]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Replace DRM_DEBUG with DRM_DEBUG_KMS
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
100
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN 3
111 #define IGD_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define IGD_M_MIN 2
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN 0
122 #define IGD_M1_MAX 0
123 #define IGD_M2_MIN 0
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
240 */
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
341 */
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
361 },
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
378 },
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403 },
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428 },
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
459 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
460 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
461 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
462 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
474 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
475 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
476 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
477 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
478 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* IGD only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
489 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
490 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
491 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
492 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
493 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
494 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
495 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
496 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499 .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
504 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
505 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
506 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
507 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
508 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
509 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
510 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
511 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512 .p2_slow = IGDNG_P2_LVDS_SLOW,
513 .p2_fast = IGDNG_P2_LVDS_FAST },
514 .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_igdng_lvds;
522 else
523 limit = &intel_limits_igdng_sdvo;
524
525 return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
533
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
551
552 return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
559
560 if (IS_IGDNG(dev))
561 limit = intel_igdng_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_IGD(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_igd_lvds;
572 else
573 limit = &intel_limits_igd_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
579 }
580 return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594 if (IS_IGD(dev)) {
595 igd_clock(refclk, clock);
596 return;
597 }
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605 * Returns whether any output on the specified pipe is of the specified type
606 */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
612
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
619 }
620 }
621 return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
630
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
636 }
637 }
638 return ret;
639 }
640
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
645 */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
651
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
670 */
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
673
674 return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
680
681 {
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
686
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
689 /*
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
694 */
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
705 }
706
707 memset (best_clock, 0, sizeof (*best_clock));
708
709 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711 clock.m1++) {
712 for (clock.m2 = limit->m2.min;
713 clock.m2 <= limit->m2.max; clock.m2++) {
714 /* m1 is always 0 in IGD */
715 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716 break;
717 for (clock.n = limit->n.min;
718 clock.n <= limit->n.max; clock.n++) {
719 int this_err;
720
721 intel_clock(dev, refclk, &clock);
722
723 if (!intel_PLL_is_valid(crtc, &clock))
724 continue;
725
726 this_err = abs(clock.dot - target);
727 if (this_err < err) {
728 *best_clock = clock;
729 err = this_err;
730 }
731 }
732 }
733 }
734 }
735
736 return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *best_clock)
743
744 {
745 struct drm_device *dev = crtc->dev;
746 intel_clock_t clock;
747 int err = target;
748 bool found = false;
749
750 memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754 /* m1 is always 0 in IGD */
755 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756 break;
757 for (clock.n = limit->n.min; clock.n <= limit->n.max;
758 clock.n++) {
759 int this_err;
760
761 intel_clock(dev, refclk, &clock);
762
763 if (!intel_PLL_is_valid(crtc, &clock))
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 found = true;
771 }
772 }
773 }
774 }
775
776 return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781 int target, int refclk, intel_clock_t *best_clock)
782 {
783 struct drm_device *dev = crtc->dev;
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 intel_clock_t clock;
786 int max_n;
787 bool found;
788 /* approximately equals target * 0.00488 */
789 int err_most = (target >> 8) + (target >> 10);
790 found = false;
791
792 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794 LVDS_CLKB_POWER_UP)
795 clock.p2 = limit->p2.p2_fast;
796 else
797 clock.p2 = limit->p2.p2_slow;
798 } else {
799 if (target < limit->p2.dot_limit)
800 clock.p2 = limit->p2.p2_slow;
801 else
802 clock.p2 = limit->p2.p2_fast;
803 }
804
805 memset(best_clock, 0, sizeof(*best_clock));
806 max_n = limit->n.max;
807 /* based on hardware requriment prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirment prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 intel_clock(dev, refclk, &clock);
819 if (!intel_PLL_is_valid(crtc, &clock))
820 continue;
821 this_err = abs(clock.dot - target) ;
822 if (this_err < err_most) {
823 *best_clock = clock;
824 err_most = this_err;
825 max_n = clock.n;
826 found = true;
827 }
828 }
829 }
830 }
831 }
832 return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *best_clock)
838 {
839 struct drm_device *dev = crtc->dev;
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.n = 1;
843 clock.p1 = 2;
844 clock.p2 = 10;
845 clock.m1 = 12;
846 clock.m2 = 9;
847 } else {
848 clock.n = 2;
849 clock.p1 = 1;
850 clock.p2 = 10;
851 clock.m1 = 14;
852 clock.m2 = 8;
853 }
854 intel_clock(dev, refclk, &clock);
855 memcpy(best_clock, &clock, sizeof(intel_clock_t));
856 return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861 int target, int refclk, intel_clock_t *best_clock)
862 {
863 struct drm_device *dev = crtc->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 intel_clock_t clock;
866 int err_most = 47;
867 int err_min = 10000;
868
869 /* eDP has only 2 clock choice, no n/m/p setting */
870 if (HAS_eDP)
871 return true;
872
873 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
874 return intel_find_pll_igdng_dp(limit, crtc, target,
875 refclk, best_clock);
876
877 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
878 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
879 LVDS_CLKB_POWER_UP)
880 clock.p2 = limit->p2.p2_fast;
881 else
882 clock.p2 = limit->p2.p2_slow;
883 } else {
884 if (target < limit->p2.dot_limit)
885 clock.p2 = limit->p2.p2_slow;
886 else
887 clock.p2 = limit->p2.p2_fast;
888 }
889
890 memset(best_clock, 0, sizeof(*best_clock));
891 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892 /* based on hardware requriment prefer smaller n to precision */
893 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
894 /* based on hardware requirment prefere larger m1,m2 */
895 for (clock.m1 = limit->m1.max;
896 clock.m1 >= limit->m1.min; clock.m1--) {
897 for (clock.m2 = limit->m2.max;
898 clock.m2 >= limit->m2.min; clock.m2--) {
899 int this_err;
900
901 intel_clock(dev, refclk, &clock);
902 if (!intel_PLL_is_valid(crtc, &clock))
903 continue;
904 this_err = abs((10000 - (target*10000/clock.dot)));
905 if (this_err < err_most) {
906 *best_clock = clock;
907 /* found on first matching */
908 goto out;
909 } else if (this_err < err_min) {
910 *best_clock = clock;
911 err_min = this_err;
912 }
913 }
914 }
915 }
916 }
917 out:
918 return true;
919 }
920
921 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
922 static bool
923 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
924 int target, int refclk, intel_clock_t *best_clock)
925 {
926 intel_clock_t clock;
927 if (target < 200000) {
928 clock.p1 = 2;
929 clock.p2 = 10;
930 clock.n = 2;
931 clock.m1 = 23;
932 clock.m2 = 8;
933 } else {
934 clock.p1 = 1;
935 clock.p2 = 10;
936 clock.n = 1;
937 clock.m1 = 14;
938 clock.m2 = 2;
939 }
940 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
941 clock.p = (clock.p1 * clock.p2);
942 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
943 clock.vco = 0;
944 memcpy(best_clock, &clock, sizeof(intel_clock_t));
945 return true;
946 }
947
948 void
949 intel_wait_for_vblank(struct drm_device *dev)
950 {
951 /* Wait for 20ms, i.e. one cycle at 50hz. */
952 mdelay(20);
953 }
954
955 /* Parameters have changed, update FBC info */
956 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
957 {
958 struct drm_device *dev = crtc->dev;
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 struct drm_framebuffer *fb = crtc->fb;
961 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
962 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
964 int plane, i;
965 u32 fbc_ctl, fbc_ctl2;
966
967 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
968
969 if (fb->pitch < dev_priv->cfb_pitch)
970 dev_priv->cfb_pitch = fb->pitch;
971
972 /* FBC_CTL wants 64B units */
973 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
974 dev_priv->cfb_fence = obj_priv->fence_reg;
975 dev_priv->cfb_plane = intel_crtc->plane;
976 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
977
978 /* Clear old tags */
979 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
980 I915_WRITE(FBC_TAG + (i * 4), 0);
981
982 /* Set it up... */
983 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
984 if (obj_priv->tiling_mode != I915_TILING_NONE)
985 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
986 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
987 I915_WRITE(FBC_FENCE_OFF, crtc->y);
988
989 /* enable it... */
990 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
991 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
992 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
993 if (obj_priv->tiling_mode != I915_TILING_NONE)
994 fbc_ctl |= dev_priv->cfb_fence;
995 I915_WRITE(FBC_CONTROL, fbc_ctl);
996
997 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
998 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
999 }
1000
1001 void i8xx_disable_fbc(struct drm_device *dev)
1002 {
1003 struct drm_i915_private *dev_priv = dev->dev_private;
1004 u32 fbc_ctl;
1005
1006 if (!I915_HAS_FBC(dev))
1007 return;
1008
1009 /* Disable compression */
1010 fbc_ctl = I915_READ(FBC_CONTROL);
1011 fbc_ctl &= ~FBC_CTL_EN;
1012 I915_WRITE(FBC_CONTROL, fbc_ctl);
1013
1014 /* Wait for compressing bit to clear */
1015 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1016 ; /* nothing */
1017
1018 intel_wait_for_vblank(dev);
1019
1020 DRM_DEBUG_KMS("disabled FBC\n");
1021 }
1022
1023 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1024 {
1025 struct drm_device *dev = crtc->dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027
1028 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1029 }
1030
1031 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1032 {
1033 struct drm_device *dev = crtc->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 struct drm_framebuffer *fb = crtc->fb;
1036 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1037 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1039 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1040 DPFC_CTL_PLANEB);
1041 unsigned long stall_watermark = 200;
1042 u32 dpfc_ctl;
1043
1044 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1045 dev_priv->cfb_fence = obj_priv->fence_reg;
1046 dev_priv->cfb_plane = intel_crtc->plane;
1047
1048 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1049 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1050 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1051 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1052 } else {
1053 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1054 }
1055
1056 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1057 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1058 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1059 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1060 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1061
1062 /* enable it... */
1063 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1064
1065 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1066 }
1067
1068 void g4x_disable_fbc(struct drm_device *dev)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 u32 dpfc_ctl;
1072
1073 /* Disable compression */
1074 dpfc_ctl = I915_READ(DPFC_CONTROL);
1075 dpfc_ctl &= ~DPFC_CTL_EN;
1076 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1077 intel_wait_for_vblank(dev);
1078
1079 DRM_DEBUG_KMS("disabled FBC\n");
1080 }
1081
1082 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1083 {
1084 struct drm_device *dev = crtc->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1088 }
1089
1090 /**
1091 * intel_update_fbc - enable/disable FBC as needed
1092 * @crtc: CRTC to point the compressor at
1093 * @mode: mode in use
1094 *
1095 * Set up the framebuffer compression hardware at mode set time. We
1096 * enable it if possible:
1097 * - plane A only (on pre-965)
1098 * - no pixel mulitply/line duplication
1099 * - no alpha buffer discard
1100 * - no dual wide
1101 * - framebuffer <= 2048 in width, 1536 in height
1102 *
1103 * We can't assume that any compression will take place (worst case),
1104 * so the compressed buffer has to be the same size as the uncompressed
1105 * one. It also must reside (along with the line length buffer) in
1106 * stolen memory.
1107 *
1108 * We need to enable/disable FBC on a global basis.
1109 */
1110 static void intel_update_fbc(struct drm_crtc *crtc,
1111 struct drm_display_mode *mode)
1112 {
1113 struct drm_device *dev = crtc->dev;
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 struct drm_framebuffer *fb = crtc->fb;
1116 struct intel_framebuffer *intel_fb;
1117 struct drm_i915_gem_object *obj_priv;
1118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119 int plane = intel_crtc->plane;
1120
1121 if (!i915_powersave)
1122 return;
1123
1124 if (!dev_priv->display.fbc_enabled ||
1125 !dev_priv->display.enable_fbc ||
1126 !dev_priv->display.disable_fbc)
1127 return;
1128
1129 if (!crtc->fb)
1130 return;
1131
1132 intel_fb = to_intel_framebuffer(fb);
1133 obj_priv = intel_fb->obj->driver_private;
1134
1135 /*
1136 * If FBC is already on, we just have to verify that we can
1137 * keep it that way...
1138 * Need to disable if:
1139 * - changing FBC params (stride, fence, mode)
1140 * - new fb is too large to fit in compressed buffer
1141 * - going to an unsupported config (interlace, pixel multiply, etc.)
1142 */
1143 if (intel_fb->obj->size > dev_priv->cfb_size) {
1144 DRM_DEBUG_KMS("framebuffer too large, disabling "
1145 "compression\n");
1146 goto out_disable;
1147 }
1148 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1149 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1150 DRM_DEBUG_KMS("mode incompatible with compression, "
1151 "disabling\n");
1152 goto out_disable;
1153 }
1154 if ((mode->hdisplay > 2048) ||
1155 (mode->vdisplay > 1536)) {
1156 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1157 goto out_disable;
1158 }
1159 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1160 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1161 goto out_disable;
1162 }
1163 if (obj_priv->tiling_mode != I915_TILING_X) {
1164 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1165 goto out_disable;
1166 }
1167
1168 if (dev_priv->display.fbc_enabled(crtc)) {
1169 /* We can re-enable it in this case, but need to update pitch */
1170 if (fb->pitch > dev_priv->cfb_pitch)
1171 dev_priv->display.disable_fbc(dev);
1172 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1173 dev_priv->display.disable_fbc(dev);
1174 if (plane != dev_priv->cfb_plane)
1175 dev_priv->display.disable_fbc(dev);
1176 }
1177
1178 if (!dev_priv->display.fbc_enabled(crtc)) {
1179 /* Now try to turn it back on if possible */
1180 dev_priv->display.enable_fbc(crtc, 500);
1181 }
1182
1183 return;
1184
1185 out_disable:
1186 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1187 /* Multiple disables should be harmless */
1188 if (dev_priv->display.fbc_enabled(crtc))
1189 dev_priv->display.disable_fbc(dev);
1190 }
1191
1192 static int
1193 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1194 struct drm_framebuffer *old_fb)
1195 {
1196 struct drm_device *dev = crtc->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 struct drm_i915_master_private *master_priv;
1199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1200 struct intel_framebuffer *intel_fb;
1201 struct drm_i915_gem_object *obj_priv;
1202 struct drm_gem_object *obj;
1203 int pipe = intel_crtc->pipe;
1204 int plane = intel_crtc->plane;
1205 unsigned long Start, Offset;
1206 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1207 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1208 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1209 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1210 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1211 u32 dspcntr, alignment;
1212 int ret;
1213
1214 /* no fb bound */
1215 if (!crtc->fb) {
1216 DRM_DEBUG_KMS("No FB bound\n");
1217 return 0;
1218 }
1219
1220 switch (plane) {
1221 case 0:
1222 case 1:
1223 break;
1224 default:
1225 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1226 return -EINVAL;
1227 }
1228
1229 intel_fb = to_intel_framebuffer(crtc->fb);
1230 obj = intel_fb->obj;
1231 obj_priv = obj->driver_private;
1232
1233 switch (obj_priv->tiling_mode) {
1234 case I915_TILING_NONE:
1235 alignment = 64 * 1024;
1236 break;
1237 case I915_TILING_X:
1238 /* pin() will align the object as required by fence */
1239 alignment = 0;
1240 break;
1241 case I915_TILING_Y:
1242 /* FIXME: Is this true? */
1243 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1244 return -EINVAL;
1245 default:
1246 BUG();
1247 }
1248
1249 mutex_lock(&dev->struct_mutex);
1250 ret = i915_gem_object_pin(obj, alignment);
1251 if (ret != 0) {
1252 mutex_unlock(&dev->struct_mutex);
1253 return ret;
1254 }
1255
1256 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1257 if (ret != 0) {
1258 i915_gem_object_unpin(obj);
1259 mutex_unlock(&dev->struct_mutex);
1260 return ret;
1261 }
1262
1263 /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
1264 * whereas 965+ only requires a fence if using framebuffer compression.
1265 * For simplicity, we always install a fence as the cost is not that onerous.
1266 */
1267 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1268 obj_priv->tiling_mode != I915_TILING_NONE) {
1269 ret = i915_gem_object_get_fence_reg(obj);
1270 if (ret != 0) {
1271 i915_gem_object_unpin(obj);
1272 mutex_unlock(&dev->struct_mutex);
1273 return ret;
1274 }
1275 }
1276
1277 dspcntr = I915_READ(dspcntr_reg);
1278 /* Mask out pixel format bits in case we change it */
1279 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1280 switch (crtc->fb->bits_per_pixel) {
1281 case 8:
1282 dspcntr |= DISPPLANE_8BPP;
1283 break;
1284 case 16:
1285 if (crtc->fb->depth == 15)
1286 dspcntr |= DISPPLANE_15_16BPP;
1287 else
1288 dspcntr |= DISPPLANE_16BPP;
1289 break;
1290 case 24:
1291 case 32:
1292 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1293 break;
1294 default:
1295 DRM_ERROR("Unknown color depth\n");
1296 i915_gem_object_unpin(obj);
1297 mutex_unlock(&dev->struct_mutex);
1298 return -EINVAL;
1299 }
1300 if (IS_I965G(dev)) {
1301 if (obj_priv->tiling_mode != I915_TILING_NONE)
1302 dspcntr |= DISPPLANE_TILED;
1303 else
1304 dspcntr &= ~DISPPLANE_TILED;
1305 }
1306
1307 if (IS_IGDNG(dev))
1308 /* must disable */
1309 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1310
1311 I915_WRITE(dspcntr_reg, dspcntr);
1312
1313 Start = obj_priv->gtt_offset;
1314 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1315
1316 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1317 I915_WRITE(dspstride, crtc->fb->pitch);
1318 if (IS_I965G(dev)) {
1319 I915_WRITE(dspbase, Offset);
1320 I915_READ(dspbase);
1321 I915_WRITE(dspsurf, Start);
1322 I915_READ(dspsurf);
1323 I915_WRITE(dsptileoff, (y << 16) | x);
1324 } else {
1325 I915_WRITE(dspbase, Start + Offset);
1326 I915_READ(dspbase);
1327 }
1328
1329 if ((IS_I965G(dev) || plane == 0))
1330 intel_update_fbc(crtc, &crtc->mode);
1331
1332 intel_wait_for_vblank(dev);
1333
1334 if (old_fb) {
1335 intel_fb = to_intel_framebuffer(old_fb);
1336 obj_priv = intel_fb->obj->driver_private;
1337 i915_gem_object_unpin(intel_fb->obj);
1338 }
1339 intel_increase_pllclock(crtc, true);
1340
1341 mutex_unlock(&dev->struct_mutex);
1342
1343 if (!dev->primary->master)
1344 return 0;
1345
1346 master_priv = dev->primary->master->driver_priv;
1347 if (!master_priv->sarea_priv)
1348 return 0;
1349
1350 if (pipe) {
1351 master_priv->sarea_priv->pipeB_x = x;
1352 master_priv->sarea_priv->pipeB_y = y;
1353 } else {
1354 master_priv->sarea_priv->pipeA_x = x;
1355 master_priv->sarea_priv->pipeA_y = y;
1356 }
1357
1358 return 0;
1359 }
1360
1361 /* Disable the VGA plane that we never use */
1362 static void i915_disable_vga (struct drm_device *dev)
1363 {
1364 struct drm_i915_private *dev_priv = dev->dev_private;
1365 u8 sr1;
1366 u32 vga_reg;
1367
1368 if (IS_IGDNG(dev))
1369 vga_reg = CPU_VGACNTRL;
1370 else
1371 vga_reg = VGACNTRL;
1372
1373 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1374 return;
1375
1376 I915_WRITE8(VGA_SR_INDEX, 1);
1377 sr1 = I915_READ8(VGA_SR_DATA);
1378 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1379 udelay(100);
1380
1381 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1382 }
1383
1384 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1385 {
1386 struct drm_device *dev = crtc->dev;
1387 struct drm_i915_private *dev_priv = dev->dev_private;
1388 u32 dpa_ctl;
1389
1390 DRM_DEBUG_KMS("\n");
1391 dpa_ctl = I915_READ(DP_A);
1392 dpa_ctl &= ~DP_PLL_ENABLE;
1393 I915_WRITE(DP_A, dpa_ctl);
1394 }
1395
1396 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1397 {
1398 struct drm_device *dev = crtc->dev;
1399 struct drm_i915_private *dev_priv = dev->dev_private;
1400 u32 dpa_ctl;
1401
1402 dpa_ctl = I915_READ(DP_A);
1403 dpa_ctl |= DP_PLL_ENABLE;
1404 I915_WRITE(DP_A, dpa_ctl);
1405 udelay(200);
1406 }
1407
1408
1409 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1410 {
1411 struct drm_device *dev = crtc->dev;
1412 struct drm_i915_private *dev_priv = dev->dev_private;
1413 u32 dpa_ctl;
1414
1415 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1416 dpa_ctl = I915_READ(DP_A);
1417 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1418
1419 if (clock < 200000) {
1420 u32 temp;
1421 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1422 /* workaround for 160Mhz:
1423 1) program 0x4600c bits 15:0 = 0x8124
1424 2) program 0x46010 bit 0 = 1
1425 3) program 0x46034 bit 24 = 1
1426 4) program 0x64000 bit 14 = 1
1427 */
1428 temp = I915_READ(0x4600c);
1429 temp &= 0xffff0000;
1430 I915_WRITE(0x4600c, temp | 0x8124);
1431
1432 temp = I915_READ(0x46010);
1433 I915_WRITE(0x46010, temp | 1);
1434
1435 temp = I915_READ(0x46034);
1436 I915_WRITE(0x46034, temp | (1 << 24));
1437 } else {
1438 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1439 }
1440 I915_WRITE(DP_A, dpa_ctl);
1441
1442 udelay(500);
1443 }
1444
1445 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1446 {
1447 struct drm_device *dev = crtc->dev;
1448 struct drm_i915_private *dev_priv = dev->dev_private;
1449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1450 int pipe = intel_crtc->pipe;
1451 int plane = intel_crtc->plane;
1452 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1453 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1454 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1455 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1456 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1457 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1458 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1459 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1460 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1461 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1462 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1463 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1464 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1465 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1466 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1467 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1468 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1469 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1470 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1471 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1472 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1473 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1474 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1475 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1476 u32 temp;
1477 int tries = 5, j, n;
1478
1479 /* XXX: When our outputs are all unaware of DPMS modes other than off
1480 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1481 */
1482 switch (mode) {
1483 case DRM_MODE_DPMS_ON:
1484 case DRM_MODE_DPMS_STANDBY:
1485 case DRM_MODE_DPMS_SUSPEND:
1486 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1487 if (HAS_eDP) {
1488 /* enable eDP PLL */
1489 igdng_enable_pll_edp(crtc);
1490 } else {
1491 /* enable PCH DPLL */
1492 temp = I915_READ(pch_dpll_reg);
1493 if ((temp & DPLL_VCO_ENABLE) == 0) {
1494 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1495 I915_READ(pch_dpll_reg);
1496 }
1497
1498 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1499 temp = I915_READ(fdi_rx_reg);
1500 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1501 FDI_SEL_PCDCLK |
1502 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1503 I915_READ(fdi_rx_reg);
1504 udelay(200);
1505
1506 /* Enable CPU FDI TX PLL, always on for IGDNG */
1507 temp = I915_READ(fdi_tx_reg);
1508 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1509 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1510 I915_READ(fdi_tx_reg);
1511 udelay(100);
1512 }
1513 }
1514
1515 /* Enable panel fitting for LVDS */
1516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1517 temp = I915_READ(pf_ctl_reg);
1518 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1519
1520 /* currently full aspect */
1521 I915_WRITE(pf_win_pos, 0);
1522
1523 I915_WRITE(pf_win_size,
1524 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1525 (dev_priv->panel_fixed_mode->vdisplay));
1526 }
1527
1528 /* Enable CPU pipe */
1529 temp = I915_READ(pipeconf_reg);
1530 if ((temp & PIPEACONF_ENABLE) == 0) {
1531 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1532 I915_READ(pipeconf_reg);
1533 udelay(100);
1534 }
1535
1536 /* configure and enable CPU plane */
1537 temp = I915_READ(dspcntr_reg);
1538 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1539 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1540 /* Flush the plane changes */
1541 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1542 }
1543
1544 if (!HAS_eDP) {
1545 /* enable CPU FDI TX and PCH FDI RX */
1546 temp = I915_READ(fdi_tx_reg);
1547 temp |= FDI_TX_ENABLE;
1548 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1549 temp &= ~FDI_LINK_TRAIN_NONE;
1550 temp |= FDI_LINK_TRAIN_PATTERN_1;
1551 I915_WRITE(fdi_tx_reg, temp);
1552 I915_READ(fdi_tx_reg);
1553
1554 temp = I915_READ(fdi_rx_reg);
1555 temp &= ~FDI_LINK_TRAIN_NONE;
1556 temp |= FDI_LINK_TRAIN_PATTERN_1;
1557 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1558 I915_READ(fdi_rx_reg);
1559
1560 udelay(150);
1561
1562 /* Train FDI. */
1563 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1564 for train result */
1565 temp = I915_READ(fdi_rx_imr_reg);
1566 temp &= ~FDI_RX_SYMBOL_LOCK;
1567 temp &= ~FDI_RX_BIT_LOCK;
1568 I915_WRITE(fdi_rx_imr_reg, temp);
1569 I915_READ(fdi_rx_imr_reg);
1570 udelay(150);
1571
1572 temp = I915_READ(fdi_rx_iir_reg);
1573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1574
1575 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1576 for (j = 0; j < tries; j++) {
1577 temp = I915_READ(fdi_rx_iir_reg);
1578 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1579 temp);
1580 if (temp & FDI_RX_BIT_LOCK)
1581 break;
1582 udelay(200);
1583 }
1584 if (j != tries)
1585 I915_WRITE(fdi_rx_iir_reg,
1586 temp | FDI_RX_BIT_LOCK);
1587 else
1588 DRM_DEBUG_KMS("train 1 fail\n");
1589 } else {
1590 I915_WRITE(fdi_rx_iir_reg,
1591 temp | FDI_RX_BIT_LOCK);
1592 DRM_DEBUG_KMS("train 1 ok 2!\n");
1593 }
1594 temp = I915_READ(fdi_tx_reg);
1595 temp &= ~FDI_LINK_TRAIN_NONE;
1596 temp |= FDI_LINK_TRAIN_PATTERN_2;
1597 I915_WRITE(fdi_tx_reg, temp);
1598
1599 temp = I915_READ(fdi_rx_reg);
1600 temp &= ~FDI_LINK_TRAIN_NONE;
1601 temp |= FDI_LINK_TRAIN_PATTERN_2;
1602 I915_WRITE(fdi_rx_reg, temp);
1603
1604 udelay(150);
1605
1606 temp = I915_READ(fdi_rx_iir_reg);
1607 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1608
1609 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1610 for (j = 0; j < tries; j++) {
1611 temp = I915_READ(fdi_rx_iir_reg);
1612 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1613 temp);
1614 if (temp & FDI_RX_SYMBOL_LOCK)
1615 break;
1616 udelay(200);
1617 }
1618 if (j != tries) {
1619 I915_WRITE(fdi_rx_iir_reg,
1620 temp | FDI_RX_SYMBOL_LOCK);
1621 DRM_DEBUG_KMS("train 2 ok 1!\n");
1622 } else
1623 DRM_DEBUG_KMS("train 2 fail\n");
1624 } else {
1625 I915_WRITE(fdi_rx_iir_reg,
1626 temp | FDI_RX_SYMBOL_LOCK);
1627 DRM_DEBUG_KMS("train 2 ok 2!\n");
1628 }
1629 DRM_DEBUG_KMS("train done\n");
1630
1631 /* set transcoder timing */
1632 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1633 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1634 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1635
1636 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1637 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1638 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1639
1640 /* enable PCH transcoder */
1641 temp = I915_READ(transconf_reg);
1642 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1643 I915_READ(transconf_reg);
1644
1645 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1646 ;
1647
1648 /* enable normal */
1649
1650 temp = I915_READ(fdi_tx_reg);
1651 temp &= ~FDI_LINK_TRAIN_NONE;
1652 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1653 FDI_TX_ENHANCE_FRAME_ENABLE);
1654 I915_READ(fdi_tx_reg);
1655
1656 temp = I915_READ(fdi_rx_reg);
1657 temp &= ~FDI_LINK_TRAIN_NONE;
1658 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1659 FDI_RX_ENHANCE_FRAME_ENABLE);
1660 I915_READ(fdi_rx_reg);
1661
1662 /* wait one idle pattern time */
1663 udelay(100);
1664
1665 }
1666
1667 intel_crtc_load_lut(crtc);
1668
1669 break;
1670 case DRM_MODE_DPMS_OFF:
1671 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1672
1673 i915_disable_vga(dev);
1674
1675 /* Disable display plane */
1676 temp = I915_READ(dspcntr_reg);
1677 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1678 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1679 /* Flush the plane changes */
1680 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1681 I915_READ(dspbase_reg);
1682 }
1683
1684 /* disable cpu pipe, disable after all planes disabled */
1685 temp = I915_READ(pipeconf_reg);
1686 if ((temp & PIPEACONF_ENABLE) != 0) {
1687 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1688 I915_READ(pipeconf_reg);
1689 n = 0;
1690 /* wait for cpu pipe off, pipe state */
1691 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1692 n++;
1693 if (n < 60) {
1694 udelay(500);
1695 continue;
1696 } else {
1697 DRM_DEBUG_KMS("pipe %d off delay\n",
1698 pipe);
1699 break;
1700 }
1701 }
1702 } else
1703 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1704
1705 if (HAS_eDP) {
1706 igdng_disable_pll_edp(crtc);
1707 }
1708
1709 /* disable CPU FDI tx and PCH FDI rx */
1710 temp = I915_READ(fdi_tx_reg);
1711 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1712 I915_READ(fdi_tx_reg);
1713
1714 temp = I915_READ(fdi_rx_reg);
1715 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1716 I915_READ(fdi_rx_reg);
1717
1718 udelay(100);
1719
1720 /* still set train pattern 1 */
1721 temp = I915_READ(fdi_tx_reg);
1722 temp &= ~FDI_LINK_TRAIN_NONE;
1723 temp |= FDI_LINK_TRAIN_PATTERN_1;
1724 I915_WRITE(fdi_tx_reg, temp);
1725
1726 temp = I915_READ(fdi_rx_reg);
1727 temp &= ~FDI_LINK_TRAIN_NONE;
1728 temp |= FDI_LINK_TRAIN_PATTERN_1;
1729 I915_WRITE(fdi_rx_reg, temp);
1730
1731 udelay(100);
1732
1733 /* disable PCH transcoder */
1734 temp = I915_READ(transconf_reg);
1735 if ((temp & TRANS_ENABLE) != 0) {
1736 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1737 I915_READ(transconf_reg);
1738 n = 0;
1739 /* wait for PCH transcoder off, transcoder state */
1740 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1741 n++;
1742 if (n < 60) {
1743 udelay(500);
1744 continue;
1745 } else {
1746 DRM_DEBUG_KMS("transcoder %d off "
1747 "delay\n", pipe);
1748 break;
1749 }
1750 }
1751 }
1752
1753 /* disable PCH DPLL */
1754 temp = I915_READ(pch_dpll_reg);
1755 if ((temp & DPLL_VCO_ENABLE) != 0) {
1756 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1757 I915_READ(pch_dpll_reg);
1758 }
1759
1760 temp = I915_READ(fdi_rx_reg);
1761 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1762 temp &= ~FDI_SEL_PCDCLK;
1763 temp &= ~FDI_RX_PLL_ENABLE;
1764 I915_WRITE(fdi_rx_reg, temp);
1765 I915_READ(fdi_rx_reg);
1766 }
1767
1768 /* Disable CPU FDI TX PLL */
1769 temp = I915_READ(fdi_tx_reg);
1770 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1771 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1772 I915_READ(fdi_tx_reg);
1773 udelay(100);
1774 }
1775
1776 /* Disable PF */
1777 temp = I915_READ(pf_ctl_reg);
1778 if ((temp & PF_ENABLE) != 0) {
1779 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1780 I915_READ(pf_ctl_reg);
1781 }
1782 I915_WRITE(pf_win_size, 0);
1783
1784 /* Wait for the clocks to turn off. */
1785 udelay(150);
1786 break;
1787 }
1788 }
1789
1790 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1791 {
1792 struct intel_overlay *overlay;
1793 int ret;
1794
1795 if (!enable && intel_crtc->overlay) {
1796 overlay = intel_crtc->overlay;
1797 mutex_lock(&overlay->dev->struct_mutex);
1798 for (;;) {
1799 ret = intel_overlay_switch_off(overlay);
1800 if (ret == 0)
1801 break;
1802
1803 ret = intel_overlay_recover_from_interrupt(overlay, 0);
1804 if (ret != 0) {
1805 /* overlay doesn't react anymore. Usually
1806 * results in a black screen and an unkillable
1807 * X server. */
1808 BUG();
1809 overlay->hw_wedged = HW_WEDGED;
1810 break;
1811 }
1812 }
1813 mutex_unlock(&overlay->dev->struct_mutex);
1814 }
1815 /* Let userspace switch the overlay on again. In most cases userspace
1816 * has to recompute where to put it anyway. */
1817
1818 return;
1819 }
1820
1821 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1822 {
1823 struct drm_device *dev = crtc->dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1826 int pipe = intel_crtc->pipe;
1827 int plane = intel_crtc->plane;
1828 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1829 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1830 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1831 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1832 u32 temp;
1833
1834 /* XXX: When our outputs are all unaware of DPMS modes other than off
1835 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1836 */
1837 switch (mode) {
1838 case DRM_MODE_DPMS_ON:
1839 case DRM_MODE_DPMS_STANDBY:
1840 case DRM_MODE_DPMS_SUSPEND:
1841 intel_update_watermarks(dev);
1842
1843 /* Enable the DPLL */
1844 temp = I915_READ(dpll_reg);
1845 if ((temp & DPLL_VCO_ENABLE) == 0) {
1846 I915_WRITE(dpll_reg, temp);
1847 I915_READ(dpll_reg);
1848 /* Wait for the clocks to stabilize. */
1849 udelay(150);
1850 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1851 I915_READ(dpll_reg);
1852 /* Wait for the clocks to stabilize. */
1853 udelay(150);
1854 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1855 I915_READ(dpll_reg);
1856 /* Wait for the clocks to stabilize. */
1857 udelay(150);
1858 }
1859
1860 /* Enable the pipe */
1861 temp = I915_READ(pipeconf_reg);
1862 if ((temp & PIPEACONF_ENABLE) == 0)
1863 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1864
1865 /* Enable the plane */
1866 temp = I915_READ(dspcntr_reg);
1867 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1868 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1869 /* Flush the plane changes */
1870 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1871 }
1872
1873 intel_crtc_load_lut(crtc);
1874
1875 if ((IS_I965G(dev) || plane == 0))
1876 intel_update_fbc(crtc, &crtc->mode);
1877
1878 /* Give the overlay scaler a chance to enable if it's on this pipe */
1879 intel_crtc_dpms_overlay(intel_crtc, true);
1880 break;
1881 case DRM_MODE_DPMS_OFF:
1882 intel_update_watermarks(dev);
1883
1884 /* Give the overlay scaler a chance to disable if it's on this pipe */
1885 intel_crtc_dpms_overlay(intel_crtc, false);
1886
1887 if (dev_priv->cfb_plane == plane &&
1888 dev_priv->display.disable_fbc)
1889 dev_priv->display.disable_fbc(dev);
1890
1891 /* Disable the VGA plane that we never use */
1892 i915_disable_vga(dev);
1893
1894 /* Disable display plane */
1895 temp = I915_READ(dspcntr_reg);
1896 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1897 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1898 /* Flush the plane changes */
1899 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1900 I915_READ(dspbase_reg);
1901 }
1902
1903 if (!IS_I9XX(dev)) {
1904 /* Wait for vblank for the disable to take effect */
1905 intel_wait_for_vblank(dev);
1906 }
1907
1908 /* Next, disable display pipes */
1909 temp = I915_READ(pipeconf_reg);
1910 if ((temp & PIPEACONF_ENABLE) != 0) {
1911 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1912 I915_READ(pipeconf_reg);
1913 }
1914
1915 /* Wait for vblank for the disable to take effect. */
1916 intel_wait_for_vblank(dev);
1917
1918 temp = I915_READ(dpll_reg);
1919 if ((temp & DPLL_VCO_ENABLE) != 0) {
1920 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1921 I915_READ(dpll_reg);
1922 }
1923
1924 /* Wait for the clocks to turn off. */
1925 udelay(150);
1926 break;
1927 }
1928 }
1929
1930 /**
1931 * Sets the power management mode of the pipe and plane.
1932 *
1933 * This code should probably grow support for turning the cursor off and back
1934 * on appropriately at the same time as we're turning the pipe off/on.
1935 */
1936 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1937 {
1938 struct drm_device *dev = crtc->dev;
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 struct drm_i915_master_private *master_priv;
1941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1942 int pipe = intel_crtc->pipe;
1943 bool enabled;
1944
1945 dev_priv->display.dpms(crtc, mode);
1946
1947 intel_crtc->dpms_mode = mode;
1948
1949 if (!dev->primary->master)
1950 return;
1951
1952 master_priv = dev->primary->master->driver_priv;
1953 if (!master_priv->sarea_priv)
1954 return;
1955
1956 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1957
1958 switch (pipe) {
1959 case 0:
1960 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1961 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1962 break;
1963 case 1:
1964 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1965 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1966 break;
1967 default:
1968 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1969 break;
1970 }
1971 }
1972
1973 static void intel_crtc_prepare (struct drm_crtc *crtc)
1974 {
1975 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1976 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1977 }
1978
1979 static void intel_crtc_commit (struct drm_crtc *crtc)
1980 {
1981 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1982 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1983 }
1984
1985 void intel_encoder_prepare (struct drm_encoder *encoder)
1986 {
1987 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1988 /* lvds has its own version of prepare see intel_lvds_prepare */
1989 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1990 }
1991
1992 void intel_encoder_commit (struct drm_encoder *encoder)
1993 {
1994 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1995 /* lvds has its own version of commit see intel_lvds_commit */
1996 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1997 }
1998
1999 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2000 struct drm_display_mode *mode,
2001 struct drm_display_mode *adjusted_mode)
2002 {
2003 struct drm_device *dev = crtc->dev;
2004 if (IS_IGDNG(dev)) {
2005 /* FDI link clock is fixed at 2.7G */
2006 if (mode->clock * 3 > 27000 * 4)
2007 return MODE_CLOCK_HIGH;
2008 }
2009 return true;
2010 }
2011
2012 static int i945_get_display_clock_speed(struct drm_device *dev)
2013 {
2014 return 400000;
2015 }
2016
2017 static int i915_get_display_clock_speed(struct drm_device *dev)
2018 {
2019 return 333000;
2020 }
2021
2022 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2023 {
2024 return 200000;
2025 }
2026
2027 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2028 {
2029 u16 gcfgc = 0;
2030
2031 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2032
2033 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2034 return 133000;
2035 else {
2036 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2037 case GC_DISPLAY_CLOCK_333_MHZ:
2038 return 333000;
2039 default:
2040 case GC_DISPLAY_CLOCK_190_200_MHZ:
2041 return 190000;
2042 }
2043 }
2044 }
2045
2046 static int i865_get_display_clock_speed(struct drm_device *dev)
2047 {
2048 return 266000;
2049 }
2050
2051 static int i855_get_display_clock_speed(struct drm_device *dev)
2052 {
2053 u16 hpllcc = 0;
2054 /* Assume that the hardware is in the high speed state. This
2055 * should be the default.
2056 */
2057 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2058 case GC_CLOCK_133_200:
2059 case GC_CLOCK_100_200:
2060 return 200000;
2061 case GC_CLOCK_166_250:
2062 return 250000;
2063 case GC_CLOCK_100_133:
2064 return 133000;
2065 }
2066
2067 /* Shouldn't happen */
2068 return 0;
2069 }
2070
2071 static int i830_get_display_clock_speed(struct drm_device *dev)
2072 {
2073 return 133000;
2074 }
2075
2076 /**
2077 * Return the pipe currently connected to the panel fitter,
2078 * or -1 if the panel fitter is not present or not in use
2079 */
2080 int intel_panel_fitter_pipe (struct drm_device *dev)
2081 {
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 u32 pfit_control;
2084
2085 /* i830 doesn't have a panel fitter */
2086 if (IS_I830(dev))
2087 return -1;
2088
2089 pfit_control = I915_READ(PFIT_CONTROL);
2090
2091 /* See if the panel fitter is in use */
2092 if ((pfit_control & PFIT_ENABLE) == 0)
2093 return -1;
2094
2095 /* 965 can place panel fitter on either pipe */
2096 if (IS_I965G(dev))
2097 return (pfit_control >> 29) & 0x3;
2098
2099 /* older chips can only use pipe 1 */
2100 return 1;
2101 }
2102
2103 struct fdi_m_n {
2104 u32 tu;
2105 u32 gmch_m;
2106 u32 gmch_n;
2107 u32 link_m;
2108 u32 link_n;
2109 };
2110
2111 static void
2112 fdi_reduce_ratio(u32 *num, u32 *den)
2113 {
2114 while (*num > 0xffffff || *den > 0xffffff) {
2115 *num >>= 1;
2116 *den >>= 1;
2117 }
2118 }
2119
2120 #define DATA_N 0x800000
2121 #define LINK_N 0x80000
2122
2123 static void
2124 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2125 int pixel_clock, int link_clock,
2126 struct fdi_m_n *m_n)
2127 {
2128 u64 temp;
2129
2130 m_n->tu = 64; /* default size */
2131
2132 temp = (u64) DATA_N * pixel_clock;
2133 temp = div_u64(temp, link_clock);
2134 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2135 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2136 m_n->gmch_n = DATA_N;
2137 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2138
2139 temp = (u64) LINK_N * pixel_clock;
2140 m_n->link_m = div_u64(temp, link_clock);
2141 m_n->link_n = LINK_N;
2142 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2143 }
2144
2145
2146 struct intel_watermark_params {
2147 unsigned long fifo_size;
2148 unsigned long max_wm;
2149 unsigned long default_wm;
2150 unsigned long guard_size;
2151 unsigned long cacheline_size;
2152 };
2153
2154 /* IGD has different values for various configs */
2155 static struct intel_watermark_params igd_display_wm = {
2156 IGD_DISPLAY_FIFO,
2157 IGD_MAX_WM,
2158 IGD_DFT_WM,
2159 IGD_GUARD_WM,
2160 IGD_FIFO_LINE_SIZE
2161 };
2162 static struct intel_watermark_params igd_display_hplloff_wm = {
2163 IGD_DISPLAY_FIFO,
2164 IGD_MAX_WM,
2165 IGD_DFT_HPLLOFF_WM,
2166 IGD_GUARD_WM,
2167 IGD_FIFO_LINE_SIZE
2168 };
2169 static struct intel_watermark_params igd_cursor_wm = {
2170 IGD_CURSOR_FIFO,
2171 IGD_CURSOR_MAX_WM,
2172 IGD_CURSOR_DFT_WM,
2173 IGD_CURSOR_GUARD_WM,
2174 IGD_FIFO_LINE_SIZE,
2175 };
2176 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2177 IGD_CURSOR_FIFO,
2178 IGD_CURSOR_MAX_WM,
2179 IGD_CURSOR_DFT_WM,
2180 IGD_CURSOR_GUARD_WM,
2181 IGD_FIFO_LINE_SIZE
2182 };
2183 static struct intel_watermark_params g4x_wm_info = {
2184 G4X_FIFO_SIZE,
2185 G4X_MAX_WM,
2186 G4X_MAX_WM,
2187 2,
2188 G4X_FIFO_LINE_SIZE,
2189 };
2190 static struct intel_watermark_params i945_wm_info = {
2191 I945_FIFO_SIZE,
2192 I915_MAX_WM,
2193 1,
2194 2,
2195 I915_FIFO_LINE_SIZE
2196 };
2197 static struct intel_watermark_params i915_wm_info = {
2198 I915_FIFO_SIZE,
2199 I915_MAX_WM,
2200 1,
2201 2,
2202 I915_FIFO_LINE_SIZE
2203 };
2204 static struct intel_watermark_params i855_wm_info = {
2205 I855GM_FIFO_SIZE,
2206 I915_MAX_WM,
2207 1,
2208 2,
2209 I830_FIFO_LINE_SIZE
2210 };
2211 static struct intel_watermark_params i830_wm_info = {
2212 I830_FIFO_SIZE,
2213 I915_MAX_WM,
2214 1,
2215 2,
2216 I830_FIFO_LINE_SIZE
2217 };
2218
2219 /**
2220 * intel_calculate_wm - calculate watermark level
2221 * @clock_in_khz: pixel clock
2222 * @wm: chip FIFO params
2223 * @pixel_size: display pixel size
2224 * @latency_ns: memory latency for the platform
2225 *
2226 * Calculate the watermark level (the level at which the display plane will
2227 * start fetching from memory again). Each chip has a different display
2228 * FIFO size and allocation, so the caller needs to figure that out and pass
2229 * in the correct intel_watermark_params structure.
2230 *
2231 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2232 * on the pixel size. When it reaches the watermark level, it'll start
2233 * fetching FIFO line sized based chunks from memory until the FIFO fills
2234 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2235 * will occur, and a display engine hang could result.
2236 */
2237 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2238 struct intel_watermark_params *wm,
2239 int pixel_size,
2240 unsigned long latency_ns)
2241 {
2242 long entries_required, wm_size;
2243
2244 /*
2245 * Note: we need to make sure we don't overflow for various clock &
2246 * latency values.
2247 * clocks go from a few thousand to several hundred thousand.
2248 * latency is usually a few thousand
2249 */
2250 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2251 1000;
2252 entries_required /= wm->cacheline_size;
2253
2254 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2255
2256 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2257
2258 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2259
2260 /* Don't promote wm_size to unsigned... */
2261 if (wm_size > (long)wm->max_wm)
2262 wm_size = wm->max_wm;
2263 if (wm_size <= 0)
2264 wm_size = wm->default_wm;
2265 return wm_size;
2266 }
2267
2268 struct cxsr_latency {
2269 int is_desktop;
2270 unsigned long fsb_freq;
2271 unsigned long mem_freq;
2272 unsigned long display_sr;
2273 unsigned long display_hpll_disable;
2274 unsigned long cursor_sr;
2275 unsigned long cursor_hpll_disable;
2276 };
2277
2278 static struct cxsr_latency cxsr_latency_table[] = {
2279 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2280 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2281 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2282
2283 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2284 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2285 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2286
2287 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2288 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2289 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2290
2291 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2292 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2293 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2294
2295 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2296 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2297 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2298
2299 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2300 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2301 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2302 };
2303
2304 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2305 int mem)
2306 {
2307 int i;
2308 struct cxsr_latency *latency;
2309
2310 if (fsb == 0 || mem == 0)
2311 return NULL;
2312
2313 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2314 latency = &cxsr_latency_table[i];
2315 if (is_desktop == latency->is_desktop &&
2316 fsb == latency->fsb_freq && mem == latency->mem_freq)
2317 return latency;
2318 }
2319
2320 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2321
2322 return NULL;
2323 }
2324
2325 static void igd_disable_cxsr(struct drm_device *dev)
2326 {
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 u32 reg;
2329
2330 /* deactivate cxsr */
2331 reg = I915_READ(DSPFW3);
2332 reg &= ~(IGD_SELF_REFRESH_EN);
2333 I915_WRITE(DSPFW3, reg);
2334 DRM_INFO("Big FIFO is disabled\n");
2335 }
2336
2337 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2338 int pixel_size)
2339 {
2340 struct drm_i915_private *dev_priv = dev->dev_private;
2341 u32 reg;
2342 unsigned long wm;
2343 struct cxsr_latency *latency;
2344
2345 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2346 dev_priv->mem_freq);
2347 if (!latency) {
2348 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2349 igd_disable_cxsr(dev);
2350 return;
2351 }
2352
2353 /* Display SR */
2354 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2355 latency->display_sr);
2356 reg = I915_READ(DSPFW1);
2357 reg &= 0x7fffff;
2358 reg |= wm << 23;
2359 I915_WRITE(DSPFW1, reg);
2360 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2361
2362 /* cursor SR */
2363 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2364 latency->cursor_sr);
2365 reg = I915_READ(DSPFW3);
2366 reg &= ~(0x3f << 24);
2367 reg |= (wm & 0x3f) << 24;
2368 I915_WRITE(DSPFW3, reg);
2369
2370 /* Display HPLL off SR */
2371 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2372 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2373 reg = I915_READ(DSPFW3);
2374 reg &= 0xfffffe00;
2375 reg |= wm & 0x1ff;
2376 I915_WRITE(DSPFW3, reg);
2377
2378 /* cursor HPLL off SR */
2379 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2380 latency->cursor_hpll_disable);
2381 reg = I915_READ(DSPFW3);
2382 reg &= ~(0x3f << 16);
2383 reg |= (wm & 0x3f) << 16;
2384 I915_WRITE(DSPFW3, reg);
2385 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2386
2387 /* activate cxsr */
2388 reg = I915_READ(DSPFW3);
2389 reg |= IGD_SELF_REFRESH_EN;
2390 I915_WRITE(DSPFW3, reg);
2391
2392 DRM_INFO("Big FIFO is enabled\n");
2393
2394 return;
2395 }
2396
2397 /*
2398 * Latency for FIFO fetches is dependent on several factors:
2399 * - memory configuration (speed, channels)
2400 * - chipset
2401 * - current MCH state
2402 * It can be fairly high in some situations, so here we assume a fairly
2403 * pessimal value. It's a tradeoff between extra memory fetches (if we
2404 * set this value too high, the FIFO will fetch frequently to stay full)
2405 * and power consumption (set it too low to save power and we might see
2406 * FIFO underruns and display "flicker").
2407 *
2408 * A value of 5us seems to be a good balance; safe for very low end
2409 * platforms but not overly aggressive on lower latency configs.
2410 */
2411 const static int latency_ns = 5000;
2412
2413 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2414 {
2415 struct drm_i915_private *dev_priv = dev->dev_private;
2416 uint32_t dsparb = I915_READ(DSPARB);
2417 int size;
2418
2419 if (plane == 0)
2420 size = dsparb & 0x7f;
2421 else
2422 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2423 (dsparb & 0x7f);
2424
2425 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2426 plane ? "B" : "A", size);
2427
2428 return size;
2429 }
2430
2431 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2432 {
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 uint32_t dsparb = I915_READ(DSPARB);
2435 int size;
2436
2437 if (plane == 0)
2438 size = dsparb & 0x1ff;
2439 else
2440 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2441 (dsparb & 0x1ff);
2442 size >>= 1; /* Convert to cachelines */
2443
2444 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2445 plane ? "B" : "A", size);
2446
2447 return size;
2448 }
2449
2450 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2451 {
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453 uint32_t dsparb = I915_READ(DSPARB);
2454 int size;
2455
2456 size = dsparb & 0x7f;
2457 size >>= 2; /* Convert to cachelines */
2458
2459 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2460 plane ? "B" : "A",
2461 size);
2462
2463 return size;
2464 }
2465
2466 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2467 {
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469 uint32_t dsparb = I915_READ(DSPARB);
2470 int size;
2471
2472 size = dsparb & 0x7f;
2473 size >>= 1; /* Convert to cachelines */
2474
2475 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2476 plane ? "B" : "A", size);
2477
2478 return size;
2479 }
2480
2481 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2482 int planeb_clock, int sr_hdisplay, int pixel_size)
2483 {
2484 struct drm_i915_private *dev_priv = dev->dev_private;
2485 int total_size, cacheline_size;
2486 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2487 struct intel_watermark_params planea_params, planeb_params;
2488 unsigned long line_time_us;
2489 int sr_clock, sr_entries = 0, entries_required;
2490
2491 /* Create copies of the base settings for each pipe */
2492 planea_params = planeb_params = g4x_wm_info;
2493
2494 /* Grab a couple of global values before we overwrite them */
2495 total_size = planea_params.fifo_size;
2496 cacheline_size = planea_params.cacheline_size;
2497
2498 /*
2499 * Note: we need to make sure we don't overflow for various clock &
2500 * latency values.
2501 * clocks go from a few thousand to several hundred thousand.
2502 * latency is usually a few thousand
2503 */
2504 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2505 1000;
2506 entries_required /= G4X_FIFO_LINE_SIZE;
2507 planea_wm = entries_required + planea_params.guard_size;
2508
2509 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2510 1000;
2511 entries_required /= G4X_FIFO_LINE_SIZE;
2512 planeb_wm = entries_required + planeb_params.guard_size;
2513
2514 cursora_wm = cursorb_wm = 16;
2515 cursor_sr = 32;
2516
2517 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2518
2519 /* Calc sr entries for one plane configs */
2520 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2521 /* self-refresh has much higher latency */
2522 const static int sr_latency_ns = 12000;
2523
2524 sr_clock = planea_clock ? planea_clock : planeb_clock;
2525 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2526
2527 /* Use ns/us then divide to preserve precision */
2528 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2529 pixel_size * sr_hdisplay) / 1000;
2530 sr_entries = roundup(sr_entries / cacheline_size, 1);
2531 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2532 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2533 }
2534
2535 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2536 planea_wm, planeb_wm, sr_entries);
2537
2538 planea_wm &= 0x3f;
2539 planeb_wm &= 0x3f;
2540
2541 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2542 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2543 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2544 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2545 (cursora_wm << DSPFW_CURSORA_SHIFT));
2546 /* HPLL off in SR has some issues on G4x... disable it */
2547 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2548 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2549 }
2550
2551 static void i965_update_wm(struct drm_device *dev, int unused, int unused2,
2552 int unused3, int unused4)
2553 {
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555
2556 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2557
2558 /* 965 has limitations... */
2559 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2560 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2561 }
2562
2563 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2564 int planeb_clock, int sr_hdisplay, int pixel_size)
2565 {
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 uint32_t fwater_lo;
2568 uint32_t fwater_hi;
2569 int total_size, cacheline_size, cwm, srwm = 1;
2570 int planea_wm, planeb_wm;
2571 struct intel_watermark_params planea_params, planeb_params;
2572 unsigned long line_time_us;
2573 int sr_clock, sr_entries = 0;
2574
2575 /* Create copies of the base settings for each pipe */
2576 if (IS_I965GM(dev) || IS_I945GM(dev))
2577 planea_params = planeb_params = i945_wm_info;
2578 else if (IS_I9XX(dev))
2579 planea_params = planeb_params = i915_wm_info;
2580 else
2581 planea_params = planeb_params = i855_wm_info;
2582
2583 /* Grab a couple of global values before we overwrite them */
2584 total_size = planea_params.fifo_size;
2585 cacheline_size = planea_params.cacheline_size;
2586
2587 /* Update per-plane FIFO sizes */
2588 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2589 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2590
2591 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2592 pixel_size, latency_ns);
2593 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2594 pixel_size, latency_ns);
2595 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2596
2597 /*
2598 * Overlay gets an aggressive default since video jitter is bad.
2599 */
2600 cwm = 2;
2601
2602 /* Calc sr entries for one plane configs */
2603 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2604 (!planea_clock || !planeb_clock)) {
2605 /* self-refresh has much higher latency */
2606 const static int sr_latency_ns = 6000;
2607
2608 sr_clock = planea_clock ? planea_clock : planeb_clock;
2609 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2610
2611 /* Use ns/us then divide to preserve precision */
2612 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2613 pixel_size * sr_hdisplay) / 1000;
2614 sr_entries = roundup(sr_entries / cacheline_size, 1);
2615 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2616 srwm = total_size - sr_entries;
2617 if (srwm < 0)
2618 srwm = 1;
2619 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2620 }
2621
2622 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2623 planea_wm, planeb_wm, cwm, srwm);
2624
2625 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2626 fwater_hi = (cwm & 0x1f);
2627
2628 /* Set request length to 8 cachelines per fetch */
2629 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2630 fwater_hi = fwater_hi | (1 << 8);
2631
2632 I915_WRITE(FW_BLC, fwater_lo);
2633 I915_WRITE(FW_BLC2, fwater_hi);
2634 }
2635
2636 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2637 int unused2, int pixel_size)
2638 {
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2641 int planea_wm;
2642
2643 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2644
2645 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2646 pixel_size, latency_ns);
2647 fwater_lo |= (3<<8) | planea_wm;
2648
2649 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2650
2651 I915_WRITE(FW_BLC, fwater_lo);
2652 }
2653
2654 /**
2655 * intel_update_watermarks - update FIFO watermark values based on current modes
2656 *
2657 * Calculate watermark values for the various WM regs based on current mode
2658 * and plane configuration.
2659 *
2660 * There are several cases to deal with here:
2661 * - normal (i.e. non-self-refresh)
2662 * - self-refresh (SR) mode
2663 * - lines are large relative to FIFO size (buffer can hold up to 2)
2664 * - lines are small relative to FIFO size (buffer can hold more than 2
2665 * lines), so need to account for TLB latency
2666 *
2667 * The normal calculation is:
2668 * watermark = dotclock * bytes per pixel * latency
2669 * where latency is platform & configuration dependent (we assume pessimal
2670 * values here).
2671 *
2672 * The SR calculation is:
2673 * watermark = (trunc(latency/line time)+1) * surface width *
2674 * bytes per pixel
2675 * where
2676 * line time = htotal / dotclock
2677 * and latency is assumed to be high, as above.
2678 *
2679 * The final value programmed to the register should always be rounded up,
2680 * and include an extra 2 entries to account for clock crossings.
2681 *
2682 * We don't use the sprite, so we can ignore that. And on Crestline we have
2683 * to set the non-SR watermarks to 8.
2684 */
2685 static void intel_update_watermarks(struct drm_device *dev)
2686 {
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 struct drm_crtc *crtc;
2689 struct intel_crtc *intel_crtc;
2690 int sr_hdisplay = 0;
2691 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2692 int enabled = 0, pixel_size = 0;
2693
2694 if (!dev_priv->display.update_wm)
2695 return;
2696
2697 /* Get the clock config from both planes */
2698 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2699 intel_crtc = to_intel_crtc(crtc);
2700 if (crtc->enabled) {
2701 enabled++;
2702 if (intel_crtc->plane == 0) {
2703 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2704 intel_crtc->pipe, crtc->mode.clock);
2705 planea_clock = crtc->mode.clock;
2706 } else {
2707 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2708 intel_crtc->pipe, crtc->mode.clock);
2709 planeb_clock = crtc->mode.clock;
2710 }
2711 sr_hdisplay = crtc->mode.hdisplay;
2712 sr_clock = crtc->mode.clock;
2713 if (crtc->fb)
2714 pixel_size = crtc->fb->bits_per_pixel / 8;
2715 else
2716 pixel_size = 4; /* by default */
2717 }
2718 }
2719
2720 if (enabled <= 0)
2721 return;
2722
2723 /* Single plane configs can enable self refresh */
2724 if (enabled == 1 && IS_IGD(dev))
2725 igd_enable_cxsr(dev, sr_clock, pixel_size);
2726 else if (IS_IGD(dev))
2727 igd_disable_cxsr(dev);
2728
2729 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2730 sr_hdisplay, pixel_size);
2731 }
2732
2733 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2734 struct drm_display_mode *mode,
2735 struct drm_display_mode *adjusted_mode,
2736 int x, int y,
2737 struct drm_framebuffer *old_fb)
2738 {
2739 struct drm_device *dev = crtc->dev;
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2742 int pipe = intel_crtc->pipe;
2743 int plane = intel_crtc->plane;
2744 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2745 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2746 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2747 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2748 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2749 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2750 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2751 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2752 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2753 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2754 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2755 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2756 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2757 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2758 int refclk, num_outputs = 0;
2759 intel_clock_t clock, reduced_clock;
2760 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2761 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2762 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2763 bool is_edp = false;
2764 struct drm_mode_config *mode_config = &dev->mode_config;
2765 struct drm_connector *connector;
2766 const intel_limit_t *limit;
2767 int ret;
2768 struct fdi_m_n m_n = {0};
2769 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2770 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2771 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2772 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2773 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2774 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2775 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2776 int lvds_reg = LVDS;
2777 u32 temp;
2778 int sdvo_pixel_multiply;
2779 int target_clock;
2780
2781 drm_vblank_pre_modeset(dev, pipe);
2782
2783 list_for_each_entry(connector, &mode_config->connector_list, head) {
2784 struct intel_output *intel_output = to_intel_output(connector);
2785
2786 if (!connector->encoder || connector->encoder->crtc != crtc)
2787 continue;
2788
2789 switch (intel_output->type) {
2790 case INTEL_OUTPUT_LVDS:
2791 is_lvds = true;
2792 break;
2793 case INTEL_OUTPUT_SDVO:
2794 case INTEL_OUTPUT_HDMI:
2795 is_sdvo = true;
2796 if (intel_output->needs_tv_clock)
2797 is_tv = true;
2798 break;
2799 case INTEL_OUTPUT_DVO:
2800 is_dvo = true;
2801 break;
2802 case INTEL_OUTPUT_TVOUT:
2803 is_tv = true;
2804 break;
2805 case INTEL_OUTPUT_ANALOG:
2806 is_crt = true;
2807 break;
2808 case INTEL_OUTPUT_DISPLAYPORT:
2809 is_dp = true;
2810 break;
2811 case INTEL_OUTPUT_EDP:
2812 is_edp = true;
2813 break;
2814 }
2815
2816 num_outputs++;
2817 }
2818
2819 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2820 refclk = dev_priv->lvds_ssc_freq * 1000;
2821 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2822 refclk / 1000);
2823 } else if (IS_I9XX(dev)) {
2824 refclk = 96000;
2825 if (IS_IGDNG(dev))
2826 refclk = 120000; /* 120Mhz refclk */
2827 } else {
2828 refclk = 48000;
2829 }
2830
2831
2832 /*
2833 * Returns a set of divisors for the desired target clock with the given
2834 * refclk, or FALSE. The returned values represent the clock equation:
2835 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2836 */
2837 limit = intel_limit(crtc);
2838 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2839 if (!ok) {
2840 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2841 drm_vblank_post_modeset(dev, pipe);
2842 return -EINVAL;
2843 }
2844
2845 if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2846 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2847 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2848 (adjusted_mode->clock*3/4),
2849 refclk,
2850 &reduced_clock);
2851 }
2852
2853 /* SDVO TV has fixed PLL values depend on its clock range,
2854 this mirrors vbios setting. */
2855 if (is_sdvo && is_tv) {
2856 if (adjusted_mode->clock >= 100000
2857 && adjusted_mode->clock < 140500) {
2858 clock.p1 = 2;
2859 clock.p2 = 10;
2860 clock.n = 3;
2861 clock.m1 = 16;
2862 clock.m2 = 8;
2863 } else if (adjusted_mode->clock >= 140500
2864 && adjusted_mode->clock <= 200000) {
2865 clock.p1 = 1;
2866 clock.p2 = 10;
2867 clock.n = 6;
2868 clock.m1 = 12;
2869 clock.m2 = 8;
2870 }
2871 }
2872
2873 /* FDI link */
2874 if (IS_IGDNG(dev)) {
2875 int lane, link_bw, bpp;
2876 /* eDP doesn't require FDI link, so just set DP M/N
2877 according to current link config */
2878 if (is_edp) {
2879 struct drm_connector *edp;
2880 target_clock = mode->clock;
2881 edp = intel_pipe_get_output(crtc);
2882 intel_edp_link_config(to_intel_output(edp),
2883 &lane, &link_bw);
2884 } else {
2885 /* DP over FDI requires target mode clock
2886 instead of link clock */
2887 if (is_dp)
2888 target_clock = mode->clock;
2889 else
2890 target_clock = adjusted_mode->clock;
2891 lane = 4;
2892 link_bw = 270000;
2893 }
2894
2895 /* determine panel color depth */
2896 temp = I915_READ(pipeconf_reg);
2897
2898 switch (temp & PIPE_BPC_MASK) {
2899 case PIPE_8BPC:
2900 bpp = 24;
2901 break;
2902 case PIPE_10BPC:
2903 bpp = 30;
2904 break;
2905 case PIPE_6BPC:
2906 bpp = 18;
2907 break;
2908 case PIPE_12BPC:
2909 bpp = 36;
2910 break;
2911 default:
2912 DRM_ERROR("unknown pipe bpc value\n");
2913 bpp = 24;
2914 }
2915
2916 igdng_compute_m_n(bpp, lane, target_clock,
2917 link_bw, &m_n);
2918 }
2919
2920 /* Ironlake: try to setup display ref clock before DPLL
2921 * enabling. This is only under driver's control after
2922 * PCH B stepping, previous chipset stepping should be
2923 * ignoring this setting.
2924 */
2925 if (IS_IGDNG(dev)) {
2926 temp = I915_READ(PCH_DREF_CONTROL);
2927 /* Always enable nonspread source */
2928 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
2929 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
2930 I915_WRITE(PCH_DREF_CONTROL, temp);
2931 POSTING_READ(PCH_DREF_CONTROL);
2932
2933 temp &= ~DREF_SSC_SOURCE_MASK;
2934 temp |= DREF_SSC_SOURCE_ENABLE;
2935 I915_WRITE(PCH_DREF_CONTROL, temp);
2936 POSTING_READ(PCH_DREF_CONTROL);
2937
2938 udelay(200);
2939
2940 if (is_edp) {
2941 if (dev_priv->lvds_use_ssc) {
2942 temp |= DREF_SSC1_ENABLE;
2943 I915_WRITE(PCH_DREF_CONTROL, temp);
2944 POSTING_READ(PCH_DREF_CONTROL);
2945
2946 udelay(200);
2947
2948 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2949 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2950 I915_WRITE(PCH_DREF_CONTROL, temp);
2951 POSTING_READ(PCH_DREF_CONTROL);
2952 } else {
2953 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2954 I915_WRITE(PCH_DREF_CONTROL, temp);
2955 POSTING_READ(PCH_DREF_CONTROL);
2956 }
2957 }
2958 }
2959
2960 if (IS_IGD(dev)) {
2961 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2962 if (has_reduced_clock)
2963 fp2 = (1 << reduced_clock.n) << 16 |
2964 reduced_clock.m1 << 8 | reduced_clock.m2;
2965 } else {
2966 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2967 if (has_reduced_clock)
2968 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2969 reduced_clock.m2;
2970 }
2971
2972 if (!IS_IGDNG(dev))
2973 dpll = DPLL_VGA_MODE_DIS;
2974
2975 if (IS_I9XX(dev)) {
2976 if (is_lvds)
2977 dpll |= DPLLB_MODE_LVDS;
2978 else
2979 dpll |= DPLLB_MODE_DAC_SERIAL;
2980 if (is_sdvo) {
2981 dpll |= DPLL_DVO_HIGH_SPEED;
2982 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2983 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2984 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2985 else if (IS_IGDNG(dev))
2986 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2987 }
2988 if (is_dp)
2989 dpll |= DPLL_DVO_HIGH_SPEED;
2990
2991 /* compute bitmask from p1 value */
2992 if (IS_IGD(dev))
2993 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2994 else {
2995 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2996 /* also FPA1 */
2997 if (IS_IGDNG(dev))
2998 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2999 if (IS_G4X(dev) && has_reduced_clock)
3000 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3001 }
3002 switch (clock.p2) {
3003 case 5:
3004 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3005 break;
3006 case 7:
3007 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3008 break;
3009 case 10:
3010 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3011 break;
3012 case 14:
3013 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3014 break;
3015 }
3016 if (IS_I965G(dev) && !IS_IGDNG(dev))
3017 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3018 } else {
3019 if (is_lvds) {
3020 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3021 } else {
3022 if (clock.p1 == 2)
3023 dpll |= PLL_P1_DIVIDE_BY_TWO;
3024 else
3025 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3026 if (clock.p2 == 4)
3027 dpll |= PLL_P2_DIVIDE_BY_4;
3028 }
3029 }
3030
3031 if (is_sdvo && is_tv)
3032 dpll |= PLL_REF_INPUT_TVCLKINBC;
3033 else if (is_tv)
3034 /* XXX: just matching BIOS for now */
3035 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3036 dpll |= 3;
3037 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3038 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3039 else
3040 dpll |= PLL_REF_INPUT_DREFCLK;
3041
3042 /* setup pipeconf */
3043 pipeconf = I915_READ(pipeconf_reg);
3044
3045 /* Set up the display plane register */
3046 dspcntr = DISPPLANE_GAMMA_ENABLE;
3047
3048 /* IGDNG's plane is forced to pipe, bit 24 is to
3049 enable color space conversion */
3050 if (!IS_IGDNG(dev)) {
3051 if (pipe == 0)
3052 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3053 else
3054 dspcntr |= DISPPLANE_SEL_PIPE_B;
3055 }
3056
3057 if (pipe == 0 && !IS_I965G(dev)) {
3058 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3059 * core speed.
3060 *
3061 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3062 * pipe == 0 check?
3063 */
3064 if (mode->clock >
3065 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3066 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3067 else
3068 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3069 }
3070
3071 dspcntr |= DISPLAY_PLANE_ENABLE;
3072 pipeconf |= PIPEACONF_ENABLE;
3073 dpll |= DPLL_VCO_ENABLE;
3074
3075
3076 /* Disable the panel fitter if it was on our pipe */
3077 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3078 I915_WRITE(PFIT_CONTROL, 0);
3079
3080 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3081 drm_mode_debug_printmodeline(mode);
3082
3083 /* assign to IGDNG registers */
3084 if (IS_IGDNG(dev)) {
3085 fp_reg = pch_fp_reg;
3086 dpll_reg = pch_dpll_reg;
3087 }
3088
3089 if (is_edp) {
3090 igdng_disable_pll_edp(crtc);
3091 } else if ((dpll & DPLL_VCO_ENABLE)) {
3092 I915_WRITE(fp_reg, fp);
3093 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3094 I915_READ(dpll_reg);
3095 udelay(150);
3096 }
3097
3098 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3099 * This is an exception to the general rule that mode_set doesn't turn
3100 * things on.
3101 */
3102 if (is_lvds) {
3103 u32 lvds;
3104
3105 if (IS_IGDNG(dev))
3106 lvds_reg = PCH_LVDS;
3107
3108 lvds = I915_READ(lvds_reg);
3109 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3110 /* set the corresponsding LVDS_BORDER bit */
3111 lvds |= dev_priv->lvds_border_bits;
3112 /* Set the B0-B3 data pairs corresponding to whether we're going to
3113 * set the DPLLs for dual-channel mode or not.
3114 */
3115 if (clock.p2 == 7)
3116 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3117 else
3118 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3119
3120 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3121 * appropriately here, but we need to look more thoroughly into how
3122 * panels behave in the two modes.
3123 */
3124
3125 I915_WRITE(lvds_reg, lvds);
3126 I915_READ(lvds_reg);
3127 }
3128 if (is_dp)
3129 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3130
3131 if (!is_edp) {
3132 I915_WRITE(fp_reg, fp);
3133 I915_WRITE(dpll_reg, dpll);
3134 I915_READ(dpll_reg);
3135 /* Wait for the clocks to stabilize. */
3136 udelay(150);
3137
3138 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3139 if (is_sdvo) {
3140 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3141 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3142 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3143 } else
3144 I915_WRITE(dpll_md_reg, 0);
3145 } else {
3146 /* write it again -- the BIOS does, after all */
3147 I915_WRITE(dpll_reg, dpll);
3148 }
3149 I915_READ(dpll_reg);
3150 /* Wait for the clocks to stabilize. */
3151 udelay(150);
3152 }
3153
3154 if (is_lvds && has_reduced_clock && i915_powersave) {
3155 I915_WRITE(fp_reg + 4, fp2);
3156 intel_crtc->lowfreq_avail = true;
3157 if (HAS_PIPE_CXSR(dev)) {
3158 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3159 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3160 }
3161 } else {
3162 I915_WRITE(fp_reg + 4, fp);
3163 intel_crtc->lowfreq_avail = false;
3164 if (HAS_PIPE_CXSR(dev)) {
3165 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3166 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3167 }
3168 }
3169
3170 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3171 ((adjusted_mode->crtc_htotal - 1) << 16));
3172 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3173 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3174 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3175 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3176 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3177 ((adjusted_mode->crtc_vtotal - 1) << 16));
3178 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3179 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3180 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3181 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3182 /* pipesrc and dspsize control the size that is scaled from, which should
3183 * always be the user's requested size.
3184 */
3185 if (!IS_IGDNG(dev)) {
3186 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3187 (mode->hdisplay - 1));
3188 I915_WRITE(dsppos_reg, 0);
3189 }
3190 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3191
3192 if (IS_IGDNG(dev)) {
3193 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3194 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3195 I915_WRITE(link_m1_reg, m_n.link_m);
3196 I915_WRITE(link_n1_reg, m_n.link_n);
3197
3198 if (is_edp) {
3199 igdng_set_pll_edp(crtc, adjusted_mode->clock);
3200 } else {
3201 /* enable FDI RX PLL too */
3202 temp = I915_READ(fdi_rx_reg);
3203 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3204 udelay(200);
3205 }
3206 }
3207
3208 I915_WRITE(pipeconf_reg, pipeconf);
3209 I915_READ(pipeconf_reg);
3210
3211 intel_wait_for_vblank(dev);
3212
3213 if (IS_IGDNG(dev)) {
3214 /* enable address swizzle for tiling buffer */
3215 temp = I915_READ(DISP_ARB_CTL);
3216 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3217 }
3218
3219 I915_WRITE(dspcntr_reg, dspcntr);
3220
3221 /* Flush the plane changes */
3222 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3223
3224 if ((IS_I965G(dev) || plane == 0))
3225 intel_update_fbc(crtc, &crtc->mode);
3226
3227 intel_update_watermarks(dev);
3228
3229 drm_vblank_post_modeset(dev, pipe);
3230
3231 return ret;
3232 }
3233
3234 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3235 void intel_crtc_load_lut(struct drm_crtc *crtc)
3236 {
3237 struct drm_device *dev = crtc->dev;
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3241 int i;
3242
3243 /* The clocks have to be on to load the palette. */
3244 if (!crtc->enabled)
3245 return;
3246
3247 /* use legacy palette for IGDNG */
3248 if (IS_IGDNG(dev))
3249 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3250 LGC_PALETTE_B;
3251
3252 for (i = 0; i < 256; i++) {
3253 I915_WRITE(palreg + 4 * i,
3254 (intel_crtc->lut_r[i] << 16) |
3255 (intel_crtc->lut_g[i] << 8) |
3256 intel_crtc->lut_b[i]);
3257 }
3258 }
3259
3260 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3261 struct drm_file *file_priv,
3262 uint32_t handle,
3263 uint32_t width, uint32_t height)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 struct drm_gem_object *bo;
3269 struct drm_i915_gem_object *obj_priv;
3270 int pipe = intel_crtc->pipe;
3271 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3272 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3273 uint32_t temp = I915_READ(control);
3274 size_t addr;
3275 int ret;
3276
3277 DRM_DEBUG_KMS("\n");
3278
3279 /* if we want to turn off the cursor ignore width and height */
3280 if (!handle) {
3281 DRM_DEBUG_KMS("cursor off\n");
3282 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3283 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3284 temp |= CURSOR_MODE_DISABLE;
3285 } else {
3286 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3287 }
3288 addr = 0;
3289 bo = NULL;
3290 mutex_lock(&dev->struct_mutex);
3291 goto finish;
3292 }
3293
3294 /* Currently we only support 64x64 cursors */
3295 if (width != 64 || height != 64) {
3296 DRM_ERROR("we currently only support 64x64 cursors\n");
3297 return -EINVAL;
3298 }
3299
3300 bo = drm_gem_object_lookup(dev, file_priv, handle);
3301 if (!bo)
3302 return -ENOENT;
3303
3304 obj_priv = bo->driver_private;
3305
3306 if (bo->size < width * height * 4) {
3307 DRM_ERROR("buffer is to small\n");
3308 ret = -ENOMEM;
3309 goto fail;
3310 }
3311
3312 /* we only need to pin inside GTT if cursor is non-phy */
3313 mutex_lock(&dev->struct_mutex);
3314 if (!dev_priv->cursor_needs_physical) {
3315 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3316 if (ret) {
3317 DRM_ERROR("failed to pin cursor bo\n");
3318 goto fail_locked;
3319 }
3320 addr = obj_priv->gtt_offset;
3321 } else {
3322 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3323 if (ret) {
3324 DRM_ERROR("failed to attach phys object\n");
3325 goto fail_locked;
3326 }
3327 addr = obj_priv->phys_obj->handle->busaddr;
3328 }
3329
3330 if (!IS_I9XX(dev))
3331 I915_WRITE(CURSIZE, (height << 12) | width);
3332
3333 /* Hooray for CUR*CNTR differences */
3334 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3335 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3336 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3337 temp |= (pipe << 28); /* Connect to correct pipe */
3338 } else {
3339 temp &= ~(CURSOR_FORMAT_MASK);
3340 temp |= CURSOR_ENABLE;
3341 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3342 }
3343
3344 finish:
3345 I915_WRITE(control, temp);
3346 I915_WRITE(base, addr);
3347
3348 if (intel_crtc->cursor_bo) {
3349 if (dev_priv->cursor_needs_physical) {
3350 if (intel_crtc->cursor_bo != bo)
3351 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3352 } else
3353 i915_gem_object_unpin(intel_crtc->cursor_bo);
3354 drm_gem_object_unreference(intel_crtc->cursor_bo);
3355 }
3356
3357 mutex_unlock(&dev->struct_mutex);
3358
3359 intel_crtc->cursor_addr = addr;
3360 intel_crtc->cursor_bo = bo;
3361
3362 return 0;
3363 fail:
3364 mutex_lock(&dev->struct_mutex);
3365 fail_locked:
3366 drm_gem_object_unreference(bo);
3367 mutex_unlock(&dev->struct_mutex);
3368 return ret;
3369 }
3370
3371 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3372 {
3373 struct drm_device *dev = crtc->dev;
3374 struct drm_i915_private *dev_priv = dev->dev_private;
3375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3376 struct intel_framebuffer *intel_fb;
3377 int pipe = intel_crtc->pipe;
3378 uint32_t temp = 0;
3379 uint32_t adder;
3380
3381 if (crtc->fb) {
3382 intel_fb = to_intel_framebuffer(crtc->fb);
3383 intel_mark_busy(dev, intel_fb->obj);
3384 }
3385
3386 if (x < 0) {
3387 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3388 x = -x;
3389 }
3390 if (y < 0) {
3391 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3392 y = -y;
3393 }
3394
3395 temp |= x << CURSOR_X_SHIFT;
3396 temp |= y << CURSOR_Y_SHIFT;
3397
3398 adder = intel_crtc->cursor_addr;
3399 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3400 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3401
3402 return 0;
3403 }
3404
3405 /** Sets the color ramps on behalf of RandR */
3406 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3407 u16 blue, int regno)
3408 {
3409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3410
3411 intel_crtc->lut_r[regno] = red >> 8;
3412 intel_crtc->lut_g[regno] = green >> 8;
3413 intel_crtc->lut_b[regno] = blue >> 8;
3414 }
3415
3416 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3417 u16 *blue, int regno)
3418 {
3419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3420
3421 *red = intel_crtc->lut_r[regno] << 8;
3422 *green = intel_crtc->lut_g[regno] << 8;
3423 *blue = intel_crtc->lut_b[regno] << 8;
3424 }
3425
3426 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3427 u16 *blue, uint32_t size)
3428 {
3429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3430 int i;
3431
3432 if (size != 256)
3433 return;
3434
3435 for (i = 0; i < 256; i++) {
3436 intel_crtc->lut_r[i] = red[i] >> 8;
3437 intel_crtc->lut_g[i] = green[i] >> 8;
3438 intel_crtc->lut_b[i] = blue[i] >> 8;
3439 }
3440
3441 intel_crtc_load_lut(crtc);
3442 }
3443
3444 /**
3445 * Get a pipe with a simple mode set on it for doing load-based monitor
3446 * detection.
3447 *
3448 * It will be up to the load-detect code to adjust the pipe as appropriate for
3449 * its requirements. The pipe will be connected to no other outputs.
3450 *
3451 * Currently this code will only succeed if there is a pipe with no outputs
3452 * configured for it. In the future, it could choose to temporarily disable
3453 * some outputs to free up a pipe for its use.
3454 *
3455 * \return crtc, or NULL if no pipes are available.
3456 */
3457
3458 /* VESA 640x480x72Hz mode to set on the pipe */
3459 static struct drm_display_mode load_detect_mode = {
3460 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3461 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3462 };
3463
3464 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3465 struct drm_display_mode *mode,
3466 int *dpms_mode)
3467 {
3468 struct intel_crtc *intel_crtc;
3469 struct drm_crtc *possible_crtc;
3470 struct drm_crtc *supported_crtc =NULL;
3471 struct drm_encoder *encoder = &intel_output->enc;
3472 struct drm_crtc *crtc = NULL;
3473 struct drm_device *dev = encoder->dev;
3474 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3475 struct drm_crtc_helper_funcs *crtc_funcs;
3476 int i = -1;
3477
3478 /*
3479 * Algorithm gets a little messy:
3480 * - if the connector already has an assigned crtc, use it (but make
3481 * sure it's on first)
3482 * - try to find the first unused crtc that can drive this connector,
3483 * and use that if we find one
3484 * - if there are no unused crtcs available, try to use the first
3485 * one we found that supports the connector
3486 */
3487
3488 /* See if we already have a CRTC for this connector */
3489 if (encoder->crtc) {
3490 crtc = encoder->crtc;
3491 /* Make sure the crtc and connector are running */
3492 intel_crtc = to_intel_crtc(crtc);
3493 *dpms_mode = intel_crtc->dpms_mode;
3494 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3495 crtc_funcs = crtc->helper_private;
3496 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3497 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3498 }
3499 return crtc;
3500 }
3501
3502 /* Find an unused one (if possible) */
3503 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3504 i++;
3505 if (!(encoder->possible_crtcs & (1 << i)))
3506 continue;
3507 if (!possible_crtc->enabled) {
3508 crtc = possible_crtc;
3509 break;
3510 }
3511 if (!supported_crtc)
3512 supported_crtc = possible_crtc;
3513 }
3514
3515 /*
3516 * If we didn't find an unused CRTC, don't use any.
3517 */
3518 if (!crtc) {
3519 return NULL;
3520 }
3521
3522 encoder->crtc = crtc;
3523 intel_output->base.encoder = encoder;
3524 intel_output->load_detect_temp = true;
3525
3526 intel_crtc = to_intel_crtc(crtc);
3527 *dpms_mode = intel_crtc->dpms_mode;
3528
3529 if (!crtc->enabled) {
3530 if (!mode)
3531 mode = &load_detect_mode;
3532 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3533 } else {
3534 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3535 crtc_funcs = crtc->helper_private;
3536 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3537 }
3538
3539 /* Add this connector to the crtc */
3540 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3541 encoder_funcs->commit(encoder);
3542 }
3543 /* let the connector get through one full cycle before testing */
3544 intel_wait_for_vblank(dev);
3545
3546 return crtc;
3547 }
3548
3549 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3550 {
3551 struct drm_encoder *encoder = &intel_output->enc;
3552 struct drm_device *dev = encoder->dev;
3553 struct drm_crtc *crtc = encoder->crtc;
3554 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3555 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3556
3557 if (intel_output->load_detect_temp) {
3558 encoder->crtc = NULL;
3559 intel_output->base.encoder = NULL;
3560 intel_output->load_detect_temp = false;
3561 crtc->enabled = drm_helper_crtc_in_use(crtc);
3562 drm_helper_disable_unused_functions(dev);
3563 }
3564
3565 /* Switch crtc and output back off if necessary */
3566 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3567 if (encoder->crtc == crtc)
3568 encoder_funcs->dpms(encoder, dpms_mode);
3569 crtc_funcs->dpms(crtc, dpms_mode);
3570 }
3571 }
3572
3573 /* Returns the clock of the currently programmed mode of the given pipe. */
3574 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578 int pipe = intel_crtc->pipe;
3579 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3580 u32 fp;
3581 intel_clock_t clock;
3582
3583 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3584 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3585 else
3586 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3587
3588 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3589 if (IS_IGD(dev)) {
3590 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3591 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3592 } else {
3593 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3594 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3595 }
3596
3597 if (IS_I9XX(dev)) {
3598 if (IS_IGD(dev))
3599 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3600 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3601 else
3602 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3603 DPLL_FPA01_P1_POST_DIV_SHIFT);
3604
3605 switch (dpll & DPLL_MODE_MASK) {
3606 case DPLLB_MODE_DAC_SERIAL:
3607 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3608 5 : 10;
3609 break;
3610 case DPLLB_MODE_LVDS:
3611 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3612 7 : 14;
3613 break;
3614 default:
3615 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3616 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3617 return 0;
3618 }
3619
3620 /* XXX: Handle the 100Mhz refclk */
3621 intel_clock(dev, 96000, &clock);
3622 } else {
3623 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3624
3625 if (is_lvds) {
3626 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3627 DPLL_FPA01_P1_POST_DIV_SHIFT);
3628 clock.p2 = 14;
3629
3630 if ((dpll & PLL_REF_INPUT_MASK) ==
3631 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3632 /* XXX: might not be 66MHz */
3633 intel_clock(dev, 66000, &clock);
3634 } else
3635 intel_clock(dev, 48000, &clock);
3636 } else {
3637 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3638 clock.p1 = 2;
3639 else {
3640 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3641 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3642 }
3643 if (dpll & PLL_P2_DIVIDE_BY_4)
3644 clock.p2 = 4;
3645 else
3646 clock.p2 = 2;
3647
3648 intel_clock(dev, 48000, &clock);
3649 }
3650 }
3651
3652 /* XXX: It would be nice to validate the clocks, but we can't reuse
3653 * i830PllIsValid() because it relies on the xf86_config connector
3654 * configuration being accurate, which it isn't necessarily.
3655 */
3656
3657 return clock.dot;
3658 }
3659
3660 /** Returns the currently programmed mode of the given pipe. */
3661 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3662 struct drm_crtc *crtc)
3663 {
3664 struct drm_i915_private *dev_priv = dev->dev_private;
3665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3666 int pipe = intel_crtc->pipe;
3667 struct drm_display_mode *mode;
3668 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3669 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3670 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3671 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3672
3673 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3674 if (!mode)
3675 return NULL;
3676
3677 mode->clock = intel_crtc_clock_get(dev, crtc);
3678 mode->hdisplay = (htot & 0xffff) + 1;
3679 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3680 mode->hsync_start = (hsync & 0xffff) + 1;
3681 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3682 mode->vdisplay = (vtot & 0xffff) + 1;
3683 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3684 mode->vsync_start = (vsync & 0xffff) + 1;
3685 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3686
3687 drm_mode_set_name(mode);
3688 drm_mode_set_crtcinfo(mode, 0);
3689
3690 return mode;
3691 }
3692
3693 #define GPU_IDLE_TIMEOUT 500 /* ms */
3694
3695 /* When this timer fires, we've been idle for awhile */
3696 static void intel_gpu_idle_timer(unsigned long arg)
3697 {
3698 struct drm_device *dev = (struct drm_device *)arg;
3699 drm_i915_private_t *dev_priv = dev->dev_private;
3700
3701 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3702
3703 dev_priv->busy = false;
3704
3705 queue_work(dev_priv->wq, &dev_priv->idle_work);
3706 }
3707
3708 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3709 {
3710 drm_i915_private_t *dev_priv = dev->dev_private;
3711
3712 if (IS_IGDNG(dev))
3713 return;
3714
3715 if (!dev_priv->render_reclock_avail) {
3716 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3717 return;
3718 }
3719
3720 /* Restore render clock frequency to original value */
3721 if (IS_G4X(dev) || IS_I9XX(dev))
3722 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3723 else if (IS_I85X(dev))
3724 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3725 DRM_DEBUG_DRIVER("increasing render clock frequency\n");
3726
3727 /* Schedule downclock */
3728 if (schedule)
3729 mod_timer(&dev_priv->idle_timer, jiffies +
3730 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3731 }
3732
3733 void intel_decrease_renderclock(struct drm_device *dev)
3734 {
3735 drm_i915_private_t *dev_priv = dev->dev_private;
3736
3737 if (IS_IGDNG(dev))
3738 return;
3739
3740 if (!dev_priv->render_reclock_avail) {
3741 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3742 return;
3743 }
3744
3745 if (IS_G4X(dev)) {
3746 u16 gcfgc;
3747
3748 /* Adjust render clock... */
3749 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3750
3751 /* Down to minimum... */
3752 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3753 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3754
3755 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3756 } else if (IS_I965G(dev)) {
3757 u16 gcfgc;
3758
3759 /* Adjust render clock... */
3760 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3761
3762 /* Down to minimum... */
3763 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3764 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3765
3766 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3767 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3768 u16 gcfgc;
3769
3770 /* Adjust render clock... */
3771 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3772
3773 /* Down to minimum... */
3774 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3775 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3776
3777 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3778 } else if (IS_I915G(dev)) {
3779 u16 gcfgc;
3780
3781 /* Adjust render clock... */
3782 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3783
3784 /* Down to minimum... */
3785 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3786 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3787
3788 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3789 } else if (IS_I85X(dev)) {
3790 u16 hpllcc;
3791
3792 /* Adjust render clock... */
3793 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3794
3795 /* Up to maximum... */
3796 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3797 hpllcc |= GC_CLOCK_133_200;
3798
3799 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3800 }
3801 DRM_DEBUG_DRIVER("decreasing render clock frequency\n");
3802 }
3803
3804 /* Note that no increase function is needed for this - increase_renderclock()
3805 * will also rewrite these bits
3806 */
3807 void intel_decrease_displayclock(struct drm_device *dev)
3808 {
3809 if (IS_IGDNG(dev))
3810 return;
3811
3812 if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3813 IS_I915GM(dev)) {
3814 u16 gcfgc;
3815
3816 /* Adjust render clock... */
3817 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3818
3819 /* Down to minimum... */
3820 gcfgc &= ~0xf0;
3821 gcfgc |= 0x80;
3822
3823 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3824 }
3825 }
3826
3827 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3828
3829 static void intel_crtc_idle_timer(unsigned long arg)
3830 {
3831 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3832 struct drm_crtc *crtc = &intel_crtc->base;
3833 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3834
3835 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3836
3837 intel_crtc->busy = false;
3838
3839 queue_work(dev_priv->wq, &dev_priv->idle_work);
3840 }
3841
3842 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3843 {
3844 struct drm_device *dev = crtc->dev;
3845 drm_i915_private_t *dev_priv = dev->dev_private;
3846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847 int pipe = intel_crtc->pipe;
3848 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3849 int dpll = I915_READ(dpll_reg);
3850
3851 if (IS_IGDNG(dev))
3852 return;
3853
3854 if (!dev_priv->lvds_downclock_avail)
3855 return;
3856
3857 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3858 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3859
3860 /* Unlock panel regs */
3861 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3862
3863 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3864 I915_WRITE(dpll_reg, dpll);
3865 dpll = I915_READ(dpll_reg);
3866 intel_wait_for_vblank(dev);
3867 dpll = I915_READ(dpll_reg);
3868 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3869 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3870
3871 /* ...and lock them again */
3872 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3873 }
3874
3875 /* Schedule downclock */
3876 if (schedule)
3877 mod_timer(&intel_crtc->idle_timer, jiffies +
3878 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3879 }
3880
3881 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3882 {
3883 struct drm_device *dev = crtc->dev;
3884 drm_i915_private_t *dev_priv = dev->dev_private;
3885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3886 int pipe = intel_crtc->pipe;
3887 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3888 int dpll = I915_READ(dpll_reg);
3889
3890 if (IS_IGDNG(dev))
3891 return;
3892
3893 if (!dev_priv->lvds_downclock_avail)
3894 return;
3895
3896 /*
3897 * Since this is called by a timer, we should never get here in
3898 * the manual case.
3899 */
3900 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3901 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3902
3903 /* Unlock panel regs */
3904 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3905
3906 dpll |= DISPLAY_RATE_SELECT_FPA1;
3907 I915_WRITE(dpll_reg, dpll);
3908 dpll = I915_READ(dpll_reg);
3909 intel_wait_for_vblank(dev);
3910 dpll = I915_READ(dpll_reg);
3911 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3912 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3913
3914 /* ...and lock them again */
3915 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3916 }
3917
3918 }
3919
3920 /**
3921 * intel_idle_update - adjust clocks for idleness
3922 * @work: work struct
3923 *
3924 * Either the GPU or display (or both) went idle. Check the busy status
3925 * here and adjust the CRTC and GPU clocks as necessary.
3926 */
3927 static void intel_idle_update(struct work_struct *work)
3928 {
3929 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3930 idle_work);
3931 struct drm_device *dev = dev_priv->dev;
3932 struct drm_crtc *crtc;
3933 struct intel_crtc *intel_crtc;
3934
3935 if (!i915_powersave)
3936 return;
3937
3938 mutex_lock(&dev->struct_mutex);
3939
3940 /* GPU isn't processing, downclock it. */
3941 if (!dev_priv->busy) {
3942 intel_decrease_renderclock(dev);
3943 intel_decrease_displayclock(dev);
3944 }
3945
3946 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3947 /* Skip inactive CRTCs */
3948 if (!crtc->fb)
3949 continue;
3950
3951 intel_crtc = to_intel_crtc(crtc);
3952 if (!intel_crtc->busy)
3953 intel_decrease_pllclock(crtc);
3954 }
3955
3956 mutex_unlock(&dev->struct_mutex);
3957 }
3958
3959 /**
3960 * intel_mark_busy - mark the GPU and possibly the display busy
3961 * @dev: drm device
3962 * @obj: object we're operating on
3963 *
3964 * Callers can use this function to indicate that the GPU is busy processing
3965 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
3966 * buffer), we'll also mark the display as busy, so we know to increase its
3967 * clock frequency.
3968 */
3969 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3970 {
3971 drm_i915_private_t *dev_priv = dev->dev_private;
3972 struct drm_crtc *crtc = NULL;
3973 struct intel_framebuffer *intel_fb;
3974 struct intel_crtc *intel_crtc;
3975
3976 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3977 return;
3978
3979 dev_priv->busy = true;
3980 intel_increase_renderclock(dev, true);
3981
3982 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3983 if (!crtc->fb)
3984 continue;
3985
3986 intel_crtc = to_intel_crtc(crtc);
3987 intel_fb = to_intel_framebuffer(crtc->fb);
3988 if (intel_fb->obj == obj) {
3989 if (!intel_crtc->busy) {
3990 /* Non-busy -> busy, upclock */
3991 intel_increase_pllclock(crtc, true);
3992 intel_crtc->busy = true;
3993 } else {
3994 /* Busy -> busy, put off timer */
3995 mod_timer(&intel_crtc->idle_timer, jiffies +
3996 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3997 }
3998 }
3999 }
4000 }
4001
4002 static void intel_crtc_destroy(struct drm_crtc *crtc)
4003 {
4004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4005
4006 drm_crtc_cleanup(crtc);
4007 kfree(intel_crtc);
4008 }
4009
4010 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4011 .dpms = intel_crtc_dpms,
4012 .mode_fixup = intel_crtc_mode_fixup,
4013 .mode_set = intel_crtc_mode_set,
4014 .mode_set_base = intel_pipe_set_base,
4015 .prepare = intel_crtc_prepare,
4016 .commit = intel_crtc_commit,
4017 .load_lut = intel_crtc_load_lut,
4018 };
4019
4020 static const struct drm_crtc_funcs intel_crtc_funcs = {
4021 .cursor_set = intel_crtc_cursor_set,
4022 .cursor_move = intel_crtc_cursor_move,
4023 .gamma_set = intel_crtc_gamma_set,
4024 .set_config = drm_crtc_helper_set_config,
4025 .destroy = intel_crtc_destroy,
4026 };
4027
4028
4029 static void intel_crtc_init(struct drm_device *dev, int pipe)
4030 {
4031 struct intel_crtc *intel_crtc;
4032 int i;
4033
4034 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4035 if (intel_crtc == NULL)
4036 return;
4037
4038 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4039
4040 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4041 intel_crtc->pipe = pipe;
4042 intel_crtc->plane = pipe;
4043 for (i = 0; i < 256; i++) {
4044 intel_crtc->lut_r[i] = i;
4045 intel_crtc->lut_g[i] = i;
4046 intel_crtc->lut_b[i] = i;
4047 }
4048
4049 /* Swap pipes & planes for FBC on pre-965 */
4050 intel_crtc->pipe = pipe;
4051 intel_crtc->plane = pipe;
4052 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4053 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4054 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4055 }
4056
4057 intel_crtc->cursor_addr = 0;
4058 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4059 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4060
4061 intel_crtc->busy = false;
4062
4063 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4064 (unsigned long)intel_crtc);
4065 }
4066
4067 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4068 struct drm_file *file_priv)
4069 {
4070 drm_i915_private_t *dev_priv = dev->dev_private;
4071 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4072 struct drm_mode_object *drmmode_obj;
4073 struct intel_crtc *crtc;
4074
4075 if (!dev_priv) {
4076 DRM_ERROR("called with no initialization\n");
4077 return -EINVAL;
4078 }
4079
4080 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4081 DRM_MODE_OBJECT_CRTC);
4082
4083 if (!drmmode_obj) {
4084 DRM_ERROR("no such CRTC id\n");
4085 return -EINVAL;
4086 }
4087
4088 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4089 pipe_from_crtc_id->pipe = crtc->pipe;
4090
4091 return 0;
4092 }
4093
4094 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4095 {
4096 struct drm_crtc *crtc = NULL;
4097
4098 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4100 if (intel_crtc->pipe == pipe)
4101 break;
4102 }
4103 return crtc;
4104 }
4105
4106 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4107 {
4108 int index_mask = 0;
4109 struct drm_connector *connector;
4110 int entry = 0;
4111
4112 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4113 struct intel_output *intel_output = to_intel_output(connector);
4114 if (type_mask & intel_output->clone_mask)
4115 index_mask |= (1 << entry);
4116 entry++;
4117 }
4118 return index_mask;
4119 }
4120
4121
4122 static void intel_setup_outputs(struct drm_device *dev)
4123 {
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 struct drm_connector *connector;
4126
4127 intel_crt_init(dev);
4128
4129 /* Set up integrated LVDS */
4130 if (IS_MOBILE(dev) && !IS_I830(dev))
4131 intel_lvds_init(dev);
4132
4133 if (IS_IGDNG(dev)) {
4134 int found;
4135
4136 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4137 intel_dp_init(dev, DP_A);
4138
4139 if (I915_READ(HDMIB) & PORT_DETECTED) {
4140 /* check SDVOB */
4141 /* found = intel_sdvo_init(dev, HDMIB); */
4142 found = 0;
4143 if (!found)
4144 intel_hdmi_init(dev, HDMIB);
4145 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4146 intel_dp_init(dev, PCH_DP_B);
4147 }
4148
4149 if (I915_READ(HDMIC) & PORT_DETECTED)
4150 intel_hdmi_init(dev, HDMIC);
4151
4152 if (I915_READ(HDMID) & PORT_DETECTED)
4153 intel_hdmi_init(dev, HDMID);
4154
4155 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4156 intel_dp_init(dev, PCH_DP_C);
4157
4158 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4159 intel_dp_init(dev, PCH_DP_D);
4160
4161 } else if (IS_I9XX(dev)) {
4162 bool found = false;
4163
4164 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4165 found = intel_sdvo_init(dev, SDVOB);
4166 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4167 intel_hdmi_init(dev, SDVOB);
4168
4169 if (!found && SUPPORTS_INTEGRATED_DP(dev))
4170 intel_dp_init(dev, DP_B);
4171 }
4172
4173 /* Before G4X SDVOC doesn't have its own detect register */
4174
4175 if (I915_READ(SDVOB) & SDVO_DETECTED)
4176 found = intel_sdvo_init(dev, SDVOC);
4177
4178 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4179
4180 if (SUPPORTS_INTEGRATED_HDMI(dev))
4181 intel_hdmi_init(dev, SDVOC);
4182 if (SUPPORTS_INTEGRATED_DP(dev))
4183 intel_dp_init(dev, DP_C);
4184 }
4185
4186 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4187 intel_dp_init(dev, DP_D);
4188 } else
4189 intel_dvo_init(dev);
4190
4191 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
4192 intel_tv_init(dev);
4193
4194 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4195 struct intel_output *intel_output = to_intel_output(connector);
4196 struct drm_encoder *encoder = &intel_output->enc;
4197
4198 encoder->possible_crtcs = intel_output->crtc_mask;
4199 encoder->possible_clones = intel_connector_clones(dev,
4200 intel_output->clone_mask);
4201 }
4202 }
4203
4204 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4205 {
4206 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4207 struct drm_device *dev = fb->dev;
4208
4209 if (fb->fbdev)
4210 intelfb_remove(dev, fb);
4211
4212 drm_framebuffer_cleanup(fb);
4213 mutex_lock(&dev->struct_mutex);
4214 drm_gem_object_unreference(intel_fb->obj);
4215 mutex_unlock(&dev->struct_mutex);
4216
4217 kfree(intel_fb);
4218 }
4219
4220 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4221 struct drm_file *file_priv,
4222 unsigned int *handle)
4223 {
4224 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4225 struct drm_gem_object *object = intel_fb->obj;
4226
4227 return drm_gem_handle_create(file_priv, object, handle);
4228 }
4229
4230 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4231 .destroy = intel_user_framebuffer_destroy,
4232 .create_handle = intel_user_framebuffer_create_handle,
4233 };
4234
4235 int intel_framebuffer_create(struct drm_device *dev,
4236 struct drm_mode_fb_cmd *mode_cmd,
4237 struct drm_framebuffer **fb,
4238 struct drm_gem_object *obj)
4239 {
4240 struct intel_framebuffer *intel_fb;
4241 int ret;
4242
4243 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4244 if (!intel_fb)
4245 return -ENOMEM;
4246
4247 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4248 if (ret) {
4249 DRM_ERROR("framebuffer init failed %d\n", ret);
4250 return ret;
4251 }
4252
4253 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4254
4255 intel_fb->obj = obj;
4256
4257 *fb = &intel_fb->base;
4258
4259 return 0;
4260 }
4261
4262
4263 static struct drm_framebuffer *
4264 intel_user_framebuffer_create(struct drm_device *dev,
4265 struct drm_file *filp,
4266 struct drm_mode_fb_cmd *mode_cmd)
4267 {
4268 struct drm_gem_object *obj;
4269 struct drm_framebuffer *fb;
4270 int ret;
4271
4272 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4273 if (!obj)
4274 return NULL;
4275
4276 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4277 if (ret) {
4278 mutex_lock(&dev->struct_mutex);
4279 drm_gem_object_unreference(obj);
4280 mutex_unlock(&dev->struct_mutex);
4281 return NULL;
4282 }
4283
4284 return fb;
4285 }
4286
4287 static const struct drm_mode_config_funcs intel_mode_funcs = {
4288 .fb_create = intel_user_framebuffer_create,
4289 .fb_changed = intelfb_probe,
4290 };
4291
4292 void intel_init_clock_gating(struct drm_device *dev)
4293 {
4294 struct drm_i915_private *dev_priv = dev->dev_private;
4295
4296 /*
4297 * Disable clock gating reported to work incorrectly according to the
4298 * specs, but enable as much else as we can.
4299 */
4300 if (IS_IGDNG(dev)) {
4301 return;
4302 } else if (IS_G4X(dev)) {
4303 uint32_t dspclk_gate;
4304 I915_WRITE(RENCLK_GATE_D1, 0);
4305 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4306 GS_UNIT_CLOCK_GATE_DISABLE |
4307 CL_UNIT_CLOCK_GATE_DISABLE);
4308 I915_WRITE(RAMCLK_GATE_D, 0);
4309 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4310 OVRUNIT_CLOCK_GATE_DISABLE |
4311 OVCUNIT_CLOCK_GATE_DISABLE;
4312 if (IS_GM45(dev))
4313 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4314 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4315 } else if (IS_I965GM(dev)) {
4316 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4317 I915_WRITE(RENCLK_GATE_D2, 0);
4318 I915_WRITE(DSPCLK_GATE_D, 0);
4319 I915_WRITE(RAMCLK_GATE_D, 0);
4320 I915_WRITE16(DEUC, 0);
4321 } else if (IS_I965G(dev)) {
4322 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4323 I965_RCC_CLOCK_GATE_DISABLE |
4324 I965_RCPB_CLOCK_GATE_DISABLE |
4325 I965_ISC_CLOCK_GATE_DISABLE |
4326 I965_FBC_CLOCK_GATE_DISABLE);
4327 I915_WRITE(RENCLK_GATE_D2, 0);
4328 } else if (IS_I9XX(dev)) {
4329 u32 dstate = I915_READ(D_STATE);
4330
4331 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4332 DSTATE_DOT_CLOCK_GATING;
4333 I915_WRITE(D_STATE, dstate);
4334 } else if (IS_I85X(dev) || IS_I865G(dev)) {
4335 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4336 } else if (IS_I830(dev)) {
4337 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4338 }
4339
4340 /*
4341 * GPU can automatically power down the render unit if given a page
4342 * to save state.
4343 */
4344 if (I915_HAS_RC6(dev)) {
4345 struct drm_gem_object *pwrctx;
4346 struct drm_i915_gem_object *obj_priv;
4347 int ret;
4348
4349 pwrctx = drm_gem_object_alloc(dev, 4096);
4350 if (!pwrctx) {
4351 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4352 goto out;
4353 }
4354
4355 ret = i915_gem_object_pin(pwrctx, 4096);
4356 if (ret) {
4357 DRM_ERROR("failed to pin power context: %d\n", ret);
4358 drm_gem_object_unreference(pwrctx);
4359 goto out;
4360 }
4361
4362 i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4363
4364 obj_priv = pwrctx->driver_private;
4365
4366 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4367 I915_WRITE(MCHBAR_RENDER_STANDBY,
4368 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4369
4370 dev_priv->pwrctx = pwrctx;
4371 }
4372
4373 out:
4374 return;
4375 }
4376
4377 /* Set up chip specific display functions */
4378 static void intel_init_display(struct drm_device *dev)
4379 {
4380 struct drm_i915_private *dev_priv = dev->dev_private;
4381
4382 /* We always want a DPMS function */
4383 if (IS_IGDNG(dev))
4384 dev_priv->display.dpms = igdng_crtc_dpms;
4385 else
4386 dev_priv->display.dpms = i9xx_crtc_dpms;
4387
4388 /* Only mobile has FBC, leave pointers NULL for other chips */
4389 if (IS_MOBILE(dev)) {
4390 if (IS_GM45(dev)) {
4391 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4392 dev_priv->display.enable_fbc = g4x_enable_fbc;
4393 dev_priv->display.disable_fbc = g4x_disable_fbc;
4394 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4395 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4396 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4397 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4398 }
4399 /* 855GM needs testing */
4400 }
4401
4402 /* Returns the core display clock speed */
4403 if (IS_I945G(dev))
4404 dev_priv->display.get_display_clock_speed =
4405 i945_get_display_clock_speed;
4406 else if (IS_I915G(dev))
4407 dev_priv->display.get_display_clock_speed =
4408 i915_get_display_clock_speed;
4409 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4410 dev_priv->display.get_display_clock_speed =
4411 i9xx_misc_get_display_clock_speed;
4412 else if (IS_I915GM(dev))
4413 dev_priv->display.get_display_clock_speed =
4414 i915gm_get_display_clock_speed;
4415 else if (IS_I865G(dev))
4416 dev_priv->display.get_display_clock_speed =
4417 i865_get_display_clock_speed;
4418 else if (IS_I85X(dev))
4419 dev_priv->display.get_display_clock_speed =
4420 i855_get_display_clock_speed;
4421 else /* 852, 830 */
4422 dev_priv->display.get_display_clock_speed =
4423 i830_get_display_clock_speed;
4424
4425 /* For FIFO watermark updates */
4426 if (IS_IGDNG(dev))
4427 dev_priv->display.update_wm = NULL;
4428 else if (IS_G4X(dev))
4429 dev_priv->display.update_wm = g4x_update_wm;
4430 else if (IS_I965G(dev))
4431 dev_priv->display.update_wm = i965_update_wm;
4432 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4433 dev_priv->display.update_wm = i9xx_update_wm;
4434 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4435 } else {
4436 if (IS_I85X(dev))
4437 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4438 else if (IS_845G(dev))
4439 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4440 else
4441 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4442 dev_priv->display.update_wm = i830_update_wm;
4443 }
4444 }
4445
4446 void intel_modeset_init(struct drm_device *dev)
4447 {
4448 struct drm_i915_private *dev_priv = dev->dev_private;
4449 int num_pipe;
4450 int i;
4451
4452 drm_mode_config_init(dev);
4453
4454 dev->mode_config.min_width = 0;
4455 dev->mode_config.min_height = 0;
4456
4457 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4458
4459 intel_init_display(dev);
4460
4461 if (IS_I965G(dev)) {
4462 dev->mode_config.max_width = 8192;
4463 dev->mode_config.max_height = 8192;
4464 } else if (IS_I9XX(dev)) {
4465 dev->mode_config.max_width = 4096;
4466 dev->mode_config.max_height = 4096;
4467 } else {
4468 dev->mode_config.max_width = 2048;
4469 dev->mode_config.max_height = 2048;
4470 }
4471
4472 /* set memory base */
4473 if (IS_I9XX(dev))
4474 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4475 else
4476 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4477
4478 if (IS_MOBILE(dev) || IS_I9XX(dev))
4479 num_pipe = 2;
4480 else
4481 num_pipe = 1;
4482 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4483 num_pipe, num_pipe > 1 ? "s" : "");
4484
4485 if (IS_I85X(dev))
4486 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4487 else if (IS_I9XX(dev) || IS_G4X(dev))
4488 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4489
4490 for (i = 0; i < num_pipe; i++) {
4491 intel_crtc_init(dev, i);
4492 }
4493
4494 intel_setup_outputs(dev);
4495
4496 intel_init_clock_gating(dev);
4497
4498 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4499 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4500 (unsigned long)dev);
4501
4502 intel_setup_overlay(dev);
4503 }
4504
4505 void intel_modeset_cleanup(struct drm_device *dev)
4506 {
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 struct drm_crtc *crtc;
4509 struct intel_crtc *intel_crtc;
4510
4511 mutex_lock(&dev->struct_mutex);
4512
4513 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4514 /* Skip inactive CRTCs */
4515 if (!crtc->fb)
4516 continue;
4517
4518 intel_crtc = to_intel_crtc(crtc);
4519 intel_increase_pllclock(crtc, false);
4520 del_timer_sync(&intel_crtc->idle_timer);
4521 }
4522
4523 intel_increase_renderclock(dev, false);
4524 del_timer_sync(&dev_priv->idle_timer);
4525
4526 mutex_unlock(&dev->struct_mutex);
4527
4528 if (dev_priv->display.disable_fbc)
4529 dev_priv->display.disable_fbc(dev);
4530
4531 if (dev_priv->pwrctx) {
4532 i915_gem_object_unpin(dev_priv->pwrctx);
4533 drm_gem_object_unreference(dev_priv->pwrctx);
4534 }
4535
4536 drm_mode_config_cleanup(dev);
4537 }
4538
4539
4540 /* current intel driver doesn't take advantage of encoders
4541 always give back the encoder for the connector
4542 */
4543 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4544 {
4545 struct intel_output *intel_output = to_intel_output(connector);
4546
4547 return &intel_output->enc;
4548 }
4549
4550 /*
4551 * set vga decode state - true == enable VGA decode
4552 */
4553 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4554 {
4555 struct drm_i915_private *dev_priv = dev->dev_private;
4556 u16 gmch_ctrl;
4557
4558 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4559 if (state)
4560 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4561 else
4562 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4563 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4564 return 0;
4565 }