]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
UBUNTU: SAUCE: drm/i915: Workaround for DP DPMS D3 on Dell monitor
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101 struct drm_i915_gem_object *obj,
102 struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev,
124 struct drm_modeset_acquire_ctx *ctx);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126
127 struct intel_limit {
128 struct {
129 int min, max;
130 } dot, vco, n, m, m1, m2, p, p1;
131
132 struct {
133 int dot_limit;
134 int p2_slow, p2_fast;
135 } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 {
141 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143 /* Obtain SKU information */
144 mutex_lock(&dev_priv->sb_lock);
145 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146 CCK_FUSE_HPLL_FREQ_MASK;
147 mutex_unlock(&dev_priv->sb_lock);
148
149 return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153 const char *name, u32 reg, int ref_freq)
154 {
155 u32 val;
156 int divider;
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172 const char *name, u32 reg)
173 {
174 if (dev_priv->hpll_freq == 0)
175 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176
177 return vlv_get_cck_clock(dev_priv, name, reg,
178 dev_priv->hpll_freq);
179 }
180
181 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 {
183 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
184 return;
185
186 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
187 CCK_CZ_CLOCK_CONTROL);
188
189 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
190 }
191
192 static inline u32 /* units of 100MHz */
193 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
194 const struct intel_crtc_state *pipe_config)
195 {
196 if (HAS_DDI(dev_priv))
197 return pipe_config->port_clock; /* SPLL */
198 else if (IS_GEN5(dev_priv))
199 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
200 else
201 return 270000;
202 }
203
204 static const struct intel_limit intel_limits_i8xx_dac = {
205 .dot = { .min = 25000, .max = 350000 },
206 .vco = { .min = 908000, .max = 1512000 },
207 .n = { .min = 2, .max = 16 },
208 .m = { .min = 96, .max = 140 },
209 .m1 = { .min = 18, .max = 26 },
210 .m2 = { .min = 6, .max = 16 },
211 .p = { .min = 4, .max = 128 },
212 .p1 = { .min = 2, .max = 33 },
213 .p2 = { .dot_limit = 165000,
214 .p2_slow = 4, .p2_fast = 2 },
215 };
216
217 static const struct intel_limit intel_limits_i8xx_dvo = {
218 .dot = { .min = 25000, .max = 350000 },
219 .vco = { .min = 908000, .max = 1512000 },
220 .n = { .min = 2, .max = 16 },
221 .m = { .min = 96, .max = 140 },
222 .m1 = { .min = 18, .max = 26 },
223 .m2 = { .min = 6, .max = 16 },
224 .p = { .min = 4, .max = 128 },
225 .p1 = { .min = 2, .max = 33 },
226 .p2 = { .dot_limit = 165000,
227 .p2_slow = 4, .p2_fast = 4 },
228 };
229
230 static const struct intel_limit intel_limits_i8xx_lvds = {
231 .dot = { .min = 25000, .max = 350000 },
232 .vco = { .min = 908000, .max = 1512000 },
233 .n = { .min = 2, .max = 16 },
234 .m = { .min = 96, .max = 140 },
235 .m1 = { .min = 18, .max = 26 },
236 .m2 = { .min = 6, .max = 16 },
237 .p = { .min = 4, .max = 128 },
238 .p1 = { .min = 1, .max = 6 },
239 .p2 = { .dot_limit = 165000,
240 .p2_slow = 14, .p2_fast = 7 },
241 };
242
243 static const struct intel_limit intel_limits_i9xx_sdvo = {
244 .dot = { .min = 20000, .max = 400000 },
245 .vco = { .min = 1400000, .max = 2800000 },
246 .n = { .min = 1, .max = 6 },
247 .m = { .min = 70, .max = 120 },
248 .m1 = { .min = 8, .max = 18 },
249 .m2 = { .min = 3, .max = 7 },
250 .p = { .min = 5, .max = 80 },
251 .p1 = { .min = 1, .max = 8 },
252 .p2 = { .dot_limit = 200000,
253 .p2_slow = 10, .p2_fast = 5 },
254 };
255
256 static const struct intel_limit intel_limits_i9xx_lvds = {
257 .dot = { .min = 20000, .max = 400000 },
258 .vco = { .min = 1400000, .max = 2800000 },
259 .n = { .min = 1, .max = 6 },
260 .m = { .min = 70, .max = 120 },
261 .m1 = { .min = 8, .max = 18 },
262 .m2 = { .min = 3, .max = 7 },
263 .p = { .min = 7, .max = 98 },
264 .p1 = { .min = 1, .max = 8 },
265 .p2 = { .dot_limit = 112000,
266 .p2_slow = 14, .p2_fast = 7 },
267 };
268
269
270 static const struct intel_limit intel_limits_g4x_sdvo = {
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 1750000, .max = 3500000},
273 .n = { .min = 1, .max = 4 },
274 .m = { .min = 104, .max = 138 },
275 .m1 = { .min = 17, .max = 23 },
276 .m2 = { .min = 5, .max = 11 },
277 .p = { .min = 10, .max = 30 },
278 .p1 = { .min = 1, .max = 3},
279 .p2 = { .dot_limit = 270000,
280 .p2_slow = 10,
281 .p2_fast = 10
282 },
283 };
284
285 static const struct intel_limit intel_limits_g4x_hdmi = {
286 .dot = { .min = 22000, .max = 400000 },
287 .vco = { .min = 1750000, .max = 3500000},
288 .n = { .min = 1, .max = 4 },
289 .m = { .min = 104, .max = 138 },
290 .m1 = { .min = 16, .max = 23 },
291 .m2 = { .min = 5, .max = 11 },
292 .p = { .min = 5, .max = 80 },
293 .p1 = { .min = 1, .max = 8},
294 .p2 = { .dot_limit = 165000,
295 .p2_slow = 10, .p2_fast = 5 },
296 };
297
298 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
299 .dot = { .min = 20000, .max = 115000 },
300 .vco = { .min = 1750000, .max = 3500000 },
301 .n = { .min = 1, .max = 3 },
302 .m = { .min = 104, .max = 138 },
303 .m1 = { .min = 17, .max = 23 },
304 .m2 = { .min = 5, .max = 11 },
305 .p = { .min = 28, .max = 112 },
306 .p1 = { .min = 2, .max = 8 },
307 .p2 = { .dot_limit = 0,
308 .p2_slow = 14, .p2_fast = 14
309 },
310 };
311
312 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
313 .dot = { .min = 80000, .max = 224000 },
314 .vco = { .min = 1750000, .max = 3500000 },
315 .n = { .min = 1, .max = 3 },
316 .m = { .min = 104, .max = 138 },
317 .m1 = { .min = 17, .max = 23 },
318 .m2 = { .min = 5, .max = 11 },
319 .p = { .min = 14, .max = 42 },
320 .p1 = { .min = 2, .max = 6 },
321 .p2 = { .dot_limit = 0,
322 .p2_slow = 7, .p2_fast = 7
323 },
324 };
325
326 static const struct intel_limit intel_limits_pineview_sdvo = {
327 .dot = { .min = 20000, .max = 400000},
328 .vco = { .min = 1700000, .max = 3500000 },
329 /* Pineview's Ncounter is a ring counter */
330 .n = { .min = 3, .max = 6 },
331 .m = { .min = 2, .max = 256 },
332 /* Pineview only has one combined m divider, which we treat as m2. */
333 .m1 = { .min = 0, .max = 0 },
334 .m2 = { .min = 0, .max = 254 },
335 .p = { .min = 5, .max = 80 },
336 .p1 = { .min = 1, .max = 8 },
337 .p2 = { .dot_limit = 200000,
338 .p2_slow = 10, .p2_fast = 5 },
339 };
340
341 static const struct intel_limit intel_limits_pineview_lvds = {
342 .dot = { .min = 20000, .max = 400000 },
343 .vco = { .min = 1700000, .max = 3500000 },
344 .n = { .min = 3, .max = 6 },
345 .m = { .min = 2, .max = 256 },
346 .m1 = { .min = 0, .max = 0 },
347 .m2 = { .min = 0, .max = 254 },
348 .p = { .min = 7, .max = 112 },
349 .p1 = { .min = 1, .max = 8 },
350 .p2 = { .dot_limit = 112000,
351 .p2_slow = 14, .p2_fast = 14 },
352 };
353
354 /* Ironlake / Sandybridge
355 *
356 * We calculate clock using (register_value + 2) for N/M1/M2, so here
357 * the range value for them is (actual_value - 2).
358 */
359 static const struct intel_limit intel_limits_ironlake_dac = {
360 .dot = { .min = 25000, .max = 350000 },
361 .vco = { .min = 1760000, .max = 3510000 },
362 .n = { .min = 1, .max = 5 },
363 .m = { .min = 79, .max = 127 },
364 .m1 = { .min = 12, .max = 22 },
365 .m2 = { .min = 5, .max = 9 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
368 .p2 = { .dot_limit = 225000,
369 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const struct intel_limit intel_limits_ironlake_single_lvds = {
373 .dot = { .min = 25000, .max = 350000 },
374 .vco = { .min = 1760000, .max = 3510000 },
375 .n = { .min = 1, .max = 3 },
376 .m = { .min = 79, .max = 118 },
377 .m1 = { .min = 12, .max = 22 },
378 .m2 = { .min = 5, .max = 9 },
379 .p = { .min = 28, .max = 112 },
380 .p1 = { .min = 2, .max = 8 },
381 .p2 = { .dot_limit = 225000,
382 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
386 .dot = { .min = 25000, .max = 350000 },
387 .vco = { .min = 1760000, .max = 3510000 },
388 .n = { .min = 1, .max = 3 },
389 .m = { .min = 79, .max = 127 },
390 .m1 = { .min = 12, .max = 22 },
391 .m2 = { .min = 5, .max = 9 },
392 .p = { .min = 14, .max = 56 },
393 .p1 = { .min = 2, .max = 8 },
394 .p2 = { .dot_limit = 225000,
395 .p2_slow = 7, .p2_fast = 7 },
396 };
397
398 /* LVDS 100mhz refclk limits. */
399 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
400 .dot = { .min = 25000, .max = 350000 },
401 .vco = { .min = 1760000, .max = 3510000 },
402 .n = { .min = 1, .max = 2 },
403 .m = { .min = 79, .max = 126 },
404 .m1 = { .min = 12, .max = 22 },
405 .m2 = { .min = 5, .max = 9 },
406 .p = { .min = 28, .max = 112 },
407 .p1 = { .min = 2, .max = 8 },
408 .p2 = { .dot_limit = 225000,
409 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
413 .dot = { .min = 25000, .max = 350000 },
414 .vco = { .min = 1760000, .max = 3510000 },
415 .n = { .min = 1, .max = 3 },
416 .m = { .min = 79, .max = 126 },
417 .m1 = { .min = 12, .max = 22 },
418 .m2 = { .min = 5, .max = 9 },
419 .p = { .min = 14, .max = 42 },
420 .p1 = { .min = 2, .max = 6 },
421 .p2 = { .dot_limit = 225000,
422 .p2_slow = 7, .p2_fast = 7 },
423 };
424
425 static const struct intel_limit intel_limits_vlv = {
426 /*
427 * These are the data rate limits (measured in fast clocks)
428 * since those are the strictest limits we have. The fast
429 * clock and actual rate limits are more relaxed, so checking
430 * them would make no difference.
431 */
432 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
433 .vco = { .min = 4000000, .max = 6000000 },
434 .n = { .min = 1, .max = 7 },
435 .m1 = { .min = 2, .max = 3 },
436 .m2 = { .min = 11, .max = 156 },
437 .p1 = { .min = 2, .max = 3 },
438 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
439 };
440
441 static const struct intel_limit intel_limits_chv = {
442 /*
443 * These are the data rate limits (measured in fast clocks)
444 * since those are the strictest limits we have. The fast
445 * clock and actual rate limits are more relaxed, so checking
446 * them would make no difference.
447 */
448 .dot = { .min = 25000 * 5, .max = 540000 * 5},
449 .vco = { .min = 4800000, .max = 6480000 },
450 .n = { .min = 1, .max = 1 },
451 .m1 = { .min = 2, .max = 2 },
452 .m2 = { .min = 24 << 22, .max = 175 << 22 },
453 .p1 = { .min = 2, .max = 4 },
454 .p2 = { .p2_slow = 1, .p2_fast = 14 },
455 };
456
457 static const struct intel_limit intel_limits_bxt = {
458 /* FIXME: find real dot limits */
459 .dot = { .min = 0, .max = INT_MAX },
460 .vco = { .min = 4800000, .max = 6700000 },
461 .n = { .min = 1, .max = 1 },
462 .m1 = { .min = 2, .max = 2 },
463 /* FIXME: find real m2 limits */
464 .m2 = { .min = 2 << 22, .max = 255 << 22 },
465 .p1 = { .min = 2, .max = 4 },
466 .p2 = { .p2_slow = 1, .p2_fast = 20 },
467 };
468
469 static bool
470 needs_modeset(struct drm_crtc_state *state)
471 {
472 return drm_atomic_crtc_needs_modeset(state);
473 }
474
475 /*
476 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
477 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
478 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
479 * The helpers' return value is the rate of the clock that is fed to the
480 * display engine's pipe which can be the above fast dot clock rate or a
481 * divided-down version of it.
482 */
483 /* m1 is reserved as 0 in Pineview, n is a ring counter */
484 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 {
486 clock->m = clock->m2 + 2;
487 clock->p = clock->p1 * clock->p2;
488 if (WARN_ON(clock->n == 0 || clock->p == 0))
489 return 0;
490 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
491 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492
493 return clock->dot;
494 }
495
496 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 {
498 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
499 }
500
501 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 {
503 clock->m = i9xx_dpll_compute_m(clock);
504 clock->p = clock->p1 * clock->p2;
505 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
506 return 0;
507 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
508 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509
510 return clock->dot;
511 }
512
513 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 {
515 clock->m = clock->m1 * clock->m2;
516 clock->p = clock->p1 * clock->p2;
517 if (WARN_ON(clock->n == 0 || clock->p == 0))
518 return 0;
519 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
520 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521
522 return clock->dot / 5;
523 }
524
525 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 clock->m = clock->m1 * clock->m2;
528 clock->p = clock->p1 * clock->p2;
529 if (WARN_ON(clock->n == 0 || clock->p == 0))
530 return 0;
531 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
532 clock->n << 22);
533 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534
535 return clock->dot / 5;
536 }
537
538 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
539 /**
540 * Returns whether the given set of divisors are valid for a given refclk with
541 * the given connectors.
542 */
543
544 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
545 const struct intel_limit *limit,
546 const struct dpll *clock)
547 {
548 if (clock->n < limit->n.min || limit->n.max < clock->n)
549 INTELPllInvalid("n out of range\n");
550 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
551 INTELPllInvalid("p1 out of range\n");
552 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
553 INTELPllInvalid("m2 out of range\n");
554 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
555 INTELPllInvalid("m1 out of range\n");
556
557 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
558 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
559 if (clock->m1 <= clock->m2)
560 INTELPllInvalid("m1 <= m2\n");
561
562 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
563 !IS_GEN9_LP(dev_priv)) {
564 if (clock->p < limit->p.min || limit->p.max < clock->p)
565 INTELPllInvalid("p out of range\n");
566 if (clock->m < limit->m.min || limit->m.max < clock->m)
567 INTELPllInvalid("m out of range\n");
568 }
569
570 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571 INTELPllInvalid("vco out of range\n");
572 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573 * connector, etc., rather than just a single range.
574 */
575 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576 INTELPllInvalid("dot out of range\n");
577
578 return true;
579 }
580
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583 const struct intel_crtc_state *crtc_state,
584 int target)
585 {
586 struct drm_device *dev = crtc_state->base.crtc->dev;
587
588 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589 /*
590 * For LVDS just rely on its current settings for dual-channel.
591 * We haven't figured out how to reliably set up different
592 * single/dual channel state, if we even can.
593 */
594 if (intel_is_dual_link_lvds(dev))
595 return limit->p2.p2_fast;
596 else
597 return limit->p2.p2_slow;
598 } else {
599 if (target < limit->p2.dot_limit)
600 return limit->p2.p2_slow;
601 else
602 return limit->p2.p2_fast;
603 }
604 }
605
606 /*
607 * Returns a set of divisors for the desired target clock with the given
608 * refclk, or FALSE. The returned values represent the clock equation:
609 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610 *
611 * Target and reference clocks are specified in kHz.
612 *
613 * If match_clock is provided, then best_clock P divider must match the P
614 * divider from @match_clock used for LVDS downclocking.
615 */
616 static bool
617 i9xx_find_best_dpll(const struct intel_limit *limit,
618 struct intel_crtc_state *crtc_state,
619 int target, int refclk, struct dpll *match_clock,
620 struct dpll *best_clock)
621 {
622 struct drm_device *dev = crtc_state->base.crtc->dev;
623 struct dpll clock;
624 int err = target;
625
626 memset(best_clock, 0, sizeof(*best_clock));
627
628 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 clock.m1++) {
632 for (clock.m2 = limit->m2.min;
633 clock.m2 <= limit->m2.max; clock.m2++) {
634 if (clock.m2 >= clock.m1)
635 break;
636 for (clock.n = limit->n.min;
637 clock.n <= limit->n.max; clock.n++) {
638 for (clock.p1 = limit->p1.min;
639 clock.p1 <= limit->p1.max; clock.p1++) {
640 int this_err;
641
642 i9xx_calc_dpll_params(refclk, &clock);
643 if (!intel_PLL_is_valid(to_i915(dev),
644 limit,
645 &clock))
646 continue;
647 if (match_clock &&
648 clock.p != match_clock->p)
649 continue;
650
651 this_err = abs(clock.dot - target);
652 if (this_err < err) {
653 *best_clock = clock;
654 err = this_err;
655 }
656 }
657 }
658 }
659 }
660
661 return (err != target);
662 }
663
664 /*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
674 static bool
675 pnv_find_best_dpll(const struct intel_limit *limit,
676 struct intel_crtc_state *crtc_state,
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
679 {
680 struct drm_device *dev = crtc_state->base.crtc->dev;
681 struct dpll clock;
682 int err = target;
683
684 memset(best_clock, 0, sizeof(*best_clock));
685
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
692 for (clock.n = limit->n.min;
693 clock.n <= limit->n.max; clock.n++) {
694 for (clock.p1 = limit->p1.min;
695 clock.p1 <= limit->p1.max; clock.p1++) {
696 int this_err;
697
698 pnv_calc_dpll_params(refclk, &clock);
699 if (!intel_PLL_is_valid(to_i915(dev),
700 limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 /*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE. The returned values represent the clock equation:
723 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 *
725 * Target and reference clocks are specified in kHz.
726 *
727 * If match_clock is provided, then best_clock P divider must match the P
728 * divider from @match_clock used for LVDS downclocking.
729 */
730 static bool
731 g4x_find_best_dpll(const struct intel_limit *limit,
732 struct intel_crtc_state *crtc_state,
733 int target, int refclk, struct dpll *match_clock,
734 struct dpll *best_clock)
735 {
736 struct drm_device *dev = crtc_state->base.crtc->dev;
737 struct dpll clock;
738 int max_n;
739 bool found = false;
740 /* approximately equals target * 0.00585 */
741 int err_most = (target >> 8) + (target >> 9);
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
759 i9xx_calc_dpll_params(refclk, &clock);
760 if (!intel_PLL_is_valid(to_i915(dev),
761 limit,
762 &clock))
763 continue;
764
765 this_err = abs(clock.dot - target);
766 if (this_err < err_most) {
767 *best_clock = clock;
768 err_most = this_err;
769 max_n = clock.n;
770 found = true;
771 }
772 }
773 }
774 }
775 }
776 return found;
777 }
778
779 /*
780 * Check if the calculated PLL configuration is more optimal compared to the
781 * best configuration and error found so far. Return the calculated error.
782 */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784 const struct dpll *calculated_clock,
785 const struct dpll *best_clock,
786 unsigned int best_error_ppm,
787 unsigned int *error_ppm)
788 {
789 /*
790 * For CHV ignore the error and consider only the P value.
791 * Prefer a bigger P value based on HW requirements.
792 */
793 if (IS_CHERRYVIEW(to_i915(dev))) {
794 *error_ppm = 0;
795
796 return calculated_clock->p > best_clock->p;
797 }
798
799 if (WARN_ON_ONCE(!target_freq))
800 return false;
801
802 *error_ppm = div_u64(1000000ULL *
803 abs(target_freq - calculated_clock->dot),
804 target_freq);
805 /*
806 * Prefer a better P value over a better (smaller) error if the error
807 * is small. Ensure this preference for future configurations too by
808 * setting the error to 0.
809 */
810 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811 *error_ppm = 0;
812
813 return true;
814 }
815
816 return *error_ppm + 10 < best_error_ppm;
817 }
818
819 /*
820 * Returns a set of divisors for the desired target clock with the given
821 * refclk, or FALSE. The returned values represent the clock equation:
822 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823 */
824 static bool
825 vlv_find_best_dpll(const struct intel_limit *limit,
826 struct intel_crtc_state *crtc_state,
827 int target, int refclk, struct dpll *match_clock,
828 struct dpll *best_clock)
829 {
830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
831 struct drm_device *dev = crtc->base.dev;
832 struct dpll clock;
833 unsigned int bestppm = 1000000;
834 /* min update 19.2 MHz */
835 int max_n = min(limit->n.max, refclk / 19200);
836 bool found = false;
837
838 target *= 5; /* fast clock */
839
840 memset(best_clock, 0, sizeof(*best_clock));
841
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
845 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
846 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
847 clock.p = clock.p1 * clock.p2;
848 /* based on hardware requirement, prefer bigger m1,m2 values */
849 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
850 unsigned int ppm;
851
852 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
853 refclk * clock.m1);
854
855 vlv_calc_dpll_params(refclk, &clock);
856
857 if (!intel_PLL_is_valid(to_i915(dev),
858 limit,
859 &clock))
860 continue;
861
862 if (!vlv_PLL_is_optimal(dev, target,
863 &clock,
864 best_clock,
865 bestppm, &ppm))
866 continue;
867
868 *best_clock = clock;
869 bestppm = ppm;
870 found = true;
871 }
872 }
873 }
874 }
875
876 return found;
877 }
878
879 /*
880 * Returns a set of divisors for the desired target clock with the given
881 * refclk, or FALSE. The returned values represent the clock equation:
882 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883 */
884 static bool
885 chv_find_best_dpll(const struct intel_limit *limit,
886 struct intel_crtc_state *crtc_state,
887 int target, int refclk, struct dpll *match_clock,
888 struct dpll *best_clock)
889 {
890 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
891 struct drm_device *dev = crtc->base.dev;
892 unsigned int best_error_ppm;
893 struct dpll clock;
894 uint64_t m2;
895 int found = false;
896
897 memset(best_clock, 0, sizeof(*best_clock));
898 best_error_ppm = 1000000;
899
900 /*
901 * Based on hardware doc, the n always set to 1, and m1 always
902 * set to 2. If requires to support 200Mhz refclk, we need to
903 * revisit this because n may not 1 anymore.
904 */
905 clock.n = 1, clock.m1 = 2;
906 target *= 5; /* fast clock */
907
908 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
909 for (clock.p2 = limit->p2.p2_fast;
910 clock.p2 >= limit->p2.p2_slow;
911 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
912 unsigned int error_ppm;
913
914 clock.p = clock.p1 * clock.p2;
915
916 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
917 clock.n) << 22, refclk * clock.m1);
918
919 if (m2 > INT_MAX/clock.m1)
920 continue;
921
922 clock.m2 = m2;
923
924 chv_calc_dpll_params(refclk, &clock);
925
926 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
927 continue;
928
929 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
930 best_error_ppm, &error_ppm))
931 continue;
932
933 *best_clock = clock;
934 best_error_ppm = error_ppm;
935 found = true;
936 }
937 }
938
939 return found;
940 }
941
942 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
943 struct dpll *best_clock)
944 {
945 int refclk = 100000;
946 const struct intel_limit *limit = &intel_limits_bxt;
947
948 return chv_find_best_dpll(limit, crtc_state,
949 target_clock, refclk, NULL, best_clock);
950 }
951
952 bool intel_crtc_active(struct intel_crtc *crtc)
953 {
954 /* Be paranoid as we can arrive here with only partial
955 * state retrieved from the hardware during setup.
956 *
957 * We can ditch the adjusted_mode.crtc_clock check as soon
958 * as Haswell has gained clock readout/fastboot support.
959 *
960 * We can ditch the crtc->primary->fb check as soon as we can
961 * properly reconstruct framebuffers.
962 *
963 * FIXME: The intel_crtc->active here should be switched to
964 * crtc->state->active once we have proper CRTC states wired up
965 * for atomic.
966 */
967 return crtc->active && crtc->base.primary->state->fb &&
968 crtc->config->base.adjusted_mode.crtc_clock;
969 }
970
971 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
972 enum pipe pipe)
973 {
974 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975
976 return crtc->config->cpu_transcoder;
977 }
978
979 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 {
981 i915_reg_t reg = PIPEDSL(pipe);
982 u32 line1, line2;
983 u32 line_mask;
984
985 if (IS_GEN2(dev_priv))
986 line_mask = DSL_LINEMASK_GEN2;
987 else
988 line_mask = DSL_LINEMASK_GEN3;
989
990 line1 = I915_READ(reg) & line_mask;
991 msleep(5);
992 line2 = I915_READ(reg) & line_mask;
993
994 return line1 == line2;
995 }
996
997 /*
998 * intel_wait_for_pipe_off - wait for pipe to turn off
999 * @crtc: crtc whose pipe to wait for
1000 *
1001 * After disabling a pipe, we can't wait for vblank in the usual way,
1002 * spinning on the vblank interrupt status bit, since we won't actually
1003 * see an interrupt when the pipe is disabled.
1004 *
1005 * On Gen4 and above:
1006 * wait for the pipe register state bit to turn off
1007 *
1008 * Otherwise:
1009 * wait for the display line value to settle (it usually
1010 * ends up stopping at the start of the next frame).
1011 *
1012 */
1013 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 {
1015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1016 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1017 enum pipe pipe = crtc->pipe;
1018
1019 if (INTEL_GEN(dev_priv) >= 4) {
1020 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021
1022 /* Wait for the Pipe State to go off */
1023 if (intel_wait_for_register(dev_priv,
1024 reg, I965_PIPECONF_ACTIVE, 0,
1025 100))
1026 WARN(1, "pipe_off wait timed out\n");
1027 } else {
1028 /* Wait for the display line to settle */
1029 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 }
1032 }
1033
1034 /* Only for pre-ILK configs */
1035 void assert_pll(struct drm_i915_private *dev_priv,
1036 enum pipe pipe, bool state)
1037 {
1038 u32 val;
1039 bool cur_state;
1040
1041 val = I915_READ(DPLL(pipe));
1042 cur_state = !!(val & DPLL_VCO_ENABLE);
1043 I915_STATE_WARN(cur_state != state,
1044 "PLL state assertion failure (expected %s, current %s)\n",
1045 onoff(state), onoff(cur_state));
1046 }
1047
1048 /* XXX: the dsi pll is shared between MIPI DSI ports */
1049 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 {
1051 u32 val;
1052 bool cur_state;
1053
1054 mutex_lock(&dev_priv->sb_lock);
1055 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1056 mutex_unlock(&dev_priv->sb_lock);
1057
1058 cur_state = val & DSI_PLL_VCO_EN;
1059 I915_STATE_WARN(cur_state != state,
1060 "DSI PLL state assertion failure (expected %s, current %s)\n",
1061 onoff(state), onoff(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065 enum pipe pipe, bool state)
1066 {
1067 bool cur_state;
1068 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1069 pipe);
1070
1071 if (HAS_DDI(dev_priv)) {
1072 /* DDI does not have a specific FDI_TX register */
1073 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1074 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1075 } else {
1076 u32 val = I915_READ(FDI_TX_CTL(pipe));
1077 cur_state = !!(val & FDI_TX_ENABLE);
1078 }
1079 I915_STATE_WARN(cur_state != state,
1080 "FDI TX state assertion failure (expected %s, current %s)\n",
1081 onoff(state), onoff(cur_state));
1082 }
1083 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1084 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085
1086 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1087 enum pipe pipe, bool state)
1088 {
1089 u32 val;
1090 bool cur_state;
1091
1092 val = I915_READ(FDI_RX_CTL(pipe));
1093 cur_state = !!(val & FDI_RX_ENABLE);
1094 I915_STATE_WARN(cur_state != state,
1095 "FDI RX state assertion failure (expected %s, current %s)\n",
1096 onoff(state), onoff(cur_state));
1097 }
1098 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1099 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100
1101 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1102 enum pipe pipe)
1103 {
1104 u32 val;
1105
1106 /* ILK FDI PLL is always enabled */
1107 if (IS_GEN5(dev_priv))
1108 return;
1109
1110 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1111 if (HAS_DDI(dev_priv))
1112 return;
1113
1114 val = I915_READ(FDI_TX_CTL(pipe));
1115 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1116 }
1117
1118 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 u32 val;
1122 bool cur_state;
1123
1124 val = I915_READ(FDI_RX_CTL(pipe));
1125 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1126 I915_STATE_WARN(cur_state != state,
1127 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1128 onoff(state), onoff(cur_state));
1129 }
1130
1131 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 {
1133 i915_reg_t pp_reg;
1134 u32 val;
1135 enum pipe panel_pipe = PIPE_A;
1136 bool locked = true;
1137
1138 if (WARN_ON(HAS_DDI(dev_priv)))
1139 return;
1140
1141 if (HAS_PCH_SPLIT(dev_priv)) {
1142 u32 port_sel;
1143
1144 pp_reg = PP_CONTROL(0);
1145 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146
1147 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1148 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1149 panel_pipe = PIPE_B;
1150 /* XXX: else fix for eDP */
1151 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1152 /* presumably write lock depends on pipe, not port select */
1153 pp_reg = PP_CONTROL(pipe);
1154 panel_pipe = pipe;
1155 } else {
1156 pp_reg = PP_CONTROL(0);
1157 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1158 panel_pipe = PIPE_B;
1159 }
1160
1161 val = I915_READ(pp_reg);
1162 if (!(val & PANEL_POWER_ON) ||
1163 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1164 locked = false;
1165
1166 I915_STATE_WARN(panel_pipe == pipe && locked,
1167 "panel assertion failure, pipe %c regs locked\n",
1168 pipe_name(pipe));
1169 }
1170
1171 static void assert_cursor(struct drm_i915_private *dev_priv,
1172 enum pipe pipe, bool state)
1173 {
1174 bool cur_state;
1175
1176 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1177 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1178 else
1179 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180
1181 I915_STATE_WARN(cur_state != state,
1182 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1183 pipe_name(pipe), onoff(state), onoff(cur_state));
1184 }
1185 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1186 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187
1188 void assert_pipe(struct drm_i915_private *dev_priv,
1189 enum pipe pipe, bool state)
1190 {
1191 bool cur_state;
1192 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1193 pipe);
1194 enum intel_display_power_domain power_domain;
1195
1196 /* we keep both pipes enabled on 830 */
1197 if (IS_I830(dev_priv))
1198 state = true;
1199
1200 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205 intel_display_power_put(dev_priv, power_domain);
1206 } else {
1207 cur_state = false;
1208 }
1209
1210 I915_STATE_WARN(cur_state != state,
1211 "pipe %c assertion failure (expected %s, current %s)\n",
1212 pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216 enum plane plane, bool state)
1217 {
1218 u32 val;
1219 bool cur_state;
1220
1221 val = I915_READ(DSPCNTR(plane));
1222 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223 I915_STATE_WARN(cur_state != state,
1224 "plane %c assertion failure (expected %s, current %s)\n",
1225 plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232 enum pipe pipe)
1233 {
1234 int i;
1235
1236 /* Primary planes are fixed to pipes on gen4+ */
1237 if (INTEL_GEN(dev_priv) >= 4) {
1238 u32 val = I915_READ(DSPCNTR(pipe));
1239 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240 "plane %c assertion failure, should be disabled but not\n",
1241 plane_name(pipe));
1242 return;
1243 }
1244
1245 /* Need to check both planes against the pipe */
1246 for_each_pipe(dev_priv, i) {
1247 u32 val = I915_READ(DSPCNTR(i));
1248 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249 DISPPLANE_SEL_PIPE_SHIFT;
1250 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252 plane_name(i), pipe_name(pipe));
1253 }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258 {
1259 int sprite;
1260
1261 if (INTEL_GEN(dev_priv) >= 9) {
1262 for_each_sprite(dev_priv, pipe, sprite) {
1263 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266 sprite, pipe_name(pipe));
1267 }
1268 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269 for_each_sprite(dev_priv, pipe, sprite) {
1270 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271 I915_STATE_WARN(val & SP_ENABLE,
1272 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273 sprite_name(pipe, sprite), pipe_name(pipe));
1274 }
1275 } else if (INTEL_GEN(dev_priv) >= 7) {
1276 u32 val = I915_READ(SPRCTL(pipe));
1277 I915_STATE_WARN(val & SPRITE_ENABLE,
1278 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279 plane_name(pipe), pipe_name(pipe));
1280 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
1281 u32 val = I915_READ(DVSCNTR(pipe));
1282 I915_STATE_WARN(val & DVS_ENABLE,
1283 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284 plane_name(pipe), pipe_name(pipe));
1285 }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 u32 val;
1298 bool enabled;
1299
1300 val = I915_READ(PCH_TRANSCONF(pipe));
1301 enabled = !!(val & TRANS_ENABLE);
1302 I915_STATE_WARN(enabled,
1303 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304 pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310 if ((val & DP_PORT_EN) == 0)
1311 return false;
1312
1313 if (HAS_PCH_CPT(dev_priv)) {
1314 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else if (IS_CHERRYVIEW(dev_priv)) {
1318 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319 return false;
1320 } else {
1321 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322 return false;
1323 }
1324 return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, u32 val)
1329 {
1330 if ((val & SDVO_ENABLE) == 0)
1331 return false;
1332
1333 if (HAS_PCH_CPT(dev_priv)) {
1334 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335 return false;
1336 } else if (IS_CHERRYVIEW(dev_priv)) {
1337 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338 return false;
1339 } else {
1340 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341 return false;
1342 }
1343 return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, u32 val)
1348 {
1349 if ((val & LVDS_PORT_EN) == 0)
1350 return false;
1351
1352 if (HAS_PCH_CPT(dev_priv)) {
1353 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354 return false;
1355 } else {
1356 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357 return false;
1358 }
1359 return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363 enum pipe pipe, u32 val)
1364 {
1365 if ((val & ADPA_DAC_ENABLE) == 0)
1366 return false;
1367 if (HAS_PCH_CPT(dev_priv)) {
1368 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369 return false;
1370 } else {
1371 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372 return false;
1373 }
1374 return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378 enum pipe pipe, i915_reg_t reg,
1379 u32 port_sel)
1380 {
1381 u32 val = I915_READ(reg);
1382 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384 i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387 && (val & DP_PIPEB_SELECT),
1388 "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, i915_reg_t reg)
1393 {
1394 u32 val = I915_READ(reg);
1395 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397 i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400 && (val & SDVO_PIPE_B_SELECT),
1401 "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
1406 {
1407 u32 val;
1408
1409 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413 val = I915_READ(PCH_ADPA);
1414 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415 "PCH VGA enabled on transcoder %c, should be disabled\n",
1416 pipe_name(pipe));
1417
1418 val = I915_READ(PCH_LVDS);
1419 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421 pipe_name(pipe));
1422
1423 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429 const struct intel_crtc_state *pipe_config)
1430 {
1431 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432 enum pipe pipe = crtc->pipe;
1433
1434 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435 POSTING_READ(DPLL(pipe));
1436 udelay(150);
1437
1438 if (intel_wait_for_register(dev_priv,
1439 DPLL(pipe),
1440 DPLL_LOCK_VLV,
1441 DPLL_LOCK_VLV,
1442 1))
1443 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447 const struct intel_crtc_state *pipe_config)
1448 {
1449 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450 enum pipe pipe = crtc->pipe;
1451
1452 assert_pipe_disabled(dev_priv, pipe);
1453
1454 /* PLL is protected by panel, make sure we can write it */
1455 assert_panel_unlocked(dev_priv, pipe);
1456
1457 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458 _vlv_enable_pll(crtc, pipe_config);
1459
1460 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461 POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466 const struct intel_crtc_state *pipe_config)
1467 {
1468 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 enum pipe pipe = crtc->pipe;
1470 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471 u32 tmp;
1472
1473 mutex_lock(&dev_priv->sb_lock);
1474
1475 /* Enable back the 10bit clock to display controller */
1476 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477 tmp |= DPIO_DCLKP_EN;
1478 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480 mutex_unlock(&dev_priv->sb_lock);
1481
1482 /*
1483 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484 */
1485 udelay(1);
1486
1487 /* Enable PLL */
1488 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490 /* Check PLL is locked */
1491 if (intel_wait_for_register(dev_priv,
1492 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493 1))
1494 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498 const struct intel_crtc_state *pipe_config)
1499 {
1500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501 enum pipe pipe = crtc->pipe;
1502
1503 assert_pipe_disabled(dev_priv, pipe);
1504
1505 /* PLL is protected by panel, make sure we can write it */
1506 assert_panel_unlocked(dev_priv, pipe);
1507
1508 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509 _chv_enable_pll(crtc, pipe_config);
1510
1511 if (pipe != PIPE_A) {
1512 /*
1513 * WaPixelRepeatModeFixForC0:chv
1514 *
1515 * DPLLCMD is AWOL. Use chicken bits to propagate
1516 * the value from DPLLBMD to either pipe B or C.
1517 */
1518 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520 I915_WRITE(CBR4_VLV, 0);
1521 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523 /*
1524 * DPLLB VGA mode also seems to cause problems.
1525 * We should always have it disabled.
1526 */
1527 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528 } else {
1529 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530 POSTING_READ(DPLL_MD(pipe));
1531 }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536 struct intel_crtc *crtc;
1537 int count = 0;
1538
1539 for_each_intel_crtc(&dev_priv->drm, crtc) {
1540 count += crtc->base.state->active &&
1541 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542 }
1543
1544 return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 i915_reg_t reg = DPLL(crtc->pipe);
1551 u32 dpll = crtc->config->dpll_hw_state.dpll;
1552 int i;
1553
1554 assert_pipe_disabled(dev_priv, crtc->pipe);
1555
1556 /* PLL is protected by panel, make sure we can write it */
1557 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1558 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560 /* Enable DVO 2x clock on both PLLs if necessary */
1561 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562 /*
1563 * It appears to be important that we don't enable this
1564 * for the current pipe before otherwise configuring the
1565 * PLL. No idea how this should be handled if multiple
1566 * DVO outputs are enabled simultaneosly.
1567 */
1568 dpll |= DPLL_DVO_2X_MODE;
1569 I915_WRITE(DPLL(!crtc->pipe),
1570 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1571 }
1572
1573 /*
1574 * Apparently we need to have VGA mode enabled prior to changing
1575 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1576 * dividers, even though the register value does change.
1577 */
1578 I915_WRITE(reg, 0);
1579
1580 I915_WRITE(reg, dpll);
1581
1582 /* Wait for the clocks to stabilize. */
1583 POSTING_READ(reg);
1584 udelay(150);
1585
1586 if (INTEL_GEN(dev_priv) >= 4) {
1587 I915_WRITE(DPLL_MD(crtc->pipe),
1588 crtc->config->dpll_hw_state.dpll_md);
1589 } else {
1590 /* The pixel multiplier can only be updated once the
1591 * DPLL is enabled and the clocks are stable.
1592 *
1593 * So write it again.
1594 */
1595 I915_WRITE(reg, dpll);
1596 }
1597
1598 /* We do this three times for luck */
1599 for (i = 0; i < 3; i++) {
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150); /* wait for warmup */
1603 }
1604 }
1605
1606 /**
1607 * i9xx_disable_pll - disable a PLL
1608 * @dev_priv: i915 private structure
1609 * @pipe: pipe PLL to disable
1610 *
1611 * Disable the PLL for @pipe, making sure the pipe is off first.
1612 *
1613 * Note! This is for pre-ILK only.
1614 */
1615 static void i9xx_disable_pll(struct intel_crtc *crtc)
1616 {
1617 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1618 enum pipe pipe = crtc->pipe;
1619
1620 /* Disable DVO 2x clock on both PLLs if necessary */
1621 if (IS_I830(dev_priv) &&
1622 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1623 !intel_num_dvo_pipes(dev_priv)) {
1624 I915_WRITE(DPLL(PIPE_B),
1625 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1626 I915_WRITE(DPLL(PIPE_A),
1627 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1628 }
1629
1630 /* Don't disable pipe or pipe PLLs if needed */
1631 if (IS_I830(dev_priv))
1632 return;
1633
1634 /* Make sure the pipe isn't still relying on us */
1635 assert_pipe_disabled(dev_priv, pipe);
1636
1637 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1638 POSTING_READ(DPLL(pipe));
1639 }
1640
1641 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1642 {
1643 u32 val;
1644
1645 /* Make sure the pipe isn't still relying on us */
1646 assert_pipe_disabled(dev_priv, pipe);
1647
1648 val = DPLL_INTEGRATED_REF_CLK_VLV |
1649 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1650 if (pipe != PIPE_A)
1651 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1652
1653 I915_WRITE(DPLL(pipe), val);
1654 POSTING_READ(DPLL(pipe));
1655 }
1656
1657 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1658 {
1659 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1660 u32 val;
1661
1662 /* Make sure the pipe isn't still relying on us */
1663 assert_pipe_disabled(dev_priv, pipe);
1664
1665 val = DPLL_SSC_REF_CLK_CHV |
1666 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1667 if (pipe != PIPE_A)
1668 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1669
1670 I915_WRITE(DPLL(pipe), val);
1671 POSTING_READ(DPLL(pipe));
1672
1673 mutex_lock(&dev_priv->sb_lock);
1674
1675 /* Disable 10bit clock to display controller */
1676 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1677 val &= ~DPIO_DCLKP_EN;
1678 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1679
1680 mutex_unlock(&dev_priv->sb_lock);
1681 }
1682
1683 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1684 struct intel_digital_port *dport,
1685 unsigned int expected_mask)
1686 {
1687 u32 port_mask;
1688 i915_reg_t dpll_reg;
1689
1690 switch (dport->port) {
1691 case PORT_B:
1692 port_mask = DPLL_PORTB_READY_MASK;
1693 dpll_reg = DPLL(0);
1694 break;
1695 case PORT_C:
1696 port_mask = DPLL_PORTC_READY_MASK;
1697 dpll_reg = DPLL(0);
1698 expected_mask <<= 4;
1699 break;
1700 case PORT_D:
1701 port_mask = DPLL_PORTD_READY_MASK;
1702 dpll_reg = DPIO_PHY_STATUS;
1703 break;
1704 default:
1705 BUG();
1706 }
1707
1708 if (intel_wait_for_register(dev_priv,
1709 dpll_reg, port_mask, expected_mask,
1710 1000))
1711 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1712 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1713 }
1714
1715 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716 enum pipe pipe)
1717 {
1718 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1719 pipe);
1720 i915_reg_t reg;
1721 uint32_t val, pipeconf_val;
1722
1723 /* Make sure PCH DPLL is enabled */
1724 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1725
1726 /* FDI must be feeding us bits for PCH ports */
1727 assert_fdi_tx_enabled(dev_priv, pipe);
1728 assert_fdi_rx_enabled(dev_priv, pipe);
1729
1730 if (HAS_PCH_CPT(dev_priv)) {
1731 /* Workaround: Set the timing override bit before enabling the
1732 * pch transcoder. */
1733 reg = TRANS_CHICKEN2(pipe);
1734 val = I915_READ(reg);
1735 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1736 I915_WRITE(reg, val);
1737 }
1738
1739 reg = PCH_TRANSCONF(pipe);
1740 val = I915_READ(reg);
1741 pipeconf_val = I915_READ(PIPECONF(pipe));
1742
1743 if (HAS_PCH_IBX(dev_priv)) {
1744 /*
1745 * Make the BPC in transcoder be consistent with
1746 * that in pipeconf reg. For HDMI we must use 8bpc
1747 * here for both 8bpc and 12bpc.
1748 */
1749 val &= ~PIPECONF_BPC_MASK;
1750 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1751 val |= PIPECONF_8BPC;
1752 else
1753 val |= pipeconf_val & PIPECONF_BPC_MASK;
1754 }
1755
1756 val &= ~TRANS_INTERLACE_MASK;
1757 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1758 if (HAS_PCH_IBX(dev_priv) &&
1759 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1760 val |= TRANS_LEGACY_INTERLACED_ILK;
1761 else
1762 val |= TRANS_INTERLACED;
1763 else
1764 val |= TRANS_PROGRESSIVE;
1765
1766 I915_WRITE(reg, val | TRANS_ENABLE);
1767 if (intel_wait_for_register(dev_priv,
1768 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1769 100))
1770 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1771 }
1772
1773 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1774 enum transcoder cpu_transcoder)
1775 {
1776 u32 val, pipeconf_val;
1777
1778 /* FDI must be feeding us bits for PCH ports */
1779 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1780 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1781
1782 /* Workaround: set timing override bit. */
1783 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1784 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1785 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1786
1787 val = TRANS_ENABLE;
1788 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1789
1790 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1791 PIPECONF_INTERLACED_ILK)
1792 val |= TRANS_INTERLACED;
1793 else
1794 val |= TRANS_PROGRESSIVE;
1795
1796 I915_WRITE(LPT_TRANSCONF, val);
1797 if (intel_wait_for_register(dev_priv,
1798 LPT_TRANSCONF,
1799 TRANS_STATE_ENABLE,
1800 TRANS_STATE_ENABLE,
1801 100))
1802 DRM_ERROR("Failed to enable PCH transcoder\n");
1803 }
1804
1805 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807 {
1808 i915_reg_t reg;
1809 uint32_t val;
1810
1811 /* FDI relies on the transcoder */
1812 assert_fdi_tx_disabled(dev_priv, pipe);
1813 assert_fdi_rx_disabled(dev_priv, pipe);
1814
1815 /* Ports must be off as well */
1816 assert_pch_ports_disabled(dev_priv, pipe);
1817
1818 reg = PCH_TRANSCONF(pipe);
1819 val = I915_READ(reg);
1820 val &= ~TRANS_ENABLE;
1821 I915_WRITE(reg, val);
1822 /* wait for PCH transcoder off, transcoder state */
1823 if (intel_wait_for_register(dev_priv,
1824 reg, TRANS_STATE_ENABLE, 0,
1825 50))
1826 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1827
1828 if (HAS_PCH_CPT(dev_priv)) {
1829 /* Workaround: Clear the timing override chicken bit again. */
1830 reg = TRANS_CHICKEN2(pipe);
1831 val = I915_READ(reg);
1832 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1833 I915_WRITE(reg, val);
1834 }
1835 }
1836
1837 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1838 {
1839 u32 val;
1840
1841 val = I915_READ(LPT_TRANSCONF);
1842 val &= ~TRANS_ENABLE;
1843 I915_WRITE(LPT_TRANSCONF, val);
1844 /* wait for PCH transcoder off, transcoder state */
1845 if (intel_wait_for_register(dev_priv,
1846 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1847 50))
1848 DRM_ERROR("Failed to disable PCH transcoder\n");
1849
1850 /* Workaround: clear timing override bit. */
1851 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1852 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1853 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1854 }
1855
1856 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1857 {
1858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859
1860 WARN_ON(!crtc->config->has_pch_encoder);
1861
1862 if (HAS_PCH_LPT(dev_priv))
1863 return TRANSCODER_A;
1864 else
1865 return (enum transcoder) crtc->pipe;
1866 }
1867
1868 /**
1869 * intel_enable_pipe - enable a pipe, asserting requirements
1870 * @crtc: crtc responsible for the pipe
1871 *
1872 * Enable @crtc's pipe, making sure that various hardware specific requirements
1873 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1874 */
1875 static void intel_enable_pipe(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = to_i915(dev);
1879 enum pipe pipe = crtc->pipe;
1880 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1881 i915_reg_t reg;
1882 u32 val;
1883
1884 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1885
1886 assert_planes_disabled(dev_priv, pipe);
1887 assert_cursor_disabled(dev_priv, pipe);
1888 assert_sprites_disabled(dev_priv, pipe);
1889
1890 /*
1891 * A pipe without a PLL won't actually be able to drive bits from
1892 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1893 * need the check.
1894 */
1895 if (HAS_GMCH_DISPLAY(dev_priv)) {
1896 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1897 assert_dsi_pll_enabled(dev_priv);
1898 else
1899 assert_pll_enabled(dev_priv, pipe);
1900 } else {
1901 if (crtc->config->has_pch_encoder) {
1902 /* if driving the PCH, we need FDI enabled */
1903 assert_fdi_rx_pll_enabled(dev_priv,
1904 (enum pipe) intel_crtc_pch_transcoder(crtc));
1905 assert_fdi_tx_pll_enabled(dev_priv,
1906 (enum pipe) cpu_transcoder);
1907 }
1908 /* FIXME: assert CPU port conditions for SNB+ */
1909 }
1910
1911 reg = PIPECONF(cpu_transcoder);
1912 val = I915_READ(reg);
1913 if (val & PIPECONF_ENABLE) {
1914 /* we keep both pipes enabled on 830 */
1915 WARN_ON(!IS_I830(dev_priv));
1916 return;
1917 }
1918
1919 I915_WRITE(reg, val | PIPECONF_ENABLE);
1920 POSTING_READ(reg);
1921
1922 /*
1923 * Until the pipe starts DSL will read as 0, which would cause
1924 * an apparent vblank timestamp jump, which messes up also the
1925 * frame count when it's derived from the timestamps. So let's
1926 * wait for the pipe to start properly before we call
1927 * drm_crtc_vblank_on()
1928 */
1929 if (dev->max_vblank_count == 0 &&
1930 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1931 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1932 }
1933
1934 /**
1935 * intel_disable_pipe - disable a pipe, asserting requirements
1936 * @crtc: crtc whose pipes is to be disabled
1937 *
1938 * Disable the pipe of @crtc, making sure that various hardware
1939 * specific requirements are met, if applicable, e.g. plane
1940 * disabled, panel fitter off, etc.
1941 *
1942 * Will wait until the pipe has shut down before returning.
1943 */
1944 static void intel_disable_pipe(struct intel_crtc *crtc)
1945 {
1946 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1947 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1948 enum pipe pipe = crtc->pipe;
1949 i915_reg_t reg;
1950 u32 val;
1951
1952 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1953
1954 /*
1955 * Make sure planes won't keep trying to pump pixels to us,
1956 * or we might hang the display.
1957 */
1958 assert_planes_disabled(dev_priv, pipe);
1959 assert_cursor_disabled(dev_priv, pipe);
1960 assert_sprites_disabled(dev_priv, pipe);
1961
1962 reg = PIPECONF(cpu_transcoder);
1963 val = I915_READ(reg);
1964 if ((val & PIPECONF_ENABLE) == 0)
1965 return;
1966
1967 /*
1968 * Double wide has implications for planes
1969 * so best keep it disabled when not needed.
1970 */
1971 if (crtc->config->double_wide)
1972 val &= ~PIPECONF_DOUBLE_WIDE;
1973
1974 /* Don't disable pipe or pipe PLLs if needed */
1975 if (!IS_I830(dev_priv))
1976 val &= ~PIPECONF_ENABLE;
1977
1978 I915_WRITE(reg, val);
1979 if ((val & PIPECONF_ENABLE) == 0)
1980 intel_wait_for_pipe_off(crtc);
1981 }
1982
1983 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1984 {
1985 return IS_GEN2(dev_priv) ? 2048 : 4096;
1986 }
1987
1988 static unsigned int
1989 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1990 {
1991 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1992 unsigned int cpp = fb->format->cpp[plane];
1993
1994 switch (fb->modifier) {
1995 case DRM_FORMAT_MOD_LINEAR:
1996 return cpp;
1997 case I915_FORMAT_MOD_X_TILED:
1998 if (IS_GEN2(dev_priv))
1999 return 128;
2000 else
2001 return 512;
2002 case I915_FORMAT_MOD_Y_TILED:
2003 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2004 return 128;
2005 else
2006 return 512;
2007 case I915_FORMAT_MOD_Yf_TILED:
2008 switch (cpp) {
2009 case 1:
2010 return 64;
2011 case 2:
2012 case 4:
2013 return 128;
2014 case 8:
2015 case 16:
2016 return 256;
2017 default:
2018 MISSING_CASE(cpp);
2019 return cpp;
2020 }
2021 break;
2022 default:
2023 MISSING_CASE(fb->modifier);
2024 return cpp;
2025 }
2026 }
2027
2028 static unsigned int
2029 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2030 {
2031 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2032 return 1;
2033 else
2034 return intel_tile_size(to_i915(fb->dev)) /
2035 intel_tile_width_bytes(fb, plane);
2036 }
2037
2038 /* Return the tile dimensions in pixel units */
2039 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2040 unsigned int *tile_width,
2041 unsigned int *tile_height)
2042 {
2043 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2044 unsigned int cpp = fb->format->cpp[plane];
2045
2046 *tile_width = tile_width_bytes / cpp;
2047 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2048 }
2049
2050 unsigned int
2051 intel_fb_align_height(const struct drm_framebuffer *fb,
2052 int plane, unsigned int height)
2053 {
2054 unsigned int tile_height = intel_tile_height(fb, plane);
2055
2056 return ALIGN(height, tile_height);
2057 }
2058
2059 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2060 {
2061 unsigned int size = 0;
2062 int i;
2063
2064 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2065 size += rot_info->plane[i].width * rot_info->plane[i].height;
2066
2067 return size;
2068 }
2069
2070 static void
2071 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2072 const struct drm_framebuffer *fb,
2073 unsigned int rotation)
2074 {
2075 view->type = I915_GGTT_VIEW_NORMAL;
2076 if (drm_rotation_90_or_270(rotation)) {
2077 view->type = I915_GGTT_VIEW_ROTATED;
2078 view->rotated = to_intel_framebuffer(fb)->rot_info;
2079 }
2080 }
2081
2082 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2083 {
2084 if (IS_I830(dev_priv))
2085 return 16 * 1024;
2086 else if (IS_I85X(dev_priv))
2087 return 256;
2088 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2089 return 32;
2090 else
2091 return 4 * 1024;
2092 }
2093
2094 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2095 {
2096 if (INTEL_INFO(dev_priv)->gen >= 9)
2097 return 256 * 1024;
2098 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2099 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2100 return 128 * 1024;
2101 else if (INTEL_INFO(dev_priv)->gen >= 4)
2102 return 4 * 1024;
2103 else
2104 return 0;
2105 }
2106
2107 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2108 int plane)
2109 {
2110 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2111
2112 /* AUX_DIST needs only 4K alignment */
2113 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2114 return 4096;
2115
2116 switch (fb->modifier) {
2117 case DRM_FORMAT_MOD_LINEAR:
2118 return intel_linear_alignment(dev_priv);
2119 case I915_FORMAT_MOD_X_TILED:
2120 if (INTEL_GEN(dev_priv) >= 9)
2121 return 256 * 1024;
2122 return 0;
2123 case I915_FORMAT_MOD_Y_TILED:
2124 case I915_FORMAT_MOD_Yf_TILED:
2125 return 1 * 1024 * 1024;
2126 default:
2127 MISSING_CASE(fb->modifier);
2128 return 0;
2129 }
2130 }
2131
2132 struct i915_vma *
2133 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2134 {
2135 struct drm_device *dev = fb->dev;
2136 struct drm_i915_private *dev_priv = to_i915(dev);
2137 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2138 struct i915_ggtt_view view;
2139 struct i915_vma *vma;
2140 u32 alignment;
2141
2142 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2143
2144 alignment = intel_surf_alignment(fb, 0);
2145
2146 intel_fill_fb_ggtt_view(&view, fb, rotation);
2147
2148 /* Note that the w/a also requires 64 PTE of padding following the
2149 * bo. We currently fill all unused PTE with the shadow page and so
2150 * we should always have valid PTE following the scanout preventing
2151 * the VT-d warning.
2152 */
2153 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2154 alignment = 256 * 1024;
2155
2156 /*
2157 * Global gtt pte registers are special registers which actually forward
2158 * writes to a chunk of system memory. Which means that there is no risk
2159 * that the register values disappear as soon as we call
2160 * intel_runtime_pm_put(), so it is correct to wrap only the
2161 * pin/unpin/fence and not more.
2162 */
2163 intel_runtime_pm_get(dev_priv);
2164
2165 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2166 if (IS_ERR(vma))
2167 goto err;
2168
2169 if (i915_vma_is_map_and_fenceable(vma)) {
2170 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2171 * fence, whereas 965+ only requires a fence if using
2172 * framebuffer compression. For simplicity, we always, when
2173 * possible, install a fence as the cost is not that onerous.
2174 *
2175 * If we fail to fence the tiled scanout, then either the
2176 * modeset will reject the change (which is highly unlikely as
2177 * the affected systems, all but one, do not have unmappable
2178 * space) or we will not be able to enable full powersaving
2179 * techniques (also likely not to apply due to various limits
2180 * FBC and the like impose on the size of the buffer, which
2181 * presumably we violated anyway with this unmappable buffer).
2182 * Anyway, it is presumably better to stumble onwards with
2183 * something and try to run the system in a "less than optimal"
2184 * mode that matches the user configuration.
2185 */
2186 if (i915_vma_get_fence(vma) == 0)
2187 i915_vma_pin_fence(vma);
2188 }
2189
2190 i915_vma_get(vma);
2191 err:
2192 intel_runtime_pm_put(dev_priv);
2193 return vma;
2194 }
2195
2196 void intel_unpin_fb_vma(struct i915_vma *vma)
2197 {
2198 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2199
2200 i915_vma_unpin_fence(vma);
2201 i915_gem_object_unpin_from_display_plane(vma);
2202 i915_vma_put(vma);
2203 }
2204
2205 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2206 unsigned int rotation)
2207 {
2208 if (drm_rotation_90_or_270(rotation))
2209 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2210 else
2211 return fb->pitches[plane];
2212 }
2213
2214 /*
2215 * Convert the x/y offsets into a linear offset.
2216 * Only valid with 0/180 degree rotation, which is fine since linear
2217 * offset is only used with linear buffers on pre-hsw and tiled buffers
2218 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2219 */
2220 u32 intel_fb_xy_to_linear(int x, int y,
2221 const struct intel_plane_state *state,
2222 int plane)
2223 {
2224 const struct drm_framebuffer *fb = state->base.fb;
2225 unsigned int cpp = fb->format->cpp[plane];
2226 unsigned int pitch = fb->pitches[plane];
2227
2228 return y * pitch + x * cpp;
2229 }
2230
2231 /*
2232 * Add the x/y offsets derived from fb->offsets[] to the user
2233 * specified plane src x/y offsets. The resulting x/y offsets
2234 * specify the start of scanout from the beginning of the gtt mapping.
2235 */
2236 void intel_add_fb_offsets(int *x, int *y,
2237 const struct intel_plane_state *state,
2238 int plane)
2239
2240 {
2241 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2242 unsigned int rotation = state->base.rotation;
2243
2244 if (drm_rotation_90_or_270(rotation)) {
2245 *x += intel_fb->rotated[plane].x;
2246 *y += intel_fb->rotated[plane].y;
2247 } else {
2248 *x += intel_fb->normal[plane].x;
2249 *y += intel_fb->normal[plane].y;
2250 }
2251 }
2252
2253 /*
2254 * Input tile dimensions and pitch must already be
2255 * rotated to match x and y, and in pixel units.
2256 */
2257 static u32 _intel_adjust_tile_offset(int *x, int *y,
2258 unsigned int tile_width,
2259 unsigned int tile_height,
2260 unsigned int tile_size,
2261 unsigned int pitch_tiles,
2262 u32 old_offset,
2263 u32 new_offset)
2264 {
2265 unsigned int pitch_pixels = pitch_tiles * tile_width;
2266 unsigned int tiles;
2267
2268 WARN_ON(old_offset & (tile_size - 1));
2269 WARN_ON(new_offset & (tile_size - 1));
2270 WARN_ON(new_offset > old_offset);
2271
2272 tiles = (old_offset - new_offset) / tile_size;
2273
2274 *y += tiles / pitch_tiles * tile_height;
2275 *x += tiles % pitch_tiles * tile_width;
2276
2277 /* minimize x in case it got needlessly big */
2278 *y += *x / pitch_pixels * tile_height;
2279 *x %= pitch_pixels;
2280
2281 return new_offset;
2282 }
2283
2284 /*
2285 * Adjust the tile offset by moving the difference into
2286 * the x/y offsets.
2287 */
2288 static u32 intel_adjust_tile_offset(int *x, int *y,
2289 const struct intel_plane_state *state, int plane,
2290 u32 old_offset, u32 new_offset)
2291 {
2292 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2293 const struct drm_framebuffer *fb = state->base.fb;
2294 unsigned int cpp = fb->format->cpp[plane];
2295 unsigned int rotation = state->base.rotation;
2296 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2297
2298 WARN_ON(new_offset > old_offset);
2299
2300 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2301 unsigned int tile_size, tile_width, tile_height;
2302 unsigned int pitch_tiles;
2303
2304 tile_size = intel_tile_size(dev_priv);
2305 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2306
2307 if (drm_rotation_90_or_270(rotation)) {
2308 pitch_tiles = pitch / tile_height;
2309 swap(tile_width, tile_height);
2310 } else {
2311 pitch_tiles = pitch / (tile_width * cpp);
2312 }
2313
2314 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2315 tile_size, pitch_tiles,
2316 old_offset, new_offset);
2317 } else {
2318 old_offset += *y * pitch + *x * cpp;
2319
2320 *y = (old_offset - new_offset) / pitch;
2321 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2322 }
2323
2324 return new_offset;
2325 }
2326
2327 /*
2328 * Computes the linear offset to the base tile and adjusts
2329 * x, y. bytes per pixel is assumed to be a power-of-two.
2330 *
2331 * In the 90/270 rotated case, x and y are assumed
2332 * to be already rotated to match the rotated GTT view, and
2333 * pitch is the tile_height aligned framebuffer height.
2334 *
2335 * This function is used when computing the derived information
2336 * under intel_framebuffer, so using any of that information
2337 * here is not allowed. Anything under drm_framebuffer can be
2338 * used. This is why the user has to pass in the pitch since it
2339 * is specified in the rotated orientation.
2340 */
2341 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2342 int *x, int *y,
2343 const struct drm_framebuffer *fb, int plane,
2344 unsigned int pitch,
2345 unsigned int rotation,
2346 u32 alignment)
2347 {
2348 uint64_t fb_modifier = fb->modifier;
2349 unsigned int cpp = fb->format->cpp[plane];
2350 u32 offset, offset_aligned;
2351
2352 if (alignment)
2353 alignment--;
2354
2355 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2356 unsigned int tile_size, tile_width, tile_height;
2357 unsigned int tile_rows, tiles, pitch_tiles;
2358
2359 tile_size = intel_tile_size(dev_priv);
2360 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2361
2362 if (drm_rotation_90_or_270(rotation)) {
2363 pitch_tiles = pitch / tile_height;
2364 swap(tile_width, tile_height);
2365 } else {
2366 pitch_tiles = pitch / (tile_width * cpp);
2367 }
2368
2369 tile_rows = *y / tile_height;
2370 *y %= tile_height;
2371
2372 tiles = *x / tile_width;
2373 *x %= tile_width;
2374
2375 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2376 offset_aligned = offset & ~alignment;
2377
2378 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2379 tile_size, pitch_tiles,
2380 offset, offset_aligned);
2381 } else {
2382 offset = *y * pitch + *x * cpp;
2383 offset_aligned = offset & ~alignment;
2384
2385 *y = (offset & alignment) / pitch;
2386 *x = ((offset & alignment) - *y * pitch) / cpp;
2387 }
2388
2389 return offset_aligned;
2390 }
2391
2392 u32 intel_compute_tile_offset(int *x, int *y,
2393 const struct intel_plane_state *state,
2394 int plane)
2395 {
2396 struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2397 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2398 const struct drm_framebuffer *fb = state->base.fb;
2399 unsigned int rotation = state->base.rotation;
2400 int pitch = intel_fb_pitch(fb, plane, rotation);
2401 u32 alignment;
2402
2403 if (intel_plane->id == PLANE_CURSOR)
2404 alignment = intel_cursor_alignment(dev_priv);
2405 else
2406 alignment = intel_surf_alignment(fb, plane);
2407
2408 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2409 rotation, alignment);
2410 }
2411
2412 /* Convert the fb->offset[] linear offset into x/y offsets */
2413 static void intel_fb_offset_to_xy(int *x, int *y,
2414 const struct drm_framebuffer *fb, int plane)
2415 {
2416 unsigned int cpp = fb->format->cpp[plane];
2417 unsigned int pitch = fb->pitches[plane];
2418 u32 linear_offset = fb->offsets[plane];
2419
2420 *y = linear_offset / pitch;
2421 *x = linear_offset % pitch / cpp;
2422 }
2423
2424 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2425 {
2426 switch (fb_modifier) {
2427 case I915_FORMAT_MOD_X_TILED:
2428 return I915_TILING_X;
2429 case I915_FORMAT_MOD_Y_TILED:
2430 return I915_TILING_Y;
2431 default:
2432 return I915_TILING_NONE;
2433 }
2434 }
2435
2436 static int
2437 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2438 struct drm_framebuffer *fb)
2439 {
2440 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2441 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2442 u32 gtt_offset_rotated = 0;
2443 unsigned int max_size = 0;
2444 int i, num_planes = fb->format->num_planes;
2445 unsigned int tile_size = intel_tile_size(dev_priv);
2446
2447 for (i = 0; i < num_planes; i++) {
2448 unsigned int width, height;
2449 unsigned int cpp, size;
2450 u32 offset;
2451 int x, y;
2452
2453 cpp = fb->format->cpp[i];
2454 width = drm_framebuffer_plane_width(fb->width, fb, i);
2455 height = drm_framebuffer_plane_height(fb->height, fb, i);
2456
2457 intel_fb_offset_to_xy(&x, &y, fb, i);
2458
2459 /*
2460 * The fence (if used) is aligned to the start of the object
2461 * so having the framebuffer wrap around across the edge of the
2462 * fenced region doesn't really work. We have no API to configure
2463 * the fence start offset within the object (nor could we probably
2464 * on gen2/3). So it's just easier if we just require that the
2465 * fb layout agrees with the fence layout. We already check that the
2466 * fb stride matches the fence stride elsewhere.
2467 */
2468 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2469 (x + width) * cpp > fb->pitches[i]) {
2470 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2471 i, fb->offsets[i]);
2472 return -EINVAL;
2473 }
2474
2475 /*
2476 * First pixel of the framebuffer from
2477 * the start of the normal gtt mapping.
2478 */
2479 intel_fb->normal[i].x = x;
2480 intel_fb->normal[i].y = y;
2481
2482 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2483 fb, i, fb->pitches[i],
2484 DRM_MODE_ROTATE_0, tile_size);
2485 offset /= tile_size;
2486
2487 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2488 unsigned int tile_width, tile_height;
2489 unsigned int pitch_tiles;
2490 struct drm_rect r;
2491
2492 intel_tile_dims(fb, i, &tile_width, &tile_height);
2493
2494 rot_info->plane[i].offset = offset;
2495 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2496 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2497 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2498
2499 intel_fb->rotated[i].pitch =
2500 rot_info->plane[i].height * tile_height;
2501
2502 /* how many tiles does this plane need */
2503 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2504 /*
2505 * If the plane isn't horizontally tile aligned,
2506 * we need one more tile.
2507 */
2508 if (x != 0)
2509 size++;
2510
2511 /* rotate the x/y offsets to match the GTT view */
2512 r.x1 = x;
2513 r.y1 = y;
2514 r.x2 = x + width;
2515 r.y2 = y + height;
2516 drm_rect_rotate(&r,
2517 rot_info->plane[i].width * tile_width,
2518 rot_info->plane[i].height * tile_height,
2519 DRM_MODE_ROTATE_270);
2520 x = r.x1;
2521 y = r.y1;
2522
2523 /* rotate the tile dimensions to match the GTT view */
2524 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2525 swap(tile_width, tile_height);
2526
2527 /*
2528 * We only keep the x/y offsets, so push all of the
2529 * gtt offset into the x/y offsets.
2530 */
2531 _intel_adjust_tile_offset(&x, &y,
2532 tile_width, tile_height,
2533 tile_size, pitch_tiles,
2534 gtt_offset_rotated * tile_size, 0);
2535
2536 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2537
2538 /*
2539 * First pixel of the framebuffer from
2540 * the start of the rotated gtt mapping.
2541 */
2542 intel_fb->rotated[i].x = x;
2543 intel_fb->rotated[i].y = y;
2544 } else {
2545 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2546 x * cpp, tile_size);
2547 }
2548
2549 /* how many tiles in total needed in the bo */
2550 max_size = max(max_size, offset + size);
2551 }
2552
2553 if (max_size * tile_size > intel_fb->obj->base.size) {
2554 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2555 max_size * tile_size, intel_fb->obj->base.size);
2556 return -EINVAL;
2557 }
2558
2559 return 0;
2560 }
2561
2562 static int i9xx_format_to_fourcc(int format)
2563 {
2564 switch (format) {
2565 case DISPPLANE_8BPP:
2566 return DRM_FORMAT_C8;
2567 case DISPPLANE_BGRX555:
2568 return DRM_FORMAT_XRGB1555;
2569 case DISPPLANE_BGRX565:
2570 return DRM_FORMAT_RGB565;
2571 default:
2572 case DISPPLANE_BGRX888:
2573 return DRM_FORMAT_XRGB8888;
2574 case DISPPLANE_RGBX888:
2575 return DRM_FORMAT_XBGR8888;
2576 case DISPPLANE_BGRX101010:
2577 return DRM_FORMAT_XRGB2101010;
2578 case DISPPLANE_RGBX101010:
2579 return DRM_FORMAT_XBGR2101010;
2580 }
2581 }
2582
2583 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2584 {
2585 switch (format) {
2586 case PLANE_CTL_FORMAT_RGB_565:
2587 return DRM_FORMAT_RGB565;
2588 default:
2589 case PLANE_CTL_FORMAT_XRGB_8888:
2590 if (rgb_order) {
2591 if (alpha)
2592 return DRM_FORMAT_ABGR8888;
2593 else
2594 return DRM_FORMAT_XBGR8888;
2595 } else {
2596 if (alpha)
2597 return DRM_FORMAT_ARGB8888;
2598 else
2599 return DRM_FORMAT_XRGB8888;
2600 }
2601 case PLANE_CTL_FORMAT_XRGB_2101010:
2602 if (rgb_order)
2603 return DRM_FORMAT_XBGR2101010;
2604 else
2605 return DRM_FORMAT_XRGB2101010;
2606 }
2607 }
2608
2609 static bool
2610 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2611 struct intel_initial_plane_config *plane_config)
2612 {
2613 struct drm_device *dev = crtc->base.dev;
2614 struct drm_i915_private *dev_priv = to_i915(dev);
2615 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2616 struct drm_i915_gem_object *obj = NULL;
2617 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2618 struct drm_framebuffer *fb = &plane_config->fb->base;
2619 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2620 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2621 PAGE_SIZE);
2622
2623 size_aligned -= base_aligned;
2624
2625 if (plane_config->size == 0)
2626 return false;
2627
2628 /* If the FB is too big, just don't use it since fbdev is not very
2629 * important and we should probably use that space with FBC or other
2630 * features. */
2631 if (size_aligned * 2 > ggtt->stolen_usable_size)
2632 return false;
2633
2634 mutex_lock(&dev->struct_mutex);
2635 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2636 base_aligned,
2637 base_aligned,
2638 size_aligned);
2639 mutex_unlock(&dev->struct_mutex);
2640 if (!obj)
2641 return false;
2642
2643 if (plane_config->tiling == I915_TILING_X)
2644 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2645
2646 mode_cmd.pixel_format = fb->format->format;
2647 mode_cmd.width = fb->width;
2648 mode_cmd.height = fb->height;
2649 mode_cmd.pitches[0] = fb->pitches[0];
2650 mode_cmd.modifier[0] = fb->modifier;
2651 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2652
2653 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2654 DRM_DEBUG_KMS("intel fb init failed\n");
2655 goto out_unref_obj;
2656 }
2657
2658
2659 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2660 return true;
2661
2662 out_unref_obj:
2663 i915_gem_object_put(obj);
2664 return false;
2665 }
2666
2667 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2668 static void
2669 update_state_fb(struct drm_plane *plane)
2670 {
2671 if (plane->fb == plane->state->fb)
2672 return;
2673
2674 if (plane->state->fb)
2675 drm_framebuffer_unreference(plane->state->fb);
2676 plane->state->fb = plane->fb;
2677 if (plane->state->fb)
2678 drm_framebuffer_reference(plane->state->fb);
2679 }
2680
2681 static void
2682 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2683 struct intel_plane_state *plane_state,
2684 bool visible)
2685 {
2686 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2687
2688 plane_state->base.visible = visible;
2689
2690 /* FIXME pre-g4x don't work like this */
2691 if (visible) {
2692 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2693 crtc_state->active_planes |= BIT(plane->id);
2694 } else {
2695 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2696 crtc_state->active_planes &= ~BIT(plane->id);
2697 }
2698
2699 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2700 crtc_state->base.crtc->name,
2701 crtc_state->active_planes);
2702 }
2703
2704 static void
2705 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2706 struct intel_initial_plane_config *plane_config)
2707 {
2708 struct drm_device *dev = intel_crtc->base.dev;
2709 struct drm_i915_private *dev_priv = to_i915(dev);
2710 struct drm_crtc *c;
2711 struct drm_i915_gem_object *obj;
2712 struct drm_plane *primary = intel_crtc->base.primary;
2713 struct drm_plane_state *plane_state = primary->state;
2714 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2715 struct intel_plane *intel_plane = to_intel_plane(primary);
2716 struct intel_plane_state *intel_state =
2717 to_intel_plane_state(plane_state);
2718 struct drm_framebuffer *fb;
2719
2720 if (!plane_config->fb)
2721 return;
2722
2723 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2724 fb = &plane_config->fb->base;
2725 goto valid_fb;
2726 }
2727
2728 kfree(plane_config->fb);
2729
2730 /*
2731 * Failed to alloc the obj, check to see if we should share
2732 * an fb with another CRTC instead
2733 */
2734 for_each_crtc(dev, c) {
2735 struct intel_plane_state *state;
2736
2737 if (c == &intel_crtc->base)
2738 continue;
2739
2740 if (!to_intel_crtc(c)->active)
2741 continue;
2742
2743 state = to_intel_plane_state(c->primary->state);
2744 if (!state->vma)
2745 continue;
2746
2747 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2748 fb = c->primary->fb;
2749 drm_framebuffer_reference(fb);
2750 goto valid_fb;
2751 }
2752 }
2753
2754 /*
2755 * We've failed to reconstruct the BIOS FB. Current display state
2756 * indicates that the primary plane is visible, but has a NULL FB,
2757 * which will lead to problems later if we don't fix it up. The
2758 * simplest solution is to just disable the primary plane now and
2759 * pretend the BIOS never had it enabled.
2760 */
2761 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2762 to_intel_plane_state(plane_state),
2763 false);
2764 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2765 trace_intel_disable_plane(primary, intel_crtc);
2766 intel_plane->disable_plane(intel_plane, intel_crtc);
2767
2768 return;
2769
2770 valid_fb:
2771 mutex_lock(&dev->struct_mutex);
2772 intel_state->vma =
2773 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2774 mutex_unlock(&dev->struct_mutex);
2775 if (IS_ERR(intel_state->vma)) {
2776 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2777 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2778
2779 intel_state->vma = NULL;
2780 drm_framebuffer_unreference(fb);
2781 return;
2782 }
2783
2784 plane_state->src_x = 0;
2785 plane_state->src_y = 0;
2786 plane_state->src_w = fb->width << 16;
2787 plane_state->src_h = fb->height << 16;
2788
2789 plane_state->crtc_x = 0;
2790 plane_state->crtc_y = 0;
2791 plane_state->crtc_w = fb->width;
2792 plane_state->crtc_h = fb->height;
2793
2794 intel_state->base.src = drm_plane_state_src(plane_state);
2795 intel_state->base.dst = drm_plane_state_dest(plane_state);
2796
2797 obj = intel_fb_obj(fb);
2798 if (i915_gem_object_is_tiled(obj))
2799 dev_priv->preserve_bios_swizzle = true;
2800
2801 drm_framebuffer_reference(fb);
2802 primary->fb = primary->state->fb = fb;
2803 primary->crtc = primary->state->crtc = &intel_crtc->base;
2804
2805 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2806 to_intel_plane_state(plane_state),
2807 true);
2808
2809 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2810 &obj->frontbuffer_bits);
2811 }
2812
2813 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2814 unsigned int rotation)
2815 {
2816 int cpp = fb->format->cpp[plane];
2817
2818 switch (fb->modifier) {
2819 case DRM_FORMAT_MOD_LINEAR:
2820 case I915_FORMAT_MOD_X_TILED:
2821 switch (cpp) {
2822 case 8:
2823 return 4096;
2824 case 4:
2825 case 2:
2826 case 1:
2827 return 8192;
2828 default:
2829 MISSING_CASE(cpp);
2830 break;
2831 }
2832 break;
2833 case I915_FORMAT_MOD_Y_TILED:
2834 case I915_FORMAT_MOD_Yf_TILED:
2835 switch (cpp) {
2836 case 8:
2837 return 2048;
2838 case 4:
2839 return 4096;
2840 case 2:
2841 case 1:
2842 return 8192;
2843 default:
2844 MISSING_CASE(cpp);
2845 break;
2846 }
2847 break;
2848 default:
2849 MISSING_CASE(fb->modifier);
2850 }
2851
2852 return 2048;
2853 }
2854
2855 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2856 {
2857 const struct drm_framebuffer *fb = plane_state->base.fb;
2858 unsigned int rotation = plane_state->base.rotation;
2859 int x = plane_state->base.src.x1 >> 16;
2860 int y = plane_state->base.src.y1 >> 16;
2861 int w = drm_rect_width(&plane_state->base.src) >> 16;
2862 int h = drm_rect_height(&plane_state->base.src) >> 16;
2863 int max_width = skl_max_plane_width(fb, 0, rotation);
2864 int max_height = 4096;
2865 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2866
2867 if (w > max_width || h > max_height) {
2868 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2869 w, h, max_width, max_height);
2870 return -EINVAL;
2871 }
2872
2873 intel_add_fb_offsets(&x, &y, plane_state, 0);
2874 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2875 alignment = intel_surf_alignment(fb, 0);
2876
2877 /*
2878 * AUX surface offset is specified as the distance from the
2879 * main surface offset, and it must be non-negative. Make
2880 * sure that is what we will get.
2881 */
2882 if (offset > aux_offset)
2883 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2884 offset, aux_offset & ~(alignment - 1));
2885
2886 /*
2887 * When using an X-tiled surface, the plane blows up
2888 * if the x offset + width exceed the stride.
2889 *
2890 * TODO: linear and Y-tiled seem fine, Yf untested,
2891 */
2892 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2893 int cpp = fb->format->cpp[0];
2894
2895 while ((x + w) * cpp > fb->pitches[0]) {
2896 if (offset == 0) {
2897 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2898 return -EINVAL;
2899 }
2900
2901 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2902 offset, offset - alignment);
2903 }
2904 }
2905
2906 plane_state->main.offset = offset;
2907 plane_state->main.x = x;
2908 plane_state->main.y = y;
2909
2910 return 0;
2911 }
2912
2913 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2914 {
2915 const struct drm_framebuffer *fb = plane_state->base.fb;
2916 unsigned int rotation = plane_state->base.rotation;
2917 int max_width = skl_max_plane_width(fb, 1, rotation);
2918 int max_height = 4096;
2919 int x = plane_state->base.src.x1 >> 17;
2920 int y = plane_state->base.src.y1 >> 17;
2921 int w = drm_rect_width(&plane_state->base.src) >> 17;
2922 int h = drm_rect_height(&plane_state->base.src) >> 17;
2923 u32 offset;
2924
2925 intel_add_fb_offsets(&x, &y, plane_state, 1);
2926 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2927
2928 /* FIXME not quite sure how/if these apply to the chroma plane */
2929 if (w > max_width || h > max_height) {
2930 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2931 w, h, max_width, max_height);
2932 return -EINVAL;
2933 }
2934
2935 plane_state->aux.offset = offset;
2936 plane_state->aux.x = x;
2937 plane_state->aux.y = y;
2938
2939 return 0;
2940 }
2941
2942 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2943 {
2944 const struct drm_framebuffer *fb = plane_state->base.fb;
2945 unsigned int rotation = plane_state->base.rotation;
2946 int ret;
2947
2948 if (!plane_state->base.visible)
2949 return 0;
2950
2951 /* Rotate src coordinates to match rotated GTT view */
2952 if (drm_rotation_90_or_270(rotation))
2953 drm_rect_rotate(&plane_state->base.src,
2954 fb->width << 16, fb->height << 16,
2955 DRM_MODE_ROTATE_270);
2956
2957 /*
2958 * Handle the AUX surface first since
2959 * the main surface setup depends on it.
2960 */
2961 if (fb->format->format == DRM_FORMAT_NV12) {
2962 ret = skl_check_nv12_aux_surface(plane_state);
2963 if (ret)
2964 return ret;
2965 } else {
2966 plane_state->aux.offset = ~0xfff;
2967 plane_state->aux.x = 0;
2968 plane_state->aux.y = 0;
2969 }
2970
2971 ret = skl_check_main_surface(plane_state);
2972 if (ret)
2973 return ret;
2974
2975 return 0;
2976 }
2977
2978 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2979 const struct intel_plane_state *plane_state)
2980 {
2981 struct drm_i915_private *dev_priv =
2982 to_i915(plane_state->base.plane->dev);
2983 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2984 const struct drm_framebuffer *fb = plane_state->base.fb;
2985 unsigned int rotation = plane_state->base.rotation;
2986 u32 dspcntr;
2987
2988 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2989
2990 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2991 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2992 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2993
2994 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2995 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2996
2997 if (INTEL_GEN(dev_priv) < 4)
2998 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
2999
3000 switch (fb->format->format) {
3001 case DRM_FORMAT_C8:
3002 dspcntr |= DISPPLANE_8BPP;
3003 break;
3004 case DRM_FORMAT_XRGB1555:
3005 dspcntr |= DISPPLANE_BGRX555;
3006 break;
3007 case DRM_FORMAT_RGB565:
3008 dspcntr |= DISPPLANE_BGRX565;
3009 break;
3010 case DRM_FORMAT_XRGB8888:
3011 dspcntr |= DISPPLANE_BGRX888;
3012 break;
3013 case DRM_FORMAT_XBGR8888:
3014 dspcntr |= DISPPLANE_RGBX888;
3015 break;
3016 case DRM_FORMAT_XRGB2101010:
3017 dspcntr |= DISPPLANE_BGRX101010;
3018 break;
3019 case DRM_FORMAT_XBGR2101010:
3020 dspcntr |= DISPPLANE_RGBX101010;
3021 break;
3022 default:
3023 MISSING_CASE(fb->format->format);
3024 return 0;
3025 }
3026
3027 if (INTEL_GEN(dev_priv) >= 4 &&
3028 fb->modifier == I915_FORMAT_MOD_X_TILED)
3029 dspcntr |= DISPPLANE_TILED;
3030
3031 if (rotation & DRM_MODE_ROTATE_180)
3032 dspcntr |= DISPPLANE_ROTATE_180;
3033
3034 if (rotation & DRM_MODE_REFLECT_X)
3035 dspcntr |= DISPPLANE_MIRROR;
3036
3037 return dspcntr;
3038 }
3039
3040 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3041 {
3042 struct drm_i915_private *dev_priv =
3043 to_i915(plane_state->base.plane->dev);
3044 int src_x = plane_state->base.src.x1 >> 16;
3045 int src_y = plane_state->base.src.y1 >> 16;
3046 u32 offset;
3047
3048 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3049
3050 if (INTEL_GEN(dev_priv) >= 4)
3051 offset = intel_compute_tile_offset(&src_x, &src_y,
3052 plane_state, 0);
3053 else
3054 offset = 0;
3055
3056 /* HSW/BDW do this automagically in hardware */
3057 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3058 unsigned int rotation = plane_state->base.rotation;
3059 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3060 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3061
3062 if (rotation & DRM_MODE_ROTATE_180) {
3063 src_x += src_w - 1;
3064 src_y += src_h - 1;
3065 } else if (rotation & DRM_MODE_REFLECT_X) {
3066 src_x += src_w - 1;
3067 }
3068 }
3069
3070 plane_state->main.offset = offset;
3071 plane_state->main.x = src_x;
3072 plane_state->main.y = src_y;
3073
3074 return 0;
3075 }
3076
3077 static void i9xx_update_primary_plane(struct intel_plane *primary,
3078 const struct intel_crtc_state *crtc_state,
3079 const struct intel_plane_state *plane_state)
3080 {
3081 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3082 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3083 const struct drm_framebuffer *fb = plane_state->base.fb;
3084 enum plane plane = primary->plane;
3085 u32 linear_offset;
3086 u32 dspcntr = plane_state->ctl;
3087 i915_reg_t reg = DSPCNTR(plane);
3088 int x = plane_state->main.x;
3089 int y = plane_state->main.y;
3090 unsigned long irqflags;
3091
3092 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3093
3094 if (INTEL_GEN(dev_priv) >= 4)
3095 crtc->dspaddr_offset = plane_state->main.offset;
3096 else
3097 crtc->dspaddr_offset = linear_offset;
3098
3099 crtc->adjusted_x = x;
3100 crtc->adjusted_y = y;
3101
3102 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3103
3104 if (INTEL_GEN(dev_priv) < 4) {
3105 /* pipesrc and dspsize control the size that is scaled from,
3106 * which should always be the user's requested size.
3107 */
3108 I915_WRITE_FW(DSPSIZE(plane),
3109 ((crtc_state->pipe_src_h - 1) << 16) |
3110 (crtc_state->pipe_src_w - 1));
3111 I915_WRITE_FW(DSPPOS(plane), 0);
3112 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3113 I915_WRITE_FW(PRIMSIZE(plane),
3114 ((crtc_state->pipe_src_h - 1) << 16) |
3115 (crtc_state->pipe_src_w - 1));
3116 I915_WRITE_FW(PRIMPOS(plane), 0);
3117 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3118 }
3119
3120 I915_WRITE_FW(reg, dspcntr);
3121
3122 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3123 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3124 I915_WRITE_FW(DSPSURF(plane),
3125 intel_plane_ggtt_offset(plane_state) +
3126 crtc->dspaddr_offset);
3127 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3128 } else if (INTEL_GEN(dev_priv) >= 4) {
3129 I915_WRITE_FW(DSPSURF(plane),
3130 intel_plane_ggtt_offset(plane_state) +
3131 crtc->dspaddr_offset);
3132 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3133 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3134 } else {
3135 I915_WRITE_FW(DSPADDR(plane),
3136 intel_plane_ggtt_offset(plane_state) +
3137 crtc->dspaddr_offset);
3138 }
3139 POSTING_READ_FW(reg);
3140
3141 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3142 }
3143
3144 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3145 struct intel_crtc *crtc)
3146 {
3147 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3148 enum plane plane = primary->plane;
3149 unsigned long irqflags;
3150
3151 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3152
3153 I915_WRITE_FW(DSPCNTR(plane), 0);
3154 if (INTEL_INFO(dev_priv)->gen >= 4)
3155 I915_WRITE_FW(DSPSURF(plane), 0);
3156 else
3157 I915_WRITE_FW(DSPADDR(plane), 0);
3158 POSTING_READ_FW(DSPCNTR(plane));
3159
3160 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3161 }
3162
3163 static u32
3164 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3165 {
3166 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3167 return 64;
3168 else
3169 return intel_tile_width_bytes(fb, plane);
3170 }
3171
3172 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3173 {
3174 struct drm_device *dev = intel_crtc->base.dev;
3175 struct drm_i915_private *dev_priv = to_i915(dev);
3176
3177 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3178 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3179 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3180 }
3181
3182 /*
3183 * This function detaches (aka. unbinds) unused scalers in hardware
3184 */
3185 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3186 {
3187 struct intel_crtc_scaler_state *scaler_state;
3188 int i;
3189
3190 scaler_state = &intel_crtc->config->scaler_state;
3191
3192 /* loop through and disable scalers that aren't in use */
3193 for (i = 0; i < intel_crtc->num_scalers; i++) {
3194 if (!scaler_state->scalers[i].in_use)
3195 skl_detach_scaler(intel_crtc, i);
3196 }
3197 }
3198
3199 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3200 unsigned int rotation)
3201 {
3202 u32 stride;
3203
3204 if (plane >= fb->format->num_planes)
3205 return 0;
3206
3207 stride = intel_fb_pitch(fb, plane, rotation);
3208
3209 /*
3210 * The stride is either expressed as a multiple of 64 bytes chunks for
3211 * linear buffers or in number of tiles for tiled buffers.
3212 */
3213 if (drm_rotation_90_or_270(rotation))
3214 stride /= intel_tile_height(fb, plane);
3215 else
3216 stride /= intel_fb_stride_alignment(fb, plane);
3217
3218 return stride;
3219 }
3220
3221 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3222 {
3223 switch (pixel_format) {
3224 case DRM_FORMAT_C8:
3225 return PLANE_CTL_FORMAT_INDEXED;
3226 case DRM_FORMAT_RGB565:
3227 return PLANE_CTL_FORMAT_RGB_565;
3228 case DRM_FORMAT_XBGR8888:
3229 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3230 case DRM_FORMAT_XRGB8888:
3231 return PLANE_CTL_FORMAT_XRGB_8888;
3232 /*
3233 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3234 * to be already pre-multiplied. We need to add a knob (or a different
3235 * DRM_FORMAT) for user-space to configure that.
3236 */
3237 case DRM_FORMAT_ABGR8888:
3238 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3239 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3240 case DRM_FORMAT_ARGB8888:
3241 return PLANE_CTL_FORMAT_XRGB_8888 |
3242 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3243 case DRM_FORMAT_XRGB2101010:
3244 return PLANE_CTL_FORMAT_XRGB_2101010;
3245 case DRM_FORMAT_XBGR2101010:
3246 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3247 case DRM_FORMAT_YUYV:
3248 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3249 case DRM_FORMAT_YVYU:
3250 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3251 case DRM_FORMAT_UYVY:
3252 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3253 case DRM_FORMAT_VYUY:
3254 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3255 default:
3256 MISSING_CASE(pixel_format);
3257 }
3258
3259 return 0;
3260 }
3261
3262 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3263 {
3264 switch (fb_modifier) {
3265 case DRM_FORMAT_MOD_LINEAR:
3266 break;
3267 case I915_FORMAT_MOD_X_TILED:
3268 return PLANE_CTL_TILED_X;
3269 case I915_FORMAT_MOD_Y_TILED:
3270 return PLANE_CTL_TILED_Y;
3271 case I915_FORMAT_MOD_Yf_TILED:
3272 return PLANE_CTL_TILED_YF;
3273 default:
3274 MISSING_CASE(fb_modifier);
3275 }
3276
3277 return 0;
3278 }
3279
3280 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3281 {
3282 switch (rotation) {
3283 case DRM_MODE_ROTATE_0:
3284 break;
3285 /*
3286 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3287 * while i915 HW rotation is clockwise, thats why this swapping.
3288 */
3289 case DRM_MODE_ROTATE_90:
3290 return PLANE_CTL_ROTATE_270;
3291 case DRM_MODE_ROTATE_180:
3292 return PLANE_CTL_ROTATE_180;
3293 case DRM_MODE_ROTATE_270:
3294 return PLANE_CTL_ROTATE_90;
3295 default:
3296 MISSING_CASE(rotation);
3297 }
3298
3299 return 0;
3300 }
3301
3302 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3303 const struct intel_plane_state *plane_state)
3304 {
3305 struct drm_i915_private *dev_priv =
3306 to_i915(plane_state->base.plane->dev);
3307 const struct drm_framebuffer *fb = plane_state->base.fb;
3308 unsigned int rotation = plane_state->base.rotation;
3309 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3310 u32 plane_ctl;
3311
3312 plane_ctl = PLANE_CTL_ENABLE;
3313
3314 if (!IS_GEMINILAKE(dev_priv)) {
3315 plane_ctl |=
3316 PLANE_CTL_PIPE_GAMMA_ENABLE |
3317 PLANE_CTL_PIPE_CSC_ENABLE |
3318 PLANE_CTL_PLANE_GAMMA_DISABLE;
3319 }
3320
3321 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3322 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3323 plane_ctl |= skl_plane_ctl_rotation(rotation);
3324
3325 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3326 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3327 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3328 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3329
3330 return plane_ctl;
3331 }
3332
3333 static void skylake_update_primary_plane(struct intel_plane *plane,
3334 const struct intel_crtc_state *crtc_state,
3335 const struct intel_plane_state *plane_state)
3336 {
3337 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3338 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3339 const struct drm_framebuffer *fb = plane_state->base.fb;
3340 enum plane_id plane_id = plane->id;
3341 enum pipe pipe = plane->pipe;
3342 u32 plane_ctl = plane_state->ctl;
3343 unsigned int rotation = plane_state->base.rotation;
3344 u32 stride = skl_plane_stride(fb, 0, rotation);
3345 u32 surf_addr = plane_state->main.offset;
3346 int scaler_id = plane_state->scaler_id;
3347 int src_x = plane_state->main.x;
3348 int src_y = plane_state->main.y;
3349 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3350 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3351 int dst_x = plane_state->base.dst.x1;
3352 int dst_y = plane_state->base.dst.y1;
3353 int dst_w = drm_rect_width(&plane_state->base.dst);
3354 int dst_h = drm_rect_height(&plane_state->base.dst);
3355 unsigned long irqflags;
3356
3357 /* Sizes are 0 based */
3358 src_w--;
3359 src_h--;
3360 dst_w--;
3361 dst_h--;
3362
3363 crtc->dspaddr_offset = surf_addr;
3364
3365 crtc->adjusted_x = src_x;
3366 crtc->adjusted_y = src_y;
3367
3368 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3369
3370 if (IS_GEMINILAKE(dev_priv)) {
3371 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3372 PLANE_COLOR_PIPE_GAMMA_ENABLE |
3373 PLANE_COLOR_PIPE_CSC_ENABLE |
3374 PLANE_COLOR_PLANE_GAMMA_DISABLE);
3375 }
3376
3377 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3378 I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3379 I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3380 I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3381
3382 if (scaler_id >= 0) {
3383 uint32_t ps_ctrl = 0;
3384
3385 WARN_ON(!dst_w || !dst_h);
3386 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3387 crtc_state->scaler_state.scalers[scaler_id].mode;
3388 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3389 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3390 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3391 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3392 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3393 } else {
3394 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3395 }
3396
3397 I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3398 intel_plane_ggtt_offset(plane_state) + surf_addr);
3399
3400 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3401
3402 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3403 }
3404
3405 static void skylake_disable_primary_plane(struct intel_plane *primary,
3406 struct intel_crtc *crtc)
3407 {
3408 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3409 enum plane_id plane_id = primary->id;
3410 enum pipe pipe = primary->pipe;
3411 unsigned long irqflags;
3412
3413 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3414
3415 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3416 I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3417 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3418
3419 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3420 }
3421
3422 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3423 {
3424 struct intel_crtc *crtc;
3425
3426 for_each_intel_crtc(&dev_priv->drm, crtc)
3427 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3428 }
3429
3430 static int
3431 __intel_display_resume(struct drm_device *dev,
3432 struct drm_atomic_state *state,
3433 struct drm_modeset_acquire_ctx *ctx)
3434 {
3435 struct drm_crtc_state *crtc_state;
3436 struct drm_crtc *crtc;
3437 int i, ret;
3438
3439 intel_modeset_setup_hw_state(dev, ctx);
3440 i915_redisable_vga(to_i915(dev));
3441
3442 if (!state)
3443 return 0;
3444
3445 /*
3446 * We've duplicated the state, pointers to the old state are invalid.
3447 *
3448 * Don't attempt to use the old state until we commit the duplicated state.
3449 */
3450 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3451 /*
3452 * Force recalculation even if we restore
3453 * current state. With fast modeset this may not result
3454 * in a modeset when the state is compatible.
3455 */
3456 crtc_state->mode_changed = true;
3457 }
3458
3459 /* ignore any reset values/BIOS leftovers in the WM registers */
3460 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3461 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3462
3463 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3464
3465 WARN_ON(ret == -EDEADLK);
3466 return ret;
3467 }
3468
3469 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3470 {
3471 return intel_has_gpu_reset(dev_priv) &&
3472 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3473 }
3474
3475 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3476 {
3477 struct drm_device *dev = &dev_priv->drm;
3478 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3479 struct drm_atomic_state *state;
3480 int ret;
3481
3482
3483 /* reset doesn't touch the display */
3484 if (!i915.force_reset_modeset_test &&
3485 !gpu_reset_clobbers_display(dev_priv))
3486 return;
3487
3488 /* We have a modeset vs reset deadlock, defensively unbreak it.
3489 *
3490 * FIXME: We can do a _lot_ better, this is just a first iteration.
3491 */
3492 i915_gem_set_wedged(dev_priv);
3493 DRM_DEBUG_DRIVER("Wedging GPU to avoid deadlocks with pending modeset updates\n");
3494
3495 /*
3496 * Need mode_config.mutex so that we don't
3497 * trample ongoing ->detect() and whatnot.
3498 */
3499 mutex_lock(&dev->mode_config.mutex);
3500 drm_modeset_acquire_init(ctx, 0);
3501 while (1) {
3502 ret = drm_modeset_lock_all_ctx(dev, ctx);
3503 if (ret != -EDEADLK)
3504 break;
3505
3506 drm_modeset_backoff(ctx);
3507 }
3508 /*
3509 * Disabling the crtcs gracefully seems nicer. Also the
3510 * g33 docs say we should at least disable all the planes.
3511 */
3512 state = drm_atomic_helper_duplicate_state(dev, ctx);
3513 if (IS_ERR(state)) {
3514 ret = PTR_ERR(state);
3515 DRM_ERROR("Duplicating state failed with %i\n", ret);
3516 return;
3517 }
3518
3519 ret = drm_atomic_helper_disable_all(dev, ctx);
3520 if (ret) {
3521 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3522 drm_atomic_state_put(state);
3523 return;
3524 }
3525
3526 dev_priv->modeset_restore_state = state;
3527 state->acquire_ctx = ctx;
3528 }
3529
3530 void intel_finish_reset(struct drm_i915_private *dev_priv)
3531 {
3532 struct drm_device *dev = &dev_priv->drm;
3533 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3534 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3535 int ret;
3536
3537 /* reset doesn't touch the display */
3538 if (!i915.force_reset_modeset_test &&
3539 !gpu_reset_clobbers_display(dev_priv))
3540 return;
3541
3542 if (!state)
3543 goto unlock;
3544
3545 /*
3546 * Flips in the rings will be nuked by the reset,
3547 * so complete all pending flips so that user space
3548 * will get its events and not get stuck.
3549 */
3550 intel_complete_page_flips(dev_priv);
3551
3552 dev_priv->modeset_restore_state = NULL;
3553
3554 /* reset doesn't touch the display */
3555 if (!gpu_reset_clobbers_display(dev_priv)) {
3556 /* for testing only restore the display */
3557 ret = __intel_display_resume(dev, state, ctx);
3558 if (ret)
3559 DRM_ERROR("Restoring old state failed with %i\n", ret);
3560 } else {
3561 /*
3562 * The display has been reset as well,
3563 * so need a full re-initialization.
3564 */
3565 intel_runtime_pm_disable_interrupts(dev_priv);
3566 intel_runtime_pm_enable_interrupts(dev_priv);
3567
3568 intel_pps_unlock_regs_wa(dev_priv);
3569 intel_modeset_init_hw(dev);
3570
3571 spin_lock_irq(&dev_priv->irq_lock);
3572 if (dev_priv->display.hpd_irq_setup)
3573 dev_priv->display.hpd_irq_setup(dev_priv);
3574 spin_unlock_irq(&dev_priv->irq_lock);
3575
3576 ret = __intel_display_resume(dev, state, ctx);
3577 if (ret)
3578 DRM_ERROR("Restoring old state failed with %i\n", ret);
3579
3580 intel_hpd_init(dev_priv);
3581 }
3582
3583 drm_atomic_state_put(state);
3584 unlock:
3585 drm_modeset_drop_locks(ctx);
3586 drm_modeset_acquire_fini(ctx);
3587 mutex_unlock(&dev->mode_config.mutex);
3588 }
3589
3590 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3591 {
3592 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3593
3594 if (i915_reset_backoff(error))
3595 return true;
3596
3597 if (crtc->reset_count != i915_reset_count(error))
3598 return true;
3599
3600 return false;
3601 }
3602
3603 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3604 {
3605 struct drm_device *dev = crtc->dev;
3606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3607 bool pending;
3608
3609 if (abort_flip_on_reset(intel_crtc))
3610 return false;
3611
3612 spin_lock_irq(&dev->event_lock);
3613 pending = to_intel_crtc(crtc)->flip_work != NULL;
3614 spin_unlock_irq(&dev->event_lock);
3615
3616 return pending;
3617 }
3618
3619 static void intel_update_pipe_config(struct intel_crtc *crtc,
3620 struct intel_crtc_state *old_crtc_state)
3621 {
3622 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3623 struct intel_crtc_state *pipe_config =
3624 to_intel_crtc_state(crtc->base.state);
3625
3626 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3627 crtc->base.mode = crtc->base.state->mode;
3628
3629 /*
3630 * Update pipe size and adjust fitter if needed: the reason for this is
3631 * that in compute_mode_changes we check the native mode (not the pfit
3632 * mode) to see if we can flip rather than do a full mode set. In the
3633 * fastboot case, we'll flip, but if we don't update the pipesrc and
3634 * pfit state, we'll end up with a big fb scanned out into the wrong
3635 * sized surface.
3636 */
3637
3638 I915_WRITE(PIPESRC(crtc->pipe),
3639 ((pipe_config->pipe_src_w - 1) << 16) |
3640 (pipe_config->pipe_src_h - 1));
3641
3642 /* on skylake this is done by detaching scalers */
3643 if (INTEL_GEN(dev_priv) >= 9) {
3644 skl_detach_scalers(crtc);
3645
3646 if (pipe_config->pch_pfit.enabled)
3647 skylake_pfit_enable(crtc);
3648 } else if (HAS_PCH_SPLIT(dev_priv)) {
3649 if (pipe_config->pch_pfit.enabled)
3650 ironlake_pfit_enable(crtc);
3651 else if (old_crtc_state->pch_pfit.enabled)
3652 ironlake_pfit_disable(crtc, true);
3653 }
3654 }
3655
3656 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3657 {
3658 struct drm_device *dev = crtc->base.dev;
3659 struct drm_i915_private *dev_priv = to_i915(dev);
3660 int pipe = crtc->pipe;
3661 i915_reg_t reg;
3662 u32 temp;
3663
3664 /* enable normal train */
3665 reg = FDI_TX_CTL(pipe);
3666 temp = I915_READ(reg);
3667 if (IS_IVYBRIDGE(dev_priv)) {
3668 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3669 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3670 } else {
3671 temp &= ~FDI_LINK_TRAIN_NONE;
3672 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3673 }
3674 I915_WRITE(reg, temp);
3675
3676 reg = FDI_RX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 if (HAS_PCH_CPT(dev_priv)) {
3679 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3680 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3681 } else {
3682 temp &= ~FDI_LINK_TRAIN_NONE;
3683 temp |= FDI_LINK_TRAIN_NONE;
3684 }
3685 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3686
3687 /* wait one idle pattern time */
3688 POSTING_READ(reg);
3689 udelay(1000);
3690
3691 /* IVB wants error correction enabled */
3692 if (IS_IVYBRIDGE(dev_priv))
3693 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3694 FDI_FE_ERRC_ENABLE);
3695 }
3696
3697 /* The FDI link training functions for ILK/Ibexpeak. */
3698 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3699 const struct intel_crtc_state *crtc_state)
3700 {
3701 struct drm_device *dev = crtc->base.dev;
3702 struct drm_i915_private *dev_priv = to_i915(dev);
3703 int pipe = crtc->pipe;
3704 i915_reg_t reg;
3705 u32 temp, tries;
3706
3707 /* FDI needs bits from pipe first */
3708 assert_pipe_enabled(dev_priv, pipe);
3709
3710 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3711 for train result */
3712 reg = FDI_RX_IMR(pipe);
3713 temp = I915_READ(reg);
3714 temp &= ~FDI_RX_SYMBOL_LOCK;
3715 temp &= ~FDI_RX_BIT_LOCK;
3716 I915_WRITE(reg, temp);
3717 I915_READ(reg);
3718 udelay(150);
3719
3720 /* enable CPU FDI TX and PCH FDI RX */
3721 reg = FDI_TX_CTL(pipe);
3722 temp = I915_READ(reg);
3723 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3724 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3725 temp &= ~FDI_LINK_TRAIN_NONE;
3726 temp |= FDI_LINK_TRAIN_PATTERN_1;
3727 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3728
3729 reg = FDI_RX_CTL(pipe);
3730 temp = I915_READ(reg);
3731 temp &= ~FDI_LINK_TRAIN_NONE;
3732 temp |= FDI_LINK_TRAIN_PATTERN_1;
3733 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3734
3735 POSTING_READ(reg);
3736 udelay(150);
3737
3738 /* Ironlake workaround, enable clock pointer after FDI enable*/
3739 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3740 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3741 FDI_RX_PHASE_SYNC_POINTER_EN);
3742
3743 reg = FDI_RX_IIR(pipe);
3744 for (tries = 0; tries < 5; tries++) {
3745 temp = I915_READ(reg);
3746 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3747
3748 if ((temp & FDI_RX_BIT_LOCK)) {
3749 DRM_DEBUG_KMS("FDI train 1 done.\n");
3750 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3751 break;
3752 }
3753 }
3754 if (tries == 5)
3755 DRM_ERROR("FDI train 1 fail!\n");
3756
3757 /* Train 2 */
3758 reg = FDI_TX_CTL(pipe);
3759 temp = I915_READ(reg);
3760 temp &= ~FDI_LINK_TRAIN_NONE;
3761 temp |= FDI_LINK_TRAIN_PATTERN_2;
3762 I915_WRITE(reg, temp);
3763
3764 reg = FDI_RX_CTL(pipe);
3765 temp = I915_READ(reg);
3766 temp &= ~FDI_LINK_TRAIN_NONE;
3767 temp |= FDI_LINK_TRAIN_PATTERN_2;
3768 I915_WRITE(reg, temp);
3769
3770 POSTING_READ(reg);
3771 udelay(150);
3772
3773 reg = FDI_RX_IIR(pipe);
3774 for (tries = 0; tries < 5; tries++) {
3775 temp = I915_READ(reg);
3776 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3777
3778 if (temp & FDI_RX_SYMBOL_LOCK) {
3779 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3780 DRM_DEBUG_KMS("FDI train 2 done.\n");
3781 break;
3782 }
3783 }
3784 if (tries == 5)
3785 DRM_ERROR("FDI train 2 fail!\n");
3786
3787 DRM_DEBUG_KMS("FDI train done\n");
3788
3789 }
3790
3791 static const int snb_b_fdi_train_param[] = {
3792 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3793 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3794 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3795 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3796 };
3797
3798 /* The FDI link training functions for SNB/Cougarpoint. */
3799 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3800 const struct intel_crtc_state *crtc_state)
3801 {
3802 struct drm_device *dev = crtc->base.dev;
3803 struct drm_i915_private *dev_priv = to_i915(dev);
3804 int pipe = crtc->pipe;
3805 i915_reg_t reg;
3806 u32 temp, i, retry;
3807
3808 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3809 for train result */
3810 reg = FDI_RX_IMR(pipe);
3811 temp = I915_READ(reg);
3812 temp &= ~FDI_RX_SYMBOL_LOCK;
3813 temp &= ~FDI_RX_BIT_LOCK;
3814 I915_WRITE(reg, temp);
3815
3816 POSTING_READ(reg);
3817 udelay(150);
3818
3819 /* enable CPU FDI TX and PCH FDI RX */
3820 reg = FDI_TX_CTL(pipe);
3821 temp = I915_READ(reg);
3822 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3823 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3824 temp &= ~FDI_LINK_TRAIN_NONE;
3825 temp |= FDI_LINK_TRAIN_PATTERN_1;
3826 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3827 /* SNB-B */
3828 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3829 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3830
3831 I915_WRITE(FDI_RX_MISC(pipe),
3832 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3833
3834 reg = FDI_RX_CTL(pipe);
3835 temp = I915_READ(reg);
3836 if (HAS_PCH_CPT(dev_priv)) {
3837 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3838 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3839 } else {
3840 temp &= ~FDI_LINK_TRAIN_NONE;
3841 temp |= FDI_LINK_TRAIN_PATTERN_1;
3842 }
3843 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3844
3845 POSTING_READ(reg);
3846 udelay(150);
3847
3848 for (i = 0; i < 4; i++) {
3849 reg = FDI_TX_CTL(pipe);
3850 temp = I915_READ(reg);
3851 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3852 temp |= snb_b_fdi_train_param[i];
3853 I915_WRITE(reg, temp);
3854
3855 POSTING_READ(reg);
3856 udelay(500);
3857
3858 for (retry = 0; retry < 5; retry++) {
3859 reg = FDI_RX_IIR(pipe);
3860 temp = I915_READ(reg);
3861 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3862 if (temp & FDI_RX_BIT_LOCK) {
3863 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3864 DRM_DEBUG_KMS("FDI train 1 done.\n");
3865 break;
3866 }
3867 udelay(50);
3868 }
3869 if (retry < 5)
3870 break;
3871 }
3872 if (i == 4)
3873 DRM_ERROR("FDI train 1 fail!\n");
3874
3875 /* Train 2 */
3876 reg = FDI_TX_CTL(pipe);
3877 temp = I915_READ(reg);
3878 temp &= ~FDI_LINK_TRAIN_NONE;
3879 temp |= FDI_LINK_TRAIN_PATTERN_2;
3880 if (IS_GEN6(dev_priv)) {
3881 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3882 /* SNB-B */
3883 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3884 }
3885 I915_WRITE(reg, temp);
3886
3887 reg = FDI_RX_CTL(pipe);
3888 temp = I915_READ(reg);
3889 if (HAS_PCH_CPT(dev_priv)) {
3890 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3891 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3892 } else {
3893 temp &= ~FDI_LINK_TRAIN_NONE;
3894 temp |= FDI_LINK_TRAIN_PATTERN_2;
3895 }
3896 I915_WRITE(reg, temp);
3897
3898 POSTING_READ(reg);
3899 udelay(150);
3900
3901 for (i = 0; i < 4; i++) {
3902 reg = FDI_TX_CTL(pipe);
3903 temp = I915_READ(reg);
3904 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3905 temp |= snb_b_fdi_train_param[i];
3906 I915_WRITE(reg, temp);
3907
3908 POSTING_READ(reg);
3909 udelay(500);
3910
3911 for (retry = 0; retry < 5; retry++) {
3912 reg = FDI_RX_IIR(pipe);
3913 temp = I915_READ(reg);
3914 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3915 if (temp & FDI_RX_SYMBOL_LOCK) {
3916 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3917 DRM_DEBUG_KMS("FDI train 2 done.\n");
3918 break;
3919 }
3920 udelay(50);
3921 }
3922 if (retry < 5)
3923 break;
3924 }
3925 if (i == 4)
3926 DRM_ERROR("FDI train 2 fail!\n");
3927
3928 DRM_DEBUG_KMS("FDI train done.\n");
3929 }
3930
3931 /* Manual link training for Ivy Bridge A0 parts */
3932 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3933 const struct intel_crtc_state *crtc_state)
3934 {
3935 struct drm_device *dev = crtc->base.dev;
3936 struct drm_i915_private *dev_priv = to_i915(dev);
3937 int pipe = crtc->pipe;
3938 i915_reg_t reg;
3939 u32 temp, i, j;
3940
3941 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3942 for train result */
3943 reg = FDI_RX_IMR(pipe);
3944 temp = I915_READ(reg);
3945 temp &= ~FDI_RX_SYMBOL_LOCK;
3946 temp &= ~FDI_RX_BIT_LOCK;
3947 I915_WRITE(reg, temp);
3948
3949 POSTING_READ(reg);
3950 udelay(150);
3951
3952 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3953 I915_READ(FDI_RX_IIR(pipe)));
3954
3955 /* Try each vswing and preemphasis setting twice before moving on */
3956 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3957 /* disable first in case we need to retry */
3958 reg = FDI_TX_CTL(pipe);
3959 temp = I915_READ(reg);
3960 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3961 temp &= ~FDI_TX_ENABLE;
3962 I915_WRITE(reg, temp);
3963
3964 reg = FDI_RX_CTL(pipe);
3965 temp = I915_READ(reg);
3966 temp &= ~FDI_LINK_TRAIN_AUTO;
3967 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3968 temp &= ~FDI_RX_ENABLE;
3969 I915_WRITE(reg, temp);
3970
3971 /* enable CPU FDI TX and PCH FDI RX */
3972 reg = FDI_TX_CTL(pipe);
3973 temp = I915_READ(reg);
3974 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3975 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3976 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3977 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3978 temp |= snb_b_fdi_train_param[j/2];
3979 temp |= FDI_COMPOSITE_SYNC;
3980 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3981
3982 I915_WRITE(FDI_RX_MISC(pipe),
3983 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3984
3985 reg = FDI_RX_CTL(pipe);
3986 temp = I915_READ(reg);
3987 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3988 temp |= FDI_COMPOSITE_SYNC;
3989 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3990
3991 POSTING_READ(reg);
3992 udelay(1); /* should be 0.5us */
3993
3994 for (i = 0; i < 4; i++) {
3995 reg = FDI_RX_IIR(pipe);
3996 temp = I915_READ(reg);
3997 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3998
3999 if (temp & FDI_RX_BIT_LOCK ||
4000 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4001 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4002 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4003 i);
4004 break;
4005 }
4006 udelay(1); /* should be 0.5us */
4007 }
4008 if (i == 4) {
4009 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4010 continue;
4011 }
4012
4013 /* Train 2 */
4014 reg = FDI_TX_CTL(pipe);
4015 temp = I915_READ(reg);
4016 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4017 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4018 I915_WRITE(reg, temp);
4019
4020 reg = FDI_RX_CTL(pipe);
4021 temp = I915_READ(reg);
4022 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4023 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4024 I915_WRITE(reg, temp);
4025
4026 POSTING_READ(reg);
4027 udelay(2); /* should be 1.5us */
4028
4029 for (i = 0; i < 4; i++) {
4030 reg = FDI_RX_IIR(pipe);
4031 temp = I915_READ(reg);
4032 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4033
4034 if (temp & FDI_RX_SYMBOL_LOCK ||
4035 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4036 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4037 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4038 i);
4039 goto train_done;
4040 }
4041 udelay(2); /* should be 1.5us */
4042 }
4043 if (i == 4)
4044 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4045 }
4046
4047 train_done:
4048 DRM_DEBUG_KMS("FDI train done.\n");
4049 }
4050
4051 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4052 {
4053 struct drm_device *dev = intel_crtc->base.dev;
4054 struct drm_i915_private *dev_priv = to_i915(dev);
4055 int pipe = intel_crtc->pipe;
4056 i915_reg_t reg;
4057 u32 temp;
4058
4059 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4060 reg = FDI_RX_CTL(pipe);
4061 temp = I915_READ(reg);
4062 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4063 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4064 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4065 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4066
4067 POSTING_READ(reg);
4068 udelay(200);
4069
4070 /* Switch from Rawclk to PCDclk */
4071 temp = I915_READ(reg);
4072 I915_WRITE(reg, temp | FDI_PCDCLK);
4073
4074 POSTING_READ(reg);
4075 udelay(200);
4076
4077 /* Enable CPU FDI TX PLL, always on for Ironlake */
4078 reg = FDI_TX_CTL(pipe);
4079 temp = I915_READ(reg);
4080 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4081 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4082
4083 POSTING_READ(reg);
4084 udelay(100);
4085 }
4086 }
4087
4088 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4089 {
4090 struct drm_device *dev = intel_crtc->base.dev;
4091 struct drm_i915_private *dev_priv = to_i915(dev);
4092 int pipe = intel_crtc->pipe;
4093 i915_reg_t reg;
4094 u32 temp;
4095
4096 /* Switch from PCDclk to Rawclk */
4097 reg = FDI_RX_CTL(pipe);
4098 temp = I915_READ(reg);
4099 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4100
4101 /* Disable CPU FDI TX PLL */
4102 reg = FDI_TX_CTL(pipe);
4103 temp = I915_READ(reg);
4104 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4105
4106 POSTING_READ(reg);
4107 udelay(100);
4108
4109 reg = FDI_RX_CTL(pipe);
4110 temp = I915_READ(reg);
4111 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4112
4113 /* Wait for the clocks to turn off. */
4114 POSTING_READ(reg);
4115 udelay(100);
4116 }
4117
4118 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4119 {
4120 struct drm_device *dev = crtc->dev;
4121 struct drm_i915_private *dev_priv = to_i915(dev);
4122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4123 int pipe = intel_crtc->pipe;
4124 i915_reg_t reg;
4125 u32 temp;
4126
4127 /* disable CPU FDI tx and PCH FDI rx */
4128 reg = FDI_TX_CTL(pipe);
4129 temp = I915_READ(reg);
4130 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4131 POSTING_READ(reg);
4132
4133 reg = FDI_RX_CTL(pipe);
4134 temp = I915_READ(reg);
4135 temp &= ~(0x7 << 16);
4136 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4137 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4138
4139 POSTING_READ(reg);
4140 udelay(100);
4141
4142 /* Ironlake workaround, disable clock pointer after downing FDI */
4143 if (HAS_PCH_IBX(dev_priv))
4144 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4145
4146 /* still set train pattern 1 */
4147 reg = FDI_TX_CTL(pipe);
4148 temp = I915_READ(reg);
4149 temp &= ~FDI_LINK_TRAIN_NONE;
4150 temp |= FDI_LINK_TRAIN_PATTERN_1;
4151 I915_WRITE(reg, temp);
4152
4153 reg = FDI_RX_CTL(pipe);
4154 temp = I915_READ(reg);
4155 if (HAS_PCH_CPT(dev_priv)) {
4156 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4157 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4158 } else {
4159 temp &= ~FDI_LINK_TRAIN_NONE;
4160 temp |= FDI_LINK_TRAIN_PATTERN_1;
4161 }
4162 /* BPC in FDI rx is consistent with that in PIPECONF */
4163 temp &= ~(0x07 << 16);
4164 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4165 I915_WRITE(reg, temp);
4166
4167 POSTING_READ(reg);
4168 udelay(100);
4169 }
4170
4171 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4172 {
4173 struct intel_crtc *crtc;
4174
4175 /* Note that we don't need to be called with mode_config.lock here
4176 * as our list of CRTC objects is static for the lifetime of the
4177 * device and so cannot disappear as we iterate. Similarly, we can
4178 * happily treat the predicates as racy, atomic checks as userspace
4179 * cannot claim and pin a new fb without at least acquring the
4180 * struct_mutex and so serialising with us.
4181 */
4182 for_each_intel_crtc(&dev_priv->drm, crtc) {
4183 if (atomic_read(&crtc->unpin_work_count) == 0)
4184 continue;
4185
4186 if (crtc->flip_work)
4187 intel_wait_for_vblank(dev_priv, crtc->pipe);
4188
4189 return true;
4190 }
4191
4192 return false;
4193 }
4194
4195 static void page_flip_completed(struct intel_crtc *intel_crtc)
4196 {
4197 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4198 struct intel_flip_work *work = intel_crtc->flip_work;
4199
4200 intel_crtc->flip_work = NULL;
4201
4202 if (work->event)
4203 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4204
4205 drm_crtc_vblank_put(&intel_crtc->base);
4206
4207 wake_up_all(&dev_priv->pending_flip_queue);
4208 trace_i915_flip_complete(intel_crtc->plane,
4209 work->pending_flip_obj);
4210
4211 queue_work(dev_priv->wq, &work->unpin_work);
4212 }
4213
4214 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4215 {
4216 struct drm_device *dev = crtc->dev;
4217 struct drm_i915_private *dev_priv = to_i915(dev);
4218 long ret;
4219
4220 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4221
4222 ret = wait_event_interruptible_timeout(
4223 dev_priv->pending_flip_queue,
4224 !intel_crtc_has_pending_flip(crtc),
4225 60*HZ);
4226
4227 if (ret < 0)
4228 return ret;
4229
4230 if (ret == 0) {
4231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4232 struct intel_flip_work *work;
4233
4234 spin_lock_irq(&dev->event_lock);
4235 work = intel_crtc->flip_work;
4236 if (work && !is_mmio_work(work)) {
4237 WARN_ONCE(1, "Removing stuck page flip\n");
4238 page_flip_completed(intel_crtc);
4239 }
4240 spin_unlock_irq(&dev->event_lock);
4241 }
4242
4243 return 0;
4244 }
4245
4246 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4247 {
4248 u32 temp;
4249
4250 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4251
4252 mutex_lock(&dev_priv->sb_lock);
4253
4254 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4255 temp |= SBI_SSCCTL_DISABLE;
4256 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4257
4258 mutex_unlock(&dev_priv->sb_lock);
4259 }
4260
4261 /* Program iCLKIP clock to the desired frequency */
4262 static void lpt_program_iclkip(struct intel_crtc *crtc)
4263 {
4264 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4265 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4266 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4267 u32 temp;
4268
4269 lpt_disable_iclkip(dev_priv);
4270
4271 /* The iCLK virtual clock root frequency is in MHz,
4272 * but the adjusted_mode->crtc_clock in in KHz. To get the
4273 * divisors, it is necessary to divide one by another, so we
4274 * convert the virtual clock precision to KHz here for higher
4275 * precision.
4276 */
4277 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4278 u32 iclk_virtual_root_freq = 172800 * 1000;
4279 u32 iclk_pi_range = 64;
4280 u32 desired_divisor;
4281
4282 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4283 clock << auxdiv);
4284 divsel = (desired_divisor / iclk_pi_range) - 2;
4285 phaseinc = desired_divisor % iclk_pi_range;
4286
4287 /*
4288 * Near 20MHz is a corner case which is
4289 * out of range for the 7-bit divisor
4290 */
4291 if (divsel <= 0x7f)
4292 break;
4293 }
4294
4295 /* This should not happen with any sane values */
4296 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4297 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4298 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4299 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4300
4301 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4302 clock,
4303 auxdiv,
4304 divsel,
4305 phasedir,
4306 phaseinc);
4307
4308 mutex_lock(&dev_priv->sb_lock);
4309
4310 /* Program SSCDIVINTPHASE6 */
4311 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4312 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4313 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4314 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4315 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4316 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4317 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4318 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4319
4320 /* Program SSCAUXDIV */
4321 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4322 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4323 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4324 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4325
4326 /* Enable modulator and associated divider */
4327 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4328 temp &= ~SBI_SSCCTL_DISABLE;
4329 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4330
4331 mutex_unlock(&dev_priv->sb_lock);
4332
4333 /* Wait for initialization time */
4334 udelay(24);
4335
4336 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4337 }
4338
4339 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4340 {
4341 u32 divsel, phaseinc, auxdiv;
4342 u32 iclk_virtual_root_freq = 172800 * 1000;
4343 u32 iclk_pi_range = 64;
4344 u32 desired_divisor;
4345 u32 temp;
4346
4347 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4348 return 0;
4349
4350 mutex_lock(&dev_priv->sb_lock);
4351
4352 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4353 if (temp & SBI_SSCCTL_DISABLE) {
4354 mutex_unlock(&dev_priv->sb_lock);
4355 return 0;
4356 }
4357
4358 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4359 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4360 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4361 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4362 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4363
4364 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4365 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4366 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4367
4368 mutex_unlock(&dev_priv->sb_lock);
4369
4370 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4371
4372 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4373 desired_divisor << auxdiv);
4374 }
4375
4376 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4377 enum pipe pch_transcoder)
4378 {
4379 struct drm_device *dev = crtc->base.dev;
4380 struct drm_i915_private *dev_priv = to_i915(dev);
4381 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4382
4383 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4384 I915_READ(HTOTAL(cpu_transcoder)));
4385 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4386 I915_READ(HBLANK(cpu_transcoder)));
4387 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4388 I915_READ(HSYNC(cpu_transcoder)));
4389
4390 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4391 I915_READ(VTOTAL(cpu_transcoder)));
4392 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4393 I915_READ(VBLANK(cpu_transcoder)));
4394 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4395 I915_READ(VSYNC(cpu_transcoder)));
4396 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4397 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4398 }
4399
4400 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4401 {
4402 struct drm_i915_private *dev_priv = to_i915(dev);
4403 uint32_t temp;
4404
4405 temp = I915_READ(SOUTH_CHICKEN1);
4406 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4407 return;
4408
4409 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4410 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4411
4412 temp &= ~FDI_BC_BIFURCATION_SELECT;
4413 if (enable)
4414 temp |= FDI_BC_BIFURCATION_SELECT;
4415
4416 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4417 I915_WRITE(SOUTH_CHICKEN1, temp);
4418 POSTING_READ(SOUTH_CHICKEN1);
4419 }
4420
4421 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4422 {
4423 struct drm_device *dev = intel_crtc->base.dev;
4424
4425 switch (intel_crtc->pipe) {
4426 case PIPE_A:
4427 break;
4428 case PIPE_B:
4429 if (intel_crtc->config->fdi_lanes > 2)
4430 cpt_set_fdi_bc_bifurcation(dev, false);
4431 else
4432 cpt_set_fdi_bc_bifurcation(dev, true);
4433
4434 break;
4435 case PIPE_C:
4436 cpt_set_fdi_bc_bifurcation(dev, true);
4437
4438 break;
4439 default:
4440 BUG();
4441 }
4442 }
4443
4444 /* Return which DP Port should be selected for Transcoder DP control */
4445 static enum port
4446 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4447 {
4448 struct drm_device *dev = crtc->base.dev;
4449 struct intel_encoder *encoder;
4450
4451 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4452 if (encoder->type == INTEL_OUTPUT_DP ||
4453 encoder->type == INTEL_OUTPUT_EDP)
4454 return enc_to_dig_port(&encoder->base)->port;
4455 }
4456
4457 return -1;
4458 }
4459
4460 /*
4461 * Enable PCH resources required for PCH ports:
4462 * - PCH PLLs
4463 * - FDI training & RX/TX
4464 * - update transcoder timings
4465 * - DP transcoding bits
4466 * - transcoder
4467 */
4468 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4469 {
4470 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4471 struct drm_device *dev = crtc->base.dev;
4472 struct drm_i915_private *dev_priv = to_i915(dev);
4473 int pipe = crtc->pipe;
4474 u32 temp;
4475
4476 assert_pch_transcoder_disabled(dev_priv, pipe);
4477
4478 if (IS_IVYBRIDGE(dev_priv))
4479 ivybridge_update_fdi_bc_bifurcation(crtc);
4480
4481 /* Write the TU size bits before fdi link training, so that error
4482 * detection works. */
4483 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4484 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4485
4486 /* For PCH output, training FDI link */
4487 dev_priv->display.fdi_link_train(crtc, crtc_state);
4488
4489 /* We need to program the right clock selection before writing the pixel
4490 * mutliplier into the DPLL. */
4491 if (HAS_PCH_CPT(dev_priv)) {
4492 u32 sel;
4493
4494 temp = I915_READ(PCH_DPLL_SEL);
4495 temp |= TRANS_DPLL_ENABLE(pipe);
4496 sel = TRANS_DPLLB_SEL(pipe);
4497 if (crtc_state->shared_dpll ==
4498 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4499 temp |= sel;
4500 else
4501 temp &= ~sel;
4502 I915_WRITE(PCH_DPLL_SEL, temp);
4503 }
4504
4505 /* XXX: pch pll's can be enabled any time before we enable the PCH
4506 * transcoder, and we actually should do this to not upset any PCH
4507 * transcoder that already use the clock when we share it.
4508 *
4509 * Note that enable_shared_dpll tries to do the right thing, but
4510 * get_shared_dpll unconditionally resets the pll - we need that to have
4511 * the right LVDS enable sequence. */
4512 intel_enable_shared_dpll(crtc);
4513
4514 /* set transcoder timing, panel must allow it */
4515 assert_panel_unlocked(dev_priv, pipe);
4516 ironlake_pch_transcoder_set_timings(crtc, pipe);
4517
4518 intel_fdi_normal_train(crtc);
4519
4520 /* For PCH DP, enable TRANS_DP_CTL */
4521 if (HAS_PCH_CPT(dev_priv) &&
4522 intel_crtc_has_dp_encoder(crtc_state)) {
4523 const struct drm_display_mode *adjusted_mode =
4524 &crtc_state->base.adjusted_mode;
4525 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4526 i915_reg_t reg = TRANS_DP_CTL(pipe);
4527 temp = I915_READ(reg);
4528 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4529 TRANS_DP_SYNC_MASK |
4530 TRANS_DP_BPC_MASK);
4531 temp |= TRANS_DP_OUTPUT_ENABLE;
4532 temp |= bpc << 9; /* same format but at 11:9 */
4533
4534 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4535 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4536 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4537 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4538
4539 switch (intel_trans_dp_port_sel(crtc)) {
4540 case PORT_B:
4541 temp |= TRANS_DP_PORT_SEL_B;
4542 break;
4543 case PORT_C:
4544 temp |= TRANS_DP_PORT_SEL_C;
4545 break;
4546 case PORT_D:
4547 temp |= TRANS_DP_PORT_SEL_D;
4548 break;
4549 default:
4550 BUG();
4551 }
4552
4553 I915_WRITE(reg, temp);
4554 }
4555
4556 ironlake_enable_pch_transcoder(dev_priv, pipe);
4557 }
4558
4559 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4560 {
4561 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4562 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4563 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4564
4565 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4566
4567 lpt_program_iclkip(crtc);
4568
4569 /* Set transcoder timing. */
4570 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4571
4572 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4573 }
4574
4575 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4576 {
4577 struct drm_i915_private *dev_priv = to_i915(dev);
4578 i915_reg_t dslreg = PIPEDSL(pipe);
4579 u32 temp;
4580
4581 temp = I915_READ(dslreg);
4582 udelay(500);
4583 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4584 if (wait_for(I915_READ(dslreg) != temp, 5))
4585 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4586 }
4587 }
4588
4589 static int
4590 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4591 unsigned int scaler_user, int *scaler_id,
4592 int src_w, int src_h, int dst_w, int dst_h)
4593 {
4594 struct intel_crtc_scaler_state *scaler_state =
4595 &crtc_state->scaler_state;
4596 struct intel_crtc *intel_crtc =
4597 to_intel_crtc(crtc_state->base.crtc);
4598 int need_scaling;
4599
4600 /*
4601 * Src coordinates are already rotated by 270 degrees for
4602 * the 90/270 degree plane rotation cases (to match the
4603 * GTT mapping), hence no need to account for rotation here.
4604 */
4605 need_scaling = src_w != dst_w || src_h != dst_h;
4606
4607 /*
4608 * if plane is being disabled or scaler is no more required or force detach
4609 * - free scaler binded to this plane/crtc
4610 * - in order to do this, update crtc->scaler_usage
4611 *
4612 * Here scaler state in crtc_state is set free so that
4613 * scaler can be assigned to other user. Actual register
4614 * update to free the scaler is done in plane/panel-fit programming.
4615 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4616 */
4617 if (force_detach || !need_scaling) {
4618 if (*scaler_id >= 0) {
4619 scaler_state->scaler_users &= ~(1 << scaler_user);
4620 scaler_state->scalers[*scaler_id].in_use = 0;
4621
4622 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4623 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4624 intel_crtc->pipe, scaler_user, *scaler_id,
4625 scaler_state->scaler_users);
4626 *scaler_id = -1;
4627 }
4628 return 0;
4629 }
4630
4631 /* range checks */
4632 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4633 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4634
4635 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4636 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4637 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4638 "size is out of scaler range\n",
4639 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4640 return -EINVAL;
4641 }
4642
4643 /* mark this plane as a scaler user in crtc_state */
4644 scaler_state->scaler_users |= (1 << scaler_user);
4645 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4646 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4647 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4648 scaler_state->scaler_users);
4649
4650 return 0;
4651 }
4652
4653 /**
4654 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4655 *
4656 * @state: crtc's scaler state
4657 *
4658 * Return
4659 * 0 - scaler_usage updated successfully
4660 * error - requested scaling cannot be supported or other error condition
4661 */
4662 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4663 {
4664 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4665
4666 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4667 &state->scaler_state.scaler_id,
4668 state->pipe_src_w, state->pipe_src_h,
4669 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4670 }
4671
4672 /**
4673 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4674 *
4675 * @state: crtc's scaler state
4676 * @plane_state: atomic plane state to update
4677 *
4678 * Return
4679 * 0 - scaler_usage updated successfully
4680 * error - requested scaling cannot be supported or other error condition
4681 */
4682 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4683 struct intel_plane_state *plane_state)
4684 {
4685
4686 struct intel_plane *intel_plane =
4687 to_intel_plane(plane_state->base.plane);
4688 struct drm_framebuffer *fb = plane_state->base.fb;
4689 int ret;
4690
4691 bool force_detach = !fb || !plane_state->base.visible;
4692
4693 ret = skl_update_scaler(crtc_state, force_detach,
4694 drm_plane_index(&intel_plane->base),
4695 &plane_state->scaler_id,
4696 drm_rect_width(&plane_state->base.src) >> 16,
4697 drm_rect_height(&plane_state->base.src) >> 16,
4698 drm_rect_width(&plane_state->base.dst),
4699 drm_rect_height(&plane_state->base.dst));
4700
4701 if (ret || plane_state->scaler_id < 0)
4702 return ret;
4703
4704 /* check colorkey */
4705 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4706 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4707 intel_plane->base.base.id,
4708 intel_plane->base.name);
4709 return -EINVAL;
4710 }
4711
4712 /* Check src format */
4713 switch (fb->format->format) {
4714 case DRM_FORMAT_RGB565:
4715 case DRM_FORMAT_XBGR8888:
4716 case DRM_FORMAT_XRGB8888:
4717 case DRM_FORMAT_ABGR8888:
4718 case DRM_FORMAT_ARGB8888:
4719 case DRM_FORMAT_XRGB2101010:
4720 case DRM_FORMAT_XBGR2101010:
4721 case DRM_FORMAT_YUYV:
4722 case DRM_FORMAT_YVYU:
4723 case DRM_FORMAT_UYVY:
4724 case DRM_FORMAT_VYUY:
4725 break;
4726 default:
4727 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4728 intel_plane->base.base.id, intel_plane->base.name,
4729 fb->base.id, fb->format->format);
4730 return -EINVAL;
4731 }
4732
4733 return 0;
4734 }
4735
4736 static void skylake_scaler_disable(struct intel_crtc *crtc)
4737 {
4738 int i;
4739
4740 for (i = 0; i < crtc->num_scalers; i++)
4741 skl_detach_scaler(crtc, i);
4742 }
4743
4744 static void skylake_pfit_enable(struct intel_crtc *crtc)
4745 {
4746 struct drm_device *dev = crtc->base.dev;
4747 struct drm_i915_private *dev_priv = to_i915(dev);
4748 int pipe = crtc->pipe;
4749 struct intel_crtc_scaler_state *scaler_state =
4750 &crtc->config->scaler_state;
4751
4752 if (crtc->config->pch_pfit.enabled) {
4753 int id;
4754
4755 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4756 return;
4757
4758 id = scaler_state->scaler_id;
4759 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4760 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4761 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4762 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4763 }
4764 }
4765
4766 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4767 {
4768 struct drm_device *dev = crtc->base.dev;
4769 struct drm_i915_private *dev_priv = to_i915(dev);
4770 int pipe = crtc->pipe;
4771
4772 if (crtc->config->pch_pfit.enabled) {
4773 /* Force use of hard-coded filter coefficients
4774 * as some pre-programmed values are broken,
4775 * e.g. x201.
4776 */
4777 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4778 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4779 PF_PIPE_SEL_IVB(pipe));
4780 else
4781 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4782 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4783 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4784 }
4785 }
4786
4787 void hsw_enable_ips(struct intel_crtc *crtc)
4788 {
4789 struct drm_device *dev = crtc->base.dev;
4790 struct drm_i915_private *dev_priv = to_i915(dev);
4791
4792 if (!crtc->config->ips_enabled)
4793 return;
4794
4795 /*
4796 * We can only enable IPS after we enable a plane and wait for a vblank
4797 * This function is called from post_plane_update, which is run after
4798 * a vblank wait.
4799 */
4800
4801 assert_plane_enabled(dev_priv, crtc->plane);
4802 if (IS_BROADWELL(dev_priv)) {
4803 mutex_lock(&dev_priv->rps.hw_lock);
4804 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4805 mutex_unlock(&dev_priv->rps.hw_lock);
4806 /* Quoting Art Runyan: "its not safe to expect any particular
4807 * value in IPS_CTL bit 31 after enabling IPS through the
4808 * mailbox." Moreover, the mailbox may return a bogus state,
4809 * so we need to just enable it and continue on.
4810 */
4811 } else {
4812 I915_WRITE(IPS_CTL, IPS_ENABLE);
4813 /* The bit only becomes 1 in the next vblank, so this wait here
4814 * is essentially intel_wait_for_vblank. If we don't have this
4815 * and don't wait for vblanks until the end of crtc_enable, then
4816 * the HW state readout code will complain that the expected
4817 * IPS_CTL value is not the one we read. */
4818 if (intel_wait_for_register(dev_priv,
4819 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4820 50))
4821 DRM_ERROR("Timed out waiting for IPS enable\n");
4822 }
4823 }
4824
4825 void hsw_disable_ips(struct intel_crtc *crtc)
4826 {
4827 struct drm_device *dev = crtc->base.dev;
4828 struct drm_i915_private *dev_priv = to_i915(dev);
4829
4830 if (!crtc->config->ips_enabled)
4831 return;
4832
4833 assert_plane_enabled(dev_priv, crtc->plane);
4834 if (IS_BROADWELL(dev_priv)) {
4835 mutex_lock(&dev_priv->rps.hw_lock);
4836 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4837 mutex_unlock(&dev_priv->rps.hw_lock);
4838 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4839 if (intel_wait_for_register(dev_priv,
4840 IPS_CTL, IPS_ENABLE, 0,
4841 42))
4842 DRM_ERROR("Timed out waiting for IPS disable\n");
4843 } else {
4844 I915_WRITE(IPS_CTL, 0);
4845 POSTING_READ(IPS_CTL);
4846 }
4847
4848 /* We need to wait for a vblank before we can disable the plane. */
4849 intel_wait_for_vblank(dev_priv, crtc->pipe);
4850 }
4851
4852 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4853 {
4854 if (intel_crtc->overlay) {
4855 struct drm_device *dev = intel_crtc->base.dev;
4856
4857 mutex_lock(&dev->struct_mutex);
4858 (void) intel_overlay_switch_off(intel_crtc->overlay);
4859 mutex_unlock(&dev->struct_mutex);
4860 }
4861
4862 /* Let userspace switch the overlay on again. In most cases userspace
4863 * has to recompute where to put it anyway.
4864 */
4865 }
4866
4867 /**
4868 * intel_post_enable_primary - Perform operations after enabling primary plane
4869 * @crtc: the CRTC whose primary plane was just enabled
4870 *
4871 * Performs potentially sleeping operations that must be done after the primary
4872 * plane is enabled, such as updating FBC and IPS. Note that this may be
4873 * called due to an explicit primary plane update, or due to an implicit
4874 * re-enable that is caused when a sprite plane is updated to no longer
4875 * completely hide the primary plane.
4876 */
4877 static void
4878 intel_post_enable_primary(struct drm_crtc *crtc)
4879 {
4880 struct drm_device *dev = crtc->dev;
4881 struct drm_i915_private *dev_priv = to_i915(dev);
4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883 int pipe = intel_crtc->pipe;
4884
4885 /*
4886 * FIXME IPS should be fine as long as one plane is
4887 * enabled, but in practice it seems to have problems
4888 * when going from primary only to sprite only and vice
4889 * versa.
4890 */
4891 hsw_enable_ips(intel_crtc);
4892
4893 /*
4894 * Gen2 reports pipe underruns whenever all planes are disabled.
4895 * So don't enable underrun reporting before at least some planes
4896 * are enabled.
4897 * FIXME: Need to fix the logic to work when we turn off all planes
4898 * but leave the pipe running.
4899 */
4900 if (IS_GEN2(dev_priv))
4901 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903 /* Underruns don't always raise interrupts, so check manually. */
4904 intel_check_cpu_fifo_underruns(dev_priv);
4905 intel_check_pch_fifo_underruns(dev_priv);
4906 }
4907
4908 /* FIXME move all this to pre_plane_update() with proper state tracking */
4909 static void
4910 intel_pre_disable_primary(struct drm_crtc *crtc)
4911 {
4912 struct drm_device *dev = crtc->dev;
4913 struct drm_i915_private *dev_priv = to_i915(dev);
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 int pipe = intel_crtc->pipe;
4916
4917 /*
4918 * Gen2 reports pipe underruns whenever all planes are disabled.
4919 * So diasble underrun reporting before all the planes get disabled.
4920 * FIXME: Need to fix the logic to work when we turn off all planes
4921 * but leave the pipe running.
4922 */
4923 if (IS_GEN2(dev_priv))
4924 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4925
4926 /*
4927 * FIXME IPS should be fine as long as one plane is
4928 * enabled, but in practice it seems to have problems
4929 * when going from primary only to sprite only and vice
4930 * versa.
4931 */
4932 hsw_disable_ips(intel_crtc);
4933 }
4934
4935 /* FIXME get rid of this and use pre_plane_update */
4936 static void
4937 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4938 {
4939 struct drm_device *dev = crtc->dev;
4940 struct drm_i915_private *dev_priv = to_i915(dev);
4941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4942 int pipe = intel_crtc->pipe;
4943
4944 intel_pre_disable_primary(crtc);
4945
4946 /*
4947 * Vblank time updates from the shadow to live plane control register
4948 * are blocked if the memory self-refresh mode is active at that
4949 * moment. So to make sure the plane gets truly disabled, disable
4950 * first the self-refresh mode. The self-refresh enable bit in turn
4951 * will be checked/applied by the HW only at the next frame start
4952 * event which is after the vblank start event, so we need to have a
4953 * wait-for-vblank between disabling the plane and the pipe.
4954 */
4955 if (HAS_GMCH_DISPLAY(dev_priv) &&
4956 intel_set_memory_cxsr(dev_priv, false))
4957 intel_wait_for_vblank(dev_priv, pipe);
4958 }
4959
4960 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4961 {
4962 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4963 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4964 struct intel_crtc_state *pipe_config =
4965 to_intel_crtc_state(crtc->base.state);
4966 struct drm_plane *primary = crtc->base.primary;
4967 struct drm_plane_state *old_pri_state =
4968 drm_atomic_get_existing_plane_state(old_state, primary);
4969
4970 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4971
4972 if (pipe_config->update_wm_post && pipe_config->base.active)
4973 intel_update_watermarks(crtc);
4974
4975 if (old_pri_state) {
4976 struct intel_plane_state *primary_state =
4977 to_intel_plane_state(primary->state);
4978 struct intel_plane_state *old_primary_state =
4979 to_intel_plane_state(old_pri_state);
4980
4981 intel_fbc_post_update(crtc);
4982
4983 if (primary_state->base.visible &&
4984 (needs_modeset(&pipe_config->base) ||
4985 !old_primary_state->base.visible))
4986 intel_post_enable_primary(&crtc->base);
4987 }
4988 }
4989
4990 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
4991 struct intel_crtc_state *pipe_config)
4992 {
4993 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4994 struct drm_device *dev = crtc->base.dev;
4995 struct drm_i915_private *dev_priv = to_i915(dev);
4996 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4997 struct drm_plane *primary = crtc->base.primary;
4998 struct drm_plane_state *old_pri_state =
4999 drm_atomic_get_existing_plane_state(old_state, primary);
5000 bool modeset = needs_modeset(&pipe_config->base);
5001 struct intel_atomic_state *old_intel_state =
5002 to_intel_atomic_state(old_state);
5003
5004 if (old_pri_state) {
5005 struct intel_plane_state *primary_state =
5006 to_intel_plane_state(primary->state);
5007 struct intel_plane_state *old_primary_state =
5008 to_intel_plane_state(old_pri_state);
5009
5010 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5011
5012 if (old_primary_state->base.visible &&
5013 (modeset || !primary_state->base.visible))
5014 intel_pre_disable_primary(&crtc->base);
5015 }
5016
5017 /*
5018 * Vblank time updates from the shadow to live plane control register
5019 * are blocked if the memory self-refresh mode is active at that
5020 * moment. So to make sure the plane gets truly disabled, disable
5021 * first the self-refresh mode. The self-refresh enable bit in turn
5022 * will be checked/applied by the HW only at the next frame start
5023 * event which is after the vblank start event, so we need to have a
5024 * wait-for-vblank between disabling the plane and the pipe.
5025 */
5026 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5027 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5028 intel_wait_for_vblank(dev_priv, crtc->pipe);
5029
5030 /*
5031 * IVB workaround: must disable low power watermarks for at least
5032 * one frame before enabling scaling. LP watermarks can be re-enabled
5033 * when scaling is disabled.
5034 *
5035 * WaCxSRDisabledForSpriteScaling:ivb
5036 */
5037 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5038 intel_wait_for_vblank(dev_priv, crtc->pipe);
5039
5040 /*
5041 * If we're doing a modeset, we're done. No need to do any pre-vblank
5042 * watermark programming here.
5043 */
5044 if (needs_modeset(&pipe_config->base))
5045 return;
5046
5047 /*
5048 * For platforms that support atomic watermarks, program the
5049 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5050 * will be the intermediate values that are safe for both pre- and
5051 * post- vblank; when vblank happens, the 'active' values will be set
5052 * to the final 'target' values and we'll do this again to get the
5053 * optimal watermarks. For gen9+ platforms, the values we program here
5054 * will be the final target values which will get automatically latched
5055 * at vblank time; no further programming will be necessary.
5056 *
5057 * If a platform hasn't been transitioned to atomic watermarks yet,
5058 * we'll continue to update watermarks the old way, if flags tell
5059 * us to.
5060 */
5061 if (dev_priv->display.initial_watermarks != NULL)
5062 dev_priv->display.initial_watermarks(old_intel_state,
5063 pipe_config);
5064 else if (pipe_config->update_wm_pre)
5065 intel_update_watermarks(crtc);
5066 }
5067
5068 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5069 {
5070 struct drm_device *dev = crtc->dev;
5071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5072 struct drm_plane *p;
5073 int pipe = intel_crtc->pipe;
5074
5075 intel_crtc_dpms_overlay_disable(intel_crtc);
5076
5077 drm_for_each_plane_mask(p, dev, plane_mask)
5078 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5079
5080 /*
5081 * FIXME: Once we grow proper nuclear flip support out of this we need
5082 * to compute the mask of flip planes precisely. For the time being
5083 * consider this a flip to a NULL plane.
5084 */
5085 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5086 }
5087
5088 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5089 struct intel_crtc_state *crtc_state,
5090 struct drm_atomic_state *old_state)
5091 {
5092 struct drm_connector_state *conn_state;
5093 struct drm_connector *conn;
5094 int i;
5095
5096 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5097 struct intel_encoder *encoder =
5098 to_intel_encoder(conn_state->best_encoder);
5099
5100 if (conn_state->crtc != crtc)
5101 continue;
5102
5103 if (encoder->pre_pll_enable)
5104 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5105 }
5106 }
5107
5108 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5109 struct intel_crtc_state *crtc_state,
5110 struct drm_atomic_state *old_state)
5111 {
5112 struct drm_connector_state *conn_state;
5113 struct drm_connector *conn;
5114 int i;
5115
5116 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5117 struct intel_encoder *encoder =
5118 to_intel_encoder(conn_state->best_encoder);
5119
5120 if (conn_state->crtc != crtc)
5121 continue;
5122
5123 if (encoder->pre_enable)
5124 encoder->pre_enable(encoder, crtc_state, conn_state);
5125 }
5126 }
5127
5128 static void intel_encoders_enable(struct drm_crtc *crtc,
5129 struct intel_crtc_state *crtc_state,
5130 struct drm_atomic_state *old_state)
5131 {
5132 struct drm_connector_state *conn_state;
5133 struct drm_connector *conn;
5134 int i;
5135
5136 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5137 struct intel_encoder *encoder =
5138 to_intel_encoder(conn_state->best_encoder);
5139
5140 if (conn_state->crtc != crtc)
5141 continue;
5142
5143 encoder->enable(encoder, crtc_state, conn_state);
5144 intel_opregion_notify_encoder(encoder, true);
5145 }
5146 }
5147
5148 static void intel_encoders_disable(struct drm_crtc *crtc,
5149 struct intel_crtc_state *old_crtc_state,
5150 struct drm_atomic_state *old_state)
5151 {
5152 struct drm_connector_state *old_conn_state;
5153 struct drm_connector *conn;
5154 int i;
5155
5156 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5157 struct intel_encoder *encoder =
5158 to_intel_encoder(old_conn_state->best_encoder);
5159
5160 if (old_conn_state->crtc != crtc)
5161 continue;
5162
5163 intel_opregion_notify_encoder(encoder, false);
5164 encoder->disable(encoder, old_crtc_state, old_conn_state);
5165 }
5166 }
5167
5168 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5169 struct intel_crtc_state *old_crtc_state,
5170 struct drm_atomic_state *old_state)
5171 {
5172 struct drm_connector_state *old_conn_state;
5173 struct drm_connector *conn;
5174 int i;
5175
5176 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5177 struct intel_encoder *encoder =
5178 to_intel_encoder(old_conn_state->best_encoder);
5179
5180 if (old_conn_state->crtc != crtc)
5181 continue;
5182
5183 if (encoder->post_disable)
5184 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5185 }
5186 }
5187
5188 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5189 struct intel_crtc_state *old_crtc_state,
5190 struct drm_atomic_state *old_state)
5191 {
5192 struct drm_connector_state *old_conn_state;
5193 struct drm_connector *conn;
5194 int i;
5195
5196 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5197 struct intel_encoder *encoder =
5198 to_intel_encoder(old_conn_state->best_encoder);
5199
5200 if (old_conn_state->crtc != crtc)
5201 continue;
5202
5203 if (encoder->post_pll_disable)
5204 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5205 }
5206 }
5207
5208 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5209 struct drm_atomic_state *old_state)
5210 {
5211 struct drm_crtc *crtc = pipe_config->base.crtc;
5212 struct drm_device *dev = crtc->dev;
5213 struct drm_i915_private *dev_priv = to_i915(dev);
5214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5215 int pipe = intel_crtc->pipe;
5216 struct intel_atomic_state *old_intel_state =
5217 to_intel_atomic_state(old_state);
5218
5219 if (WARN_ON(intel_crtc->active))
5220 return;
5221
5222 /*
5223 * Sometimes spurious CPU pipe underruns happen during FDI
5224 * training, at least with VGA+HDMI cloning. Suppress them.
5225 *
5226 * On ILK we get an occasional spurious CPU pipe underruns
5227 * between eDP port A enable and vdd enable. Also PCH port
5228 * enable seems to result in the occasional CPU pipe underrun.
5229 *
5230 * Spurious PCH underruns also occur during PCH enabling.
5231 */
5232 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5233 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5234 if (intel_crtc->config->has_pch_encoder)
5235 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5236
5237 if (intel_crtc->config->has_pch_encoder)
5238 intel_prepare_shared_dpll(intel_crtc);
5239
5240 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5241 intel_dp_set_m_n(intel_crtc, M1_N1);
5242
5243 intel_set_pipe_timings(intel_crtc);
5244 intel_set_pipe_src_size(intel_crtc);
5245
5246 if (intel_crtc->config->has_pch_encoder) {
5247 intel_cpu_transcoder_set_m_n(intel_crtc,
5248 &intel_crtc->config->fdi_m_n, NULL);
5249 }
5250
5251 ironlake_set_pipeconf(crtc);
5252
5253 intel_crtc->active = true;
5254
5255 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5256
5257 if (intel_crtc->config->has_pch_encoder) {
5258 /* Note: FDI PLL enabling _must_ be done before we enable the
5259 * cpu pipes, hence this is separate from all the other fdi/pch
5260 * enabling. */
5261 ironlake_fdi_pll_enable(intel_crtc);
5262 } else {
5263 assert_fdi_tx_disabled(dev_priv, pipe);
5264 assert_fdi_rx_disabled(dev_priv, pipe);
5265 }
5266
5267 ironlake_pfit_enable(intel_crtc);
5268
5269 /*
5270 * On ILK+ LUT must be loaded before the pipe is running but with
5271 * clocks enabled
5272 */
5273 intel_color_load_luts(&pipe_config->base);
5274
5275 if (dev_priv->display.initial_watermarks != NULL)
5276 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5277 intel_enable_pipe(intel_crtc);
5278
5279 if (intel_crtc->config->has_pch_encoder)
5280 ironlake_pch_enable(pipe_config);
5281
5282 assert_vblank_disabled(crtc);
5283 drm_crtc_vblank_on(crtc);
5284
5285 intel_encoders_enable(crtc, pipe_config, old_state);
5286
5287 if (HAS_PCH_CPT(dev_priv))
5288 cpt_verify_modeset(dev, intel_crtc->pipe);
5289
5290 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5291 if (intel_crtc->config->has_pch_encoder)
5292 intel_wait_for_vblank(dev_priv, pipe);
5293 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5294 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5295 }
5296
5297 /* IPS only exists on ULT machines and is tied to pipe A. */
5298 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5299 {
5300 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5301 }
5302
5303 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5304 struct drm_atomic_state *old_state)
5305 {
5306 struct drm_crtc *crtc = pipe_config->base.crtc;
5307 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5310 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5311 struct intel_atomic_state *old_intel_state =
5312 to_intel_atomic_state(old_state);
5313
5314 if (WARN_ON(intel_crtc->active))
5315 return;
5316
5317 if (intel_crtc->config->has_pch_encoder)
5318 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5319 false);
5320
5321 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5322
5323 if (intel_crtc->config->shared_dpll)
5324 intel_enable_shared_dpll(intel_crtc);
5325
5326 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5327 intel_dp_set_m_n(intel_crtc, M1_N1);
5328
5329 if (!transcoder_is_dsi(cpu_transcoder))
5330 intel_set_pipe_timings(intel_crtc);
5331
5332 intel_set_pipe_src_size(intel_crtc);
5333
5334 if (cpu_transcoder != TRANSCODER_EDP &&
5335 !transcoder_is_dsi(cpu_transcoder)) {
5336 I915_WRITE(PIPE_MULT(cpu_transcoder),
5337 intel_crtc->config->pixel_multiplier - 1);
5338 }
5339
5340 if (intel_crtc->config->has_pch_encoder) {
5341 intel_cpu_transcoder_set_m_n(intel_crtc,
5342 &intel_crtc->config->fdi_m_n, NULL);
5343 }
5344
5345 if (!transcoder_is_dsi(cpu_transcoder))
5346 haswell_set_pipeconf(crtc);
5347
5348 haswell_set_pipemisc(crtc);
5349
5350 intel_color_set_csc(&pipe_config->base);
5351
5352 intel_crtc->active = true;
5353
5354 if (intel_crtc->config->has_pch_encoder)
5355 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5356 else
5357 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5358
5359 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5360
5361 if (intel_crtc->config->has_pch_encoder)
5362 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5363
5364 if (!transcoder_is_dsi(cpu_transcoder))
5365 intel_ddi_enable_pipe_clock(pipe_config);
5366
5367 if (INTEL_GEN(dev_priv) >= 9)
5368 skylake_pfit_enable(intel_crtc);
5369 else
5370 ironlake_pfit_enable(intel_crtc);
5371
5372 /*
5373 * On ILK+ LUT must be loaded before the pipe is running but with
5374 * clocks enabled
5375 */
5376 intel_color_load_luts(&pipe_config->base);
5377
5378 intel_ddi_set_pipe_settings(pipe_config);
5379 if (!transcoder_is_dsi(cpu_transcoder))
5380 intel_ddi_enable_transcoder_func(pipe_config);
5381
5382 if (dev_priv->display.initial_watermarks != NULL)
5383 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5384
5385 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5386 if (!transcoder_is_dsi(cpu_transcoder))
5387 intel_enable_pipe(intel_crtc);
5388
5389 if (intel_crtc->config->has_pch_encoder)
5390 lpt_pch_enable(pipe_config);
5391
5392 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5393 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5394
5395 assert_vblank_disabled(crtc);
5396 drm_crtc_vblank_on(crtc);
5397
5398 intel_encoders_enable(crtc, pipe_config, old_state);
5399
5400 if (intel_crtc->config->has_pch_encoder) {
5401 intel_wait_for_vblank(dev_priv, pipe);
5402 intel_wait_for_vblank(dev_priv, pipe);
5403 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5404 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5405 true);
5406 }
5407
5408 /* If we change the relative order between pipe/planes enabling, we need
5409 * to change the workaround. */
5410 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5411 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5412 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5413 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5414 }
5415 }
5416
5417 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5418 {
5419 struct drm_device *dev = crtc->base.dev;
5420 struct drm_i915_private *dev_priv = to_i915(dev);
5421 int pipe = crtc->pipe;
5422
5423 /* To avoid upsetting the power well on haswell only disable the pfit if
5424 * it's in use. The hw state code will make sure we get this right. */
5425 if (force || crtc->config->pch_pfit.enabled) {
5426 I915_WRITE(PF_CTL(pipe), 0);
5427 I915_WRITE(PF_WIN_POS(pipe), 0);
5428 I915_WRITE(PF_WIN_SZ(pipe), 0);
5429 }
5430 }
5431
5432 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5433 struct drm_atomic_state *old_state)
5434 {
5435 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5436 struct drm_device *dev = crtc->dev;
5437 struct drm_i915_private *dev_priv = to_i915(dev);
5438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5439 int pipe = intel_crtc->pipe;
5440
5441 /*
5442 * Sometimes spurious CPU pipe underruns happen when the
5443 * pipe is already disabled, but FDI RX/TX is still enabled.
5444 * Happens at least with VGA+HDMI cloning. Suppress them.
5445 */
5446 if (intel_crtc->config->has_pch_encoder) {
5447 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5448 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5449 }
5450
5451 intel_encoders_disable(crtc, old_crtc_state, old_state);
5452
5453 drm_crtc_vblank_off(crtc);
5454 assert_vblank_disabled(crtc);
5455
5456 intel_disable_pipe(intel_crtc);
5457
5458 ironlake_pfit_disable(intel_crtc, false);
5459
5460 if (intel_crtc->config->has_pch_encoder)
5461 ironlake_fdi_disable(crtc);
5462
5463 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5464
5465 if (intel_crtc->config->has_pch_encoder) {
5466 ironlake_disable_pch_transcoder(dev_priv, pipe);
5467
5468 if (HAS_PCH_CPT(dev_priv)) {
5469 i915_reg_t reg;
5470 u32 temp;
5471
5472 /* disable TRANS_DP_CTL */
5473 reg = TRANS_DP_CTL(pipe);
5474 temp = I915_READ(reg);
5475 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5476 TRANS_DP_PORT_SEL_MASK);
5477 temp |= TRANS_DP_PORT_SEL_NONE;
5478 I915_WRITE(reg, temp);
5479
5480 /* disable DPLL_SEL */
5481 temp = I915_READ(PCH_DPLL_SEL);
5482 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5483 I915_WRITE(PCH_DPLL_SEL, temp);
5484 }
5485
5486 ironlake_fdi_pll_disable(intel_crtc);
5487 }
5488
5489 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5490 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5491 }
5492
5493 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5494 struct drm_atomic_state *old_state)
5495 {
5496 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5497 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5499 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5500
5501 if (intel_crtc->config->has_pch_encoder)
5502 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5503 false);
5504
5505 intel_encoders_disable(crtc, old_crtc_state, old_state);
5506
5507 drm_crtc_vblank_off(crtc);
5508 assert_vblank_disabled(crtc);
5509
5510 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5511 if (!transcoder_is_dsi(cpu_transcoder))
5512 intel_disable_pipe(intel_crtc);
5513
5514 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5515 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5516
5517 if (!transcoder_is_dsi(cpu_transcoder))
5518 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5519
5520 if (INTEL_GEN(dev_priv) >= 9)
5521 skylake_scaler_disable(intel_crtc);
5522 else
5523 ironlake_pfit_disable(intel_crtc, false);
5524
5525 if (!transcoder_is_dsi(cpu_transcoder))
5526 intel_ddi_disable_pipe_clock(intel_crtc->config);
5527
5528 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5529
5530 if (old_crtc_state->has_pch_encoder)
5531 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5532 true);
5533 }
5534
5535 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5536 {
5537 struct drm_device *dev = crtc->base.dev;
5538 struct drm_i915_private *dev_priv = to_i915(dev);
5539 struct intel_crtc_state *pipe_config = crtc->config;
5540
5541 if (!pipe_config->gmch_pfit.control)
5542 return;
5543
5544 /*
5545 * The panel fitter should only be adjusted whilst the pipe is disabled,
5546 * according to register description and PRM.
5547 */
5548 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5549 assert_pipe_disabled(dev_priv, crtc->pipe);
5550
5551 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5552 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5553
5554 /* Border color in case we don't scale up to the full screen. Black by
5555 * default, change to something else for debugging. */
5556 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5557 }
5558
5559 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5560 {
5561 switch (port) {
5562 case PORT_A:
5563 return POWER_DOMAIN_PORT_DDI_A_LANES;
5564 case PORT_B:
5565 return POWER_DOMAIN_PORT_DDI_B_LANES;
5566 case PORT_C:
5567 return POWER_DOMAIN_PORT_DDI_C_LANES;
5568 case PORT_D:
5569 return POWER_DOMAIN_PORT_DDI_D_LANES;
5570 case PORT_E:
5571 return POWER_DOMAIN_PORT_DDI_E_LANES;
5572 default:
5573 MISSING_CASE(port);
5574 return POWER_DOMAIN_PORT_OTHER;
5575 }
5576 }
5577
5578 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5579 struct intel_crtc_state *crtc_state)
5580 {
5581 struct drm_device *dev = crtc->dev;
5582 struct drm_i915_private *dev_priv = to_i915(dev);
5583 struct drm_encoder *encoder;
5584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585 enum pipe pipe = intel_crtc->pipe;
5586 u64 mask;
5587 enum transcoder transcoder = crtc_state->cpu_transcoder;
5588
5589 if (!crtc_state->base.active)
5590 return 0;
5591
5592 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5593 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5594 if (crtc_state->pch_pfit.enabled ||
5595 crtc_state->pch_pfit.force_thru)
5596 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5597
5598 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5599 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5600
5601 mask |= BIT_ULL(intel_encoder->power_domain);
5602 }
5603
5604 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5605 mask |= BIT(POWER_DOMAIN_AUDIO);
5606
5607 if (crtc_state->shared_dpll)
5608 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5609
5610 return mask;
5611 }
5612
5613 static u64
5614 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5615 struct intel_crtc_state *crtc_state)
5616 {
5617 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5619 enum intel_display_power_domain domain;
5620 u64 domains, new_domains, old_domains;
5621
5622 old_domains = intel_crtc->enabled_power_domains;
5623 intel_crtc->enabled_power_domains = new_domains =
5624 get_crtc_power_domains(crtc, crtc_state);
5625
5626 domains = new_domains & ~old_domains;
5627
5628 for_each_power_domain(domain, domains)
5629 intel_display_power_get(dev_priv, domain);
5630
5631 return old_domains & ~new_domains;
5632 }
5633
5634 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5635 u64 domains)
5636 {
5637 enum intel_display_power_domain domain;
5638
5639 for_each_power_domain(domain, domains)
5640 intel_display_power_put(dev_priv, domain);
5641 }
5642
5643 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5644 struct drm_atomic_state *old_state)
5645 {
5646 struct intel_atomic_state *old_intel_state =
5647 to_intel_atomic_state(old_state);
5648 struct drm_crtc *crtc = pipe_config->base.crtc;
5649 struct drm_device *dev = crtc->dev;
5650 struct drm_i915_private *dev_priv = to_i915(dev);
5651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5652 int pipe = intel_crtc->pipe;
5653
5654 if (WARN_ON(intel_crtc->active))
5655 return;
5656
5657 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5658 intel_dp_set_m_n(intel_crtc, M1_N1);
5659
5660 intel_set_pipe_timings(intel_crtc);
5661 intel_set_pipe_src_size(intel_crtc);
5662
5663 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5664 struct drm_i915_private *dev_priv = to_i915(dev);
5665
5666 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5667 I915_WRITE(CHV_CANVAS(pipe), 0);
5668 }
5669
5670 i9xx_set_pipeconf(intel_crtc);
5671
5672 intel_crtc->active = true;
5673
5674 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5675
5676 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5677
5678 if (IS_CHERRYVIEW(dev_priv)) {
5679 chv_prepare_pll(intel_crtc, intel_crtc->config);
5680 chv_enable_pll(intel_crtc, intel_crtc->config);
5681 } else {
5682 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5683 vlv_enable_pll(intel_crtc, intel_crtc->config);
5684 }
5685
5686 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5687
5688 i9xx_pfit_enable(intel_crtc);
5689
5690 intel_color_load_luts(&pipe_config->base);
5691
5692 dev_priv->display.initial_watermarks(old_intel_state,
5693 pipe_config);
5694 intel_enable_pipe(intel_crtc);
5695
5696 assert_vblank_disabled(crtc);
5697 drm_crtc_vblank_on(crtc);
5698
5699 intel_encoders_enable(crtc, pipe_config, old_state);
5700 }
5701
5702 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5703 {
5704 struct drm_device *dev = crtc->base.dev;
5705 struct drm_i915_private *dev_priv = to_i915(dev);
5706
5707 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5708 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5709 }
5710
5711 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5712 struct drm_atomic_state *old_state)
5713 {
5714 struct intel_atomic_state *old_intel_state =
5715 to_intel_atomic_state(old_state);
5716 struct drm_crtc *crtc = pipe_config->base.crtc;
5717 struct drm_device *dev = crtc->dev;
5718 struct drm_i915_private *dev_priv = to_i915(dev);
5719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5720 enum pipe pipe = intel_crtc->pipe;
5721
5722 if (WARN_ON(intel_crtc->active))
5723 return;
5724
5725 i9xx_set_pll_dividers(intel_crtc);
5726
5727 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5728 intel_dp_set_m_n(intel_crtc, M1_N1);
5729
5730 intel_set_pipe_timings(intel_crtc);
5731 intel_set_pipe_src_size(intel_crtc);
5732
5733 i9xx_set_pipeconf(intel_crtc);
5734
5735 intel_crtc->active = true;
5736
5737 if (!IS_GEN2(dev_priv))
5738 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5739
5740 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5741
5742 i9xx_enable_pll(intel_crtc);
5743
5744 i9xx_pfit_enable(intel_crtc);
5745
5746 intel_color_load_luts(&pipe_config->base);
5747
5748 if (dev_priv->display.initial_watermarks != NULL)
5749 dev_priv->display.initial_watermarks(old_intel_state,
5750 intel_crtc->config);
5751 else
5752 intel_update_watermarks(intel_crtc);
5753 intel_enable_pipe(intel_crtc);
5754
5755 assert_vblank_disabled(crtc);
5756 drm_crtc_vblank_on(crtc);
5757
5758 intel_encoders_enable(crtc, pipe_config, old_state);
5759 }
5760
5761 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5762 {
5763 struct drm_device *dev = crtc->base.dev;
5764 struct drm_i915_private *dev_priv = to_i915(dev);
5765
5766 if (!crtc->config->gmch_pfit.control)
5767 return;
5768
5769 assert_pipe_disabled(dev_priv, crtc->pipe);
5770
5771 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5772 I915_READ(PFIT_CONTROL));
5773 I915_WRITE(PFIT_CONTROL, 0);
5774 }
5775
5776 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5777 struct drm_atomic_state *old_state)
5778 {
5779 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5780 struct drm_device *dev = crtc->dev;
5781 struct drm_i915_private *dev_priv = to_i915(dev);
5782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5783 int pipe = intel_crtc->pipe;
5784
5785 /*
5786 * On gen2 planes are double buffered but the pipe isn't, so we must
5787 * wait for planes to fully turn off before disabling the pipe.
5788 */
5789 if (IS_GEN2(dev_priv))
5790 intel_wait_for_vblank(dev_priv, pipe);
5791
5792 intel_encoders_disable(crtc, old_crtc_state, old_state);
5793
5794 drm_crtc_vblank_off(crtc);
5795 assert_vblank_disabled(crtc);
5796
5797 intel_disable_pipe(intel_crtc);
5798
5799 i9xx_pfit_disable(intel_crtc);
5800
5801 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5802
5803 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5804 if (IS_CHERRYVIEW(dev_priv))
5805 chv_disable_pll(dev_priv, pipe);
5806 else if (IS_VALLEYVIEW(dev_priv))
5807 vlv_disable_pll(dev_priv, pipe);
5808 else
5809 i9xx_disable_pll(intel_crtc);
5810 }
5811
5812 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5813
5814 if (!IS_GEN2(dev_priv))
5815 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5816
5817 if (!dev_priv->display.initial_watermarks)
5818 intel_update_watermarks(intel_crtc);
5819
5820 /* clock the pipe down to 640x480@60 to potentially save power */
5821 if (IS_I830(dev_priv))
5822 i830_enable_pipe(dev_priv, pipe);
5823 }
5824
5825 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5826 struct drm_modeset_acquire_ctx *ctx)
5827 {
5828 struct intel_encoder *encoder;
5829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5830 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5831 enum intel_display_power_domain domain;
5832 u64 domains;
5833 struct drm_atomic_state *state;
5834 struct intel_crtc_state *crtc_state;
5835 int ret;
5836
5837 if (!intel_crtc->active)
5838 return;
5839
5840 if (crtc->primary->state->visible) {
5841 WARN_ON(intel_crtc->flip_work);
5842
5843 intel_pre_disable_primary_noatomic(crtc);
5844
5845 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5846 crtc->primary->state->visible = false;
5847 }
5848
5849 state = drm_atomic_state_alloc(crtc->dev);
5850 if (!state) {
5851 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5852 crtc->base.id, crtc->name);
5853 return;
5854 }
5855
5856 state->acquire_ctx = ctx;
5857
5858 /* Everything's already locked, -EDEADLK can't happen. */
5859 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5860 ret = drm_atomic_add_affected_connectors(state, crtc);
5861
5862 WARN_ON(IS_ERR(crtc_state) || ret);
5863
5864 dev_priv->display.crtc_disable(crtc_state, state);
5865
5866 drm_atomic_state_put(state);
5867
5868 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5869 crtc->base.id, crtc->name);
5870
5871 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5872 crtc->state->active = false;
5873 intel_crtc->active = false;
5874 crtc->enabled = false;
5875 crtc->state->connector_mask = 0;
5876 crtc->state->encoder_mask = 0;
5877
5878 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5879 encoder->base.crtc = NULL;
5880
5881 intel_fbc_disable(intel_crtc);
5882 intel_update_watermarks(intel_crtc);
5883 intel_disable_shared_dpll(intel_crtc);
5884
5885 domains = intel_crtc->enabled_power_domains;
5886 for_each_power_domain(domain, domains)
5887 intel_display_power_put(dev_priv, domain);
5888 intel_crtc->enabled_power_domains = 0;
5889
5890 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5891 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5892 }
5893
5894 /*
5895 * turn all crtc's off, but do not adjust state
5896 * This has to be paired with a call to intel_modeset_setup_hw_state.
5897 */
5898 int intel_display_suspend(struct drm_device *dev)
5899 {
5900 struct drm_i915_private *dev_priv = to_i915(dev);
5901 struct drm_atomic_state *state;
5902 int ret;
5903
5904 state = drm_atomic_helper_suspend(dev);
5905 ret = PTR_ERR_OR_ZERO(state);
5906 if (ret)
5907 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5908 else
5909 dev_priv->modeset_restore_state = state;
5910 return ret;
5911 }
5912
5913 void intel_encoder_destroy(struct drm_encoder *encoder)
5914 {
5915 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5916
5917 drm_encoder_cleanup(encoder);
5918 kfree(intel_encoder);
5919 }
5920
5921 /* Cross check the actual hw state with our own modeset state tracking (and it's
5922 * internal consistency). */
5923 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5924 struct drm_connector_state *conn_state)
5925 {
5926 struct intel_connector *connector = to_intel_connector(conn_state->connector);
5927
5928 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5929 connector->base.base.id,
5930 connector->base.name);
5931
5932 if (connector->get_hw_state(connector)) {
5933 struct intel_encoder *encoder = connector->encoder;
5934
5935 I915_STATE_WARN(!crtc_state,
5936 "connector enabled without attached crtc\n");
5937
5938 if (!crtc_state)
5939 return;
5940
5941 I915_STATE_WARN(!crtc_state->active,
5942 "connector is active, but attached crtc isn't\n");
5943
5944 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5945 return;
5946
5947 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5948 "atomic encoder doesn't match attached encoder\n");
5949
5950 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5951 "attached encoder crtc differs from connector crtc\n");
5952 } else {
5953 I915_STATE_WARN(crtc_state && crtc_state->active,
5954 "attached crtc is active, but connector isn't\n");
5955 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5956 "best encoder set without crtc!\n");
5957 }
5958 }
5959
5960 int intel_connector_init(struct intel_connector *connector)
5961 {
5962 struct intel_digital_connector_state *conn_state;
5963
5964 /*
5965 * Allocate enough memory to hold intel_digital_connector_state,
5966 * This might be a few bytes too many, but for connectors that don't
5967 * need it we'll free the state and allocate a smaller one on the first
5968 * succesful commit anyway.
5969 */
5970 conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
5971 if (!conn_state)
5972 return -ENOMEM;
5973
5974 __drm_atomic_helper_connector_reset(&connector->base,
5975 &conn_state->base);
5976
5977 return 0;
5978 }
5979
5980 struct intel_connector *intel_connector_alloc(void)
5981 {
5982 struct intel_connector *connector;
5983
5984 connector = kzalloc(sizeof *connector, GFP_KERNEL);
5985 if (!connector)
5986 return NULL;
5987
5988 if (intel_connector_init(connector) < 0) {
5989 kfree(connector);
5990 return NULL;
5991 }
5992
5993 return connector;
5994 }
5995
5996 /* Simple connector->get_hw_state implementation for encoders that support only
5997 * one connector and no cloning and hence the encoder state determines the state
5998 * of the connector. */
5999 bool intel_connector_get_hw_state(struct intel_connector *connector)
6000 {
6001 enum pipe pipe = 0;
6002 struct intel_encoder *encoder = connector->encoder;
6003
6004 return encoder->get_hw_state(encoder, &pipe);
6005 }
6006
6007 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6008 {
6009 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6010 return crtc_state->fdi_lanes;
6011
6012 return 0;
6013 }
6014
6015 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6016 struct intel_crtc_state *pipe_config)
6017 {
6018 struct drm_i915_private *dev_priv = to_i915(dev);
6019 struct drm_atomic_state *state = pipe_config->base.state;
6020 struct intel_crtc *other_crtc;
6021 struct intel_crtc_state *other_crtc_state;
6022
6023 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6024 pipe_name(pipe), pipe_config->fdi_lanes);
6025 if (pipe_config->fdi_lanes > 4) {
6026 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6027 pipe_name(pipe), pipe_config->fdi_lanes);
6028 return -EINVAL;
6029 }
6030
6031 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6032 if (pipe_config->fdi_lanes > 2) {
6033 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6034 pipe_config->fdi_lanes);
6035 return -EINVAL;
6036 } else {
6037 return 0;
6038 }
6039 }
6040
6041 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6042 return 0;
6043
6044 /* Ivybridge 3 pipe is really complicated */
6045 switch (pipe) {
6046 case PIPE_A:
6047 return 0;
6048 case PIPE_B:
6049 if (pipe_config->fdi_lanes <= 2)
6050 return 0;
6051
6052 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6053 other_crtc_state =
6054 intel_atomic_get_crtc_state(state, other_crtc);
6055 if (IS_ERR(other_crtc_state))
6056 return PTR_ERR(other_crtc_state);
6057
6058 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6059 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6060 pipe_name(pipe), pipe_config->fdi_lanes);
6061 return -EINVAL;
6062 }
6063 return 0;
6064 case PIPE_C:
6065 if (pipe_config->fdi_lanes > 2) {
6066 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6067 pipe_name(pipe), pipe_config->fdi_lanes);
6068 return -EINVAL;
6069 }
6070
6071 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6072 other_crtc_state =
6073 intel_atomic_get_crtc_state(state, other_crtc);
6074 if (IS_ERR(other_crtc_state))
6075 return PTR_ERR(other_crtc_state);
6076
6077 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6078 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6079 return -EINVAL;
6080 }
6081 return 0;
6082 default:
6083 BUG();
6084 }
6085 }
6086
6087 #define RETRY 1
6088 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6089 struct intel_crtc_state *pipe_config)
6090 {
6091 struct drm_device *dev = intel_crtc->base.dev;
6092 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6093 int lane, link_bw, fdi_dotclock, ret;
6094 bool needs_recompute = false;
6095
6096 retry:
6097 /* FDI is a binary signal running at ~2.7GHz, encoding
6098 * each output octet as 10 bits. The actual frequency
6099 * is stored as a divider into a 100MHz clock, and the
6100 * mode pixel clock is stored in units of 1KHz.
6101 * Hence the bw of each lane in terms of the mode signal
6102 * is:
6103 */
6104 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6105
6106 fdi_dotclock = adjusted_mode->crtc_clock;
6107
6108 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6109 pipe_config->pipe_bpp);
6110
6111 pipe_config->fdi_lanes = lane;
6112
6113 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6114 link_bw, &pipe_config->fdi_m_n, false);
6115
6116 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6117 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6118 pipe_config->pipe_bpp -= 2*3;
6119 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6120 pipe_config->pipe_bpp);
6121 needs_recompute = true;
6122 pipe_config->bw_constrained = true;
6123
6124 goto retry;
6125 }
6126
6127 if (needs_recompute)
6128 return RETRY;
6129
6130 return ret;
6131 }
6132
6133 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6134 struct intel_crtc_state *pipe_config)
6135 {
6136 if (pipe_config->pipe_bpp > 24)
6137 return false;
6138
6139 /* HSW can handle pixel rate up to cdclk? */
6140 if (IS_HASWELL(dev_priv))
6141 return true;
6142
6143 /*
6144 * We compare against max which means we must take
6145 * the increased cdclk requirement into account when
6146 * calculating the new cdclk.
6147 *
6148 * Should measure whether using a lower cdclk w/o IPS
6149 */
6150 return pipe_config->pixel_rate <=
6151 dev_priv->max_cdclk_freq * 95 / 100;
6152 }
6153
6154 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6155 struct intel_crtc_state *pipe_config)
6156 {
6157 struct drm_device *dev = crtc->base.dev;
6158 struct drm_i915_private *dev_priv = to_i915(dev);
6159
6160 pipe_config->ips_enabled = i915.enable_ips &&
6161 hsw_crtc_supports_ips(crtc) &&
6162 pipe_config_supports_ips(dev_priv, pipe_config);
6163 }
6164
6165 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6166 {
6167 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6168
6169 /* GDG double wide on either pipe, otherwise pipe A only */
6170 return INTEL_INFO(dev_priv)->gen < 4 &&
6171 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6172 }
6173
6174 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6175 {
6176 uint32_t pixel_rate;
6177
6178 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6179
6180 /*
6181 * We only use IF-ID interlacing. If we ever use
6182 * PF-ID we'll need to adjust the pixel_rate here.
6183 */
6184
6185 if (pipe_config->pch_pfit.enabled) {
6186 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6187 uint32_t pfit_size = pipe_config->pch_pfit.size;
6188
6189 pipe_w = pipe_config->pipe_src_w;
6190 pipe_h = pipe_config->pipe_src_h;
6191
6192 pfit_w = (pfit_size >> 16) & 0xFFFF;
6193 pfit_h = pfit_size & 0xFFFF;
6194 if (pipe_w < pfit_w)
6195 pipe_w = pfit_w;
6196 if (pipe_h < pfit_h)
6197 pipe_h = pfit_h;
6198
6199 if (WARN_ON(!pfit_w || !pfit_h))
6200 return pixel_rate;
6201
6202 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6203 pfit_w * pfit_h);
6204 }
6205
6206 return pixel_rate;
6207 }
6208
6209 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6210 {
6211 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6212
6213 if (HAS_GMCH_DISPLAY(dev_priv))
6214 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6215 crtc_state->pixel_rate =
6216 crtc_state->base.adjusted_mode.crtc_clock;
6217 else
6218 crtc_state->pixel_rate =
6219 ilk_pipe_pixel_rate(crtc_state);
6220 }
6221
6222 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6223 struct intel_crtc_state *pipe_config)
6224 {
6225 struct drm_device *dev = crtc->base.dev;
6226 struct drm_i915_private *dev_priv = to_i915(dev);
6227 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6228 int clock_limit = dev_priv->max_dotclk_freq;
6229
6230 if (INTEL_GEN(dev_priv) < 4) {
6231 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6232
6233 /*
6234 * Enable double wide mode when the dot clock
6235 * is > 90% of the (display) core speed.
6236 */
6237 if (intel_crtc_supports_double_wide(crtc) &&
6238 adjusted_mode->crtc_clock > clock_limit) {
6239 clock_limit = dev_priv->max_dotclk_freq;
6240 pipe_config->double_wide = true;
6241 }
6242 }
6243
6244 if (adjusted_mode->crtc_clock > clock_limit) {
6245 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6246 adjusted_mode->crtc_clock, clock_limit,
6247 yesno(pipe_config->double_wide));
6248 return -EINVAL;
6249 }
6250
6251 /*
6252 * Pipe horizontal size must be even in:
6253 * - DVO ganged mode
6254 * - LVDS dual channel mode
6255 * - Double wide pipe
6256 */
6257 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6258 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6259 pipe_config->pipe_src_w &= ~1;
6260
6261 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6262 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6263 */
6264 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6265 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6266 return -EINVAL;
6267
6268 intel_crtc_compute_pixel_rate(pipe_config);
6269
6270 if (HAS_IPS(dev_priv))
6271 hsw_compute_ips_config(crtc, pipe_config);
6272
6273 if (pipe_config->has_pch_encoder)
6274 return ironlake_fdi_compute_config(crtc, pipe_config);
6275
6276 return 0;
6277 }
6278
6279 static void
6280 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6281 {
6282 while (*num > DATA_LINK_M_N_MASK ||
6283 *den > DATA_LINK_M_N_MASK) {
6284 *num >>= 1;
6285 *den >>= 1;
6286 }
6287 }
6288
6289 static void compute_m_n(unsigned int m, unsigned int n,
6290 uint32_t *ret_m, uint32_t *ret_n,
6291 bool reduce_m_n)
6292 {
6293 /*
6294 * Reduce M/N as much as possible without loss in precision. Several DP
6295 * dongles in particular seem to be fussy about too large *link* M/N
6296 * values. The passed in values are more likely to have the least
6297 * significant bits zero than M after rounding below, so do this first.
6298 */
6299 if (reduce_m_n) {
6300 while ((m & 1) == 0 && (n & 1) == 0) {
6301 m >>= 1;
6302 n >>= 1;
6303 }
6304 }
6305
6306 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6307 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6308 intel_reduce_m_n_ratio(ret_m, ret_n);
6309 }
6310
6311 void
6312 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6313 int pixel_clock, int link_clock,
6314 struct intel_link_m_n *m_n,
6315 bool reduce_m_n)
6316 {
6317 m_n->tu = 64;
6318
6319 compute_m_n(bits_per_pixel * pixel_clock,
6320 link_clock * nlanes * 8,
6321 &m_n->gmch_m, &m_n->gmch_n,
6322 reduce_m_n);
6323
6324 compute_m_n(pixel_clock, link_clock,
6325 &m_n->link_m, &m_n->link_n,
6326 reduce_m_n);
6327 }
6328
6329 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6330 {
6331 if (i915.panel_use_ssc >= 0)
6332 return i915.panel_use_ssc != 0;
6333 return dev_priv->vbt.lvds_use_ssc
6334 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6335 }
6336
6337 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6338 {
6339 return (1 << dpll->n) << 16 | dpll->m2;
6340 }
6341
6342 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6343 {
6344 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6345 }
6346
6347 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6348 struct intel_crtc_state *crtc_state,
6349 struct dpll *reduced_clock)
6350 {
6351 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6352 u32 fp, fp2 = 0;
6353
6354 if (IS_PINEVIEW(dev_priv)) {
6355 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6356 if (reduced_clock)
6357 fp2 = pnv_dpll_compute_fp(reduced_clock);
6358 } else {
6359 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6360 if (reduced_clock)
6361 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6362 }
6363
6364 crtc_state->dpll_hw_state.fp0 = fp;
6365
6366 crtc->lowfreq_avail = false;
6367 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6368 reduced_clock) {
6369 crtc_state->dpll_hw_state.fp1 = fp2;
6370 crtc->lowfreq_avail = true;
6371 } else {
6372 crtc_state->dpll_hw_state.fp1 = fp;
6373 }
6374 }
6375
6376 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6377 pipe)
6378 {
6379 u32 reg_val;
6380
6381 /*
6382 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6383 * and set it to a reasonable value instead.
6384 */
6385 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6386 reg_val &= 0xffffff00;
6387 reg_val |= 0x00000030;
6388 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6389
6390 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6391 reg_val &= 0x00ffffff;
6392 reg_val |= 0x8c000000;
6393 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6394
6395 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6396 reg_val &= 0xffffff00;
6397 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6398
6399 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6400 reg_val &= 0x00ffffff;
6401 reg_val |= 0xb0000000;
6402 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6403 }
6404
6405 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6406 struct intel_link_m_n *m_n)
6407 {
6408 struct drm_device *dev = crtc->base.dev;
6409 struct drm_i915_private *dev_priv = to_i915(dev);
6410 int pipe = crtc->pipe;
6411
6412 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6413 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6414 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6415 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6416 }
6417
6418 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6419 struct intel_link_m_n *m_n,
6420 struct intel_link_m_n *m2_n2)
6421 {
6422 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6423 int pipe = crtc->pipe;
6424 enum transcoder transcoder = crtc->config->cpu_transcoder;
6425
6426 if (INTEL_GEN(dev_priv) >= 5) {
6427 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6428 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6429 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6430 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6431 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6432 * for gen < 8) and if DRRS is supported (to make sure the
6433 * registers are not unnecessarily accessed).
6434 */
6435 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6436 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6437 I915_WRITE(PIPE_DATA_M2(transcoder),
6438 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6439 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6440 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6441 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6442 }
6443 } else {
6444 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6445 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6446 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6447 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6448 }
6449 }
6450
6451 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6452 {
6453 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6454
6455 if (m_n == M1_N1) {
6456 dp_m_n = &crtc->config->dp_m_n;
6457 dp_m2_n2 = &crtc->config->dp_m2_n2;
6458 } else if (m_n == M2_N2) {
6459
6460 /*
6461 * M2_N2 registers are not supported. Hence m2_n2 divider value
6462 * needs to be programmed into M1_N1.
6463 */
6464 dp_m_n = &crtc->config->dp_m2_n2;
6465 } else {
6466 DRM_ERROR("Unsupported divider value\n");
6467 return;
6468 }
6469
6470 if (crtc->config->has_pch_encoder)
6471 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6472 else
6473 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6474 }
6475
6476 static void vlv_compute_dpll(struct intel_crtc *crtc,
6477 struct intel_crtc_state *pipe_config)
6478 {
6479 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6480 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6481 if (crtc->pipe != PIPE_A)
6482 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6483
6484 /* DPLL not used with DSI, but still need the rest set up */
6485 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6486 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6487 DPLL_EXT_BUFFER_ENABLE_VLV;
6488
6489 pipe_config->dpll_hw_state.dpll_md =
6490 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6491 }
6492
6493 static void chv_compute_dpll(struct intel_crtc *crtc,
6494 struct intel_crtc_state *pipe_config)
6495 {
6496 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6497 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6498 if (crtc->pipe != PIPE_A)
6499 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6500
6501 /* DPLL not used with DSI, but still need the rest set up */
6502 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6503 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6504
6505 pipe_config->dpll_hw_state.dpll_md =
6506 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6507 }
6508
6509 static void vlv_prepare_pll(struct intel_crtc *crtc,
6510 const struct intel_crtc_state *pipe_config)
6511 {
6512 struct drm_device *dev = crtc->base.dev;
6513 struct drm_i915_private *dev_priv = to_i915(dev);
6514 enum pipe pipe = crtc->pipe;
6515 u32 mdiv;
6516 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6517 u32 coreclk, reg_val;
6518
6519 /* Enable Refclk */
6520 I915_WRITE(DPLL(pipe),
6521 pipe_config->dpll_hw_state.dpll &
6522 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6523
6524 /* No need to actually set up the DPLL with DSI */
6525 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6526 return;
6527
6528 mutex_lock(&dev_priv->sb_lock);
6529
6530 bestn = pipe_config->dpll.n;
6531 bestm1 = pipe_config->dpll.m1;
6532 bestm2 = pipe_config->dpll.m2;
6533 bestp1 = pipe_config->dpll.p1;
6534 bestp2 = pipe_config->dpll.p2;
6535
6536 /* See eDP HDMI DPIO driver vbios notes doc */
6537
6538 /* PLL B needs special handling */
6539 if (pipe == PIPE_B)
6540 vlv_pllb_recal_opamp(dev_priv, pipe);
6541
6542 /* Set up Tx target for periodic Rcomp update */
6543 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6544
6545 /* Disable target IRef on PLL */
6546 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6547 reg_val &= 0x00ffffff;
6548 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6549
6550 /* Disable fast lock */
6551 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6552
6553 /* Set idtafcrecal before PLL is enabled */
6554 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6555 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6556 mdiv |= ((bestn << DPIO_N_SHIFT));
6557 mdiv |= (1 << DPIO_K_SHIFT);
6558
6559 /*
6560 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6561 * but we don't support that).
6562 * Note: don't use the DAC post divider as it seems unstable.
6563 */
6564 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6565 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6566
6567 mdiv |= DPIO_ENABLE_CALIBRATION;
6568 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6569
6570 /* Set HBR and RBR LPF coefficients */
6571 if (pipe_config->port_clock == 162000 ||
6572 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6573 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6574 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6575 0x009f0003);
6576 else
6577 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6578 0x00d0000f);
6579
6580 if (intel_crtc_has_dp_encoder(pipe_config)) {
6581 /* Use SSC source */
6582 if (pipe == PIPE_A)
6583 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6584 0x0df40000);
6585 else
6586 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6587 0x0df70000);
6588 } else { /* HDMI or VGA */
6589 /* Use bend source */
6590 if (pipe == PIPE_A)
6591 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6592 0x0df70000);
6593 else
6594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6595 0x0df40000);
6596 }
6597
6598 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6599 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6600 if (intel_crtc_has_dp_encoder(crtc->config))
6601 coreclk |= 0x01000000;
6602 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6603
6604 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6605 mutex_unlock(&dev_priv->sb_lock);
6606 }
6607
6608 static void chv_prepare_pll(struct intel_crtc *crtc,
6609 const struct intel_crtc_state *pipe_config)
6610 {
6611 struct drm_device *dev = crtc->base.dev;
6612 struct drm_i915_private *dev_priv = to_i915(dev);
6613 enum pipe pipe = crtc->pipe;
6614 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6615 u32 loopfilter, tribuf_calcntr;
6616 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6617 u32 dpio_val;
6618 int vco;
6619
6620 /* Enable Refclk and SSC */
6621 I915_WRITE(DPLL(pipe),
6622 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6623
6624 /* No need to actually set up the DPLL with DSI */
6625 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6626 return;
6627
6628 bestn = pipe_config->dpll.n;
6629 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6630 bestm1 = pipe_config->dpll.m1;
6631 bestm2 = pipe_config->dpll.m2 >> 22;
6632 bestp1 = pipe_config->dpll.p1;
6633 bestp2 = pipe_config->dpll.p2;
6634 vco = pipe_config->dpll.vco;
6635 dpio_val = 0;
6636 loopfilter = 0;
6637
6638 mutex_lock(&dev_priv->sb_lock);
6639
6640 /* p1 and p2 divider */
6641 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6642 5 << DPIO_CHV_S1_DIV_SHIFT |
6643 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6644 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6645 1 << DPIO_CHV_K_DIV_SHIFT);
6646
6647 /* Feedback post-divider - m2 */
6648 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6649
6650 /* Feedback refclk divider - n and m1 */
6651 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6652 DPIO_CHV_M1_DIV_BY_2 |
6653 1 << DPIO_CHV_N_DIV_SHIFT);
6654
6655 /* M2 fraction division */
6656 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6657
6658 /* M2 fraction division enable */
6659 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6660 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6661 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6662 if (bestm2_frac)
6663 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6664 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6665
6666 /* Program digital lock detect threshold */
6667 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6668 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6669 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6670 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6671 if (!bestm2_frac)
6672 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6673 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6674
6675 /* Loop filter */
6676 if (vco == 5400000) {
6677 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6678 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6679 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6680 tribuf_calcntr = 0x9;
6681 } else if (vco <= 6200000) {
6682 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6683 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6684 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6685 tribuf_calcntr = 0x9;
6686 } else if (vco <= 6480000) {
6687 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6688 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6689 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6690 tribuf_calcntr = 0x8;
6691 } else {
6692 /* Not supported. Apply the same limits as in the max case */
6693 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6694 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6695 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6696 tribuf_calcntr = 0;
6697 }
6698 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6699
6700 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6701 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6702 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6703 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6704
6705 /* AFC Recal */
6706 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6707 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6708 DPIO_AFC_RECAL);
6709
6710 mutex_unlock(&dev_priv->sb_lock);
6711 }
6712
6713 /**
6714 * vlv_force_pll_on - forcibly enable just the PLL
6715 * @dev_priv: i915 private structure
6716 * @pipe: pipe PLL to enable
6717 * @dpll: PLL configuration
6718 *
6719 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6720 * in cases where we need the PLL enabled even when @pipe is not going to
6721 * be enabled.
6722 */
6723 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6724 const struct dpll *dpll)
6725 {
6726 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6727 struct intel_crtc_state *pipe_config;
6728
6729 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6730 if (!pipe_config)
6731 return -ENOMEM;
6732
6733 pipe_config->base.crtc = &crtc->base;
6734 pipe_config->pixel_multiplier = 1;
6735 pipe_config->dpll = *dpll;
6736
6737 if (IS_CHERRYVIEW(dev_priv)) {
6738 chv_compute_dpll(crtc, pipe_config);
6739 chv_prepare_pll(crtc, pipe_config);
6740 chv_enable_pll(crtc, pipe_config);
6741 } else {
6742 vlv_compute_dpll(crtc, pipe_config);
6743 vlv_prepare_pll(crtc, pipe_config);
6744 vlv_enable_pll(crtc, pipe_config);
6745 }
6746
6747 kfree(pipe_config);
6748
6749 return 0;
6750 }
6751
6752 /**
6753 * vlv_force_pll_off - forcibly disable just the PLL
6754 * @dev_priv: i915 private structure
6755 * @pipe: pipe PLL to disable
6756 *
6757 * Disable the PLL for @pipe. To be used in cases where we need
6758 * the PLL enabled even when @pipe is not going to be enabled.
6759 */
6760 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6761 {
6762 if (IS_CHERRYVIEW(dev_priv))
6763 chv_disable_pll(dev_priv, pipe);
6764 else
6765 vlv_disable_pll(dev_priv, pipe);
6766 }
6767
6768 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6769 struct intel_crtc_state *crtc_state,
6770 struct dpll *reduced_clock)
6771 {
6772 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6773 u32 dpll;
6774 struct dpll *clock = &crtc_state->dpll;
6775
6776 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6777
6778 dpll = DPLL_VGA_MODE_DIS;
6779
6780 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6781 dpll |= DPLLB_MODE_LVDS;
6782 else
6783 dpll |= DPLLB_MODE_DAC_SERIAL;
6784
6785 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6786 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6787 dpll |= (crtc_state->pixel_multiplier - 1)
6788 << SDVO_MULTIPLIER_SHIFT_HIRES;
6789 }
6790
6791 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6792 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6793 dpll |= DPLL_SDVO_HIGH_SPEED;
6794
6795 if (intel_crtc_has_dp_encoder(crtc_state))
6796 dpll |= DPLL_SDVO_HIGH_SPEED;
6797
6798 /* compute bitmask from p1 value */
6799 if (IS_PINEVIEW(dev_priv))
6800 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6801 else {
6802 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6803 if (IS_G4X(dev_priv) && reduced_clock)
6804 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6805 }
6806 switch (clock->p2) {
6807 case 5:
6808 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6809 break;
6810 case 7:
6811 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6812 break;
6813 case 10:
6814 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6815 break;
6816 case 14:
6817 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6818 break;
6819 }
6820 if (INTEL_GEN(dev_priv) >= 4)
6821 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6822
6823 if (crtc_state->sdvo_tv_clock)
6824 dpll |= PLL_REF_INPUT_TVCLKINBC;
6825 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6826 intel_panel_use_ssc(dev_priv))
6827 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6828 else
6829 dpll |= PLL_REF_INPUT_DREFCLK;
6830
6831 dpll |= DPLL_VCO_ENABLE;
6832 crtc_state->dpll_hw_state.dpll = dpll;
6833
6834 if (INTEL_GEN(dev_priv) >= 4) {
6835 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6836 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6837 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6838 }
6839 }
6840
6841 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6842 struct intel_crtc_state *crtc_state,
6843 struct dpll *reduced_clock)
6844 {
6845 struct drm_device *dev = crtc->base.dev;
6846 struct drm_i915_private *dev_priv = to_i915(dev);
6847 u32 dpll;
6848 struct dpll *clock = &crtc_state->dpll;
6849
6850 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6851
6852 dpll = DPLL_VGA_MODE_DIS;
6853
6854 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6855 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6856 } else {
6857 if (clock->p1 == 2)
6858 dpll |= PLL_P1_DIVIDE_BY_TWO;
6859 else
6860 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6861 if (clock->p2 == 4)
6862 dpll |= PLL_P2_DIVIDE_BY_4;
6863 }
6864
6865 if (!IS_I830(dev_priv) &&
6866 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6867 dpll |= DPLL_DVO_2X_MODE;
6868
6869 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6870 intel_panel_use_ssc(dev_priv))
6871 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6872 else
6873 dpll |= PLL_REF_INPUT_DREFCLK;
6874
6875 dpll |= DPLL_VCO_ENABLE;
6876 crtc_state->dpll_hw_state.dpll = dpll;
6877 }
6878
6879 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6880 {
6881 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6882 enum pipe pipe = intel_crtc->pipe;
6883 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6884 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6885 uint32_t crtc_vtotal, crtc_vblank_end;
6886 int vsyncshift = 0;
6887
6888 /* We need to be careful not to changed the adjusted mode, for otherwise
6889 * the hw state checker will get angry at the mismatch. */
6890 crtc_vtotal = adjusted_mode->crtc_vtotal;
6891 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6892
6893 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6894 /* the chip adds 2 halflines automatically */
6895 crtc_vtotal -= 1;
6896 crtc_vblank_end -= 1;
6897
6898 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6899 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6900 else
6901 vsyncshift = adjusted_mode->crtc_hsync_start -
6902 adjusted_mode->crtc_htotal / 2;
6903 if (vsyncshift < 0)
6904 vsyncshift += adjusted_mode->crtc_htotal;
6905 }
6906
6907 if (INTEL_GEN(dev_priv) > 3)
6908 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6909
6910 I915_WRITE(HTOTAL(cpu_transcoder),
6911 (adjusted_mode->crtc_hdisplay - 1) |
6912 ((adjusted_mode->crtc_htotal - 1) << 16));
6913 I915_WRITE(HBLANK(cpu_transcoder),
6914 (adjusted_mode->crtc_hblank_start - 1) |
6915 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6916 I915_WRITE(HSYNC(cpu_transcoder),
6917 (adjusted_mode->crtc_hsync_start - 1) |
6918 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6919
6920 I915_WRITE(VTOTAL(cpu_transcoder),
6921 (adjusted_mode->crtc_vdisplay - 1) |
6922 ((crtc_vtotal - 1) << 16));
6923 I915_WRITE(VBLANK(cpu_transcoder),
6924 (adjusted_mode->crtc_vblank_start - 1) |
6925 ((crtc_vblank_end - 1) << 16));
6926 I915_WRITE(VSYNC(cpu_transcoder),
6927 (adjusted_mode->crtc_vsync_start - 1) |
6928 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6929
6930 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6931 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6932 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6933 * bits. */
6934 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6935 (pipe == PIPE_B || pipe == PIPE_C))
6936 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6937
6938 }
6939
6940 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6941 {
6942 struct drm_device *dev = intel_crtc->base.dev;
6943 struct drm_i915_private *dev_priv = to_i915(dev);
6944 enum pipe pipe = intel_crtc->pipe;
6945
6946 /* pipesrc controls the size that is scaled from, which should
6947 * always be the user's requested size.
6948 */
6949 I915_WRITE(PIPESRC(pipe),
6950 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6951 (intel_crtc->config->pipe_src_h - 1));
6952 }
6953
6954 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6955 struct intel_crtc_state *pipe_config)
6956 {
6957 struct drm_device *dev = crtc->base.dev;
6958 struct drm_i915_private *dev_priv = to_i915(dev);
6959 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6960 uint32_t tmp;
6961
6962 tmp = I915_READ(HTOTAL(cpu_transcoder));
6963 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6964 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6965 tmp = I915_READ(HBLANK(cpu_transcoder));
6966 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6967 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6968 tmp = I915_READ(HSYNC(cpu_transcoder));
6969 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6970 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6971
6972 tmp = I915_READ(VTOTAL(cpu_transcoder));
6973 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6974 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6975 tmp = I915_READ(VBLANK(cpu_transcoder));
6976 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6977 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6978 tmp = I915_READ(VSYNC(cpu_transcoder));
6979 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6980 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6981
6982 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6983 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6984 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6985 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6986 }
6987 }
6988
6989 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6990 struct intel_crtc_state *pipe_config)
6991 {
6992 struct drm_device *dev = crtc->base.dev;
6993 struct drm_i915_private *dev_priv = to_i915(dev);
6994 u32 tmp;
6995
6996 tmp = I915_READ(PIPESRC(crtc->pipe));
6997 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6998 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6999
7000 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7001 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7002 }
7003
7004 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7005 struct intel_crtc_state *pipe_config)
7006 {
7007 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7008 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7009 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7010 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7011
7012 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7013 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7014 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7015 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7016
7017 mode->flags = pipe_config->base.adjusted_mode.flags;
7018 mode->type = DRM_MODE_TYPE_DRIVER;
7019
7020 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7021
7022 mode->hsync = drm_mode_hsync(mode);
7023 mode->vrefresh = drm_mode_vrefresh(mode);
7024 drm_mode_set_name(mode);
7025 }
7026
7027 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7028 {
7029 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7030 uint32_t pipeconf;
7031
7032 pipeconf = 0;
7033
7034 /* we keep both pipes enabled on 830 */
7035 if (IS_I830(dev_priv))
7036 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7037
7038 if (intel_crtc->config->double_wide)
7039 pipeconf |= PIPECONF_DOUBLE_WIDE;
7040
7041 /* only g4x and later have fancy bpc/dither controls */
7042 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7043 IS_CHERRYVIEW(dev_priv)) {
7044 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7045 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7046 pipeconf |= PIPECONF_DITHER_EN |
7047 PIPECONF_DITHER_TYPE_SP;
7048
7049 switch (intel_crtc->config->pipe_bpp) {
7050 case 18:
7051 pipeconf |= PIPECONF_6BPC;
7052 break;
7053 case 24:
7054 pipeconf |= PIPECONF_8BPC;
7055 break;
7056 case 30:
7057 pipeconf |= PIPECONF_10BPC;
7058 break;
7059 default:
7060 /* Case prevented by intel_choose_pipe_bpp_dither. */
7061 BUG();
7062 }
7063 }
7064
7065 if (HAS_PIPE_CXSR(dev_priv)) {
7066 if (intel_crtc->lowfreq_avail) {
7067 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7068 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7069 } else {
7070 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7071 }
7072 }
7073
7074 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7075 if (INTEL_GEN(dev_priv) < 4 ||
7076 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7077 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7078 else
7079 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7080 } else
7081 pipeconf |= PIPECONF_PROGRESSIVE;
7082
7083 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7084 intel_crtc->config->limited_color_range)
7085 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7086
7087 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7088 POSTING_READ(PIPECONF(intel_crtc->pipe));
7089 }
7090
7091 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7092 struct intel_crtc_state *crtc_state)
7093 {
7094 struct drm_device *dev = crtc->base.dev;
7095 struct drm_i915_private *dev_priv = to_i915(dev);
7096 const struct intel_limit *limit;
7097 int refclk = 48000;
7098
7099 memset(&crtc_state->dpll_hw_state, 0,
7100 sizeof(crtc_state->dpll_hw_state));
7101
7102 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7103 if (intel_panel_use_ssc(dev_priv)) {
7104 refclk = dev_priv->vbt.lvds_ssc_freq;
7105 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7106 }
7107
7108 limit = &intel_limits_i8xx_lvds;
7109 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7110 limit = &intel_limits_i8xx_dvo;
7111 } else {
7112 limit = &intel_limits_i8xx_dac;
7113 }
7114
7115 if (!crtc_state->clock_set &&
7116 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7117 refclk, NULL, &crtc_state->dpll)) {
7118 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7119 return -EINVAL;
7120 }
7121
7122 i8xx_compute_dpll(crtc, crtc_state, NULL);
7123
7124 return 0;
7125 }
7126
7127 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7128 struct intel_crtc_state *crtc_state)
7129 {
7130 struct drm_device *dev = crtc->base.dev;
7131 struct drm_i915_private *dev_priv = to_i915(dev);
7132 const struct intel_limit *limit;
7133 int refclk = 96000;
7134
7135 memset(&crtc_state->dpll_hw_state, 0,
7136 sizeof(crtc_state->dpll_hw_state));
7137
7138 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7139 if (intel_panel_use_ssc(dev_priv)) {
7140 refclk = dev_priv->vbt.lvds_ssc_freq;
7141 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7142 }
7143
7144 if (intel_is_dual_link_lvds(dev))
7145 limit = &intel_limits_g4x_dual_channel_lvds;
7146 else
7147 limit = &intel_limits_g4x_single_channel_lvds;
7148 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7149 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7150 limit = &intel_limits_g4x_hdmi;
7151 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7152 limit = &intel_limits_g4x_sdvo;
7153 } else {
7154 /* The option is for other outputs */
7155 limit = &intel_limits_i9xx_sdvo;
7156 }
7157
7158 if (!crtc_state->clock_set &&
7159 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7160 refclk, NULL, &crtc_state->dpll)) {
7161 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7162 return -EINVAL;
7163 }
7164
7165 i9xx_compute_dpll(crtc, crtc_state, NULL);
7166
7167 return 0;
7168 }
7169
7170 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7171 struct intel_crtc_state *crtc_state)
7172 {
7173 struct drm_device *dev = crtc->base.dev;
7174 struct drm_i915_private *dev_priv = to_i915(dev);
7175 const struct intel_limit *limit;
7176 int refclk = 96000;
7177
7178 memset(&crtc_state->dpll_hw_state, 0,
7179 sizeof(crtc_state->dpll_hw_state));
7180
7181 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7182 if (intel_panel_use_ssc(dev_priv)) {
7183 refclk = dev_priv->vbt.lvds_ssc_freq;
7184 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7185 }
7186
7187 limit = &intel_limits_pineview_lvds;
7188 } else {
7189 limit = &intel_limits_pineview_sdvo;
7190 }
7191
7192 if (!crtc_state->clock_set &&
7193 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7194 refclk, NULL, &crtc_state->dpll)) {
7195 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7196 return -EINVAL;
7197 }
7198
7199 i9xx_compute_dpll(crtc, crtc_state, NULL);
7200
7201 return 0;
7202 }
7203
7204 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7205 struct intel_crtc_state *crtc_state)
7206 {
7207 struct drm_device *dev = crtc->base.dev;
7208 struct drm_i915_private *dev_priv = to_i915(dev);
7209 const struct intel_limit *limit;
7210 int refclk = 96000;
7211
7212 memset(&crtc_state->dpll_hw_state, 0,
7213 sizeof(crtc_state->dpll_hw_state));
7214
7215 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7216 if (intel_panel_use_ssc(dev_priv)) {
7217 refclk = dev_priv->vbt.lvds_ssc_freq;
7218 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7219 }
7220
7221 limit = &intel_limits_i9xx_lvds;
7222 } else {
7223 limit = &intel_limits_i9xx_sdvo;
7224 }
7225
7226 if (!crtc_state->clock_set &&
7227 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7228 refclk, NULL, &crtc_state->dpll)) {
7229 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7230 return -EINVAL;
7231 }
7232
7233 i9xx_compute_dpll(crtc, crtc_state, NULL);
7234
7235 return 0;
7236 }
7237
7238 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7239 struct intel_crtc_state *crtc_state)
7240 {
7241 int refclk = 100000;
7242 const struct intel_limit *limit = &intel_limits_chv;
7243
7244 memset(&crtc_state->dpll_hw_state, 0,
7245 sizeof(crtc_state->dpll_hw_state));
7246
7247 if (!crtc_state->clock_set &&
7248 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7249 refclk, NULL, &crtc_state->dpll)) {
7250 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7251 return -EINVAL;
7252 }
7253
7254 chv_compute_dpll(crtc, crtc_state);
7255
7256 return 0;
7257 }
7258
7259 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7260 struct intel_crtc_state *crtc_state)
7261 {
7262 int refclk = 100000;
7263 const struct intel_limit *limit = &intel_limits_vlv;
7264
7265 memset(&crtc_state->dpll_hw_state, 0,
7266 sizeof(crtc_state->dpll_hw_state));
7267
7268 if (!crtc_state->clock_set &&
7269 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7270 refclk, NULL, &crtc_state->dpll)) {
7271 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7272 return -EINVAL;
7273 }
7274
7275 vlv_compute_dpll(crtc, crtc_state);
7276
7277 return 0;
7278 }
7279
7280 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7281 struct intel_crtc_state *pipe_config)
7282 {
7283 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7284 uint32_t tmp;
7285
7286 if (INTEL_GEN(dev_priv) <= 3 &&
7287 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7288 return;
7289
7290 tmp = I915_READ(PFIT_CONTROL);
7291 if (!(tmp & PFIT_ENABLE))
7292 return;
7293
7294 /* Check whether the pfit is attached to our pipe. */
7295 if (INTEL_GEN(dev_priv) < 4) {
7296 if (crtc->pipe != PIPE_B)
7297 return;
7298 } else {
7299 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7300 return;
7301 }
7302
7303 pipe_config->gmch_pfit.control = tmp;
7304 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7305 }
7306
7307 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7308 struct intel_crtc_state *pipe_config)
7309 {
7310 struct drm_device *dev = crtc->base.dev;
7311 struct drm_i915_private *dev_priv = to_i915(dev);
7312 int pipe = pipe_config->cpu_transcoder;
7313 struct dpll clock;
7314 u32 mdiv;
7315 int refclk = 100000;
7316
7317 /* In case of DSI, DPLL will not be used */
7318 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7319 return;
7320
7321 mutex_lock(&dev_priv->sb_lock);
7322 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7323 mutex_unlock(&dev_priv->sb_lock);
7324
7325 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7326 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7327 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7328 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7329 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7330
7331 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7332 }
7333
7334 static void
7335 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7336 struct intel_initial_plane_config *plane_config)
7337 {
7338 struct drm_device *dev = crtc->base.dev;
7339 struct drm_i915_private *dev_priv = to_i915(dev);
7340 u32 val, base, offset;
7341 int pipe = crtc->pipe, plane = crtc->plane;
7342 int fourcc, pixel_format;
7343 unsigned int aligned_height;
7344 struct drm_framebuffer *fb;
7345 struct intel_framebuffer *intel_fb;
7346
7347 val = I915_READ(DSPCNTR(plane));
7348 if (!(val & DISPLAY_PLANE_ENABLE))
7349 return;
7350
7351 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7352 if (!intel_fb) {
7353 DRM_DEBUG_KMS("failed to alloc fb\n");
7354 return;
7355 }
7356
7357 fb = &intel_fb->base;
7358
7359 fb->dev = dev;
7360
7361 if (INTEL_GEN(dev_priv) >= 4) {
7362 if (val & DISPPLANE_TILED) {
7363 plane_config->tiling = I915_TILING_X;
7364 fb->modifier = I915_FORMAT_MOD_X_TILED;
7365 }
7366 }
7367
7368 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7369 fourcc = i9xx_format_to_fourcc(pixel_format);
7370 fb->format = drm_format_info(fourcc);
7371
7372 if (INTEL_GEN(dev_priv) >= 4) {
7373 if (plane_config->tiling)
7374 offset = I915_READ(DSPTILEOFF(plane));
7375 else
7376 offset = I915_READ(DSPLINOFF(plane));
7377 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7378 } else {
7379 base = I915_READ(DSPADDR(plane));
7380 }
7381 plane_config->base = base;
7382
7383 val = I915_READ(PIPESRC(pipe));
7384 fb->width = ((val >> 16) & 0xfff) + 1;
7385 fb->height = ((val >> 0) & 0xfff) + 1;
7386
7387 val = I915_READ(DSPSTRIDE(pipe));
7388 fb->pitches[0] = val & 0xffffffc0;
7389
7390 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7391
7392 plane_config->size = fb->pitches[0] * aligned_height;
7393
7394 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7395 pipe_name(pipe), plane, fb->width, fb->height,
7396 fb->format->cpp[0] * 8, base, fb->pitches[0],
7397 plane_config->size);
7398
7399 plane_config->fb = intel_fb;
7400 }
7401
7402 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7403 struct intel_crtc_state *pipe_config)
7404 {
7405 struct drm_device *dev = crtc->base.dev;
7406 struct drm_i915_private *dev_priv = to_i915(dev);
7407 int pipe = pipe_config->cpu_transcoder;
7408 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7409 struct dpll clock;
7410 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7411 int refclk = 100000;
7412
7413 /* In case of DSI, DPLL will not be used */
7414 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7415 return;
7416
7417 mutex_lock(&dev_priv->sb_lock);
7418 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7419 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7420 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7421 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7422 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7423 mutex_unlock(&dev_priv->sb_lock);
7424
7425 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7426 clock.m2 = (pll_dw0 & 0xff) << 22;
7427 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7428 clock.m2 |= pll_dw2 & 0x3fffff;
7429 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7430 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7431 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7432
7433 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7434 }
7435
7436 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7437 struct intel_crtc_state *pipe_config)
7438 {
7439 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7440 enum intel_display_power_domain power_domain;
7441 uint32_t tmp;
7442 bool ret;
7443
7444 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7445 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7446 return false;
7447
7448 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7449 pipe_config->shared_dpll = NULL;
7450
7451 ret = false;
7452
7453 tmp = I915_READ(PIPECONF(crtc->pipe));
7454 if (!(tmp & PIPECONF_ENABLE))
7455 goto out;
7456
7457 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7458 IS_CHERRYVIEW(dev_priv)) {
7459 switch (tmp & PIPECONF_BPC_MASK) {
7460 case PIPECONF_6BPC:
7461 pipe_config->pipe_bpp = 18;
7462 break;
7463 case PIPECONF_8BPC:
7464 pipe_config->pipe_bpp = 24;
7465 break;
7466 case PIPECONF_10BPC:
7467 pipe_config->pipe_bpp = 30;
7468 break;
7469 default:
7470 break;
7471 }
7472 }
7473
7474 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7475 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7476 pipe_config->limited_color_range = true;
7477
7478 if (INTEL_GEN(dev_priv) < 4)
7479 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7480
7481 intel_get_pipe_timings(crtc, pipe_config);
7482 intel_get_pipe_src_size(crtc, pipe_config);
7483
7484 i9xx_get_pfit_config(crtc, pipe_config);
7485
7486 if (INTEL_GEN(dev_priv) >= 4) {
7487 /* No way to read it out on pipes B and C */
7488 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7489 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7490 else
7491 tmp = I915_READ(DPLL_MD(crtc->pipe));
7492 pipe_config->pixel_multiplier =
7493 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7494 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7495 pipe_config->dpll_hw_state.dpll_md = tmp;
7496 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7497 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7498 tmp = I915_READ(DPLL(crtc->pipe));
7499 pipe_config->pixel_multiplier =
7500 ((tmp & SDVO_MULTIPLIER_MASK)
7501 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7502 } else {
7503 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7504 * port and will be fixed up in the encoder->get_config
7505 * function. */
7506 pipe_config->pixel_multiplier = 1;
7507 }
7508 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7509 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7510 /*
7511 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7512 * on 830. Filter it out here so that we don't
7513 * report errors due to that.
7514 */
7515 if (IS_I830(dev_priv))
7516 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7517
7518 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7519 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7520 } else {
7521 /* Mask out read-only status bits. */
7522 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7523 DPLL_PORTC_READY_MASK |
7524 DPLL_PORTB_READY_MASK);
7525 }
7526
7527 if (IS_CHERRYVIEW(dev_priv))
7528 chv_crtc_clock_get(crtc, pipe_config);
7529 else if (IS_VALLEYVIEW(dev_priv))
7530 vlv_crtc_clock_get(crtc, pipe_config);
7531 else
7532 i9xx_crtc_clock_get(crtc, pipe_config);
7533
7534 /*
7535 * Normally the dotclock is filled in by the encoder .get_config()
7536 * but in case the pipe is enabled w/o any ports we need a sane
7537 * default.
7538 */
7539 pipe_config->base.adjusted_mode.crtc_clock =
7540 pipe_config->port_clock / pipe_config->pixel_multiplier;
7541
7542 ret = true;
7543
7544 out:
7545 intel_display_power_put(dev_priv, power_domain);
7546
7547 return ret;
7548 }
7549
7550 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7551 {
7552 struct intel_encoder *encoder;
7553 int i;
7554 u32 val, final;
7555 bool has_lvds = false;
7556 bool has_cpu_edp = false;
7557 bool has_panel = false;
7558 bool has_ck505 = false;
7559 bool can_ssc = false;
7560 bool using_ssc_source = false;
7561
7562 /* We need to take the global config into account */
7563 for_each_intel_encoder(&dev_priv->drm, encoder) {
7564 switch (encoder->type) {
7565 case INTEL_OUTPUT_LVDS:
7566 has_panel = true;
7567 has_lvds = true;
7568 break;
7569 case INTEL_OUTPUT_EDP:
7570 has_panel = true;
7571 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7572 has_cpu_edp = true;
7573 break;
7574 default:
7575 break;
7576 }
7577 }
7578
7579 if (HAS_PCH_IBX(dev_priv)) {
7580 has_ck505 = dev_priv->vbt.display_clock_mode;
7581 can_ssc = has_ck505;
7582 } else {
7583 has_ck505 = false;
7584 can_ssc = true;
7585 }
7586
7587 /* Check if any DPLLs are using the SSC source */
7588 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7589 u32 temp = I915_READ(PCH_DPLL(i));
7590
7591 if (!(temp & DPLL_VCO_ENABLE))
7592 continue;
7593
7594 if ((temp & PLL_REF_INPUT_MASK) ==
7595 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7596 using_ssc_source = true;
7597 break;
7598 }
7599 }
7600
7601 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7602 has_panel, has_lvds, has_ck505, using_ssc_source);
7603
7604 /* Ironlake: try to setup display ref clock before DPLL
7605 * enabling. This is only under driver's control after
7606 * PCH B stepping, previous chipset stepping should be
7607 * ignoring this setting.
7608 */
7609 val = I915_READ(PCH_DREF_CONTROL);
7610
7611 /* As we must carefully and slowly disable/enable each source in turn,
7612 * compute the final state we want first and check if we need to
7613 * make any changes at all.
7614 */
7615 final = val;
7616 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7617 if (has_ck505)
7618 final |= DREF_NONSPREAD_CK505_ENABLE;
7619 else
7620 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7621
7622 final &= ~DREF_SSC_SOURCE_MASK;
7623 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7624 final &= ~DREF_SSC1_ENABLE;
7625
7626 if (has_panel) {
7627 final |= DREF_SSC_SOURCE_ENABLE;
7628
7629 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7630 final |= DREF_SSC1_ENABLE;
7631
7632 if (has_cpu_edp) {
7633 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7634 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7635 else
7636 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7637 } else
7638 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7639 } else if (using_ssc_source) {
7640 final |= DREF_SSC_SOURCE_ENABLE;
7641 final |= DREF_SSC1_ENABLE;
7642 }
7643
7644 if (final == val)
7645 return;
7646
7647 /* Always enable nonspread source */
7648 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7649
7650 if (has_ck505)
7651 val |= DREF_NONSPREAD_CK505_ENABLE;
7652 else
7653 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7654
7655 if (has_panel) {
7656 val &= ~DREF_SSC_SOURCE_MASK;
7657 val |= DREF_SSC_SOURCE_ENABLE;
7658
7659 /* SSC must be turned on before enabling the CPU output */
7660 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7661 DRM_DEBUG_KMS("Using SSC on panel\n");
7662 val |= DREF_SSC1_ENABLE;
7663 } else
7664 val &= ~DREF_SSC1_ENABLE;
7665
7666 /* Get SSC going before enabling the outputs */
7667 I915_WRITE(PCH_DREF_CONTROL, val);
7668 POSTING_READ(PCH_DREF_CONTROL);
7669 udelay(200);
7670
7671 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7672
7673 /* Enable CPU source on CPU attached eDP */
7674 if (has_cpu_edp) {
7675 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7676 DRM_DEBUG_KMS("Using SSC on eDP\n");
7677 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7678 } else
7679 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7680 } else
7681 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7682
7683 I915_WRITE(PCH_DREF_CONTROL, val);
7684 POSTING_READ(PCH_DREF_CONTROL);
7685 udelay(200);
7686 } else {
7687 DRM_DEBUG_KMS("Disabling CPU source output\n");
7688
7689 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7690
7691 /* Turn off CPU output */
7692 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7693
7694 I915_WRITE(PCH_DREF_CONTROL, val);
7695 POSTING_READ(PCH_DREF_CONTROL);
7696 udelay(200);
7697
7698 if (!using_ssc_source) {
7699 DRM_DEBUG_KMS("Disabling SSC source\n");
7700
7701 /* Turn off the SSC source */
7702 val &= ~DREF_SSC_SOURCE_MASK;
7703 val |= DREF_SSC_SOURCE_DISABLE;
7704
7705 /* Turn off SSC1 */
7706 val &= ~DREF_SSC1_ENABLE;
7707
7708 I915_WRITE(PCH_DREF_CONTROL, val);
7709 POSTING_READ(PCH_DREF_CONTROL);
7710 udelay(200);
7711 }
7712 }
7713
7714 BUG_ON(val != final);
7715 }
7716
7717 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7718 {
7719 uint32_t tmp;
7720
7721 tmp = I915_READ(SOUTH_CHICKEN2);
7722 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7723 I915_WRITE(SOUTH_CHICKEN2, tmp);
7724
7725 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7726 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7727 DRM_ERROR("FDI mPHY reset assert timeout\n");
7728
7729 tmp = I915_READ(SOUTH_CHICKEN2);
7730 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7731 I915_WRITE(SOUTH_CHICKEN2, tmp);
7732
7733 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7734 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7735 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7736 }
7737
7738 /* WaMPhyProgramming:hsw */
7739 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7740 {
7741 uint32_t tmp;
7742
7743 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7744 tmp &= ~(0xFF << 24);
7745 tmp |= (0x12 << 24);
7746 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7747
7748 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7749 tmp |= (1 << 11);
7750 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7751
7752 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7753 tmp |= (1 << 11);
7754 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7755
7756 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7757 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7758 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7759
7760 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7761 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7762 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7763
7764 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7765 tmp &= ~(7 << 13);
7766 tmp |= (5 << 13);
7767 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7768
7769 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7770 tmp &= ~(7 << 13);
7771 tmp |= (5 << 13);
7772 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7773
7774 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7775 tmp &= ~0xFF;
7776 tmp |= 0x1C;
7777 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7778
7779 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7780 tmp &= ~0xFF;
7781 tmp |= 0x1C;
7782 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7783
7784 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7785 tmp &= ~(0xFF << 16);
7786 tmp |= (0x1C << 16);
7787 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7788
7789 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7790 tmp &= ~(0xFF << 16);
7791 tmp |= (0x1C << 16);
7792 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7793
7794 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7795 tmp |= (1 << 27);
7796 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7797
7798 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7799 tmp |= (1 << 27);
7800 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7801
7802 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7803 tmp &= ~(0xF << 28);
7804 tmp |= (4 << 28);
7805 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7806
7807 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7808 tmp &= ~(0xF << 28);
7809 tmp |= (4 << 28);
7810 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7811 }
7812
7813 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7814 * Programming" based on the parameters passed:
7815 * - Sequence to enable CLKOUT_DP
7816 * - Sequence to enable CLKOUT_DP without spread
7817 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7818 */
7819 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7820 bool with_spread, bool with_fdi)
7821 {
7822 uint32_t reg, tmp;
7823
7824 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7825 with_spread = true;
7826 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7827 with_fdi, "LP PCH doesn't have FDI\n"))
7828 with_fdi = false;
7829
7830 mutex_lock(&dev_priv->sb_lock);
7831
7832 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7833 tmp &= ~SBI_SSCCTL_DISABLE;
7834 tmp |= SBI_SSCCTL_PATHALT;
7835 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7836
7837 udelay(24);
7838
7839 if (with_spread) {
7840 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7841 tmp &= ~SBI_SSCCTL_PATHALT;
7842 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7843
7844 if (with_fdi) {
7845 lpt_reset_fdi_mphy(dev_priv);
7846 lpt_program_fdi_mphy(dev_priv);
7847 }
7848 }
7849
7850 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7851 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7852 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7853 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7854
7855 mutex_unlock(&dev_priv->sb_lock);
7856 }
7857
7858 /* Sequence to disable CLKOUT_DP */
7859 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7860 {
7861 uint32_t reg, tmp;
7862
7863 mutex_lock(&dev_priv->sb_lock);
7864
7865 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7866 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7867 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7868 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7869
7870 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7871 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7872 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7873 tmp |= SBI_SSCCTL_PATHALT;
7874 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7875 udelay(32);
7876 }
7877 tmp |= SBI_SSCCTL_DISABLE;
7878 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7879 }
7880
7881 mutex_unlock(&dev_priv->sb_lock);
7882 }
7883
7884 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7885
7886 static const uint16_t sscdivintphase[] = {
7887 [BEND_IDX( 50)] = 0x3B23,
7888 [BEND_IDX( 45)] = 0x3B23,
7889 [BEND_IDX( 40)] = 0x3C23,
7890 [BEND_IDX( 35)] = 0x3C23,
7891 [BEND_IDX( 30)] = 0x3D23,
7892 [BEND_IDX( 25)] = 0x3D23,
7893 [BEND_IDX( 20)] = 0x3E23,
7894 [BEND_IDX( 15)] = 0x3E23,
7895 [BEND_IDX( 10)] = 0x3F23,
7896 [BEND_IDX( 5)] = 0x3F23,
7897 [BEND_IDX( 0)] = 0x0025,
7898 [BEND_IDX( -5)] = 0x0025,
7899 [BEND_IDX(-10)] = 0x0125,
7900 [BEND_IDX(-15)] = 0x0125,
7901 [BEND_IDX(-20)] = 0x0225,
7902 [BEND_IDX(-25)] = 0x0225,
7903 [BEND_IDX(-30)] = 0x0325,
7904 [BEND_IDX(-35)] = 0x0325,
7905 [BEND_IDX(-40)] = 0x0425,
7906 [BEND_IDX(-45)] = 0x0425,
7907 [BEND_IDX(-50)] = 0x0525,
7908 };
7909
7910 /*
7911 * Bend CLKOUT_DP
7912 * steps -50 to 50 inclusive, in steps of 5
7913 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7914 * change in clock period = -(steps / 10) * 5.787 ps
7915 */
7916 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7917 {
7918 uint32_t tmp;
7919 int idx = BEND_IDX(steps);
7920
7921 if (WARN_ON(steps % 5 != 0))
7922 return;
7923
7924 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7925 return;
7926
7927 mutex_lock(&dev_priv->sb_lock);
7928
7929 if (steps % 10 != 0)
7930 tmp = 0xAAAAAAAB;
7931 else
7932 tmp = 0x00000000;
7933 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7934
7935 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7936 tmp &= 0xffff0000;
7937 tmp |= sscdivintphase[idx];
7938 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7939
7940 mutex_unlock(&dev_priv->sb_lock);
7941 }
7942
7943 #undef BEND_IDX
7944
7945 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7946 {
7947 struct intel_encoder *encoder;
7948 bool has_vga = false;
7949
7950 for_each_intel_encoder(&dev_priv->drm, encoder) {
7951 switch (encoder->type) {
7952 case INTEL_OUTPUT_ANALOG:
7953 has_vga = true;
7954 break;
7955 default:
7956 break;
7957 }
7958 }
7959
7960 if (has_vga) {
7961 lpt_bend_clkout_dp(dev_priv, 0);
7962 lpt_enable_clkout_dp(dev_priv, true, true);
7963 } else {
7964 lpt_disable_clkout_dp(dev_priv);
7965 }
7966 }
7967
7968 /*
7969 * Initialize reference clocks when the driver loads
7970 */
7971 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7972 {
7973 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7974 ironlake_init_pch_refclk(dev_priv);
7975 else if (HAS_PCH_LPT(dev_priv))
7976 lpt_init_pch_refclk(dev_priv);
7977 }
7978
7979 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7980 {
7981 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7983 int pipe = intel_crtc->pipe;
7984 uint32_t val;
7985
7986 val = 0;
7987
7988 switch (intel_crtc->config->pipe_bpp) {
7989 case 18:
7990 val |= PIPECONF_6BPC;
7991 break;
7992 case 24:
7993 val |= PIPECONF_8BPC;
7994 break;
7995 case 30:
7996 val |= PIPECONF_10BPC;
7997 break;
7998 case 36:
7999 val |= PIPECONF_12BPC;
8000 break;
8001 default:
8002 /* Case prevented by intel_choose_pipe_bpp_dither. */
8003 BUG();
8004 }
8005
8006 if (intel_crtc->config->dither)
8007 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8008
8009 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8010 val |= PIPECONF_INTERLACED_ILK;
8011 else
8012 val |= PIPECONF_PROGRESSIVE;
8013
8014 if (intel_crtc->config->limited_color_range)
8015 val |= PIPECONF_COLOR_RANGE_SELECT;
8016
8017 I915_WRITE(PIPECONF(pipe), val);
8018 POSTING_READ(PIPECONF(pipe));
8019 }
8020
8021 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8022 {
8023 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8025 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8026 u32 val = 0;
8027
8028 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8029 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8030
8031 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8032 val |= PIPECONF_INTERLACED_ILK;
8033 else
8034 val |= PIPECONF_PROGRESSIVE;
8035
8036 I915_WRITE(PIPECONF(cpu_transcoder), val);
8037 POSTING_READ(PIPECONF(cpu_transcoder));
8038 }
8039
8040 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8041 {
8042 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8044
8045 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8046 u32 val = 0;
8047
8048 switch (intel_crtc->config->pipe_bpp) {
8049 case 18:
8050 val |= PIPEMISC_DITHER_6_BPC;
8051 break;
8052 case 24:
8053 val |= PIPEMISC_DITHER_8_BPC;
8054 break;
8055 case 30:
8056 val |= PIPEMISC_DITHER_10_BPC;
8057 break;
8058 case 36:
8059 val |= PIPEMISC_DITHER_12_BPC;
8060 break;
8061 default:
8062 /* Case prevented by pipe_config_set_bpp. */
8063 BUG();
8064 }
8065
8066 if (intel_crtc->config->dither)
8067 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8068
8069 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8070 }
8071 }
8072
8073 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8074 {
8075 /*
8076 * Account for spread spectrum to avoid
8077 * oversubscribing the link. Max center spread
8078 * is 2.5%; use 5% for safety's sake.
8079 */
8080 u32 bps = target_clock * bpp * 21 / 20;
8081 return DIV_ROUND_UP(bps, link_bw * 8);
8082 }
8083
8084 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8085 {
8086 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8087 }
8088
8089 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8090 struct intel_crtc_state *crtc_state,
8091 struct dpll *reduced_clock)
8092 {
8093 struct drm_crtc *crtc = &intel_crtc->base;
8094 struct drm_device *dev = crtc->dev;
8095 struct drm_i915_private *dev_priv = to_i915(dev);
8096 u32 dpll, fp, fp2;
8097 int factor;
8098
8099 /* Enable autotuning of the PLL clock (if permissible) */
8100 factor = 21;
8101 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8102 if ((intel_panel_use_ssc(dev_priv) &&
8103 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8104 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8105 factor = 25;
8106 } else if (crtc_state->sdvo_tv_clock)
8107 factor = 20;
8108
8109 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8110
8111 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8112 fp |= FP_CB_TUNE;
8113
8114 if (reduced_clock) {
8115 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8116
8117 if (reduced_clock->m < factor * reduced_clock->n)
8118 fp2 |= FP_CB_TUNE;
8119 } else {
8120 fp2 = fp;
8121 }
8122
8123 dpll = 0;
8124
8125 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8126 dpll |= DPLLB_MODE_LVDS;
8127 else
8128 dpll |= DPLLB_MODE_DAC_SERIAL;
8129
8130 dpll |= (crtc_state->pixel_multiplier - 1)
8131 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8132
8133 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8134 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8135 dpll |= DPLL_SDVO_HIGH_SPEED;
8136
8137 if (intel_crtc_has_dp_encoder(crtc_state))
8138 dpll |= DPLL_SDVO_HIGH_SPEED;
8139
8140 /*
8141 * The high speed IO clock is only really required for
8142 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8143 * possible to share the DPLL between CRT and HDMI. Enabling
8144 * the clock needlessly does no real harm, except use up a
8145 * bit of power potentially.
8146 *
8147 * We'll limit this to IVB with 3 pipes, since it has only two
8148 * DPLLs and so DPLL sharing is the only way to get three pipes
8149 * driving PCH ports at the same time. On SNB we could do this,
8150 * and potentially avoid enabling the second DPLL, but it's not
8151 * clear if it''s a win or loss power wise. No point in doing
8152 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8153 */
8154 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8155 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8156 dpll |= DPLL_SDVO_HIGH_SPEED;
8157
8158 /* compute bitmask from p1 value */
8159 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8160 /* also FPA1 */
8161 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8162
8163 switch (crtc_state->dpll.p2) {
8164 case 5:
8165 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8166 break;
8167 case 7:
8168 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8169 break;
8170 case 10:
8171 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8172 break;
8173 case 14:
8174 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8175 break;
8176 }
8177
8178 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8179 intel_panel_use_ssc(dev_priv))
8180 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8181 else
8182 dpll |= PLL_REF_INPUT_DREFCLK;
8183
8184 dpll |= DPLL_VCO_ENABLE;
8185
8186 crtc_state->dpll_hw_state.dpll = dpll;
8187 crtc_state->dpll_hw_state.fp0 = fp;
8188 crtc_state->dpll_hw_state.fp1 = fp2;
8189 }
8190
8191 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8192 struct intel_crtc_state *crtc_state)
8193 {
8194 struct drm_device *dev = crtc->base.dev;
8195 struct drm_i915_private *dev_priv = to_i915(dev);
8196 const struct intel_limit *limit;
8197 int refclk = 120000;
8198
8199 memset(&crtc_state->dpll_hw_state, 0,
8200 sizeof(crtc_state->dpll_hw_state));
8201
8202 crtc->lowfreq_avail = false;
8203
8204 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8205 if (!crtc_state->has_pch_encoder)
8206 return 0;
8207
8208 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8209 if (intel_panel_use_ssc(dev_priv)) {
8210 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8211 dev_priv->vbt.lvds_ssc_freq);
8212 refclk = dev_priv->vbt.lvds_ssc_freq;
8213 }
8214
8215 if (intel_is_dual_link_lvds(dev)) {
8216 if (refclk == 100000)
8217 limit = &intel_limits_ironlake_dual_lvds_100m;
8218 else
8219 limit = &intel_limits_ironlake_dual_lvds;
8220 } else {
8221 if (refclk == 100000)
8222 limit = &intel_limits_ironlake_single_lvds_100m;
8223 else
8224 limit = &intel_limits_ironlake_single_lvds;
8225 }
8226 } else {
8227 limit = &intel_limits_ironlake_dac;
8228 }
8229
8230 if (!crtc_state->clock_set &&
8231 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8232 refclk, NULL, &crtc_state->dpll)) {
8233 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8234 return -EINVAL;
8235 }
8236
8237 ironlake_compute_dpll(crtc, crtc_state, NULL);
8238
8239 if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8240 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8241 pipe_name(crtc->pipe));
8242 return -EINVAL;
8243 }
8244
8245 return 0;
8246 }
8247
8248 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8249 struct intel_link_m_n *m_n)
8250 {
8251 struct drm_device *dev = crtc->base.dev;
8252 struct drm_i915_private *dev_priv = to_i915(dev);
8253 enum pipe pipe = crtc->pipe;
8254
8255 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8256 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8257 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8258 & ~TU_SIZE_MASK;
8259 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8260 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8261 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8262 }
8263
8264 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8265 enum transcoder transcoder,
8266 struct intel_link_m_n *m_n,
8267 struct intel_link_m_n *m2_n2)
8268 {
8269 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8270 enum pipe pipe = crtc->pipe;
8271
8272 if (INTEL_GEN(dev_priv) >= 5) {
8273 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8274 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8275 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8276 & ~TU_SIZE_MASK;
8277 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8278 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8279 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8280 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8281 * gen < 8) and if DRRS is supported (to make sure the
8282 * registers are not unnecessarily read).
8283 */
8284 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8285 crtc->config->has_drrs) {
8286 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8287 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8288 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8289 & ~TU_SIZE_MASK;
8290 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8291 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8292 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8293 }
8294 } else {
8295 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8296 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8297 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8298 & ~TU_SIZE_MASK;
8299 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8300 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8301 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8302 }
8303 }
8304
8305 void intel_dp_get_m_n(struct intel_crtc *crtc,
8306 struct intel_crtc_state *pipe_config)
8307 {
8308 if (pipe_config->has_pch_encoder)
8309 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8310 else
8311 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8312 &pipe_config->dp_m_n,
8313 &pipe_config->dp_m2_n2);
8314 }
8315
8316 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8317 struct intel_crtc_state *pipe_config)
8318 {
8319 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8320 &pipe_config->fdi_m_n, NULL);
8321 }
8322
8323 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8324 struct intel_crtc_state *pipe_config)
8325 {
8326 struct drm_device *dev = crtc->base.dev;
8327 struct drm_i915_private *dev_priv = to_i915(dev);
8328 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8329 uint32_t ps_ctrl = 0;
8330 int id = -1;
8331 int i;
8332
8333 /* find scaler attached to this pipe */
8334 for (i = 0; i < crtc->num_scalers; i++) {
8335 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8336 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8337 id = i;
8338 pipe_config->pch_pfit.enabled = true;
8339 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8340 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8341 break;
8342 }
8343 }
8344
8345 scaler_state->scaler_id = id;
8346 if (id >= 0) {
8347 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8348 } else {
8349 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8350 }
8351 }
8352
8353 static void
8354 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8355 struct intel_initial_plane_config *plane_config)
8356 {
8357 struct drm_device *dev = crtc->base.dev;
8358 struct drm_i915_private *dev_priv = to_i915(dev);
8359 u32 val, base, offset, stride_mult, tiling;
8360 int pipe = crtc->pipe;
8361 int fourcc, pixel_format;
8362 unsigned int aligned_height;
8363 struct drm_framebuffer *fb;
8364 struct intel_framebuffer *intel_fb;
8365
8366 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8367 if (!intel_fb) {
8368 DRM_DEBUG_KMS("failed to alloc fb\n");
8369 return;
8370 }
8371
8372 fb = &intel_fb->base;
8373
8374 fb->dev = dev;
8375
8376 val = I915_READ(PLANE_CTL(pipe, 0));
8377 if (!(val & PLANE_CTL_ENABLE))
8378 goto error;
8379
8380 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8381 fourcc = skl_format_to_fourcc(pixel_format,
8382 val & PLANE_CTL_ORDER_RGBX,
8383 val & PLANE_CTL_ALPHA_MASK);
8384 fb->format = drm_format_info(fourcc);
8385
8386 tiling = val & PLANE_CTL_TILED_MASK;
8387 switch (tiling) {
8388 case PLANE_CTL_TILED_LINEAR:
8389 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8390 break;
8391 case PLANE_CTL_TILED_X:
8392 plane_config->tiling = I915_TILING_X;
8393 fb->modifier = I915_FORMAT_MOD_X_TILED;
8394 break;
8395 case PLANE_CTL_TILED_Y:
8396 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8397 break;
8398 case PLANE_CTL_TILED_YF:
8399 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8400 break;
8401 default:
8402 MISSING_CASE(tiling);
8403 goto error;
8404 }
8405
8406 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8407 plane_config->base = base;
8408
8409 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8410
8411 val = I915_READ(PLANE_SIZE(pipe, 0));
8412 fb->height = ((val >> 16) & 0xfff) + 1;
8413 fb->width = ((val >> 0) & 0x1fff) + 1;
8414
8415 val = I915_READ(PLANE_STRIDE(pipe, 0));
8416 stride_mult = intel_fb_stride_alignment(fb, 0);
8417 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8418
8419 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8420
8421 plane_config->size = fb->pitches[0] * aligned_height;
8422
8423 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8424 pipe_name(pipe), fb->width, fb->height,
8425 fb->format->cpp[0] * 8, base, fb->pitches[0],
8426 plane_config->size);
8427
8428 plane_config->fb = intel_fb;
8429 return;
8430
8431 error:
8432 kfree(intel_fb);
8433 }
8434
8435 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8436 struct intel_crtc_state *pipe_config)
8437 {
8438 struct drm_device *dev = crtc->base.dev;
8439 struct drm_i915_private *dev_priv = to_i915(dev);
8440 uint32_t tmp;
8441
8442 tmp = I915_READ(PF_CTL(crtc->pipe));
8443
8444 if (tmp & PF_ENABLE) {
8445 pipe_config->pch_pfit.enabled = true;
8446 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8447 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8448
8449 /* We currently do not free assignements of panel fitters on
8450 * ivb/hsw (since we don't use the higher upscaling modes which
8451 * differentiates them) so just WARN about this case for now. */
8452 if (IS_GEN7(dev_priv)) {
8453 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8454 PF_PIPE_SEL_IVB(crtc->pipe));
8455 }
8456 }
8457 }
8458
8459 static void
8460 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8461 struct intel_initial_plane_config *plane_config)
8462 {
8463 struct drm_device *dev = crtc->base.dev;
8464 struct drm_i915_private *dev_priv = to_i915(dev);
8465 u32 val, base, offset;
8466 int pipe = crtc->pipe;
8467 int fourcc, pixel_format;
8468 unsigned int aligned_height;
8469 struct drm_framebuffer *fb;
8470 struct intel_framebuffer *intel_fb;
8471
8472 val = I915_READ(DSPCNTR(pipe));
8473 if (!(val & DISPLAY_PLANE_ENABLE))
8474 return;
8475
8476 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8477 if (!intel_fb) {
8478 DRM_DEBUG_KMS("failed to alloc fb\n");
8479 return;
8480 }
8481
8482 fb = &intel_fb->base;
8483
8484 fb->dev = dev;
8485
8486 if (INTEL_GEN(dev_priv) >= 4) {
8487 if (val & DISPPLANE_TILED) {
8488 plane_config->tiling = I915_TILING_X;
8489 fb->modifier = I915_FORMAT_MOD_X_TILED;
8490 }
8491 }
8492
8493 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8494 fourcc = i9xx_format_to_fourcc(pixel_format);
8495 fb->format = drm_format_info(fourcc);
8496
8497 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8498 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8499 offset = I915_READ(DSPOFFSET(pipe));
8500 } else {
8501 if (plane_config->tiling)
8502 offset = I915_READ(DSPTILEOFF(pipe));
8503 else
8504 offset = I915_READ(DSPLINOFF(pipe));
8505 }
8506 plane_config->base = base;
8507
8508 val = I915_READ(PIPESRC(pipe));
8509 fb->width = ((val >> 16) & 0xfff) + 1;
8510 fb->height = ((val >> 0) & 0xfff) + 1;
8511
8512 val = I915_READ(DSPSTRIDE(pipe));
8513 fb->pitches[0] = val & 0xffffffc0;
8514
8515 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8516
8517 plane_config->size = fb->pitches[0] * aligned_height;
8518
8519 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8520 pipe_name(pipe), fb->width, fb->height,
8521 fb->format->cpp[0] * 8, base, fb->pitches[0],
8522 plane_config->size);
8523
8524 plane_config->fb = intel_fb;
8525 }
8526
8527 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8528 struct intel_crtc_state *pipe_config)
8529 {
8530 struct drm_device *dev = crtc->base.dev;
8531 struct drm_i915_private *dev_priv = to_i915(dev);
8532 enum intel_display_power_domain power_domain;
8533 uint32_t tmp;
8534 bool ret;
8535
8536 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8537 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8538 return false;
8539
8540 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8541 pipe_config->shared_dpll = NULL;
8542
8543 ret = false;
8544 tmp = I915_READ(PIPECONF(crtc->pipe));
8545 if (!(tmp & PIPECONF_ENABLE))
8546 goto out;
8547
8548 switch (tmp & PIPECONF_BPC_MASK) {
8549 case PIPECONF_6BPC:
8550 pipe_config->pipe_bpp = 18;
8551 break;
8552 case PIPECONF_8BPC:
8553 pipe_config->pipe_bpp = 24;
8554 break;
8555 case PIPECONF_10BPC:
8556 pipe_config->pipe_bpp = 30;
8557 break;
8558 case PIPECONF_12BPC:
8559 pipe_config->pipe_bpp = 36;
8560 break;
8561 default:
8562 break;
8563 }
8564
8565 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8566 pipe_config->limited_color_range = true;
8567
8568 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8569 struct intel_shared_dpll *pll;
8570 enum intel_dpll_id pll_id;
8571
8572 pipe_config->has_pch_encoder = true;
8573
8574 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8575 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8576 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8577
8578 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8579
8580 if (HAS_PCH_IBX(dev_priv)) {
8581 /*
8582 * The pipe->pch transcoder and pch transcoder->pll
8583 * mapping is fixed.
8584 */
8585 pll_id = (enum intel_dpll_id) crtc->pipe;
8586 } else {
8587 tmp = I915_READ(PCH_DPLL_SEL);
8588 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8589 pll_id = DPLL_ID_PCH_PLL_B;
8590 else
8591 pll_id= DPLL_ID_PCH_PLL_A;
8592 }
8593
8594 pipe_config->shared_dpll =
8595 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8596 pll = pipe_config->shared_dpll;
8597
8598 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8599 &pipe_config->dpll_hw_state));
8600
8601 tmp = pipe_config->dpll_hw_state.dpll;
8602 pipe_config->pixel_multiplier =
8603 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8604 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8605
8606 ironlake_pch_clock_get(crtc, pipe_config);
8607 } else {
8608 pipe_config->pixel_multiplier = 1;
8609 }
8610
8611 intel_get_pipe_timings(crtc, pipe_config);
8612 intel_get_pipe_src_size(crtc, pipe_config);
8613
8614 ironlake_get_pfit_config(crtc, pipe_config);
8615
8616 ret = true;
8617
8618 out:
8619 intel_display_power_put(dev_priv, power_domain);
8620
8621 return ret;
8622 }
8623
8624 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8625 {
8626 struct drm_device *dev = &dev_priv->drm;
8627 struct intel_crtc *crtc;
8628
8629 for_each_intel_crtc(dev, crtc)
8630 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8631 pipe_name(crtc->pipe));
8632
8633 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8634 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8635 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8636 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8637 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8638 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8639 "CPU PWM1 enabled\n");
8640 if (IS_HASWELL(dev_priv))
8641 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8642 "CPU PWM2 enabled\n");
8643 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8644 "PCH PWM1 enabled\n");
8645 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8646 "Utility pin enabled\n");
8647 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8648
8649 /*
8650 * In theory we can still leave IRQs enabled, as long as only the HPD
8651 * interrupts remain enabled. We used to check for that, but since it's
8652 * gen-specific and since we only disable LCPLL after we fully disable
8653 * the interrupts, the check below should be enough.
8654 */
8655 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8656 }
8657
8658 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8659 {
8660 if (IS_HASWELL(dev_priv))
8661 return I915_READ(D_COMP_HSW);
8662 else
8663 return I915_READ(D_COMP_BDW);
8664 }
8665
8666 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8667 {
8668 if (IS_HASWELL(dev_priv)) {
8669 mutex_lock(&dev_priv->rps.hw_lock);
8670 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8671 val))
8672 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8673 mutex_unlock(&dev_priv->rps.hw_lock);
8674 } else {
8675 I915_WRITE(D_COMP_BDW, val);
8676 POSTING_READ(D_COMP_BDW);
8677 }
8678 }
8679
8680 /*
8681 * This function implements pieces of two sequences from BSpec:
8682 * - Sequence for display software to disable LCPLL
8683 * - Sequence for display software to allow package C8+
8684 * The steps implemented here are just the steps that actually touch the LCPLL
8685 * register. Callers should take care of disabling all the display engine
8686 * functions, doing the mode unset, fixing interrupts, etc.
8687 */
8688 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8689 bool switch_to_fclk, bool allow_power_down)
8690 {
8691 uint32_t val;
8692
8693 assert_can_disable_lcpll(dev_priv);
8694
8695 val = I915_READ(LCPLL_CTL);
8696
8697 if (switch_to_fclk) {
8698 val |= LCPLL_CD_SOURCE_FCLK;
8699 I915_WRITE(LCPLL_CTL, val);
8700
8701 if (wait_for_us(I915_READ(LCPLL_CTL) &
8702 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8703 DRM_ERROR("Switching to FCLK failed\n");
8704
8705 val = I915_READ(LCPLL_CTL);
8706 }
8707
8708 val |= LCPLL_PLL_DISABLE;
8709 I915_WRITE(LCPLL_CTL, val);
8710 POSTING_READ(LCPLL_CTL);
8711
8712 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8713 DRM_ERROR("LCPLL still locked\n");
8714
8715 val = hsw_read_dcomp(dev_priv);
8716 val |= D_COMP_COMP_DISABLE;
8717 hsw_write_dcomp(dev_priv, val);
8718 ndelay(100);
8719
8720 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8721 1))
8722 DRM_ERROR("D_COMP RCOMP still in progress\n");
8723
8724 if (allow_power_down) {
8725 val = I915_READ(LCPLL_CTL);
8726 val |= LCPLL_POWER_DOWN_ALLOW;
8727 I915_WRITE(LCPLL_CTL, val);
8728 POSTING_READ(LCPLL_CTL);
8729 }
8730 }
8731
8732 /*
8733 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8734 * source.
8735 */
8736 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8737 {
8738 uint32_t val;
8739
8740 val = I915_READ(LCPLL_CTL);
8741
8742 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8743 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8744 return;
8745
8746 /*
8747 * Make sure we're not on PC8 state before disabling PC8, otherwise
8748 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8749 */
8750 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8751
8752 if (val & LCPLL_POWER_DOWN_ALLOW) {
8753 val &= ~LCPLL_POWER_DOWN_ALLOW;
8754 I915_WRITE(LCPLL_CTL, val);
8755 POSTING_READ(LCPLL_CTL);
8756 }
8757
8758 val = hsw_read_dcomp(dev_priv);
8759 val |= D_COMP_COMP_FORCE;
8760 val &= ~D_COMP_COMP_DISABLE;
8761 hsw_write_dcomp(dev_priv, val);
8762
8763 val = I915_READ(LCPLL_CTL);
8764 val &= ~LCPLL_PLL_DISABLE;
8765 I915_WRITE(LCPLL_CTL, val);
8766
8767 if (intel_wait_for_register(dev_priv,
8768 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8769 5))
8770 DRM_ERROR("LCPLL not locked yet\n");
8771
8772 if (val & LCPLL_CD_SOURCE_FCLK) {
8773 val = I915_READ(LCPLL_CTL);
8774 val &= ~LCPLL_CD_SOURCE_FCLK;
8775 I915_WRITE(LCPLL_CTL, val);
8776
8777 if (wait_for_us((I915_READ(LCPLL_CTL) &
8778 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8779 DRM_ERROR("Switching back to LCPLL failed\n");
8780 }
8781
8782 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8783 intel_update_cdclk(dev_priv);
8784 }
8785
8786 /*
8787 * Package states C8 and deeper are really deep PC states that can only be
8788 * reached when all the devices on the system allow it, so even if the graphics
8789 * device allows PC8+, it doesn't mean the system will actually get to these
8790 * states. Our driver only allows PC8+ when going into runtime PM.
8791 *
8792 * The requirements for PC8+ are that all the outputs are disabled, the power
8793 * well is disabled and most interrupts are disabled, and these are also
8794 * requirements for runtime PM. When these conditions are met, we manually do
8795 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8796 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8797 * hang the machine.
8798 *
8799 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8800 * the state of some registers, so when we come back from PC8+ we need to
8801 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8802 * need to take care of the registers kept by RC6. Notice that this happens even
8803 * if we don't put the device in PCI D3 state (which is what currently happens
8804 * because of the runtime PM support).
8805 *
8806 * For more, read "Display Sequences for Package C8" on the hardware
8807 * documentation.
8808 */
8809 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8810 {
8811 uint32_t val;
8812
8813 DRM_DEBUG_KMS("Enabling package C8+\n");
8814
8815 if (HAS_PCH_LPT_LP(dev_priv)) {
8816 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8817 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8818 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8819 }
8820
8821 lpt_disable_clkout_dp(dev_priv);
8822 hsw_disable_lcpll(dev_priv, true, true);
8823 }
8824
8825 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8826 {
8827 uint32_t val;
8828
8829 DRM_DEBUG_KMS("Disabling package C8+\n");
8830
8831 hsw_restore_lcpll(dev_priv);
8832 lpt_init_pch_refclk(dev_priv);
8833
8834 if (HAS_PCH_LPT_LP(dev_priv)) {
8835 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8836 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8837 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8838 }
8839 }
8840
8841 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8842 struct intel_crtc_state *crtc_state)
8843 {
8844 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8845 struct intel_encoder *encoder =
8846 intel_ddi_get_crtc_new_encoder(crtc_state);
8847
8848 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8849 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8850 pipe_name(crtc->pipe));
8851 return -EINVAL;
8852 }
8853 }
8854
8855 crtc->lowfreq_avail = false;
8856
8857 return 0;
8858 }
8859
8860 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8861 enum port port,
8862 struct intel_crtc_state *pipe_config)
8863 {
8864 enum intel_dpll_id id;
8865 u32 temp;
8866
8867 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8868 id = temp >> (port * 2);
8869
8870 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8871 return;
8872
8873 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8874 }
8875
8876 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8877 enum port port,
8878 struct intel_crtc_state *pipe_config)
8879 {
8880 enum intel_dpll_id id;
8881
8882 switch (port) {
8883 case PORT_A:
8884 id = DPLL_ID_SKL_DPLL0;
8885 break;
8886 case PORT_B:
8887 id = DPLL_ID_SKL_DPLL1;
8888 break;
8889 case PORT_C:
8890 id = DPLL_ID_SKL_DPLL2;
8891 break;
8892 default:
8893 DRM_ERROR("Incorrect port type\n");
8894 return;
8895 }
8896
8897 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8898 }
8899
8900 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8901 enum port port,
8902 struct intel_crtc_state *pipe_config)
8903 {
8904 enum intel_dpll_id id;
8905 u32 temp;
8906
8907 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8908 id = temp >> (port * 3 + 1);
8909
8910 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8911 return;
8912
8913 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8914 }
8915
8916 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8917 enum port port,
8918 struct intel_crtc_state *pipe_config)
8919 {
8920 enum intel_dpll_id id;
8921 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8922
8923 switch (ddi_pll_sel) {
8924 case PORT_CLK_SEL_WRPLL1:
8925 id = DPLL_ID_WRPLL1;
8926 break;
8927 case PORT_CLK_SEL_WRPLL2:
8928 id = DPLL_ID_WRPLL2;
8929 break;
8930 case PORT_CLK_SEL_SPLL:
8931 id = DPLL_ID_SPLL;
8932 break;
8933 case PORT_CLK_SEL_LCPLL_810:
8934 id = DPLL_ID_LCPLL_810;
8935 break;
8936 case PORT_CLK_SEL_LCPLL_1350:
8937 id = DPLL_ID_LCPLL_1350;
8938 break;
8939 case PORT_CLK_SEL_LCPLL_2700:
8940 id = DPLL_ID_LCPLL_2700;
8941 break;
8942 default:
8943 MISSING_CASE(ddi_pll_sel);
8944 /* fall through */
8945 case PORT_CLK_SEL_NONE:
8946 return;
8947 }
8948
8949 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8950 }
8951
8952 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8953 struct intel_crtc_state *pipe_config,
8954 u64 *power_domain_mask)
8955 {
8956 struct drm_device *dev = crtc->base.dev;
8957 struct drm_i915_private *dev_priv = to_i915(dev);
8958 enum intel_display_power_domain power_domain;
8959 u32 tmp;
8960
8961 /*
8962 * The pipe->transcoder mapping is fixed with the exception of the eDP
8963 * transcoder handled below.
8964 */
8965 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8966
8967 /*
8968 * XXX: Do intel_display_power_get_if_enabled before reading this (for
8969 * consistency and less surprising code; it's in always on power).
8970 */
8971 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8972 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8973 enum pipe trans_edp_pipe;
8974 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8975 default:
8976 WARN(1, "unknown pipe linked to edp transcoder\n");
8977 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8978 case TRANS_DDI_EDP_INPUT_A_ON:
8979 trans_edp_pipe = PIPE_A;
8980 break;
8981 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8982 trans_edp_pipe = PIPE_B;
8983 break;
8984 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8985 trans_edp_pipe = PIPE_C;
8986 break;
8987 }
8988
8989 if (trans_edp_pipe == crtc->pipe)
8990 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8991 }
8992
8993 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8994 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8995 return false;
8996 *power_domain_mask |= BIT_ULL(power_domain);
8997
8998 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8999
9000 return tmp & PIPECONF_ENABLE;
9001 }
9002
9003 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9004 struct intel_crtc_state *pipe_config,
9005 u64 *power_domain_mask)
9006 {
9007 struct drm_device *dev = crtc->base.dev;
9008 struct drm_i915_private *dev_priv = to_i915(dev);
9009 enum intel_display_power_domain power_domain;
9010 enum port port;
9011 enum transcoder cpu_transcoder;
9012 u32 tmp;
9013
9014 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9015 if (port == PORT_A)
9016 cpu_transcoder = TRANSCODER_DSI_A;
9017 else
9018 cpu_transcoder = TRANSCODER_DSI_C;
9019
9020 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9021 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9022 continue;
9023 *power_domain_mask |= BIT_ULL(power_domain);
9024
9025 /*
9026 * The PLL needs to be enabled with a valid divider
9027 * configuration, otherwise accessing DSI registers will hang
9028 * the machine. See BSpec North Display Engine
9029 * registers/MIPI[BXT]. We can break out here early, since we
9030 * need the same DSI PLL to be enabled for both DSI ports.
9031 */
9032 if (!intel_dsi_pll_is_enabled(dev_priv))
9033 break;
9034
9035 /* XXX: this works for video mode only */
9036 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9037 if (!(tmp & DPI_ENABLE))
9038 continue;
9039
9040 tmp = I915_READ(MIPI_CTRL(port));
9041 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9042 continue;
9043
9044 pipe_config->cpu_transcoder = cpu_transcoder;
9045 break;
9046 }
9047
9048 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9049 }
9050
9051 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9052 struct intel_crtc_state *pipe_config)
9053 {
9054 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9055 struct intel_shared_dpll *pll;
9056 enum port port;
9057 uint32_t tmp;
9058
9059 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9060
9061 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9062
9063 if (IS_CANNONLAKE(dev_priv))
9064 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9065 else if (IS_GEN9_BC(dev_priv))
9066 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9067 else if (IS_GEN9_LP(dev_priv))
9068 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9069 else
9070 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9071
9072 pll = pipe_config->shared_dpll;
9073 if (pll) {
9074 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9075 &pipe_config->dpll_hw_state));
9076 }
9077
9078 /*
9079 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9080 * DDI E. So just check whether this pipe is wired to DDI E and whether
9081 * the PCH transcoder is on.
9082 */
9083 if (INTEL_GEN(dev_priv) < 9 &&
9084 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9085 pipe_config->has_pch_encoder = true;
9086
9087 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9088 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9089 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9090
9091 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9092 }
9093 }
9094
9095 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9096 struct intel_crtc_state *pipe_config)
9097 {
9098 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9099 enum intel_display_power_domain power_domain;
9100 u64 power_domain_mask;
9101 bool active;
9102
9103 if (INTEL_GEN(dev_priv) >= 9) {
9104 intel_crtc_init_scalers(crtc, pipe_config);
9105
9106 pipe_config->scaler_state.scaler_id = -1;
9107 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9108 }
9109
9110 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9111 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9112 return false;
9113 power_domain_mask = BIT_ULL(power_domain);
9114
9115 pipe_config->shared_dpll = NULL;
9116
9117 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9118
9119 if (IS_GEN9_LP(dev_priv) &&
9120 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9121 WARN_ON(active);
9122 active = true;
9123 }
9124
9125 if (!active)
9126 goto out;
9127
9128 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9129 haswell_get_ddi_port_state(crtc, pipe_config);
9130 intel_get_pipe_timings(crtc, pipe_config);
9131 }
9132
9133 intel_get_pipe_src_size(crtc, pipe_config);
9134
9135 pipe_config->gamma_mode =
9136 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9137
9138 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9139 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9140 power_domain_mask |= BIT_ULL(power_domain);
9141 if (INTEL_GEN(dev_priv) >= 9)
9142 skylake_get_pfit_config(crtc, pipe_config);
9143 else
9144 ironlake_get_pfit_config(crtc, pipe_config);
9145 }
9146
9147 if (IS_HASWELL(dev_priv))
9148 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9149 (I915_READ(IPS_CTL) & IPS_ENABLE);
9150
9151 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9152 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9153 pipe_config->pixel_multiplier =
9154 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9155 } else {
9156 pipe_config->pixel_multiplier = 1;
9157 }
9158
9159 out:
9160 for_each_power_domain(power_domain, power_domain_mask)
9161 intel_display_power_put(dev_priv, power_domain);
9162
9163 return active;
9164 }
9165
9166 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9167 {
9168 struct drm_i915_private *dev_priv =
9169 to_i915(plane_state->base.plane->dev);
9170 const struct drm_framebuffer *fb = plane_state->base.fb;
9171 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9172 u32 base;
9173
9174 if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9175 base = obj->phys_handle->busaddr;
9176 else
9177 base = intel_plane_ggtt_offset(plane_state);
9178
9179 base += plane_state->main.offset;
9180
9181 /* ILK+ do this automagically */
9182 if (HAS_GMCH_DISPLAY(dev_priv) &&
9183 plane_state->base.rotation & DRM_MODE_ROTATE_180)
9184 base += (plane_state->base.crtc_h *
9185 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9186
9187 return base;
9188 }
9189
9190 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9191 {
9192 int x = plane_state->base.crtc_x;
9193 int y = plane_state->base.crtc_y;
9194 u32 pos = 0;
9195
9196 if (x < 0) {
9197 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9198 x = -x;
9199 }
9200 pos |= x << CURSOR_X_SHIFT;
9201
9202 if (y < 0) {
9203 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9204 y = -y;
9205 }
9206 pos |= y << CURSOR_Y_SHIFT;
9207
9208 return pos;
9209 }
9210
9211 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9212 {
9213 const struct drm_mode_config *config =
9214 &plane_state->base.plane->dev->mode_config;
9215 int width = plane_state->base.crtc_w;
9216 int height = plane_state->base.crtc_h;
9217
9218 return width > 0 && width <= config->cursor_width &&
9219 height > 0 && height <= config->cursor_height;
9220 }
9221
9222 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9223 struct intel_plane_state *plane_state)
9224 {
9225 const struct drm_framebuffer *fb = plane_state->base.fb;
9226 int src_x, src_y;
9227 u32 offset;
9228 int ret;
9229
9230 ret = drm_plane_helper_check_state(&plane_state->base,
9231 &plane_state->clip,
9232 DRM_PLANE_HELPER_NO_SCALING,
9233 DRM_PLANE_HELPER_NO_SCALING,
9234 true, true);
9235 if (ret)
9236 return ret;
9237
9238 if (!fb)
9239 return 0;
9240
9241 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9242 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9243 return -EINVAL;
9244 }
9245
9246 src_x = plane_state->base.src_x >> 16;
9247 src_y = plane_state->base.src_y >> 16;
9248
9249 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9250 offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9251
9252 if (src_x != 0 || src_y != 0) {
9253 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9254 return -EINVAL;
9255 }
9256
9257 plane_state->main.offset = offset;
9258
9259 return 0;
9260 }
9261
9262 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9263 const struct intel_plane_state *plane_state)
9264 {
9265 const struct drm_framebuffer *fb = plane_state->base.fb;
9266
9267 return CURSOR_ENABLE |
9268 CURSOR_GAMMA_ENABLE |
9269 CURSOR_FORMAT_ARGB |
9270 CURSOR_STRIDE(fb->pitches[0]);
9271 }
9272
9273 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9274 {
9275 int width = plane_state->base.crtc_w;
9276
9277 /*
9278 * 845g/865g are only limited by the width of their cursors,
9279 * the height is arbitrary up to the precision of the register.
9280 */
9281 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9282 }
9283
9284 static int i845_check_cursor(struct intel_plane *plane,
9285 struct intel_crtc_state *crtc_state,
9286 struct intel_plane_state *plane_state)
9287 {
9288 const struct drm_framebuffer *fb = plane_state->base.fb;
9289 int ret;
9290
9291 ret = intel_check_cursor(crtc_state, plane_state);
9292 if (ret)
9293 return ret;
9294
9295 /* if we want to turn off the cursor ignore width and height */
9296 if (!fb)
9297 return 0;
9298
9299 /* Check for which cursor types we support */
9300 if (!i845_cursor_size_ok(plane_state)) {
9301 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9302 plane_state->base.crtc_w,
9303 plane_state->base.crtc_h);
9304 return -EINVAL;
9305 }
9306
9307 switch (fb->pitches[0]) {
9308 case 256:
9309 case 512:
9310 case 1024:
9311 case 2048:
9312 break;
9313 default:
9314 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9315 fb->pitches[0]);
9316 return -EINVAL;
9317 }
9318
9319 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9320
9321 return 0;
9322 }
9323
9324 static void i845_update_cursor(struct intel_plane *plane,
9325 const struct intel_crtc_state *crtc_state,
9326 const struct intel_plane_state *plane_state)
9327 {
9328 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9329 u32 cntl = 0, base = 0, pos = 0, size = 0;
9330 unsigned long irqflags;
9331
9332 if (plane_state && plane_state->base.visible) {
9333 unsigned int width = plane_state->base.crtc_w;
9334 unsigned int height = plane_state->base.crtc_h;
9335
9336 cntl = plane_state->ctl;
9337 size = (height << 12) | width;
9338
9339 base = intel_cursor_base(plane_state);
9340 pos = intel_cursor_position(plane_state);
9341 }
9342
9343 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9344
9345 /* On these chipsets we can only modify the base/size/stride
9346 * whilst the cursor is disabled.
9347 */
9348 if (plane->cursor.base != base ||
9349 plane->cursor.size != size ||
9350 plane->cursor.cntl != cntl) {
9351 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9352 I915_WRITE_FW(CURBASE(PIPE_A), base);
9353 I915_WRITE_FW(CURSIZE, size);
9354 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9355 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9356
9357 plane->cursor.base = base;
9358 plane->cursor.size = size;
9359 plane->cursor.cntl = cntl;
9360 } else {
9361 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9362 }
9363
9364 POSTING_READ_FW(CURCNTR(PIPE_A));
9365
9366 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9367 }
9368
9369 static void i845_disable_cursor(struct intel_plane *plane,
9370 struct intel_crtc *crtc)
9371 {
9372 i845_update_cursor(plane, NULL, NULL);
9373 }
9374
9375 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9376 const struct intel_plane_state *plane_state)
9377 {
9378 struct drm_i915_private *dev_priv =
9379 to_i915(plane_state->base.plane->dev);
9380 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9381 u32 cntl;
9382
9383 cntl = MCURSOR_GAMMA_ENABLE;
9384
9385 if (HAS_DDI(dev_priv))
9386 cntl |= CURSOR_PIPE_CSC_ENABLE;
9387
9388 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9389
9390 switch (plane_state->base.crtc_w) {
9391 case 64:
9392 cntl |= CURSOR_MODE_64_ARGB_AX;
9393 break;
9394 case 128:
9395 cntl |= CURSOR_MODE_128_ARGB_AX;
9396 break;
9397 case 256:
9398 cntl |= CURSOR_MODE_256_ARGB_AX;
9399 break;
9400 default:
9401 MISSING_CASE(plane_state->base.crtc_w);
9402 return 0;
9403 }
9404
9405 if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9406 cntl |= CURSOR_ROTATE_180;
9407
9408 return cntl;
9409 }
9410
9411 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9412 {
9413 struct drm_i915_private *dev_priv =
9414 to_i915(plane_state->base.plane->dev);
9415 int width = plane_state->base.crtc_w;
9416 int height = plane_state->base.crtc_h;
9417
9418 if (!intel_cursor_size_ok(plane_state))
9419 return false;
9420
9421 /* Cursor width is limited to a few power-of-two sizes */
9422 switch (width) {
9423 case 256:
9424 case 128:
9425 case 64:
9426 break;
9427 default:
9428 return false;
9429 }
9430
9431 /*
9432 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9433 * height from 8 lines up to the cursor width, when the
9434 * cursor is not rotated. Everything else requires square
9435 * cursors.
9436 */
9437 if (HAS_CUR_FBC(dev_priv) &&
9438 plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9439 if (height < 8 || height > width)
9440 return false;
9441 } else {
9442 if (height != width)
9443 return false;
9444 }
9445
9446 return true;
9447 }
9448
9449 static int i9xx_check_cursor(struct intel_plane *plane,
9450 struct intel_crtc_state *crtc_state,
9451 struct intel_plane_state *plane_state)
9452 {
9453 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9454 const struct drm_framebuffer *fb = plane_state->base.fb;
9455 enum pipe pipe = plane->pipe;
9456 int ret;
9457
9458 ret = intel_check_cursor(crtc_state, plane_state);
9459 if (ret)
9460 return ret;
9461
9462 /* if we want to turn off the cursor ignore width and height */
9463 if (!fb)
9464 return 0;
9465
9466 /* Check for which cursor types we support */
9467 if (!i9xx_cursor_size_ok(plane_state)) {
9468 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9469 plane_state->base.crtc_w,
9470 plane_state->base.crtc_h);
9471 return -EINVAL;
9472 }
9473
9474 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9475 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9476 fb->pitches[0], plane_state->base.crtc_w);
9477 return -EINVAL;
9478 }
9479
9480 /*
9481 * There's something wrong with the cursor on CHV pipe C.
9482 * If it straddles the left edge of the screen then
9483 * moving it away from the edge or disabling it often
9484 * results in a pipe underrun, and often that can lead to
9485 * dead pipe (constant underrun reported, and it scans
9486 * out just a solid color). To recover from that, the
9487 * display power well must be turned off and on again.
9488 * Refuse the put the cursor into that compromised position.
9489 */
9490 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9491 plane_state->base.visible && plane_state->base.crtc_x < 0) {
9492 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9493 return -EINVAL;
9494 }
9495
9496 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9497
9498 return 0;
9499 }
9500
9501 static void i9xx_update_cursor(struct intel_plane *plane,
9502 const struct intel_crtc_state *crtc_state,
9503 const struct intel_plane_state *plane_state)
9504 {
9505 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9506 enum pipe pipe = plane->pipe;
9507 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9508 unsigned long irqflags;
9509
9510 if (plane_state && plane_state->base.visible) {
9511 cntl = plane_state->ctl;
9512
9513 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9514 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9515
9516 base = intel_cursor_base(plane_state);
9517 pos = intel_cursor_position(plane_state);
9518 }
9519
9520 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9521
9522 /*
9523 * On some platforms writing CURCNTR first will also
9524 * cause CURPOS to be armed by the CURBASE write.
9525 * Without the CURCNTR write the CURPOS write would
9526 * arm itself. Thus we always start the full update
9527 * with a CURCNTR write.
9528 *
9529 * On other platforms CURPOS always requires the
9530 * CURBASE write to arm the update. Additonally
9531 * a write to any of the cursor register will cancel
9532 * an already armed cursor update. Thus leaving out
9533 * the CURBASE write after CURPOS could lead to a
9534 * cursor that doesn't appear to move, or even change
9535 * shape. Thus we always write CURBASE.
9536 *
9537 * CURCNTR and CUR_FBC_CTL are always
9538 * armed by the CURBASE write only.
9539 */
9540 if (plane->cursor.base != base ||
9541 plane->cursor.size != fbc_ctl ||
9542 plane->cursor.cntl != cntl) {
9543 I915_WRITE_FW(CURCNTR(pipe), cntl);
9544 if (HAS_CUR_FBC(dev_priv))
9545 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9546 I915_WRITE_FW(CURPOS(pipe), pos);
9547 I915_WRITE_FW(CURBASE(pipe), base);
9548
9549 plane->cursor.base = base;
9550 plane->cursor.size = fbc_ctl;
9551 plane->cursor.cntl = cntl;
9552 } else {
9553 I915_WRITE_FW(CURPOS(pipe), pos);
9554 I915_WRITE_FW(CURBASE(pipe), base);
9555 }
9556
9557 POSTING_READ_FW(CURBASE(pipe));
9558
9559 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9560 }
9561
9562 static void i9xx_disable_cursor(struct intel_plane *plane,
9563 struct intel_crtc *crtc)
9564 {
9565 i9xx_update_cursor(plane, NULL, NULL);
9566 }
9567
9568
9569 /* VESA 640x480x72Hz mode to set on the pipe */
9570 static struct drm_display_mode load_detect_mode = {
9571 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9572 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9573 };
9574
9575 struct drm_framebuffer *
9576 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9577 struct drm_mode_fb_cmd2 *mode_cmd)
9578 {
9579 struct intel_framebuffer *intel_fb;
9580 int ret;
9581
9582 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9583 if (!intel_fb)
9584 return ERR_PTR(-ENOMEM);
9585
9586 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9587 if (ret)
9588 goto err;
9589
9590 return &intel_fb->base;
9591
9592 err:
9593 kfree(intel_fb);
9594 return ERR_PTR(ret);
9595 }
9596
9597 static u32
9598 intel_framebuffer_pitch_for_width(int width, int bpp)
9599 {
9600 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9601 return ALIGN(pitch, 64);
9602 }
9603
9604 static u32
9605 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9606 {
9607 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9608 return PAGE_ALIGN(pitch * mode->vdisplay);
9609 }
9610
9611 static struct drm_framebuffer *
9612 intel_framebuffer_create_for_mode(struct drm_device *dev,
9613 struct drm_display_mode *mode,
9614 int depth, int bpp)
9615 {
9616 struct drm_framebuffer *fb;
9617 struct drm_i915_gem_object *obj;
9618 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9619
9620 obj = i915_gem_object_create(to_i915(dev),
9621 intel_framebuffer_size_for_mode(mode, bpp));
9622 if (IS_ERR(obj))
9623 return ERR_CAST(obj);
9624
9625 mode_cmd.width = mode->hdisplay;
9626 mode_cmd.height = mode->vdisplay;
9627 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9628 bpp);
9629 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9630
9631 fb = intel_framebuffer_create(obj, &mode_cmd);
9632 if (IS_ERR(fb))
9633 i915_gem_object_put(obj);
9634
9635 return fb;
9636 }
9637
9638 static struct drm_framebuffer *
9639 mode_fits_in_fbdev(struct drm_device *dev,
9640 struct drm_display_mode *mode)
9641 {
9642 #ifdef CONFIG_DRM_FBDEV_EMULATION
9643 struct drm_i915_private *dev_priv = to_i915(dev);
9644 struct drm_i915_gem_object *obj;
9645 struct drm_framebuffer *fb;
9646
9647 if (!dev_priv->fbdev)
9648 return NULL;
9649
9650 if (!dev_priv->fbdev->fb)
9651 return NULL;
9652
9653 obj = dev_priv->fbdev->fb->obj;
9654 BUG_ON(!obj);
9655
9656 fb = &dev_priv->fbdev->fb->base;
9657 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9658 fb->format->cpp[0] * 8))
9659 return NULL;
9660
9661 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9662 return NULL;
9663
9664 drm_framebuffer_reference(fb);
9665 return fb;
9666 #else
9667 return NULL;
9668 #endif
9669 }
9670
9671 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9672 struct drm_crtc *crtc,
9673 struct drm_display_mode *mode,
9674 struct drm_framebuffer *fb,
9675 int x, int y)
9676 {
9677 struct drm_plane_state *plane_state;
9678 int hdisplay, vdisplay;
9679 int ret;
9680
9681 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9682 if (IS_ERR(plane_state))
9683 return PTR_ERR(plane_state);
9684
9685 if (mode)
9686 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9687 else
9688 hdisplay = vdisplay = 0;
9689
9690 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9691 if (ret)
9692 return ret;
9693 drm_atomic_set_fb_for_plane(plane_state, fb);
9694 plane_state->crtc_x = 0;
9695 plane_state->crtc_y = 0;
9696 plane_state->crtc_w = hdisplay;
9697 plane_state->crtc_h = vdisplay;
9698 plane_state->src_x = x << 16;
9699 plane_state->src_y = y << 16;
9700 plane_state->src_w = hdisplay << 16;
9701 plane_state->src_h = vdisplay << 16;
9702
9703 return 0;
9704 }
9705
9706 int intel_get_load_detect_pipe(struct drm_connector *connector,
9707 struct drm_display_mode *mode,
9708 struct intel_load_detect_pipe *old,
9709 struct drm_modeset_acquire_ctx *ctx)
9710 {
9711 struct intel_crtc *intel_crtc;
9712 struct intel_encoder *intel_encoder =
9713 intel_attached_encoder(connector);
9714 struct drm_crtc *possible_crtc;
9715 struct drm_encoder *encoder = &intel_encoder->base;
9716 struct drm_crtc *crtc = NULL;
9717 struct drm_device *dev = encoder->dev;
9718 struct drm_i915_private *dev_priv = to_i915(dev);
9719 struct drm_framebuffer *fb;
9720 struct drm_mode_config *config = &dev->mode_config;
9721 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9722 struct drm_connector_state *connector_state;
9723 struct intel_crtc_state *crtc_state;
9724 int ret, i = -1;
9725
9726 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9727 connector->base.id, connector->name,
9728 encoder->base.id, encoder->name);
9729
9730 old->restore_state = NULL;
9731
9732 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9733
9734 /*
9735 * Algorithm gets a little messy:
9736 *
9737 * - if the connector already has an assigned crtc, use it (but make
9738 * sure it's on first)
9739 *
9740 * - try to find the first unused crtc that can drive this connector,
9741 * and use that if we find one
9742 */
9743
9744 /* See if we already have a CRTC for this connector */
9745 if (connector->state->crtc) {
9746 crtc = connector->state->crtc;
9747
9748 ret = drm_modeset_lock(&crtc->mutex, ctx);
9749 if (ret)
9750 goto fail;
9751
9752 /* Make sure the crtc and connector are running */
9753 goto found;
9754 }
9755
9756 /* Find an unused one (if possible) */
9757 for_each_crtc(dev, possible_crtc) {
9758 i++;
9759 if (!(encoder->possible_crtcs & (1 << i)))
9760 continue;
9761
9762 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9763 if (ret)
9764 goto fail;
9765
9766 if (possible_crtc->state->enable) {
9767 drm_modeset_unlock(&possible_crtc->mutex);
9768 continue;
9769 }
9770
9771 crtc = possible_crtc;
9772 break;
9773 }
9774
9775 /*
9776 * If we didn't find an unused CRTC, don't use any.
9777 */
9778 if (!crtc) {
9779 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9780 ret = -ENODEV;
9781 goto fail;
9782 }
9783
9784 found:
9785 intel_crtc = to_intel_crtc(crtc);
9786
9787 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9788 if (ret)
9789 goto fail;
9790
9791 state = drm_atomic_state_alloc(dev);
9792 restore_state = drm_atomic_state_alloc(dev);
9793 if (!state || !restore_state) {
9794 ret = -ENOMEM;
9795 goto fail;
9796 }
9797
9798 state->acquire_ctx = ctx;
9799 restore_state->acquire_ctx = ctx;
9800
9801 connector_state = drm_atomic_get_connector_state(state, connector);
9802 if (IS_ERR(connector_state)) {
9803 ret = PTR_ERR(connector_state);
9804 goto fail;
9805 }
9806
9807 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9808 if (ret)
9809 goto fail;
9810
9811 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9812 if (IS_ERR(crtc_state)) {
9813 ret = PTR_ERR(crtc_state);
9814 goto fail;
9815 }
9816
9817 crtc_state->base.active = crtc_state->base.enable = true;
9818
9819 if (!mode)
9820 mode = &load_detect_mode;
9821
9822 /* We need a framebuffer large enough to accommodate all accesses
9823 * that the plane may generate whilst we perform load detection.
9824 * We can not rely on the fbcon either being present (we get called
9825 * during its initialisation to detect all boot displays, or it may
9826 * not even exist) or that it is large enough to satisfy the
9827 * requested mode.
9828 */
9829 fb = mode_fits_in_fbdev(dev, mode);
9830 if (fb == NULL) {
9831 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9832 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9833 } else
9834 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9835 if (IS_ERR(fb)) {
9836 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9837 ret = PTR_ERR(fb);
9838 goto fail;
9839 }
9840
9841 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9842 if (ret)
9843 goto fail;
9844
9845 drm_framebuffer_unreference(fb);
9846
9847 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9848 if (ret)
9849 goto fail;
9850
9851 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9852 if (!ret)
9853 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9854 if (!ret)
9855 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9856 if (ret) {
9857 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9858 goto fail;
9859 }
9860
9861 ret = drm_atomic_commit(state);
9862 if (ret) {
9863 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9864 goto fail;
9865 }
9866
9867 old->restore_state = restore_state;
9868 drm_atomic_state_put(state);
9869
9870 /* let the connector get through one full cycle before testing */
9871 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9872 return true;
9873
9874 fail:
9875 if (state) {
9876 drm_atomic_state_put(state);
9877 state = NULL;
9878 }
9879 if (restore_state) {
9880 drm_atomic_state_put(restore_state);
9881 restore_state = NULL;
9882 }
9883
9884 if (ret == -EDEADLK)
9885 return ret;
9886
9887 return false;
9888 }
9889
9890 void intel_release_load_detect_pipe(struct drm_connector *connector,
9891 struct intel_load_detect_pipe *old,
9892 struct drm_modeset_acquire_ctx *ctx)
9893 {
9894 struct intel_encoder *intel_encoder =
9895 intel_attached_encoder(connector);
9896 struct drm_encoder *encoder = &intel_encoder->base;
9897 struct drm_atomic_state *state = old->restore_state;
9898 int ret;
9899
9900 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9901 connector->base.id, connector->name,
9902 encoder->base.id, encoder->name);
9903
9904 if (!state)
9905 return;
9906
9907 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9908 if (ret)
9909 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9910 drm_atomic_state_put(state);
9911 }
9912
9913 static int i9xx_pll_refclk(struct drm_device *dev,
9914 const struct intel_crtc_state *pipe_config)
9915 {
9916 struct drm_i915_private *dev_priv = to_i915(dev);
9917 u32 dpll = pipe_config->dpll_hw_state.dpll;
9918
9919 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9920 return dev_priv->vbt.lvds_ssc_freq;
9921 else if (HAS_PCH_SPLIT(dev_priv))
9922 return 120000;
9923 else if (!IS_GEN2(dev_priv))
9924 return 96000;
9925 else
9926 return 48000;
9927 }
9928
9929 /* Returns the clock of the currently programmed mode of the given pipe. */
9930 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9931 struct intel_crtc_state *pipe_config)
9932 {
9933 struct drm_device *dev = crtc->base.dev;
9934 struct drm_i915_private *dev_priv = to_i915(dev);
9935 int pipe = pipe_config->cpu_transcoder;
9936 u32 dpll = pipe_config->dpll_hw_state.dpll;
9937 u32 fp;
9938 struct dpll clock;
9939 int port_clock;
9940 int refclk = i9xx_pll_refclk(dev, pipe_config);
9941
9942 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9943 fp = pipe_config->dpll_hw_state.fp0;
9944 else
9945 fp = pipe_config->dpll_hw_state.fp1;
9946
9947 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9948 if (IS_PINEVIEW(dev_priv)) {
9949 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9950 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9951 } else {
9952 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9953 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9954 }
9955
9956 if (!IS_GEN2(dev_priv)) {
9957 if (IS_PINEVIEW(dev_priv))
9958 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9959 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9960 else
9961 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9962 DPLL_FPA01_P1_POST_DIV_SHIFT);
9963
9964 switch (dpll & DPLL_MODE_MASK) {
9965 case DPLLB_MODE_DAC_SERIAL:
9966 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9967 5 : 10;
9968 break;
9969 case DPLLB_MODE_LVDS:
9970 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9971 7 : 14;
9972 break;
9973 default:
9974 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9975 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9976 return;
9977 }
9978
9979 if (IS_PINEVIEW(dev_priv))
9980 port_clock = pnv_calc_dpll_params(refclk, &clock);
9981 else
9982 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9983 } else {
9984 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9985 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9986
9987 if (is_lvds) {
9988 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9989 DPLL_FPA01_P1_POST_DIV_SHIFT);
9990
9991 if (lvds & LVDS_CLKB_POWER_UP)
9992 clock.p2 = 7;
9993 else
9994 clock.p2 = 14;
9995 } else {
9996 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9997 clock.p1 = 2;
9998 else {
9999 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10000 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10001 }
10002 if (dpll & PLL_P2_DIVIDE_BY_4)
10003 clock.p2 = 4;
10004 else
10005 clock.p2 = 2;
10006 }
10007
10008 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10009 }
10010
10011 /*
10012 * This value includes pixel_multiplier. We will use
10013 * port_clock to compute adjusted_mode.crtc_clock in the
10014 * encoder's get_config() function.
10015 */
10016 pipe_config->port_clock = port_clock;
10017 }
10018
10019 int intel_dotclock_calculate(int link_freq,
10020 const struct intel_link_m_n *m_n)
10021 {
10022 /*
10023 * The calculation for the data clock is:
10024 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10025 * But we want to avoid losing precison if possible, so:
10026 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10027 *
10028 * and the link clock is simpler:
10029 * link_clock = (m * link_clock) / n
10030 */
10031
10032 if (!m_n->link_n)
10033 return 0;
10034
10035 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10036 }
10037
10038 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10039 struct intel_crtc_state *pipe_config)
10040 {
10041 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10042
10043 /* read out port_clock from the DPLL */
10044 i9xx_crtc_clock_get(crtc, pipe_config);
10045
10046 /*
10047 * In case there is an active pipe without active ports,
10048 * we may need some idea for the dotclock anyway.
10049 * Calculate one based on the FDI configuration.
10050 */
10051 pipe_config->base.adjusted_mode.crtc_clock =
10052 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10053 &pipe_config->fdi_m_n);
10054 }
10055
10056 /** Returns the currently programmed mode of the given pipe. */
10057 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10058 struct drm_crtc *crtc)
10059 {
10060 struct drm_i915_private *dev_priv = to_i915(dev);
10061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10062 enum transcoder cpu_transcoder;
10063 struct drm_display_mode *mode;
10064 struct intel_crtc_state *pipe_config;
10065 u32 htot, hsync, vtot, vsync;
10066 enum pipe pipe = intel_crtc->pipe;
10067
10068 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10069 if (!mode)
10070 return NULL;
10071
10072 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10073 if (!pipe_config) {
10074 kfree(mode);
10075 return NULL;
10076 }
10077
10078 /*
10079 * Construct a pipe_config sufficient for getting the clock info
10080 * back out of crtc_clock_get.
10081 *
10082 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10083 * to use a real value here instead.
10084 */
10085 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10086 pipe_config->pixel_multiplier = 1;
10087 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10088 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10089 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10090 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10091
10092 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10093
10094 cpu_transcoder = pipe_config->cpu_transcoder;
10095 htot = I915_READ(HTOTAL(cpu_transcoder));
10096 hsync = I915_READ(HSYNC(cpu_transcoder));
10097 vtot = I915_READ(VTOTAL(cpu_transcoder));
10098 vsync = I915_READ(VSYNC(cpu_transcoder));
10099
10100 mode->hdisplay = (htot & 0xffff) + 1;
10101 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10102 mode->hsync_start = (hsync & 0xffff) + 1;
10103 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10104 mode->vdisplay = (vtot & 0xffff) + 1;
10105 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10106 mode->vsync_start = (vsync & 0xffff) + 1;
10107 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10108
10109 drm_mode_set_name(mode);
10110
10111 kfree(pipe_config);
10112
10113 return mode;
10114 }
10115
10116 static void intel_crtc_destroy(struct drm_crtc *crtc)
10117 {
10118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10119 struct drm_device *dev = crtc->dev;
10120 struct intel_flip_work *work;
10121
10122 spin_lock_irq(&dev->event_lock);
10123 work = intel_crtc->flip_work;
10124 intel_crtc->flip_work = NULL;
10125 spin_unlock_irq(&dev->event_lock);
10126
10127 if (work) {
10128 cancel_work_sync(&work->mmio_work);
10129 cancel_work_sync(&work->unpin_work);
10130 kfree(work);
10131 }
10132
10133 drm_crtc_cleanup(crtc);
10134
10135 kfree(intel_crtc);
10136 }
10137
10138 static void intel_unpin_work_fn(struct work_struct *__work)
10139 {
10140 struct intel_flip_work *work =
10141 container_of(__work, struct intel_flip_work, unpin_work);
10142 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10143 struct drm_device *dev = crtc->base.dev;
10144 struct drm_plane *primary = crtc->base.primary;
10145
10146 if (is_mmio_work(work))
10147 flush_work(&work->mmio_work);
10148
10149 mutex_lock(&dev->struct_mutex);
10150 intel_unpin_fb_vma(work->old_vma);
10151 i915_gem_object_put(work->pending_flip_obj);
10152 mutex_unlock(&dev->struct_mutex);
10153
10154 i915_gem_request_put(work->flip_queued_req);
10155
10156 intel_frontbuffer_flip_complete(to_i915(dev),
10157 to_intel_plane(primary)->frontbuffer_bit);
10158 intel_fbc_post_update(crtc);
10159 drm_framebuffer_unreference(work->old_fb);
10160
10161 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10162 atomic_dec(&crtc->unpin_work_count);
10163
10164 kfree(work);
10165 }
10166
10167 /* Is 'a' after or equal to 'b'? */
10168 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10169 {
10170 return !((a - b) & 0x80000000);
10171 }
10172
10173 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10174 struct intel_flip_work *work)
10175 {
10176 struct drm_device *dev = crtc->base.dev;
10177 struct drm_i915_private *dev_priv = to_i915(dev);
10178
10179 if (abort_flip_on_reset(crtc))
10180 return true;
10181
10182 /*
10183 * The relevant registers doen't exist on pre-ctg.
10184 * As the flip done interrupt doesn't trigger for mmio
10185 * flips on gmch platforms, a flip count check isn't
10186 * really needed there. But since ctg has the registers,
10187 * include it in the check anyway.
10188 */
10189 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10190 return true;
10191
10192 /*
10193 * BDW signals flip done immediately if the plane
10194 * is disabled, even if the plane enable is already
10195 * armed to occur at the next vblank :(
10196 */
10197
10198 /*
10199 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10200 * used the same base address. In that case the mmio flip might
10201 * have completed, but the CS hasn't even executed the flip yet.
10202 *
10203 * A flip count check isn't enough as the CS might have updated
10204 * the base address just after start of vblank, but before we
10205 * managed to process the interrupt. This means we'd complete the
10206 * CS flip too soon.
10207 *
10208 * Combining both checks should get us a good enough result. It may
10209 * still happen that the CS flip has been executed, but has not
10210 * yet actually completed. But in case the base address is the same
10211 * anyway, we don't really care.
10212 */
10213 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10214 crtc->flip_work->gtt_offset &&
10215 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10216 crtc->flip_work->flip_count);
10217 }
10218
10219 static bool
10220 __pageflip_finished_mmio(struct intel_crtc *crtc,
10221 struct intel_flip_work *work)
10222 {
10223 /*
10224 * MMIO work completes when vblank is different from
10225 * flip_queued_vblank.
10226 *
10227 * Reset counter value doesn't matter, this is handled by
10228 * i915_wait_request finishing early, so no need to handle
10229 * reset here.
10230 */
10231 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10232 }
10233
10234
10235 static bool pageflip_finished(struct intel_crtc *crtc,
10236 struct intel_flip_work *work)
10237 {
10238 if (!atomic_read(&work->pending))
10239 return false;
10240
10241 smp_rmb();
10242
10243 if (is_mmio_work(work))
10244 return __pageflip_finished_mmio(crtc, work);
10245 else
10246 return __pageflip_finished_cs(crtc, work);
10247 }
10248
10249 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10250 {
10251 struct drm_device *dev = &dev_priv->drm;
10252 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10253 struct intel_flip_work *work;
10254 unsigned long flags;
10255
10256 /* Ignore early vblank irqs */
10257 if (!crtc)
10258 return;
10259
10260 /*
10261 * This is called both by irq handlers and the reset code (to complete
10262 * lost pageflips) so needs the full irqsave spinlocks.
10263 */
10264 spin_lock_irqsave(&dev->event_lock, flags);
10265 work = crtc->flip_work;
10266
10267 if (work != NULL &&
10268 !is_mmio_work(work) &&
10269 pageflip_finished(crtc, work))
10270 page_flip_completed(crtc);
10271
10272 spin_unlock_irqrestore(&dev->event_lock, flags);
10273 }
10274
10275 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10276 {
10277 struct drm_device *dev = &dev_priv->drm;
10278 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10279 struct intel_flip_work *work;
10280 unsigned long flags;
10281
10282 /* Ignore early vblank irqs */
10283 if (!crtc)
10284 return;
10285
10286 /*
10287 * This is called both by irq handlers and the reset code (to complete
10288 * lost pageflips) so needs the full irqsave spinlocks.
10289 */
10290 spin_lock_irqsave(&dev->event_lock, flags);
10291 work = crtc->flip_work;
10292
10293 if (work != NULL &&
10294 is_mmio_work(work) &&
10295 pageflip_finished(crtc, work))
10296 page_flip_completed(crtc);
10297
10298 spin_unlock_irqrestore(&dev->event_lock, flags);
10299 }
10300
10301 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10302 struct intel_flip_work *work)
10303 {
10304 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10305
10306 /* Ensure that the work item is consistent when activating it ... */
10307 smp_mb__before_atomic();
10308 atomic_set(&work->pending, 1);
10309 }
10310
10311 static int intel_gen2_queue_flip(struct drm_device *dev,
10312 struct drm_crtc *crtc,
10313 struct drm_framebuffer *fb,
10314 struct drm_i915_gem_object *obj,
10315 struct drm_i915_gem_request *req,
10316 uint32_t flags)
10317 {
10318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10319 u32 flip_mask, *cs;
10320
10321 cs = intel_ring_begin(req, 6);
10322 if (IS_ERR(cs))
10323 return PTR_ERR(cs);
10324
10325 /* Can't queue multiple flips, so wait for the previous
10326 * one to finish before executing the next.
10327 */
10328 if (intel_crtc->plane)
10329 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10330 else
10331 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10332 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10333 *cs++ = MI_NOOP;
10334 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10335 *cs++ = fb->pitches[0];
10336 *cs++ = intel_crtc->flip_work->gtt_offset;
10337 *cs++ = 0; /* aux display base address, unused */
10338
10339 return 0;
10340 }
10341
10342 static int intel_gen3_queue_flip(struct drm_device *dev,
10343 struct drm_crtc *crtc,
10344 struct drm_framebuffer *fb,
10345 struct drm_i915_gem_object *obj,
10346 struct drm_i915_gem_request *req,
10347 uint32_t flags)
10348 {
10349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10350 u32 flip_mask, *cs;
10351
10352 cs = intel_ring_begin(req, 6);
10353 if (IS_ERR(cs))
10354 return PTR_ERR(cs);
10355
10356 if (intel_crtc->plane)
10357 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10358 else
10359 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10360 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10361 *cs++ = MI_NOOP;
10362 *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10363 *cs++ = fb->pitches[0];
10364 *cs++ = intel_crtc->flip_work->gtt_offset;
10365 *cs++ = MI_NOOP;
10366
10367 return 0;
10368 }
10369
10370 static int intel_gen4_queue_flip(struct drm_device *dev,
10371 struct drm_crtc *crtc,
10372 struct drm_framebuffer *fb,
10373 struct drm_i915_gem_object *obj,
10374 struct drm_i915_gem_request *req,
10375 uint32_t flags)
10376 {
10377 struct drm_i915_private *dev_priv = to_i915(dev);
10378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10379 u32 pf, pipesrc, *cs;
10380
10381 cs = intel_ring_begin(req, 4);
10382 if (IS_ERR(cs))
10383 return PTR_ERR(cs);
10384
10385 /* i965+ uses the linear or tiled offsets from the
10386 * Display Registers (which do not change across a page-flip)
10387 * so we need only reprogram the base address.
10388 */
10389 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10390 *cs++ = fb->pitches[0];
10391 *cs++ = intel_crtc->flip_work->gtt_offset |
10392 intel_fb_modifier_to_tiling(fb->modifier);
10393
10394 /* XXX Enabling the panel-fitter across page-flip is so far
10395 * untested on non-native modes, so ignore it for now.
10396 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10397 */
10398 pf = 0;
10399 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10400 *cs++ = pf | pipesrc;
10401
10402 return 0;
10403 }
10404
10405 static int intel_gen6_queue_flip(struct drm_device *dev,
10406 struct drm_crtc *crtc,
10407 struct drm_framebuffer *fb,
10408 struct drm_i915_gem_object *obj,
10409 struct drm_i915_gem_request *req,
10410 uint32_t flags)
10411 {
10412 struct drm_i915_private *dev_priv = to_i915(dev);
10413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10414 u32 pf, pipesrc, *cs;
10415
10416 cs = intel_ring_begin(req, 4);
10417 if (IS_ERR(cs))
10418 return PTR_ERR(cs);
10419
10420 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10421 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10422 *cs++ = intel_crtc->flip_work->gtt_offset;
10423
10424 /* Contrary to the suggestions in the documentation,
10425 * "Enable Panel Fitter" does not seem to be required when page
10426 * flipping with a non-native mode, and worse causes a normal
10427 * modeset to fail.
10428 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10429 */
10430 pf = 0;
10431 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10432 *cs++ = pf | pipesrc;
10433
10434 return 0;
10435 }
10436
10437 static int intel_gen7_queue_flip(struct drm_device *dev,
10438 struct drm_crtc *crtc,
10439 struct drm_framebuffer *fb,
10440 struct drm_i915_gem_object *obj,
10441 struct drm_i915_gem_request *req,
10442 uint32_t flags)
10443 {
10444 struct drm_i915_private *dev_priv = to_i915(dev);
10445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10446 u32 *cs, plane_bit = 0;
10447 int len, ret;
10448
10449 switch (intel_crtc->plane) {
10450 case PLANE_A:
10451 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10452 break;
10453 case PLANE_B:
10454 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10455 break;
10456 case PLANE_C:
10457 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10458 break;
10459 default:
10460 WARN_ONCE(1, "unknown plane in flip command\n");
10461 return -ENODEV;
10462 }
10463
10464 len = 4;
10465 if (req->engine->id == RCS) {
10466 len += 6;
10467 /*
10468 * On Gen 8, SRM is now taking an extra dword to accommodate
10469 * 48bits addresses, and we need a NOOP for the batch size to
10470 * stay even.
10471 */
10472 if (IS_GEN8(dev_priv))
10473 len += 2;
10474 }
10475
10476 /*
10477 * BSpec MI_DISPLAY_FLIP for IVB:
10478 * "The full packet must be contained within the same cache line."
10479 *
10480 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10481 * cacheline, if we ever start emitting more commands before
10482 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10483 * then do the cacheline alignment, and finally emit the
10484 * MI_DISPLAY_FLIP.
10485 */
10486 ret = intel_ring_cacheline_align(req);
10487 if (ret)
10488 return ret;
10489
10490 cs = intel_ring_begin(req, len);
10491 if (IS_ERR(cs))
10492 return PTR_ERR(cs);
10493
10494 /* Unmask the flip-done completion message. Note that the bspec says that
10495 * we should do this for both the BCS and RCS, and that we must not unmask
10496 * more than one flip event at any time (or ensure that one flip message
10497 * can be sent by waiting for flip-done prior to queueing new flips).
10498 * Experimentation says that BCS works despite DERRMR masking all
10499 * flip-done completion events and that unmasking all planes at once
10500 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10501 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10502 */
10503 if (req->engine->id == RCS) {
10504 *cs++ = MI_LOAD_REGISTER_IMM(1);
10505 *cs++ = i915_mmio_reg_offset(DERRMR);
10506 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10507 DERRMR_PIPEB_PRI_FLIP_DONE |
10508 DERRMR_PIPEC_PRI_FLIP_DONE);
10509 if (IS_GEN8(dev_priv))
10510 *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10511 MI_SRM_LRM_GLOBAL_GTT;
10512 else
10513 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10514 *cs++ = i915_mmio_reg_offset(DERRMR);
10515 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10516 if (IS_GEN8(dev_priv)) {
10517 *cs++ = 0;
10518 *cs++ = MI_NOOP;
10519 }
10520 }
10521
10522 *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10523 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10524 *cs++ = intel_crtc->flip_work->gtt_offset;
10525 *cs++ = MI_NOOP;
10526
10527 return 0;
10528 }
10529
10530 static bool use_mmio_flip(struct intel_engine_cs *engine,
10531 struct drm_i915_gem_object *obj)
10532 {
10533 /*
10534 * This is not being used for older platforms, because
10535 * non-availability of flip done interrupt forces us to use
10536 * CS flips. Older platforms derive flip done using some clever
10537 * tricks involving the flip_pending status bits and vblank irqs.
10538 * So using MMIO flips there would disrupt this mechanism.
10539 */
10540
10541 if (engine == NULL)
10542 return true;
10543
10544 if (INTEL_GEN(engine->i915) < 5)
10545 return false;
10546
10547 if (i915.use_mmio_flip < 0)
10548 return false;
10549 else if (i915.use_mmio_flip > 0)
10550 return true;
10551 else if (i915.enable_execlists)
10552 return true;
10553
10554 return engine != i915_gem_object_last_write_engine(obj);
10555 }
10556
10557 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10558 unsigned int rotation,
10559 struct intel_flip_work *work)
10560 {
10561 struct drm_device *dev = intel_crtc->base.dev;
10562 struct drm_i915_private *dev_priv = to_i915(dev);
10563 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10564 const enum pipe pipe = intel_crtc->pipe;
10565 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10566
10567 ctl = I915_READ(PLANE_CTL(pipe, 0));
10568 ctl &= ~PLANE_CTL_TILED_MASK;
10569 switch (fb->modifier) {
10570 case DRM_FORMAT_MOD_LINEAR:
10571 break;
10572 case I915_FORMAT_MOD_X_TILED:
10573 ctl |= PLANE_CTL_TILED_X;
10574 break;
10575 case I915_FORMAT_MOD_Y_TILED:
10576 ctl |= PLANE_CTL_TILED_Y;
10577 break;
10578 case I915_FORMAT_MOD_Yf_TILED:
10579 ctl |= PLANE_CTL_TILED_YF;
10580 break;
10581 default:
10582 MISSING_CASE(fb->modifier);
10583 }
10584
10585 /*
10586 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10587 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10588 */
10589 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10590 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10591
10592 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10593 POSTING_READ(PLANE_SURF(pipe, 0));
10594 }
10595
10596 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10597 struct intel_flip_work *work)
10598 {
10599 struct drm_device *dev = intel_crtc->base.dev;
10600 struct drm_i915_private *dev_priv = to_i915(dev);
10601 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10602 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10603 u32 dspcntr;
10604
10605 dspcntr = I915_READ(reg);
10606
10607 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10608 dspcntr |= DISPPLANE_TILED;
10609 else
10610 dspcntr &= ~DISPPLANE_TILED;
10611
10612 I915_WRITE(reg, dspcntr);
10613
10614 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10615 POSTING_READ(DSPSURF(intel_crtc->plane));
10616 }
10617
10618 static void intel_mmio_flip_work_func(struct work_struct *w)
10619 {
10620 struct intel_flip_work *work =
10621 container_of(w, struct intel_flip_work, mmio_work);
10622 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10623 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10624 struct intel_framebuffer *intel_fb =
10625 to_intel_framebuffer(crtc->base.primary->fb);
10626 struct drm_i915_gem_object *obj = intel_fb->obj;
10627
10628 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10629
10630 intel_pipe_update_start(crtc);
10631
10632 if (INTEL_GEN(dev_priv) >= 9)
10633 skl_do_mmio_flip(crtc, work->rotation, work);
10634 else
10635 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10636 ilk_do_mmio_flip(crtc, work);
10637
10638 intel_pipe_update_end(crtc, work);
10639 }
10640
10641 static int intel_default_queue_flip(struct drm_device *dev,
10642 struct drm_crtc *crtc,
10643 struct drm_framebuffer *fb,
10644 struct drm_i915_gem_object *obj,
10645 struct drm_i915_gem_request *req,
10646 uint32_t flags)
10647 {
10648 return -ENODEV;
10649 }
10650
10651 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10652 struct intel_crtc *intel_crtc,
10653 struct intel_flip_work *work)
10654 {
10655 u32 addr, vblank;
10656
10657 if (!atomic_read(&work->pending))
10658 return false;
10659
10660 smp_rmb();
10661
10662 vblank = intel_crtc_get_vblank_counter(intel_crtc);
10663 if (work->flip_ready_vblank == 0) {
10664 if (work->flip_queued_req &&
10665 !i915_gem_request_completed(work->flip_queued_req))
10666 return false;
10667
10668 work->flip_ready_vblank = vblank;
10669 }
10670
10671 if (vblank - work->flip_ready_vblank < 3)
10672 return false;
10673
10674 /* Potential stall - if we see that the flip has happened,
10675 * assume a missed interrupt. */
10676 if (INTEL_GEN(dev_priv) >= 4)
10677 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10678 else
10679 addr = I915_READ(DSPADDR(intel_crtc->plane));
10680
10681 /* There is a potential issue here with a false positive after a flip
10682 * to the same address. We could address this by checking for a
10683 * non-incrementing frame counter.
10684 */
10685 return addr == work->gtt_offset;
10686 }
10687
10688 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10689 {
10690 struct drm_device *dev = &dev_priv->drm;
10691 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10692 struct intel_flip_work *work;
10693
10694 WARN_ON(!in_interrupt());
10695
10696 if (crtc == NULL)
10697 return;
10698
10699 spin_lock(&dev->event_lock);
10700 work = crtc->flip_work;
10701
10702 if (work != NULL && !is_mmio_work(work) &&
10703 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10704 WARN_ONCE(1,
10705 "Kicking stuck page flip: queued at %d, now %d\n",
10706 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10707 page_flip_completed(crtc);
10708 work = NULL;
10709 }
10710
10711 if (work != NULL && !is_mmio_work(work) &&
10712 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10713 intel_queue_rps_boost_for_request(work->flip_queued_req);
10714 spin_unlock(&dev->event_lock);
10715 }
10716
10717 __maybe_unused
10718 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10719 struct drm_framebuffer *fb,
10720 struct drm_pending_vblank_event *event,
10721 uint32_t page_flip_flags)
10722 {
10723 struct drm_device *dev = crtc->dev;
10724 struct drm_i915_private *dev_priv = to_i915(dev);
10725 struct drm_framebuffer *old_fb = crtc->primary->fb;
10726 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10728 struct drm_plane *primary = crtc->primary;
10729 enum pipe pipe = intel_crtc->pipe;
10730 struct intel_flip_work *work;
10731 struct intel_engine_cs *engine;
10732 bool mmio_flip;
10733 struct drm_i915_gem_request *request;
10734 struct i915_vma *vma;
10735 int ret;
10736
10737 /*
10738 * drm_mode_page_flip_ioctl() should already catch this, but double
10739 * check to be safe. In the future we may enable pageflipping from
10740 * a disabled primary plane.
10741 */
10742 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10743 return -EBUSY;
10744
10745 /* Can't change pixel format via MI display flips. */
10746 if (fb->format != crtc->primary->fb->format)
10747 return -EINVAL;
10748
10749 /*
10750 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10751 * Note that pitch changes could also affect these register.
10752 */
10753 if (INTEL_GEN(dev_priv) > 3 &&
10754 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10755 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10756 return -EINVAL;
10757
10758 if (i915_terminally_wedged(&dev_priv->gpu_error))
10759 goto out_hang;
10760
10761 work = kzalloc(sizeof(*work), GFP_KERNEL);
10762 if (work == NULL)
10763 return -ENOMEM;
10764
10765 work->event = event;
10766 work->crtc = crtc;
10767 work->old_fb = old_fb;
10768 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10769
10770 ret = drm_crtc_vblank_get(crtc);
10771 if (ret)
10772 goto free_work;
10773
10774 /* We borrow the event spin lock for protecting flip_work */
10775 spin_lock_irq(&dev->event_lock);
10776 if (intel_crtc->flip_work) {
10777 /* Before declaring the flip queue wedged, check if
10778 * the hardware completed the operation behind our backs.
10779 */
10780 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10781 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10782 page_flip_completed(intel_crtc);
10783 } else {
10784 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10785 spin_unlock_irq(&dev->event_lock);
10786
10787 drm_crtc_vblank_put(crtc);
10788 kfree(work);
10789 return -EBUSY;
10790 }
10791 }
10792 intel_crtc->flip_work = work;
10793 spin_unlock_irq(&dev->event_lock);
10794
10795 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10796 flush_workqueue(dev_priv->wq);
10797
10798 /* Reference the objects for the scheduled work. */
10799 drm_framebuffer_reference(work->old_fb);
10800
10801 crtc->primary->fb = fb;
10802 update_state_fb(crtc->primary);
10803
10804 work->pending_flip_obj = i915_gem_object_get(obj);
10805
10806 ret = i915_mutex_lock_interruptible(dev);
10807 if (ret)
10808 goto cleanup;
10809
10810 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10811 if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10812 ret = -EIO;
10813 goto unlock;
10814 }
10815
10816 atomic_inc(&intel_crtc->unpin_work_count);
10817
10818 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10819 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10820
10821 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10822 engine = dev_priv->engine[BCS];
10823 if (fb->modifier != old_fb->modifier)
10824 /* vlv: DISPLAY_FLIP fails to change tiling */
10825 engine = NULL;
10826 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10827 engine = dev_priv->engine[BCS];
10828 } else if (INTEL_GEN(dev_priv) >= 7) {
10829 engine = i915_gem_object_last_write_engine(obj);
10830 if (engine == NULL || engine->id != RCS)
10831 engine = dev_priv->engine[BCS];
10832 } else {
10833 engine = dev_priv->engine[RCS];
10834 }
10835
10836 mmio_flip = use_mmio_flip(engine, obj);
10837
10838 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10839 if (IS_ERR(vma)) {
10840 ret = PTR_ERR(vma);
10841 goto cleanup_pending;
10842 }
10843
10844 work->old_vma = to_intel_plane_state(primary->state)->vma;
10845 to_intel_plane_state(primary->state)->vma = vma;
10846
10847 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10848 work->rotation = crtc->primary->state->rotation;
10849
10850 /*
10851 * There's the potential that the next frame will not be compatible with
10852 * FBC, so we want to call pre_update() before the actual page flip.
10853 * The problem is that pre_update() caches some information about the fb
10854 * object, so we want to do this only after the object is pinned. Let's
10855 * be on the safe side and do this immediately before scheduling the
10856 * flip.
10857 */
10858 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10859 to_intel_plane_state(primary->state));
10860
10861 if (mmio_flip) {
10862 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10863 queue_work(system_unbound_wq, &work->mmio_work);
10864 } else {
10865 request = i915_gem_request_alloc(engine,
10866 dev_priv->kernel_context);
10867 if (IS_ERR(request)) {
10868 ret = PTR_ERR(request);
10869 goto cleanup_unpin;
10870 }
10871
10872 ret = i915_gem_request_await_object(request, obj, false);
10873 if (ret)
10874 goto cleanup_request;
10875
10876 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10877 page_flip_flags);
10878 if (ret)
10879 goto cleanup_request;
10880
10881 intel_mark_page_flip_active(intel_crtc, work);
10882
10883 work->flip_queued_req = i915_gem_request_get(request);
10884 i915_add_request(request);
10885 }
10886
10887 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10888 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10889 to_intel_plane(primary)->frontbuffer_bit);
10890 mutex_unlock(&dev->struct_mutex);
10891
10892 intel_frontbuffer_flip_prepare(to_i915(dev),
10893 to_intel_plane(primary)->frontbuffer_bit);
10894
10895 trace_i915_flip_request(intel_crtc->plane, obj);
10896
10897 return 0;
10898
10899 cleanup_request:
10900 i915_add_request(request);
10901 cleanup_unpin:
10902 to_intel_plane_state(primary->state)->vma = work->old_vma;
10903 intel_unpin_fb_vma(vma);
10904 cleanup_pending:
10905 atomic_dec(&intel_crtc->unpin_work_count);
10906 unlock:
10907 mutex_unlock(&dev->struct_mutex);
10908 cleanup:
10909 crtc->primary->fb = old_fb;
10910 update_state_fb(crtc->primary);
10911
10912 i915_gem_object_put(obj);
10913 drm_framebuffer_unreference(work->old_fb);
10914
10915 spin_lock_irq(&dev->event_lock);
10916 intel_crtc->flip_work = NULL;
10917 spin_unlock_irq(&dev->event_lock);
10918
10919 drm_crtc_vblank_put(crtc);
10920 free_work:
10921 kfree(work);
10922
10923 if (ret == -EIO) {
10924 struct drm_atomic_state *state;
10925 struct drm_plane_state *plane_state;
10926
10927 out_hang:
10928 state = drm_atomic_state_alloc(dev);
10929 if (!state)
10930 return -ENOMEM;
10931 state->acquire_ctx = dev->mode_config.acquire_ctx;
10932
10933 retry:
10934 plane_state = drm_atomic_get_plane_state(state, primary);
10935 ret = PTR_ERR_OR_ZERO(plane_state);
10936 if (!ret) {
10937 drm_atomic_set_fb_for_plane(plane_state, fb);
10938
10939 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10940 if (!ret)
10941 ret = drm_atomic_commit(state);
10942 }
10943
10944 if (ret == -EDEADLK) {
10945 drm_modeset_backoff(state->acquire_ctx);
10946 drm_atomic_state_clear(state);
10947 goto retry;
10948 }
10949
10950 drm_atomic_state_put(state);
10951
10952 if (ret == 0 && event) {
10953 spin_lock_irq(&dev->event_lock);
10954 drm_crtc_send_vblank_event(crtc, event);
10955 spin_unlock_irq(&dev->event_lock);
10956 }
10957 }
10958 return ret;
10959 }
10960
10961
10962 /**
10963 * intel_wm_need_update - Check whether watermarks need updating
10964 * @plane: drm plane
10965 * @state: new plane state
10966 *
10967 * Check current plane state versus the new one to determine whether
10968 * watermarks need to be recalculated.
10969 *
10970 * Returns true or false.
10971 */
10972 static bool intel_wm_need_update(struct drm_plane *plane,
10973 struct drm_plane_state *state)
10974 {
10975 struct intel_plane_state *new = to_intel_plane_state(state);
10976 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10977
10978 /* Update watermarks on tiling or size changes. */
10979 if (new->base.visible != cur->base.visible)
10980 return true;
10981
10982 if (!cur->base.fb || !new->base.fb)
10983 return false;
10984
10985 if (cur->base.fb->modifier != new->base.fb->modifier ||
10986 cur->base.rotation != new->base.rotation ||
10987 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10988 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10989 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10990 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10991 return true;
10992
10993 return false;
10994 }
10995
10996 static bool needs_scaling(struct intel_plane_state *state)
10997 {
10998 int src_w = drm_rect_width(&state->base.src) >> 16;
10999 int src_h = drm_rect_height(&state->base.src) >> 16;
11000 int dst_w = drm_rect_width(&state->base.dst);
11001 int dst_h = drm_rect_height(&state->base.dst);
11002
11003 return (src_w != dst_w || src_h != dst_h);
11004 }
11005
11006 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11007 struct drm_plane_state *plane_state)
11008 {
11009 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11010 struct drm_crtc *crtc = crtc_state->crtc;
11011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11012 struct intel_plane *plane = to_intel_plane(plane_state->plane);
11013 struct drm_device *dev = crtc->dev;
11014 struct drm_i915_private *dev_priv = to_i915(dev);
11015 struct intel_plane_state *old_plane_state =
11016 to_intel_plane_state(plane->base.state);
11017 bool mode_changed = needs_modeset(crtc_state);
11018 bool was_crtc_enabled = crtc->state->active;
11019 bool is_crtc_enabled = crtc_state->active;
11020 bool turn_off, turn_on, visible, was_visible;
11021 struct drm_framebuffer *fb = plane_state->fb;
11022 int ret;
11023
11024 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11025 ret = skl_update_scaler_plane(
11026 to_intel_crtc_state(crtc_state),
11027 to_intel_plane_state(plane_state));
11028 if (ret)
11029 return ret;
11030 }
11031
11032 was_visible = old_plane_state->base.visible;
11033 visible = plane_state->visible;
11034
11035 if (!was_crtc_enabled && WARN_ON(was_visible))
11036 was_visible = false;
11037
11038 /*
11039 * Visibility is calculated as if the crtc was on, but
11040 * after scaler setup everything depends on it being off
11041 * when the crtc isn't active.
11042 *
11043 * FIXME this is wrong for watermarks. Watermarks should also
11044 * be computed as if the pipe would be active. Perhaps move
11045 * per-plane wm computation to the .check_plane() hook, and
11046 * only combine the results from all planes in the current place?
11047 */
11048 if (!is_crtc_enabled) {
11049 plane_state->visible = visible = false;
11050 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11051 }
11052
11053 if (!was_visible && !visible)
11054 return 0;
11055
11056 if (fb != old_plane_state->base.fb)
11057 pipe_config->fb_changed = true;
11058
11059 turn_off = was_visible && (!visible || mode_changed);
11060 turn_on = visible && (!was_visible || mode_changed);
11061
11062 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11063 intel_crtc->base.base.id, intel_crtc->base.name,
11064 plane->base.base.id, plane->base.name,
11065 fb ? fb->base.id : -1);
11066
11067 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11068 plane->base.base.id, plane->base.name,
11069 was_visible, visible,
11070 turn_off, turn_on, mode_changed);
11071
11072 if (turn_on) {
11073 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11074 pipe_config->update_wm_pre = true;
11075
11076 /* must disable cxsr around plane enable/disable */
11077 if (plane->id != PLANE_CURSOR)
11078 pipe_config->disable_cxsr = true;
11079 } else if (turn_off) {
11080 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11081 pipe_config->update_wm_post = true;
11082
11083 /* must disable cxsr around plane enable/disable */
11084 if (plane->id != PLANE_CURSOR)
11085 pipe_config->disable_cxsr = true;
11086 } else if (intel_wm_need_update(&plane->base, plane_state)) {
11087 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11088 /* FIXME bollocks */
11089 pipe_config->update_wm_pre = true;
11090 pipe_config->update_wm_post = true;
11091 }
11092 }
11093
11094 if (visible || was_visible)
11095 pipe_config->fb_bits |= plane->frontbuffer_bit;
11096
11097 /*
11098 * WaCxSRDisabledForSpriteScaling:ivb
11099 *
11100 * cstate->update_wm was already set above, so this flag will
11101 * take effect when we commit and program watermarks.
11102 */
11103 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
11104 needs_scaling(to_intel_plane_state(plane_state)) &&
11105 !needs_scaling(old_plane_state))
11106 pipe_config->disable_lp_wm = true;
11107
11108 return 0;
11109 }
11110
11111 static bool encoders_cloneable(const struct intel_encoder *a,
11112 const struct intel_encoder *b)
11113 {
11114 /* masks could be asymmetric, so check both ways */
11115 return a == b || (a->cloneable & (1 << b->type) &&
11116 b->cloneable & (1 << a->type));
11117 }
11118
11119 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11120 struct intel_crtc *crtc,
11121 struct intel_encoder *encoder)
11122 {
11123 struct intel_encoder *source_encoder;
11124 struct drm_connector *connector;
11125 struct drm_connector_state *connector_state;
11126 int i;
11127
11128 for_each_new_connector_in_state(state, connector, connector_state, i) {
11129 if (connector_state->crtc != &crtc->base)
11130 continue;
11131
11132 source_encoder =
11133 to_intel_encoder(connector_state->best_encoder);
11134 if (!encoders_cloneable(encoder, source_encoder))
11135 return false;
11136 }
11137
11138 return true;
11139 }
11140
11141 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11142 struct drm_crtc_state *crtc_state)
11143 {
11144 struct drm_device *dev = crtc->dev;
11145 struct drm_i915_private *dev_priv = to_i915(dev);
11146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11147 struct intel_crtc_state *pipe_config =
11148 to_intel_crtc_state(crtc_state);
11149 struct drm_atomic_state *state = crtc_state->state;
11150 int ret;
11151 bool mode_changed = needs_modeset(crtc_state);
11152
11153 if (mode_changed && !crtc_state->active)
11154 pipe_config->update_wm_post = true;
11155
11156 if (mode_changed && crtc_state->enable &&
11157 dev_priv->display.crtc_compute_clock &&
11158 !WARN_ON(pipe_config->shared_dpll)) {
11159 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11160 pipe_config);
11161 if (ret)
11162 return ret;
11163 }
11164
11165 if (crtc_state->color_mgmt_changed) {
11166 ret = intel_color_check(crtc, crtc_state);
11167 if (ret)
11168 return ret;
11169
11170 /*
11171 * Changing color management on Intel hardware is
11172 * handled as part of planes update.
11173 */
11174 crtc_state->planes_changed = true;
11175 }
11176
11177 ret = 0;
11178 if (dev_priv->display.compute_pipe_wm) {
11179 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11180 if (ret) {
11181 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11182 return ret;
11183 }
11184 }
11185
11186 if (dev_priv->display.compute_intermediate_wm &&
11187 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11188 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11189 return 0;
11190
11191 /*
11192 * Calculate 'intermediate' watermarks that satisfy both the
11193 * old state and the new state. We can program these
11194 * immediately.
11195 */
11196 ret = dev_priv->display.compute_intermediate_wm(dev,
11197 intel_crtc,
11198 pipe_config);
11199 if (ret) {
11200 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11201 return ret;
11202 }
11203 } else if (dev_priv->display.compute_intermediate_wm) {
11204 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11205 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11206 }
11207
11208 if (INTEL_GEN(dev_priv) >= 9) {
11209 if (mode_changed)
11210 ret = skl_update_scaler_crtc(pipe_config);
11211
11212 if (!ret)
11213 ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11214 pipe_config);
11215 if (!ret)
11216 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11217 pipe_config);
11218 }
11219
11220 return ret;
11221 }
11222
11223 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11224 .atomic_begin = intel_begin_crtc_commit,
11225 .atomic_flush = intel_finish_crtc_commit,
11226 .atomic_check = intel_crtc_atomic_check,
11227 };
11228
11229 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11230 {
11231 struct intel_connector *connector;
11232 struct drm_connector_list_iter conn_iter;
11233
11234 drm_connector_list_iter_begin(dev, &conn_iter);
11235 for_each_intel_connector_iter(connector, &conn_iter) {
11236 if (connector->base.state->crtc)
11237 drm_connector_unreference(&connector->base);
11238
11239 if (connector->base.encoder) {
11240 connector->base.state->best_encoder =
11241 connector->base.encoder;
11242 connector->base.state->crtc =
11243 connector->base.encoder->crtc;
11244
11245 drm_connector_reference(&connector->base);
11246 } else {
11247 connector->base.state->best_encoder = NULL;
11248 connector->base.state->crtc = NULL;
11249 }
11250 }
11251 drm_connector_list_iter_end(&conn_iter);
11252 }
11253
11254 static void
11255 connected_sink_compute_bpp(struct intel_connector *connector,
11256 struct intel_crtc_state *pipe_config)
11257 {
11258 const struct drm_display_info *info = &connector->base.display_info;
11259 int bpp = pipe_config->pipe_bpp;
11260
11261 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11262 connector->base.base.id,
11263 connector->base.name);
11264
11265 /* Don't use an invalid EDID bpc value */
11266 if (info->bpc != 0 && info->bpc * 3 < bpp) {
11267 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11268 bpp, info->bpc * 3);
11269 pipe_config->pipe_bpp = info->bpc * 3;
11270 }
11271
11272 /* Clamp bpp to 8 on screens without EDID 1.4 */
11273 if (info->bpc == 0 && bpp > 24) {
11274 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11275 bpp);
11276 pipe_config->pipe_bpp = 24;
11277 }
11278 }
11279
11280 static int
11281 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11282 struct intel_crtc_state *pipe_config)
11283 {
11284 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11285 struct drm_atomic_state *state;
11286 struct drm_connector *connector;
11287 struct drm_connector_state *connector_state;
11288 int bpp, i;
11289
11290 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11291 IS_CHERRYVIEW(dev_priv)))
11292 bpp = 10*3;
11293 else if (INTEL_GEN(dev_priv) >= 5)
11294 bpp = 12*3;
11295 else
11296 bpp = 8*3;
11297
11298
11299 pipe_config->pipe_bpp = bpp;
11300
11301 state = pipe_config->base.state;
11302
11303 /* Clamp display bpp to EDID value */
11304 for_each_new_connector_in_state(state, connector, connector_state, i) {
11305 if (connector_state->crtc != &crtc->base)
11306 continue;
11307
11308 connected_sink_compute_bpp(to_intel_connector(connector),
11309 pipe_config);
11310 }
11311
11312 return bpp;
11313 }
11314
11315 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11316 {
11317 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11318 "type: 0x%x flags: 0x%x\n",
11319 mode->crtc_clock,
11320 mode->crtc_hdisplay, mode->crtc_hsync_start,
11321 mode->crtc_hsync_end, mode->crtc_htotal,
11322 mode->crtc_vdisplay, mode->crtc_vsync_start,
11323 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11324 }
11325
11326 static inline void
11327 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11328 unsigned int lane_count, struct intel_link_m_n *m_n)
11329 {
11330 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11331 id, lane_count,
11332 m_n->gmch_m, m_n->gmch_n,
11333 m_n->link_m, m_n->link_n, m_n->tu);
11334 }
11335
11336 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11337 struct intel_crtc_state *pipe_config,
11338 const char *context)
11339 {
11340 struct drm_device *dev = crtc->base.dev;
11341 struct drm_i915_private *dev_priv = to_i915(dev);
11342 struct drm_plane *plane;
11343 struct intel_plane *intel_plane;
11344 struct intel_plane_state *state;
11345 struct drm_framebuffer *fb;
11346
11347 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11348 crtc->base.base.id, crtc->base.name, context);
11349
11350 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11351 transcoder_name(pipe_config->cpu_transcoder),
11352 pipe_config->pipe_bpp, pipe_config->dither);
11353
11354 if (pipe_config->has_pch_encoder)
11355 intel_dump_m_n_config(pipe_config, "fdi",
11356 pipe_config->fdi_lanes,
11357 &pipe_config->fdi_m_n);
11358
11359 if (intel_crtc_has_dp_encoder(pipe_config)) {
11360 intel_dump_m_n_config(pipe_config, "dp m_n",
11361 pipe_config->lane_count, &pipe_config->dp_m_n);
11362 if (pipe_config->has_drrs)
11363 intel_dump_m_n_config(pipe_config, "dp m2_n2",
11364 pipe_config->lane_count,
11365 &pipe_config->dp_m2_n2);
11366 }
11367
11368 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11369 pipe_config->has_audio, pipe_config->has_infoframe);
11370
11371 DRM_DEBUG_KMS("requested mode:\n");
11372 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11373 DRM_DEBUG_KMS("adjusted mode:\n");
11374 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11375 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11376 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11377 pipe_config->port_clock,
11378 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11379 pipe_config->pixel_rate);
11380
11381 if (INTEL_GEN(dev_priv) >= 9)
11382 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11383 crtc->num_scalers,
11384 pipe_config->scaler_state.scaler_users,
11385 pipe_config->scaler_state.scaler_id);
11386
11387 if (HAS_GMCH_DISPLAY(dev_priv))
11388 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11389 pipe_config->gmch_pfit.control,
11390 pipe_config->gmch_pfit.pgm_ratios,
11391 pipe_config->gmch_pfit.lvds_border_bits);
11392 else
11393 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11394 pipe_config->pch_pfit.pos,
11395 pipe_config->pch_pfit.size,
11396 enableddisabled(pipe_config->pch_pfit.enabled));
11397
11398 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11399 pipe_config->ips_enabled, pipe_config->double_wide);
11400
11401 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11402
11403 DRM_DEBUG_KMS("planes on this crtc\n");
11404 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11405 struct drm_format_name_buf format_name;
11406 intel_plane = to_intel_plane(plane);
11407 if (intel_plane->pipe != crtc->pipe)
11408 continue;
11409
11410 state = to_intel_plane_state(plane->state);
11411 fb = state->base.fb;
11412 if (!fb) {
11413 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11414 plane->base.id, plane->name, state->scaler_id);
11415 continue;
11416 }
11417
11418 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11419 plane->base.id, plane->name,
11420 fb->base.id, fb->width, fb->height,
11421 drm_get_format_name(fb->format->format, &format_name));
11422 if (INTEL_GEN(dev_priv) >= 9)
11423 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11424 state->scaler_id,
11425 state->base.src.x1 >> 16,
11426 state->base.src.y1 >> 16,
11427 drm_rect_width(&state->base.src) >> 16,
11428 drm_rect_height(&state->base.src) >> 16,
11429 state->base.dst.x1, state->base.dst.y1,
11430 drm_rect_width(&state->base.dst),
11431 drm_rect_height(&state->base.dst));
11432 }
11433 }
11434
11435 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11436 {
11437 struct drm_device *dev = state->dev;
11438 struct drm_connector *connector;
11439 struct drm_connector_list_iter conn_iter;
11440 unsigned int used_ports = 0;
11441 unsigned int used_mst_ports = 0;
11442
11443 /*
11444 * Walk the connector list instead of the encoder
11445 * list to detect the problem on ddi platforms
11446 * where there's just one encoder per digital port.
11447 */
11448 drm_connector_list_iter_begin(dev, &conn_iter);
11449 drm_for_each_connector_iter(connector, &conn_iter) {
11450 struct drm_connector_state *connector_state;
11451 struct intel_encoder *encoder;
11452
11453 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11454 if (!connector_state)
11455 connector_state = connector->state;
11456
11457 if (!connector_state->best_encoder)
11458 continue;
11459
11460 encoder = to_intel_encoder(connector_state->best_encoder);
11461
11462 WARN_ON(!connector_state->crtc);
11463
11464 switch (encoder->type) {
11465 unsigned int port_mask;
11466 case INTEL_OUTPUT_UNKNOWN:
11467 if (WARN_ON(!HAS_DDI(to_i915(dev))))
11468 break;
11469 case INTEL_OUTPUT_DP:
11470 case INTEL_OUTPUT_HDMI:
11471 case INTEL_OUTPUT_EDP:
11472 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11473
11474 /* the same port mustn't appear more than once */
11475 if (used_ports & port_mask)
11476 return false;
11477
11478 used_ports |= port_mask;
11479 break;
11480 case INTEL_OUTPUT_DP_MST:
11481 used_mst_ports |=
11482 1 << enc_to_mst(&encoder->base)->primary->port;
11483 break;
11484 default:
11485 break;
11486 }
11487 }
11488 drm_connector_list_iter_end(&conn_iter);
11489
11490 /* can't mix MST and SST/HDMI on the same port */
11491 if (used_ports & used_mst_ports)
11492 return false;
11493
11494 return true;
11495 }
11496
11497 static void
11498 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11499 {
11500 struct drm_i915_private *dev_priv =
11501 to_i915(crtc_state->base.crtc->dev);
11502 struct intel_crtc_scaler_state scaler_state;
11503 struct intel_dpll_hw_state dpll_hw_state;
11504 struct intel_shared_dpll *shared_dpll;
11505 struct intel_crtc_wm_state wm_state;
11506 bool force_thru;
11507
11508 /* FIXME: before the switch to atomic started, a new pipe_config was
11509 * kzalloc'd. Code that depends on any field being zero should be
11510 * fixed, so that the crtc_state can be safely duplicated. For now,
11511 * only fields that are know to not cause problems are preserved. */
11512
11513 scaler_state = crtc_state->scaler_state;
11514 shared_dpll = crtc_state->shared_dpll;
11515 dpll_hw_state = crtc_state->dpll_hw_state;
11516 force_thru = crtc_state->pch_pfit.force_thru;
11517 if (IS_G4X(dev_priv) ||
11518 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11519 wm_state = crtc_state->wm;
11520
11521 /* Keep base drm_crtc_state intact, only clear our extended struct */
11522 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11523 memset(&crtc_state->base + 1, 0,
11524 sizeof(*crtc_state) - sizeof(crtc_state->base));
11525
11526 crtc_state->scaler_state = scaler_state;
11527 crtc_state->shared_dpll = shared_dpll;
11528 crtc_state->dpll_hw_state = dpll_hw_state;
11529 crtc_state->pch_pfit.force_thru = force_thru;
11530 if (IS_G4X(dev_priv) ||
11531 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11532 crtc_state->wm = wm_state;
11533 }
11534
11535 static int
11536 intel_modeset_pipe_config(struct drm_crtc *crtc,
11537 struct intel_crtc_state *pipe_config)
11538 {
11539 struct drm_atomic_state *state = pipe_config->base.state;
11540 struct intel_encoder *encoder;
11541 struct drm_connector *connector;
11542 struct drm_connector_state *connector_state;
11543 int base_bpp, ret = -EINVAL;
11544 int i;
11545 bool retry = true;
11546
11547 clear_intel_crtc_state(pipe_config);
11548
11549 pipe_config->cpu_transcoder =
11550 (enum transcoder) to_intel_crtc(crtc)->pipe;
11551
11552 /*
11553 * Sanitize sync polarity flags based on requested ones. If neither
11554 * positive or negative polarity is requested, treat this as meaning
11555 * negative polarity.
11556 */
11557 if (!(pipe_config->base.adjusted_mode.flags &
11558 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11559 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11560
11561 if (!(pipe_config->base.adjusted_mode.flags &
11562 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11563 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11564
11565 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11566 pipe_config);
11567 if (base_bpp < 0)
11568 goto fail;
11569
11570 /*
11571 * Determine the real pipe dimensions. Note that stereo modes can
11572 * increase the actual pipe size due to the frame doubling and
11573 * insertion of additional space for blanks between the frame. This
11574 * is stored in the crtc timings. We use the requested mode to do this
11575 * computation to clearly distinguish it from the adjusted mode, which
11576 * can be changed by the connectors in the below retry loop.
11577 */
11578 drm_mode_get_hv_timing(&pipe_config->base.mode,
11579 &pipe_config->pipe_src_w,
11580 &pipe_config->pipe_src_h);
11581
11582 for_each_new_connector_in_state(state, connector, connector_state, i) {
11583 if (connector_state->crtc != crtc)
11584 continue;
11585
11586 encoder = to_intel_encoder(connector_state->best_encoder);
11587
11588 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11589 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11590 goto fail;
11591 }
11592
11593 /*
11594 * Determine output_types before calling the .compute_config()
11595 * hooks so that the hooks can use this information safely.
11596 */
11597 pipe_config->output_types |= 1 << encoder->type;
11598 }
11599
11600 encoder_retry:
11601 /* Ensure the port clock defaults are reset when retrying. */
11602 pipe_config->port_clock = 0;
11603 pipe_config->pixel_multiplier = 1;
11604
11605 /* Fill in default crtc timings, allow encoders to overwrite them. */
11606 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11607 CRTC_STEREO_DOUBLE);
11608
11609 /* Pass our mode to the connectors and the CRTC to give them a chance to
11610 * adjust it according to limitations or connector properties, and also
11611 * a chance to reject the mode entirely.
11612 */
11613 for_each_new_connector_in_state(state, connector, connector_state, i) {
11614 if (connector_state->crtc != crtc)
11615 continue;
11616
11617 encoder = to_intel_encoder(connector_state->best_encoder);
11618
11619 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11620 DRM_DEBUG_KMS("Encoder config failure\n");
11621 goto fail;
11622 }
11623 }
11624
11625 /* Set default port clock if not overwritten by the encoder. Needs to be
11626 * done afterwards in case the encoder adjusts the mode. */
11627 if (!pipe_config->port_clock)
11628 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11629 * pipe_config->pixel_multiplier;
11630
11631 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11632 if (ret < 0) {
11633 DRM_DEBUG_KMS("CRTC fixup failed\n");
11634 goto fail;
11635 }
11636
11637 if (ret == RETRY) {
11638 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11639 ret = -EINVAL;
11640 goto fail;
11641 }
11642
11643 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11644 retry = false;
11645 goto encoder_retry;
11646 }
11647
11648 /* Dithering seems to not pass-through bits correctly when it should, so
11649 * only enable it on 6bpc panels and when its not a compliance
11650 * test requesting 6bpc video pattern.
11651 */
11652 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11653 !pipe_config->dither_force_disable;
11654 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11655 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11656
11657 fail:
11658 return ret;
11659 }
11660
11661 static void
11662 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11663 {
11664 struct drm_crtc *crtc;
11665 struct drm_crtc_state *new_crtc_state;
11666 int i;
11667
11668 /* Double check state. */
11669 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11670 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11671
11672 /*
11673 * Update legacy state to satisfy fbc code. This can
11674 * be removed when fbc uses the atomic state.
11675 */
11676 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11677 struct drm_plane_state *plane_state = crtc->primary->state;
11678
11679 crtc->primary->fb = plane_state->fb;
11680 crtc->x = plane_state->src_x >> 16;
11681 crtc->y = plane_state->src_y >> 16;
11682 }
11683 }
11684 }
11685
11686 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11687 {
11688 int diff;
11689
11690 if (clock1 == clock2)
11691 return true;
11692
11693 if (!clock1 || !clock2)
11694 return false;
11695
11696 diff = abs(clock1 - clock2);
11697
11698 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11699 return true;
11700
11701 return false;
11702 }
11703
11704 static bool
11705 intel_compare_m_n(unsigned int m, unsigned int n,
11706 unsigned int m2, unsigned int n2,
11707 bool exact)
11708 {
11709 if (m == m2 && n == n2)
11710 return true;
11711
11712 if (exact || !m || !n || !m2 || !n2)
11713 return false;
11714
11715 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11716
11717 if (n > n2) {
11718 while (n > n2) {
11719 m2 <<= 1;
11720 n2 <<= 1;
11721 }
11722 } else if (n < n2) {
11723 while (n < n2) {
11724 m <<= 1;
11725 n <<= 1;
11726 }
11727 }
11728
11729 if (n != n2)
11730 return false;
11731
11732 return intel_fuzzy_clock_check(m, m2);
11733 }
11734
11735 static bool
11736 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11737 struct intel_link_m_n *m2_n2,
11738 bool adjust)
11739 {
11740 if (m_n->tu == m2_n2->tu &&
11741 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11742 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11743 intel_compare_m_n(m_n->link_m, m_n->link_n,
11744 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11745 if (adjust)
11746 *m2_n2 = *m_n;
11747
11748 return true;
11749 }
11750
11751 return false;
11752 }
11753
11754 static void __printf(3, 4)
11755 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11756 {
11757 char *level;
11758 unsigned int category;
11759 struct va_format vaf;
11760 va_list args;
11761
11762 if (adjust) {
11763 level = KERN_DEBUG;
11764 category = DRM_UT_KMS;
11765 } else {
11766 level = KERN_ERR;
11767 category = DRM_UT_NONE;
11768 }
11769
11770 va_start(args, format);
11771 vaf.fmt = format;
11772 vaf.va = &args;
11773
11774 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11775
11776 va_end(args);
11777 }
11778
11779 static bool
11780 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11781 struct intel_crtc_state *current_config,
11782 struct intel_crtc_state *pipe_config,
11783 bool adjust)
11784 {
11785 bool ret = true;
11786
11787 #define PIPE_CONF_CHECK_X(name) \
11788 if (current_config->name != pipe_config->name) { \
11789 pipe_config_err(adjust, __stringify(name), \
11790 "(expected 0x%08x, found 0x%08x)\n", \
11791 current_config->name, \
11792 pipe_config->name); \
11793 ret = false; \
11794 }
11795
11796 #define PIPE_CONF_CHECK_I(name) \
11797 if (current_config->name != pipe_config->name) { \
11798 pipe_config_err(adjust, __stringify(name), \
11799 "(expected %i, found %i)\n", \
11800 current_config->name, \
11801 pipe_config->name); \
11802 ret = false; \
11803 }
11804
11805 #define PIPE_CONF_CHECK_P(name) \
11806 if (current_config->name != pipe_config->name) { \
11807 pipe_config_err(adjust, __stringify(name), \
11808 "(expected %p, found %p)\n", \
11809 current_config->name, \
11810 pipe_config->name); \
11811 ret = false; \
11812 }
11813
11814 #define PIPE_CONF_CHECK_M_N(name) \
11815 if (!intel_compare_link_m_n(&current_config->name, \
11816 &pipe_config->name,\
11817 adjust)) { \
11818 pipe_config_err(adjust, __stringify(name), \
11819 "(expected tu %i gmch %i/%i link %i/%i, " \
11820 "found tu %i, gmch %i/%i link %i/%i)\n", \
11821 current_config->name.tu, \
11822 current_config->name.gmch_m, \
11823 current_config->name.gmch_n, \
11824 current_config->name.link_m, \
11825 current_config->name.link_n, \
11826 pipe_config->name.tu, \
11827 pipe_config->name.gmch_m, \
11828 pipe_config->name.gmch_n, \
11829 pipe_config->name.link_m, \
11830 pipe_config->name.link_n); \
11831 ret = false; \
11832 }
11833
11834 /* This is required for BDW+ where there is only one set of registers for
11835 * switching between high and low RR.
11836 * This macro can be used whenever a comparison has to be made between one
11837 * hw state and multiple sw state variables.
11838 */
11839 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11840 if (!intel_compare_link_m_n(&current_config->name, \
11841 &pipe_config->name, adjust) && \
11842 !intel_compare_link_m_n(&current_config->alt_name, \
11843 &pipe_config->name, adjust)) { \
11844 pipe_config_err(adjust, __stringify(name), \
11845 "(expected tu %i gmch %i/%i link %i/%i, " \
11846 "or tu %i gmch %i/%i link %i/%i, " \
11847 "found tu %i, gmch %i/%i link %i/%i)\n", \
11848 current_config->name.tu, \
11849 current_config->name.gmch_m, \
11850 current_config->name.gmch_n, \
11851 current_config->name.link_m, \
11852 current_config->name.link_n, \
11853 current_config->alt_name.tu, \
11854 current_config->alt_name.gmch_m, \
11855 current_config->alt_name.gmch_n, \
11856 current_config->alt_name.link_m, \
11857 current_config->alt_name.link_n, \
11858 pipe_config->name.tu, \
11859 pipe_config->name.gmch_m, \
11860 pipe_config->name.gmch_n, \
11861 pipe_config->name.link_m, \
11862 pipe_config->name.link_n); \
11863 ret = false; \
11864 }
11865
11866 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11867 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11868 pipe_config_err(adjust, __stringify(name), \
11869 "(%x) (expected %i, found %i)\n", \
11870 (mask), \
11871 current_config->name & (mask), \
11872 pipe_config->name & (mask)); \
11873 ret = false; \
11874 }
11875
11876 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11877 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11878 pipe_config_err(adjust, __stringify(name), \
11879 "(expected %i, found %i)\n", \
11880 current_config->name, \
11881 pipe_config->name); \
11882 ret = false; \
11883 }
11884
11885 #define PIPE_CONF_QUIRK(quirk) \
11886 ((current_config->quirks | pipe_config->quirks) & (quirk))
11887
11888 PIPE_CONF_CHECK_I(cpu_transcoder);
11889
11890 PIPE_CONF_CHECK_I(has_pch_encoder);
11891 PIPE_CONF_CHECK_I(fdi_lanes);
11892 PIPE_CONF_CHECK_M_N(fdi_m_n);
11893
11894 PIPE_CONF_CHECK_I(lane_count);
11895 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11896
11897 if (INTEL_GEN(dev_priv) < 8) {
11898 PIPE_CONF_CHECK_M_N(dp_m_n);
11899
11900 if (current_config->has_drrs)
11901 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11902 } else
11903 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11904
11905 PIPE_CONF_CHECK_X(output_types);
11906
11907 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11908 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11909 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11910 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11911 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11912 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11913
11914 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11915 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11916 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11917 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11918 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11919 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11920
11921 PIPE_CONF_CHECK_I(pixel_multiplier);
11922 PIPE_CONF_CHECK_I(has_hdmi_sink);
11923 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11924 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11925 PIPE_CONF_CHECK_I(limited_color_range);
11926
11927 PIPE_CONF_CHECK_I(hdmi_scrambling);
11928 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11929 PIPE_CONF_CHECK_I(has_infoframe);
11930
11931 PIPE_CONF_CHECK_I(has_audio);
11932
11933 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11934 DRM_MODE_FLAG_INTERLACE);
11935
11936 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11937 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11938 DRM_MODE_FLAG_PHSYNC);
11939 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11940 DRM_MODE_FLAG_NHSYNC);
11941 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11942 DRM_MODE_FLAG_PVSYNC);
11943 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11944 DRM_MODE_FLAG_NVSYNC);
11945 }
11946
11947 PIPE_CONF_CHECK_X(gmch_pfit.control);
11948 /* pfit ratios are autocomputed by the hw on gen4+ */
11949 if (INTEL_GEN(dev_priv) < 4)
11950 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11951 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11952
11953 if (!adjust) {
11954 PIPE_CONF_CHECK_I(pipe_src_w);
11955 PIPE_CONF_CHECK_I(pipe_src_h);
11956
11957 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11958 if (current_config->pch_pfit.enabled) {
11959 PIPE_CONF_CHECK_X(pch_pfit.pos);
11960 PIPE_CONF_CHECK_X(pch_pfit.size);
11961 }
11962
11963 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11964 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11965 }
11966
11967 /* BDW+ don't expose a synchronous way to read the state */
11968 if (IS_HASWELL(dev_priv))
11969 PIPE_CONF_CHECK_I(ips_enabled);
11970
11971 PIPE_CONF_CHECK_I(double_wide);
11972
11973 PIPE_CONF_CHECK_P(shared_dpll);
11974 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11975 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11976 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11977 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11978 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11979 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11980 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11981 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11982 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11983
11984 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11985 PIPE_CONF_CHECK_X(dsi_pll.div);
11986
11987 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11988 PIPE_CONF_CHECK_I(pipe_bpp);
11989
11990 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11991 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11992
11993 #undef PIPE_CONF_CHECK_X
11994 #undef PIPE_CONF_CHECK_I
11995 #undef PIPE_CONF_CHECK_P
11996 #undef PIPE_CONF_CHECK_FLAGS
11997 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11998 #undef PIPE_CONF_QUIRK
11999
12000 return ret;
12001 }
12002
12003 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12004 const struct intel_crtc_state *pipe_config)
12005 {
12006 if (pipe_config->has_pch_encoder) {
12007 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12008 &pipe_config->fdi_m_n);
12009 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12010
12011 /*
12012 * FDI already provided one idea for the dotclock.
12013 * Yell if the encoder disagrees.
12014 */
12015 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12016 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12017 fdi_dotclock, dotclock);
12018 }
12019 }
12020
12021 static void verify_wm_state(struct drm_crtc *crtc,
12022 struct drm_crtc_state *new_state)
12023 {
12024 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
12025 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12026 struct skl_pipe_wm hw_wm, *sw_wm;
12027 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12028 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12030 const enum pipe pipe = intel_crtc->pipe;
12031 int plane, level, max_level = ilk_wm_max_level(dev_priv);
12032
12033 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12034 return;
12035
12036 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
12037 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12038
12039 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12040 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12041
12042 /* planes */
12043 for_each_universal_plane(dev_priv, pipe, plane) {
12044 hw_plane_wm = &hw_wm.planes[plane];
12045 sw_plane_wm = &sw_wm->planes[plane];
12046
12047 /* Watermarks */
12048 for (level = 0; level <= max_level; level++) {
12049 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12050 &sw_plane_wm->wm[level]))
12051 continue;
12052
12053 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12054 pipe_name(pipe), plane + 1, level,
12055 sw_plane_wm->wm[level].plane_en,
12056 sw_plane_wm->wm[level].plane_res_b,
12057 sw_plane_wm->wm[level].plane_res_l,
12058 hw_plane_wm->wm[level].plane_en,
12059 hw_plane_wm->wm[level].plane_res_b,
12060 hw_plane_wm->wm[level].plane_res_l);
12061 }
12062
12063 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12064 &sw_plane_wm->trans_wm)) {
12065 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12066 pipe_name(pipe), plane + 1,
12067 sw_plane_wm->trans_wm.plane_en,
12068 sw_plane_wm->trans_wm.plane_res_b,
12069 sw_plane_wm->trans_wm.plane_res_l,
12070 hw_plane_wm->trans_wm.plane_en,
12071 hw_plane_wm->trans_wm.plane_res_b,
12072 hw_plane_wm->trans_wm.plane_res_l);
12073 }
12074
12075 /* DDB */
12076 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
12077 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
12078
12079 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12080 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12081 pipe_name(pipe), plane + 1,
12082 sw_ddb_entry->start, sw_ddb_entry->end,
12083 hw_ddb_entry->start, hw_ddb_entry->end);
12084 }
12085 }
12086
12087 /*
12088 * cursor
12089 * If the cursor plane isn't active, we may not have updated it's ddb
12090 * allocation. In that case since the ddb allocation will be updated
12091 * once the plane becomes visible, we can skip this check
12092 */
12093 if (1) {
12094 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
12095 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12096
12097 /* Watermarks */
12098 for (level = 0; level <= max_level; level++) {
12099 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12100 &sw_plane_wm->wm[level]))
12101 continue;
12102
12103 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12104 pipe_name(pipe), level,
12105 sw_plane_wm->wm[level].plane_en,
12106 sw_plane_wm->wm[level].plane_res_b,
12107 sw_plane_wm->wm[level].plane_res_l,
12108 hw_plane_wm->wm[level].plane_en,
12109 hw_plane_wm->wm[level].plane_res_b,
12110 hw_plane_wm->wm[level].plane_res_l);
12111 }
12112
12113 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12114 &sw_plane_wm->trans_wm)) {
12115 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12116 pipe_name(pipe),
12117 sw_plane_wm->trans_wm.plane_en,
12118 sw_plane_wm->trans_wm.plane_res_b,
12119 sw_plane_wm->trans_wm.plane_res_l,
12120 hw_plane_wm->trans_wm.plane_en,
12121 hw_plane_wm->trans_wm.plane_res_b,
12122 hw_plane_wm->trans_wm.plane_res_l);
12123 }
12124
12125 /* DDB */
12126 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12127 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12128
12129 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12130 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12131 pipe_name(pipe),
12132 sw_ddb_entry->start, sw_ddb_entry->end,
12133 hw_ddb_entry->start, hw_ddb_entry->end);
12134 }
12135 }
12136 }
12137
12138 static void
12139 verify_connector_state(struct drm_device *dev,
12140 struct drm_atomic_state *state,
12141 struct drm_crtc *crtc)
12142 {
12143 struct drm_connector *connector;
12144 struct drm_connector_state *new_conn_state;
12145 int i;
12146
12147 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12148 struct drm_encoder *encoder = connector->encoder;
12149 struct drm_crtc_state *crtc_state = NULL;
12150
12151 if (new_conn_state->crtc != crtc)
12152 continue;
12153
12154 if (crtc)
12155 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12156
12157 intel_connector_verify_state(crtc_state, new_conn_state);
12158
12159 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12160 "connector's atomic encoder doesn't match legacy encoder\n");
12161 }
12162 }
12163
12164 static void
12165 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12166 {
12167 struct intel_encoder *encoder;
12168 struct drm_connector *connector;
12169 struct drm_connector_state *old_conn_state, *new_conn_state;
12170 int i;
12171
12172 for_each_intel_encoder(dev, encoder) {
12173 bool enabled = false, found = false;
12174 enum pipe pipe;
12175
12176 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12177 encoder->base.base.id,
12178 encoder->base.name);
12179
12180 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12181 new_conn_state, i) {
12182 if (old_conn_state->best_encoder == &encoder->base)
12183 found = true;
12184
12185 if (new_conn_state->best_encoder != &encoder->base)
12186 continue;
12187 found = enabled = true;
12188
12189 I915_STATE_WARN(new_conn_state->crtc !=
12190 encoder->base.crtc,
12191 "connector's crtc doesn't match encoder crtc\n");
12192 }
12193
12194 if (!found)
12195 continue;
12196
12197 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12198 "encoder's enabled state mismatch "
12199 "(expected %i, found %i)\n",
12200 !!encoder->base.crtc, enabled);
12201
12202 if (!encoder->base.crtc) {
12203 bool active;
12204
12205 active = encoder->get_hw_state(encoder, &pipe);
12206 I915_STATE_WARN(active,
12207 "encoder detached but still enabled on pipe %c.\n",
12208 pipe_name(pipe));
12209 }
12210 }
12211 }
12212
12213 static void
12214 verify_crtc_state(struct drm_crtc *crtc,
12215 struct drm_crtc_state *old_crtc_state,
12216 struct drm_crtc_state *new_crtc_state)
12217 {
12218 struct drm_device *dev = crtc->dev;
12219 struct drm_i915_private *dev_priv = to_i915(dev);
12220 struct intel_encoder *encoder;
12221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12222 struct intel_crtc_state *pipe_config, *sw_config;
12223 struct drm_atomic_state *old_state;
12224 bool active;
12225
12226 old_state = old_crtc_state->state;
12227 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12228 pipe_config = to_intel_crtc_state(old_crtc_state);
12229 memset(pipe_config, 0, sizeof(*pipe_config));
12230 pipe_config->base.crtc = crtc;
12231 pipe_config->base.state = old_state;
12232
12233 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12234
12235 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12236
12237 /* we keep both pipes enabled on 830 */
12238 if (IS_I830(dev_priv))
12239 active = new_crtc_state->active;
12240
12241 I915_STATE_WARN(new_crtc_state->active != active,
12242 "crtc active state doesn't match with hw state "
12243 "(expected %i, found %i)\n", new_crtc_state->active, active);
12244
12245 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12246 "transitional active state does not match atomic hw state "
12247 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12248
12249 for_each_encoder_on_crtc(dev, crtc, encoder) {
12250 enum pipe pipe;
12251
12252 active = encoder->get_hw_state(encoder, &pipe);
12253 I915_STATE_WARN(active != new_crtc_state->active,
12254 "[ENCODER:%i] active %i with crtc active %i\n",
12255 encoder->base.base.id, active, new_crtc_state->active);
12256
12257 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12258 "Encoder connected to wrong pipe %c\n",
12259 pipe_name(pipe));
12260
12261 if (active) {
12262 pipe_config->output_types |= 1 << encoder->type;
12263 encoder->get_config(encoder, pipe_config);
12264 }
12265 }
12266
12267 intel_crtc_compute_pixel_rate(pipe_config);
12268
12269 if (!new_crtc_state->active)
12270 return;
12271
12272 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12273
12274 sw_config = to_intel_crtc_state(new_crtc_state);
12275 if (!intel_pipe_config_compare(dev_priv, sw_config,
12276 pipe_config, false)) {
12277 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12278 intel_dump_pipe_config(intel_crtc, pipe_config,
12279 "[hw state]");
12280 intel_dump_pipe_config(intel_crtc, sw_config,
12281 "[sw state]");
12282 }
12283 }
12284
12285 static void
12286 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12287 struct intel_shared_dpll *pll,
12288 struct drm_crtc *crtc,
12289 struct drm_crtc_state *new_state)
12290 {
12291 struct intel_dpll_hw_state dpll_hw_state;
12292 unsigned crtc_mask;
12293 bool active;
12294
12295 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12296
12297 DRM_DEBUG_KMS("%s\n", pll->name);
12298
12299 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12300
12301 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12302 I915_STATE_WARN(!pll->on && pll->active_mask,
12303 "pll in active use but not on in sw tracking\n");
12304 I915_STATE_WARN(pll->on && !pll->active_mask,
12305 "pll is on but not used by any active crtc\n");
12306 I915_STATE_WARN(pll->on != active,
12307 "pll on state mismatch (expected %i, found %i)\n",
12308 pll->on, active);
12309 }
12310
12311 if (!crtc) {
12312 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12313 "more active pll users than references: %x vs %x\n",
12314 pll->active_mask, pll->state.crtc_mask);
12315
12316 return;
12317 }
12318
12319 crtc_mask = 1 << drm_crtc_index(crtc);
12320
12321 if (new_state->active)
12322 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12323 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12324 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12325 else
12326 I915_STATE_WARN(pll->active_mask & crtc_mask,
12327 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12328 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12329
12330 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12331 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12332 crtc_mask, pll->state.crtc_mask);
12333
12334 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12335 &dpll_hw_state,
12336 sizeof(dpll_hw_state)),
12337 "pll hw state mismatch\n");
12338 }
12339
12340 static void
12341 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12342 struct drm_crtc_state *old_crtc_state,
12343 struct drm_crtc_state *new_crtc_state)
12344 {
12345 struct drm_i915_private *dev_priv = to_i915(dev);
12346 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12347 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12348
12349 if (new_state->shared_dpll)
12350 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12351
12352 if (old_state->shared_dpll &&
12353 old_state->shared_dpll != new_state->shared_dpll) {
12354 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12355 struct intel_shared_dpll *pll = old_state->shared_dpll;
12356
12357 I915_STATE_WARN(pll->active_mask & crtc_mask,
12358 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12359 pipe_name(drm_crtc_index(crtc)));
12360 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12361 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12362 pipe_name(drm_crtc_index(crtc)));
12363 }
12364 }
12365
12366 static void
12367 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12368 struct drm_atomic_state *state,
12369 struct drm_crtc_state *old_state,
12370 struct drm_crtc_state *new_state)
12371 {
12372 if (!needs_modeset(new_state) &&
12373 !to_intel_crtc_state(new_state)->update_pipe)
12374 return;
12375
12376 verify_wm_state(crtc, new_state);
12377 verify_connector_state(crtc->dev, state, crtc);
12378 verify_crtc_state(crtc, old_state, new_state);
12379 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12380 }
12381
12382 static void
12383 verify_disabled_dpll_state(struct drm_device *dev)
12384 {
12385 struct drm_i915_private *dev_priv = to_i915(dev);
12386 int i;
12387
12388 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12389 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12390 }
12391
12392 static void
12393 intel_modeset_verify_disabled(struct drm_device *dev,
12394 struct drm_atomic_state *state)
12395 {
12396 verify_encoder_state(dev, state);
12397 verify_connector_state(dev, state, NULL);
12398 verify_disabled_dpll_state(dev);
12399 }
12400
12401 static void update_scanline_offset(struct intel_crtc *crtc)
12402 {
12403 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12404
12405 /*
12406 * The scanline counter increments at the leading edge of hsync.
12407 *
12408 * On most platforms it starts counting from vtotal-1 on the
12409 * first active line. That means the scanline counter value is
12410 * always one less than what we would expect. Ie. just after
12411 * start of vblank, which also occurs at start of hsync (on the
12412 * last active line), the scanline counter will read vblank_start-1.
12413 *
12414 * On gen2 the scanline counter starts counting from 1 instead
12415 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12416 * to keep the value positive), instead of adding one.
12417 *
12418 * On HSW+ the behaviour of the scanline counter depends on the output
12419 * type. For DP ports it behaves like most other platforms, but on HDMI
12420 * there's an extra 1 line difference. So we need to add two instead of
12421 * one to the value.
12422 *
12423 * On VLV/CHV DSI the scanline counter would appear to increment
12424 * approx. 1/3 of a scanline before start of vblank. Unfortunately
12425 * that means we can't tell whether we're in vblank or not while
12426 * we're on that particular line. We must still set scanline_offset
12427 * to 1 so that the vblank timestamps come out correct when we query
12428 * the scanline counter from within the vblank interrupt handler.
12429 * However if queried just before the start of vblank we'll get an
12430 * answer that's slightly in the future.
12431 */
12432 if (IS_GEN2(dev_priv)) {
12433 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12434 int vtotal;
12435
12436 vtotal = adjusted_mode->crtc_vtotal;
12437 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12438 vtotal /= 2;
12439
12440 crtc->scanline_offset = vtotal - 1;
12441 } else if (HAS_DDI(dev_priv) &&
12442 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12443 crtc->scanline_offset = 2;
12444 } else
12445 crtc->scanline_offset = 1;
12446 }
12447
12448 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12449 {
12450 struct drm_device *dev = state->dev;
12451 struct drm_i915_private *dev_priv = to_i915(dev);
12452 struct drm_crtc *crtc;
12453 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12454 int i;
12455
12456 if (!dev_priv->display.crtc_compute_clock)
12457 return;
12458
12459 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12461 struct intel_shared_dpll *old_dpll =
12462 to_intel_crtc_state(old_crtc_state)->shared_dpll;
12463
12464 if (!needs_modeset(new_crtc_state))
12465 continue;
12466
12467 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12468
12469 if (!old_dpll)
12470 continue;
12471
12472 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12473 }
12474 }
12475
12476 /*
12477 * This implements the workaround described in the "notes" section of the mode
12478 * set sequence documentation. When going from no pipes or single pipe to
12479 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12480 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12481 */
12482 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12483 {
12484 struct drm_crtc_state *crtc_state;
12485 struct intel_crtc *intel_crtc;
12486 struct drm_crtc *crtc;
12487 struct intel_crtc_state *first_crtc_state = NULL;
12488 struct intel_crtc_state *other_crtc_state = NULL;
12489 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12490 int i;
12491
12492 /* look at all crtc's that are going to be enabled in during modeset */
12493 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12494 intel_crtc = to_intel_crtc(crtc);
12495
12496 if (!crtc_state->active || !needs_modeset(crtc_state))
12497 continue;
12498
12499 if (first_crtc_state) {
12500 other_crtc_state = to_intel_crtc_state(crtc_state);
12501 break;
12502 } else {
12503 first_crtc_state = to_intel_crtc_state(crtc_state);
12504 first_pipe = intel_crtc->pipe;
12505 }
12506 }
12507
12508 /* No workaround needed? */
12509 if (!first_crtc_state)
12510 return 0;
12511
12512 /* w/a possibly needed, check how many crtc's are already enabled. */
12513 for_each_intel_crtc(state->dev, intel_crtc) {
12514 struct intel_crtc_state *pipe_config;
12515
12516 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12517 if (IS_ERR(pipe_config))
12518 return PTR_ERR(pipe_config);
12519
12520 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12521
12522 if (!pipe_config->base.active ||
12523 needs_modeset(&pipe_config->base))
12524 continue;
12525
12526 /* 2 or more enabled crtcs means no need for w/a */
12527 if (enabled_pipe != INVALID_PIPE)
12528 return 0;
12529
12530 enabled_pipe = intel_crtc->pipe;
12531 }
12532
12533 if (enabled_pipe != INVALID_PIPE)
12534 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12535 else if (other_crtc_state)
12536 other_crtc_state->hsw_workaround_pipe = first_pipe;
12537
12538 return 0;
12539 }
12540
12541 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12542 {
12543 struct drm_crtc *crtc;
12544
12545 /* Add all pipes to the state */
12546 for_each_crtc(state->dev, crtc) {
12547 struct drm_crtc_state *crtc_state;
12548
12549 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12550 if (IS_ERR(crtc_state))
12551 return PTR_ERR(crtc_state);
12552 }
12553
12554 return 0;
12555 }
12556
12557 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12558 {
12559 struct drm_crtc *crtc;
12560
12561 /*
12562 * Add all pipes to the state, and force
12563 * a modeset on all the active ones.
12564 */
12565 for_each_crtc(state->dev, crtc) {
12566 struct drm_crtc_state *crtc_state;
12567 int ret;
12568
12569 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12570 if (IS_ERR(crtc_state))
12571 return PTR_ERR(crtc_state);
12572
12573 if (!crtc_state->active || needs_modeset(crtc_state))
12574 continue;
12575
12576 crtc_state->mode_changed = true;
12577
12578 ret = drm_atomic_add_affected_connectors(state, crtc);
12579 if (ret)
12580 return ret;
12581
12582 ret = drm_atomic_add_affected_planes(state, crtc);
12583 if (ret)
12584 return ret;
12585 }
12586
12587 return 0;
12588 }
12589
12590 static int intel_modeset_checks(struct drm_atomic_state *state)
12591 {
12592 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12593 struct drm_i915_private *dev_priv = to_i915(state->dev);
12594 struct drm_crtc *crtc;
12595 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12596 int ret = 0, i;
12597
12598 if (!check_digital_port_conflicts(state)) {
12599 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12600 return -EINVAL;
12601 }
12602
12603 intel_state->modeset = true;
12604 intel_state->active_crtcs = dev_priv->active_crtcs;
12605 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12606 intel_state->cdclk.actual = dev_priv->cdclk.actual;
12607
12608 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12609 if (new_crtc_state->active)
12610 intel_state->active_crtcs |= 1 << i;
12611 else
12612 intel_state->active_crtcs &= ~(1 << i);
12613
12614 if (old_crtc_state->active != new_crtc_state->active)
12615 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12616 }
12617
12618 /*
12619 * See if the config requires any additional preparation, e.g.
12620 * to adjust global state with pipes off. We need to do this
12621 * here so we can get the modeset_pipe updated config for the new
12622 * mode set on this crtc. For other crtcs we need to use the
12623 * adjusted_mode bits in the crtc directly.
12624 */
12625 if (dev_priv->display.modeset_calc_cdclk) {
12626 ret = dev_priv->display.modeset_calc_cdclk(state);
12627 if (ret < 0)
12628 return ret;
12629
12630 /*
12631 * Writes to dev_priv->cdclk.logical must protected by
12632 * holding all the crtc locks, even if we don't end up
12633 * touching the hardware
12634 */
12635 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12636 &intel_state->cdclk.logical)) {
12637 ret = intel_lock_all_pipes(state);
12638 if (ret < 0)
12639 return ret;
12640 }
12641
12642 /* All pipes must be switched off while we change the cdclk. */
12643 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12644 &intel_state->cdclk.actual)) {
12645 ret = intel_modeset_all_pipes(state);
12646 if (ret < 0)
12647 return ret;
12648 }
12649
12650 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12651 intel_state->cdclk.logical.cdclk,
12652 intel_state->cdclk.actual.cdclk);
12653 } else {
12654 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12655 }
12656
12657 intel_modeset_clear_plls(state);
12658
12659 if (IS_HASWELL(dev_priv))
12660 return haswell_mode_set_planes_workaround(state);
12661
12662 return 0;
12663 }
12664
12665 /*
12666 * Handle calculation of various watermark data at the end of the atomic check
12667 * phase. The code here should be run after the per-crtc and per-plane 'check'
12668 * handlers to ensure that all derived state has been updated.
12669 */
12670 static int calc_watermark_data(struct drm_atomic_state *state)
12671 {
12672 struct drm_device *dev = state->dev;
12673 struct drm_i915_private *dev_priv = to_i915(dev);
12674
12675 /* Is there platform-specific watermark information to calculate? */
12676 if (dev_priv->display.compute_global_watermarks)
12677 return dev_priv->display.compute_global_watermarks(state);
12678
12679 return 0;
12680 }
12681
12682 /**
12683 * intel_atomic_check - validate state object
12684 * @dev: drm device
12685 * @state: state to validate
12686 */
12687 static int intel_atomic_check(struct drm_device *dev,
12688 struct drm_atomic_state *state)
12689 {
12690 struct drm_i915_private *dev_priv = to_i915(dev);
12691 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12692 struct drm_crtc *crtc;
12693 struct drm_crtc_state *old_crtc_state, *crtc_state;
12694 int ret, i;
12695 bool any_ms = false;
12696
12697 ret = drm_atomic_helper_check_modeset(dev, state);
12698 if (ret)
12699 return ret;
12700
12701 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12702 struct intel_crtc_state *pipe_config =
12703 to_intel_crtc_state(crtc_state);
12704
12705 /* Catch I915_MODE_FLAG_INHERITED */
12706 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12707 crtc_state->mode_changed = true;
12708
12709 if (!needs_modeset(crtc_state))
12710 continue;
12711
12712 if (!crtc_state->enable) {
12713 any_ms = true;
12714 continue;
12715 }
12716
12717 /* FIXME: For only active_changed we shouldn't need to do any
12718 * state recomputation at all. */
12719
12720 ret = drm_atomic_add_affected_connectors(state, crtc);
12721 if (ret)
12722 return ret;
12723
12724 ret = intel_modeset_pipe_config(crtc, pipe_config);
12725 if (ret) {
12726 intel_dump_pipe_config(to_intel_crtc(crtc),
12727 pipe_config, "[failed]");
12728 return ret;
12729 }
12730
12731 if (i915.fastboot &&
12732 intel_pipe_config_compare(dev_priv,
12733 to_intel_crtc_state(old_crtc_state),
12734 pipe_config, true)) {
12735 crtc_state->mode_changed = false;
12736 pipe_config->update_pipe = true;
12737 }
12738
12739 if (needs_modeset(crtc_state))
12740 any_ms = true;
12741
12742 ret = drm_atomic_add_affected_planes(state, crtc);
12743 if (ret)
12744 return ret;
12745
12746 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12747 needs_modeset(crtc_state) ?
12748 "[modeset]" : "[fastset]");
12749 }
12750
12751 if (any_ms) {
12752 ret = intel_modeset_checks(state);
12753
12754 if (ret)
12755 return ret;
12756 } else {
12757 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12758 }
12759
12760 ret = drm_atomic_helper_check_planes(dev, state);
12761 if (ret)
12762 return ret;
12763
12764 intel_fbc_choose_crtc(dev_priv, state);
12765 return calc_watermark_data(state);
12766 }
12767
12768 static int intel_atomic_prepare_commit(struct drm_device *dev,
12769 struct drm_atomic_state *state)
12770 {
12771 struct drm_i915_private *dev_priv = to_i915(dev);
12772 struct drm_crtc_state *crtc_state;
12773 struct drm_crtc *crtc;
12774 int i, ret;
12775
12776 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12777 if (state->legacy_cursor_update)
12778 continue;
12779
12780 ret = intel_crtc_wait_for_pending_flips(crtc);
12781 if (ret)
12782 return ret;
12783
12784 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12785 flush_workqueue(dev_priv->wq);
12786 }
12787
12788 ret = mutex_lock_interruptible(&dev->struct_mutex);
12789 if (ret)
12790 return ret;
12791
12792 ret = drm_atomic_helper_prepare_planes(dev, state);
12793 mutex_unlock(&dev->struct_mutex);
12794
12795 return ret;
12796 }
12797
12798 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12799 {
12800 struct drm_device *dev = crtc->base.dev;
12801
12802 if (!dev->max_vblank_count)
12803 return drm_accurate_vblank_count(&crtc->base);
12804
12805 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12806 }
12807
12808 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12809 struct drm_i915_private *dev_priv,
12810 unsigned crtc_mask)
12811 {
12812 unsigned last_vblank_count[I915_MAX_PIPES];
12813 enum pipe pipe;
12814 int ret;
12815
12816 if (!crtc_mask)
12817 return;
12818
12819 for_each_pipe(dev_priv, pipe) {
12820 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12821 pipe);
12822
12823 if (!((1 << pipe) & crtc_mask))
12824 continue;
12825
12826 ret = drm_crtc_vblank_get(&crtc->base);
12827 if (WARN_ON(ret != 0)) {
12828 crtc_mask &= ~(1 << pipe);
12829 continue;
12830 }
12831
12832 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12833 }
12834
12835 for_each_pipe(dev_priv, pipe) {
12836 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12837 pipe);
12838 long lret;
12839
12840 if (!((1 << pipe) & crtc_mask))
12841 continue;
12842
12843 lret = wait_event_timeout(dev->vblank[pipe].queue,
12844 last_vblank_count[pipe] !=
12845 drm_crtc_vblank_count(&crtc->base),
12846 msecs_to_jiffies(50));
12847
12848 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12849
12850 drm_crtc_vblank_put(&crtc->base);
12851 }
12852 }
12853
12854 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12855 {
12856 /* fb updated, need to unpin old fb */
12857 if (crtc_state->fb_changed)
12858 return true;
12859
12860 /* wm changes, need vblank before final wm's */
12861 if (crtc_state->update_wm_post)
12862 return true;
12863
12864 if (crtc_state->wm.need_postvbl_update)
12865 return true;
12866
12867 return false;
12868 }
12869
12870 static void intel_update_crtc(struct drm_crtc *crtc,
12871 struct drm_atomic_state *state,
12872 struct drm_crtc_state *old_crtc_state,
12873 struct drm_crtc_state *new_crtc_state,
12874 unsigned int *crtc_vblank_mask)
12875 {
12876 struct drm_device *dev = crtc->dev;
12877 struct drm_i915_private *dev_priv = to_i915(dev);
12878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12879 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12880 bool modeset = needs_modeset(new_crtc_state);
12881
12882 if (modeset) {
12883 update_scanline_offset(intel_crtc);
12884 dev_priv->display.crtc_enable(pipe_config, state);
12885 } else {
12886 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12887 pipe_config);
12888 }
12889
12890 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12891 intel_fbc_enable(
12892 intel_crtc, pipe_config,
12893 to_intel_plane_state(crtc->primary->state));
12894 }
12895
12896 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12897
12898 if (needs_vblank_wait(pipe_config))
12899 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12900 }
12901
12902 static void intel_update_crtcs(struct drm_atomic_state *state,
12903 unsigned int *crtc_vblank_mask)
12904 {
12905 struct drm_crtc *crtc;
12906 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12907 int i;
12908
12909 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12910 if (!new_crtc_state->active)
12911 continue;
12912
12913 intel_update_crtc(crtc, state, old_crtc_state,
12914 new_crtc_state, crtc_vblank_mask);
12915 }
12916 }
12917
12918 static void skl_update_crtcs(struct drm_atomic_state *state,
12919 unsigned int *crtc_vblank_mask)
12920 {
12921 struct drm_i915_private *dev_priv = to_i915(state->dev);
12922 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12923 struct drm_crtc *crtc;
12924 struct intel_crtc *intel_crtc;
12925 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12926 struct intel_crtc_state *cstate;
12927 unsigned int updated = 0;
12928 bool progress;
12929 enum pipe pipe;
12930 int i;
12931
12932 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12933
12934 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12935 /* ignore allocations for crtc's that have been turned off. */
12936 if (new_crtc_state->active)
12937 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12938
12939 /*
12940 * Whenever the number of active pipes changes, we need to make sure we
12941 * update the pipes in the right order so that their ddb allocations
12942 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12943 * cause pipe underruns and other bad stuff.
12944 */
12945 do {
12946 progress = false;
12947
12948 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12949 bool vbl_wait = false;
12950 unsigned int cmask = drm_crtc_mask(crtc);
12951
12952 intel_crtc = to_intel_crtc(crtc);
12953 cstate = to_intel_crtc_state(crtc->state);
12954 pipe = intel_crtc->pipe;
12955
12956 if (updated & cmask || !cstate->base.active)
12957 continue;
12958
12959 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12960 continue;
12961
12962 updated |= cmask;
12963 entries[i] = &cstate->wm.skl.ddb;
12964
12965 /*
12966 * If this is an already active pipe, it's DDB changed,
12967 * and this isn't the last pipe that needs updating
12968 * then we need to wait for a vblank to pass for the
12969 * new ddb allocation to take effect.
12970 */
12971 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12972 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12973 !new_crtc_state->active_changed &&
12974 intel_state->wm_results.dirty_pipes != updated)
12975 vbl_wait = true;
12976
12977 intel_update_crtc(crtc, state, old_crtc_state,
12978 new_crtc_state, crtc_vblank_mask);
12979
12980 if (vbl_wait)
12981 intel_wait_for_vblank(dev_priv, pipe);
12982
12983 progress = true;
12984 }
12985 } while (progress);
12986 }
12987
12988 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12989 {
12990 struct intel_atomic_state *state, *next;
12991 struct llist_node *freed;
12992
12993 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12994 llist_for_each_entry_safe(state, next, freed, freed)
12995 drm_atomic_state_put(&state->base);
12996 }
12997
12998 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12999 {
13000 struct drm_i915_private *dev_priv =
13001 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
13002
13003 intel_atomic_helper_free_state(dev_priv);
13004 }
13005
13006 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13007 {
13008 struct drm_device *dev = state->dev;
13009 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13010 struct drm_i915_private *dev_priv = to_i915(dev);
13011 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13012 struct drm_crtc *crtc;
13013 struct intel_crtc_state *intel_cstate;
13014 bool hw_check = intel_state->modeset;
13015 u64 put_domains[I915_MAX_PIPES] = {};
13016 unsigned crtc_vblank_mask = 0;
13017 int i;
13018
13019 drm_atomic_helper_wait_for_dependencies(state);
13020
13021 if (intel_state->modeset)
13022 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13023
13024 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13026
13027 if (needs_modeset(new_crtc_state) ||
13028 to_intel_crtc_state(new_crtc_state)->update_pipe) {
13029 hw_check = true;
13030
13031 put_domains[to_intel_crtc(crtc)->pipe] =
13032 modeset_get_crtc_power_domains(crtc,
13033 to_intel_crtc_state(new_crtc_state));
13034 }
13035
13036 if (!needs_modeset(new_crtc_state))
13037 continue;
13038
13039 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13040 to_intel_crtc_state(new_crtc_state));
13041
13042 if (old_crtc_state->active) {
13043 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13044 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
13045 intel_crtc->active = false;
13046 intel_fbc_disable(intel_crtc);
13047 intel_disable_shared_dpll(intel_crtc);
13048
13049 /*
13050 * Underruns don't always raise
13051 * interrupts, so check manually.
13052 */
13053 intel_check_cpu_fifo_underruns(dev_priv);
13054 intel_check_pch_fifo_underruns(dev_priv);
13055
13056 if (!crtc->state->active) {
13057 /*
13058 * Make sure we don't call initial_watermarks
13059 * for ILK-style watermark updates.
13060 *
13061 * No clue what this is supposed to achieve.
13062 */
13063 if (INTEL_GEN(dev_priv) >= 9)
13064 dev_priv->display.initial_watermarks(intel_state,
13065 to_intel_crtc_state(crtc->state));
13066 }
13067 }
13068 }
13069
13070 /* Only after disabling all output pipelines that will be changed can we
13071 * update the the output configuration. */
13072 intel_modeset_update_crtc_state(state);
13073
13074 if (intel_state->modeset) {
13075 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13076
13077 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
13078
13079 /*
13080 * SKL workaround: bspec recommends we disable the SAGV when we
13081 * have more then one pipe enabled
13082 */
13083 if (!intel_can_enable_sagv(state))
13084 intel_disable_sagv(dev_priv);
13085
13086 intel_modeset_verify_disabled(dev, state);
13087 }
13088
13089 /* Complete the events for pipes that have now been disabled */
13090 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13091 bool modeset = needs_modeset(new_crtc_state);
13092
13093 /* Complete events for now disable pipes here. */
13094 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13095 spin_lock_irq(&dev->event_lock);
13096 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13097 spin_unlock_irq(&dev->event_lock);
13098
13099 new_crtc_state->event = NULL;
13100 }
13101 }
13102
13103 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13104 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
13105
13106 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13107 * already, but still need the state for the delayed optimization. To
13108 * fix this:
13109 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13110 * - schedule that vblank worker _before_ calling hw_done
13111 * - at the start of commit_tail, cancel it _synchrously
13112 * - switch over to the vblank wait helper in the core after that since
13113 * we don't need out special handling any more.
13114 */
13115 if (!state->legacy_cursor_update)
13116 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13117
13118 /*
13119 * Now that the vblank has passed, we can go ahead and program the
13120 * optimal watermarks on platforms that need two-step watermark
13121 * programming.
13122 *
13123 * TODO: Move this (and other cleanup) to an async worker eventually.
13124 */
13125 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13126 intel_cstate = to_intel_crtc_state(new_crtc_state);
13127
13128 if (dev_priv->display.optimize_watermarks)
13129 dev_priv->display.optimize_watermarks(intel_state,
13130 intel_cstate);
13131 }
13132
13133 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13134 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13135
13136 if (put_domains[i])
13137 modeset_put_power_domains(dev_priv, put_domains[i]);
13138
13139 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13140 }
13141
13142 if (intel_state->modeset && intel_can_enable_sagv(state))
13143 intel_enable_sagv(dev_priv);
13144
13145 drm_atomic_helper_commit_hw_done(state);
13146
13147 if (intel_state->modeset) {
13148 /* As one of the primary mmio accessors, KMS has a high
13149 * likelihood of triggering bugs in unclaimed access. After we
13150 * finish modesetting, see if an error has been flagged, and if
13151 * so enable debugging for the next modeset - and hope we catch
13152 * the culprit.
13153 */
13154 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13155 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13156 }
13157
13158 mutex_lock(&dev->struct_mutex);
13159 drm_atomic_helper_cleanup_planes(dev, state);
13160 mutex_unlock(&dev->struct_mutex);
13161
13162 drm_atomic_helper_commit_cleanup_done(state);
13163
13164 drm_atomic_state_put(state);
13165
13166 intel_atomic_helper_free_state(dev_priv);
13167 }
13168
13169 static void intel_atomic_commit_work(struct work_struct *work)
13170 {
13171 struct drm_atomic_state *state =
13172 container_of(work, struct drm_atomic_state, commit_work);
13173
13174 intel_atomic_commit_tail(state);
13175 }
13176
13177 static int __i915_sw_fence_call
13178 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13179 enum i915_sw_fence_notify notify)
13180 {
13181 struct intel_atomic_state *state =
13182 container_of(fence, struct intel_atomic_state, commit_ready);
13183
13184 switch (notify) {
13185 case FENCE_COMPLETE:
13186 if (state->base.commit_work.func)
13187 queue_work(system_unbound_wq, &state->base.commit_work);
13188 break;
13189
13190 case FENCE_FREE:
13191 {
13192 struct intel_atomic_helper *helper =
13193 &to_i915(state->base.dev)->atomic_helper;
13194
13195 if (llist_add(&state->freed, &helper->free_list))
13196 schedule_work(&helper->free_work);
13197 break;
13198 }
13199 }
13200
13201 return NOTIFY_DONE;
13202 }
13203
13204 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13205 {
13206 struct drm_plane_state *old_plane_state, *new_plane_state;
13207 struct drm_plane *plane;
13208 int i;
13209
13210 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13211 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13212 intel_fb_obj(new_plane_state->fb),
13213 to_intel_plane(plane)->frontbuffer_bit);
13214 }
13215
13216 /**
13217 * intel_atomic_commit - commit validated state object
13218 * @dev: DRM device
13219 * @state: the top-level driver state object
13220 * @nonblock: nonblocking commit
13221 *
13222 * This function commits a top-level state object that has been validated
13223 * with drm_atomic_helper_check().
13224 *
13225 * RETURNS
13226 * Zero for success or -errno.
13227 */
13228 static int intel_atomic_commit(struct drm_device *dev,
13229 struct drm_atomic_state *state,
13230 bool nonblock)
13231 {
13232 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13233 struct drm_i915_private *dev_priv = to_i915(dev);
13234 int ret = 0;
13235
13236 ret = drm_atomic_helper_setup_commit(state, nonblock);
13237 if (ret)
13238 return ret;
13239
13240 drm_atomic_state_get(state);
13241 i915_sw_fence_init(&intel_state->commit_ready,
13242 intel_atomic_commit_ready);
13243
13244 ret = intel_atomic_prepare_commit(dev, state);
13245 if (ret) {
13246 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13247 i915_sw_fence_commit(&intel_state->commit_ready);
13248 return ret;
13249 }
13250
13251 /*
13252 * The intel_legacy_cursor_update() fast path takes care
13253 * of avoiding the vblank waits for simple cursor
13254 * movement and flips. For cursor on/off and size changes,
13255 * we want to perform the vblank waits so that watermark
13256 * updates happen during the correct frames. Gen9+ have
13257 * double buffered watermarks and so shouldn't need this.
13258 *
13259 * Do this after drm_atomic_helper_setup_commit() and
13260 * intel_atomic_prepare_commit() because we still want
13261 * to skip the flip and fb cleanup waits. Although that
13262 * does risk yanking the mapping from under the display
13263 * engine.
13264 *
13265 * FIXME doing watermarks and fb cleanup from a vblank worker
13266 * (assuming we had any) would solve these problems.
13267 */
13268 if (INTEL_GEN(dev_priv) < 9)
13269 state->legacy_cursor_update = false;
13270
13271 drm_atomic_helper_swap_state(state, true);
13272 dev_priv->wm.distrust_bios_wm = false;
13273 intel_shared_dpll_swap_state(state);
13274 intel_atomic_track_fbs(state);
13275
13276 if (intel_state->modeset) {
13277 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13278 sizeof(intel_state->min_pixclk));
13279 dev_priv->active_crtcs = intel_state->active_crtcs;
13280 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13281 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13282 }
13283
13284 drm_atomic_state_get(state);
13285 INIT_WORK(&state->commit_work,
13286 nonblock ? intel_atomic_commit_work : NULL);
13287
13288 i915_sw_fence_commit(&intel_state->commit_ready);
13289 if (!nonblock) {
13290 i915_sw_fence_wait(&intel_state->commit_ready);
13291 intel_atomic_commit_tail(state);
13292 }
13293
13294 return 0;
13295 }
13296
13297 static const struct drm_crtc_funcs intel_crtc_funcs = {
13298 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13299 .set_config = drm_atomic_helper_set_config,
13300 .set_property = drm_atomic_helper_crtc_set_property,
13301 .destroy = intel_crtc_destroy,
13302 .page_flip = drm_atomic_helper_page_flip,
13303 .atomic_duplicate_state = intel_crtc_duplicate_state,
13304 .atomic_destroy_state = intel_crtc_destroy_state,
13305 .set_crc_source = intel_crtc_set_crc_source,
13306 };
13307
13308 /**
13309 * intel_prepare_plane_fb - Prepare fb for usage on plane
13310 * @plane: drm plane to prepare for
13311 * @fb: framebuffer to prepare for presentation
13312 *
13313 * Prepares a framebuffer for usage on a display plane. Generally this
13314 * involves pinning the underlying object and updating the frontbuffer tracking
13315 * bits. Some older platforms need special physical address handling for
13316 * cursor planes.
13317 *
13318 * Must be called with struct_mutex held.
13319 *
13320 * Returns 0 on success, negative error code on failure.
13321 */
13322 int
13323 intel_prepare_plane_fb(struct drm_plane *plane,
13324 struct drm_plane_state *new_state)
13325 {
13326 struct intel_atomic_state *intel_state =
13327 to_intel_atomic_state(new_state->state);
13328 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13329 struct drm_framebuffer *fb = new_state->fb;
13330 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13331 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13332 int ret;
13333
13334 if (obj) {
13335 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13336 INTEL_INFO(dev_priv)->cursor_needs_physical) {
13337 const int align = intel_cursor_alignment(dev_priv);
13338
13339 ret = i915_gem_object_attach_phys(obj, align);
13340 if (ret) {
13341 DRM_DEBUG_KMS("failed to attach phys object\n");
13342 return ret;
13343 }
13344 } else {
13345 struct i915_vma *vma;
13346
13347 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13348 if (IS_ERR(vma)) {
13349 DRM_DEBUG_KMS("failed to pin object\n");
13350 return PTR_ERR(vma);
13351 }
13352
13353 to_intel_plane_state(new_state)->vma = vma;
13354 }
13355 }
13356
13357 if (!obj && !old_obj)
13358 return 0;
13359
13360 if (old_obj) {
13361 struct drm_crtc_state *crtc_state =
13362 drm_atomic_get_existing_crtc_state(new_state->state,
13363 plane->state->crtc);
13364
13365 /* Big Hammer, we also need to ensure that any pending
13366 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13367 * current scanout is retired before unpinning the old
13368 * framebuffer. Note that we rely on userspace rendering
13369 * into the buffer attached to the pipe they are waiting
13370 * on. If not, userspace generates a GPU hang with IPEHR
13371 * point to the MI_WAIT_FOR_EVENT.
13372 *
13373 * This should only fail upon a hung GPU, in which case we
13374 * can safely continue.
13375 */
13376 if (needs_modeset(crtc_state)) {
13377 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13378 old_obj->resv, NULL,
13379 false, 0,
13380 GFP_KERNEL);
13381 if (ret < 0)
13382 return ret;
13383 }
13384 }
13385
13386 if (new_state->fence) { /* explicit fencing */
13387 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13388 new_state->fence,
13389 I915_FENCE_TIMEOUT,
13390 GFP_KERNEL);
13391 if (ret < 0)
13392 return ret;
13393 }
13394
13395 if (!obj)
13396 return 0;
13397
13398 if (!new_state->fence) { /* implicit fencing */
13399 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13400 obj->resv, NULL,
13401 false, I915_FENCE_TIMEOUT,
13402 GFP_KERNEL);
13403 if (ret < 0)
13404 return ret;
13405
13406 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13407 }
13408
13409 return 0;
13410 }
13411
13412 /**
13413 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13414 * @plane: drm plane to clean up for
13415 * @fb: old framebuffer that was on plane
13416 *
13417 * Cleans up a framebuffer that has just been removed from a plane.
13418 *
13419 * Must be called with struct_mutex held.
13420 */
13421 void
13422 intel_cleanup_plane_fb(struct drm_plane *plane,
13423 struct drm_plane_state *old_state)
13424 {
13425 struct i915_vma *vma;
13426
13427 /* Should only be called after a successful intel_prepare_plane_fb()! */
13428 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13429 if (vma)
13430 intel_unpin_fb_vma(vma);
13431 }
13432
13433 int
13434 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13435 {
13436 struct drm_i915_private *dev_priv;
13437 int max_scale;
13438 int crtc_clock, max_dotclk;
13439
13440 if (!intel_crtc || !crtc_state->base.enable)
13441 return DRM_PLANE_HELPER_NO_SCALING;
13442
13443 dev_priv = to_i915(intel_crtc->base.dev);
13444
13445 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13446 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13447
13448 if (IS_GEMINILAKE(dev_priv))
13449 max_dotclk *= 2;
13450
13451 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13452 return DRM_PLANE_HELPER_NO_SCALING;
13453
13454 /*
13455 * skl max scale is lower of:
13456 * close to 3 but not 3, -1 is for that purpose
13457 * or
13458 * cdclk/crtc_clock
13459 */
13460 max_scale = min((1 << 16) * 3 - 1,
13461 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13462
13463 return max_scale;
13464 }
13465
13466 static int
13467 intel_check_primary_plane(struct intel_plane *plane,
13468 struct intel_crtc_state *crtc_state,
13469 struct intel_plane_state *state)
13470 {
13471 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
13472 struct drm_crtc *crtc = state->base.crtc;
13473 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13474 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13475 bool can_position = false;
13476 int ret;
13477
13478 if (INTEL_GEN(dev_priv) >= 9) {
13479 /* use scaler when colorkey is not required */
13480 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13481 min_scale = 1;
13482 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13483 }
13484 can_position = true;
13485 }
13486
13487 ret = drm_plane_helper_check_state(&state->base,
13488 &state->clip,
13489 min_scale, max_scale,
13490 can_position, true);
13491 if (ret)
13492 return ret;
13493
13494 if (!state->base.fb)
13495 return 0;
13496
13497 if (INTEL_GEN(dev_priv) >= 9) {
13498 ret = skl_check_plane_surface(state);
13499 if (ret)
13500 return ret;
13501
13502 state->ctl = skl_plane_ctl(crtc_state, state);
13503 } else {
13504 ret = i9xx_check_plane_surface(state);
13505 if (ret)
13506 return ret;
13507
13508 state->ctl = i9xx_plane_ctl(crtc_state, state);
13509 }
13510
13511 return 0;
13512 }
13513
13514 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13515 struct drm_crtc_state *old_crtc_state)
13516 {
13517 struct drm_device *dev = crtc->dev;
13518 struct drm_i915_private *dev_priv = to_i915(dev);
13519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13520 struct intel_crtc_state *intel_cstate =
13521 to_intel_crtc_state(crtc->state);
13522 struct intel_crtc_state *old_intel_cstate =
13523 to_intel_crtc_state(old_crtc_state);
13524 struct intel_atomic_state *old_intel_state =
13525 to_intel_atomic_state(old_crtc_state->state);
13526 bool modeset = needs_modeset(crtc->state);
13527
13528 if (!modeset &&
13529 (intel_cstate->base.color_mgmt_changed ||
13530 intel_cstate->update_pipe)) {
13531 intel_color_set_csc(crtc->state);
13532 intel_color_load_luts(crtc->state);
13533 }
13534
13535 /* Perform vblank evasion around commit operation */
13536 intel_pipe_update_start(intel_crtc);
13537
13538 if (modeset)
13539 goto out;
13540
13541 if (intel_cstate->update_pipe)
13542 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13543 else if (INTEL_GEN(dev_priv) >= 9)
13544 skl_detach_scalers(intel_crtc);
13545
13546 out:
13547 if (dev_priv->display.atomic_update_watermarks)
13548 dev_priv->display.atomic_update_watermarks(old_intel_state,
13549 intel_cstate);
13550 }
13551
13552 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13553 struct drm_crtc_state *old_crtc_state)
13554 {
13555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13556
13557 intel_pipe_update_end(intel_crtc, NULL);
13558 }
13559
13560 /**
13561 * intel_plane_destroy - destroy a plane
13562 * @plane: plane to destroy
13563 *
13564 * Common destruction function for all types of planes (primary, cursor,
13565 * sprite).
13566 */
13567 void intel_plane_destroy(struct drm_plane *plane)
13568 {
13569 drm_plane_cleanup(plane);
13570 kfree(to_intel_plane(plane));
13571 }
13572
13573 const struct drm_plane_funcs intel_plane_funcs = {
13574 .update_plane = drm_atomic_helper_update_plane,
13575 .disable_plane = drm_atomic_helper_disable_plane,
13576 .destroy = intel_plane_destroy,
13577 .set_property = drm_atomic_helper_plane_set_property,
13578 .atomic_get_property = intel_plane_atomic_get_property,
13579 .atomic_set_property = intel_plane_atomic_set_property,
13580 .atomic_duplicate_state = intel_plane_duplicate_state,
13581 .atomic_destroy_state = intel_plane_destroy_state,
13582 };
13583
13584 static int
13585 intel_legacy_cursor_update(struct drm_plane *plane,
13586 struct drm_crtc *crtc,
13587 struct drm_framebuffer *fb,
13588 int crtc_x, int crtc_y,
13589 unsigned int crtc_w, unsigned int crtc_h,
13590 uint32_t src_x, uint32_t src_y,
13591 uint32_t src_w, uint32_t src_h,
13592 struct drm_modeset_acquire_ctx *ctx)
13593 {
13594 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13595 int ret;
13596 struct drm_plane_state *old_plane_state, *new_plane_state;
13597 struct intel_plane *intel_plane = to_intel_plane(plane);
13598 struct drm_framebuffer *old_fb;
13599 struct drm_crtc_state *crtc_state = crtc->state;
13600 struct i915_vma *old_vma;
13601
13602 /*
13603 * When crtc is inactive or there is a modeset pending,
13604 * wait for it to complete in the slowpath
13605 */
13606 if (!crtc_state->active || needs_modeset(crtc_state) ||
13607 to_intel_crtc_state(crtc_state)->update_pipe)
13608 goto slow;
13609
13610 old_plane_state = plane->state;
13611
13612 /*
13613 * If any parameters change that may affect watermarks,
13614 * take the slowpath. Only changing fb or position should be
13615 * in the fastpath.
13616 */
13617 if (old_plane_state->crtc != crtc ||
13618 old_plane_state->src_w != src_w ||
13619 old_plane_state->src_h != src_h ||
13620 old_plane_state->crtc_w != crtc_w ||
13621 old_plane_state->crtc_h != crtc_h ||
13622 !old_plane_state->fb != !fb)
13623 goto slow;
13624
13625 new_plane_state = intel_plane_duplicate_state(plane);
13626 if (!new_plane_state)
13627 return -ENOMEM;
13628
13629 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13630
13631 new_plane_state->src_x = src_x;
13632 new_plane_state->src_y = src_y;
13633 new_plane_state->src_w = src_w;
13634 new_plane_state->src_h = src_h;
13635 new_plane_state->crtc_x = crtc_x;
13636 new_plane_state->crtc_y = crtc_y;
13637 new_plane_state->crtc_w = crtc_w;
13638 new_plane_state->crtc_h = crtc_h;
13639
13640 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13641 to_intel_plane_state(new_plane_state));
13642 if (ret)
13643 goto out_free;
13644
13645 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13646 if (ret)
13647 goto out_free;
13648
13649 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13650 int align = intel_cursor_alignment(dev_priv);
13651
13652 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13653 if (ret) {
13654 DRM_DEBUG_KMS("failed to attach phys object\n");
13655 goto out_unlock;
13656 }
13657 } else {
13658 struct i915_vma *vma;
13659
13660 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13661 if (IS_ERR(vma)) {
13662 DRM_DEBUG_KMS("failed to pin object\n");
13663
13664 ret = PTR_ERR(vma);
13665 goto out_unlock;
13666 }
13667
13668 to_intel_plane_state(new_plane_state)->vma = vma;
13669 }
13670
13671 old_fb = old_plane_state->fb;
13672 old_vma = to_intel_plane_state(old_plane_state)->vma;
13673
13674 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13675 intel_plane->frontbuffer_bit);
13676
13677 /* Swap plane state */
13678 new_plane_state->fence = old_plane_state->fence;
13679 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13680 new_plane_state->fence = NULL;
13681 new_plane_state->fb = old_fb;
13682 to_intel_plane_state(new_plane_state)->vma = old_vma;
13683
13684 if (plane->state->visible) {
13685 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13686 intel_plane->update_plane(intel_plane,
13687 to_intel_crtc_state(crtc->state),
13688 to_intel_plane_state(plane->state));
13689 } else {
13690 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13691 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13692 }
13693
13694 intel_cleanup_plane_fb(plane, new_plane_state);
13695
13696 out_unlock:
13697 mutex_unlock(&dev_priv->drm.struct_mutex);
13698 out_free:
13699 intel_plane_destroy_state(plane, new_plane_state);
13700 return ret;
13701
13702 slow:
13703 return drm_atomic_helper_update_plane(plane, crtc, fb,
13704 crtc_x, crtc_y, crtc_w, crtc_h,
13705 src_x, src_y, src_w, src_h, ctx);
13706 }
13707
13708 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13709 .update_plane = intel_legacy_cursor_update,
13710 .disable_plane = drm_atomic_helper_disable_plane,
13711 .destroy = intel_plane_destroy,
13712 .set_property = drm_atomic_helper_plane_set_property,
13713 .atomic_get_property = intel_plane_atomic_get_property,
13714 .atomic_set_property = intel_plane_atomic_set_property,
13715 .atomic_duplicate_state = intel_plane_duplicate_state,
13716 .atomic_destroy_state = intel_plane_destroy_state,
13717 };
13718
13719 static struct intel_plane *
13720 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13721 {
13722 struct intel_plane *primary = NULL;
13723 struct intel_plane_state *state = NULL;
13724 const uint32_t *intel_primary_formats;
13725 unsigned int supported_rotations;
13726 unsigned int num_formats;
13727 int ret;
13728
13729 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13730 if (!primary) {
13731 ret = -ENOMEM;
13732 goto fail;
13733 }
13734
13735 state = intel_create_plane_state(&primary->base);
13736 if (!state) {
13737 ret = -ENOMEM;
13738 goto fail;
13739 }
13740
13741 primary->base.state = &state->base;
13742
13743 primary->can_scale = false;
13744 primary->max_downscale = 1;
13745 if (INTEL_GEN(dev_priv) >= 9) {
13746 primary->can_scale = true;
13747 state->scaler_id = -1;
13748 }
13749 primary->pipe = pipe;
13750 /*
13751 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13752 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13753 */
13754 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13755 primary->plane = (enum plane) !pipe;
13756 else
13757 primary->plane = (enum plane) pipe;
13758 primary->id = PLANE_PRIMARY;
13759 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13760 primary->check_plane = intel_check_primary_plane;
13761
13762 if (INTEL_GEN(dev_priv) >= 9) {
13763 intel_primary_formats = skl_primary_formats;
13764 num_formats = ARRAY_SIZE(skl_primary_formats);
13765
13766 primary->update_plane = skylake_update_primary_plane;
13767 primary->disable_plane = skylake_disable_primary_plane;
13768 } else if (INTEL_GEN(dev_priv) >= 4) {
13769 intel_primary_formats = i965_primary_formats;
13770 num_formats = ARRAY_SIZE(i965_primary_formats);
13771
13772 primary->update_plane = i9xx_update_primary_plane;
13773 primary->disable_plane = i9xx_disable_primary_plane;
13774 } else {
13775 intel_primary_formats = i8xx_primary_formats;
13776 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13777
13778 primary->update_plane = i9xx_update_primary_plane;
13779 primary->disable_plane = i9xx_disable_primary_plane;
13780 }
13781
13782 if (INTEL_GEN(dev_priv) >= 9)
13783 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13784 0, &intel_plane_funcs,
13785 intel_primary_formats, num_formats,
13786 DRM_PLANE_TYPE_PRIMARY,
13787 "plane 1%c", pipe_name(pipe));
13788 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13789 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13790 0, &intel_plane_funcs,
13791 intel_primary_formats, num_formats,
13792 DRM_PLANE_TYPE_PRIMARY,
13793 "primary %c", pipe_name(pipe));
13794 else
13795 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13796 0, &intel_plane_funcs,
13797 intel_primary_formats, num_formats,
13798 DRM_PLANE_TYPE_PRIMARY,
13799 "plane %c", plane_name(primary->plane));
13800 if (ret)
13801 goto fail;
13802
13803 if (INTEL_GEN(dev_priv) >= 9) {
13804 supported_rotations =
13805 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13806 DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13807 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13808 supported_rotations =
13809 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13810 DRM_MODE_REFLECT_X;
13811 } else if (INTEL_GEN(dev_priv) >= 4) {
13812 supported_rotations =
13813 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13814 } else {
13815 supported_rotations = DRM_MODE_ROTATE_0;
13816 }
13817
13818 if (INTEL_GEN(dev_priv) >= 4)
13819 drm_plane_create_rotation_property(&primary->base,
13820 DRM_MODE_ROTATE_0,
13821 supported_rotations);
13822
13823 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13824
13825 return primary;
13826
13827 fail:
13828 kfree(state);
13829 kfree(primary);
13830
13831 return ERR_PTR(ret);
13832 }
13833
13834 static struct intel_plane *
13835 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13836 enum pipe pipe)
13837 {
13838 struct intel_plane *cursor = NULL;
13839 struct intel_plane_state *state = NULL;
13840 int ret;
13841
13842 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13843 if (!cursor) {
13844 ret = -ENOMEM;
13845 goto fail;
13846 }
13847
13848 state = intel_create_plane_state(&cursor->base);
13849 if (!state) {
13850 ret = -ENOMEM;
13851 goto fail;
13852 }
13853
13854 cursor->base.state = &state->base;
13855
13856 cursor->can_scale = false;
13857 cursor->max_downscale = 1;
13858 cursor->pipe = pipe;
13859 cursor->plane = pipe;
13860 cursor->id = PLANE_CURSOR;
13861 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13862
13863 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13864 cursor->update_plane = i845_update_cursor;
13865 cursor->disable_plane = i845_disable_cursor;
13866 cursor->check_plane = i845_check_cursor;
13867 } else {
13868 cursor->update_plane = i9xx_update_cursor;
13869 cursor->disable_plane = i9xx_disable_cursor;
13870 cursor->check_plane = i9xx_check_cursor;
13871 }
13872
13873 cursor->cursor.base = ~0;
13874 cursor->cursor.cntl = ~0;
13875
13876 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13877 cursor->cursor.size = ~0;
13878
13879 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13880 0, &intel_cursor_plane_funcs,
13881 intel_cursor_formats,
13882 ARRAY_SIZE(intel_cursor_formats),
13883 DRM_PLANE_TYPE_CURSOR,
13884 "cursor %c", pipe_name(pipe));
13885 if (ret)
13886 goto fail;
13887
13888 if (INTEL_GEN(dev_priv) >= 4)
13889 drm_plane_create_rotation_property(&cursor->base,
13890 DRM_MODE_ROTATE_0,
13891 DRM_MODE_ROTATE_0 |
13892 DRM_MODE_ROTATE_180);
13893
13894 if (INTEL_GEN(dev_priv) >= 9)
13895 state->scaler_id = -1;
13896
13897 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13898
13899 return cursor;
13900
13901 fail:
13902 kfree(state);
13903 kfree(cursor);
13904
13905 return ERR_PTR(ret);
13906 }
13907
13908 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13909 struct intel_crtc_state *crtc_state)
13910 {
13911 struct intel_crtc_scaler_state *scaler_state =
13912 &crtc_state->scaler_state;
13913 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13914 int i;
13915
13916 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13917 if (!crtc->num_scalers)
13918 return;
13919
13920 for (i = 0; i < crtc->num_scalers; i++) {
13921 struct intel_scaler *scaler = &scaler_state->scalers[i];
13922
13923 scaler->in_use = 0;
13924 scaler->mode = PS_SCALER_MODE_DYN;
13925 }
13926
13927 scaler_state->scaler_id = -1;
13928 }
13929
13930 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13931 {
13932 struct intel_crtc *intel_crtc;
13933 struct intel_crtc_state *crtc_state = NULL;
13934 struct intel_plane *primary = NULL;
13935 struct intel_plane *cursor = NULL;
13936 int sprite, ret;
13937
13938 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13939 if (!intel_crtc)
13940 return -ENOMEM;
13941
13942 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13943 if (!crtc_state) {
13944 ret = -ENOMEM;
13945 goto fail;
13946 }
13947 intel_crtc->config = crtc_state;
13948 intel_crtc->base.state = &crtc_state->base;
13949 crtc_state->base.crtc = &intel_crtc->base;
13950
13951 primary = intel_primary_plane_create(dev_priv, pipe);
13952 if (IS_ERR(primary)) {
13953 ret = PTR_ERR(primary);
13954 goto fail;
13955 }
13956 intel_crtc->plane_ids_mask |= BIT(primary->id);
13957
13958 for_each_sprite(dev_priv, pipe, sprite) {
13959 struct intel_plane *plane;
13960
13961 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13962 if (IS_ERR(plane)) {
13963 ret = PTR_ERR(plane);
13964 goto fail;
13965 }
13966 intel_crtc->plane_ids_mask |= BIT(plane->id);
13967 }
13968
13969 cursor = intel_cursor_plane_create(dev_priv, pipe);
13970 if (IS_ERR(cursor)) {
13971 ret = PTR_ERR(cursor);
13972 goto fail;
13973 }
13974 intel_crtc->plane_ids_mask |= BIT(cursor->id);
13975
13976 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13977 &primary->base, &cursor->base,
13978 &intel_crtc_funcs,
13979 "pipe %c", pipe_name(pipe));
13980 if (ret)
13981 goto fail;
13982
13983 intel_crtc->pipe = pipe;
13984 intel_crtc->plane = primary->plane;
13985
13986 /* initialize shared scalers */
13987 intel_crtc_init_scalers(intel_crtc, crtc_state);
13988
13989 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13990 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13991 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13992 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13993
13994 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13995
13996 intel_color_init(&intel_crtc->base);
13997
13998 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13999
14000 return 0;
14001
14002 fail:
14003 /*
14004 * drm_mode_config_cleanup() will free up any
14005 * crtcs/planes already initialized.
14006 */
14007 kfree(crtc_state);
14008 kfree(intel_crtc);
14009
14010 return ret;
14011 }
14012
14013 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14014 {
14015 struct drm_device *dev = connector->base.dev;
14016
14017 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14018
14019 if (!connector->base.state->crtc)
14020 return INVALID_PIPE;
14021
14022 return to_intel_crtc(connector->base.state->crtc)->pipe;
14023 }
14024
14025 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14026 struct drm_file *file)
14027 {
14028 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14029 struct drm_crtc *drmmode_crtc;
14030 struct intel_crtc *crtc;
14031
14032 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14033 if (!drmmode_crtc)
14034 return -ENOENT;
14035
14036 crtc = to_intel_crtc(drmmode_crtc);
14037 pipe_from_crtc_id->pipe = crtc->pipe;
14038
14039 return 0;
14040 }
14041
14042 static int intel_encoder_clones(struct intel_encoder *encoder)
14043 {
14044 struct drm_device *dev = encoder->base.dev;
14045 struct intel_encoder *source_encoder;
14046 int index_mask = 0;
14047 int entry = 0;
14048
14049 for_each_intel_encoder(dev, source_encoder) {
14050 if (encoders_cloneable(encoder, source_encoder))
14051 index_mask |= (1 << entry);
14052
14053 entry++;
14054 }
14055
14056 return index_mask;
14057 }
14058
14059 static bool has_edp_a(struct drm_i915_private *dev_priv)
14060 {
14061 if (!IS_MOBILE(dev_priv))
14062 return false;
14063
14064 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14065 return false;
14066
14067 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14068 return false;
14069
14070 return true;
14071 }
14072
14073 static bool intel_crt_present(struct drm_i915_private *dev_priv)
14074 {
14075 if (INTEL_GEN(dev_priv) >= 9)
14076 return false;
14077
14078 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14079 return false;
14080
14081 if (IS_CHERRYVIEW(dev_priv))
14082 return false;
14083
14084 if (HAS_PCH_LPT_H(dev_priv) &&
14085 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14086 return false;
14087
14088 /* DDI E can't be used if DDI A requires 4 lanes */
14089 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14090 return false;
14091
14092 if (!dev_priv->vbt.int_crt_support)
14093 return false;
14094
14095 return true;
14096 }
14097
14098 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14099 {
14100 int pps_num;
14101 int pps_idx;
14102
14103 if (HAS_DDI(dev_priv))
14104 return;
14105 /*
14106 * This w/a is needed at least on CPT/PPT, but to be sure apply it
14107 * everywhere where registers can be write protected.
14108 */
14109 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14110 pps_num = 2;
14111 else
14112 pps_num = 1;
14113
14114 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14115 u32 val = I915_READ(PP_CONTROL(pps_idx));
14116
14117 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14118 I915_WRITE(PP_CONTROL(pps_idx), val);
14119 }
14120 }
14121
14122 static void intel_pps_init(struct drm_i915_private *dev_priv)
14123 {
14124 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14125 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14126 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14127 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14128 else
14129 dev_priv->pps_mmio_base = PPS_BASE;
14130
14131 intel_pps_unlock_regs_wa(dev_priv);
14132 }
14133
14134 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14135 {
14136 struct intel_encoder *encoder;
14137 bool dpd_is_edp = false;
14138
14139 intel_pps_init(dev_priv);
14140
14141 /*
14142 * intel_edp_init_connector() depends on this completing first, to
14143 * prevent the registeration of both eDP and LVDS and the incorrect
14144 * sharing of the PPS.
14145 */
14146 intel_lvds_init(dev_priv);
14147
14148 if (intel_crt_present(dev_priv))
14149 intel_crt_init(dev_priv);
14150
14151 if (IS_GEN9_LP(dev_priv)) {
14152 /*
14153 * FIXME: Broxton doesn't support port detection via the
14154 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14155 * detect the ports.
14156 */
14157 intel_ddi_init(dev_priv, PORT_A);
14158 intel_ddi_init(dev_priv, PORT_B);
14159 intel_ddi_init(dev_priv, PORT_C);
14160
14161 intel_dsi_init(dev_priv);
14162 } else if (HAS_DDI(dev_priv)) {
14163 int found;
14164
14165 /*
14166 * Haswell uses DDI functions to detect digital outputs.
14167 * On SKL pre-D0 the strap isn't connected, so we assume
14168 * it's there.
14169 */
14170 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14171 /* WaIgnoreDDIAStrap: skl */
14172 if (found || IS_GEN9_BC(dev_priv))
14173 intel_ddi_init(dev_priv, PORT_A);
14174
14175 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14176 * register */
14177 found = I915_READ(SFUSE_STRAP);
14178
14179 if (found & SFUSE_STRAP_DDIB_DETECTED)
14180 intel_ddi_init(dev_priv, PORT_B);
14181 if (found & SFUSE_STRAP_DDIC_DETECTED)
14182 intel_ddi_init(dev_priv, PORT_C);
14183 if (found & SFUSE_STRAP_DDID_DETECTED)
14184 intel_ddi_init(dev_priv, PORT_D);
14185 /*
14186 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14187 */
14188 if (IS_GEN9_BC(dev_priv) &&
14189 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14190 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14191 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14192 intel_ddi_init(dev_priv, PORT_E);
14193
14194 } else if (HAS_PCH_SPLIT(dev_priv)) {
14195 int found;
14196 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14197
14198 if (has_edp_a(dev_priv))
14199 intel_dp_init(dev_priv, DP_A, PORT_A);
14200
14201 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14202 /* PCH SDVOB multiplex with HDMIB */
14203 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14204 if (!found)
14205 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14206 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14207 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14208 }
14209
14210 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14211 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14212
14213 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14214 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14215
14216 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14217 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14218
14219 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14220 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14221 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14222 bool has_edp, has_port;
14223
14224 /*
14225 * The DP_DETECTED bit is the latched state of the DDC
14226 * SDA pin at boot. However since eDP doesn't require DDC
14227 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14228 * eDP ports may have been muxed to an alternate function.
14229 * Thus we can't rely on the DP_DETECTED bit alone to detect
14230 * eDP ports. Consult the VBT as well as DP_DETECTED to
14231 * detect eDP ports.
14232 *
14233 * Sadly the straps seem to be missing sometimes even for HDMI
14234 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14235 * and VBT for the presence of the port. Additionally we can't
14236 * trust the port type the VBT declares as we've seen at least
14237 * HDMI ports that the VBT claim are DP or eDP.
14238 */
14239 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14240 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14241 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14242 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14243 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14244 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14245
14246 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14247 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14248 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14249 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14250 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14251 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14252
14253 if (IS_CHERRYVIEW(dev_priv)) {
14254 /*
14255 * eDP not supported on port D,
14256 * so no need to worry about it
14257 */
14258 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14259 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14260 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14261 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14262 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14263 }
14264
14265 intel_dsi_init(dev_priv);
14266 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14267 bool found = false;
14268
14269 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14270 DRM_DEBUG_KMS("probing SDVOB\n");
14271 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14272 if (!found && IS_G4X(dev_priv)) {
14273 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14274 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14275 }
14276
14277 if (!found && IS_G4X(dev_priv))
14278 intel_dp_init(dev_priv, DP_B, PORT_B);
14279 }
14280
14281 /* Before G4X SDVOC doesn't have its own detect register */
14282
14283 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14284 DRM_DEBUG_KMS("probing SDVOC\n");
14285 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14286 }
14287
14288 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14289
14290 if (IS_G4X(dev_priv)) {
14291 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14292 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14293 }
14294 if (IS_G4X(dev_priv))
14295 intel_dp_init(dev_priv, DP_C, PORT_C);
14296 }
14297
14298 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14299 intel_dp_init(dev_priv, DP_D, PORT_D);
14300 } else if (IS_GEN2(dev_priv))
14301 intel_dvo_init(dev_priv);
14302
14303 if (SUPPORTS_TV(dev_priv))
14304 intel_tv_init(dev_priv);
14305
14306 intel_psr_init(dev_priv);
14307
14308 for_each_intel_encoder(&dev_priv->drm, encoder) {
14309 encoder->base.possible_crtcs = encoder->crtc_mask;
14310 encoder->base.possible_clones =
14311 intel_encoder_clones(encoder);
14312 }
14313
14314 intel_init_pch_refclk(dev_priv);
14315
14316 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14317 }
14318
14319 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14320 {
14321 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14322
14323 drm_framebuffer_cleanup(fb);
14324
14325 i915_gem_object_lock(intel_fb->obj);
14326 WARN_ON(!intel_fb->obj->framebuffer_references--);
14327 i915_gem_object_unlock(intel_fb->obj);
14328
14329 i915_gem_object_put(intel_fb->obj);
14330
14331 kfree(intel_fb);
14332 }
14333
14334 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14335 struct drm_file *file,
14336 unsigned int *handle)
14337 {
14338 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14339 struct drm_i915_gem_object *obj = intel_fb->obj;
14340
14341 if (obj->userptr.mm) {
14342 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14343 return -EINVAL;
14344 }
14345
14346 return drm_gem_handle_create(file, &obj->base, handle);
14347 }
14348
14349 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14350 struct drm_file *file,
14351 unsigned flags, unsigned color,
14352 struct drm_clip_rect *clips,
14353 unsigned num_clips)
14354 {
14355 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14356
14357 i915_gem_object_flush_if_display(obj);
14358 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14359
14360 return 0;
14361 }
14362
14363 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14364 .destroy = intel_user_framebuffer_destroy,
14365 .create_handle = intel_user_framebuffer_create_handle,
14366 .dirty = intel_user_framebuffer_dirty,
14367 };
14368
14369 static
14370 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14371 uint64_t fb_modifier, uint32_t pixel_format)
14372 {
14373 u32 gen = INTEL_GEN(dev_priv);
14374
14375 if (gen >= 9) {
14376 int cpp = drm_format_plane_cpp(pixel_format, 0);
14377
14378 /* "The stride in bytes must not exceed the of the size of 8K
14379 * pixels and 32K bytes."
14380 */
14381 return min(8192 * cpp, 32768);
14382 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14383 return 32*1024;
14384 } else if (gen >= 4) {
14385 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14386 return 16*1024;
14387 else
14388 return 32*1024;
14389 } else if (gen >= 3) {
14390 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14391 return 8*1024;
14392 else
14393 return 16*1024;
14394 } else {
14395 /* XXX DSPC is limited to 4k tiled */
14396 return 8*1024;
14397 }
14398 }
14399
14400 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14401 struct drm_i915_gem_object *obj,
14402 struct drm_mode_fb_cmd2 *mode_cmd)
14403 {
14404 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14405 struct drm_format_name_buf format_name;
14406 u32 pitch_limit, stride_alignment;
14407 unsigned int tiling, stride;
14408 int ret = -EINVAL;
14409
14410 i915_gem_object_lock(obj);
14411 obj->framebuffer_references++;
14412 tiling = i915_gem_object_get_tiling(obj);
14413 stride = i915_gem_object_get_stride(obj);
14414 i915_gem_object_unlock(obj);
14415
14416 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14417 /*
14418 * If there's a fence, enforce that
14419 * the fb modifier and tiling mode match.
14420 */
14421 if (tiling != I915_TILING_NONE &&
14422 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14423 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14424 goto err;
14425 }
14426 } else {
14427 if (tiling == I915_TILING_X) {
14428 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14429 } else if (tiling == I915_TILING_Y) {
14430 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14431 goto err;
14432 }
14433 }
14434
14435 /* Passed in modifier sanity checking. */
14436 switch (mode_cmd->modifier[0]) {
14437 case I915_FORMAT_MOD_Y_TILED:
14438 case I915_FORMAT_MOD_Yf_TILED:
14439 if (INTEL_GEN(dev_priv) < 9) {
14440 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14441 mode_cmd->modifier[0]);
14442 goto err;
14443 }
14444 case DRM_FORMAT_MOD_LINEAR:
14445 case I915_FORMAT_MOD_X_TILED:
14446 break;
14447 default:
14448 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14449 mode_cmd->modifier[0]);
14450 goto err;
14451 }
14452
14453 /*
14454 * gen2/3 display engine uses the fence if present,
14455 * so the tiling mode must match the fb modifier exactly.
14456 */
14457 if (INTEL_INFO(dev_priv)->gen < 4 &&
14458 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14459 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14460 goto err;
14461 }
14462
14463 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14464 mode_cmd->pixel_format);
14465 if (mode_cmd->pitches[0] > pitch_limit) {
14466 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14467 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14468 "tiled" : "linear",
14469 mode_cmd->pitches[0], pitch_limit);
14470 goto err;
14471 }
14472
14473 /*
14474 * If there's a fence, enforce that
14475 * the fb pitch and fence stride match.
14476 */
14477 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14478 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14479 mode_cmd->pitches[0], stride);
14480 goto err;
14481 }
14482
14483 /* Reject formats not supported by any plane early. */
14484 switch (mode_cmd->pixel_format) {
14485 case DRM_FORMAT_C8:
14486 case DRM_FORMAT_RGB565:
14487 case DRM_FORMAT_XRGB8888:
14488 case DRM_FORMAT_ARGB8888:
14489 break;
14490 case DRM_FORMAT_XRGB1555:
14491 if (INTEL_GEN(dev_priv) > 3) {
14492 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14493 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14494 goto err;
14495 }
14496 break;
14497 case DRM_FORMAT_ABGR8888:
14498 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14499 INTEL_GEN(dev_priv) < 9) {
14500 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14501 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14502 goto err;
14503 }
14504 break;
14505 case DRM_FORMAT_XBGR8888:
14506 case DRM_FORMAT_XRGB2101010:
14507 case DRM_FORMAT_XBGR2101010:
14508 if (INTEL_GEN(dev_priv) < 4) {
14509 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14510 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14511 goto err;
14512 }
14513 break;
14514 case DRM_FORMAT_ABGR2101010:
14515 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14516 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14517 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14518 goto err;
14519 }
14520 break;
14521 case DRM_FORMAT_YUYV:
14522 case DRM_FORMAT_UYVY:
14523 case DRM_FORMAT_YVYU:
14524 case DRM_FORMAT_VYUY:
14525 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14526 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14527 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14528 goto err;
14529 }
14530 break;
14531 default:
14532 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14533 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14534 goto err;
14535 }
14536
14537 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14538 if (mode_cmd->offsets[0] != 0)
14539 goto err;
14540
14541 drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14542 &intel_fb->base, mode_cmd);
14543
14544 stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14545 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14546 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14547 mode_cmd->pitches[0], stride_alignment);
14548 goto err;
14549 }
14550
14551 intel_fb->obj = obj;
14552
14553 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14554 if (ret)
14555 goto err;
14556
14557 ret = drm_framebuffer_init(obj->base.dev,
14558 &intel_fb->base,
14559 &intel_fb_funcs);
14560 if (ret) {
14561 DRM_ERROR("framebuffer init failed %d\n", ret);
14562 goto err;
14563 }
14564
14565 return 0;
14566
14567 err:
14568 i915_gem_object_lock(obj);
14569 obj->framebuffer_references--;
14570 i915_gem_object_unlock(obj);
14571 return ret;
14572 }
14573
14574 static struct drm_framebuffer *
14575 intel_user_framebuffer_create(struct drm_device *dev,
14576 struct drm_file *filp,
14577 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14578 {
14579 struct drm_framebuffer *fb;
14580 struct drm_i915_gem_object *obj;
14581 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14582
14583 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14584 if (!obj)
14585 return ERR_PTR(-ENOENT);
14586
14587 fb = intel_framebuffer_create(obj, &mode_cmd);
14588 if (IS_ERR(fb))
14589 i915_gem_object_put(obj);
14590
14591 return fb;
14592 }
14593
14594 static void intel_atomic_state_free(struct drm_atomic_state *state)
14595 {
14596 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14597
14598 drm_atomic_state_default_release(state);
14599
14600 i915_sw_fence_fini(&intel_state->commit_ready);
14601
14602 kfree(state);
14603 }
14604
14605 static const struct drm_mode_config_funcs intel_mode_funcs = {
14606 .fb_create = intel_user_framebuffer_create,
14607 .output_poll_changed = intel_fbdev_output_poll_changed,
14608 .atomic_check = intel_atomic_check,
14609 .atomic_commit = intel_atomic_commit,
14610 .atomic_state_alloc = intel_atomic_state_alloc,
14611 .atomic_state_clear = intel_atomic_state_clear,
14612 .atomic_state_free = intel_atomic_state_free,
14613 };
14614
14615 /**
14616 * intel_init_display_hooks - initialize the display modesetting hooks
14617 * @dev_priv: device private
14618 */
14619 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14620 {
14621 intel_init_cdclk_hooks(dev_priv);
14622
14623 if (INTEL_INFO(dev_priv)->gen >= 9) {
14624 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14625 dev_priv->display.get_initial_plane_config =
14626 skylake_get_initial_plane_config;
14627 dev_priv->display.crtc_compute_clock =
14628 haswell_crtc_compute_clock;
14629 dev_priv->display.crtc_enable = haswell_crtc_enable;
14630 dev_priv->display.crtc_disable = haswell_crtc_disable;
14631 } else if (HAS_DDI(dev_priv)) {
14632 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14633 dev_priv->display.get_initial_plane_config =
14634 ironlake_get_initial_plane_config;
14635 dev_priv->display.crtc_compute_clock =
14636 haswell_crtc_compute_clock;
14637 dev_priv->display.crtc_enable = haswell_crtc_enable;
14638 dev_priv->display.crtc_disable = haswell_crtc_disable;
14639 } else if (HAS_PCH_SPLIT(dev_priv)) {
14640 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14641 dev_priv->display.get_initial_plane_config =
14642 ironlake_get_initial_plane_config;
14643 dev_priv->display.crtc_compute_clock =
14644 ironlake_crtc_compute_clock;
14645 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14646 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14647 } else if (IS_CHERRYVIEW(dev_priv)) {
14648 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14649 dev_priv->display.get_initial_plane_config =
14650 i9xx_get_initial_plane_config;
14651 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14652 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14653 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14654 } else if (IS_VALLEYVIEW(dev_priv)) {
14655 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14656 dev_priv->display.get_initial_plane_config =
14657 i9xx_get_initial_plane_config;
14658 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14659 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14660 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14661 } else if (IS_G4X(dev_priv)) {
14662 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14663 dev_priv->display.get_initial_plane_config =
14664 i9xx_get_initial_plane_config;
14665 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14666 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14667 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14668 } else if (IS_PINEVIEW(dev_priv)) {
14669 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14670 dev_priv->display.get_initial_plane_config =
14671 i9xx_get_initial_plane_config;
14672 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14673 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14674 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14675 } else if (!IS_GEN2(dev_priv)) {
14676 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14677 dev_priv->display.get_initial_plane_config =
14678 i9xx_get_initial_plane_config;
14679 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14680 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14681 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14682 } else {
14683 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14684 dev_priv->display.get_initial_plane_config =
14685 i9xx_get_initial_plane_config;
14686 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14687 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14688 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14689 }
14690
14691 if (IS_GEN5(dev_priv)) {
14692 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14693 } else if (IS_GEN6(dev_priv)) {
14694 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14695 } else if (IS_IVYBRIDGE(dev_priv)) {
14696 /* FIXME: detect B0+ stepping and use auto training */
14697 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14698 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14699 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14700 }
14701
14702 if (dev_priv->info.gen >= 9)
14703 dev_priv->display.update_crtcs = skl_update_crtcs;
14704 else
14705 dev_priv->display.update_crtcs = intel_update_crtcs;
14706
14707 switch (INTEL_INFO(dev_priv)->gen) {
14708 case 2:
14709 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14710 break;
14711
14712 case 3:
14713 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14714 break;
14715
14716 case 4:
14717 case 5:
14718 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14719 break;
14720
14721 case 6:
14722 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14723 break;
14724 case 7:
14725 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14726 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14727 break;
14728 case 9:
14729 /* Drop through - unsupported since execlist only. */
14730 default:
14731 /* Default just returns -ENODEV to indicate unsupported */
14732 dev_priv->display.queue_flip = intel_default_queue_flip;
14733 }
14734 }
14735
14736 /*
14737 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14738 */
14739 static void quirk_ssc_force_disable(struct drm_device *dev)
14740 {
14741 struct drm_i915_private *dev_priv = to_i915(dev);
14742 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14743 DRM_INFO("applying lvds SSC disable quirk\n");
14744 }
14745
14746 /*
14747 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14748 * brightness value
14749 */
14750 static void quirk_invert_brightness(struct drm_device *dev)
14751 {
14752 struct drm_i915_private *dev_priv = to_i915(dev);
14753 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14754 DRM_INFO("applying inverted panel brightness quirk\n");
14755 }
14756
14757 /* Some VBT's incorrectly indicate no backlight is present */
14758 static void quirk_backlight_present(struct drm_device *dev)
14759 {
14760 struct drm_i915_private *dev_priv = to_i915(dev);
14761 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14762 DRM_INFO("applying backlight present quirk\n");
14763 }
14764
14765 /* Dell Wyse 3040 doesn't work well with some Dell monitors (E-series).
14766 * Workaround this by skipping DP DPMS D3 transition.
14767 */
14768 static void quirk_disable_dp_dpms_d3(struct drm_device *dev)
14769 {
14770 struct drm_i915_private *dev_priv = to_i915(dev);
14771 dev_priv->quirks |= QUIRK_SKIP_DP_DPMS_D3;
14772 DRM_INFO("Applying Wyse 3040 quirk\n");
14773 }
14774
14775 struct intel_quirk {
14776 int device;
14777 int subsystem_vendor;
14778 int subsystem_device;
14779 void (*hook)(struct drm_device *dev);
14780 };
14781
14782 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14783 struct intel_dmi_quirk {
14784 void (*hook)(struct drm_device *dev);
14785 const struct dmi_system_id (*dmi_id_list)[];
14786 };
14787
14788 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14789 {
14790 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14791 return 1;
14792 }
14793
14794 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14795 {
14796 .dmi_id_list = &(const struct dmi_system_id[]) {
14797 {
14798 .callback = intel_dmi_reverse_brightness,
14799 .ident = "NCR Corporation",
14800 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14801 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14802 },
14803 },
14804 { } /* terminating entry */
14805 },
14806 .hook = quirk_invert_brightness,
14807 },
14808 };
14809
14810 static struct intel_quirk intel_quirks[] = {
14811 /* Lenovo U160 cannot use SSC on LVDS */
14812 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14813
14814 /* Sony Vaio Y cannot use SSC on LVDS */
14815 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14816
14817 /* Acer Aspire 5734Z must invert backlight brightness */
14818 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14819
14820 /* Acer/eMachines G725 */
14821 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14822
14823 /* Acer/eMachines e725 */
14824 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14825
14826 /* Acer/Packard Bell NCL20 */
14827 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14828
14829 /* Acer Aspire 4736Z */
14830 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14831
14832 /* Acer Aspire 5336 */
14833 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14834
14835 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14836 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14837
14838 /* Acer C720 Chromebook (Core i3 4005U) */
14839 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14840
14841 /* Apple Macbook 2,1 (Core 2 T7400) */
14842 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14843
14844 /* Apple Macbook 4,1 */
14845 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14846
14847 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14848 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14849
14850 /* HP Chromebook 14 (Celeron 2955U) */
14851 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14852
14853 /* Dell Chromebook 11 */
14854 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14855
14856 /* Dell Chromebook 11 (2015 version) */
14857 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14858
14859 /* Dell Wyse 3040 */
14860 { 0x22b0, 0x1028, 0x07c1, quirk_disable_dp_dpms_d3 },
14861 };
14862
14863 static void intel_init_quirks(struct drm_device *dev)
14864 {
14865 struct pci_dev *d = dev->pdev;
14866 int i;
14867
14868 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14869 struct intel_quirk *q = &intel_quirks[i];
14870
14871 if (d->device == q->device &&
14872 (d->subsystem_vendor == q->subsystem_vendor ||
14873 q->subsystem_vendor == PCI_ANY_ID) &&
14874 (d->subsystem_device == q->subsystem_device ||
14875 q->subsystem_device == PCI_ANY_ID))
14876 q->hook(dev);
14877 }
14878 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14879 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14880 intel_dmi_quirks[i].hook(dev);
14881 }
14882 }
14883
14884 /* Disable the VGA plane that we never use */
14885 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14886 {
14887 struct pci_dev *pdev = dev_priv->drm.pdev;
14888 u8 sr1;
14889 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14890
14891 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14892 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14893 outb(SR01, VGA_SR_INDEX);
14894 sr1 = inb(VGA_SR_DATA);
14895 outb(sr1 | 1<<5, VGA_SR_DATA);
14896 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14897 udelay(300);
14898
14899 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14900 POSTING_READ(vga_reg);
14901 }
14902
14903 void intel_modeset_init_hw(struct drm_device *dev)
14904 {
14905 struct drm_i915_private *dev_priv = to_i915(dev);
14906
14907 intel_update_cdclk(dev_priv);
14908 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14909
14910 intel_init_clock_gating(dev_priv);
14911 }
14912
14913 /*
14914 * Calculate what we think the watermarks should be for the state we've read
14915 * out of the hardware and then immediately program those watermarks so that
14916 * we ensure the hardware settings match our internal state.
14917 *
14918 * We can calculate what we think WM's should be by creating a duplicate of the
14919 * current state (which was constructed during hardware readout) and running it
14920 * through the atomic check code to calculate new watermark values in the
14921 * state object.
14922 */
14923 static void sanitize_watermarks(struct drm_device *dev)
14924 {
14925 struct drm_i915_private *dev_priv = to_i915(dev);
14926 struct drm_atomic_state *state;
14927 struct intel_atomic_state *intel_state;
14928 struct drm_crtc *crtc;
14929 struct drm_crtc_state *cstate;
14930 struct drm_modeset_acquire_ctx ctx;
14931 int ret;
14932 int i;
14933
14934 /* Only supported on platforms that use atomic watermark design */
14935 if (!dev_priv->display.optimize_watermarks)
14936 return;
14937
14938 /*
14939 * We need to hold connection_mutex before calling duplicate_state so
14940 * that the connector loop is protected.
14941 */
14942 drm_modeset_acquire_init(&ctx, 0);
14943 retry:
14944 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14945 if (ret == -EDEADLK) {
14946 drm_modeset_backoff(&ctx);
14947 goto retry;
14948 } else if (WARN_ON(ret)) {
14949 goto fail;
14950 }
14951
14952 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14953 if (WARN_ON(IS_ERR(state)))
14954 goto fail;
14955
14956 intel_state = to_intel_atomic_state(state);
14957
14958 /*
14959 * Hardware readout is the only time we don't want to calculate
14960 * intermediate watermarks (since we don't trust the current
14961 * watermarks).
14962 */
14963 if (!HAS_GMCH_DISPLAY(dev_priv))
14964 intel_state->skip_intermediate_wm = true;
14965
14966 ret = intel_atomic_check(dev, state);
14967 if (ret) {
14968 /*
14969 * If we fail here, it means that the hardware appears to be
14970 * programmed in a way that shouldn't be possible, given our
14971 * understanding of watermark requirements. This might mean a
14972 * mistake in the hardware readout code or a mistake in the
14973 * watermark calculations for a given platform. Raise a WARN
14974 * so that this is noticeable.
14975 *
14976 * If this actually happens, we'll have to just leave the
14977 * BIOS-programmed watermarks untouched and hope for the best.
14978 */
14979 WARN(true, "Could not determine valid watermarks for inherited state\n");
14980 goto put_state;
14981 }
14982
14983 /* Write calculated watermark values back */
14984 for_each_new_crtc_in_state(state, crtc, cstate, i) {
14985 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14986
14987 cs->wm.need_postvbl_update = true;
14988 dev_priv->display.optimize_watermarks(intel_state, cs);
14989 }
14990
14991 put_state:
14992 drm_atomic_state_put(state);
14993 fail:
14994 drm_modeset_drop_locks(&ctx);
14995 drm_modeset_acquire_fini(&ctx);
14996 }
14997
14998 int intel_modeset_init(struct drm_device *dev)
14999 {
15000 struct drm_i915_private *dev_priv = to_i915(dev);
15001 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15002 enum pipe pipe;
15003 struct intel_crtc *crtc;
15004
15005 drm_mode_config_init(dev);
15006
15007 dev->mode_config.min_width = 0;
15008 dev->mode_config.min_height = 0;
15009
15010 dev->mode_config.preferred_depth = 24;
15011 dev->mode_config.prefer_shadow = 1;
15012
15013 dev->mode_config.allow_fb_modifiers = true;
15014
15015 dev->mode_config.funcs = &intel_mode_funcs;
15016
15017 init_llist_head(&dev_priv->atomic_helper.free_list);
15018 INIT_WORK(&dev_priv->atomic_helper.free_work,
15019 intel_atomic_helper_free_state_worker);
15020
15021 intel_init_quirks(dev);
15022
15023 intel_init_pm(dev_priv);
15024
15025 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15026 return 0;
15027
15028 /*
15029 * There may be no VBT; and if the BIOS enabled SSC we can
15030 * just keep using it to avoid unnecessary flicker. Whereas if the
15031 * BIOS isn't using it, don't assume it will work even if the VBT
15032 * indicates as much.
15033 */
15034 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15035 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15036 DREF_SSC1_ENABLE);
15037
15038 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15039 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15040 bios_lvds_use_ssc ? "en" : "dis",
15041 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15042 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15043 }
15044 }
15045
15046 if (IS_GEN2(dev_priv)) {
15047 dev->mode_config.max_width = 2048;
15048 dev->mode_config.max_height = 2048;
15049 } else if (IS_GEN3(dev_priv)) {
15050 dev->mode_config.max_width = 4096;
15051 dev->mode_config.max_height = 4096;
15052 } else {
15053 dev->mode_config.max_width = 8192;
15054 dev->mode_config.max_height = 8192;
15055 }
15056
15057 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15058 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15059 dev->mode_config.cursor_height = 1023;
15060 } else if (IS_GEN2(dev_priv)) {
15061 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15062 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15063 } else {
15064 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15065 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15066 }
15067
15068 dev->mode_config.fb_base = ggtt->mappable_base;
15069
15070 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15071 INTEL_INFO(dev_priv)->num_pipes,
15072 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15073
15074 for_each_pipe(dev_priv, pipe) {
15075 int ret;
15076
15077 ret = intel_crtc_init(dev_priv, pipe);
15078 if (ret) {
15079 drm_mode_config_cleanup(dev);
15080 return ret;
15081 }
15082 }
15083
15084 intel_shared_dpll_init(dev);
15085
15086 intel_update_czclk(dev_priv);
15087 intel_modeset_init_hw(dev);
15088
15089 if (dev_priv->max_cdclk_freq == 0)
15090 intel_update_max_cdclk(dev_priv);
15091
15092 /* Just disable it once at startup */
15093 i915_disable_vga(dev_priv);
15094 intel_setup_outputs(dev_priv);
15095
15096 drm_modeset_lock_all(dev);
15097 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15098 drm_modeset_unlock_all(dev);
15099
15100 for_each_intel_crtc(dev, crtc) {
15101 struct intel_initial_plane_config plane_config = {};
15102
15103 if (!crtc->active)
15104 continue;
15105
15106 /*
15107 * Note that reserving the BIOS fb up front prevents us
15108 * from stuffing other stolen allocations like the ring
15109 * on top. This prevents some ugliness at boot time, and
15110 * can even allow for smooth boot transitions if the BIOS
15111 * fb is large enough for the active pipe configuration.
15112 */
15113 dev_priv->display.get_initial_plane_config(crtc,
15114 &plane_config);
15115
15116 /*
15117 * If the fb is shared between multiple heads, we'll
15118 * just get the first one.
15119 */
15120 intel_find_initial_plane_obj(crtc, &plane_config);
15121 }
15122
15123 /*
15124 * Make sure hardware watermarks really match the state we read out.
15125 * Note that we need to do this after reconstructing the BIOS fb's
15126 * since the watermark calculation done here will use pstate->fb.
15127 */
15128 if (!HAS_GMCH_DISPLAY(dev_priv))
15129 sanitize_watermarks(dev);
15130
15131 return 0;
15132 }
15133
15134 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15135 {
15136 /* 640x480@60Hz, ~25175 kHz */
15137 struct dpll clock = {
15138 .m1 = 18,
15139 .m2 = 7,
15140 .p1 = 13,
15141 .p2 = 4,
15142 .n = 2,
15143 };
15144 u32 dpll, fp;
15145 int i;
15146
15147 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
15148
15149 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
15150 pipe_name(pipe), clock.vco, clock.dot);
15151
15152 fp = i9xx_dpll_compute_fp(&clock);
15153 dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
15154 DPLL_VGA_MODE_DIS |
15155 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
15156 PLL_P2_DIVIDE_BY_4 |
15157 PLL_REF_INPUT_DREFCLK |
15158 DPLL_VCO_ENABLE;
15159
15160 I915_WRITE(FP0(pipe), fp);
15161 I915_WRITE(FP1(pipe), fp);
15162
15163 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
15164 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
15165 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
15166 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
15167 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
15168 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
15169 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
15170
15171 /*
15172 * Apparently we need to have VGA mode enabled prior to changing
15173 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
15174 * dividers, even though the register value does change.
15175 */
15176 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
15177 I915_WRITE(DPLL(pipe), dpll);
15178
15179 /* Wait for the clocks to stabilize. */
15180 POSTING_READ(DPLL(pipe));
15181 udelay(150);
15182
15183 /* The pixel multiplier can only be updated once the
15184 * DPLL is enabled and the clocks are stable.
15185 *
15186 * So write it again.
15187 */
15188 I915_WRITE(DPLL(pipe), dpll);
15189
15190 /* We do this three times for luck */
15191 for (i = 0; i < 3 ; i++) {
15192 I915_WRITE(DPLL(pipe), dpll);
15193 POSTING_READ(DPLL(pipe));
15194 udelay(150); /* wait for warmup */
15195 }
15196
15197 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
15198 POSTING_READ(PIPECONF(pipe));
15199 }
15200
15201 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15202 {
15203 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
15204 pipe_name(pipe));
15205
15206 assert_plane_disabled(dev_priv, PLANE_A);
15207 assert_plane_disabled(dev_priv, PLANE_B);
15208
15209 I915_WRITE(PIPECONF(pipe), 0);
15210 POSTING_READ(PIPECONF(pipe));
15211
15212 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
15213 DRM_ERROR("pipe %c off wait timed out\n", pipe_name(pipe));
15214
15215 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
15216 POSTING_READ(DPLL(pipe));
15217 }
15218
15219 static bool
15220 intel_check_plane_mapping(struct intel_crtc *crtc)
15221 {
15222 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15223 u32 val;
15224
15225 if (INTEL_INFO(dev_priv)->num_pipes == 1)
15226 return true;
15227
15228 val = I915_READ(DSPCNTR(!crtc->plane));
15229
15230 if ((val & DISPLAY_PLANE_ENABLE) &&
15231 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15232 return false;
15233
15234 return true;
15235 }
15236
15237 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15238 {
15239 struct drm_device *dev = crtc->base.dev;
15240 struct intel_encoder *encoder;
15241
15242 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15243 return true;
15244
15245 return false;
15246 }
15247
15248 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15249 {
15250 struct drm_device *dev = encoder->base.dev;
15251 struct intel_connector *connector;
15252
15253 for_each_connector_on_encoder(dev, &encoder->base, connector)
15254 return connector;
15255
15256 return NULL;
15257 }
15258
15259 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15260 enum transcoder pch_transcoder)
15261 {
15262 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15263 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15264 }
15265
15266 static void intel_sanitize_crtc(struct intel_crtc *crtc,
15267 struct drm_modeset_acquire_ctx *ctx)
15268 {
15269 struct drm_device *dev = crtc->base.dev;
15270 struct drm_i915_private *dev_priv = to_i915(dev);
15271 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15272
15273 /* Clear any frame start delays used for debugging left by the BIOS */
15274 if (!transcoder_is_dsi(cpu_transcoder)) {
15275 i915_reg_t reg = PIPECONF(cpu_transcoder);
15276
15277 I915_WRITE(reg,
15278 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15279 }
15280
15281 /* restore vblank interrupts to correct state */
15282 drm_crtc_vblank_reset(&crtc->base);
15283 if (crtc->active) {
15284 struct intel_plane *plane;
15285
15286 drm_crtc_vblank_on(&crtc->base);
15287
15288 /* Disable everything but the primary plane */
15289 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15290 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15291 continue;
15292
15293 trace_intel_disable_plane(&plane->base, crtc);
15294 plane->disable_plane(plane, crtc);
15295 }
15296 }
15297
15298 /* We need to sanitize the plane -> pipe mapping first because this will
15299 * disable the crtc (and hence change the state) if it is wrong. Note
15300 * that gen4+ has a fixed plane -> pipe mapping. */
15301 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15302 bool plane;
15303
15304 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15305 crtc->base.base.id, crtc->base.name);
15306
15307 /* Pipe has the wrong plane attached and the plane is active.
15308 * Temporarily change the plane mapping and disable everything
15309 * ... */
15310 plane = crtc->plane;
15311 crtc->base.primary->state->visible = true;
15312 crtc->plane = !plane;
15313 intel_crtc_disable_noatomic(&crtc->base, ctx);
15314 crtc->plane = plane;
15315 }
15316
15317 /* Adjust the state of the output pipe according to whether we
15318 * have active connectors/encoders. */
15319 if (crtc->active && !intel_crtc_has_encoders(crtc))
15320 intel_crtc_disable_noatomic(&crtc->base, ctx);
15321
15322 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15323 /*
15324 * We start out with underrun reporting disabled to avoid races.
15325 * For correct bookkeeping mark this on active crtcs.
15326 *
15327 * Also on gmch platforms we dont have any hardware bits to
15328 * disable the underrun reporting. Which means we need to start
15329 * out with underrun reporting disabled also on inactive pipes,
15330 * since otherwise we'll complain about the garbage we read when
15331 * e.g. coming up after runtime pm.
15332 *
15333 * No protection against concurrent access is required - at
15334 * worst a fifo underrun happens which also sets this to false.
15335 */
15336 crtc->cpu_fifo_underrun_disabled = true;
15337 /*
15338 * We track the PCH trancoder underrun reporting state
15339 * within the crtc. With crtc for pipe A housing the underrun
15340 * reporting state for PCH transcoder A, crtc for pipe B housing
15341 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15342 * and marking underrun reporting as disabled for the non-existing
15343 * PCH transcoders B and C would prevent enabling the south
15344 * error interrupt (see cpt_can_enable_serr_int()).
15345 */
15346 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15347 crtc->pch_fifo_underrun_disabled = true;
15348 }
15349 }
15350
15351 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15352 {
15353 struct intel_connector *connector;
15354
15355 /* We need to check both for a crtc link (meaning that the
15356 * encoder is active and trying to read from a pipe) and the
15357 * pipe itself being active. */
15358 bool has_active_crtc = encoder->base.crtc &&
15359 to_intel_crtc(encoder->base.crtc)->active;
15360
15361 connector = intel_encoder_find_connector(encoder);
15362 if (connector && !has_active_crtc) {
15363 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15364 encoder->base.base.id,
15365 encoder->base.name);
15366
15367 /* Connector is active, but has no active pipe. This is
15368 * fallout from our resume register restoring. Disable
15369 * the encoder manually again. */
15370 if (encoder->base.crtc) {
15371 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15372
15373 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15374 encoder->base.base.id,
15375 encoder->base.name);
15376 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15377 if (encoder->post_disable)
15378 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15379 }
15380 encoder->base.crtc = NULL;
15381
15382 /* Inconsistent output/port/pipe state happens presumably due to
15383 * a bug in one of the get_hw_state functions. Or someplace else
15384 * in our code, like the register restore mess on resume. Clamp
15385 * things to off as a safer default. */
15386
15387 connector->base.dpms = DRM_MODE_DPMS_OFF;
15388 connector->base.encoder = NULL;
15389 }
15390 /* Enabled encoders without active connectors will be fixed in
15391 * the crtc fixup. */
15392 }
15393
15394 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15395 {
15396 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15397
15398 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15399 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15400 i915_disable_vga(dev_priv);
15401 }
15402 }
15403
15404 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15405 {
15406 /* This function can be called both from intel_modeset_setup_hw_state or
15407 * at a very early point in our resume sequence, where the power well
15408 * structures are not yet restored. Since this function is at a very
15409 * paranoid "someone might have enabled VGA while we were not looking"
15410 * level, just check if the power well is enabled instead of trying to
15411 * follow the "don't touch the power well if we don't need it" policy
15412 * the rest of the driver uses. */
15413 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15414 return;
15415
15416 i915_redisable_vga_power_on(dev_priv);
15417
15418 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15419 }
15420
15421 static bool primary_get_hw_state(struct intel_plane *plane)
15422 {
15423 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15424
15425 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15426 }
15427
15428 /* FIXME read out full plane state for all planes */
15429 static void readout_plane_state(struct intel_crtc *crtc)
15430 {
15431 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15432 bool visible;
15433
15434 visible = crtc->active && primary_get_hw_state(primary);
15435
15436 intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15437 to_intel_plane_state(primary->base.state),
15438 visible);
15439 }
15440
15441 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15442 {
15443 struct drm_i915_private *dev_priv = to_i915(dev);
15444 enum pipe pipe;
15445 struct intel_crtc *crtc;
15446 struct intel_encoder *encoder;
15447 struct intel_connector *connector;
15448 struct drm_connector_list_iter conn_iter;
15449 int i;
15450
15451 dev_priv->active_crtcs = 0;
15452
15453 for_each_intel_crtc(dev, crtc) {
15454 struct intel_crtc_state *crtc_state =
15455 to_intel_crtc_state(crtc->base.state);
15456
15457 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15458 memset(crtc_state, 0, sizeof(*crtc_state));
15459 crtc_state->base.crtc = &crtc->base;
15460
15461 crtc_state->base.active = crtc_state->base.enable =
15462 dev_priv->display.get_pipe_config(crtc, crtc_state);
15463
15464 crtc->base.enabled = crtc_state->base.enable;
15465 crtc->active = crtc_state->base.active;
15466
15467 if (crtc_state->base.active)
15468 dev_priv->active_crtcs |= 1 << crtc->pipe;
15469
15470 readout_plane_state(crtc);
15471
15472 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15473 crtc->base.base.id, crtc->base.name,
15474 enableddisabled(crtc_state->base.active));
15475 }
15476
15477 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15478 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15479
15480 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15481 &pll->state.hw_state);
15482 pll->state.crtc_mask = 0;
15483 for_each_intel_crtc(dev, crtc) {
15484 struct intel_crtc_state *crtc_state =
15485 to_intel_crtc_state(crtc->base.state);
15486
15487 if (crtc_state->base.active &&
15488 crtc_state->shared_dpll == pll)
15489 pll->state.crtc_mask |= 1 << crtc->pipe;
15490 }
15491 pll->active_mask = pll->state.crtc_mask;
15492
15493 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15494 pll->name, pll->state.crtc_mask, pll->on);
15495 }
15496
15497 for_each_intel_encoder(dev, encoder) {
15498 pipe = 0;
15499
15500 if (encoder->get_hw_state(encoder, &pipe)) {
15501 struct intel_crtc_state *crtc_state;
15502
15503 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15504 crtc_state = to_intel_crtc_state(crtc->base.state);
15505
15506 encoder->base.crtc = &crtc->base;
15507 crtc_state->output_types |= 1 << encoder->type;
15508 encoder->get_config(encoder, crtc_state);
15509 } else {
15510 encoder->base.crtc = NULL;
15511 }
15512
15513 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15514 encoder->base.base.id, encoder->base.name,
15515 enableddisabled(encoder->base.crtc),
15516 pipe_name(pipe));
15517 }
15518
15519 drm_connector_list_iter_begin(dev, &conn_iter);
15520 for_each_intel_connector_iter(connector, &conn_iter) {
15521 if (connector->get_hw_state(connector)) {
15522 connector->base.dpms = DRM_MODE_DPMS_ON;
15523
15524 encoder = connector->encoder;
15525 connector->base.encoder = &encoder->base;
15526
15527 if (encoder->base.crtc &&
15528 encoder->base.crtc->state->active) {
15529 /*
15530 * This has to be done during hardware readout
15531 * because anything calling .crtc_disable may
15532 * rely on the connector_mask being accurate.
15533 */
15534 encoder->base.crtc->state->connector_mask |=
15535 1 << drm_connector_index(&connector->base);
15536 encoder->base.crtc->state->encoder_mask |=
15537 1 << drm_encoder_index(&encoder->base);
15538 }
15539
15540 } else {
15541 connector->base.dpms = DRM_MODE_DPMS_OFF;
15542 connector->base.encoder = NULL;
15543 }
15544 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15545 connector->base.base.id, connector->base.name,
15546 enableddisabled(connector->base.encoder));
15547 }
15548 drm_connector_list_iter_end(&conn_iter);
15549
15550 for_each_intel_crtc(dev, crtc) {
15551 struct intel_crtc_state *crtc_state =
15552 to_intel_crtc_state(crtc->base.state);
15553 int pixclk = 0;
15554
15555 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15556 if (crtc_state->base.active) {
15557 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15558 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15559 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15560
15561 /*
15562 * The initial mode needs to be set in order to keep
15563 * the atomic core happy. It wants a valid mode if the
15564 * crtc's enabled, so we do the above call.
15565 *
15566 * But we don't set all the derived state fully, hence
15567 * set a flag to indicate that a full recalculation is
15568 * needed on the next commit.
15569 */
15570 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15571
15572 intel_crtc_compute_pixel_rate(crtc_state);
15573
15574 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15575 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15576 pixclk = crtc_state->pixel_rate;
15577 else
15578 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15579
15580 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15581 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15582 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15583
15584 drm_calc_timestamping_constants(&crtc->base,
15585 &crtc_state->base.adjusted_mode);
15586 update_scanline_offset(crtc);
15587 }
15588
15589 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15590
15591 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15592 }
15593 }
15594
15595 static void
15596 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15597 {
15598 struct intel_encoder *encoder;
15599
15600 for_each_intel_encoder(&dev_priv->drm, encoder) {
15601 u64 get_domains;
15602 enum intel_display_power_domain domain;
15603
15604 if (!encoder->get_power_domains)
15605 continue;
15606
15607 get_domains = encoder->get_power_domains(encoder);
15608 for_each_power_domain(domain, get_domains)
15609 intel_display_power_get(dev_priv, domain);
15610 }
15611 }
15612
15613 /* Scan out the current hw modeset state,
15614 * and sanitizes it to the current state
15615 */
15616 static void
15617 intel_modeset_setup_hw_state(struct drm_device *dev,
15618 struct drm_modeset_acquire_ctx *ctx)
15619 {
15620 struct drm_i915_private *dev_priv = to_i915(dev);
15621 enum pipe pipe;
15622 struct intel_crtc *crtc;
15623 struct intel_encoder *encoder;
15624 int i;
15625
15626 intel_modeset_readout_hw_state(dev);
15627
15628 /* HW state is read out, now we need to sanitize this mess. */
15629 get_encoder_power_domains(dev_priv);
15630
15631 for_each_intel_encoder(dev, encoder) {
15632 intel_sanitize_encoder(encoder);
15633 }
15634
15635 for_each_pipe(dev_priv, pipe) {
15636 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15637
15638 intel_sanitize_crtc(crtc, ctx);
15639 intel_dump_pipe_config(crtc, crtc->config,
15640 "[setup_hw_state]");
15641 }
15642
15643 intel_modeset_update_connector_atomic_state(dev);
15644
15645 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15646 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15647
15648 if (!pll->on || pll->active_mask)
15649 continue;
15650
15651 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15652
15653 pll->funcs.disable(dev_priv, pll);
15654 pll->on = false;
15655 }
15656
15657 if (IS_G4X(dev_priv)) {
15658 g4x_wm_get_hw_state(dev);
15659 g4x_wm_sanitize(dev_priv);
15660 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15661 vlv_wm_get_hw_state(dev);
15662 vlv_wm_sanitize(dev_priv);
15663 } else if (IS_GEN9(dev_priv)) {
15664 skl_wm_get_hw_state(dev);
15665 } else if (HAS_PCH_SPLIT(dev_priv)) {
15666 ilk_wm_get_hw_state(dev);
15667 }
15668
15669 for_each_intel_crtc(dev, crtc) {
15670 u64 put_domains;
15671
15672 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15673 if (WARN_ON(put_domains))
15674 modeset_put_power_domains(dev_priv, put_domains);
15675 }
15676 intel_display_set_init_power(dev_priv, false);
15677
15678 intel_power_domains_verify_state(dev_priv);
15679
15680 intel_fbc_init_pipe_state(dev_priv);
15681 }
15682
15683 void intel_display_resume(struct drm_device *dev)
15684 {
15685 struct drm_i915_private *dev_priv = to_i915(dev);
15686 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15687 struct drm_modeset_acquire_ctx ctx;
15688 int ret;
15689
15690 dev_priv->modeset_restore_state = NULL;
15691 if (state)
15692 state->acquire_ctx = &ctx;
15693
15694 drm_modeset_acquire_init(&ctx, 0);
15695
15696 while (1) {
15697 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15698 if (ret != -EDEADLK)
15699 break;
15700
15701 drm_modeset_backoff(&ctx);
15702 }
15703
15704 if (!ret)
15705 ret = __intel_display_resume(dev, state, &ctx);
15706
15707 drm_modeset_drop_locks(&ctx);
15708 drm_modeset_acquire_fini(&ctx);
15709
15710 if (ret)
15711 DRM_ERROR("Restoring old state failed with %i\n", ret);
15712 if (state)
15713 drm_atomic_state_put(state);
15714 }
15715
15716 void intel_modeset_gem_init(struct drm_device *dev)
15717 {
15718 struct drm_i915_private *dev_priv = to_i915(dev);
15719
15720 intel_init_gt_powersave(dev_priv);
15721
15722 intel_setup_overlay(dev_priv);
15723 }
15724
15725 int intel_connector_register(struct drm_connector *connector)
15726 {
15727 struct intel_connector *intel_connector = to_intel_connector(connector);
15728 int ret;
15729
15730 ret = intel_backlight_device_register(intel_connector);
15731 if (ret)
15732 goto err;
15733
15734 return 0;
15735
15736 err:
15737 return ret;
15738 }
15739
15740 void intel_connector_unregister(struct drm_connector *connector)
15741 {
15742 struct intel_connector *intel_connector = to_intel_connector(connector);
15743
15744 intel_backlight_device_unregister(intel_connector);
15745 intel_panel_destroy_backlight(connector);
15746 }
15747
15748 void intel_modeset_cleanup(struct drm_device *dev)
15749 {
15750 struct drm_i915_private *dev_priv = to_i915(dev);
15751
15752 flush_work(&dev_priv->atomic_helper.free_work);
15753 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15754
15755 intel_disable_gt_powersave(dev_priv);
15756
15757 /*
15758 * Interrupts and polling as the first thing to avoid creating havoc.
15759 * Too much stuff here (turning of connectors, ...) would
15760 * experience fancy races otherwise.
15761 */
15762 intel_irq_uninstall(dev_priv);
15763
15764 /*
15765 * Due to the hpd irq storm handling the hotplug work can re-arm the
15766 * poll handlers. Hence disable polling after hpd handling is shut down.
15767 */
15768 drm_kms_helper_poll_fini(dev);
15769
15770 intel_unregister_dsm_handler();
15771
15772 intel_fbc_global_disable(dev_priv);
15773
15774 /* flush any delayed tasks or pending work */
15775 flush_scheduled_work();
15776
15777 drm_mode_config_cleanup(dev);
15778
15779 intel_cleanup_overlay(dev_priv);
15780
15781 intel_cleanup_gt_powersave(dev_priv);
15782
15783 intel_teardown_gmbus(dev_priv);
15784 }
15785
15786 void intel_connector_attach_encoder(struct intel_connector *connector,
15787 struct intel_encoder *encoder)
15788 {
15789 connector->encoder = encoder;
15790 drm_mode_connector_attach_encoder(&connector->base,
15791 &encoder->base);
15792 }
15793
15794 /*
15795 * set vga decode state - true == enable VGA decode
15796 */
15797 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15798 {
15799 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15800 u16 gmch_ctrl;
15801
15802 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15803 DRM_ERROR("failed to read control word\n");
15804 return -EIO;
15805 }
15806
15807 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15808 return 0;
15809
15810 if (state)
15811 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15812 else
15813 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15814
15815 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15816 DRM_ERROR("failed to write control word\n");
15817 return -EIO;
15818 }
15819
15820 return 0;
15821 }
15822
15823 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15824
15825 struct intel_display_error_state {
15826
15827 u32 power_well_driver;
15828
15829 int num_transcoders;
15830
15831 struct intel_cursor_error_state {
15832 u32 control;
15833 u32 position;
15834 u32 base;
15835 u32 size;
15836 } cursor[I915_MAX_PIPES];
15837
15838 struct intel_pipe_error_state {
15839 bool power_domain_on;
15840 u32 source;
15841 u32 stat;
15842 } pipe[I915_MAX_PIPES];
15843
15844 struct intel_plane_error_state {
15845 u32 control;
15846 u32 stride;
15847 u32 size;
15848 u32 pos;
15849 u32 addr;
15850 u32 surface;
15851 u32 tile_offset;
15852 } plane[I915_MAX_PIPES];
15853
15854 struct intel_transcoder_error_state {
15855 bool power_domain_on;
15856 enum transcoder cpu_transcoder;
15857
15858 u32 conf;
15859
15860 u32 htotal;
15861 u32 hblank;
15862 u32 hsync;
15863 u32 vtotal;
15864 u32 vblank;
15865 u32 vsync;
15866 } transcoder[4];
15867 };
15868
15869 struct intel_display_error_state *
15870 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15871 {
15872 struct intel_display_error_state *error;
15873 int transcoders[] = {
15874 TRANSCODER_A,
15875 TRANSCODER_B,
15876 TRANSCODER_C,
15877 TRANSCODER_EDP,
15878 };
15879 int i;
15880
15881 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15882 return NULL;
15883
15884 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15885 if (error == NULL)
15886 return NULL;
15887
15888 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15889 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15890
15891 for_each_pipe(dev_priv, i) {
15892 error->pipe[i].power_domain_on =
15893 __intel_display_power_is_enabled(dev_priv,
15894 POWER_DOMAIN_PIPE(i));
15895 if (!error->pipe[i].power_domain_on)
15896 continue;
15897
15898 error->cursor[i].control = I915_READ(CURCNTR(i));
15899 error->cursor[i].position = I915_READ(CURPOS(i));
15900 error->cursor[i].base = I915_READ(CURBASE(i));
15901
15902 error->plane[i].control = I915_READ(DSPCNTR(i));
15903 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15904 if (INTEL_GEN(dev_priv) <= 3) {
15905 error->plane[i].size = I915_READ(DSPSIZE(i));
15906 error->plane[i].pos = I915_READ(DSPPOS(i));
15907 }
15908 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15909 error->plane[i].addr = I915_READ(DSPADDR(i));
15910 if (INTEL_GEN(dev_priv) >= 4) {
15911 error->plane[i].surface = I915_READ(DSPSURF(i));
15912 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15913 }
15914
15915 error->pipe[i].source = I915_READ(PIPESRC(i));
15916
15917 if (HAS_GMCH_DISPLAY(dev_priv))
15918 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15919 }
15920
15921 /* Note: this does not include DSI transcoders. */
15922 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15923 if (HAS_DDI(dev_priv))
15924 error->num_transcoders++; /* Account for eDP. */
15925
15926 for (i = 0; i < error->num_transcoders; i++) {
15927 enum transcoder cpu_transcoder = transcoders[i];
15928
15929 error->transcoder[i].power_domain_on =
15930 __intel_display_power_is_enabled(dev_priv,
15931 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15932 if (!error->transcoder[i].power_domain_on)
15933 continue;
15934
15935 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15936
15937 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15938 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15939 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15940 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15941 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15942 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15943 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15944 }
15945
15946 return error;
15947 }
15948
15949 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15950
15951 void
15952 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15953 struct intel_display_error_state *error)
15954 {
15955 struct drm_i915_private *dev_priv = m->i915;
15956 int i;
15957
15958 if (!error)
15959 return;
15960
15961 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15962 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15963 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15964 error->power_well_driver);
15965 for_each_pipe(dev_priv, i) {
15966 err_printf(m, "Pipe [%d]:\n", i);
15967 err_printf(m, " Power: %s\n",
15968 onoff(error->pipe[i].power_domain_on));
15969 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15970 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15971
15972 err_printf(m, "Plane [%d]:\n", i);
15973 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15974 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15975 if (INTEL_GEN(dev_priv) <= 3) {
15976 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15977 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15978 }
15979 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15980 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15981 if (INTEL_GEN(dev_priv) >= 4) {
15982 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15983 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15984 }
15985
15986 err_printf(m, "Cursor [%d]:\n", i);
15987 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15988 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15989 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15990 }
15991
15992 for (i = 0; i < error->num_transcoders; i++) {
15993 err_printf(m, "CPU transcoder: %s\n",
15994 transcoder_name(error->transcoder[i].cpu_transcoder));
15995 err_printf(m, " Power: %s\n",
15996 onoff(error->transcoder[i].power_domain_on));
15997 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15998 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15999 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16000 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16001 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16002 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16003 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16004 }
16005 }
16006
16007 #endif