]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'drm-core-next' into drm-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
100
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN 3
111 #define IGD_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define IGD_M_MIN 2
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN 0
122 #define IGD_M1_MAX 0
123 #define IGD_M2_MIN 0
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
240 */
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
341 */
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
361 },
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
378 },
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403 },
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428 },
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
459 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
460 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
461 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
462 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
474 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
475 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
476 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
477 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
478 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* IGD only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
489 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
490 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
491 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
492 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
493 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
494 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
495 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
496 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499 .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
504 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
505 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
506 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
507 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
508 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
509 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
510 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
511 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512 .p2_slow = IGDNG_P2_LVDS_SLOW,
513 .p2_fast = IGDNG_P2_LVDS_FAST },
514 .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_igdng_lvds;
522 else
523 limit = &intel_limits_igdng_sdvo;
524
525 return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
533
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
551
552 return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
559
560 if (IS_IGDNG(dev))
561 limit = intel_igdng_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_IGD(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_igd_lvds;
572 else
573 limit = &intel_limits_igd_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
579 }
580 return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594 if (IS_IGD(dev)) {
595 igd_clock(refclk, clock);
596 return;
597 }
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605 * Returns whether any output on the specified pipe is of the specified type
606 */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
612
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
619 }
620 }
621 return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
630
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
636 }
637 }
638 return ret;
639 }
640
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
645 */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
651
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
670 */
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
673
674 return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
680
681 {
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
686
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
689 /*
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
694 */
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
705 }
706
707 memset (best_clock, 0, sizeof (*best_clock));
708
709 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711 clock.m1++) {
712 for (clock.m2 = limit->m2.min;
713 clock.m2 <= limit->m2.max; clock.m2++) {
714 /* m1 is always 0 in IGD */
715 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716 break;
717 for (clock.n = limit->n.min;
718 clock.n <= limit->n.max; clock.n++) {
719 int this_err;
720
721 intel_clock(dev, refclk, &clock);
722
723 if (!intel_PLL_is_valid(crtc, &clock))
724 continue;
725
726 this_err = abs(clock.dot - target);
727 if (this_err < err) {
728 *best_clock = clock;
729 err = this_err;
730 }
731 }
732 }
733 }
734 }
735
736 return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *best_clock)
743
744 {
745 struct drm_device *dev = crtc->dev;
746 intel_clock_t clock;
747 int err = target;
748 bool found = false;
749
750 memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754 /* m1 is always 0 in IGD */
755 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756 break;
757 for (clock.n = limit->n.min; clock.n <= limit->n.max;
758 clock.n++) {
759 int this_err;
760
761 intel_clock(dev, refclk, &clock);
762
763 if (!intel_PLL_is_valid(crtc, &clock))
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 found = true;
771 }
772 }
773 }
774 }
775
776 return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781 int target, int refclk, intel_clock_t *best_clock)
782 {
783 struct drm_device *dev = crtc->dev;
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 intel_clock_t clock;
786 int max_n;
787 bool found;
788 /* approximately equals target * 0.00488 */
789 int err_most = (target >> 8) + (target >> 10);
790 found = false;
791
792 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794 LVDS_CLKB_POWER_UP)
795 clock.p2 = limit->p2.p2_fast;
796 else
797 clock.p2 = limit->p2.p2_slow;
798 } else {
799 if (target < limit->p2.dot_limit)
800 clock.p2 = limit->p2.p2_slow;
801 else
802 clock.p2 = limit->p2.p2_fast;
803 }
804
805 memset(best_clock, 0, sizeof(*best_clock));
806 max_n = limit->n.max;
807 /* based on hardware requriment prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirment prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 intel_clock(dev, refclk, &clock);
819 if (!intel_PLL_is_valid(crtc, &clock))
820 continue;
821 this_err = abs(clock.dot - target) ;
822 if (this_err < err_most) {
823 *best_clock = clock;
824 err_most = this_err;
825 max_n = clock.n;
826 found = true;
827 }
828 }
829 }
830 }
831 }
832 return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *best_clock)
838 {
839 struct drm_device *dev = crtc->dev;
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.n = 1;
843 clock.p1 = 2;
844 clock.p2 = 10;
845 clock.m1 = 12;
846 clock.m2 = 9;
847 } else {
848 clock.n = 2;
849 clock.p1 = 1;
850 clock.p2 = 10;
851 clock.m1 = 14;
852 clock.m2 = 8;
853 }
854 intel_clock(dev, refclk, &clock);
855 memcpy(best_clock, &clock, sizeof(intel_clock_t));
856 return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861 int target, int refclk, intel_clock_t *best_clock)
862 {
863 struct drm_device *dev = crtc->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 intel_clock_t clock;
866 int err_most = 47;
867 int err_min = 10000;
868
869 /* eDP has only 2 clock choice, no n/m/p setting */
870 if (HAS_eDP)
871 return true;
872
873 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
874 return intel_find_pll_igdng_dp(limit, crtc, target,
875 refclk, best_clock);
876
877 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
878 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
879 LVDS_CLKB_POWER_UP)
880 clock.p2 = limit->p2.p2_fast;
881 else
882 clock.p2 = limit->p2.p2_slow;
883 } else {
884 if (target < limit->p2.dot_limit)
885 clock.p2 = limit->p2.p2_slow;
886 else
887 clock.p2 = limit->p2.p2_fast;
888 }
889
890 memset(best_clock, 0, sizeof(*best_clock));
891 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892 /* based on hardware requriment prefer smaller n to precision */
893 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
894 /* based on hardware requirment prefere larger m1,m2 */
895 for (clock.m1 = limit->m1.max;
896 clock.m1 >= limit->m1.min; clock.m1--) {
897 for (clock.m2 = limit->m2.max;
898 clock.m2 >= limit->m2.min; clock.m2--) {
899 int this_err;
900
901 intel_clock(dev, refclk, &clock);
902 if (!intel_PLL_is_valid(crtc, &clock))
903 continue;
904 this_err = abs((10000 - (target*10000/clock.dot)));
905 if (this_err < err_most) {
906 *best_clock = clock;
907 /* found on first matching */
908 goto out;
909 } else if (this_err < err_min) {
910 *best_clock = clock;
911 err_min = this_err;
912 }
913 }
914 }
915 }
916 }
917 out:
918 return true;
919 }
920
921 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
922 static bool
923 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
924 int target, int refclk, intel_clock_t *best_clock)
925 {
926 intel_clock_t clock;
927 if (target < 200000) {
928 clock.p1 = 2;
929 clock.p2 = 10;
930 clock.n = 2;
931 clock.m1 = 23;
932 clock.m2 = 8;
933 } else {
934 clock.p1 = 1;
935 clock.p2 = 10;
936 clock.n = 1;
937 clock.m1 = 14;
938 clock.m2 = 2;
939 }
940 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
941 clock.p = (clock.p1 * clock.p2);
942 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
943 clock.vco = 0;
944 memcpy(best_clock, &clock, sizeof(intel_clock_t));
945 return true;
946 }
947
948 void
949 intel_wait_for_vblank(struct drm_device *dev)
950 {
951 /* Wait for 20ms, i.e. one cycle at 50hz. */
952 mdelay(20);
953 }
954
955 /* Parameters have changed, update FBC info */
956 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
957 {
958 struct drm_device *dev = crtc->dev;
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 struct drm_framebuffer *fb = crtc->fb;
961 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
962 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964 int plane, i;
965 u32 fbc_ctl, fbc_ctl2;
966
967 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
968
969 if (fb->pitch < dev_priv->cfb_pitch)
970 dev_priv->cfb_pitch = fb->pitch;
971
972 /* FBC_CTL wants 64B units */
973 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
974 dev_priv->cfb_fence = obj_priv->fence_reg;
975 dev_priv->cfb_plane = intel_crtc->plane;
976 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
977
978 /* Clear old tags */
979 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
980 I915_WRITE(FBC_TAG + (i * 4), 0);
981
982 /* Set it up... */
983 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
984 if (obj_priv->tiling_mode != I915_TILING_NONE)
985 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
986 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
987 I915_WRITE(FBC_FENCE_OFF, crtc->y);
988
989 /* enable it... */
990 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
991 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
992 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
993 if (obj_priv->tiling_mode != I915_TILING_NONE)
994 fbc_ctl |= dev_priv->cfb_fence;
995 I915_WRITE(FBC_CONTROL, fbc_ctl);
996
997 DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
998 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
999 }
1000
1001 void i8xx_disable_fbc(struct drm_device *dev)
1002 {
1003 struct drm_i915_private *dev_priv = dev->dev_private;
1004 u32 fbc_ctl;
1005
1006 if (!I915_HAS_FBC(dev))
1007 return;
1008
1009 /* Disable compression */
1010 fbc_ctl = I915_READ(FBC_CONTROL);
1011 fbc_ctl &= ~FBC_CTL_EN;
1012 I915_WRITE(FBC_CONTROL, fbc_ctl);
1013
1014 /* Wait for compressing bit to clear */
1015 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1016 ; /* nothing */
1017
1018 intel_wait_for_vblank(dev);
1019
1020 DRM_DEBUG("disabled FBC\n");
1021 }
1022
1023 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1024 {
1025 struct drm_device *dev = crtc->dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1029 }
1030
1031 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1032 {
1033 struct drm_device *dev = crtc->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 struct drm_framebuffer *fb = crtc->fb;
1036 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1037 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1039 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1040 DPFC_CTL_PLANEB);
1041 unsigned long stall_watermark = 200;
1042 u32 dpfc_ctl;
1043
1044 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1045 dev_priv->cfb_fence = obj_priv->fence_reg;
1046 dev_priv->cfb_plane = intel_crtc->plane;
1047
1048 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1049 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1050 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1051 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1052 } else {
1053 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1054 }
1055
1056 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1057 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1058 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1059 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1060 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1061
1062 /* enable it... */
1063 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1064
1065 DRM_DEBUG("enabled fbc on plane %d\n", intel_crtc->plane);
1066 }
1067
1068 void g4x_disable_fbc(struct drm_device *dev)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 u32 dpfc_ctl;
1072
1073 /* Disable compression */
1074 dpfc_ctl = I915_READ(DPFC_CONTROL);
1075 dpfc_ctl &= ~DPFC_CTL_EN;
1076 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1077 intel_wait_for_vblank(dev);
1078
1079 DRM_DEBUG("disabled FBC\n");
1080 }
1081
1082 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1083 {
1084 struct drm_device *dev = crtc->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1088 }
1089
1090 /**
1091 * intel_update_fbc - enable/disable FBC as needed
1092 * @crtc: CRTC to point the compressor at
1093 * @mode: mode in use
1094 *
1095 * Set up the framebuffer compression hardware at mode set time. We
1096 * enable it if possible:
1097 * - plane A only (on pre-965)
1098 * - no pixel mulitply/line duplication
1099 * - no alpha buffer discard
1100 * - no dual wide
1101 * - framebuffer <= 2048 in width, 1536 in height
1102 *
1103 * We can't assume that any compression will take place (worst case),
1104 * so the compressed buffer has to be the same size as the uncompressed
1105 * one. It also must reside (along with the line length buffer) in
1106 * stolen memory.
1107 *
1108 * We need to enable/disable FBC on a global basis.
1109 */
1110 static void intel_update_fbc(struct drm_crtc *crtc,
1111 struct drm_display_mode *mode)
1112 {
1113 struct drm_device *dev = crtc->dev;
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 struct drm_framebuffer *fb = crtc->fb;
1116 struct intel_framebuffer *intel_fb;
1117 struct drm_i915_gem_object *obj_priv;
1118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119 int plane = intel_crtc->plane;
1120
1121 if (!i915_powersave)
1122 return;
1123
1124 if (!dev_priv->display.fbc_enabled ||
1125 !dev_priv->display.enable_fbc ||
1126 !dev_priv->display.disable_fbc)
1127 return;
1128
1129 if (!crtc->fb)
1130 return;
1131
1132 intel_fb = to_intel_framebuffer(fb);
1133 obj_priv = intel_fb->obj->driver_private;
1134
1135 /*
1136 * If FBC is already on, we just have to verify that we can
1137 * keep it that way...
1138 * Need to disable if:
1139 * - changing FBC params (stride, fence, mode)
1140 * - new fb is too large to fit in compressed buffer
1141 * - going to an unsupported config (interlace, pixel multiply, etc.)
1142 */
1143 if (intel_fb->obj->size > dev_priv->cfb_size) {
1144 DRM_DEBUG("framebuffer too large, disabling compression\n");
1145 goto out_disable;
1146 }
1147 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1148 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1149 DRM_DEBUG("mode incompatible with compression, disabling\n");
1150 goto out_disable;
1151 }
1152 if ((mode->hdisplay > 2048) ||
1153 (mode->vdisplay > 1536)) {
1154 DRM_DEBUG("mode too large for compression, disabling\n");
1155 goto out_disable;
1156 }
1157 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1158 DRM_DEBUG("plane not 0, disabling compression\n");
1159 goto out_disable;
1160 }
1161 if (obj_priv->tiling_mode != I915_TILING_X) {
1162 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1163 goto out_disable;
1164 }
1165
1166 if (dev_priv->display.fbc_enabled(crtc)) {
1167 /* We can re-enable it in this case, but need to update pitch */
1168 if (fb->pitch > dev_priv->cfb_pitch)
1169 dev_priv->display.disable_fbc(dev);
1170 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1171 dev_priv->display.disable_fbc(dev);
1172 if (plane != dev_priv->cfb_plane)
1173 dev_priv->display.disable_fbc(dev);
1174 }
1175
1176 if (!dev_priv->display.fbc_enabled(crtc)) {
1177 /* Now try to turn it back on if possible */
1178 dev_priv->display.enable_fbc(crtc, 500);
1179 }
1180
1181 return;
1182
1183 out_disable:
1184 DRM_DEBUG("unsupported config, disabling FBC\n");
1185 /* Multiple disables should be harmless */
1186 if (dev_priv->display.fbc_enabled(crtc))
1187 dev_priv->display.disable_fbc(dev);
1188 }
1189
1190 static int
1191 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1192 struct drm_framebuffer *old_fb)
1193 {
1194 struct drm_device *dev = crtc->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 struct drm_i915_master_private *master_priv;
1197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1198 struct intel_framebuffer *intel_fb;
1199 struct drm_i915_gem_object *obj_priv;
1200 struct drm_gem_object *obj;
1201 int pipe = intel_crtc->pipe;
1202 int plane = intel_crtc->plane;
1203 unsigned long Start, Offset;
1204 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1205 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1206 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1207 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1208 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1209 u32 dspcntr, alignment;
1210 int ret;
1211
1212 /* no fb bound */
1213 if (!crtc->fb) {
1214 DRM_DEBUG("No FB bound\n");
1215 return 0;
1216 }
1217
1218 switch (plane) {
1219 case 0:
1220 case 1:
1221 break;
1222 default:
1223 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1224 return -EINVAL;
1225 }
1226
1227 intel_fb = to_intel_framebuffer(crtc->fb);
1228 obj = intel_fb->obj;
1229 obj_priv = obj->driver_private;
1230
1231 switch (obj_priv->tiling_mode) {
1232 case I915_TILING_NONE:
1233 alignment = 64 * 1024;
1234 break;
1235 case I915_TILING_X:
1236 /* pin() will align the object as required by fence */
1237 alignment = 0;
1238 break;
1239 case I915_TILING_Y:
1240 /* FIXME: Is this true? */
1241 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1242 return -EINVAL;
1243 default:
1244 BUG();
1245 }
1246
1247 mutex_lock(&dev->struct_mutex);
1248 ret = i915_gem_object_pin(obj, alignment);
1249 if (ret != 0) {
1250 mutex_unlock(&dev->struct_mutex);
1251 return ret;
1252 }
1253
1254 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1255 if (ret != 0) {
1256 i915_gem_object_unpin(obj);
1257 mutex_unlock(&dev->struct_mutex);
1258 return ret;
1259 }
1260
1261 /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1262 * whereas 965+ only requires a fence if using framebuffer compression.
1263 * For simplicity, we always install a fence as the cost is not that onerous.
1264 */
1265 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1266 obj_priv->tiling_mode != I915_TILING_NONE) {
1267 ret = i915_gem_object_get_fence_reg(obj);
1268 if (ret != 0) {
1269 i915_gem_object_unpin(obj);
1270 mutex_unlock(&dev->struct_mutex);
1271 return ret;
1272 }
1273 }
1274
1275 dspcntr = I915_READ(dspcntr_reg);
1276 /* Mask out pixel format bits in case we change it */
1277 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1278 switch (crtc->fb->bits_per_pixel) {
1279 case 8:
1280 dspcntr |= DISPPLANE_8BPP;
1281 break;
1282 case 16:
1283 if (crtc->fb->depth == 15)
1284 dspcntr |= DISPPLANE_15_16BPP;
1285 else
1286 dspcntr |= DISPPLANE_16BPP;
1287 break;
1288 case 24:
1289 case 32:
1290 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1291 break;
1292 default:
1293 DRM_ERROR("Unknown color depth\n");
1294 i915_gem_object_unpin(obj);
1295 mutex_unlock(&dev->struct_mutex);
1296 return -EINVAL;
1297 }
1298 if (IS_I965G(dev)) {
1299 if (obj_priv->tiling_mode != I915_TILING_NONE)
1300 dspcntr |= DISPPLANE_TILED;
1301 else
1302 dspcntr &= ~DISPPLANE_TILED;
1303 }
1304
1305 if (IS_IGDNG(dev))
1306 /* must disable */
1307 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1308
1309 I915_WRITE(dspcntr_reg, dspcntr);
1310
1311 Start = obj_priv->gtt_offset;
1312 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1313
1314 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1315 I915_WRITE(dspstride, crtc->fb->pitch);
1316 if (IS_I965G(dev)) {
1317 I915_WRITE(dspbase, Offset);
1318 I915_READ(dspbase);
1319 I915_WRITE(dspsurf, Start);
1320 I915_READ(dspsurf);
1321 I915_WRITE(dsptileoff, (y << 16) | x);
1322 } else {
1323 I915_WRITE(dspbase, Start + Offset);
1324 I915_READ(dspbase);
1325 }
1326
1327 if ((IS_I965G(dev) || plane == 0))
1328 intel_update_fbc(crtc, &crtc->mode);
1329
1330 intel_wait_for_vblank(dev);
1331
1332 if (old_fb) {
1333 intel_fb = to_intel_framebuffer(old_fb);
1334 obj_priv = intel_fb->obj->driver_private;
1335 i915_gem_object_unpin(intel_fb->obj);
1336 }
1337 intel_increase_pllclock(crtc, true);
1338
1339 mutex_unlock(&dev->struct_mutex);
1340
1341 if (!dev->primary->master)
1342 return 0;
1343
1344 master_priv = dev->primary->master->driver_priv;
1345 if (!master_priv->sarea_priv)
1346 return 0;
1347
1348 if (pipe) {
1349 master_priv->sarea_priv->pipeB_x = x;
1350 master_priv->sarea_priv->pipeB_y = y;
1351 } else {
1352 master_priv->sarea_priv->pipeA_x = x;
1353 master_priv->sarea_priv->pipeA_y = y;
1354 }
1355
1356 return 0;
1357 }
1358
1359 /* Disable the VGA plane that we never use */
1360 static void i915_disable_vga (struct drm_device *dev)
1361 {
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363 u8 sr1;
1364 u32 vga_reg;
1365
1366 if (IS_IGDNG(dev))
1367 vga_reg = CPU_VGACNTRL;
1368 else
1369 vga_reg = VGACNTRL;
1370
1371 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1372 return;
1373
1374 I915_WRITE8(VGA_SR_INDEX, 1);
1375 sr1 = I915_READ8(VGA_SR_DATA);
1376 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1377 udelay(100);
1378
1379 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1380 }
1381
1382 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1383 {
1384 struct drm_device *dev = crtc->dev;
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386 u32 dpa_ctl;
1387
1388 DRM_DEBUG("\n");
1389 dpa_ctl = I915_READ(DP_A);
1390 dpa_ctl &= ~DP_PLL_ENABLE;
1391 I915_WRITE(DP_A, dpa_ctl);
1392 }
1393
1394 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1395 {
1396 struct drm_device *dev = crtc->dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 u32 dpa_ctl;
1399
1400 dpa_ctl = I915_READ(DP_A);
1401 dpa_ctl |= DP_PLL_ENABLE;
1402 I915_WRITE(DP_A, dpa_ctl);
1403 udelay(200);
1404 }
1405
1406
1407 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1408 {
1409 struct drm_device *dev = crtc->dev;
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 u32 dpa_ctl;
1412
1413 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1414 dpa_ctl = I915_READ(DP_A);
1415 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1416
1417 if (clock < 200000) {
1418 u32 temp;
1419 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1420 /* workaround for 160Mhz:
1421 1) program 0x4600c bits 15:0 = 0x8124
1422 2) program 0x46010 bit 0 = 1
1423 3) program 0x46034 bit 24 = 1
1424 4) program 0x64000 bit 14 = 1
1425 */
1426 temp = I915_READ(0x4600c);
1427 temp &= 0xffff0000;
1428 I915_WRITE(0x4600c, temp | 0x8124);
1429
1430 temp = I915_READ(0x46010);
1431 I915_WRITE(0x46010, temp | 1);
1432
1433 temp = I915_READ(0x46034);
1434 I915_WRITE(0x46034, temp | (1 << 24));
1435 } else {
1436 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1437 }
1438 I915_WRITE(DP_A, dpa_ctl);
1439
1440 udelay(500);
1441 }
1442
1443 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1444 {
1445 struct drm_device *dev = crtc->dev;
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1448 int pipe = intel_crtc->pipe;
1449 int plane = intel_crtc->plane;
1450 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1451 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1452 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1453 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1454 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1455 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1456 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1457 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1458 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1459 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1460 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1461 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1462 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1463 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1464 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1465 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1466 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1467 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1468 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1469 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1470 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1471 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1472 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1473 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1474 u32 temp;
1475 int tries = 5, j, n;
1476
1477 /* XXX: When our outputs are all unaware of DPMS modes other than off
1478 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1479 */
1480 switch (mode) {
1481 case DRM_MODE_DPMS_ON:
1482 case DRM_MODE_DPMS_STANDBY:
1483 case DRM_MODE_DPMS_SUSPEND:
1484 DRM_DEBUG("crtc %d dpms on\n", pipe);
1485 if (HAS_eDP) {
1486 /* enable eDP PLL */
1487 igdng_enable_pll_edp(crtc);
1488 } else {
1489 /* enable PCH DPLL */
1490 temp = I915_READ(pch_dpll_reg);
1491 if ((temp & DPLL_VCO_ENABLE) == 0) {
1492 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1493 I915_READ(pch_dpll_reg);
1494 }
1495
1496 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1497 temp = I915_READ(fdi_rx_reg);
1498 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1499 FDI_SEL_PCDCLK |
1500 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1501 I915_READ(fdi_rx_reg);
1502 udelay(200);
1503
1504 /* Enable CPU FDI TX PLL, always on for IGDNG */
1505 temp = I915_READ(fdi_tx_reg);
1506 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1507 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1508 I915_READ(fdi_tx_reg);
1509 udelay(100);
1510 }
1511 }
1512
1513 /* Enable panel fitting for LVDS */
1514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1515 temp = I915_READ(pf_ctl_reg);
1516 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1517
1518 /* currently full aspect */
1519 I915_WRITE(pf_win_pos, 0);
1520
1521 I915_WRITE(pf_win_size,
1522 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1523 (dev_priv->panel_fixed_mode->vdisplay));
1524 }
1525
1526 /* Enable CPU pipe */
1527 temp = I915_READ(pipeconf_reg);
1528 if ((temp & PIPEACONF_ENABLE) == 0) {
1529 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1530 I915_READ(pipeconf_reg);
1531 udelay(100);
1532 }
1533
1534 /* configure and enable CPU plane */
1535 temp = I915_READ(dspcntr_reg);
1536 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1537 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1538 /* Flush the plane changes */
1539 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1540 }
1541
1542 if (!HAS_eDP) {
1543 /* enable CPU FDI TX and PCH FDI RX */
1544 temp = I915_READ(fdi_tx_reg);
1545 temp |= FDI_TX_ENABLE;
1546 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1547 temp &= ~FDI_LINK_TRAIN_NONE;
1548 temp |= FDI_LINK_TRAIN_PATTERN_1;
1549 I915_WRITE(fdi_tx_reg, temp);
1550 I915_READ(fdi_tx_reg);
1551
1552 temp = I915_READ(fdi_rx_reg);
1553 temp &= ~FDI_LINK_TRAIN_NONE;
1554 temp |= FDI_LINK_TRAIN_PATTERN_1;
1555 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1556 I915_READ(fdi_rx_reg);
1557
1558 udelay(150);
1559
1560 /* Train FDI. */
1561 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1562 for train result */
1563 temp = I915_READ(fdi_rx_imr_reg);
1564 temp &= ~FDI_RX_SYMBOL_LOCK;
1565 temp &= ~FDI_RX_BIT_LOCK;
1566 I915_WRITE(fdi_rx_imr_reg, temp);
1567 I915_READ(fdi_rx_imr_reg);
1568 udelay(150);
1569
1570 temp = I915_READ(fdi_rx_iir_reg);
1571 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1572
1573 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1574 for (j = 0; j < tries; j++) {
1575 temp = I915_READ(fdi_rx_iir_reg);
1576 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1577 if (temp & FDI_RX_BIT_LOCK)
1578 break;
1579 udelay(200);
1580 }
1581 if (j != tries)
1582 I915_WRITE(fdi_rx_iir_reg,
1583 temp | FDI_RX_BIT_LOCK);
1584 else
1585 DRM_DEBUG("train 1 fail\n");
1586 } else {
1587 I915_WRITE(fdi_rx_iir_reg,
1588 temp | FDI_RX_BIT_LOCK);
1589 DRM_DEBUG("train 1 ok 2!\n");
1590 }
1591 temp = I915_READ(fdi_tx_reg);
1592 temp &= ~FDI_LINK_TRAIN_NONE;
1593 temp |= FDI_LINK_TRAIN_PATTERN_2;
1594 I915_WRITE(fdi_tx_reg, temp);
1595
1596 temp = I915_READ(fdi_rx_reg);
1597 temp &= ~FDI_LINK_TRAIN_NONE;
1598 temp |= FDI_LINK_TRAIN_PATTERN_2;
1599 I915_WRITE(fdi_rx_reg, temp);
1600
1601 udelay(150);
1602
1603 temp = I915_READ(fdi_rx_iir_reg);
1604 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1605
1606 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1607 for (j = 0; j < tries; j++) {
1608 temp = I915_READ(fdi_rx_iir_reg);
1609 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1610 if (temp & FDI_RX_SYMBOL_LOCK)
1611 break;
1612 udelay(200);
1613 }
1614 if (j != tries) {
1615 I915_WRITE(fdi_rx_iir_reg,
1616 temp | FDI_RX_SYMBOL_LOCK);
1617 DRM_DEBUG("train 2 ok 1!\n");
1618 } else
1619 DRM_DEBUG("train 2 fail\n");
1620 } else {
1621 I915_WRITE(fdi_rx_iir_reg,
1622 temp | FDI_RX_SYMBOL_LOCK);
1623 DRM_DEBUG("train 2 ok 2!\n");
1624 }
1625 DRM_DEBUG("train done\n");
1626
1627 /* set transcoder timing */
1628 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1629 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1630 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1631
1632 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1633 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1634 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1635
1636 /* enable PCH transcoder */
1637 temp = I915_READ(transconf_reg);
1638 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1639 I915_READ(transconf_reg);
1640
1641 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1642 ;
1643
1644 /* enable normal */
1645
1646 temp = I915_READ(fdi_tx_reg);
1647 temp &= ~FDI_LINK_TRAIN_NONE;
1648 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1649 FDI_TX_ENHANCE_FRAME_ENABLE);
1650 I915_READ(fdi_tx_reg);
1651
1652 temp = I915_READ(fdi_rx_reg);
1653 temp &= ~FDI_LINK_TRAIN_NONE;
1654 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1655 FDI_RX_ENHANCE_FRAME_ENABLE);
1656 I915_READ(fdi_rx_reg);
1657
1658 /* wait one idle pattern time */
1659 udelay(100);
1660
1661 }
1662
1663 intel_crtc_load_lut(crtc);
1664
1665 break;
1666 case DRM_MODE_DPMS_OFF:
1667 DRM_DEBUG("crtc %d dpms off\n", pipe);
1668
1669 i915_disable_vga(dev);
1670
1671 /* Disable display plane */
1672 temp = I915_READ(dspcntr_reg);
1673 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1674 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1675 /* Flush the plane changes */
1676 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1677 I915_READ(dspbase_reg);
1678 }
1679
1680 /* disable cpu pipe, disable after all planes disabled */
1681 temp = I915_READ(pipeconf_reg);
1682 if ((temp & PIPEACONF_ENABLE) != 0) {
1683 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1684 I915_READ(pipeconf_reg);
1685 n = 0;
1686 /* wait for cpu pipe off, pipe state */
1687 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1688 n++;
1689 if (n < 60) {
1690 udelay(500);
1691 continue;
1692 } else {
1693 DRM_DEBUG("pipe %d off delay\n", pipe);
1694 break;
1695 }
1696 }
1697 } else
1698 DRM_DEBUG("crtc %d is disabled\n", pipe);
1699
1700 if (HAS_eDP) {
1701 igdng_disable_pll_edp(crtc);
1702 }
1703
1704 /* disable CPU FDI tx and PCH FDI rx */
1705 temp = I915_READ(fdi_tx_reg);
1706 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1707 I915_READ(fdi_tx_reg);
1708
1709 temp = I915_READ(fdi_rx_reg);
1710 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1711 I915_READ(fdi_rx_reg);
1712
1713 udelay(100);
1714
1715 /* still set train pattern 1 */
1716 temp = I915_READ(fdi_tx_reg);
1717 temp &= ~FDI_LINK_TRAIN_NONE;
1718 temp |= FDI_LINK_TRAIN_PATTERN_1;
1719 I915_WRITE(fdi_tx_reg, temp);
1720
1721 temp = I915_READ(fdi_rx_reg);
1722 temp &= ~FDI_LINK_TRAIN_NONE;
1723 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724 I915_WRITE(fdi_rx_reg, temp);
1725
1726 udelay(100);
1727
1728 /* disable PCH transcoder */
1729 temp = I915_READ(transconf_reg);
1730 if ((temp & TRANS_ENABLE) != 0) {
1731 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1732 I915_READ(transconf_reg);
1733 n = 0;
1734 /* wait for PCH transcoder off, transcoder state */
1735 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1736 n++;
1737 if (n < 60) {
1738 udelay(500);
1739 continue;
1740 } else {
1741 DRM_DEBUG("transcoder %d off delay\n", pipe);
1742 break;
1743 }
1744 }
1745 }
1746
1747 /* disable PCH DPLL */
1748 temp = I915_READ(pch_dpll_reg);
1749 if ((temp & DPLL_VCO_ENABLE) != 0) {
1750 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1751 I915_READ(pch_dpll_reg);
1752 }
1753
1754 temp = I915_READ(fdi_rx_reg);
1755 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1756 temp &= ~FDI_SEL_PCDCLK;
1757 temp &= ~FDI_RX_PLL_ENABLE;
1758 I915_WRITE(fdi_rx_reg, temp);
1759 I915_READ(fdi_rx_reg);
1760 }
1761
1762 /* Disable CPU FDI TX PLL */
1763 temp = I915_READ(fdi_tx_reg);
1764 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1765 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1766 I915_READ(fdi_tx_reg);
1767 udelay(100);
1768 }
1769
1770 /* Disable PF */
1771 temp = I915_READ(pf_ctl_reg);
1772 if ((temp & PF_ENABLE) != 0) {
1773 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1774 I915_READ(pf_ctl_reg);
1775 }
1776 I915_WRITE(pf_win_size, 0);
1777
1778 /* Wait for the clocks to turn off. */
1779 udelay(150);
1780 break;
1781 }
1782 }
1783
1784 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1785 {
1786 struct drm_device *dev = crtc->dev;
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1789 int pipe = intel_crtc->pipe;
1790 int plane = intel_crtc->plane;
1791 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1792 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1793 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1794 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1795 u32 temp;
1796
1797 /* XXX: When our outputs are all unaware of DPMS modes other than off
1798 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1799 */
1800 switch (mode) {
1801 case DRM_MODE_DPMS_ON:
1802 case DRM_MODE_DPMS_STANDBY:
1803 case DRM_MODE_DPMS_SUSPEND:
1804 intel_update_watermarks(dev);
1805
1806 /* Enable the DPLL */
1807 temp = I915_READ(dpll_reg);
1808 if ((temp & DPLL_VCO_ENABLE) == 0) {
1809 I915_WRITE(dpll_reg, temp);
1810 I915_READ(dpll_reg);
1811 /* Wait for the clocks to stabilize. */
1812 udelay(150);
1813 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1814 I915_READ(dpll_reg);
1815 /* Wait for the clocks to stabilize. */
1816 udelay(150);
1817 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1818 I915_READ(dpll_reg);
1819 /* Wait for the clocks to stabilize. */
1820 udelay(150);
1821 }
1822
1823 /* Enable the pipe */
1824 temp = I915_READ(pipeconf_reg);
1825 if ((temp & PIPEACONF_ENABLE) == 0)
1826 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1827
1828 /* Enable the plane */
1829 temp = I915_READ(dspcntr_reg);
1830 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1831 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1832 /* Flush the plane changes */
1833 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1834 }
1835
1836 intel_crtc_load_lut(crtc);
1837
1838 if ((IS_I965G(dev) || plane == 0))
1839 intel_update_fbc(crtc, &crtc->mode);
1840
1841 /* Give the overlay scaler a chance to enable if it's on this pipe */
1842 //intel_crtc_dpms_video(crtc, true); TODO
1843 break;
1844 case DRM_MODE_DPMS_OFF:
1845 intel_update_watermarks(dev);
1846 /* Give the overlay scaler a chance to disable if it's on this pipe */
1847 //intel_crtc_dpms_video(crtc, FALSE); TODO
1848
1849 if (dev_priv->cfb_plane == plane &&
1850 dev_priv->display.disable_fbc)
1851 dev_priv->display.disable_fbc(dev);
1852
1853 /* Disable the VGA plane that we never use */
1854 i915_disable_vga(dev);
1855
1856 /* Disable display plane */
1857 temp = I915_READ(dspcntr_reg);
1858 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1859 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1860 /* Flush the plane changes */
1861 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1862 I915_READ(dspbase_reg);
1863 }
1864
1865 if (!IS_I9XX(dev)) {
1866 /* Wait for vblank for the disable to take effect */
1867 intel_wait_for_vblank(dev);
1868 }
1869
1870 /* Next, disable display pipes */
1871 temp = I915_READ(pipeconf_reg);
1872 if ((temp & PIPEACONF_ENABLE) != 0) {
1873 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1874 I915_READ(pipeconf_reg);
1875 }
1876
1877 /* Wait for vblank for the disable to take effect. */
1878 intel_wait_for_vblank(dev);
1879
1880 temp = I915_READ(dpll_reg);
1881 if ((temp & DPLL_VCO_ENABLE) != 0) {
1882 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1883 I915_READ(dpll_reg);
1884 }
1885
1886 /* Wait for the clocks to turn off. */
1887 udelay(150);
1888 break;
1889 }
1890 }
1891
1892 /**
1893 * Sets the power management mode of the pipe and plane.
1894 *
1895 * This code should probably grow support for turning the cursor off and back
1896 * on appropriately at the same time as we're turning the pipe off/on.
1897 */
1898 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1899 {
1900 struct drm_device *dev = crtc->dev;
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 struct drm_i915_master_private *master_priv;
1903 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1904 int pipe = intel_crtc->pipe;
1905 bool enabled;
1906
1907 dev_priv->display.dpms(crtc, mode);
1908
1909 intel_crtc->dpms_mode = mode;
1910
1911 if (!dev->primary->master)
1912 return;
1913
1914 master_priv = dev->primary->master->driver_priv;
1915 if (!master_priv->sarea_priv)
1916 return;
1917
1918 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1919
1920 switch (pipe) {
1921 case 0:
1922 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1923 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1924 break;
1925 case 1:
1926 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1927 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1928 break;
1929 default:
1930 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1931 break;
1932 }
1933 }
1934
1935 static void intel_crtc_prepare (struct drm_crtc *crtc)
1936 {
1937 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1938 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1939 }
1940
1941 static void intel_crtc_commit (struct drm_crtc *crtc)
1942 {
1943 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1944 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1945 }
1946
1947 void intel_encoder_prepare (struct drm_encoder *encoder)
1948 {
1949 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1950 /* lvds has its own version of prepare see intel_lvds_prepare */
1951 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1952 }
1953
1954 void intel_encoder_commit (struct drm_encoder *encoder)
1955 {
1956 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1957 /* lvds has its own version of commit see intel_lvds_commit */
1958 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1959 }
1960
1961 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1962 struct drm_display_mode *mode,
1963 struct drm_display_mode *adjusted_mode)
1964 {
1965 struct drm_device *dev = crtc->dev;
1966 if (IS_IGDNG(dev)) {
1967 /* FDI link clock is fixed at 2.7G */
1968 if (mode->clock * 3 > 27000 * 4)
1969 return MODE_CLOCK_HIGH;
1970 }
1971 return true;
1972 }
1973
1974 static int i945_get_display_clock_speed(struct drm_device *dev)
1975 {
1976 return 400000;
1977 }
1978
1979 static int i915_get_display_clock_speed(struct drm_device *dev)
1980 {
1981 return 333000;
1982 }
1983
1984 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
1985 {
1986 return 200000;
1987 }
1988
1989 static int i915gm_get_display_clock_speed(struct drm_device *dev)
1990 {
1991 u16 gcfgc = 0;
1992
1993 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1994
1995 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1996 return 133000;
1997 else {
1998 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1999 case GC_DISPLAY_CLOCK_333_MHZ:
2000 return 333000;
2001 default:
2002 case GC_DISPLAY_CLOCK_190_200_MHZ:
2003 return 190000;
2004 }
2005 }
2006 }
2007
2008 static int i865_get_display_clock_speed(struct drm_device *dev)
2009 {
2010 return 266000;
2011 }
2012
2013 static int i855_get_display_clock_speed(struct drm_device *dev)
2014 {
2015 u16 hpllcc = 0;
2016 /* Assume that the hardware is in the high speed state. This
2017 * should be the default.
2018 */
2019 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2020 case GC_CLOCK_133_200:
2021 case GC_CLOCK_100_200:
2022 return 200000;
2023 case GC_CLOCK_166_250:
2024 return 250000;
2025 case GC_CLOCK_100_133:
2026 return 133000;
2027 }
2028
2029 /* Shouldn't happen */
2030 return 0;
2031 }
2032
2033 static int i830_get_display_clock_speed(struct drm_device *dev)
2034 {
2035 return 133000;
2036 }
2037
2038 /**
2039 * Return the pipe currently connected to the panel fitter,
2040 * or -1 if the panel fitter is not present or not in use
2041 */
2042 static int intel_panel_fitter_pipe (struct drm_device *dev)
2043 {
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 u32 pfit_control;
2046
2047 /* i830 doesn't have a panel fitter */
2048 if (IS_I830(dev))
2049 return -1;
2050
2051 pfit_control = I915_READ(PFIT_CONTROL);
2052
2053 /* See if the panel fitter is in use */
2054 if ((pfit_control & PFIT_ENABLE) == 0)
2055 return -1;
2056
2057 /* 965 can place panel fitter on either pipe */
2058 if (IS_I965G(dev))
2059 return (pfit_control >> 29) & 0x3;
2060
2061 /* older chips can only use pipe 1 */
2062 return 1;
2063 }
2064
2065 struct fdi_m_n {
2066 u32 tu;
2067 u32 gmch_m;
2068 u32 gmch_n;
2069 u32 link_m;
2070 u32 link_n;
2071 };
2072
2073 static void
2074 fdi_reduce_ratio(u32 *num, u32 *den)
2075 {
2076 while (*num > 0xffffff || *den > 0xffffff) {
2077 *num >>= 1;
2078 *den >>= 1;
2079 }
2080 }
2081
2082 #define DATA_N 0x800000
2083 #define LINK_N 0x80000
2084
2085 static void
2086 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2087 int pixel_clock, int link_clock,
2088 struct fdi_m_n *m_n)
2089 {
2090 u64 temp;
2091
2092 m_n->tu = 64; /* default size */
2093
2094 temp = (u64) DATA_N * pixel_clock;
2095 temp = div_u64(temp, link_clock);
2096 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2097 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2098 m_n->gmch_n = DATA_N;
2099 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2100
2101 temp = (u64) LINK_N * pixel_clock;
2102 m_n->link_m = div_u64(temp, link_clock);
2103 m_n->link_n = LINK_N;
2104 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2105 }
2106
2107
2108 struct intel_watermark_params {
2109 unsigned long fifo_size;
2110 unsigned long max_wm;
2111 unsigned long default_wm;
2112 unsigned long guard_size;
2113 unsigned long cacheline_size;
2114 };
2115
2116 /* IGD has different values for various configs */
2117 static struct intel_watermark_params igd_display_wm = {
2118 IGD_DISPLAY_FIFO,
2119 IGD_MAX_WM,
2120 IGD_DFT_WM,
2121 IGD_GUARD_WM,
2122 IGD_FIFO_LINE_SIZE
2123 };
2124 static struct intel_watermark_params igd_display_hplloff_wm = {
2125 IGD_DISPLAY_FIFO,
2126 IGD_MAX_WM,
2127 IGD_DFT_HPLLOFF_WM,
2128 IGD_GUARD_WM,
2129 IGD_FIFO_LINE_SIZE
2130 };
2131 static struct intel_watermark_params igd_cursor_wm = {
2132 IGD_CURSOR_FIFO,
2133 IGD_CURSOR_MAX_WM,
2134 IGD_CURSOR_DFT_WM,
2135 IGD_CURSOR_GUARD_WM,
2136 IGD_FIFO_LINE_SIZE,
2137 };
2138 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2139 IGD_CURSOR_FIFO,
2140 IGD_CURSOR_MAX_WM,
2141 IGD_CURSOR_DFT_WM,
2142 IGD_CURSOR_GUARD_WM,
2143 IGD_FIFO_LINE_SIZE
2144 };
2145 static struct intel_watermark_params g4x_wm_info = {
2146 G4X_FIFO_SIZE,
2147 G4X_MAX_WM,
2148 G4X_MAX_WM,
2149 2,
2150 G4X_FIFO_LINE_SIZE,
2151 };
2152 static struct intel_watermark_params i945_wm_info = {
2153 I945_FIFO_SIZE,
2154 I915_MAX_WM,
2155 1,
2156 2,
2157 I915_FIFO_LINE_SIZE
2158 };
2159 static struct intel_watermark_params i915_wm_info = {
2160 I915_FIFO_SIZE,
2161 I915_MAX_WM,
2162 1,
2163 2,
2164 I915_FIFO_LINE_SIZE
2165 };
2166 static struct intel_watermark_params i855_wm_info = {
2167 I855GM_FIFO_SIZE,
2168 I915_MAX_WM,
2169 1,
2170 2,
2171 I830_FIFO_LINE_SIZE
2172 };
2173 static struct intel_watermark_params i830_wm_info = {
2174 I830_FIFO_SIZE,
2175 I915_MAX_WM,
2176 1,
2177 2,
2178 I830_FIFO_LINE_SIZE
2179 };
2180
2181 /**
2182 * intel_calculate_wm - calculate watermark level
2183 * @clock_in_khz: pixel clock
2184 * @wm: chip FIFO params
2185 * @pixel_size: display pixel size
2186 * @latency_ns: memory latency for the platform
2187 *
2188 * Calculate the watermark level (the level at which the display plane will
2189 * start fetching from memory again). Each chip has a different display
2190 * FIFO size and allocation, so the caller needs to figure that out and pass
2191 * in the correct intel_watermark_params structure.
2192 *
2193 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2194 * on the pixel size. When it reaches the watermark level, it'll start
2195 * fetching FIFO line sized based chunks from memory until the FIFO fills
2196 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2197 * will occur, and a display engine hang could result.
2198 */
2199 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2200 struct intel_watermark_params *wm,
2201 int pixel_size,
2202 unsigned long latency_ns)
2203 {
2204 long entries_required, wm_size;
2205
2206 /*
2207 * Note: we need to make sure we don't overflow for various clock &
2208 * latency values.
2209 * clocks go from a few thousand to several hundred thousand.
2210 * latency is usually a few thousand
2211 */
2212 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2213 1000;
2214 entries_required /= wm->cacheline_size;
2215
2216 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2217
2218 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2219
2220 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2221
2222 /* Don't promote wm_size to unsigned... */
2223 if (wm_size > (long)wm->max_wm)
2224 wm_size = wm->max_wm;
2225 if (wm_size <= 0)
2226 wm_size = wm->default_wm;
2227 return wm_size;
2228 }
2229
2230 struct cxsr_latency {
2231 int is_desktop;
2232 unsigned long fsb_freq;
2233 unsigned long mem_freq;
2234 unsigned long display_sr;
2235 unsigned long display_hpll_disable;
2236 unsigned long cursor_sr;
2237 unsigned long cursor_hpll_disable;
2238 };
2239
2240 static struct cxsr_latency cxsr_latency_table[] = {
2241 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2242 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2243 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2244
2245 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2246 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2247 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2248
2249 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2250 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2251 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2252
2253 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2254 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2255 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2256
2257 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2258 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2259 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2260
2261 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2262 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2263 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2264 };
2265
2266 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2267 int mem)
2268 {
2269 int i;
2270 struct cxsr_latency *latency;
2271
2272 if (fsb == 0 || mem == 0)
2273 return NULL;
2274
2275 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2276 latency = &cxsr_latency_table[i];
2277 if (is_desktop == latency->is_desktop &&
2278 fsb == latency->fsb_freq && mem == latency->mem_freq)
2279 return latency;
2280 }
2281
2282 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2283
2284 return NULL;
2285 }
2286
2287 static void igd_disable_cxsr(struct drm_device *dev)
2288 {
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 u32 reg;
2291
2292 /* deactivate cxsr */
2293 reg = I915_READ(DSPFW3);
2294 reg &= ~(IGD_SELF_REFRESH_EN);
2295 I915_WRITE(DSPFW3, reg);
2296 DRM_INFO("Big FIFO is disabled\n");
2297 }
2298
2299 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2300 int pixel_size)
2301 {
2302 struct drm_i915_private *dev_priv = dev->dev_private;
2303 u32 reg;
2304 unsigned long wm;
2305 struct cxsr_latency *latency;
2306
2307 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2308 dev_priv->mem_freq);
2309 if (!latency) {
2310 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2311 igd_disable_cxsr(dev);
2312 return;
2313 }
2314
2315 /* Display SR */
2316 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2317 latency->display_sr);
2318 reg = I915_READ(DSPFW1);
2319 reg &= 0x7fffff;
2320 reg |= wm << 23;
2321 I915_WRITE(DSPFW1, reg);
2322 DRM_DEBUG("DSPFW1 register is %x\n", reg);
2323
2324 /* cursor SR */
2325 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2326 latency->cursor_sr);
2327 reg = I915_READ(DSPFW3);
2328 reg &= ~(0x3f << 24);
2329 reg |= (wm & 0x3f) << 24;
2330 I915_WRITE(DSPFW3, reg);
2331
2332 /* Display HPLL off SR */
2333 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2334 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2335 reg = I915_READ(DSPFW3);
2336 reg &= 0xfffffe00;
2337 reg |= wm & 0x1ff;
2338 I915_WRITE(DSPFW3, reg);
2339
2340 /* cursor HPLL off SR */
2341 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2342 latency->cursor_hpll_disable);
2343 reg = I915_READ(DSPFW3);
2344 reg &= ~(0x3f << 16);
2345 reg |= (wm & 0x3f) << 16;
2346 I915_WRITE(DSPFW3, reg);
2347 DRM_DEBUG("DSPFW3 register is %x\n", reg);
2348
2349 /* activate cxsr */
2350 reg = I915_READ(DSPFW3);
2351 reg |= IGD_SELF_REFRESH_EN;
2352 I915_WRITE(DSPFW3, reg);
2353
2354 DRM_INFO("Big FIFO is enabled\n");
2355
2356 return;
2357 }
2358
2359 /*
2360 * Latency for FIFO fetches is dependent on several factors:
2361 * - memory configuration (speed, channels)
2362 * - chipset
2363 * - current MCH state
2364 * It can be fairly high in some situations, so here we assume a fairly
2365 * pessimal value. It's a tradeoff between extra memory fetches (if we
2366 * set this value too high, the FIFO will fetch frequently to stay full)
2367 * and power consumption (set it too low to save power and we might see
2368 * FIFO underruns and display "flicker").
2369 *
2370 * A value of 5us seems to be a good balance; safe for very low end
2371 * platforms but not overly aggressive on lower latency configs.
2372 */
2373 const static int latency_ns = 5000;
2374
2375 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2376 {
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378 uint32_t dsparb = I915_READ(DSPARB);
2379 int size;
2380
2381 if (plane == 0)
2382 size = dsparb & 0x7f;
2383 else
2384 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2385 (dsparb & 0x7f);
2386
2387 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2388 size);
2389
2390 return size;
2391 }
2392
2393 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2394 {
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396 uint32_t dsparb = I915_READ(DSPARB);
2397 int size;
2398
2399 if (plane == 0)
2400 size = dsparb & 0x1ff;
2401 else
2402 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2403 (dsparb & 0x1ff);
2404 size >>= 1; /* Convert to cachelines */
2405
2406 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2407 size);
2408
2409 return size;
2410 }
2411
2412 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 uint32_t dsparb = I915_READ(DSPARB);
2416 int size;
2417
2418 size = dsparb & 0x7f;
2419 size >>= 2; /* Convert to cachelines */
2420
2421 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2422 size);
2423
2424 return size;
2425 }
2426
2427 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2428 {
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 uint32_t dsparb = I915_READ(DSPARB);
2431 int size;
2432
2433 size = dsparb & 0x7f;
2434 size >>= 1; /* Convert to cachelines */
2435
2436 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2437 size);
2438
2439 return size;
2440 }
2441
2442 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2443 int planeb_clock, int sr_hdisplay, int pixel_size)
2444 {
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446 int total_size, cacheline_size;
2447 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2448 struct intel_watermark_params planea_params, planeb_params;
2449 unsigned long line_time_us;
2450 int sr_clock, sr_entries = 0, entries_required;
2451
2452 /* Create copies of the base settings for each pipe */
2453 planea_params = planeb_params = g4x_wm_info;
2454
2455 /* Grab a couple of global values before we overwrite them */
2456 total_size = planea_params.fifo_size;
2457 cacheline_size = planea_params.cacheline_size;
2458
2459 /*
2460 * Note: we need to make sure we don't overflow for various clock &
2461 * latency values.
2462 * clocks go from a few thousand to several hundred thousand.
2463 * latency is usually a few thousand
2464 */
2465 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2466 1000;
2467 entries_required /= G4X_FIFO_LINE_SIZE;
2468 planea_wm = entries_required + planea_params.guard_size;
2469
2470 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2471 1000;
2472 entries_required /= G4X_FIFO_LINE_SIZE;
2473 planeb_wm = entries_required + planeb_params.guard_size;
2474
2475 cursora_wm = cursorb_wm = 16;
2476 cursor_sr = 32;
2477
2478 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2479
2480 /* Calc sr entries for one plane configs */
2481 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2482 /* self-refresh has much higher latency */
2483 const static int sr_latency_ns = 12000;
2484
2485 sr_clock = planea_clock ? planea_clock : planeb_clock;
2486 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2487
2488 /* Use ns/us then divide to preserve precision */
2489 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2490 pixel_size * sr_hdisplay) / 1000;
2491 sr_entries = roundup(sr_entries / cacheline_size, 1);
2492 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2493 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2494 }
2495
2496 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2497 planea_wm, planeb_wm, sr_entries);
2498
2499 planea_wm &= 0x3f;
2500 planeb_wm &= 0x3f;
2501
2502 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2503 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2504 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2505 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2506 (cursora_wm << DSPFW_CURSORA_SHIFT));
2507 /* HPLL off in SR has some issues on G4x... disable it */
2508 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2509 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2510 }
2511
2512 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2513 int unused3, int unused4)
2514 {
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516
2517 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2518
2519 /* 965 has limitations... */
2520 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2521 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2522 }
2523
2524 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2525 int planeb_clock, int sr_hdisplay, int pixel_size)
2526 {
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528 uint32_t fwater_lo;
2529 uint32_t fwater_hi;
2530 int total_size, cacheline_size, cwm, srwm = 1;
2531 int planea_wm, planeb_wm;
2532 struct intel_watermark_params planea_params, planeb_params;
2533 unsigned long line_time_us;
2534 int sr_clock, sr_entries = 0;
2535
2536 /* Create copies of the base settings for each pipe */
2537 if (IS_I965GM(dev) || IS_I945GM(dev))
2538 planea_params = planeb_params = i945_wm_info;
2539 else if (IS_I9XX(dev))
2540 planea_params = planeb_params = i915_wm_info;
2541 else
2542 planea_params = planeb_params = i855_wm_info;
2543
2544 /* Grab a couple of global values before we overwrite them */
2545 total_size = planea_params.fifo_size;
2546 cacheline_size = planea_params.cacheline_size;
2547
2548 /* Update per-plane FIFO sizes */
2549 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2550 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2551
2552 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2553 pixel_size, latency_ns);
2554 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2555 pixel_size, latency_ns);
2556 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2557
2558 /*
2559 * Overlay gets an aggressive default since video jitter is bad.
2560 */
2561 cwm = 2;
2562
2563 /* Calc sr entries for one plane configs */
2564 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2565 (!planea_clock || !planeb_clock)) {
2566 /* self-refresh has much higher latency */
2567 const static int sr_latency_ns = 6000;
2568
2569 sr_clock = planea_clock ? planea_clock : planeb_clock;
2570 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2571
2572 /* Use ns/us then divide to preserve precision */
2573 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2574 pixel_size * sr_hdisplay) / 1000;
2575 sr_entries = roundup(sr_entries / cacheline_size, 1);
2576 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2577 srwm = total_size - sr_entries;
2578 if (srwm < 0)
2579 srwm = 1;
2580 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2581 }
2582
2583 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2584 planea_wm, planeb_wm, cwm, srwm);
2585
2586 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2587 fwater_hi = (cwm & 0x1f);
2588
2589 /* Set request length to 8 cachelines per fetch */
2590 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2591 fwater_hi = fwater_hi | (1 << 8);
2592
2593 I915_WRITE(FW_BLC, fwater_lo);
2594 I915_WRITE(FW_BLC2, fwater_hi);
2595 }
2596
2597 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2598 int unused2, int pixel_size)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2602 int planea_wm;
2603
2604 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2605
2606 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2607 pixel_size, latency_ns);
2608 fwater_lo |= (3<<8) | planea_wm;
2609
2610 DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2611
2612 I915_WRITE(FW_BLC, fwater_lo);
2613 }
2614
2615 /**
2616 * intel_update_watermarks - update FIFO watermark values based on current modes
2617 *
2618 * Calculate watermark values for the various WM regs based on current mode
2619 * and plane configuration.
2620 *
2621 * There are several cases to deal with here:
2622 * - normal (i.e. non-self-refresh)
2623 * - self-refresh (SR) mode
2624 * - lines are large relative to FIFO size (buffer can hold up to 2)
2625 * - lines are small relative to FIFO size (buffer can hold more than 2
2626 * lines), so need to account for TLB latency
2627 *
2628 * The normal calculation is:
2629 * watermark = dotclock * bytes per pixel * latency
2630 * where latency is platform & configuration dependent (we assume pessimal
2631 * values here).
2632 *
2633 * The SR calculation is:
2634 * watermark = (trunc(latency/line time)+1) * surface width *
2635 * bytes per pixel
2636 * where
2637 * line time = htotal / dotclock
2638 * and latency is assumed to be high, as above.
2639 *
2640 * The final value programmed to the register should always be rounded up,
2641 * and include an extra 2 entries to account for clock crossings.
2642 *
2643 * We don't use the sprite, so we can ignore that. And on Crestline we have
2644 * to set the non-SR watermarks to 8.
2645 */
2646 static void intel_update_watermarks(struct drm_device *dev)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct drm_crtc *crtc;
2650 struct intel_crtc *intel_crtc;
2651 int sr_hdisplay = 0;
2652 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2653 int enabled = 0, pixel_size = 0;
2654
2655 if (!dev_priv->display.update_wm)
2656 return;
2657
2658 /* Get the clock config from both planes */
2659 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2660 intel_crtc = to_intel_crtc(crtc);
2661 if (crtc->enabled) {
2662 enabled++;
2663 if (intel_crtc->plane == 0) {
2664 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2665 intel_crtc->pipe, crtc->mode.clock);
2666 planea_clock = crtc->mode.clock;
2667 } else {
2668 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2669 intel_crtc->pipe, crtc->mode.clock);
2670 planeb_clock = crtc->mode.clock;
2671 }
2672 sr_hdisplay = crtc->mode.hdisplay;
2673 sr_clock = crtc->mode.clock;
2674 if (crtc->fb)
2675 pixel_size = crtc->fb->bits_per_pixel / 8;
2676 else
2677 pixel_size = 4; /* by default */
2678 }
2679 }
2680
2681 if (enabled <= 0)
2682 return;
2683
2684 /* Single plane configs can enable self refresh */
2685 if (enabled == 1 && IS_IGD(dev))
2686 igd_enable_cxsr(dev, sr_clock, pixel_size);
2687 else if (IS_IGD(dev))
2688 igd_disable_cxsr(dev);
2689
2690 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2691 sr_hdisplay, pixel_size);
2692 }
2693
2694 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2695 struct drm_display_mode *mode,
2696 struct drm_display_mode *adjusted_mode,
2697 int x, int y,
2698 struct drm_framebuffer *old_fb)
2699 {
2700 struct drm_device *dev = crtc->dev;
2701 struct drm_i915_private *dev_priv = dev->dev_private;
2702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703 int pipe = intel_crtc->pipe;
2704 int plane = intel_crtc->plane;
2705 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2706 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2707 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2708 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2709 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2710 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2711 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2712 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2713 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2714 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2715 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2716 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2717 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2718 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2719 int refclk, num_outputs = 0;
2720 intel_clock_t clock, reduced_clock;
2721 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2722 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2723 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2724 bool is_edp = false;
2725 struct drm_mode_config *mode_config = &dev->mode_config;
2726 struct drm_connector *connector;
2727 const intel_limit_t *limit;
2728 int ret;
2729 struct fdi_m_n m_n = {0};
2730 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2731 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2732 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2733 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2734 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2735 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2736 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2737 int lvds_reg = LVDS;
2738 u32 temp;
2739 int sdvo_pixel_multiply;
2740 int target_clock;
2741
2742 drm_vblank_pre_modeset(dev, pipe);
2743
2744 list_for_each_entry(connector, &mode_config->connector_list, head) {
2745 struct intel_output *intel_output = to_intel_output(connector);
2746
2747 if (!connector->encoder || connector->encoder->crtc != crtc)
2748 continue;
2749
2750 switch (intel_output->type) {
2751 case INTEL_OUTPUT_LVDS:
2752 is_lvds = true;
2753 break;
2754 case INTEL_OUTPUT_SDVO:
2755 case INTEL_OUTPUT_HDMI:
2756 is_sdvo = true;
2757 if (intel_output->needs_tv_clock)
2758 is_tv = true;
2759 break;
2760 case INTEL_OUTPUT_DVO:
2761 is_dvo = true;
2762 break;
2763 case INTEL_OUTPUT_TVOUT:
2764 is_tv = true;
2765 break;
2766 case INTEL_OUTPUT_ANALOG:
2767 is_crt = true;
2768 break;
2769 case INTEL_OUTPUT_DISPLAYPORT:
2770 is_dp = true;
2771 break;
2772 case INTEL_OUTPUT_EDP:
2773 is_edp = true;
2774 break;
2775 }
2776
2777 num_outputs++;
2778 }
2779
2780 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2781 refclk = dev_priv->lvds_ssc_freq * 1000;
2782 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2783 } else if (IS_I9XX(dev)) {
2784 refclk = 96000;
2785 if (IS_IGDNG(dev))
2786 refclk = 120000; /* 120Mhz refclk */
2787 } else {
2788 refclk = 48000;
2789 }
2790
2791
2792 /*
2793 * Returns a set of divisors for the desired target clock with the given
2794 * refclk, or FALSE. The returned values represent the clock equation:
2795 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2796 */
2797 limit = intel_limit(crtc);
2798 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2799 if (!ok) {
2800 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2801 drm_vblank_post_modeset(dev, pipe);
2802 return -EINVAL;
2803 }
2804
2805 if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2806 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2807 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2808 (adjusted_mode->clock*3/4),
2809 refclk,
2810 &reduced_clock);
2811 }
2812
2813 /* SDVO TV has fixed PLL values depend on its clock range,
2814 this mirrors vbios setting. */
2815 if (is_sdvo && is_tv) {
2816 if (adjusted_mode->clock >= 100000
2817 && adjusted_mode->clock < 140500) {
2818 clock.p1 = 2;
2819 clock.p2 = 10;
2820 clock.n = 3;
2821 clock.m1 = 16;
2822 clock.m2 = 8;
2823 } else if (adjusted_mode->clock >= 140500
2824 && adjusted_mode->clock <= 200000) {
2825 clock.p1 = 1;
2826 clock.p2 = 10;
2827 clock.n = 6;
2828 clock.m1 = 12;
2829 clock.m2 = 8;
2830 }
2831 }
2832
2833 /* FDI link */
2834 if (IS_IGDNG(dev)) {
2835 int lane, link_bw, bpp;
2836 /* eDP doesn't require FDI link, so just set DP M/N
2837 according to current link config */
2838 if (is_edp) {
2839 struct drm_connector *edp;
2840 target_clock = mode->clock;
2841 edp = intel_pipe_get_output(crtc);
2842 intel_edp_link_config(to_intel_output(edp),
2843 &lane, &link_bw);
2844 } else {
2845 /* DP over FDI requires target mode clock
2846 instead of link clock */
2847 if (is_dp)
2848 target_clock = mode->clock;
2849 else
2850 target_clock = adjusted_mode->clock;
2851 lane = 4;
2852 link_bw = 270000;
2853 }
2854
2855 /* determine panel color depth */
2856 temp = I915_READ(pipeconf_reg);
2857
2858 switch (temp & PIPE_BPC_MASK) {
2859 case PIPE_8BPC:
2860 bpp = 24;
2861 break;
2862 case PIPE_10BPC:
2863 bpp = 30;
2864 break;
2865 case PIPE_6BPC:
2866 bpp = 18;
2867 break;
2868 case PIPE_12BPC:
2869 bpp = 36;
2870 break;
2871 default:
2872 DRM_ERROR("unknown pipe bpc value\n");
2873 bpp = 24;
2874 }
2875
2876 igdng_compute_m_n(bpp, lane, target_clock,
2877 link_bw, &m_n);
2878 }
2879
2880 /* Ironlake: try to setup display ref clock before DPLL
2881 * enabling. This is only under driver's control after
2882 * PCH B stepping, previous chipset stepping should be
2883 * ignoring this setting.
2884 */
2885 if (IS_IGDNG(dev)) {
2886 temp = I915_READ(PCH_DREF_CONTROL);
2887 /* Always enable nonspread source */
2888 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2889 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2890 I915_WRITE(PCH_DREF_CONTROL, temp);
2891 POSTING_READ(PCH_DREF_CONTROL);
2892
2893 temp &= ~DREF_SSC_SOURCE_MASK;
2894 temp |= DREF_SSC_SOURCE_ENABLE;
2895 I915_WRITE(PCH_DREF_CONTROL, temp);
2896 POSTING_READ(PCH_DREF_CONTROL);
2897
2898 udelay(200);
2899
2900 if (is_edp) {
2901 if (dev_priv->lvds_use_ssc) {
2902 temp |= DREF_SSC1_ENABLE;
2903 I915_WRITE(PCH_DREF_CONTROL, temp);
2904 POSTING_READ(PCH_DREF_CONTROL);
2905
2906 udelay(200);
2907
2908 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2909 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2910 I915_WRITE(PCH_DREF_CONTROL, temp);
2911 POSTING_READ(PCH_DREF_CONTROL);
2912 } else {
2913 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2914 I915_WRITE(PCH_DREF_CONTROL, temp);
2915 POSTING_READ(PCH_DREF_CONTROL);
2916 }
2917 }
2918 }
2919
2920 if (IS_IGD(dev)) {
2921 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2922 if (has_reduced_clock)
2923 fp2 = (1 << reduced_clock.n) << 16 |
2924 reduced_clock.m1 << 8 | reduced_clock.m2;
2925 } else {
2926 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2927 if (has_reduced_clock)
2928 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2929 reduced_clock.m2;
2930 }
2931
2932 if (!IS_IGDNG(dev))
2933 dpll = DPLL_VGA_MODE_DIS;
2934
2935 if (IS_I9XX(dev)) {
2936 if (is_lvds)
2937 dpll |= DPLLB_MODE_LVDS;
2938 else
2939 dpll |= DPLLB_MODE_DAC_SERIAL;
2940 if (is_sdvo) {
2941 dpll |= DPLL_DVO_HIGH_SPEED;
2942 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2943 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2944 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2945 else if (IS_IGDNG(dev))
2946 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2947 }
2948 if (is_dp)
2949 dpll |= DPLL_DVO_HIGH_SPEED;
2950
2951 /* compute bitmask from p1 value */
2952 if (IS_IGD(dev))
2953 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2954 else {
2955 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2956 /* also FPA1 */
2957 if (IS_IGDNG(dev))
2958 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2959 if (IS_G4X(dev) && has_reduced_clock)
2960 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2961 }
2962 switch (clock.p2) {
2963 case 5:
2964 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2965 break;
2966 case 7:
2967 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2968 break;
2969 case 10:
2970 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2971 break;
2972 case 14:
2973 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2974 break;
2975 }
2976 if (IS_I965G(dev) && !IS_IGDNG(dev))
2977 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2978 } else {
2979 if (is_lvds) {
2980 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2981 } else {
2982 if (clock.p1 == 2)
2983 dpll |= PLL_P1_DIVIDE_BY_TWO;
2984 else
2985 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2986 if (clock.p2 == 4)
2987 dpll |= PLL_P2_DIVIDE_BY_4;
2988 }
2989 }
2990
2991 if (is_sdvo && is_tv)
2992 dpll |= PLL_REF_INPUT_TVCLKINBC;
2993 else if (is_tv)
2994 /* XXX: just matching BIOS for now */
2995 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
2996 dpll |= 3;
2997 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2998 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2999 else
3000 dpll |= PLL_REF_INPUT_DREFCLK;
3001
3002 /* setup pipeconf */
3003 pipeconf = I915_READ(pipeconf_reg);
3004
3005 /* Set up the display plane register */
3006 dspcntr = DISPPLANE_GAMMA_ENABLE;
3007
3008 /* IGDNG's plane is forced to pipe, bit 24 is to
3009 enable color space conversion */
3010 if (!IS_IGDNG(dev)) {
3011 if (pipe == 0)
3012 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3013 else
3014 dspcntr |= DISPPLANE_SEL_PIPE_B;
3015 }
3016
3017 if (pipe == 0 && !IS_I965G(dev)) {
3018 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3019 * core speed.
3020 *
3021 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3022 * pipe == 0 check?
3023 */
3024 if (mode->clock >
3025 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3026 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3027 else
3028 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3029 }
3030
3031 dspcntr |= DISPLAY_PLANE_ENABLE;
3032 pipeconf |= PIPEACONF_ENABLE;
3033 dpll |= DPLL_VCO_ENABLE;
3034
3035
3036 /* Disable the panel fitter if it was on our pipe */
3037 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3038 I915_WRITE(PFIT_CONTROL, 0);
3039
3040 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3041 drm_mode_debug_printmodeline(mode);
3042
3043 /* assign to IGDNG registers */
3044 if (IS_IGDNG(dev)) {
3045 fp_reg = pch_fp_reg;
3046 dpll_reg = pch_dpll_reg;
3047 }
3048
3049 if (is_edp) {
3050 igdng_disable_pll_edp(crtc);
3051 } else if ((dpll & DPLL_VCO_ENABLE)) {
3052 I915_WRITE(fp_reg, fp);
3053 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3054 I915_READ(dpll_reg);
3055 udelay(150);
3056 }
3057
3058 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3059 * This is an exception to the general rule that mode_set doesn't turn
3060 * things on.
3061 */
3062 if (is_lvds) {
3063 u32 lvds;
3064
3065 if (IS_IGDNG(dev))
3066 lvds_reg = PCH_LVDS;
3067
3068 lvds = I915_READ(lvds_reg);
3069 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3070 /* set the corresponsding LVDS_BORDER bit */
3071 lvds |= dev_priv->lvds_border_bits;
3072 /* Set the B0-B3 data pairs corresponding to whether we're going to
3073 * set the DPLLs for dual-channel mode or not.
3074 */
3075 if (clock.p2 == 7)
3076 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3077 else
3078 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3079
3080 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3081 * appropriately here, but we need to look more thoroughly into how
3082 * panels behave in the two modes.
3083 */
3084
3085 I915_WRITE(lvds_reg, lvds);
3086 I915_READ(lvds_reg);
3087 }
3088 if (is_dp)
3089 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3090
3091 if (!is_edp) {
3092 I915_WRITE(fp_reg, fp);
3093 I915_WRITE(dpll_reg, dpll);
3094 I915_READ(dpll_reg);
3095 /* Wait for the clocks to stabilize. */
3096 udelay(150);
3097
3098 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3099 if (is_sdvo) {
3100 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3101 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3102 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3103 } else
3104 I915_WRITE(dpll_md_reg, 0);
3105 } else {
3106 /* write it again -- the BIOS does, after all */
3107 I915_WRITE(dpll_reg, dpll);
3108 }
3109 I915_READ(dpll_reg);
3110 /* Wait for the clocks to stabilize. */
3111 udelay(150);
3112 }
3113
3114 if (is_lvds && has_reduced_clock && i915_powersave) {
3115 I915_WRITE(fp_reg + 4, fp2);
3116 intel_crtc->lowfreq_avail = true;
3117 if (HAS_PIPE_CXSR(dev)) {
3118 DRM_DEBUG("enabling CxSR downclocking\n");
3119 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3120 }
3121 } else {
3122 I915_WRITE(fp_reg + 4, fp);
3123 intel_crtc->lowfreq_avail = false;
3124 if (HAS_PIPE_CXSR(dev)) {
3125 DRM_DEBUG("disabling CxSR downclocking\n");
3126 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3127 }
3128 }
3129
3130 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3131 ((adjusted_mode->crtc_htotal - 1) << 16));
3132 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3133 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3134 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3135 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3136 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3137 ((adjusted_mode->crtc_vtotal - 1) << 16));
3138 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3139 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3140 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3141 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3142 /* pipesrc and dspsize control the size that is scaled from, which should
3143 * always be the user's requested size.
3144 */
3145 if (!IS_IGDNG(dev)) {
3146 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3147 (mode->hdisplay - 1));
3148 I915_WRITE(dsppos_reg, 0);
3149 }
3150 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3151
3152 if (IS_IGDNG(dev)) {
3153 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3154 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3155 I915_WRITE(link_m1_reg, m_n.link_m);
3156 I915_WRITE(link_n1_reg, m_n.link_n);
3157
3158 if (is_edp) {
3159 igdng_set_pll_edp(crtc, adjusted_mode->clock);
3160 } else {
3161 /* enable FDI RX PLL too */
3162 temp = I915_READ(fdi_rx_reg);
3163 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3164 udelay(200);
3165 }
3166 }
3167
3168 I915_WRITE(pipeconf_reg, pipeconf);
3169 I915_READ(pipeconf_reg);
3170
3171 intel_wait_for_vblank(dev);
3172
3173 if (IS_IGDNG(dev)) {
3174 /* enable address swizzle for tiling buffer */
3175 temp = I915_READ(DISP_ARB_CTL);
3176 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3177 }
3178
3179 I915_WRITE(dspcntr_reg, dspcntr);
3180
3181 /* Flush the plane changes */
3182 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3183
3184 if ((IS_I965G(dev) || plane == 0))
3185 intel_update_fbc(crtc, &crtc->mode);
3186
3187 intel_update_watermarks(dev);
3188
3189 drm_vblank_post_modeset(dev, pipe);
3190
3191 return ret;
3192 }
3193
3194 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3195 void intel_crtc_load_lut(struct drm_crtc *crtc)
3196 {
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3201 int i;
3202
3203 /* The clocks have to be on to load the palette. */
3204 if (!crtc->enabled)
3205 return;
3206
3207 /* use legacy palette for IGDNG */
3208 if (IS_IGDNG(dev))
3209 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3210 LGC_PALETTE_B;
3211
3212 for (i = 0; i < 256; i++) {
3213 I915_WRITE(palreg + 4 * i,
3214 (intel_crtc->lut_r[i] << 16) |
3215 (intel_crtc->lut_g[i] << 8) |
3216 intel_crtc->lut_b[i]);
3217 }
3218 }
3219
3220 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3221 struct drm_file *file_priv,
3222 uint32_t handle,
3223 uint32_t width, uint32_t height)
3224 {
3225 struct drm_device *dev = crtc->dev;
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3228 struct drm_gem_object *bo;
3229 struct drm_i915_gem_object *obj_priv;
3230 int pipe = intel_crtc->pipe;
3231 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3232 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3233 uint32_t temp = I915_READ(control);
3234 size_t addr;
3235 int ret;
3236
3237 DRM_DEBUG("\n");
3238
3239 /* if we want to turn off the cursor ignore width and height */
3240 if (!handle) {
3241 DRM_DEBUG("cursor off\n");
3242 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3243 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3244 temp |= CURSOR_MODE_DISABLE;
3245 } else {
3246 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3247 }
3248 addr = 0;
3249 bo = NULL;
3250 mutex_lock(&dev->struct_mutex);
3251 goto finish;
3252 }
3253
3254 /* Currently we only support 64x64 cursors */
3255 if (width != 64 || height != 64) {
3256 DRM_ERROR("we currently only support 64x64 cursors\n");
3257 return -EINVAL;
3258 }
3259
3260 bo = drm_gem_object_lookup(dev, file_priv, handle);
3261 if (!bo)
3262 return -ENOENT;
3263
3264 obj_priv = bo->driver_private;
3265
3266 if (bo->size < width * height * 4) {
3267 DRM_ERROR("buffer is to small\n");
3268 ret = -ENOMEM;
3269 goto fail;
3270 }
3271
3272 /* we only need to pin inside GTT if cursor is non-phy */
3273 mutex_lock(&dev->struct_mutex);
3274 if (!dev_priv->cursor_needs_physical) {
3275 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3276 if (ret) {
3277 DRM_ERROR("failed to pin cursor bo\n");
3278 goto fail_locked;
3279 }
3280 addr = obj_priv->gtt_offset;
3281 } else {
3282 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3283 if (ret) {
3284 DRM_ERROR("failed to attach phys object\n");
3285 goto fail_locked;
3286 }
3287 addr = obj_priv->phys_obj->handle->busaddr;
3288 }
3289
3290 if (!IS_I9XX(dev))
3291 I915_WRITE(CURSIZE, (height << 12) | width);
3292
3293 /* Hooray for CUR*CNTR differences */
3294 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3295 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3296 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3297 temp |= (pipe << 28); /* Connect to correct pipe */
3298 } else {
3299 temp &= ~(CURSOR_FORMAT_MASK);
3300 temp |= CURSOR_ENABLE;
3301 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3302 }
3303
3304 finish:
3305 I915_WRITE(control, temp);
3306 I915_WRITE(base, addr);
3307
3308 if (intel_crtc->cursor_bo) {
3309 if (dev_priv->cursor_needs_physical) {
3310 if (intel_crtc->cursor_bo != bo)
3311 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3312 } else
3313 i915_gem_object_unpin(intel_crtc->cursor_bo);
3314 drm_gem_object_unreference(intel_crtc->cursor_bo);
3315 }
3316
3317 mutex_unlock(&dev->struct_mutex);
3318
3319 intel_crtc->cursor_addr = addr;
3320 intel_crtc->cursor_bo = bo;
3321
3322 return 0;
3323 fail:
3324 mutex_lock(&dev->struct_mutex);
3325 fail_locked:
3326 drm_gem_object_unreference(bo);
3327 mutex_unlock(&dev->struct_mutex);
3328 return ret;
3329 }
3330
3331 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3332 {
3333 struct drm_device *dev = crtc->dev;
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336 struct intel_framebuffer *intel_fb;
3337 int pipe = intel_crtc->pipe;
3338 uint32_t temp = 0;
3339 uint32_t adder;
3340
3341 if (crtc->fb) {
3342 intel_fb = to_intel_framebuffer(crtc->fb);
3343 intel_mark_busy(dev, intel_fb->obj);
3344 }
3345
3346 if (x < 0) {
3347 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3348 x = -x;
3349 }
3350 if (y < 0) {
3351 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3352 y = -y;
3353 }
3354
3355 temp |= x << CURSOR_X_SHIFT;
3356 temp |= y << CURSOR_Y_SHIFT;
3357
3358 adder = intel_crtc->cursor_addr;
3359 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3360 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3361
3362 return 0;
3363 }
3364
3365 /** Sets the color ramps on behalf of RandR */
3366 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3367 u16 blue, int regno)
3368 {
3369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3370
3371 intel_crtc->lut_r[regno] = red >> 8;
3372 intel_crtc->lut_g[regno] = green >> 8;
3373 intel_crtc->lut_b[regno] = blue >> 8;
3374 }
3375
3376 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3377 u16 *blue, int regno)
3378 {
3379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3380
3381 *red = intel_crtc->lut_r[regno] << 8;
3382 *green = intel_crtc->lut_g[regno] << 8;
3383 *blue = intel_crtc->lut_b[regno] << 8;
3384 }
3385
3386 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3387 u16 *blue, uint32_t size)
3388 {
3389 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3390 int i;
3391
3392 if (size != 256)
3393 return;
3394
3395 for (i = 0; i < 256; i++) {
3396 intel_crtc->lut_r[i] = red[i] >> 8;
3397 intel_crtc->lut_g[i] = green[i] >> 8;
3398 intel_crtc->lut_b[i] = blue[i] >> 8;
3399 }
3400
3401 intel_crtc_load_lut(crtc);
3402 }
3403
3404 /**
3405 * Get a pipe with a simple mode set on it for doing load-based monitor
3406 * detection.
3407 *
3408 * It will be up to the load-detect code to adjust the pipe as appropriate for
3409 * its requirements. The pipe will be connected to no other outputs.
3410 *
3411 * Currently this code will only succeed if there is a pipe with no outputs
3412 * configured for it. In the future, it could choose to temporarily disable
3413 * some outputs to free up a pipe for its use.
3414 *
3415 * \return crtc, or NULL if no pipes are available.
3416 */
3417
3418 /* VESA 640x480x72Hz mode to set on the pipe */
3419 static struct drm_display_mode load_detect_mode = {
3420 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3421 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3422 };
3423
3424 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3425 struct drm_display_mode *mode,
3426 int *dpms_mode)
3427 {
3428 struct intel_crtc *intel_crtc;
3429 struct drm_crtc *possible_crtc;
3430 struct drm_crtc *supported_crtc =NULL;
3431 struct drm_encoder *encoder = &intel_output->enc;
3432 struct drm_crtc *crtc = NULL;
3433 struct drm_device *dev = encoder->dev;
3434 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3435 struct drm_crtc_helper_funcs *crtc_funcs;
3436 int i = -1;
3437
3438 /*
3439 * Algorithm gets a little messy:
3440 * - if the connector already has an assigned crtc, use it (but make
3441 * sure it's on first)
3442 * - try to find the first unused crtc that can drive this connector,
3443 * and use that if we find one
3444 * - if there are no unused crtcs available, try to use the first
3445 * one we found that supports the connector
3446 */
3447
3448 /* See if we already have a CRTC for this connector */
3449 if (encoder->crtc) {
3450 crtc = encoder->crtc;
3451 /* Make sure the crtc and connector are running */
3452 intel_crtc = to_intel_crtc(crtc);
3453 *dpms_mode = intel_crtc->dpms_mode;
3454 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3455 crtc_funcs = crtc->helper_private;
3456 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3457 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3458 }
3459 return crtc;
3460 }
3461
3462 /* Find an unused one (if possible) */
3463 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3464 i++;
3465 if (!(encoder->possible_crtcs & (1 << i)))
3466 continue;
3467 if (!possible_crtc->enabled) {
3468 crtc = possible_crtc;
3469 break;
3470 }
3471 if (!supported_crtc)
3472 supported_crtc = possible_crtc;
3473 }
3474
3475 /*
3476 * If we didn't find an unused CRTC, don't use any.
3477 */
3478 if (!crtc) {
3479 return NULL;
3480 }
3481
3482 encoder->crtc = crtc;
3483 intel_output->base.encoder = encoder;
3484 intel_output->load_detect_temp = true;
3485
3486 intel_crtc = to_intel_crtc(crtc);
3487 *dpms_mode = intel_crtc->dpms_mode;
3488
3489 if (!crtc->enabled) {
3490 if (!mode)
3491 mode = &load_detect_mode;
3492 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3493 } else {
3494 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3495 crtc_funcs = crtc->helper_private;
3496 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3497 }
3498
3499 /* Add this connector to the crtc */
3500 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3501 encoder_funcs->commit(encoder);
3502 }
3503 /* let the connector get through one full cycle before testing */
3504 intel_wait_for_vblank(dev);
3505
3506 return crtc;
3507 }
3508
3509 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3510 {
3511 struct drm_encoder *encoder = &intel_output->enc;
3512 struct drm_device *dev = encoder->dev;
3513 struct drm_crtc *crtc = encoder->crtc;
3514 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3515 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3516
3517 if (intel_output->load_detect_temp) {
3518 encoder->crtc = NULL;
3519 intel_output->base.encoder = NULL;
3520 intel_output->load_detect_temp = false;
3521 crtc->enabled = drm_helper_crtc_in_use(crtc);
3522 drm_helper_disable_unused_functions(dev);
3523 }
3524
3525 /* Switch crtc and output back off if necessary */
3526 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3527 if (encoder->crtc == crtc)
3528 encoder_funcs->dpms(encoder, dpms_mode);
3529 crtc_funcs->dpms(crtc, dpms_mode);
3530 }
3531 }
3532
3533 /* Returns the clock of the currently programmed mode of the given pipe. */
3534 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3535 {
3536 struct drm_i915_private *dev_priv = dev->dev_private;
3537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3538 int pipe = intel_crtc->pipe;
3539 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3540 u32 fp;
3541 intel_clock_t clock;
3542
3543 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3544 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3545 else
3546 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3547
3548 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3549 if (IS_IGD(dev)) {
3550 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3551 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3552 } else {
3553 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3554 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3555 }
3556
3557 if (IS_I9XX(dev)) {
3558 if (IS_IGD(dev))
3559 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3560 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3561 else
3562 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3563 DPLL_FPA01_P1_POST_DIV_SHIFT);
3564
3565 switch (dpll & DPLL_MODE_MASK) {
3566 case DPLLB_MODE_DAC_SERIAL:
3567 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3568 5 : 10;
3569 break;
3570 case DPLLB_MODE_LVDS:
3571 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3572 7 : 14;
3573 break;
3574 default:
3575 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3576 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3577 return 0;
3578 }
3579
3580 /* XXX: Handle the 100Mhz refclk */
3581 intel_clock(dev, 96000, &clock);
3582 } else {
3583 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3584
3585 if (is_lvds) {
3586 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3587 DPLL_FPA01_P1_POST_DIV_SHIFT);
3588 clock.p2 = 14;
3589
3590 if ((dpll & PLL_REF_INPUT_MASK) ==
3591 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3592 /* XXX: might not be 66MHz */
3593 intel_clock(dev, 66000, &clock);
3594 } else
3595 intel_clock(dev, 48000, &clock);
3596 } else {
3597 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3598 clock.p1 = 2;
3599 else {
3600 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3601 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3602 }
3603 if (dpll & PLL_P2_DIVIDE_BY_4)
3604 clock.p2 = 4;
3605 else
3606 clock.p2 = 2;
3607
3608 intel_clock(dev, 48000, &clock);
3609 }
3610 }
3611
3612 /* XXX: It would be nice to validate the clocks, but we can't reuse
3613 * i830PllIsValid() because it relies on the xf86_config connector
3614 * configuration being accurate, which it isn't necessarily.
3615 */
3616
3617 return clock.dot;
3618 }
3619
3620 /** Returns the currently programmed mode of the given pipe. */
3621 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3622 struct drm_crtc *crtc)
3623 {
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626 int pipe = intel_crtc->pipe;
3627 struct drm_display_mode *mode;
3628 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3629 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3630 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3631 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3632
3633 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3634 if (!mode)
3635 return NULL;
3636
3637 mode->clock = intel_crtc_clock_get(dev, crtc);
3638 mode->hdisplay = (htot & 0xffff) + 1;
3639 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3640 mode->hsync_start = (hsync & 0xffff) + 1;
3641 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3642 mode->vdisplay = (vtot & 0xffff) + 1;
3643 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3644 mode->vsync_start = (vsync & 0xffff) + 1;
3645 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3646
3647 drm_mode_set_name(mode);
3648 drm_mode_set_crtcinfo(mode, 0);
3649
3650 return mode;
3651 }
3652
3653 #define GPU_IDLE_TIMEOUT 500 /* ms */
3654
3655 /* When this timer fires, we've been idle for awhile */
3656 static void intel_gpu_idle_timer(unsigned long arg)
3657 {
3658 struct drm_device *dev = (struct drm_device *)arg;
3659 drm_i915_private_t *dev_priv = dev->dev_private;
3660
3661 DRM_DEBUG("idle timer fired, downclocking\n");
3662
3663 dev_priv->busy = false;
3664
3665 queue_work(dev_priv->wq, &dev_priv->idle_work);
3666 }
3667
3668 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3669 {
3670 drm_i915_private_t *dev_priv = dev->dev_private;
3671
3672 if (IS_IGDNG(dev))
3673 return;
3674
3675 if (!dev_priv->render_reclock_avail) {
3676 DRM_DEBUG("not reclocking render clock\n");
3677 return;
3678 }
3679
3680 /* Restore render clock frequency to original value */
3681 if (IS_G4X(dev) || IS_I9XX(dev))
3682 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3683 else if (IS_I85X(dev))
3684 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3685 DRM_DEBUG("increasing render clock frequency\n");
3686
3687 /* Schedule downclock */
3688 if (schedule)
3689 mod_timer(&dev_priv->idle_timer, jiffies +
3690 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3691 }
3692
3693 void intel_decrease_renderclock(struct drm_device *dev)
3694 {
3695 drm_i915_private_t *dev_priv = dev->dev_private;
3696
3697 if (IS_IGDNG(dev))
3698 return;
3699
3700 if (!dev_priv->render_reclock_avail) {
3701 DRM_DEBUG("not reclocking render clock\n");
3702 return;
3703 }
3704
3705 if (IS_G4X(dev)) {
3706 u16 gcfgc;
3707
3708 /* Adjust render clock... */
3709 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3710
3711 /* Down to minimum... */
3712 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3713 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3714
3715 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3716 } else if (IS_I965G(dev)) {
3717 u16 gcfgc;
3718
3719 /* Adjust render clock... */
3720 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3721
3722 /* Down to minimum... */
3723 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3724 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3725
3726 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3727 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3728 u16 gcfgc;
3729
3730 /* Adjust render clock... */
3731 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3732
3733 /* Down to minimum... */
3734 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3735 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3736
3737 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3738 } else if (IS_I915G(dev)) {
3739 u16 gcfgc;
3740
3741 /* Adjust render clock... */
3742 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3743
3744 /* Down to minimum... */
3745 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3746 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3747
3748 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3749 } else if (IS_I85X(dev)) {
3750 u16 hpllcc;
3751
3752 /* Adjust render clock... */
3753 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3754
3755 /* Up to maximum... */
3756 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3757 hpllcc |= GC_CLOCK_133_200;
3758
3759 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3760 }
3761 DRM_DEBUG("decreasing render clock frequency\n");
3762 }
3763
3764 /* Note that no increase function is needed for this - increase_renderclock()
3765 * will also rewrite these bits
3766 */
3767 void intel_decrease_displayclock(struct drm_device *dev)
3768 {
3769 if (IS_IGDNG(dev))
3770 return;
3771
3772 if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3773 IS_I915GM(dev)) {
3774 u16 gcfgc;
3775
3776 /* Adjust render clock... */
3777 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3778
3779 /* Down to minimum... */
3780 gcfgc &= ~0xf0;
3781 gcfgc |= 0x80;
3782
3783 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3784 }
3785 }
3786
3787 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3788
3789 static void intel_crtc_idle_timer(unsigned long arg)
3790 {
3791 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3792 struct drm_crtc *crtc = &intel_crtc->base;
3793 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3794
3795 DRM_DEBUG("idle timer fired, downclocking\n");
3796
3797 intel_crtc->busy = false;
3798
3799 queue_work(dev_priv->wq, &dev_priv->idle_work);
3800 }
3801
3802 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3803 {
3804 struct drm_device *dev = crtc->dev;
3805 drm_i915_private_t *dev_priv = dev->dev_private;
3806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807 int pipe = intel_crtc->pipe;
3808 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3809 int dpll = I915_READ(dpll_reg);
3810
3811 if (IS_IGDNG(dev))
3812 return;
3813
3814 if (!dev_priv->lvds_downclock_avail)
3815 return;
3816
3817 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3818 DRM_DEBUG("upclocking LVDS\n");
3819
3820 /* Unlock panel regs */
3821 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3822
3823 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3824 I915_WRITE(dpll_reg, dpll);
3825 dpll = I915_READ(dpll_reg);
3826 intel_wait_for_vblank(dev);
3827 dpll = I915_READ(dpll_reg);
3828 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3829 DRM_DEBUG("failed to upclock LVDS!\n");
3830
3831 /* ...and lock them again */
3832 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3833 }
3834
3835 /* Schedule downclock */
3836 if (schedule)
3837 mod_timer(&intel_crtc->idle_timer, jiffies +
3838 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3839 }
3840
3841 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3842 {
3843 struct drm_device *dev = crtc->dev;
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846 int pipe = intel_crtc->pipe;
3847 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3848 int dpll = I915_READ(dpll_reg);
3849
3850 if (IS_IGDNG(dev))
3851 return;
3852
3853 if (!dev_priv->lvds_downclock_avail)
3854 return;
3855
3856 /*
3857 * Since this is called by a timer, we should never get here in
3858 * the manual case.
3859 */
3860 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3861 DRM_DEBUG("downclocking LVDS\n");
3862
3863 /* Unlock panel regs */
3864 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3865
3866 dpll |= DISPLAY_RATE_SELECT_FPA1;
3867 I915_WRITE(dpll_reg, dpll);
3868 dpll = I915_READ(dpll_reg);
3869 intel_wait_for_vblank(dev);
3870 dpll = I915_READ(dpll_reg);
3871 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3872 DRM_DEBUG("failed to downclock LVDS!\n");
3873
3874 /* ...and lock them again */
3875 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3876 }
3877
3878 }
3879
3880 /**
3881 * intel_idle_update - adjust clocks for idleness
3882 * @work: work struct
3883 *
3884 * Either the GPU or display (or both) went idle. Check the busy status
3885 * here and adjust the CRTC and GPU clocks as necessary.
3886 */
3887 static void intel_idle_update(struct work_struct *work)
3888 {
3889 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3890 idle_work);
3891 struct drm_device *dev = dev_priv->dev;
3892 struct drm_crtc *crtc;
3893 struct intel_crtc *intel_crtc;
3894
3895 if (!i915_powersave)
3896 return;
3897
3898 mutex_lock(&dev->struct_mutex);
3899
3900 /* GPU isn't processing, downclock it. */
3901 if (!dev_priv->busy) {
3902 intel_decrease_renderclock(dev);
3903 intel_decrease_displayclock(dev);
3904 }
3905
3906 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3907 /* Skip inactive CRTCs */
3908 if (!crtc->fb)
3909 continue;
3910
3911 intel_crtc = to_intel_crtc(crtc);
3912 if (!intel_crtc->busy)
3913 intel_decrease_pllclock(crtc);
3914 }
3915
3916 mutex_unlock(&dev->struct_mutex);
3917 }
3918
3919 /**
3920 * intel_mark_busy - mark the GPU and possibly the display busy
3921 * @dev: drm device
3922 * @obj: object we're operating on
3923 *
3924 * Callers can use this function to indicate that the GPU is busy processing
3925 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3926 * buffer), we'll also mark the display as busy, so we know to increase its
3927 * clock frequency.
3928 */
3929 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3930 {
3931 drm_i915_private_t *dev_priv = dev->dev_private;
3932 struct drm_crtc *crtc = NULL;
3933 struct intel_framebuffer *intel_fb;
3934 struct intel_crtc *intel_crtc;
3935
3936 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3937 return;
3938
3939 dev_priv->busy = true;
3940 intel_increase_renderclock(dev, true);
3941
3942 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3943 if (!crtc->fb)
3944 continue;
3945
3946 intel_crtc = to_intel_crtc(crtc);
3947 intel_fb = to_intel_framebuffer(crtc->fb);
3948 if (intel_fb->obj == obj) {
3949 if (!intel_crtc->busy) {
3950 /* Non-busy -> busy, upclock */
3951 intel_increase_pllclock(crtc, true);
3952 intel_crtc->busy = true;
3953 } else {
3954 /* Busy -> busy, put off timer */
3955 mod_timer(&intel_crtc->idle_timer, jiffies +
3956 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3957 }
3958 }
3959 }
3960 }
3961
3962 static void intel_crtc_destroy(struct drm_crtc *crtc)
3963 {
3964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3965
3966 drm_crtc_cleanup(crtc);
3967 kfree(intel_crtc);
3968 }
3969
3970 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3971 .dpms = intel_crtc_dpms,
3972 .mode_fixup = intel_crtc_mode_fixup,
3973 .mode_set = intel_crtc_mode_set,
3974 .mode_set_base = intel_pipe_set_base,
3975 .prepare = intel_crtc_prepare,
3976 .commit = intel_crtc_commit,
3977 .load_lut = intel_crtc_load_lut,
3978 };
3979
3980 static const struct drm_crtc_funcs intel_crtc_funcs = {
3981 .cursor_set = intel_crtc_cursor_set,
3982 .cursor_move = intel_crtc_cursor_move,
3983 .gamma_set = intel_crtc_gamma_set,
3984 .set_config = drm_crtc_helper_set_config,
3985 .destroy = intel_crtc_destroy,
3986 };
3987
3988
3989 static void intel_crtc_init(struct drm_device *dev, int pipe)
3990 {
3991 struct intel_crtc *intel_crtc;
3992 int i;
3993
3994 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3995 if (intel_crtc == NULL)
3996 return;
3997
3998 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3999
4000 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4001 intel_crtc->pipe = pipe;
4002 intel_crtc->plane = pipe;
4003 for (i = 0; i < 256; i++) {
4004 intel_crtc->lut_r[i] = i;
4005 intel_crtc->lut_g[i] = i;
4006 intel_crtc->lut_b[i] = i;
4007 }
4008
4009 /* Swap pipes & planes for FBC on pre-965 */
4010 intel_crtc->pipe = pipe;
4011 intel_crtc->plane = pipe;
4012 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4013 DRM_DEBUG("swapping pipes & planes for FBC\n");
4014 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4015 }
4016
4017 intel_crtc->cursor_addr = 0;
4018 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4019 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4020
4021 intel_crtc->busy = false;
4022
4023 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4024 (unsigned long)intel_crtc);
4025 }
4026
4027 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029 {
4030 drm_i915_private_t *dev_priv = dev->dev_private;
4031 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4032 struct drm_mode_object *drmmode_obj;
4033 struct intel_crtc *crtc;
4034
4035 if (!dev_priv) {
4036 DRM_ERROR("called with no initialization\n");
4037 return -EINVAL;
4038 }
4039
4040 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4041 DRM_MODE_OBJECT_CRTC);
4042
4043 if (!drmmode_obj) {
4044 DRM_ERROR("no such CRTC id\n");
4045 return -EINVAL;
4046 }
4047
4048 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4049 pipe_from_crtc_id->pipe = crtc->pipe;
4050
4051 return 0;
4052 }
4053
4054 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4055 {
4056 struct drm_crtc *crtc = NULL;
4057
4058 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4060 if (intel_crtc->pipe == pipe)
4061 break;
4062 }
4063 return crtc;
4064 }
4065
4066 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4067 {
4068 int index_mask = 0;
4069 struct drm_connector *connector;
4070 int entry = 0;
4071
4072 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4073 struct intel_output *intel_output = to_intel_output(connector);
4074 if (type_mask & intel_output->clone_mask)
4075 index_mask |= (1 << entry);
4076 entry++;
4077 }
4078 return index_mask;
4079 }
4080
4081
4082 static void intel_setup_outputs(struct drm_device *dev)
4083 {
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085 struct drm_connector *connector;
4086
4087 intel_crt_init(dev);
4088
4089 /* Set up integrated LVDS */
4090 if (IS_MOBILE(dev) && !IS_I830(dev))
4091 intel_lvds_init(dev);
4092
4093 if (IS_IGDNG(dev)) {
4094 int found;
4095
4096 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4097 intel_dp_init(dev, DP_A);
4098
4099 if (I915_READ(HDMIB) & PORT_DETECTED) {
4100 /* check SDVOB */
4101 /* found = intel_sdvo_init(dev, HDMIB); */
4102 found = 0;
4103 if (!found)
4104 intel_hdmi_init(dev, HDMIB);
4105 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4106 intel_dp_init(dev, PCH_DP_B);
4107 }
4108
4109 if (I915_READ(HDMIC) & PORT_DETECTED)
4110 intel_hdmi_init(dev, HDMIC);
4111
4112 if (I915_READ(HDMID) & PORT_DETECTED)
4113 intel_hdmi_init(dev, HDMID);
4114
4115 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4116 intel_dp_init(dev, PCH_DP_C);
4117
4118 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4119 intel_dp_init(dev, PCH_DP_D);
4120
4121 } else if (IS_I9XX(dev)) {
4122 bool found = false;
4123
4124 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4125 found = intel_sdvo_init(dev, SDVOB);
4126 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4127 intel_hdmi_init(dev, SDVOB);
4128
4129 if (!found && SUPPORTS_INTEGRATED_DP(dev))
4130 intel_dp_init(dev, DP_B);
4131 }
4132
4133 /* Before G4X SDVOC doesn't have its own detect register */
4134
4135 if (I915_READ(SDVOB) & SDVO_DETECTED)
4136 found = intel_sdvo_init(dev, SDVOC);
4137
4138 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4139
4140 if (SUPPORTS_INTEGRATED_HDMI(dev))
4141 intel_hdmi_init(dev, SDVOC);
4142 if (SUPPORTS_INTEGRATED_DP(dev))
4143 intel_dp_init(dev, DP_C);
4144 }
4145
4146 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4147 intel_dp_init(dev, DP_D);
4148 } else
4149 intel_dvo_init(dev);
4150
4151 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4152 intel_tv_init(dev);
4153
4154 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4155 struct intel_output *intel_output = to_intel_output(connector);
4156 struct drm_encoder *encoder = &intel_output->enc;
4157
4158 encoder->possible_crtcs = intel_output->crtc_mask;
4159 encoder->possible_clones = intel_connector_clones(dev,
4160 intel_output->clone_mask);
4161 }
4162 }
4163
4164 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4165 {
4166 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4167 struct drm_device *dev = fb->dev;
4168
4169 if (fb->fbdev)
4170 intelfb_remove(dev, fb);
4171
4172 drm_framebuffer_cleanup(fb);
4173 mutex_lock(&dev->struct_mutex);
4174 drm_gem_object_unreference(intel_fb->obj);
4175 mutex_unlock(&dev->struct_mutex);
4176
4177 kfree(intel_fb);
4178 }
4179
4180 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4181 struct drm_file *file_priv,
4182 unsigned int *handle)
4183 {
4184 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4185 struct drm_gem_object *object = intel_fb->obj;
4186
4187 return drm_gem_handle_create(file_priv, object, handle);
4188 }
4189
4190 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4191 .destroy = intel_user_framebuffer_destroy,
4192 .create_handle = intel_user_framebuffer_create_handle,
4193 };
4194
4195 int intel_framebuffer_create(struct drm_device *dev,
4196 struct drm_mode_fb_cmd *mode_cmd,
4197 struct drm_framebuffer **fb,
4198 struct drm_gem_object *obj)
4199 {
4200 struct intel_framebuffer *intel_fb;
4201 int ret;
4202
4203 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4204 if (!intel_fb)
4205 return -ENOMEM;
4206
4207 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4208 if (ret) {
4209 DRM_ERROR("framebuffer init failed %d\n", ret);
4210 return ret;
4211 }
4212
4213 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4214
4215 intel_fb->obj = obj;
4216
4217 *fb = &intel_fb->base;
4218
4219 return 0;
4220 }
4221
4222
4223 static struct drm_framebuffer *
4224 intel_user_framebuffer_create(struct drm_device *dev,
4225 struct drm_file *filp,
4226 struct drm_mode_fb_cmd *mode_cmd)
4227 {
4228 struct drm_gem_object *obj;
4229 struct drm_framebuffer *fb;
4230 int ret;
4231
4232 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4233 if (!obj)
4234 return NULL;
4235
4236 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4237 if (ret) {
4238 mutex_lock(&dev->struct_mutex);
4239 drm_gem_object_unreference(obj);
4240 mutex_unlock(&dev->struct_mutex);
4241 return NULL;
4242 }
4243
4244 return fb;
4245 }
4246
4247 static const struct drm_mode_config_funcs intel_mode_funcs = {
4248 .fb_create = intel_user_framebuffer_create,
4249 .fb_changed = intelfb_probe,
4250 };
4251
4252 void intel_init_clock_gating(struct drm_device *dev)
4253 {
4254 struct drm_i915_private *dev_priv = dev->dev_private;
4255
4256 /*
4257 * Disable clock gating reported to work incorrectly according to the
4258 * specs, but enable as much else as we can.
4259 */
4260 if (IS_IGDNG(dev)) {
4261 return;
4262 } else if (IS_G4X(dev)) {
4263 uint32_t dspclk_gate;
4264 I915_WRITE(RENCLK_GATE_D1, 0);
4265 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4266 GS_UNIT_CLOCK_GATE_DISABLE |
4267 CL_UNIT_CLOCK_GATE_DISABLE);
4268 I915_WRITE(RAMCLK_GATE_D, 0);
4269 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4270 OVRUNIT_CLOCK_GATE_DISABLE |
4271 OVCUNIT_CLOCK_GATE_DISABLE;
4272 if (IS_GM45(dev))
4273 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4274 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4275 } else if (IS_I965GM(dev)) {
4276 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4277 I915_WRITE(RENCLK_GATE_D2, 0);
4278 I915_WRITE(DSPCLK_GATE_D, 0);
4279 I915_WRITE(RAMCLK_GATE_D, 0);
4280 I915_WRITE16(DEUC, 0);
4281 } else if (IS_I965G(dev)) {
4282 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4283 I965_RCC_CLOCK_GATE_DISABLE |
4284 I965_RCPB_CLOCK_GATE_DISABLE |
4285 I965_ISC_CLOCK_GATE_DISABLE |
4286 I965_FBC_CLOCK_GATE_DISABLE);
4287 I915_WRITE(RENCLK_GATE_D2, 0);
4288 } else if (IS_I9XX(dev)) {
4289 u32 dstate = I915_READ(D_STATE);
4290
4291 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4292 DSTATE_DOT_CLOCK_GATING;
4293 I915_WRITE(D_STATE, dstate);
4294 } else if (IS_I855(dev) || IS_I865G(dev)) {
4295 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4296 } else if (IS_I830(dev)) {
4297 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4298 }
4299 }
4300
4301 /* Set up chip specific display functions */
4302 static void intel_init_display(struct drm_device *dev)
4303 {
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305
4306 /* We always want a DPMS function */
4307 if (IS_IGDNG(dev))
4308 dev_priv->display.dpms = igdng_crtc_dpms;
4309 else
4310 dev_priv->display.dpms = i9xx_crtc_dpms;
4311
4312 /* Only mobile has FBC, leave pointers NULL for other chips */
4313 if (IS_MOBILE(dev)) {
4314 if (IS_GM45(dev)) {
4315 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4316 dev_priv->display.enable_fbc = g4x_enable_fbc;
4317 dev_priv->display.disable_fbc = g4x_disable_fbc;
4318 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4319 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4320 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4321 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4322 }
4323 /* 855GM needs testing */
4324 }
4325
4326 /* Returns the core display clock speed */
4327 if (IS_I945G(dev))
4328 dev_priv->display.get_display_clock_speed =
4329 i945_get_display_clock_speed;
4330 else if (IS_I915G(dev))
4331 dev_priv->display.get_display_clock_speed =
4332 i915_get_display_clock_speed;
4333 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4334 dev_priv->display.get_display_clock_speed =
4335 i9xx_misc_get_display_clock_speed;
4336 else if (IS_I915GM(dev))
4337 dev_priv->display.get_display_clock_speed =
4338 i915gm_get_display_clock_speed;
4339 else if (IS_I865G(dev))
4340 dev_priv->display.get_display_clock_speed =
4341 i865_get_display_clock_speed;
4342 else if (IS_I855(dev))
4343 dev_priv->display.get_display_clock_speed =
4344 i855_get_display_clock_speed;
4345 else /* 852, 830 */
4346 dev_priv->display.get_display_clock_speed =
4347 i830_get_display_clock_speed;
4348
4349 /* For FIFO watermark updates */
4350 if (IS_IGDNG(dev))
4351 dev_priv->display.update_wm = NULL;
4352 else if (IS_G4X(dev))
4353 dev_priv->display.update_wm = g4x_update_wm;
4354 else if (IS_I965G(dev))
4355 dev_priv->display.update_wm = i965_update_wm;
4356 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4357 dev_priv->display.update_wm = i9xx_update_wm;
4358 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4359 } else {
4360 if (IS_I85X(dev))
4361 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4362 else if (IS_845G(dev))
4363 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4364 else
4365 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4366 dev_priv->display.update_wm = i830_update_wm;
4367 }
4368 }
4369
4370 void intel_modeset_init(struct drm_device *dev)
4371 {
4372 struct drm_i915_private *dev_priv = dev->dev_private;
4373 int num_pipe;
4374 int i;
4375
4376 drm_mode_config_init(dev);
4377
4378 dev->mode_config.min_width = 0;
4379 dev->mode_config.min_height = 0;
4380
4381 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4382
4383 intel_init_display(dev);
4384
4385 if (IS_I965G(dev)) {
4386 dev->mode_config.max_width = 8192;
4387 dev->mode_config.max_height = 8192;
4388 } else if (IS_I9XX(dev)) {
4389 dev->mode_config.max_width = 4096;
4390 dev->mode_config.max_height = 4096;
4391 } else {
4392 dev->mode_config.max_width = 2048;
4393 dev->mode_config.max_height = 2048;
4394 }
4395
4396 /* set memory base */
4397 if (IS_I9XX(dev))
4398 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4399 else
4400 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4401
4402 if (IS_MOBILE(dev) || IS_I9XX(dev))
4403 num_pipe = 2;
4404 else
4405 num_pipe = 1;
4406 DRM_DEBUG("%d display pipe%s available.\n",
4407 num_pipe, num_pipe > 1 ? "s" : "");
4408
4409 if (IS_I85X(dev))
4410 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4411 else if (IS_I9XX(dev) || IS_G4X(dev))
4412 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4413
4414 for (i = 0; i < num_pipe; i++) {
4415 intel_crtc_init(dev, i);
4416 }
4417
4418 intel_setup_outputs(dev);
4419
4420 intel_init_clock_gating(dev);
4421
4422 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4423 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4424 (unsigned long)dev);
4425 }
4426
4427 void intel_modeset_cleanup(struct drm_device *dev)
4428 {
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 struct drm_crtc *crtc;
4431 struct intel_crtc *intel_crtc;
4432
4433 mutex_lock(&dev->struct_mutex);
4434
4435 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4436 /* Skip inactive CRTCs */
4437 if (!crtc->fb)
4438 continue;
4439
4440 intel_crtc = to_intel_crtc(crtc);
4441 intel_increase_pllclock(crtc, false);
4442 del_timer_sync(&intel_crtc->idle_timer);
4443 }
4444
4445 intel_increase_renderclock(dev, false);
4446 del_timer_sync(&dev_priv->idle_timer);
4447
4448 mutex_unlock(&dev->struct_mutex);
4449
4450 if (dev_priv->display.disable_fbc)
4451 dev_priv->display.disable_fbc(dev);
4452
4453 drm_mode_config_cleanup(dev);
4454 }
4455
4456
4457 /* current intel driver doesn't take advantage of encoders
4458 always give back the encoder for the connector
4459 */
4460 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4461 {
4462 struct intel_output *intel_output = to_intel_output(connector);
4463
4464 return &intel_output->enc;
4465 }
4466
4467 /*
4468 * set vga decode state - true == enable VGA decode
4469 */
4470 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4471 {
4472 struct drm_i915_private *dev_priv = dev->dev_private;
4473 u16 gmch_ctrl;
4474
4475 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4476 if (state)
4477 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4478 else
4479 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4480 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4481 return 0;
4482 }