]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branches 'pm-domains', 'pm-docs' and 'pm-devfreq'
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_i915_private *dev_priv,
119 struct intel_crtc *crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_BROXTON(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644 {
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663 }
664
665 /*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680 {
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 /*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738 {
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777 }
778
779 /*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794 {
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836 }
837
838 /*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847 {
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936 }
937
938 /*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003 {
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1015 *
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1018 *
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1021 *
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1025 */
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1032 {
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035 return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1043
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1048
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1052
1053 return line1 == line2;
1054 }
1055
1056 /*
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1059 *
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1063 *
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1066 *
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1070 *
1071 */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1199
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1202
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1224
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232 {
1233 bool cur_state;
1234
1235 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1249 {
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1254
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1259
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1268 }
1269
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1277 {
1278 u32 val;
1279 bool cur_state;
1280
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int i;
1295
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1303 }
1304
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1313 }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int sprite;
1320
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1327 }
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1334 }
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 u32 val;
1358 bool enabled;
1359
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1372
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389 {
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408 {
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424 {
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1440 {
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1453 {
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1490 {
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1493
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1497
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1502 1))
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1508 {
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1511
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1516
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1519
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1527 {
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1532
1533 mutex_lock(&dev_priv->sb_lock);
1534
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540 mutex_unlock(&dev_priv->sb_lock);
1541
1542 /*
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 */
1545 udelay(1);
1546
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 1))
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1559 {
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 assert_pipe_disabled(dev_priv, pipe);
1564
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1567
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1570
1571 if (pipe != PIPE_A) {
1572 /*
1573 * WaPixelRepeatModeFixForC0:chv
1574 *
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1577 */
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583 /*
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1586 */
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591 }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596 struct intel_crtc *crtc;
1597 int count = 0;
1598
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 }
1603
1604 return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 /*
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1626 */
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 }
1631
1632 /*
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1636 */
1637 I915_WRITE(reg, 0);
1638
1639 I915_WRITE(reg, dpll);
1640
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1644
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1651 *
1652 * So write it again.
1653 */
1654 I915_WRITE(reg, dpll);
1655 }
1656
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1673 *
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1675 *
1676 * Note! This is for pre-ILK only.
1677 */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1682
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 }
1692
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707 u32 val;
1708
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1711
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1725
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1728
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 mutex_lock(&dev_priv->sb_lock);
1738
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744 mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1750 {
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1770 }
1771
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781 {
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1786
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1801 }
1802
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807 if (HAS_PCH_IBX(dev_priv)) {
1808 /*
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1812 */
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 }
1819
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1829
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1839 {
1840 u32 val, pipeconf_val;
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1859
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1871 {
1872 i915_reg_t reg;
1873 uint32_t val;
1874
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1881
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903 u32 val;
1904
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924 WARN_ON(!crtc->config->has_pch_encoder);
1925
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1935 *
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938 */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1947
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1953
1954 /*
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1958 */
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1971 }
1972 /* FIXME: assert CPU port conditions for SNB+ */
1973 }
1974
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1981 }
1982
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1985
1986 /*
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1992 */
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2001 *
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2005 *
2006 * Will wait until the pipe has shut down before returning.
2007 */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2015
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018 /*
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2021 */
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2025
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2030
2031 /*
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2034 */
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2042
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2055 {
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2082 }
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2087 }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2092 {
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2106 {
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121 return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126 unsigned int size = 0;
2127 int i;
2128
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132 return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2139 {
2140 if (drm_rotation_90_or_270(rotation)) {
2141 *view = i915_ggtt_view_rotated;
2142 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143 } else {
2144 *view = i915_ggtt_view_normal;
2145 }
2146 }
2147
2148 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 {
2150 if (INTEL_INFO(dev_priv)->gen >= 9)
2151 return 256 * 1024;
2152 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154 return 128 * 1024;
2155 else if (INTEL_INFO(dev_priv)->gen >= 4)
2156 return 4 * 1024;
2157 else
2158 return 0;
2159 }
2160
2161 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162 uint64_t fb_modifier)
2163 {
2164 switch (fb_modifier) {
2165 case DRM_FORMAT_MOD_NONE:
2166 return intel_linear_alignment(dev_priv);
2167 case I915_FORMAT_MOD_X_TILED:
2168 if (INTEL_INFO(dev_priv)->gen >= 9)
2169 return 256 * 1024;
2170 return 0;
2171 case I915_FORMAT_MOD_Y_TILED:
2172 case I915_FORMAT_MOD_Yf_TILED:
2173 return 1 * 1024 * 1024;
2174 default:
2175 MISSING_CASE(fb_modifier);
2176 return 0;
2177 }
2178 }
2179
2180 struct i915_vma *
2181 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 {
2183 struct drm_device *dev = fb->dev;
2184 struct drm_i915_private *dev_priv = to_i915(dev);
2185 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186 struct i915_ggtt_view view;
2187 struct i915_vma *vma;
2188 u32 alignment;
2189
2190 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191
2192 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193
2194 intel_fill_fb_ggtt_view(&view, fb, rotation);
2195
2196 /* Note that the w/a also requires 64 PTE of padding following the
2197 * bo. We currently fill all unused PTE with the shadow page and so
2198 * we should always have valid PTE following the scanout preventing
2199 * the VT-d warning.
2200 */
2201 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202 alignment = 256 * 1024;
2203
2204 /*
2205 * Global gtt pte registers are special registers which actually forward
2206 * writes to a chunk of system memory. Which means that there is no risk
2207 * that the register values disappear as soon as we call
2208 * intel_runtime_pm_put(), so it is correct to wrap only the
2209 * pin/unpin/fence and not more.
2210 */
2211 intel_runtime_pm_get(dev_priv);
2212
2213 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214 if (IS_ERR(vma))
2215 goto err;
2216
2217 if (i915_vma_is_map_and_fenceable(vma)) {
2218 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219 * fence, whereas 965+ only requires a fence if using
2220 * framebuffer compression. For simplicity, we always, when
2221 * possible, install a fence as the cost is not that onerous.
2222 *
2223 * If we fail to fence the tiled scanout, then either the
2224 * modeset will reject the change (which is highly unlikely as
2225 * the affected systems, all but one, do not have unmappable
2226 * space) or we will not be able to enable full powersaving
2227 * techniques (also likely not to apply due to various limits
2228 * FBC and the like impose on the size of the buffer, which
2229 * presumably we violated anyway with this unmappable buffer).
2230 * Anyway, it is presumably better to stumble onwards with
2231 * something and try to run the system in a "less than optimal"
2232 * mode that matches the user configuration.
2233 */
2234 if (i915_vma_get_fence(vma) == 0)
2235 i915_vma_pin_fence(vma);
2236 }
2237
2238 err:
2239 intel_runtime_pm_put(dev_priv);
2240 return vma;
2241 }
2242
2243 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2244 {
2245 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246 struct i915_ggtt_view view;
2247 struct i915_vma *vma;
2248
2249 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2250
2251 intel_fill_fb_ggtt_view(&view, fb, rotation);
2252 vma = i915_gem_object_to_ggtt(obj, &view);
2253
2254 i915_vma_unpin_fence(vma);
2255 i915_gem_object_unpin_from_display_plane(vma);
2256 }
2257
2258 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2259 unsigned int rotation)
2260 {
2261 if (drm_rotation_90_or_270(rotation))
2262 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2263 else
2264 return fb->pitches[plane];
2265 }
2266
2267 /*
2268 * Convert the x/y offsets into a linear offset.
2269 * Only valid with 0/180 degree rotation, which is fine since linear
2270 * offset is only used with linear buffers on pre-hsw and tiled buffers
2271 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2272 */
2273 u32 intel_fb_xy_to_linear(int x, int y,
2274 const struct intel_plane_state *state,
2275 int plane)
2276 {
2277 const struct drm_framebuffer *fb = state->base.fb;
2278 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2279 unsigned int pitch = fb->pitches[plane];
2280
2281 return y * pitch + x * cpp;
2282 }
2283
2284 /*
2285 * Add the x/y offsets derived from fb->offsets[] to the user
2286 * specified plane src x/y offsets. The resulting x/y offsets
2287 * specify the start of scanout from the beginning of the gtt mapping.
2288 */
2289 void intel_add_fb_offsets(int *x, int *y,
2290 const struct intel_plane_state *state,
2291 int plane)
2292
2293 {
2294 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2295 unsigned int rotation = state->base.rotation;
2296
2297 if (drm_rotation_90_or_270(rotation)) {
2298 *x += intel_fb->rotated[plane].x;
2299 *y += intel_fb->rotated[plane].y;
2300 } else {
2301 *x += intel_fb->normal[plane].x;
2302 *y += intel_fb->normal[plane].y;
2303 }
2304 }
2305
2306 /*
2307 * Input tile dimensions and pitch must already be
2308 * rotated to match x and y, and in pixel units.
2309 */
2310 static u32 _intel_adjust_tile_offset(int *x, int *y,
2311 unsigned int tile_width,
2312 unsigned int tile_height,
2313 unsigned int tile_size,
2314 unsigned int pitch_tiles,
2315 u32 old_offset,
2316 u32 new_offset)
2317 {
2318 unsigned int pitch_pixels = pitch_tiles * tile_width;
2319 unsigned int tiles;
2320
2321 WARN_ON(old_offset & (tile_size - 1));
2322 WARN_ON(new_offset & (tile_size - 1));
2323 WARN_ON(new_offset > old_offset);
2324
2325 tiles = (old_offset - new_offset) / tile_size;
2326
2327 *y += tiles / pitch_tiles * tile_height;
2328 *x += tiles % pitch_tiles * tile_width;
2329
2330 /* minimize x in case it got needlessly big */
2331 *y += *x / pitch_pixels * tile_height;
2332 *x %= pitch_pixels;
2333
2334 return new_offset;
2335 }
2336
2337 /*
2338 * Adjust the tile offset by moving the difference into
2339 * the x/y offsets.
2340 */
2341 static u32 intel_adjust_tile_offset(int *x, int *y,
2342 const struct intel_plane_state *state, int plane,
2343 u32 old_offset, u32 new_offset)
2344 {
2345 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2346 const struct drm_framebuffer *fb = state->base.fb;
2347 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2348 unsigned int rotation = state->base.rotation;
2349 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2350
2351 WARN_ON(new_offset > old_offset);
2352
2353 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2354 unsigned int tile_size, tile_width, tile_height;
2355 unsigned int pitch_tiles;
2356
2357 tile_size = intel_tile_size(dev_priv);
2358 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2359 fb->modifier, cpp);
2360
2361 if (drm_rotation_90_or_270(rotation)) {
2362 pitch_tiles = pitch / tile_height;
2363 swap(tile_width, tile_height);
2364 } else {
2365 pitch_tiles = pitch / (tile_width * cpp);
2366 }
2367
2368 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2369 tile_size, pitch_tiles,
2370 old_offset, new_offset);
2371 } else {
2372 old_offset += *y * pitch + *x * cpp;
2373
2374 *y = (old_offset - new_offset) / pitch;
2375 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2376 }
2377
2378 return new_offset;
2379 }
2380
2381 /*
2382 * Computes the linear offset to the base tile and adjusts
2383 * x, y. bytes per pixel is assumed to be a power-of-two.
2384 *
2385 * In the 90/270 rotated case, x and y are assumed
2386 * to be already rotated to match the rotated GTT view, and
2387 * pitch is the tile_height aligned framebuffer height.
2388 *
2389 * This function is used when computing the derived information
2390 * under intel_framebuffer, so using any of that information
2391 * here is not allowed. Anything under drm_framebuffer can be
2392 * used. This is why the user has to pass in the pitch since it
2393 * is specified in the rotated orientation.
2394 */
2395 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2396 int *x, int *y,
2397 const struct drm_framebuffer *fb, int plane,
2398 unsigned int pitch,
2399 unsigned int rotation,
2400 u32 alignment)
2401 {
2402 uint64_t fb_modifier = fb->modifier;
2403 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2404 u32 offset, offset_aligned;
2405
2406 if (alignment)
2407 alignment--;
2408
2409 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2410 unsigned int tile_size, tile_width, tile_height;
2411 unsigned int tile_rows, tiles, pitch_tiles;
2412
2413 tile_size = intel_tile_size(dev_priv);
2414 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2415 fb_modifier, cpp);
2416
2417 if (drm_rotation_90_or_270(rotation)) {
2418 pitch_tiles = pitch / tile_height;
2419 swap(tile_width, tile_height);
2420 } else {
2421 pitch_tiles = pitch / (tile_width * cpp);
2422 }
2423
2424 tile_rows = *y / tile_height;
2425 *y %= tile_height;
2426
2427 tiles = *x / tile_width;
2428 *x %= tile_width;
2429
2430 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2431 offset_aligned = offset & ~alignment;
2432
2433 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2434 tile_size, pitch_tiles,
2435 offset, offset_aligned);
2436 } else {
2437 offset = *y * pitch + *x * cpp;
2438 offset_aligned = offset & ~alignment;
2439
2440 *y = (offset & alignment) / pitch;
2441 *x = ((offset & alignment) - *y * pitch) / cpp;
2442 }
2443
2444 return offset_aligned;
2445 }
2446
2447 u32 intel_compute_tile_offset(int *x, int *y,
2448 const struct intel_plane_state *state,
2449 int plane)
2450 {
2451 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2452 const struct drm_framebuffer *fb = state->base.fb;
2453 unsigned int rotation = state->base.rotation;
2454 int pitch = intel_fb_pitch(fb, plane, rotation);
2455 u32 alignment;
2456
2457 /* AUX_DIST needs only 4K alignment */
2458 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2459 alignment = 4096;
2460 else
2461 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2462
2463 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2464 rotation, alignment);
2465 }
2466
2467 /* Convert the fb->offset[] linear offset into x/y offsets */
2468 static void intel_fb_offset_to_xy(int *x, int *y,
2469 const struct drm_framebuffer *fb, int plane)
2470 {
2471 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2472 unsigned int pitch = fb->pitches[plane];
2473 u32 linear_offset = fb->offsets[plane];
2474
2475 *y = linear_offset / pitch;
2476 *x = linear_offset % pitch / cpp;
2477 }
2478
2479 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2480 {
2481 switch (fb_modifier) {
2482 case I915_FORMAT_MOD_X_TILED:
2483 return I915_TILING_X;
2484 case I915_FORMAT_MOD_Y_TILED:
2485 return I915_TILING_Y;
2486 default:
2487 return I915_TILING_NONE;
2488 }
2489 }
2490
2491 static int
2492 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2493 struct drm_framebuffer *fb)
2494 {
2495 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2496 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2497 u32 gtt_offset_rotated = 0;
2498 unsigned int max_size = 0;
2499 uint32_t format = fb->pixel_format;
2500 int i, num_planes = drm_format_num_planes(format);
2501 unsigned int tile_size = intel_tile_size(dev_priv);
2502
2503 for (i = 0; i < num_planes; i++) {
2504 unsigned int width, height;
2505 unsigned int cpp, size;
2506 u32 offset;
2507 int x, y;
2508
2509 cpp = drm_format_plane_cpp(format, i);
2510 width = drm_format_plane_width(fb->width, format, i);
2511 height = drm_format_plane_height(fb->height, format, i);
2512
2513 intel_fb_offset_to_xy(&x, &y, fb, i);
2514
2515 /*
2516 * The fence (if used) is aligned to the start of the object
2517 * so having the framebuffer wrap around across the edge of the
2518 * fenced region doesn't really work. We have no API to configure
2519 * the fence start offset within the object (nor could we probably
2520 * on gen2/3). So it's just easier if we just require that the
2521 * fb layout agrees with the fence layout. We already check that the
2522 * fb stride matches the fence stride elsewhere.
2523 */
2524 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2525 (x + width) * cpp > fb->pitches[i]) {
2526 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2527 i, fb->offsets[i]);
2528 return -EINVAL;
2529 }
2530
2531 /*
2532 * First pixel of the framebuffer from
2533 * the start of the normal gtt mapping.
2534 */
2535 intel_fb->normal[i].x = x;
2536 intel_fb->normal[i].y = y;
2537
2538 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2539 fb, 0, fb->pitches[i],
2540 DRM_ROTATE_0, tile_size);
2541 offset /= tile_size;
2542
2543 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2544 unsigned int tile_width, tile_height;
2545 unsigned int pitch_tiles;
2546 struct drm_rect r;
2547
2548 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2549 fb->modifier, cpp);
2550
2551 rot_info->plane[i].offset = offset;
2552 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2553 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2554 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2555
2556 intel_fb->rotated[i].pitch =
2557 rot_info->plane[i].height * tile_height;
2558
2559 /* how many tiles does this plane need */
2560 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2561 /*
2562 * If the plane isn't horizontally tile aligned,
2563 * we need one more tile.
2564 */
2565 if (x != 0)
2566 size++;
2567
2568 /* rotate the x/y offsets to match the GTT view */
2569 r.x1 = x;
2570 r.y1 = y;
2571 r.x2 = x + width;
2572 r.y2 = y + height;
2573 drm_rect_rotate(&r,
2574 rot_info->plane[i].width * tile_width,
2575 rot_info->plane[i].height * tile_height,
2576 DRM_ROTATE_270);
2577 x = r.x1;
2578 y = r.y1;
2579
2580 /* rotate the tile dimensions to match the GTT view */
2581 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2582 swap(tile_width, tile_height);
2583
2584 /*
2585 * We only keep the x/y offsets, so push all of the
2586 * gtt offset into the x/y offsets.
2587 */
2588 _intel_adjust_tile_offset(&x, &y, tile_size,
2589 tile_width, tile_height, pitch_tiles,
2590 gtt_offset_rotated * tile_size, 0);
2591
2592 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2593
2594 /*
2595 * First pixel of the framebuffer from
2596 * the start of the rotated gtt mapping.
2597 */
2598 intel_fb->rotated[i].x = x;
2599 intel_fb->rotated[i].y = y;
2600 } else {
2601 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2602 x * cpp, tile_size);
2603 }
2604
2605 /* how many tiles in total needed in the bo */
2606 max_size = max(max_size, offset + size);
2607 }
2608
2609 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2610 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2611 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2612 return -EINVAL;
2613 }
2614
2615 return 0;
2616 }
2617
2618 static int i9xx_format_to_fourcc(int format)
2619 {
2620 switch (format) {
2621 case DISPPLANE_8BPP:
2622 return DRM_FORMAT_C8;
2623 case DISPPLANE_BGRX555:
2624 return DRM_FORMAT_XRGB1555;
2625 case DISPPLANE_BGRX565:
2626 return DRM_FORMAT_RGB565;
2627 default:
2628 case DISPPLANE_BGRX888:
2629 return DRM_FORMAT_XRGB8888;
2630 case DISPPLANE_RGBX888:
2631 return DRM_FORMAT_XBGR8888;
2632 case DISPPLANE_BGRX101010:
2633 return DRM_FORMAT_XRGB2101010;
2634 case DISPPLANE_RGBX101010:
2635 return DRM_FORMAT_XBGR2101010;
2636 }
2637 }
2638
2639 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2640 {
2641 switch (format) {
2642 case PLANE_CTL_FORMAT_RGB_565:
2643 return DRM_FORMAT_RGB565;
2644 default:
2645 case PLANE_CTL_FORMAT_XRGB_8888:
2646 if (rgb_order) {
2647 if (alpha)
2648 return DRM_FORMAT_ABGR8888;
2649 else
2650 return DRM_FORMAT_XBGR8888;
2651 } else {
2652 if (alpha)
2653 return DRM_FORMAT_ARGB8888;
2654 else
2655 return DRM_FORMAT_XRGB8888;
2656 }
2657 case PLANE_CTL_FORMAT_XRGB_2101010:
2658 if (rgb_order)
2659 return DRM_FORMAT_XBGR2101010;
2660 else
2661 return DRM_FORMAT_XRGB2101010;
2662 }
2663 }
2664
2665 static bool
2666 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2667 struct intel_initial_plane_config *plane_config)
2668 {
2669 struct drm_device *dev = crtc->base.dev;
2670 struct drm_i915_private *dev_priv = to_i915(dev);
2671 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2672 struct drm_i915_gem_object *obj = NULL;
2673 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2674 struct drm_framebuffer *fb = &plane_config->fb->base;
2675 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2676 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2677 PAGE_SIZE);
2678
2679 size_aligned -= base_aligned;
2680
2681 if (plane_config->size == 0)
2682 return false;
2683
2684 /* If the FB is too big, just don't use it since fbdev is not very
2685 * important and we should probably use that space with FBC or other
2686 * features. */
2687 if (size_aligned * 2 > ggtt->stolen_usable_size)
2688 return false;
2689
2690 mutex_lock(&dev->struct_mutex);
2691
2692 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2693 base_aligned,
2694 base_aligned,
2695 size_aligned);
2696 if (!obj) {
2697 mutex_unlock(&dev->struct_mutex);
2698 return false;
2699 }
2700
2701 if (plane_config->tiling == I915_TILING_X)
2702 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2703
2704 mode_cmd.pixel_format = fb->pixel_format;
2705 mode_cmd.width = fb->width;
2706 mode_cmd.height = fb->height;
2707 mode_cmd.pitches[0] = fb->pitches[0];
2708 mode_cmd.modifier[0] = fb->modifier;
2709 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2710
2711 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2712 &mode_cmd, obj)) {
2713 DRM_DEBUG_KMS("intel fb init failed\n");
2714 goto out_unref_obj;
2715 }
2716
2717 mutex_unlock(&dev->struct_mutex);
2718
2719 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2720 return true;
2721
2722 out_unref_obj:
2723 i915_gem_object_put(obj);
2724 mutex_unlock(&dev->struct_mutex);
2725 return false;
2726 }
2727
2728 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2729 static void
2730 update_state_fb(struct drm_plane *plane)
2731 {
2732 if (plane->fb == plane->state->fb)
2733 return;
2734
2735 if (plane->state->fb)
2736 drm_framebuffer_unreference(plane->state->fb);
2737 plane->state->fb = plane->fb;
2738 if (plane->state->fb)
2739 drm_framebuffer_reference(plane->state->fb);
2740 }
2741
2742 static void
2743 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2744 struct intel_initial_plane_config *plane_config)
2745 {
2746 struct drm_device *dev = intel_crtc->base.dev;
2747 struct drm_i915_private *dev_priv = to_i915(dev);
2748 struct drm_crtc *c;
2749 struct intel_crtc *i;
2750 struct drm_i915_gem_object *obj;
2751 struct drm_plane *primary = intel_crtc->base.primary;
2752 struct drm_plane_state *plane_state = primary->state;
2753 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2754 struct intel_plane *intel_plane = to_intel_plane(primary);
2755 struct intel_plane_state *intel_state =
2756 to_intel_plane_state(plane_state);
2757 struct drm_framebuffer *fb;
2758
2759 if (!plane_config->fb)
2760 return;
2761
2762 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2763 fb = &plane_config->fb->base;
2764 goto valid_fb;
2765 }
2766
2767 kfree(plane_config->fb);
2768
2769 /*
2770 * Failed to alloc the obj, check to see if we should share
2771 * an fb with another CRTC instead
2772 */
2773 for_each_crtc(dev, c) {
2774 i = to_intel_crtc(c);
2775
2776 if (c == &intel_crtc->base)
2777 continue;
2778
2779 if (!i->active)
2780 continue;
2781
2782 fb = c->primary->fb;
2783 if (!fb)
2784 continue;
2785
2786 obj = intel_fb_obj(fb);
2787 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2788 drm_framebuffer_reference(fb);
2789 goto valid_fb;
2790 }
2791 }
2792
2793 /*
2794 * We've failed to reconstruct the BIOS FB. Current display state
2795 * indicates that the primary plane is visible, but has a NULL FB,
2796 * which will lead to problems later if we don't fix it up. The
2797 * simplest solution is to just disable the primary plane now and
2798 * pretend the BIOS never had it enabled.
2799 */
2800 to_intel_plane_state(plane_state)->base.visible = false;
2801 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2802 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2803 intel_plane->disable_plane(primary, &intel_crtc->base);
2804
2805 return;
2806
2807 valid_fb:
2808 plane_state->src_x = 0;
2809 plane_state->src_y = 0;
2810 plane_state->src_w = fb->width << 16;
2811 plane_state->src_h = fb->height << 16;
2812
2813 plane_state->crtc_x = 0;
2814 plane_state->crtc_y = 0;
2815 plane_state->crtc_w = fb->width;
2816 plane_state->crtc_h = fb->height;
2817
2818 intel_state->base.src = drm_plane_state_src(plane_state);
2819 intel_state->base.dst = drm_plane_state_dest(plane_state);
2820
2821 obj = intel_fb_obj(fb);
2822 if (i915_gem_object_is_tiled(obj))
2823 dev_priv->preserve_bios_swizzle = true;
2824
2825 drm_framebuffer_reference(fb);
2826 primary->fb = primary->state->fb = fb;
2827 primary->crtc = primary->state->crtc = &intel_crtc->base;
2828 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2829 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2830 &obj->frontbuffer_bits);
2831 }
2832
2833 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2834 unsigned int rotation)
2835 {
2836 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2837
2838 switch (fb->modifier) {
2839 case DRM_FORMAT_MOD_NONE:
2840 case I915_FORMAT_MOD_X_TILED:
2841 switch (cpp) {
2842 case 8:
2843 return 4096;
2844 case 4:
2845 case 2:
2846 case 1:
2847 return 8192;
2848 default:
2849 MISSING_CASE(cpp);
2850 break;
2851 }
2852 break;
2853 case I915_FORMAT_MOD_Y_TILED:
2854 case I915_FORMAT_MOD_Yf_TILED:
2855 switch (cpp) {
2856 case 8:
2857 return 2048;
2858 case 4:
2859 return 4096;
2860 case 2:
2861 case 1:
2862 return 8192;
2863 default:
2864 MISSING_CASE(cpp);
2865 break;
2866 }
2867 break;
2868 default:
2869 MISSING_CASE(fb->modifier);
2870 }
2871
2872 return 2048;
2873 }
2874
2875 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2876 {
2877 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2878 const struct drm_framebuffer *fb = plane_state->base.fb;
2879 unsigned int rotation = plane_state->base.rotation;
2880 int x = plane_state->base.src.x1 >> 16;
2881 int y = plane_state->base.src.y1 >> 16;
2882 int w = drm_rect_width(&plane_state->base.src) >> 16;
2883 int h = drm_rect_height(&plane_state->base.src) >> 16;
2884 int max_width = skl_max_plane_width(fb, 0, rotation);
2885 int max_height = 4096;
2886 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2887
2888 if (w > max_width || h > max_height) {
2889 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2890 w, h, max_width, max_height);
2891 return -EINVAL;
2892 }
2893
2894 intel_add_fb_offsets(&x, &y, plane_state, 0);
2895 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2896
2897 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2898
2899 /*
2900 * AUX surface offset is specified as the distance from the
2901 * main surface offset, and it must be non-negative. Make
2902 * sure that is what we will get.
2903 */
2904 if (offset > aux_offset)
2905 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2906 offset, aux_offset & ~(alignment - 1));
2907
2908 /*
2909 * When using an X-tiled surface, the plane blows up
2910 * if the x offset + width exceed the stride.
2911 *
2912 * TODO: linear and Y-tiled seem fine, Yf untested,
2913 */
2914 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2915 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2916
2917 while ((x + w) * cpp > fb->pitches[0]) {
2918 if (offset == 0) {
2919 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2920 return -EINVAL;
2921 }
2922
2923 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2924 offset, offset - alignment);
2925 }
2926 }
2927
2928 plane_state->main.offset = offset;
2929 plane_state->main.x = x;
2930 plane_state->main.y = y;
2931
2932 return 0;
2933 }
2934
2935 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2936 {
2937 const struct drm_framebuffer *fb = plane_state->base.fb;
2938 unsigned int rotation = plane_state->base.rotation;
2939 int max_width = skl_max_plane_width(fb, 1, rotation);
2940 int max_height = 4096;
2941 int x = plane_state->base.src.x1 >> 17;
2942 int y = plane_state->base.src.y1 >> 17;
2943 int w = drm_rect_width(&plane_state->base.src) >> 17;
2944 int h = drm_rect_height(&plane_state->base.src) >> 17;
2945 u32 offset;
2946
2947 intel_add_fb_offsets(&x, &y, plane_state, 1);
2948 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2949
2950 /* FIXME not quite sure how/if these apply to the chroma plane */
2951 if (w > max_width || h > max_height) {
2952 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2953 w, h, max_width, max_height);
2954 return -EINVAL;
2955 }
2956
2957 plane_state->aux.offset = offset;
2958 plane_state->aux.x = x;
2959 plane_state->aux.y = y;
2960
2961 return 0;
2962 }
2963
2964 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2965 {
2966 const struct drm_framebuffer *fb = plane_state->base.fb;
2967 unsigned int rotation = plane_state->base.rotation;
2968 int ret;
2969
2970 /* Rotate src coordinates to match rotated GTT view */
2971 if (drm_rotation_90_or_270(rotation))
2972 drm_rect_rotate(&plane_state->base.src,
2973 fb->width << 16, fb->height << 16,
2974 DRM_ROTATE_270);
2975
2976 /*
2977 * Handle the AUX surface first since
2978 * the main surface setup depends on it.
2979 */
2980 if (fb->pixel_format == DRM_FORMAT_NV12) {
2981 ret = skl_check_nv12_aux_surface(plane_state);
2982 if (ret)
2983 return ret;
2984 } else {
2985 plane_state->aux.offset = ~0xfff;
2986 plane_state->aux.x = 0;
2987 plane_state->aux.y = 0;
2988 }
2989
2990 ret = skl_check_main_surface(plane_state);
2991 if (ret)
2992 return ret;
2993
2994 return 0;
2995 }
2996
2997 static void i9xx_update_primary_plane(struct drm_plane *primary,
2998 const struct intel_crtc_state *crtc_state,
2999 const struct intel_plane_state *plane_state)
3000 {
3001 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3003 struct drm_framebuffer *fb = plane_state->base.fb;
3004 int plane = intel_crtc->plane;
3005 u32 linear_offset;
3006 u32 dspcntr;
3007 i915_reg_t reg = DSPCNTR(plane);
3008 unsigned int rotation = plane_state->base.rotation;
3009 int x = plane_state->base.src.x1 >> 16;
3010 int y = plane_state->base.src.y1 >> 16;
3011
3012 dspcntr = DISPPLANE_GAMMA_ENABLE;
3013
3014 dspcntr |= DISPLAY_PLANE_ENABLE;
3015
3016 if (INTEL_GEN(dev_priv) < 4) {
3017 if (intel_crtc->pipe == PIPE_B)
3018 dspcntr |= DISPPLANE_SEL_PIPE_B;
3019
3020 /* pipesrc and dspsize control the size that is scaled from,
3021 * which should always be the user's requested size.
3022 */
3023 I915_WRITE(DSPSIZE(plane),
3024 ((crtc_state->pipe_src_h - 1) << 16) |
3025 (crtc_state->pipe_src_w - 1));
3026 I915_WRITE(DSPPOS(plane), 0);
3027 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3028 I915_WRITE(PRIMSIZE(plane),
3029 ((crtc_state->pipe_src_h - 1) << 16) |
3030 (crtc_state->pipe_src_w - 1));
3031 I915_WRITE(PRIMPOS(plane), 0);
3032 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3033 }
3034
3035 switch (fb->pixel_format) {
3036 case DRM_FORMAT_C8:
3037 dspcntr |= DISPPLANE_8BPP;
3038 break;
3039 case DRM_FORMAT_XRGB1555:
3040 dspcntr |= DISPPLANE_BGRX555;
3041 break;
3042 case DRM_FORMAT_RGB565:
3043 dspcntr |= DISPPLANE_BGRX565;
3044 break;
3045 case DRM_FORMAT_XRGB8888:
3046 dspcntr |= DISPPLANE_BGRX888;
3047 break;
3048 case DRM_FORMAT_XBGR8888:
3049 dspcntr |= DISPPLANE_RGBX888;
3050 break;
3051 case DRM_FORMAT_XRGB2101010:
3052 dspcntr |= DISPPLANE_BGRX101010;
3053 break;
3054 case DRM_FORMAT_XBGR2101010:
3055 dspcntr |= DISPPLANE_RGBX101010;
3056 break;
3057 default:
3058 BUG();
3059 }
3060
3061 if (INTEL_GEN(dev_priv) >= 4 &&
3062 fb->modifier == I915_FORMAT_MOD_X_TILED)
3063 dspcntr |= DISPPLANE_TILED;
3064
3065 if (rotation & DRM_ROTATE_180)
3066 dspcntr |= DISPPLANE_ROTATE_180;
3067
3068 if (rotation & DRM_REFLECT_X)
3069 dspcntr |= DISPPLANE_MIRROR;
3070
3071 if (IS_G4X(dev_priv))
3072 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3073
3074 intel_add_fb_offsets(&x, &y, plane_state, 0);
3075
3076 if (INTEL_GEN(dev_priv) >= 4)
3077 intel_crtc->dspaddr_offset =
3078 intel_compute_tile_offset(&x, &y, plane_state, 0);
3079
3080 if (rotation & DRM_ROTATE_180) {
3081 x += crtc_state->pipe_src_w - 1;
3082 y += crtc_state->pipe_src_h - 1;
3083 } else if (rotation & DRM_REFLECT_X) {
3084 x += crtc_state->pipe_src_w - 1;
3085 }
3086
3087 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3088
3089 if (INTEL_GEN(dev_priv) < 4)
3090 intel_crtc->dspaddr_offset = linear_offset;
3091
3092 intel_crtc->adjusted_x = x;
3093 intel_crtc->adjusted_y = y;
3094
3095 I915_WRITE(reg, dspcntr);
3096
3097 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3098 if (INTEL_GEN(dev_priv) >= 4) {
3099 I915_WRITE(DSPSURF(plane),
3100 intel_fb_gtt_offset(fb, rotation) +
3101 intel_crtc->dspaddr_offset);
3102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3103 I915_WRITE(DSPLINOFF(plane), linear_offset);
3104 } else {
3105 I915_WRITE(DSPADDR(plane),
3106 intel_fb_gtt_offset(fb, rotation) +
3107 intel_crtc->dspaddr_offset);
3108 }
3109 POSTING_READ(reg);
3110 }
3111
3112 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
3114 {
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = to_i915(dev);
3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3118 int plane = intel_crtc->plane;
3119
3120 I915_WRITE(DSPCNTR(plane), 0);
3121 if (INTEL_INFO(dev_priv)->gen >= 4)
3122 I915_WRITE(DSPSURF(plane), 0);
3123 else
3124 I915_WRITE(DSPADDR(plane), 0);
3125 POSTING_READ(DSPCNTR(plane));
3126 }
3127
3128 static void ironlake_update_primary_plane(struct drm_plane *primary,
3129 const struct intel_crtc_state *crtc_state,
3130 const struct intel_plane_state *plane_state)
3131 {
3132 struct drm_device *dev = primary->dev;
3133 struct drm_i915_private *dev_priv = to_i915(dev);
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3135 struct drm_framebuffer *fb = plane_state->base.fb;
3136 int plane = intel_crtc->plane;
3137 u32 linear_offset;
3138 u32 dspcntr;
3139 i915_reg_t reg = DSPCNTR(plane);
3140 unsigned int rotation = plane_state->base.rotation;
3141 int x = plane_state->base.src.x1 >> 16;
3142 int y = plane_state->base.src.y1 >> 16;
3143
3144 dspcntr = DISPPLANE_GAMMA_ENABLE;
3145 dspcntr |= DISPLAY_PLANE_ENABLE;
3146
3147 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3148 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3149
3150 switch (fb->pixel_format) {
3151 case DRM_FORMAT_C8:
3152 dspcntr |= DISPPLANE_8BPP;
3153 break;
3154 case DRM_FORMAT_RGB565:
3155 dspcntr |= DISPPLANE_BGRX565;
3156 break;
3157 case DRM_FORMAT_XRGB8888:
3158 dspcntr |= DISPPLANE_BGRX888;
3159 break;
3160 case DRM_FORMAT_XBGR8888:
3161 dspcntr |= DISPPLANE_RGBX888;
3162 break;
3163 case DRM_FORMAT_XRGB2101010:
3164 dspcntr |= DISPPLANE_BGRX101010;
3165 break;
3166 case DRM_FORMAT_XBGR2101010:
3167 dspcntr |= DISPPLANE_RGBX101010;
3168 break;
3169 default:
3170 BUG();
3171 }
3172
3173 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3174 dspcntr |= DISPPLANE_TILED;
3175
3176 if (rotation & DRM_ROTATE_180)
3177 dspcntr |= DISPPLANE_ROTATE_180;
3178
3179 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3180 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3181
3182 intel_add_fb_offsets(&x, &y, plane_state, 0);
3183
3184 intel_crtc->dspaddr_offset =
3185 intel_compute_tile_offset(&x, &y, plane_state, 0);
3186
3187 /* HSW+ does this automagically in hardware */
3188 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3189 rotation & DRM_ROTATE_180) {
3190 x += crtc_state->pipe_src_w - 1;
3191 y += crtc_state->pipe_src_h - 1;
3192 }
3193
3194 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3195
3196 intel_crtc->adjusted_x = x;
3197 intel_crtc->adjusted_y = y;
3198
3199 I915_WRITE(reg, dspcntr);
3200
3201 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3202 I915_WRITE(DSPSURF(plane),
3203 intel_fb_gtt_offset(fb, rotation) +
3204 intel_crtc->dspaddr_offset);
3205 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3206 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3207 } else {
3208 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3209 I915_WRITE(DSPLINOFF(plane), linear_offset);
3210 }
3211 POSTING_READ(reg);
3212 }
3213
3214 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3215 uint64_t fb_modifier, uint32_t pixel_format)
3216 {
3217 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3218 return 64;
3219 } else {
3220 int cpp = drm_format_plane_cpp(pixel_format, 0);
3221
3222 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3223 }
3224 }
3225
3226 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3227 unsigned int rotation)
3228 {
3229 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3230 struct i915_ggtt_view view;
3231 struct i915_vma *vma;
3232
3233 intel_fill_fb_ggtt_view(&view, fb, rotation);
3234
3235 vma = i915_gem_object_to_ggtt(obj, &view);
3236 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3237 view.type))
3238 return -1;
3239
3240 return i915_ggtt_offset(vma);
3241 }
3242
3243 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3244 {
3245 struct drm_device *dev = intel_crtc->base.dev;
3246 struct drm_i915_private *dev_priv = to_i915(dev);
3247
3248 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3249 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3250 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3251 }
3252
3253 /*
3254 * This function detaches (aka. unbinds) unused scalers in hardware
3255 */
3256 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3257 {
3258 struct intel_crtc_scaler_state *scaler_state;
3259 int i;
3260
3261 scaler_state = &intel_crtc->config->scaler_state;
3262
3263 /* loop through and disable scalers that aren't in use */
3264 for (i = 0; i < intel_crtc->num_scalers; i++) {
3265 if (!scaler_state->scalers[i].in_use)
3266 skl_detach_scaler(intel_crtc, i);
3267 }
3268 }
3269
3270 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3271 unsigned int rotation)
3272 {
3273 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3274 u32 stride = intel_fb_pitch(fb, plane, rotation);
3275
3276 /*
3277 * The stride is either expressed as a multiple of 64 bytes chunks for
3278 * linear buffers or in number of tiles for tiled buffers.
3279 */
3280 if (drm_rotation_90_or_270(rotation)) {
3281 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3282
3283 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3284 } else {
3285 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3286 fb->pixel_format);
3287 }
3288
3289 return stride;
3290 }
3291
3292 u32 skl_plane_ctl_format(uint32_t pixel_format)
3293 {
3294 switch (pixel_format) {
3295 case DRM_FORMAT_C8:
3296 return PLANE_CTL_FORMAT_INDEXED;
3297 case DRM_FORMAT_RGB565:
3298 return PLANE_CTL_FORMAT_RGB_565;
3299 case DRM_FORMAT_XBGR8888:
3300 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3301 case DRM_FORMAT_XRGB8888:
3302 return PLANE_CTL_FORMAT_XRGB_8888;
3303 /*
3304 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3305 * to be already pre-multiplied. We need to add a knob (or a different
3306 * DRM_FORMAT) for user-space to configure that.
3307 */
3308 case DRM_FORMAT_ABGR8888:
3309 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3310 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311 case DRM_FORMAT_ARGB8888:
3312 return PLANE_CTL_FORMAT_XRGB_8888 |
3313 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3314 case DRM_FORMAT_XRGB2101010:
3315 return PLANE_CTL_FORMAT_XRGB_2101010;
3316 case DRM_FORMAT_XBGR2101010:
3317 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3318 case DRM_FORMAT_YUYV:
3319 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3320 case DRM_FORMAT_YVYU:
3321 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3322 case DRM_FORMAT_UYVY:
3323 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3324 case DRM_FORMAT_VYUY:
3325 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3326 default:
3327 MISSING_CASE(pixel_format);
3328 }
3329
3330 return 0;
3331 }
3332
3333 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3334 {
3335 switch (fb_modifier) {
3336 case DRM_FORMAT_MOD_NONE:
3337 break;
3338 case I915_FORMAT_MOD_X_TILED:
3339 return PLANE_CTL_TILED_X;
3340 case I915_FORMAT_MOD_Y_TILED:
3341 return PLANE_CTL_TILED_Y;
3342 case I915_FORMAT_MOD_Yf_TILED:
3343 return PLANE_CTL_TILED_YF;
3344 default:
3345 MISSING_CASE(fb_modifier);
3346 }
3347
3348 return 0;
3349 }
3350
3351 u32 skl_plane_ctl_rotation(unsigned int rotation)
3352 {
3353 switch (rotation) {
3354 case DRM_ROTATE_0:
3355 break;
3356 /*
3357 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3358 * while i915 HW rotation is clockwise, thats why this swapping.
3359 */
3360 case DRM_ROTATE_90:
3361 return PLANE_CTL_ROTATE_270;
3362 case DRM_ROTATE_180:
3363 return PLANE_CTL_ROTATE_180;
3364 case DRM_ROTATE_270:
3365 return PLANE_CTL_ROTATE_90;
3366 default:
3367 MISSING_CASE(rotation);
3368 }
3369
3370 return 0;
3371 }
3372
3373 static void skylake_update_primary_plane(struct drm_plane *plane,
3374 const struct intel_crtc_state *crtc_state,
3375 const struct intel_plane_state *plane_state)
3376 {
3377 struct drm_device *dev = plane->dev;
3378 struct drm_i915_private *dev_priv = to_i915(dev);
3379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3380 struct drm_framebuffer *fb = plane_state->base.fb;
3381 int pipe = intel_crtc->pipe;
3382 u32 plane_ctl;
3383 unsigned int rotation = plane_state->base.rotation;
3384 u32 stride = skl_plane_stride(fb, 0, rotation);
3385 u32 surf_addr = plane_state->main.offset;
3386 int scaler_id = plane_state->scaler_id;
3387 int src_x = plane_state->main.x;
3388 int src_y = plane_state->main.y;
3389 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3390 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3391 int dst_x = plane_state->base.dst.x1;
3392 int dst_y = plane_state->base.dst.y1;
3393 int dst_w = drm_rect_width(&plane_state->base.dst);
3394 int dst_h = drm_rect_height(&plane_state->base.dst);
3395
3396 plane_ctl = PLANE_CTL_ENABLE |
3397 PLANE_CTL_PIPE_GAMMA_ENABLE |
3398 PLANE_CTL_PIPE_CSC_ENABLE;
3399
3400 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3401 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3402 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3403 plane_ctl |= skl_plane_ctl_rotation(rotation);
3404
3405 /* Sizes are 0 based */
3406 src_w--;
3407 src_h--;
3408 dst_w--;
3409 dst_h--;
3410
3411 intel_crtc->dspaddr_offset = surf_addr;
3412
3413 intel_crtc->adjusted_x = src_x;
3414 intel_crtc->adjusted_y = src_y;
3415
3416 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3417 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3418 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3419 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3420
3421 if (scaler_id >= 0) {
3422 uint32_t ps_ctrl = 0;
3423
3424 WARN_ON(!dst_w || !dst_h);
3425 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3426 crtc_state->scaler_state.scalers[scaler_id].mode;
3427 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3428 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3429 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3430 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3431 I915_WRITE(PLANE_POS(pipe, 0), 0);
3432 } else {
3433 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3434 }
3435
3436 I915_WRITE(PLANE_SURF(pipe, 0),
3437 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3438
3439 POSTING_READ(PLANE_SURF(pipe, 0));
3440 }
3441
3442 static void skylake_disable_primary_plane(struct drm_plane *primary,
3443 struct drm_crtc *crtc)
3444 {
3445 struct drm_device *dev = crtc->dev;
3446 struct drm_i915_private *dev_priv = to_i915(dev);
3447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448 int pipe = intel_crtc->pipe;
3449
3450 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3451 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3452 POSTING_READ(PLANE_SURF(pipe, 0));
3453 }
3454
3455 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3456 static int
3457 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3458 int x, int y, enum mode_set_atomic state)
3459 {
3460 /* Support for kgdboc is disabled, this needs a major rework. */
3461 DRM_ERROR("legacy panic handler not supported any more.\n");
3462
3463 return -ENODEV;
3464 }
3465
3466 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3467 {
3468 struct intel_crtc *crtc;
3469
3470 for_each_intel_crtc(&dev_priv->drm, crtc)
3471 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3472 }
3473
3474 static void intel_update_primary_planes(struct drm_device *dev)
3475 {
3476 struct drm_crtc *crtc;
3477
3478 for_each_crtc(dev, crtc) {
3479 struct intel_plane *plane = to_intel_plane(crtc->primary);
3480 struct intel_plane_state *plane_state =
3481 to_intel_plane_state(plane->base.state);
3482
3483 if (plane_state->base.visible)
3484 plane->update_plane(&plane->base,
3485 to_intel_crtc_state(crtc->state),
3486 plane_state);
3487 }
3488 }
3489
3490 static int
3491 __intel_display_resume(struct drm_device *dev,
3492 struct drm_atomic_state *state)
3493 {
3494 struct drm_crtc_state *crtc_state;
3495 struct drm_crtc *crtc;
3496 int i, ret;
3497
3498 intel_modeset_setup_hw_state(dev);
3499 i915_redisable_vga(to_i915(dev));
3500
3501 if (!state)
3502 return 0;
3503
3504 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3505 /*
3506 * Force recalculation even if we restore
3507 * current state. With fast modeset this may not result
3508 * in a modeset when the state is compatible.
3509 */
3510 crtc_state->mode_changed = true;
3511 }
3512
3513 /* ignore any reset values/BIOS leftovers in the WM registers */
3514 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3515
3516 ret = drm_atomic_commit(state);
3517
3518 WARN_ON(ret == -EDEADLK);
3519 return ret;
3520 }
3521
3522 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3523 {
3524 return intel_has_gpu_reset(dev_priv) &&
3525 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3526 }
3527
3528 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3529 {
3530 struct drm_device *dev = &dev_priv->drm;
3531 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3532 struct drm_atomic_state *state;
3533 int ret;
3534
3535 /*
3536 * Need mode_config.mutex so that we don't
3537 * trample ongoing ->detect() and whatnot.
3538 */
3539 mutex_lock(&dev->mode_config.mutex);
3540 drm_modeset_acquire_init(ctx, 0);
3541 while (1) {
3542 ret = drm_modeset_lock_all_ctx(dev, ctx);
3543 if (ret != -EDEADLK)
3544 break;
3545
3546 drm_modeset_backoff(ctx);
3547 }
3548
3549 /* reset doesn't touch the display, but flips might get nuked anyway, */
3550 if (!i915.force_reset_modeset_test &&
3551 !gpu_reset_clobbers_display(dev_priv))
3552 return;
3553
3554 /*
3555 * Disabling the crtcs gracefully seems nicer. Also the
3556 * g33 docs say we should at least disable all the planes.
3557 */
3558 state = drm_atomic_helper_duplicate_state(dev, ctx);
3559 if (IS_ERR(state)) {
3560 ret = PTR_ERR(state);
3561 state = NULL;
3562 DRM_ERROR("Duplicating state failed with %i\n", ret);
3563 goto err;
3564 }
3565
3566 ret = drm_atomic_helper_disable_all(dev, ctx);
3567 if (ret) {
3568 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3569 goto err;
3570 }
3571
3572 dev_priv->modeset_restore_state = state;
3573 state->acquire_ctx = ctx;
3574 return;
3575
3576 err:
3577 drm_atomic_state_put(state);
3578 }
3579
3580 void intel_finish_reset(struct drm_i915_private *dev_priv)
3581 {
3582 struct drm_device *dev = &dev_priv->drm;
3583 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3584 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3585 int ret;
3586
3587 /*
3588 * Flips in the rings will be nuked by the reset,
3589 * so complete all pending flips so that user space
3590 * will get its events and not get stuck.
3591 */
3592 intel_complete_page_flips(dev_priv);
3593
3594 dev_priv->modeset_restore_state = NULL;
3595
3596 /* reset doesn't touch the display */
3597 if (!gpu_reset_clobbers_display(dev_priv)) {
3598 if (!state) {
3599 /*
3600 * Flips in the rings have been nuked by the reset,
3601 * so update the base address of all primary
3602 * planes to the the last fb to make sure we're
3603 * showing the correct fb after a reset.
3604 *
3605 * FIXME: Atomic will make this obsolete since we won't schedule
3606 * CS-based flips (which might get lost in gpu resets) any more.
3607 */
3608 intel_update_primary_planes(dev);
3609 } else {
3610 ret = __intel_display_resume(dev, state);
3611 if (ret)
3612 DRM_ERROR("Restoring old state failed with %i\n", ret);
3613 }
3614 } else {
3615 /*
3616 * The display has been reset as well,
3617 * so need a full re-initialization.
3618 */
3619 intel_runtime_pm_disable_interrupts(dev_priv);
3620 intel_runtime_pm_enable_interrupts(dev_priv);
3621
3622 intel_pps_unlock_regs_wa(dev_priv);
3623 intel_modeset_init_hw(dev);
3624
3625 spin_lock_irq(&dev_priv->irq_lock);
3626 if (dev_priv->display.hpd_irq_setup)
3627 dev_priv->display.hpd_irq_setup(dev_priv);
3628 spin_unlock_irq(&dev_priv->irq_lock);
3629
3630 ret = __intel_display_resume(dev, state);
3631 if (ret)
3632 DRM_ERROR("Restoring old state failed with %i\n", ret);
3633
3634 intel_hpd_init(dev_priv);
3635 }
3636
3637 if (state)
3638 drm_atomic_state_put(state);
3639 drm_modeset_drop_locks(ctx);
3640 drm_modeset_acquire_fini(ctx);
3641 mutex_unlock(&dev->mode_config.mutex);
3642 }
3643
3644 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3645 {
3646 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3647
3648 if (i915_reset_in_progress(error))
3649 return true;
3650
3651 if (crtc->reset_count != i915_reset_count(error))
3652 return true;
3653
3654 return false;
3655 }
3656
3657 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3658 {
3659 struct drm_device *dev = crtc->dev;
3660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3661 bool pending;
3662
3663 if (abort_flip_on_reset(intel_crtc))
3664 return false;
3665
3666 spin_lock_irq(&dev->event_lock);
3667 pending = to_intel_crtc(crtc)->flip_work != NULL;
3668 spin_unlock_irq(&dev->event_lock);
3669
3670 return pending;
3671 }
3672
3673 static void intel_update_pipe_config(struct intel_crtc *crtc,
3674 struct intel_crtc_state *old_crtc_state)
3675 {
3676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3677 struct intel_crtc_state *pipe_config =
3678 to_intel_crtc_state(crtc->base.state);
3679
3680 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3681 crtc->base.mode = crtc->base.state->mode;
3682
3683 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3684 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3685 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3686
3687 /*
3688 * Update pipe size and adjust fitter if needed: the reason for this is
3689 * that in compute_mode_changes we check the native mode (not the pfit
3690 * mode) to see if we can flip rather than do a full mode set. In the
3691 * fastboot case, we'll flip, but if we don't update the pipesrc and
3692 * pfit state, we'll end up with a big fb scanned out into the wrong
3693 * sized surface.
3694 */
3695
3696 I915_WRITE(PIPESRC(crtc->pipe),
3697 ((pipe_config->pipe_src_w - 1) << 16) |
3698 (pipe_config->pipe_src_h - 1));
3699
3700 /* on skylake this is done by detaching scalers */
3701 if (INTEL_GEN(dev_priv) >= 9) {
3702 skl_detach_scalers(crtc);
3703
3704 if (pipe_config->pch_pfit.enabled)
3705 skylake_pfit_enable(crtc);
3706 } else if (HAS_PCH_SPLIT(dev_priv)) {
3707 if (pipe_config->pch_pfit.enabled)
3708 ironlake_pfit_enable(crtc);
3709 else if (old_crtc_state->pch_pfit.enabled)
3710 ironlake_pfit_disable(crtc, true);
3711 }
3712 }
3713
3714 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3715 {
3716 struct drm_device *dev = crtc->dev;
3717 struct drm_i915_private *dev_priv = to_i915(dev);
3718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3719 int pipe = intel_crtc->pipe;
3720 i915_reg_t reg;
3721 u32 temp;
3722
3723 /* enable normal train */
3724 reg = FDI_TX_CTL(pipe);
3725 temp = I915_READ(reg);
3726 if (IS_IVYBRIDGE(dev_priv)) {
3727 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3728 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3729 } else {
3730 temp &= ~FDI_LINK_TRAIN_NONE;
3731 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3732 }
3733 I915_WRITE(reg, temp);
3734
3735 reg = FDI_RX_CTL(pipe);
3736 temp = I915_READ(reg);
3737 if (HAS_PCH_CPT(dev_priv)) {
3738 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3739 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3740 } else {
3741 temp &= ~FDI_LINK_TRAIN_NONE;
3742 temp |= FDI_LINK_TRAIN_NONE;
3743 }
3744 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3745
3746 /* wait one idle pattern time */
3747 POSTING_READ(reg);
3748 udelay(1000);
3749
3750 /* IVB wants error correction enabled */
3751 if (IS_IVYBRIDGE(dev_priv))
3752 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3753 FDI_FE_ERRC_ENABLE);
3754 }
3755
3756 /* The FDI link training functions for ILK/Ibexpeak. */
3757 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3758 {
3759 struct drm_device *dev = crtc->dev;
3760 struct drm_i915_private *dev_priv = to_i915(dev);
3761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3762 int pipe = intel_crtc->pipe;
3763 i915_reg_t reg;
3764 u32 temp, tries;
3765
3766 /* FDI needs bits from pipe first */
3767 assert_pipe_enabled(dev_priv, pipe);
3768
3769 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3770 for train result */
3771 reg = FDI_RX_IMR(pipe);
3772 temp = I915_READ(reg);
3773 temp &= ~FDI_RX_SYMBOL_LOCK;
3774 temp &= ~FDI_RX_BIT_LOCK;
3775 I915_WRITE(reg, temp);
3776 I915_READ(reg);
3777 udelay(150);
3778
3779 /* enable CPU FDI TX and PCH FDI RX */
3780 reg = FDI_TX_CTL(pipe);
3781 temp = I915_READ(reg);
3782 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3783 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3784 temp &= ~FDI_LINK_TRAIN_NONE;
3785 temp |= FDI_LINK_TRAIN_PATTERN_1;
3786 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3787
3788 reg = FDI_RX_CTL(pipe);
3789 temp = I915_READ(reg);
3790 temp &= ~FDI_LINK_TRAIN_NONE;
3791 temp |= FDI_LINK_TRAIN_PATTERN_1;
3792 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3793
3794 POSTING_READ(reg);
3795 udelay(150);
3796
3797 /* Ironlake workaround, enable clock pointer after FDI enable*/
3798 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3799 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3800 FDI_RX_PHASE_SYNC_POINTER_EN);
3801
3802 reg = FDI_RX_IIR(pipe);
3803 for (tries = 0; tries < 5; tries++) {
3804 temp = I915_READ(reg);
3805 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3806
3807 if ((temp & FDI_RX_BIT_LOCK)) {
3808 DRM_DEBUG_KMS("FDI train 1 done.\n");
3809 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3810 break;
3811 }
3812 }
3813 if (tries == 5)
3814 DRM_ERROR("FDI train 1 fail!\n");
3815
3816 /* Train 2 */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 temp &= ~FDI_LINK_TRAIN_NONE;
3820 temp |= FDI_LINK_TRAIN_PATTERN_2;
3821 I915_WRITE(reg, temp);
3822
3823 reg = FDI_RX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 temp &= ~FDI_LINK_TRAIN_NONE;
3826 temp |= FDI_LINK_TRAIN_PATTERN_2;
3827 I915_WRITE(reg, temp);
3828
3829 POSTING_READ(reg);
3830 udelay(150);
3831
3832 reg = FDI_RX_IIR(pipe);
3833 for (tries = 0; tries < 5; tries++) {
3834 temp = I915_READ(reg);
3835 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3836
3837 if (temp & FDI_RX_SYMBOL_LOCK) {
3838 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3839 DRM_DEBUG_KMS("FDI train 2 done.\n");
3840 break;
3841 }
3842 }
3843 if (tries == 5)
3844 DRM_ERROR("FDI train 2 fail!\n");
3845
3846 DRM_DEBUG_KMS("FDI train done\n");
3847
3848 }
3849
3850 static const int snb_b_fdi_train_param[] = {
3851 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3852 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3853 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3854 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3855 };
3856
3857 /* The FDI link training functions for SNB/Cougarpoint. */
3858 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3859 {
3860 struct drm_device *dev = crtc->dev;
3861 struct drm_i915_private *dev_priv = to_i915(dev);
3862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863 int pipe = intel_crtc->pipe;
3864 i915_reg_t reg;
3865 u32 temp, i, retry;
3866
3867 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3868 for train result */
3869 reg = FDI_RX_IMR(pipe);
3870 temp = I915_READ(reg);
3871 temp &= ~FDI_RX_SYMBOL_LOCK;
3872 temp &= ~FDI_RX_BIT_LOCK;
3873 I915_WRITE(reg, temp);
3874
3875 POSTING_READ(reg);
3876 udelay(150);
3877
3878 /* enable CPU FDI TX and PCH FDI RX */
3879 reg = FDI_TX_CTL(pipe);
3880 temp = I915_READ(reg);
3881 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3882 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3883 temp &= ~FDI_LINK_TRAIN_NONE;
3884 temp |= FDI_LINK_TRAIN_PATTERN_1;
3885 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3886 /* SNB-B */
3887 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3888 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3889
3890 I915_WRITE(FDI_RX_MISC(pipe),
3891 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3892
3893 reg = FDI_RX_CTL(pipe);
3894 temp = I915_READ(reg);
3895 if (HAS_PCH_CPT(dev_priv)) {
3896 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3897 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3898 } else {
3899 temp &= ~FDI_LINK_TRAIN_NONE;
3900 temp |= FDI_LINK_TRAIN_PATTERN_1;
3901 }
3902 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3903
3904 POSTING_READ(reg);
3905 udelay(150);
3906
3907 for (i = 0; i < 4; i++) {
3908 reg = FDI_TX_CTL(pipe);
3909 temp = I915_READ(reg);
3910 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3911 temp |= snb_b_fdi_train_param[i];
3912 I915_WRITE(reg, temp);
3913
3914 POSTING_READ(reg);
3915 udelay(500);
3916
3917 for (retry = 0; retry < 5; retry++) {
3918 reg = FDI_RX_IIR(pipe);
3919 temp = I915_READ(reg);
3920 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3921 if (temp & FDI_RX_BIT_LOCK) {
3922 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3923 DRM_DEBUG_KMS("FDI train 1 done.\n");
3924 break;
3925 }
3926 udelay(50);
3927 }
3928 if (retry < 5)
3929 break;
3930 }
3931 if (i == 4)
3932 DRM_ERROR("FDI train 1 fail!\n");
3933
3934 /* Train 2 */
3935 reg = FDI_TX_CTL(pipe);
3936 temp = I915_READ(reg);
3937 temp &= ~FDI_LINK_TRAIN_NONE;
3938 temp |= FDI_LINK_TRAIN_PATTERN_2;
3939 if (IS_GEN6(dev_priv)) {
3940 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3941 /* SNB-B */
3942 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3943 }
3944 I915_WRITE(reg, temp);
3945
3946 reg = FDI_RX_CTL(pipe);
3947 temp = I915_READ(reg);
3948 if (HAS_PCH_CPT(dev_priv)) {
3949 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3950 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3951 } else {
3952 temp &= ~FDI_LINK_TRAIN_NONE;
3953 temp |= FDI_LINK_TRAIN_PATTERN_2;
3954 }
3955 I915_WRITE(reg, temp);
3956
3957 POSTING_READ(reg);
3958 udelay(150);
3959
3960 for (i = 0; i < 4; i++) {
3961 reg = FDI_TX_CTL(pipe);
3962 temp = I915_READ(reg);
3963 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3964 temp |= snb_b_fdi_train_param[i];
3965 I915_WRITE(reg, temp);
3966
3967 POSTING_READ(reg);
3968 udelay(500);
3969
3970 for (retry = 0; retry < 5; retry++) {
3971 reg = FDI_RX_IIR(pipe);
3972 temp = I915_READ(reg);
3973 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3974 if (temp & FDI_RX_SYMBOL_LOCK) {
3975 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3976 DRM_DEBUG_KMS("FDI train 2 done.\n");
3977 break;
3978 }
3979 udelay(50);
3980 }
3981 if (retry < 5)
3982 break;
3983 }
3984 if (i == 4)
3985 DRM_ERROR("FDI train 2 fail!\n");
3986
3987 DRM_DEBUG_KMS("FDI train done.\n");
3988 }
3989
3990 /* Manual link training for Ivy Bridge A0 parts */
3991 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3992 {
3993 struct drm_device *dev = crtc->dev;
3994 struct drm_i915_private *dev_priv = to_i915(dev);
3995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3996 int pipe = intel_crtc->pipe;
3997 i915_reg_t reg;
3998 u32 temp, i, j;
3999
4000 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4001 for train result */
4002 reg = FDI_RX_IMR(pipe);
4003 temp = I915_READ(reg);
4004 temp &= ~FDI_RX_SYMBOL_LOCK;
4005 temp &= ~FDI_RX_BIT_LOCK;
4006 I915_WRITE(reg, temp);
4007
4008 POSTING_READ(reg);
4009 udelay(150);
4010
4011 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4012 I915_READ(FDI_RX_IIR(pipe)));
4013
4014 /* Try each vswing and preemphasis setting twice before moving on */
4015 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4016 /* disable first in case we need to retry */
4017 reg = FDI_TX_CTL(pipe);
4018 temp = I915_READ(reg);
4019 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4020 temp &= ~FDI_TX_ENABLE;
4021 I915_WRITE(reg, temp);
4022
4023 reg = FDI_RX_CTL(pipe);
4024 temp = I915_READ(reg);
4025 temp &= ~FDI_LINK_TRAIN_AUTO;
4026 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4027 temp &= ~FDI_RX_ENABLE;
4028 I915_WRITE(reg, temp);
4029
4030 /* enable CPU FDI TX and PCH FDI RX */
4031 reg = FDI_TX_CTL(pipe);
4032 temp = I915_READ(reg);
4033 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4034 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4035 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4036 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4037 temp |= snb_b_fdi_train_param[j/2];
4038 temp |= FDI_COMPOSITE_SYNC;
4039 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4040
4041 I915_WRITE(FDI_RX_MISC(pipe),
4042 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4043
4044 reg = FDI_RX_CTL(pipe);
4045 temp = I915_READ(reg);
4046 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4047 temp |= FDI_COMPOSITE_SYNC;
4048 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4049
4050 POSTING_READ(reg);
4051 udelay(1); /* should be 0.5us */
4052
4053 for (i = 0; i < 4; i++) {
4054 reg = FDI_RX_IIR(pipe);
4055 temp = I915_READ(reg);
4056 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4057
4058 if (temp & FDI_RX_BIT_LOCK ||
4059 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4060 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4061 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4062 i);
4063 break;
4064 }
4065 udelay(1); /* should be 0.5us */
4066 }
4067 if (i == 4) {
4068 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4069 continue;
4070 }
4071
4072 /* Train 2 */
4073 reg = FDI_TX_CTL(pipe);
4074 temp = I915_READ(reg);
4075 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4076 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4077 I915_WRITE(reg, temp);
4078
4079 reg = FDI_RX_CTL(pipe);
4080 temp = I915_READ(reg);
4081 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4082 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4083 I915_WRITE(reg, temp);
4084
4085 POSTING_READ(reg);
4086 udelay(2); /* should be 1.5us */
4087
4088 for (i = 0; i < 4; i++) {
4089 reg = FDI_RX_IIR(pipe);
4090 temp = I915_READ(reg);
4091 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4092
4093 if (temp & FDI_RX_SYMBOL_LOCK ||
4094 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4095 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4096 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4097 i);
4098 goto train_done;
4099 }
4100 udelay(2); /* should be 1.5us */
4101 }
4102 if (i == 4)
4103 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4104 }
4105
4106 train_done:
4107 DRM_DEBUG_KMS("FDI train done.\n");
4108 }
4109
4110 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4111 {
4112 struct drm_device *dev = intel_crtc->base.dev;
4113 struct drm_i915_private *dev_priv = to_i915(dev);
4114 int pipe = intel_crtc->pipe;
4115 i915_reg_t reg;
4116 u32 temp;
4117
4118 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4119 reg = FDI_RX_CTL(pipe);
4120 temp = I915_READ(reg);
4121 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4122 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4123 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4124 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4125
4126 POSTING_READ(reg);
4127 udelay(200);
4128
4129 /* Switch from Rawclk to PCDclk */
4130 temp = I915_READ(reg);
4131 I915_WRITE(reg, temp | FDI_PCDCLK);
4132
4133 POSTING_READ(reg);
4134 udelay(200);
4135
4136 /* Enable CPU FDI TX PLL, always on for Ironlake */
4137 reg = FDI_TX_CTL(pipe);
4138 temp = I915_READ(reg);
4139 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4140 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4141
4142 POSTING_READ(reg);
4143 udelay(100);
4144 }
4145 }
4146
4147 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4148 {
4149 struct drm_device *dev = intel_crtc->base.dev;
4150 struct drm_i915_private *dev_priv = to_i915(dev);
4151 int pipe = intel_crtc->pipe;
4152 i915_reg_t reg;
4153 u32 temp;
4154
4155 /* Switch from PCDclk to Rawclk */
4156 reg = FDI_RX_CTL(pipe);
4157 temp = I915_READ(reg);
4158 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4159
4160 /* Disable CPU FDI TX PLL */
4161 reg = FDI_TX_CTL(pipe);
4162 temp = I915_READ(reg);
4163 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4164
4165 POSTING_READ(reg);
4166 udelay(100);
4167
4168 reg = FDI_RX_CTL(pipe);
4169 temp = I915_READ(reg);
4170 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4171
4172 /* Wait for the clocks to turn off. */
4173 POSTING_READ(reg);
4174 udelay(100);
4175 }
4176
4177 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4178 {
4179 struct drm_device *dev = crtc->dev;
4180 struct drm_i915_private *dev_priv = to_i915(dev);
4181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182 int pipe = intel_crtc->pipe;
4183 i915_reg_t reg;
4184 u32 temp;
4185
4186 /* disable CPU FDI tx and PCH FDI rx */
4187 reg = FDI_TX_CTL(pipe);
4188 temp = I915_READ(reg);
4189 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4190 POSTING_READ(reg);
4191
4192 reg = FDI_RX_CTL(pipe);
4193 temp = I915_READ(reg);
4194 temp &= ~(0x7 << 16);
4195 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4196 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4197
4198 POSTING_READ(reg);
4199 udelay(100);
4200
4201 /* Ironlake workaround, disable clock pointer after downing FDI */
4202 if (HAS_PCH_IBX(dev_priv))
4203 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4204
4205 /* still set train pattern 1 */
4206 reg = FDI_TX_CTL(pipe);
4207 temp = I915_READ(reg);
4208 temp &= ~FDI_LINK_TRAIN_NONE;
4209 temp |= FDI_LINK_TRAIN_PATTERN_1;
4210 I915_WRITE(reg, temp);
4211
4212 reg = FDI_RX_CTL(pipe);
4213 temp = I915_READ(reg);
4214 if (HAS_PCH_CPT(dev_priv)) {
4215 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4216 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4217 } else {
4218 temp &= ~FDI_LINK_TRAIN_NONE;
4219 temp |= FDI_LINK_TRAIN_PATTERN_1;
4220 }
4221 /* BPC in FDI rx is consistent with that in PIPECONF */
4222 temp &= ~(0x07 << 16);
4223 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4224 I915_WRITE(reg, temp);
4225
4226 POSTING_READ(reg);
4227 udelay(100);
4228 }
4229
4230 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4231 {
4232 struct drm_i915_private *dev_priv = to_i915(dev);
4233 struct intel_crtc *crtc;
4234
4235 /* Note that we don't need to be called with mode_config.lock here
4236 * as our list of CRTC objects is static for the lifetime of the
4237 * device and so cannot disappear as we iterate. Similarly, we can
4238 * happily treat the predicates as racy, atomic checks as userspace
4239 * cannot claim and pin a new fb without at least acquring the
4240 * struct_mutex and so serialising with us.
4241 */
4242 for_each_intel_crtc(dev, crtc) {
4243 if (atomic_read(&crtc->unpin_work_count) == 0)
4244 continue;
4245
4246 if (crtc->flip_work)
4247 intel_wait_for_vblank(dev_priv, crtc->pipe);
4248
4249 return true;
4250 }
4251
4252 return false;
4253 }
4254
4255 static void page_flip_completed(struct intel_crtc *intel_crtc)
4256 {
4257 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4258 struct intel_flip_work *work = intel_crtc->flip_work;
4259
4260 intel_crtc->flip_work = NULL;
4261
4262 if (work->event)
4263 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4264
4265 drm_crtc_vblank_put(&intel_crtc->base);
4266
4267 wake_up_all(&dev_priv->pending_flip_queue);
4268 queue_work(dev_priv->wq, &work->unpin_work);
4269
4270 trace_i915_flip_complete(intel_crtc->plane,
4271 work->pending_flip_obj);
4272 }
4273
4274 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4275 {
4276 struct drm_device *dev = crtc->dev;
4277 struct drm_i915_private *dev_priv = to_i915(dev);
4278 long ret;
4279
4280 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4281
4282 ret = wait_event_interruptible_timeout(
4283 dev_priv->pending_flip_queue,
4284 !intel_crtc_has_pending_flip(crtc),
4285 60*HZ);
4286
4287 if (ret < 0)
4288 return ret;
4289
4290 if (ret == 0) {
4291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4292 struct intel_flip_work *work;
4293
4294 spin_lock_irq(&dev->event_lock);
4295 work = intel_crtc->flip_work;
4296 if (work && !is_mmio_work(work)) {
4297 WARN_ONCE(1, "Removing stuck page flip\n");
4298 page_flip_completed(intel_crtc);
4299 }
4300 spin_unlock_irq(&dev->event_lock);
4301 }
4302
4303 return 0;
4304 }
4305
4306 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4307 {
4308 u32 temp;
4309
4310 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4311
4312 mutex_lock(&dev_priv->sb_lock);
4313
4314 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4315 temp |= SBI_SSCCTL_DISABLE;
4316 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4317
4318 mutex_unlock(&dev_priv->sb_lock);
4319 }
4320
4321 /* Program iCLKIP clock to the desired frequency */
4322 static void lpt_program_iclkip(struct drm_crtc *crtc)
4323 {
4324 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4325 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4326 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4327 u32 temp;
4328
4329 lpt_disable_iclkip(dev_priv);
4330
4331 /* The iCLK virtual clock root frequency is in MHz,
4332 * but the adjusted_mode->crtc_clock in in KHz. To get the
4333 * divisors, it is necessary to divide one by another, so we
4334 * convert the virtual clock precision to KHz here for higher
4335 * precision.
4336 */
4337 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4338 u32 iclk_virtual_root_freq = 172800 * 1000;
4339 u32 iclk_pi_range = 64;
4340 u32 desired_divisor;
4341
4342 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4343 clock << auxdiv);
4344 divsel = (desired_divisor / iclk_pi_range) - 2;
4345 phaseinc = desired_divisor % iclk_pi_range;
4346
4347 /*
4348 * Near 20MHz is a corner case which is
4349 * out of range for the 7-bit divisor
4350 */
4351 if (divsel <= 0x7f)
4352 break;
4353 }
4354
4355 /* This should not happen with any sane values */
4356 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4357 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4358 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4359 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4360
4361 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4362 clock,
4363 auxdiv,
4364 divsel,
4365 phasedir,
4366 phaseinc);
4367
4368 mutex_lock(&dev_priv->sb_lock);
4369
4370 /* Program SSCDIVINTPHASE6 */
4371 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4372 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4373 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4374 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4375 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4376 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4377 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4378 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4379
4380 /* Program SSCAUXDIV */
4381 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4382 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4383 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4384 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4385
4386 /* Enable modulator and associated divider */
4387 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4388 temp &= ~SBI_SSCCTL_DISABLE;
4389 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4390
4391 mutex_unlock(&dev_priv->sb_lock);
4392
4393 /* Wait for initialization time */
4394 udelay(24);
4395
4396 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4397 }
4398
4399 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4400 {
4401 u32 divsel, phaseinc, auxdiv;
4402 u32 iclk_virtual_root_freq = 172800 * 1000;
4403 u32 iclk_pi_range = 64;
4404 u32 desired_divisor;
4405 u32 temp;
4406
4407 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4408 return 0;
4409
4410 mutex_lock(&dev_priv->sb_lock);
4411
4412 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4413 if (temp & SBI_SSCCTL_DISABLE) {
4414 mutex_unlock(&dev_priv->sb_lock);
4415 return 0;
4416 }
4417
4418 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4419 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4420 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4421 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4422 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4423
4424 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4425 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4426 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4427
4428 mutex_unlock(&dev_priv->sb_lock);
4429
4430 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4431
4432 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4433 desired_divisor << auxdiv);
4434 }
4435
4436 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4437 enum pipe pch_transcoder)
4438 {
4439 struct drm_device *dev = crtc->base.dev;
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4442
4443 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4444 I915_READ(HTOTAL(cpu_transcoder)));
4445 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4446 I915_READ(HBLANK(cpu_transcoder)));
4447 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4448 I915_READ(HSYNC(cpu_transcoder)));
4449
4450 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4451 I915_READ(VTOTAL(cpu_transcoder)));
4452 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4453 I915_READ(VBLANK(cpu_transcoder)));
4454 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4455 I915_READ(VSYNC(cpu_transcoder)));
4456 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4457 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4458 }
4459
4460 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4461 {
4462 struct drm_i915_private *dev_priv = to_i915(dev);
4463 uint32_t temp;
4464
4465 temp = I915_READ(SOUTH_CHICKEN1);
4466 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4467 return;
4468
4469 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4470 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4471
4472 temp &= ~FDI_BC_BIFURCATION_SELECT;
4473 if (enable)
4474 temp |= FDI_BC_BIFURCATION_SELECT;
4475
4476 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4477 I915_WRITE(SOUTH_CHICKEN1, temp);
4478 POSTING_READ(SOUTH_CHICKEN1);
4479 }
4480
4481 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4482 {
4483 struct drm_device *dev = intel_crtc->base.dev;
4484
4485 switch (intel_crtc->pipe) {
4486 case PIPE_A:
4487 break;
4488 case PIPE_B:
4489 if (intel_crtc->config->fdi_lanes > 2)
4490 cpt_set_fdi_bc_bifurcation(dev, false);
4491 else
4492 cpt_set_fdi_bc_bifurcation(dev, true);
4493
4494 break;
4495 case PIPE_C:
4496 cpt_set_fdi_bc_bifurcation(dev, true);
4497
4498 break;
4499 default:
4500 BUG();
4501 }
4502 }
4503
4504 /* Return which DP Port should be selected for Transcoder DP control */
4505 static enum port
4506 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4507 {
4508 struct drm_device *dev = crtc->dev;
4509 struct intel_encoder *encoder;
4510
4511 for_each_encoder_on_crtc(dev, crtc, encoder) {
4512 if (encoder->type == INTEL_OUTPUT_DP ||
4513 encoder->type == INTEL_OUTPUT_EDP)
4514 return enc_to_dig_port(&encoder->base)->port;
4515 }
4516
4517 return -1;
4518 }
4519
4520 /*
4521 * Enable PCH resources required for PCH ports:
4522 * - PCH PLLs
4523 * - FDI training & RX/TX
4524 * - update transcoder timings
4525 * - DP transcoding bits
4526 * - transcoder
4527 */
4528 static void ironlake_pch_enable(struct drm_crtc *crtc)
4529 {
4530 struct drm_device *dev = crtc->dev;
4531 struct drm_i915_private *dev_priv = to_i915(dev);
4532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4533 int pipe = intel_crtc->pipe;
4534 u32 temp;
4535
4536 assert_pch_transcoder_disabled(dev_priv, pipe);
4537
4538 if (IS_IVYBRIDGE(dev_priv))
4539 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4540
4541 /* Write the TU size bits before fdi link training, so that error
4542 * detection works. */
4543 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4544 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4545
4546 /* For PCH output, training FDI link */
4547 dev_priv->display.fdi_link_train(crtc);
4548
4549 /* We need to program the right clock selection before writing the pixel
4550 * mutliplier into the DPLL. */
4551 if (HAS_PCH_CPT(dev_priv)) {
4552 u32 sel;
4553
4554 temp = I915_READ(PCH_DPLL_SEL);
4555 temp |= TRANS_DPLL_ENABLE(pipe);
4556 sel = TRANS_DPLLB_SEL(pipe);
4557 if (intel_crtc->config->shared_dpll ==
4558 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4559 temp |= sel;
4560 else
4561 temp &= ~sel;
4562 I915_WRITE(PCH_DPLL_SEL, temp);
4563 }
4564
4565 /* XXX: pch pll's can be enabled any time before we enable the PCH
4566 * transcoder, and we actually should do this to not upset any PCH
4567 * transcoder that already use the clock when we share it.
4568 *
4569 * Note that enable_shared_dpll tries to do the right thing, but
4570 * get_shared_dpll unconditionally resets the pll - we need that to have
4571 * the right LVDS enable sequence. */
4572 intel_enable_shared_dpll(intel_crtc);
4573
4574 /* set transcoder timing, panel must allow it */
4575 assert_panel_unlocked(dev_priv, pipe);
4576 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4577
4578 intel_fdi_normal_train(crtc);
4579
4580 /* For PCH DP, enable TRANS_DP_CTL */
4581 if (HAS_PCH_CPT(dev_priv) &&
4582 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4583 const struct drm_display_mode *adjusted_mode =
4584 &intel_crtc->config->base.adjusted_mode;
4585 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4586 i915_reg_t reg = TRANS_DP_CTL(pipe);
4587 temp = I915_READ(reg);
4588 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4589 TRANS_DP_SYNC_MASK |
4590 TRANS_DP_BPC_MASK);
4591 temp |= TRANS_DP_OUTPUT_ENABLE;
4592 temp |= bpc << 9; /* same format but at 11:9 */
4593
4594 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4595 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4596 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4597 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4598
4599 switch (intel_trans_dp_port_sel(crtc)) {
4600 case PORT_B:
4601 temp |= TRANS_DP_PORT_SEL_B;
4602 break;
4603 case PORT_C:
4604 temp |= TRANS_DP_PORT_SEL_C;
4605 break;
4606 case PORT_D:
4607 temp |= TRANS_DP_PORT_SEL_D;
4608 break;
4609 default:
4610 BUG();
4611 }
4612
4613 I915_WRITE(reg, temp);
4614 }
4615
4616 ironlake_enable_pch_transcoder(dev_priv, pipe);
4617 }
4618
4619 static void lpt_pch_enable(struct drm_crtc *crtc)
4620 {
4621 struct drm_device *dev = crtc->dev;
4622 struct drm_i915_private *dev_priv = to_i915(dev);
4623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4625
4626 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4627
4628 lpt_program_iclkip(crtc);
4629
4630 /* Set transcoder timing. */
4631 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4632
4633 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4634 }
4635
4636 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4637 {
4638 struct drm_i915_private *dev_priv = to_i915(dev);
4639 i915_reg_t dslreg = PIPEDSL(pipe);
4640 u32 temp;
4641
4642 temp = I915_READ(dslreg);
4643 udelay(500);
4644 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4645 if (wait_for(I915_READ(dslreg) != temp, 5))
4646 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4647 }
4648 }
4649
4650 static int
4651 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4652 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4653 int src_w, int src_h, int dst_w, int dst_h)
4654 {
4655 struct intel_crtc_scaler_state *scaler_state =
4656 &crtc_state->scaler_state;
4657 struct intel_crtc *intel_crtc =
4658 to_intel_crtc(crtc_state->base.crtc);
4659 int need_scaling;
4660
4661 need_scaling = drm_rotation_90_or_270(rotation) ?
4662 (src_h != dst_w || src_w != dst_h):
4663 (src_w != dst_w || src_h != dst_h);
4664
4665 /*
4666 * if plane is being disabled or scaler is no more required or force detach
4667 * - free scaler binded to this plane/crtc
4668 * - in order to do this, update crtc->scaler_usage
4669 *
4670 * Here scaler state in crtc_state is set free so that
4671 * scaler can be assigned to other user. Actual register
4672 * update to free the scaler is done in plane/panel-fit programming.
4673 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4674 */
4675 if (force_detach || !need_scaling) {
4676 if (*scaler_id >= 0) {
4677 scaler_state->scaler_users &= ~(1 << scaler_user);
4678 scaler_state->scalers[*scaler_id].in_use = 0;
4679
4680 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4681 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4682 intel_crtc->pipe, scaler_user, *scaler_id,
4683 scaler_state->scaler_users);
4684 *scaler_id = -1;
4685 }
4686 return 0;
4687 }
4688
4689 /* range checks */
4690 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4691 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4692
4693 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4694 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4695 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4696 "size is out of scaler range\n",
4697 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4698 return -EINVAL;
4699 }
4700
4701 /* mark this plane as a scaler user in crtc_state */
4702 scaler_state->scaler_users |= (1 << scaler_user);
4703 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4704 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4705 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4706 scaler_state->scaler_users);
4707
4708 return 0;
4709 }
4710
4711 /**
4712 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4713 *
4714 * @state: crtc's scaler state
4715 *
4716 * Return
4717 * 0 - scaler_usage updated successfully
4718 * error - requested scaling cannot be supported or other error condition
4719 */
4720 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4721 {
4722 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4723
4724 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4725 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4726 state->pipe_src_w, state->pipe_src_h,
4727 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4728 }
4729
4730 /**
4731 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4732 *
4733 * @state: crtc's scaler state
4734 * @plane_state: atomic plane state to update
4735 *
4736 * Return
4737 * 0 - scaler_usage updated successfully
4738 * error - requested scaling cannot be supported or other error condition
4739 */
4740 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4741 struct intel_plane_state *plane_state)
4742 {
4743
4744 struct intel_plane *intel_plane =
4745 to_intel_plane(plane_state->base.plane);
4746 struct drm_framebuffer *fb = plane_state->base.fb;
4747 int ret;
4748
4749 bool force_detach = !fb || !plane_state->base.visible;
4750
4751 ret = skl_update_scaler(crtc_state, force_detach,
4752 drm_plane_index(&intel_plane->base),
4753 &plane_state->scaler_id,
4754 plane_state->base.rotation,
4755 drm_rect_width(&plane_state->base.src) >> 16,
4756 drm_rect_height(&plane_state->base.src) >> 16,
4757 drm_rect_width(&plane_state->base.dst),
4758 drm_rect_height(&plane_state->base.dst));
4759
4760 if (ret || plane_state->scaler_id < 0)
4761 return ret;
4762
4763 /* check colorkey */
4764 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4765 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4766 intel_plane->base.base.id,
4767 intel_plane->base.name);
4768 return -EINVAL;
4769 }
4770
4771 /* Check src format */
4772 switch (fb->pixel_format) {
4773 case DRM_FORMAT_RGB565:
4774 case DRM_FORMAT_XBGR8888:
4775 case DRM_FORMAT_XRGB8888:
4776 case DRM_FORMAT_ABGR8888:
4777 case DRM_FORMAT_ARGB8888:
4778 case DRM_FORMAT_XRGB2101010:
4779 case DRM_FORMAT_XBGR2101010:
4780 case DRM_FORMAT_YUYV:
4781 case DRM_FORMAT_YVYU:
4782 case DRM_FORMAT_UYVY:
4783 case DRM_FORMAT_VYUY:
4784 break;
4785 default:
4786 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4787 intel_plane->base.base.id, intel_plane->base.name,
4788 fb->base.id, fb->pixel_format);
4789 return -EINVAL;
4790 }
4791
4792 return 0;
4793 }
4794
4795 static void skylake_scaler_disable(struct intel_crtc *crtc)
4796 {
4797 int i;
4798
4799 for (i = 0; i < crtc->num_scalers; i++)
4800 skl_detach_scaler(crtc, i);
4801 }
4802
4803 static void skylake_pfit_enable(struct intel_crtc *crtc)
4804 {
4805 struct drm_device *dev = crtc->base.dev;
4806 struct drm_i915_private *dev_priv = to_i915(dev);
4807 int pipe = crtc->pipe;
4808 struct intel_crtc_scaler_state *scaler_state =
4809 &crtc->config->scaler_state;
4810
4811 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4812
4813 if (crtc->config->pch_pfit.enabled) {
4814 int id;
4815
4816 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4817 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4818 return;
4819 }
4820
4821 id = scaler_state->scaler_id;
4822 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4823 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4824 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4825 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4826
4827 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4828 }
4829 }
4830
4831 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4832 {
4833 struct drm_device *dev = crtc->base.dev;
4834 struct drm_i915_private *dev_priv = to_i915(dev);
4835 int pipe = crtc->pipe;
4836
4837 if (crtc->config->pch_pfit.enabled) {
4838 /* Force use of hard-coded filter coefficients
4839 * as some pre-programmed values are broken,
4840 * e.g. x201.
4841 */
4842 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4843 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4844 PF_PIPE_SEL_IVB(pipe));
4845 else
4846 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4847 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4848 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4849 }
4850 }
4851
4852 void hsw_enable_ips(struct intel_crtc *crtc)
4853 {
4854 struct drm_device *dev = crtc->base.dev;
4855 struct drm_i915_private *dev_priv = to_i915(dev);
4856
4857 if (!crtc->config->ips_enabled)
4858 return;
4859
4860 /*
4861 * We can only enable IPS after we enable a plane and wait for a vblank
4862 * This function is called from post_plane_update, which is run after
4863 * a vblank wait.
4864 */
4865
4866 assert_plane_enabled(dev_priv, crtc->plane);
4867 if (IS_BROADWELL(dev_priv)) {
4868 mutex_lock(&dev_priv->rps.hw_lock);
4869 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4870 mutex_unlock(&dev_priv->rps.hw_lock);
4871 /* Quoting Art Runyan: "its not safe to expect any particular
4872 * value in IPS_CTL bit 31 after enabling IPS through the
4873 * mailbox." Moreover, the mailbox may return a bogus state,
4874 * so we need to just enable it and continue on.
4875 */
4876 } else {
4877 I915_WRITE(IPS_CTL, IPS_ENABLE);
4878 /* The bit only becomes 1 in the next vblank, so this wait here
4879 * is essentially intel_wait_for_vblank. If we don't have this
4880 * and don't wait for vblanks until the end of crtc_enable, then
4881 * the HW state readout code will complain that the expected
4882 * IPS_CTL value is not the one we read. */
4883 if (intel_wait_for_register(dev_priv,
4884 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4885 50))
4886 DRM_ERROR("Timed out waiting for IPS enable\n");
4887 }
4888 }
4889
4890 void hsw_disable_ips(struct intel_crtc *crtc)
4891 {
4892 struct drm_device *dev = crtc->base.dev;
4893 struct drm_i915_private *dev_priv = to_i915(dev);
4894
4895 if (!crtc->config->ips_enabled)
4896 return;
4897
4898 assert_plane_enabled(dev_priv, crtc->plane);
4899 if (IS_BROADWELL(dev_priv)) {
4900 mutex_lock(&dev_priv->rps.hw_lock);
4901 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4902 mutex_unlock(&dev_priv->rps.hw_lock);
4903 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4904 if (intel_wait_for_register(dev_priv,
4905 IPS_CTL, IPS_ENABLE, 0,
4906 42))
4907 DRM_ERROR("Timed out waiting for IPS disable\n");
4908 } else {
4909 I915_WRITE(IPS_CTL, 0);
4910 POSTING_READ(IPS_CTL);
4911 }
4912
4913 /* We need to wait for a vblank before we can disable the plane. */
4914 intel_wait_for_vblank(dev_priv, crtc->pipe);
4915 }
4916
4917 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4918 {
4919 if (intel_crtc->overlay) {
4920 struct drm_device *dev = intel_crtc->base.dev;
4921 struct drm_i915_private *dev_priv = to_i915(dev);
4922
4923 mutex_lock(&dev->struct_mutex);
4924 dev_priv->mm.interruptible = false;
4925 (void) intel_overlay_switch_off(intel_crtc->overlay);
4926 dev_priv->mm.interruptible = true;
4927 mutex_unlock(&dev->struct_mutex);
4928 }
4929
4930 /* Let userspace switch the overlay on again. In most cases userspace
4931 * has to recompute where to put it anyway.
4932 */
4933 }
4934
4935 /**
4936 * intel_post_enable_primary - Perform operations after enabling primary plane
4937 * @crtc: the CRTC whose primary plane was just enabled
4938 *
4939 * Performs potentially sleeping operations that must be done after the primary
4940 * plane is enabled, such as updating FBC and IPS. Note that this may be
4941 * called due to an explicit primary plane update, or due to an implicit
4942 * re-enable that is caused when a sprite plane is updated to no longer
4943 * completely hide the primary plane.
4944 */
4945 static void
4946 intel_post_enable_primary(struct drm_crtc *crtc)
4947 {
4948 struct drm_device *dev = crtc->dev;
4949 struct drm_i915_private *dev_priv = to_i915(dev);
4950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4951 int pipe = intel_crtc->pipe;
4952
4953 /*
4954 * FIXME IPS should be fine as long as one plane is
4955 * enabled, but in practice it seems to have problems
4956 * when going from primary only to sprite only and vice
4957 * versa.
4958 */
4959 hsw_enable_ips(intel_crtc);
4960
4961 /*
4962 * Gen2 reports pipe underruns whenever all planes are disabled.
4963 * So don't enable underrun reporting before at least some planes
4964 * are enabled.
4965 * FIXME: Need to fix the logic to work when we turn off all planes
4966 * but leave the pipe running.
4967 */
4968 if (IS_GEN2(dev_priv))
4969 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4970
4971 /* Underruns don't always raise interrupts, so check manually. */
4972 intel_check_cpu_fifo_underruns(dev_priv);
4973 intel_check_pch_fifo_underruns(dev_priv);
4974 }
4975
4976 /* FIXME move all this to pre_plane_update() with proper state tracking */
4977 static void
4978 intel_pre_disable_primary(struct drm_crtc *crtc)
4979 {
4980 struct drm_device *dev = crtc->dev;
4981 struct drm_i915_private *dev_priv = to_i915(dev);
4982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4983 int pipe = intel_crtc->pipe;
4984
4985 /*
4986 * Gen2 reports pipe underruns whenever all planes are disabled.
4987 * So diasble underrun reporting before all the planes get disabled.
4988 * FIXME: Need to fix the logic to work when we turn off all planes
4989 * but leave the pipe running.
4990 */
4991 if (IS_GEN2(dev_priv))
4992 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4993
4994 /*
4995 * FIXME IPS should be fine as long as one plane is
4996 * enabled, but in practice it seems to have problems
4997 * when going from primary only to sprite only and vice
4998 * versa.
4999 */
5000 hsw_disable_ips(intel_crtc);
5001 }
5002
5003 /* FIXME get rid of this and use pre_plane_update */
5004 static void
5005 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5006 {
5007 struct drm_device *dev = crtc->dev;
5008 struct drm_i915_private *dev_priv = to_i915(dev);
5009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5010 int pipe = intel_crtc->pipe;
5011
5012 intel_pre_disable_primary(crtc);
5013
5014 /*
5015 * Vblank time updates from the shadow to live plane control register
5016 * are blocked if the memory self-refresh mode is active at that
5017 * moment. So to make sure the plane gets truly disabled, disable
5018 * first the self-refresh mode. The self-refresh enable bit in turn
5019 * will be checked/applied by the HW only at the next frame start
5020 * event which is after the vblank start event, so we need to have a
5021 * wait-for-vblank between disabling the plane and the pipe.
5022 */
5023 if (HAS_GMCH_DISPLAY(dev_priv)) {
5024 intel_set_memory_cxsr(dev_priv, false);
5025 dev_priv->wm.vlv.cxsr = false;
5026 intel_wait_for_vblank(dev_priv, pipe);
5027 }
5028 }
5029
5030 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5031 {
5032 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5033 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5034 struct intel_crtc_state *pipe_config =
5035 to_intel_crtc_state(crtc->base.state);
5036 struct drm_plane *primary = crtc->base.primary;
5037 struct drm_plane_state *old_pri_state =
5038 drm_atomic_get_existing_plane_state(old_state, primary);
5039
5040 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5041
5042 crtc->wm.cxsr_allowed = true;
5043
5044 if (pipe_config->update_wm_post && pipe_config->base.active)
5045 intel_update_watermarks(crtc);
5046
5047 if (old_pri_state) {
5048 struct intel_plane_state *primary_state =
5049 to_intel_plane_state(primary->state);
5050 struct intel_plane_state *old_primary_state =
5051 to_intel_plane_state(old_pri_state);
5052
5053 intel_fbc_post_update(crtc);
5054
5055 if (primary_state->base.visible &&
5056 (needs_modeset(&pipe_config->base) ||
5057 !old_primary_state->base.visible))
5058 intel_post_enable_primary(&crtc->base);
5059 }
5060 }
5061
5062 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5063 {
5064 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5065 struct drm_device *dev = crtc->base.dev;
5066 struct drm_i915_private *dev_priv = to_i915(dev);
5067 struct intel_crtc_state *pipe_config =
5068 to_intel_crtc_state(crtc->base.state);
5069 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5070 struct drm_plane *primary = crtc->base.primary;
5071 struct drm_plane_state *old_pri_state =
5072 drm_atomic_get_existing_plane_state(old_state, primary);
5073 bool modeset = needs_modeset(&pipe_config->base);
5074 struct intel_atomic_state *old_intel_state =
5075 to_intel_atomic_state(old_state);
5076
5077 if (old_pri_state) {
5078 struct intel_plane_state *primary_state =
5079 to_intel_plane_state(primary->state);
5080 struct intel_plane_state *old_primary_state =
5081 to_intel_plane_state(old_pri_state);
5082
5083 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5084
5085 if (old_primary_state->base.visible &&
5086 (modeset || !primary_state->base.visible))
5087 intel_pre_disable_primary(&crtc->base);
5088 }
5089
5090 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5091 crtc->wm.cxsr_allowed = false;
5092
5093 /*
5094 * Vblank time updates from the shadow to live plane control register
5095 * are blocked if the memory self-refresh mode is active at that
5096 * moment. So to make sure the plane gets truly disabled, disable
5097 * first the self-refresh mode. The self-refresh enable bit in turn
5098 * will be checked/applied by the HW only at the next frame start
5099 * event which is after the vblank start event, so we need to have a
5100 * wait-for-vblank between disabling the plane and the pipe.
5101 */
5102 if (old_crtc_state->base.active) {
5103 intel_set_memory_cxsr(dev_priv, false);
5104 dev_priv->wm.vlv.cxsr = false;
5105 intel_wait_for_vblank(dev_priv, crtc->pipe);
5106 }
5107 }
5108
5109 /*
5110 * IVB workaround: must disable low power watermarks for at least
5111 * one frame before enabling scaling. LP watermarks can be re-enabled
5112 * when scaling is disabled.
5113 *
5114 * WaCxSRDisabledForSpriteScaling:ivb
5115 */
5116 if (pipe_config->disable_lp_wm) {
5117 ilk_disable_lp_wm(dev);
5118 intel_wait_for_vblank(dev_priv, crtc->pipe);
5119 }
5120
5121 /*
5122 * If we're doing a modeset, we're done. No need to do any pre-vblank
5123 * watermark programming here.
5124 */
5125 if (needs_modeset(&pipe_config->base))
5126 return;
5127
5128 /*
5129 * For platforms that support atomic watermarks, program the
5130 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5131 * will be the intermediate values that are safe for both pre- and
5132 * post- vblank; when vblank happens, the 'active' values will be set
5133 * to the final 'target' values and we'll do this again to get the
5134 * optimal watermarks. For gen9+ platforms, the values we program here
5135 * will be the final target values which will get automatically latched
5136 * at vblank time; no further programming will be necessary.
5137 *
5138 * If a platform hasn't been transitioned to atomic watermarks yet,
5139 * we'll continue to update watermarks the old way, if flags tell
5140 * us to.
5141 */
5142 if (dev_priv->display.initial_watermarks != NULL)
5143 dev_priv->display.initial_watermarks(old_intel_state,
5144 pipe_config);
5145 else if (pipe_config->update_wm_pre)
5146 intel_update_watermarks(crtc);
5147 }
5148
5149 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5150 {
5151 struct drm_device *dev = crtc->dev;
5152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5153 struct drm_plane *p;
5154 int pipe = intel_crtc->pipe;
5155
5156 intel_crtc_dpms_overlay_disable(intel_crtc);
5157
5158 drm_for_each_plane_mask(p, dev, plane_mask)
5159 to_intel_plane(p)->disable_plane(p, crtc);
5160
5161 /*
5162 * FIXME: Once we grow proper nuclear flip support out of this we need
5163 * to compute the mask of flip planes precisely. For the time being
5164 * consider this a flip to a NULL plane.
5165 */
5166 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5167 }
5168
5169 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5170 struct intel_crtc_state *crtc_state,
5171 struct drm_atomic_state *old_state)
5172 {
5173 struct drm_connector_state *old_conn_state;
5174 struct drm_connector *conn;
5175 int i;
5176
5177 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5178 struct drm_connector_state *conn_state = conn->state;
5179 struct intel_encoder *encoder =
5180 to_intel_encoder(conn_state->best_encoder);
5181
5182 if (conn_state->crtc != crtc)
5183 continue;
5184
5185 if (encoder->pre_pll_enable)
5186 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5187 }
5188 }
5189
5190 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5191 struct intel_crtc_state *crtc_state,
5192 struct drm_atomic_state *old_state)
5193 {
5194 struct drm_connector_state *old_conn_state;
5195 struct drm_connector *conn;
5196 int i;
5197
5198 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5199 struct drm_connector_state *conn_state = conn->state;
5200 struct intel_encoder *encoder =
5201 to_intel_encoder(conn_state->best_encoder);
5202
5203 if (conn_state->crtc != crtc)
5204 continue;
5205
5206 if (encoder->pre_enable)
5207 encoder->pre_enable(encoder, crtc_state, conn_state);
5208 }
5209 }
5210
5211 static void intel_encoders_enable(struct drm_crtc *crtc,
5212 struct intel_crtc_state *crtc_state,
5213 struct drm_atomic_state *old_state)
5214 {
5215 struct drm_connector_state *old_conn_state;
5216 struct drm_connector *conn;
5217 int i;
5218
5219 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5220 struct drm_connector_state *conn_state = conn->state;
5221 struct intel_encoder *encoder =
5222 to_intel_encoder(conn_state->best_encoder);
5223
5224 if (conn_state->crtc != crtc)
5225 continue;
5226
5227 encoder->enable(encoder, crtc_state, conn_state);
5228 intel_opregion_notify_encoder(encoder, true);
5229 }
5230 }
5231
5232 static void intel_encoders_disable(struct drm_crtc *crtc,
5233 struct intel_crtc_state *old_crtc_state,
5234 struct drm_atomic_state *old_state)
5235 {
5236 struct drm_connector_state *old_conn_state;
5237 struct drm_connector *conn;
5238 int i;
5239
5240 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5241 struct intel_encoder *encoder =
5242 to_intel_encoder(old_conn_state->best_encoder);
5243
5244 if (old_conn_state->crtc != crtc)
5245 continue;
5246
5247 intel_opregion_notify_encoder(encoder, false);
5248 encoder->disable(encoder, old_crtc_state, old_conn_state);
5249 }
5250 }
5251
5252 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5253 struct intel_crtc_state *old_crtc_state,
5254 struct drm_atomic_state *old_state)
5255 {
5256 struct drm_connector_state *old_conn_state;
5257 struct drm_connector *conn;
5258 int i;
5259
5260 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5261 struct intel_encoder *encoder =
5262 to_intel_encoder(old_conn_state->best_encoder);
5263
5264 if (old_conn_state->crtc != crtc)
5265 continue;
5266
5267 if (encoder->post_disable)
5268 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5269 }
5270 }
5271
5272 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5273 struct intel_crtc_state *old_crtc_state,
5274 struct drm_atomic_state *old_state)
5275 {
5276 struct drm_connector_state *old_conn_state;
5277 struct drm_connector *conn;
5278 int i;
5279
5280 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5281 struct intel_encoder *encoder =
5282 to_intel_encoder(old_conn_state->best_encoder);
5283
5284 if (old_conn_state->crtc != crtc)
5285 continue;
5286
5287 if (encoder->post_pll_disable)
5288 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5289 }
5290 }
5291
5292 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5293 struct drm_atomic_state *old_state)
5294 {
5295 struct drm_crtc *crtc = pipe_config->base.crtc;
5296 struct drm_device *dev = crtc->dev;
5297 struct drm_i915_private *dev_priv = to_i915(dev);
5298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5299 int pipe = intel_crtc->pipe;
5300 struct intel_atomic_state *old_intel_state =
5301 to_intel_atomic_state(old_state);
5302
5303 if (WARN_ON(intel_crtc->active))
5304 return;
5305
5306 /*
5307 * Sometimes spurious CPU pipe underruns happen during FDI
5308 * training, at least with VGA+HDMI cloning. Suppress them.
5309 *
5310 * On ILK we get an occasional spurious CPU pipe underruns
5311 * between eDP port A enable and vdd enable. Also PCH port
5312 * enable seems to result in the occasional CPU pipe underrun.
5313 *
5314 * Spurious PCH underruns also occur during PCH enabling.
5315 */
5316 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5317 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5318 if (intel_crtc->config->has_pch_encoder)
5319 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5320
5321 if (intel_crtc->config->has_pch_encoder)
5322 intel_prepare_shared_dpll(intel_crtc);
5323
5324 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5325 intel_dp_set_m_n(intel_crtc, M1_N1);
5326
5327 intel_set_pipe_timings(intel_crtc);
5328 intel_set_pipe_src_size(intel_crtc);
5329
5330 if (intel_crtc->config->has_pch_encoder) {
5331 intel_cpu_transcoder_set_m_n(intel_crtc,
5332 &intel_crtc->config->fdi_m_n, NULL);
5333 }
5334
5335 ironlake_set_pipeconf(crtc);
5336
5337 intel_crtc->active = true;
5338
5339 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5340
5341 if (intel_crtc->config->has_pch_encoder) {
5342 /* Note: FDI PLL enabling _must_ be done before we enable the
5343 * cpu pipes, hence this is separate from all the other fdi/pch
5344 * enabling. */
5345 ironlake_fdi_pll_enable(intel_crtc);
5346 } else {
5347 assert_fdi_tx_disabled(dev_priv, pipe);
5348 assert_fdi_rx_disabled(dev_priv, pipe);
5349 }
5350
5351 ironlake_pfit_enable(intel_crtc);
5352
5353 /*
5354 * On ILK+ LUT must be loaded before the pipe is running but with
5355 * clocks enabled
5356 */
5357 intel_color_load_luts(&pipe_config->base);
5358
5359 if (dev_priv->display.initial_watermarks != NULL)
5360 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5361 intel_enable_pipe(intel_crtc);
5362
5363 if (intel_crtc->config->has_pch_encoder)
5364 ironlake_pch_enable(crtc);
5365
5366 assert_vblank_disabled(crtc);
5367 drm_crtc_vblank_on(crtc);
5368
5369 intel_encoders_enable(crtc, pipe_config, old_state);
5370
5371 if (HAS_PCH_CPT(dev_priv))
5372 cpt_verify_modeset(dev, intel_crtc->pipe);
5373
5374 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5375 if (intel_crtc->config->has_pch_encoder)
5376 intel_wait_for_vblank(dev_priv, pipe);
5377 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5378 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5379 }
5380
5381 /* IPS only exists on ULT machines and is tied to pipe A. */
5382 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5383 {
5384 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5385 }
5386
5387 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5388 struct drm_atomic_state *old_state)
5389 {
5390 struct drm_crtc *crtc = pipe_config->base.crtc;
5391 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5393 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5394 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5395 struct intel_atomic_state *old_intel_state =
5396 to_intel_atomic_state(old_state);
5397
5398 if (WARN_ON(intel_crtc->active))
5399 return;
5400
5401 if (intel_crtc->config->has_pch_encoder)
5402 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5403 false);
5404
5405 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5406
5407 if (intel_crtc->config->shared_dpll)
5408 intel_enable_shared_dpll(intel_crtc);
5409
5410 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5411 intel_dp_set_m_n(intel_crtc, M1_N1);
5412
5413 if (!transcoder_is_dsi(cpu_transcoder))
5414 intel_set_pipe_timings(intel_crtc);
5415
5416 intel_set_pipe_src_size(intel_crtc);
5417
5418 if (cpu_transcoder != TRANSCODER_EDP &&
5419 !transcoder_is_dsi(cpu_transcoder)) {
5420 I915_WRITE(PIPE_MULT(cpu_transcoder),
5421 intel_crtc->config->pixel_multiplier - 1);
5422 }
5423
5424 if (intel_crtc->config->has_pch_encoder) {
5425 intel_cpu_transcoder_set_m_n(intel_crtc,
5426 &intel_crtc->config->fdi_m_n, NULL);
5427 }
5428
5429 if (!transcoder_is_dsi(cpu_transcoder))
5430 haswell_set_pipeconf(crtc);
5431
5432 haswell_set_pipemisc(crtc);
5433
5434 intel_color_set_csc(&pipe_config->base);
5435
5436 intel_crtc->active = true;
5437
5438 if (intel_crtc->config->has_pch_encoder)
5439 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5440 else
5441 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5442
5443 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5444
5445 if (intel_crtc->config->has_pch_encoder)
5446 dev_priv->display.fdi_link_train(crtc);
5447
5448 if (!transcoder_is_dsi(cpu_transcoder))
5449 intel_ddi_enable_pipe_clock(intel_crtc);
5450
5451 if (INTEL_GEN(dev_priv) >= 9)
5452 skylake_pfit_enable(intel_crtc);
5453 else
5454 ironlake_pfit_enable(intel_crtc);
5455
5456 /*
5457 * On ILK+ LUT must be loaded before the pipe is running but with
5458 * clocks enabled
5459 */
5460 intel_color_load_luts(&pipe_config->base);
5461
5462 intel_ddi_set_pipe_settings(crtc);
5463 if (!transcoder_is_dsi(cpu_transcoder))
5464 intel_ddi_enable_transcoder_func(crtc);
5465
5466 if (dev_priv->display.initial_watermarks != NULL)
5467 dev_priv->display.initial_watermarks(old_intel_state,
5468 pipe_config);
5469 else
5470 intel_update_watermarks(intel_crtc);
5471
5472 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5473 if (!transcoder_is_dsi(cpu_transcoder))
5474 intel_enable_pipe(intel_crtc);
5475
5476 if (intel_crtc->config->has_pch_encoder)
5477 lpt_pch_enable(crtc);
5478
5479 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5480 intel_ddi_set_vc_payload_alloc(crtc, true);
5481
5482 assert_vblank_disabled(crtc);
5483 drm_crtc_vblank_on(crtc);
5484
5485 intel_encoders_enable(crtc, pipe_config, old_state);
5486
5487 if (intel_crtc->config->has_pch_encoder) {
5488 intel_wait_for_vblank(dev_priv, pipe);
5489 intel_wait_for_vblank(dev_priv, pipe);
5490 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5491 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5492 true);
5493 }
5494
5495 /* If we change the relative order between pipe/planes enabling, we need
5496 * to change the workaround. */
5497 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5498 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5499 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5500 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5501 }
5502 }
5503
5504 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5505 {
5506 struct drm_device *dev = crtc->base.dev;
5507 struct drm_i915_private *dev_priv = to_i915(dev);
5508 int pipe = crtc->pipe;
5509
5510 /* To avoid upsetting the power well on haswell only disable the pfit if
5511 * it's in use. The hw state code will make sure we get this right. */
5512 if (force || crtc->config->pch_pfit.enabled) {
5513 I915_WRITE(PF_CTL(pipe), 0);
5514 I915_WRITE(PF_WIN_POS(pipe), 0);
5515 I915_WRITE(PF_WIN_SZ(pipe), 0);
5516 }
5517 }
5518
5519 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5520 struct drm_atomic_state *old_state)
5521 {
5522 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5523 struct drm_device *dev = crtc->dev;
5524 struct drm_i915_private *dev_priv = to_i915(dev);
5525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5526 int pipe = intel_crtc->pipe;
5527
5528 /*
5529 * Sometimes spurious CPU pipe underruns happen when the
5530 * pipe is already disabled, but FDI RX/TX is still enabled.
5531 * Happens at least with VGA+HDMI cloning. Suppress them.
5532 */
5533 if (intel_crtc->config->has_pch_encoder) {
5534 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5535 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5536 }
5537
5538 intel_encoders_disable(crtc, old_crtc_state, old_state);
5539
5540 drm_crtc_vblank_off(crtc);
5541 assert_vblank_disabled(crtc);
5542
5543 intel_disable_pipe(intel_crtc);
5544
5545 ironlake_pfit_disable(intel_crtc, false);
5546
5547 if (intel_crtc->config->has_pch_encoder)
5548 ironlake_fdi_disable(crtc);
5549
5550 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5551
5552 if (intel_crtc->config->has_pch_encoder) {
5553 ironlake_disable_pch_transcoder(dev_priv, pipe);
5554
5555 if (HAS_PCH_CPT(dev_priv)) {
5556 i915_reg_t reg;
5557 u32 temp;
5558
5559 /* disable TRANS_DP_CTL */
5560 reg = TRANS_DP_CTL(pipe);
5561 temp = I915_READ(reg);
5562 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5563 TRANS_DP_PORT_SEL_MASK);
5564 temp |= TRANS_DP_PORT_SEL_NONE;
5565 I915_WRITE(reg, temp);
5566
5567 /* disable DPLL_SEL */
5568 temp = I915_READ(PCH_DPLL_SEL);
5569 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5570 I915_WRITE(PCH_DPLL_SEL, temp);
5571 }
5572
5573 ironlake_fdi_pll_disable(intel_crtc);
5574 }
5575
5576 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5577 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5578 }
5579
5580 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5581 struct drm_atomic_state *old_state)
5582 {
5583 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5584 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5586 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5587
5588 if (intel_crtc->config->has_pch_encoder)
5589 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5590 false);
5591
5592 intel_encoders_disable(crtc, old_crtc_state, old_state);
5593
5594 drm_crtc_vblank_off(crtc);
5595 assert_vblank_disabled(crtc);
5596
5597 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5598 if (!transcoder_is_dsi(cpu_transcoder))
5599 intel_disable_pipe(intel_crtc);
5600
5601 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5602 intel_ddi_set_vc_payload_alloc(crtc, false);
5603
5604 if (!transcoder_is_dsi(cpu_transcoder))
5605 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5606
5607 if (INTEL_GEN(dev_priv) >= 9)
5608 skylake_scaler_disable(intel_crtc);
5609 else
5610 ironlake_pfit_disable(intel_crtc, false);
5611
5612 if (!transcoder_is_dsi(cpu_transcoder))
5613 intel_ddi_disable_pipe_clock(intel_crtc);
5614
5615 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5616
5617 if (old_crtc_state->has_pch_encoder)
5618 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5619 true);
5620 }
5621
5622 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5623 {
5624 struct drm_device *dev = crtc->base.dev;
5625 struct drm_i915_private *dev_priv = to_i915(dev);
5626 struct intel_crtc_state *pipe_config = crtc->config;
5627
5628 if (!pipe_config->gmch_pfit.control)
5629 return;
5630
5631 /*
5632 * The panel fitter should only be adjusted whilst the pipe is disabled,
5633 * according to register description and PRM.
5634 */
5635 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5636 assert_pipe_disabled(dev_priv, crtc->pipe);
5637
5638 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5639 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5640
5641 /* Border color in case we don't scale up to the full screen. Black by
5642 * default, change to something else for debugging. */
5643 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5644 }
5645
5646 static enum intel_display_power_domain port_to_power_domain(enum port port)
5647 {
5648 switch (port) {
5649 case PORT_A:
5650 return POWER_DOMAIN_PORT_DDI_A_LANES;
5651 case PORT_B:
5652 return POWER_DOMAIN_PORT_DDI_B_LANES;
5653 case PORT_C:
5654 return POWER_DOMAIN_PORT_DDI_C_LANES;
5655 case PORT_D:
5656 return POWER_DOMAIN_PORT_DDI_D_LANES;
5657 case PORT_E:
5658 return POWER_DOMAIN_PORT_DDI_E_LANES;
5659 default:
5660 MISSING_CASE(port);
5661 return POWER_DOMAIN_PORT_OTHER;
5662 }
5663 }
5664
5665 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5666 {
5667 switch (port) {
5668 case PORT_A:
5669 return POWER_DOMAIN_AUX_A;
5670 case PORT_B:
5671 return POWER_DOMAIN_AUX_B;
5672 case PORT_C:
5673 return POWER_DOMAIN_AUX_C;
5674 case PORT_D:
5675 return POWER_DOMAIN_AUX_D;
5676 case PORT_E:
5677 /* FIXME: Check VBT for actual wiring of PORT E */
5678 return POWER_DOMAIN_AUX_D;
5679 default:
5680 MISSING_CASE(port);
5681 return POWER_DOMAIN_AUX_A;
5682 }
5683 }
5684
5685 enum intel_display_power_domain
5686 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5687 {
5688 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5689 struct intel_digital_port *intel_dig_port;
5690
5691 switch (intel_encoder->type) {
5692 case INTEL_OUTPUT_UNKNOWN:
5693 /* Only DDI platforms should ever use this output type */
5694 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5695 case INTEL_OUTPUT_DP:
5696 case INTEL_OUTPUT_HDMI:
5697 case INTEL_OUTPUT_EDP:
5698 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5699 return port_to_power_domain(intel_dig_port->port);
5700 case INTEL_OUTPUT_DP_MST:
5701 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5702 return port_to_power_domain(intel_dig_port->port);
5703 case INTEL_OUTPUT_ANALOG:
5704 return POWER_DOMAIN_PORT_CRT;
5705 case INTEL_OUTPUT_DSI:
5706 return POWER_DOMAIN_PORT_DSI;
5707 default:
5708 return POWER_DOMAIN_PORT_OTHER;
5709 }
5710 }
5711
5712 enum intel_display_power_domain
5713 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5714 {
5715 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5716 struct intel_digital_port *intel_dig_port;
5717
5718 switch (intel_encoder->type) {
5719 case INTEL_OUTPUT_UNKNOWN:
5720 case INTEL_OUTPUT_HDMI:
5721 /*
5722 * Only DDI platforms should ever use these output types.
5723 * We can get here after the HDMI detect code has already set
5724 * the type of the shared encoder. Since we can't be sure
5725 * what's the status of the given connectors, play safe and
5726 * run the DP detection too.
5727 */
5728 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5729 case INTEL_OUTPUT_DP:
5730 case INTEL_OUTPUT_EDP:
5731 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5732 return port_to_aux_power_domain(intel_dig_port->port);
5733 case INTEL_OUTPUT_DP_MST:
5734 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5735 return port_to_aux_power_domain(intel_dig_port->port);
5736 default:
5737 MISSING_CASE(intel_encoder->type);
5738 return POWER_DOMAIN_AUX_A;
5739 }
5740 }
5741
5742 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5743 struct intel_crtc_state *crtc_state)
5744 {
5745 struct drm_device *dev = crtc->dev;
5746 struct drm_encoder *encoder;
5747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5748 enum pipe pipe = intel_crtc->pipe;
5749 unsigned long mask;
5750 enum transcoder transcoder = crtc_state->cpu_transcoder;
5751
5752 if (!crtc_state->base.active)
5753 return 0;
5754
5755 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5756 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5757 if (crtc_state->pch_pfit.enabled ||
5758 crtc_state->pch_pfit.force_thru)
5759 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5760
5761 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5762 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5763
5764 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5765 }
5766
5767 if (crtc_state->shared_dpll)
5768 mask |= BIT(POWER_DOMAIN_PLLS);
5769
5770 return mask;
5771 }
5772
5773 static unsigned long
5774 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5775 struct intel_crtc_state *crtc_state)
5776 {
5777 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5779 enum intel_display_power_domain domain;
5780 unsigned long domains, new_domains, old_domains;
5781
5782 old_domains = intel_crtc->enabled_power_domains;
5783 intel_crtc->enabled_power_domains = new_domains =
5784 get_crtc_power_domains(crtc, crtc_state);
5785
5786 domains = new_domains & ~old_domains;
5787
5788 for_each_power_domain(domain, domains)
5789 intel_display_power_get(dev_priv, domain);
5790
5791 return old_domains & ~new_domains;
5792 }
5793
5794 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5795 unsigned long domains)
5796 {
5797 enum intel_display_power_domain domain;
5798
5799 for_each_power_domain(domain, domains)
5800 intel_display_power_put(dev_priv, domain);
5801 }
5802
5803 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5804 {
5805 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5806
5807 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5808 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5809 return max_cdclk_freq;
5810 else if (IS_CHERRYVIEW(dev_priv))
5811 return max_cdclk_freq*95/100;
5812 else if (INTEL_INFO(dev_priv)->gen < 4)
5813 return 2*max_cdclk_freq*90/100;
5814 else
5815 return max_cdclk_freq*90/100;
5816 }
5817
5818 static int skl_calc_cdclk(int max_pixclk, int vco);
5819
5820 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5821 {
5822 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5823 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5824 int max_cdclk, vco;
5825
5826 vco = dev_priv->skl_preferred_vco_freq;
5827 WARN_ON(vco != 8100000 && vco != 8640000);
5828
5829 /*
5830 * Use the lower (vco 8640) cdclk values as a
5831 * first guess. skl_calc_cdclk() will correct it
5832 * if the preferred vco is 8100 instead.
5833 */
5834 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5835 max_cdclk = 617143;
5836 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5837 max_cdclk = 540000;
5838 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5839 max_cdclk = 432000;
5840 else
5841 max_cdclk = 308571;
5842
5843 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5844 } else if (IS_BROXTON(dev_priv)) {
5845 dev_priv->max_cdclk_freq = 624000;
5846 } else if (IS_BROADWELL(dev_priv)) {
5847 /*
5848 * FIXME with extra cooling we can allow
5849 * 540 MHz for ULX and 675 Mhz for ULT.
5850 * How can we know if extra cooling is
5851 * available? PCI ID, VTB, something else?
5852 */
5853 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5854 dev_priv->max_cdclk_freq = 450000;
5855 else if (IS_BDW_ULX(dev_priv))
5856 dev_priv->max_cdclk_freq = 450000;
5857 else if (IS_BDW_ULT(dev_priv))
5858 dev_priv->max_cdclk_freq = 540000;
5859 else
5860 dev_priv->max_cdclk_freq = 675000;
5861 } else if (IS_CHERRYVIEW(dev_priv)) {
5862 dev_priv->max_cdclk_freq = 320000;
5863 } else if (IS_VALLEYVIEW(dev_priv)) {
5864 dev_priv->max_cdclk_freq = 400000;
5865 } else {
5866 /* otherwise assume cdclk is fixed */
5867 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5868 }
5869
5870 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5871
5872 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5873 dev_priv->max_cdclk_freq);
5874
5875 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5876 dev_priv->max_dotclk_freq);
5877 }
5878
5879 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5880 {
5881 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5882
5883 if (INTEL_GEN(dev_priv) >= 9)
5884 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5885 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5886 dev_priv->cdclk_pll.ref);
5887 else
5888 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5889 dev_priv->cdclk_freq);
5890
5891 /*
5892 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5893 * Programmng [sic] note: bit[9:2] should be programmed to the number
5894 * of cdclk that generates 4MHz reference clock freq which is used to
5895 * generate GMBus clock. This will vary with the cdclk freq.
5896 */
5897 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5898 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5899 }
5900
5901 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5902 static int skl_cdclk_decimal(int cdclk)
5903 {
5904 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5905 }
5906
5907 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5908 {
5909 int ratio;
5910
5911 if (cdclk == dev_priv->cdclk_pll.ref)
5912 return 0;
5913
5914 switch (cdclk) {
5915 default:
5916 MISSING_CASE(cdclk);
5917 case 144000:
5918 case 288000:
5919 case 384000:
5920 case 576000:
5921 ratio = 60;
5922 break;
5923 case 624000:
5924 ratio = 65;
5925 break;
5926 }
5927
5928 return dev_priv->cdclk_pll.ref * ratio;
5929 }
5930
5931 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5932 {
5933 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5934
5935 /* Timeout 200us */
5936 if (intel_wait_for_register(dev_priv,
5937 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5938 1))
5939 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5940
5941 dev_priv->cdclk_pll.vco = 0;
5942 }
5943
5944 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5945 {
5946 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5947 u32 val;
5948
5949 val = I915_READ(BXT_DE_PLL_CTL);
5950 val &= ~BXT_DE_PLL_RATIO_MASK;
5951 val |= BXT_DE_PLL_RATIO(ratio);
5952 I915_WRITE(BXT_DE_PLL_CTL, val);
5953
5954 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5955
5956 /* Timeout 200us */
5957 if (intel_wait_for_register(dev_priv,
5958 BXT_DE_PLL_ENABLE,
5959 BXT_DE_PLL_LOCK,
5960 BXT_DE_PLL_LOCK,
5961 1))
5962 DRM_ERROR("timeout waiting for DE PLL lock\n");
5963
5964 dev_priv->cdclk_pll.vco = vco;
5965 }
5966
5967 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5968 {
5969 u32 val, divider;
5970 int vco, ret;
5971
5972 vco = bxt_de_pll_vco(dev_priv, cdclk);
5973
5974 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5975
5976 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5977 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5978 case 8:
5979 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5980 break;
5981 case 4:
5982 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5983 break;
5984 case 3:
5985 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5986 break;
5987 case 2:
5988 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5989 break;
5990 default:
5991 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5992 WARN_ON(vco != 0);
5993
5994 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5995 break;
5996 }
5997
5998 /* Inform power controller of upcoming frequency change */
5999 mutex_lock(&dev_priv->rps.hw_lock);
6000 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6001 0x80000000);
6002 mutex_unlock(&dev_priv->rps.hw_lock);
6003
6004 if (ret) {
6005 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6006 ret, cdclk);
6007 return;
6008 }
6009
6010 if (dev_priv->cdclk_pll.vco != 0 &&
6011 dev_priv->cdclk_pll.vco != vco)
6012 bxt_de_pll_disable(dev_priv);
6013
6014 if (dev_priv->cdclk_pll.vco != vco)
6015 bxt_de_pll_enable(dev_priv, vco);
6016
6017 val = divider | skl_cdclk_decimal(cdclk);
6018 /*
6019 * FIXME if only the cd2x divider needs changing, it could be done
6020 * without shutting off the pipe (if only one pipe is active).
6021 */
6022 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6023 /*
6024 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6025 * enable otherwise.
6026 */
6027 if (cdclk >= 500000)
6028 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6029 I915_WRITE(CDCLK_CTL, val);
6030
6031 mutex_lock(&dev_priv->rps.hw_lock);
6032 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6033 DIV_ROUND_UP(cdclk, 25000));
6034 mutex_unlock(&dev_priv->rps.hw_lock);
6035
6036 if (ret) {
6037 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6038 ret, cdclk);
6039 return;
6040 }
6041
6042 intel_update_cdclk(dev_priv);
6043 }
6044
6045 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6046 {
6047 u32 cdctl, expected;
6048
6049 intel_update_cdclk(dev_priv);
6050
6051 if (dev_priv->cdclk_pll.vco == 0 ||
6052 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6053 goto sanitize;
6054
6055 /* DPLL okay; verify the cdclock
6056 *
6057 * Some BIOS versions leave an incorrect decimal frequency value and
6058 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6059 * so sanitize this register.
6060 */
6061 cdctl = I915_READ(CDCLK_CTL);
6062 /*
6063 * Let's ignore the pipe field, since BIOS could have configured the
6064 * dividers both synching to an active pipe, or asynchronously
6065 * (PIPE_NONE).
6066 */
6067 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6068
6069 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6070 skl_cdclk_decimal(dev_priv->cdclk_freq);
6071 /*
6072 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6073 * enable otherwise.
6074 */
6075 if (dev_priv->cdclk_freq >= 500000)
6076 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6077
6078 if (cdctl == expected)
6079 /* All well; nothing to sanitize */
6080 return;
6081
6082 sanitize:
6083 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6084
6085 /* force cdclk programming */
6086 dev_priv->cdclk_freq = 0;
6087
6088 /* force full PLL disable + enable */
6089 dev_priv->cdclk_pll.vco = -1;
6090 }
6091
6092 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6093 {
6094 bxt_sanitize_cdclk(dev_priv);
6095
6096 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6097 return;
6098
6099 /*
6100 * FIXME:
6101 * - The initial CDCLK needs to be read from VBT.
6102 * Need to make this change after VBT has changes for BXT.
6103 */
6104 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6105 }
6106
6107 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6108 {
6109 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6110 }
6111
6112 static int skl_calc_cdclk(int max_pixclk, int vco)
6113 {
6114 if (vco == 8640000) {
6115 if (max_pixclk > 540000)
6116 return 617143;
6117 else if (max_pixclk > 432000)
6118 return 540000;
6119 else if (max_pixclk > 308571)
6120 return 432000;
6121 else
6122 return 308571;
6123 } else {
6124 if (max_pixclk > 540000)
6125 return 675000;
6126 else if (max_pixclk > 450000)
6127 return 540000;
6128 else if (max_pixclk > 337500)
6129 return 450000;
6130 else
6131 return 337500;
6132 }
6133 }
6134
6135 static void
6136 skl_dpll0_update(struct drm_i915_private *dev_priv)
6137 {
6138 u32 val;
6139
6140 dev_priv->cdclk_pll.ref = 24000;
6141 dev_priv->cdclk_pll.vco = 0;
6142
6143 val = I915_READ(LCPLL1_CTL);
6144 if ((val & LCPLL_PLL_ENABLE) == 0)
6145 return;
6146
6147 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6148 return;
6149
6150 val = I915_READ(DPLL_CTRL1);
6151
6152 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6153 DPLL_CTRL1_SSC(SKL_DPLL0) |
6154 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6155 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6156 return;
6157
6158 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6159 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6160 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6161 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6162 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6163 dev_priv->cdclk_pll.vco = 8100000;
6164 break;
6165 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6166 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6167 dev_priv->cdclk_pll.vco = 8640000;
6168 break;
6169 default:
6170 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6171 break;
6172 }
6173 }
6174
6175 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6176 {
6177 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6178
6179 dev_priv->skl_preferred_vco_freq = vco;
6180
6181 if (changed)
6182 intel_update_max_cdclk(dev_priv);
6183 }
6184
6185 static void
6186 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6187 {
6188 int min_cdclk = skl_calc_cdclk(0, vco);
6189 u32 val;
6190
6191 WARN_ON(vco != 8100000 && vco != 8640000);
6192
6193 /* select the minimum CDCLK before enabling DPLL 0 */
6194 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6195 I915_WRITE(CDCLK_CTL, val);
6196 POSTING_READ(CDCLK_CTL);
6197
6198 /*
6199 * We always enable DPLL0 with the lowest link rate possible, but still
6200 * taking into account the VCO required to operate the eDP panel at the
6201 * desired frequency. The usual DP link rates operate with a VCO of
6202 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6203 * The modeset code is responsible for the selection of the exact link
6204 * rate later on, with the constraint of choosing a frequency that
6205 * works with vco.
6206 */
6207 val = I915_READ(DPLL_CTRL1);
6208
6209 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6210 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6211 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6212 if (vco == 8640000)
6213 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6214 SKL_DPLL0);
6215 else
6216 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6217 SKL_DPLL0);
6218
6219 I915_WRITE(DPLL_CTRL1, val);
6220 POSTING_READ(DPLL_CTRL1);
6221
6222 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6223
6224 if (intel_wait_for_register(dev_priv,
6225 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6226 5))
6227 DRM_ERROR("DPLL0 not locked\n");
6228
6229 dev_priv->cdclk_pll.vco = vco;
6230
6231 /* We'll want to keep using the current vco from now on. */
6232 skl_set_preferred_cdclk_vco(dev_priv, vco);
6233 }
6234
6235 static void
6236 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6237 {
6238 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6239 if (intel_wait_for_register(dev_priv,
6240 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6241 1))
6242 DRM_ERROR("Couldn't disable DPLL0\n");
6243
6244 dev_priv->cdclk_pll.vco = 0;
6245 }
6246
6247 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6248 {
6249 u32 freq_select, pcu_ack;
6250 int ret;
6251
6252 WARN_ON((cdclk == 24000) != (vco == 0));
6253
6254 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6255
6256 mutex_lock(&dev_priv->rps.hw_lock);
6257 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6258 SKL_CDCLK_PREPARE_FOR_CHANGE,
6259 SKL_CDCLK_READY_FOR_CHANGE,
6260 SKL_CDCLK_READY_FOR_CHANGE, 3);
6261 mutex_unlock(&dev_priv->rps.hw_lock);
6262 if (ret) {
6263 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6264 ret);
6265 return;
6266 }
6267
6268 /* set CDCLK_CTL */
6269 switch (cdclk) {
6270 case 450000:
6271 case 432000:
6272 freq_select = CDCLK_FREQ_450_432;
6273 pcu_ack = 1;
6274 break;
6275 case 540000:
6276 freq_select = CDCLK_FREQ_540;
6277 pcu_ack = 2;
6278 break;
6279 case 308571:
6280 case 337500:
6281 default:
6282 freq_select = CDCLK_FREQ_337_308;
6283 pcu_ack = 0;
6284 break;
6285 case 617143:
6286 case 675000:
6287 freq_select = CDCLK_FREQ_675_617;
6288 pcu_ack = 3;
6289 break;
6290 }
6291
6292 if (dev_priv->cdclk_pll.vco != 0 &&
6293 dev_priv->cdclk_pll.vco != vco)
6294 skl_dpll0_disable(dev_priv);
6295
6296 if (dev_priv->cdclk_pll.vco != vco)
6297 skl_dpll0_enable(dev_priv, vco);
6298
6299 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6300 POSTING_READ(CDCLK_CTL);
6301
6302 /* inform PCU of the change */
6303 mutex_lock(&dev_priv->rps.hw_lock);
6304 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6305 mutex_unlock(&dev_priv->rps.hw_lock);
6306
6307 intel_update_cdclk(dev_priv);
6308 }
6309
6310 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6311
6312 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6313 {
6314 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6315 }
6316
6317 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6318 {
6319 int cdclk, vco;
6320
6321 skl_sanitize_cdclk(dev_priv);
6322
6323 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6324 /*
6325 * Use the current vco as our initial
6326 * guess as to what the preferred vco is.
6327 */
6328 if (dev_priv->skl_preferred_vco_freq == 0)
6329 skl_set_preferred_cdclk_vco(dev_priv,
6330 dev_priv->cdclk_pll.vco);
6331 return;
6332 }
6333
6334 vco = dev_priv->skl_preferred_vco_freq;
6335 if (vco == 0)
6336 vco = 8100000;
6337 cdclk = skl_calc_cdclk(0, vco);
6338
6339 skl_set_cdclk(dev_priv, cdclk, vco);
6340 }
6341
6342 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6343 {
6344 uint32_t cdctl, expected;
6345
6346 /*
6347 * check if the pre-os intialized the display
6348 * There is SWF18 scratchpad register defined which is set by the
6349 * pre-os which can be used by the OS drivers to check the status
6350 */
6351 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6352 goto sanitize;
6353
6354 intel_update_cdclk(dev_priv);
6355 /* Is PLL enabled and locked ? */
6356 if (dev_priv->cdclk_pll.vco == 0 ||
6357 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6358 goto sanitize;
6359
6360 /* DPLL okay; verify the cdclock
6361 *
6362 * Noticed in some instances that the freq selection is correct but
6363 * decimal part is programmed wrong from BIOS where pre-os does not
6364 * enable display. Verify the same as well.
6365 */
6366 cdctl = I915_READ(CDCLK_CTL);
6367 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6368 skl_cdclk_decimal(dev_priv->cdclk_freq);
6369 if (cdctl == expected)
6370 /* All well; nothing to sanitize */
6371 return;
6372
6373 sanitize:
6374 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6375
6376 /* force cdclk programming */
6377 dev_priv->cdclk_freq = 0;
6378 /* force full PLL disable + enable */
6379 dev_priv->cdclk_pll.vco = -1;
6380 }
6381
6382 /* Adjust CDclk dividers to allow high res or save power if possible */
6383 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6384 {
6385 struct drm_i915_private *dev_priv = to_i915(dev);
6386 u32 val, cmd;
6387
6388 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6389 != dev_priv->cdclk_freq);
6390
6391 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6392 cmd = 2;
6393 else if (cdclk == 266667)
6394 cmd = 1;
6395 else
6396 cmd = 0;
6397
6398 mutex_lock(&dev_priv->rps.hw_lock);
6399 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6400 val &= ~DSPFREQGUAR_MASK;
6401 val |= (cmd << DSPFREQGUAR_SHIFT);
6402 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6403 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6404 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6405 50)) {
6406 DRM_ERROR("timed out waiting for CDclk change\n");
6407 }
6408 mutex_unlock(&dev_priv->rps.hw_lock);
6409
6410 mutex_lock(&dev_priv->sb_lock);
6411
6412 if (cdclk == 400000) {
6413 u32 divider;
6414
6415 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6416
6417 /* adjust cdclk divider */
6418 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6419 val &= ~CCK_FREQUENCY_VALUES;
6420 val |= divider;
6421 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6422
6423 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6424 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6425 50))
6426 DRM_ERROR("timed out waiting for CDclk change\n");
6427 }
6428
6429 /* adjust self-refresh exit latency value */
6430 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6431 val &= ~0x7f;
6432
6433 /*
6434 * For high bandwidth configs, we set a higher latency in the bunit
6435 * so that the core display fetch happens in time to avoid underruns.
6436 */
6437 if (cdclk == 400000)
6438 val |= 4500 / 250; /* 4.5 usec */
6439 else
6440 val |= 3000 / 250; /* 3.0 usec */
6441 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6442
6443 mutex_unlock(&dev_priv->sb_lock);
6444
6445 intel_update_cdclk(dev_priv);
6446 }
6447
6448 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6449 {
6450 struct drm_i915_private *dev_priv = to_i915(dev);
6451 u32 val, cmd;
6452
6453 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6454 != dev_priv->cdclk_freq);
6455
6456 switch (cdclk) {
6457 case 333333:
6458 case 320000:
6459 case 266667:
6460 case 200000:
6461 break;
6462 default:
6463 MISSING_CASE(cdclk);
6464 return;
6465 }
6466
6467 /*
6468 * Specs are full of misinformation, but testing on actual
6469 * hardware has shown that we just need to write the desired
6470 * CCK divider into the Punit register.
6471 */
6472 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6473
6474 mutex_lock(&dev_priv->rps.hw_lock);
6475 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6476 val &= ~DSPFREQGUAR_MASK_CHV;
6477 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6478 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6479 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6480 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6481 50)) {
6482 DRM_ERROR("timed out waiting for CDclk change\n");
6483 }
6484 mutex_unlock(&dev_priv->rps.hw_lock);
6485
6486 intel_update_cdclk(dev_priv);
6487 }
6488
6489 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6490 int max_pixclk)
6491 {
6492 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6493 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6494
6495 /*
6496 * Really only a few cases to deal with, as only 4 CDclks are supported:
6497 * 200MHz
6498 * 267MHz
6499 * 320/333MHz (depends on HPLL freq)
6500 * 400MHz (VLV only)
6501 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6502 * of the lower bin and adjust if needed.
6503 *
6504 * We seem to get an unstable or solid color picture at 200MHz.
6505 * Not sure what's wrong. For now use 200MHz only when all pipes
6506 * are off.
6507 */
6508 if (!IS_CHERRYVIEW(dev_priv) &&
6509 max_pixclk > freq_320*limit/100)
6510 return 400000;
6511 else if (max_pixclk > 266667*limit/100)
6512 return freq_320;
6513 else if (max_pixclk > 0)
6514 return 266667;
6515 else
6516 return 200000;
6517 }
6518
6519 static int bxt_calc_cdclk(int max_pixclk)
6520 {
6521 if (max_pixclk > 576000)
6522 return 624000;
6523 else if (max_pixclk > 384000)
6524 return 576000;
6525 else if (max_pixclk > 288000)
6526 return 384000;
6527 else if (max_pixclk > 144000)
6528 return 288000;
6529 else
6530 return 144000;
6531 }
6532
6533 /* Compute the max pixel clock for new configuration. */
6534 static int intel_mode_max_pixclk(struct drm_device *dev,
6535 struct drm_atomic_state *state)
6536 {
6537 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6538 struct drm_i915_private *dev_priv = to_i915(dev);
6539 struct drm_crtc *crtc;
6540 struct drm_crtc_state *crtc_state;
6541 unsigned max_pixclk = 0, i;
6542 enum pipe pipe;
6543
6544 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6545 sizeof(intel_state->min_pixclk));
6546
6547 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6548 int pixclk = 0;
6549
6550 if (crtc_state->enable)
6551 pixclk = crtc_state->adjusted_mode.crtc_clock;
6552
6553 intel_state->min_pixclk[i] = pixclk;
6554 }
6555
6556 for_each_pipe(dev_priv, pipe)
6557 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6558
6559 return max_pixclk;
6560 }
6561
6562 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6563 {
6564 struct drm_device *dev = state->dev;
6565 struct drm_i915_private *dev_priv = to_i915(dev);
6566 int max_pixclk = intel_mode_max_pixclk(dev, state);
6567 struct intel_atomic_state *intel_state =
6568 to_intel_atomic_state(state);
6569
6570 intel_state->cdclk = intel_state->dev_cdclk =
6571 valleyview_calc_cdclk(dev_priv, max_pixclk);
6572
6573 if (!intel_state->active_crtcs)
6574 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6575
6576 return 0;
6577 }
6578
6579 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6580 {
6581 int max_pixclk = ilk_max_pixel_rate(state);
6582 struct intel_atomic_state *intel_state =
6583 to_intel_atomic_state(state);
6584
6585 intel_state->cdclk = intel_state->dev_cdclk =
6586 bxt_calc_cdclk(max_pixclk);
6587
6588 if (!intel_state->active_crtcs)
6589 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6590
6591 return 0;
6592 }
6593
6594 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6595 {
6596 unsigned int credits, default_credits;
6597
6598 if (IS_CHERRYVIEW(dev_priv))
6599 default_credits = PFI_CREDIT(12);
6600 else
6601 default_credits = PFI_CREDIT(8);
6602
6603 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6604 /* CHV suggested value is 31 or 63 */
6605 if (IS_CHERRYVIEW(dev_priv))
6606 credits = PFI_CREDIT_63;
6607 else
6608 credits = PFI_CREDIT(15);
6609 } else {
6610 credits = default_credits;
6611 }
6612
6613 /*
6614 * WA - write default credits before re-programming
6615 * FIXME: should we also set the resend bit here?
6616 */
6617 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6618 default_credits);
6619
6620 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6621 credits | PFI_CREDIT_RESEND);
6622
6623 /*
6624 * FIXME is this guaranteed to clear
6625 * immediately or should we poll for it?
6626 */
6627 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6628 }
6629
6630 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6631 {
6632 struct drm_device *dev = old_state->dev;
6633 struct drm_i915_private *dev_priv = to_i915(dev);
6634 struct intel_atomic_state *old_intel_state =
6635 to_intel_atomic_state(old_state);
6636 unsigned req_cdclk = old_intel_state->dev_cdclk;
6637
6638 /*
6639 * FIXME: We can end up here with all power domains off, yet
6640 * with a CDCLK frequency other than the minimum. To account
6641 * for this take the PIPE-A power domain, which covers the HW
6642 * blocks needed for the following programming. This can be
6643 * removed once it's guaranteed that we get here either with
6644 * the minimum CDCLK set, or the required power domains
6645 * enabled.
6646 */
6647 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6648
6649 if (IS_CHERRYVIEW(dev_priv))
6650 cherryview_set_cdclk(dev, req_cdclk);
6651 else
6652 valleyview_set_cdclk(dev, req_cdclk);
6653
6654 vlv_program_pfi_credits(dev_priv);
6655
6656 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6657 }
6658
6659 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6660 struct drm_atomic_state *old_state)
6661 {
6662 struct drm_crtc *crtc = pipe_config->base.crtc;
6663 struct drm_device *dev = crtc->dev;
6664 struct drm_i915_private *dev_priv = to_i915(dev);
6665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6666 int pipe = intel_crtc->pipe;
6667
6668 if (WARN_ON(intel_crtc->active))
6669 return;
6670
6671 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6672 intel_dp_set_m_n(intel_crtc, M1_N1);
6673
6674 intel_set_pipe_timings(intel_crtc);
6675 intel_set_pipe_src_size(intel_crtc);
6676
6677 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6678 struct drm_i915_private *dev_priv = to_i915(dev);
6679
6680 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6681 I915_WRITE(CHV_CANVAS(pipe), 0);
6682 }
6683
6684 i9xx_set_pipeconf(intel_crtc);
6685
6686 intel_crtc->active = true;
6687
6688 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6689
6690 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6691
6692 if (IS_CHERRYVIEW(dev_priv)) {
6693 chv_prepare_pll(intel_crtc, intel_crtc->config);
6694 chv_enable_pll(intel_crtc, intel_crtc->config);
6695 } else {
6696 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6697 vlv_enable_pll(intel_crtc, intel_crtc->config);
6698 }
6699
6700 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6701
6702 i9xx_pfit_enable(intel_crtc);
6703
6704 intel_color_load_luts(&pipe_config->base);
6705
6706 intel_update_watermarks(intel_crtc);
6707 intel_enable_pipe(intel_crtc);
6708
6709 assert_vblank_disabled(crtc);
6710 drm_crtc_vblank_on(crtc);
6711
6712 intel_encoders_enable(crtc, pipe_config, old_state);
6713 }
6714
6715 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6716 {
6717 struct drm_device *dev = crtc->base.dev;
6718 struct drm_i915_private *dev_priv = to_i915(dev);
6719
6720 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6721 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6722 }
6723
6724 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6725 struct drm_atomic_state *old_state)
6726 {
6727 struct drm_crtc *crtc = pipe_config->base.crtc;
6728 struct drm_device *dev = crtc->dev;
6729 struct drm_i915_private *dev_priv = to_i915(dev);
6730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6731 enum pipe pipe = intel_crtc->pipe;
6732
6733 if (WARN_ON(intel_crtc->active))
6734 return;
6735
6736 i9xx_set_pll_dividers(intel_crtc);
6737
6738 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6739 intel_dp_set_m_n(intel_crtc, M1_N1);
6740
6741 intel_set_pipe_timings(intel_crtc);
6742 intel_set_pipe_src_size(intel_crtc);
6743
6744 i9xx_set_pipeconf(intel_crtc);
6745
6746 intel_crtc->active = true;
6747
6748 if (!IS_GEN2(dev_priv))
6749 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6750
6751 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6752
6753 i9xx_enable_pll(intel_crtc);
6754
6755 i9xx_pfit_enable(intel_crtc);
6756
6757 intel_color_load_luts(&pipe_config->base);
6758
6759 intel_update_watermarks(intel_crtc);
6760 intel_enable_pipe(intel_crtc);
6761
6762 assert_vblank_disabled(crtc);
6763 drm_crtc_vblank_on(crtc);
6764
6765 intel_encoders_enable(crtc, pipe_config, old_state);
6766 }
6767
6768 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6769 {
6770 struct drm_device *dev = crtc->base.dev;
6771 struct drm_i915_private *dev_priv = to_i915(dev);
6772
6773 if (!crtc->config->gmch_pfit.control)
6774 return;
6775
6776 assert_pipe_disabled(dev_priv, crtc->pipe);
6777
6778 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6779 I915_READ(PFIT_CONTROL));
6780 I915_WRITE(PFIT_CONTROL, 0);
6781 }
6782
6783 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6784 struct drm_atomic_state *old_state)
6785 {
6786 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6787 struct drm_device *dev = crtc->dev;
6788 struct drm_i915_private *dev_priv = to_i915(dev);
6789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6790 int pipe = intel_crtc->pipe;
6791
6792 /*
6793 * On gen2 planes are double buffered but the pipe isn't, so we must
6794 * wait for planes to fully turn off before disabling the pipe.
6795 */
6796 if (IS_GEN2(dev_priv))
6797 intel_wait_for_vblank(dev_priv, pipe);
6798
6799 intel_encoders_disable(crtc, old_crtc_state, old_state);
6800
6801 drm_crtc_vblank_off(crtc);
6802 assert_vblank_disabled(crtc);
6803
6804 intel_disable_pipe(intel_crtc);
6805
6806 i9xx_pfit_disable(intel_crtc);
6807
6808 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6809
6810 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6811 if (IS_CHERRYVIEW(dev_priv))
6812 chv_disable_pll(dev_priv, pipe);
6813 else if (IS_VALLEYVIEW(dev_priv))
6814 vlv_disable_pll(dev_priv, pipe);
6815 else
6816 i9xx_disable_pll(intel_crtc);
6817 }
6818
6819 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6820
6821 if (!IS_GEN2(dev_priv))
6822 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6823 }
6824
6825 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6826 {
6827 struct intel_encoder *encoder;
6828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6829 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6830 enum intel_display_power_domain domain;
6831 unsigned long domains;
6832 struct drm_atomic_state *state;
6833 struct intel_crtc_state *crtc_state;
6834 int ret;
6835
6836 if (!intel_crtc->active)
6837 return;
6838
6839 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6840 WARN_ON(intel_crtc->flip_work);
6841
6842 intel_pre_disable_primary_noatomic(crtc);
6843
6844 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6845 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6846 }
6847
6848 state = drm_atomic_state_alloc(crtc->dev);
6849 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6850
6851 /* Everything's already locked, -EDEADLK can't happen. */
6852 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6853 ret = drm_atomic_add_affected_connectors(state, crtc);
6854
6855 WARN_ON(IS_ERR(crtc_state) || ret);
6856
6857 dev_priv->display.crtc_disable(crtc_state, state);
6858
6859 drm_atomic_state_put(state);
6860
6861 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6862 crtc->base.id, crtc->name);
6863
6864 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6865 crtc->state->active = false;
6866 intel_crtc->active = false;
6867 crtc->enabled = false;
6868 crtc->state->connector_mask = 0;
6869 crtc->state->encoder_mask = 0;
6870
6871 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6872 encoder->base.crtc = NULL;
6873
6874 intel_fbc_disable(intel_crtc);
6875 intel_update_watermarks(intel_crtc);
6876 intel_disable_shared_dpll(intel_crtc);
6877
6878 domains = intel_crtc->enabled_power_domains;
6879 for_each_power_domain(domain, domains)
6880 intel_display_power_put(dev_priv, domain);
6881 intel_crtc->enabled_power_domains = 0;
6882
6883 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6884 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6885 }
6886
6887 /*
6888 * turn all crtc's off, but do not adjust state
6889 * This has to be paired with a call to intel_modeset_setup_hw_state.
6890 */
6891 int intel_display_suspend(struct drm_device *dev)
6892 {
6893 struct drm_i915_private *dev_priv = to_i915(dev);
6894 struct drm_atomic_state *state;
6895 int ret;
6896
6897 state = drm_atomic_helper_suspend(dev);
6898 ret = PTR_ERR_OR_ZERO(state);
6899 if (ret)
6900 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6901 else
6902 dev_priv->modeset_restore_state = state;
6903 return ret;
6904 }
6905
6906 void intel_encoder_destroy(struct drm_encoder *encoder)
6907 {
6908 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6909
6910 drm_encoder_cleanup(encoder);
6911 kfree(intel_encoder);
6912 }
6913
6914 /* Cross check the actual hw state with our own modeset state tracking (and it's
6915 * internal consistency). */
6916 static void intel_connector_verify_state(struct intel_connector *connector)
6917 {
6918 struct drm_crtc *crtc = connector->base.state->crtc;
6919
6920 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6921 connector->base.base.id,
6922 connector->base.name);
6923
6924 if (connector->get_hw_state(connector)) {
6925 struct intel_encoder *encoder = connector->encoder;
6926 struct drm_connector_state *conn_state = connector->base.state;
6927
6928 I915_STATE_WARN(!crtc,
6929 "connector enabled without attached crtc\n");
6930
6931 if (!crtc)
6932 return;
6933
6934 I915_STATE_WARN(!crtc->state->active,
6935 "connector is active, but attached crtc isn't\n");
6936
6937 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6938 return;
6939
6940 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6941 "atomic encoder doesn't match attached encoder\n");
6942
6943 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6944 "attached encoder crtc differs from connector crtc\n");
6945 } else {
6946 I915_STATE_WARN(crtc && crtc->state->active,
6947 "attached crtc is active, but connector isn't\n");
6948 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6949 "best encoder set without crtc!\n");
6950 }
6951 }
6952
6953 int intel_connector_init(struct intel_connector *connector)
6954 {
6955 drm_atomic_helper_connector_reset(&connector->base);
6956
6957 if (!connector->base.state)
6958 return -ENOMEM;
6959
6960 return 0;
6961 }
6962
6963 struct intel_connector *intel_connector_alloc(void)
6964 {
6965 struct intel_connector *connector;
6966
6967 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6968 if (!connector)
6969 return NULL;
6970
6971 if (intel_connector_init(connector) < 0) {
6972 kfree(connector);
6973 return NULL;
6974 }
6975
6976 return connector;
6977 }
6978
6979 /* Simple connector->get_hw_state implementation for encoders that support only
6980 * one connector and no cloning and hence the encoder state determines the state
6981 * of the connector. */
6982 bool intel_connector_get_hw_state(struct intel_connector *connector)
6983 {
6984 enum pipe pipe = 0;
6985 struct intel_encoder *encoder = connector->encoder;
6986
6987 return encoder->get_hw_state(encoder, &pipe);
6988 }
6989
6990 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6991 {
6992 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6993 return crtc_state->fdi_lanes;
6994
6995 return 0;
6996 }
6997
6998 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6999 struct intel_crtc_state *pipe_config)
7000 {
7001 struct drm_i915_private *dev_priv = to_i915(dev);
7002 struct drm_atomic_state *state = pipe_config->base.state;
7003 struct intel_crtc *other_crtc;
7004 struct intel_crtc_state *other_crtc_state;
7005
7006 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7007 pipe_name(pipe), pipe_config->fdi_lanes);
7008 if (pipe_config->fdi_lanes > 4) {
7009 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7010 pipe_name(pipe), pipe_config->fdi_lanes);
7011 return -EINVAL;
7012 }
7013
7014 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7015 if (pipe_config->fdi_lanes > 2) {
7016 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7017 pipe_config->fdi_lanes);
7018 return -EINVAL;
7019 } else {
7020 return 0;
7021 }
7022 }
7023
7024 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7025 return 0;
7026
7027 /* Ivybridge 3 pipe is really complicated */
7028 switch (pipe) {
7029 case PIPE_A:
7030 return 0;
7031 case PIPE_B:
7032 if (pipe_config->fdi_lanes <= 2)
7033 return 0;
7034
7035 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7036 other_crtc_state =
7037 intel_atomic_get_crtc_state(state, other_crtc);
7038 if (IS_ERR(other_crtc_state))
7039 return PTR_ERR(other_crtc_state);
7040
7041 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7042 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7043 pipe_name(pipe), pipe_config->fdi_lanes);
7044 return -EINVAL;
7045 }
7046 return 0;
7047 case PIPE_C:
7048 if (pipe_config->fdi_lanes > 2) {
7049 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7050 pipe_name(pipe), pipe_config->fdi_lanes);
7051 return -EINVAL;
7052 }
7053
7054 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7055 other_crtc_state =
7056 intel_atomic_get_crtc_state(state, other_crtc);
7057 if (IS_ERR(other_crtc_state))
7058 return PTR_ERR(other_crtc_state);
7059
7060 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7061 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7062 return -EINVAL;
7063 }
7064 return 0;
7065 default:
7066 BUG();
7067 }
7068 }
7069
7070 #define RETRY 1
7071 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7072 struct intel_crtc_state *pipe_config)
7073 {
7074 struct drm_device *dev = intel_crtc->base.dev;
7075 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7076 int lane, link_bw, fdi_dotclock, ret;
7077 bool needs_recompute = false;
7078
7079 retry:
7080 /* FDI is a binary signal running at ~2.7GHz, encoding
7081 * each output octet as 10 bits. The actual frequency
7082 * is stored as a divider into a 100MHz clock, and the
7083 * mode pixel clock is stored in units of 1KHz.
7084 * Hence the bw of each lane in terms of the mode signal
7085 * is:
7086 */
7087 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7088
7089 fdi_dotclock = adjusted_mode->crtc_clock;
7090
7091 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7092 pipe_config->pipe_bpp);
7093
7094 pipe_config->fdi_lanes = lane;
7095
7096 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7097 link_bw, &pipe_config->fdi_m_n);
7098
7099 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7100 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7101 pipe_config->pipe_bpp -= 2*3;
7102 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7103 pipe_config->pipe_bpp);
7104 needs_recompute = true;
7105 pipe_config->bw_constrained = true;
7106
7107 goto retry;
7108 }
7109
7110 if (needs_recompute)
7111 return RETRY;
7112
7113 return ret;
7114 }
7115
7116 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7117 struct intel_crtc_state *pipe_config)
7118 {
7119 if (pipe_config->pipe_bpp > 24)
7120 return false;
7121
7122 /* HSW can handle pixel rate up to cdclk? */
7123 if (IS_HASWELL(dev_priv))
7124 return true;
7125
7126 /*
7127 * We compare against max which means we must take
7128 * the increased cdclk requirement into account when
7129 * calculating the new cdclk.
7130 *
7131 * Should measure whether using a lower cdclk w/o IPS
7132 */
7133 return ilk_pipe_pixel_rate(pipe_config) <=
7134 dev_priv->max_cdclk_freq * 95 / 100;
7135 }
7136
7137 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7138 struct intel_crtc_state *pipe_config)
7139 {
7140 struct drm_device *dev = crtc->base.dev;
7141 struct drm_i915_private *dev_priv = to_i915(dev);
7142
7143 pipe_config->ips_enabled = i915.enable_ips &&
7144 hsw_crtc_supports_ips(crtc) &&
7145 pipe_config_supports_ips(dev_priv, pipe_config);
7146 }
7147
7148 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7149 {
7150 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7151
7152 /* GDG double wide on either pipe, otherwise pipe A only */
7153 return INTEL_INFO(dev_priv)->gen < 4 &&
7154 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7155 }
7156
7157 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7158 struct intel_crtc_state *pipe_config)
7159 {
7160 struct drm_device *dev = crtc->base.dev;
7161 struct drm_i915_private *dev_priv = to_i915(dev);
7162 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7163 int clock_limit = dev_priv->max_dotclk_freq;
7164
7165 if (INTEL_GEN(dev_priv) < 4) {
7166 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7167
7168 /*
7169 * Enable double wide mode when the dot clock
7170 * is > 90% of the (display) core speed.
7171 */
7172 if (intel_crtc_supports_double_wide(crtc) &&
7173 adjusted_mode->crtc_clock > clock_limit) {
7174 clock_limit = dev_priv->max_dotclk_freq;
7175 pipe_config->double_wide = true;
7176 }
7177 }
7178
7179 if (adjusted_mode->crtc_clock > clock_limit) {
7180 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7181 adjusted_mode->crtc_clock, clock_limit,
7182 yesno(pipe_config->double_wide));
7183 return -EINVAL;
7184 }
7185
7186 /*
7187 * Pipe horizontal size must be even in:
7188 * - DVO ganged mode
7189 * - LVDS dual channel mode
7190 * - Double wide pipe
7191 */
7192 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7193 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7194 pipe_config->pipe_src_w &= ~1;
7195
7196 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7197 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7198 */
7199 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7200 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7201 return -EINVAL;
7202
7203 if (HAS_IPS(dev_priv))
7204 hsw_compute_ips_config(crtc, pipe_config);
7205
7206 if (pipe_config->has_pch_encoder)
7207 return ironlake_fdi_compute_config(crtc, pipe_config);
7208
7209 return 0;
7210 }
7211
7212 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7213 {
7214 u32 cdctl;
7215
7216 skl_dpll0_update(dev_priv);
7217
7218 if (dev_priv->cdclk_pll.vco == 0)
7219 return dev_priv->cdclk_pll.ref;
7220
7221 cdctl = I915_READ(CDCLK_CTL);
7222
7223 if (dev_priv->cdclk_pll.vco == 8640000) {
7224 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7225 case CDCLK_FREQ_450_432:
7226 return 432000;
7227 case CDCLK_FREQ_337_308:
7228 return 308571;
7229 case CDCLK_FREQ_540:
7230 return 540000;
7231 case CDCLK_FREQ_675_617:
7232 return 617143;
7233 default:
7234 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7235 }
7236 } else {
7237 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7238 case CDCLK_FREQ_450_432:
7239 return 450000;
7240 case CDCLK_FREQ_337_308:
7241 return 337500;
7242 case CDCLK_FREQ_540:
7243 return 540000;
7244 case CDCLK_FREQ_675_617:
7245 return 675000;
7246 default:
7247 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7248 }
7249 }
7250
7251 return dev_priv->cdclk_pll.ref;
7252 }
7253
7254 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7255 {
7256 u32 val;
7257
7258 dev_priv->cdclk_pll.ref = 19200;
7259 dev_priv->cdclk_pll.vco = 0;
7260
7261 val = I915_READ(BXT_DE_PLL_ENABLE);
7262 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7263 return;
7264
7265 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7266 return;
7267
7268 val = I915_READ(BXT_DE_PLL_CTL);
7269 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7270 dev_priv->cdclk_pll.ref;
7271 }
7272
7273 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7274 {
7275 u32 divider;
7276 int div, vco;
7277
7278 bxt_de_pll_update(dev_priv);
7279
7280 vco = dev_priv->cdclk_pll.vco;
7281 if (vco == 0)
7282 return dev_priv->cdclk_pll.ref;
7283
7284 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7285
7286 switch (divider) {
7287 case BXT_CDCLK_CD2X_DIV_SEL_1:
7288 div = 2;
7289 break;
7290 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7291 div = 3;
7292 break;
7293 case BXT_CDCLK_CD2X_DIV_SEL_2:
7294 div = 4;
7295 break;
7296 case BXT_CDCLK_CD2X_DIV_SEL_4:
7297 div = 8;
7298 break;
7299 default:
7300 MISSING_CASE(divider);
7301 return dev_priv->cdclk_pll.ref;
7302 }
7303
7304 return DIV_ROUND_CLOSEST(vco, div);
7305 }
7306
7307 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7308 {
7309 uint32_t lcpll = I915_READ(LCPLL_CTL);
7310 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7311
7312 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7313 return 800000;
7314 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7315 return 450000;
7316 else if (freq == LCPLL_CLK_FREQ_450)
7317 return 450000;
7318 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7319 return 540000;
7320 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7321 return 337500;
7322 else
7323 return 675000;
7324 }
7325
7326 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7327 {
7328 uint32_t lcpll = I915_READ(LCPLL_CTL);
7329 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7330
7331 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7332 return 800000;
7333 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7334 return 450000;
7335 else if (freq == LCPLL_CLK_FREQ_450)
7336 return 450000;
7337 else if (IS_HSW_ULT(dev_priv))
7338 return 337500;
7339 else
7340 return 540000;
7341 }
7342
7343 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7344 {
7345 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7346 CCK_DISPLAY_CLOCK_CONTROL);
7347 }
7348
7349 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7350 {
7351 return 450000;
7352 }
7353
7354 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7355 {
7356 return 400000;
7357 }
7358
7359 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7360 {
7361 return 333333;
7362 }
7363
7364 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7365 {
7366 return 200000;
7367 }
7368
7369 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7370 {
7371 struct pci_dev *pdev = dev_priv->drm.pdev;
7372 u16 gcfgc = 0;
7373
7374 pci_read_config_word(pdev, GCFGC, &gcfgc);
7375
7376 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7377 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7378 return 266667;
7379 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7380 return 333333;
7381 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7382 return 444444;
7383 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7384 return 200000;
7385 default:
7386 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7387 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7388 return 133333;
7389 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7390 return 166667;
7391 }
7392 }
7393
7394 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7395 {
7396 struct pci_dev *pdev = dev_priv->drm.pdev;
7397 u16 gcfgc = 0;
7398
7399 pci_read_config_word(pdev, GCFGC, &gcfgc);
7400
7401 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7402 return 133333;
7403 else {
7404 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7405 case GC_DISPLAY_CLOCK_333_MHZ:
7406 return 333333;
7407 default:
7408 case GC_DISPLAY_CLOCK_190_200_MHZ:
7409 return 190000;
7410 }
7411 }
7412 }
7413
7414 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7415 {
7416 return 266667;
7417 }
7418
7419 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7420 {
7421 struct pci_dev *pdev = dev_priv->drm.pdev;
7422 u16 hpllcc = 0;
7423
7424 /*
7425 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7426 * encoding is different :(
7427 * FIXME is this the right way to detect 852GM/852GMV?
7428 */
7429 if (pdev->revision == 0x1)
7430 return 133333;
7431
7432 pci_bus_read_config_word(pdev->bus,
7433 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7434
7435 /* Assume that the hardware is in the high speed state. This
7436 * should be the default.
7437 */
7438 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7439 case GC_CLOCK_133_200:
7440 case GC_CLOCK_133_200_2:
7441 case GC_CLOCK_100_200:
7442 return 200000;
7443 case GC_CLOCK_166_250:
7444 return 250000;
7445 case GC_CLOCK_100_133:
7446 return 133333;
7447 case GC_CLOCK_133_266:
7448 case GC_CLOCK_133_266_2:
7449 case GC_CLOCK_166_266:
7450 return 266667;
7451 }
7452
7453 /* Shouldn't happen */
7454 return 0;
7455 }
7456
7457 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7458 {
7459 return 133333;
7460 }
7461
7462 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7463 {
7464 static const unsigned int blb_vco[8] = {
7465 [0] = 3200000,
7466 [1] = 4000000,
7467 [2] = 5333333,
7468 [3] = 4800000,
7469 [4] = 6400000,
7470 };
7471 static const unsigned int pnv_vco[8] = {
7472 [0] = 3200000,
7473 [1] = 4000000,
7474 [2] = 5333333,
7475 [3] = 4800000,
7476 [4] = 2666667,
7477 };
7478 static const unsigned int cl_vco[8] = {
7479 [0] = 3200000,
7480 [1] = 4000000,
7481 [2] = 5333333,
7482 [3] = 6400000,
7483 [4] = 3333333,
7484 [5] = 3566667,
7485 [6] = 4266667,
7486 };
7487 static const unsigned int elk_vco[8] = {
7488 [0] = 3200000,
7489 [1] = 4000000,
7490 [2] = 5333333,
7491 [3] = 4800000,
7492 };
7493 static const unsigned int ctg_vco[8] = {
7494 [0] = 3200000,
7495 [1] = 4000000,
7496 [2] = 5333333,
7497 [3] = 6400000,
7498 [4] = 2666667,
7499 [5] = 4266667,
7500 };
7501 const unsigned int *vco_table;
7502 unsigned int vco;
7503 uint8_t tmp = 0;
7504
7505 /* FIXME other chipsets? */
7506 if (IS_GM45(dev_priv))
7507 vco_table = ctg_vco;
7508 else if (IS_G4X(dev_priv))
7509 vco_table = elk_vco;
7510 else if (IS_CRESTLINE(dev_priv))
7511 vco_table = cl_vco;
7512 else if (IS_PINEVIEW(dev_priv))
7513 vco_table = pnv_vco;
7514 else if (IS_G33(dev_priv))
7515 vco_table = blb_vco;
7516 else
7517 return 0;
7518
7519 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7520
7521 vco = vco_table[tmp & 0x7];
7522 if (vco == 0)
7523 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7524 else
7525 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7526
7527 return vco;
7528 }
7529
7530 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7531 {
7532 struct pci_dev *pdev = dev_priv->drm.pdev;
7533 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7534 uint16_t tmp = 0;
7535
7536 pci_read_config_word(pdev, GCFGC, &tmp);
7537
7538 cdclk_sel = (tmp >> 12) & 0x1;
7539
7540 switch (vco) {
7541 case 2666667:
7542 case 4000000:
7543 case 5333333:
7544 return cdclk_sel ? 333333 : 222222;
7545 case 3200000:
7546 return cdclk_sel ? 320000 : 228571;
7547 default:
7548 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7549 return 222222;
7550 }
7551 }
7552
7553 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7554 {
7555 struct pci_dev *pdev = dev_priv->drm.pdev;
7556 static const uint8_t div_3200[] = { 16, 10, 8 };
7557 static const uint8_t div_4000[] = { 20, 12, 10 };
7558 static const uint8_t div_5333[] = { 24, 16, 14 };
7559 const uint8_t *div_table;
7560 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7561 uint16_t tmp = 0;
7562
7563 pci_read_config_word(pdev, GCFGC, &tmp);
7564
7565 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7566
7567 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7568 goto fail;
7569
7570 switch (vco) {
7571 case 3200000:
7572 div_table = div_3200;
7573 break;
7574 case 4000000:
7575 div_table = div_4000;
7576 break;
7577 case 5333333:
7578 div_table = div_5333;
7579 break;
7580 default:
7581 goto fail;
7582 }
7583
7584 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7585
7586 fail:
7587 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7588 return 200000;
7589 }
7590
7591 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7592 {
7593 struct pci_dev *pdev = dev_priv->drm.pdev;
7594 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7595 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7596 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7597 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7598 const uint8_t *div_table;
7599 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7600 uint16_t tmp = 0;
7601
7602 pci_read_config_word(pdev, GCFGC, &tmp);
7603
7604 cdclk_sel = (tmp >> 4) & 0x7;
7605
7606 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7607 goto fail;
7608
7609 switch (vco) {
7610 case 3200000:
7611 div_table = div_3200;
7612 break;
7613 case 4000000:
7614 div_table = div_4000;
7615 break;
7616 case 4800000:
7617 div_table = div_4800;
7618 break;
7619 case 5333333:
7620 div_table = div_5333;
7621 break;
7622 default:
7623 goto fail;
7624 }
7625
7626 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7627
7628 fail:
7629 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7630 return 190476;
7631 }
7632
7633 static void
7634 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7635 {
7636 while (*num > DATA_LINK_M_N_MASK ||
7637 *den > DATA_LINK_M_N_MASK) {
7638 *num >>= 1;
7639 *den >>= 1;
7640 }
7641 }
7642
7643 static void compute_m_n(unsigned int m, unsigned int n,
7644 uint32_t *ret_m, uint32_t *ret_n)
7645 {
7646 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7647 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7648 intel_reduce_m_n_ratio(ret_m, ret_n);
7649 }
7650
7651 void
7652 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7653 int pixel_clock, int link_clock,
7654 struct intel_link_m_n *m_n)
7655 {
7656 m_n->tu = 64;
7657
7658 compute_m_n(bits_per_pixel * pixel_clock,
7659 link_clock * nlanes * 8,
7660 &m_n->gmch_m, &m_n->gmch_n);
7661
7662 compute_m_n(pixel_clock, link_clock,
7663 &m_n->link_m, &m_n->link_n);
7664 }
7665
7666 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7667 {
7668 if (i915.panel_use_ssc >= 0)
7669 return i915.panel_use_ssc != 0;
7670 return dev_priv->vbt.lvds_use_ssc
7671 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7672 }
7673
7674 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7675 {
7676 return (1 << dpll->n) << 16 | dpll->m2;
7677 }
7678
7679 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7680 {
7681 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7682 }
7683
7684 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7685 struct intel_crtc_state *crtc_state,
7686 struct dpll *reduced_clock)
7687 {
7688 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7689 u32 fp, fp2 = 0;
7690
7691 if (IS_PINEVIEW(dev_priv)) {
7692 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7693 if (reduced_clock)
7694 fp2 = pnv_dpll_compute_fp(reduced_clock);
7695 } else {
7696 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7697 if (reduced_clock)
7698 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7699 }
7700
7701 crtc_state->dpll_hw_state.fp0 = fp;
7702
7703 crtc->lowfreq_avail = false;
7704 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7705 reduced_clock) {
7706 crtc_state->dpll_hw_state.fp1 = fp2;
7707 crtc->lowfreq_avail = true;
7708 } else {
7709 crtc_state->dpll_hw_state.fp1 = fp;
7710 }
7711 }
7712
7713 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7714 pipe)
7715 {
7716 u32 reg_val;
7717
7718 /*
7719 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7720 * and set it to a reasonable value instead.
7721 */
7722 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7723 reg_val &= 0xffffff00;
7724 reg_val |= 0x00000030;
7725 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7726
7727 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7728 reg_val &= 0x8cffffff;
7729 reg_val = 0x8c000000;
7730 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7731
7732 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7733 reg_val &= 0xffffff00;
7734 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7735
7736 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7737 reg_val &= 0x00ffffff;
7738 reg_val |= 0xb0000000;
7739 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7740 }
7741
7742 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7743 struct intel_link_m_n *m_n)
7744 {
7745 struct drm_device *dev = crtc->base.dev;
7746 struct drm_i915_private *dev_priv = to_i915(dev);
7747 int pipe = crtc->pipe;
7748
7749 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7750 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7751 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7752 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7753 }
7754
7755 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7756 struct intel_link_m_n *m_n,
7757 struct intel_link_m_n *m2_n2)
7758 {
7759 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7760 int pipe = crtc->pipe;
7761 enum transcoder transcoder = crtc->config->cpu_transcoder;
7762
7763 if (INTEL_GEN(dev_priv) >= 5) {
7764 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7765 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7766 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7767 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7768 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7769 * for gen < 8) and if DRRS is supported (to make sure the
7770 * registers are not unnecessarily accessed).
7771 */
7772 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7773 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7774 I915_WRITE(PIPE_DATA_M2(transcoder),
7775 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7776 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7777 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7778 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7779 }
7780 } else {
7781 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7782 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7783 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7784 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7785 }
7786 }
7787
7788 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7789 {
7790 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7791
7792 if (m_n == M1_N1) {
7793 dp_m_n = &crtc->config->dp_m_n;
7794 dp_m2_n2 = &crtc->config->dp_m2_n2;
7795 } else if (m_n == M2_N2) {
7796
7797 /*
7798 * M2_N2 registers are not supported. Hence m2_n2 divider value
7799 * needs to be programmed into M1_N1.
7800 */
7801 dp_m_n = &crtc->config->dp_m2_n2;
7802 } else {
7803 DRM_ERROR("Unsupported divider value\n");
7804 return;
7805 }
7806
7807 if (crtc->config->has_pch_encoder)
7808 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7809 else
7810 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7811 }
7812
7813 static void vlv_compute_dpll(struct intel_crtc *crtc,
7814 struct intel_crtc_state *pipe_config)
7815 {
7816 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7817 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7818 if (crtc->pipe != PIPE_A)
7819 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7820
7821 /* DPLL not used with DSI, but still need the rest set up */
7822 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7823 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7824 DPLL_EXT_BUFFER_ENABLE_VLV;
7825
7826 pipe_config->dpll_hw_state.dpll_md =
7827 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7828 }
7829
7830 static void chv_compute_dpll(struct intel_crtc *crtc,
7831 struct intel_crtc_state *pipe_config)
7832 {
7833 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7834 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7835 if (crtc->pipe != PIPE_A)
7836 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7837
7838 /* DPLL not used with DSI, but still need the rest set up */
7839 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7840 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7841
7842 pipe_config->dpll_hw_state.dpll_md =
7843 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7844 }
7845
7846 static void vlv_prepare_pll(struct intel_crtc *crtc,
7847 const struct intel_crtc_state *pipe_config)
7848 {
7849 struct drm_device *dev = crtc->base.dev;
7850 struct drm_i915_private *dev_priv = to_i915(dev);
7851 enum pipe pipe = crtc->pipe;
7852 u32 mdiv;
7853 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7854 u32 coreclk, reg_val;
7855
7856 /* Enable Refclk */
7857 I915_WRITE(DPLL(pipe),
7858 pipe_config->dpll_hw_state.dpll &
7859 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7860
7861 /* No need to actually set up the DPLL with DSI */
7862 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7863 return;
7864
7865 mutex_lock(&dev_priv->sb_lock);
7866
7867 bestn = pipe_config->dpll.n;
7868 bestm1 = pipe_config->dpll.m1;
7869 bestm2 = pipe_config->dpll.m2;
7870 bestp1 = pipe_config->dpll.p1;
7871 bestp2 = pipe_config->dpll.p2;
7872
7873 /* See eDP HDMI DPIO driver vbios notes doc */
7874
7875 /* PLL B needs special handling */
7876 if (pipe == PIPE_B)
7877 vlv_pllb_recal_opamp(dev_priv, pipe);
7878
7879 /* Set up Tx target for periodic Rcomp update */
7880 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7881
7882 /* Disable target IRef on PLL */
7883 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7884 reg_val &= 0x00ffffff;
7885 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7886
7887 /* Disable fast lock */
7888 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7889
7890 /* Set idtafcrecal before PLL is enabled */
7891 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7892 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7893 mdiv |= ((bestn << DPIO_N_SHIFT));
7894 mdiv |= (1 << DPIO_K_SHIFT);
7895
7896 /*
7897 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7898 * but we don't support that).
7899 * Note: don't use the DAC post divider as it seems unstable.
7900 */
7901 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7902 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7903
7904 mdiv |= DPIO_ENABLE_CALIBRATION;
7905 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7906
7907 /* Set HBR and RBR LPF coefficients */
7908 if (pipe_config->port_clock == 162000 ||
7909 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7910 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7911 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7912 0x009f0003);
7913 else
7914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7915 0x00d0000f);
7916
7917 if (intel_crtc_has_dp_encoder(pipe_config)) {
7918 /* Use SSC source */
7919 if (pipe == PIPE_A)
7920 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7921 0x0df40000);
7922 else
7923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7924 0x0df70000);
7925 } else { /* HDMI or VGA */
7926 /* Use bend source */
7927 if (pipe == PIPE_A)
7928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7929 0x0df70000);
7930 else
7931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7932 0x0df40000);
7933 }
7934
7935 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7936 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7937 if (intel_crtc_has_dp_encoder(crtc->config))
7938 coreclk |= 0x01000000;
7939 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7940
7941 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7942 mutex_unlock(&dev_priv->sb_lock);
7943 }
7944
7945 static void chv_prepare_pll(struct intel_crtc *crtc,
7946 const struct intel_crtc_state *pipe_config)
7947 {
7948 struct drm_device *dev = crtc->base.dev;
7949 struct drm_i915_private *dev_priv = to_i915(dev);
7950 enum pipe pipe = crtc->pipe;
7951 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7952 u32 loopfilter, tribuf_calcntr;
7953 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7954 u32 dpio_val;
7955 int vco;
7956
7957 /* Enable Refclk and SSC */
7958 I915_WRITE(DPLL(pipe),
7959 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7960
7961 /* No need to actually set up the DPLL with DSI */
7962 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7963 return;
7964
7965 bestn = pipe_config->dpll.n;
7966 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7967 bestm1 = pipe_config->dpll.m1;
7968 bestm2 = pipe_config->dpll.m2 >> 22;
7969 bestp1 = pipe_config->dpll.p1;
7970 bestp2 = pipe_config->dpll.p2;
7971 vco = pipe_config->dpll.vco;
7972 dpio_val = 0;
7973 loopfilter = 0;
7974
7975 mutex_lock(&dev_priv->sb_lock);
7976
7977 /* p1 and p2 divider */
7978 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7979 5 << DPIO_CHV_S1_DIV_SHIFT |
7980 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7981 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7982 1 << DPIO_CHV_K_DIV_SHIFT);
7983
7984 /* Feedback post-divider - m2 */
7985 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7986
7987 /* Feedback refclk divider - n and m1 */
7988 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7989 DPIO_CHV_M1_DIV_BY_2 |
7990 1 << DPIO_CHV_N_DIV_SHIFT);
7991
7992 /* M2 fraction division */
7993 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7994
7995 /* M2 fraction division enable */
7996 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7997 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7998 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7999 if (bestm2_frac)
8000 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8001 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8002
8003 /* Program digital lock detect threshold */
8004 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8005 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8006 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8007 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8008 if (!bestm2_frac)
8009 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8010 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8011
8012 /* Loop filter */
8013 if (vco == 5400000) {
8014 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8015 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8016 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8017 tribuf_calcntr = 0x9;
8018 } else if (vco <= 6200000) {
8019 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8020 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8021 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8022 tribuf_calcntr = 0x9;
8023 } else if (vco <= 6480000) {
8024 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8025 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8026 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8027 tribuf_calcntr = 0x8;
8028 } else {
8029 /* Not supported. Apply the same limits as in the max case */
8030 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8031 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8032 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8033 tribuf_calcntr = 0;
8034 }
8035 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8036
8037 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8038 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8039 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8040 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8041
8042 /* AFC Recal */
8043 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8044 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8045 DPIO_AFC_RECAL);
8046
8047 mutex_unlock(&dev_priv->sb_lock);
8048 }
8049
8050 /**
8051 * vlv_force_pll_on - forcibly enable just the PLL
8052 * @dev_priv: i915 private structure
8053 * @pipe: pipe PLL to enable
8054 * @dpll: PLL configuration
8055 *
8056 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8057 * in cases where we need the PLL enabled even when @pipe is not going to
8058 * be enabled.
8059 */
8060 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8061 const struct dpll *dpll)
8062 {
8063 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8064 struct intel_crtc_state *pipe_config;
8065
8066 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8067 if (!pipe_config)
8068 return -ENOMEM;
8069
8070 pipe_config->base.crtc = &crtc->base;
8071 pipe_config->pixel_multiplier = 1;
8072 pipe_config->dpll = *dpll;
8073
8074 if (IS_CHERRYVIEW(dev_priv)) {
8075 chv_compute_dpll(crtc, pipe_config);
8076 chv_prepare_pll(crtc, pipe_config);
8077 chv_enable_pll(crtc, pipe_config);
8078 } else {
8079 vlv_compute_dpll(crtc, pipe_config);
8080 vlv_prepare_pll(crtc, pipe_config);
8081 vlv_enable_pll(crtc, pipe_config);
8082 }
8083
8084 kfree(pipe_config);
8085
8086 return 0;
8087 }
8088
8089 /**
8090 * vlv_force_pll_off - forcibly disable just the PLL
8091 * @dev_priv: i915 private structure
8092 * @pipe: pipe PLL to disable
8093 *
8094 * Disable the PLL for @pipe. To be used in cases where we need
8095 * the PLL enabled even when @pipe is not going to be enabled.
8096 */
8097 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8098 {
8099 if (IS_CHERRYVIEW(dev_priv))
8100 chv_disable_pll(dev_priv, pipe);
8101 else
8102 vlv_disable_pll(dev_priv, pipe);
8103 }
8104
8105 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8106 struct intel_crtc_state *crtc_state,
8107 struct dpll *reduced_clock)
8108 {
8109 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8110 u32 dpll;
8111 struct dpll *clock = &crtc_state->dpll;
8112
8113 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8114
8115 dpll = DPLL_VGA_MODE_DIS;
8116
8117 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8118 dpll |= DPLLB_MODE_LVDS;
8119 else
8120 dpll |= DPLLB_MODE_DAC_SERIAL;
8121
8122 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8123 dpll |= (crtc_state->pixel_multiplier - 1)
8124 << SDVO_MULTIPLIER_SHIFT_HIRES;
8125 }
8126
8127 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8128 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8129 dpll |= DPLL_SDVO_HIGH_SPEED;
8130
8131 if (intel_crtc_has_dp_encoder(crtc_state))
8132 dpll |= DPLL_SDVO_HIGH_SPEED;
8133
8134 /* compute bitmask from p1 value */
8135 if (IS_PINEVIEW(dev_priv))
8136 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8137 else {
8138 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8139 if (IS_G4X(dev_priv) && reduced_clock)
8140 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8141 }
8142 switch (clock->p2) {
8143 case 5:
8144 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8145 break;
8146 case 7:
8147 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8148 break;
8149 case 10:
8150 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8151 break;
8152 case 14:
8153 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8154 break;
8155 }
8156 if (INTEL_GEN(dev_priv) >= 4)
8157 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8158
8159 if (crtc_state->sdvo_tv_clock)
8160 dpll |= PLL_REF_INPUT_TVCLKINBC;
8161 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8162 intel_panel_use_ssc(dev_priv))
8163 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8164 else
8165 dpll |= PLL_REF_INPUT_DREFCLK;
8166
8167 dpll |= DPLL_VCO_ENABLE;
8168 crtc_state->dpll_hw_state.dpll = dpll;
8169
8170 if (INTEL_GEN(dev_priv) >= 4) {
8171 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8172 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8173 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8174 }
8175 }
8176
8177 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8178 struct intel_crtc_state *crtc_state,
8179 struct dpll *reduced_clock)
8180 {
8181 struct drm_device *dev = crtc->base.dev;
8182 struct drm_i915_private *dev_priv = to_i915(dev);
8183 u32 dpll;
8184 struct dpll *clock = &crtc_state->dpll;
8185
8186 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8187
8188 dpll = DPLL_VGA_MODE_DIS;
8189
8190 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8191 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8192 } else {
8193 if (clock->p1 == 2)
8194 dpll |= PLL_P1_DIVIDE_BY_TWO;
8195 else
8196 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8197 if (clock->p2 == 4)
8198 dpll |= PLL_P2_DIVIDE_BY_4;
8199 }
8200
8201 if (!IS_I830(dev_priv) &&
8202 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8203 dpll |= DPLL_DVO_2X_MODE;
8204
8205 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8206 intel_panel_use_ssc(dev_priv))
8207 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8208 else
8209 dpll |= PLL_REF_INPUT_DREFCLK;
8210
8211 dpll |= DPLL_VCO_ENABLE;
8212 crtc_state->dpll_hw_state.dpll = dpll;
8213 }
8214
8215 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8216 {
8217 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8218 enum pipe pipe = intel_crtc->pipe;
8219 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8220 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8221 uint32_t crtc_vtotal, crtc_vblank_end;
8222 int vsyncshift = 0;
8223
8224 /* We need to be careful not to changed the adjusted mode, for otherwise
8225 * the hw state checker will get angry at the mismatch. */
8226 crtc_vtotal = adjusted_mode->crtc_vtotal;
8227 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8228
8229 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8230 /* the chip adds 2 halflines automatically */
8231 crtc_vtotal -= 1;
8232 crtc_vblank_end -= 1;
8233
8234 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8235 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8236 else
8237 vsyncshift = adjusted_mode->crtc_hsync_start -
8238 adjusted_mode->crtc_htotal / 2;
8239 if (vsyncshift < 0)
8240 vsyncshift += adjusted_mode->crtc_htotal;
8241 }
8242
8243 if (INTEL_GEN(dev_priv) > 3)
8244 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8245
8246 I915_WRITE(HTOTAL(cpu_transcoder),
8247 (adjusted_mode->crtc_hdisplay - 1) |
8248 ((adjusted_mode->crtc_htotal - 1) << 16));
8249 I915_WRITE(HBLANK(cpu_transcoder),
8250 (adjusted_mode->crtc_hblank_start - 1) |
8251 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8252 I915_WRITE(HSYNC(cpu_transcoder),
8253 (adjusted_mode->crtc_hsync_start - 1) |
8254 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8255
8256 I915_WRITE(VTOTAL(cpu_transcoder),
8257 (adjusted_mode->crtc_vdisplay - 1) |
8258 ((crtc_vtotal - 1) << 16));
8259 I915_WRITE(VBLANK(cpu_transcoder),
8260 (adjusted_mode->crtc_vblank_start - 1) |
8261 ((crtc_vblank_end - 1) << 16));
8262 I915_WRITE(VSYNC(cpu_transcoder),
8263 (adjusted_mode->crtc_vsync_start - 1) |
8264 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8265
8266 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8267 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8268 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8269 * bits. */
8270 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8271 (pipe == PIPE_B || pipe == PIPE_C))
8272 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8273
8274 }
8275
8276 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8277 {
8278 struct drm_device *dev = intel_crtc->base.dev;
8279 struct drm_i915_private *dev_priv = to_i915(dev);
8280 enum pipe pipe = intel_crtc->pipe;
8281
8282 /* pipesrc controls the size that is scaled from, which should
8283 * always be the user's requested size.
8284 */
8285 I915_WRITE(PIPESRC(pipe),
8286 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8287 (intel_crtc->config->pipe_src_h - 1));
8288 }
8289
8290 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8291 struct intel_crtc_state *pipe_config)
8292 {
8293 struct drm_device *dev = crtc->base.dev;
8294 struct drm_i915_private *dev_priv = to_i915(dev);
8295 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8296 uint32_t tmp;
8297
8298 tmp = I915_READ(HTOTAL(cpu_transcoder));
8299 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8300 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8301 tmp = I915_READ(HBLANK(cpu_transcoder));
8302 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8303 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8304 tmp = I915_READ(HSYNC(cpu_transcoder));
8305 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8306 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8307
8308 tmp = I915_READ(VTOTAL(cpu_transcoder));
8309 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8310 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8311 tmp = I915_READ(VBLANK(cpu_transcoder));
8312 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8313 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8314 tmp = I915_READ(VSYNC(cpu_transcoder));
8315 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8316 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8317
8318 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8319 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8320 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8321 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8322 }
8323 }
8324
8325 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8326 struct intel_crtc_state *pipe_config)
8327 {
8328 struct drm_device *dev = crtc->base.dev;
8329 struct drm_i915_private *dev_priv = to_i915(dev);
8330 u32 tmp;
8331
8332 tmp = I915_READ(PIPESRC(crtc->pipe));
8333 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8334 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8335
8336 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8337 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8338 }
8339
8340 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8341 struct intel_crtc_state *pipe_config)
8342 {
8343 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8344 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8345 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8346 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8347
8348 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8349 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8350 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8351 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8352
8353 mode->flags = pipe_config->base.adjusted_mode.flags;
8354 mode->type = DRM_MODE_TYPE_DRIVER;
8355
8356 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8357 mode->flags |= pipe_config->base.adjusted_mode.flags;
8358
8359 mode->hsync = drm_mode_hsync(mode);
8360 mode->vrefresh = drm_mode_vrefresh(mode);
8361 drm_mode_set_name(mode);
8362 }
8363
8364 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8365 {
8366 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8367 uint32_t pipeconf;
8368
8369 pipeconf = 0;
8370
8371 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8372 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8373 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8374
8375 if (intel_crtc->config->double_wide)
8376 pipeconf |= PIPECONF_DOUBLE_WIDE;
8377
8378 /* only g4x and later have fancy bpc/dither controls */
8379 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8380 IS_CHERRYVIEW(dev_priv)) {
8381 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8382 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8383 pipeconf |= PIPECONF_DITHER_EN |
8384 PIPECONF_DITHER_TYPE_SP;
8385
8386 switch (intel_crtc->config->pipe_bpp) {
8387 case 18:
8388 pipeconf |= PIPECONF_6BPC;
8389 break;
8390 case 24:
8391 pipeconf |= PIPECONF_8BPC;
8392 break;
8393 case 30:
8394 pipeconf |= PIPECONF_10BPC;
8395 break;
8396 default:
8397 /* Case prevented by intel_choose_pipe_bpp_dither. */
8398 BUG();
8399 }
8400 }
8401
8402 if (HAS_PIPE_CXSR(dev_priv)) {
8403 if (intel_crtc->lowfreq_avail) {
8404 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8405 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8406 } else {
8407 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8408 }
8409 }
8410
8411 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8412 if (INTEL_GEN(dev_priv) < 4 ||
8413 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8414 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8415 else
8416 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8417 } else
8418 pipeconf |= PIPECONF_PROGRESSIVE;
8419
8420 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8421 intel_crtc->config->limited_color_range)
8422 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8423
8424 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8425 POSTING_READ(PIPECONF(intel_crtc->pipe));
8426 }
8427
8428 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8429 struct intel_crtc_state *crtc_state)
8430 {
8431 struct drm_device *dev = crtc->base.dev;
8432 struct drm_i915_private *dev_priv = to_i915(dev);
8433 const struct intel_limit *limit;
8434 int refclk = 48000;
8435
8436 memset(&crtc_state->dpll_hw_state, 0,
8437 sizeof(crtc_state->dpll_hw_state));
8438
8439 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8440 if (intel_panel_use_ssc(dev_priv)) {
8441 refclk = dev_priv->vbt.lvds_ssc_freq;
8442 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8443 }
8444
8445 limit = &intel_limits_i8xx_lvds;
8446 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8447 limit = &intel_limits_i8xx_dvo;
8448 } else {
8449 limit = &intel_limits_i8xx_dac;
8450 }
8451
8452 if (!crtc_state->clock_set &&
8453 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8454 refclk, NULL, &crtc_state->dpll)) {
8455 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8456 return -EINVAL;
8457 }
8458
8459 i8xx_compute_dpll(crtc, crtc_state, NULL);
8460
8461 return 0;
8462 }
8463
8464 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8465 struct intel_crtc_state *crtc_state)
8466 {
8467 struct drm_device *dev = crtc->base.dev;
8468 struct drm_i915_private *dev_priv = to_i915(dev);
8469 const struct intel_limit *limit;
8470 int refclk = 96000;
8471
8472 memset(&crtc_state->dpll_hw_state, 0,
8473 sizeof(crtc_state->dpll_hw_state));
8474
8475 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8476 if (intel_panel_use_ssc(dev_priv)) {
8477 refclk = dev_priv->vbt.lvds_ssc_freq;
8478 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8479 }
8480
8481 if (intel_is_dual_link_lvds(dev))
8482 limit = &intel_limits_g4x_dual_channel_lvds;
8483 else
8484 limit = &intel_limits_g4x_single_channel_lvds;
8485 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8486 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8487 limit = &intel_limits_g4x_hdmi;
8488 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8489 limit = &intel_limits_g4x_sdvo;
8490 } else {
8491 /* The option is for other outputs */
8492 limit = &intel_limits_i9xx_sdvo;
8493 }
8494
8495 if (!crtc_state->clock_set &&
8496 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8497 refclk, NULL, &crtc_state->dpll)) {
8498 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8499 return -EINVAL;
8500 }
8501
8502 i9xx_compute_dpll(crtc, crtc_state, NULL);
8503
8504 return 0;
8505 }
8506
8507 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8508 struct intel_crtc_state *crtc_state)
8509 {
8510 struct drm_device *dev = crtc->base.dev;
8511 struct drm_i915_private *dev_priv = to_i915(dev);
8512 const struct intel_limit *limit;
8513 int refclk = 96000;
8514
8515 memset(&crtc_state->dpll_hw_state, 0,
8516 sizeof(crtc_state->dpll_hw_state));
8517
8518 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8519 if (intel_panel_use_ssc(dev_priv)) {
8520 refclk = dev_priv->vbt.lvds_ssc_freq;
8521 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8522 }
8523
8524 limit = &intel_limits_pineview_lvds;
8525 } else {
8526 limit = &intel_limits_pineview_sdvo;
8527 }
8528
8529 if (!crtc_state->clock_set &&
8530 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8531 refclk, NULL, &crtc_state->dpll)) {
8532 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8533 return -EINVAL;
8534 }
8535
8536 i9xx_compute_dpll(crtc, crtc_state, NULL);
8537
8538 return 0;
8539 }
8540
8541 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8542 struct intel_crtc_state *crtc_state)
8543 {
8544 struct drm_device *dev = crtc->base.dev;
8545 struct drm_i915_private *dev_priv = to_i915(dev);
8546 const struct intel_limit *limit;
8547 int refclk = 96000;
8548
8549 memset(&crtc_state->dpll_hw_state, 0,
8550 sizeof(crtc_state->dpll_hw_state));
8551
8552 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8553 if (intel_panel_use_ssc(dev_priv)) {
8554 refclk = dev_priv->vbt.lvds_ssc_freq;
8555 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8556 }
8557
8558 limit = &intel_limits_i9xx_lvds;
8559 } else {
8560 limit = &intel_limits_i9xx_sdvo;
8561 }
8562
8563 if (!crtc_state->clock_set &&
8564 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8565 refclk, NULL, &crtc_state->dpll)) {
8566 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8567 return -EINVAL;
8568 }
8569
8570 i9xx_compute_dpll(crtc, crtc_state, NULL);
8571
8572 return 0;
8573 }
8574
8575 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8576 struct intel_crtc_state *crtc_state)
8577 {
8578 int refclk = 100000;
8579 const struct intel_limit *limit = &intel_limits_chv;
8580
8581 memset(&crtc_state->dpll_hw_state, 0,
8582 sizeof(crtc_state->dpll_hw_state));
8583
8584 if (!crtc_state->clock_set &&
8585 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8586 refclk, NULL, &crtc_state->dpll)) {
8587 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8588 return -EINVAL;
8589 }
8590
8591 chv_compute_dpll(crtc, crtc_state);
8592
8593 return 0;
8594 }
8595
8596 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8597 struct intel_crtc_state *crtc_state)
8598 {
8599 int refclk = 100000;
8600 const struct intel_limit *limit = &intel_limits_vlv;
8601
8602 memset(&crtc_state->dpll_hw_state, 0,
8603 sizeof(crtc_state->dpll_hw_state));
8604
8605 if (!crtc_state->clock_set &&
8606 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8607 refclk, NULL, &crtc_state->dpll)) {
8608 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8609 return -EINVAL;
8610 }
8611
8612 vlv_compute_dpll(crtc, crtc_state);
8613
8614 return 0;
8615 }
8616
8617 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8618 struct intel_crtc_state *pipe_config)
8619 {
8620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8621 uint32_t tmp;
8622
8623 if (INTEL_GEN(dev_priv) <= 3 &&
8624 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8625 return;
8626
8627 tmp = I915_READ(PFIT_CONTROL);
8628 if (!(tmp & PFIT_ENABLE))
8629 return;
8630
8631 /* Check whether the pfit is attached to our pipe. */
8632 if (INTEL_GEN(dev_priv) < 4) {
8633 if (crtc->pipe != PIPE_B)
8634 return;
8635 } else {
8636 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8637 return;
8638 }
8639
8640 pipe_config->gmch_pfit.control = tmp;
8641 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8642 }
8643
8644 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8645 struct intel_crtc_state *pipe_config)
8646 {
8647 struct drm_device *dev = crtc->base.dev;
8648 struct drm_i915_private *dev_priv = to_i915(dev);
8649 int pipe = pipe_config->cpu_transcoder;
8650 struct dpll clock;
8651 u32 mdiv;
8652 int refclk = 100000;
8653
8654 /* In case of DSI, DPLL will not be used */
8655 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8656 return;
8657
8658 mutex_lock(&dev_priv->sb_lock);
8659 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8660 mutex_unlock(&dev_priv->sb_lock);
8661
8662 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8663 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8664 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8665 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8666 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8667
8668 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8669 }
8670
8671 static void
8672 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8673 struct intel_initial_plane_config *plane_config)
8674 {
8675 struct drm_device *dev = crtc->base.dev;
8676 struct drm_i915_private *dev_priv = to_i915(dev);
8677 u32 val, base, offset;
8678 int pipe = crtc->pipe, plane = crtc->plane;
8679 int fourcc, pixel_format;
8680 unsigned int aligned_height;
8681 struct drm_framebuffer *fb;
8682 struct intel_framebuffer *intel_fb;
8683
8684 val = I915_READ(DSPCNTR(plane));
8685 if (!(val & DISPLAY_PLANE_ENABLE))
8686 return;
8687
8688 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8689 if (!intel_fb) {
8690 DRM_DEBUG_KMS("failed to alloc fb\n");
8691 return;
8692 }
8693
8694 fb = &intel_fb->base;
8695
8696 if (INTEL_GEN(dev_priv) >= 4) {
8697 if (val & DISPPLANE_TILED) {
8698 plane_config->tiling = I915_TILING_X;
8699 fb->modifier = I915_FORMAT_MOD_X_TILED;
8700 }
8701 }
8702
8703 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8704 fourcc = i9xx_format_to_fourcc(pixel_format);
8705 fb->pixel_format = fourcc;
8706 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8707
8708 if (INTEL_GEN(dev_priv) >= 4) {
8709 if (plane_config->tiling)
8710 offset = I915_READ(DSPTILEOFF(plane));
8711 else
8712 offset = I915_READ(DSPLINOFF(plane));
8713 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8714 } else {
8715 base = I915_READ(DSPADDR(plane));
8716 }
8717 plane_config->base = base;
8718
8719 val = I915_READ(PIPESRC(pipe));
8720 fb->width = ((val >> 16) & 0xfff) + 1;
8721 fb->height = ((val >> 0) & 0xfff) + 1;
8722
8723 val = I915_READ(DSPSTRIDE(pipe));
8724 fb->pitches[0] = val & 0xffffffc0;
8725
8726 aligned_height = intel_fb_align_height(dev, fb->height,
8727 fb->pixel_format,
8728 fb->modifier);
8729
8730 plane_config->size = fb->pitches[0] * aligned_height;
8731
8732 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8733 pipe_name(pipe), plane, fb->width, fb->height,
8734 fb->bits_per_pixel, base, fb->pitches[0],
8735 plane_config->size);
8736
8737 plane_config->fb = intel_fb;
8738 }
8739
8740 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8741 struct intel_crtc_state *pipe_config)
8742 {
8743 struct drm_device *dev = crtc->base.dev;
8744 struct drm_i915_private *dev_priv = to_i915(dev);
8745 int pipe = pipe_config->cpu_transcoder;
8746 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8747 struct dpll clock;
8748 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8749 int refclk = 100000;
8750
8751 /* In case of DSI, DPLL will not be used */
8752 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8753 return;
8754
8755 mutex_lock(&dev_priv->sb_lock);
8756 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8757 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8758 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8759 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8760 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8761 mutex_unlock(&dev_priv->sb_lock);
8762
8763 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8764 clock.m2 = (pll_dw0 & 0xff) << 22;
8765 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8766 clock.m2 |= pll_dw2 & 0x3fffff;
8767 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8768 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8769 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8770
8771 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8772 }
8773
8774 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8775 struct intel_crtc_state *pipe_config)
8776 {
8777 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8778 enum intel_display_power_domain power_domain;
8779 uint32_t tmp;
8780 bool ret;
8781
8782 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8783 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8784 return false;
8785
8786 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8787 pipe_config->shared_dpll = NULL;
8788
8789 ret = false;
8790
8791 tmp = I915_READ(PIPECONF(crtc->pipe));
8792 if (!(tmp & PIPECONF_ENABLE))
8793 goto out;
8794
8795 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8796 IS_CHERRYVIEW(dev_priv)) {
8797 switch (tmp & PIPECONF_BPC_MASK) {
8798 case PIPECONF_6BPC:
8799 pipe_config->pipe_bpp = 18;
8800 break;
8801 case PIPECONF_8BPC:
8802 pipe_config->pipe_bpp = 24;
8803 break;
8804 case PIPECONF_10BPC:
8805 pipe_config->pipe_bpp = 30;
8806 break;
8807 default:
8808 break;
8809 }
8810 }
8811
8812 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8813 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8814 pipe_config->limited_color_range = true;
8815
8816 if (INTEL_GEN(dev_priv) < 4)
8817 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8818
8819 intel_get_pipe_timings(crtc, pipe_config);
8820 intel_get_pipe_src_size(crtc, pipe_config);
8821
8822 i9xx_get_pfit_config(crtc, pipe_config);
8823
8824 if (INTEL_GEN(dev_priv) >= 4) {
8825 /* No way to read it out on pipes B and C */
8826 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8827 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8828 else
8829 tmp = I915_READ(DPLL_MD(crtc->pipe));
8830 pipe_config->pixel_multiplier =
8831 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8832 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8833 pipe_config->dpll_hw_state.dpll_md = tmp;
8834 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8835 IS_G33(dev_priv)) {
8836 tmp = I915_READ(DPLL(crtc->pipe));
8837 pipe_config->pixel_multiplier =
8838 ((tmp & SDVO_MULTIPLIER_MASK)
8839 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8840 } else {
8841 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8842 * port and will be fixed up in the encoder->get_config
8843 * function. */
8844 pipe_config->pixel_multiplier = 1;
8845 }
8846 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8847 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8848 /*
8849 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8850 * on 830. Filter it out here so that we don't
8851 * report errors due to that.
8852 */
8853 if (IS_I830(dev_priv))
8854 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8855
8856 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8857 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8858 } else {
8859 /* Mask out read-only status bits. */
8860 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8861 DPLL_PORTC_READY_MASK |
8862 DPLL_PORTB_READY_MASK);
8863 }
8864
8865 if (IS_CHERRYVIEW(dev_priv))
8866 chv_crtc_clock_get(crtc, pipe_config);
8867 else if (IS_VALLEYVIEW(dev_priv))
8868 vlv_crtc_clock_get(crtc, pipe_config);
8869 else
8870 i9xx_crtc_clock_get(crtc, pipe_config);
8871
8872 /*
8873 * Normally the dotclock is filled in by the encoder .get_config()
8874 * but in case the pipe is enabled w/o any ports we need a sane
8875 * default.
8876 */
8877 pipe_config->base.adjusted_mode.crtc_clock =
8878 pipe_config->port_clock / pipe_config->pixel_multiplier;
8879
8880 ret = true;
8881
8882 out:
8883 intel_display_power_put(dev_priv, power_domain);
8884
8885 return ret;
8886 }
8887
8888 static void ironlake_init_pch_refclk(struct drm_device *dev)
8889 {
8890 struct drm_i915_private *dev_priv = to_i915(dev);
8891 struct intel_encoder *encoder;
8892 int i;
8893 u32 val, final;
8894 bool has_lvds = false;
8895 bool has_cpu_edp = false;
8896 bool has_panel = false;
8897 bool has_ck505 = false;
8898 bool can_ssc = false;
8899 bool using_ssc_source = false;
8900
8901 /* We need to take the global config into account */
8902 for_each_intel_encoder(dev, encoder) {
8903 switch (encoder->type) {
8904 case INTEL_OUTPUT_LVDS:
8905 has_panel = true;
8906 has_lvds = true;
8907 break;
8908 case INTEL_OUTPUT_EDP:
8909 has_panel = true;
8910 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8911 has_cpu_edp = true;
8912 break;
8913 default:
8914 break;
8915 }
8916 }
8917
8918 if (HAS_PCH_IBX(dev_priv)) {
8919 has_ck505 = dev_priv->vbt.display_clock_mode;
8920 can_ssc = has_ck505;
8921 } else {
8922 has_ck505 = false;
8923 can_ssc = true;
8924 }
8925
8926 /* Check if any DPLLs are using the SSC source */
8927 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8928 u32 temp = I915_READ(PCH_DPLL(i));
8929
8930 if (!(temp & DPLL_VCO_ENABLE))
8931 continue;
8932
8933 if ((temp & PLL_REF_INPUT_MASK) ==
8934 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8935 using_ssc_source = true;
8936 break;
8937 }
8938 }
8939
8940 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8941 has_panel, has_lvds, has_ck505, using_ssc_source);
8942
8943 /* Ironlake: try to setup display ref clock before DPLL
8944 * enabling. This is only under driver's control after
8945 * PCH B stepping, previous chipset stepping should be
8946 * ignoring this setting.
8947 */
8948 val = I915_READ(PCH_DREF_CONTROL);
8949
8950 /* As we must carefully and slowly disable/enable each source in turn,
8951 * compute the final state we want first and check if we need to
8952 * make any changes at all.
8953 */
8954 final = val;
8955 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8956 if (has_ck505)
8957 final |= DREF_NONSPREAD_CK505_ENABLE;
8958 else
8959 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8960
8961 final &= ~DREF_SSC_SOURCE_MASK;
8962 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8963 final &= ~DREF_SSC1_ENABLE;
8964
8965 if (has_panel) {
8966 final |= DREF_SSC_SOURCE_ENABLE;
8967
8968 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8969 final |= DREF_SSC1_ENABLE;
8970
8971 if (has_cpu_edp) {
8972 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8973 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8974 else
8975 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8976 } else
8977 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8978 } else if (using_ssc_source) {
8979 final |= DREF_SSC_SOURCE_ENABLE;
8980 final |= DREF_SSC1_ENABLE;
8981 }
8982
8983 if (final == val)
8984 return;
8985
8986 /* Always enable nonspread source */
8987 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8988
8989 if (has_ck505)
8990 val |= DREF_NONSPREAD_CK505_ENABLE;
8991 else
8992 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8993
8994 if (has_panel) {
8995 val &= ~DREF_SSC_SOURCE_MASK;
8996 val |= DREF_SSC_SOURCE_ENABLE;
8997
8998 /* SSC must be turned on before enabling the CPU output */
8999 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9000 DRM_DEBUG_KMS("Using SSC on panel\n");
9001 val |= DREF_SSC1_ENABLE;
9002 } else
9003 val &= ~DREF_SSC1_ENABLE;
9004
9005 /* Get SSC going before enabling the outputs */
9006 I915_WRITE(PCH_DREF_CONTROL, val);
9007 POSTING_READ(PCH_DREF_CONTROL);
9008 udelay(200);
9009
9010 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9011
9012 /* Enable CPU source on CPU attached eDP */
9013 if (has_cpu_edp) {
9014 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9015 DRM_DEBUG_KMS("Using SSC on eDP\n");
9016 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9017 } else
9018 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9019 } else
9020 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9021
9022 I915_WRITE(PCH_DREF_CONTROL, val);
9023 POSTING_READ(PCH_DREF_CONTROL);
9024 udelay(200);
9025 } else {
9026 DRM_DEBUG_KMS("Disabling CPU source output\n");
9027
9028 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9029
9030 /* Turn off CPU output */
9031 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9032
9033 I915_WRITE(PCH_DREF_CONTROL, val);
9034 POSTING_READ(PCH_DREF_CONTROL);
9035 udelay(200);
9036
9037 if (!using_ssc_source) {
9038 DRM_DEBUG_KMS("Disabling SSC source\n");
9039
9040 /* Turn off the SSC source */
9041 val &= ~DREF_SSC_SOURCE_MASK;
9042 val |= DREF_SSC_SOURCE_DISABLE;
9043
9044 /* Turn off SSC1 */
9045 val &= ~DREF_SSC1_ENABLE;
9046
9047 I915_WRITE(PCH_DREF_CONTROL, val);
9048 POSTING_READ(PCH_DREF_CONTROL);
9049 udelay(200);
9050 }
9051 }
9052
9053 BUG_ON(val != final);
9054 }
9055
9056 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9057 {
9058 uint32_t tmp;
9059
9060 tmp = I915_READ(SOUTH_CHICKEN2);
9061 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9062 I915_WRITE(SOUTH_CHICKEN2, tmp);
9063
9064 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9065 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9066 DRM_ERROR("FDI mPHY reset assert timeout\n");
9067
9068 tmp = I915_READ(SOUTH_CHICKEN2);
9069 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9070 I915_WRITE(SOUTH_CHICKEN2, tmp);
9071
9072 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9073 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9074 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9075 }
9076
9077 /* WaMPhyProgramming:hsw */
9078 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9079 {
9080 uint32_t tmp;
9081
9082 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9083 tmp &= ~(0xFF << 24);
9084 tmp |= (0x12 << 24);
9085 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9086
9087 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9088 tmp |= (1 << 11);
9089 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9090
9091 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9092 tmp |= (1 << 11);
9093 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9094
9095 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9096 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9097 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9098
9099 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9100 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9101 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9102
9103 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9104 tmp &= ~(7 << 13);
9105 tmp |= (5 << 13);
9106 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9107
9108 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9109 tmp &= ~(7 << 13);
9110 tmp |= (5 << 13);
9111 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9112
9113 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9114 tmp &= ~0xFF;
9115 tmp |= 0x1C;
9116 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9117
9118 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9119 tmp &= ~0xFF;
9120 tmp |= 0x1C;
9121 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9122
9123 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9124 tmp &= ~(0xFF << 16);
9125 tmp |= (0x1C << 16);
9126 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9127
9128 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9129 tmp &= ~(0xFF << 16);
9130 tmp |= (0x1C << 16);
9131 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9132
9133 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9134 tmp |= (1 << 27);
9135 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9136
9137 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9138 tmp |= (1 << 27);
9139 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9140
9141 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9142 tmp &= ~(0xF << 28);
9143 tmp |= (4 << 28);
9144 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9145
9146 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9147 tmp &= ~(0xF << 28);
9148 tmp |= (4 << 28);
9149 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9150 }
9151
9152 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9153 * Programming" based on the parameters passed:
9154 * - Sequence to enable CLKOUT_DP
9155 * - Sequence to enable CLKOUT_DP without spread
9156 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9157 */
9158 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9159 bool with_fdi)
9160 {
9161 struct drm_i915_private *dev_priv = to_i915(dev);
9162 uint32_t reg, tmp;
9163
9164 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9165 with_spread = true;
9166 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9167 with_fdi, "LP PCH doesn't have FDI\n"))
9168 with_fdi = false;
9169
9170 mutex_lock(&dev_priv->sb_lock);
9171
9172 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9173 tmp &= ~SBI_SSCCTL_DISABLE;
9174 tmp |= SBI_SSCCTL_PATHALT;
9175 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9176
9177 udelay(24);
9178
9179 if (with_spread) {
9180 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9181 tmp &= ~SBI_SSCCTL_PATHALT;
9182 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9183
9184 if (with_fdi) {
9185 lpt_reset_fdi_mphy(dev_priv);
9186 lpt_program_fdi_mphy(dev_priv);
9187 }
9188 }
9189
9190 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9191 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9192 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9193 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9194
9195 mutex_unlock(&dev_priv->sb_lock);
9196 }
9197
9198 /* Sequence to disable CLKOUT_DP */
9199 static void lpt_disable_clkout_dp(struct drm_device *dev)
9200 {
9201 struct drm_i915_private *dev_priv = to_i915(dev);
9202 uint32_t reg, tmp;
9203
9204 mutex_lock(&dev_priv->sb_lock);
9205
9206 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9207 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9208 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9209 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9210
9211 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9212 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9213 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9214 tmp |= SBI_SSCCTL_PATHALT;
9215 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9216 udelay(32);
9217 }
9218 tmp |= SBI_SSCCTL_DISABLE;
9219 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9220 }
9221
9222 mutex_unlock(&dev_priv->sb_lock);
9223 }
9224
9225 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9226
9227 static const uint16_t sscdivintphase[] = {
9228 [BEND_IDX( 50)] = 0x3B23,
9229 [BEND_IDX( 45)] = 0x3B23,
9230 [BEND_IDX( 40)] = 0x3C23,
9231 [BEND_IDX( 35)] = 0x3C23,
9232 [BEND_IDX( 30)] = 0x3D23,
9233 [BEND_IDX( 25)] = 0x3D23,
9234 [BEND_IDX( 20)] = 0x3E23,
9235 [BEND_IDX( 15)] = 0x3E23,
9236 [BEND_IDX( 10)] = 0x3F23,
9237 [BEND_IDX( 5)] = 0x3F23,
9238 [BEND_IDX( 0)] = 0x0025,
9239 [BEND_IDX( -5)] = 0x0025,
9240 [BEND_IDX(-10)] = 0x0125,
9241 [BEND_IDX(-15)] = 0x0125,
9242 [BEND_IDX(-20)] = 0x0225,
9243 [BEND_IDX(-25)] = 0x0225,
9244 [BEND_IDX(-30)] = 0x0325,
9245 [BEND_IDX(-35)] = 0x0325,
9246 [BEND_IDX(-40)] = 0x0425,
9247 [BEND_IDX(-45)] = 0x0425,
9248 [BEND_IDX(-50)] = 0x0525,
9249 };
9250
9251 /*
9252 * Bend CLKOUT_DP
9253 * steps -50 to 50 inclusive, in steps of 5
9254 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9255 * change in clock period = -(steps / 10) * 5.787 ps
9256 */
9257 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9258 {
9259 uint32_t tmp;
9260 int idx = BEND_IDX(steps);
9261
9262 if (WARN_ON(steps % 5 != 0))
9263 return;
9264
9265 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9266 return;
9267
9268 mutex_lock(&dev_priv->sb_lock);
9269
9270 if (steps % 10 != 0)
9271 tmp = 0xAAAAAAAB;
9272 else
9273 tmp = 0x00000000;
9274 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9275
9276 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9277 tmp &= 0xffff0000;
9278 tmp |= sscdivintphase[idx];
9279 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9280
9281 mutex_unlock(&dev_priv->sb_lock);
9282 }
9283
9284 #undef BEND_IDX
9285
9286 static void lpt_init_pch_refclk(struct drm_device *dev)
9287 {
9288 struct intel_encoder *encoder;
9289 bool has_vga = false;
9290
9291 for_each_intel_encoder(dev, encoder) {
9292 switch (encoder->type) {
9293 case INTEL_OUTPUT_ANALOG:
9294 has_vga = true;
9295 break;
9296 default:
9297 break;
9298 }
9299 }
9300
9301 if (has_vga) {
9302 lpt_bend_clkout_dp(to_i915(dev), 0);
9303 lpt_enable_clkout_dp(dev, true, true);
9304 } else {
9305 lpt_disable_clkout_dp(dev);
9306 }
9307 }
9308
9309 /*
9310 * Initialize reference clocks when the driver loads
9311 */
9312 void intel_init_pch_refclk(struct drm_device *dev)
9313 {
9314 struct drm_i915_private *dev_priv = to_i915(dev);
9315
9316 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9317 ironlake_init_pch_refclk(dev);
9318 else if (HAS_PCH_LPT(dev_priv))
9319 lpt_init_pch_refclk(dev);
9320 }
9321
9322 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9323 {
9324 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9326 int pipe = intel_crtc->pipe;
9327 uint32_t val;
9328
9329 val = 0;
9330
9331 switch (intel_crtc->config->pipe_bpp) {
9332 case 18:
9333 val |= PIPECONF_6BPC;
9334 break;
9335 case 24:
9336 val |= PIPECONF_8BPC;
9337 break;
9338 case 30:
9339 val |= PIPECONF_10BPC;
9340 break;
9341 case 36:
9342 val |= PIPECONF_12BPC;
9343 break;
9344 default:
9345 /* Case prevented by intel_choose_pipe_bpp_dither. */
9346 BUG();
9347 }
9348
9349 if (intel_crtc->config->dither)
9350 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9351
9352 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9353 val |= PIPECONF_INTERLACED_ILK;
9354 else
9355 val |= PIPECONF_PROGRESSIVE;
9356
9357 if (intel_crtc->config->limited_color_range)
9358 val |= PIPECONF_COLOR_RANGE_SELECT;
9359
9360 I915_WRITE(PIPECONF(pipe), val);
9361 POSTING_READ(PIPECONF(pipe));
9362 }
9363
9364 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9365 {
9366 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9369 u32 val = 0;
9370
9371 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9372 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9373
9374 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9375 val |= PIPECONF_INTERLACED_ILK;
9376 else
9377 val |= PIPECONF_PROGRESSIVE;
9378
9379 I915_WRITE(PIPECONF(cpu_transcoder), val);
9380 POSTING_READ(PIPECONF(cpu_transcoder));
9381 }
9382
9383 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9384 {
9385 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9387
9388 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9389 u32 val = 0;
9390
9391 switch (intel_crtc->config->pipe_bpp) {
9392 case 18:
9393 val |= PIPEMISC_DITHER_6_BPC;
9394 break;
9395 case 24:
9396 val |= PIPEMISC_DITHER_8_BPC;
9397 break;
9398 case 30:
9399 val |= PIPEMISC_DITHER_10_BPC;
9400 break;
9401 case 36:
9402 val |= PIPEMISC_DITHER_12_BPC;
9403 break;
9404 default:
9405 /* Case prevented by pipe_config_set_bpp. */
9406 BUG();
9407 }
9408
9409 if (intel_crtc->config->dither)
9410 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9411
9412 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9413 }
9414 }
9415
9416 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9417 {
9418 /*
9419 * Account for spread spectrum to avoid
9420 * oversubscribing the link. Max center spread
9421 * is 2.5%; use 5% for safety's sake.
9422 */
9423 u32 bps = target_clock * bpp * 21 / 20;
9424 return DIV_ROUND_UP(bps, link_bw * 8);
9425 }
9426
9427 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9428 {
9429 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9430 }
9431
9432 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9433 struct intel_crtc_state *crtc_state,
9434 struct dpll *reduced_clock)
9435 {
9436 struct drm_crtc *crtc = &intel_crtc->base;
9437 struct drm_device *dev = crtc->dev;
9438 struct drm_i915_private *dev_priv = to_i915(dev);
9439 u32 dpll, fp, fp2;
9440 int factor;
9441
9442 /* Enable autotuning of the PLL clock (if permissible) */
9443 factor = 21;
9444 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9445 if ((intel_panel_use_ssc(dev_priv) &&
9446 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9447 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9448 factor = 25;
9449 } else if (crtc_state->sdvo_tv_clock)
9450 factor = 20;
9451
9452 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9453
9454 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9455 fp |= FP_CB_TUNE;
9456
9457 if (reduced_clock) {
9458 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9459
9460 if (reduced_clock->m < factor * reduced_clock->n)
9461 fp2 |= FP_CB_TUNE;
9462 } else {
9463 fp2 = fp;
9464 }
9465
9466 dpll = 0;
9467
9468 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9469 dpll |= DPLLB_MODE_LVDS;
9470 else
9471 dpll |= DPLLB_MODE_DAC_SERIAL;
9472
9473 dpll |= (crtc_state->pixel_multiplier - 1)
9474 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9475
9476 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9477 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9478 dpll |= DPLL_SDVO_HIGH_SPEED;
9479
9480 if (intel_crtc_has_dp_encoder(crtc_state))
9481 dpll |= DPLL_SDVO_HIGH_SPEED;
9482
9483 /*
9484 * The high speed IO clock is only really required for
9485 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9486 * possible to share the DPLL between CRT and HDMI. Enabling
9487 * the clock needlessly does no real harm, except use up a
9488 * bit of power potentially.
9489 *
9490 * We'll limit this to IVB with 3 pipes, since it has only two
9491 * DPLLs and so DPLL sharing is the only way to get three pipes
9492 * driving PCH ports at the same time. On SNB we could do this,
9493 * and potentially avoid enabling the second DPLL, but it's not
9494 * clear if it''s a win or loss power wise. No point in doing
9495 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9496 */
9497 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9498 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9499 dpll |= DPLL_SDVO_HIGH_SPEED;
9500
9501 /* compute bitmask from p1 value */
9502 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9503 /* also FPA1 */
9504 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9505
9506 switch (crtc_state->dpll.p2) {
9507 case 5:
9508 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9509 break;
9510 case 7:
9511 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9512 break;
9513 case 10:
9514 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9515 break;
9516 case 14:
9517 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9518 break;
9519 }
9520
9521 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9522 intel_panel_use_ssc(dev_priv))
9523 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9524 else
9525 dpll |= PLL_REF_INPUT_DREFCLK;
9526
9527 dpll |= DPLL_VCO_ENABLE;
9528
9529 crtc_state->dpll_hw_state.dpll = dpll;
9530 crtc_state->dpll_hw_state.fp0 = fp;
9531 crtc_state->dpll_hw_state.fp1 = fp2;
9532 }
9533
9534 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9535 struct intel_crtc_state *crtc_state)
9536 {
9537 struct drm_device *dev = crtc->base.dev;
9538 struct drm_i915_private *dev_priv = to_i915(dev);
9539 struct dpll reduced_clock;
9540 bool has_reduced_clock = false;
9541 struct intel_shared_dpll *pll;
9542 const struct intel_limit *limit;
9543 int refclk = 120000;
9544
9545 memset(&crtc_state->dpll_hw_state, 0,
9546 sizeof(crtc_state->dpll_hw_state));
9547
9548 crtc->lowfreq_avail = false;
9549
9550 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9551 if (!crtc_state->has_pch_encoder)
9552 return 0;
9553
9554 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9555 if (intel_panel_use_ssc(dev_priv)) {
9556 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9557 dev_priv->vbt.lvds_ssc_freq);
9558 refclk = dev_priv->vbt.lvds_ssc_freq;
9559 }
9560
9561 if (intel_is_dual_link_lvds(dev)) {
9562 if (refclk == 100000)
9563 limit = &intel_limits_ironlake_dual_lvds_100m;
9564 else
9565 limit = &intel_limits_ironlake_dual_lvds;
9566 } else {
9567 if (refclk == 100000)
9568 limit = &intel_limits_ironlake_single_lvds_100m;
9569 else
9570 limit = &intel_limits_ironlake_single_lvds;
9571 }
9572 } else {
9573 limit = &intel_limits_ironlake_dac;
9574 }
9575
9576 if (!crtc_state->clock_set &&
9577 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9578 refclk, NULL, &crtc_state->dpll)) {
9579 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9580 return -EINVAL;
9581 }
9582
9583 ironlake_compute_dpll(crtc, crtc_state,
9584 has_reduced_clock ? &reduced_clock : NULL);
9585
9586 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9587 if (pll == NULL) {
9588 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9589 pipe_name(crtc->pipe));
9590 return -EINVAL;
9591 }
9592
9593 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9594 has_reduced_clock)
9595 crtc->lowfreq_avail = true;
9596
9597 return 0;
9598 }
9599
9600 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9601 struct intel_link_m_n *m_n)
9602 {
9603 struct drm_device *dev = crtc->base.dev;
9604 struct drm_i915_private *dev_priv = to_i915(dev);
9605 enum pipe pipe = crtc->pipe;
9606
9607 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9608 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9609 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9610 & ~TU_SIZE_MASK;
9611 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9612 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9613 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9614 }
9615
9616 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9617 enum transcoder transcoder,
9618 struct intel_link_m_n *m_n,
9619 struct intel_link_m_n *m2_n2)
9620 {
9621 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9622 enum pipe pipe = crtc->pipe;
9623
9624 if (INTEL_GEN(dev_priv) >= 5) {
9625 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9626 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9627 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9628 & ~TU_SIZE_MASK;
9629 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9630 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9631 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9632 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9633 * gen < 8) and if DRRS is supported (to make sure the
9634 * registers are not unnecessarily read).
9635 */
9636 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9637 crtc->config->has_drrs) {
9638 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9639 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9640 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9641 & ~TU_SIZE_MASK;
9642 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9643 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9644 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9645 }
9646 } else {
9647 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9648 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9649 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9650 & ~TU_SIZE_MASK;
9651 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9652 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9653 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9654 }
9655 }
9656
9657 void intel_dp_get_m_n(struct intel_crtc *crtc,
9658 struct intel_crtc_state *pipe_config)
9659 {
9660 if (pipe_config->has_pch_encoder)
9661 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9662 else
9663 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9664 &pipe_config->dp_m_n,
9665 &pipe_config->dp_m2_n2);
9666 }
9667
9668 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9669 struct intel_crtc_state *pipe_config)
9670 {
9671 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9672 &pipe_config->fdi_m_n, NULL);
9673 }
9674
9675 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9676 struct intel_crtc_state *pipe_config)
9677 {
9678 struct drm_device *dev = crtc->base.dev;
9679 struct drm_i915_private *dev_priv = to_i915(dev);
9680 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9681 uint32_t ps_ctrl = 0;
9682 int id = -1;
9683 int i;
9684
9685 /* find scaler attached to this pipe */
9686 for (i = 0; i < crtc->num_scalers; i++) {
9687 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9688 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9689 id = i;
9690 pipe_config->pch_pfit.enabled = true;
9691 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9692 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9693 break;
9694 }
9695 }
9696
9697 scaler_state->scaler_id = id;
9698 if (id >= 0) {
9699 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9700 } else {
9701 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9702 }
9703 }
9704
9705 static void
9706 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9707 struct intel_initial_plane_config *plane_config)
9708 {
9709 struct drm_device *dev = crtc->base.dev;
9710 struct drm_i915_private *dev_priv = to_i915(dev);
9711 u32 val, base, offset, stride_mult, tiling;
9712 int pipe = crtc->pipe;
9713 int fourcc, pixel_format;
9714 unsigned int aligned_height;
9715 struct drm_framebuffer *fb;
9716 struct intel_framebuffer *intel_fb;
9717
9718 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9719 if (!intel_fb) {
9720 DRM_DEBUG_KMS("failed to alloc fb\n");
9721 return;
9722 }
9723
9724 fb = &intel_fb->base;
9725
9726 val = I915_READ(PLANE_CTL(pipe, 0));
9727 if (!(val & PLANE_CTL_ENABLE))
9728 goto error;
9729
9730 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9731 fourcc = skl_format_to_fourcc(pixel_format,
9732 val & PLANE_CTL_ORDER_RGBX,
9733 val & PLANE_CTL_ALPHA_MASK);
9734 fb->pixel_format = fourcc;
9735 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9736
9737 tiling = val & PLANE_CTL_TILED_MASK;
9738 switch (tiling) {
9739 case PLANE_CTL_TILED_LINEAR:
9740 fb->modifier = DRM_FORMAT_MOD_NONE;
9741 break;
9742 case PLANE_CTL_TILED_X:
9743 plane_config->tiling = I915_TILING_X;
9744 fb->modifier = I915_FORMAT_MOD_X_TILED;
9745 break;
9746 case PLANE_CTL_TILED_Y:
9747 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9748 break;
9749 case PLANE_CTL_TILED_YF:
9750 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9751 break;
9752 default:
9753 MISSING_CASE(tiling);
9754 goto error;
9755 }
9756
9757 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9758 plane_config->base = base;
9759
9760 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9761
9762 val = I915_READ(PLANE_SIZE(pipe, 0));
9763 fb->height = ((val >> 16) & 0xfff) + 1;
9764 fb->width = ((val >> 0) & 0x1fff) + 1;
9765
9766 val = I915_READ(PLANE_STRIDE(pipe, 0));
9767 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9768 fb->pixel_format);
9769 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9770
9771 aligned_height = intel_fb_align_height(dev, fb->height,
9772 fb->pixel_format,
9773 fb->modifier);
9774
9775 plane_config->size = fb->pitches[0] * aligned_height;
9776
9777 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9778 pipe_name(pipe), fb->width, fb->height,
9779 fb->bits_per_pixel, base, fb->pitches[0],
9780 plane_config->size);
9781
9782 plane_config->fb = intel_fb;
9783 return;
9784
9785 error:
9786 kfree(intel_fb);
9787 }
9788
9789 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9790 struct intel_crtc_state *pipe_config)
9791 {
9792 struct drm_device *dev = crtc->base.dev;
9793 struct drm_i915_private *dev_priv = to_i915(dev);
9794 uint32_t tmp;
9795
9796 tmp = I915_READ(PF_CTL(crtc->pipe));
9797
9798 if (tmp & PF_ENABLE) {
9799 pipe_config->pch_pfit.enabled = true;
9800 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9801 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9802
9803 /* We currently do not free assignements of panel fitters on
9804 * ivb/hsw (since we don't use the higher upscaling modes which
9805 * differentiates them) so just WARN about this case for now. */
9806 if (IS_GEN7(dev_priv)) {
9807 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9808 PF_PIPE_SEL_IVB(crtc->pipe));
9809 }
9810 }
9811 }
9812
9813 static void
9814 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9815 struct intel_initial_plane_config *plane_config)
9816 {
9817 struct drm_device *dev = crtc->base.dev;
9818 struct drm_i915_private *dev_priv = to_i915(dev);
9819 u32 val, base, offset;
9820 int pipe = crtc->pipe;
9821 int fourcc, pixel_format;
9822 unsigned int aligned_height;
9823 struct drm_framebuffer *fb;
9824 struct intel_framebuffer *intel_fb;
9825
9826 val = I915_READ(DSPCNTR(pipe));
9827 if (!(val & DISPLAY_PLANE_ENABLE))
9828 return;
9829
9830 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9831 if (!intel_fb) {
9832 DRM_DEBUG_KMS("failed to alloc fb\n");
9833 return;
9834 }
9835
9836 fb = &intel_fb->base;
9837
9838 if (INTEL_GEN(dev_priv) >= 4) {
9839 if (val & DISPPLANE_TILED) {
9840 plane_config->tiling = I915_TILING_X;
9841 fb->modifier = I915_FORMAT_MOD_X_TILED;
9842 }
9843 }
9844
9845 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9846 fourcc = i9xx_format_to_fourcc(pixel_format);
9847 fb->pixel_format = fourcc;
9848 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9849
9850 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9851 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9852 offset = I915_READ(DSPOFFSET(pipe));
9853 } else {
9854 if (plane_config->tiling)
9855 offset = I915_READ(DSPTILEOFF(pipe));
9856 else
9857 offset = I915_READ(DSPLINOFF(pipe));
9858 }
9859 plane_config->base = base;
9860
9861 val = I915_READ(PIPESRC(pipe));
9862 fb->width = ((val >> 16) & 0xfff) + 1;
9863 fb->height = ((val >> 0) & 0xfff) + 1;
9864
9865 val = I915_READ(DSPSTRIDE(pipe));
9866 fb->pitches[0] = val & 0xffffffc0;
9867
9868 aligned_height = intel_fb_align_height(dev, fb->height,
9869 fb->pixel_format,
9870 fb->modifier);
9871
9872 plane_config->size = fb->pitches[0] * aligned_height;
9873
9874 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9875 pipe_name(pipe), fb->width, fb->height,
9876 fb->bits_per_pixel, base, fb->pitches[0],
9877 plane_config->size);
9878
9879 plane_config->fb = intel_fb;
9880 }
9881
9882 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9883 struct intel_crtc_state *pipe_config)
9884 {
9885 struct drm_device *dev = crtc->base.dev;
9886 struct drm_i915_private *dev_priv = to_i915(dev);
9887 enum intel_display_power_domain power_domain;
9888 uint32_t tmp;
9889 bool ret;
9890
9891 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9892 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9893 return false;
9894
9895 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9896 pipe_config->shared_dpll = NULL;
9897
9898 ret = false;
9899 tmp = I915_READ(PIPECONF(crtc->pipe));
9900 if (!(tmp & PIPECONF_ENABLE))
9901 goto out;
9902
9903 switch (tmp & PIPECONF_BPC_MASK) {
9904 case PIPECONF_6BPC:
9905 pipe_config->pipe_bpp = 18;
9906 break;
9907 case PIPECONF_8BPC:
9908 pipe_config->pipe_bpp = 24;
9909 break;
9910 case PIPECONF_10BPC:
9911 pipe_config->pipe_bpp = 30;
9912 break;
9913 case PIPECONF_12BPC:
9914 pipe_config->pipe_bpp = 36;
9915 break;
9916 default:
9917 break;
9918 }
9919
9920 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9921 pipe_config->limited_color_range = true;
9922
9923 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9924 struct intel_shared_dpll *pll;
9925 enum intel_dpll_id pll_id;
9926
9927 pipe_config->has_pch_encoder = true;
9928
9929 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9930 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9931 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9932
9933 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9934
9935 if (HAS_PCH_IBX(dev_priv)) {
9936 /*
9937 * The pipe->pch transcoder and pch transcoder->pll
9938 * mapping is fixed.
9939 */
9940 pll_id = (enum intel_dpll_id) crtc->pipe;
9941 } else {
9942 tmp = I915_READ(PCH_DPLL_SEL);
9943 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9944 pll_id = DPLL_ID_PCH_PLL_B;
9945 else
9946 pll_id= DPLL_ID_PCH_PLL_A;
9947 }
9948
9949 pipe_config->shared_dpll =
9950 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9951 pll = pipe_config->shared_dpll;
9952
9953 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9954 &pipe_config->dpll_hw_state));
9955
9956 tmp = pipe_config->dpll_hw_state.dpll;
9957 pipe_config->pixel_multiplier =
9958 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9959 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9960
9961 ironlake_pch_clock_get(crtc, pipe_config);
9962 } else {
9963 pipe_config->pixel_multiplier = 1;
9964 }
9965
9966 intel_get_pipe_timings(crtc, pipe_config);
9967 intel_get_pipe_src_size(crtc, pipe_config);
9968
9969 ironlake_get_pfit_config(crtc, pipe_config);
9970
9971 ret = true;
9972
9973 out:
9974 intel_display_power_put(dev_priv, power_domain);
9975
9976 return ret;
9977 }
9978
9979 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9980 {
9981 struct drm_device *dev = &dev_priv->drm;
9982 struct intel_crtc *crtc;
9983
9984 for_each_intel_crtc(dev, crtc)
9985 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9986 pipe_name(crtc->pipe));
9987
9988 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9989 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9990 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9991 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9992 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9993 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9994 "CPU PWM1 enabled\n");
9995 if (IS_HASWELL(dev_priv))
9996 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9997 "CPU PWM2 enabled\n");
9998 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9999 "PCH PWM1 enabled\n");
10000 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10001 "Utility pin enabled\n");
10002 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10003
10004 /*
10005 * In theory we can still leave IRQs enabled, as long as only the HPD
10006 * interrupts remain enabled. We used to check for that, but since it's
10007 * gen-specific and since we only disable LCPLL after we fully disable
10008 * the interrupts, the check below should be enough.
10009 */
10010 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10011 }
10012
10013 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10014 {
10015 if (IS_HASWELL(dev_priv))
10016 return I915_READ(D_COMP_HSW);
10017 else
10018 return I915_READ(D_COMP_BDW);
10019 }
10020
10021 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10022 {
10023 if (IS_HASWELL(dev_priv)) {
10024 mutex_lock(&dev_priv->rps.hw_lock);
10025 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10026 val))
10027 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10028 mutex_unlock(&dev_priv->rps.hw_lock);
10029 } else {
10030 I915_WRITE(D_COMP_BDW, val);
10031 POSTING_READ(D_COMP_BDW);
10032 }
10033 }
10034
10035 /*
10036 * This function implements pieces of two sequences from BSpec:
10037 * - Sequence for display software to disable LCPLL
10038 * - Sequence for display software to allow package C8+
10039 * The steps implemented here are just the steps that actually touch the LCPLL
10040 * register. Callers should take care of disabling all the display engine
10041 * functions, doing the mode unset, fixing interrupts, etc.
10042 */
10043 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10044 bool switch_to_fclk, bool allow_power_down)
10045 {
10046 uint32_t val;
10047
10048 assert_can_disable_lcpll(dev_priv);
10049
10050 val = I915_READ(LCPLL_CTL);
10051
10052 if (switch_to_fclk) {
10053 val |= LCPLL_CD_SOURCE_FCLK;
10054 I915_WRITE(LCPLL_CTL, val);
10055
10056 if (wait_for_us(I915_READ(LCPLL_CTL) &
10057 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10058 DRM_ERROR("Switching to FCLK failed\n");
10059
10060 val = I915_READ(LCPLL_CTL);
10061 }
10062
10063 val |= LCPLL_PLL_DISABLE;
10064 I915_WRITE(LCPLL_CTL, val);
10065 POSTING_READ(LCPLL_CTL);
10066
10067 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10068 DRM_ERROR("LCPLL still locked\n");
10069
10070 val = hsw_read_dcomp(dev_priv);
10071 val |= D_COMP_COMP_DISABLE;
10072 hsw_write_dcomp(dev_priv, val);
10073 ndelay(100);
10074
10075 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10076 1))
10077 DRM_ERROR("D_COMP RCOMP still in progress\n");
10078
10079 if (allow_power_down) {
10080 val = I915_READ(LCPLL_CTL);
10081 val |= LCPLL_POWER_DOWN_ALLOW;
10082 I915_WRITE(LCPLL_CTL, val);
10083 POSTING_READ(LCPLL_CTL);
10084 }
10085 }
10086
10087 /*
10088 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10089 * source.
10090 */
10091 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10092 {
10093 uint32_t val;
10094
10095 val = I915_READ(LCPLL_CTL);
10096
10097 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10098 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10099 return;
10100
10101 /*
10102 * Make sure we're not on PC8 state before disabling PC8, otherwise
10103 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10104 */
10105 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10106
10107 if (val & LCPLL_POWER_DOWN_ALLOW) {
10108 val &= ~LCPLL_POWER_DOWN_ALLOW;
10109 I915_WRITE(LCPLL_CTL, val);
10110 POSTING_READ(LCPLL_CTL);
10111 }
10112
10113 val = hsw_read_dcomp(dev_priv);
10114 val |= D_COMP_COMP_FORCE;
10115 val &= ~D_COMP_COMP_DISABLE;
10116 hsw_write_dcomp(dev_priv, val);
10117
10118 val = I915_READ(LCPLL_CTL);
10119 val &= ~LCPLL_PLL_DISABLE;
10120 I915_WRITE(LCPLL_CTL, val);
10121
10122 if (intel_wait_for_register(dev_priv,
10123 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10124 5))
10125 DRM_ERROR("LCPLL not locked yet\n");
10126
10127 if (val & LCPLL_CD_SOURCE_FCLK) {
10128 val = I915_READ(LCPLL_CTL);
10129 val &= ~LCPLL_CD_SOURCE_FCLK;
10130 I915_WRITE(LCPLL_CTL, val);
10131
10132 if (wait_for_us((I915_READ(LCPLL_CTL) &
10133 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10134 DRM_ERROR("Switching back to LCPLL failed\n");
10135 }
10136
10137 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10138 intel_update_cdclk(dev_priv);
10139 }
10140
10141 /*
10142 * Package states C8 and deeper are really deep PC states that can only be
10143 * reached when all the devices on the system allow it, so even if the graphics
10144 * device allows PC8+, it doesn't mean the system will actually get to these
10145 * states. Our driver only allows PC8+ when going into runtime PM.
10146 *
10147 * The requirements for PC8+ are that all the outputs are disabled, the power
10148 * well is disabled and most interrupts are disabled, and these are also
10149 * requirements for runtime PM. When these conditions are met, we manually do
10150 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10151 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10152 * hang the machine.
10153 *
10154 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10155 * the state of some registers, so when we come back from PC8+ we need to
10156 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10157 * need to take care of the registers kept by RC6. Notice that this happens even
10158 * if we don't put the device in PCI D3 state (which is what currently happens
10159 * because of the runtime PM support).
10160 *
10161 * For more, read "Display Sequences for Package C8" on the hardware
10162 * documentation.
10163 */
10164 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10165 {
10166 struct drm_device *dev = &dev_priv->drm;
10167 uint32_t val;
10168
10169 DRM_DEBUG_KMS("Enabling package C8+\n");
10170
10171 if (HAS_PCH_LPT_LP(dev_priv)) {
10172 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10173 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10174 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10175 }
10176
10177 lpt_disable_clkout_dp(dev);
10178 hsw_disable_lcpll(dev_priv, true, true);
10179 }
10180
10181 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10182 {
10183 struct drm_device *dev = &dev_priv->drm;
10184 uint32_t val;
10185
10186 DRM_DEBUG_KMS("Disabling package C8+\n");
10187
10188 hsw_restore_lcpll(dev_priv);
10189 lpt_init_pch_refclk(dev);
10190
10191 if (HAS_PCH_LPT_LP(dev_priv)) {
10192 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10193 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10194 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10195 }
10196 }
10197
10198 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10199 {
10200 struct drm_device *dev = old_state->dev;
10201 struct intel_atomic_state *old_intel_state =
10202 to_intel_atomic_state(old_state);
10203 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10204
10205 bxt_set_cdclk(to_i915(dev), req_cdclk);
10206 }
10207
10208 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10209 int pixel_rate)
10210 {
10211 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10212
10213 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10214 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10215 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10216
10217 /* BSpec says "Do not use DisplayPort with CDCLK less than
10218 * 432 MHz, audio enabled, port width x4, and link rate
10219 * HBR2 (5.4 GHz), or else there may be audio corruption or
10220 * screen corruption."
10221 */
10222 if (intel_crtc_has_dp_encoder(crtc_state) &&
10223 crtc_state->has_audio &&
10224 crtc_state->port_clock >= 540000 &&
10225 crtc_state->lane_count == 4)
10226 pixel_rate = max(432000, pixel_rate);
10227
10228 return pixel_rate;
10229 }
10230
10231 /* compute the max rate for new configuration */
10232 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10233 {
10234 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10235 struct drm_i915_private *dev_priv = to_i915(state->dev);
10236 struct drm_crtc *crtc;
10237 struct drm_crtc_state *cstate;
10238 struct intel_crtc_state *crtc_state;
10239 unsigned max_pixel_rate = 0, i;
10240 enum pipe pipe;
10241
10242 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10243 sizeof(intel_state->min_pixclk));
10244
10245 for_each_crtc_in_state(state, crtc, cstate, i) {
10246 int pixel_rate;
10247
10248 crtc_state = to_intel_crtc_state(cstate);
10249 if (!crtc_state->base.enable) {
10250 intel_state->min_pixclk[i] = 0;
10251 continue;
10252 }
10253
10254 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10255
10256 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10257 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10258 pixel_rate);
10259
10260 intel_state->min_pixclk[i] = pixel_rate;
10261 }
10262
10263 for_each_pipe(dev_priv, pipe)
10264 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10265
10266 return max_pixel_rate;
10267 }
10268
10269 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10270 {
10271 struct drm_i915_private *dev_priv = to_i915(dev);
10272 uint32_t val, data;
10273 int ret;
10274
10275 if (WARN((I915_READ(LCPLL_CTL) &
10276 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10277 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10278 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10279 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10280 "trying to change cdclk frequency with cdclk not enabled\n"))
10281 return;
10282
10283 mutex_lock(&dev_priv->rps.hw_lock);
10284 ret = sandybridge_pcode_write(dev_priv,
10285 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10286 mutex_unlock(&dev_priv->rps.hw_lock);
10287 if (ret) {
10288 DRM_ERROR("failed to inform pcode about cdclk change\n");
10289 return;
10290 }
10291
10292 val = I915_READ(LCPLL_CTL);
10293 val |= LCPLL_CD_SOURCE_FCLK;
10294 I915_WRITE(LCPLL_CTL, val);
10295
10296 if (wait_for_us(I915_READ(LCPLL_CTL) &
10297 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10298 DRM_ERROR("Switching to FCLK failed\n");
10299
10300 val = I915_READ(LCPLL_CTL);
10301 val &= ~LCPLL_CLK_FREQ_MASK;
10302
10303 switch (cdclk) {
10304 case 450000:
10305 val |= LCPLL_CLK_FREQ_450;
10306 data = 0;
10307 break;
10308 case 540000:
10309 val |= LCPLL_CLK_FREQ_54O_BDW;
10310 data = 1;
10311 break;
10312 case 337500:
10313 val |= LCPLL_CLK_FREQ_337_5_BDW;
10314 data = 2;
10315 break;
10316 case 675000:
10317 val |= LCPLL_CLK_FREQ_675_BDW;
10318 data = 3;
10319 break;
10320 default:
10321 WARN(1, "invalid cdclk frequency\n");
10322 return;
10323 }
10324
10325 I915_WRITE(LCPLL_CTL, val);
10326
10327 val = I915_READ(LCPLL_CTL);
10328 val &= ~LCPLL_CD_SOURCE_FCLK;
10329 I915_WRITE(LCPLL_CTL, val);
10330
10331 if (wait_for_us((I915_READ(LCPLL_CTL) &
10332 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10333 DRM_ERROR("Switching back to LCPLL failed\n");
10334
10335 mutex_lock(&dev_priv->rps.hw_lock);
10336 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10337 mutex_unlock(&dev_priv->rps.hw_lock);
10338
10339 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10340
10341 intel_update_cdclk(dev_priv);
10342
10343 WARN(cdclk != dev_priv->cdclk_freq,
10344 "cdclk requested %d kHz but got %d kHz\n",
10345 cdclk, dev_priv->cdclk_freq);
10346 }
10347
10348 static int broadwell_calc_cdclk(int max_pixclk)
10349 {
10350 if (max_pixclk > 540000)
10351 return 675000;
10352 else if (max_pixclk > 450000)
10353 return 540000;
10354 else if (max_pixclk > 337500)
10355 return 450000;
10356 else
10357 return 337500;
10358 }
10359
10360 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10361 {
10362 struct drm_i915_private *dev_priv = to_i915(state->dev);
10363 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10364 int max_pixclk = ilk_max_pixel_rate(state);
10365 int cdclk;
10366
10367 /*
10368 * FIXME should also account for plane ratio
10369 * once 64bpp pixel formats are supported.
10370 */
10371 cdclk = broadwell_calc_cdclk(max_pixclk);
10372
10373 if (cdclk > dev_priv->max_cdclk_freq) {
10374 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10375 cdclk, dev_priv->max_cdclk_freq);
10376 return -EINVAL;
10377 }
10378
10379 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10380 if (!intel_state->active_crtcs)
10381 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10382
10383 return 0;
10384 }
10385
10386 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10387 {
10388 struct drm_device *dev = old_state->dev;
10389 struct intel_atomic_state *old_intel_state =
10390 to_intel_atomic_state(old_state);
10391 unsigned req_cdclk = old_intel_state->dev_cdclk;
10392
10393 broadwell_set_cdclk(dev, req_cdclk);
10394 }
10395
10396 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10397 {
10398 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10399 struct drm_i915_private *dev_priv = to_i915(state->dev);
10400 const int max_pixclk = ilk_max_pixel_rate(state);
10401 int vco = intel_state->cdclk_pll_vco;
10402 int cdclk;
10403
10404 /*
10405 * FIXME should also account for plane ratio
10406 * once 64bpp pixel formats are supported.
10407 */
10408 cdclk = skl_calc_cdclk(max_pixclk, vco);
10409
10410 /*
10411 * FIXME move the cdclk caclulation to
10412 * compute_config() so we can fail gracegully.
10413 */
10414 if (cdclk > dev_priv->max_cdclk_freq) {
10415 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10416 cdclk, dev_priv->max_cdclk_freq);
10417 cdclk = dev_priv->max_cdclk_freq;
10418 }
10419
10420 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10421 if (!intel_state->active_crtcs)
10422 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10423
10424 return 0;
10425 }
10426
10427 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10428 {
10429 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10430 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10431 unsigned int req_cdclk = intel_state->dev_cdclk;
10432 unsigned int req_vco = intel_state->cdclk_pll_vco;
10433
10434 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10435 }
10436
10437 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10438 struct intel_crtc_state *crtc_state)
10439 {
10440 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10441 if (!intel_ddi_pll_select(crtc, crtc_state))
10442 return -EINVAL;
10443 }
10444
10445 crtc->lowfreq_avail = false;
10446
10447 return 0;
10448 }
10449
10450 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10451 enum port port,
10452 struct intel_crtc_state *pipe_config)
10453 {
10454 enum intel_dpll_id id;
10455
10456 switch (port) {
10457 case PORT_A:
10458 id = DPLL_ID_SKL_DPLL0;
10459 break;
10460 case PORT_B:
10461 id = DPLL_ID_SKL_DPLL1;
10462 break;
10463 case PORT_C:
10464 id = DPLL_ID_SKL_DPLL2;
10465 break;
10466 default:
10467 DRM_ERROR("Incorrect port type\n");
10468 return;
10469 }
10470
10471 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10472 }
10473
10474 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10475 enum port port,
10476 struct intel_crtc_state *pipe_config)
10477 {
10478 enum intel_dpll_id id;
10479 u32 temp;
10480
10481 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10482 id = temp >> (port * 3 + 1);
10483
10484 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10485 return;
10486
10487 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10488 }
10489
10490 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10491 enum port port,
10492 struct intel_crtc_state *pipe_config)
10493 {
10494 enum intel_dpll_id id;
10495 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10496
10497 switch (ddi_pll_sel) {
10498 case PORT_CLK_SEL_WRPLL1:
10499 id = DPLL_ID_WRPLL1;
10500 break;
10501 case PORT_CLK_SEL_WRPLL2:
10502 id = DPLL_ID_WRPLL2;
10503 break;
10504 case PORT_CLK_SEL_SPLL:
10505 id = DPLL_ID_SPLL;
10506 break;
10507 case PORT_CLK_SEL_LCPLL_810:
10508 id = DPLL_ID_LCPLL_810;
10509 break;
10510 case PORT_CLK_SEL_LCPLL_1350:
10511 id = DPLL_ID_LCPLL_1350;
10512 break;
10513 case PORT_CLK_SEL_LCPLL_2700:
10514 id = DPLL_ID_LCPLL_2700;
10515 break;
10516 default:
10517 MISSING_CASE(ddi_pll_sel);
10518 /* fall through */
10519 case PORT_CLK_SEL_NONE:
10520 return;
10521 }
10522
10523 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10524 }
10525
10526 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10527 struct intel_crtc_state *pipe_config,
10528 unsigned long *power_domain_mask)
10529 {
10530 struct drm_device *dev = crtc->base.dev;
10531 struct drm_i915_private *dev_priv = to_i915(dev);
10532 enum intel_display_power_domain power_domain;
10533 u32 tmp;
10534
10535 /*
10536 * The pipe->transcoder mapping is fixed with the exception of the eDP
10537 * transcoder handled below.
10538 */
10539 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10540
10541 /*
10542 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10543 * consistency and less surprising code; it's in always on power).
10544 */
10545 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10546 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10547 enum pipe trans_edp_pipe;
10548 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10549 default:
10550 WARN(1, "unknown pipe linked to edp transcoder\n");
10551 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10552 case TRANS_DDI_EDP_INPUT_A_ON:
10553 trans_edp_pipe = PIPE_A;
10554 break;
10555 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10556 trans_edp_pipe = PIPE_B;
10557 break;
10558 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10559 trans_edp_pipe = PIPE_C;
10560 break;
10561 }
10562
10563 if (trans_edp_pipe == crtc->pipe)
10564 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10565 }
10566
10567 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10568 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10569 return false;
10570 *power_domain_mask |= BIT(power_domain);
10571
10572 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10573
10574 return tmp & PIPECONF_ENABLE;
10575 }
10576
10577 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10578 struct intel_crtc_state *pipe_config,
10579 unsigned long *power_domain_mask)
10580 {
10581 struct drm_device *dev = crtc->base.dev;
10582 struct drm_i915_private *dev_priv = to_i915(dev);
10583 enum intel_display_power_domain power_domain;
10584 enum port port;
10585 enum transcoder cpu_transcoder;
10586 u32 tmp;
10587
10588 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10589 if (port == PORT_A)
10590 cpu_transcoder = TRANSCODER_DSI_A;
10591 else
10592 cpu_transcoder = TRANSCODER_DSI_C;
10593
10594 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10595 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10596 continue;
10597 *power_domain_mask |= BIT(power_domain);
10598
10599 /*
10600 * The PLL needs to be enabled with a valid divider
10601 * configuration, otherwise accessing DSI registers will hang
10602 * the machine. See BSpec North Display Engine
10603 * registers/MIPI[BXT]. We can break out here early, since we
10604 * need the same DSI PLL to be enabled for both DSI ports.
10605 */
10606 if (!intel_dsi_pll_is_enabled(dev_priv))
10607 break;
10608
10609 /* XXX: this works for video mode only */
10610 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10611 if (!(tmp & DPI_ENABLE))
10612 continue;
10613
10614 tmp = I915_READ(MIPI_CTRL(port));
10615 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10616 continue;
10617
10618 pipe_config->cpu_transcoder = cpu_transcoder;
10619 break;
10620 }
10621
10622 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10623 }
10624
10625 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10626 struct intel_crtc_state *pipe_config)
10627 {
10628 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10629 struct intel_shared_dpll *pll;
10630 enum port port;
10631 uint32_t tmp;
10632
10633 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10634
10635 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10636
10637 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10638 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10639 else if (IS_BROXTON(dev_priv))
10640 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10641 else
10642 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10643
10644 pll = pipe_config->shared_dpll;
10645 if (pll) {
10646 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10647 &pipe_config->dpll_hw_state));
10648 }
10649
10650 /*
10651 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10652 * DDI E. So just check whether this pipe is wired to DDI E and whether
10653 * the PCH transcoder is on.
10654 */
10655 if (INTEL_GEN(dev_priv) < 9 &&
10656 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10657 pipe_config->has_pch_encoder = true;
10658
10659 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10660 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10661 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10662
10663 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10664 }
10665 }
10666
10667 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10668 struct intel_crtc_state *pipe_config)
10669 {
10670 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10671 enum intel_display_power_domain power_domain;
10672 unsigned long power_domain_mask;
10673 bool active;
10674
10675 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10676 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10677 return false;
10678 power_domain_mask = BIT(power_domain);
10679
10680 pipe_config->shared_dpll = NULL;
10681
10682 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10683
10684 if (IS_BROXTON(dev_priv) &&
10685 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10686 WARN_ON(active);
10687 active = true;
10688 }
10689
10690 if (!active)
10691 goto out;
10692
10693 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10694 haswell_get_ddi_port_state(crtc, pipe_config);
10695 intel_get_pipe_timings(crtc, pipe_config);
10696 }
10697
10698 intel_get_pipe_src_size(crtc, pipe_config);
10699
10700 pipe_config->gamma_mode =
10701 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10702
10703 if (INTEL_GEN(dev_priv) >= 9) {
10704 skl_init_scalers(dev_priv, crtc, pipe_config);
10705
10706 pipe_config->scaler_state.scaler_id = -1;
10707 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10708 }
10709
10710 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10711 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10712 power_domain_mask |= BIT(power_domain);
10713 if (INTEL_GEN(dev_priv) >= 9)
10714 skylake_get_pfit_config(crtc, pipe_config);
10715 else
10716 ironlake_get_pfit_config(crtc, pipe_config);
10717 }
10718
10719 if (IS_HASWELL(dev_priv))
10720 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10721 (I915_READ(IPS_CTL) & IPS_ENABLE);
10722
10723 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10724 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10725 pipe_config->pixel_multiplier =
10726 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10727 } else {
10728 pipe_config->pixel_multiplier = 1;
10729 }
10730
10731 out:
10732 for_each_power_domain(power_domain, power_domain_mask)
10733 intel_display_power_put(dev_priv, power_domain);
10734
10735 return active;
10736 }
10737
10738 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10739 const struct intel_plane_state *plane_state)
10740 {
10741 struct drm_device *dev = crtc->dev;
10742 struct drm_i915_private *dev_priv = to_i915(dev);
10743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10744 uint32_t cntl = 0, size = 0;
10745
10746 if (plane_state && plane_state->base.visible) {
10747 unsigned int width = plane_state->base.crtc_w;
10748 unsigned int height = plane_state->base.crtc_h;
10749 unsigned int stride = roundup_pow_of_two(width) * 4;
10750
10751 switch (stride) {
10752 default:
10753 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10754 width, stride);
10755 stride = 256;
10756 /* fallthrough */
10757 case 256:
10758 case 512:
10759 case 1024:
10760 case 2048:
10761 break;
10762 }
10763
10764 cntl |= CURSOR_ENABLE |
10765 CURSOR_GAMMA_ENABLE |
10766 CURSOR_FORMAT_ARGB |
10767 CURSOR_STRIDE(stride);
10768
10769 size = (height << 12) | width;
10770 }
10771
10772 if (intel_crtc->cursor_cntl != 0 &&
10773 (intel_crtc->cursor_base != base ||
10774 intel_crtc->cursor_size != size ||
10775 intel_crtc->cursor_cntl != cntl)) {
10776 /* On these chipsets we can only modify the base/size/stride
10777 * whilst the cursor is disabled.
10778 */
10779 I915_WRITE(CURCNTR(PIPE_A), 0);
10780 POSTING_READ(CURCNTR(PIPE_A));
10781 intel_crtc->cursor_cntl = 0;
10782 }
10783
10784 if (intel_crtc->cursor_base != base) {
10785 I915_WRITE(CURBASE(PIPE_A), base);
10786 intel_crtc->cursor_base = base;
10787 }
10788
10789 if (intel_crtc->cursor_size != size) {
10790 I915_WRITE(CURSIZE, size);
10791 intel_crtc->cursor_size = size;
10792 }
10793
10794 if (intel_crtc->cursor_cntl != cntl) {
10795 I915_WRITE(CURCNTR(PIPE_A), cntl);
10796 POSTING_READ(CURCNTR(PIPE_A));
10797 intel_crtc->cursor_cntl = cntl;
10798 }
10799 }
10800
10801 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10802 const struct intel_plane_state *plane_state)
10803 {
10804 struct drm_device *dev = crtc->dev;
10805 struct drm_i915_private *dev_priv = to_i915(dev);
10806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10807 int pipe = intel_crtc->pipe;
10808 uint32_t cntl = 0;
10809
10810 if (plane_state && plane_state->base.visible) {
10811 cntl = MCURSOR_GAMMA_ENABLE;
10812 switch (plane_state->base.crtc_w) {
10813 case 64:
10814 cntl |= CURSOR_MODE_64_ARGB_AX;
10815 break;
10816 case 128:
10817 cntl |= CURSOR_MODE_128_ARGB_AX;
10818 break;
10819 case 256:
10820 cntl |= CURSOR_MODE_256_ARGB_AX;
10821 break;
10822 default:
10823 MISSING_CASE(plane_state->base.crtc_w);
10824 return;
10825 }
10826 cntl |= pipe << 28; /* Connect to correct pipe */
10827
10828 if (HAS_DDI(dev_priv))
10829 cntl |= CURSOR_PIPE_CSC_ENABLE;
10830
10831 if (plane_state->base.rotation & DRM_ROTATE_180)
10832 cntl |= CURSOR_ROTATE_180;
10833 }
10834
10835 if (intel_crtc->cursor_cntl != cntl) {
10836 I915_WRITE(CURCNTR(pipe), cntl);
10837 POSTING_READ(CURCNTR(pipe));
10838 intel_crtc->cursor_cntl = cntl;
10839 }
10840
10841 /* and commit changes on next vblank */
10842 I915_WRITE(CURBASE(pipe), base);
10843 POSTING_READ(CURBASE(pipe));
10844
10845 intel_crtc->cursor_base = base;
10846 }
10847
10848 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10849 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10850 const struct intel_plane_state *plane_state)
10851 {
10852 struct drm_device *dev = crtc->dev;
10853 struct drm_i915_private *dev_priv = to_i915(dev);
10854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10855 int pipe = intel_crtc->pipe;
10856 u32 base = intel_crtc->cursor_addr;
10857 u32 pos = 0;
10858
10859 if (plane_state) {
10860 int x = plane_state->base.crtc_x;
10861 int y = plane_state->base.crtc_y;
10862
10863 if (x < 0) {
10864 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10865 x = -x;
10866 }
10867 pos |= x << CURSOR_X_SHIFT;
10868
10869 if (y < 0) {
10870 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10871 y = -y;
10872 }
10873 pos |= y << CURSOR_Y_SHIFT;
10874
10875 /* ILK+ do this automagically */
10876 if (HAS_GMCH_DISPLAY(dev_priv) &&
10877 plane_state->base.rotation & DRM_ROTATE_180) {
10878 base += (plane_state->base.crtc_h *
10879 plane_state->base.crtc_w - 1) * 4;
10880 }
10881 }
10882
10883 I915_WRITE(CURPOS(pipe), pos);
10884
10885 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10886 i845_update_cursor(crtc, base, plane_state);
10887 else
10888 i9xx_update_cursor(crtc, base, plane_state);
10889 }
10890
10891 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10892 uint32_t width, uint32_t height)
10893 {
10894 if (width == 0 || height == 0)
10895 return false;
10896
10897 /*
10898 * 845g/865g are special in that they are only limited by
10899 * the width of their cursors, the height is arbitrary up to
10900 * the precision of the register. Everything else requires
10901 * square cursors, limited to a few power-of-two sizes.
10902 */
10903 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10904 if ((width & 63) != 0)
10905 return false;
10906
10907 if (width > (IS_845G(dev_priv) ? 64 : 512))
10908 return false;
10909
10910 if (height > 1023)
10911 return false;
10912 } else {
10913 switch (width | height) {
10914 case 256:
10915 case 128:
10916 if (IS_GEN2(dev_priv))
10917 return false;
10918 case 64:
10919 break;
10920 default:
10921 return false;
10922 }
10923 }
10924
10925 return true;
10926 }
10927
10928 /* VESA 640x480x72Hz mode to set on the pipe */
10929 static struct drm_display_mode load_detect_mode = {
10930 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10931 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10932 };
10933
10934 struct drm_framebuffer *
10935 __intel_framebuffer_create(struct drm_device *dev,
10936 struct drm_mode_fb_cmd2 *mode_cmd,
10937 struct drm_i915_gem_object *obj)
10938 {
10939 struct intel_framebuffer *intel_fb;
10940 int ret;
10941
10942 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10943 if (!intel_fb)
10944 return ERR_PTR(-ENOMEM);
10945
10946 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10947 if (ret)
10948 goto err;
10949
10950 return &intel_fb->base;
10951
10952 err:
10953 kfree(intel_fb);
10954 return ERR_PTR(ret);
10955 }
10956
10957 static struct drm_framebuffer *
10958 intel_framebuffer_create(struct drm_device *dev,
10959 struct drm_mode_fb_cmd2 *mode_cmd,
10960 struct drm_i915_gem_object *obj)
10961 {
10962 struct drm_framebuffer *fb;
10963 int ret;
10964
10965 ret = i915_mutex_lock_interruptible(dev);
10966 if (ret)
10967 return ERR_PTR(ret);
10968 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10969 mutex_unlock(&dev->struct_mutex);
10970
10971 return fb;
10972 }
10973
10974 static u32
10975 intel_framebuffer_pitch_for_width(int width, int bpp)
10976 {
10977 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10978 return ALIGN(pitch, 64);
10979 }
10980
10981 static u32
10982 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10983 {
10984 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10985 return PAGE_ALIGN(pitch * mode->vdisplay);
10986 }
10987
10988 static struct drm_framebuffer *
10989 intel_framebuffer_create_for_mode(struct drm_device *dev,
10990 struct drm_display_mode *mode,
10991 int depth, int bpp)
10992 {
10993 struct drm_framebuffer *fb;
10994 struct drm_i915_gem_object *obj;
10995 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10996
10997 obj = i915_gem_object_create(dev,
10998 intel_framebuffer_size_for_mode(mode, bpp));
10999 if (IS_ERR(obj))
11000 return ERR_CAST(obj);
11001
11002 mode_cmd.width = mode->hdisplay;
11003 mode_cmd.height = mode->vdisplay;
11004 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11005 bpp);
11006 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11007
11008 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11009 if (IS_ERR(fb))
11010 i915_gem_object_put(obj);
11011
11012 return fb;
11013 }
11014
11015 static struct drm_framebuffer *
11016 mode_fits_in_fbdev(struct drm_device *dev,
11017 struct drm_display_mode *mode)
11018 {
11019 #ifdef CONFIG_DRM_FBDEV_EMULATION
11020 struct drm_i915_private *dev_priv = to_i915(dev);
11021 struct drm_i915_gem_object *obj;
11022 struct drm_framebuffer *fb;
11023
11024 if (!dev_priv->fbdev)
11025 return NULL;
11026
11027 if (!dev_priv->fbdev->fb)
11028 return NULL;
11029
11030 obj = dev_priv->fbdev->fb->obj;
11031 BUG_ON(!obj);
11032
11033 fb = &dev_priv->fbdev->fb->base;
11034 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11035 fb->bits_per_pixel))
11036 return NULL;
11037
11038 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11039 return NULL;
11040
11041 drm_framebuffer_reference(fb);
11042 return fb;
11043 #else
11044 return NULL;
11045 #endif
11046 }
11047
11048 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11049 struct drm_crtc *crtc,
11050 struct drm_display_mode *mode,
11051 struct drm_framebuffer *fb,
11052 int x, int y)
11053 {
11054 struct drm_plane_state *plane_state;
11055 int hdisplay, vdisplay;
11056 int ret;
11057
11058 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11059 if (IS_ERR(plane_state))
11060 return PTR_ERR(plane_state);
11061
11062 if (mode)
11063 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11064 else
11065 hdisplay = vdisplay = 0;
11066
11067 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11068 if (ret)
11069 return ret;
11070 drm_atomic_set_fb_for_plane(plane_state, fb);
11071 plane_state->crtc_x = 0;
11072 plane_state->crtc_y = 0;
11073 plane_state->crtc_w = hdisplay;
11074 plane_state->crtc_h = vdisplay;
11075 plane_state->src_x = x << 16;
11076 plane_state->src_y = y << 16;
11077 plane_state->src_w = hdisplay << 16;
11078 plane_state->src_h = vdisplay << 16;
11079
11080 return 0;
11081 }
11082
11083 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11084 struct drm_display_mode *mode,
11085 struct intel_load_detect_pipe *old,
11086 struct drm_modeset_acquire_ctx *ctx)
11087 {
11088 struct intel_crtc *intel_crtc;
11089 struct intel_encoder *intel_encoder =
11090 intel_attached_encoder(connector);
11091 struct drm_crtc *possible_crtc;
11092 struct drm_encoder *encoder = &intel_encoder->base;
11093 struct drm_crtc *crtc = NULL;
11094 struct drm_device *dev = encoder->dev;
11095 struct drm_i915_private *dev_priv = to_i915(dev);
11096 struct drm_framebuffer *fb;
11097 struct drm_mode_config *config = &dev->mode_config;
11098 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11099 struct drm_connector_state *connector_state;
11100 struct intel_crtc_state *crtc_state;
11101 int ret, i = -1;
11102
11103 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11104 connector->base.id, connector->name,
11105 encoder->base.id, encoder->name);
11106
11107 old->restore_state = NULL;
11108
11109 retry:
11110 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11111 if (ret)
11112 goto fail;
11113
11114 /*
11115 * Algorithm gets a little messy:
11116 *
11117 * - if the connector already has an assigned crtc, use it (but make
11118 * sure it's on first)
11119 *
11120 * - try to find the first unused crtc that can drive this connector,
11121 * and use that if we find one
11122 */
11123
11124 /* See if we already have a CRTC for this connector */
11125 if (connector->state->crtc) {
11126 crtc = connector->state->crtc;
11127
11128 ret = drm_modeset_lock(&crtc->mutex, ctx);
11129 if (ret)
11130 goto fail;
11131
11132 /* Make sure the crtc and connector are running */
11133 goto found;
11134 }
11135
11136 /* Find an unused one (if possible) */
11137 for_each_crtc(dev, possible_crtc) {
11138 i++;
11139 if (!(encoder->possible_crtcs & (1 << i)))
11140 continue;
11141
11142 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11143 if (ret)
11144 goto fail;
11145
11146 if (possible_crtc->state->enable) {
11147 drm_modeset_unlock(&possible_crtc->mutex);
11148 continue;
11149 }
11150
11151 crtc = possible_crtc;
11152 break;
11153 }
11154
11155 /*
11156 * If we didn't find an unused CRTC, don't use any.
11157 */
11158 if (!crtc) {
11159 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11160 goto fail;
11161 }
11162
11163 found:
11164 intel_crtc = to_intel_crtc(crtc);
11165
11166 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11167 if (ret)
11168 goto fail;
11169
11170 state = drm_atomic_state_alloc(dev);
11171 restore_state = drm_atomic_state_alloc(dev);
11172 if (!state || !restore_state) {
11173 ret = -ENOMEM;
11174 goto fail;
11175 }
11176
11177 state->acquire_ctx = ctx;
11178 restore_state->acquire_ctx = ctx;
11179
11180 connector_state = drm_atomic_get_connector_state(state, connector);
11181 if (IS_ERR(connector_state)) {
11182 ret = PTR_ERR(connector_state);
11183 goto fail;
11184 }
11185
11186 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11187 if (ret)
11188 goto fail;
11189
11190 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11191 if (IS_ERR(crtc_state)) {
11192 ret = PTR_ERR(crtc_state);
11193 goto fail;
11194 }
11195
11196 crtc_state->base.active = crtc_state->base.enable = true;
11197
11198 if (!mode)
11199 mode = &load_detect_mode;
11200
11201 /* We need a framebuffer large enough to accommodate all accesses
11202 * that the plane may generate whilst we perform load detection.
11203 * We can not rely on the fbcon either being present (we get called
11204 * during its initialisation to detect all boot displays, or it may
11205 * not even exist) or that it is large enough to satisfy the
11206 * requested mode.
11207 */
11208 fb = mode_fits_in_fbdev(dev, mode);
11209 if (fb == NULL) {
11210 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11211 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11212 } else
11213 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11214 if (IS_ERR(fb)) {
11215 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11216 goto fail;
11217 }
11218
11219 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11220 if (ret)
11221 goto fail;
11222
11223 drm_framebuffer_unreference(fb);
11224
11225 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11226 if (ret)
11227 goto fail;
11228
11229 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11230 if (!ret)
11231 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11232 if (!ret)
11233 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11234 if (ret) {
11235 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11236 goto fail;
11237 }
11238
11239 ret = drm_atomic_commit(state);
11240 if (ret) {
11241 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11242 goto fail;
11243 }
11244
11245 old->restore_state = restore_state;
11246
11247 /* let the connector get through one full cycle before testing */
11248 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11249 return true;
11250
11251 fail:
11252 if (state) {
11253 drm_atomic_state_put(state);
11254 state = NULL;
11255 }
11256 if (restore_state) {
11257 drm_atomic_state_put(restore_state);
11258 restore_state = NULL;
11259 }
11260
11261 if (ret == -EDEADLK) {
11262 drm_modeset_backoff(ctx);
11263 goto retry;
11264 }
11265
11266 return false;
11267 }
11268
11269 void intel_release_load_detect_pipe(struct drm_connector *connector,
11270 struct intel_load_detect_pipe *old,
11271 struct drm_modeset_acquire_ctx *ctx)
11272 {
11273 struct intel_encoder *intel_encoder =
11274 intel_attached_encoder(connector);
11275 struct drm_encoder *encoder = &intel_encoder->base;
11276 struct drm_atomic_state *state = old->restore_state;
11277 int ret;
11278
11279 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11280 connector->base.id, connector->name,
11281 encoder->base.id, encoder->name);
11282
11283 if (!state)
11284 return;
11285
11286 ret = drm_atomic_commit(state);
11287 if (ret)
11288 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11289 drm_atomic_state_put(state);
11290 }
11291
11292 static int i9xx_pll_refclk(struct drm_device *dev,
11293 const struct intel_crtc_state *pipe_config)
11294 {
11295 struct drm_i915_private *dev_priv = to_i915(dev);
11296 u32 dpll = pipe_config->dpll_hw_state.dpll;
11297
11298 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11299 return dev_priv->vbt.lvds_ssc_freq;
11300 else if (HAS_PCH_SPLIT(dev_priv))
11301 return 120000;
11302 else if (!IS_GEN2(dev_priv))
11303 return 96000;
11304 else
11305 return 48000;
11306 }
11307
11308 /* Returns the clock of the currently programmed mode of the given pipe. */
11309 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11310 struct intel_crtc_state *pipe_config)
11311 {
11312 struct drm_device *dev = crtc->base.dev;
11313 struct drm_i915_private *dev_priv = to_i915(dev);
11314 int pipe = pipe_config->cpu_transcoder;
11315 u32 dpll = pipe_config->dpll_hw_state.dpll;
11316 u32 fp;
11317 struct dpll clock;
11318 int port_clock;
11319 int refclk = i9xx_pll_refclk(dev, pipe_config);
11320
11321 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11322 fp = pipe_config->dpll_hw_state.fp0;
11323 else
11324 fp = pipe_config->dpll_hw_state.fp1;
11325
11326 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11327 if (IS_PINEVIEW(dev_priv)) {
11328 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11329 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11330 } else {
11331 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11332 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11333 }
11334
11335 if (!IS_GEN2(dev_priv)) {
11336 if (IS_PINEVIEW(dev_priv))
11337 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11338 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11339 else
11340 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11341 DPLL_FPA01_P1_POST_DIV_SHIFT);
11342
11343 switch (dpll & DPLL_MODE_MASK) {
11344 case DPLLB_MODE_DAC_SERIAL:
11345 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11346 5 : 10;
11347 break;
11348 case DPLLB_MODE_LVDS:
11349 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11350 7 : 14;
11351 break;
11352 default:
11353 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11354 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11355 return;
11356 }
11357
11358 if (IS_PINEVIEW(dev_priv))
11359 port_clock = pnv_calc_dpll_params(refclk, &clock);
11360 else
11361 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11362 } else {
11363 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11364 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11365
11366 if (is_lvds) {
11367 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11368 DPLL_FPA01_P1_POST_DIV_SHIFT);
11369
11370 if (lvds & LVDS_CLKB_POWER_UP)
11371 clock.p2 = 7;
11372 else
11373 clock.p2 = 14;
11374 } else {
11375 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11376 clock.p1 = 2;
11377 else {
11378 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11379 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11380 }
11381 if (dpll & PLL_P2_DIVIDE_BY_4)
11382 clock.p2 = 4;
11383 else
11384 clock.p2 = 2;
11385 }
11386
11387 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11388 }
11389
11390 /*
11391 * This value includes pixel_multiplier. We will use
11392 * port_clock to compute adjusted_mode.crtc_clock in the
11393 * encoder's get_config() function.
11394 */
11395 pipe_config->port_clock = port_clock;
11396 }
11397
11398 int intel_dotclock_calculate(int link_freq,
11399 const struct intel_link_m_n *m_n)
11400 {
11401 /*
11402 * The calculation for the data clock is:
11403 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11404 * But we want to avoid losing precison if possible, so:
11405 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11406 *
11407 * and the link clock is simpler:
11408 * link_clock = (m * link_clock) / n
11409 */
11410
11411 if (!m_n->link_n)
11412 return 0;
11413
11414 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11415 }
11416
11417 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11418 struct intel_crtc_state *pipe_config)
11419 {
11420 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11421
11422 /* read out port_clock from the DPLL */
11423 i9xx_crtc_clock_get(crtc, pipe_config);
11424
11425 /*
11426 * In case there is an active pipe without active ports,
11427 * we may need some idea for the dotclock anyway.
11428 * Calculate one based on the FDI configuration.
11429 */
11430 pipe_config->base.adjusted_mode.crtc_clock =
11431 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11432 &pipe_config->fdi_m_n);
11433 }
11434
11435 /** Returns the currently programmed mode of the given pipe. */
11436 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11437 struct drm_crtc *crtc)
11438 {
11439 struct drm_i915_private *dev_priv = to_i915(dev);
11440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11441 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11442 struct drm_display_mode *mode;
11443 struct intel_crtc_state *pipe_config;
11444 int htot = I915_READ(HTOTAL(cpu_transcoder));
11445 int hsync = I915_READ(HSYNC(cpu_transcoder));
11446 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11447 int vsync = I915_READ(VSYNC(cpu_transcoder));
11448 enum pipe pipe = intel_crtc->pipe;
11449
11450 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11451 if (!mode)
11452 return NULL;
11453
11454 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11455 if (!pipe_config) {
11456 kfree(mode);
11457 return NULL;
11458 }
11459
11460 /*
11461 * Construct a pipe_config sufficient for getting the clock info
11462 * back out of crtc_clock_get.
11463 *
11464 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11465 * to use a real value here instead.
11466 */
11467 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11468 pipe_config->pixel_multiplier = 1;
11469 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11470 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11471 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11472 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11473
11474 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11475 mode->hdisplay = (htot & 0xffff) + 1;
11476 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11477 mode->hsync_start = (hsync & 0xffff) + 1;
11478 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11479 mode->vdisplay = (vtot & 0xffff) + 1;
11480 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11481 mode->vsync_start = (vsync & 0xffff) + 1;
11482 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11483
11484 drm_mode_set_name(mode);
11485
11486 kfree(pipe_config);
11487
11488 return mode;
11489 }
11490
11491 static void intel_crtc_destroy(struct drm_crtc *crtc)
11492 {
11493 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11494 struct drm_device *dev = crtc->dev;
11495 struct intel_flip_work *work;
11496
11497 spin_lock_irq(&dev->event_lock);
11498 work = intel_crtc->flip_work;
11499 intel_crtc->flip_work = NULL;
11500 spin_unlock_irq(&dev->event_lock);
11501
11502 if (work) {
11503 cancel_work_sync(&work->mmio_work);
11504 cancel_work_sync(&work->unpin_work);
11505 kfree(work);
11506 }
11507
11508 drm_crtc_cleanup(crtc);
11509
11510 kfree(intel_crtc);
11511 }
11512
11513 static void intel_unpin_work_fn(struct work_struct *__work)
11514 {
11515 struct intel_flip_work *work =
11516 container_of(__work, struct intel_flip_work, unpin_work);
11517 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11518 struct drm_device *dev = crtc->base.dev;
11519 struct drm_plane *primary = crtc->base.primary;
11520
11521 if (is_mmio_work(work))
11522 flush_work(&work->mmio_work);
11523
11524 mutex_lock(&dev->struct_mutex);
11525 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11526 i915_gem_object_put(work->pending_flip_obj);
11527 mutex_unlock(&dev->struct_mutex);
11528
11529 i915_gem_request_put(work->flip_queued_req);
11530
11531 intel_frontbuffer_flip_complete(to_i915(dev),
11532 to_intel_plane(primary)->frontbuffer_bit);
11533 intel_fbc_post_update(crtc);
11534 drm_framebuffer_unreference(work->old_fb);
11535
11536 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11537 atomic_dec(&crtc->unpin_work_count);
11538
11539 kfree(work);
11540 }
11541
11542 /* Is 'a' after or equal to 'b'? */
11543 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11544 {
11545 return !((a - b) & 0x80000000);
11546 }
11547
11548 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11549 struct intel_flip_work *work)
11550 {
11551 struct drm_device *dev = crtc->base.dev;
11552 struct drm_i915_private *dev_priv = to_i915(dev);
11553
11554 if (abort_flip_on_reset(crtc))
11555 return true;
11556
11557 /*
11558 * The relevant registers doen't exist on pre-ctg.
11559 * As the flip done interrupt doesn't trigger for mmio
11560 * flips on gmch platforms, a flip count check isn't
11561 * really needed there. But since ctg has the registers,
11562 * include it in the check anyway.
11563 */
11564 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11565 return true;
11566
11567 /*
11568 * BDW signals flip done immediately if the plane
11569 * is disabled, even if the plane enable is already
11570 * armed to occur at the next vblank :(
11571 */
11572
11573 /*
11574 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11575 * used the same base address. In that case the mmio flip might
11576 * have completed, but the CS hasn't even executed the flip yet.
11577 *
11578 * A flip count check isn't enough as the CS might have updated
11579 * the base address just after start of vblank, but before we
11580 * managed to process the interrupt. This means we'd complete the
11581 * CS flip too soon.
11582 *
11583 * Combining both checks should get us a good enough result. It may
11584 * still happen that the CS flip has been executed, but has not
11585 * yet actually completed. But in case the base address is the same
11586 * anyway, we don't really care.
11587 */
11588 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11589 crtc->flip_work->gtt_offset &&
11590 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11591 crtc->flip_work->flip_count);
11592 }
11593
11594 static bool
11595 __pageflip_finished_mmio(struct intel_crtc *crtc,
11596 struct intel_flip_work *work)
11597 {
11598 /*
11599 * MMIO work completes when vblank is different from
11600 * flip_queued_vblank.
11601 *
11602 * Reset counter value doesn't matter, this is handled by
11603 * i915_wait_request finishing early, so no need to handle
11604 * reset here.
11605 */
11606 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11607 }
11608
11609
11610 static bool pageflip_finished(struct intel_crtc *crtc,
11611 struct intel_flip_work *work)
11612 {
11613 if (!atomic_read(&work->pending))
11614 return false;
11615
11616 smp_rmb();
11617
11618 if (is_mmio_work(work))
11619 return __pageflip_finished_mmio(crtc, work);
11620 else
11621 return __pageflip_finished_cs(crtc, work);
11622 }
11623
11624 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11625 {
11626 struct drm_device *dev = &dev_priv->drm;
11627 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11628 struct intel_flip_work *work;
11629 unsigned long flags;
11630
11631 /* Ignore early vblank irqs */
11632 if (!crtc)
11633 return;
11634
11635 /*
11636 * This is called both by irq handlers and the reset code (to complete
11637 * lost pageflips) so needs the full irqsave spinlocks.
11638 */
11639 spin_lock_irqsave(&dev->event_lock, flags);
11640 work = crtc->flip_work;
11641
11642 if (work != NULL &&
11643 !is_mmio_work(work) &&
11644 pageflip_finished(crtc, work))
11645 page_flip_completed(crtc);
11646
11647 spin_unlock_irqrestore(&dev->event_lock, flags);
11648 }
11649
11650 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11651 {
11652 struct drm_device *dev = &dev_priv->drm;
11653 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11654 struct intel_flip_work *work;
11655 unsigned long flags;
11656
11657 /* Ignore early vblank irqs */
11658 if (!crtc)
11659 return;
11660
11661 /*
11662 * This is called both by irq handlers and the reset code (to complete
11663 * lost pageflips) so needs the full irqsave spinlocks.
11664 */
11665 spin_lock_irqsave(&dev->event_lock, flags);
11666 work = crtc->flip_work;
11667
11668 if (work != NULL &&
11669 is_mmio_work(work) &&
11670 pageflip_finished(crtc, work))
11671 page_flip_completed(crtc);
11672
11673 spin_unlock_irqrestore(&dev->event_lock, flags);
11674 }
11675
11676 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11677 struct intel_flip_work *work)
11678 {
11679 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11680
11681 /* Ensure that the work item is consistent when activating it ... */
11682 smp_mb__before_atomic();
11683 atomic_set(&work->pending, 1);
11684 }
11685
11686 static int intel_gen2_queue_flip(struct drm_device *dev,
11687 struct drm_crtc *crtc,
11688 struct drm_framebuffer *fb,
11689 struct drm_i915_gem_object *obj,
11690 struct drm_i915_gem_request *req,
11691 uint32_t flags)
11692 {
11693 struct intel_ring *ring = req->ring;
11694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11695 u32 flip_mask;
11696 int ret;
11697
11698 ret = intel_ring_begin(req, 6);
11699 if (ret)
11700 return ret;
11701
11702 /* Can't queue multiple flips, so wait for the previous
11703 * one to finish before executing the next.
11704 */
11705 if (intel_crtc->plane)
11706 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11707 else
11708 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11709 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11710 intel_ring_emit(ring, MI_NOOP);
11711 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11712 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11713 intel_ring_emit(ring, fb->pitches[0]);
11714 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11715 intel_ring_emit(ring, 0); /* aux display base address, unused */
11716
11717 return 0;
11718 }
11719
11720 static int intel_gen3_queue_flip(struct drm_device *dev,
11721 struct drm_crtc *crtc,
11722 struct drm_framebuffer *fb,
11723 struct drm_i915_gem_object *obj,
11724 struct drm_i915_gem_request *req,
11725 uint32_t flags)
11726 {
11727 struct intel_ring *ring = req->ring;
11728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11729 u32 flip_mask;
11730 int ret;
11731
11732 ret = intel_ring_begin(req, 6);
11733 if (ret)
11734 return ret;
11735
11736 if (intel_crtc->plane)
11737 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11738 else
11739 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11740 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11741 intel_ring_emit(ring, MI_NOOP);
11742 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11743 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11744 intel_ring_emit(ring, fb->pitches[0]);
11745 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11746 intel_ring_emit(ring, MI_NOOP);
11747
11748 return 0;
11749 }
11750
11751 static int intel_gen4_queue_flip(struct drm_device *dev,
11752 struct drm_crtc *crtc,
11753 struct drm_framebuffer *fb,
11754 struct drm_i915_gem_object *obj,
11755 struct drm_i915_gem_request *req,
11756 uint32_t flags)
11757 {
11758 struct intel_ring *ring = req->ring;
11759 struct drm_i915_private *dev_priv = to_i915(dev);
11760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11761 uint32_t pf, pipesrc;
11762 int ret;
11763
11764 ret = intel_ring_begin(req, 4);
11765 if (ret)
11766 return ret;
11767
11768 /* i965+ uses the linear or tiled offsets from the
11769 * Display Registers (which do not change across a page-flip)
11770 * so we need only reprogram the base address.
11771 */
11772 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11773 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11774 intel_ring_emit(ring, fb->pitches[0]);
11775 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11776 intel_fb_modifier_to_tiling(fb->modifier));
11777
11778 /* XXX Enabling the panel-fitter across page-flip is so far
11779 * untested on non-native modes, so ignore it for now.
11780 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11781 */
11782 pf = 0;
11783 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11784 intel_ring_emit(ring, pf | pipesrc);
11785
11786 return 0;
11787 }
11788
11789 static int intel_gen6_queue_flip(struct drm_device *dev,
11790 struct drm_crtc *crtc,
11791 struct drm_framebuffer *fb,
11792 struct drm_i915_gem_object *obj,
11793 struct drm_i915_gem_request *req,
11794 uint32_t flags)
11795 {
11796 struct intel_ring *ring = req->ring;
11797 struct drm_i915_private *dev_priv = to_i915(dev);
11798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11799 uint32_t pf, pipesrc;
11800 int ret;
11801
11802 ret = intel_ring_begin(req, 4);
11803 if (ret)
11804 return ret;
11805
11806 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11807 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11808 intel_ring_emit(ring, fb->pitches[0] |
11809 intel_fb_modifier_to_tiling(fb->modifier));
11810 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11811
11812 /* Contrary to the suggestions in the documentation,
11813 * "Enable Panel Fitter" does not seem to be required when page
11814 * flipping with a non-native mode, and worse causes a normal
11815 * modeset to fail.
11816 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11817 */
11818 pf = 0;
11819 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11820 intel_ring_emit(ring, pf | pipesrc);
11821
11822 return 0;
11823 }
11824
11825 static int intel_gen7_queue_flip(struct drm_device *dev,
11826 struct drm_crtc *crtc,
11827 struct drm_framebuffer *fb,
11828 struct drm_i915_gem_object *obj,
11829 struct drm_i915_gem_request *req,
11830 uint32_t flags)
11831 {
11832 struct drm_i915_private *dev_priv = to_i915(dev);
11833 struct intel_ring *ring = req->ring;
11834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11835 uint32_t plane_bit = 0;
11836 int len, ret;
11837
11838 switch (intel_crtc->plane) {
11839 case PLANE_A:
11840 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11841 break;
11842 case PLANE_B:
11843 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11844 break;
11845 case PLANE_C:
11846 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11847 break;
11848 default:
11849 WARN_ONCE(1, "unknown plane in flip command\n");
11850 return -ENODEV;
11851 }
11852
11853 len = 4;
11854 if (req->engine->id == RCS) {
11855 len += 6;
11856 /*
11857 * On Gen 8, SRM is now taking an extra dword to accommodate
11858 * 48bits addresses, and we need a NOOP for the batch size to
11859 * stay even.
11860 */
11861 if (IS_GEN8(dev_priv))
11862 len += 2;
11863 }
11864
11865 /*
11866 * BSpec MI_DISPLAY_FLIP for IVB:
11867 * "The full packet must be contained within the same cache line."
11868 *
11869 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11870 * cacheline, if we ever start emitting more commands before
11871 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11872 * then do the cacheline alignment, and finally emit the
11873 * MI_DISPLAY_FLIP.
11874 */
11875 ret = intel_ring_cacheline_align(req);
11876 if (ret)
11877 return ret;
11878
11879 ret = intel_ring_begin(req, len);
11880 if (ret)
11881 return ret;
11882
11883 /* Unmask the flip-done completion message. Note that the bspec says that
11884 * we should do this for both the BCS and RCS, and that we must not unmask
11885 * more than one flip event at any time (or ensure that one flip message
11886 * can be sent by waiting for flip-done prior to queueing new flips).
11887 * Experimentation says that BCS works despite DERRMR masking all
11888 * flip-done completion events and that unmasking all planes at once
11889 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11890 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11891 */
11892 if (req->engine->id == RCS) {
11893 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11894 intel_ring_emit_reg(ring, DERRMR);
11895 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11896 DERRMR_PIPEB_PRI_FLIP_DONE |
11897 DERRMR_PIPEC_PRI_FLIP_DONE));
11898 if (IS_GEN8(dev_priv))
11899 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11900 MI_SRM_LRM_GLOBAL_GTT);
11901 else
11902 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11903 MI_SRM_LRM_GLOBAL_GTT);
11904 intel_ring_emit_reg(ring, DERRMR);
11905 intel_ring_emit(ring,
11906 i915_ggtt_offset(req->engine->scratch) + 256);
11907 if (IS_GEN8(dev_priv)) {
11908 intel_ring_emit(ring, 0);
11909 intel_ring_emit(ring, MI_NOOP);
11910 }
11911 }
11912
11913 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11914 intel_ring_emit(ring, fb->pitches[0] |
11915 intel_fb_modifier_to_tiling(fb->modifier));
11916 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11917 intel_ring_emit(ring, (MI_NOOP));
11918
11919 return 0;
11920 }
11921
11922 static bool use_mmio_flip(struct intel_engine_cs *engine,
11923 struct drm_i915_gem_object *obj)
11924 {
11925 /*
11926 * This is not being used for older platforms, because
11927 * non-availability of flip done interrupt forces us to use
11928 * CS flips. Older platforms derive flip done using some clever
11929 * tricks involving the flip_pending status bits and vblank irqs.
11930 * So using MMIO flips there would disrupt this mechanism.
11931 */
11932
11933 if (engine == NULL)
11934 return true;
11935
11936 if (INTEL_GEN(engine->i915) < 5)
11937 return false;
11938
11939 if (i915.use_mmio_flip < 0)
11940 return false;
11941 else if (i915.use_mmio_flip > 0)
11942 return true;
11943 else if (i915.enable_execlists)
11944 return true;
11945
11946 return engine != i915_gem_object_last_write_engine(obj);
11947 }
11948
11949 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11950 unsigned int rotation,
11951 struct intel_flip_work *work)
11952 {
11953 struct drm_device *dev = intel_crtc->base.dev;
11954 struct drm_i915_private *dev_priv = to_i915(dev);
11955 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11956 const enum pipe pipe = intel_crtc->pipe;
11957 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11958
11959 ctl = I915_READ(PLANE_CTL(pipe, 0));
11960 ctl &= ~PLANE_CTL_TILED_MASK;
11961 switch (fb->modifier) {
11962 case DRM_FORMAT_MOD_NONE:
11963 break;
11964 case I915_FORMAT_MOD_X_TILED:
11965 ctl |= PLANE_CTL_TILED_X;
11966 break;
11967 case I915_FORMAT_MOD_Y_TILED:
11968 ctl |= PLANE_CTL_TILED_Y;
11969 break;
11970 case I915_FORMAT_MOD_Yf_TILED:
11971 ctl |= PLANE_CTL_TILED_YF;
11972 break;
11973 default:
11974 MISSING_CASE(fb->modifier);
11975 }
11976
11977 /*
11978 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11979 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11980 */
11981 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11982 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11983
11984 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11985 POSTING_READ(PLANE_SURF(pipe, 0));
11986 }
11987
11988 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11989 struct intel_flip_work *work)
11990 {
11991 struct drm_device *dev = intel_crtc->base.dev;
11992 struct drm_i915_private *dev_priv = to_i915(dev);
11993 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11994 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11995 u32 dspcntr;
11996
11997 dspcntr = I915_READ(reg);
11998
11999 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12000 dspcntr |= DISPPLANE_TILED;
12001 else
12002 dspcntr &= ~DISPPLANE_TILED;
12003
12004 I915_WRITE(reg, dspcntr);
12005
12006 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12007 POSTING_READ(DSPSURF(intel_crtc->plane));
12008 }
12009
12010 static void intel_mmio_flip_work_func(struct work_struct *w)
12011 {
12012 struct intel_flip_work *work =
12013 container_of(w, struct intel_flip_work, mmio_work);
12014 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12016 struct intel_framebuffer *intel_fb =
12017 to_intel_framebuffer(crtc->base.primary->fb);
12018 struct drm_i915_gem_object *obj = intel_fb->obj;
12019
12020 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12021
12022 intel_pipe_update_start(crtc);
12023
12024 if (INTEL_GEN(dev_priv) >= 9)
12025 skl_do_mmio_flip(crtc, work->rotation, work);
12026 else
12027 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12028 ilk_do_mmio_flip(crtc, work);
12029
12030 intel_pipe_update_end(crtc, work);
12031 }
12032
12033 static int intel_default_queue_flip(struct drm_device *dev,
12034 struct drm_crtc *crtc,
12035 struct drm_framebuffer *fb,
12036 struct drm_i915_gem_object *obj,
12037 struct drm_i915_gem_request *req,
12038 uint32_t flags)
12039 {
12040 return -ENODEV;
12041 }
12042
12043 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12044 struct intel_crtc *intel_crtc,
12045 struct intel_flip_work *work)
12046 {
12047 u32 addr, vblank;
12048
12049 if (!atomic_read(&work->pending))
12050 return false;
12051
12052 smp_rmb();
12053
12054 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12055 if (work->flip_ready_vblank == 0) {
12056 if (work->flip_queued_req &&
12057 !i915_gem_request_completed(work->flip_queued_req))
12058 return false;
12059
12060 work->flip_ready_vblank = vblank;
12061 }
12062
12063 if (vblank - work->flip_ready_vblank < 3)
12064 return false;
12065
12066 /* Potential stall - if we see that the flip has happened,
12067 * assume a missed interrupt. */
12068 if (INTEL_GEN(dev_priv) >= 4)
12069 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12070 else
12071 addr = I915_READ(DSPADDR(intel_crtc->plane));
12072
12073 /* There is a potential issue here with a false positive after a flip
12074 * to the same address. We could address this by checking for a
12075 * non-incrementing frame counter.
12076 */
12077 return addr == work->gtt_offset;
12078 }
12079
12080 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12081 {
12082 struct drm_device *dev = &dev_priv->drm;
12083 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12084 struct intel_flip_work *work;
12085
12086 WARN_ON(!in_interrupt());
12087
12088 if (crtc == NULL)
12089 return;
12090
12091 spin_lock(&dev->event_lock);
12092 work = crtc->flip_work;
12093
12094 if (work != NULL && !is_mmio_work(work) &&
12095 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12096 WARN_ONCE(1,
12097 "Kicking stuck page flip: queued at %d, now %d\n",
12098 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12099 page_flip_completed(crtc);
12100 work = NULL;
12101 }
12102
12103 if (work != NULL && !is_mmio_work(work) &&
12104 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12105 intel_queue_rps_boost_for_request(work->flip_queued_req);
12106 spin_unlock(&dev->event_lock);
12107 }
12108
12109 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12110 struct drm_framebuffer *fb,
12111 struct drm_pending_vblank_event *event,
12112 uint32_t page_flip_flags)
12113 {
12114 struct drm_device *dev = crtc->dev;
12115 struct drm_i915_private *dev_priv = to_i915(dev);
12116 struct drm_framebuffer *old_fb = crtc->primary->fb;
12117 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12119 struct drm_plane *primary = crtc->primary;
12120 enum pipe pipe = intel_crtc->pipe;
12121 struct intel_flip_work *work;
12122 struct intel_engine_cs *engine;
12123 bool mmio_flip;
12124 struct drm_i915_gem_request *request;
12125 struct i915_vma *vma;
12126 int ret;
12127
12128 /*
12129 * drm_mode_page_flip_ioctl() should already catch this, but double
12130 * check to be safe. In the future we may enable pageflipping from
12131 * a disabled primary plane.
12132 */
12133 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12134 return -EBUSY;
12135
12136 /* Can't change pixel format via MI display flips. */
12137 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12138 return -EINVAL;
12139
12140 /*
12141 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12142 * Note that pitch changes could also affect these register.
12143 */
12144 if (INTEL_GEN(dev_priv) > 3 &&
12145 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12146 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12147 return -EINVAL;
12148
12149 if (i915_terminally_wedged(&dev_priv->gpu_error))
12150 goto out_hang;
12151
12152 work = kzalloc(sizeof(*work), GFP_KERNEL);
12153 if (work == NULL)
12154 return -ENOMEM;
12155
12156 work->event = event;
12157 work->crtc = crtc;
12158 work->old_fb = old_fb;
12159 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12160
12161 ret = drm_crtc_vblank_get(crtc);
12162 if (ret)
12163 goto free_work;
12164
12165 /* We borrow the event spin lock for protecting flip_work */
12166 spin_lock_irq(&dev->event_lock);
12167 if (intel_crtc->flip_work) {
12168 /* Before declaring the flip queue wedged, check if
12169 * the hardware completed the operation behind our backs.
12170 */
12171 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12172 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12173 page_flip_completed(intel_crtc);
12174 } else {
12175 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12176 spin_unlock_irq(&dev->event_lock);
12177
12178 drm_crtc_vblank_put(crtc);
12179 kfree(work);
12180 return -EBUSY;
12181 }
12182 }
12183 intel_crtc->flip_work = work;
12184 spin_unlock_irq(&dev->event_lock);
12185
12186 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12187 flush_workqueue(dev_priv->wq);
12188
12189 /* Reference the objects for the scheduled work. */
12190 drm_framebuffer_reference(work->old_fb);
12191
12192 crtc->primary->fb = fb;
12193 update_state_fb(crtc->primary);
12194
12195 work->pending_flip_obj = i915_gem_object_get(obj);
12196
12197 ret = i915_mutex_lock_interruptible(dev);
12198 if (ret)
12199 goto cleanup;
12200
12201 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12202 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12203 ret = -EIO;
12204 goto unlock;
12205 }
12206
12207 atomic_inc(&intel_crtc->unpin_work_count);
12208
12209 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12210 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12211
12212 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12213 engine = dev_priv->engine[BCS];
12214 if (fb->modifier != old_fb->modifier)
12215 /* vlv: DISPLAY_FLIP fails to change tiling */
12216 engine = NULL;
12217 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12218 engine = dev_priv->engine[BCS];
12219 } else if (INTEL_GEN(dev_priv) >= 7) {
12220 engine = i915_gem_object_last_write_engine(obj);
12221 if (engine == NULL || engine->id != RCS)
12222 engine = dev_priv->engine[BCS];
12223 } else {
12224 engine = dev_priv->engine[RCS];
12225 }
12226
12227 mmio_flip = use_mmio_flip(engine, obj);
12228
12229 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12230 if (IS_ERR(vma)) {
12231 ret = PTR_ERR(vma);
12232 goto cleanup_pending;
12233 }
12234
12235 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12236 work->gtt_offset += intel_crtc->dspaddr_offset;
12237 work->rotation = crtc->primary->state->rotation;
12238
12239 /*
12240 * There's the potential that the next frame will not be compatible with
12241 * FBC, so we want to call pre_update() before the actual page flip.
12242 * The problem is that pre_update() caches some information about the fb
12243 * object, so we want to do this only after the object is pinned. Let's
12244 * be on the safe side and do this immediately before scheduling the
12245 * flip.
12246 */
12247 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12248 to_intel_plane_state(primary->state));
12249
12250 if (mmio_flip) {
12251 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12252 queue_work(system_unbound_wq, &work->mmio_work);
12253 } else {
12254 request = i915_gem_request_alloc(engine, engine->last_context);
12255 if (IS_ERR(request)) {
12256 ret = PTR_ERR(request);
12257 goto cleanup_unpin;
12258 }
12259
12260 ret = i915_gem_request_await_object(request, obj, false);
12261 if (ret)
12262 goto cleanup_request;
12263
12264 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12265 page_flip_flags);
12266 if (ret)
12267 goto cleanup_request;
12268
12269 intel_mark_page_flip_active(intel_crtc, work);
12270
12271 work->flip_queued_req = i915_gem_request_get(request);
12272 i915_add_request_no_flush(request);
12273 }
12274
12275 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12276 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12277 to_intel_plane(primary)->frontbuffer_bit);
12278 mutex_unlock(&dev->struct_mutex);
12279
12280 intel_frontbuffer_flip_prepare(to_i915(dev),
12281 to_intel_plane(primary)->frontbuffer_bit);
12282
12283 trace_i915_flip_request(intel_crtc->plane, obj);
12284
12285 return 0;
12286
12287 cleanup_request:
12288 i915_add_request_no_flush(request);
12289 cleanup_unpin:
12290 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12291 cleanup_pending:
12292 atomic_dec(&intel_crtc->unpin_work_count);
12293 unlock:
12294 mutex_unlock(&dev->struct_mutex);
12295 cleanup:
12296 crtc->primary->fb = old_fb;
12297 update_state_fb(crtc->primary);
12298
12299 i915_gem_object_put(obj);
12300 drm_framebuffer_unreference(work->old_fb);
12301
12302 spin_lock_irq(&dev->event_lock);
12303 intel_crtc->flip_work = NULL;
12304 spin_unlock_irq(&dev->event_lock);
12305
12306 drm_crtc_vblank_put(crtc);
12307 free_work:
12308 kfree(work);
12309
12310 if (ret == -EIO) {
12311 struct drm_atomic_state *state;
12312 struct drm_plane_state *plane_state;
12313
12314 out_hang:
12315 state = drm_atomic_state_alloc(dev);
12316 if (!state)
12317 return -ENOMEM;
12318 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12319
12320 retry:
12321 plane_state = drm_atomic_get_plane_state(state, primary);
12322 ret = PTR_ERR_OR_ZERO(plane_state);
12323 if (!ret) {
12324 drm_atomic_set_fb_for_plane(plane_state, fb);
12325
12326 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12327 if (!ret)
12328 ret = drm_atomic_commit(state);
12329 }
12330
12331 if (ret == -EDEADLK) {
12332 drm_modeset_backoff(state->acquire_ctx);
12333 drm_atomic_state_clear(state);
12334 goto retry;
12335 }
12336
12337 drm_atomic_state_put(state);
12338
12339 if (ret == 0 && event) {
12340 spin_lock_irq(&dev->event_lock);
12341 drm_crtc_send_vblank_event(crtc, event);
12342 spin_unlock_irq(&dev->event_lock);
12343 }
12344 }
12345 return ret;
12346 }
12347
12348
12349 /**
12350 * intel_wm_need_update - Check whether watermarks need updating
12351 * @plane: drm plane
12352 * @state: new plane state
12353 *
12354 * Check current plane state versus the new one to determine whether
12355 * watermarks need to be recalculated.
12356 *
12357 * Returns true or false.
12358 */
12359 static bool intel_wm_need_update(struct drm_plane *plane,
12360 struct drm_plane_state *state)
12361 {
12362 struct intel_plane_state *new = to_intel_plane_state(state);
12363 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12364
12365 /* Update watermarks on tiling or size changes. */
12366 if (new->base.visible != cur->base.visible)
12367 return true;
12368
12369 if (!cur->base.fb || !new->base.fb)
12370 return false;
12371
12372 if (cur->base.fb->modifier != new->base.fb->modifier ||
12373 cur->base.rotation != new->base.rotation ||
12374 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12375 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12376 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12377 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12378 return true;
12379
12380 return false;
12381 }
12382
12383 static bool needs_scaling(struct intel_plane_state *state)
12384 {
12385 int src_w = drm_rect_width(&state->base.src) >> 16;
12386 int src_h = drm_rect_height(&state->base.src) >> 16;
12387 int dst_w = drm_rect_width(&state->base.dst);
12388 int dst_h = drm_rect_height(&state->base.dst);
12389
12390 return (src_w != dst_w || src_h != dst_h);
12391 }
12392
12393 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12394 struct drm_plane_state *plane_state)
12395 {
12396 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12397 struct drm_crtc *crtc = crtc_state->crtc;
12398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12399 struct drm_plane *plane = plane_state->plane;
12400 struct drm_device *dev = crtc->dev;
12401 struct drm_i915_private *dev_priv = to_i915(dev);
12402 struct intel_plane_state *old_plane_state =
12403 to_intel_plane_state(plane->state);
12404 bool mode_changed = needs_modeset(crtc_state);
12405 bool was_crtc_enabled = crtc->state->active;
12406 bool is_crtc_enabled = crtc_state->active;
12407 bool turn_off, turn_on, visible, was_visible;
12408 struct drm_framebuffer *fb = plane_state->fb;
12409 int ret;
12410
12411 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12412 ret = skl_update_scaler_plane(
12413 to_intel_crtc_state(crtc_state),
12414 to_intel_plane_state(plane_state));
12415 if (ret)
12416 return ret;
12417 }
12418
12419 was_visible = old_plane_state->base.visible;
12420 visible = to_intel_plane_state(plane_state)->base.visible;
12421
12422 if (!was_crtc_enabled && WARN_ON(was_visible))
12423 was_visible = false;
12424
12425 /*
12426 * Visibility is calculated as if the crtc was on, but
12427 * after scaler setup everything depends on it being off
12428 * when the crtc isn't active.
12429 *
12430 * FIXME this is wrong for watermarks. Watermarks should also
12431 * be computed as if the pipe would be active. Perhaps move
12432 * per-plane wm computation to the .check_plane() hook, and
12433 * only combine the results from all planes in the current place?
12434 */
12435 if (!is_crtc_enabled)
12436 to_intel_plane_state(plane_state)->base.visible = visible = false;
12437
12438 if (!was_visible && !visible)
12439 return 0;
12440
12441 if (fb != old_plane_state->base.fb)
12442 pipe_config->fb_changed = true;
12443
12444 turn_off = was_visible && (!visible || mode_changed);
12445 turn_on = visible && (!was_visible || mode_changed);
12446
12447 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12448 intel_crtc->base.base.id,
12449 intel_crtc->base.name,
12450 plane->base.id, plane->name,
12451 fb ? fb->base.id : -1);
12452
12453 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12454 plane->base.id, plane->name,
12455 was_visible, visible,
12456 turn_off, turn_on, mode_changed);
12457
12458 if (turn_on) {
12459 pipe_config->update_wm_pre = true;
12460
12461 /* must disable cxsr around plane enable/disable */
12462 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12463 pipe_config->disable_cxsr = true;
12464 } else if (turn_off) {
12465 pipe_config->update_wm_post = true;
12466
12467 /* must disable cxsr around plane enable/disable */
12468 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12469 pipe_config->disable_cxsr = true;
12470 } else if (intel_wm_need_update(plane, plane_state)) {
12471 /* FIXME bollocks */
12472 pipe_config->update_wm_pre = true;
12473 pipe_config->update_wm_post = true;
12474 }
12475
12476 /* Pre-gen9 platforms need two-step watermark updates */
12477 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12478 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12479 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12480
12481 if (visible || was_visible)
12482 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12483
12484 /*
12485 * WaCxSRDisabledForSpriteScaling:ivb
12486 *
12487 * cstate->update_wm was already set above, so this flag will
12488 * take effect when we commit and program watermarks.
12489 */
12490 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12491 needs_scaling(to_intel_plane_state(plane_state)) &&
12492 !needs_scaling(old_plane_state))
12493 pipe_config->disable_lp_wm = true;
12494
12495 return 0;
12496 }
12497
12498 static bool encoders_cloneable(const struct intel_encoder *a,
12499 const struct intel_encoder *b)
12500 {
12501 /* masks could be asymmetric, so check both ways */
12502 return a == b || (a->cloneable & (1 << b->type) &&
12503 b->cloneable & (1 << a->type));
12504 }
12505
12506 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12507 struct intel_crtc *crtc,
12508 struct intel_encoder *encoder)
12509 {
12510 struct intel_encoder *source_encoder;
12511 struct drm_connector *connector;
12512 struct drm_connector_state *connector_state;
12513 int i;
12514
12515 for_each_connector_in_state(state, connector, connector_state, i) {
12516 if (connector_state->crtc != &crtc->base)
12517 continue;
12518
12519 source_encoder =
12520 to_intel_encoder(connector_state->best_encoder);
12521 if (!encoders_cloneable(encoder, source_encoder))
12522 return false;
12523 }
12524
12525 return true;
12526 }
12527
12528 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12529 struct drm_crtc_state *crtc_state)
12530 {
12531 struct drm_device *dev = crtc->dev;
12532 struct drm_i915_private *dev_priv = to_i915(dev);
12533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12534 struct intel_crtc_state *pipe_config =
12535 to_intel_crtc_state(crtc_state);
12536 struct drm_atomic_state *state = crtc_state->state;
12537 int ret;
12538 bool mode_changed = needs_modeset(crtc_state);
12539
12540 if (mode_changed && !crtc_state->active)
12541 pipe_config->update_wm_post = true;
12542
12543 if (mode_changed && crtc_state->enable &&
12544 dev_priv->display.crtc_compute_clock &&
12545 !WARN_ON(pipe_config->shared_dpll)) {
12546 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12547 pipe_config);
12548 if (ret)
12549 return ret;
12550 }
12551
12552 if (crtc_state->color_mgmt_changed) {
12553 ret = intel_color_check(crtc, crtc_state);
12554 if (ret)
12555 return ret;
12556
12557 /*
12558 * Changing color management on Intel hardware is
12559 * handled as part of planes update.
12560 */
12561 crtc_state->planes_changed = true;
12562 }
12563
12564 ret = 0;
12565 if (dev_priv->display.compute_pipe_wm) {
12566 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12567 if (ret) {
12568 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12569 return ret;
12570 }
12571 }
12572
12573 if (dev_priv->display.compute_intermediate_wm &&
12574 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12575 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12576 return 0;
12577
12578 /*
12579 * Calculate 'intermediate' watermarks that satisfy both the
12580 * old state and the new state. We can program these
12581 * immediately.
12582 */
12583 ret = dev_priv->display.compute_intermediate_wm(dev,
12584 intel_crtc,
12585 pipe_config);
12586 if (ret) {
12587 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12588 return ret;
12589 }
12590 } else if (dev_priv->display.compute_intermediate_wm) {
12591 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12592 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12593 }
12594
12595 if (INTEL_GEN(dev_priv) >= 9) {
12596 if (mode_changed)
12597 ret = skl_update_scaler_crtc(pipe_config);
12598
12599 if (!ret)
12600 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12601 pipe_config);
12602 }
12603
12604 return ret;
12605 }
12606
12607 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12608 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12609 .atomic_begin = intel_begin_crtc_commit,
12610 .atomic_flush = intel_finish_crtc_commit,
12611 .atomic_check = intel_crtc_atomic_check,
12612 };
12613
12614 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12615 {
12616 struct intel_connector *connector;
12617
12618 for_each_intel_connector(dev, connector) {
12619 if (connector->base.state->crtc)
12620 drm_connector_unreference(&connector->base);
12621
12622 if (connector->base.encoder) {
12623 connector->base.state->best_encoder =
12624 connector->base.encoder;
12625 connector->base.state->crtc =
12626 connector->base.encoder->crtc;
12627
12628 drm_connector_reference(&connector->base);
12629 } else {
12630 connector->base.state->best_encoder = NULL;
12631 connector->base.state->crtc = NULL;
12632 }
12633 }
12634 }
12635
12636 static void
12637 connected_sink_compute_bpp(struct intel_connector *connector,
12638 struct intel_crtc_state *pipe_config)
12639 {
12640 const struct drm_display_info *info = &connector->base.display_info;
12641 int bpp = pipe_config->pipe_bpp;
12642
12643 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12644 connector->base.base.id,
12645 connector->base.name);
12646
12647 /* Don't use an invalid EDID bpc value */
12648 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12649 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12650 bpp, info->bpc * 3);
12651 pipe_config->pipe_bpp = info->bpc * 3;
12652 }
12653
12654 /* Clamp bpp to 8 on screens without EDID 1.4 */
12655 if (info->bpc == 0 && bpp > 24) {
12656 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12657 bpp);
12658 pipe_config->pipe_bpp = 24;
12659 }
12660 }
12661
12662 static int
12663 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12664 struct intel_crtc_state *pipe_config)
12665 {
12666 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12667 struct drm_atomic_state *state;
12668 struct drm_connector *connector;
12669 struct drm_connector_state *connector_state;
12670 int bpp, i;
12671
12672 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12673 IS_CHERRYVIEW(dev_priv)))
12674 bpp = 10*3;
12675 else if (INTEL_GEN(dev_priv) >= 5)
12676 bpp = 12*3;
12677 else
12678 bpp = 8*3;
12679
12680
12681 pipe_config->pipe_bpp = bpp;
12682
12683 state = pipe_config->base.state;
12684
12685 /* Clamp display bpp to EDID value */
12686 for_each_connector_in_state(state, connector, connector_state, i) {
12687 if (connector_state->crtc != &crtc->base)
12688 continue;
12689
12690 connected_sink_compute_bpp(to_intel_connector(connector),
12691 pipe_config);
12692 }
12693
12694 return bpp;
12695 }
12696
12697 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12698 {
12699 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12700 "type: 0x%x flags: 0x%x\n",
12701 mode->crtc_clock,
12702 mode->crtc_hdisplay, mode->crtc_hsync_start,
12703 mode->crtc_hsync_end, mode->crtc_htotal,
12704 mode->crtc_vdisplay, mode->crtc_vsync_start,
12705 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12706 }
12707
12708 static inline void
12709 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12710 unsigned int lane_count, struct intel_link_m_n *m_n)
12711 {
12712 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12713 id, lane_count,
12714 m_n->gmch_m, m_n->gmch_n,
12715 m_n->link_m, m_n->link_n, m_n->tu);
12716 }
12717
12718 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12719 struct intel_crtc_state *pipe_config,
12720 const char *context)
12721 {
12722 struct drm_device *dev = crtc->base.dev;
12723 struct drm_i915_private *dev_priv = to_i915(dev);
12724 struct drm_plane *plane;
12725 struct intel_plane *intel_plane;
12726 struct intel_plane_state *state;
12727 struct drm_framebuffer *fb;
12728
12729 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12730 crtc->base.base.id, crtc->base.name, context);
12731
12732 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12733 transcoder_name(pipe_config->cpu_transcoder),
12734 pipe_config->pipe_bpp, pipe_config->dither);
12735
12736 if (pipe_config->has_pch_encoder)
12737 intel_dump_m_n_config(pipe_config, "fdi",
12738 pipe_config->fdi_lanes,
12739 &pipe_config->fdi_m_n);
12740
12741 if (intel_crtc_has_dp_encoder(pipe_config)) {
12742 intel_dump_m_n_config(pipe_config, "dp m_n",
12743 pipe_config->lane_count, &pipe_config->dp_m_n);
12744 if (pipe_config->has_drrs)
12745 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12746 pipe_config->lane_count,
12747 &pipe_config->dp_m2_n2);
12748 }
12749
12750 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12751 pipe_config->has_audio, pipe_config->has_infoframe);
12752
12753 DRM_DEBUG_KMS("requested mode:\n");
12754 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12755 DRM_DEBUG_KMS("adjusted mode:\n");
12756 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12757 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12758 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12759 pipe_config->port_clock,
12760 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12761
12762 if (INTEL_GEN(dev_priv) >= 9)
12763 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12764 crtc->num_scalers,
12765 pipe_config->scaler_state.scaler_users,
12766 pipe_config->scaler_state.scaler_id);
12767
12768 if (HAS_GMCH_DISPLAY(dev_priv))
12769 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12770 pipe_config->gmch_pfit.control,
12771 pipe_config->gmch_pfit.pgm_ratios,
12772 pipe_config->gmch_pfit.lvds_border_bits);
12773 else
12774 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12775 pipe_config->pch_pfit.pos,
12776 pipe_config->pch_pfit.size,
12777 enableddisabled(pipe_config->pch_pfit.enabled));
12778
12779 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12780 pipe_config->ips_enabled, pipe_config->double_wide);
12781
12782 if (IS_BROXTON(dev_priv)) {
12783 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12784 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12785 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12786 pipe_config->dpll_hw_state.ebb0,
12787 pipe_config->dpll_hw_state.ebb4,
12788 pipe_config->dpll_hw_state.pll0,
12789 pipe_config->dpll_hw_state.pll1,
12790 pipe_config->dpll_hw_state.pll2,
12791 pipe_config->dpll_hw_state.pll3,
12792 pipe_config->dpll_hw_state.pll6,
12793 pipe_config->dpll_hw_state.pll8,
12794 pipe_config->dpll_hw_state.pll9,
12795 pipe_config->dpll_hw_state.pll10,
12796 pipe_config->dpll_hw_state.pcsdw12);
12797 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12798 DRM_DEBUG_KMS("dpll_hw_state: "
12799 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12800 pipe_config->dpll_hw_state.ctrl1,
12801 pipe_config->dpll_hw_state.cfgcr1,
12802 pipe_config->dpll_hw_state.cfgcr2);
12803 } else if (HAS_DDI(dev_priv)) {
12804 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12805 pipe_config->dpll_hw_state.wrpll,
12806 pipe_config->dpll_hw_state.spll);
12807 } else {
12808 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12809 "fp0: 0x%x, fp1: 0x%x\n",
12810 pipe_config->dpll_hw_state.dpll,
12811 pipe_config->dpll_hw_state.dpll_md,
12812 pipe_config->dpll_hw_state.fp0,
12813 pipe_config->dpll_hw_state.fp1);
12814 }
12815
12816 DRM_DEBUG_KMS("planes on this crtc\n");
12817 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12818 struct drm_format_name_buf format_name;
12819 intel_plane = to_intel_plane(plane);
12820 if (intel_plane->pipe != crtc->pipe)
12821 continue;
12822
12823 state = to_intel_plane_state(plane->state);
12824 fb = state->base.fb;
12825 if (!fb) {
12826 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12827 plane->base.id, plane->name, state->scaler_id);
12828 continue;
12829 }
12830
12831 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12832 plane->base.id, plane->name,
12833 fb->base.id, fb->width, fb->height,
12834 drm_get_format_name(fb->pixel_format, &format_name));
12835 if (INTEL_GEN(dev_priv) >= 9)
12836 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12837 state->scaler_id,
12838 state->base.src.x1 >> 16,
12839 state->base.src.y1 >> 16,
12840 drm_rect_width(&state->base.src) >> 16,
12841 drm_rect_height(&state->base.src) >> 16,
12842 state->base.dst.x1, state->base.dst.y1,
12843 drm_rect_width(&state->base.dst),
12844 drm_rect_height(&state->base.dst));
12845 }
12846 }
12847
12848 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12849 {
12850 struct drm_device *dev = state->dev;
12851 struct drm_connector *connector;
12852 unsigned int used_ports = 0;
12853 unsigned int used_mst_ports = 0;
12854
12855 /*
12856 * Walk the connector list instead of the encoder
12857 * list to detect the problem on ddi platforms
12858 * where there's just one encoder per digital port.
12859 */
12860 drm_for_each_connector(connector, dev) {
12861 struct drm_connector_state *connector_state;
12862 struct intel_encoder *encoder;
12863
12864 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12865 if (!connector_state)
12866 connector_state = connector->state;
12867
12868 if (!connector_state->best_encoder)
12869 continue;
12870
12871 encoder = to_intel_encoder(connector_state->best_encoder);
12872
12873 WARN_ON(!connector_state->crtc);
12874
12875 switch (encoder->type) {
12876 unsigned int port_mask;
12877 case INTEL_OUTPUT_UNKNOWN:
12878 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12879 break;
12880 case INTEL_OUTPUT_DP:
12881 case INTEL_OUTPUT_HDMI:
12882 case INTEL_OUTPUT_EDP:
12883 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12884
12885 /* the same port mustn't appear more than once */
12886 if (used_ports & port_mask)
12887 return false;
12888
12889 used_ports |= port_mask;
12890 break;
12891 case INTEL_OUTPUT_DP_MST:
12892 used_mst_ports |=
12893 1 << enc_to_mst(&encoder->base)->primary->port;
12894 break;
12895 default:
12896 break;
12897 }
12898 }
12899
12900 /* can't mix MST and SST/HDMI on the same port */
12901 if (used_ports & used_mst_ports)
12902 return false;
12903
12904 return true;
12905 }
12906
12907 static void
12908 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12909 {
12910 struct drm_crtc_state tmp_state;
12911 struct intel_crtc_scaler_state scaler_state;
12912 struct intel_dpll_hw_state dpll_hw_state;
12913 struct intel_shared_dpll *shared_dpll;
12914 bool force_thru;
12915
12916 /* FIXME: before the switch to atomic started, a new pipe_config was
12917 * kzalloc'd. Code that depends on any field being zero should be
12918 * fixed, so that the crtc_state can be safely duplicated. For now,
12919 * only fields that are know to not cause problems are preserved. */
12920
12921 tmp_state = crtc_state->base;
12922 scaler_state = crtc_state->scaler_state;
12923 shared_dpll = crtc_state->shared_dpll;
12924 dpll_hw_state = crtc_state->dpll_hw_state;
12925 force_thru = crtc_state->pch_pfit.force_thru;
12926
12927 memset(crtc_state, 0, sizeof *crtc_state);
12928
12929 crtc_state->base = tmp_state;
12930 crtc_state->scaler_state = scaler_state;
12931 crtc_state->shared_dpll = shared_dpll;
12932 crtc_state->dpll_hw_state = dpll_hw_state;
12933 crtc_state->pch_pfit.force_thru = force_thru;
12934 }
12935
12936 static int
12937 intel_modeset_pipe_config(struct drm_crtc *crtc,
12938 struct intel_crtc_state *pipe_config)
12939 {
12940 struct drm_atomic_state *state = pipe_config->base.state;
12941 struct intel_encoder *encoder;
12942 struct drm_connector *connector;
12943 struct drm_connector_state *connector_state;
12944 int base_bpp, ret = -EINVAL;
12945 int i;
12946 bool retry = true;
12947
12948 clear_intel_crtc_state(pipe_config);
12949
12950 pipe_config->cpu_transcoder =
12951 (enum transcoder) to_intel_crtc(crtc)->pipe;
12952
12953 /*
12954 * Sanitize sync polarity flags based on requested ones. If neither
12955 * positive or negative polarity is requested, treat this as meaning
12956 * negative polarity.
12957 */
12958 if (!(pipe_config->base.adjusted_mode.flags &
12959 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12960 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12961
12962 if (!(pipe_config->base.adjusted_mode.flags &
12963 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12964 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12965
12966 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12967 pipe_config);
12968 if (base_bpp < 0)
12969 goto fail;
12970
12971 /*
12972 * Determine the real pipe dimensions. Note that stereo modes can
12973 * increase the actual pipe size due to the frame doubling and
12974 * insertion of additional space for blanks between the frame. This
12975 * is stored in the crtc timings. We use the requested mode to do this
12976 * computation to clearly distinguish it from the adjusted mode, which
12977 * can be changed by the connectors in the below retry loop.
12978 */
12979 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12980 &pipe_config->pipe_src_w,
12981 &pipe_config->pipe_src_h);
12982
12983 for_each_connector_in_state(state, connector, connector_state, i) {
12984 if (connector_state->crtc != crtc)
12985 continue;
12986
12987 encoder = to_intel_encoder(connector_state->best_encoder);
12988
12989 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12990 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12991 goto fail;
12992 }
12993
12994 /*
12995 * Determine output_types before calling the .compute_config()
12996 * hooks so that the hooks can use this information safely.
12997 */
12998 pipe_config->output_types |= 1 << encoder->type;
12999 }
13000
13001 encoder_retry:
13002 /* Ensure the port clock defaults are reset when retrying. */
13003 pipe_config->port_clock = 0;
13004 pipe_config->pixel_multiplier = 1;
13005
13006 /* Fill in default crtc timings, allow encoders to overwrite them. */
13007 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13008 CRTC_STEREO_DOUBLE);
13009
13010 /* Pass our mode to the connectors and the CRTC to give them a chance to
13011 * adjust it according to limitations or connector properties, and also
13012 * a chance to reject the mode entirely.
13013 */
13014 for_each_connector_in_state(state, connector, connector_state, i) {
13015 if (connector_state->crtc != crtc)
13016 continue;
13017
13018 encoder = to_intel_encoder(connector_state->best_encoder);
13019
13020 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13021 DRM_DEBUG_KMS("Encoder config failure\n");
13022 goto fail;
13023 }
13024 }
13025
13026 /* Set default port clock if not overwritten by the encoder. Needs to be
13027 * done afterwards in case the encoder adjusts the mode. */
13028 if (!pipe_config->port_clock)
13029 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13030 * pipe_config->pixel_multiplier;
13031
13032 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13033 if (ret < 0) {
13034 DRM_DEBUG_KMS("CRTC fixup failed\n");
13035 goto fail;
13036 }
13037
13038 if (ret == RETRY) {
13039 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13040 ret = -EINVAL;
13041 goto fail;
13042 }
13043
13044 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13045 retry = false;
13046 goto encoder_retry;
13047 }
13048
13049 /* Dithering seems to not pass-through bits correctly when it should, so
13050 * only enable it on 6bpc panels. */
13051 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13052 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13053 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13054
13055 fail:
13056 return ret;
13057 }
13058
13059 static void
13060 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13061 {
13062 struct drm_crtc *crtc;
13063 struct drm_crtc_state *crtc_state;
13064 int i;
13065
13066 /* Double check state. */
13067 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13068 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13069
13070 /* Update hwmode for vblank functions */
13071 if (crtc->state->active)
13072 crtc->hwmode = crtc->state->adjusted_mode;
13073 else
13074 crtc->hwmode.crtc_clock = 0;
13075
13076 /*
13077 * Update legacy state to satisfy fbc code. This can
13078 * be removed when fbc uses the atomic state.
13079 */
13080 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13081 struct drm_plane_state *plane_state = crtc->primary->state;
13082
13083 crtc->primary->fb = plane_state->fb;
13084 crtc->x = plane_state->src_x >> 16;
13085 crtc->y = plane_state->src_y >> 16;
13086 }
13087 }
13088 }
13089
13090 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13091 {
13092 int diff;
13093
13094 if (clock1 == clock2)
13095 return true;
13096
13097 if (!clock1 || !clock2)
13098 return false;
13099
13100 diff = abs(clock1 - clock2);
13101
13102 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13103 return true;
13104
13105 return false;
13106 }
13107
13108 static bool
13109 intel_compare_m_n(unsigned int m, unsigned int n,
13110 unsigned int m2, unsigned int n2,
13111 bool exact)
13112 {
13113 if (m == m2 && n == n2)
13114 return true;
13115
13116 if (exact || !m || !n || !m2 || !n2)
13117 return false;
13118
13119 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13120
13121 if (n > n2) {
13122 while (n > n2) {
13123 m2 <<= 1;
13124 n2 <<= 1;
13125 }
13126 } else if (n < n2) {
13127 while (n < n2) {
13128 m <<= 1;
13129 n <<= 1;
13130 }
13131 }
13132
13133 if (n != n2)
13134 return false;
13135
13136 return intel_fuzzy_clock_check(m, m2);
13137 }
13138
13139 static bool
13140 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13141 struct intel_link_m_n *m2_n2,
13142 bool adjust)
13143 {
13144 if (m_n->tu == m2_n2->tu &&
13145 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13146 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13147 intel_compare_m_n(m_n->link_m, m_n->link_n,
13148 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13149 if (adjust)
13150 *m2_n2 = *m_n;
13151
13152 return true;
13153 }
13154
13155 return false;
13156 }
13157
13158 static bool
13159 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13160 struct intel_crtc_state *current_config,
13161 struct intel_crtc_state *pipe_config,
13162 bool adjust)
13163 {
13164 bool ret = true;
13165
13166 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13167 do { \
13168 if (!adjust) \
13169 DRM_ERROR(fmt, ##__VA_ARGS__); \
13170 else \
13171 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13172 } while (0)
13173
13174 #define PIPE_CONF_CHECK_X(name) \
13175 if (current_config->name != pipe_config->name) { \
13176 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13177 "(expected 0x%08x, found 0x%08x)\n", \
13178 current_config->name, \
13179 pipe_config->name); \
13180 ret = false; \
13181 }
13182
13183 #define PIPE_CONF_CHECK_I(name) \
13184 if (current_config->name != pipe_config->name) { \
13185 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13186 "(expected %i, found %i)\n", \
13187 current_config->name, \
13188 pipe_config->name); \
13189 ret = false; \
13190 }
13191
13192 #define PIPE_CONF_CHECK_P(name) \
13193 if (current_config->name != pipe_config->name) { \
13194 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13195 "(expected %p, found %p)\n", \
13196 current_config->name, \
13197 pipe_config->name); \
13198 ret = false; \
13199 }
13200
13201 #define PIPE_CONF_CHECK_M_N(name) \
13202 if (!intel_compare_link_m_n(&current_config->name, \
13203 &pipe_config->name,\
13204 adjust)) { \
13205 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13206 "(expected tu %i gmch %i/%i link %i/%i, " \
13207 "found tu %i, gmch %i/%i link %i/%i)\n", \
13208 current_config->name.tu, \
13209 current_config->name.gmch_m, \
13210 current_config->name.gmch_n, \
13211 current_config->name.link_m, \
13212 current_config->name.link_n, \
13213 pipe_config->name.tu, \
13214 pipe_config->name.gmch_m, \
13215 pipe_config->name.gmch_n, \
13216 pipe_config->name.link_m, \
13217 pipe_config->name.link_n); \
13218 ret = false; \
13219 }
13220
13221 /* This is required for BDW+ where there is only one set of registers for
13222 * switching between high and low RR.
13223 * This macro can be used whenever a comparison has to be made between one
13224 * hw state and multiple sw state variables.
13225 */
13226 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13227 if (!intel_compare_link_m_n(&current_config->name, \
13228 &pipe_config->name, adjust) && \
13229 !intel_compare_link_m_n(&current_config->alt_name, \
13230 &pipe_config->name, adjust)) { \
13231 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13232 "(expected tu %i gmch %i/%i link %i/%i, " \
13233 "or tu %i gmch %i/%i link %i/%i, " \
13234 "found tu %i, gmch %i/%i link %i/%i)\n", \
13235 current_config->name.tu, \
13236 current_config->name.gmch_m, \
13237 current_config->name.gmch_n, \
13238 current_config->name.link_m, \
13239 current_config->name.link_n, \
13240 current_config->alt_name.tu, \
13241 current_config->alt_name.gmch_m, \
13242 current_config->alt_name.gmch_n, \
13243 current_config->alt_name.link_m, \
13244 current_config->alt_name.link_n, \
13245 pipe_config->name.tu, \
13246 pipe_config->name.gmch_m, \
13247 pipe_config->name.gmch_n, \
13248 pipe_config->name.link_m, \
13249 pipe_config->name.link_n); \
13250 ret = false; \
13251 }
13252
13253 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13254 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13255 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13256 "(expected %i, found %i)\n", \
13257 current_config->name & (mask), \
13258 pipe_config->name & (mask)); \
13259 ret = false; \
13260 }
13261
13262 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13263 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13264 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13265 "(expected %i, found %i)\n", \
13266 current_config->name, \
13267 pipe_config->name); \
13268 ret = false; \
13269 }
13270
13271 #define PIPE_CONF_QUIRK(quirk) \
13272 ((current_config->quirks | pipe_config->quirks) & (quirk))
13273
13274 PIPE_CONF_CHECK_I(cpu_transcoder);
13275
13276 PIPE_CONF_CHECK_I(has_pch_encoder);
13277 PIPE_CONF_CHECK_I(fdi_lanes);
13278 PIPE_CONF_CHECK_M_N(fdi_m_n);
13279
13280 PIPE_CONF_CHECK_I(lane_count);
13281 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13282
13283 if (INTEL_GEN(dev_priv) < 8) {
13284 PIPE_CONF_CHECK_M_N(dp_m_n);
13285
13286 if (current_config->has_drrs)
13287 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13288 } else
13289 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13290
13291 PIPE_CONF_CHECK_X(output_types);
13292
13293 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13294 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13295 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13296 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13297 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13298 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13299
13300 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13301 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13302 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13303 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13304 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13305 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13306
13307 PIPE_CONF_CHECK_I(pixel_multiplier);
13308 PIPE_CONF_CHECK_I(has_hdmi_sink);
13309 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13310 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13311 PIPE_CONF_CHECK_I(limited_color_range);
13312 PIPE_CONF_CHECK_I(has_infoframe);
13313
13314 PIPE_CONF_CHECK_I(has_audio);
13315
13316 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13317 DRM_MODE_FLAG_INTERLACE);
13318
13319 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13320 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13321 DRM_MODE_FLAG_PHSYNC);
13322 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13323 DRM_MODE_FLAG_NHSYNC);
13324 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13325 DRM_MODE_FLAG_PVSYNC);
13326 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13327 DRM_MODE_FLAG_NVSYNC);
13328 }
13329
13330 PIPE_CONF_CHECK_X(gmch_pfit.control);
13331 /* pfit ratios are autocomputed by the hw on gen4+ */
13332 if (INTEL_GEN(dev_priv) < 4)
13333 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13334 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13335
13336 if (!adjust) {
13337 PIPE_CONF_CHECK_I(pipe_src_w);
13338 PIPE_CONF_CHECK_I(pipe_src_h);
13339
13340 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13341 if (current_config->pch_pfit.enabled) {
13342 PIPE_CONF_CHECK_X(pch_pfit.pos);
13343 PIPE_CONF_CHECK_X(pch_pfit.size);
13344 }
13345
13346 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13347 }
13348
13349 /* BDW+ don't expose a synchronous way to read the state */
13350 if (IS_HASWELL(dev_priv))
13351 PIPE_CONF_CHECK_I(ips_enabled);
13352
13353 PIPE_CONF_CHECK_I(double_wide);
13354
13355 PIPE_CONF_CHECK_P(shared_dpll);
13356 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13357 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13358 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13359 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13360 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13361 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13362 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13363 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13364 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13365
13366 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13367 PIPE_CONF_CHECK_X(dsi_pll.div);
13368
13369 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13370 PIPE_CONF_CHECK_I(pipe_bpp);
13371
13372 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13373 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13374
13375 #undef PIPE_CONF_CHECK_X
13376 #undef PIPE_CONF_CHECK_I
13377 #undef PIPE_CONF_CHECK_P
13378 #undef PIPE_CONF_CHECK_FLAGS
13379 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13380 #undef PIPE_CONF_QUIRK
13381 #undef INTEL_ERR_OR_DBG_KMS
13382
13383 return ret;
13384 }
13385
13386 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13387 const struct intel_crtc_state *pipe_config)
13388 {
13389 if (pipe_config->has_pch_encoder) {
13390 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13391 &pipe_config->fdi_m_n);
13392 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13393
13394 /*
13395 * FDI already provided one idea for the dotclock.
13396 * Yell if the encoder disagrees.
13397 */
13398 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13399 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13400 fdi_dotclock, dotclock);
13401 }
13402 }
13403
13404 static void verify_wm_state(struct drm_crtc *crtc,
13405 struct drm_crtc_state *new_state)
13406 {
13407 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13408 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13409 struct skl_pipe_wm hw_wm, *sw_wm;
13410 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13411 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13413 const enum pipe pipe = intel_crtc->pipe;
13414 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13415
13416 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13417 return;
13418
13419 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13420 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13421
13422 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13423 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13424
13425 /* planes */
13426 for_each_universal_plane(dev_priv, pipe, plane) {
13427 hw_plane_wm = &hw_wm.planes[plane];
13428 sw_plane_wm = &sw_wm->planes[plane];
13429
13430 /* Watermarks */
13431 for (level = 0; level <= max_level; level++) {
13432 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13433 &sw_plane_wm->wm[level]))
13434 continue;
13435
13436 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13437 pipe_name(pipe), plane + 1, level,
13438 sw_plane_wm->wm[level].plane_en,
13439 sw_plane_wm->wm[level].plane_res_b,
13440 sw_plane_wm->wm[level].plane_res_l,
13441 hw_plane_wm->wm[level].plane_en,
13442 hw_plane_wm->wm[level].plane_res_b,
13443 hw_plane_wm->wm[level].plane_res_l);
13444 }
13445
13446 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13447 &sw_plane_wm->trans_wm)) {
13448 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13449 pipe_name(pipe), plane + 1,
13450 sw_plane_wm->trans_wm.plane_en,
13451 sw_plane_wm->trans_wm.plane_res_b,
13452 sw_plane_wm->trans_wm.plane_res_l,
13453 hw_plane_wm->trans_wm.plane_en,
13454 hw_plane_wm->trans_wm.plane_res_b,
13455 hw_plane_wm->trans_wm.plane_res_l);
13456 }
13457
13458 /* DDB */
13459 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13460 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13461
13462 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13463 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13464 pipe_name(pipe), plane + 1,
13465 sw_ddb_entry->start, sw_ddb_entry->end,
13466 hw_ddb_entry->start, hw_ddb_entry->end);
13467 }
13468 }
13469
13470 /*
13471 * cursor
13472 * If the cursor plane isn't active, we may not have updated it's ddb
13473 * allocation. In that case since the ddb allocation will be updated
13474 * once the plane becomes visible, we can skip this check
13475 */
13476 if (intel_crtc->cursor_addr) {
13477 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13478 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13479
13480 /* Watermarks */
13481 for (level = 0; level <= max_level; level++) {
13482 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13483 &sw_plane_wm->wm[level]))
13484 continue;
13485
13486 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13487 pipe_name(pipe), level,
13488 sw_plane_wm->wm[level].plane_en,
13489 sw_plane_wm->wm[level].plane_res_b,
13490 sw_plane_wm->wm[level].plane_res_l,
13491 hw_plane_wm->wm[level].plane_en,
13492 hw_plane_wm->wm[level].plane_res_b,
13493 hw_plane_wm->wm[level].plane_res_l);
13494 }
13495
13496 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13497 &sw_plane_wm->trans_wm)) {
13498 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13499 pipe_name(pipe),
13500 sw_plane_wm->trans_wm.plane_en,
13501 sw_plane_wm->trans_wm.plane_res_b,
13502 sw_plane_wm->trans_wm.plane_res_l,
13503 hw_plane_wm->trans_wm.plane_en,
13504 hw_plane_wm->trans_wm.plane_res_b,
13505 hw_plane_wm->trans_wm.plane_res_l);
13506 }
13507
13508 /* DDB */
13509 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13510 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13511
13512 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13513 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13514 pipe_name(pipe),
13515 sw_ddb_entry->start, sw_ddb_entry->end,
13516 hw_ddb_entry->start, hw_ddb_entry->end);
13517 }
13518 }
13519 }
13520
13521 static void
13522 verify_connector_state(struct drm_device *dev,
13523 struct drm_atomic_state *state,
13524 struct drm_crtc *crtc)
13525 {
13526 struct drm_connector *connector;
13527 struct drm_connector_state *old_conn_state;
13528 int i;
13529
13530 for_each_connector_in_state(state, connector, old_conn_state, i) {
13531 struct drm_encoder *encoder = connector->encoder;
13532 struct drm_connector_state *state = connector->state;
13533
13534 if (state->crtc != crtc)
13535 continue;
13536
13537 intel_connector_verify_state(to_intel_connector(connector));
13538
13539 I915_STATE_WARN(state->best_encoder != encoder,
13540 "connector's atomic encoder doesn't match legacy encoder\n");
13541 }
13542 }
13543
13544 static void
13545 verify_encoder_state(struct drm_device *dev)
13546 {
13547 struct intel_encoder *encoder;
13548 struct intel_connector *connector;
13549
13550 for_each_intel_encoder(dev, encoder) {
13551 bool enabled = false;
13552 enum pipe pipe;
13553
13554 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13555 encoder->base.base.id,
13556 encoder->base.name);
13557
13558 for_each_intel_connector(dev, connector) {
13559 if (connector->base.state->best_encoder != &encoder->base)
13560 continue;
13561 enabled = true;
13562
13563 I915_STATE_WARN(connector->base.state->crtc !=
13564 encoder->base.crtc,
13565 "connector's crtc doesn't match encoder crtc\n");
13566 }
13567
13568 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13569 "encoder's enabled state mismatch "
13570 "(expected %i, found %i)\n",
13571 !!encoder->base.crtc, enabled);
13572
13573 if (!encoder->base.crtc) {
13574 bool active;
13575
13576 active = encoder->get_hw_state(encoder, &pipe);
13577 I915_STATE_WARN(active,
13578 "encoder detached but still enabled on pipe %c.\n",
13579 pipe_name(pipe));
13580 }
13581 }
13582 }
13583
13584 static void
13585 verify_crtc_state(struct drm_crtc *crtc,
13586 struct drm_crtc_state *old_crtc_state,
13587 struct drm_crtc_state *new_crtc_state)
13588 {
13589 struct drm_device *dev = crtc->dev;
13590 struct drm_i915_private *dev_priv = to_i915(dev);
13591 struct intel_encoder *encoder;
13592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13593 struct intel_crtc_state *pipe_config, *sw_config;
13594 struct drm_atomic_state *old_state;
13595 bool active;
13596
13597 old_state = old_crtc_state->state;
13598 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13599 pipe_config = to_intel_crtc_state(old_crtc_state);
13600 memset(pipe_config, 0, sizeof(*pipe_config));
13601 pipe_config->base.crtc = crtc;
13602 pipe_config->base.state = old_state;
13603
13604 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13605
13606 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13607
13608 /* hw state is inconsistent with the pipe quirk */
13609 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13610 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13611 active = new_crtc_state->active;
13612
13613 I915_STATE_WARN(new_crtc_state->active != active,
13614 "crtc active state doesn't match with hw state "
13615 "(expected %i, found %i)\n", new_crtc_state->active, active);
13616
13617 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13618 "transitional active state does not match atomic hw state "
13619 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13620
13621 for_each_encoder_on_crtc(dev, crtc, encoder) {
13622 enum pipe pipe;
13623
13624 active = encoder->get_hw_state(encoder, &pipe);
13625 I915_STATE_WARN(active != new_crtc_state->active,
13626 "[ENCODER:%i] active %i with crtc active %i\n",
13627 encoder->base.base.id, active, new_crtc_state->active);
13628
13629 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13630 "Encoder connected to wrong pipe %c\n",
13631 pipe_name(pipe));
13632
13633 if (active) {
13634 pipe_config->output_types |= 1 << encoder->type;
13635 encoder->get_config(encoder, pipe_config);
13636 }
13637 }
13638
13639 if (!new_crtc_state->active)
13640 return;
13641
13642 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13643
13644 sw_config = to_intel_crtc_state(crtc->state);
13645 if (!intel_pipe_config_compare(dev_priv, sw_config,
13646 pipe_config, false)) {
13647 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13648 intel_dump_pipe_config(intel_crtc, pipe_config,
13649 "[hw state]");
13650 intel_dump_pipe_config(intel_crtc, sw_config,
13651 "[sw state]");
13652 }
13653 }
13654
13655 static void
13656 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13657 struct intel_shared_dpll *pll,
13658 struct drm_crtc *crtc,
13659 struct drm_crtc_state *new_state)
13660 {
13661 struct intel_dpll_hw_state dpll_hw_state;
13662 unsigned crtc_mask;
13663 bool active;
13664
13665 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13666
13667 DRM_DEBUG_KMS("%s\n", pll->name);
13668
13669 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13670
13671 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13672 I915_STATE_WARN(!pll->on && pll->active_mask,
13673 "pll in active use but not on in sw tracking\n");
13674 I915_STATE_WARN(pll->on && !pll->active_mask,
13675 "pll is on but not used by any active crtc\n");
13676 I915_STATE_WARN(pll->on != active,
13677 "pll on state mismatch (expected %i, found %i)\n",
13678 pll->on, active);
13679 }
13680
13681 if (!crtc) {
13682 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13683 "more active pll users than references: %x vs %x\n",
13684 pll->active_mask, pll->config.crtc_mask);
13685
13686 return;
13687 }
13688
13689 crtc_mask = 1 << drm_crtc_index(crtc);
13690
13691 if (new_state->active)
13692 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13693 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13694 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13695 else
13696 I915_STATE_WARN(pll->active_mask & crtc_mask,
13697 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13698 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13699
13700 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13701 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13702 crtc_mask, pll->config.crtc_mask);
13703
13704 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13705 &dpll_hw_state,
13706 sizeof(dpll_hw_state)),
13707 "pll hw state mismatch\n");
13708 }
13709
13710 static void
13711 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13712 struct drm_crtc_state *old_crtc_state,
13713 struct drm_crtc_state *new_crtc_state)
13714 {
13715 struct drm_i915_private *dev_priv = to_i915(dev);
13716 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13717 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13718
13719 if (new_state->shared_dpll)
13720 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13721
13722 if (old_state->shared_dpll &&
13723 old_state->shared_dpll != new_state->shared_dpll) {
13724 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13725 struct intel_shared_dpll *pll = old_state->shared_dpll;
13726
13727 I915_STATE_WARN(pll->active_mask & crtc_mask,
13728 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13729 pipe_name(drm_crtc_index(crtc)));
13730 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13731 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13732 pipe_name(drm_crtc_index(crtc)));
13733 }
13734 }
13735
13736 static void
13737 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13738 struct drm_atomic_state *state,
13739 struct drm_crtc_state *old_state,
13740 struct drm_crtc_state *new_state)
13741 {
13742 if (!needs_modeset(new_state) &&
13743 !to_intel_crtc_state(new_state)->update_pipe)
13744 return;
13745
13746 verify_wm_state(crtc, new_state);
13747 verify_connector_state(crtc->dev, state, crtc);
13748 verify_crtc_state(crtc, old_state, new_state);
13749 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13750 }
13751
13752 static void
13753 verify_disabled_dpll_state(struct drm_device *dev)
13754 {
13755 struct drm_i915_private *dev_priv = to_i915(dev);
13756 int i;
13757
13758 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13759 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13760 }
13761
13762 static void
13763 intel_modeset_verify_disabled(struct drm_device *dev,
13764 struct drm_atomic_state *state)
13765 {
13766 verify_encoder_state(dev);
13767 verify_connector_state(dev, state, NULL);
13768 verify_disabled_dpll_state(dev);
13769 }
13770
13771 static void update_scanline_offset(struct intel_crtc *crtc)
13772 {
13773 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13774
13775 /*
13776 * The scanline counter increments at the leading edge of hsync.
13777 *
13778 * On most platforms it starts counting from vtotal-1 on the
13779 * first active line. That means the scanline counter value is
13780 * always one less than what we would expect. Ie. just after
13781 * start of vblank, which also occurs at start of hsync (on the
13782 * last active line), the scanline counter will read vblank_start-1.
13783 *
13784 * On gen2 the scanline counter starts counting from 1 instead
13785 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13786 * to keep the value positive), instead of adding one.
13787 *
13788 * On HSW+ the behaviour of the scanline counter depends on the output
13789 * type. For DP ports it behaves like most other platforms, but on HDMI
13790 * there's an extra 1 line difference. So we need to add two instead of
13791 * one to the value.
13792 */
13793 if (IS_GEN2(dev_priv)) {
13794 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13795 int vtotal;
13796
13797 vtotal = adjusted_mode->crtc_vtotal;
13798 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13799 vtotal /= 2;
13800
13801 crtc->scanline_offset = vtotal - 1;
13802 } else if (HAS_DDI(dev_priv) &&
13803 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13804 crtc->scanline_offset = 2;
13805 } else
13806 crtc->scanline_offset = 1;
13807 }
13808
13809 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13810 {
13811 struct drm_device *dev = state->dev;
13812 struct drm_i915_private *dev_priv = to_i915(dev);
13813 struct intel_shared_dpll_config *shared_dpll = NULL;
13814 struct drm_crtc *crtc;
13815 struct drm_crtc_state *crtc_state;
13816 int i;
13817
13818 if (!dev_priv->display.crtc_compute_clock)
13819 return;
13820
13821 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13823 struct intel_shared_dpll *old_dpll =
13824 to_intel_crtc_state(crtc->state)->shared_dpll;
13825
13826 if (!needs_modeset(crtc_state))
13827 continue;
13828
13829 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13830
13831 if (!old_dpll)
13832 continue;
13833
13834 if (!shared_dpll)
13835 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13836
13837 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13838 }
13839 }
13840
13841 /*
13842 * This implements the workaround described in the "notes" section of the mode
13843 * set sequence documentation. When going from no pipes or single pipe to
13844 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13845 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13846 */
13847 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13848 {
13849 struct drm_crtc_state *crtc_state;
13850 struct intel_crtc *intel_crtc;
13851 struct drm_crtc *crtc;
13852 struct intel_crtc_state *first_crtc_state = NULL;
13853 struct intel_crtc_state *other_crtc_state = NULL;
13854 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13855 int i;
13856
13857 /* look at all crtc's that are going to be enabled in during modeset */
13858 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13859 intel_crtc = to_intel_crtc(crtc);
13860
13861 if (!crtc_state->active || !needs_modeset(crtc_state))
13862 continue;
13863
13864 if (first_crtc_state) {
13865 other_crtc_state = to_intel_crtc_state(crtc_state);
13866 break;
13867 } else {
13868 first_crtc_state = to_intel_crtc_state(crtc_state);
13869 first_pipe = intel_crtc->pipe;
13870 }
13871 }
13872
13873 /* No workaround needed? */
13874 if (!first_crtc_state)
13875 return 0;
13876
13877 /* w/a possibly needed, check how many crtc's are already enabled. */
13878 for_each_intel_crtc(state->dev, intel_crtc) {
13879 struct intel_crtc_state *pipe_config;
13880
13881 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13882 if (IS_ERR(pipe_config))
13883 return PTR_ERR(pipe_config);
13884
13885 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13886
13887 if (!pipe_config->base.active ||
13888 needs_modeset(&pipe_config->base))
13889 continue;
13890
13891 /* 2 or more enabled crtcs means no need for w/a */
13892 if (enabled_pipe != INVALID_PIPE)
13893 return 0;
13894
13895 enabled_pipe = intel_crtc->pipe;
13896 }
13897
13898 if (enabled_pipe != INVALID_PIPE)
13899 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13900 else if (other_crtc_state)
13901 other_crtc_state->hsw_workaround_pipe = first_pipe;
13902
13903 return 0;
13904 }
13905
13906 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13907 {
13908 struct drm_crtc *crtc;
13909 struct drm_crtc_state *crtc_state;
13910 int ret = 0;
13911
13912 /* add all active pipes to the state */
13913 for_each_crtc(state->dev, crtc) {
13914 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13915 if (IS_ERR(crtc_state))
13916 return PTR_ERR(crtc_state);
13917
13918 if (!crtc_state->active || needs_modeset(crtc_state))
13919 continue;
13920
13921 crtc_state->mode_changed = true;
13922
13923 ret = drm_atomic_add_affected_connectors(state, crtc);
13924 if (ret)
13925 break;
13926
13927 ret = drm_atomic_add_affected_planes(state, crtc);
13928 if (ret)
13929 break;
13930 }
13931
13932 return ret;
13933 }
13934
13935 static int intel_modeset_checks(struct drm_atomic_state *state)
13936 {
13937 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13938 struct drm_i915_private *dev_priv = to_i915(state->dev);
13939 struct drm_crtc *crtc;
13940 struct drm_crtc_state *crtc_state;
13941 int ret = 0, i;
13942
13943 if (!check_digital_port_conflicts(state)) {
13944 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13945 return -EINVAL;
13946 }
13947
13948 intel_state->modeset = true;
13949 intel_state->active_crtcs = dev_priv->active_crtcs;
13950
13951 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13952 if (crtc_state->active)
13953 intel_state->active_crtcs |= 1 << i;
13954 else
13955 intel_state->active_crtcs &= ~(1 << i);
13956
13957 if (crtc_state->active != crtc->state->active)
13958 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13959 }
13960
13961 /*
13962 * See if the config requires any additional preparation, e.g.
13963 * to adjust global state with pipes off. We need to do this
13964 * here so we can get the modeset_pipe updated config for the new
13965 * mode set on this crtc. For other crtcs we need to use the
13966 * adjusted_mode bits in the crtc directly.
13967 */
13968 if (dev_priv->display.modeset_calc_cdclk) {
13969 if (!intel_state->cdclk_pll_vco)
13970 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13971 if (!intel_state->cdclk_pll_vco)
13972 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13973
13974 ret = dev_priv->display.modeset_calc_cdclk(state);
13975 if (ret < 0)
13976 return ret;
13977
13978 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13979 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13980 ret = intel_modeset_all_pipes(state);
13981
13982 if (ret < 0)
13983 return ret;
13984
13985 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13986 intel_state->cdclk, intel_state->dev_cdclk);
13987 } else {
13988 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13989 }
13990
13991 intel_modeset_clear_plls(state);
13992
13993 if (IS_HASWELL(dev_priv))
13994 return haswell_mode_set_planes_workaround(state);
13995
13996 return 0;
13997 }
13998
13999 /*
14000 * Handle calculation of various watermark data at the end of the atomic check
14001 * phase. The code here should be run after the per-crtc and per-plane 'check'
14002 * handlers to ensure that all derived state has been updated.
14003 */
14004 static int calc_watermark_data(struct drm_atomic_state *state)
14005 {
14006 struct drm_device *dev = state->dev;
14007 struct drm_i915_private *dev_priv = to_i915(dev);
14008
14009 /* Is there platform-specific watermark information to calculate? */
14010 if (dev_priv->display.compute_global_watermarks)
14011 return dev_priv->display.compute_global_watermarks(state);
14012
14013 return 0;
14014 }
14015
14016 /**
14017 * intel_atomic_check - validate state object
14018 * @dev: drm device
14019 * @state: state to validate
14020 */
14021 static int intel_atomic_check(struct drm_device *dev,
14022 struct drm_atomic_state *state)
14023 {
14024 struct drm_i915_private *dev_priv = to_i915(dev);
14025 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14026 struct drm_crtc *crtc;
14027 struct drm_crtc_state *crtc_state;
14028 int ret, i;
14029 bool any_ms = false;
14030
14031 ret = drm_atomic_helper_check_modeset(dev, state);
14032 if (ret)
14033 return ret;
14034
14035 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14036 struct intel_crtc_state *pipe_config =
14037 to_intel_crtc_state(crtc_state);
14038
14039 /* Catch I915_MODE_FLAG_INHERITED */
14040 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14041 crtc_state->mode_changed = true;
14042
14043 if (!needs_modeset(crtc_state))
14044 continue;
14045
14046 if (!crtc_state->enable) {
14047 any_ms = true;
14048 continue;
14049 }
14050
14051 /* FIXME: For only active_changed we shouldn't need to do any
14052 * state recomputation at all. */
14053
14054 ret = drm_atomic_add_affected_connectors(state, crtc);
14055 if (ret)
14056 return ret;
14057
14058 ret = intel_modeset_pipe_config(crtc, pipe_config);
14059 if (ret) {
14060 intel_dump_pipe_config(to_intel_crtc(crtc),
14061 pipe_config, "[failed]");
14062 return ret;
14063 }
14064
14065 if (i915.fastboot &&
14066 intel_pipe_config_compare(dev_priv,
14067 to_intel_crtc_state(crtc->state),
14068 pipe_config, true)) {
14069 crtc_state->mode_changed = false;
14070 to_intel_crtc_state(crtc_state)->update_pipe = true;
14071 }
14072
14073 if (needs_modeset(crtc_state))
14074 any_ms = true;
14075
14076 ret = drm_atomic_add_affected_planes(state, crtc);
14077 if (ret)
14078 return ret;
14079
14080 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14081 needs_modeset(crtc_state) ?
14082 "[modeset]" : "[fastset]");
14083 }
14084
14085 if (any_ms) {
14086 ret = intel_modeset_checks(state);
14087
14088 if (ret)
14089 return ret;
14090 } else {
14091 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14092 }
14093
14094 ret = drm_atomic_helper_check_planes(dev, state);
14095 if (ret)
14096 return ret;
14097
14098 intel_fbc_choose_crtc(dev_priv, state);
14099 return calc_watermark_data(state);
14100 }
14101
14102 static int intel_atomic_prepare_commit(struct drm_device *dev,
14103 struct drm_atomic_state *state)
14104 {
14105 struct drm_i915_private *dev_priv = to_i915(dev);
14106 struct drm_crtc_state *crtc_state;
14107 struct drm_crtc *crtc;
14108 int i, ret;
14109
14110 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14111 if (state->legacy_cursor_update)
14112 continue;
14113
14114 ret = intel_crtc_wait_for_pending_flips(crtc);
14115 if (ret)
14116 return ret;
14117
14118 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14119 flush_workqueue(dev_priv->wq);
14120 }
14121
14122 ret = mutex_lock_interruptible(&dev->struct_mutex);
14123 if (ret)
14124 return ret;
14125
14126 ret = drm_atomic_helper_prepare_planes(dev, state);
14127 mutex_unlock(&dev->struct_mutex);
14128
14129 return ret;
14130 }
14131
14132 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14133 {
14134 struct drm_device *dev = crtc->base.dev;
14135
14136 if (!dev->max_vblank_count)
14137 return drm_accurate_vblank_count(&crtc->base);
14138
14139 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14140 }
14141
14142 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14143 struct drm_i915_private *dev_priv,
14144 unsigned crtc_mask)
14145 {
14146 unsigned last_vblank_count[I915_MAX_PIPES];
14147 enum pipe pipe;
14148 int ret;
14149
14150 if (!crtc_mask)
14151 return;
14152
14153 for_each_pipe(dev_priv, pipe) {
14154 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14155 pipe);
14156
14157 if (!((1 << pipe) & crtc_mask))
14158 continue;
14159
14160 ret = drm_crtc_vblank_get(&crtc->base);
14161 if (WARN_ON(ret != 0)) {
14162 crtc_mask &= ~(1 << pipe);
14163 continue;
14164 }
14165
14166 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14167 }
14168
14169 for_each_pipe(dev_priv, pipe) {
14170 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14171 pipe);
14172 long lret;
14173
14174 if (!((1 << pipe) & crtc_mask))
14175 continue;
14176
14177 lret = wait_event_timeout(dev->vblank[pipe].queue,
14178 last_vblank_count[pipe] !=
14179 drm_crtc_vblank_count(&crtc->base),
14180 msecs_to_jiffies(50));
14181
14182 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14183
14184 drm_crtc_vblank_put(&crtc->base);
14185 }
14186 }
14187
14188 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14189 {
14190 /* fb updated, need to unpin old fb */
14191 if (crtc_state->fb_changed)
14192 return true;
14193
14194 /* wm changes, need vblank before final wm's */
14195 if (crtc_state->update_wm_post)
14196 return true;
14197
14198 /*
14199 * cxsr is re-enabled after vblank.
14200 * This is already handled by crtc_state->update_wm_post,
14201 * but added for clarity.
14202 */
14203 if (crtc_state->disable_cxsr)
14204 return true;
14205
14206 return false;
14207 }
14208
14209 static void intel_update_crtc(struct drm_crtc *crtc,
14210 struct drm_atomic_state *state,
14211 struct drm_crtc_state *old_crtc_state,
14212 unsigned int *crtc_vblank_mask)
14213 {
14214 struct drm_device *dev = crtc->dev;
14215 struct drm_i915_private *dev_priv = to_i915(dev);
14216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14217 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14218 bool modeset = needs_modeset(crtc->state);
14219
14220 if (modeset) {
14221 update_scanline_offset(intel_crtc);
14222 dev_priv->display.crtc_enable(pipe_config, state);
14223 } else {
14224 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14225 }
14226
14227 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14228 intel_fbc_enable(
14229 intel_crtc, pipe_config,
14230 to_intel_plane_state(crtc->primary->state));
14231 }
14232
14233 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14234
14235 if (needs_vblank_wait(pipe_config))
14236 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14237 }
14238
14239 static void intel_update_crtcs(struct drm_atomic_state *state,
14240 unsigned int *crtc_vblank_mask)
14241 {
14242 struct drm_crtc *crtc;
14243 struct drm_crtc_state *old_crtc_state;
14244 int i;
14245
14246 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14247 if (!crtc->state->active)
14248 continue;
14249
14250 intel_update_crtc(crtc, state, old_crtc_state,
14251 crtc_vblank_mask);
14252 }
14253 }
14254
14255 static void skl_update_crtcs(struct drm_atomic_state *state,
14256 unsigned int *crtc_vblank_mask)
14257 {
14258 struct drm_i915_private *dev_priv = to_i915(state->dev);
14259 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14260 struct drm_crtc *crtc;
14261 struct intel_crtc *intel_crtc;
14262 struct drm_crtc_state *old_crtc_state;
14263 struct intel_crtc_state *cstate;
14264 unsigned int updated = 0;
14265 bool progress;
14266 enum pipe pipe;
14267 int i;
14268
14269 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14270
14271 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14272 /* ignore allocations for crtc's that have been turned off. */
14273 if (crtc->state->active)
14274 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14275
14276 /*
14277 * Whenever the number of active pipes changes, we need to make sure we
14278 * update the pipes in the right order so that their ddb allocations
14279 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14280 * cause pipe underruns and other bad stuff.
14281 */
14282 do {
14283 progress = false;
14284
14285 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14286 bool vbl_wait = false;
14287 unsigned int cmask = drm_crtc_mask(crtc);
14288
14289 intel_crtc = to_intel_crtc(crtc);
14290 cstate = to_intel_crtc_state(crtc->state);
14291 pipe = intel_crtc->pipe;
14292
14293 if (updated & cmask || !cstate->base.active)
14294 continue;
14295
14296 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14297 continue;
14298
14299 updated |= cmask;
14300 entries[i] = &cstate->wm.skl.ddb;
14301
14302 /*
14303 * If this is an already active pipe, it's DDB changed,
14304 * and this isn't the last pipe that needs updating
14305 * then we need to wait for a vblank to pass for the
14306 * new ddb allocation to take effect.
14307 */
14308 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14309 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14310 !crtc->state->active_changed &&
14311 intel_state->wm_results.dirty_pipes != updated)
14312 vbl_wait = true;
14313
14314 intel_update_crtc(crtc, state, old_crtc_state,
14315 crtc_vblank_mask);
14316
14317 if (vbl_wait)
14318 intel_wait_for_vblank(dev_priv, pipe);
14319
14320 progress = true;
14321 }
14322 } while (progress);
14323 }
14324
14325 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14326 {
14327 struct drm_device *dev = state->dev;
14328 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14329 struct drm_i915_private *dev_priv = to_i915(dev);
14330 struct drm_crtc_state *old_crtc_state;
14331 struct drm_crtc *crtc;
14332 struct intel_crtc_state *intel_cstate;
14333 bool hw_check = intel_state->modeset;
14334 unsigned long put_domains[I915_MAX_PIPES] = {};
14335 unsigned crtc_vblank_mask = 0;
14336 int i;
14337
14338 drm_atomic_helper_wait_for_dependencies(state);
14339
14340 if (intel_state->modeset)
14341 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14342
14343 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14345
14346 if (needs_modeset(crtc->state) ||
14347 to_intel_crtc_state(crtc->state)->update_pipe) {
14348 hw_check = true;
14349
14350 put_domains[to_intel_crtc(crtc)->pipe] =
14351 modeset_get_crtc_power_domains(crtc,
14352 to_intel_crtc_state(crtc->state));
14353 }
14354
14355 if (!needs_modeset(crtc->state))
14356 continue;
14357
14358 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14359
14360 if (old_crtc_state->active) {
14361 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14362 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14363 intel_crtc->active = false;
14364 intel_fbc_disable(intel_crtc);
14365 intel_disable_shared_dpll(intel_crtc);
14366
14367 /*
14368 * Underruns don't always raise
14369 * interrupts, so check manually.
14370 */
14371 intel_check_cpu_fifo_underruns(dev_priv);
14372 intel_check_pch_fifo_underruns(dev_priv);
14373
14374 if (!crtc->state->active) {
14375 /*
14376 * Make sure we don't call initial_watermarks
14377 * for ILK-style watermark updates.
14378 */
14379 if (dev_priv->display.atomic_update_watermarks)
14380 dev_priv->display.initial_watermarks(intel_state,
14381 to_intel_crtc_state(crtc->state));
14382 else
14383 intel_update_watermarks(intel_crtc);
14384 }
14385 }
14386 }
14387
14388 /* Only after disabling all output pipelines that will be changed can we
14389 * update the the output configuration. */
14390 intel_modeset_update_crtc_state(state);
14391
14392 if (intel_state->modeset) {
14393 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14394
14395 if (dev_priv->display.modeset_commit_cdclk &&
14396 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14397 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14398 dev_priv->display.modeset_commit_cdclk(state);
14399
14400 /*
14401 * SKL workaround: bspec recommends we disable the SAGV when we
14402 * have more then one pipe enabled
14403 */
14404 if (!intel_can_enable_sagv(state))
14405 intel_disable_sagv(dev_priv);
14406
14407 intel_modeset_verify_disabled(dev, state);
14408 }
14409
14410 /* Complete the events for pipes that have now been disabled */
14411 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14412 bool modeset = needs_modeset(crtc->state);
14413
14414 /* Complete events for now disable pipes here. */
14415 if (modeset && !crtc->state->active && crtc->state->event) {
14416 spin_lock_irq(&dev->event_lock);
14417 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14418 spin_unlock_irq(&dev->event_lock);
14419
14420 crtc->state->event = NULL;
14421 }
14422 }
14423
14424 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14425 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14426
14427 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14428 * already, but still need the state for the delayed optimization. To
14429 * fix this:
14430 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14431 * - schedule that vblank worker _before_ calling hw_done
14432 * - at the start of commit_tail, cancel it _synchrously
14433 * - switch over to the vblank wait helper in the core after that since
14434 * we don't need out special handling any more.
14435 */
14436 if (!state->legacy_cursor_update)
14437 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14438
14439 /*
14440 * Now that the vblank has passed, we can go ahead and program the
14441 * optimal watermarks on platforms that need two-step watermark
14442 * programming.
14443 *
14444 * TODO: Move this (and other cleanup) to an async worker eventually.
14445 */
14446 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14447 intel_cstate = to_intel_crtc_state(crtc->state);
14448
14449 if (dev_priv->display.optimize_watermarks)
14450 dev_priv->display.optimize_watermarks(intel_state,
14451 intel_cstate);
14452 }
14453
14454 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14455 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14456
14457 if (put_domains[i])
14458 modeset_put_power_domains(dev_priv, put_domains[i]);
14459
14460 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14461 }
14462
14463 if (intel_state->modeset && intel_can_enable_sagv(state))
14464 intel_enable_sagv(dev_priv);
14465
14466 drm_atomic_helper_commit_hw_done(state);
14467
14468 if (intel_state->modeset)
14469 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14470
14471 mutex_lock(&dev->struct_mutex);
14472 drm_atomic_helper_cleanup_planes(dev, state);
14473 mutex_unlock(&dev->struct_mutex);
14474
14475 drm_atomic_helper_commit_cleanup_done(state);
14476
14477 drm_atomic_state_put(state);
14478
14479 /* As one of the primary mmio accessors, KMS has a high likelihood
14480 * of triggering bugs in unclaimed access. After we finish
14481 * modesetting, see if an error has been flagged, and if so
14482 * enable debugging for the next modeset - and hope we catch
14483 * the culprit.
14484 *
14485 * XXX note that we assume display power is on at this point.
14486 * This might hold true now but we need to add pm helper to check
14487 * unclaimed only when the hardware is on, as atomic commits
14488 * can happen also when the device is completely off.
14489 */
14490 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14491 }
14492
14493 static void intel_atomic_commit_work(struct work_struct *work)
14494 {
14495 struct drm_atomic_state *state =
14496 container_of(work, struct drm_atomic_state, commit_work);
14497
14498 intel_atomic_commit_tail(state);
14499 }
14500
14501 static int __i915_sw_fence_call
14502 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14503 enum i915_sw_fence_notify notify)
14504 {
14505 struct intel_atomic_state *state =
14506 container_of(fence, struct intel_atomic_state, commit_ready);
14507
14508 switch (notify) {
14509 case FENCE_COMPLETE:
14510 if (state->base.commit_work.func)
14511 queue_work(system_unbound_wq, &state->base.commit_work);
14512 break;
14513
14514 case FENCE_FREE:
14515 drm_atomic_state_put(&state->base);
14516 break;
14517 }
14518
14519 return NOTIFY_DONE;
14520 }
14521
14522 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14523 {
14524 struct drm_plane_state *old_plane_state;
14525 struct drm_plane *plane;
14526 int i;
14527
14528 for_each_plane_in_state(state, plane, old_plane_state, i)
14529 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14530 intel_fb_obj(plane->state->fb),
14531 to_intel_plane(plane)->frontbuffer_bit);
14532 }
14533
14534 /**
14535 * intel_atomic_commit - commit validated state object
14536 * @dev: DRM device
14537 * @state: the top-level driver state object
14538 * @nonblock: nonblocking commit
14539 *
14540 * This function commits a top-level state object that has been validated
14541 * with drm_atomic_helper_check().
14542 *
14543 * RETURNS
14544 * Zero for success or -errno.
14545 */
14546 static int intel_atomic_commit(struct drm_device *dev,
14547 struct drm_atomic_state *state,
14548 bool nonblock)
14549 {
14550 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14551 struct drm_i915_private *dev_priv = to_i915(dev);
14552 int ret = 0;
14553
14554 ret = drm_atomic_helper_setup_commit(state, nonblock);
14555 if (ret)
14556 return ret;
14557
14558 drm_atomic_state_get(state);
14559 i915_sw_fence_init(&intel_state->commit_ready,
14560 intel_atomic_commit_ready);
14561
14562 ret = intel_atomic_prepare_commit(dev, state);
14563 if (ret) {
14564 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14565 i915_sw_fence_commit(&intel_state->commit_ready);
14566 return ret;
14567 }
14568
14569 drm_atomic_helper_swap_state(state, true);
14570 dev_priv->wm.distrust_bios_wm = false;
14571 intel_shared_dpll_commit(state);
14572 intel_atomic_track_fbs(state);
14573
14574 if (intel_state->modeset) {
14575 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14576 sizeof(intel_state->min_pixclk));
14577 dev_priv->active_crtcs = intel_state->active_crtcs;
14578 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14579 }
14580
14581 drm_atomic_state_get(state);
14582 INIT_WORK(&state->commit_work,
14583 nonblock ? intel_atomic_commit_work : NULL);
14584
14585 i915_sw_fence_commit(&intel_state->commit_ready);
14586 if (!nonblock) {
14587 i915_sw_fence_wait(&intel_state->commit_ready);
14588 intel_atomic_commit_tail(state);
14589 }
14590
14591 return 0;
14592 }
14593
14594 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14595 {
14596 struct drm_device *dev = crtc->dev;
14597 struct drm_atomic_state *state;
14598 struct drm_crtc_state *crtc_state;
14599 int ret;
14600
14601 state = drm_atomic_state_alloc(dev);
14602 if (!state) {
14603 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14604 crtc->base.id, crtc->name);
14605 return;
14606 }
14607
14608 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14609
14610 retry:
14611 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14612 ret = PTR_ERR_OR_ZERO(crtc_state);
14613 if (!ret) {
14614 if (!crtc_state->active)
14615 goto out;
14616
14617 crtc_state->mode_changed = true;
14618 ret = drm_atomic_commit(state);
14619 }
14620
14621 if (ret == -EDEADLK) {
14622 drm_atomic_state_clear(state);
14623 drm_modeset_backoff(state->acquire_ctx);
14624 goto retry;
14625 }
14626
14627 out:
14628 drm_atomic_state_put(state);
14629 }
14630
14631 /*
14632 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14633 * drm_atomic_helper_legacy_gamma_set() directly.
14634 */
14635 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14636 u16 *red, u16 *green, u16 *blue,
14637 uint32_t size)
14638 {
14639 struct drm_device *dev = crtc->dev;
14640 struct drm_mode_config *config = &dev->mode_config;
14641 struct drm_crtc_state *state;
14642 int ret;
14643
14644 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14645 if (ret)
14646 return ret;
14647
14648 /*
14649 * Make sure we update the legacy properties so this works when
14650 * atomic is not enabled.
14651 */
14652
14653 state = crtc->state;
14654
14655 drm_object_property_set_value(&crtc->base,
14656 config->degamma_lut_property,
14657 (state->degamma_lut) ?
14658 state->degamma_lut->base.id : 0);
14659
14660 drm_object_property_set_value(&crtc->base,
14661 config->ctm_property,
14662 (state->ctm) ?
14663 state->ctm->base.id : 0);
14664
14665 drm_object_property_set_value(&crtc->base,
14666 config->gamma_lut_property,
14667 (state->gamma_lut) ?
14668 state->gamma_lut->base.id : 0);
14669
14670 return 0;
14671 }
14672
14673 static const struct drm_crtc_funcs intel_crtc_funcs = {
14674 .gamma_set = intel_atomic_legacy_gamma_set,
14675 .set_config = drm_atomic_helper_set_config,
14676 .set_property = drm_atomic_helper_crtc_set_property,
14677 .destroy = intel_crtc_destroy,
14678 .page_flip = intel_crtc_page_flip,
14679 .atomic_duplicate_state = intel_crtc_duplicate_state,
14680 .atomic_destroy_state = intel_crtc_destroy_state,
14681 };
14682
14683 /**
14684 * intel_prepare_plane_fb - Prepare fb for usage on plane
14685 * @plane: drm plane to prepare for
14686 * @fb: framebuffer to prepare for presentation
14687 *
14688 * Prepares a framebuffer for usage on a display plane. Generally this
14689 * involves pinning the underlying object and updating the frontbuffer tracking
14690 * bits. Some older platforms need special physical address handling for
14691 * cursor planes.
14692 *
14693 * Must be called with struct_mutex held.
14694 *
14695 * Returns 0 on success, negative error code on failure.
14696 */
14697 int
14698 intel_prepare_plane_fb(struct drm_plane *plane,
14699 struct drm_plane_state *new_state)
14700 {
14701 struct intel_atomic_state *intel_state =
14702 to_intel_atomic_state(new_state->state);
14703 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14704 struct drm_framebuffer *fb = new_state->fb;
14705 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14706 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14707 int ret;
14708
14709 if (!obj && !old_obj)
14710 return 0;
14711
14712 if (old_obj) {
14713 struct drm_crtc_state *crtc_state =
14714 drm_atomic_get_existing_crtc_state(new_state->state,
14715 plane->state->crtc);
14716
14717 /* Big Hammer, we also need to ensure that any pending
14718 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14719 * current scanout is retired before unpinning the old
14720 * framebuffer. Note that we rely on userspace rendering
14721 * into the buffer attached to the pipe they are waiting
14722 * on. If not, userspace generates a GPU hang with IPEHR
14723 * point to the MI_WAIT_FOR_EVENT.
14724 *
14725 * This should only fail upon a hung GPU, in which case we
14726 * can safely continue.
14727 */
14728 if (needs_modeset(crtc_state)) {
14729 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14730 old_obj->resv, NULL,
14731 false, 0,
14732 GFP_KERNEL);
14733 if (ret < 0)
14734 return ret;
14735 }
14736 }
14737
14738 if (new_state->fence) { /* explicit fencing */
14739 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14740 new_state->fence,
14741 I915_FENCE_TIMEOUT,
14742 GFP_KERNEL);
14743 if (ret < 0)
14744 return ret;
14745 }
14746
14747 if (!obj)
14748 return 0;
14749
14750 if (!new_state->fence) { /* implicit fencing */
14751 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14752 obj->resv, NULL,
14753 false, I915_FENCE_TIMEOUT,
14754 GFP_KERNEL);
14755 if (ret < 0)
14756 return ret;
14757
14758 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14759 }
14760
14761 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14762 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14763 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14764 ret = i915_gem_object_attach_phys(obj, align);
14765 if (ret) {
14766 DRM_DEBUG_KMS("failed to attach phys object\n");
14767 return ret;
14768 }
14769 } else {
14770 struct i915_vma *vma;
14771
14772 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14773 if (IS_ERR(vma)) {
14774 DRM_DEBUG_KMS("failed to pin object\n");
14775 return PTR_ERR(vma);
14776 }
14777 }
14778
14779 return 0;
14780 }
14781
14782 /**
14783 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14784 * @plane: drm plane to clean up for
14785 * @fb: old framebuffer that was on plane
14786 *
14787 * Cleans up a framebuffer that has just been removed from a plane.
14788 *
14789 * Must be called with struct_mutex held.
14790 */
14791 void
14792 intel_cleanup_plane_fb(struct drm_plane *plane,
14793 struct drm_plane_state *old_state)
14794 {
14795 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14796 struct intel_plane_state *old_intel_state;
14797 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14798 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14799
14800 old_intel_state = to_intel_plane_state(old_state);
14801
14802 if (!obj && !old_obj)
14803 return;
14804
14805 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14806 !INTEL_INFO(dev_priv)->cursor_needs_physical))
14807 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14808 }
14809
14810 int
14811 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14812 {
14813 int max_scale;
14814 int crtc_clock, cdclk;
14815
14816 if (!intel_crtc || !crtc_state->base.enable)
14817 return DRM_PLANE_HELPER_NO_SCALING;
14818
14819 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14820 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14821
14822 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14823 return DRM_PLANE_HELPER_NO_SCALING;
14824
14825 /*
14826 * skl max scale is lower of:
14827 * close to 3 but not 3, -1 is for that purpose
14828 * or
14829 * cdclk/crtc_clock
14830 */
14831 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14832
14833 return max_scale;
14834 }
14835
14836 static int
14837 intel_check_primary_plane(struct drm_plane *plane,
14838 struct intel_crtc_state *crtc_state,
14839 struct intel_plane_state *state)
14840 {
14841 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14842 struct drm_crtc *crtc = state->base.crtc;
14843 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14844 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14845 bool can_position = false;
14846 int ret;
14847
14848 if (INTEL_GEN(dev_priv) >= 9) {
14849 /* use scaler when colorkey is not required */
14850 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14851 min_scale = 1;
14852 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14853 }
14854 can_position = true;
14855 }
14856
14857 ret = drm_plane_helper_check_state(&state->base,
14858 &state->clip,
14859 min_scale, max_scale,
14860 can_position, true);
14861 if (ret)
14862 return ret;
14863
14864 if (!state->base.fb)
14865 return 0;
14866
14867 if (INTEL_GEN(dev_priv) >= 9) {
14868 ret = skl_check_plane_surface(state);
14869 if (ret)
14870 return ret;
14871 }
14872
14873 return 0;
14874 }
14875
14876 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14877 struct drm_crtc_state *old_crtc_state)
14878 {
14879 struct drm_device *dev = crtc->dev;
14880 struct drm_i915_private *dev_priv = to_i915(dev);
14881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14882 struct intel_crtc_state *intel_cstate =
14883 to_intel_crtc_state(crtc->state);
14884 struct intel_crtc_state *old_intel_cstate =
14885 to_intel_crtc_state(old_crtc_state);
14886 struct intel_atomic_state *old_intel_state =
14887 to_intel_atomic_state(old_crtc_state->state);
14888 bool modeset = needs_modeset(crtc->state);
14889
14890 /* Perform vblank evasion around commit operation */
14891 intel_pipe_update_start(intel_crtc);
14892
14893 if (modeset)
14894 goto out;
14895
14896 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14897 intel_color_set_csc(crtc->state);
14898 intel_color_load_luts(crtc->state);
14899 }
14900
14901 if (intel_cstate->update_pipe)
14902 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14903 else if (INTEL_GEN(dev_priv) >= 9)
14904 skl_detach_scalers(intel_crtc);
14905
14906 out:
14907 if (dev_priv->display.atomic_update_watermarks)
14908 dev_priv->display.atomic_update_watermarks(old_intel_state,
14909 intel_cstate);
14910 }
14911
14912 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14913 struct drm_crtc_state *old_crtc_state)
14914 {
14915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14916
14917 intel_pipe_update_end(intel_crtc, NULL);
14918 }
14919
14920 /**
14921 * intel_plane_destroy - destroy a plane
14922 * @plane: plane to destroy
14923 *
14924 * Common destruction function for all types of planes (primary, cursor,
14925 * sprite).
14926 */
14927 void intel_plane_destroy(struct drm_plane *plane)
14928 {
14929 drm_plane_cleanup(plane);
14930 kfree(to_intel_plane(plane));
14931 }
14932
14933 const struct drm_plane_funcs intel_plane_funcs = {
14934 .update_plane = drm_atomic_helper_update_plane,
14935 .disable_plane = drm_atomic_helper_disable_plane,
14936 .destroy = intel_plane_destroy,
14937 .set_property = drm_atomic_helper_plane_set_property,
14938 .atomic_get_property = intel_plane_atomic_get_property,
14939 .atomic_set_property = intel_plane_atomic_set_property,
14940 .atomic_duplicate_state = intel_plane_duplicate_state,
14941 .atomic_destroy_state = intel_plane_destroy_state,
14942 };
14943
14944 static struct intel_plane *
14945 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14946 {
14947 struct intel_plane *primary = NULL;
14948 struct intel_plane_state *state = NULL;
14949 const uint32_t *intel_primary_formats;
14950 unsigned int supported_rotations;
14951 unsigned int num_formats;
14952 int ret;
14953
14954 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14955 if (!primary) {
14956 ret = -ENOMEM;
14957 goto fail;
14958 }
14959
14960 state = intel_create_plane_state(&primary->base);
14961 if (!state) {
14962 ret = -ENOMEM;
14963 goto fail;
14964 }
14965
14966 primary->base.state = &state->base;
14967
14968 primary->can_scale = false;
14969 primary->max_downscale = 1;
14970 if (INTEL_GEN(dev_priv) >= 9) {
14971 primary->can_scale = true;
14972 state->scaler_id = -1;
14973 }
14974 primary->pipe = pipe;
14975 /*
14976 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14977 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14978 */
14979 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14980 primary->plane = (enum plane) !pipe;
14981 else
14982 primary->plane = (enum plane) pipe;
14983 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14984 primary->check_plane = intel_check_primary_plane;
14985
14986 if (INTEL_GEN(dev_priv) >= 9) {
14987 intel_primary_formats = skl_primary_formats;
14988 num_formats = ARRAY_SIZE(skl_primary_formats);
14989
14990 primary->update_plane = skylake_update_primary_plane;
14991 primary->disable_plane = skylake_disable_primary_plane;
14992 } else if (HAS_PCH_SPLIT(dev_priv)) {
14993 intel_primary_formats = i965_primary_formats;
14994 num_formats = ARRAY_SIZE(i965_primary_formats);
14995
14996 primary->update_plane = ironlake_update_primary_plane;
14997 primary->disable_plane = i9xx_disable_primary_plane;
14998 } else if (INTEL_GEN(dev_priv) >= 4) {
14999 intel_primary_formats = i965_primary_formats;
15000 num_formats = ARRAY_SIZE(i965_primary_formats);
15001
15002 primary->update_plane = i9xx_update_primary_plane;
15003 primary->disable_plane = i9xx_disable_primary_plane;
15004 } else {
15005 intel_primary_formats = i8xx_primary_formats;
15006 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15007
15008 primary->update_plane = i9xx_update_primary_plane;
15009 primary->disable_plane = i9xx_disable_primary_plane;
15010 }
15011
15012 if (INTEL_GEN(dev_priv) >= 9)
15013 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15014 0, &intel_plane_funcs,
15015 intel_primary_formats, num_formats,
15016 DRM_PLANE_TYPE_PRIMARY,
15017 "plane 1%c", pipe_name(pipe));
15018 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15019 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15020 0, &intel_plane_funcs,
15021 intel_primary_formats, num_formats,
15022 DRM_PLANE_TYPE_PRIMARY,
15023 "primary %c", pipe_name(pipe));
15024 else
15025 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15026 0, &intel_plane_funcs,
15027 intel_primary_formats, num_formats,
15028 DRM_PLANE_TYPE_PRIMARY,
15029 "plane %c", plane_name(primary->plane));
15030 if (ret)
15031 goto fail;
15032
15033 if (INTEL_GEN(dev_priv) >= 9) {
15034 supported_rotations =
15035 DRM_ROTATE_0 | DRM_ROTATE_90 |
15036 DRM_ROTATE_180 | DRM_ROTATE_270;
15037 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15038 supported_rotations =
15039 DRM_ROTATE_0 | DRM_ROTATE_180 |
15040 DRM_REFLECT_X;
15041 } else if (INTEL_GEN(dev_priv) >= 4) {
15042 supported_rotations =
15043 DRM_ROTATE_0 | DRM_ROTATE_180;
15044 } else {
15045 supported_rotations = DRM_ROTATE_0;
15046 }
15047
15048 if (INTEL_GEN(dev_priv) >= 4)
15049 drm_plane_create_rotation_property(&primary->base,
15050 DRM_ROTATE_0,
15051 supported_rotations);
15052
15053 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15054
15055 return primary;
15056
15057 fail:
15058 kfree(state);
15059 kfree(primary);
15060
15061 return ERR_PTR(ret);
15062 }
15063
15064 static int
15065 intel_check_cursor_plane(struct drm_plane *plane,
15066 struct intel_crtc_state *crtc_state,
15067 struct intel_plane_state *state)
15068 {
15069 struct drm_framebuffer *fb = state->base.fb;
15070 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15071 enum pipe pipe = to_intel_plane(plane)->pipe;
15072 unsigned stride;
15073 int ret;
15074
15075 ret = drm_plane_helper_check_state(&state->base,
15076 &state->clip,
15077 DRM_PLANE_HELPER_NO_SCALING,
15078 DRM_PLANE_HELPER_NO_SCALING,
15079 true, true);
15080 if (ret)
15081 return ret;
15082
15083 /* if we want to turn off the cursor ignore width and height */
15084 if (!obj)
15085 return 0;
15086
15087 /* Check for which cursor types we support */
15088 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15089 state->base.crtc_h)) {
15090 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15091 state->base.crtc_w, state->base.crtc_h);
15092 return -EINVAL;
15093 }
15094
15095 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15096 if (obj->base.size < stride * state->base.crtc_h) {
15097 DRM_DEBUG_KMS("buffer is too small\n");
15098 return -ENOMEM;
15099 }
15100
15101 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15102 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15103 return -EINVAL;
15104 }
15105
15106 /*
15107 * There's something wrong with the cursor on CHV pipe C.
15108 * If it straddles the left edge of the screen then
15109 * moving it away from the edge or disabling it often
15110 * results in a pipe underrun, and often that can lead to
15111 * dead pipe (constant underrun reported, and it scans
15112 * out just a solid color). To recover from that, the
15113 * display power well must be turned off and on again.
15114 * Refuse the put the cursor into that compromised position.
15115 */
15116 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15117 state->base.visible && state->base.crtc_x < 0) {
15118 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15119 return -EINVAL;
15120 }
15121
15122 return 0;
15123 }
15124
15125 static void
15126 intel_disable_cursor_plane(struct drm_plane *plane,
15127 struct drm_crtc *crtc)
15128 {
15129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15130
15131 intel_crtc->cursor_addr = 0;
15132 intel_crtc_update_cursor(crtc, NULL);
15133 }
15134
15135 static void
15136 intel_update_cursor_plane(struct drm_plane *plane,
15137 const struct intel_crtc_state *crtc_state,
15138 const struct intel_plane_state *state)
15139 {
15140 struct drm_crtc *crtc = crtc_state->base.crtc;
15141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15142 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15143 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15144 uint32_t addr;
15145
15146 if (!obj)
15147 addr = 0;
15148 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15149 addr = i915_gem_object_ggtt_offset(obj, NULL);
15150 else
15151 addr = obj->phys_handle->busaddr;
15152
15153 intel_crtc->cursor_addr = addr;
15154 intel_crtc_update_cursor(crtc, state);
15155 }
15156
15157 static struct intel_plane *
15158 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15159 {
15160 struct intel_plane *cursor = NULL;
15161 struct intel_plane_state *state = NULL;
15162 int ret;
15163
15164 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15165 if (!cursor) {
15166 ret = -ENOMEM;
15167 goto fail;
15168 }
15169
15170 state = intel_create_plane_state(&cursor->base);
15171 if (!state) {
15172 ret = -ENOMEM;
15173 goto fail;
15174 }
15175
15176 cursor->base.state = &state->base;
15177
15178 cursor->can_scale = false;
15179 cursor->max_downscale = 1;
15180 cursor->pipe = pipe;
15181 cursor->plane = pipe;
15182 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15183 cursor->check_plane = intel_check_cursor_plane;
15184 cursor->update_plane = intel_update_cursor_plane;
15185 cursor->disable_plane = intel_disable_cursor_plane;
15186
15187 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15188 0, &intel_plane_funcs,
15189 intel_cursor_formats,
15190 ARRAY_SIZE(intel_cursor_formats),
15191 DRM_PLANE_TYPE_CURSOR,
15192 "cursor %c", pipe_name(pipe));
15193 if (ret)
15194 goto fail;
15195
15196 if (INTEL_GEN(dev_priv) >= 4)
15197 drm_plane_create_rotation_property(&cursor->base,
15198 DRM_ROTATE_0,
15199 DRM_ROTATE_0 |
15200 DRM_ROTATE_180);
15201
15202 if (INTEL_GEN(dev_priv) >= 9)
15203 state->scaler_id = -1;
15204
15205 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15206
15207 return cursor;
15208
15209 fail:
15210 kfree(state);
15211 kfree(cursor);
15212
15213 return ERR_PTR(ret);
15214 }
15215
15216 static void skl_init_scalers(struct drm_i915_private *dev_priv,
15217 struct intel_crtc *crtc,
15218 struct intel_crtc_state *crtc_state)
15219 {
15220 struct intel_crtc_scaler_state *scaler_state =
15221 &crtc_state->scaler_state;
15222 int i;
15223
15224 for (i = 0; i < crtc->num_scalers; i++) {
15225 struct intel_scaler *scaler = &scaler_state->scalers[i];
15226
15227 scaler->in_use = 0;
15228 scaler->mode = PS_SCALER_MODE_DYN;
15229 }
15230
15231 scaler_state->scaler_id = -1;
15232 }
15233
15234 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15235 {
15236 struct intel_crtc *intel_crtc;
15237 struct intel_crtc_state *crtc_state = NULL;
15238 struct intel_plane *primary = NULL;
15239 struct intel_plane *cursor = NULL;
15240 int sprite, ret;
15241
15242 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15243 if (!intel_crtc)
15244 return -ENOMEM;
15245
15246 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15247 if (!crtc_state) {
15248 ret = -ENOMEM;
15249 goto fail;
15250 }
15251 intel_crtc->config = crtc_state;
15252 intel_crtc->base.state = &crtc_state->base;
15253 crtc_state->base.crtc = &intel_crtc->base;
15254
15255 /* initialize shared scalers */
15256 if (INTEL_GEN(dev_priv) >= 9) {
15257 if (pipe == PIPE_C)
15258 intel_crtc->num_scalers = 1;
15259 else
15260 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15261
15262 skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15263 }
15264
15265 primary = intel_primary_plane_create(dev_priv, pipe);
15266 if (IS_ERR(primary)) {
15267 ret = PTR_ERR(primary);
15268 goto fail;
15269 }
15270
15271 for_each_sprite(dev_priv, pipe, sprite) {
15272 struct intel_plane *plane;
15273
15274 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15275 if (IS_ERR(plane)) {
15276 ret = PTR_ERR(plane);
15277 goto fail;
15278 }
15279 }
15280
15281 cursor = intel_cursor_plane_create(dev_priv, pipe);
15282 if (IS_ERR(cursor)) {
15283 ret = PTR_ERR(cursor);
15284 goto fail;
15285 }
15286
15287 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15288 &primary->base, &cursor->base,
15289 &intel_crtc_funcs,
15290 "pipe %c", pipe_name(pipe));
15291 if (ret)
15292 goto fail;
15293
15294 intel_crtc->pipe = pipe;
15295 intel_crtc->plane = primary->plane;
15296
15297 intel_crtc->cursor_base = ~0;
15298 intel_crtc->cursor_cntl = ~0;
15299 intel_crtc->cursor_size = ~0;
15300
15301 intel_crtc->wm.cxsr_allowed = true;
15302
15303 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15304 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15305 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15306 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15307
15308 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15309
15310 intel_color_init(&intel_crtc->base);
15311
15312 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15313
15314 return 0;
15315
15316 fail:
15317 /*
15318 * drm_mode_config_cleanup() will free up any
15319 * crtcs/planes already initialized.
15320 */
15321 kfree(crtc_state);
15322 kfree(intel_crtc);
15323
15324 return ret;
15325 }
15326
15327 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15328 {
15329 struct drm_encoder *encoder = connector->base.encoder;
15330 struct drm_device *dev = connector->base.dev;
15331
15332 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15333
15334 if (!encoder || WARN_ON(!encoder->crtc))
15335 return INVALID_PIPE;
15336
15337 return to_intel_crtc(encoder->crtc)->pipe;
15338 }
15339
15340 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15341 struct drm_file *file)
15342 {
15343 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15344 struct drm_crtc *drmmode_crtc;
15345 struct intel_crtc *crtc;
15346
15347 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15348 if (!drmmode_crtc)
15349 return -ENOENT;
15350
15351 crtc = to_intel_crtc(drmmode_crtc);
15352 pipe_from_crtc_id->pipe = crtc->pipe;
15353
15354 return 0;
15355 }
15356
15357 static int intel_encoder_clones(struct intel_encoder *encoder)
15358 {
15359 struct drm_device *dev = encoder->base.dev;
15360 struct intel_encoder *source_encoder;
15361 int index_mask = 0;
15362 int entry = 0;
15363
15364 for_each_intel_encoder(dev, source_encoder) {
15365 if (encoders_cloneable(encoder, source_encoder))
15366 index_mask |= (1 << entry);
15367
15368 entry++;
15369 }
15370
15371 return index_mask;
15372 }
15373
15374 static bool has_edp_a(struct drm_i915_private *dev_priv)
15375 {
15376 if (!IS_MOBILE(dev_priv))
15377 return false;
15378
15379 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15380 return false;
15381
15382 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15383 return false;
15384
15385 return true;
15386 }
15387
15388 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15389 {
15390 if (INTEL_GEN(dev_priv) >= 9)
15391 return false;
15392
15393 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15394 return false;
15395
15396 if (IS_CHERRYVIEW(dev_priv))
15397 return false;
15398
15399 if (HAS_PCH_LPT_H(dev_priv) &&
15400 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15401 return false;
15402
15403 /* DDI E can't be used if DDI A requires 4 lanes */
15404 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15405 return false;
15406
15407 if (!dev_priv->vbt.int_crt_support)
15408 return false;
15409
15410 return true;
15411 }
15412
15413 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15414 {
15415 int pps_num;
15416 int pps_idx;
15417
15418 if (HAS_DDI(dev_priv))
15419 return;
15420 /*
15421 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15422 * everywhere where registers can be write protected.
15423 */
15424 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15425 pps_num = 2;
15426 else
15427 pps_num = 1;
15428
15429 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15430 u32 val = I915_READ(PP_CONTROL(pps_idx));
15431
15432 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15433 I915_WRITE(PP_CONTROL(pps_idx), val);
15434 }
15435 }
15436
15437 static void intel_pps_init(struct drm_i915_private *dev_priv)
15438 {
15439 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15440 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15441 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15442 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15443 else
15444 dev_priv->pps_mmio_base = PPS_BASE;
15445
15446 intel_pps_unlock_regs_wa(dev_priv);
15447 }
15448
15449 static void intel_setup_outputs(struct drm_device *dev)
15450 {
15451 struct drm_i915_private *dev_priv = to_i915(dev);
15452 struct intel_encoder *encoder;
15453 bool dpd_is_edp = false;
15454
15455 intel_pps_init(dev_priv);
15456
15457 /*
15458 * intel_edp_init_connector() depends on this completing first, to
15459 * prevent the registeration of both eDP and LVDS and the incorrect
15460 * sharing of the PPS.
15461 */
15462 intel_lvds_init(dev);
15463
15464 if (intel_crt_present(dev_priv))
15465 intel_crt_init(dev);
15466
15467 if (IS_BROXTON(dev_priv)) {
15468 /*
15469 * FIXME: Broxton doesn't support port detection via the
15470 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15471 * detect the ports.
15472 */
15473 intel_ddi_init(dev, PORT_A);
15474 intel_ddi_init(dev, PORT_B);
15475 intel_ddi_init(dev, PORT_C);
15476
15477 intel_dsi_init(dev);
15478 } else if (HAS_DDI(dev_priv)) {
15479 int found;
15480
15481 /*
15482 * Haswell uses DDI functions to detect digital outputs.
15483 * On SKL pre-D0 the strap isn't connected, so we assume
15484 * it's there.
15485 */
15486 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15487 /* WaIgnoreDDIAStrap: skl */
15488 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15489 intel_ddi_init(dev, PORT_A);
15490
15491 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15492 * register */
15493 found = I915_READ(SFUSE_STRAP);
15494
15495 if (found & SFUSE_STRAP_DDIB_DETECTED)
15496 intel_ddi_init(dev, PORT_B);
15497 if (found & SFUSE_STRAP_DDIC_DETECTED)
15498 intel_ddi_init(dev, PORT_C);
15499 if (found & SFUSE_STRAP_DDID_DETECTED)
15500 intel_ddi_init(dev, PORT_D);
15501 /*
15502 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15503 */
15504 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15505 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15506 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15507 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15508 intel_ddi_init(dev, PORT_E);
15509
15510 } else if (HAS_PCH_SPLIT(dev_priv)) {
15511 int found;
15512 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15513
15514 if (has_edp_a(dev_priv))
15515 intel_dp_init(dev, DP_A, PORT_A);
15516
15517 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15518 /* PCH SDVOB multiplex with HDMIB */
15519 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15520 if (!found)
15521 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15522 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15523 intel_dp_init(dev, PCH_DP_B, PORT_B);
15524 }
15525
15526 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15527 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15528
15529 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15530 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15531
15532 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15533 intel_dp_init(dev, PCH_DP_C, PORT_C);
15534
15535 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15536 intel_dp_init(dev, PCH_DP_D, PORT_D);
15537 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15538 bool has_edp, has_port;
15539
15540 /*
15541 * The DP_DETECTED bit is the latched state of the DDC
15542 * SDA pin at boot. However since eDP doesn't require DDC
15543 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15544 * eDP ports may have been muxed to an alternate function.
15545 * Thus we can't rely on the DP_DETECTED bit alone to detect
15546 * eDP ports. Consult the VBT as well as DP_DETECTED to
15547 * detect eDP ports.
15548 *
15549 * Sadly the straps seem to be missing sometimes even for HDMI
15550 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15551 * and VBT for the presence of the port. Additionally we can't
15552 * trust the port type the VBT declares as we've seen at least
15553 * HDMI ports that the VBT claim are DP or eDP.
15554 */
15555 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15556 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15557 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15558 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15559 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15560 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15561
15562 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15563 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15564 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15565 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15566 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15567 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15568
15569 if (IS_CHERRYVIEW(dev_priv)) {
15570 /*
15571 * eDP not supported on port D,
15572 * so no need to worry about it
15573 */
15574 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15575 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15576 intel_dp_init(dev, CHV_DP_D, PORT_D);
15577 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15578 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15579 }
15580
15581 intel_dsi_init(dev);
15582 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15583 bool found = false;
15584
15585 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15586 DRM_DEBUG_KMS("probing SDVOB\n");
15587 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15588 if (!found && IS_G4X(dev_priv)) {
15589 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15590 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15591 }
15592
15593 if (!found && IS_G4X(dev_priv))
15594 intel_dp_init(dev, DP_B, PORT_B);
15595 }
15596
15597 /* Before G4X SDVOC doesn't have its own detect register */
15598
15599 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15600 DRM_DEBUG_KMS("probing SDVOC\n");
15601 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15602 }
15603
15604 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15605
15606 if (IS_G4X(dev_priv)) {
15607 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15608 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15609 }
15610 if (IS_G4X(dev_priv))
15611 intel_dp_init(dev, DP_C, PORT_C);
15612 }
15613
15614 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15615 intel_dp_init(dev, DP_D, PORT_D);
15616 } else if (IS_GEN2(dev_priv))
15617 intel_dvo_init(dev);
15618
15619 if (SUPPORTS_TV(dev_priv))
15620 intel_tv_init(dev);
15621
15622 intel_psr_init(dev);
15623
15624 for_each_intel_encoder(dev, encoder) {
15625 encoder->base.possible_crtcs = encoder->crtc_mask;
15626 encoder->base.possible_clones =
15627 intel_encoder_clones(encoder);
15628 }
15629
15630 intel_init_pch_refclk(dev);
15631
15632 drm_helper_move_panel_connectors_to_head(dev);
15633 }
15634
15635 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15636 {
15637 struct drm_device *dev = fb->dev;
15638 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15639
15640 drm_framebuffer_cleanup(fb);
15641 mutex_lock(&dev->struct_mutex);
15642 WARN_ON(!intel_fb->obj->framebuffer_references--);
15643 i915_gem_object_put(intel_fb->obj);
15644 mutex_unlock(&dev->struct_mutex);
15645 kfree(intel_fb);
15646 }
15647
15648 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15649 struct drm_file *file,
15650 unsigned int *handle)
15651 {
15652 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15653 struct drm_i915_gem_object *obj = intel_fb->obj;
15654
15655 if (obj->userptr.mm) {
15656 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15657 return -EINVAL;
15658 }
15659
15660 return drm_gem_handle_create(file, &obj->base, handle);
15661 }
15662
15663 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15664 struct drm_file *file,
15665 unsigned flags, unsigned color,
15666 struct drm_clip_rect *clips,
15667 unsigned num_clips)
15668 {
15669 struct drm_device *dev = fb->dev;
15670 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15671 struct drm_i915_gem_object *obj = intel_fb->obj;
15672
15673 mutex_lock(&dev->struct_mutex);
15674 if (obj->pin_display && obj->cache_dirty)
15675 i915_gem_clflush_object(obj, true);
15676 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15677 mutex_unlock(&dev->struct_mutex);
15678
15679 return 0;
15680 }
15681
15682 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15683 .destroy = intel_user_framebuffer_destroy,
15684 .create_handle = intel_user_framebuffer_create_handle,
15685 .dirty = intel_user_framebuffer_dirty,
15686 };
15687
15688 static
15689 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15690 uint64_t fb_modifier, uint32_t pixel_format)
15691 {
15692 u32 gen = INTEL_INFO(dev_priv)->gen;
15693
15694 if (gen >= 9) {
15695 int cpp = drm_format_plane_cpp(pixel_format, 0);
15696
15697 /* "The stride in bytes must not exceed the of the size of 8K
15698 * pixels and 32K bytes."
15699 */
15700 return min(8192 * cpp, 32768);
15701 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15702 !IS_CHERRYVIEW(dev_priv)) {
15703 return 32*1024;
15704 } else if (gen >= 4) {
15705 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15706 return 16*1024;
15707 else
15708 return 32*1024;
15709 } else if (gen >= 3) {
15710 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15711 return 8*1024;
15712 else
15713 return 16*1024;
15714 } else {
15715 /* XXX DSPC is limited to 4k tiled */
15716 return 8*1024;
15717 }
15718 }
15719
15720 static int intel_framebuffer_init(struct drm_device *dev,
15721 struct intel_framebuffer *intel_fb,
15722 struct drm_mode_fb_cmd2 *mode_cmd,
15723 struct drm_i915_gem_object *obj)
15724 {
15725 struct drm_i915_private *dev_priv = to_i915(dev);
15726 unsigned int tiling = i915_gem_object_get_tiling(obj);
15727 int ret;
15728 u32 pitch_limit, stride_alignment;
15729 struct drm_format_name_buf format_name;
15730
15731 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15732
15733 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15734 /*
15735 * If there's a fence, enforce that
15736 * the fb modifier and tiling mode match.
15737 */
15738 if (tiling != I915_TILING_NONE &&
15739 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15740 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15741 return -EINVAL;
15742 }
15743 } else {
15744 if (tiling == I915_TILING_X) {
15745 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15746 } else if (tiling == I915_TILING_Y) {
15747 DRM_DEBUG("No Y tiling for legacy addfb\n");
15748 return -EINVAL;
15749 }
15750 }
15751
15752 /* Passed in modifier sanity checking. */
15753 switch (mode_cmd->modifier[0]) {
15754 case I915_FORMAT_MOD_Y_TILED:
15755 case I915_FORMAT_MOD_Yf_TILED:
15756 if (INTEL_GEN(dev_priv) < 9) {
15757 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15758 mode_cmd->modifier[0]);
15759 return -EINVAL;
15760 }
15761 case DRM_FORMAT_MOD_NONE:
15762 case I915_FORMAT_MOD_X_TILED:
15763 break;
15764 default:
15765 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15766 mode_cmd->modifier[0]);
15767 return -EINVAL;
15768 }
15769
15770 /*
15771 * gen2/3 display engine uses the fence if present,
15772 * so the tiling mode must match the fb modifier exactly.
15773 */
15774 if (INTEL_INFO(dev_priv)->gen < 4 &&
15775 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15776 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15777 return -EINVAL;
15778 }
15779
15780 stride_alignment = intel_fb_stride_alignment(dev_priv,
15781 mode_cmd->modifier[0],
15782 mode_cmd->pixel_format);
15783 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15784 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15785 mode_cmd->pitches[0], stride_alignment);
15786 return -EINVAL;
15787 }
15788
15789 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15790 mode_cmd->pixel_format);
15791 if (mode_cmd->pitches[0] > pitch_limit) {
15792 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15793 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15794 "tiled" : "linear",
15795 mode_cmd->pitches[0], pitch_limit);
15796 return -EINVAL;
15797 }
15798
15799 /*
15800 * If there's a fence, enforce that
15801 * the fb pitch and fence stride match.
15802 */
15803 if (tiling != I915_TILING_NONE &&
15804 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15805 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15806 mode_cmd->pitches[0],
15807 i915_gem_object_get_stride(obj));
15808 return -EINVAL;
15809 }
15810
15811 /* Reject formats not supported by any plane early. */
15812 switch (mode_cmd->pixel_format) {
15813 case DRM_FORMAT_C8:
15814 case DRM_FORMAT_RGB565:
15815 case DRM_FORMAT_XRGB8888:
15816 case DRM_FORMAT_ARGB8888:
15817 break;
15818 case DRM_FORMAT_XRGB1555:
15819 if (INTEL_GEN(dev_priv) > 3) {
15820 DRM_DEBUG("unsupported pixel format: %s\n",
15821 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15822 return -EINVAL;
15823 }
15824 break;
15825 case DRM_FORMAT_ABGR8888:
15826 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15827 INTEL_GEN(dev_priv) < 9) {
15828 DRM_DEBUG("unsupported pixel format: %s\n",
15829 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15830 return -EINVAL;
15831 }
15832 break;
15833 case DRM_FORMAT_XBGR8888:
15834 case DRM_FORMAT_XRGB2101010:
15835 case DRM_FORMAT_XBGR2101010:
15836 if (INTEL_GEN(dev_priv) < 4) {
15837 DRM_DEBUG("unsupported pixel format: %s\n",
15838 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15839 return -EINVAL;
15840 }
15841 break;
15842 case DRM_FORMAT_ABGR2101010:
15843 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15844 DRM_DEBUG("unsupported pixel format: %s\n",
15845 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15846 return -EINVAL;
15847 }
15848 break;
15849 case DRM_FORMAT_YUYV:
15850 case DRM_FORMAT_UYVY:
15851 case DRM_FORMAT_YVYU:
15852 case DRM_FORMAT_VYUY:
15853 if (INTEL_GEN(dev_priv) < 5) {
15854 DRM_DEBUG("unsupported pixel format: %s\n",
15855 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15856 return -EINVAL;
15857 }
15858 break;
15859 default:
15860 DRM_DEBUG("unsupported pixel format: %s\n",
15861 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15862 return -EINVAL;
15863 }
15864
15865 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15866 if (mode_cmd->offsets[0] != 0)
15867 return -EINVAL;
15868
15869 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15870 intel_fb->obj = obj;
15871
15872 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15873 if (ret)
15874 return ret;
15875
15876 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15877 if (ret) {
15878 DRM_ERROR("framebuffer init failed %d\n", ret);
15879 return ret;
15880 }
15881
15882 intel_fb->obj->framebuffer_references++;
15883
15884 return 0;
15885 }
15886
15887 static struct drm_framebuffer *
15888 intel_user_framebuffer_create(struct drm_device *dev,
15889 struct drm_file *filp,
15890 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15891 {
15892 struct drm_framebuffer *fb;
15893 struct drm_i915_gem_object *obj;
15894 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15895
15896 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15897 if (!obj)
15898 return ERR_PTR(-ENOENT);
15899
15900 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15901 if (IS_ERR(fb))
15902 i915_gem_object_put(obj);
15903
15904 return fb;
15905 }
15906
15907 static const struct drm_mode_config_funcs intel_mode_funcs = {
15908 .fb_create = intel_user_framebuffer_create,
15909 .output_poll_changed = intel_fbdev_output_poll_changed,
15910 .atomic_check = intel_atomic_check,
15911 .atomic_commit = intel_atomic_commit,
15912 .atomic_state_alloc = intel_atomic_state_alloc,
15913 .atomic_state_clear = intel_atomic_state_clear,
15914 };
15915
15916 /**
15917 * intel_init_display_hooks - initialize the display modesetting hooks
15918 * @dev_priv: device private
15919 */
15920 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15921 {
15922 if (INTEL_INFO(dev_priv)->gen >= 9) {
15923 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15924 dev_priv->display.get_initial_plane_config =
15925 skylake_get_initial_plane_config;
15926 dev_priv->display.crtc_compute_clock =
15927 haswell_crtc_compute_clock;
15928 dev_priv->display.crtc_enable = haswell_crtc_enable;
15929 dev_priv->display.crtc_disable = haswell_crtc_disable;
15930 } else if (HAS_DDI(dev_priv)) {
15931 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15932 dev_priv->display.get_initial_plane_config =
15933 ironlake_get_initial_plane_config;
15934 dev_priv->display.crtc_compute_clock =
15935 haswell_crtc_compute_clock;
15936 dev_priv->display.crtc_enable = haswell_crtc_enable;
15937 dev_priv->display.crtc_disable = haswell_crtc_disable;
15938 } else if (HAS_PCH_SPLIT(dev_priv)) {
15939 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15940 dev_priv->display.get_initial_plane_config =
15941 ironlake_get_initial_plane_config;
15942 dev_priv->display.crtc_compute_clock =
15943 ironlake_crtc_compute_clock;
15944 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15945 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15946 } else if (IS_CHERRYVIEW(dev_priv)) {
15947 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15948 dev_priv->display.get_initial_plane_config =
15949 i9xx_get_initial_plane_config;
15950 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15951 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15952 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15953 } else if (IS_VALLEYVIEW(dev_priv)) {
15954 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15955 dev_priv->display.get_initial_plane_config =
15956 i9xx_get_initial_plane_config;
15957 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15958 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15959 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15960 } else if (IS_G4X(dev_priv)) {
15961 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15962 dev_priv->display.get_initial_plane_config =
15963 i9xx_get_initial_plane_config;
15964 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15965 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15966 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15967 } else if (IS_PINEVIEW(dev_priv)) {
15968 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15969 dev_priv->display.get_initial_plane_config =
15970 i9xx_get_initial_plane_config;
15971 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15972 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15973 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15974 } else if (!IS_GEN2(dev_priv)) {
15975 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15976 dev_priv->display.get_initial_plane_config =
15977 i9xx_get_initial_plane_config;
15978 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15979 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15980 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15981 } else {
15982 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15983 dev_priv->display.get_initial_plane_config =
15984 i9xx_get_initial_plane_config;
15985 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15986 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15987 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15988 }
15989
15990 /* Returns the core display clock speed */
15991 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15992 dev_priv->display.get_display_clock_speed =
15993 skylake_get_display_clock_speed;
15994 else if (IS_BROXTON(dev_priv))
15995 dev_priv->display.get_display_clock_speed =
15996 broxton_get_display_clock_speed;
15997 else if (IS_BROADWELL(dev_priv))
15998 dev_priv->display.get_display_clock_speed =
15999 broadwell_get_display_clock_speed;
16000 else if (IS_HASWELL(dev_priv))
16001 dev_priv->display.get_display_clock_speed =
16002 haswell_get_display_clock_speed;
16003 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16004 dev_priv->display.get_display_clock_speed =
16005 valleyview_get_display_clock_speed;
16006 else if (IS_GEN5(dev_priv))
16007 dev_priv->display.get_display_clock_speed =
16008 ilk_get_display_clock_speed;
16009 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16010 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16011 dev_priv->display.get_display_clock_speed =
16012 i945_get_display_clock_speed;
16013 else if (IS_GM45(dev_priv))
16014 dev_priv->display.get_display_clock_speed =
16015 gm45_get_display_clock_speed;
16016 else if (IS_CRESTLINE(dev_priv))
16017 dev_priv->display.get_display_clock_speed =
16018 i965gm_get_display_clock_speed;
16019 else if (IS_PINEVIEW(dev_priv))
16020 dev_priv->display.get_display_clock_speed =
16021 pnv_get_display_clock_speed;
16022 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16023 dev_priv->display.get_display_clock_speed =
16024 g33_get_display_clock_speed;
16025 else if (IS_I915G(dev_priv))
16026 dev_priv->display.get_display_clock_speed =
16027 i915_get_display_clock_speed;
16028 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16029 dev_priv->display.get_display_clock_speed =
16030 i9xx_misc_get_display_clock_speed;
16031 else if (IS_I915GM(dev_priv))
16032 dev_priv->display.get_display_clock_speed =
16033 i915gm_get_display_clock_speed;
16034 else if (IS_I865G(dev_priv))
16035 dev_priv->display.get_display_clock_speed =
16036 i865_get_display_clock_speed;
16037 else if (IS_I85X(dev_priv))
16038 dev_priv->display.get_display_clock_speed =
16039 i85x_get_display_clock_speed;
16040 else { /* 830 */
16041 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16042 dev_priv->display.get_display_clock_speed =
16043 i830_get_display_clock_speed;
16044 }
16045
16046 if (IS_GEN5(dev_priv)) {
16047 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16048 } else if (IS_GEN6(dev_priv)) {
16049 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16050 } else if (IS_IVYBRIDGE(dev_priv)) {
16051 /* FIXME: detect B0+ stepping and use auto training */
16052 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16053 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16054 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16055 }
16056
16057 if (IS_BROADWELL(dev_priv)) {
16058 dev_priv->display.modeset_commit_cdclk =
16059 broadwell_modeset_commit_cdclk;
16060 dev_priv->display.modeset_calc_cdclk =
16061 broadwell_modeset_calc_cdclk;
16062 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16063 dev_priv->display.modeset_commit_cdclk =
16064 valleyview_modeset_commit_cdclk;
16065 dev_priv->display.modeset_calc_cdclk =
16066 valleyview_modeset_calc_cdclk;
16067 } else if (IS_BROXTON(dev_priv)) {
16068 dev_priv->display.modeset_commit_cdclk =
16069 bxt_modeset_commit_cdclk;
16070 dev_priv->display.modeset_calc_cdclk =
16071 bxt_modeset_calc_cdclk;
16072 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16073 dev_priv->display.modeset_commit_cdclk =
16074 skl_modeset_commit_cdclk;
16075 dev_priv->display.modeset_calc_cdclk =
16076 skl_modeset_calc_cdclk;
16077 }
16078
16079 if (dev_priv->info.gen >= 9)
16080 dev_priv->display.update_crtcs = skl_update_crtcs;
16081 else
16082 dev_priv->display.update_crtcs = intel_update_crtcs;
16083
16084 switch (INTEL_INFO(dev_priv)->gen) {
16085 case 2:
16086 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16087 break;
16088
16089 case 3:
16090 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16091 break;
16092
16093 case 4:
16094 case 5:
16095 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16096 break;
16097
16098 case 6:
16099 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16100 break;
16101 case 7:
16102 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16103 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16104 break;
16105 case 9:
16106 /* Drop through - unsupported since execlist only. */
16107 default:
16108 /* Default just returns -ENODEV to indicate unsupported */
16109 dev_priv->display.queue_flip = intel_default_queue_flip;
16110 }
16111 }
16112
16113 /*
16114 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16115 * resume, or other times. This quirk makes sure that's the case for
16116 * affected systems.
16117 */
16118 static void quirk_pipea_force(struct drm_device *dev)
16119 {
16120 struct drm_i915_private *dev_priv = to_i915(dev);
16121
16122 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16123 DRM_INFO("applying pipe a force quirk\n");
16124 }
16125
16126 static void quirk_pipeb_force(struct drm_device *dev)
16127 {
16128 struct drm_i915_private *dev_priv = to_i915(dev);
16129
16130 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16131 DRM_INFO("applying pipe b force quirk\n");
16132 }
16133
16134 /*
16135 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16136 */
16137 static void quirk_ssc_force_disable(struct drm_device *dev)
16138 {
16139 struct drm_i915_private *dev_priv = to_i915(dev);
16140 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16141 DRM_INFO("applying lvds SSC disable quirk\n");
16142 }
16143
16144 /*
16145 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16146 * brightness value
16147 */
16148 static void quirk_invert_brightness(struct drm_device *dev)
16149 {
16150 struct drm_i915_private *dev_priv = to_i915(dev);
16151 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16152 DRM_INFO("applying inverted panel brightness quirk\n");
16153 }
16154
16155 /* Some VBT's incorrectly indicate no backlight is present */
16156 static void quirk_backlight_present(struct drm_device *dev)
16157 {
16158 struct drm_i915_private *dev_priv = to_i915(dev);
16159 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16160 DRM_INFO("applying backlight present quirk\n");
16161 }
16162
16163 struct intel_quirk {
16164 int device;
16165 int subsystem_vendor;
16166 int subsystem_device;
16167 void (*hook)(struct drm_device *dev);
16168 };
16169
16170 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16171 struct intel_dmi_quirk {
16172 void (*hook)(struct drm_device *dev);
16173 const struct dmi_system_id (*dmi_id_list)[];
16174 };
16175
16176 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16177 {
16178 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16179 return 1;
16180 }
16181
16182 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16183 {
16184 .dmi_id_list = &(const struct dmi_system_id[]) {
16185 {
16186 .callback = intel_dmi_reverse_brightness,
16187 .ident = "NCR Corporation",
16188 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16189 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16190 },
16191 },
16192 { } /* terminating entry */
16193 },
16194 .hook = quirk_invert_brightness,
16195 },
16196 };
16197
16198 static struct intel_quirk intel_quirks[] = {
16199 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16200 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16201
16202 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16203 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16204
16205 /* 830 needs to leave pipe A & dpll A up */
16206 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16207
16208 /* 830 needs to leave pipe B & dpll B up */
16209 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16210
16211 /* Lenovo U160 cannot use SSC on LVDS */
16212 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16213
16214 /* Sony Vaio Y cannot use SSC on LVDS */
16215 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16216
16217 /* Acer Aspire 5734Z must invert backlight brightness */
16218 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16219
16220 /* Acer/eMachines G725 */
16221 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16222
16223 /* Acer/eMachines e725 */
16224 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16225
16226 /* Acer/Packard Bell NCL20 */
16227 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16228
16229 /* Acer Aspire 4736Z */
16230 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16231
16232 /* Acer Aspire 5336 */
16233 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16234
16235 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16236 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16237
16238 /* Acer C720 Chromebook (Core i3 4005U) */
16239 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16240
16241 /* Apple Macbook 2,1 (Core 2 T7400) */
16242 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16243
16244 /* Apple Macbook 4,1 */
16245 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16246
16247 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16248 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16249
16250 /* HP Chromebook 14 (Celeron 2955U) */
16251 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16252
16253 /* Dell Chromebook 11 */
16254 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16255
16256 /* Dell Chromebook 11 (2015 version) */
16257 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16258 };
16259
16260 static void intel_init_quirks(struct drm_device *dev)
16261 {
16262 struct pci_dev *d = dev->pdev;
16263 int i;
16264
16265 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16266 struct intel_quirk *q = &intel_quirks[i];
16267
16268 if (d->device == q->device &&
16269 (d->subsystem_vendor == q->subsystem_vendor ||
16270 q->subsystem_vendor == PCI_ANY_ID) &&
16271 (d->subsystem_device == q->subsystem_device ||
16272 q->subsystem_device == PCI_ANY_ID))
16273 q->hook(dev);
16274 }
16275 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16276 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16277 intel_dmi_quirks[i].hook(dev);
16278 }
16279 }
16280
16281 /* Disable the VGA plane that we never use */
16282 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16283 {
16284 struct pci_dev *pdev = dev_priv->drm.pdev;
16285 u8 sr1;
16286 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16287
16288 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16289 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16290 outb(SR01, VGA_SR_INDEX);
16291 sr1 = inb(VGA_SR_DATA);
16292 outb(sr1 | 1<<5, VGA_SR_DATA);
16293 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16294 udelay(300);
16295
16296 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16297 POSTING_READ(vga_reg);
16298 }
16299
16300 void intel_modeset_init_hw(struct drm_device *dev)
16301 {
16302 struct drm_i915_private *dev_priv = to_i915(dev);
16303
16304 intel_update_cdclk(dev_priv);
16305
16306 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16307
16308 intel_init_clock_gating(dev_priv);
16309 }
16310
16311 /*
16312 * Calculate what we think the watermarks should be for the state we've read
16313 * out of the hardware and then immediately program those watermarks so that
16314 * we ensure the hardware settings match our internal state.
16315 *
16316 * We can calculate what we think WM's should be by creating a duplicate of the
16317 * current state (which was constructed during hardware readout) and running it
16318 * through the atomic check code to calculate new watermark values in the
16319 * state object.
16320 */
16321 static void sanitize_watermarks(struct drm_device *dev)
16322 {
16323 struct drm_i915_private *dev_priv = to_i915(dev);
16324 struct drm_atomic_state *state;
16325 struct intel_atomic_state *intel_state;
16326 struct drm_crtc *crtc;
16327 struct drm_crtc_state *cstate;
16328 struct drm_modeset_acquire_ctx ctx;
16329 int ret;
16330 int i;
16331
16332 /* Only supported on platforms that use atomic watermark design */
16333 if (!dev_priv->display.optimize_watermarks)
16334 return;
16335
16336 /*
16337 * We need to hold connection_mutex before calling duplicate_state so
16338 * that the connector loop is protected.
16339 */
16340 drm_modeset_acquire_init(&ctx, 0);
16341 retry:
16342 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16343 if (ret == -EDEADLK) {
16344 drm_modeset_backoff(&ctx);
16345 goto retry;
16346 } else if (WARN_ON(ret)) {
16347 goto fail;
16348 }
16349
16350 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16351 if (WARN_ON(IS_ERR(state)))
16352 goto fail;
16353
16354 intel_state = to_intel_atomic_state(state);
16355
16356 /*
16357 * Hardware readout is the only time we don't want to calculate
16358 * intermediate watermarks (since we don't trust the current
16359 * watermarks).
16360 */
16361 intel_state->skip_intermediate_wm = true;
16362
16363 ret = intel_atomic_check(dev, state);
16364 if (ret) {
16365 /*
16366 * If we fail here, it means that the hardware appears to be
16367 * programmed in a way that shouldn't be possible, given our
16368 * understanding of watermark requirements. This might mean a
16369 * mistake in the hardware readout code or a mistake in the
16370 * watermark calculations for a given platform. Raise a WARN
16371 * so that this is noticeable.
16372 *
16373 * If this actually happens, we'll have to just leave the
16374 * BIOS-programmed watermarks untouched and hope for the best.
16375 */
16376 WARN(true, "Could not determine valid watermarks for inherited state\n");
16377 goto put_state;
16378 }
16379
16380 /* Write calculated watermark values back */
16381 for_each_crtc_in_state(state, crtc, cstate, i) {
16382 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16383
16384 cs->wm.need_postvbl_update = true;
16385 dev_priv->display.optimize_watermarks(intel_state, cs);
16386 }
16387
16388 put_state:
16389 drm_atomic_state_put(state);
16390 fail:
16391 drm_modeset_drop_locks(&ctx);
16392 drm_modeset_acquire_fini(&ctx);
16393 }
16394
16395 int intel_modeset_init(struct drm_device *dev)
16396 {
16397 struct drm_i915_private *dev_priv = to_i915(dev);
16398 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16399 enum pipe pipe;
16400 struct intel_crtc *crtc;
16401
16402 drm_mode_config_init(dev);
16403
16404 dev->mode_config.min_width = 0;
16405 dev->mode_config.min_height = 0;
16406
16407 dev->mode_config.preferred_depth = 24;
16408 dev->mode_config.prefer_shadow = 1;
16409
16410 dev->mode_config.allow_fb_modifiers = true;
16411
16412 dev->mode_config.funcs = &intel_mode_funcs;
16413
16414 intel_init_quirks(dev);
16415
16416 intel_init_pm(dev_priv);
16417
16418 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16419 return 0;
16420
16421 /*
16422 * There may be no VBT; and if the BIOS enabled SSC we can
16423 * just keep using it to avoid unnecessary flicker. Whereas if the
16424 * BIOS isn't using it, don't assume it will work even if the VBT
16425 * indicates as much.
16426 */
16427 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16428 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16429 DREF_SSC1_ENABLE);
16430
16431 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16432 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16433 bios_lvds_use_ssc ? "en" : "dis",
16434 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16435 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16436 }
16437 }
16438
16439 if (IS_GEN2(dev_priv)) {
16440 dev->mode_config.max_width = 2048;
16441 dev->mode_config.max_height = 2048;
16442 } else if (IS_GEN3(dev_priv)) {
16443 dev->mode_config.max_width = 4096;
16444 dev->mode_config.max_height = 4096;
16445 } else {
16446 dev->mode_config.max_width = 8192;
16447 dev->mode_config.max_height = 8192;
16448 }
16449
16450 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16451 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16452 dev->mode_config.cursor_height = 1023;
16453 } else if (IS_GEN2(dev_priv)) {
16454 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16455 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16456 } else {
16457 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16458 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16459 }
16460
16461 dev->mode_config.fb_base = ggtt->mappable_base;
16462
16463 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16464 INTEL_INFO(dev_priv)->num_pipes,
16465 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16466
16467 for_each_pipe(dev_priv, pipe) {
16468 int ret;
16469
16470 ret = intel_crtc_init(dev_priv, pipe);
16471 if (ret) {
16472 drm_mode_config_cleanup(dev);
16473 return ret;
16474 }
16475 }
16476
16477 intel_update_czclk(dev_priv);
16478 intel_update_cdclk(dev_priv);
16479 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16480
16481 intel_shared_dpll_init(dev);
16482
16483 if (dev_priv->max_cdclk_freq == 0)
16484 intel_update_max_cdclk(dev_priv);
16485
16486 /* Just disable it once at startup */
16487 i915_disable_vga(dev_priv);
16488 intel_setup_outputs(dev);
16489
16490 drm_modeset_lock_all(dev);
16491 intel_modeset_setup_hw_state(dev);
16492 drm_modeset_unlock_all(dev);
16493
16494 for_each_intel_crtc(dev, crtc) {
16495 struct intel_initial_plane_config plane_config = {};
16496
16497 if (!crtc->active)
16498 continue;
16499
16500 /*
16501 * Note that reserving the BIOS fb up front prevents us
16502 * from stuffing other stolen allocations like the ring
16503 * on top. This prevents some ugliness at boot time, and
16504 * can even allow for smooth boot transitions if the BIOS
16505 * fb is large enough for the active pipe configuration.
16506 */
16507 dev_priv->display.get_initial_plane_config(crtc,
16508 &plane_config);
16509
16510 /*
16511 * If the fb is shared between multiple heads, we'll
16512 * just get the first one.
16513 */
16514 intel_find_initial_plane_obj(crtc, &plane_config);
16515 }
16516
16517 /*
16518 * Make sure hardware watermarks really match the state we read out.
16519 * Note that we need to do this after reconstructing the BIOS fb's
16520 * since the watermark calculation done here will use pstate->fb.
16521 */
16522 sanitize_watermarks(dev);
16523
16524 return 0;
16525 }
16526
16527 static void intel_enable_pipe_a(struct drm_device *dev)
16528 {
16529 struct intel_connector *connector;
16530 struct drm_connector *crt = NULL;
16531 struct intel_load_detect_pipe load_detect_temp;
16532 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16533
16534 /* We can't just switch on the pipe A, we need to set things up with a
16535 * proper mode and output configuration. As a gross hack, enable pipe A
16536 * by enabling the load detect pipe once. */
16537 for_each_intel_connector(dev, connector) {
16538 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16539 crt = &connector->base;
16540 break;
16541 }
16542 }
16543
16544 if (!crt)
16545 return;
16546
16547 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16548 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16549 }
16550
16551 static bool
16552 intel_check_plane_mapping(struct intel_crtc *crtc)
16553 {
16554 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16555 u32 val;
16556
16557 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16558 return true;
16559
16560 val = I915_READ(DSPCNTR(!crtc->plane));
16561
16562 if ((val & DISPLAY_PLANE_ENABLE) &&
16563 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16564 return false;
16565
16566 return true;
16567 }
16568
16569 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16570 {
16571 struct drm_device *dev = crtc->base.dev;
16572 struct intel_encoder *encoder;
16573
16574 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16575 return true;
16576
16577 return false;
16578 }
16579
16580 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16581 {
16582 struct drm_device *dev = encoder->base.dev;
16583 struct intel_connector *connector;
16584
16585 for_each_connector_on_encoder(dev, &encoder->base, connector)
16586 return connector;
16587
16588 return NULL;
16589 }
16590
16591 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16592 enum transcoder pch_transcoder)
16593 {
16594 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16595 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16596 }
16597
16598 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16599 {
16600 struct drm_device *dev = crtc->base.dev;
16601 struct drm_i915_private *dev_priv = to_i915(dev);
16602 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16603
16604 /* Clear any frame start delays used for debugging left by the BIOS */
16605 if (!transcoder_is_dsi(cpu_transcoder)) {
16606 i915_reg_t reg = PIPECONF(cpu_transcoder);
16607
16608 I915_WRITE(reg,
16609 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16610 }
16611
16612 /* restore vblank interrupts to correct state */
16613 drm_crtc_vblank_reset(&crtc->base);
16614 if (crtc->active) {
16615 struct intel_plane *plane;
16616
16617 drm_crtc_vblank_on(&crtc->base);
16618
16619 /* Disable everything but the primary plane */
16620 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16621 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16622 continue;
16623
16624 plane->disable_plane(&plane->base, &crtc->base);
16625 }
16626 }
16627
16628 /* We need to sanitize the plane -> pipe mapping first because this will
16629 * disable the crtc (and hence change the state) if it is wrong. Note
16630 * that gen4+ has a fixed plane -> pipe mapping. */
16631 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16632 bool plane;
16633
16634 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16635 crtc->base.base.id, crtc->base.name);
16636
16637 /* Pipe has the wrong plane attached and the plane is active.
16638 * Temporarily change the plane mapping and disable everything
16639 * ... */
16640 plane = crtc->plane;
16641 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16642 crtc->plane = !plane;
16643 intel_crtc_disable_noatomic(&crtc->base);
16644 crtc->plane = plane;
16645 }
16646
16647 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16648 crtc->pipe == PIPE_A && !crtc->active) {
16649 /* BIOS forgot to enable pipe A, this mostly happens after
16650 * resume. Force-enable the pipe to fix this, the update_dpms
16651 * call below we restore the pipe to the right state, but leave
16652 * the required bits on. */
16653 intel_enable_pipe_a(dev);
16654 }
16655
16656 /* Adjust the state of the output pipe according to whether we
16657 * have active connectors/encoders. */
16658 if (crtc->active && !intel_crtc_has_encoders(crtc))
16659 intel_crtc_disable_noatomic(&crtc->base);
16660
16661 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16662 /*
16663 * We start out with underrun reporting disabled to avoid races.
16664 * For correct bookkeeping mark this on active crtcs.
16665 *
16666 * Also on gmch platforms we dont have any hardware bits to
16667 * disable the underrun reporting. Which means we need to start
16668 * out with underrun reporting disabled also on inactive pipes,
16669 * since otherwise we'll complain about the garbage we read when
16670 * e.g. coming up after runtime pm.
16671 *
16672 * No protection against concurrent access is required - at
16673 * worst a fifo underrun happens which also sets this to false.
16674 */
16675 crtc->cpu_fifo_underrun_disabled = true;
16676 /*
16677 * We track the PCH trancoder underrun reporting state
16678 * within the crtc. With crtc for pipe A housing the underrun
16679 * reporting state for PCH transcoder A, crtc for pipe B housing
16680 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16681 * and marking underrun reporting as disabled for the non-existing
16682 * PCH transcoders B and C would prevent enabling the south
16683 * error interrupt (see cpt_can_enable_serr_int()).
16684 */
16685 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16686 crtc->pch_fifo_underrun_disabled = true;
16687 }
16688 }
16689
16690 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16691 {
16692 struct intel_connector *connector;
16693
16694 /* We need to check both for a crtc link (meaning that the
16695 * encoder is active and trying to read from a pipe) and the
16696 * pipe itself being active. */
16697 bool has_active_crtc = encoder->base.crtc &&
16698 to_intel_crtc(encoder->base.crtc)->active;
16699
16700 connector = intel_encoder_find_connector(encoder);
16701 if (connector && !has_active_crtc) {
16702 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16703 encoder->base.base.id,
16704 encoder->base.name);
16705
16706 /* Connector is active, but has no active pipe. This is
16707 * fallout from our resume register restoring. Disable
16708 * the encoder manually again. */
16709 if (encoder->base.crtc) {
16710 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16711
16712 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16713 encoder->base.base.id,
16714 encoder->base.name);
16715 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16716 if (encoder->post_disable)
16717 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16718 }
16719 encoder->base.crtc = NULL;
16720
16721 /* Inconsistent output/port/pipe state happens presumably due to
16722 * a bug in one of the get_hw_state functions. Or someplace else
16723 * in our code, like the register restore mess on resume. Clamp
16724 * things to off as a safer default. */
16725
16726 connector->base.dpms = DRM_MODE_DPMS_OFF;
16727 connector->base.encoder = NULL;
16728 }
16729 /* Enabled encoders without active connectors will be fixed in
16730 * the crtc fixup. */
16731 }
16732
16733 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16734 {
16735 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16736
16737 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16738 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16739 i915_disable_vga(dev_priv);
16740 }
16741 }
16742
16743 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16744 {
16745 /* This function can be called both from intel_modeset_setup_hw_state or
16746 * at a very early point in our resume sequence, where the power well
16747 * structures are not yet restored. Since this function is at a very
16748 * paranoid "someone might have enabled VGA while we were not looking"
16749 * level, just check if the power well is enabled instead of trying to
16750 * follow the "don't touch the power well if we don't need it" policy
16751 * the rest of the driver uses. */
16752 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16753 return;
16754
16755 i915_redisable_vga_power_on(dev_priv);
16756
16757 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16758 }
16759
16760 static bool primary_get_hw_state(struct intel_plane *plane)
16761 {
16762 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16763
16764 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16765 }
16766
16767 /* FIXME read out full plane state for all planes */
16768 static void readout_plane_state(struct intel_crtc *crtc)
16769 {
16770 struct drm_plane *primary = crtc->base.primary;
16771 struct intel_plane_state *plane_state =
16772 to_intel_plane_state(primary->state);
16773
16774 plane_state->base.visible = crtc->active &&
16775 primary_get_hw_state(to_intel_plane(primary));
16776
16777 if (plane_state->base.visible)
16778 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16779 }
16780
16781 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16782 {
16783 struct drm_i915_private *dev_priv = to_i915(dev);
16784 enum pipe pipe;
16785 struct intel_crtc *crtc;
16786 struct intel_encoder *encoder;
16787 struct intel_connector *connector;
16788 int i;
16789
16790 dev_priv->active_crtcs = 0;
16791
16792 for_each_intel_crtc(dev, crtc) {
16793 struct intel_crtc_state *crtc_state = crtc->config;
16794 int pixclk = 0;
16795
16796 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16797 memset(crtc_state, 0, sizeof(*crtc_state));
16798 crtc_state->base.crtc = &crtc->base;
16799
16800 crtc_state->base.active = crtc_state->base.enable =
16801 dev_priv->display.get_pipe_config(crtc, crtc_state);
16802
16803 crtc->base.enabled = crtc_state->base.enable;
16804 crtc->active = crtc_state->base.active;
16805
16806 if (crtc_state->base.active) {
16807 dev_priv->active_crtcs |= 1 << crtc->pipe;
16808
16809 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16810 pixclk = ilk_pipe_pixel_rate(crtc_state);
16811 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16812 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16813 else
16814 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16815
16816 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16817 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16818 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16819 }
16820
16821 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16822
16823 readout_plane_state(crtc);
16824
16825 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16826 crtc->base.base.id, crtc->base.name,
16827 enableddisabled(crtc->active));
16828 }
16829
16830 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16831 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16832
16833 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16834 &pll->config.hw_state);
16835 pll->config.crtc_mask = 0;
16836 for_each_intel_crtc(dev, crtc) {
16837 if (crtc->active && crtc->config->shared_dpll == pll)
16838 pll->config.crtc_mask |= 1 << crtc->pipe;
16839 }
16840 pll->active_mask = pll->config.crtc_mask;
16841
16842 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16843 pll->name, pll->config.crtc_mask, pll->on);
16844 }
16845
16846 for_each_intel_encoder(dev, encoder) {
16847 pipe = 0;
16848
16849 if (encoder->get_hw_state(encoder, &pipe)) {
16850 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16851
16852 encoder->base.crtc = &crtc->base;
16853 crtc->config->output_types |= 1 << encoder->type;
16854 encoder->get_config(encoder, crtc->config);
16855 } else {
16856 encoder->base.crtc = NULL;
16857 }
16858
16859 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16860 encoder->base.base.id, encoder->base.name,
16861 enableddisabled(encoder->base.crtc),
16862 pipe_name(pipe));
16863 }
16864
16865 for_each_intel_connector(dev, connector) {
16866 if (connector->get_hw_state(connector)) {
16867 connector->base.dpms = DRM_MODE_DPMS_ON;
16868
16869 encoder = connector->encoder;
16870 connector->base.encoder = &encoder->base;
16871
16872 if (encoder->base.crtc &&
16873 encoder->base.crtc->state->active) {
16874 /*
16875 * This has to be done during hardware readout
16876 * because anything calling .crtc_disable may
16877 * rely on the connector_mask being accurate.
16878 */
16879 encoder->base.crtc->state->connector_mask |=
16880 1 << drm_connector_index(&connector->base);
16881 encoder->base.crtc->state->encoder_mask |=
16882 1 << drm_encoder_index(&encoder->base);
16883 }
16884
16885 } else {
16886 connector->base.dpms = DRM_MODE_DPMS_OFF;
16887 connector->base.encoder = NULL;
16888 }
16889 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16890 connector->base.base.id, connector->base.name,
16891 enableddisabled(connector->base.encoder));
16892 }
16893
16894 for_each_intel_crtc(dev, crtc) {
16895 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16896
16897 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16898 if (crtc->base.state->active) {
16899 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16900 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16901 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16902
16903 /*
16904 * The initial mode needs to be set in order to keep
16905 * the atomic core happy. It wants a valid mode if the
16906 * crtc's enabled, so we do the above call.
16907 *
16908 * At this point some state updated by the connectors
16909 * in their ->detect() callback has not run yet, so
16910 * no recalculation can be done yet.
16911 *
16912 * Even if we could do a recalculation and modeset
16913 * right now it would cause a double modeset if
16914 * fbdev or userspace chooses a different initial mode.
16915 *
16916 * If that happens, someone indicated they wanted a
16917 * mode change, which means it's safe to do a full
16918 * recalculation.
16919 */
16920 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16921
16922 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16923 update_scanline_offset(crtc);
16924 }
16925
16926 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16927 }
16928 }
16929
16930 /* Scan out the current hw modeset state,
16931 * and sanitizes it to the current state
16932 */
16933 static void
16934 intel_modeset_setup_hw_state(struct drm_device *dev)
16935 {
16936 struct drm_i915_private *dev_priv = to_i915(dev);
16937 enum pipe pipe;
16938 struct intel_crtc *crtc;
16939 struct intel_encoder *encoder;
16940 int i;
16941
16942 intel_modeset_readout_hw_state(dev);
16943
16944 /* HW state is read out, now we need to sanitize this mess. */
16945 for_each_intel_encoder(dev, encoder) {
16946 intel_sanitize_encoder(encoder);
16947 }
16948
16949 for_each_pipe(dev_priv, pipe) {
16950 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16951
16952 intel_sanitize_crtc(crtc);
16953 intel_dump_pipe_config(crtc, crtc->config,
16954 "[setup_hw_state]");
16955 }
16956
16957 intel_modeset_update_connector_atomic_state(dev);
16958
16959 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16960 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16961
16962 if (!pll->on || pll->active_mask)
16963 continue;
16964
16965 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16966
16967 pll->funcs.disable(dev_priv, pll);
16968 pll->on = false;
16969 }
16970
16971 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16972 vlv_wm_get_hw_state(dev);
16973 else if (IS_GEN9(dev_priv))
16974 skl_wm_get_hw_state(dev);
16975 else if (HAS_PCH_SPLIT(dev_priv))
16976 ilk_wm_get_hw_state(dev);
16977
16978 for_each_intel_crtc(dev, crtc) {
16979 unsigned long put_domains;
16980
16981 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16982 if (WARN_ON(put_domains))
16983 modeset_put_power_domains(dev_priv, put_domains);
16984 }
16985 intel_display_set_init_power(dev_priv, false);
16986
16987 intel_fbc_init_pipe_state(dev_priv);
16988 }
16989
16990 void intel_display_resume(struct drm_device *dev)
16991 {
16992 struct drm_i915_private *dev_priv = to_i915(dev);
16993 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16994 struct drm_modeset_acquire_ctx ctx;
16995 int ret;
16996
16997 dev_priv->modeset_restore_state = NULL;
16998 if (state)
16999 state->acquire_ctx = &ctx;
17000
17001 /*
17002 * This is a cludge because with real atomic modeset mode_config.mutex
17003 * won't be taken. Unfortunately some probed state like
17004 * audio_codec_enable is still protected by mode_config.mutex, so lock
17005 * it here for now.
17006 */
17007 mutex_lock(&dev->mode_config.mutex);
17008 drm_modeset_acquire_init(&ctx, 0);
17009
17010 while (1) {
17011 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17012 if (ret != -EDEADLK)
17013 break;
17014
17015 drm_modeset_backoff(&ctx);
17016 }
17017
17018 if (!ret)
17019 ret = __intel_display_resume(dev, state);
17020
17021 drm_modeset_drop_locks(&ctx);
17022 drm_modeset_acquire_fini(&ctx);
17023 mutex_unlock(&dev->mode_config.mutex);
17024
17025 if (ret)
17026 DRM_ERROR("Restoring old state failed with %i\n", ret);
17027 drm_atomic_state_put(state);
17028 }
17029
17030 void intel_modeset_gem_init(struct drm_device *dev)
17031 {
17032 struct drm_i915_private *dev_priv = to_i915(dev);
17033 struct drm_crtc *c;
17034 struct drm_i915_gem_object *obj;
17035
17036 intel_init_gt_powersave(dev_priv);
17037
17038 intel_modeset_init_hw(dev);
17039
17040 intel_setup_overlay(dev_priv);
17041
17042 /*
17043 * Make sure any fbs we allocated at startup are properly
17044 * pinned & fenced. When we do the allocation it's too early
17045 * for this.
17046 */
17047 for_each_crtc(dev, c) {
17048 struct i915_vma *vma;
17049
17050 obj = intel_fb_obj(c->primary->fb);
17051 if (obj == NULL)
17052 continue;
17053
17054 mutex_lock(&dev->struct_mutex);
17055 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17056 c->primary->state->rotation);
17057 mutex_unlock(&dev->struct_mutex);
17058 if (IS_ERR(vma)) {
17059 DRM_ERROR("failed to pin boot fb on pipe %d\n",
17060 to_intel_crtc(c)->pipe);
17061 drm_framebuffer_unreference(c->primary->fb);
17062 c->primary->fb = NULL;
17063 c->primary->crtc = c->primary->state->crtc = NULL;
17064 update_state_fb(c->primary);
17065 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17066 }
17067 }
17068 }
17069
17070 int intel_connector_register(struct drm_connector *connector)
17071 {
17072 struct intel_connector *intel_connector = to_intel_connector(connector);
17073 int ret;
17074
17075 ret = intel_backlight_device_register(intel_connector);
17076 if (ret)
17077 goto err;
17078
17079 return 0;
17080
17081 err:
17082 return ret;
17083 }
17084
17085 void intel_connector_unregister(struct drm_connector *connector)
17086 {
17087 struct intel_connector *intel_connector = to_intel_connector(connector);
17088
17089 intel_backlight_device_unregister(intel_connector);
17090 intel_panel_destroy_backlight(connector);
17091 }
17092
17093 void intel_modeset_cleanup(struct drm_device *dev)
17094 {
17095 struct drm_i915_private *dev_priv = to_i915(dev);
17096
17097 intel_disable_gt_powersave(dev_priv);
17098
17099 /*
17100 * Interrupts and polling as the first thing to avoid creating havoc.
17101 * Too much stuff here (turning of connectors, ...) would
17102 * experience fancy races otherwise.
17103 */
17104 intel_irq_uninstall(dev_priv);
17105
17106 /*
17107 * Due to the hpd irq storm handling the hotplug work can re-arm the
17108 * poll handlers. Hence disable polling after hpd handling is shut down.
17109 */
17110 drm_kms_helper_poll_fini(dev);
17111
17112 intel_unregister_dsm_handler();
17113
17114 intel_fbc_global_disable(dev_priv);
17115
17116 /* flush any delayed tasks or pending work */
17117 flush_scheduled_work();
17118
17119 drm_mode_config_cleanup(dev);
17120
17121 intel_cleanup_overlay(dev_priv);
17122
17123 intel_cleanup_gt_powersave(dev_priv);
17124
17125 intel_teardown_gmbus(dev);
17126 }
17127
17128 void intel_connector_attach_encoder(struct intel_connector *connector,
17129 struct intel_encoder *encoder)
17130 {
17131 connector->encoder = encoder;
17132 drm_mode_connector_attach_encoder(&connector->base,
17133 &encoder->base);
17134 }
17135
17136 /*
17137 * set vga decode state - true == enable VGA decode
17138 */
17139 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17140 {
17141 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17142 u16 gmch_ctrl;
17143
17144 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17145 DRM_ERROR("failed to read control word\n");
17146 return -EIO;
17147 }
17148
17149 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17150 return 0;
17151
17152 if (state)
17153 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17154 else
17155 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17156
17157 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17158 DRM_ERROR("failed to write control word\n");
17159 return -EIO;
17160 }
17161
17162 return 0;
17163 }
17164
17165 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17166
17167 struct intel_display_error_state {
17168
17169 u32 power_well_driver;
17170
17171 int num_transcoders;
17172
17173 struct intel_cursor_error_state {
17174 u32 control;
17175 u32 position;
17176 u32 base;
17177 u32 size;
17178 } cursor[I915_MAX_PIPES];
17179
17180 struct intel_pipe_error_state {
17181 bool power_domain_on;
17182 u32 source;
17183 u32 stat;
17184 } pipe[I915_MAX_PIPES];
17185
17186 struct intel_plane_error_state {
17187 u32 control;
17188 u32 stride;
17189 u32 size;
17190 u32 pos;
17191 u32 addr;
17192 u32 surface;
17193 u32 tile_offset;
17194 } plane[I915_MAX_PIPES];
17195
17196 struct intel_transcoder_error_state {
17197 bool power_domain_on;
17198 enum transcoder cpu_transcoder;
17199
17200 u32 conf;
17201
17202 u32 htotal;
17203 u32 hblank;
17204 u32 hsync;
17205 u32 vtotal;
17206 u32 vblank;
17207 u32 vsync;
17208 } transcoder[4];
17209 };
17210
17211 struct intel_display_error_state *
17212 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17213 {
17214 struct intel_display_error_state *error;
17215 int transcoders[] = {
17216 TRANSCODER_A,
17217 TRANSCODER_B,
17218 TRANSCODER_C,
17219 TRANSCODER_EDP,
17220 };
17221 int i;
17222
17223 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17224 return NULL;
17225
17226 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17227 if (error == NULL)
17228 return NULL;
17229
17230 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17231 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17232
17233 for_each_pipe(dev_priv, i) {
17234 error->pipe[i].power_domain_on =
17235 __intel_display_power_is_enabled(dev_priv,
17236 POWER_DOMAIN_PIPE(i));
17237 if (!error->pipe[i].power_domain_on)
17238 continue;
17239
17240 error->cursor[i].control = I915_READ(CURCNTR(i));
17241 error->cursor[i].position = I915_READ(CURPOS(i));
17242 error->cursor[i].base = I915_READ(CURBASE(i));
17243
17244 error->plane[i].control = I915_READ(DSPCNTR(i));
17245 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17246 if (INTEL_GEN(dev_priv) <= 3) {
17247 error->plane[i].size = I915_READ(DSPSIZE(i));
17248 error->plane[i].pos = I915_READ(DSPPOS(i));
17249 }
17250 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17251 error->plane[i].addr = I915_READ(DSPADDR(i));
17252 if (INTEL_GEN(dev_priv) >= 4) {
17253 error->plane[i].surface = I915_READ(DSPSURF(i));
17254 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17255 }
17256
17257 error->pipe[i].source = I915_READ(PIPESRC(i));
17258
17259 if (HAS_GMCH_DISPLAY(dev_priv))
17260 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17261 }
17262
17263 /* Note: this does not include DSI transcoders. */
17264 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17265 if (HAS_DDI(dev_priv))
17266 error->num_transcoders++; /* Account for eDP. */
17267
17268 for (i = 0; i < error->num_transcoders; i++) {
17269 enum transcoder cpu_transcoder = transcoders[i];
17270
17271 error->transcoder[i].power_domain_on =
17272 __intel_display_power_is_enabled(dev_priv,
17273 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17274 if (!error->transcoder[i].power_domain_on)
17275 continue;
17276
17277 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17278
17279 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17280 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17281 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17282 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17283 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17284 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17285 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17286 }
17287
17288 return error;
17289 }
17290
17291 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17292
17293 void
17294 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17295 struct drm_i915_private *dev_priv,
17296 struct intel_display_error_state *error)
17297 {
17298 int i;
17299
17300 if (!error)
17301 return;
17302
17303 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17304 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17305 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17306 error->power_well_driver);
17307 for_each_pipe(dev_priv, i) {
17308 err_printf(m, "Pipe [%d]:\n", i);
17309 err_printf(m, " Power: %s\n",
17310 onoff(error->pipe[i].power_domain_on));
17311 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17312 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17313
17314 err_printf(m, "Plane [%d]:\n", i);
17315 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17316 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17317 if (INTEL_GEN(dev_priv) <= 3) {
17318 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17319 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17320 }
17321 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17322 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17323 if (INTEL_GEN(dev_priv) >= 4) {
17324 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17325 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17326 }
17327
17328 err_printf(m, "Cursor [%d]:\n", i);
17329 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17330 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17331 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17332 }
17333
17334 for (i = 0; i < error->num_transcoders; i++) {
17335 err_printf(m, "CPU transcoder: %s\n",
17336 transcoder_name(error->transcoder[i].cpu_transcoder));
17337 err_printf(m, " Power: %s\n",
17338 onoff(error->transcoder[i].power_domain_on));
17339 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17340 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17341 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17342 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17343 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17344 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17345 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17346 }
17347 }
17348
17349 #endif