advance(ring);
8635 return 0;
8636
8637 err_unpin:
8638 intel_unpin_fb_obj(obj);
8639 err:
8640 return ret;
8641 }
8642
8643 static int intel_default_queue_flip(struct drm_device *dev,
8644 struct drm_crtc *crtc,
8645 struct drm_framebuffer *fb,
8646 struct drm_i915_gem_object *obj,
8647 uint32_t flags)
8648 {
8649 return -ENODEV;
8650 }
8651
8652 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8653 struct drm_framebuffer *fb,
8654 struct drm_pending_vblank_event *event,
8655 uint32_t page_flip_flags)
8656 {
8657 struct drm_device *dev = crtc->dev;
8658 struct drm_i915_private *dev_priv = dev->dev_private;
8659 struct drm_framebuffer *old_fb = crtc->fb;
8660 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8662 struct intel_unpin_work *work;
8663 unsigned long flags;
8664 int ret;
8665
8666 /* Can't change pixel format via MI display flips. */
8667 if (fb->pixel_format != crtc->fb->pixel_format)
8668 return -EINVAL;
8669
8670 /*
8671 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8672 * Note that pitch changes could also affect these register.
8673 */
8674 if (INTEL_INFO(dev)->gen > 3 &&
8675 (fb->offsets[0] != crtc->fb->offsets[0] ||
8676 fb->pitches[0] != crtc->fb->pitches[0]))
8677 return -EINVAL;
8678
8679 work = kzalloc(sizeof(*work), GFP_KERNEL);
8680 if (work == NULL)
8681 return -ENOMEM;
8682
8683 work->event = event;
8684 work->crtc = crtc;
8685 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8686 INIT_WORK(&work->work, intel_unpin_work_fn);
8687
8688 ret = drm_vblank_get(dev, intel_crtc->pipe);
8689 if (ret)
8690 goto free_work;
8691
8692 /* We borrow the event spin lock for protecting unpin_work */
8693 spin_lock_irqsave(&dev->event_lock, flags);
8694 if (intel_crtc->unpin_work) {
8695 spin_unlock_irqrestore(&dev->event_lock, flags);
8696 kfree(work);
8697 drm_vblank_put(dev, intel_crtc->pipe);
8698
8699 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8700 return -EBUSY;
8701 }
8702 intel_crtc->unpin_work = work;
8703 spin_unlock_irqrestore(&dev->event_lock, flags);
8704
8705 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8706 flush_workqueue(dev_priv->wq);
8707
8708 ret = i915_mutex_lock_interruptible(dev);
8709 if (ret)
8710 goto cleanup;
8711
8712 /* Reference the objects for the scheduled work. */
8713 drm_gem_object_reference(&work->old_fb_obj->base);
8714 drm_gem_object_reference(&obj->base);
8715
8716 crtc->fb = fb;
8717
8718 work->pending_flip_obj = obj;
8719
8720 work->enable_stall_check = true;
8721
8722 atomic_inc(&intel_crtc->unpin_work_count);
8723 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8724
8725 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8726 if (ret)
8727 goto cleanup_pending;
8728
8729 intel_disable_fbc(dev);
8730 intel_mark_fb_busy(obj, NULL);
8731 mutex_unlock(&dev->struct_mutex);
8732
8733 trace_i915_flip_request(intel_crtc->plane, obj);
8734
8735 return 0;
8736
8737 cleanup_pending:
8738 atomic_dec(&intel_crtc->unpin_work_count);
8739 crtc->fb = old_fb;
8740 drm_gem_object_unreference(&work->old_fb_obj->base);
8741 drm_gem_object_unreference(&obj->base);
8742 mutex_unlock(&dev->struct_mutex);
8743
8744 cleanup:
8745 spin_lock_irqsave(&dev->event_lock, flags);
8746 intel_crtc->unpin_work = NULL;
8747 spin_unlock_irqrestore(&dev->event_lock, flags);
8748
8749 drm_vblank_put(dev, intel_crtc->pipe);
8750 free_work:
8751 kfree(work);
8752
8753 return ret;
8754 }
8755
8756 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8757 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8758 .load_lut = intel_crtc_load_lut,
8759 };
8760
8761 /**
8762 * intel_modeset_update_staged_output_state
8763 *
8764 * Updates the staged output configuration state, e.g. after we've read out the
8765 * current hw state.
8766 */
8767 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8768 {
8769 struct intel_encoder *encoder;
8770 struct intel_connector *connector;
8771
8772 list_for_each_entry(connector, &dev->mode_config.connector_list,
8773 base.head) {
8774 connector->new_encoder =
8775 to_intel_encoder(connector->base.encoder);
8776 }
8777
8778 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8779 base.head) {
8780 encoder->new_crtc =
8781 to_intel_crtc(encoder->base.crtc);
8782 }
8783 }
8784
8785 /**
8786 * intel_modeset_commit_output_state
8787 *
8788 * This function copies the stage display pipe configuration to the real one.
8789 */
8790 static void intel_modeset_commit_output_state(struct drm_device *dev)
8791 {
8792 struct intel_encoder *encoder;
8793 struct intel_connector *connector;
8794
8795 list_for_each_entry(connector, &dev->mode_config.connector_list,
8796 base.head) {
8797 connector->base.encoder = &connector->new_encoder->base;
8798 }
8799
8800 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8801 base.head) {
8802 encoder->base.crtc = &encoder->new_crtc->base;
8803 }
8804 }
8805
8806 static void
8807 connected_sink_compute_bpp(struct intel_connector * connector,
8808 struct intel_crtc_config *pipe_config)
8809 {
8810 int bpp = pipe_config->pipe_bpp;
8811
8812 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8813 connector->base.base.id,
8814 drm_get_connector_name(&connector->base));
8815
8816 /* Don't use an invalid EDID bpc value */
8817 if (connector->base.display_info.bpc &&
8818 connector->base.display_info.bpc * 3 < bpp) {
8819 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8820 bpp, connector->base.display_info.bpc*3);
8821 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8822 }
8823
8824 /* Clamp bpp to 8 on screens without EDID 1.4 */
8825 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8826 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8827 bpp);
8828 pipe_config->pipe_bpp = 24;
8829 }
8830 }
8831
8832 static int
8833 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8834 struct drm_framebuffer *fb,
8835 struct intel_crtc_config *pipe_config)
8836 {
8837 struct drm_device *dev = crtc->base.dev;
8838 struct intel_connector *connector;
8839 int bpp;
8840
8841 switch (fb->pixel_format) {
8842 case DRM_FORMAT_C8:
8843 bpp = 8*3; /* since we go through a colormap */
8844 break;
8845 case DRM_FORMAT_XRGB1555:
8846 case DRM_FORMAT_ARGB1555:
8847 /* checked in intel_framebuffer_init already */
8848 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8849 return -EINVAL;
8850 case DRM_FORMAT_RGB565:
8851 bpp = 6*3; /* min is 18bpp */
8852 break;
8853 case DRM_FORMAT_XBGR8888:
8854 case DRM_FORMAT_ABGR8888:
8855 /* checked in intel_framebuffer_init already */
8856 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8857 return -EINVAL;
8858 case DRM_FORMAT_XRGB8888:
8859 case DRM_FORMAT_ARGB8888:
8860 bpp = 8*3;
8861 break;
8862 case DRM_FORMAT_XRGB2101010:
8863 case DRM_FORMAT_ARGB2101010:
8864 case DRM_FORMAT_XBGR2101010:
8865 case DRM_FORMAT_ABGR2101010:
8866 /* checked in intel_framebuffer_init already */
8867 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8868 return -EINVAL;
8869 bpp = 10*3;
8870 break;
8871 /* TODO: gen4+ supports 16 bpc floating point, too. */
8872 default:
8873 DRM_DEBUG_KMS("unsupported depth\n");
8874 return -EINVAL;
8875 }
8876
8877 pipe_config->pipe_bpp = bpp;
8878
8879 /* Clamp display bpp to EDID value */
8880 list_for_each_entry(connector, &dev->mode_config.connector_list,
8881 base.head) {
8882 if (!connector->new_encoder ||
8883 connector->new_encoder->new_crtc != crtc)
8884 continue;
8885
8886 connected_sink_compute_bpp(connector, pipe_config);
8887 }
8888
8889 return bpp;
8890 }
8891
8892 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8893 {
8894 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8895 "type: 0x%x flags: 0x%x\n",
8896 mode->crtc_clock,
8897 mode->crtc_hdisplay, mode->crtc_hsync_start,
8898 mode->crtc_hsync_end, mode->crtc_htotal,
8899 mode->crtc_vdisplay, mode->crtc_vsync_start,
8900 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8901 }
8902
8903 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8904 struct intel_crtc_config *pipe_config,
8905 const char *context)
8906 {
8907 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8908 context, pipe_name(crtc->pipe));
8909
8910 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8911 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8912 pipe_config->pipe_bpp, pipe_config->dither);
8913 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8914 pipe_config->has_pch_encoder,
8915 pipe_config->fdi_lanes,
8916 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8917 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8918 pipe_config->fdi_m_n.tu);
8919 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8920 pipe_config->has_dp_encoder,
8921 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8922 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8923 pipe_config->dp_m_n.tu);
8924 DRM_DEBUG_KMS("requested mode:\n");
8925 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8926 DRM_DEBUG_KMS("adjusted mode:\n");
8927 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8928 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8929 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8930 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8931 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8932 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8933 pipe_config->gmch_pfit.control,
8934 pipe_config->gmch_pfit.pgm_ratios,
8935 pipe_config->gmch_pfit.lvds_border_bits);
8936 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8937 pipe_config->pch_pfit.pos,
8938 pipe_config->pch_pfit.size,
8939 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8940 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8941 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8942 }
8943
8944 static bool check_encoder_cloning(struct drm_crtc *crtc)
8945 {
8946 int num_encoders = 0;
8947 bool uncloneable_encoders = false;
8948 struct intel_encoder *encoder;
8949
8950 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8951 base.head) {
8952 if (&encoder->new_crtc->base != crtc)
8953 continue;
8954
8955 num_encoders++;
8956 if (!encoder->cloneable)
8957 uncloneable_encoders = true;
8958 }
8959
8960 return !(num_encoders > 1 && uncloneable_encoders);
8961 }
8962
8963 static struct intel_crtc_config *
8964 intel_modeset_pipe_config(struct drm_crtc *crtc,
8965 struct drm_framebuffer *fb,
8966 struct drm_display_mode *mode)
8967 {
8968 struct drm_device *dev = crtc->dev;
8969 struct intel_encoder *encoder;
8970 struct intel_crtc_config *pipe_config;
8971 int plane_bpp, ret = -EINVAL;
8972 bool retry = true;
8973
8974 if (!check_encoder_cloning(crtc)) {
8975 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8976 return ERR_PTR(-EINVAL);
8977 }
8978
8979 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8980 if (!pipe_config)
8981 return ERR_PTR(-ENOMEM);
8982
8983 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8984 drm_mode_copy(&pipe_config->requested_mode, mode);
8985
8986 pipe_config->cpu_transcoder =
8987 (enum transcoder) to_intel_crtc(crtc)->pipe;
8988 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8989
8990 /*
8991 * Sanitize sync polarity flags based on requested ones. If neither
8992 * positive or negative polarity is requested, treat this as meaning
8993 * negative polarity.
8994 */
8995 if (!(pipe_config->adjusted_mode.flags &
8996 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8997 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8998
8999 if (!(pipe_config->adjusted_mode.flags &
9000 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9001 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9002
9003 /* Compute a starting value for pipe_config->pipe_bpp taking the source
9004 * plane pixel format and any sink constraints into account. Returns the
9005 * source plane bpp so that dithering can be selected on mismatches
9006 * after encoders and crtc also have had their say. */
9007 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9008 fb, pipe_config);
9009 if (plane_bpp < 0)
9010 goto fail;
9011
9012 /*
9013 * Determine the real pipe dimensions. Note that stereo modes can
9014 * increase the actual pipe size due to the frame doubling and
9015 * insertion of additional space for blanks between the frame. This
9016 * is stored in the crtc timings. We use the requested mode to do this
9017 * computation to clearly distinguish it from the adjusted mode, which
9018 * can be changed by the connectors in the below retry loop.
9019 */
9020 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9021 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9022 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9023
9024 encoder_retry:
9025 /* Ensure the port clock defaults are reset when retrying. */
9026 pipe_config->port_clock = 0;
9027 pipe_config->pixel_multiplier = 1;
9028
9029 /* Fill in default crtc timings, allow encoders to overwrite them. */
9030 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9031
9032 /* Pass our mode to the connectors and the CRTC to give them a chance to
9033 * adjust it according to limitations or connector properties, and also
9034 * a chance to reject the mode entirely.
9035 */
9036 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9037 base.head) {
9038
9039 if (&encoder->new_crtc->base != crtc)
9040 continue;
9041
9042 if (!(encoder->compute_config(encoder, pipe_config))) {
9043 DRM_DEBUG_KMS("Encoder config failure\n");
9044 goto fail;
9045 }
9046 }
9047
9048 /* Set default port clock if not overwritten by the encoder. Needs to be
9049 * done afterwards in case the encoder adjusts the mode. */
9050 if (!pipe_config->port_clock)
9051 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9052 * pipe_config->pixel_multiplier;
9053
9054 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9055 if (ret < 0) {
9056 DRM_DEBUG_KMS("CRTC fixup failed\n");
9057 goto fail;
9058 }
9059
9060 if (ret == RETRY) {
9061 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9062 ret = -EINVAL;
9063 goto fail;
9064 }
9065
9066 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9067 retry = false;
9068 goto encoder_retry;
9069 }
9070
9071 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9072 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9073 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9074
9075 return pipe_config;
9076 fail:
9077 kfree(pipe_config);
9078 return ERR_PTR(ret);
9079 }
9080
9081 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9082 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9083 static void
9084 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9085 unsigned *prepare_pipes, unsigned *disable_pipes)
9086 {
9087 struct intel_crtc *intel_crtc;
9088 struct drm_device *dev = crtc->dev;
9089 struct intel_encoder *encoder;
9090 struct intel_connector *connector;
9091 struct drm_crtc *tmp_crtc;
9092
9093 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9094
9095 /* Check which crtcs have changed outputs connected to them, these need
9096 * to be part of the prepare_pipes mask. We don't (yet) support global
9097 * modeset across multiple crtcs, so modeset_pipes will only have one
9098 * bit set at most. */
9099 list_for_each_entry(connector, &dev->mode_config.connector_list,
9100 base.head) {
9101 if (connector->base.encoder == &connector->new_encoder->base)
9102 continue;
9103
9104 if (connector->base.encoder) {
9105 tmp_crtc = connector->base.encoder->crtc;
9106
9107 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9108 }
9109
9110 if (connector->new_encoder)
9111 *prepare_pipes |=
9112 1 << connector->new_encoder->new_crtc->pipe;
9113 }
9114
9115 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9116 base.head) {
9117 if (encoder->base.crtc == &encoder->new_crtc->base)
9118 continue;
9119
9120 if (encoder->base.crtc) {
9121 tmp_crtc = encoder->base.crtc;
9122
9123 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9124 }
9125
9126 if (encoder->new_crtc)
9127 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9128 }
9129
9130 /* Check for any pipes that will be fully disabled ... */
9131 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9132 base.head) {
9133 bool used = false;
9134
9135 /* Don't try to disable disabled crtcs. */
9136 if (!intel_crtc->base.enabled)
9137 continue;
9138
9139 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9140 base.head) {
9141 if (encoder->new_crtc == intel_crtc)
9142 used = true;
9143 }
9144
9145 if (!used)
9146 *disable_pipes |= 1 << intel_crtc->pipe;
9147 }
9148
9149
9150 /* set_mode is also used to update properties on life display pipes. */
9151 intel_crtc = to_intel_crtc(crtc);
9152 if (crtc->enabled)
9153 *prepare_pipes |= 1 << intel_crtc->pipe;
9154
9155 /*
9156 * For simplicity do a full modeset on any pipe where the output routing
9157 * changed. We could be more clever, but that would require us to be
9158 * more careful with calling the relevant encoder->mode_set functions.
9159 */
9160 if (*prepare_pipes)
9161 *modeset_pipes = *prepare_pipes;
9162
9163 /* ... and mask these out. */
9164 *modeset_pipes &= ~(*disable_pipes);
9165 *prepare_pipes &= ~(*disable_pipes);
9166
9167 /*
9168 * HACK: We don't (yet) fully support global modesets. intel_set_config
9169 * obies this rule, but the modeset restore mode of
9170 * intel_modeset_setup_hw_state does not.
9171 */
9172 *modeset_pipes &= 1 << intel_crtc->pipe;
9173 *prepare_pipes &= 1 << intel_crtc->pipe;
9174
9175 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9176 *modeset_pipes, *prepare_pipes, *disable_pipes);
9177 }
9178
9179 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9180 {
9181 struct drm_encoder *encoder;
9182 struct drm_device *dev = crtc->dev;
9183
9184 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9185 if (encoder->crtc == crtc)
9186 return true;
9187
9188 return false;
9189 }
9190
9191 static void
9192 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9193 {
9194 struct intel_encoder *intel_encoder;
9195 struct intel_crtc *intel_crtc;
9196 struct drm_connector *connector;
9197
9198 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9199 base.head) {
9200 if (!intel_encoder->base.crtc)
9201 continue;
9202
9203 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9204
9205 if (prepare_pipes & (1 << intel_crtc->pipe))
9206 intel_encoder->connectors_active = false;
9207 }
9208
9209 intel_modeset_commit_output_state(dev);
9210
9211 /* Update computed state. */
9212 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9213 base.head) {
9214 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9215 }
9216
9217 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9218 if (!connector->encoder || !connector->encoder->crtc)
9219 continue;
9220
9221 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9222
9223 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9224 struct drm_property *dpms_property =
9225 dev->mode_config.dpms_property;
9226
9227 connector->dpms = DRM_MODE_DPMS_ON;
9228 drm_object_property_set_value(&connector->base,
9229 dpms_property,
9230 DRM_MODE_DPMS_ON);
9231
9232 intel_encoder = to_intel_encoder(connector->encoder);
9233 intel_encoder->connectors_active = true;
9234 }
9235 }
9236
9237 }
9238
9239 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9240 {
9241 int diff;
9242
9243 if (clock1 == clock2)
9244 return true;
9245
9246 if (!clock1 || !clock2)
9247 return false;
9248
9249 diff = abs(clock1 - clock2);
9250
9251 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9252 return true;
9253
9254 return false;
9255 }
9256
9257 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9258 list_for_each_entry((intel_crtc), \
9259 &(dev)->mode_config.crtc_list, \
9260 base.head) \
9261 if (mask & (1 <<(intel_crtc)->pipe))
9262
9263 static bool
9264 intel_pipe_config_compare(struct drm_device *dev,
9265 struct intel_crtc_config *current_config,
9266 struct intel_crtc_config *pipe_config)
9267 {
9268 #define PIPE_CONF_CHECK_X(name) \
9269 if (current_config->name != pipe_config->name) { \
9270 DRM_ERROR("mismatch in " #name " " \
9271 "(expected 0x%08x, found 0x%08x)\n", \
9272 current_config->name, \
9273 pipe_config->name); \
9274 return false; \
9275 }
9276
9277 #define PIPE_CONF_CHECK_I(name) \
9278 if (current_config->name != pipe_config->name) { \
9279 DRM_ERROR("mismatch in " #name " " \
9280 "(expected %i, found %i)\n", \
9281 current_config->name, \
9282 pipe_config->name); \
9283 return false; \
9284 }
9285
9286 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
9287 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9288 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9289 "(expected %i, found %i)\n", \
9290 current_config->name & (mask), \
9291 pipe_config->name & (mask)); \
9292 return false; \
9293 }
9294
9295 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9296 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9297 DRM_ERROR("mismatch in " #name " " \
9298 "(expected %i, found %i)\n", \
9299 current_config->name, \
9300 pipe_config->name); \
9301 return false; \
9302 }
9303
9304 #define PIPE_CONF_QUIRK(quirk) \
9305 ((current_config->quirks | pipe_config->quirks) & (quirk))
9306
9307 PIPE_CONF_CHECK_I(cpu_transcoder);
9308
9309 PIPE_CONF_CHECK_I(has_pch_encoder);
9310 PIPE_CONF_CHECK_I(fdi_lanes);
9311 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9312 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9313 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9314 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9315 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9316
9317 PIPE_CONF_CHECK_I(has_dp_encoder);
9318 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9319 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9320 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9321 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9322 PIPE_CONF_CHECK_I(dp_m_n.tu);
9323
9324 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9325 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9326 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9327 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9328 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9329 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9330
9331 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9332 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9333 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9334 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9335 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9336 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9337
9338 PIPE_CONF_CHECK_I(pixel_multiplier);
9339
9340 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9341 DRM_MODE_FLAG_INTERLACE);
9342
9343 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9344 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9345 DRM_MODE_FLAG_PHSYNC);
9346 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9347 DRM_MODE_FLAG_NHSYNC);
9348 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9349 DRM_MODE_FLAG_PVSYNC);
9350 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9351 DRM_MODE_FLAG_NVSYNC);
9352 }
9353
9354 PIPE_CONF_CHECK_I(pipe_src_w);
9355 PIPE_CONF_CHECK_I(pipe_src_h);
9356
9357 PIPE_CONF_CHECK_I(gmch_pfit.control);
9358 /* pfit ratios are autocomputed by the hw on gen4+ */
9359 if (INTEL_INFO(dev)->gen < 4)
9360 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9361 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9362 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9363 if (current_config->pch_pfit.enabled) {
9364 PIPE_CONF_CHECK_I(pch_pfit.pos);
9365 PIPE_CONF_CHECK_I(pch_pfit.size);
9366 }
9367
9368 /* BDW+ don't expose a synchronous way to read the state */
9369 if (IS_HASWELL(dev))
9370 PIPE_CONF_CHECK_I(ips_enabled);
9371
9372 PIPE_CONF_CHECK_I(double_wide);
9373
9374 PIPE_CONF_CHECK_I(shared_dpll);
9375 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9376 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9377 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9378 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9379
9380 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9381 PIPE_CONF_CHECK_I(pipe_bpp);
9382
9383 if (!HAS_DDI(dev)) {
9384 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9385 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9386 }
9387
9388 #undef PIPE_CONF_CHECK_X
9389 #undef PIPE_CONF_CHECK_I
9390 #undef PIPE_CONF_CHECK_FLAGS
9391 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9392 #undef PIPE_CONF_QUIRK
9393
9394 return true;
9395 }
9396
9397 static void
9398 check_connector_state(struct drm_device *dev)
9399 {
9400 struct intel_connector *connector;
9401
9402 list_for_each_entry(connector, &dev->mode_config.connector_list,
9403 base.head) {
9404 /* This also checks the encoder/connector hw state with the
9405 * ->get_hw_state callbacks. */
9406 intel_connector_check_state(connector);
9407
9408 WARN(&connector->new_encoder->base != connector->base.encoder,
9409 "connector's staged encoder doesn't match current encoder\n");
9410 }
9411 }
9412
9413 static void
9414 check_encoder_state(struct drm_device *dev)
9415 {
9416 struct intel_encoder *encoder;
9417 struct intel_connector *connector;
9418
9419 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9420 base.head) {
9421 bool enabled = false;
9422 bool active = false;
9423 enum pipe pipe, tracked_pipe;
9424
9425 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9426 encoder->base.base.id,
9427 drm_get_encoder_name(&encoder->base));
9428
9429 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9430 "encoder's stage crtc doesn't match current crtc\n");
9431 WARN(encoder->connectors_active && !encoder->base.crtc,
9432 "encoder's active_connectors set, but no crtc\n");
9433
9434 list_for_each_entry(connector, &dev->mode_config.connector_list,
9435 base.head) {
9436 if (connector->base.encoder != &encoder->base)
9437 continue;
9438 enabled = true;
9439 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9440 active = true;
9441 }
9442 WARN(!!encoder->base.crtc != enabled,
9443 "encoder's enabled state mismatch "
9444 "(expected %i, found %i)\n",
9445 !!encoder->base.crtc, enabled);
9446 WARN(active && !encoder->base.crtc,
9447 "active encoder with no crtc\n");
9448
9449 WARN(encoder->connectors_active != active,
9450 "encoder's computed active state doesn't match tracked active state "
9451 "(expected %i, found %i)\n", active, encoder->connectors_active);
9452
9453 active = encoder->get_hw_state(encoder, &pipe);
9454 WARN(active != encoder->connectors_active,
9455 "encoder's hw state doesn't match sw tracking "
9456 "(expected %i, found %i)\n",
9457 encoder->connectors_active, active);
9458
9459 if (!encoder->base.crtc)
9460 continue;
9461
9462 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9463 WARN(active && pipe != tracked_pipe,
9464 "active encoder's pipe doesn't match"
9465 "(expected %i, found %i)\n",
9466 tracked_pipe, pipe);
9467
9468 }
9469 }
9470
9471 static void
9472 check_crtc_state(struct drm_device *dev)
9473 {
9474 drm_i915_private_t *dev_priv = dev->dev_private;
9475 struct intel_crtc *crtc;
9476 struct intel_encoder *encoder;
9477 struct intel_crtc_config pipe_config;
9478
9479 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9480 base.head) {
9481 bool enabled = false;
9482 bool active = false;
9483
9484 memset(&pipe_config, 0, sizeof(pipe_config));
9485
9486 DRM_DEBUG_KMS("[CRTC:%d]\n",
9487 crtc->base.base.id);
9488
9489 WARN(crtc->active && !crtc->base.enabled,
9490 "active crtc, but not enabled in sw tracking\n");
9491
9492 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9493 base.head) {
9494 if (encoder->base.crtc != &crtc->base)
9495 continue;
9496 enabled = true;
9497 if (encoder->connectors_active)
9498 active = true;
9499 }
9500
9501 WARN(active != crtc->active,
9502 "crtc's computed active state doesn't match tracked active state "
9503 "(expected %i, found %i)\n", active, crtc->active);
9504 WARN(enabled != crtc->base.enabled,
9505 "crtc's computed enabled state doesn't match tracked enabled state "
9506 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9507
9508 active = dev_priv->display.get_pipe_config(crtc,
9509 &pipe_config);
9510
9511 /* hw state is inconsistent with the pipe A quirk */
9512 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9513 active = crtc->active;
9514
9515 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9516 base.head) {
9517 enum pipe pipe;
9518 if (encoder->base.crtc != &crtc->base)
9519 continue;
9520 if (encoder->get_hw_state(encoder, &pipe))
9521 encoder->get_config(encoder, &pipe_config);
9522 }
9523
9524 WARN(crtc->active != active,
9525 "crtc active state doesn't match with hw state "
9526 "(expected %i, found %i)\n", crtc->active, active);
9527
9528 if (active &&
9529 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9530 WARN(1, "pipe state doesn't match!\n");
9531 intel_dump_pipe_config(crtc, &pipe_config,
9532 "[hw state]");
9533 intel_dump_pipe_config(crtc, &crtc->config,
9534 "[sw state]");
9535 }
9536 }
9537 }
9538
9539 static void
9540 check_shared_dpll_state(struct drm_device *dev)
9541 {
9542 drm_i915_private_t *dev_priv = dev->dev_private;
9543 struct intel_crtc *crtc;
9544 struct intel_dpll_hw_state dpll_hw_state;
9545 int i;
9546
9547 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9548 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9549 int enabled_crtcs = 0, active_crtcs = 0;
9550 bool active;
9551
9552 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9553
9554 DRM_DEBUG_KMS("%s\n", pll->name);
9555
9556 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9557
9558 WARN(pll->active > pll->refcount,
9559 "more active pll users than references: %i vs %i\n",
9560 pll->active, pll->refcount);
9561 WARN(pll->active && !pll->on,
9562 "pll in active use but not on in sw tracking\n");
9563 WARN(pll->on && !pll->active,
9564 "pll in on but not on in use in sw tracking\n");
9565 WARN(pll->on != active,
9566 "pll on state mismatch (expected %i, found %i)\n",
9567 pll->on, active);
9568
9569 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9570 base.head) {
9571 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9572 enabled_crtcs++;
9573 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9574 active_crtcs++;
9575 }
9576 WARN(pll->active != active_crtcs,
9577 "pll active crtcs mismatch (expected %i, found %i)\n",
9578 pll->active, active_crtcs);
9579 WARN(pll->refcount != enabled_crtcs,
9580 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9581 pll->refcount, enabled_crtcs);
9582
9583 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9584 sizeof(dpll_hw_state)),
9585 "pll hw state mismatch\n");
9586 }
9587 }
9588
9589 void
9590 intel_modeset_check_state(struct drm_device *dev)
9591 {
9592 check_connector_state(dev);
9593 check_encoder_state(dev);
9594 check_crtc_state(dev);
9595 check_shared_dpll_state(dev);
9596 }
9597
9598 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9599 int dotclock)
9600 {
9601 /*
9602 * FDI already provided one idea for the dotclock.
9603 * Yell if the encoder disagrees.
9604 */
9605 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9606 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9607 pipe_config->adjusted_mode.crtc_clock, dotclock);
9608 }
9609
9610 static int __intel_set_mode(struct drm_crtc *crtc,
9611 struct drm_display_mode *mode,
9612 int x, int y, struct drm_framebuffer *fb)
9613 {
9614 struct drm_device *dev = crtc->dev;
9615 drm_i915_private_t *dev_priv = dev->dev_private;
9616 struct drm_display_mode *saved_mode;
9617 struct intel_crtc_config *pipe_config = NULL;
9618 struct intel_crtc *intel_crtc;
9619 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9620 int ret = 0;
9621
9622 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9623 if (!saved_mode)
9624 return -ENOMEM;
9625
9626 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9627 &prepare_pipes, &disable_pipes);
9628
9629 *saved_mode = crtc->mode;
9630
9631 /* Hack: Because we don't (yet) support global modeset on multiple
9632 * crtcs, we don't keep track of the new mode for more than one crtc.
9633 * Hence simply check whether any bit is set in modeset_pipes in all the
9634 * pieces of code that are not yet converted to deal with mutliple crtcs
9635 * changing their mode at the same time. */
9636 if (modeset_pipes) {
9637 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9638 if (IS_ERR(pipe_config)) {
9639 ret = PTR_ERR(pipe_config);
9640 pipe_config = NULL;
9641
9642 goto out;
9643 }
9644 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9645 "[modeset]");
9646 }
9647
9648 /*
9649 * See if the config requires any additional preparation, e.g.
9650 * to adjust global state with pipes off. We need to do this
9651 * here so we can get the modeset_pipe updated config for the new
9652 * mode set on this crtc. For other crtcs we need to use the
9653 * adjusted_mode bits in the crtc directly.
9654 */
9655 if (IS_VALLEYVIEW(dev)) {
9656 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9657 modeset_pipes, pipe_config);
9658
9659 /* may have added more to prepare_pipes than we should */
9660 prepare_pipes &= ~disable_pipes;
9661 }
9662
9663 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9664 intel_crtc_disable(&intel_crtc->base);
9665
9666 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9667 if (intel_crtc->base.enabled)
9668 dev_priv->display.crtc_disable(&intel_crtc->base);
9669 }
9670
9671 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9672 * to set it here already despite that we pass it down the callchain.
9673 */
9674 if (modeset_pipes) {
9675 crtc->mode = *mode;
9676 /* mode_set/enable/disable functions rely on a correct pipe
9677 * config. */
9678 to_intel_crtc(crtc)->config = *pipe_config;
9679
9680 /*
9681 * Calculate and store various constants which
9682 * are later needed by vblank and swap-completion
9683 * timestamping. They are derived from true hwmode.
9684 */
9685 drm_calc_timestamping_constants(crtc,
9686 &pipe_config->adjusted_mode);
9687 }
9688
9689 /* Only after disabling all output pipelines that will be changed can we
9690 * update the the output configuration. */
9691 intel_modeset_update_state(dev, prepare_pipes);
9692
9693 if (dev_priv->display.modeset_global_resources)
9694 dev_priv->display.modeset_global_resources(dev);
9695
9696 /* Set up the DPLL and any encoders state that needs to adjust or depend
9697 * on the DPLL.
9698 */
9699 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9700 ret = intel_crtc_mode_set(&intel_crtc->base,
9701 x, y, fb);
9702 if (ret)
9703 goto done;
9704 }
9705
9706 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9707 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9708 dev_priv->display.crtc_enable(&intel_crtc->base);
9709
9710 /* FIXME: add subpixel order */
9711 done:
9712 if (ret && crtc->enabled)
9713 crtc->mode = *saved_mode;
9714
9715 out:
9716 kfree(pipe_config);
9717 kfree(saved_mode);
9718 return ret;
9719 }
9720
9721 static int intel_set_mode(struct drm_crtc *crtc,
9722 struct drm_display_mode *mode,
9723 int x, int y, struct drm_framebuffer *fb)
9724 {
9725 int ret;
9726
9727 ret = __intel_set_mode(crtc, mode, x, y, fb);
9728
9729 if (ret == 0)
9730 intel_modeset_check_state(crtc->dev);
9731
9732 return ret;
9733 }
9734
9735 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9736 {
9737 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9738 }
9739
9740 #undef for_each_intel_crtc_masked
9741
9742 static void intel_set_config_free(struct intel_set_config *config)
9743 {
9744 if (!config)
9745 return;
9746
9747 kfree(config->save_connector_encoders);
9748 kfree(config->save_encoder_crtcs);
9749 kfree(config);
9750 }
9751
9752 static int intel_set_config_save_state(struct drm_device *dev,
9753 struct intel_set_config *config)
9754 {
9755 struct drm_encoder *encoder;
9756 struct drm_connector *connector;
9757 int count;
9758
9759 config->save_encoder_crtcs =
9760 kcalloc(dev->mode_config.num_encoder,
9761 sizeof(struct drm_crtc *), GFP_KERNEL);
9762 if (!config->save_encoder_crtcs)
9763 return -ENOMEM;
9764
9765 config->save_connector_encoders =
9766 kcalloc(dev->mode_config.num_connector,
9767 sizeof(struct drm_encoder *), GFP_KERNEL);
9768 if (!config->save_connector_encoders)
9769 return -ENOMEM;
9770
9771 /* Copy data. Note that driver private data is not affected.
9772 * Should anything bad happen only the expected state is
9773 * restored, not the drivers personal bookkeeping.
9774 */
9775 count = 0;
9776 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9777 config->save_encoder_crtcs[count++] = encoder->crtc;
9778 }
9779
9780 count = 0;
9781 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9782 config->save_connector_encoders[count++] = connector->encoder;
9783 }
9784
9785 return 0;
9786 }
9787
9788 static void intel_set_config_restore_state(struct drm_device *dev,
9789 struct intel_set_config *config)
9790 {
9791 struct intel_encoder *encoder;
9792 struct intel_connector *connector;
9793 int count;
9794
9795 count = 0;
9796 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9797 encoder->new_crtc =
9798 to_intel_crtc(config->save_encoder_crtcs[count++]);
9799 }
9800
9801 count = 0;
9802 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9803 connector->new_encoder =
9804 to_intel_encoder(config->save_connector_encoders[count++]);
9805 }
9806 }
9807
9808 static bool
9809 is_crtc_connector_off(struct drm_mode_set *set)
9810 {
9811 int i;
9812
9813 if (set->num_connectors == 0)
9814 return false;
9815
9816 if (WARN_ON(set->connectors == NULL))
9817 return false;
9818
9819 for (i = 0; i < set->num_connectors; i++)
9820 if (set->connectors[i]->encoder &&
9821 set->connectors[i]->encoder->crtc == set->crtc &&
9822 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9823 return true;
9824
9825 return false;
9826 }
9827
9828 static void
9829 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9830 struct intel_set_config *config)
9831 {
9832
9833 /* We should be able to check here if the fb has the same properties
9834 * and then just flip_or_move it */
9835 if (is_crtc_connector_off(set)) {
9836 config->mode_changed = true;
9837 } else if (set->crtc->fb != set->fb) {
9838 /* If we have no fb then treat it as a full mode set */
9839 if (set->crtc->fb == NULL) {
9840 struct intel_crtc *intel_crtc =
9841 to_intel_crtc(set->crtc);
9842
9843 if (intel_crtc->active && i915_fastboot) {
9844 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9845 config->fb_changed = true;
9846 } else {
9847 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9848 config->mode_changed = true;
9849 }
9850 } else if (set->fb == NULL) {
9851 config->mode_changed = true;
9852 } else if (set->fb->pixel_format !=
9853 set->crtc->fb->pixel_format) {
9854 config->mode_changed = true;
9855 } else {
9856 config->fb_changed = true;
9857 }
9858 }
9859
9860 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9861 config->fb_changed = true;
9862
9863 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9864 DRM_DEBUG_KMS("modes are different, full mode set\n");
9865 drm_mode_debug_printmodeline(&set->crtc->mode);
9866 drm_mode_debug_printmodeline(set->mode);
9867 config->mode_changed = true;
9868 }
9869
9870 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9871 set->crtc->base.id, config->mode_changed, config->fb_changed);
9872 }
9873
9874 static int
9875 intel_modeset_stage_output_state(struct drm_device *dev,
9876 struct drm_mode_set *set,
9877 struct intel_set_config *config)
9878 {
9879 struct drm_crtc *new_crtc;
9880 struct intel_connector *connector;
9881 struct intel_encoder *encoder;
9882 int ro;
9883
9884 /* The upper layers ensure that we either disable a crtc or have a list
9885 * of connectors. For paranoia, double-check this. */
9886 WARN_ON(!set->fb && (set->num_connectors != 0));
9887 WARN_ON(set->fb && (set->num_connectors == 0));
9888
9889 list_for_each_entry(connector, &dev->mode_config.connector_list,
9890 base.head) {
9891 /* Otherwise traverse passed in connector list and get encoders
9892 * for them. */
9893 for (ro = 0; ro < set->num_connectors; ro++) {
9894 if (set->connectors[ro] == &connector->base) {
9895 connector->new_encoder = connector->encoder;
9896 break;
9897 }
9898 }
9899
9900 /* If we disable the crtc, disable all its connectors. Also, if
9901 * the connector is on the changing crtc but not on the new
9902 * connector list, disable it. */
9903 if ((!set->fb || ro == set->num_connectors) &&
9904 connector->base.encoder &&
9905 connector->base.encoder->crtc == set->crtc) {
9906 connector->new_encoder = NULL;
9907
9908 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9909 connector->base.base.id,
9910 drm_get_connector_name(&connector->base));
9911 }
9912
9913
9914 if (&connector->new_encoder->base != connector->base.encoder) {
9915 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9916 config->mode_changed = true;
9917 }
9918 }
9919 /* connector->new_encoder is now updated for all connectors. */
9920
9921 /* Update crtc of enabled connectors. */
9922 list_for_each_entry(connector, &dev->mode_config.connector_list,
9923 base.head) {
9924 if (!connector->new_encoder)
9925 continue;
9926
9927 new_crtc = connector->new_encoder->base.crtc;
9928
9929 for (ro = 0; ro < set->num_connectors; ro++) {
9930 if (set->connectors[ro] == &connector->base)
9931 new_crtc = set->crtc;
9932 }
9933
9934 /* Make sure the new CRTC will work with the encoder */
9935 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
9936 new_crtc)) {
9937 return -EINVAL;
9938 }
9939 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9940
9941 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9942 connector->base.base.id,
9943 drm_get_connector_name(&connector->base),
9944 new_crtc->base.id);
9945 }
9946
9947 /* Check for any encoders that needs to be disabled. */
9948 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9949 base.head) {
9950 int num_connectors = 0;
9951 list_for_each_entry(connector,
9952 &dev->mode_config.connector_list,
9953 base.head) {
9954 if (connector->new_encoder == encoder) {
9955 WARN_ON(!connector->new_encoder->new_crtc);
9956 num_connectors++;
9957 }
9958 }
9959
9960 if (num_connectors == 0)
9961 encoder->new_crtc = NULL;
9962 else if (num_connectors > 1)
9963 return -EINVAL;
9964
9965 /* Only now check for crtc changes so we don't miss encoders
9966 * that will be disabled. */
9967 if (&encoder->new_crtc->base != encoder->base.crtc) {
9968 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9969 config->mode_changed = true;
9970 }
9971 }
9972 /* Now we've also updated encoder->new_crtc for all encoders. */
9973
9974 return 0;
9975 }
9976
9977 static int intel_crtc_set_config(struct drm_mode_set *set)
9978 {
9979 struct drm_device *dev;
9980 struct drm_mode_set save_set;
9981 struct intel_set_config *config;
9982 int ret;
9983
9984 BUG_ON(!set);
9985 BUG_ON(!set->crtc);
9986 BUG_ON(!set->crtc->helper_private);
9987
9988 /* Enforce sane interface api - has been abused by the fb helper. */
9989 BUG_ON(!set->mode && set->fb);
9990 BUG_ON(set->fb && set->num_connectors == 0);
9991
9992 if (set->fb) {
9993 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9994 set->crtc->base.id, set->fb->base.id,
9995 (int)set->num_connectors, set->x, set->y);
9996 } else {
9997 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9998 }
9999
10000 dev = set->crtc->dev;
10001
10002 ret = -ENOMEM;
10003 config = kzalloc(sizeof(*config), GFP_KERNEL);
10004 if (!config)
10005 goto out_config;
10006
10007 ret = intel_set_config_save_state(dev, config);
10008 if (ret)
10009 goto out_config;
10010
10011 save_set.crtc = set->crtc;
10012 save_set.mode = &set->crtc->mode;
10013 save_set.x = set->crtc->x;
10014 save_set.y = set->crtc->y;
10015 save_set.fb = set->crtc->fb;
10016
10017 /* Compute whether we need a full modeset, only an fb base update or no
10018 * change at all. In the future we might also check whether only the
10019 * mode changed, e.g. for LVDS where we only change the panel fitter in
10020 * such cases. */
10021 intel_set_config_compute_mode_changes(set, config);
10022
10023 ret = intel_modeset_stage_output_state(dev, set, config);
10024 if (ret)
10025 goto fail;
10026
10027 if (config->mode_changed) {
10028 ret = intel_set_mode(set->crtc, set->mode,
10029 set->x, set->y, set->fb);
10030 } else if (config->fb_changed) {
10031 intel_crtc_wait_for_pending_flips(set->crtc);
10032
10033 ret = intel_pipe_set_base(set->crtc,
10034 set->x, set->y, set->fb);
10035 /*
10036 * In the fastboot case this may be our only check of the
10037 * state after boot. It would be better to only do it on
10038 * the first update, but we don't have a nice way of doing that
10039 * (and really, set_config isn't used much for high freq page
10040 * flipping, so increasing its cost here shouldn't be a big
10041 * deal).
10042 */
10043 if (i915_fastboot && ret == 0)
10044 intel_modeset_check_state(set->crtc->dev);
10045 }
10046
10047 if (ret) {
10048 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10049 set->crtc->base.id, ret);
10050 fail:
10051 intel_set_config_restore_state(dev, config);
10052
10053 /* Try to restore the config */
10054 if (config->mode_changed &&
10055 intel_set_mode(save_set.crtc, save_set.mode,
10056 save_set.x, save_set.y, save_set.fb))
10057 DRM_ERROR("failed to restore config after modeset failure\n");
10058 }
10059
10060 out_config:
10061 intel_set_config_free(config);
10062 return ret;
10063 }
10064
10065 static const struct drm_crtc_funcs intel_crtc_funcs = {
10066 .cursor_set = intel_crtc_cursor_set,
10067 .cursor_move = intel_crtc_cursor_move,
10068 .gamma_set = intel_crtc_gamma_set,
10069 .set_config = intel_crtc_set_config,
10070 .destroy = intel_crtc_destroy,
10071 .page_flip = intel_crtc_page_flip,
10072 };
10073
10074 static void intel_cpu_pll_init(struct drm_device *dev)
10075 {
10076 if (HAS_DDI(dev))
10077 intel_ddi_pll_init(dev);
10078 }
10079
10080 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10081 struct intel_shared_dpll *pll,
10082 struct intel_dpll_hw_state *hw_state)
10083 {
10084 uint32_t val;
10085
10086 val = I915_READ(PCH_DPLL(pll->id));
10087 hw_state->dpll = val;
10088 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10089 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10090
10091 return val & DPLL_VCO_ENABLE;
10092 }
10093
10094 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10095 struct intel_shared_dpll *pll)
10096 {
10097 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10098 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10099 }
10100
10101 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10102 struct intel_shared_dpll *pll)
10103 {
10104 /* PCH refclock must be enabled first */
10105 ibx_assert_pch_refclk_enabled(dev_priv);
10106
10107 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10108
10109 /* Wait for the clocks to stabilize. */
10110 POSTING_READ(PCH_DPLL(pll->id));
10111 udelay(150);
10112
10113 /* The pixel multiplier can only be updated once the
10114 * DPLL is enabled and the clocks are stable.
10115 *
10116 * So write it again.
10117 */
10118 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10119 POSTING_READ(PCH_DPLL(pll->id));
10120 udelay(200);
10121 }
10122
10123 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10124 struct intel_shared_dpll *pll)
10125 {
10126 struct drm_device *dev = dev_priv->dev;
10127 struct intel_crtc *crtc;
10128
10129 /* Make sure no transcoder isn't still depending on us. */
10130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10131 if (intel_crtc_to_shared_dpll(crtc) == pll)
10132 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10133 }
10134
10135 I915_WRITE(PCH_DPLL(pll->id), 0);
10136 POSTING_READ(PCH_DPLL(pll->id));
10137 udelay(200);
10138 }
10139
10140 static char *ibx_pch_dpll_names[] = {
10141 "PCH DPLL A",
10142 "PCH DPLL B",
10143 };
10144
10145 static void ibx_pch_dpll_init(struct drm_device *dev)
10146 {
10147 struct drm_i915_private *dev_priv = dev->dev_private;
10148 int i;
10149
10150 dev_priv->num_shared_dpll = 2;
10151
10152 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10153 dev_priv->shared_dplls[i].id = i;
10154 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10155 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10156 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10157 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10158 dev_priv->shared_dplls[i].get_hw_state =
10159 ibx_pch_dpll_get_hw_state;
10160 }
10161 }
10162
10163 static void intel_shared_dpll_init(struct drm_device *dev)
10164 {
10165 struct drm_i915_private *dev_priv = dev->dev_private;
10166
10167 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10168 ibx_pch_dpll_init(dev);
10169 else
10170 dev_priv->num_shared_dpll = 0;
10171
10172 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10173 }
10174
10175 static void intel_crtc_init(struct drm_device *dev, int pipe)
10176 {
10177 drm_i915_private_t *dev_priv = dev->dev_private;
10178 struct intel_crtc *intel_crtc;
10179 int i;
10180
10181 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10182 if (intel_crtc == NULL)
10183 return;
10184
10185 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10186
10187 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10188 for (i = 0; i < 256; i++) {
10189 intel_crtc->lut_r[i] = i;
10190 intel_crtc->lut_g[i] = i;
10191 intel_crtc->lut_b[i] = i;
10192 }
10193
10194 /*
10195 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10196 * is hooked to plane B. Hence we want plane A feeding pipe B.
10197 */
10198 intel_crtc->pipe = pipe;
10199 intel_crtc->plane = pipe;
10200 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10201 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10202 intel_crtc->plane = !pipe;
10203 }
10204
10205 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10206 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10207 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10208 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10209
10210 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10211 }
10212
10213 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10214 {
10215 struct drm_encoder *encoder = connector->base.encoder;
10216
10217 WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10218
10219 if (!encoder)
10220 return INVALID_PIPE;
10221
10222 return to_intel_crtc(encoder->crtc)->pipe;
10223 }
10224
10225 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10226 struct drm_file *file)
10227 {
10228 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10229 struct drm_mode_object *drmmode_obj;
10230 struct intel_crtc *crtc;
10231
10232 if (!drm_core_check_feature(dev, DRIVER_MODESET))
10233 return -ENODEV;
10234
10235 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10236 DRM_MODE_OBJECT_CRTC);
10237
10238 if (!drmmode_obj) {
10239 DRM_ERROR("no such CRTC id\n");
10240 return -ENOENT;
10241 }
10242
10243 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10244 pipe_from_crtc_id->pipe = crtc->pipe;
10245
10246 return 0;
10247 }
10248
10249 static int intel_encoder_clones(struct intel_encoder *encoder)
10250 {
10251 struct drm_device *dev = encoder->base.dev;
10252 struct intel_encoder *source_encoder;
10253 int index_mask = 0;
10254 int entry = 0;
10255
10256 list_for_each_entry(source_encoder,
10257 &dev->mode_config.encoder_list, base.head) {
10258
10259 if (encoder == source_encoder)
10260 index_mask |= (1 << entry);
10261
10262 /* Intel hw has only one MUX where enocoders could be cloned. */
10263 if (encoder->cloneable && source_encoder->cloneable)
10264 index_mask |= (1 << entry);
10265
10266 entry++;
10267 }
10268
10269 return index_mask;
10270 }
10271
10272 static bool has_edp_a(struct drm_device *dev)
10273 {
10274 struct drm_i915_private *dev_priv = dev->dev_private;
10275
10276 if (!IS_MOBILE(dev))
10277 return false;
10278
10279 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10280 return false;
10281
10282 if (IS_GEN5(dev) &&
10283 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10284 return false;
10285
10286 return true;
10287 }
10288
10289 const char *intel_output_name(int output)
10290 {
10291 static const char *names[] = {
10292 [INTEL_OUTPUT_UNUSED] = "Unused",
10293 [INTEL_OUTPUT_ANALOG] = "Analog",
10294 [INTEL_OUTPUT_DVO] = "DVO",
10295 [INTEL_OUTPUT_SDVO] = "SDVO",
10296 [INTEL_OUTPUT_LVDS] = "LVDS",
10297 [INTEL_OUTPUT_TVOUT] = "TV",
10298 [INTEL_OUTPUT_HDMI] = "HDMI",
10299 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10300 [INTEL_OUTPUT_EDP] = "eDP",
10301 [INTEL_OUTPUT_DSI] = "DSI",
10302 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10303 };
10304
10305 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10306 return "Invalid";
10307
10308 return names[output];
10309 }
10310
10311 static void intel_setup_outputs(struct drm_device *dev)
10312 {
10313 struct drm_i915_private *dev_priv = dev->dev_private;
10314 struct intel_encoder *encoder;
10315 bool dpd_is_edp = false;
10316
10317 intel_lvds_init(dev);
10318
10319 if (!IS_ULT(dev))
10320 intel_crt_init(dev);
10321
10322 if (HAS_DDI(dev)) {
10323 int found;
10324
10325 /* Haswell uses DDI functions to detect digital outputs */
10326 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10327 /* DDI A only supports eDP */
10328 if (found)
10329 intel_ddi_init(dev, PORT_A);
10330
10331 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10332 * register */
10333 found = I915_READ(SFUSE_STRAP);
10334
10335 if (found & SFUSE_STRAP_DDIB_DETECTED)
10336 intel_ddi_init(dev, PORT_B);
10337 if (found & SFUSE_STRAP_DDIC_DETECTED)
10338 intel_ddi_init(dev, PORT_C);
10339 if (found & SFUSE_STRAP_DDID_DETECTED)
10340 intel_ddi_init(dev, PORT_D);
10341 } else if (HAS_PCH_SPLIT(dev)) {
10342 int found;
10343 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10344
10345 if (has_edp_a(dev))
10346 intel_dp_init(dev, DP_A, PORT_A);
10347
10348 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10349 /* PCH SDVOB multiplex with HDMIB */
10350 found = intel_sdvo_init(dev, PCH_SDVOB, true);
10351 if (!found)
10352 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10353 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10354 intel_dp_init(dev, PCH_DP_B, PORT_B);
10355 }
10356
10357 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10358 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10359
10360 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10361 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10362
10363 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10364 intel_dp_init(dev, PCH_DP_C, PORT_C);
10365
10366 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10367 intel_dp_init(dev, PCH_DP_D, PORT_D);
10368 } else if (IS_VALLEYVIEW(dev)) {
10369 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10370 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10371 PORT_B);
10372 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10373 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10374 }
10375
10376 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10377 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10378 PORT_C);
10379 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10380 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10381 }
10382
10383 intel_dsi_init(dev);
10384 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10385 bool found = false;
10386
10387 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10388 DRM_DEBUG_KMS("probing SDVOB\n");
10389 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10390 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10391 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10392 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10393 }
10394
10395 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10396 intel_dp_init(dev, DP_B, PORT_B);
10397 }
10398
10399 /* Before G4X SDVOC doesn't have its own detect register */
10400
10401 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10402 DRM_DEBUG_KMS("probing SDVOC\n");
10403 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10404 }
10405
10406 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10407
10408 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10409 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10410 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10411 }
10412 if (SUPPORTS_INTEGRATED_DP(dev))
10413 intel_dp_init(dev, DP_C, PORT_C);
10414 }
10415
10416 if (SUPPORTS_INTEGRATED_DP(dev) &&
10417 (I915_READ(DP_D) & DP_DETECTED))
10418 intel_dp_init(dev, DP_D, PORT_D);
10419 } else if (IS_GEN2(dev))
10420 intel_dvo_init(dev);
10421
10422 if (SUPPORTS_TV(dev))
10423 intel_tv_init(dev);
10424
10425 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10426 encoder->base.possible_crtcs = encoder->crtc_mask;
10427 encoder->base.possible_clones =
10428 intel_encoder_clones(encoder);
10429 }
10430
10431 intel_init_pch_refclk(dev);
10432
10433 drm_helper_move_panel_connectors_to_head(dev);
10434 }
10435
10436 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10437 {
10438 drm_framebuffer_cleanup(&fb->base);
10439 WARN_ON(!fb->obj->framebuffer_references--);
10440 drm_gem_object_unreference_unlocked(&fb->obj->base);
10441 }
10442
10443 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10444 {
10445 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10446
10447 intel_framebuffer_fini(intel_fb);
10448 kfree(intel_fb);
10449 }
10450
10451 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10452 struct drm_file *file,
10453 unsigned int *handle)
10454 {
10455 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10456 struct drm_i915_gem_object *obj = intel_fb->obj;
10457
10458 return drm_gem_handle_create(file, &obj->base, handle);
10459 }
10460
10461 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10462 .destroy = intel_user_framebuffer_destroy,
10463 .create_handle = intel_user_framebuffer_create_handle,
10464 };
10465
10466 int intel_framebuffer_init(struct drm_device *dev,
10467 struct intel_framebuffer *intel_fb,
10468 struct drm_mode_fb_cmd2 *mode_cmd,
10469 struct drm_i915_gem_object *obj)
10470 {
10471 int aligned_height, tile_height;
10472 int pitch_limit;
10473 int ret;
10474
10475 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10476
10477 if (obj->tiling_mode == I915_TILING_Y) {
10478 DRM_DEBUG("hardware does not support tiling Y\n");
10479 return -EINVAL;
10480 }
10481
10482 if (mode_cmd->pitches[0] & 63) {
10483 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10484 mode_cmd->pitches[0]);
10485 return -EINVAL;
10486 }
10487
10488 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10489 pitch_limit = 32*1024;
10490 } else if (INTEL_INFO(dev)->gen >= 4) {
10491 if (obj->tiling_mode)
10492 pitch_limit = 16*1024;
10493 else
10494 pitch_limit = 32*1024;
10495 } else if (INTEL_INFO(dev)->gen >= 3) {
10496 if (obj->tiling_mode)
10497 pitch_limit = 8*1024;
10498 else
10499 pitch_limit = 16*1024;
10500 } else
10501 /* XXX DSPC is limited to 4k tiled */
10502 pitch_limit = 8*1024;
10503
10504 if (mode_cmd->pitches[0] > pitch_limit) {
10505 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10506 obj->tiling_mode ? "tiled" : "linear",
10507 mode_cmd->pitches[0], pitch_limit);
10508 return -EINVAL;
10509 }
10510
10511 if (obj->tiling_mode != I915_TILING_NONE &&
10512 mode_cmd->pitches[0] != obj->stride) {
10513 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10514 mode_cmd->pitches[0], obj->stride);
10515 return -EINVAL;
10516 }
10517
10518 /* Reject formats not supported by any plane early. */
10519 switch (mode_cmd->pixel_format) {
10520 case DRM_FORMAT_C8:
10521 case DRM_FORMAT_RGB565:
10522 case DRM_FORMAT_XRGB8888:
10523 case DRM_FORMAT_ARGB8888:
10524 break;
10525 case DRM_FORMAT_XRGB1555:
10526 case DRM_FORMAT_ARGB1555:
10527 if (INTEL_INFO(dev)->gen > 3) {
10528 DRM_DEBUG("unsupported pixel format: %s\n",
10529 drm_get_format_name(mode_cmd->pixel_format));
10530 return -EINVAL;
10531 }
10532 break;
10533 case DRM_FORMAT_XBGR8888:
10534 case DRM_FORMAT_ABGR8888:
10535 case DRM_FORMAT_XRGB2101010:
10536 case DRM_FORMAT_ARGB2101010:
10537 case DRM_FORMAT_XBGR2101010:
10538 case DRM_FORMAT_ABGR2101010:
10539 if (INTEL_INFO(dev)->gen < 4) {
10540 DRM_DEBUG("unsupported pixel format: %s\n",
10541 drm_get_format_name(mode_cmd->pixel_format));
10542 return -EINVAL;
10543 }
10544 break;
10545 case DRM_FORMAT_YUYV:
10546 case DRM_FORMAT_UYVY:
10547 case DRM_FORMAT_YVYU:
10548 case DRM_FORMAT_VYUY:
10549 if (INTEL_INFO(dev)->gen < 5) {
10550 DRM_DEBUG("unsupported pixel format: %s\n",
10551 drm_get_format_name(mode_cmd->pixel_format));
10552 return -EINVAL;
10553 }
10554 break;
10555 default:
10556 DRM_DEBUG("unsupported pixel format: %s\n",
10557 drm_get_format_name(mode_cmd->pixel_format));
10558 return -EINVAL;
10559 }
10560
10561 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10562 if (mode_cmd->offsets[0] != 0)
10563 return -EINVAL;
10564
10565 tile_height = IS_GEN2(dev) ? 16 : 8;
10566 aligned_height = ALIGN(mode_cmd->height,
10567 obj->tiling_mode ? tile_height : 1);
10568 /* FIXME drm helper for size checks (especially planar formats)? */
10569 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10570 return -EINVAL;
10571
10572 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10573 intel_fb->obj = obj;
10574 intel_fb->obj->framebuffer_references++;
10575
10576 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10577 if (ret) {
10578 DRM_ERROR("framebuffer init failed %d\n", ret);
10579 return ret;
10580 }
10581
10582 return 0;
10583 }
10584
10585 static struct drm_framebuffer *
10586 intel_user_framebuffer_create(struct drm_device *dev,
10587 struct drm_file *filp,
10588 struct drm_mode_fb_cmd2 *mode_cmd)
10589 {
10590 struct drm_i915_gem_object *obj;
10591
10592 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10593 mode_cmd->handles[0]));
10594 if (&obj->base == NULL)
10595 return ERR_PTR(-ENOENT);
10596
10597 return intel_framebuffer_create(dev, mode_cmd, obj);
10598 }
10599
10600 #ifndef CONFIG_DRM_I915_FBDEV
10601 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10602 {
10603 }
10604 #endif
10605
10606 static const struct drm_mode_config_funcs intel_mode_funcs = {
10607 .fb_create = intel_user_framebuffer_create,
10608 .output_poll_changed = intel_fbdev_output_poll_changed,
10609 };
10610
10611 /* Set up chip specific display functions */
10612 static void intel_init_display(struct drm_device *dev)
10613 {
10614 struct drm_i915_private *dev_priv = dev->dev_private;
10615
10616 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10617 dev_priv->display.find_dpll = g4x_find_best_dpll;
10618 else if (IS_VALLEYVIEW(dev))
10619 dev_priv->display.find_dpll = vlv_find_best_dpll;
10620 else if (IS_PINEVIEW(dev))
10621 dev_priv->display.find_dpll = pnv_find_best_dpll;
10622 else
10623 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10624
10625 if (HAS_DDI(dev)) {
10626 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10627 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10628 dev_priv->display.crtc_enable = haswell_crtc_enable;
10629 dev_priv->display.crtc_disable = haswell_crtc_disable;
10630 dev_priv->display.off = haswell_crtc_off;
10631 dev_priv->display.update_plane = ironlake_update_plane;
10632 } else if (HAS_PCH_SPLIT(dev)) {
10633 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10634 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10635 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10636 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10637 dev_priv->display.off = ironlake_crtc_off;
10638 dev_priv->display.update_plane = ironlake_update_plane;
10639 } else if (IS_VALLEYVIEW(dev)) {
10640 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10641 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10642 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10643 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10644 dev_priv->display.off = i9xx_crtc_off;
10645 dev_priv->display.update_plane = i9xx_update_plane;
10646 } else {
10647 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10648 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10649 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10650 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10651 dev_priv->display.off = i9xx_crtc_off;
10652 dev_priv->display.update_plane = i9xx_update_plane;
10653 }
10654
10655 /* Returns the core display clock speed */
10656 if (IS_VALLEYVIEW(dev))
10657 dev_priv->display.get_display_clock_speed =
10658 valleyview_get_display_clock_speed;
10659 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10660 dev_priv->display.get_display_clock_speed =
10661 i945_get_display_clock_speed;
10662 else if (IS_I915G(dev))
10663 dev_priv->display.get_display_clock_speed =
10664 i915_get_display_clock_speed;
10665 else if (IS_I945GM(dev) || IS_845G(dev))
10666 dev_priv->display.get_display_clock_speed =
10667 i9xx_misc_get_display_clock_speed;
10668 else if (IS_PINEVIEW(dev))
10669 dev_priv->display.get_display_clock_speed =
10670 pnv_get_display_clock_speed;
10671 else if (IS_I915GM(dev))
10672 dev_priv->display.get_display_clock_speed =
10673 i915gm_get_display_clock_speed;
10674 else if (IS_I865G(dev))
10675 dev_priv->display.get_display_clock_speed =
10676 i865_get_display_clock_speed;
10677 else if (IS_I85X(dev))
10678 dev_priv->display.get_display_clock_speed =
10679 i855_get_display_clock_speed;
10680 else /* 852, 830 */
10681 dev_priv->display.get_display_clock_speed =
10682 i830_get_display_clock_speed;
10683
10684 if (HAS_PCH_SPLIT(dev)) {
10685 if (IS_GEN5(dev)) {
10686 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10687 dev_priv->display.write_eld = ironlake_write_eld;
10688 } else if (IS_GEN6(dev)) {
10689 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10690 dev_priv->display.write_eld = ironlake_write_eld;
10691 } else if (IS_IVYBRIDGE(dev)) {
10692 /* FIXME: detect B0+ stepping and use auto training */
10693 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10694 dev_priv->display.write_eld = ironlake_write_eld;
10695 dev_priv->display.modeset_global_resources =
10696 ivb_modeset_global_resources;
10697 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10698 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10699 dev_priv->display.write_eld = haswell_write_eld;
10700 dev_priv->display.modeset_global_resources =
10701 haswell_modeset_global_resources;
10702 }
10703 } else if (IS_G4X(dev)) {
10704 dev_priv->display.write_eld = g4x_write_eld;
10705 } else if (IS_VALLEYVIEW(dev)) {
10706 dev_priv->display.modeset_global_resources =
10707 valleyview_modeset_global_resources;
10708 dev_priv->display.write_eld = ironlake_write_eld;
10709 }
10710
10711 /* Default just returns -ENODEV to indicate unsupported */
10712 dev_priv->display.queue_flip = intel_default_queue_flip;
10713
10714 switch (INTEL_INFO(dev)->gen) {
10715 case 2:
10716 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10717 break;
10718
10719 case 3:
10720 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10721 break;
10722
10723 case 4:
10724 case 5:
10725 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10726 break;
10727
10728 case 6:
10729 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10730 break;
10731 case 7:
10732 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10733 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10734 break;
10735 }
10736
10737 intel_panel_init_backlight_funcs(dev);
10738 }
10739
10740 /*
10741 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10742 * resume, or other times. This quirk makes sure that's the case for
10743 * affected systems.
10744 */
10745 static void quirk_pipea_force(struct drm_device *dev)
10746 {
10747 struct drm_i915_private *dev_priv = dev->dev_private;
10748
10749 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10750 DRM_INFO("applying pipe a force quirk\n");
10751 }
10752
10753 /*
10754 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10755 */
10756 static void quirk_ssc_force_disable(struct drm_device *dev)
10757 {
10758 struct drm_i915_private *dev_priv = dev->dev_private;
10759 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10760 DRM_INFO("applying lvds SSC disable quirk\n");
10761 }
10762
10763 /*
10764 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10765 * brightness value
10766 */
10767 static void quirk_invert_brightness(struct drm_device *dev)
10768 {
10769 struct drm_i915_private *dev_priv = dev->dev_private;
10770 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10771 DRM_INFO("applying inverted panel brightness quirk\n");
10772 }
10773
10774 struct intel_quirk {
10775 int device;
10776 int subsystem_vendor;
10777 int subsystem_device;
10778 void (*hook)(struct drm_device *dev);
10779 };
10780
10781 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10782 struct intel_dmi_quirk {
10783 void (*hook)(struct drm_device *dev);
10784 const struct dmi_system_id (*dmi_id_list)[];
10785 };
10786
10787 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10788 {
10789 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10790 return 1;
10791 }
10792
10793 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10794 {
10795 .dmi_id_list = &(const struct dmi_system_id[]) {
10796 {
10797 .callback = intel_dmi_reverse_brightness,
10798 .ident = "NCR Corporation",
10799 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10800 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10801 },
10802 },
10803 { } /* terminating entry */
10804 },
10805 .hook = quirk_invert_brightness,
10806 },
10807 };
10808
10809 static struct intel_quirk intel_quirks[] = {
10810 /* HP Mini needs pipe A force quirk (LP: #322104) */
10811 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10812
10813 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10814 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10815
10816 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10817 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10818
10819 /* 830 needs to leave pipe A & dpll A up */
10820 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10821
10822 /* Lenovo U160 cannot use SSC on LVDS */
10823 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10824
10825 /* Sony Vaio Y cannot use SSC on LVDS */
10826 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10827
10828 /* Acer Aspire 5734Z must invert backlight brightness */
10829 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10830
10831 /* Acer/eMachines G725 */
10832 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10833
10834 /* Acer/eMachines e725 */
10835 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10836
10837 /* Acer/Packard Bell NCL20 */
10838 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10839
10840 /* Acer Aspire 4736Z */
10841 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10842 };
10843
10844 static void intel_init_quirks(struct drm_device *dev)
10845 {
10846 struct pci_dev *d = dev->pdev;
10847 int i;
10848
10849 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10850 struct intel_quirk *q = &intel_quirks[i];
10851
10852 if (d->device == q->device &&
10853 (d->subsystem_vendor == q->subsystem_vendor ||
10854 q->subsystem_vendor == PCI_ANY_ID) &&
10855 (d->subsystem_device == q->subsystem_device ||
10856 q->subsystem_device == PCI_ANY_ID))
10857 q->hook(dev);
10858 }
10859 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10860 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10861 intel_dmi_quirks[i].hook(dev);
10862 }
10863 }
10864
10865 /* Disable the VGA plane that we never use */
10866 static void i915_disable_vga(struct drm_device *dev)
10867 {
10868 struct drm_i915_private *dev_priv = dev->dev_private;
10869 u8 sr1;
10870 u32 vga_reg = i915_vgacntrl_reg(dev);
10871
10872 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10873 outb(SR01, VGA_SR_INDEX);
10874 sr1 = inb(VGA_SR_DATA);
10875 outb(sr1 | 1<<5, VGA_SR_DATA);
10876 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10877 udelay(300);
10878
10879 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10880 POSTING_READ(vga_reg);
10881 }
10882
10883 void intel_modeset_init_hw(struct drm_device *dev)
10884 {
10885 intel_prepare_ddi(dev);
10886
10887 intel_init_clock_gating(dev);
10888
10889 intel_reset_dpio(dev);
10890
10891 mutex_lock(&dev->struct_mutex);
10892 intel_enable_gt_powersave(dev);
10893 mutex_unlock(&dev->struct_mutex);
10894 }
10895
10896 void intel_modeset_suspend_hw(struct drm_device *dev)
10897 {
10898 intel_suspend_hw(dev);
10899 }
10900
10901 void intel_modeset_init(struct drm_device *dev)
10902 {
10903 struct drm_i915_private *dev_priv = dev->dev_private;
10904 int i, j, ret;
10905
10906 drm_mode_config_init(dev);
10907
10908 dev->mode_config.min_width = 0;
10909 dev->mode_config.min_height = 0;
10910
10911 dev->mode_config.preferred_depth = 24;
10912 dev->mode_config.prefer_shadow = 1;
10913
10914 dev->mode_config.funcs = &intel_mode_funcs;
10915
10916 intel_init_quirks(dev);
10917
10918 intel_init_pm(dev);
10919
10920 if (INTEL_INFO(dev)->num_pipes == 0)
10921 return;
10922
10923 intel_init_display(dev);
10924
10925 if (IS_GEN2(dev)) {
10926 dev->mode_config.max_width = 2048;
10927 dev->mode_config.max_height = 2048;
10928 } else if (IS_GEN3(dev)) {
10929 dev->mode_config.max_width = 4096;
10930 dev->mode_config.max_height = 4096;
10931 } else {
10932 dev->mode_config.max_width = 8192;
10933 dev->mode_config.max_height = 8192;
10934 }
10935 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10936
10937 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10938 INTEL_INFO(dev)->num_pipes,
10939 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10940
10941 for_each_pipe(i) {
10942 intel_crtc_init(dev, i);
10943 for (j = 0; j < dev_priv->num_plane; j++) {
10944 ret = intel_plane_init(dev, i, j);
10945 if (ret)
10946 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10947 pipe_name(i), sprite_name(i, j), ret);
10948 }
10949 }
10950
10951 intel_init_dpio(dev);
10952 intel_reset_dpio(dev);
10953
10954 intel_cpu_pll_init(dev);
10955 intel_shared_dpll_init(dev);
10956
10957 /* Just disable it once at startup */
10958 i915_disable_vga(dev);
10959 intel_setup_outputs(dev);
10960
10961 /* Just in case the BIOS is doing something questionable. */
10962 intel_disable_fbc(dev);
10963 }
10964
10965 static void
10966 intel_connector_break_all_links(struct intel_connector *connector)
10967 {
10968 connector->base.dpms = DRM_MODE_DPMS_OFF;
10969 connector->base.encoder = NULL;
10970 connector->encoder->connectors_active = false;
10971 connector->encoder->base.crtc = NULL;
10972 }
10973
10974 static void intel_enable_pipe_a(struct drm_device *dev)
10975 {
10976 struct intel_connector *connector;
10977 struct drm_connector *crt = NULL;
10978 struct intel_load_detect_pipe load_detect_temp;
10979
10980 /* We can't just switch on the pipe A, we need to set things up with a
10981 * proper mode and output configuration. As a gross hack, enable pipe A
10982 * by enabling the load detect pipe once. */
10983 list_for_each_entry(connector,
10984 &dev->mode_config.connector_list,
10985 base.head) {
10986 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10987 crt = &connector->base;
10988 break;
10989 }
10990 }
10991
10992 if (!crt)
10993 return;
10994
10995 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10996 intel_release_load_detect_pipe(crt, &load_detect_temp);
10997
10998
10999 }
11000
11001 static bool
11002 intel_check_plane_mapping(struct intel_crtc *crtc)
11003 {
11004 struct drm_device *dev = crtc->base.dev;
11005 struct drm_i915_private *dev_priv = dev->dev_private;
11006 u32 reg, val;
11007
11008 if (INTEL_INFO(dev)->num_pipes == 1)
11009 return true;
11010
11011 reg = DSPCNTR(!crtc->plane);
11012 val = I915_READ(reg);
11013
11014 if ((val & DISPLAY_PLANE_ENABLE) &&
11015 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11016 return false;
11017
11018 return true;
11019 }
11020
11021 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11022 {
11023 struct drm_device *dev = crtc->base.dev;
11024 struct drm_i915_private *dev_priv = dev->dev_private;
11025 u32 reg;
11026
11027 /* Clear any frame start delays used for debugging left by the BIOS */
11028 reg = PIPECONF(crtc->config.cpu_transcoder);
11029 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11030
11031 /* We need to sanitize the plane -> pipe mapping first because this will
11032 * disable the crtc (and hence change the state) if it is wrong. Note
11033 * that gen4+ has a fixed plane -> pipe mapping. */
11034 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11035 struct intel_connector *connector;
11036 bool plane;
11037
11038 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11039 crtc->base.base.id);
11040
11041 /* Pipe has the wrong plane attached and the plane is active.
11042 * Temporarily change the plane mapping and disable everything
11043 * ... */
11044 plane = crtc->plane;
11045 crtc->plane = !plane;
11046 dev_priv->display.crtc_disable(&crtc->base);
11047 crtc->plane = plane;
11048
11049 /* ... and break all links. */
11050 list_for_each_entry(connector, &dev->mode_config.connector_list,
11051 base.head) {
11052 if (connector->encoder->base.crtc != &crtc->base)
11053 continue;
11054
11055 intel_connector_break_all_links(connector);
11056 }
11057
11058 WARN_ON(crtc->active);
11059 crtc->base.enabled = false;
11060 }
11061
11062 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11063 crtc->pipe == PIPE_A && !crtc->active) {
11064 /* BIOS forgot to enable pipe A, this mostly happens after
11065 * resume. Force-enable the pipe to fix this, the update_dpms
11066 * call below we restore the pipe to the right state, but leave
11067 * the required bits on. */
11068 intel_enable_pipe_a(dev);
11069 }
11070
11071 /* Adjust the state of the output pipe according to whether we
11072 * have active connectors/encoders. */
11073 intel_crtc_update_dpms(&crtc->base);
11074
11075 if (crtc->active != crtc->base.enabled) {
11076 struct intel_encoder *encoder;
11077
11078 /* This can happen either due to bugs in the get_hw_state
11079 * functions or because the pipe is force-enabled due to the
11080 * pipe A quirk. */
11081 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11082 crtc->base.base.id,
11083 crtc->base.enabled ? "enabled" : "disabled",
11084 crtc->active ? "enabled" : "disabled");
11085
11086 crtc->base.enabled = crtc->active;
11087
11088 /* Because we only establish the connector -> encoder ->
11089 * crtc links if something is active, this means the
11090 * crtc is now deactivated. Break the links. connector
11091 * -> encoder links are only establish when things are
11092 * actually up, hence no need to break them. */
11093 WARN_ON(crtc->active);
11094
11095 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11096 WARN_ON(encoder->connectors_active);
11097 encoder->base.crtc = NULL;
11098 }
11099 }
11100 }
11101
11102 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11103 {
11104 struct intel_connector *connector;
11105 struct drm_device *dev = encoder->base.dev;
11106
11107 /* We need to check both for a crtc link (meaning that the
11108 * encoder is active and trying to read from a pipe) and the
11109 * pipe itself being active. */
11110 bool has_active_crtc = encoder->base.crtc &&
11111 to_intel_crtc(encoder->base.crtc)->active;
11112
11113 if (encoder->connectors_active && !has_active_crtc) {
11114 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11115 encoder->base.base.id,
11116 drm_get_encoder_name(&encoder->base));
11117
11118 /* Connector is active, but has no active pipe. This is
11119 * fallout from our resume register restoring. Disable
11120 * the encoder manually again. */
11121 if (encoder->base.crtc) {
11122 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11123 encoder->base.base.id,
11124 drm_get_encoder_name(&encoder->base));
11125 encoder->disable(encoder);
11126 }
11127
11128 /* Inconsistent output/port/pipe state happens presumably due to
11129 * a bug in one of the get_hw_state functions. Or someplace else
11130 * in our code, like the register restore mess on resume. Clamp
11131 * things to off as a safer default. */
11132 list_for_each_entry(connector,
11133 &dev->mode_config.connector_list,
11134 base.head) {
11135 if (connector->encoder != encoder)
11136 continue;
11137
11138 intel_connector_break_all_links(connector);
11139 }
11140 }
11141 /* Enabled encoders without active connectors will be fixed in
11142 * the crtc fixup. */
11143 }
11144
11145 void i915_redisable_vga(struct drm_device *dev)
11146 {
11147 struct drm_i915_private *dev_priv = dev->dev_private;
11148 u32 vga_reg = i915_vgacntrl_reg(dev);
11149
11150 /* This function can be called both from intel_modeset_setup_hw_state or
11151 * at a very early point in our resume sequence, where the power well
11152 * structures are not yet restored. Since this function is at a very
11153 * paranoid "someone might have enabled VGA while we were not looking"
11154 * level, just check if the power well is enabled instead of trying to
11155 * follow the "don't touch the power well if we don't need it" policy
11156 * the rest of the driver uses. */
11157 if ((IS_HASWELL(dev) || IS_BROADWELL(dev)) &&
11158 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11159 return;
11160
11161 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11162 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11163 i915_disable_vga(dev);
11164 }
11165 }
11166
11167 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11168 {
11169 struct drm_i915_private *dev_priv = dev->dev_private;
11170 enum pipe pipe;
11171 struct intel_crtc *crtc;
11172 struct intel_encoder *encoder;
11173 struct intel_connector *connector;
11174 int i;
11175
11176 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11177 base.head) {
11178 memset(&crtc->config, 0, sizeof(crtc->config));
11179
11180 crtc->active = dev_priv->display.get_pipe_config(crtc,
11181 &crtc->config);
11182
11183 crtc->base.enabled = crtc->active;
11184 crtc->primary_enabled = crtc->active;
11185
11186 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11187 crtc->base.base.id,
11188 crtc->active ? "enabled" : "disabled");
11189 }
11190
11191 /* FIXME: Smash this into the new shared dpll infrastructure. */
11192 if (HAS_DDI(dev))
11193 intel_ddi_setup_hw_pll_state(dev);
11194
11195 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11196 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11197
11198 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11199 pll->active = 0;
11200 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11201 base.head) {
11202 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11203 pll->active++;
11204 }
11205 pll->refcount = pll->active;
11206
11207 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11208 pll->name, pll->refcount, pll->on);
11209 }
11210
11211 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11212 base.head) {
11213 pipe = 0;
11214
11215 if (encoder->get_hw_state(encoder, &pipe)) {
11216 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11217 encoder->base.crtc = &crtc->base;
11218 encoder->get_config(encoder, &crtc->config);
11219 } else {
11220 encoder->base.crtc = NULL;
11221 }
11222
11223 encoder->connectors_active = false;
11224 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11225 encoder->base.base.id,
11226 drm_get_encoder_name(&encoder->base),
11227 encoder->base.crtc ? "enabled" : "disabled",
11228 pipe_name(pipe));
11229 }
11230
11231 list_for_each_entry(connector, &dev->mode_config.connector_list,
11232 base.head) {
11233 if (connector->get_hw_state(connector)) {
11234 connector->base.dpms = DRM_MODE_DPMS_ON;
11235 connector->encoder->connectors_active = true;
11236 connector->base.encoder = &connector->encoder->base;
11237 } else {
11238 connector->base.dpms = DRM_MODE_DPMS_OFF;
11239 connector->base.encoder = NULL;
11240 }
11241 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11242 connector->base.base.id,
11243 drm_get_connector_name(&connector->base),
11244 connector->base.encoder ? "enabled" : "disabled");
11245 }
11246 }
11247
11248 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11249 * and i915 state tracking structures. */
11250 void intel_modeset_setup_hw_state(struct drm_device *dev,
11251 bool force_restore)
11252 {
11253 struct drm_i915_private *dev_priv = dev->dev_private;
11254 enum pipe pipe;
11255 struct intel_crtc *crtc;
11256 struct intel_encoder *encoder;
11257 int i;
11258
11259 intel_modeset_readout_hw_state(dev);
11260
11261 /*
11262 * Now that we have the config, copy it to each CRTC struct
11263 * Note that this could go away if we move to using crtc_config
11264 * checking everywhere.
11265 */
11266 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11267 base.head) {
11268 if (crtc->active && i915_fastboot) {
11269 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11270
11271 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11272 crtc->base.base.id);
11273 drm_mode_debug_printmodeline(&crtc->base.mode);
11274 }
11275 }
11276
11277 /* HW state is read out, now we need to sanitize this mess. */
11278 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11279 base.head) {
11280 intel_sanitize_encoder(encoder);
11281 }
11282
11283 for_each_pipe(pipe) {
11284 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11285 intel_sanitize_crtc(crtc);
11286 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11287 }
11288
11289 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11290 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11291
11292 if (!pll->on || pll->active)
11293 continue;
11294
11295 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11296
11297 pll->disable(dev_priv, pll);
11298 pll->on = false;
11299 }
11300
11301 if (HAS_PCH_SPLIT(dev))
11302 ilk_wm_get_hw_state(dev);
11303
11304 if (force_restore) {
11305 i915_redisable_vga(dev);
11306
11307 /*
11308 * We need to use raw interfaces for restoring state to avoid
11309 * checking (bogus) intermediate states.
11310 */
11311 for_each_pipe(pipe) {
11312 struct drm_crtc *crtc =
11313 dev_priv->pipe_to_crtc_mapping[pipe];
11314
11315 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11316 crtc->fb);
11317 }
11318 } else {
11319 intel_modeset_update_staged_output_state(dev);
11320 }
11321
11322 intel_modeset_check_state(dev);
11323 }
11324
11325 void intel_modeset_gem_init(struct drm_device *dev)
11326 {
11327 intel_modeset_init_hw(dev);
11328
11329 intel_setup_overlay(dev);
11330
11331 mutex_lock(&dev->mode_config.mutex);
11332 drm_mode_config_reset(dev);
11333 intel_modeset_setup_hw_state(dev, false);
11334 mutex_unlock(&dev->mode_config.mutex);
11335 }
11336
11337 void intel_modeset_cleanup(struct drm_device *dev)
11338 {
11339 struct drm_i915_private *dev_priv = dev->dev_private;
11340 struct drm_crtc *crtc;
11341 struct drm_connector *connector;
11342
11343 /*
11344 * Interrupts and polling as the first thing to avoid creating havoc.
11345 * Too much stuff here (turning of rps, connectors, ...) would
11346 * experience fancy races otherwise.
11347 */
11348 drm_irq_uninstall(dev);
11349 cancel_work_sync(&dev_priv->hotplug_work);
11350 /*
11351 * Due to the hpd irq storm handling the hotplug work can re-arm the
11352 * poll handlers. Hence disable polling after hpd handling is shut down.
11353 */
11354 drm_kms_helper_poll_fini(dev);
11355
11356 mutex_lock(&dev->struct_mutex);
11357
11358 intel_unregister_dsm_handler();
11359
11360 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11361 /* Skip inactive CRTCs */
11362 if (!crtc->fb)
11363 continue;
11364
11365 intel_increase_pllclock(crtc);
11366 }
11367
11368 intel_disable_fbc(dev);
11369
11370 intel_disable_gt_powersave(dev);
11371
11372 ironlake_teardown_rc6(dev);
11373
11374 mutex_unlock(&dev->struct_mutex);
11375
11376 /* flush any delayed tasks or pending work */
11377 flush_scheduled_work();
11378
11379 /* destroy the backlight and sysfs files before encoders/connectors */
11380 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11381 intel_panel_destroy_backlight(connector);
11382 drm_sysfs_connector_remove(connector);
11383 }
11384
11385 drm_mode_config_cleanup(dev);
11386
11387 intel_cleanup_overlay(dev);
11388 }
11389
11390 /*
11391 * Return which encoder is currently attached for connector.
11392 */
11393 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11394 {
11395 return &intel_attached_encoder(connector)->base;
11396 }
11397
11398 void intel_connector_attach_encoder(struct intel_connector *connector,
11399 struct intel_encoder *encoder)
11400 {
11401 connector->encoder = encoder;
11402 drm_mode_connector_attach_encoder(&connector->base,
11403 &encoder->base);
11404 }
11405
11406 /*
11407 * set vga decode state - true == enable VGA decode
11408 */
11409 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11410 {
11411 struct drm_i915_private *dev_priv = dev->dev_private;
11412 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11413 u16 gmch_ctrl;
11414
11415 pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl);
11416 if (state)
11417 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11418 else
11419 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11420 pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl);
11421 return 0;
11422 }
11423
11424 struct intel_display_error_state {
11425
11426 u32 power_well_driver;
11427
11428 int num_transcoders;
11429
11430 struct intel_cursor_error_state {
11431 u32 control;
11432 u32 position;
11433 u32 base;
11434 u32 size;
11435 } cursor[I915_MAX_PIPES];
11436
11437 struct intel_pipe_error_state {
11438 bool power_domain_on;
11439 u32 source;
11440 } pipe[I915_MAX_PIPES];
11441
11442 struct intel_plane_error_state {
11443 u32 control;
11444 u32 stride;
11445 u32 size;
11446 u32 pos;
11447 u32 addr;
11448 u32 surface;
11449 u32 tile_offset;
11450 } plane[I915_MAX_PIPES];
11451
11452 struct intel_transcoder_error_state {
11453 bool power_domain_on;
11454 enum transcoder cpu_transcoder;
11455
11456 u32 conf;
11457
11458 u32 htotal;
11459 u32 hblank;
11460 u32 hsync;
11461 u32 vtotal;
11462 u32 vblank;
11463 u32 vsync;
11464 } transcoder[4];
11465 };
11466
11467 struct intel_display_error_state *
11468 intel_display_capture_error_state(struct drm_device *dev)
11469 {
11470 drm_i915_private_t *dev_priv = dev->dev_private;
11471 struct intel_display_error_state *error;
11472 int transcoders[] = {
11473 TRANSCODER_A,
11474 TRANSCODER_B,
11475 TRANSCODER_C,
11476 TRANSCODER_EDP,
11477 };
11478 int i;
11479
11480 if (INTEL_INFO(dev)->num_pipes == 0)
11481 return NULL;
11482
11483 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11484 if (error == NULL)
11485 return NULL;
11486
11487 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11488 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11489
11490 for_each_pipe(i) {
11491 error->pipe[i].power_domain_on =
11492 intel_display_power_enabled_sw(dev, POWER_DOMAIN_PIPE(i));
11493 if (!error->pipe[i].power_domain_on)
11494 continue;
11495
11496 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11497 error->cursor[i].control = I915_READ(CURCNTR(i));
11498 error->cursor[i].position = I915_READ(CURPOS(i));
11499 error->cursor[i].base = I915_READ(CURBASE(i));
11500 } else {
11501 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11502 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11503 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11504 }
11505
11506 error->plane[i].control = I915_READ(DSPCNTR(i));
11507 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11508 if (INTEL_INFO(dev)->gen <= 3) {
11509 error->plane[i].size = I915_READ(DSPSIZE(i));
11510 error->plane[i].pos = I915_READ(DSPPOS(i));
11511 }
11512 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11513 error->plane[i].addr = I915_READ(DSPADDR(i));
11514 if (INTEL_INFO(dev)->gen >= 4) {
11515 error->plane[i].surface = I915_READ(DSPSURF(i));
11516 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11517 }
11518
11519 error->pipe[i].source = I915_READ(PIPESRC(i));
11520 }
11521
11522 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11523 if (HAS_DDI(dev_priv->dev))
11524 error->num_transcoders++; /* Account for eDP. */
11525
11526 for (i = 0; i < error->num_transcoders; i++) {
11527 enum transcoder cpu_transcoder = transcoders[i];
11528
11529 error->transcoder[i].power_domain_on =
11530 intel_display_power_enabled_sw(dev,
11531 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11532 if (!error->transcoder[i].power_domain_on)
11533 continue;
11534
11535 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11536
11537 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11538 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11539 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11540 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11541 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11542 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11543 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11544 }
11545
11546 return error;
11547 }
11548
11549 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11550
11551 void
11552 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11553 struct drm_device *dev,
11554 struct intel_display_error_state *error)
11555 {
11556 int i;
11557
11558 if (!error)
11559 return;
11560
11561 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11562 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11563 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11564 error->power_well_driver);
11565 for_each_pipe(i) {
11566 err_printf(m, "Pipe [%d]:\n", i);
11567 err_printf(m, " Power: %s\n",
11568 error->pipe[i].power_domain_on ? "on" : "off");
11569 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
11570
11571 err_printf(m, "Plane [%d]:\n", i);
11572 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
11573 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
11574 if (INTEL_INFO(dev)->gen <= 3) {
11575 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
11576 err_printf(m, " POS: %08x\n", error->plane[i].pos);
11577 }
11578 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11579 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
11580 if (INTEL_INFO(dev)->gen >= 4) {
11581 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
11582 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
11583 }
11584
11585 err_printf(m, "Cursor [%d]:\n", i);
11586 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
11587 err_printf(m, " POS: %08x\n", error->cursor[i].position);
11588 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
11589 }
11590
11591 for (i = 0; i < error->num_transcoders; i++) {
11592 err_printf(m, "CPU transcoder: %c\n",
11593 transcoder_name(error->transcoder[i].cpu_transcoder));
11594 err_printf(m, " Power: %s\n",
11595 error->transcoder[i].power_domain_on ? "on" : "off");
11596 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
11597 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
11598 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
11599 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
11600 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
11601 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
11602 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
11603 }
11604 }