]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge airlied/drm-next into drm-misc-next
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int glk_calc_cdclk(int max_pixclk);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_GEN9_LP(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644 {
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663 }
664
665 /*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680 {
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 /*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738 {
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777 }
778
779 /*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794 {
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836 }
837
838 /*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847 {
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936 }
937
938 /*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003 {
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1015 *
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1018 *
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1021 *
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1025 */
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1032 {
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035 return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1043
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1048
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1052
1053 return line1 == line2;
1054 }
1055
1056 /*
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1059 *
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1063 *
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1066 *
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1070 *
1071 */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1199
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1202
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1224
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232 {
1233 bool cur_state;
1234
1235 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1249 {
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1254
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1259
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1268 }
1269
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1277 {
1278 u32 val;
1279 bool cur_state;
1280
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int i;
1295
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1303 }
1304
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1313 }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int sprite;
1320
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1327 }
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1334 }
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 u32 val;
1358 bool enabled;
1359
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1372
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389 {
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408 {
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424 {
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1440 {
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1453 {
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1490 {
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1493
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1497
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1502 1))
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1508 {
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1511
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1516
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1519
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1527 {
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1532
1533 mutex_lock(&dev_priv->sb_lock);
1534
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540 mutex_unlock(&dev_priv->sb_lock);
1541
1542 /*
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 */
1545 udelay(1);
1546
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 1))
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1559 {
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 assert_pipe_disabled(dev_priv, pipe);
1564
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1567
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1570
1571 if (pipe != PIPE_A) {
1572 /*
1573 * WaPixelRepeatModeFixForC0:chv
1574 *
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1577 */
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583 /*
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1586 */
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591 }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596 struct intel_crtc *crtc;
1597 int count = 0;
1598
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 }
1603
1604 return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 /*
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1626 */
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 }
1631
1632 /*
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1636 */
1637 I915_WRITE(reg, 0);
1638
1639 I915_WRITE(reg, dpll);
1640
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1644
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1651 *
1652 * So write it again.
1653 */
1654 I915_WRITE(reg, dpll);
1655 }
1656
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1673 *
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1675 *
1676 * Note! This is for pre-ILK only.
1677 */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1682
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 }
1692
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707 u32 val;
1708
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1711
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1725
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1728
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 mutex_lock(&dev_priv->sb_lock);
1738
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744 mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1750 {
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1770 }
1771
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781 {
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1786
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1801 }
1802
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807 if (HAS_PCH_IBX(dev_priv)) {
1808 /*
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1812 */
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 }
1819
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1829
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1839 {
1840 u32 val, pipeconf_val;
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1859
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1871 {
1872 i915_reg_t reg;
1873 uint32_t val;
1874
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1881
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903 u32 val;
1904
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924 WARN_ON(!crtc->config->has_pch_encoder);
1925
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1935 *
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938 */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1947
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1953
1954 /*
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1958 */
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1971 }
1972 /* FIXME: assert CPU port conditions for SNB+ */
1973 }
1974
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1981 }
1982
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1985
1986 /*
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1992 */
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2001 *
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2005 *
2006 * Will wait until the pipe has shut down before returning.
2007 */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2015
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018 /*
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2021 */
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2025
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2030
2031 /*
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2034 */
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2042
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2055 {
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2082 }
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2087 }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2092 {
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2106 {
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121 return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126 unsigned int size = 0;
2127 int i;
2128
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132 return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2139 {
2140 view->type = I915_GGTT_VIEW_NORMAL;
2141 if (drm_rotation_90_or_270(rotation)) {
2142 view->type = I915_GGTT_VIEW_ROTATED;
2143 view->rotated = to_intel_framebuffer(fb)->rot_info;
2144 }
2145 }
2146
2147 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2148 {
2149 if (INTEL_INFO(dev_priv)->gen >= 9)
2150 return 256 * 1024;
2151 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2152 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2153 return 128 * 1024;
2154 else if (INTEL_INFO(dev_priv)->gen >= 4)
2155 return 4 * 1024;
2156 else
2157 return 0;
2158 }
2159
2160 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2161 uint64_t fb_modifier)
2162 {
2163 switch (fb_modifier) {
2164 case DRM_FORMAT_MOD_NONE:
2165 return intel_linear_alignment(dev_priv);
2166 case I915_FORMAT_MOD_X_TILED:
2167 if (INTEL_INFO(dev_priv)->gen >= 9)
2168 return 256 * 1024;
2169 return 0;
2170 case I915_FORMAT_MOD_Y_TILED:
2171 case I915_FORMAT_MOD_Yf_TILED:
2172 return 1 * 1024 * 1024;
2173 default:
2174 MISSING_CASE(fb_modifier);
2175 return 0;
2176 }
2177 }
2178
2179 struct i915_vma *
2180 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2181 {
2182 struct drm_device *dev = fb->dev;
2183 struct drm_i915_private *dev_priv = to_i915(dev);
2184 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2185 struct i915_ggtt_view view;
2186 struct i915_vma *vma;
2187 u32 alignment;
2188
2189 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2190
2191 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2192
2193 intel_fill_fb_ggtt_view(&view, fb, rotation);
2194
2195 /* Note that the w/a also requires 64 PTE of padding following the
2196 * bo. We currently fill all unused PTE with the shadow page and so
2197 * we should always have valid PTE following the scanout preventing
2198 * the VT-d warning.
2199 */
2200 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2201 alignment = 256 * 1024;
2202
2203 /*
2204 * Global gtt pte registers are special registers which actually forward
2205 * writes to a chunk of system memory. Which means that there is no risk
2206 * that the register values disappear as soon as we call
2207 * intel_runtime_pm_put(), so it is correct to wrap only the
2208 * pin/unpin/fence and not more.
2209 */
2210 intel_runtime_pm_get(dev_priv);
2211
2212 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2213 if (IS_ERR(vma))
2214 goto err;
2215
2216 if (i915_vma_is_map_and_fenceable(vma)) {
2217 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2218 * fence, whereas 965+ only requires a fence if using
2219 * framebuffer compression. For simplicity, we always, when
2220 * possible, install a fence as the cost is not that onerous.
2221 *
2222 * If we fail to fence the tiled scanout, then either the
2223 * modeset will reject the change (which is highly unlikely as
2224 * the affected systems, all but one, do not have unmappable
2225 * space) or we will not be able to enable full powersaving
2226 * techniques (also likely not to apply due to various limits
2227 * FBC and the like impose on the size of the buffer, which
2228 * presumably we violated anyway with this unmappable buffer).
2229 * Anyway, it is presumably better to stumble onwards with
2230 * something and try to run the system in a "less than optimal"
2231 * mode that matches the user configuration.
2232 */
2233 if (i915_vma_get_fence(vma) == 0)
2234 i915_vma_pin_fence(vma);
2235 }
2236
2237 i915_vma_get(vma);
2238 err:
2239 intel_runtime_pm_put(dev_priv);
2240 return vma;
2241 }
2242
2243 void intel_unpin_fb_vma(struct i915_vma *vma)
2244 {
2245 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2246
2247 i915_vma_unpin_fence(vma);
2248 i915_gem_object_unpin_from_display_plane(vma);
2249 i915_vma_put(vma);
2250 }
2251
2252 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2253 unsigned int rotation)
2254 {
2255 if (drm_rotation_90_or_270(rotation))
2256 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2257 else
2258 return fb->pitches[plane];
2259 }
2260
2261 /*
2262 * Convert the x/y offsets into a linear offset.
2263 * Only valid with 0/180 degree rotation, which is fine since linear
2264 * offset is only used with linear buffers on pre-hsw and tiled buffers
2265 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2266 */
2267 u32 intel_fb_xy_to_linear(int x, int y,
2268 const struct intel_plane_state *state,
2269 int plane)
2270 {
2271 const struct drm_framebuffer *fb = state->base.fb;
2272 unsigned int cpp = fb->format->cpp[plane];
2273 unsigned int pitch = fb->pitches[plane];
2274
2275 return y * pitch + x * cpp;
2276 }
2277
2278 /*
2279 * Add the x/y offsets derived from fb->offsets[] to the user
2280 * specified plane src x/y offsets. The resulting x/y offsets
2281 * specify the start of scanout from the beginning of the gtt mapping.
2282 */
2283 void intel_add_fb_offsets(int *x, int *y,
2284 const struct intel_plane_state *state,
2285 int plane)
2286
2287 {
2288 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2289 unsigned int rotation = state->base.rotation;
2290
2291 if (drm_rotation_90_or_270(rotation)) {
2292 *x += intel_fb->rotated[plane].x;
2293 *y += intel_fb->rotated[plane].y;
2294 } else {
2295 *x += intel_fb->normal[plane].x;
2296 *y += intel_fb->normal[plane].y;
2297 }
2298 }
2299
2300 /*
2301 * Input tile dimensions and pitch must already be
2302 * rotated to match x and y, and in pixel units.
2303 */
2304 static u32 _intel_adjust_tile_offset(int *x, int *y,
2305 unsigned int tile_width,
2306 unsigned int tile_height,
2307 unsigned int tile_size,
2308 unsigned int pitch_tiles,
2309 u32 old_offset,
2310 u32 new_offset)
2311 {
2312 unsigned int pitch_pixels = pitch_tiles * tile_width;
2313 unsigned int tiles;
2314
2315 WARN_ON(old_offset & (tile_size - 1));
2316 WARN_ON(new_offset & (tile_size - 1));
2317 WARN_ON(new_offset > old_offset);
2318
2319 tiles = (old_offset - new_offset) / tile_size;
2320
2321 *y += tiles / pitch_tiles * tile_height;
2322 *x += tiles % pitch_tiles * tile_width;
2323
2324 /* minimize x in case it got needlessly big */
2325 *y += *x / pitch_pixels * tile_height;
2326 *x %= pitch_pixels;
2327
2328 return new_offset;
2329 }
2330
2331 /*
2332 * Adjust the tile offset by moving the difference into
2333 * the x/y offsets.
2334 */
2335 static u32 intel_adjust_tile_offset(int *x, int *y,
2336 const struct intel_plane_state *state, int plane,
2337 u32 old_offset, u32 new_offset)
2338 {
2339 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2340 const struct drm_framebuffer *fb = state->base.fb;
2341 unsigned int cpp = fb->format->cpp[plane];
2342 unsigned int rotation = state->base.rotation;
2343 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2344
2345 WARN_ON(new_offset > old_offset);
2346
2347 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int pitch_tiles;
2350
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb->modifier, cpp);
2354
2355 if (drm_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2363 tile_size, pitch_tiles,
2364 old_offset, new_offset);
2365 } else {
2366 old_offset += *y * pitch + *x * cpp;
2367
2368 *y = (old_offset - new_offset) / pitch;
2369 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2370 }
2371
2372 return new_offset;
2373 }
2374
2375 /*
2376 * Computes the linear offset to the base tile and adjusts
2377 * x, y. bytes per pixel is assumed to be a power-of-two.
2378 *
2379 * In the 90/270 rotated case, x and y are assumed
2380 * to be already rotated to match the rotated GTT view, and
2381 * pitch is the tile_height aligned framebuffer height.
2382 *
2383 * This function is used when computing the derived information
2384 * under intel_framebuffer, so using any of that information
2385 * here is not allowed. Anything under drm_framebuffer can be
2386 * used. This is why the user has to pass in the pitch since it
2387 * is specified in the rotated orientation.
2388 */
2389 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2390 int *x, int *y,
2391 const struct drm_framebuffer *fb, int plane,
2392 unsigned int pitch,
2393 unsigned int rotation,
2394 u32 alignment)
2395 {
2396 uint64_t fb_modifier = fb->modifier;
2397 unsigned int cpp = fb->format->cpp[plane];
2398 u32 offset, offset_aligned;
2399
2400 if (alignment)
2401 alignment--;
2402
2403 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2404 unsigned int tile_size, tile_width, tile_height;
2405 unsigned int tile_rows, tiles, pitch_tiles;
2406
2407 tile_size = intel_tile_size(dev_priv);
2408 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2409 fb_modifier, cpp);
2410
2411 if (drm_rotation_90_or_270(rotation)) {
2412 pitch_tiles = pitch / tile_height;
2413 swap(tile_width, tile_height);
2414 } else {
2415 pitch_tiles = pitch / (tile_width * cpp);
2416 }
2417
2418 tile_rows = *y / tile_height;
2419 *y %= tile_height;
2420
2421 tiles = *x / tile_width;
2422 *x %= tile_width;
2423
2424 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2425 offset_aligned = offset & ~alignment;
2426
2427 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2428 tile_size, pitch_tiles,
2429 offset, offset_aligned);
2430 } else {
2431 offset = *y * pitch + *x * cpp;
2432 offset_aligned = offset & ~alignment;
2433
2434 *y = (offset & alignment) / pitch;
2435 *x = ((offset & alignment) - *y * pitch) / cpp;
2436 }
2437
2438 return offset_aligned;
2439 }
2440
2441 u32 intel_compute_tile_offset(int *x, int *y,
2442 const struct intel_plane_state *state,
2443 int plane)
2444 {
2445 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2446 const struct drm_framebuffer *fb = state->base.fb;
2447 unsigned int rotation = state->base.rotation;
2448 int pitch = intel_fb_pitch(fb, plane, rotation);
2449 u32 alignment;
2450
2451 /* AUX_DIST needs only 4K alignment */
2452 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2453 alignment = 4096;
2454 else
2455 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2456
2457 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2458 rotation, alignment);
2459 }
2460
2461 /* Convert the fb->offset[] linear offset into x/y offsets */
2462 static void intel_fb_offset_to_xy(int *x, int *y,
2463 const struct drm_framebuffer *fb, int plane)
2464 {
2465 unsigned int cpp = fb->format->cpp[plane];
2466 unsigned int pitch = fb->pitches[plane];
2467 u32 linear_offset = fb->offsets[plane];
2468
2469 *y = linear_offset / pitch;
2470 *x = linear_offset % pitch / cpp;
2471 }
2472
2473 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2474 {
2475 switch (fb_modifier) {
2476 case I915_FORMAT_MOD_X_TILED:
2477 return I915_TILING_X;
2478 case I915_FORMAT_MOD_Y_TILED:
2479 return I915_TILING_Y;
2480 default:
2481 return I915_TILING_NONE;
2482 }
2483 }
2484
2485 static int
2486 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2487 struct drm_framebuffer *fb)
2488 {
2489 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2490 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2491 u32 gtt_offset_rotated = 0;
2492 unsigned int max_size = 0;
2493 int i, num_planes = fb->format->num_planes;
2494 unsigned int tile_size = intel_tile_size(dev_priv);
2495
2496 for (i = 0; i < num_planes; i++) {
2497 unsigned int width, height;
2498 unsigned int cpp, size;
2499 u32 offset;
2500 int x, y;
2501
2502 cpp = fb->format->cpp[i];
2503 width = drm_framebuffer_plane_width(fb->width, fb, i);
2504 height = drm_framebuffer_plane_height(fb->height, fb, i);
2505
2506 intel_fb_offset_to_xy(&x, &y, fb, i);
2507
2508 /*
2509 * The fence (if used) is aligned to the start of the object
2510 * so having the framebuffer wrap around across the edge of the
2511 * fenced region doesn't really work. We have no API to configure
2512 * the fence start offset within the object (nor could we probably
2513 * on gen2/3). So it's just easier if we just require that the
2514 * fb layout agrees with the fence layout. We already check that the
2515 * fb stride matches the fence stride elsewhere.
2516 */
2517 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2518 (x + width) * cpp > fb->pitches[i]) {
2519 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2520 i, fb->offsets[i]);
2521 return -EINVAL;
2522 }
2523
2524 /*
2525 * First pixel of the framebuffer from
2526 * the start of the normal gtt mapping.
2527 */
2528 intel_fb->normal[i].x = x;
2529 intel_fb->normal[i].y = y;
2530
2531 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2532 fb, 0, fb->pitches[i],
2533 DRM_ROTATE_0, tile_size);
2534 offset /= tile_size;
2535
2536 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2537 unsigned int tile_width, tile_height;
2538 unsigned int pitch_tiles;
2539 struct drm_rect r;
2540
2541 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2542 fb->modifier, cpp);
2543
2544 rot_info->plane[i].offset = offset;
2545 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2546 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2547 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2548
2549 intel_fb->rotated[i].pitch =
2550 rot_info->plane[i].height * tile_height;
2551
2552 /* how many tiles does this plane need */
2553 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2554 /*
2555 * If the plane isn't horizontally tile aligned,
2556 * we need one more tile.
2557 */
2558 if (x != 0)
2559 size++;
2560
2561 /* rotate the x/y offsets to match the GTT view */
2562 r.x1 = x;
2563 r.y1 = y;
2564 r.x2 = x + width;
2565 r.y2 = y + height;
2566 drm_rect_rotate(&r,
2567 rot_info->plane[i].width * tile_width,
2568 rot_info->plane[i].height * tile_height,
2569 DRM_ROTATE_270);
2570 x = r.x1;
2571 y = r.y1;
2572
2573 /* rotate the tile dimensions to match the GTT view */
2574 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2575 swap(tile_width, tile_height);
2576
2577 /*
2578 * We only keep the x/y offsets, so push all of the
2579 * gtt offset into the x/y offsets.
2580 */
2581 _intel_adjust_tile_offset(&x, &y,
2582 tile_width, tile_height,
2583 tile_size, pitch_tiles,
2584 gtt_offset_rotated * tile_size, 0);
2585
2586 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2587
2588 /*
2589 * First pixel of the framebuffer from
2590 * the start of the rotated gtt mapping.
2591 */
2592 intel_fb->rotated[i].x = x;
2593 intel_fb->rotated[i].y = y;
2594 } else {
2595 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2596 x * cpp, tile_size);
2597 }
2598
2599 /* how many tiles in total needed in the bo */
2600 max_size = max(max_size, offset + size);
2601 }
2602
2603 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2604 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2605 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2606 return -EINVAL;
2607 }
2608
2609 return 0;
2610 }
2611
2612 static int i9xx_format_to_fourcc(int format)
2613 {
2614 switch (format) {
2615 case DISPPLANE_8BPP:
2616 return DRM_FORMAT_C8;
2617 case DISPPLANE_BGRX555:
2618 return DRM_FORMAT_XRGB1555;
2619 case DISPPLANE_BGRX565:
2620 return DRM_FORMAT_RGB565;
2621 default:
2622 case DISPPLANE_BGRX888:
2623 return DRM_FORMAT_XRGB8888;
2624 case DISPPLANE_RGBX888:
2625 return DRM_FORMAT_XBGR8888;
2626 case DISPPLANE_BGRX101010:
2627 return DRM_FORMAT_XRGB2101010;
2628 case DISPPLANE_RGBX101010:
2629 return DRM_FORMAT_XBGR2101010;
2630 }
2631 }
2632
2633 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2634 {
2635 switch (format) {
2636 case PLANE_CTL_FORMAT_RGB_565:
2637 return DRM_FORMAT_RGB565;
2638 default:
2639 case PLANE_CTL_FORMAT_XRGB_8888:
2640 if (rgb_order) {
2641 if (alpha)
2642 return DRM_FORMAT_ABGR8888;
2643 else
2644 return DRM_FORMAT_XBGR8888;
2645 } else {
2646 if (alpha)
2647 return DRM_FORMAT_ARGB8888;
2648 else
2649 return DRM_FORMAT_XRGB8888;
2650 }
2651 case PLANE_CTL_FORMAT_XRGB_2101010:
2652 if (rgb_order)
2653 return DRM_FORMAT_XBGR2101010;
2654 else
2655 return DRM_FORMAT_XRGB2101010;
2656 }
2657 }
2658
2659 static bool
2660 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2661 struct intel_initial_plane_config *plane_config)
2662 {
2663 struct drm_device *dev = crtc->base.dev;
2664 struct drm_i915_private *dev_priv = to_i915(dev);
2665 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2666 struct drm_i915_gem_object *obj = NULL;
2667 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2668 struct drm_framebuffer *fb = &plane_config->fb->base;
2669 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2670 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2671 PAGE_SIZE);
2672
2673 size_aligned -= base_aligned;
2674
2675 if (plane_config->size == 0)
2676 return false;
2677
2678 /* If the FB is too big, just don't use it since fbdev is not very
2679 * important and we should probably use that space with FBC or other
2680 * features. */
2681 if (size_aligned * 2 > ggtt->stolen_usable_size)
2682 return false;
2683
2684 mutex_lock(&dev->struct_mutex);
2685
2686 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2687 base_aligned,
2688 base_aligned,
2689 size_aligned);
2690 if (!obj) {
2691 mutex_unlock(&dev->struct_mutex);
2692 return false;
2693 }
2694
2695 if (plane_config->tiling == I915_TILING_X)
2696 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2697
2698 mode_cmd.pixel_format = fb->format->format;
2699 mode_cmd.width = fb->width;
2700 mode_cmd.height = fb->height;
2701 mode_cmd.pitches[0] = fb->pitches[0];
2702 mode_cmd.modifier[0] = fb->modifier;
2703 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2704
2705 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2706 &mode_cmd, obj)) {
2707 DRM_DEBUG_KMS("intel fb init failed\n");
2708 goto out_unref_obj;
2709 }
2710
2711 mutex_unlock(&dev->struct_mutex);
2712
2713 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2714 return true;
2715
2716 out_unref_obj:
2717 i915_gem_object_put(obj);
2718 mutex_unlock(&dev->struct_mutex);
2719 return false;
2720 }
2721
2722 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2723 static void
2724 update_state_fb(struct drm_plane *plane)
2725 {
2726 if (plane->fb == plane->state->fb)
2727 return;
2728
2729 if (plane->state->fb)
2730 drm_framebuffer_unreference(plane->state->fb);
2731 plane->state->fb = plane->fb;
2732 if (plane->state->fb)
2733 drm_framebuffer_reference(plane->state->fb);
2734 }
2735
2736 static void
2737 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2738 struct intel_initial_plane_config *plane_config)
2739 {
2740 struct drm_device *dev = intel_crtc->base.dev;
2741 struct drm_i915_private *dev_priv = to_i915(dev);
2742 struct drm_crtc *c;
2743 struct drm_i915_gem_object *obj;
2744 struct drm_plane *primary = intel_crtc->base.primary;
2745 struct drm_plane_state *plane_state = primary->state;
2746 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2747 struct intel_plane *intel_plane = to_intel_plane(primary);
2748 struct intel_plane_state *intel_state =
2749 to_intel_plane_state(plane_state);
2750 struct drm_framebuffer *fb;
2751
2752 if (!plane_config->fb)
2753 return;
2754
2755 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2756 fb = &plane_config->fb->base;
2757 goto valid_fb;
2758 }
2759
2760 kfree(plane_config->fb);
2761
2762 /*
2763 * Failed to alloc the obj, check to see if we should share
2764 * an fb with another CRTC instead
2765 */
2766 for_each_crtc(dev, c) {
2767 struct intel_plane_state *state;
2768
2769 if (c == &intel_crtc->base)
2770 continue;
2771
2772 if (!to_intel_crtc(c)->active)
2773 continue;
2774
2775 state = to_intel_plane_state(c->primary->state);
2776 if (!state->vma)
2777 continue;
2778
2779 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2780 fb = c->primary->fb;
2781 drm_framebuffer_reference(fb);
2782 goto valid_fb;
2783 }
2784 }
2785
2786 /*
2787 * We've failed to reconstruct the BIOS FB. Current display state
2788 * indicates that the primary plane is visible, but has a NULL FB,
2789 * which will lead to problems later if we don't fix it up. The
2790 * simplest solution is to just disable the primary plane now and
2791 * pretend the BIOS never had it enabled.
2792 */
2793 plane_state->visible = false;
2794 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2795 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2796 intel_plane->disable_plane(primary, &intel_crtc->base);
2797
2798 return;
2799
2800 valid_fb:
2801 mutex_lock(&dev->struct_mutex);
2802 intel_state->vma =
2803 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2804 mutex_unlock(&dev->struct_mutex);
2805 if (IS_ERR(intel_state->vma)) {
2806 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2807 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2808
2809 intel_state->vma = NULL;
2810 drm_framebuffer_unreference(fb);
2811 return;
2812 }
2813
2814 plane_state->src_x = 0;
2815 plane_state->src_y = 0;
2816 plane_state->src_w = fb->width << 16;
2817 plane_state->src_h = fb->height << 16;
2818
2819 plane_state->crtc_x = 0;
2820 plane_state->crtc_y = 0;
2821 plane_state->crtc_w = fb->width;
2822 plane_state->crtc_h = fb->height;
2823
2824 intel_state->base.src = drm_plane_state_src(plane_state);
2825 intel_state->base.dst = drm_plane_state_dest(plane_state);
2826
2827 obj = intel_fb_obj(fb);
2828 if (i915_gem_object_is_tiled(obj))
2829 dev_priv->preserve_bios_swizzle = true;
2830
2831 drm_framebuffer_reference(fb);
2832 primary->fb = primary->state->fb = fb;
2833 primary->crtc = primary->state->crtc = &intel_crtc->base;
2834 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2835 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2836 &obj->frontbuffer_bits);
2837 }
2838
2839 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2840 unsigned int rotation)
2841 {
2842 int cpp = fb->format->cpp[plane];
2843
2844 switch (fb->modifier) {
2845 case DRM_FORMAT_MOD_NONE:
2846 case I915_FORMAT_MOD_X_TILED:
2847 switch (cpp) {
2848 case 8:
2849 return 4096;
2850 case 4:
2851 case 2:
2852 case 1:
2853 return 8192;
2854 default:
2855 MISSING_CASE(cpp);
2856 break;
2857 }
2858 break;
2859 case I915_FORMAT_MOD_Y_TILED:
2860 case I915_FORMAT_MOD_Yf_TILED:
2861 switch (cpp) {
2862 case 8:
2863 return 2048;
2864 case 4:
2865 return 4096;
2866 case 2:
2867 case 1:
2868 return 8192;
2869 default:
2870 MISSING_CASE(cpp);
2871 break;
2872 }
2873 break;
2874 default:
2875 MISSING_CASE(fb->modifier);
2876 }
2877
2878 return 2048;
2879 }
2880
2881 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2882 {
2883 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2884 const struct drm_framebuffer *fb = plane_state->base.fb;
2885 unsigned int rotation = plane_state->base.rotation;
2886 int x = plane_state->base.src.x1 >> 16;
2887 int y = plane_state->base.src.y1 >> 16;
2888 int w = drm_rect_width(&plane_state->base.src) >> 16;
2889 int h = drm_rect_height(&plane_state->base.src) >> 16;
2890 int max_width = skl_max_plane_width(fb, 0, rotation);
2891 int max_height = 4096;
2892 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2893
2894 if (w > max_width || h > max_height) {
2895 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2896 w, h, max_width, max_height);
2897 return -EINVAL;
2898 }
2899
2900 intel_add_fb_offsets(&x, &y, plane_state, 0);
2901 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2902
2903 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2904
2905 /*
2906 * AUX surface offset is specified as the distance from the
2907 * main surface offset, and it must be non-negative. Make
2908 * sure that is what we will get.
2909 */
2910 if (offset > aux_offset)
2911 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2912 offset, aux_offset & ~(alignment - 1));
2913
2914 /*
2915 * When using an X-tiled surface, the plane blows up
2916 * if the x offset + width exceed the stride.
2917 *
2918 * TODO: linear and Y-tiled seem fine, Yf untested,
2919 */
2920 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2921 int cpp = fb->format->cpp[0];
2922
2923 while ((x + w) * cpp > fb->pitches[0]) {
2924 if (offset == 0) {
2925 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2926 return -EINVAL;
2927 }
2928
2929 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2930 offset, offset - alignment);
2931 }
2932 }
2933
2934 plane_state->main.offset = offset;
2935 plane_state->main.x = x;
2936 plane_state->main.y = y;
2937
2938 return 0;
2939 }
2940
2941 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2942 {
2943 const struct drm_framebuffer *fb = plane_state->base.fb;
2944 unsigned int rotation = plane_state->base.rotation;
2945 int max_width = skl_max_plane_width(fb, 1, rotation);
2946 int max_height = 4096;
2947 int x = plane_state->base.src.x1 >> 17;
2948 int y = plane_state->base.src.y1 >> 17;
2949 int w = drm_rect_width(&plane_state->base.src) >> 17;
2950 int h = drm_rect_height(&plane_state->base.src) >> 17;
2951 u32 offset;
2952
2953 intel_add_fb_offsets(&x, &y, plane_state, 1);
2954 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2955
2956 /* FIXME not quite sure how/if these apply to the chroma plane */
2957 if (w > max_width || h > max_height) {
2958 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2959 w, h, max_width, max_height);
2960 return -EINVAL;
2961 }
2962
2963 plane_state->aux.offset = offset;
2964 plane_state->aux.x = x;
2965 plane_state->aux.y = y;
2966
2967 return 0;
2968 }
2969
2970 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2971 {
2972 const struct drm_framebuffer *fb = plane_state->base.fb;
2973 unsigned int rotation = plane_state->base.rotation;
2974 int ret;
2975
2976 if (!plane_state->base.visible)
2977 return 0;
2978
2979 /* Rotate src coordinates to match rotated GTT view */
2980 if (drm_rotation_90_or_270(rotation))
2981 drm_rect_rotate(&plane_state->base.src,
2982 fb->width << 16, fb->height << 16,
2983 DRM_ROTATE_270);
2984
2985 /*
2986 * Handle the AUX surface first since
2987 * the main surface setup depends on it.
2988 */
2989 if (fb->format->format == DRM_FORMAT_NV12) {
2990 ret = skl_check_nv12_aux_surface(plane_state);
2991 if (ret)
2992 return ret;
2993 } else {
2994 plane_state->aux.offset = ~0xfff;
2995 plane_state->aux.x = 0;
2996 plane_state->aux.y = 0;
2997 }
2998
2999 ret = skl_check_main_surface(plane_state);
3000 if (ret)
3001 return ret;
3002
3003 return 0;
3004 }
3005
3006 static void i9xx_update_primary_plane(struct drm_plane *primary,
3007 const struct intel_crtc_state *crtc_state,
3008 const struct intel_plane_state *plane_state)
3009 {
3010 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012 struct drm_framebuffer *fb = plane_state->base.fb;
3013 int plane = intel_crtc->plane;
3014 u32 linear_offset;
3015 u32 dspcntr;
3016 i915_reg_t reg = DSPCNTR(plane);
3017 unsigned int rotation = plane_state->base.rotation;
3018 int x = plane_state->base.src.x1 >> 16;
3019 int y = plane_state->base.src.y1 >> 16;
3020
3021 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022
3023 dspcntr |= DISPLAY_PLANE_ENABLE;
3024
3025 if (INTEL_GEN(dev_priv) < 4) {
3026 if (intel_crtc->pipe == PIPE_B)
3027 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028
3029 /* pipesrc and dspsize control the size that is scaled from,
3030 * which should always be the user's requested size.
3031 */
3032 I915_WRITE(DSPSIZE(plane),
3033 ((crtc_state->pipe_src_h - 1) << 16) |
3034 (crtc_state->pipe_src_w - 1));
3035 I915_WRITE(DSPPOS(plane), 0);
3036 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3037 I915_WRITE(PRIMSIZE(plane),
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
3040 I915_WRITE(PRIMPOS(plane), 0);
3041 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3042 }
3043
3044 switch (fb->format->format) {
3045 case DRM_FORMAT_C8:
3046 dspcntr |= DISPPLANE_8BPP;
3047 break;
3048 case DRM_FORMAT_XRGB1555:
3049 dspcntr |= DISPPLANE_BGRX555;
3050 break;
3051 case DRM_FORMAT_RGB565:
3052 dspcntr |= DISPPLANE_BGRX565;
3053 break;
3054 case DRM_FORMAT_XRGB8888:
3055 dspcntr |= DISPPLANE_BGRX888;
3056 break;
3057 case DRM_FORMAT_XBGR8888:
3058 dspcntr |= DISPPLANE_RGBX888;
3059 break;
3060 case DRM_FORMAT_XRGB2101010:
3061 dspcntr |= DISPPLANE_BGRX101010;
3062 break;
3063 case DRM_FORMAT_XBGR2101010:
3064 dspcntr |= DISPPLANE_RGBX101010;
3065 break;
3066 default:
3067 BUG();
3068 }
3069
3070 if (INTEL_GEN(dev_priv) >= 4 &&
3071 fb->modifier == I915_FORMAT_MOD_X_TILED)
3072 dspcntr |= DISPPLANE_TILED;
3073
3074 if (rotation & DRM_ROTATE_180)
3075 dspcntr |= DISPPLANE_ROTATE_180;
3076
3077 if (rotation & DRM_REFLECT_X)
3078 dspcntr |= DISPPLANE_MIRROR;
3079
3080 if (IS_G4X(dev_priv))
3081 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3082
3083 intel_add_fb_offsets(&x, &y, plane_state, 0);
3084
3085 if (INTEL_GEN(dev_priv) >= 4)
3086 intel_crtc->dspaddr_offset =
3087 intel_compute_tile_offset(&x, &y, plane_state, 0);
3088
3089 if (rotation & DRM_ROTATE_180) {
3090 x += crtc_state->pipe_src_w - 1;
3091 y += crtc_state->pipe_src_h - 1;
3092 } else if (rotation & DRM_REFLECT_X) {
3093 x += crtc_state->pipe_src_w - 1;
3094 }
3095
3096 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3097
3098 if (INTEL_GEN(dev_priv) < 4)
3099 intel_crtc->dspaddr_offset = linear_offset;
3100
3101 intel_crtc->adjusted_x = x;
3102 intel_crtc->adjusted_y = y;
3103
3104 I915_WRITE(reg, dspcntr);
3105
3106 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3107 if (INTEL_GEN(dev_priv) >= 4) {
3108 I915_WRITE(DSPSURF(plane),
3109 intel_plane_ggtt_offset(plane_state) +
3110 intel_crtc->dspaddr_offset);
3111 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3112 I915_WRITE(DSPLINOFF(plane), linear_offset);
3113 } else {
3114 I915_WRITE(DSPADDR(plane),
3115 intel_plane_ggtt_offset(plane_state) +
3116 intel_crtc->dspaddr_offset);
3117 }
3118 POSTING_READ(reg);
3119 }
3120
3121 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3122 struct drm_crtc *crtc)
3123 {
3124 struct drm_device *dev = crtc->dev;
3125 struct drm_i915_private *dev_priv = to_i915(dev);
3126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3127 int plane = intel_crtc->plane;
3128
3129 I915_WRITE(DSPCNTR(plane), 0);
3130 if (INTEL_INFO(dev_priv)->gen >= 4)
3131 I915_WRITE(DSPSURF(plane), 0);
3132 else
3133 I915_WRITE(DSPADDR(plane), 0);
3134 POSTING_READ(DSPCNTR(plane));
3135 }
3136
3137 static void ironlake_update_primary_plane(struct drm_plane *primary,
3138 const struct intel_crtc_state *crtc_state,
3139 const struct intel_plane_state *plane_state)
3140 {
3141 struct drm_device *dev = primary->dev;
3142 struct drm_i915_private *dev_priv = to_i915(dev);
3143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3144 struct drm_framebuffer *fb = plane_state->base.fb;
3145 int plane = intel_crtc->plane;
3146 u32 linear_offset;
3147 u32 dspcntr;
3148 i915_reg_t reg = DSPCNTR(plane);
3149 unsigned int rotation = plane_state->base.rotation;
3150 int x = plane_state->base.src.x1 >> 16;
3151 int y = plane_state->base.src.y1 >> 16;
3152
3153 dspcntr = DISPPLANE_GAMMA_ENABLE;
3154 dspcntr |= DISPLAY_PLANE_ENABLE;
3155
3156 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3157 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3158
3159 switch (fb->format->format) {
3160 case DRM_FORMAT_C8:
3161 dspcntr |= DISPPLANE_8BPP;
3162 break;
3163 case DRM_FORMAT_RGB565:
3164 dspcntr |= DISPPLANE_BGRX565;
3165 break;
3166 case DRM_FORMAT_XRGB8888:
3167 dspcntr |= DISPPLANE_BGRX888;
3168 break;
3169 case DRM_FORMAT_XBGR8888:
3170 dspcntr |= DISPPLANE_RGBX888;
3171 break;
3172 case DRM_FORMAT_XRGB2101010:
3173 dspcntr |= DISPPLANE_BGRX101010;
3174 break;
3175 case DRM_FORMAT_XBGR2101010:
3176 dspcntr |= DISPPLANE_RGBX101010;
3177 break;
3178 default:
3179 BUG();
3180 }
3181
3182 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3183 dspcntr |= DISPPLANE_TILED;
3184
3185 if (rotation & DRM_ROTATE_180)
3186 dspcntr |= DISPPLANE_ROTATE_180;
3187
3188 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3189 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3190
3191 intel_add_fb_offsets(&x, &y, plane_state, 0);
3192
3193 intel_crtc->dspaddr_offset =
3194 intel_compute_tile_offset(&x, &y, plane_state, 0);
3195
3196 /* HSW+ does this automagically in hardware */
3197 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3198 rotation & DRM_ROTATE_180) {
3199 x += crtc_state->pipe_src_w - 1;
3200 y += crtc_state->pipe_src_h - 1;
3201 }
3202
3203 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3204
3205 intel_crtc->adjusted_x = x;
3206 intel_crtc->adjusted_y = y;
3207
3208 I915_WRITE(reg, dspcntr);
3209
3210 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3211 I915_WRITE(DSPSURF(plane),
3212 intel_plane_ggtt_offset(plane_state) +
3213 intel_crtc->dspaddr_offset);
3214 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3215 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3216 } else {
3217 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3218 I915_WRITE(DSPLINOFF(plane), linear_offset);
3219 }
3220 POSTING_READ(reg);
3221 }
3222
3223 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3224 uint64_t fb_modifier, uint32_t pixel_format)
3225 {
3226 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3227 return 64;
3228 } else {
3229 int cpp = drm_format_plane_cpp(pixel_format, 0);
3230
3231 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3232 }
3233 }
3234
3235 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3236 {
3237 struct drm_device *dev = intel_crtc->base.dev;
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239
3240 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3241 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3242 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3243 }
3244
3245 /*
3246 * This function detaches (aka. unbinds) unused scalers in hardware
3247 */
3248 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3249 {
3250 struct intel_crtc_scaler_state *scaler_state;
3251 int i;
3252
3253 scaler_state = &intel_crtc->config->scaler_state;
3254
3255 /* loop through and disable scalers that aren't in use */
3256 for (i = 0; i < intel_crtc->num_scalers; i++) {
3257 if (!scaler_state->scalers[i].in_use)
3258 skl_detach_scaler(intel_crtc, i);
3259 }
3260 }
3261
3262 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3263 unsigned int rotation)
3264 {
3265 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3266 u32 stride = intel_fb_pitch(fb, plane, rotation);
3267
3268 /*
3269 * The stride is either expressed as a multiple of 64 bytes chunks for
3270 * linear buffers or in number of tiles for tiled buffers.
3271 */
3272 if (drm_rotation_90_or_270(rotation)) {
3273 int cpp = fb->format->cpp[plane];
3274
3275 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3276 } else {
3277 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3278 fb->format->format);
3279 }
3280
3281 return stride;
3282 }
3283
3284 u32 skl_plane_ctl_format(uint32_t pixel_format)
3285 {
3286 switch (pixel_format) {
3287 case DRM_FORMAT_C8:
3288 return PLANE_CTL_FORMAT_INDEXED;
3289 case DRM_FORMAT_RGB565:
3290 return PLANE_CTL_FORMAT_RGB_565;
3291 case DRM_FORMAT_XBGR8888:
3292 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3293 case DRM_FORMAT_XRGB8888:
3294 return PLANE_CTL_FORMAT_XRGB_8888;
3295 /*
3296 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3297 * to be already pre-multiplied. We need to add a knob (or a different
3298 * DRM_FORMAT) for user-space to configure that.
3299 */
3300 case DRM_FORMAT_ABGR8888:
3301 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3302 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3303 case DRM_FORMAT_ARGB8888:
3304 return PLANE_CTL_FORMAT_XRGB_8888 |
3305 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3306 case DRM_FORMAT_XRGB2101010:
3307 return PLANE_CTL_FORMAT_XRGB_2101010;
3308 case DRM_FORMAT_XBGR2101010:
3309 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3310 case DRM_FORMAT_YUYV:
3311 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3312 case DRM_FORMAT_YVYU:
3313 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3314 case DRM_FORMAT_UYVY:
3315 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3316 case DRM_FORMAT_VYUY:
3317 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3318 default:
3319 MISSING_CASE(pixel_format);
3320 }
3321
3322 return 0;
3323 }
3324
3325 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3326 {
3327 switch (fb_modifier) {
3328 case DRM_FORMAT_MOD_NONE:
3329 break;
3330 case I915_FORMAT_MOD_X_TILED:
3331 return PLANE_CTL_TILED_X;
3332 case I915_FORMAT_MOD_Y_TILED:
3333 return PLANE_CTL_TILED_Y;
3334 case I915_FORMAT_MOD_Yf_TILED:
3335 return PLANE_CTL_TILED_YF;
3336 default:
3337 MISSING_CASE(fb_modifier);
3338 }
3339
3340 return 0;
3341 }
3342
3343 u32 skl_plane_ctl_rotation(unsigned int rotation)
3344 {
3345 switch (rotation) {
3346 case DRM_ROTATE_0:
3347 break;
3348 /*
3349 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3350 * while i915 HW rotation is clockwise, thats why this swapping.
3351 */
3352 case DRM_ROTATE_90:
3353 return PLANE_CTL_ROTATE_270;
3354 case DRM_ROTATE_180:
3355 return PLANE_CTL_ROTATE_180;
3356 case DRM_ROTATE_270:
3357 return PLANE_CTL_ROTATE_90;
3358 default:
3359 MISSING_CASE(rotation);
3360 }
3361
3362 return 0;
3363 }
3364
3365 static void skylake_update_primary_plane(struct drm_plane *plane,
3366 const struct intel_crtc_state *crtc_state,
3367 const struct intel_plane_state *plane_state)
3368 {
3369 struct drm_device *dev = plane->dev;
3370 struct drm_i915_private *dev_priv = to_i915(dev);
3371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3372 struct drm_framebuffer *fb = plane_state->base.fb;
3373 enum plane_id plane_id = to_intel_plane(plane)->id;
3374 enum pipe pipe = to_intel_plane(plane)->pipe;
3375 u32 plane_ctl;
3376 unsigned int rotation = plane_state->base.rotation;
3377 u32 stride = skl_plane_stride(fb, 0, rotation);
3378 u32 surf_addr = plane_state->main.offset;
3379 int scaler_id = plane_state->scaler_id;
3380 int src_x = plane_state->main.x;
3381 int src_y = plane_state->main.y;
3382 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3383 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3384 int dst_x = plane_state->base.dst.x1;
3385 int dst_y = plane_state->base.dst.y1;
3386 int dst_w = drm_rect_width(&plane_state->base.dst);
3387 int dst_h = drm_rect_height(&plane_state->base.dst);
3388
3389 plane_ctl = PLANE_CTL_ENABLE |
3390 PLANE_CTL_PIPE_GAMMA_ENABLE |
3391 PLANE_CTL_PIPE_CSC_ENABLE;
3392
3393 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3394 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3395 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3396 plane_ctl |= skl_plane_ctl_rotation(rotation);
3397
3398 /* Sizes are 0 based */
3399 src_w--;
3400 src_h--;
3401 dst_w--;
3402 dst_h--;
3403
3404 intel_crtc->dspaddr_offset = surf_addr;
3405
3406 intel_crtc->adjusted_x = src_x;
3407 intel_crtc->adjusted_y = src_y;
3408
3409 I915_WRITE(PLANE_CTL(pipe, plane_id), plane_ctl);
3410 I915_WRITE(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3411 I915_WRITE(PLANE_STRIDE(pipe, plane_id), stride);
3412 I915_WRITE(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3413
3414 if (scaler_id >= 0) {
3415 uint32_t ps_ctrl = 0;
3416
3417 WARN_ON(!dst_w || !dst_h);
3418 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3419 crtc_state->scaler_state.scalers[scaler_id].mode;
3420 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3421 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3422 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3423 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3424 I915_WRITE(PLANE_POS(pipe, plane_id), 0);
3425 } else {
3426 I915_WRITE(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3427 }
3428
3429 I915_WRITE(PLANE_SURF(pipe, plane_id),
3430 intel_plane_ggtt_offset(plane_state) + surf_addr);
3431
3432 POSTING_READ(PLANE_SURF(pipe, plane_id));
3433 }
3434
3435 static void skylake_disable_primary_plane(struct drm_plane *primary,
3436 struct drm_crtc *crtc)
3437 {
3438 struct drm_device *dev = crtc->dev;
3439 struct drm_i915_private *dev_priv = to_i915(dev);
3440 enum plane_id plane_id = to_intel_plane(primary)->id;
3441 enum pipe pipe = to_intel_plane(primary)->pipe;
3442
3443 I915_WRITE(PLANE_CTL(pipe, plane_id), 0);
3444 I915_WRITE(PLANE_SURF(pipe, plane_id), 0);
3445 POSTING_READ(PLANE_SURF(pipe, plane_id));
3446 }
3447
3448 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3449 static int
3450 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3451 int x, int y, enum mode_set_atomic state)
3452 {
3453 /* Support for kgdboc is disabled, this needs a major rework. */
3454 DRM_ERROR("legacy panic handler not supported any more.\n");
3455
3456 return -ENODEV;
3457 }
3458
3459 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3460 {
3461 struct intel_crtc *crtc;
3462
3463 for_each_intel_crtc(&dev_priv->drm, crtc)
3464 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3465 }
3466
3467 static void intel_update_primary_planes(struct drm_device *dev)
3468 {
3469 struct drm_crtc *crtc;
3470
3471 for_each_crtc(dev, crtc) {
3472 struct intel_plane *plane = to_intel_plane(crtc->primary);
3473 struct intel_plane_state *plane_state =
3474 to_intel_plane_state(plane->base.state);
3475
3476 if (plane_state->base.visible)
3477 plane->update_plane(&plane->base,
3478 to_intel_crtc_state(crtc->state),
3479 plane_state);
3480 }
3481 }
3482
3483 static int
3484 __intel_display_resume(struct drm_device *dev,
3485 struct drm_atomic_state *state,
3486 struct drm_modeset_acquire_ctx *ctx)
3487 {
3488 struct drm_crtc_state *crtc_state;
3489 struct drm_crtc *crtc;
3490 int i, ret;
3491
3492 intel_modeset_setup_hw_state(dev);
3493 i915_redisable_vga(to_i915(dev));
3494
3495 if (!state)
3496 return 0;
3497
3498 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3499 /*
3500 * Force recalculation even if we restore
3501 * current state. With fast modeset this may not result
3502 * in a modeset when the state is compatible.
3503 */
3504 crtc_state->mode_changed = true;
3505 }
3506
3507 /* ignore any reset values/BIOS leftovers in the WM registers */
3508 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3509
3510 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3511
3512 WARN_ON(ret == -EDEADLK);
3513 return ret;
3514 }
3515
3516 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3517 {
3518 return intel_has_gpu_reset(dev_priv) &&
3519 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3520 }
3521
3522 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3523 {
3524 struct drm_device *dev = &dev_priv->drm;
3525 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3526 struct drm_atomic_state *state;
3527 int ret;
3528
3529 /*
3530 * Need mode_config.mutex so that we don't
3531 * trample ongoing ->detect() and whatnot.
3532 */
3533 mutex_lock(&dev->mode_config.mutex);
3534 drm_modeset_acquire_init(ctx, 0);
3535 while (1) {
3536 ret = drm_modeset_lock_all_ctx(dev, ctx);
3537 if (ret != -EDEADLK)
3538 break;
3539
3540 drm_modeset_backoff(ctx);
3541 }
3542
3543 /* reset doesn't touch the display, but flips might get nuked anyway, */
3544 if (!i915.force_reset_modeset_test &&
3545 !gpu_reset_clobbers_display(dev_priv))
3546 return;
3547
3548 /*
3549 * Disabling the crtcs gracefully seems nicer. Also the
3550 * g33 docs say we should at least disable all the planes.
3551 */
3552 state = drm_atomic_helper_duplicate_state(dev, ctx);
3553 if (IS_ERR(state)) {
3554 ret = PTR_ERR(state);
3555 DRM_ERROR("Duplicating state failed with %i\n", ret);
3556 return;
3557 }
3558
3559 ret = drm_atomic_helper_disable_all(dev, ctx);
3560 if (ret) {
3561 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3562 drm_atomic_state_put(state);
3563 return;
3564 }
3565
3566 dev_priv->modeset_restore_state = state;
3567 state->acquire_ctx = ctx;
3568 }
3569
3570 void intel_finish_reset(struct drm_i915_private *dev_priv)
3571 {
3572 struct drm_device *dev = &dev_priv->drm;
3573 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3574 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3575 int ret;
3576
3577 /*
3578 * Flips in the rings will be nuked by the reset,
3579 * so complete all pending flips so that user space
3580 * will get its events and not get stuck.
3581 */
3582 intel_complete_page_flips(dev_priv);
3583
3584 dev_priv->modeset_restore_state = NULL;
3585
3586 /* reset doesn't touch the display */
3587 if (!gpu_reset_clobbers_display(dev_priv)) {
3588 if (!state) {
3589 /*
3590 * Flips in the rings have been nuked by the reset,
3591 * so update the base address of all primary
3592 * planes to the the last fb to make sure we're
3593 * showing the correct fb after a reset.
3594 *
3595 * FIXME: Atomic will make this obsolete since we won't schedule
3596 * CS-based flips (which might get lost in gpu resets) any more.
3597 */
3598 intel_update_primary_planes(dev);
3599 } else {
3600 ret = __intel_display_resume(dev, state, ctx);
3601 if (ret)
3602 DRM_ERROR("Restoring old state failed with %i\n", ret);
3603 }
3604 } else {
3605 /*
3606 * The display has been reset as well,
3607 * so need a full re-initialization.
3608 */
3609 intel_runtime_pm_disable_interrupts(dev_priv);
3610 intel_runtime_pm_enable_interrupts(dev_priv);
3611
3612 intel_pps_unlock_regs_wa(dev_priv);
3613 intel_modeset_init_hw(dev);
3614
3615 spin_lock_irq(&dev_priv->irq_lock);
3616 if (dev_priv->display.hpd_irq_setup)
3617 dev_priv->display.hpd_irq_setup(dev_priv);
3618 spin_unlock_irq(&dev_priv->irq_lock);
3619
3620 ret = __intel_display_resume(dev, state, ctx);
3621 if (ret)
3622 DRM_ERROR("Restoring old state failed with %i\n", ret);
3623
3624 intel_hpd_init(dev_priv);
3625 }
3626
3627 if (state)
3628 drm_atomic_state_put(state);
3629 drm_modeset_drop_locks(ctx);
3630 drm_modeset_acquire_fini(ctx);
3631 mutex_unlock(&dev->mode_config.mutex);
3632 }
3633
3634 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3635 {
3636 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3637
3638 if (i915_reset_in_progress(error))
3639 return true;
3640
3641 if (crtc->reset_count != i915_reset_count(error))
3642 return true;
3643
3644 return false;
3645 }
3646
3647 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3648 {
3649 struct drm_device *dev = crtc->dev;
3650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651 bool pending;
3652
3653 if (abort_flip_on_reset(intel_crtc))
3654 return false;
3655
3656 spin_lock_irq(&dev->event_lock);
3657 pending = to_intel_crtc(crtc)->flip_work != NULL;
3658 spin_unlock_irq(&dev->event_lock);
3659
3660 return pending;
3661 }
3662
3663 static void intel_update_pipe_config(struct intel_crtc *crtc,
3664 struct intel_crtc_state *old_crtc_state)
3665 {
3666 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3667 struct intel_crtc_state *pipe_config =
3668 to_intel_crtc_state(crtc->base.state);
3669
3670 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3671 crtc->base.mode = crtc->base.state->mode;
3672
3673 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3674 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3675 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3676
3677 /*
3678 * Update pipe size and adjust fitter if needed: the reason for this is
3679 * that in compute_mode_changes we check the native mode (not the pfit
3680 * mode) to see if we can flip rather than do a full mode set. In the
3681 * fastboot case, we'll flip, but if we don't update the pipesrc and
3682 * pfit state, we'll end up with a big fb scanned out into the wrong
3683 * sized surface.
3684 */
3685
3686 I915_WRITE(PIPESRC(crtc->pipe),
3687 ((pipe_config->pipe_src_w - 1) << 16) |
3688 (pipe_config->pipe_src_h - 1));
3689
3690 /* on skylake this is done by detaching scalers */
3691 if (INTEL_GEN(dev_priv) >= 9) {
3692 skl_detach_scalers(crtc);
3693
3694 if (pipe_config->pch_pfit.enabled)
3695 skylake_pfit_enable(crtc);
3696 } else if (HAS_PCH_SPLIT(dev_priv)) {
3697 if (pipe_config->pch_pfit.enabled)
3698 ironlake_pfit_enable(crtc);
3699 else if (old_crtc_state->pch_pfit.enabled)
3700 ironlake_pfit_disable(crtc, true);
3701 }
3702 }
3703
3704 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3705 {
3706 struct drm_device *dev = crtc->dev;
3707 struct drm_i915_private *dev_priv = to_i915(dev);
3708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3709 int pipe = intel_crtc->pipe;
3710 i915_reg_t reg;
3711 u32 temp;
3712
3713 /* enable normal train */
3714 reg = FDI_TX_CTL(pipe);
3715 temp = I915_READ(reg);
3716 if (IS_IVYBRIDGE(dev_priv)) {
3717 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3718 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3719 } else {
3720 temp &= ~FDI_LINK_TRAIN_NONE;
3721 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3722 }
3723 I915_WRITE(reg, temp);
3724
3725 reg = FDI_RX_CTL(pipe);
3726 temp = I915_READ(reg);
3727 if (HAS_PCH_CPT(dev_priv)) {
3728 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3729 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3730 } else {
3731 temp &= ~FDI_LINK_TRAIN_NONE;
3732 temp |= FDI_LINK_TRAIN_NONE;
3733 }
3734 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3735
3736 /* wait one idle pattern time */
3737 POSTING_READ(reg);
3738 udelay(1000);
3739
3740 /* IVB wants error correction enabled */
3741 if (IS_IVYBRIDGE(dev_priv))
3742 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3743 FDI_FE_ERRC_ENABLE);
3744 }
3745
3746 /* The FDI link training functions for ILK/Ibexpeak. */
3747 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3748 {
3749 struct drm_device *dev = crtc->dev;
3750 struct drm_i915_private *dev_priv = to_i915(dev);
3751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3752 int pipe = intel_crtc->pipe;
3753 i915_reg_t reg;
3754 u32 temp, tries;
3755
3756 /* FDI needs bits from pipe first */
3757 assert_pipe_enabled(dev_priv, pipe);
3758
3759 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3760 for train result */
3761 reg = FDI_RX_IMR(pipe);
3762 temp = I915_READ(reg);
3763 temp &= ~FDI_RX_SYMBOL_LOCK;
3764 temp &= ~FDI_RX_BIT_LOCK;
3765 I915_WRITE(reg, temp);
3766 I915_READ(reg);
3767 udelay(150);
3768
3769 /* enable CPU FDI TX and PCH FDI RX */
3770 reg = FDI_TX_CTL(pipe);
3771 temp = I915_READ(reg);
3772 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3773 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3774 temp &= ~FDI_LINK_TRAIN_NONE;
3775 temp |= FDI_LINK_TRAIN_PATTERN_1;
3776 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3777
3778 reg = FDI_RX_CTL(pipe);
3779 temp = I915_READ(reg);
3780 temp &= ~FDI_LINK_TRAIN_NONE;
3781 temp |= FDI_LINK_TRAIN_PATTERN_1;
3782 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3783
3784 POSTING_READ(reg);
3785 udelay(150);
3786
3787 /* Ironlake workaround, enable clock pointer after FDI enable*/
3788 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3789 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3790 FDI_RX_PHASE_SYNC_POINTER_EN);
3791
3792 reg = FDI_RX_IIR(pipe);
3793 for (tries = 0; tries < 5; tries++) {
3794 temp = I915_READ(reg);
3795 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3796
3797 if ((temp & FDI_RX_BIT_LOCK)) {
3798 DRM_DEBUG_KMS("FDI train 1 done.\n");
3799 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3800 break;
3801 }
3802 }
3803 if (tries == 5)
3804 DRM_ERROR("FDI train 1 fail!\n");
3805
3806 /* Train 2 */
3807 reg = FDI_TX_CTL(pipe);
3808 temp = I915_READ(reg);
3809 temp &= ~FDI_LINK_TRAIN_NONE;
3810 temp |= FDI_LINK_TRAIN_PATTERN_2;
3811 I915_WRITE(reg, temp);
3812
3813 reg = FDI_RX_CTL(pipe);
3814 temp = I915_READ(reg);
3815 temp &= ~FDI_LINK_TRAIN_NONE;
3816 temp |= FDI_LINK_TRAIN_PATTERN_2;
3817 I915_WRITE(reg, temp);
3818
3819 POSTING_READ(reg);
3820 udelay(150);
3821
3822 reg = FDI_RX_IIR(pipe);
3823 for (tries = 0; tries < 5; tries++) {
3824 temp = I915_READ(reg);
3825 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3826
3827 if (temp & FDI_RX_SYMBOL_LOCK) {
3828 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3829 DRM_DEBUG_KMS("FDI train 2 done.\n");
3830 break;
3831 }
3832 }
3833 if (tries == 5)
3834 DRM_ERROR("FDI train 2 fail!\n");
3835
3836 DRM_DEBUG_KMS("FDI train done\n");
3837
3838 }
3839
3840 static const int snb_b_fdi_train_param[] = {
3841 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3842 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3843 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3844 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3845 };
3846
3847 /* The FDI link training functions for SNB/Cougarpoint. */
3848 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3849 {
3850 struct drm_device *dev = crtc->dev;
3851 struct drm_i915_private *dev_priv = to_i915(dev);
3852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3853 int pipe = intel_crtc->pipe;
3854 i915_reg_t reg;
3855 u32 temp, i, retry;
3856
3857 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3858 for train result */
3859 reg = FDI_RX_IMR(pipe);
3860 temp = I915_READ(reg);
3861 temp &= ~FDI_RX_SYMBOL_LOCK;
3862 temp &= ~FDI_RX_BIT_LOCK;
3863 I915_WRITE(reg, temp);
3864
3865 POSTING_READ(reg);
3866 udelay(150);
3867
3868 /* enable CPU FDI TX and PCH FDI RX */
3869 reg = FDI_TX_CTL(pipe);
3870 temp = I915_READ(reg);
3871 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3872 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3873 temp &= ~FDI_LINK_TRAIN_NONE;
3874 temp |= FDI_LINK_TRAIN_PATTERN_1;
3875 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3876 /* SNB-B */
3877 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3878 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3879
3880 I915_WRITE(FDI_RX_MISC(pipe),
3881 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3882
3883 reg = FDI_RX_CTL(pipe);
3884 temp = I915_READ(reg);
3885 if (HAS_PCH_CPT(dev_priv)) {
3886 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3887 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3888 } else {
3889 temp &= ~FDI_LINK_TRAIN_NONE;
3890 temp |= FDI_LINK_TRAIN_PATTERN_1;
3891 }
3892 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3893
3894 POSTING_READ(reg);
3895 udelay(150);
3896
3897 for (i = 0; i < 4; i++) {
3898 reg = FDI_TX_CTL(pipe);
3899 temp = I915_READ(reg);
3900 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3901 temp |= snb_b_fdi_train_param[i];
3902 I915_WRITE(reg, temp);
3903
3904 POSTING_READ(reg);
3905 udelay(500);
3906
3907 for (retry = 0; retry < 5; retry++) {
3908 reg = FDI_RX_IIR(pipe);
3909 temp = I915_READ(reg);
3910 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3911 if (temp & FDI_RX_BIT_LOCK) {
3912 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3913 DRM_DEBUG_KMS("FDI train 1 done.\n");
3914 break;
3915 }
3916 udelay(50);
3917 }
3918 if (retry < 5)
3919 break;
3920 }
3921 if (i == 4)
3922 DRM_ERROR("FDI train 1 fail!\n");
3923
3924 /* Train 2 */
3925 reg = FDI_TX_CTL(pipe);
3926 temp = I915_READ(reg);
3927 temp &= ~FDI_LINK_TRAIN_NONE;
3928 temp |= FDI_LINK_TRAIN_PATTERN_2;
3929 if (IS_GEN6(dev_priv)) {
3930 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3931 /* SNB-B */
3932 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3933 }
3934 I915_WRITE(reg, temp);
3935
3936 reg = FDI_RX_CTL(pipe);
3937 temp = I915_READ(reg);
3938 if (HAS_PCH_CPT(dev_priv)) {
3939 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3940 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3941 } else {
3942 temp &= ~FDI_LINK_TRAIN_NONE;
3943 temp |= FDI_LINK_TRAIN_PATTERN_2;
3944 }
3945 I915_WRITE(reg, temp);
3946
3947 POSTING_READ(reg);
3948 udelay(150);
3949
3950 for (i = 0; i < 4; i++) {
3951 reg = FDI_TX_CTL(pipe);
3952 temp = I915_READ(reg);
3953 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3954 temp |= snb_b_fdi_train_param[i];
3955 I915_WRITE(reg, temp);
3956
3957 POSTING_READ(reg);
3958 udelay(500);
3959
3960 for (retry = 0; retry < 5; retry++) {
3961 reg = FDI_RX_IIR(pipe);
3962 temp = I915_READ(reg);
3963 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3964 if (temp & FDI_RX_SYMBOL_LOCK) {
3965 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3966 DRM_DEBUG_KMS("FDI train 2 done.\n");
3967 break;
3968 }
3969 udelay(50);
3970 }
3971 if (retry < 5)
3972 break;
3973 }
3974 if (i == 4)
3975 DRM_ERROR("FDI train 2 fail!\n");
3976
3977 DRM_DEBUG_KMS("FDI train done.\n");
3978 }
3979
3980 /* Manual link training for Ivy Bridge A0 parts */
3981 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3982 {
3983 struct drm_device *dev = crtc->dev;
3984 struct drm_i915_private *dev_priv = to_i915(dev);
3985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3986 int pipe = intel_crtc->pipe;
3987 i915_reg_t reg;
3988 u32 temp, i, j;
3989
3990 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3991 for train result */
3992 reg = FDI_RX_IMR(pipe);
3993 temp = I915_READ(reg);
3994 temp &= ~FDI_RX_SYMBOL_LOCK;
3995 temp &= ~FDI_RX_BIT_LOCK;
3996 I915_WRITE(reg, temp);
3997
3998 POSTING_READ(reg);
3999 udelay(150);
4000
4001 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4002 I915_READ(FDI_RX_IIR(pipe)));
4003
4004 /* Try each vswing and preemphasis setting twice before moving on */
4005 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4006 /* disable first in case we need to retry */
4007 reg = FDI_TX_CTL(pipe);
4008 temp = I915_READ(reg);
4009 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4010 temp &= ~FDI_TX_ENABLE;
4011 I915_WRITE(reg, temp);
4012
4013 reg = FDI_RX_CTL(pipe);
4014 temp = I915_READ(reg);
4015 temp &= ~FDI_LINK_TRAIN_AUTO;
4016 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4017 temp &= ~FDI_RX_ENABLE;
4018 I915_WRITE(reg, temp);
4019
4020 /* enable CPU FDI TX and PCH FDI RX */
4021 reg = FDI_TX_CTL(pipe);
4022 temp = I915_READ(reg);
4023 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4024 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4025 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4026 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4027 temp |= snb_b_fdi_train_param[j/2];
4028 temp |= FDI_COMPOSITE_SYNC;
4029 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4030
4031 I915_WRITE(FDI_RX_MISC(pipe),
4032 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4033
4034 reg = FDI_RX_CTL(pipe);
4035 temp = I915_READ(reg);
4036 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4037 temp |= FDI_COMPOSITE_SYNC;
4038 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4039
4040 POSTING_READ(reg);
4041 udelay(1); /* should be 0.5us */
4042
4043 for (i = 0; i < 4; i++) {
4044 reg = FDI_RX_IIR(pipe);
4045 temp = I915_READ(reg);
4046 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4047
4048 if (temp & FDI_RX_BIT_LOCK ||
4049 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4050 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4051 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4052 i);
4053 break;
4054 }
4055 udelay(1); /* should be 0.5us */
4056 }
4057 if (i == 4) {
4058 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4059 continue;
4060 }
4061
4062 /* Train 2 */
4063 reg = FDI_TX_CTL(pipe);
4064 temp = I915_READ(reg);
4065 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4066 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4067 I915_WRITE(reg, temp);
4068
4069 reg = FDI_RX_CTL(pipe);
4070 temp = I915_READ(reg);
4071 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4072 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4073 I915_WRITE(reg, temp);
4074
4075 POSTING_READ(reg);
4076 udelay(2); /* should be 1.5us */
4077
4078 for (i = 0; i < 4; i++) {
4079 reg = FDI_RX_IIR(pipe);
4080 temp = I915_READ(reg);
4081 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4082
4083 if (temp & FDI_RX_SYMBOL_LOCK ||
4084 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4085 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4086 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4087 i);
4088 goto train_done;
4089 }
4090 udelay(2); /* should be 1.5us */
4091 }
4092 if (i == 4)
4093 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4094 }
4095
4096 train_done:
4097 DRM_DEBUG_KMS("FDI train done.\n");
4098 }
4099
4100 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4101 {
4102 struct drm_device *dev = intel_crtc->base.dev;
4103 struct drm_i915_private *dev_priv = to_i915(dev);
4104 int pipe = intel_crtc->pipe;
4105 i915_reg_t reg;
4106 u32 temp;
4107
4108 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4109 reg = FDI_RX_CTL(pipe);
4110 temp = I915_READ(reg);
4111 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4112 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4113 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4114 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4115
4116 POSTING_READ(reg);
4117 udelay(200);
4118
4119 /* Switch from Rawclk to PCDclk */
4120 temp = I915_READ(reg);
4121 I915_WRITE(reg, temp | FDI_PCDCLK);
4122
4123 POSTING_READ(reg);
4124 udelay(200);
4125
4126 /* Enable CPU FDI TX PLL, always on for Ironlake */
4127 reg = FDI_TX_CTL(pipe);
4128 temp = I915_READ(reg);
4129 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4130 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4131
4132 POSTING_READ(reg);
4133 udelay(100);
4134 }
4135 }
4136
4137 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4138 {
4139 struct drm_device *dev = intel_crtc->base.dev;
4140 struct drm_i915_private *dev_priv = to_i915(dev);
4141 int pipe = intel_crtc->pipe;
4142 i915_reg_t reg;
4143 u32 temp;
4144
4145 /* Switch from PCDclk to Rawclk */
4146 reg = FDI_RX_CTL(pipe);
4147 temp = I915_READ(reg);
4148 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4149
4150 /* Disable CPU FDI TX PLL */
4151 reg = FDI_TX_CTL(pipe);
4152 temp = I915_READ(reg);
4153 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4154
4155 POSTING_READ(reg);
4156 udelay(100);
4157
4158 reg = FDI_RX_CTL(pipe);
4159 temp = I915_READ(reg);
4160 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4161
4162 /* Wait for the clocks to turn off. */
4163 POSTING_READ(reg);
4164 udelay(100);
4165 }
4166
4167 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4168 {
4169 struct drm_device *dev = crtc->dev;
4170 struct drm_i915_private *dev_priv = to_i915(dev);
4171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172 int pipe = intel_crtc->pipe;
4173 i915_reg_t reg;
4174 u32 temp;
4175
4176 /* disable CPU FDI tx and PCH FDI rx */
4177 reg = FDI_TX_CTL(pipe);
4178 temp = I915_READ(reg);
4179 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4180 POSTING_READ(reg);
4181
4182 reg = FDI_RX_CTL(pipe);
4183 temp = I915_READ(reg);
4184 temp &= ~(0x7 << 16);
4185 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4186 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4187
4188 POSTING_READ(reg);
4189 udelay(100);
4190
4191 /* Ironlake workaround, disable clock pointer after downing FDI */
4192 if (HAS_PCH_IBX(dev_priv))
4193 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4194
4195 /* still set train pattern 1 */
4196 reg = FDI_TX_CTL(pipe);
4197 temp = I915_READ(reg);
4198 temp &= ~FDI_LINK_TRAIN_NONE;
4199 temp |= FDI_LINK_TRAIN_PATTERN_1;
4200 I915_WRITE(reg, temp);
4201
4202 reg = FDI_RX_CTL(pipe);
4203 temp = I915_READ(reg);
4204 if (HAS_PCH_CPT(dev_priv)) {
4205 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4206 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4207 } else {
4208 temp &= ~FDI_LINK_TRAIN_NONE;
4209 temp |= FDI_LINK_TRAIN_PATTERN_1;
4210 }
4211 /* BPC in FDI rx is consistent with that in PIPECONF */
4212 temp &= ~(0x07 << 16);
4213 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4214 I915_WRITE(reg, temp);
4215
4216 POSTING_READ(reg);
4217 udelay(100);
4218 }
4219
4220 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4221 {
4222 struct intel_crtc *crtc;
4223
4224 /* Note that we don't need to be called with mode_config.lock here
4225 * as our list of CRTC objects is static for the lifetime of the
4226 * device and so cannot disappear as we iterate. Similarly, we can
4227 * happily treat the predicates as racy, atomic checks as userspace
4228 * cannot claim and pin a new fb without at least acquring the
4229 * struct_mutex and so serialising with us.
4230 */
4231 for_each_intel_crtc(&dev_priv->drm, crtc) {
4232 if (atomic_read(&crtc->unpin_work_count) == 0)
4233 continue;
4234
4235 if (crtc->flip_work)
4236 intel_wait_for_vblank(dev_priv, crtc->pipe);
4237
4238 return true;
4239 }
4240
4241 return false;
4242 }
4243
4244 static void page_flip_completed(struct intel_crtc *intel_crtc)
4245 {
4246 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4247 struct intel_flip_work *work = intel_crtc->flip_work;
4248
4249 intel_crtc->flip_work = NULL;
4250
4251 if (work->event)
4252 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4253
4254 drm_crtc_vblank_put(&intel_crtc->base);
4255
4256 wake_up_all(&dev_priv->pending_flip_queue);
4257 trace_i915_flip_complete(intel_crtc->plane,
4258 work->pending_flip_obj);
4259
4260 queue_work(dev_priv->wq, &work->unpin_work);
4261 }
4262
4263 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4264 {
4265 struct drm_device *dev = crtc->dev;
4266 struct drm_i915_private *dev_priv = to_i915(dev);
4267 long ret;
4268
4269 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4270
4271 ret = wait_event_interruptible_timeout(
4272 dev_priv->pending_flip_queue,
4273 !intel_crtc_has_pending_flip(crtc),
4274 60*HZ);
4275
4276 if (ret < 0)
4277 return ret;
4278
4279 if (ret == 0) {
4280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4281 struct intel_flip_work *work;
4282
4283 spin_lock_irq(&dev->event_lock);
4284 work = intel_crtc->flip_work;
4285 if (work && !is_mmio_work(work)) {
4286 WARN_ONCE(1, "Removing stuck page flip\n");
4287 page_flip_completed(intel_crtc);
4288 }
4289 spin_unlock_irq(&dev->event_lock);
4290 }
4291
4292 return 0;
4293 }
4294
4295 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4296 {
4297 u32 temp;
4298
4299 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4300
4301 mutex_lock(&dev_priv->sb_lock);
4302
4303 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4304 temp |= SBI_SSCCTL_DISABLE;
4305 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4306
4307 mutex_unlock(&dev_priv->sb_lock);
4308 }
4309
4310 /* Program iCLKIP clock to the desired frequency */
4311 static void lpt_program_iclkip(struct drm_crtc *crtc)
4312 {
4313 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4314 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4315 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4316 u32 temp;
4317
4318 lpt_disable_iclkip(dev_priv);
4319
4320 /* The iCLK virtual clock root frequency is in MHz,
4321 * but the adjusted_mode->crtc_clock in in KHz. To get the
4322 * divisors, it is necessary to divide one by another, so we
4323 * convert the virtual clock precision to KHz here for higher
4324 * precision.
4325 */
4326 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4327 u32 iclk_virtual_root_freq = 172800 * 1000;
4328 u32 iclk_pi_range = 64;
4329 u32 desired_divisor;
4330
4331 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4332 clock << auxdiv);
4333 divsel = (desired_divisor / iclk_pi_range) - 2;
4334 phaseinc = desired_divisor % iclk_pi_range;
4335
4336 /*
4337 * Near 20MHz is a corner case which is
4338 * out of range for the 7-bit divisor
4339 */
4340 if (divsel <= 0x7f)
4341 break;
4342 }
4343
4344 /* This should not happen with any sane values */
4345 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4346 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4347 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4348 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4349
4350 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4351 clock,
4352 auxdiv,
4353 divsel,
4354 phasedir,
4355 phaseinc);
4356
4357 mutex_lock(&dev_priv->sb_lock);
4358
4359 /* Program SSCDIVINTPHASE6 */
4360 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4361 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4362 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4363 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4364 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4365 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4366 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4367 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4368
4369 /* Program SSCAUXDIV */
4370 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4371 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4372 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4373 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4374
4375 /* Enable modulator and associated divider */
4376 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4377 temp &= ~SBI_SSCCTL_DISABLE;
4378 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4379
4380 mutex_unlock(&dev_priv->sb_lock);
4381
4382 /* Wait for initialization time */
4383 udelay(24);
4384
4385 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4386 }
4387
4388 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4389 {
4390 u32 divsel, phaseinc, auxdiv;
4391 u32 iclk_virtual_root_freq = 172800 * 1000;
4392 u32 iclk_pi_range = 64;
4393 u32 desired_divisor;
4394 u32 temp;
4395
4396 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4397 return 0;
4398
4399 mutex_lock(&dev_priv->sb_lock);
4400
4401 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4402 if (temp & SBI_SSCCTL_DISABLE) {
4403 mutex_unlock(&dev_priv->sb_lock);
4404 return 0;
4405 }
4406
4407 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4408 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4409 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4410 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4411 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4412
4413 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4414 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4415 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4416
4417 mutex_unlock(&dev_priv->sb_lock);
4418
4419 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4420
4421 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4422 desired_divisor << auxdiv);
4423 }
4424
4425 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4426 enum pipe pch_transcoder)
4427 {
4428 struct drm_device *dev = crtc->base.dev;
4429 struct drm_i915_private *dev_priv = to_i915(dev);
4430 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4431
4432 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4433 I915_READ(HTOTAL(cpu_transcoder)));
4434 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4435 I915_READ(HBLANK(cpu_transcoder)));
4436 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4437 I915_READ(HSYNC(cpu_transcoder)));
4438
4439 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4440 I915_READ(VTOTAL(cpu_transcoder)));
4441 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4442 I915_READ(VBLANK(cpu_transcoder)));
4443 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4444 I915_READ(VSYNC(cpu_transcoder)));
4445 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4446 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4447 }
4448
4449 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4450 {
4451 struct drm_i915_private *dev_priv = to_i915(dev);
4452 uint32_t temp;
4453
4454 temp = I915_READ(SOUTH_CHICKEN1);
4455 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4456 return;
4457
4458 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4459 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4460
4461 temp &= ~FDI_BC_BIFURCATION_SELECT;
4462 if (enable)
4463 temp |= FDI_BC_BIFURCATION_SELECT;
4464
4465 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4466 I915_WRITE(SOUTH_CHICKEN1, temp);
4467 POSTING_READ(SOUTH_CHICKEN1);
4468 }
4469
4470 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4471 {
4472 struct drm_device *dev = intel_crtc->base.dev;
4473
4474 switch (intel_crtc->pipe) {
4475 case PIPE_A:
4476 break;
4477 case PIPE_B:
4478 if (intel_crtc->config->fdi_lanes > 2)
4479 cpt_set_fdi_bc_bifurcation(dev, false);
4480 else
4481 cpt_set_fdi_bc_bifurcation(dev, true);
4482
4483 break;
4484 case PIPE_C:
4485 cpt_set_fdi_bc_bifurcation(dev, true);
4486
4487 break;
4488 default:
4489 BUG();
4490 }
4491 }
4492
4493 /* Return which DP Port should be selected for Transcoder DP control */
4494 static enum port
4495 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4496 {
4497 struct drm_device *dev = crtc->dev;
4498 struct intel_encoder *encoder;
4499
4500 for_each_encoder_on_crtc(dev, crtc, encoder) {
4501 if (encoder->type == INTEL_OUTPUT_DP ||
4502 encoder->type == INTEL_OUTPUT_EDP)
4503 return enc_to_dig_port(&encoder->base)->port;
4504 }
4505
4506 return -1;
4507 }
4508
4509 /*
4510 * Enable PCH resources required for PCH ports:
4511 * - PCH PLLs
4512 * - FDI training & RX/TX
4513 * - update transcoder timings
4514 * - DP transcoding bits
4515 * - transcoder
4516 */
4517 static void ironlake_pch_enable(struct drm_crtc *crtc)
4518 {
4519 struct drm_device *dev = crtc->dev;
4520 struct drm_i915_private *dev_priv = to_i915(dev);
4521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4522 int pipe = intel_crtc->pipe;
4523 u32 temp;
4524
4525 assert_pch_transcoder_disabled(dev_priv, pipe);
4526
4527 if (IS_IVYBRIDGE(dev_priv))
4528 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4529
4530 /* Write the TU size bits before fdi link training, so that error
4531 * detection works. */
4532 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4533 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4534
4535 /* For PCH output, training FDI link */
4536 dev_priv->display.fdi_link_train(crtc);
4537
4538 /* We need to program the right clock selection before writing the pixel
4539 * mutliplier into the DPLL. */
4540 if (HAS_PCH_CPT(dev_priv)) {
4541 u32 sel;
4542
4543 temp = I915_READ(PCH_DPLL_SEL);
4544 temp |= TRANS_DPLL_ENABLE(pipe);
4545 sel = TRANS_DPLLB_SEL(pipe);
4546 if (intel_crtc->config->shared_dpll ==
4547 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4548 temp |= sel;
4549 else
4550 temp &= ~sel;
4551 I915_WRITE(PCH_DPLL_SEL, temp);
4552 }
4553
4554 /* XXX: pch pll's can be enabled any time before we enable the PCH
4555 * transcoder, and we actually should do this to not upset any PCH
4556 * transcoder that already use the clock when we share it.
4557 *
4558 * Note that enable_shared_dpll tries to do the right thing, but
4559 * get_shared_dpll unconditionally resets the pll - we need that to have
4560 * the right LVDS enable sequence. */
4561 intel_enable_shared_dpll(intel_crtc);
4562
4563 /* set transcoder timing, panel must allow it */
4564 assert_panel_unlocked(dev_priv, pipe);
4565 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4566
4567 intel_fdi_normal_train(crtc);
4568
4569 /* For PCH DP, enable TRANS_DP_CTL */
4570 if (HAS_PCH_CPT(dev_priv) &&
4571 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4572 const struct drm_display_mode *adjusted_mode =
4573 &intel_crtc->config->base.adjusted_mode;
4574 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4575 i915_reg_t reg = TRANS_DP_CTL(pipe);
4576 temp = I915_READ(reg);
4577 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4578 TRANS_DP_SYNC_MASK |
4579 TRANS_DP_BPC_MASK);
4580 temp |= TRANS_DP_OUTPUT_ENABLE;
4581 temp |= bpc << 9; /* same format but at 11:9 */
4582
4583 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4584 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4585 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4586 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4587
4588 switch (intel_trans_dp_port_sel(crtc)) {
4589 case PORT_B:
4590 temp |= TRANS_DP_PORT_SEL_B;
4591 break;
4592 case PORT_C:
4593 temp |= TRANS_DP_PORT_SEL_C;
4594 break;
4595 case PORT_D:
4596 temp |= TRANS_DP_PORT_SEL_D;
4597 break;
4598 default:
4599 BUG();
4600 }
4601
4602 I915_WRITE(reg, temp);
4603 }
4604
4605 ironlake_enable_pch_transcoder(dev_priv, pipe);
4606 }
4607
4608 static void lpt_pch_enable(struct drm_crtc *crtc)
4609 {
4610 struct drm_device *dev = crtc->dev;
4611 struct drm_i915_private *dev_priv = to_i915(dev);
4612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4613 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4614
4615 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4616
4617 lpt_program_iclkip(crtc);
4618
4619 /* Set transcoder timing. */
4620 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4621
4622 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4623 }
4624
4625 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4626 {
4627 struct drm_i915_private *dev_priv = to_i915(dev);
4628 i915_reg_t dslreg = PIPEDSL(pipe);
4629 u32 temp;
4630
4631 temp = I915_READ(dslreg);
4632 udelay(500);
4633 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4634 if (wait_for(I915_READ(dslreg) != temp, 5))
4635 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4636 }
4637 }
4638
4639 static int
4640 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4641 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4642 int src_w, int src_h, int dst_w, int dst_h)
4643 {
4644 struct intel_crtc_scaler_state *scaler_state =
4645 &crtc_state->scaler_state;
4646 struct intel_crtc *intel_crtc =
4647 to_intel_crtc(crtc_state->base.crtc);
4648 int need_scaling;
4649
4650 need_scaling = drm_rotation_90_or_270(rotation) ?
4651 (src_h != dst_w || src_w != dst_h):
4652 (src_w != dst_w || src_h != dst_h);
4653
4654 /*
4655 * if plane is being disabled or scaler is no more required or force detach
4656 * - free scaler binded to this plane/crtc
4657 * - in order to do this, update crtc->scaler_usage
4658 *
4659 * Here scaler state in crtc_state is set free so that
4660 * scaler can be assigned to other user. Actual register
4661 * update to free the scaler is done in plane/panel-fit programming.
4662 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4663 */
4664 if (force_detach || !need_scaling) {
4665 if (*scaler_id >= 0) {
4666 scaler_state->scaler_users &= ~(1 << scaler_user);
4667 scaler_state->scalers[*scaler_id].in_use = 0;
4668
4669 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4670 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4671 intel_crtc->pipe, scaler_user, *scaler_id,
4672 scaler_state->scaler_users);
4673 *scaler_id = -1;
4674 }
4675 return 0;
4676 }
4677
4678 /* range checks */
4679 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4680 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4681
4682 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4683 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4684 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4685 "size is out of scaler range\n",
4686 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4687 return -EINVAL;
4688 }
4689
4690 /* mark this plane as a scaler user in crtc_state */
4691 scaler_state->scaler_users |= (1 << scaler_user);
4692 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4693 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4694 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4695 scaler_state->scaler_users);
4696
4697 return 0;
4698 }
4699
4700 /**
4701 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4702 *
4703 * @state: crtc's scaler state
4704 *
4705 * Return
4706 * 0 - scaler_usage updated successfully
4707 * error - requested scaling cannot be supported or other error condition
4708 */
4709 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4710 {
4711 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4712
4713 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4714 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4715 state->pipe_src_w, state->pipe_src_h,
4716 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4717 }
4718
4719 /**
4720 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4721 *
4722 * @state: crtc's scaler state
4723 * @plane_state: atomic plane state to update
4724 *
4725 * Return
4726 * 0 - scaler_usage updated successfully
4727 * error - requested scaling cannot be supported or other error condition
4728 */
4729 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4730 struct intel_plane_state *plane_state)
4731 {
4732
4733 struct intel_plane *intel_plane =
4734 to_intel_plane(plane_state->base.plane);
4735 struct drm_framebuffer *fb = plane_state->base.fb;
4736 int ret;
4737
4738 bool force_detach = !fb || !plane_state->base.visible;
4739
4740 ret = skl_update_scaler(crtc_state, force_detach,
4741 drm_plane_index(&intel_plane->base),
4742 &plane_state->scaler_id,
4743 plane_state->base.rotation,
4744 drm_rect_width(&plane_state->base.src) >> 16,
4745 drm_rect_height(&plane_state->base.src) >> 16,
4746 drm_rect_width(&plane_state->base.dst),
4747 drm_rect_height(&plane_state->base.dst));
4748
4749 if (ret || plane_state->scaler_id < 0)
4750 return ret;
4751
4752 /* check colorkey */
4753 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4754 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4755 intel_plane->base.base.id,
4756 intel_plane->base.name);
4757 return -EINVAL;
4758 }
4759
4760 /* Check src format */
4761 switch (fb->format->format) {
4762 case DRM_FORMAT_RGB565:
4763 case DRM_FORMAT_XBGR8888:
4764 case DRM_FORMAT_XRGB8888:
4765 case DRM_FORMAT_ABGR8888:
4766 case DRM_FORMAT_ARGB8888:
4767 case DRM_FORMAT_XRGB2101010:
4768 case DRM_FORMAT_XBGR2101010:
4769 case DRM_FORMAT_YUYV:
4770 case DRM_FORMAT_YVYU:
4771 case DRM_FORMAT_UYVY:
4772 case DRM_FORMAT_VYUY:
4773 break;
4774 default:
4775 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4776 intel_plane->base.base.id, intel_plane->base.name,
4777 fb->base.id, fb->format->format);
4778 return -EINVAL;
4779 }
4780
4781 return 0;
4782 }
4783
4784 static void skylake_scaler_disable(struct intel_crtc *crtc)
4785 {
4786 int i;
4787
4788 for (i = 0; i < crtc->num_scalers; i++)
4789 skl_detach_scaler(crtc, i);
4790 }
4791
4792 static void skylake_pfit_enable(struct intel_crtc *crtc)
4793 {
4794 struct drm_device *dev = crtc->base.dev;
4795 struct drm_i915_private *dev_priv = to_i915(dev);
4796 int pipe = crtc->pipe;
4797 struct intel_crtc_scaler_state *scaler_state =
4798 &crtc->config->scaler_state;
4799
4800 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4801
4802 if (crtc->config->pch_pfit.enabled) {
4803 int id;
4804
4805 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4806 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4807 return;
4808 }
4809
4810 id = scaler_state->scaler_id;
4811 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4812 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4813 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4814 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4815
4816 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4817 }
4818 }
4819
4820 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4821 {
4822 struct drm_device *dev = crtc->base.dev;
4823 struct drm_i915_private *dev_priv = to_i915(dev);
4824 int pipe = crtc->pipe;
4825
4826 if (crtc->config->pch_pfit.enabled) {
4827 /* Force use of hard-coded filter coefficients
4828 * as some pre-programmed values are broken,
4829 * e.g. x201.
4830 */
4831 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4832 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4833 PF_PIPE_SEL_IVB(pipe));
4834 else
4835 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4836 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4837 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4838 }
4839 }
4840
4841 void hsw_enable_ips(struct intel_crtc *crtc)
4842 {
4843 struct drm_device *dev = crtc->base.dev;
4844 struct drm_i915_private *dev_priv = to_i915(dev);
4845
4846 if (!crtc->config->ips_enabled)
4847 return;
4848
4849 /*
4850 * We can only enable IPS after we enable a plane and wait for a vblank
4851 * This function is called from post_plane_update, which is run after
4852 * a vblank wait.
4853 */
4854
4855 assert_plane_enabled(dev_priv, crtc->plane);
4856 if (IS_BROADWELL(dev_priv)) {
4857 mutex_lock(&dev_priv->rps.hw_lock);
4858 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4859 mutex_unlock(&dev_priv->rps.hw_lock);
4860 /* Quoting Art Runyan: "its not safe to expect any particular
4861 * value in IPS_CTL bit 31 after enabling IPS through the
4862 * mailbox." Moreover, the mailbox may return a bogus state,
4863 * so we need to just enable it and continue on.
4864 */
4865 } else {
4866 I915_WRITE(IPS_CTL, IPS_ENABLE);
4867 /* The bit only becomes 1 in the next vblank, so this wait here
4868 * is essentially intel_wait_for_vblank. If we don't have this
4869 * and don't wait for vblanks until the end of crtc_enable, then
4870 * the HW state readout code will complain that the expected
4871 * IPS_CTL value is not the one we read. */
4872 if (intel_wait_for_register(dev_priv,
4873 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4874 50))
4875 DRM_ERROR("Timed out waiting for IPS enable\n");
4876 }
4877 }
4878
4879 void hsw_disable_ips(struct intel_crtc *crtc)
4880 {
4881 struct drm_device *dev = crtc->base.dev;
4882 struct drm_i915_private *dev_priv = to_i915(dev);
4883
4884 if (!crtc->config->ips_enabled)
4885 return;
4886
4887 assert_plane_enabled(dev_priv, crtc->plane);
4888 if (IS_BROADWELL(dev_priv)) {
4889 mutex_lock(&dev_priv->rps.hw_lock);
4890 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4891 mutex_unlock(&dev_priv->rps.hw_lock);
4892 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4893 if (intel_wait_for_register(dev_priv,
4894 IPS_CTL, IPS_ENABLE, 0,
4895 42))
4896 DRM_ERROR("Timed out waiting for IPS disable\n");
4897 } else {
4898 I915_WRITE(IPS_CTL, 0);
4899 POSTING_READ(IPS_CTL);
4900 }
4901
4902 /* We need to wait for a vblank before we can disable the plane. */
4903 intel_wait_for_vblank(dev_priv, crtc->pipe);
4904 }
4905
4906 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4907 {
4908 if (intel_crtc->overlay) {
4909 struct drm_device *dev = intel_crtc->base.dev;
4910 struct drm_i915_private *dev_priv = to_i915(dev);
4911
4912 mutex_lock(&dev->struct_mutex);
4913 dev_priv->mm.interruptible = false;
4914 (void) intel_overlay_switch_off(intel_crtc->overlay);
4915 dev_priv->mm.interruptible = true;
4916 mutex_unlock(&dev->struct_mutex);
4917 }
4918
4919 /* Let userspace switch the overlay on again. In most cases userspace
4920 * has to recompute where to put it anyway.
4921 */
4922 }
4923
4924 /**
4925 * intel_post_enable_primary - Perform operations after enabling primary plane
4926 * @crtc: the CRTC whose primary plane was just enabled
4927 *
4928 * Performs potentially sleeping operations that must be done after the primary
4929 * plane is enabled, such as updating FBC and IPS. Note that this may be
4930 * called due to an explicit primary plane update, or due to an implicit
4931 * re-enable that is caused when a sprite plane is updated to no longer
4932 * completely hide the primary plane.
4933 */
4934 static void
4935 intel_post_enable_primary(struct drm_crtc *crtc)
4936 {
4937 struct drm_device *dev = crtc->dev;
4938 struct drm_i915_private *dev_priv = to_i915(dev);
4939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4940 int pipe = intel_crtc->pipe;
4941
4942 /*
4943 * FIXME IPS should be fine as long as one plane is
4944 * enabled, but in practice it seems to have problems
4945 * when going from primary only to sprite only and vice
4946 * versa.
4947 */
4948 hsw_enable_ips(intel_crtc);
4949
4950 /*
4951 * Gen2 reports pipe underruns whenever all planes are disabled.
4952 * So don't enable underrun reporting before at least some planes
4953 * are enabled.
4954 * FIXME: Need to fix the logic to work when we turn off all planes
4955 * but leave the pipe running.
4956 */
4957 if (IS_GEN2(dev_priv))
4958 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4959
4960 /* Underruns don't always raise interrupts, so check manually. */
4961 intel_check_cpu_fifo_underruns(dev_priv);
4962 intel_check_pch_fifo_underruns(dev_priv);
4963 }
4964
4965 /* FIXME move all this to pre_plane_update() with proper state tracking */
4966 static void
4967 intel_pre_disable_primary(struct drm_crtc *crtc)
4968 {
4969 struct drm_device *dev = crtc->dev;
4970 struct drm_i915_private *dev_priv = to_i915(dev);
4971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4972 int pipe = intel_crtc->pipe;
4973
4974 /*
4975 * Gen2 reports pipe underruns whenever all planes are disabled.
4976 * So diasble underrun reporting before all the planes get disabled.
4977 * FIXME: Need to fix the logic to work when we turn off all planes
4978 * but leave the pipe running.
4979 */
4980 if (IS_GEN2(dev_priv))
4981 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4982
4983 /*
4984 * FIXME IPS should be fine as long as one plane is
4985 * enabled, but in practice it seems to have problems
4986 * when going from primary only to sprite only and vice
4987 * versa.
4988 */
4989 hsw_disable_ips(intel_crtc);
4990 }
4991
4992 /* FIXME get rid of this and use pre_plane_update */
4993 static void
4994 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4995 {
4996 struct drm_device *dev = crtc->dev;
4997 struct drm_i915_private *dev_priv = to_i915(dev);
4998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4999 int pipe = intel_crtc->pipe;
5000
5001 intel_pre_disable_primary(crtc);
5002
5003 /*
5004 * Vblank time updates from the shadow to live plane control register
5005 * are blocked if the memory self-refresh mode is active at that
5006 * moment. So to make sure the plane gets truly disabled, disable
5007 * first the self-refresh mode. The self-refresh enable bit in turn
5008 * will be checked/applied by the HW only at the next frame start
5009 * event which is after the vblank start event, so we need to have a
5010 * wait-for-vblank between disabling the plane and the pipe.
5011 */
5012 if (HAS_GMCH_DISPLAY(dev_priv) &&
5013 intel_set_memory_cxsr(dev_priv, false))
5014 intel_wait_for_vblank(dev_priv, pipe);
5015 }
5016
5017 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5018 {
5019 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5020 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5021 struct intel_crtc_state *pipe_config =
5022 to_intel_crtc_state(crtc->base.state);
5023 struct drm_plane *primary = crtc->base.primary;
5024 struct drm_plane_state *old_pri_state =
5025 drm_atomic_get_existing_plane_state(old_state, primary);
5026
5027 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5028
5029 crtc->wm.cxsr_allowed = true;
5030
5031 if (pipe_config->update_wm_post && pipe_config->base.active)
5032 intel_update_watermarks(crtc);
5033
5034 if (old_pri_state) {
5035 struct intel_plane_state *primary_state =
5036 to_intel_plane_state(primary->state);
5037 struct intel_plane_state *old_primary_state =
5038 to_intel_plane_state(old_pri_state);
5039
5040 intel_fbc_post_update(crtc);
5041
5042 if (primary_state->base.visible &&
5043 (needs_modeset(&pipe_config->base) ||
5044 !old_primary_state->base.visible))
5045 intel_post_enable_primary(&crtc->base);
5046 }
5047 }
5048
5049 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5050 {
5051 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5052 struct drm_device *dev = crtc->base.dev;
5053 struct drm_i915_private *dev_priv = to_i915(dev);
5054 struct intel_crtc_state *pipe_config =
5055 to_intel_crtc_state(crtc->base.state);
5056 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5057 struct drm_plane *primary = crtc->base.primary;
5058 struct drm_plane_state *old_pri_state =
5059 drm_atomic_get_existing_plane_state(old_state, primary);
5060 bool modeset = needs_modeset(&pipe_config->base);
5061 struct intel_atomic_state *old_intel_state =
5062 to_intel_atomic_state(old_state);
5063
5064 if (old_pri_state) {
5065 struct intel_plane_state *primary_state =
5066 to_intel_plane_state(primary->state);
5067 struct intel_plane_state *old_primary_state =
5068 to_intel_plane_state(old_pri_state);
5069
5070 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5071
5072 if (old_primary_state->base.visible &&
5073 (modeset || !primary_state->base.visible))
5074 intel_pre_disable_primary(&crtc->base);
5075 }
5076
5077 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5078 crtc->wm.cxsr_allowed = false;
5079
5080 /*
5081 * Vblank time updates from the shadow to live plane control register
5082 * are blocked if the memory self-refresh mode is active at that
5083 * moment. So to make sure the plane gets truly disabled, disable
5084 * first the self-refresh mode. The self-refresh enable bit in turn
5085 * will be checked/applied by the HW only at the next frame start
5086 * event which is after the vblank start event, so we need to have a
5087 * wait-for-vblank between disabling the plane and the pipe.
5088 */
5089 if (old_crtc_state->base.active &&
5090 intel_set_memory_cxsr(dev_priv, false))
5091 intel_wait_for_vblank(dev_priv, crtc->pipe);
5092 }
5093
5094 /*
5095 * IVB workaround: must disable low power watermarks for at least
5096 * one frame before enabling scaling. LP watermarks can be re-enabled
5097 * when scaling is disabled.
5098 *
5099 * WaCxSRDisabledForSpriteScaling:ivb
5100 */
5101 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5102 intel_wait_for_vblank(dev_priv, crtc->pipe);
5103
5104 /*
5105 * If we're doing a modeset, we're done. No need to do any pre-vblank
5106 * watermark programming here.
5107 */
5108 if (needs_modeset(&pipe_config->base))
5109 return;
5110
5111 /*
5112 * For platforms that support atomic watermarks, program the
5113 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5114 * will be the intermediate values that are safe for both pre- and
5115 * post- vblank; when vblank happens, the 'active' values will be set
5116 * to the final 'target' values and we'll do this again to get the
5117 * optimal watermarks. For gen9+ platforms, the values we program here
5118 * will be the final target values which will get automatically latched
5119 * at vblank time; no further programming will be necessary.
5120 *
5121 * If a platform hasn't been transitioned to atomic watermarks yet,
5122 * we'll continue to update watermarks the old way, if flags tell
5123 * us to.
5124 */
5125 if (dev_priv->display.initial_watermarks != NULL)
5126 dev_priv->display.initial_watermarks(old_intel_state,
5127 pipe_config);
5128 else if (pipe_config->update_wm_pre)
5129 intel_update_watermarks(crtc);
5130 }
5131
5132 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5133 {
5134 struct drm_device *dev = crtc->dev;
5135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136 struct drm_plane *p;
5137 int pipe = intel_crtc->pipe;
5138
5139 intel_crtc_dpms_overlay_disable(intel_crtc);
5140
5141 drm_for_each_plane_mask(p, dev, plane_mask)
5142 to_intel_plane(p)->disable_plane(p, crtc);
5143
5144 /*
5145 * FIXME: Once we grow proper nuclear flip support out of this we need
5146 * to compute the mask of flip planes precisely. For the time being
5147 * consider this a flip to a NULL plane.
5148 */
5149 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5150 }
5151
5152 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5153 struct intel_crtc_state *crtc_state,
5154 struct drm_atomic_state *old_state)
5155 {
5156 struct drm_connector_state *old_conn_state;
5157 struct drm_connector *conn;
5158 int i;
5159
5160 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5161 struct drm_connector_state *conn_state = conn->state;
5162 struct intel_encoder *encoder =
5163 to_intel_encoder(conn_state->best_encoder);
5164
5165 if (conn_state->crtc != crtc)
5166 continue;
5167
5168 if (encoder->pre_pll_enable)
5169 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5170 }
5171 }
5172
5173 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5174 struct intel_crtc_state *crtc_state,
5175 struct drm_atomic_state *old_state)
5176 {
5177 struct drm_connector_state *old_conn_state;
5178 struct drm_connector *conn;
5179 int i;
5180
5181 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5182 struct drm_connector_state *conn_state = conn->state;
5183 struct intel_encoder *encoder =
5184 to_intel_encoder(conn_state->best_encoder);
5185
5186 if (conn_state->crtc != crtc)
5187 continue;
5188
5189 if (encoder->pre_enable)
5190 encoder->pre_enable(encoder, crtc_state, conn_state);
5191 }
5192 }
5193
5194 static void intel_encoders_enable(struct drm_crtc *crtc,
5195 struct intel_crtc_state *crtc_state,
5196 struct drm_atomic_state *old_state)
5197 {
5198 struct drm_connector_state *old_conn_state;
5199 struct drm_connector *conn;
5200 int i;
5201
5202 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5203 struct drm_connector_state *conn_state = conn->state;
5204 struct intel_encoder *encoder =
5205 to_intel_encoder(conn_state->best_encoder);
5206
5207 if (conn_state->crtc != crtc)
5208 continue;
5209
5210 encoder->enable(encoder, crtc_state, conn_state);
5211 intel_opregion_notify_encoder(encoder, true);
5212 }
5213 }
5214
5215 static void intel_encoders_disable(struct drm_crtc *crtc,
5216 struct intel_crtc_state *old_crtc_state,
5217 struct drm_atomic_state *old_state)
5218 {
5219 struct drm_connector_state *old_conn_state;
5220 struct drm_connector *conn;
5221 int i;
5222
5223 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5224 struct intel_encoder *encoder =
5225 to_intel_encoder(old_conn_state->best_encoder);
5226
5227 if (old_conn_state->crtc != crtc)
5228 continue;
5229
5230 intel_opregion_notify_encoder(encoder, false);
5231 encoder->disable(encoder, old_crtc_state, old_conn_state);
5232 }
5233 }
5234
5235 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5236 struct intel_crtc_state *old_crtc_state,
5237 struct drm_atomic_state *old_state)
5238 {
5239 struct drm_connector_state *old_conn_state;
5240 struct drm_connector *conn;
5241 int i;
5242
5243 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5244 struct intel_encoder *encoder =
5245 to_intel_encoder(old_conn_state->best_encoder);
5246
5247 if (old_conn_state->crtc != crtc)
5248 continue;
5249
5250 if (encoder->post_disable)
5251 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5252 }
5253 }
5254
5255 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5256 struct intel_crtc_state *old_crtc_state,
5257 struct drm_atomic_state *old_state)
5258 {
5259 struct drm_connector_state *old_conn_state;
5260 struct drm_connector *conn;
5261 int i;
5262
5263 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5264 struct intel_encoder *encoder =
5265 to_intel_encoder(old_conn_state->best_encoder);
5266
5267 if (old_conn_state->crtc != crtc)
5268 continue;
5269
5270 if (encoder->post_pll_disable)
5271 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5272 }
5273 }
5274
5275 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5276 struct drm_atomic_state *old_state)
5277 {
5278 struct drm_crtc *crtc = pipe_config->base.crtc;
5279 struct drm_device *dev = crtc->dev;
5280 struct drm_i915_private *dev_priv = to_i915(dev);
5281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5282 int pipe = intel_crtc->pipe;
5283 struct intel_atomic_state *old_intel_state =
5284 to_intel_atomic_state(old_state);
5285
5286 if (WARN_ON(intel_crtc->active))
5287 return;
5288
5289 /*
5290 * Sometimes spurious CPU pipe underruns happen during FDI
5291 * training, at least with VGA+HDMI cloning. Suppress them.
5292 *
5293 * On ILK we get an occasional spurious CPU pipe underruns
5294 * between eDP port A enable and vdd enable. Also PCH port
5295 * enable seems to result in the occasional CPU pipe underrun.
5296 *
5297 * Spurious PCH underruns also occur during PCH enabling.
5298 */
5299 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5300 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5301 if (intel_crtc->config->has_pch_encoder)
5302 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5303
5304 if (intel_crtc->config->has_pch_encoder)
5305 intel_prepare_shared_dpll(intel_crtc);
5306
5307 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5308 intel_dp_set_m_n(intel_crtc, M1_N1);
5309
5310 intel_set_pipe_timings(intel_crtc);
5311 intel_set_pipe_src_size(intel_crtc);
5312
5313 if (intel_crtc->config->has_pch_encoder) {
5314 intel_cpu_transcoder_set_m_n(intel_crtc,
5315 &intel_crtc->config->fdi_m_n, NULL);
5316 }
5317
5318 ironlake_set_pipeconf(crtc);
5319
5320 intel_crtc->active = true;
5321
5322 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5323
5324 if (intel_crtc->config->has_pch_encoder) {
5325 /* Note: FDI PLL enabling _must_ be done before we enable the
5326 * cpu pipes, hence this is separate from all the other fdi/pch
5327 * enabling. */
5328 ironlake_fdi_pll_enable(intel_crtc);
5329 } else {
5330 assert_fdi_tx_disabled(dev_priv, pipe);
5331 assert_fdi_rx_disabled(dev_priv, pipe);
5332 }
5333
5334 ironlake_pfit_enable(intel_crtc);
5335
5336 /*
5337 * On ILK+ LUT must be loaded before the pipe is running but with
5338 * clocks enabled
5339 */
5340 intel_color_load_luts(&pipe_config->base);
5341
5342 if (dev_priv->display.initial_watermarks != NULL)
5343 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5344 intel_enable_pipe(intel_crtc);
5345
5346 if (intel_crtc->config->has_pch_encoder)
5347 ironlake_pch_enable(crtc);
5348
5349 assert_vblank_disabled(crtc);
5350 drm_crtc_vblank_on(crtc);
5351
5352 intel_encoders_enable(crtc, pipe_config, old_state);
5353
5354 if (HAS_PCH_CPT(dev_priv))
5355 cpt_verify_modeset(dev, intel_crtc->pipe);
5356
5357 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5358 if (intel_crtc->config->has_pch_encoder)
5359 intel_wait_for_vblank(dev_priv, pipe);
5360 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5361 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5362 }
5363
5364 /* IPS only exists on ULT machines and is tied to pipe A. */
5365 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5366 {
5367 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5368 }
5369
5370 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5371 struct drm_atomic_state *old_state)
5372 {
5373 struct drm_crtc *crtc = pipe_config->base.crtc;
5374 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5376 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5377 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5378 struct intel_atomic_state *old_intel_state =
5379 to_intel_atomic_state(old_state);
5380
5381 if (WARN_ON(intel_crtc->active))
5382 return;
5383
5384 if (intel_crtc->config->has_pch_encoder)
5385 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5386 false);
5387
5388 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5389
5390 if (intel_crtc->config->shared_dpll)
5391 intel_enable_shared_dpll(intel_crtc);
5392
5393 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5394 intel_dp_set_m_n(intel_crtc, M1_N1);
5395
5396 if (!transcoder_is_dsi(cpu_transcoder))
5397 intel_set_pipe_timings(intel_crtc);
5398
5399 intel_set_pipe_src_size(intel_crtc);
5400
5401 if (cpu_transcoder != TRANSCODER_EDP &&
5402 !transcoder_is_dsi(cpu_transcoder)) {
5403 I915_WRITE(PIPE_MULT(cpu_transcoder),
5404 intel_crtc->config->pixel_multiplier - 1);
5405 }
5406
5407 if (intel_crtc->config->has_pch_encoder) {
5408 intel_cpu_transcoder_set_m_n(intel_crtc,
5409 &intel_crtc->config->fdi_m_n, NULL);
5410 }
5411
5412 if (!transcoder_is_dsi(cpu_transcoder))
5413 haswell_set_pipeconf(crtc);
5414
5415 haswell_set_pipemisc(crtc);
5416
5417 intel_color_set_csc(&pipe_config->base);
5418
5419 intel_crtc->active = true;
5420
5421 if (intel_crtc->config->has_pch_encoder)
5422 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5423 else
5424 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5425
5426 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5427
5428 if (intel_crtc->config->has_pch_encoder)
5429 dev_priv->display.fdi_link_train(crtc);
5430
5431 if (!transcoder_is_dsi(cpu_transcoder))
5432 intel_ddi_enable_pipe_clock(intel_crtc);
5433
5434 if (INTEL_GEN(dev_priv) >= 9)
5435 skylake_pfit_enable(intel_crtc);
5436 else
5437 ironlake_pfit_enable(intel_crtc);
5438
5439 /*
5440 * On ILK+ LUT must be loaded before the pipe is running but with
5441 * clocks enabled
5442 */
5443 intel_color_load_luts(&pipe_config->base);
5444
5445 intel_ddi_set_pipe_settings(crtc);
5446 if (!transcoder_is_dsi(cpu_transcoder))
5447 intel_ddi_enable_transcoder_func(crtc);
5448
5449 if (dev_priv->display.initial_watermarks != NULL)
5450 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5451
5452 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5453 if (!transcoder_is_dsi(cpu_transcoder))
5454 intel_enable_pipe(intel_crtc);
5455
5456 if (intel_crtc->config->has_pch_encoder)
5457 lpt_pch_enable(crtc);
5458
5459 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5460 intel_ddi_set_vc_payload_alloc(crtc, true);
5461
5462 assert_vblank_disabled(crtc);
5463 drm_crtc_vblank_on(crtc);
5464
5465 intel_encoders_enable(crtc, pipe_config, old_state);
5466
5467 if (intel_crtc->config->has_pch_encoder) {
5468 intel_wait_for_vblank(dev_priv, pipe);
5469 intel_wait_for_vblank(dev_priv, pipe);
5470 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5471 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5472 true);
5473 }
5474
5475 /* If we change the relative order between pipe/planes enabling, we need
5476 * to change the workaround. */
5477 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5478 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5479 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5480 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5481 }
5482 }
5483
5484 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5485 {
5486 struct drm_device *dev = crtc->base.dev;
5487 struct drm_i915_private *dev_priv = to_i915(dev);
5488 int pipe = crtc->pipe;
5489
5490 /* To avoid upsetting the power well on haswell only disable the pfit if
5491 * it's in use. The hw state code will make sure we get this right. */
5492 if (force || crtc->config->pch_pfit.enabled) {
5493 I915_WRITE(PF_CTL(pipe), 0);
5494 I915_WRITE(PF_WIN_POS(pipe), 0);
5495 I915_WRITE(PF_WIN_SZ(pipe), 0);
5496 }
5497 }
5498
5499 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5500 struct drm_atomic_state *old_state)
5501 {
5502 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5503 struct drm_device *dev = crtc->dev;
5504 struct drm_i915_private *dev_priv = to_i915(dev);
5505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506 int pipe = intel_crtc->pipe;
5507
5508 /*
5509 * Sometimes spurious CPU pipe underruns happen when the
5510 * pipe is already disabled, but FDI RX/TX is still enabled.
5511 * Happens at least with VGA+HDMI cloning. Suppress them.
5512 */
5513 if (intel_crtc->config->has_pch_encoder) {
5514 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5515 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5516 }
5517
5518 intel_encoders_disable(crtc, old_crtc_state, old_state);
5519
5520 drm_crtc_vblank_off(crtc);
5521 assert_vblank_disabled(crtc);
5522
5523 intel_disable_pipe(intel_crtc);
5524
5525 ironlake_pfit_disable(intel_crtc, false);
5526
5527 if (intel_crtc->config->has_pch_encoder)
5528 ironlake_fdi_disable(crtc);
5529
5530 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5531
5532 if (intel_crtc->config->has_pch_encoder) {
5533 ironlake_disable_pch_transcoder(dev_priv, pipe);
5534
5535 if (HAS_PCH_CPT(dev_priv)) {
5536 i915_reg_t reg;
5537 u32 temp;
5538
5539 /* disable TRANS_DP_CTL */
5540 reg = TRANS_DP_CTL(pipe);
5541 temp = I915_READ(reg);
5542 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5543 TRANS_DP_PORT_SEL_MASK);
5544 temp |= TRANS_DP_PORT_SEL_NONE;
5545 I915_WRITE(reg, temp);
5546
5547 /* disable DPLL_SEL */
5548 temp = I915_READ(PCH_DPLL_SEL);
5549 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5550 I915_WRITE(PCH_DPLL_SEL, temp);
5551 }
5552
5553 ironlake_fdi_pll_disable(intel_crtc);
5554 }
5555
5556 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5557 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5558 }
5559
5560 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5561 struct drm_atomic_state *old_state)
5562 {
5563 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5564 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5566 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5567
5568 if (intel_crtc->config->has_pch_encoder)
5569 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5570 false);
5571
5572 intel_encoders_disable(crtc, old_crtc_state, old_state);
5573
5574 drm_crtc_vblank_off(crtc);
5575 assert_vblank_disabled(crtc);
5576
5577 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5578 if (!transcoder_is_dsi(cpu_transcoder))
5579 intel_disable_pipe(intel_crtc);
5580
5581 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5582 intel_ddi_set_vc_payload_alloc(crtc, false);
5583
5584 if (!transcoder_is_dsi(cpu_transcoder))
5585 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5586
5587 if (INTEL_GEN(dev_priv) >= 9)
5588 skylake_scaler_disable(intel_crtc);
5589 else
5590 ironlake_pfit_disable(intel_crtc, false);
5591
5592 if (!transcoder_is_dsi(cpu_transcoder))
5593 intel_ddi_disable_pipe_clock(intel_crtc);
5594
5595 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5596
5597 if (old_crtc_state->has_pch_encoder)
5598 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5599 true);
5600 }
5601
5602 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5603 {
5604 struct drm_device *dev = crtc->base.dev;
5605 struct drm_i915_private *dev_priv = to_i915(dev);
5606 struct intel_crtc_state *pipe_config = crtc->config;
5607
5608 if (!pipe_config->gmch_pfit.control)
5609 return;
5610
5611 /*
5612 * The panel fitter should only be adjusted whilst the pipe is disabled,
5613 * according to register description and PRM.
5614 */
5615 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5616 assert_pipe_disabled(dev_priv, crtc->pipe);
5617
5618 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5619 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5620
5621 /* Border color in case we don't scale up to the full screen. Black by
5622 * default, change to something else for debugging. */
5623 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5624 }
5625
5626 static enum intel_display_power_domain port_to_power_domain(enum port port)
5627 {
5628 switch (port) {
5629 case PORT_A:
5630 return POWER_DOMAIN_PORT_DDI_A_LANES;
5631 case PORT_B:
5632 return POWER_DOMAIN_PORT_DDI_B_LANES;
5633 case PORT_C:
5634 return POWER_DOMAIN_PORT_DDI_C_LANES;
5635 case PORT_D:
5636 return POWER_DOMAIN_PORT_DDI_D_LANES;
5637 case PORT_E:
5638 return POWER_DOMAIN_PORT_DDI_E_LANES;
5639 default:
5640 MISSING_CASE(port);
5641 return POWER_DOMAIN_PORT_OTHER;
5642 }
5643 }
5644
5645 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5646 {
5647 switch (port) {
5648 case PORT_A:
5649 return POWER_DOMAIN_AUX_A;
5650 case PORT_B:
5651 return POWER_DOMAIN_AUX_B;
5652 case PORT_C:
5653 return POWER_DOMAIN_AUX_C;
5654 case PORT_D:
5655 return POWER_DOMAIN_AUX_D;
5656 case PORT_E:
5657 /* FIXME: Check VBT for actual wiring of PORT E */
5658 return POWER_DOMAIN_AUX_D;
5659 default:
5660 MISSING_CASE(port);
5661 return POWER_DOMAIN_AUX_A;
5662 }
5663 }
5664
5665 enum intel_display_power_domain
5666 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5667 {
5668 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5669 struct intel_digital_port *intel_dig_port;
5670
5671 switch (intel_encoder->type) {
5672 case INTEL_OUTPUT_UNKNOWN:
5673 /* Only DDI platforms should ever use this output type */
5674 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5675 case INTEL_OUTPUT_DP:
5676 case INTEL_OUTPUT_HDMI:
5677 case INTEL_OUTPUT_EDP:
5678 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5679 return port_to_power_domain(intel_dig_port->port);
5680 case INTEL_OUTPUT_DP_MST:
5681 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5682 return port_to_power_domain(intel_dig_port->port);
5683 case INTEL_OUTPUT_ANALOG:
5684 return POWER_DOMAIN_PORT_CRT;
5685 case INTEL_OUTPUT_DSI:
5686 return POWER_DOMAIN_PORT_DSI;
5687 default:
5688 return POWER_DOMAIN_PORT_OTHER;
5689 }
5690 }
5691
5692 enum intel_display_power_domain
5693 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5694 {
5695 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5696 struct intel_digital_port *intel_dig_port;
5697
5698 switch (intel_encoder->type) {
5699 case INTEL_OUTPUT_UNKNOWN:
5700 case INTEL_OUTPUT_HDMI:
5701 /*
5702 * Only DDI platforms should ever use these output types.
5703 * We can get here after the HDMI detect code has already set
5704 * the type of the shared encoder. Since we can't be sure
5705 * what's the status of the given connectors, play safe and
5706 * run the DP detection too.
5707 */
5708 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5709 case INTEL_OUTPUT_DP:
5710 case INTEL_OUTPUT_EDP:
5711 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5712 return port_to_aux_power_domain(intel_dig_port->port);
5713 case INTEL_OUTPUT_DP_MST:
5714 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5715 return port_to_aux_power_domain(intel_dig_port->port);
5716 default:
5717 MISSING_CASE(intel_encoder->type);
5718 return POWER_DOMAIN_AUX_A;
5719 }
5720 }
5721
5722 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5723 struct intel_crtc_state *crtc_state)
5724 {
5725 struct drm_device *dev = crtc->dev;
5726 struct drm_encoder *encoder;
5727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5728 enum pipe pipe = intel_crtc->pipe;
5729 unsigned long mask;
5730 enum transcoder transcoder = crtc_state->cpu_transcoder;
5731
5732 if (!crtc_state->base.active)
5733 return 0;
5734
5735 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5736 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5737 if (crtc_state->pch_pfit.enabled ||
5738 crtc_state->pch_pfit.force_thru)
5739 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5740
5741 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5742 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5743
5744 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5745 }
5746
5747 if (crtc_state->shared_dpll)
5748 mask |= BIT(POWER_DOMAIN_PLLS);
5749
5750 return mask;
5751 }
5752
5753 static unsigned long
5754 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5755 struct intel_crtc_state *crtc_state)
5756 {
5757 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 enum intel_display_power_domain domain;
5760 unsigned long domains, new_domains, old_domains;
5761
5762 old_domains = intel_crtc->enabled_power_domains;
5763 intel_crtc->enabled_power_domains = new_domains =
5764 get_crtc_power_domains(crtc, crtc_state);
5765
5766 domains = new_domains & ~old_domains;
5767
5768 for_each_power_domain(domain, domains)
5769 intel_display_power_get(dev_priv, domain);
5770
5771 return old_domains & ~new_domains;
5772 }
5773
5774 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5775 unsigned long domains)
5776 {
5777 enum intel_display_power_domain domain;
5778
5779 for_each_power_domain(domain, domains)
5780 intel_display_power_put(dev_priv, domain);
5781 }
5782
5783 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5784 {
5785 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5786
5787 if (IS_GEMINILAKE(dev_priv))
5788 return 2 * max_cdclk_freq;
5789 else if (INTEL_INFO(dev_priv)->gen >= 9 ||
5790 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5791 return max_cdclk_freq;
5792 else if (IS_CHERRYVIEW(dev_priv))
5793 return max_cdclk_freq*95/100;
5794 else if (INTEL_INFO(dev_priv)->gen < 4)
5795 return 2*max_cdclk_freq*90/100;
5796 else
5797 return max_cdclk_freq*90/100;
5798 }
5799
5800 static int skl_calc_cdclk(int max_pixclk, int vco);
5801
5802 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5803 {
5804 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5805 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5806 int max_cdclk, vco;
5807
5808 vco = dev_priv->skl_preferred_vco_freq;
5809 WARN_ON(vco != 8100000 && vco != 8640000);
5810
5811 /*
5812 * Use the lower (vco 8640) cdclk values as a
5813 * first guess. skl_calc_cdclk() will correct it
5814 * if the preferred vco is 8100 instead.
5815 */
5816 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5817 max_cdclk = 617143;
5818 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5819 max_cdclk = 540000;
5820 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5821 max_cdclk = 432000;
5822 else
5823 max_cdclk = 308571;
5824
5825 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5826 } else if (IS_GEMINILAKE(dev_priv)) {
5827 dev_priv->max_cdclk_freq = 316800;
5828 } else if (IS_BROXTON(dev_priv)) {
5829 dev_priv->max_cdclk_freq = 624000;
5830 } else if (IS_BROADWELL(dev_priv)) {
5831 /*
5832 * FIXME with extra cooling we can allow
5833 * 540 MHz for ULX and 675 Mhz for ULT.
5834 * How can we know if extra cooling is
5835 * available? PCI ID, VTB, something else?
5836 */
5837 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5838 dev_priv->max_cdclk_freq = 450000;
5839 else if (IS_BDW_ULX(dev_priv))
5840 dev_priv->max_cdclk_freq = 450000;
5841 else if (IS_BDW_ULT(dev_priv))
5842 dev_priv->max_cdclk_freq = 540000;
5843 else
5844 dev_priv->max_cdclk_freq = 675000;
5845 } else if (IS_CHERRYVIEW(dev_priv)) {
5846 dev_priv->max_cdclk_freq = 320000;
5847 } else if (IS_VALLEYVIEW(dev_priv)) {
5848 dev_priv->max_cdclk_freq = 400000;
5849 } else {
5850 /* otherwise assume cdclk is fixed */
5851 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5852 }
5853
5854 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5855
5856 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5857 dev_priv->max_cdclk_freq);
5858
5859 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5860 dev_priv->max_dotclk_freq);
5861 }
5862
5863 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5864 {
5865 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5866
5867 if (INTEL_GEN(dev_priv) >= 9)
5868 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5869 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5870 dev_priv->cdclk_pll.ref);
5871 else
5872 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5873 dev_priv->cdclk_freq);
5874
5875 /*
5876 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5877 * Programmng [sic] note: bit[9:2] should be programmed to the number
5878 * of cdclk that generates 4MHz reference clock freq which is used to
5879 * generate GMBus clock. This will vary with the cdclk freq.
5880 */
5881 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5882 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5883 }
5884
5885 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5886 static int skl_cdclk_decimal(int cdclk)
5887 {
5888 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5889 }
5890
5891 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5892 {
5893 int ratio;
5894
5895 if (cdclk == dev_priv->cdclk_pll.ref)
5896 return 0;
5897
5898 switch (cdclk) {
5899 default:
5900 MISSING_CASE(cdclk);
5901 case 144000:
5902 case 288000:
5903 case 384000:
5904 case 576000:
5905 ratio = 60;
5906 break;
5907 case 624000:
5908 ratio = 65;
5909 break;
5910 }
5911
5912 return dev_priv->cdclk_pll.ref * ratio;
5913 }
5914
5915 static int glk_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5916 {
5917 int ratio;
5918
5919 if (cdclk == dev_priv->cdclk_pll.ref)
5920 return 0;
5921
5922 switch (cdclk) {
5923 default:
5924 MISSING_CASE(cdclk);
5925 case 79200:
5926 case 158400:
5927 case 316800:
5928 ratio = 33;
5929 break;
5930 }
5931
5932 return dev_priv->cdclk_pll.ref * ratio;
5933 }
5934
5935 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5936 {
5937 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5938
5939 /* Timeout 200us */
5940 if (intel_wait_for_register(dev_priv,
5941 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5942 1))
5943 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5944
5945 dev_priv->cdclk_pll.vco = 0;
5946 }
5947
5948 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5949 {
5950 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5951 u32 val;
5952
5953 val = I915_READ(BXT_DE_PLL_CTL);
5954 val &= ~BXT_DE_PLL_RATIO_MASK;
5955 val |= BXT_DE_PLL_RATIO(ratio);
5956 I915_WRITE(BXT_DE_PLL_CTL, val);
5957
5958 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5959
5960 /* Timeout 200us */
5961 if (intel_wait_for_register(dev_priv,
5962 BXT_DE_PLL_ENABLE,
5963 BXT_DE_PLL_LOCK,
5964 BXT_DE_PLL_LOCK,
5965 1))
5966 DRM_ERROR("timeout waiting for DE PLL lock\n");
5967
5968 dev_priv->cdclk_pll.vco = vco;
5969 }
5970
5971 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5972 {
5973 u32 val, divider;
5974 int vco, ret;
5975
5976 if (IS_GEMINILAKE(dev_priv))
5977 vco = glk_de_pll_vco(dev_priv, cdclk);
5978 else
5979 vco = bxt_de_pll_vco(dev_priv, cdclk);
5980
5981 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5982
5983 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5984 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5985 case 8:
5986 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5987 break;
5988 case 4:
5989 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5990 break;
5991 case 3:
5992 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
5993 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5994 break;
5995 case 2:
5996 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5997 break;
5998 default:
5999 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6000 WARN_ON(vco != 0);
6001
6002 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6003 break;
6004 }
6005
6006 /* Inform power controller of upcoming frequency change */
6007 mutex_lock(&dev_priv->rps.hw_lock);
6008 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6009 0x80000000);
6010 mutex_unlock(&dev_priv->rps.hw_lock);
6011
6012 if (ret) {
6013 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6014 ret, cdclk);
6015 return;
6016 }
6017
6018 if (dev_priv->cdclk_pll.vco != 0 &&
6019 dev_priv->cdclk_pll.vco != vco)
6020 bxt_de_pll_disable(dev_priv);
6021
6022 if (dev_priv->cdclk_pll.vco != vco)
6023 bxt_de_pll_enable(dev_priv, vco);
6024
6025 val = divider | skl_cdclk_decimal(cdclk);
6026 /*
6027 * FIXME if only the cd2x divider needs changing, it could be done
6028 * without shutting off the pipe (if only one pipe is active).
6029 */
6030 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6031 /*
6032 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6033 * enable otherwise.
6034 */
6035 if (cdclk >= 500000)
6036 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6037 I915_WRITE(CDCLK_CTL, val);
6038
6039 mutex_lock(&dev_priv->rps.hw_lock);
6040 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6041 DIV_ROUND_UP(cdclk, 25000));
6042 mutex_unlock(&dev_priv->rps.hw_lock);
6043
6044 if (ret) {
6045 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6046 ret, cdclk);
6047 return;
6048 }
6049
6050 intel_update_cdclk(dev_priv);
6051 }
6052
6053 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6054 {
6055 u32 cdctl, expected;
6056
6057 intel_update_cdclk(dev_priv);
6058
6059 if (dev_priv->cdclk_pll.vco == 0 ||
6060 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6061 goto sanitize;
6062
6063 /* DPLL okay; verify the cdclock
6064 *
6065 * Some BIOS versions leave an incorrect decimal frequency value and
6066 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6067 * so sanitize this register.
6068 */
6069 cdctl = I915_READ(CDCLK_CTL);
6070 /*
6071 * Let's ignore the pipe field, since BIOS could have configured the
6072 * dividers both synching to an active pipe, or asynchronously
6073 * (PIPE_NONE).
6074 */
6075 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6076
6077 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6078 skl_cdclk_decimal(dev_priv->cdclk_freq);
6079 /*
6080 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6081 * enable otherwise.
6082 */
6083 if (dev_priv->cdclk_freq >= 500000)
6084 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6085
6086 if (cdctl == expected)
6087 /* All well; nothing to sanitize */
6088 return;
6089
6090 sanitize:
6091 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6092
6093 /* force cdclk programming */
6094 dev_priv->cdclk_freq = 0;
6095
6096 /* force full PLL disable + enable */
6097 dev_priv->cdclk_pll.vco = -1;
6098 }
6099
6100 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6101 {
6102 int cdclk;
6103
6104 bxt_sanitize_cdclk(dev_priv);
6105
6106 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6107 return;
6108
6109 /*
6110 * FIXME:
6111 * - The initial CDCLK needs to be read from VBT.
6112 * Need to make this change after VBT has changes for BXT.
6113 */
6114 if (IS_GEMINILAKE(dev_priv))
6115 cdclk = glk_calc_cdclk(0);
6116 else
6117 cdclk = bxt_calc_cdclk(0);
6118
6119 bxt_set_cdclk(dev_priv, cdclk);
6120 }
6121
6122 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6123 {
6124 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6125 }
6126
6127 static int skl_calc_cdclk(int max_pixclk, int vco)
6128 {
6129 if (vco == 8640000) {
6130 if (max_pixclk > 540000)
6131 return 617143;
6132 else if (max_pixclk > 432000)
6133 return 540000;
6134 else if (max_pixclk > 308571)
6135 return 432000;
6136 else
6137 return 308571;
6138 } else {
6139 if (max_pixclk > 540000)
6140 return 675000;
6141 else if (max_pixclk > 450000)
6142 return 540000;
6143 else if (max_pixclk > 337500)
6144 return 450000;
6145 else
6146 return 337500;
6147 }
6148 }
6149
6150 static void
6151 skl_dpll0_update(struct drm_i915_private *dev_priv)
6152 {
6153 u32 val;
6154
6155 dev_priv->cdclk_pll.ref = 24000;
6156 dev_priv->cdclk_pll.vco = 0;
6157
6158 val = I915_READ(LCPLL1_CTL);
6159 if ((val & LCPLL_PLL_ENABLE) == 0)
6160 return;
6161
6162 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6163 return;
6164
6165 val = I915_READ(DPLL_CTRL1);
6166
6167 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6168 DPLL_CTRL1_SSC(SKL_DPLL0) |
6169 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6170 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6171 return;
6172
6173 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6175 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6176 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6177 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6178 dev_priv->cdclk_pll.vco = 8100000;
6179 break;
6180 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6181 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6182 dev_priv->cdclk_pll.vco = 8640000;
6183 break;
6184 default:
6185 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6186 break;
6187 }
6188 }
6189
6190 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6191 {
6192 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6193
6194 dev_priv->skl_preferred_vco_freq = vco;
6195
6196 if (changed)
6197 intel_update_max_cdclk(dev_priv);
6198 }
6199
6200 static void
6201 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6202 {
6203 int min_cdclk = skl_calc_cdclk(0, vco);
6204 u32 val;
6205
6206 WARN_ON(vco != 8100000 && vco != 8640000);
6207
6208 /* select the minimum CDCLK before enabling DPLL 0 */
6209 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6210 I915_WRITE(CDCLK_CTL, val);
6211 POSTING_READ(CDCLK_CTL);
6212
6213 /*
6214 * We always enable DPLL0 with the lowest link rate possible, but still
6215 * taking into account the VCO required to operate the eDP panel at the
6216 * desired frequency. The usual DP link rates operate with a VCO of
6217 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6218 * The modeset code is responsible for the selection of the exact link
6219 * rate later on, with the constraint of choosing a frequency that
6220 * works with vco.
6221 */
6222 val = I915_READ(DPLL_CTRL1);
6223
6224 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6225 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6226 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6227 if (vco == 8640000)
6228 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6229 SKL_DPLL0);
6230 else
6231 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6232 SKL_DPLL0);
6233
6234 I915_WRITE(DPLL_CTRL1, val);
6235 POSTING_READ(DPLL_CTRL1);
6236
6237 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6238
6239 if (intel_wait_for_register(dev_priv,
6240 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6241 5))
6242 DRM_ERROR("DPLL0 not locked\n");
6243
6244 dev_priv->cdclk_pll.vco = vco;
6245
6246 /* We'll want to keep using the current vco from now on. */
6247 skl_set_preferred_cdclk_vco(dev_priv, vco);
6248 }
6249
6250 static void
6251 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6252 {
6253 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6254 if (intel_wait_for_register(dev_priv,
6255 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6256 1))
6257 DRM_ERROR("Couldn't disable DPLL0\n");
6258
6259 dev_priv->cdclk_pll.vco = 0;
6260 }
6261
6262 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6263 {
6264 u32 freq_select, pcu_ack;
6265 int ret;
6266
6267 WARN_ON((cdclk == 24000) != (vco == 0));
6268
6269 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6270
6271 mutex_lock(&dev_priv->rps.hw_lock);
6272 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6273 SKL_CDCLK_PREPARE_FOR_CHANGE,
6274 SKL_CDCLK_READY_FOR_CHANGE,
6275 SKL_CDCLK_READY_FOR_CHANGE, 3);
6276 mutex_unlock(&dev_priv->rps.hw_lock);
6277 if (ret) {
6278 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6279 ret);
6280 return;
6281 }
6282
6283 /* set CDCLK_CTL */
6284 switch (cdclk) {
6285 case 450000:
6286 case 432000:
6287 freq_select = CDCLK_FREQ_450_432;
6288 pcu_ack = 1;
6289 break;
6290 case 540000:
6291 freq_select = CDCLK_FREQ_540;
6292 pcu_ack = 2;
6293 break;
6294 case 308571:
6295 case 337500:
6296 default:
6297 freq_select = CDCLK_FREQ_337_308;
6298 pcu_ack = 0;
6299 break;
6300 case 617143:
6301 case 675000:
6302 freq_select = CDCLK_FREQ_675_617;
6303 pcu_ack = 3;
6304 break;
6305 }
6306
6307 if (dev_priv->cdclk_pll.vco != 0 &&
6308 dev_priv->cdclk_pll.vco != vco)
6309 skl_dpll0_disable(dev_priv);
6310
6311 if (dev_priv->cdclk_pll.vco != vco)
6312 skl_dpll0_enable(dev_priv, vco);
6313
6314 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6315 POSTING_READ(CDCLK_CTL);
6316
6317 /* inform PCU of the change */
6318 mutex_lock(&dev_priv->rps.hw_lock);
6319 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6320 mutex_unlock(&dev_priv->rps.hw_lock);
6321
6322 intel_update_cdclk(dev_priv);
6323 }
6324
6325 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6326
6327 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6328 {
6329 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6330 }
6331
6332 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6333 {
6334 int cdclk, vco;
6335
6336 skl_sanitize_cdclk(dev_priv);
6337
6338 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6339 /*
6340 * Use the current vco as our initial
6341 * guess as to what the preferred vco is.
6342 */
6343 if (dev_priv->skl_preferred_vco_freq == 0)
6344 skl_set_preferred_cdclk_vco(dev_priv,
6345 dev_priv->cdclk_pll.vco);
6346 return;
6347 }
6348
6349 vco = dev_priv->skl_preferred_vco_freq;
6350 if (vco == 0)
6351 vco = 8100000;
6352 cdclk = skl_calc_cdclk(0, vco);
6353
6354 skl_set_cdclk(dev_priv, cdclk, vco);
6355 }
6356
6357 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6358 {
6359 uint32_t cdctl, expected;
6360
6361 /*
6362 * check if the pre-os intialized the display
6363 * There is SWF18 scratchpad register defined which is set by the
6364 * pre-os which can be used by the OS drivers to check the status
6365 */
6366 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6367 goto sanitize;
6368
6369 intel_update_cdclk(dev_priv);
6370 /* Is PLL enabled and locked ? */
6371 if (dev_priv->cdclk_pll.vco == 0 ||
6372 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6373 goto sanitize;
6374
6375 /* DPLL okay; verify the cdclock
6376 *
6377 * Noticed in some instances that the freq selection is correct but
6378 * decimal part is programmed wrong from BIOS where pre-os does not
6379 * enable display. Verify the same as well.
6380 */
6381 cdctl = I915_READ(CDCLK_CTL);
6382 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6383 skl_cdclk_decimal(dev_priv->cdclk_freq);
6384 if (cdctl == expected)
6385 /* All well; nothing to sanitize */
6386 return;
6387
6388 sanitize:
6389 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6390
6391 /* force cdclk programming */
6392 dev_priv->cdclk_freq = 0;
6393 /* force full PLL disable + enable */
6394 dev_priv->cdclk_pll.vco = -1;
6395 }
6396
6397 /* Adjust CDclk dividers to allow high res or save power if possible */
6398 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6399 {
6400 struct drm_i915_private *dev_priv = to_i915(dev);
6401 u32 val, cmd;
6402
6403 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6404 != dev_priv->cdclk_freq);
6405
6406 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6407 cmd = 2;
6408 else if (cdclk == 266667)
6409 cmd = 1;
6410 else
6411 cmd = 0;
6412
6413 mutex_lock(&dev_priv->rps.hw_lock);
6414 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6415 val &= ~DSPFREQGUAR_MASK;
6416 val |= (cmd << DSPFREQGUAR_SHIFT);
6417 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6418 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6419 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6420 50)) {
6421 DRM_ERROR("timed out waiting for CDclk change\n");
6422 }
6423 mutex_unlock(&dev_priv->rps.hw_lock);
6424
6425 mutex_lock(&dev_priv->sb_lock);
6426
6427 if (cdclk == 400000) {
6428 u32 divider;
6429
6430 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6431
6432 /* adjust cdclk divider */
6433 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6434 val &= ~CCK_FREQUENCY_VALUES;
6435 val |= divider;
6436 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6437
6438 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6439 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6440 50))
6441 DRM_ERROR("timed out waiting for CDclk change\n");
6442 }
6443
6444 /* adjust self-refresh exit latency value */
6445 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6446 val &= ~0x7f;
6447
6448 /*
6449 * For high bandwidth configs, we set a higher latency in the bunit
6450 * so that the core display fetch happens in time to avoid underruns.
6451 */
6452 if (cdclk == 400000)
6453 val |= 4500 / 250; /* 4.5 usec */
6454 else
6455 val |= 3000 / 250; /* 3.0 usec */
6456 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6457
6458 mutex_unlock(&dev_priv->sb_lock);
6459
6460 intel_update_cdclk(dev_priv);
6461 }
6462
6463 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6464 {
6465 struct drm_i915_private *dev_priv = to_i915(dev);
6466 u32 val, cmd;
6467
6468 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6469 != dev_priv->cdclk_freq);
6470
6471 switch (cdclk) {
6472 case 333333:
6473 case 320000:
6474 case 266667:
6475 case 200000:
6476 break;
6477 default:
6478 MISSING_CASE(cdclk);
6479 return;
6480 }
6481
6482 /*
6483 * Specs are full of misinformation, but testing on actual
6484 * hardware has shown that we just need to write the desired
6485 * CCK divider into the Punit register.
6486 */
6487 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6488
6489 mutex_lock(&dev_priv->rps.hw_lock);
6490 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6491 val &= ~DSPFREQGUAR_MASK_CHV;
6492 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6493 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6494 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6495 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6496 50)) {
6497 DRM_ERROR("timed out waiting for CDclk change\n");
6498 }
6499 mutex_unlock(&dev_priv->rps.hw_lock);
6500
6501 intel_update_cdclk(dev_priv);
6502 }
6503
6504 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6505 int max_pixclk)
6506 {
6507 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6508 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6509
6510 /*
6511 * Really only a few cases to deal with, as only 4 CDclks are supported:
6512 * 200MHz
6513 * 267MHz
6514 * 320/333MHz (depends on HPLL freq)
6515 * 400MHz (VLV only)
6516 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6517 * of the lower bin and adjust if needed.
6518 *
6519 * We seem to get an unstable or solid color picture at 200MHz.
6520 * Not sure what's wrong. For now use 200MHz only when all pipes
6521 * are off.
6522 */
6523 if (!IS_CHERRYVIEW(dev_priv) &&
6524 max_pixclk > freq_320*limit/100)
6525 return 400000;
6526 else if (max_pixclk > 266667*limit/100)
6527 return freq_320;
6528 else if (max_pixclk > 0)
6529 return 266667;
6530 else
6531 return 200000;
6532 }
6533
6534 static int glk_calc_cdclk(int max_pixclk)
6535 {
6536 if (max_pixclk > 2 * 158400)
6537 return 316800;
6538 else if (max_pixclk > 2 * 79200)
6539 return 158400;
6540 else
6541 return 79200;
6542 }
6543
6544 static int bxt_calc_cdclk(int max_pixclk)
6545 {
6546 if (max_pixclk > 576000)
6547 return 624000;
6548 else if (max_pixclk > 384000)
6549 return 576000;
6550 else if (max_pixclk > 288000)
6551 return 384000;
6552 else if (max_pixclk > 144000)
6553 return 288000;
6554 else
6555 return 144000;
6556 }
6557
6558 /* Compute the max pixel clock for new configuration. */
6559 static int intel_mode_max_pixclk(struct drm_device *dev,
6560 struct drm_atomic_state *state)
6561 {
6562 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6563 struct drm_i915_private *dev_priv = to_i915(dev);
6564 struct drm_crtc *crtc;
6565 struct drm_crtc_state *crtc_state;
6566 unsigned max_pixclk = 0, i;
6567 enum pipe pipe;
6568
6569 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6570 sizeof(intel_state->min_pixclk));
6571
6572 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6573 int pixclk = 0;
6574
6575 if (crtc_state->enable)
6576 pixclk = crtc_state->adjusted_mode.crtc_clock;
6577
6578 intel_state->min_pixclk[i] = pixclk;
6579 }
6580
6581 for_each_pipe(dev_priv, pipe)
6582 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6583
6584 return max_pixclk;
6585 }
6586
6587 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6588 {
6589 struct drm_device *dev = state->dev;
6590 struct drm_i915_private *dev_priv = to_i915(dev);
6591 int max_pixclk = intel_mode_max_pixclk(dev, state);
6592 struct intel_atomic_state *intel_state =
6593 to_intel_atomic_state(state);
6594
6595 intel_state->cdclk = intel_state->dev_cdclk =
6596 valleyview_calc_cdclk(dev_priv, max_pixclk);
6597
6598 if (!intel_state->active_crtcs)
6599 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6600
6601 return 0;
6602 }
6603
6604 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6605 {
6606 struct drm_i915_private *dev_priv = to_i915(state->dev);
6607 int max_pixclk = ilk_max_pixel_rate(state);
6608 struct intel_atomic_state *intel_state =
6609 to_intel_atomic_state(state);
6610 int cdclk;
6611
6612 if (IS_GEMINILAKE(dev_priv))
6613 cdclk = glk_calc_cdclk(max_pixclk);
6614 else
6615 cdclk = bxt_calc_cdclk(max_pixclk);
6616
6617 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
6618
6619 if (!intel_state->active_crtcs) {
6620 if (IS_GEMINILAKE(dev_priv))
6621 cdclk = glk_calc_cdclk(0);
6622 else
6623 cdclk = bxt_calc_cdclk(0);
6624
6625 intel_state->dev_cdclk = cdclk;
6626 }
6627
6628 return 0;
6629 }
6630
6631 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6632 {
6633 unsigned int credits, default_credits;
6634
6635 if (IS_CHERRYVIEW(dev_priv))
6636 default_credits = PFI_CREDIT(12);
6637 else
6638 default_credits = PFI_CREDIT(8);
6639
6640 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6641 /* CHV suggested value is 31 or 63 */
6642 if (IS_CHERRYVIEW(dev_priv))
6643 credits = PFI_CREDIT_63;
6644 else
6645 credits = PFI_CREDIT(15);
6646 } else {
6647 credits = default_credits;
6648 }
6649
6650 /*
6651 * WA - write default credits before re-programming
6652 * FIXME: should we also set the resend bit here?
6653 */
6654 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6655 default_credits);
6656
6657 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6658 credits | PFI_CREDIT_RESEND);
6659
6660 /*
6661 * FIXME is this guaranteed to clear
6662 * immediately or should we poll for it?
6663 */
6664 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6665 }
6666
6667 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6668 {
6669 struct drm_device *dev = old_state->dev;
6670 struct drm_i915_private *dev_priv = to_i915(dev);
6671 struct intel_atomic_state *old_intel_state =
6672 to_intel_atomic_state(old_state);
6673 unsigned req_cdclk = old_intel_state->dev_cdclk;
6674
6675 /*
6676 * FIXME: We can end up here with all power domains off, yet
6677 * with a CDCLK frequency other than the minimum. To account
6678 * for this take the PIPE-A power domain, which covers the HW
6679 * blocks needed for the following programming. This can be
6680 * removed once it's guaranteed that we get here either with
6681 * the minimum CDCLK set, or the required power domains
6682 * enabled.
6683 */
6684 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6685
6686 if (IS_CHERRYVIEW(dev_priv))
6687 cherryview_set_cdclk(dev, req_cdclk);
6688 else
6689 valleyview_set_cdclk(dev, req_cdclk);
6690
6691 vlv_program_pfi_credits(dev_priv);
6692
6693 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6694 }
6695
6696 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6697 struct drm_atomic_state *old_state)
6698 {
6699 struct drm_crtc *crtc = pipe_config->base.crtc;
6700 struct drm_device *dev = crtc->dev;
6701 struct drm_i915_private *dev_priv = to_i915(dev);
6702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6703 int pipe = intel_crtc->pipe;
6704
6705 if (WARN_ON(intel_crtc->active))
6706 return;
6707
6708 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6709 intel_dp_set_m_n(intel_crtc, M1_N1);
6710
6711 intel_set_pipe_timings(intel_crtc);
6712 intel_set_pipe_src_size(intel_crtc);
6713
6714 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6715 struct drm_i915_private *dev_priv = to_i915(dev);
6716
6717 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6718 I915_WRITE(CHV_CANVAS(pipe), 0);
6719 }
6720
6721 i9xx_set_pipeconf(intel_crtc);
6722
6723 intel_crtc->active = true;
6724
6725 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6726
6727 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6728
6729 if (IS_CHERRYVIEW(dev_priv)) {
6730 chv_prepare_pll(intel_crtc, intel_crtc->config);
6731 chv_enable_pll(intel_crtc, intel_crtc->config);
6732 } else {
6733 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6734 vlv_enable_pll(intel_crtc, intel_crtc->config);
6735 }
6736
6737 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6738
6739 i9xx_pfit_enable(intel_crtc);
6740
6741 intel_color_load_luts(&pipe_config->base);
6742
6743 intel_update_watermarks(intel_crtc);
6744 intel_enable_pipe(intel_crtc);
6745
6746 assert_vblank_disabled(crtc);
6747 drm_crtc_vblank_on(crtc);
6748
6749 intel_encoders_enable(crtc, pipe_config, old_state);
6750 }
6751
6752 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6753 {
6754 struct drm_device *dev = crtc->base.dev;
6755 struct drm_i915_private *dev_priv = to_i915(dev);
6756
6757 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6758 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6759 }
6760
6761 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6762 struct drm_atomic_state *old_state)
6763 {
6764 struct drm_crtc *crtc = pipe_config->base.crtc;
6765 struct drm_device *dev = crtc->dev;
6766 struct drm_i915_private *dev_priv = to_i915(dev);
6767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6768 enum pipe pipe = intel_crtc->pipe;
6769
6770 if (WARN_ON(intel_crtc->active))
6771 return;
6772
6773 i9xx_set_pll_dividers(intel_crtc);
6774
6775 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6776 intel_dp_set_m_n(intel_crtc, M1_N1);
6777
6778 intel_set_pipe_timings(intel_crtc);
6779 intel_set_pipe_src_size(intel_crtc);
6780
6781 i9xx_set_pipeconf(intel_crtc);
6782
6783 intel_crtc->active = true;
6784
6785 if (!IS_GEN2(dev_priv))
6786 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6787
6788 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6789
6790 i9xx_enable_pll(intel_crtc);
6791
6792 i9xx_pfit_enable(intel_crtc);
6793
6794 intel_color_load_luts(&pipe_config->base);
6795
6796 intel_update_watermarks(intel_crtc);
6797 intel_enable_pipe(intel_crtc);
6798
6799 assert_vblank_disabled(crtc);
6800 drm_crtc_vblank_on(crtc);
6801
6802 intel_encoders_enable(crtc, pipe_config, old_state);
6803 }
6804
6805 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6806 {
6807 struct drm_device *dev = crtc->base.dev;
6808 struct drm_i915_private *dev_priv = to_i915(dev);
6809
6810 if (!crtc->config->gmch_pfit.control)
6811 return;
6812
6813 assert_pipe_disabled(dev_priv, crtc->pipe);
6814
6815 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6816 I915_READ(PFIT_CONTROL));
6817 I915_WRITE(PFIT_CONTROL, 0);
6818 }
6819
6820 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6821 struct drm_atomic_state *old_state)
6822 {
6823 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6824 struct drm_device *dev = crtc->dev;
6825 struct drm_i915_private *dev_priv = to_i915(dev);
6826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6827 int pipe = intel_crtc->pipe;
6828
6829 /*
6830 * On gen2 planes are double buffered but the pipe isn't, so we must
6831 * wait for planes to fully turn off before disabling the pipe.
6832 */
6833 if (IS_GEN2(dev_priv))
6834 intel_wait_for_vblank(dev_priv, pipe);
6835
6836 intel_encoders_disable(crtc, old_crtc_state, old_state);
6837
6838 drm_crtc_vblank_off(crtc);
6839 assert_vblank_disabled(crtc);
6840
6841 intel_disable_pipe(intel_crtc);
6842
6843 i9xx_pfit_disable(intel_crtc);
6844
6845 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6846
6847 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6848 if (IS_CHERRYVIEW(dev_priv))
6849 chv_disable_pll(dev_priv, pipe);
6850 else if (IS_VALLEYVIEW(dev_priv))
6851 vlv_disable_pll(dev_priv, pipe);
6852 else
6853 i9xx_disable_pll(intel_crtc);
6854 }
6855
6856 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6857
6858 if (!IS_GEN2(dev_priv))
6859 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6860 }
6861
6862 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6863 {
6864 struct intel_encoder *encoder;
6865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6866 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6867 enum intel_display_power_domain domain;
6868 unsigned long domains;
6869 struct drm_atomic_state *state;
6870 struct intel_crtc_state *crtc_state;
6871 int ret;
6872
6873 if (!intel_crtc->active)
6874 return;
6875
6876 if (crtc->primary->state->visible) {
6877 WARN_ON(intel_crtc->flip_work);
6878
6879 intel_pre_disable_primary_noatomic(crtc);
6880
6881 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6882 crtc->primary->state->visible = false;
6883 }
6884
6885 state = drm_atomic_state_alloc(crtc->dev);
6886 if (!state) {
6887 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6888 crtc->base.id, crtc->name);
6889 return;
6890 }
6891
6892 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6893
6894 /* Everything's already locked, -EDEADLK can't happen. */
6895 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6896 ret = drm_atomic_add_affected_connectors(state, crtc);
6897
6898 WARN_ON(IS_ERR(crtc_state) || ret);
6899
6900 dev_priv->display.crtc_disable(crtc_state, state);
6901
6902 drm_atomic_state_put(state);
6903
6904 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6905 crtc->base.id, crtc->name);
6906
6907 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6908 crtc->state->active = false;
6909 intel_crtc->active = false;
6910 crtc->enabled = false;
6911 crtc->state->connector_mask = 0;
6912 crtc->state->encoder_mask = 0;
6913
6914 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6915 encoder->base.crtc = NULL;
6916
6917 intel_fbc_disable(intel_crtc);
6918 intel_update_watermarks(intel_crtc);
6919 intel_disable_shared_dpll(intel_crtc);
6920
6921 domains = intel_crtc->enabled_power_domains;
6922 for_each_power_domain(domain, domains)
6923 intel_display_power_put(dev_priv, domain);
6924 intel_crtc->enabled_power_domains = 0;
6925
6926 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6927 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6928 }
6929
6930 /*
6931 * turn all crtc's off, but do not adjust state
6932 * This has to be paired with a call to intel_modeset_setup_hw_state.
6933 */
6934 int intel_display_suspend(struct drm_device *dev)
6935 {
6936 struct drm_i915_private *dev_priv = to_i915(dev);
6937 struct drm_atomic_state *state;
6938 int ret;
6939
6940 state = drm_atomic_helper_suspend(dev);
6941 ret = PTR_ERR_OR_ZERO(state);
6942 if (ret)
6943 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6944 else
6945 dev_priv->modeset_restore_state = state;
6946 return ret;
6947 }
6948
6949 void intel_encoder_destroy(struct drm_encoder *encoder)
6950 {
6951 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6952
6953 drm_encoder_cleanup(encoder);
6954 kfree(intel_encoder);
6955 }
6956
6957 /* Cross check the actual hw state with our own modeset state tracking (and it's
6958 * internal consistency). */
6959 static void intel_connector_verify_state(struct intel_connector *connector)
6960 {
6961 struct drm_crtc *crtc = connector->base.state->crtc;
6962
6963 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6964 connector->base.base.id,
6965 connector->base.name);
6966
6967 if (connector->get_hw_state(connector)) {
6968 struct intel_encoder *encoder = connector->encoder;
6969 struct drm_connector_state *conn_state = connector->base.state;
6970
6971 I915_STATE_WARN(!crtc,
6972 "connector enabled without attached crtc\n");
6973
6974 if (!crtc)
6975 return;
6976
6977 I915_STATE_WARN(!crtc->state->active,
6978 "connector is active, but attached crtc isn't\n");
6979
6980 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6981 return;
6982
6983 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6984 "atomic encoder doesn't match attached encoder\n");
6985
6986 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6987 "attached encoder crtc differs from connector crtc\n");
6988 } else {
6989 I915_STATE_WARN(crtc && crtc->state->active,
6990 "attached crtc is active, but connector isn't\n");
6991 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6992 "best encoder set without crtc!\n");
6993 }
6994 }
6995
6996 int intel_connector_init(struct intel_connector *connector)
6997 {
6998 drm_atomic_helper_connector_reset(&connector->base);
6999
7000 if (!connector->base.state)
7001 return -ENOMEM;
7002
7003 return 0;
7004 }
7005
7006 struct intel_connector *intel_connector_alloc(void)
7007 {
7008 struct intel_connector *connector;
7009
7010 connector = kzalloc(sizeof *connector, GFP_KERNEL);
7011 if (!connector)
7012 return NULL;
7013
7014 if (intel_connector_init(connector) < 0) {
7015 kfree(connector);
7016 return NULL;
7017 }
7018
7019 return connector;
7020 }
7021
7022 /* Simple connector->get_hw_state implementation for encoders that support only
7023 * one connector and no cloning and hence the encoder state determines the state
7024 * of the connector. */
7025 bool intel_connector_get_hw_state(struct intel_connector *connector)
7026 {
7027 enum pipe pipe = 0;
7028 struct intel_encoder *encoder = connector->encoder;
7029
7030 return encoder->get_hw_state(encoder, &pipe);
7031 }
7032
7033 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7034 {
7035 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7036 return crtc_state->fdi_lanes;
7037
7038 return 0;
7039 }
7040
7041 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7042 struct intel_crtc_state *pipe_config)
7043 {
7044 struct drm_i915_private *dev_priv = to_i915(dev);
7045 struct drm_atomic_state *state = pipe_config->base.state;
7046 struct intel_crtc *other_crtc;
7047 struct intel_crtc_state *other_crtc_state;
7048
7049 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7050 pipe_name(pipe), pipe_config->fdi_lanes);
7051 if (pipe_config->fdi_lanes > 4) {
7052 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7053 pipe_name(pipe), pipe_config->fdi_lanes);
7054 return -EINVAL;
7055 }
7056
7057 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7058 if (pipe_config->fdi_lanes > 2) {
7059 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7060 pipe_config->fdi_lanes);
7061 return -EINVAL;
7062 } else {
7063 return 0;
7064 }
7065 }
7066
7067 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7068 return 0;
7069
7070 /* Ivybridge 3 pipe is really complicated */
7071 switch (pipe) {
7072 case PIPE_A:
7073 return 0;
7074 case PIPE_B:
7075 if (pipe_config->fdi_lanes <= 2)
7076 return 0;
7077
7078 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7079 other_crtc_state =
7080 intel_atomic_get_crtc_state(state, other_crtc);
7081 if (IS_ERR(other_crtc_state))
7082 return PTR_ERR(other_crtc_state);
7083
7084 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7085 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7086 pipe_name(pipe), pipe_config->fdi_lanes);
7087 return -EINVAL;
7088 }
7089 return 0;
7090 case PIPE_C:
7091 if (pipe_config->fdi_lanes > 2) {
7092 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7093 pipe_name(pipe), pipe_config->fdi_lanes);
7094 return -EINVAL;
7095 }
7096
7097 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7098 other_crtc_state =
7099 intel_atomic_get_crtc_state(state, other_crtc);
7100 if (IS_ERR(other_crtc_state))
7101 return PTR_ERR(other_crtc_state);
7102
7103 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7104 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7105 return -EINVAL;
7106 }
7107 return 0;
7108 default:
7109 BUG();
7110 }
7111 }
7112
7113 #define RETRY 1
7114 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7115 struct intel_crtc_state *pipe_config)
7116 {
7117 struct drm_device *dev = intel_crtc->base.dev;
7118 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7119 int lane, link_bw, fdi_dotclock, ret;
7120 bool needs_recompute = false;
7121
7122 retry:
7123 /* FDI is a binary signal running at ~2.7GHz, encoding
7124 * each output octet as 10 bits. The actual frequency
7125 * is stored as a divider into a 100MHz clock, and the
7126 * mode pixel clock is stored in units of 1KHz.
7127 * Hence the bw of each lane in terms of the mode signal
7128 * is:
7129 */
7130 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7131
7132 fdi_dotclock = adjusted_mode->crtc_clock;
7133
7134 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7135 pipe_config->pipe_bpp);
7136
7137 pipe_config->fdi_lanes = lane;
7138
7139 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7140 link_bw, &pipe_config->fdi_m_n);
7141
7142 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7143 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7144 pipe_config->pipe_bpp -= 2*3;
7145 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7146 pipe_config->pipe_bpp);
7147 needs_recompute = true;
7148 pipe_config->bw_constrained = true;
7149
7150 goto retry;
7151 }
7152
7153 if (needs_recompute)
7154 return RETRY;
7155
7156 return ret;
7157 }
7158
7159 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7160 struct intel_crtc_state *pipe_config)
7161 {
7162 if (pipe_config->pipe_bpp > 24)
7163 return false;
7164
7165 /* HSW can handle pixel rate up to cdclk? */
7166 if (IS_HASWELL(dev_priv))
7167 return true;
7168
7169 /*
7170 * We compare against max which means we must take
7171 * the increased cdclk requirement into account when
7172 * calculating the new cdclk.
7173 *
7174 * Should measure whether using a lower cdclk w/o IPS
7175 */
7176 return ilk_pipe_pixel_rate(pipe_config) <=
7177 dev_priv->max_cdclk_freq * 95 / 100;
7178 }
7179
7180 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7181 struct intel_crtc_state *pipe_config)
7182 {
7183 struct drm_device *dev = crtc->base.dev;
7184 struct drm_i915_private *dev_priv = to_i915(dev);
7185
7186 pipe_config->ips_enabled = i915.enable_ips &&
7187 hsw_crtc_supports_ips(crtc) &&
7188 pipe_config_supports_ips(dev_priv, pipe_config);
7189 }
7190
7191 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7192 {
7193 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7194
7195 /* GDG double wide on either pipe, otherwise pipe A only */
7196 return INTEL_INFO(dev_priv)->gen < 4 &&
7197 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7198 }
7199
7200 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7201 struct intel_crtc_state *pipe_config)
7202 {
7203 struct drm_device *dev = crtc->base.dev;
7204 struct drm_i915_private *dev_priv = to_i915(dev);
7205 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7206 int clock_limit = dev_priv->max_dotclk_freq;
7207
7208 if (INTEL_GEN(dev_priv) < 4) {
7209 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7210
7211 /*
7212 * Enable double wide mode when the dot clock
7213 * is > 90% of the (display) core speed.
7214 */
7215 if (intel_crtc_supports_double_wide(crtc) &&
7216 adjusted_mode->crtc_clock > clock_limit) {
7217 clock_limit = dev_priv->max_dotclk_freq;
7218 pipe_config->double_wide = true;
7219 }
7220 }
7221
7222 if (adjusted_mode->crtc_clock > clock_limit) {
7223 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7224 adjusted_mode->crtc_clock, clock_limit,
7225 yesno(pipe_config->double_wide));
7226 return -EINVAL;
7227 }
7228
7229 /*
7230 * Pipe horizontal size must be even in:
7231 * - DVO ganged mode
7232 * - LVDS dual channel mode
7233 * - Double wide pipe
7234 */
7235 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7236 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7237 pipe_config->pipe_src_w &= ~1;
7238
7239 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7240 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7241 */
7242 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7243 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7244 return -EINVAL;
7245
7246 if (HAS_IPS(dev_priv))
7247 hsw_compute_ips_config(crtc, pipe_config);
7248
7249 if (pipe_config->has_pch_encoder)
7250 return ironlake_fdi_compute_config(crtc, pipe_config);
7251
7252 return 0;
7253 }
7254
7255 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7256 {
7257 u32 cdctl;
7258
7259 skl_dpll0_update(dev_priv);
7260
7261 if (dev_priv->cdclk_pll.vco == 0)
7262 return dev_priv->cdclk_pll.ref;
7263
7264 cdctl = I915_READ(CDCLK_CTL);
7265
7266 if (dev_priv->cdclk_pll.vco == 8640000) {
7267 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7268 case CDCLK_FREQ_450_432:
7269 return 432000;
7270 case CDCLK_FREQ_337_308:
7271 return 308571;
7272 case CDCLK_FREQ_540:
7273 return 540000;
7274 case CDCLK_FREQ_675_617:
7275 return 617143;
7276 default:
7277 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7278 }
7279 } else {
7280 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7281 case CDCLK_FREQ_450_432:
7282 return 450000;
7283 case CDCLK_FREQ_337_308:
7284 return 337500;
7285 case CDCLK_FREQ_540:
7286 return 540000;
7287 case CDCLK_FREQ_675_617:
7288 return 675000;
7289 default:
7290 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7291 }
7292 }
7293
7294 return dev_priv->cdclk_pll.ref;
7295 }
7296
7297 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7298 {
7299 u32 val;
7300
7301 dev_priv->cdclk_pll.ref = 19200;
7302 dev_priv->cdclk_pll.vco = 0;
7303
7304 val = I915_READ(BXT_DE_PLL_ENABLE);
7305 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7306 return;
7307
7308 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7309 return;
7310
7311 val = I915_READ(BXT_DE_PLL_CTL);
7312 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7313 dev_priv->cdclk_pll.ref;
7314 }
7315
7316 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7317 {
7318 u32 divider;
7319 int div, vco;
7320
7321 bxt_de_pll_update(dev_priv);
7322
7323 vco = dev_priv->cdclk_pll.vco;
7324 if (vco == 0)
7325 return dev_priv->cdclk_pll.ref;
7326
7327 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7328
7329 switch (divider) {
7330 case BXT_CDCLK_CD2X_DIV_SEL_1:
7331 div = 2;
7332 break;
7333 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7334 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
7335 div = 3;
7336 break;
7337 case BXT_CDCLK_CD2X_DIV_SEL_2:
7338 div = 4;
7339 break;
7340 case BXT_CDCLK_CD2X_DIV_SEL_4:
7341 div = 8;
7342 break;
7343 default:
7344 MISSING_CASE(divider);
7345 return dev_priv->cdclk_pll.ref;
7346 }
7347
7348 return DIV_ROUND_CLOSEST(vco, div);
7349 }
7350
7351 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7352 {
7353 uint32_t lcpll = I915_READ(LCPLL_CTL);
7354 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7355
7356 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7357 return 800000;
7358 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7359 return 450000;
7360 else if (freq == LCPLL_CLK_FREQ_450)
7361 return 450000;
7362 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7363 return 540000;
7364 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7365 return 337500;
7366 else
7367 return 675000;
7368 }
7369
7370 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7371 {
7372 uint32_t lcpll = I915_READ(LCPLL_CTL);
7373 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7374
7375 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7376 return 800000;
7377 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7378 return 450000;
7379 else if (freq == LCPLL_CLK_FREQ_450)
7380 return 450000;
7381 else if (IS_HSW_ULT(dev_priv))
7382 return 337500;
7383 else
7384 return 540000;
7385 }
7386
7387 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7388 {
7389 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7390 CCK_DISPLAY_CLOCK_CONTROL);
7391 }
7392
7393 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7394 {
7395 return 450000;
7396 }
7397
7398 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7399 {
7400 return 400000;
7401 }
7402
7403 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7404 {
7405 return 333333;
7406 }
7407
7408 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7409 {
7410 return 200000;
7411 }
7412
7413 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7414 {
7415 struct pci_dev *pdev = dev_priv->drm.pdev;
7416 u16 gcfgc = 0;
7417
7418 pci_read_config_word(pdev, GCFGC, &gcfgc);
7419
7420 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7421 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7422 return 266667;
7423 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7424 return 333333;
7425 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7426 return 444444;
7427 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7428 return 200000;
7429 default:
7430 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7431 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7432 return 133333;
7433 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7434 return 166667;
7435 }
7436 }
7437
7438 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7439 {
7440 struct pci_dev *pdev = dev_priv->drm.pdev;
7441 u16 gcfgc = 0;
7442
7443 pci_read_config_word(pdev, GCFGC, &gcfgc);
7444
7445 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7446 return 133333;
7447 else {
7448 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7449 case GC_DISPLAY_CLOCK_333_MHZ:
7450 return 333333;
7451 default:
7452 case GC_DISPLAY_CLOCK_190_200_MHZ:
7453 return 190000;
7454 }
7455 }
7456 }
7457
7458 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7459 {
7460 return 266667;
7461 }
7462
7463 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7464 {
7465 struct pci_dev *pdev = dev_priv->drm.pdev;
7466 u16 hpllcc = 0;
7467
7468 /*
7469 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7470 * encoding is different :(
7471 * FIXME is this the right way to detect 852GM/852GMV?
7472 */
7473 if (pdev->revision == 0x1)
7474 return 133333;
7475
7476 pci_bus_read_config_word(pdev->bus,
7477 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7478
7479 /* Assume that the hardware is in the high speed state. This
7480 * should be the default.
7481 */
7482 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7483 case GC_CLOCK_133_200:
7484 case GC_CLOCK_133_200_2:
7485 case GC_CLOCK_100_200:
7486 return 200000;
7487 case GC_CLOCK_166_250:
7488 return 250000;
7489 case GC_CLOCK_100_133:
7490 return 133333;
7491 case GC_CLOCK_133_266:
7492 case GC_CLOCK_133_266_2:
7493 case GC_CLOCK_166_266:
7494 return 266667;
7495 }
7496
7497 /* Shouldn't happen */
7498 return 0;
7499 }
7500
7501 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7502 {
7503 return 133333;
7504 }
7505
7506 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7507 {
7508 static const unsigned int blb_vco[8] = {
7509 [0] = 3200000,
7510 [1] = 4000000,
7511 [2] = 5333333,
7512 [3] = 4800000,
7513 [4] = 6400000,
7514 };
7515 static const unsigned int pnv_vco[8] = {
7516 [0] = 3200000,
7517 [1] = 4000000,
7518 [2] = 5333333,
7519 [3] = 4800000,
7520 [4] = 2666667,
7521 };
7522 static const unsigned int cl_vco[8] = {
7523 [0] = 3200000,
7524 [1] = 4000000,
7525 [2] = 5333333,
7526 [3] = 6400000,
7527 [4] = 3333333,
7528 [5] = 3566667,
7529 [6] = 4266667,
7530 };
7531 static const unsigned int elk_vco[8] = {
7532 [0] = 3200000,
7533 [1] = 4000000,
7534 [2] = 5333333,
7535 [3] = 4800000,
7536 };
7537 static const unsigned int ctg_vco[8] = {
7538 [0] = 3200000,
7539 [1] = 4000000,
7540 [2] = 5333333,
7541 [3] = 6400000,
7542 [4] = 2666667,
7543 [5] = 4266667,
7544 };
7545 const unsigned int *vco_table;
7546 unsigned int vco;
7547 uint8_t tmp = 0;
7548
7549 /* FIXME other chipsets? */
7550 if (IS_GM45(dev_priv))
7551 vco_table = ctg_vco;
7552 else if (IS_G4X(dev_priv))
7553 vco_table = elk_vco;
7554 else if (IS_I965GM(dev_priv))
7555 vco_table = cl_vco;
7556 else if (IS_PINEVIEW(dev_priv))
7557 vco_table = pnv_vco;
7558 else if (IS_G33(dev_priv))
7559 vco_table = blb_vco;
7560 else
7561 return 0;
7562
7563 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7564
7565 vco = vco_table[tmp & 0x7];
7566 if (vco == 0)
7567 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7568 else
7569 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7570
7571 return vco;
7572 }
7573
7574 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7575 {
7576 struct pci_dev *pdev = dev_priv->drm.pdev;
7577 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7578 uint16_t tmp = 0;
7579
7580 pci_read_config_word(pdev, GCFGC, &tmp);
7581
7582 cdclk_sel = (tmp >> 12) & 0x1;
7583
7584 switch (vco) {
7585 case 2666667:
7586 case 4000000:
7587 case 5333333:
7588 return cdclk_sel ? 333333 : 222222;
7589 case 3200000:
7590 return cdclk_sel ? 320000 : 228571;
7591 default:
7592 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7593 return 222222;
7594 }
7595 }
7596
7597 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7598 {
7599 struct pci_dev *pdev = dev_priv->drm.pdev;
7600 static const uint8_t div_3200[] = { 16, 10, 8 };
7601 static const uint8_t div_4000[] = { 20, 12, 10 };
7602 static const uint8_t div_5333[] = { 24, 16, 14 };
7603 const uint8_t *div_table;
7604 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7605 uint16_t tmp = 0;
7606
7607 pci_read_config_word(pdev, GCFGC, &tmp);
7608
7609 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7610
7611 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7612 goto fail;
7613
7614 switch (vco) {
7615 case 3200000:
7616 div_table = div_3200;
7617 break;
7618 case 4000000:
7619 div_table = div_4000;
7620 break;
7621 case 5333333:
7622 div_table = div_5333;
7623 break;
7624 default:
7625 goto fail;
7626 }
7627
7628 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7629
7630 fail:
7631 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7632 return 200000;
7633 }
7634
7635 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7636 {
7637 struct pci_dev *pdev = dev_priv->drm.pdev;
7638 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7639 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7640 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7641 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7642 const uint8_t *div_table;
7643 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7644 uint16_t tmp = 0;
7645
7646 pci_read_config_word(pdev, GCFGC, &tmp);
7647
7648 cdclk_sel = (tmp >> 4) & 0x7;
7649
7650 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7651 goto fail;
7652
7653 switch (vco) {
7654 case 3200000:
7655 div_table = div_3200;
7656 break;
7657 case 4000000:
7658 div_table = div_4000;
7659 break;
7660 case 4800000:
7661 div_table = div_4800;
7662 break;
7663 case 5333333:
7664 div_table = div_5333;
7665 break;
7666 default:
7667 goto fail;
7668 }
7669
7670 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7671
7672 fail:
7673 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7674 return 190476;
7675 }
7676
7677 static void
7678 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7679 {
7680 while (*num > DATA_LINK_M_N_MASK ||
7681 *den > DATA_LINK_M_N_MASK) {
7682 *num >>= 1;
7683 *den >>= 1;
7684 }
7685 }
7686
7687 static void compute_m_n(unsigned int m, unsigned int n,
7688 uint32_t *ret_m, uint32_t *ret_n)
7689 {
7690 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7691 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7692 intel_reduce_m_n_ratio(ret_m, ret_n);
7693 }
7694
7695 void
7696 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7697 int pixel_clock, int link_clock,
7698 struct intel_link_m_n *m_n)
7699 {
7700 m_n->tu = 64;
7701
7702 compute_m_n(bits_per_pixel * pixel_clock,
7703 link_clock * nlanes * 8,
7704 &m_n->gmch_m, &m_n->gmch_n);
7705
7706 compute_m_n(pixel_clock, link_clock,
7707 &m_n->link_m, &m_n->link_n);
7708 }
7709
7710 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7711 {
7712 if (i915.panel_use_ssc >= 0)
7713 return i915.panel_use_ssc != 0;
7714 return dev_priv->vbt.lvds_use_ssc
7715 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7716 }
7717
7718 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7719 {
7720 return (1 << dpll->n) << 16 | dpll->m2;
7721 }
7722
7723 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7724 {
7725 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7726 }
7727
7728 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7729 struct intel_crtc_state *crtc_state,
7730 struct dpll *reduced_clock)
7731 {
7732 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7733 u32 fp, fp2 = 0;
7734
7735 if (IS_PINEVIEW(dev_priv)) {
7736 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7737 if (reduced_clock)
7738 fp2 = pnv_dpll_compute_fp(reduced_clock);
7739 } else {
7740 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7741 if (reduced_clock)
7742 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7743 }
7744
7745 crtc_state->dpll_hw_state.fp0 = fp;
7746
7747 crtc->lowfreq_avail = false;
7748 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7749 reduced_clock) {
7750 crtc_state->dpll_hw_state.fp1 = fp2;
7751 crtc->lowfreq_avail = true;
7752 } else {
7753 crtc_state->dpll_hw_state.fp1 = fp;
7754 }
7755 }
7756
7757 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7758 pipe)
7759 {
7760 u32 reg_val;
7761
7762 /*
7763 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7764 * and set it to a reasonable value instead.
7765 */
7766 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7767 reg_val &= 0xffffff00;
7768 reg_val |= 0x00000030;
7769 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7770
7771 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7772 reg_val &= 0x8cffffff;
7773 reg_val = 0x8c000000;
7774 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7775
7776 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7777 reg_val &= 0xffffff00;
7778 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7779
7780 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7781 reg_val &= 0x00ffffff;
7782 reg_val |= 0xb0000000;
7783 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7784 }
7785
7786 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7787 struct intel_link_m_n *m_n)
7788 {
7789 struct drm_device *dev = crtc->base.dev;
7790 struct drm_i915_private *dev_priv = to_i915(dev);
7791 int pipe = crtc->pipe;
7792
7793 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7794 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7795 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7796 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7797 }
7798
7799 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7800 struct intel_link_m_n *m_n,
7801 struct intel_link_m_n *m2_n2)
7802 {
7803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7804 int pipe = crtc->pipe;
7805 enum transcoder transcoder = crtc->config->cpu_transcoder;
7806
7807 if (INTEL_GEN(dev_priv) >= 5) {
7808 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7809 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7810 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7811 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7812 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7813 * for gen < 8) and if DRRS is supported (to make sure the
7814 * registers are not unnecessarily accessed).
7815 */
7816 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7817 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7818 I915_WRITE(PIPE_DATA_M2(transcoder),
7819 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7820 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7821 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7822 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7823 }
7824 } else {
7825 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7826 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7827 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7828 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7829 }
7830 }
7831
7832 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7833 {
7834 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7835
7836 if (m_n == M1_N1) {
7837 dp_m_n = &crtc->config->dp_m_n;
7838 dp_m2_n2 = &crtc->config->dp_m2_n2;
7839 } else if (m_n == M2_N2) {
7840
7841 /*
7842 * M2_N2 registers are not supported. Hence m2_n2 divider value
7843 * needs to be programmed into M1_N1.
7844 */
7845 dp_m_n = &crtc->config->dp_m2_n2;
7846 } else {
7847 DRM_ERROR("Unsupported divider value\n");
7848 return;
7849 }
7850
7851 if (crtc->config->has_pch_encoder)
7852 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7853 else
7854 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7855 }
7856
7857 static void vlv_compute_dpll(struct intel_crtc *crtc,
7858 struct intel_crtc_state *pipe_config)
7859 {
7860 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7861 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7862 if (crtc->pipe != PIPE_A)
7863 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7864
7865 /* DPLL not used with DSI, but still need the rest set up */
7866 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7867 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7868 DPLL_EXT_BUFFER_ENABLE_VLV;
7869
7870 pipe_config->dpll_hw_state.dpll_md =
7871 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7872 }
7873
7874 static void chv_compute_dpll(struct intel_crtc *crtc,
7875 struct intel_crtc_state *pipe_config)
7876 {
7877 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7878 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7879 if (crtc->pipe != PIPE_A)
7880 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7881
7882 /* DPLL not used with DSI, but still need the rest set up */
7883 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7884 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7885
7886 pipe_config->dpll_hw_state.dpll_md =
7887 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7888 }
7889
7890 static void vlv_prepare_pll(struct intel_crtc *crtc,
7891 const struct intel_crtc_state *pipe_config)
7892 {
7893 struct drm_device *dev = crtc->base.dev;
7894 struct drm_i915_private *dev_priv = to_i915(dev);
7895 enum pipe pipe = crtc->pipe;
7896 u32 mdiv;
7897 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7898 u32 coreclk, reg_val;
7899
7900 /* Enable Refclk */
7901 I915_WRITE(DPLL(pipe),
7902 pipe_config->dpll_hw_state.dpll &
7903 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7904
7905 /* No need to actually set up the DPLL with DSI */
7906 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7907 return;
7908
7909 mutex_lock(&dev_priv->sb_lock);
7910
7911 bestn = pipe_config->dpll.n;
7912 bestm1 = pipe_config->dpll.m1;
7913 bestm2 = pipe_config->dpll.m2;
7914 bestp1 = pipe_config->dpll.p1;
7915 bestp2 = pipe_config->dpll.p2;
7916
7917 /* See eDP HDMI DPIO driver vbios notes doc */
7918
7919 /* PLL B needs special handling */
7920 if (pipe == PIPE_B)
7921 vlv_pllb_recal_opamp(dev_priv, pipe);
7922
7923 /* Set up Tx target for periodic Rcomp update */
7924 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7925
7926 /* Disable target IRef on PLL */
7927 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7928 reg_val &= 0x00ffffff;
7929 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7930
7931 /* Disable fast lock */
7932 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7933
7934 /* Set idtafcrecal before PLL is enabled */
7935 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7936 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7937 mdiv |= ((bestn << DPIO_N_SHIFT));
7938 mdiv |= (1 << DPIO_K_SHIFT);
7939
7940 /*
7941 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7942 * but we don't support that).
7943 * Note: don't use the DAC post divider as it seems unstable.
7944 */
7945 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7946 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7947
7948 mdiv |= DPIO_ENABLE_CALIBRATION;
7949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7950
7951 /* Set HBR and RBR LPF coefficients */
7952 if (pipe_config->port_clock == 162000 ||
7953 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7954 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7956 0x009f0003);
7957 else
7958 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7959 0x00d0000f);
7960
7961 if (intel_crtc_has_dp_encoder(pipe_config)) {
7962 /* Use SSC source */
7963 if (pipe == PIPE_A)
7964 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7965 0x0df40000);
7966 else
7967 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7968 0x0df70000);
7969 } else { /* HDMI or VGA */
7970 /* Use bend source */
7971 if (pipe == PIPE_A)
7972 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7973 0x0df70000);
7974 else
7975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7976 0x0df40000);
7977 }
7978
7979 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7980 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7981 if (intel_crtc_has_dp_encoder(crtc->config))
7982 coreclk |= 0x01000000;
7983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7984
7985 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7986 mutex_unlock(&dev_priv->sb_lock);
7987 }
7988
7989 static void chv_prepare_pll(struct intel_crtc *crtc,
7990 const struct intel_crtc_state *pipe_config)
7991 {
7992 struct drm_device *dev = crtc->base.dev;
7993 struct drm_i915_private *dev_priv = to_i915(dev);
7994 enum pipe pipe = crtc->pipe;
7995 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7996 u32 loopfilter, tribuf_calcntr;
7997 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7998 u32 dpio_val;
7999 int vco;
8000
8001 /* Enable Refclk and SSC */
8002 I915_WRITE(DPLL(pipe),
8003 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8004
8005 /* No need to actually set up the DPLL with DSI */
8006 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8007 return;
8008
8009 bestn = pipe_config->dpll.n;
8010 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8011 bestm1 = pipe_config->dpll.m1;
8012 bestm2 = pipe_config->dpll.m2 >> 22;
8013 bestp1 = pipe_config->dpll.p1;
8014 bestp2 = pipe_config->dpll.p2;
8015 vco = pipe_config->dpll.vco;
8016 dpio_val = 0;
8017 loopfilter = 0;
8018
8019 mutex_lock(&dev_priv->sb_lock);
8020
8021 /* p1 and p2 divider */
8022 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8023 5 << DPIO_CHV_S1_DIV_SHIFT |
8024 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8025 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8026 1 << DPIO_CHV_K_DIV_SHIFT);
8027
8028 /* Feedback post-divider - m2 */
8029 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8030
8031 /* Feedback refclk divider - n and m1 */
8032 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8033 DPIO_CHV_M1_DIV_BY_2 |
8034 1 << DPIO_CHV_N_DIV_SHIFT);
8035
8036 /* M2 fraction division */
8037 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8038
8039 /* M2 fraction division enable */
8040 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8041 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8042 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8043 if (bestm2_frac)
8044 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8045 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8046
8047 /* Program digital lock detect threshold */
8048 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8049 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8050 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8051 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8052 if (!bestm2_frac)
8053 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8054 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8055
8056 /* Loop filter */
8057 if (vco == 5400000) {
8058 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8059 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8060 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8061 tribuf_calcntr = 0x9;
8062 } else if (vco <= 6200000) {
8063 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8064 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8065 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8066 tribuf_calcntr = 0x9;
8067 } else if (vco <= 6480000) {
8068 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8069 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8070 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8071 tribuf_calcntr = 0x8;
8072 } else {
8073 /* Not supported. Apply the same limits as in the max case */
8074 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8075 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8076 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8077 tribuf_calcntr = 0;
8078 }
8079 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8080
8081 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8082 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8083 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8084 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8085
8086 /* AFC Recal */
8087 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8088 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8089 DPIO_AFC_RECAL);
8090
8091 mutex_unlock(&dev_priv->sb_lock);
8092 }
8093
8094 /**
8095 * vlv_force_pll_on - forcibly enable just the PLL
8096 * @dev_priv: i915 private structure
8097 * @pipe: pipe PLL to enable
8098 * @dpll: PLL configuration
8099 *
8100 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8101 * in cases where we need the PLL enabled even when @pipe is not going to
8102 * be enabled.
8103 */
8104 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8105 const struct dpll *dpll)
8106 {
8107 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8108 struct intel_crtc_state *pipe_config;
8109
8110 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8111 if (!pipe_config)
8112 return -ENOMEM;
8113
8114 pipe_config->base.crtc = &crtc->base;
8115 pipe_config->pixel_multiplier = 1;
8116 pipe_config->dpll = *dpll;
8117
8118 if (IS_CHERRYVIEW(dev_priv)) {
8119 chv_compute_dpll(crtc, pipe_config);
8120 chv_prepare_pll(crtc, pipe_config);
8121 chv_enable_pll(crtc, pipe_config);
8122 } else {
8123 vlv_compute_dpll(crtc, pipe_config);
8124 vlv_prepare_pll(crtc, pipe_config);
8125 vlv_enable_pll(crtc, pipe_config);
8126 }
8127
8128 kfree(pipe_config);
8129
8130 return 0;
8131 }
8132
8133 /**
8134 * vlv_force_pll_off - forcibly disable just the PLL
8135 * @dev_priv: i915 private structure
8136 * @pipe: pipe PLL to disable
8137 *
8138 * Disable the PLL for @pipe. To be used in cases where we need
8139 * the PLL enabled even when @pipe is not going to be enabled.
8140 */
8141 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8142 {
8143 if (IS_CHERRYVIEW(dev_priv))
8144 chv_disable_pll(dev_priv, pipe);
8145 else
8146 vlv_disable_pll(dev_priv, pipe);
8147 }
8148
8149 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8150 struct intel_crtc_state *crtc_state,
8151 struct dpll *reduced_clock)
8152 {
8153 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8154 u32 dpll;
8155 struct dpll *clock = &crtc_state->dpll;
8156
8157 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8158
8159 dpll = DPLL_VGA_MODE_DIS;
8160
8161 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8162 dpll |= DPLLB_MODE_LVDS;
8163 else
8164 dpll |= DPLLB_MODE_DAC_SERIAL;
8165
8166 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8167 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8168 dpll |= (crtc_state->pixel_multiplier - 1)
8169 << SDVO_MULTIPLIER_SHIFT_HIRES;
8170 }
8171
8172 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8173 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8174 dpll |= DPLL_SDVO_HIGH_SPEED;
8175
8176 if (intel_crtc_has_dp_encoder(crtc_state))
8177 dpll |= DPLL_SDVO_HIGH_SPEED;
8178
8179 /* compute bitmask from p1 value */
8180 if (IS_PINEVIEW(dev_priv))
8181 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8182 else {
8183 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8184 if (IS_G4X(dev_priv) && reduced_clock)
8185 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8186 }
8187 switch (clock->p2) {
8188 case 5:
8189 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8190 break;
8191 case 7:
8192 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8193 break;
8194 case 10:
8195 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8196 break;
8197 case 14:
8198 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8199 break;
8200 }
8201 if (INTEL_GEN(dev_priv) >= 4)
8202 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8203
8204 if (crtc_state->sdvo_tv_clock)
8205 dpll |= PLL_REF_INPUT_TVCLKINBC;
8206 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8207 intel_panel_use_ssc(dev_priv))
8208 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8209 else
8210 dpll |= PLL_REF_INPUT_DREFCLK;
8211
8212 dpll |= DPLL_VCO_ENABLE;
8213 crtc_state->dpll_hw_state.dpll = dpll;
8214
8215 if (INTEL_GEN(dev_priv) >= 4) {
8216 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8217 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8218 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8219 }
8220 }
8221
8222 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8223 struct intel_crtc_state *crtc_state,
8224 struct dpll *reduced_clock)
8225 {
8226 struct drm_device *dev = crtc->base.dev;
8227 struct drm_i915_private *dev_priv = to_i915(dev);
8228 u32 dpll;
8229 struct dpll *clock = &crtc_state->dpll;
8230
8231 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8232
8233 dpll = DPLL_VGA_MODE_DIS;
8234
8235 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8236 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8237 } else {
8238 if (clock->p1 == 2)
8239 dpll |= PLL_P1_DIVIDE_BY_TWO;
8240 else
8241 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8242 if (clock->p2 == 4)
8243 dpll |= PLL_P2_DIVIDE_BY_4;
8244 }
8245
8246 if (!IS_I830(dev_priv) &&
8247 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8248 dpll |= DPLL_DVO_2X_MODE;
8249
8250 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8251 intel_panel_use_ssc(dev_priv))
8252 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8253 else
8254 dpll |= PLL_REF_INPUT_DREFCLK;
8255
8256 dpll |= DPLL_VCO_ENABLE;
8257 crtc_state->dpll_hw_state.dpll = dpll;
8258 }
8259
8260 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8261 {
8262 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8263 enum pipe pipe = intel_crtc->pipe;
8264 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8265 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8266 uint32_t crtc_vtotal, crtc_vblank_end;
8267 int vsyncshift = 0;
8268
8269 /* We need to be careful not to changed the adjusted mode, for otherwise
8270 * the hw state checker will get angry at the mismatch. */
8271 crtc_vtotal = adjusted_mode->crtc_vtotal;
8272 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8273
8274 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8275 /* the chip adds 2 halflines automatically */
8276 crtc_vtotal -= 1;
8277 crtc_vblank_end -= 1;
8278
8279 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8280 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8281 else
8282 vsyncshift = adjusted_mode->crtc_hsync_start -
8283 adjusted_mode->crtc_htotal / 2;
8284 if (vsyncshift < 0)
8285 vsyncshift += adjusted_mode->crtc_htotal;
8286 }
8287
8288 if (INTEL_GEN(dev_priv) > 3)
8289 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8290
8291 I915_WRITE(HTOTAL(cpu_transcoder),
8292 (adjusted_mode->crtc_hdisplay - 1) |
8293 ((adjusted_mode->crtc_htotal - 1) << 16));
8294 I915_WRITE(HBLANK(cpu_transcoder),
8295 (adjusted_mode->crtc_hblank_start - 1) |
8296 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8297 I915_WRITE(HSYNC(cpu_transcoder),
8298 (adjusted_mode->crtc_hsync_start - 1) |
8299 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8300
8301 I915_WRITE(VTOTAL(cpu_transcoder),
8302 (adjusted_mode->crtc_vdisplay - 1) |
8303 ((crtc_vtotal - 1) << 16));
8304 I915_WRITE(VBLANK(cpu_transcoder),
8305 (adjusted_mode->crtc_vblank_start - 1) |
8306 ((crtc_vblank_end - 1) << 16));
8307 I915_WRITE(VSYNC(cpu_transcoder),
8308 (adjusted_mode->crtc_vsync_start - 1) |
8309 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8310
8311 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8312 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8313 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8314 * bits. */
8315 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8316 (pipe == PIPE_B || pipe == PIPE_C))
8317 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8318
8319 }
8320
8321 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8322 {
8323 struct drm_device *dev = intel_crtc->base.dev;
8324 struct drm_i915_private *dev_priv = to_i915(dev);
8325 enum pipe pipe = intel_crtc->pipe;
8326
8327 /* pipesrc controls the size that is scaled from, which should
8328 * always be the user's requested size.
8329 */
8330 I915_WRITE(PIPESRC(pipe),
8331 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8332 (intel_crtc->config->pipe_src_h - 1));
8333 }
8334
8335 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8336 struct intel_crtc_state *pipe_config)
8337 {
8338 struct drm_device *dev = crtc->base.dev;
8339 struct drm_i915_private *dev_priv = to_i915(dev);
8340 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8341 uint32_t tmp;
8342
8343 tmp = I915_READ(HTOTAL(cpu_transcoder));
8344 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8345 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8346 tmp = I915_READ(HBLANK(cpu_transcoder));
8347 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8348 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8349 tmp = I915_READ(HSYNC(cpu_transcoder));
8350 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8351 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8352
8353 tmp = I915_READ(VTOTAL(cpu_transcoder));
8354 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8355 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8356 tmp = I915_READ(VBLANK(cpu_transcoder));
8357 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8358 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8359 tmp = I915_READ(VSYNC(cpu_transcoder));
8360 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8361 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8362
8363 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8364 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8365 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8366 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8367 }
8368 }
8369
8370 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8371 struct intel_crtc_state *pipe_config)
8372 {
8373 struct drm_device *dev = crtc->base.dev;
8374 struct drm_i915_private *dev_priv = to_i915(dev);
8375 u32 tmp;
8376
8377 tmp = I915_READ(PIPESRC(crtc->pipe));
8378 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8379 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8380
8381 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8382 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8383 }
8384
8385 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8386 struct intel_crtc_state *pipe_config)
8387 {
8388 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8389 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8390 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8391 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8392
8393 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8394 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8395 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8396 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8397
8398 mode->flags = pipe_config->base.adjusted_mode.flags;
8399 mode->type = DRM_MODE_TYPE_DRIVER;
8400
8401 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8402
8403 mode->hsync = drm_mode_hsync(mode);
8404 mode->vrefresh = drm_mode_vrefresh(mode);
8405 drm_mode_set_name(mode);
8406 }
8407
8408 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8409 {
8410 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8411 uint32_t pipeconf;
8412
8413 pipeconf = 0;
8414
8415 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8416 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8417 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8418
8419 if (intel_crtc->config->double_wide)
8420 pipeconf |= PIPECONF_DOUBLE_WIDE;
8421
8422 /* only g4x and later have fancy bpc/dither controls */
8423 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8424 IS_CHERRYVIEW(dev_priv)) {
8425 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8426 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8427 pipeconf |= PIPECONF_DITHER_EN |
8428 PIPECONF_DITHER_TYPE_SP;
8429
8430 switch (intel_crtc->config->pipe_bpp) {
8431 case 18:
8432 pipeconf |= PIPECONF_6BPC;
8433 break;
8434 case 24:
8435 pipeconf |= PIPECONF_8BPC;
8436 break;
8437 case 30:
8438 pipeconf |= PIPECONF_10BPC;
8439 break;
8440 default:
8441 /* Case prevented by intel_choose_pipe_bpp_dither. */
8442 BUG();
8443 }
8444 }
8445
8446 if (HAS_PIPE_CXSR(dev_priv)) {
8447 if (intel_crtc->lowfreq_avail) {
8448 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8449 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8450 } else {
8451 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8452 }
8453 }
8454
8455 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8456 if (INTEL_GEN(dev_priv) < 4 ||
8457 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8458 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8459 else
8460 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8461 } else
8462 pipeconf |= PIPECONF_PROGRESSIVE;
8463
8464 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8465 intel_crtc->config->limited_color_range)
8466 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8467
8468 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8469 POSTING_READ(PIPECONF(intel_crtc->pipe));
8470 }
8471
8472 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8473 struct intel_crtc_state *crtc_state)
8474 {
8475 struct drm_device *dev = crtc->base.dev;
8476 struct drm_i915_private *dev_priv = to_i915(dev);
8477 const struct intel_limit *limit;
8478 int refclk = 48000;
8479
8480 memset(&crtc_state->dpll_hw_state, 0,
8481 sizeof(crtc_state->dpll_hw_state));
8482
8483 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8484 if (intel_panel_use_ssc(dev_priv)) {
8485 refclk = dev_priv->vbt.lvds_ssc_freq;
8486 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8487 }
8488
8489 limit = &intel_limits_i8xx_lvds;
8490 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8491 limit = &intel_limits_i8xx_dvo;
8492 } else {
8493 limit = &intel_limits_i8xx_dac;
8494 }
8495
8496 if (!crtc_state->clock_set &&
8497 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8498 refclk, NULL, &crtc_state->dpll)) {
8499 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8500 return -EINVAL;
8501 }
8502
8503 i8xx_compute_dpll(crtc, crtc_state, NULL);
8504
8505 return 0;
8506 }
8507
8508 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8509 struct intel_crtc_state *crtc_state)
8510 {
8511 struct drm_device *dev = crtc->base.dev;
8512 struct drm_i915_private *dev_priv = to_i915(dev);
8513 const struct intel_limit *limit;
8514 int refclk = 96000;
8515
8516 memset(&crtc_state->dpll_hw_state, 0,
8517 sizeof(crtc_state->dpll_hw_state));
8518
8519 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8520 if (intel_panel_use_ssc(dev_priv)) {
8521 refclk = dev_priv->vbt.lvds_ssc_freq;
8522 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8523 }
8524
8525 if (intel_is_dual_link_lvds(dev))
8526 limit = &intel_limits_g4x_dual_channel_lvds;
8527 else
8528 limit = &intel_limits_g4x_single_channel_lvds;
8529 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8530 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8531 limit = &intel_limits_g4x_hdmi;
8532 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8533 limit = &intel_limits_g4x_sdvo;
8534 } else {
8535 /* The option is for other outputs */
8536 limit = &intel_limits_i9xx_sdvo;
8537 }
8538
8539 if (!crtc_state->clock_set &&
8540 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8541 refclk, NULL, &crtc_state->dpll)) {
8542 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8543 return -EINVAL;
8544 }
8545
8546 i9xx_compute_dpll(crtc, crtc_state, NULL);
8547
8548 return 0;
8549 }
8550
8551 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8552 struct intel_crtc_state *crtc_state)
8553 {
8554 struct drm_device *dev = crtc->base.dev;
8555 struct drm_i915_private *dev_priv = to_i915(dev);
8556 const struct intel_limit *limit;
8557 int refclk = 96000;
8558
8559 memset(&crtc_state->dpll_hw_state, 0,
8560 sizeof(crtc_state->dpll_hw_state));
8561
8562 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8563 if (intel_panel_use_ssc(dev_priv)) {
8564 refclk = dev_priv->vbt.lvds_ssc_freq;
8565 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8566 }
8567
8568 limit = &intel_limits_pineview_lvds;
8569 } else {
8570 limit = &intel_limits_pineview_sdvo;
8571 }
8572
8573 if (!crtc_state->clock_set &&
8574 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8575 refclk, NULL, &crtc_state->dpll)) {
8576 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8577 return -EINVAL;
8578 }
8579
8580 i9xx_compute_dpll(crtc, crtc_state, NULL);
8581
8582 return 0;
8583 }
8584
8585 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8586 struct intel_crtc_state *crtc_state)
8587 {
8588 struct drm_device *dev = crtc->base.dev;
8589 struct drm_i915_private *dev_priv = to_i915(dev);
8590 const struct intel_limit *limit;
8591 int refclk = 96000;
8592
8593 memset(&crtc_state->dpll_hw_state, 0,
8594 sizeof(crtc_state->dpll_hw_state));
8595
8596 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8597 if (intel_panel_use_ssc(dev_priv)) {
8598 refclk = dev_priv->vbt.lvds_ssc_freq;
8599 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8600 }
8601
8602 limit = &intel_limits_i9xx_lvds;
8603 } else {
8604 limit = &intel_limits_i9xx_sdvo;
8605 }
8606
8607 if (!crtc_state->clock_set &&
8608 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8609 refclk, NULL, &crtc_state->dpll)) {
8610 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8611 return -EINVAL;
8612 }
8613
8614 i9xx_compute_dpll(crtc, crtc_state, NULL);
8615
8616 return 0;
8617 }
8618
8619 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8620 struct intel_crtc_state *crtc_state)
8621 {
8622 int refclk = 100000;
8623 const struct intel_limit *limit = &intel_limits_chv;
8624
8625 memset(&crtc_state->dpll_hw_state, 0,
8626 sizeof(crtc_state->dpll_hw_state));
8627
8628 if (!crtc_state->clock_set &&
8629 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8630 refclk, NULL, &crtc_state->dpll)) {
8631 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8632 return -EINVAL;
8633 }
8634
8635 chv_compute_dpll(crtc, crtc_state);
8636
8637 return 0;
8638 }
8639
8640 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8641 struct intel_crtc_state *crtc_state)
8642 {
8643 int refclk = 100000;
8644 const struct intel_limit *limit = &intel_limits_vlv;
8645
8646 memset(&crtc_state->dpll_hw_state, 0,
8647 sizeof(crtc_state->dpll_hw_state));
8648
8649 if (!crtc_state->clock_set &&
8650 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8651 refclk, NULL, &crtc_state->dpll)) {
8652 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8653 return -EINVAL;
8654 }
8655
8656 vlv_compute_dpll(crtc, crtc_state);
8657
8658 return 0;
8659 }
8660
8661 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8662 struct intel_crtc_state *pipe_config)
8663 {
8664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8665 uint32_t tmp;
8666
8667 if (INTEL_GEN(dev_priv) <= 3 &&
8668 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8669 return;
8670
8671 tmp = I915_READ(PFIT_CONTROL);
8672 if (!(tmp & PFIT_ENABLE))
8673 return;
8674
8675 /* Check whether the pfit is attached to our pipe. */
8676 if (INTEL_GEN(dev_priv) < 4) {
8677 if (crtc->pipe != PIPE_B)
8678 return;
8679 } else {
8680 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8681 return;
8682 }
8683
8684 pipe_config->gmch_pfit.control = tmp;
8685 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8686 }
8687
8688 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8689 struct intel_crtc_state *pipe_config)
8690 {
8691 struct drm_device *dev = crtc->base.dev;
8692 struct drm_i915_private *dev_priv = to_i915(dev);
8693 int pipe = pipe_config->cpu_transcoder;
8694 struct dpll clock;
8695 u32 mdiv;
8696 int refclk = 100000;
8697
8698 /* In case of DSI, DPLL will not be used */
8699 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8700 return;
8701
8702 mutex_lock(&dev_priv->sb_lock);
8703 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8704 mutex_unlock(&dev_priv->sb_lock);
8705
8706 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8707 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8708 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8709 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8710 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8711
8712 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8713 }
8714
8715 static void
8716 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8717 struct intel_initial_plane_config *plane_config)
8718 {
8719 struct drm_device *dev = crtc->base.dev;
8720 struct drm_i915_private *dev_priv = to_i915(dev);
8721 u32 val, base, offset;
8722 int pipe = crtc->pipe, plane = crtc->plane;
8723 int fourcc, pixel_format;
8724 unsigned int aligned_height;
8725 struct drm_framebuffer *fb;
8726 struct intel_framebuffer *intel_fb;
8727
8728 val = I915_READ(DSPCNTR(plane));
8729 if (!(val & DISPLAY_PLANE_ENABLE))
8730 return;
8731
8732 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8733 if (!intel_fb) {
8734 DRM_DEBUG_KMS("failed to alloc fb\n");
8735 return;
8736 }
8737
8738 fb = &intel_fb->base;
8739
8740 fb->dev = dev;
8741
8742 if (INTEL_GEN(dev_priv) >= 4) {
8743 if (val & DISPPLANE_TILED) {
8744 plane_config->tiling = I915_TILING_X;
8745 fb->modifier = I915_FORMAT_MOD_X_TILED;
8746 }
8747 }
8748
8749 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8750 fourcc = i9xx_format_to_fourcc(pixel_format);
8751 fb->format = drm_format_info(fourcc);
8752
8753 if (INTEL_GEN(dev_priv) >= 4) {
8754 if (plane_config->tiling)
8755 offset = I915_READ(DSPTILEOFF(plane));
8756 else
8757 offset = I915_READ(DSPLINOFF(plane));
8758 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8759 } else {
8760 base = I915_READ(DSPADDR(plane));
8761 }
8762 plane_config->base = base;
8763
8764 val = I915_READ(PIPESRC(pipe));
8765 fb->width = ((val >> 16) & 0xfff) + 1;
8766 fb->height = ((val >> 0) & 0xfff) + 1;
8767
8768 val = I915_READ(DSPSTRIDE(pipe));
8769 fb->pitches[0] = val & 0xffffffc0;
8770
8771 aligned_height = intel_fb_align_height(dev, fb->height,
8772 fb->format->format,
8773 fb->modifier);
8774
8775 plane_config->size = fb->pitches[0] * aligned_height;
8776
8777 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8778 pipe_name(pipe), plane, fb->width, fb->height,
8779 fb->format->cpp[0] * 8, base, fb->pitches[0],
8780 plane_config->size);
8781
8782 plane_config->fb = intel_fb;
8783 }
8784
8785 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8786 struct intel_crtc_state *pipe_config)
8787 {
8788 struct drm_device *dev = crtc->base.dev;
8789 struct drm_i915_private *dev_priv = to_i915(dev);
8790 int pipe = pipe_config->cpu_transcoder;
8791 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8792 struct dpll clock;
8793 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8794 int refclk = 100000;
8795
8796 /* In case of DSI, DPLL will not be used */
8797 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8798 return;
8799
8800 mutex_lock(&dev_priv->sb_lock);
8801 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8802 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8803 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8804 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8805 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8806 mutex_unlock(&dev_priv->sb_lock);
8807
8808 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8809 clock.m2 = (pll_dw0 & 0xff) << 22;
8810 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8811 clock.m2 |= pll_dw2 & 0x3fffff;
8812 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8813 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8814 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8815
8816 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8817 }
8818
8819 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8820 struct intel_crtc_state *pipe_config)
8821 {
8822 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8823 enum intel_display_power_domain power_domain;
8824 uint32_t tmp;
8825 bool ret;
8826
8827 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8828 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8829 return false;
8830
8831 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8832 pipe_config->shared_dpll = NULL;
8833
8834 ret = false;
8835
8836 tmp = I915_READ(PIPECONF(crtc->pipe));
8837 if (!(tmp & PIPECONF_ENABLE))
8838 goto out;
8839
8840 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8841 IS_CHERRYVIEW(dev_priv)) {
8842 switch (tmp & PIPECONF_BPC_MASK) {
8843 case PIPECONF_6BPC:
8844 pipe_config->pipe_bpp = 18;
8845 break;
8846 case PIPECONF_8BPC:
8847 pipe_config->pipe_bpp = 24;
8848 break;
8849 case PIPECONF_10BPC:
8850 pipe_config->pipe_bpp = 30;
8851 break;
8852 default:
8853 break;
8854 }
8855 }
8856
8857 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8858 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8859 pipe_config->limited_color_range = true;
8860
8861 if (INTEL_GEN(dev_priv) < 4)
8862 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8863
8864 intel_get_pipe_timings(crtc, pipe_config);
8865 intel_get_pipe_src_size(crtc, pipe_config);
8866
8867 i9xx_get_pfit_config(crtc, pipe_config);
8868
8869 if (INTEL_GEN(dev_priv) >= 4) {
8870 /* No way to read it out on pipes B and C */
8871 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8872 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8873 else
8874 tmp = I915_READ(DPLL_MD(crtc->pipe));
8875 pipe_config->pixel_multiplier =
8876 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8877 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8878 pipe_config->dpll_hw_state.dpll_md = tmp;
8879 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8880 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8881 tmp = I915_READ(DPLL(crtc->pipe));
8882 pipe_config->pixel_multiplier =
8883 ((tmp & SDVO_MULTIPLIER_MASK)
8884 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8885 } else {
8886 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8887 * port and will be fixed up in the encoder->get_config
8888 * function. */
8889 pipe_config->pixel_multiplier = 1;
8890 }
8891 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8892 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8893 /*
8894 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8895 * on 830. Filter it out here so that we don't
8896 * report errors due to that.
8897 */
8898 if (IS_I830(dev_priv))
8899 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8900
8901 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8902 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8903 } else {
8904 /* Mask out read-only status bits. */
8905 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8906 DPLL_PORTC_READY_MASK |
8907 DPLL_PORTB_READY_MASK);
8908 }
8909
8910 if (IS_CHERRYVIEW(dev_priv))
8911 chv_crtc_clock_get(crtc, pipe_config);
8912 else if (IS_VALLEYVIEW(dev_priv))
8913 vlv_crtc_clock_get(crtc, pipe_config);
8914 else
8915 i9xx_crtc_clock_get(crtc, pipe_config);
8916
8917 /*
8918 * Normally the dotclock is filled in by the encoder .get_config()
8919 * but in case the pipe is enabled w/o any ports we need a sane
8920 * default.
8921 */
8922 pipe_config->base.adjusted_mode.crtc_clock =
8923 pipe_config->port_clock / pipe_config->pixel_multiplier;
8924
8925 ret = true;
8926
8927 out:
8928 intel_display_power_put(dev_priv, power_domain);
8929
8930 return ret;
8931 }
8932
8933 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8934 {
8935 struct intel_encoder *encoder;
8936 int i;
8937 u32 val, final;
8938 bool has_lvds = false;
8939 bool has_cpu_edp = false;
8940 bool has_panel = false;
8941 bool has_ck505 = false;
8942 bool can_ssc = false;
8943 bool using_ssc_source = false;
8944
8945 /* We need to take the global config into account */
8946 for_each_intel_encoder(&dev_priv->drm, encoder) {
8947 switch (encoder->type) {
8948 case INTEL_OUTPUT_LVDS:
8949 has_panel = true;
8950 has_lvds = true;
8951 break;
8952 case INTEL_OUTPUT_EDP:
8953 has_panel = true;
8954 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8955 has_cpu_edp = true;
8956 break;
8957 default:
8958 break;
8959 }
8960 }
8961
8962 if (HAS_PCH_IBX(dev_priv)) {
8963 has_ck505 = dev_priv->vbt.display_clock_mode;
8964 can_ssc = has_ck505;
8965 } else {
8966 has_ck505 = false;
8967 can_ssc = true;
8968 }
8969
8970 /* Check if any DPLLs are using the SSC source */
8971 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8972 u32 temp = I915_READ(PCH_DPLL(i));
8973
8974 if (!(temp & DPLL_VCO_ENABLE))
8975 continue;
8976
8977 if ((temp & PLL_REF_INPUT_MASK) ==
8978 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8979 using_ssc_source = true;
8980 break;
8981 }
8982 }
8983
8984 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8985 has_panel, has_lvds, has_ck505, using_ssc_source);
8986
8987 /* Ironlake: try to setup display ref clock before DPLL
8988 * enabling. This is only under driver's control after
8989 * PCH B stepping, previous chipset stepping should be
8990 * ignoring this setting.
8991 */
8992 val = I915_READ(PCH_DREF_CONTROL);
8993
8994 /* As we must carefully and slowly disable/enable each source in turn,
8995 * compute the final state we want first and check if we need to
8996 * make any changes at all.
8997 */
8998 final = val;
8999 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9000 if (has_ck505)
9001 final |= DREF_NONSPREAD_CK505_ENABLE;
9002 else
9003 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9004
9005 final &= ~DREF_SSC_SOURCE_MASK;
9006 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9007 final &= ~DREF_SSC1_ENABLE;
9008
9009 if (has_panel) {
9010 final |= DREF_SSC_SOURCE_ENABLE;
9011
9012 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9013 final |= DREF_SSC1_ENABLE;
9014
9015 if (has_cpu_edp) {
9016 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9017 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9018 else
9019 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9020 } else
9021 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9022 } else if (using_ssc_source) {
9023 final |= DREF_SSC_SOURCE_ENABLE;
9024 final |= DREF_SSC1_ENABLE;
9025 }
9026
9027 if (final == val)
9028 return;
9029
9030 /* Always enable nonspread source */
9031 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9032
9033 if (has_ck505)
9034 val |= DREF_NONSPREAD_CK505_ENABLE;
9035 else
9036 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9037
9038 if (has_panel) {
9039 val &= ~DREF_SSC_SOURCE_MASK;
9040 val |= DREF_SSC_SOURCE_ENABLE;
9041
9042 /* SSC must be turned on before enabling the CPU output */
9043 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9044 DRM_DEBUG_KMS("Using SSC on panel\n");
9045 val |= DREF_SSC1_ENABLE;
9046 } else
9047 val &= ~DREF_SSC1_ENABLE;
9048
9049 /* Get SSC going before enabling the outputs */
9050 I915_WRITE(PCH_DREF_CONTROL, val);
9051 POSTING_READ(PCH_DREF_CONTROL);
9052 udelay(200);
9053
9054 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9055
9056 /* Enable CPU source on CPU attached eDP */
9057 if (has_cpu_edp) {
9058 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9059 DRM_DEBUG_KMS("Using SSC on eDP\n");
9060 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9061 } else
9062 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9063 } else
9064 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9065
9066 I915_WRITE(PCH_DREF_CONTROL, val);
9067 POSTING_READ(PCH_DREF_CONTROL);
9068 udelay(200);
9069 } else {
9070 DRM_DEBUG_KMS("Disabling CPU source output\n");
9071
9072 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9073
9074 /* Turn off CPU output */
9075 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9076
9077 I915_WRITE(PCH_DREF_CONTROL, val);
9078 POSTING_READ(PCH_DREF_CONTROL);
9079 udelay(200);
9080
9081 if (!using_ssc_source) {
9082 DRM_DEBUG_KMS("Disabling SSC source\n");
9083
9084 /* Turn off the SSC source */
9085 val &= ~DREF_SSC_SOURCE_MASK;
9086 val |= DREF_SSC_SOURCE_DISABLE;
9087
9088 /* Turn off SSC1 */
9089 val &= ~DREF_SSC1_ENABLE;
9090
9091 I915_WRITE(PCH_DREF_CONTROL, val);
9092 POSTING_READ(PCH_DREF_CONTROL);
9093 udelay(200);
9094 }
9095 }
9096
9097 BUG_ON(val != final);
9098 }
9099
9100 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9101 {
9102 uint32_t tmp;
9103
9104 tmp = I915_READ(SOUTH_CHICKEN2);
9105 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9106 I915_WRITE(SOUTH_CHICKEN2, tmp);
9107
9108 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9109 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9110 DRM_ERROR("FDI mPHY reset assert timeout\n");
9111
9112 tmp = I915_READ(SOUTH_CHICKEN2);
9113 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9114 I915_WRITE(SOUTH_CHICKEN2, tmp);
9115
9116 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9117 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9118 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9119 }
9120
9121 /* WaMPhyProgramming:hsw */
9122 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9123 {
9124 uint32_t tmp;
9125
9126 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9127 tmp &= ~(0xFF << 24);
9128 tmp |= (0x12 << 24);
9129 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9130
9131 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9132 tmp |= (1 << 11);
9133 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9134
9135 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9136 tmp |= (1 << 11);
9137 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9138
9139 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9140 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9141 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9142
9143 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9144 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9145 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9146
9147 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9148 tmp &= ~(7 << 13);
9149 tmp |= (5 << 13);
9150 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9151
9152 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9153 tmp &= ~(7 << 13);
9154 tmp |= (5 << 13);
9155 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9156
9157 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9158 tmp &= ~0xFF;
9159 tmp |= 0x1C;
9160 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9161
9162 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9163 tmp &= ~0xFF;
9164 tmp |= 0x1C;
9165 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9166
9167 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9168 tmp &= ~(0xFF << 16);
9169 tmp |= (0x1C << 16);
9170 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9171
9172 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9173 tmp &= ~(0xFF << 16);
9174 tmp |= (0x1C << 16);
9175 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9176
9177 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9178 tmp |= (1 << 27);
9179 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9180
9181 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9182 tmp |= (1 << 27);
9183 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9184
9185 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9186 tmp &= ~(0xF << 28);
9187 tmp |= (4 << 28);
9188 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9189
9190 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9191 tmp &= ~(0xF << 28);
9192 tmp |= (4 << 28);
9193 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9194 }
9195
9196 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9197 * Programming" based on the parameters passed:
9198 * - Sequence to enable CLKOUT_DP
9199 * - Sequence to enable CLKOUT_DP without spread
9200 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9201 */
9202 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9203 bool with_spread, bool with_fdi)
9204 {
9205 uint32_t reg, tmp;
9206
9207 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9208 with_spread = true;
9209 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9210 with_fdi, "LP PCH doesn't have FDI\n"))
9211 with_fdi = false;
9212
9213 mutex_lock(&dev_priv->sb_lock);
9214
9215 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9216 tmp &= ~SBI_SSCCTL_DISABLE;
9217 tmp |= SBI_SSCCTL_PATHALT;
9218 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9219
9220 udelay(24);
9221
9222 if (with_spread) {
9223 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9224 tmp &= ~SBI_SSCCTL_PATHALT;
9225 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9226
9227 if (with_fdi) {
9228 lpt_reset_fdi_mphy(dev_priv);
9229 lpt_program_fdi_mphy(dev_priv);
9230 }
9231 }
9232
9233 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9234 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9235 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9236 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9237
9238 mutex_unlock(&dev_priv->sb_lock);
9239 }
9240
9241 /* Sequence to disable CLKOUT_DP */
9242 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9243 {
9244 uint32_t reg, tmp;
9245
9246 mutex_lock(&dev_priv->sb_lock);
9247
9248 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9249 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9250 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9251 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9252
9253 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9254 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9255 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9256 tmp |= SBI_SSCCTL_PATHALT;
9257 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9258 udelay(32);
9259 }
9260 tmp |= SBI_SSCCTL_DISABLE;
9261 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9262 }
9263
9264 mutex_unlock(&dev_priv->sb_lock);
9265 }
9266
9267 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9268
9269 static const uint16_t sscdivintphase[] = {
9270 [BEND_IDX( 50)] = 0x3B23,
9271 [BEND_IDX( 45)] = 0x3B23,
9272 [BEND_IDX( 40)] = 0x3C23,
9273 [BEND_IDX( 35)] = 0x3C23,
9274 [BEND_IDX( 30)] = 0x3D23,
9275 [BEND_IDX( 25)] = 0x3D23,
9276 [BEND_IDX( 20)] = 0x3E23,
9277 [BEND_IDX( 15)] = 0x3E23,
9278 [BEND_IDX( 10)] = 0x3F23,
9279 [BEND_IDX( 5)] = 0x3F23,
9280 [BEND_IDX( 0)] = 0x0025,
9281 [BEND_IDX( -5)] = 0x0025,
9282 [BEND_IDX(-10)] = 0x0125,
9283 [BEND_IDX(-15)] = 0x0125,
9284 [BEND_IDX(-20)] = 0x0225,
9285 [BEND_IDX(-25)] = 0x0225,
9286 [BEND_IDX(-30)] = 0x0325,
9287 [BEND_IDX(-35)] = 0x0325,
9288 [BEND_IDX(-40)] = 0x0425,
9289 [BEND_IDX(-45)] = 0x0425,
9290 [BEND_IDX(-50)] = 0x0525,
9291 };
9292
9293 /*
9294 * Bend CLKOUT_DP
9295 * steps -50 to 50 inclusive, in steps of 5
9296 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9297 * change in clock period = -(steps / 10) * 5.787 ps
9298 */
9299 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9300 {
9301 uint32_t tmp;
9302 int idx = BEND_IDX(steps);
9303
9304 if (WARN_ON(steps % 5 != 0))
9305 return;
9306
9307 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9308 return;
9309
9310 mutex_lock(&dev_priv->sb_lock);
9311
9312 if (steps % 10 != 0)
9313 tmp = 0xAAAAAAAB;
9314 else
9315 tmp = 0x00000000;
9316 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9317
9318 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9319 tmp &= 0xffff0000;
9320 tmp |= sscdivintphase[idx];
9321 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9322
9323 mutex_unlock(&dev_priv->sb_lock);
9324 }
9325
9326 #undef BEND_IDX
9327
9328 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9329 {
9330 struct intel_encoder *encoder;
9331 bool has_vga = false;
9332
9333 for_each_intel_encoder(&dev_priv->drm, encoder) {
9334 switch (encoder->type) {
9335 case INTEL_OUTPUT_ANALOG:
9336 has_vga = true;
9337 break;
9338 default:
9339 break;
9340 }
9341 }
9342
9343 if (has_vga) {
9344 lpt_bend_clkout_dp(dev_priv, 0);
9345 lpt_enable_clkout_dp(dev_priv, true, true);
9346 } else {
9347 lpt_disable_clkout_dp(dev_priv);
9348 }
9349 }
9350
9351 /*
9352 * Initialize reference clocks when the driver loads
9353 */
9354 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9355 {
9356 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9357 ironlake_init_pch_refclk(dev_priv);
9358 else if (HAS_PCH_LPT(dev_priv))
9359 lpt_init_pch_refclk(dev_priv);
9360 }
9361
9362 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9363 {
9364 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9366 int pipe = intel_crtc->pipe;
9367 uint32_t val;
9368
9369 val = 0;
9370
9371 switch (intel_crtc->config->pipe_bpp) {
9372 case 18:
9373 val |= PIPECONF_6BPC;
9374 break;
9375 case 24:
9376 val |= PIPECONF_8BPC;
9377 break;
9378 case 30:
9379 val |= PIPECONF_10BPC;
9380 break;
9381 case 36:
9382 val |= PIPECONF_12BPC;
9383 break;
9384 default:
9385 /* Case prevented by intel_choose_pipe_bpp_dither. */
9386 BUG();
9387 }
9388
9389 if (intel_crtc->config->dither)
9390 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9391
9392 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9393 val |= PIPECONF_INTERLACED_ILK;
9394 else
9395 val |= PIPECONF_PROGRESSIVE;
9396
9397 if (intel_crtc->config->limited_color_range)
9398 val |= PIPECONF_COLOR_RANGE_SELECT;
9399
9400 I915_WRITE(PIPECONF(pipe), val);
9401 POSTING_READ(PIPECONF(pipe));
9402 }
9403
9404 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9405 {
9406 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9408 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9409 u32 val = 0;
9410
9411 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9412 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9413
9414 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9415 val |= PIPECONF_INTERLACED_ILK;
9416 else
9417 val |= PIPECONF_PROGRESSIVE;
9418
9419 I915_WRITE(PIPECONF(cpu_transcoder), val);
9420 POSTING_READ(PIPECONF(cpu_transcoder));
9421 }
9422
9423 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9424 {
9425 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9427
9428 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9429 u32 val = 0;
9430
9431 switch (intel_crtc->config->pipe_bpp) {
9432 case 18:
9433 val |= PIPEMISC_DITHER_6_BPC;
9434 break;
9435 case 24:
9436 val |= PIPEMISC_DITHER_8_BPC;
9437 break;
9438 case 30:
9439 val |= PIPEMISC_DITHER_10_BPC;
9440 break;
9441 case 36:
9442 val |= PIPEMISC_DITHER_12_BPC;
9443 break;
9444 default:
9445 /* Case prevented by pipe_config_set_bpp. */
9446 BUG();
9447 }
9448
9449 if (intel_crtc->config->dither)
9450 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9451
9452 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9453 }
9454 }
9455
9456 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9457 {
9458 /*
9459 * Account for spread spectrum to avoid
9460 * oversubscribing the link. Max center spread
9461 * is 2.5%; use 5% for safety's sake.
9462 */
9463 u32 bps = target_clock * bpp * 21 / 20;
9464 return DIV_ROUND_UP(bps, link_bw * 8);
9465 }
9466
9467 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9468 {
9469 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9470 }
9471
9472 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9473 struct intel_crtc_state *crtc_state,
9474 struct dpll *reduced_clock)
9475 {
9476 struct drm_crtc *crtc = &intel_crtc->base;
9477 struct drm_device *dev = crtc->dev;
9478 struct drm_i915_private *dev_priv = to_i915(dev);
9479 u32 dpll, fp, fp2;
9480 int factor;
9481
9482 /* Enable autotuning of the PLL clock (if permissible) */
9483 factor = 21;
9484 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9485 if ((intel_panel_use_ssc(dev_priv) &&
9486 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9487 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9488 factor = 25;
9489 } else if (crtc_state->sdvo_tv_clock)
9490 factor = 20;
9491
9492 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9493
9494 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9495 fp |= FP_CB_TUNE;
9496
9497 if (reduced_clock) {
9498 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9499
9500 if (reduced_clock->m < factor * reduced_clock->n)
9501 fp2 |= FP_CB_TUNE;
9502 } else {
9503 fp2 = fp;
9504 }
9505
9506 dpll = 0;
9507
9508 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9509 dpll |= DPLLB_MODE_LVDS;
9510 else
9511 dpll |= DPLLB_MODE_DAC_SERIAL;
9512
9513 dpll |= (crtc_state->pixel_multiplier - 1)
9514 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9515
9516 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9517 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9518 dpll |= DPLL_SDVO_HIGH_SPEED;
9519
9520 if (intel_crtc_has_dp_encoder(crtc_state))
9521 dpll |= DPLL_SDVO_HIGH_SPEED;
9522
9523 /*
9524 * The high speed IO clock is only really required for
9525 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9526 * possible to share the DPLL between CRT and HDMI. Enabling
9527 * the clock needlessly does no real harm, except use up a
9528 * bit of power potentially.
9529 *
9530 * We'll limit this to IVB with 3 pipes, since it has only two
9531 * DPLLs and so DPLL sharing is the only way to get three pipes
9532 * driving PCH ports at the same time. On SNB we could do this,
9533 * and potentially avoid enabling the second DPLL, but it's not
9534 * clear if it''s a win or loss power wise. No point in doing
9535 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9536 */
9537 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9538 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9539 dpll |= DPLL_SDVO_HIGH_SPEED;
9540
9541 /* compute bitmask from p1 value */
9542 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9543 /* also FPA1 */
9544 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9545
9546 switch (crtc_state->dpll.p2) {
9547 case 5:
9548 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9549 break;
9550 case 7:
9551 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9552 break;
9553 case 10:
9554 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9555 break;
9556 case 14:
9557 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9558 break;
9559 }
9560
9561 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9562 intel_panel_use_ssc(dev_priv))
9563 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9564 else
9565 dpll |= PLL_REF_INPUT_DREFCLK;
9566
9567 dpll |= DPLL_VCO_ENABLE;
9568
9569 crtc_state->dpll_hw_state.dpll = dpll;
9570 crtc_state->dpll_hw_state.fp0 = fp;
9571 crtc_state->dpll_hw_state.fp1 = fp2;
9572 }
9573
9574 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9575 struct intel_crtc_state *crtc_state)
9576 {
9577 struct drm_device *dev = crtc->base.dev;
9578 struct drm_i915_private *dev_priv = to_i915(dev);
9579 struct dpll reduced_clock;
9580 bool has_reduced_clock = false;
9581 struct intel_shared_dpll *pll;
9582 const struct intel_limit *limit;
9583 int refclk = 120000;
9584
9585 memset(&crtc_state->dpll_hw_state, 0,
9586 sizeof(crtc_state->dpll_hw_state));
9587
9588 crtc->lowfreq_avail = false;
9589
9590 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9591 if (!crtc_state->has_pch_encoder)
9592 return 0;
9593
9594 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9595 if (intel_panel_use_ssc(dev_priv)) {
9596 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9597 dev_priv->vbt.lvds_ssc_freq);
9598 refclk = dev_priv->vbt.lvds_ssc_freq;
9599 }
9600
9601 if (intel_is_dual_link_lvds(dev)) {
9602 if (refclk == 100000)
9603 limit = &intel_limits_ironlake_dual_lvds_100m;
9604 else
9605 limit = &intel_limits_ironlake_dual_lvds;
9606 } else {
9607 if (refclk == 100000)
9608 limit = &intel_limits_ironlake_single_lvds_100m;
9609 else
9610 limit = &intel_limits_ironlake_single_lvds;
9611 }
9612 } else {
9613 limit = &intel_limits_ironlake_dac;
9614 }
9615
9616 if (!crtc_state->clock_set &&
9617 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9618 refclk, NULL, &crtc_state->dpll)) {
9619 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9620 return -EINVAL;
9621 }
9622
9623 ironlake_compute_dpll(crtc, crtc_state,
9624 has_reduced_clock ? &reduced_clock : NULL);
9625
9626 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9627 if (pll == NULL) {
9628 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9629 pipe_name(crtc->pipe));
9630 return -EINVAL;
9631 }
9632
9633 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9634 has_reduced_clock)
9635 crtc->lowfreq_avail = true;
9636
9637 return 0;
9638 }
9639
9640 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9641 struct intel_link_m_n *m_n)
9642 {
9643 struct drm_device *dev = crtc->base.dev;
9644 struct drm_i915_private *dev_priv = to_i915(dev);
9645 enum pipe pipe = crtc->pipe;
9646
9647 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9648 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9649 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9650 & ~TU_SIZE_MASK;
9651 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9652 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9653 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9654 }
9655
9656 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9657 enum transcoder transcoder,
9658 struct intel_link_m_n *m_n,
9659 struct intel_link_m_n *m2_n2)
9660 {
9661 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9662 enum pipe pipe = crtc->pipe;
9663
9664 if (INTEL_GEN(dev_priv) >= 5) {
9665 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9666 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9667 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9668 & ~TU_SIZE_MASK;
9669 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9670 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9671 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9672 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9673 * gen < 8) and if DRRS is supported (to make sure the
9674 * registers are not unnecessarily read).
9675 */
9676 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9677 crtc->config->has_drrs) {
9678 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9679 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9680 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9681 & ~TU_SIZE_MASK;
9682 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9683 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9684 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9685 }
9686 } else {
9687 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9688 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9689 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9690 & ~TU_SIZE_MASK;
9691 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9692 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9693 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9694 }
9695 }
9696
9697 void intel_dp_get_m_n(struct intel_crtc *crtc,
9698 struct intel_crtc_state *pipe_config)
9699 {
9700 if (pipe_config->has_pch_encoder)
9701 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9702 else
9703 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9704 &pipe_config->dp_m_n,
9705 &pipe_config->dp_m2_n2);
9706 }
9707
9708 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9709 struct intel_crtc_state *pipe_config)
9710 {
9711 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9712 &pipe_config->fdi_m_n, NULL);
9713 }
9714
9715 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9716 struct intel_crtc_state *pipe_config)
9717 {
9718 struct drm_device *dev = crtc->base.dev;
9719 struct drm_i915_private *dev_priv = to_i915(dev);
9720 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9721 uint32_t ps_ctrl = 0;
9722 int id = -1;
9723 int i;
9724
9725 /* find scaler attached to this pipe */
9726 for (i = 0; i < crtc->num_scalers; i++) {
9727 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9728 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9729 id = i;
9730 pipe_config->pch_pfit.enabled = true;
9731 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9732 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9733 break;
9734 }
9735 }
9736
9737 scaler_state->scaler_id = id;
9738 if (id >= 0) {
9739 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9740 } else {
9741 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9742 }
9743 }
9744
9745 static void
9746 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9747 struct intel_initial_plane_config *plane_config)
9748 {
9749 struct drm_device *dev = crtc->base.dev;
9750 struct drm_i915_private *dev_priv = to_i915(dev);
9751 u32 val, base, offset, stride_mult, tiling;
9752 int pipe = crtc->pipe;
9753 int fourcc, pixel_format;
9754 unsigned int aligned_height;
9755 struct drm_framebuffer *fb;
9756 struct intel_framebuffer *intel_fb;
9757
9758 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9759 if (!intel_fb) {
9760 DRM_DEBUG_KMS("failed to alloc fb\n");
9761 return;
9762 }
9763
9764 fb = &intel_fb->base;
9765
9766 fb->dev = dev;
9767
9768 val = I915_READ(PLANE_CTL(pipe, 0));
9769 if (!(val & PLANE_CTL_ENABLE))
9770 goto error;
9771
9772 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9773 fourcc = skl_format_to_fourcc(pixel_format,
9774 val & PLANE_CTL_ORDER_RGBX,
9775 val & PLANE_CTL_ALPHA_MASK);
9776 fb->format = drm_format_info(fourcc);
9777
9778 tiling = val & PLANE_CTL_TILED_MASK;
9779 switch (tiling) {
9780 case PLANE_CTL_TILED_LINEAR:
9781 fb->modifier = DRM_FORMAT_MOD_NONE;
9782 break;
9783 case PLANE_CTL_TILED_X:
9784 plane_config->tiling = I915_TILING_X;
9785 fb->modifier = I915_FORMAT_MOD_X_TILED;
9786 break;
9787 case PLANE_CTL_TILED_Y:
9788 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9789 break;
9790 case PLANE_CTL_TILED_YF:
9791 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9792 break;
9793 default:
9794 MISSING_CASE(tiling);
9795 goto error;
9796 }
9797
9798 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9799 plane_config->base = base;
9800
9801 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9802
9803 val = I915_READ(PLANE_SIZE(pipe, 0));
9804 fb->height = ((val >> 16) & 0xfff) + 1;
9805 fb->width = ((val >> 0) & 0x1fff) + 1;
9806
9807 val = I915_READ(PLANE_STRIDE(pipe, 0));
9808 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9809 fb->format->format);
9810 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9811
9812 aligned_height = intel_fb_align_height(dev, fb->height,
9813 fb->format->format,
9814 fb->modifier);
9815
9816 plane_config->size = fb->pitches[0] * aligned_height;
9817
9818 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9819 pipe_name(pipe), fb->width, fb->height,
9820 fb->format->cpp[0] * 8, base, fb->pitches[0],
9821 plane_config->size);
9822
9823 plane_config->fb = intel_fb;
9824 return;
9825
9826 error:
9827 kfree(intel_fb);
9828 }
9829
9830 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9831 struct intel_crtc_state *pipe_config)
9832 {
9833 struct drm_device *dev = crtc->base.dev;
9834 struct drm_i915_private *dev_priv = to_i915(dev);
9835 uint32_t tmp;
9836
9837 tmp = I915_READ(PF_CTL(crtc->pipe));
9838
9839 if (tmp & PF_ENABLE) {
9840 pipe_config->pch_pfit.enabled = true;
9841 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9842 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9843
9844 /* We currently do not free assignements of panel fitters on
9845 * ivb/hsw (since we don't use the higher upscaling modes which
9846 * differentiates them) so just WARN about this case for now. */
9847 if (IS_GEN7(dev_priv)) {
9848 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9849 PF_PIPE_SEL_IVB(crtc->pipe));
9850 }
9851 }
9852 }
9853
9854 static void
9855 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9856 struct intel_initial_plane_config *plane_config)
9857 {
9858 struct drm_device *dev = crtc->base.dev;
9859 struct drm_i915_private *dev_priv = to_i915(dev);
9860 u32 val, base, offset;
9861 int pipe = crtc->pipe;
9862 int fourcc, pixel_format;
9863 unsigned int aligned_height;
9864 struct drm_framebuffer *fb;
9865 struct intel_framebuffer *intel_fb;
9866
9867 val = I915_READ(DSPCNTR(pipe));
9868 if (!(val & DISPLAY_PLANE_ENABLE))
9869 return;
9870
9871 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9872 if (!intel_fb) {
9873 DRM_DEBUG_KMS("failed to alloc fb\n");
9874 return;
9875 }
9876
9877 fb = &intel_fb->base;
9878
9879 fb->dev = dev;
9880
9881 if (INTEL_GEN(dev_priv) >= 4) {
9882 if (val & DISPPLANE_TILED) {
9883 plane_config->tiling = I915_TILING_X;
9884 fb->modifier = I915_FORMAT_MOD_X_TILED;
9885 }
9886 }
9887
9888 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9889 fourcc = i9xx_format_to_fourcc(pixel_format);
9890 fb->format = drm_format_info(fourcc);
9891
9892 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9893 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9894 offset = I915_READ(DSPOFFSET(pipe));
9895 } else {
9896 if (plane_config->tiling)
9897 offset = I915_READ(DSPTILEOFF(pipe));
9898 else
9899 offset = I915_READ(DSPLINOFF(pipe));
9900 }
9901 plane_config->base = base;
9902
9903 val = I915_READ(PIPESRC(pipe));
9904 fb->width = ((val >> 16) & 0xfff) + 1;
9905 fb->height = ((val >> 0) & 0xfff) + 1;
9906
9907 val = I915_READ(DSPSTRIDE(pipe));
9908 fb->pitches[0] = val & 0xffffffc0;
9909
9910 aligned_height = intel_fb_align_height(dev, fb->height,
9911 fb->format->format,
9912 fb->modifier);
9913
9914 plane_config->size = fb->pitches[0] * aligned_height;
9915
9916 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9917 pipe_name(pipe), fb->width, fb->height,
9918 fb->format->cpp[0] * 8, base, fb->pitches[0],
9919 plane_config->size);
9920
9921 plane_config->fb = intel_fb;
9922 }
9923
9924 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9925 struct intel_crtc_state *pipe_config)
9926 {
9927 struct drm_device *dev = crtc->base.dev;
9928 struct drm_i915_private *dev_priv = to_i915(dev);
9929 enum intel_display_power_domain power_domain;
9930 uint32_t tmp;
9931 bool ret;
9932
9933 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9934 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9935 return false;
9936
9937 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9938 pipe_config->shared_dpll = NULL;
9939
9940 ret = false;
9941 tmp = I915_READ(PIPECONF(crtc->pipe));
9942 if (!(tmp & PIPECONF_ENABLE))
9943 goto out;
9944
9945 switch (tmp & PIPECONF_BPC_MASK) {
9946 case PIPECONF_6BPC:
9947 pipe_config->pipe_bpp = 18;
9948 break;
9949 case PIPECONF_8BPC:
9950 pipe_config->pipe_bpp = 24;
9951 break;
9952 case PIPECONF_10BPC:
9953 pipe_config->pipe_bpp = 30;
9954 break;
9955 case PIPECONF_12BPC:
9956 pipe_config->pipe_bpp = 36;
9957 break;
9958 default:
9959 break;
9960 }
9961
9962 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9963 pipe_config->limited_color_range = true;
9964
9965 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9966 struct intel_shared_dpll *pll;
9967 enum intel_dpll_id pll_id;
9968
9969 pipe_config->has_pch_encoder = true;
9970
9971 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9972 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9973 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9974
9975 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9976
9977 if (HAS_PCH_IBX(dev_priv)) {
9978 /*
9979 * The pipe->pch transcoder and pch transcoder->pll
9980 * mapping is fixed.
9981 */
9982 pll_id = (enum intel_dpll_id) crtc->pipe;
9983 } else {
9984 tmp = I915_READ(PCH_DPLL_SEL);
9985 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9986 pll_id = DPLL_ID_PCH_PLL_B;
9987 else
9988 pll_id= DPLL_ID_PCH_PLL_A;
9989 }
9990
9991 pipe_config->shared_dpll =
9992 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9993 pll = pipe_config->shared_dpll;
9994
9995 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9996 &pipe_config->dpll_hw_state));
9997
9998 tmp = pipe_config->dpll_hw_state.dpll;
9999 pipe_config->pixel_multiplier =
10000 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10001 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10002
10003 ironlake_pch_clock_get(crtc, pipe_config);
10004 } else {
10005 pipe_config->pixel_multiplier = 1;
10006 }
10007
10008 intel_get_pipe_timings(crtc, pipe_config);
10009 intel_get_pipe_src_size(crtc, pipe_config);
10010
10011 ironlake_get_pfit_config(crtc, pipe_config);
10012
10013 ret = true;
10014
10015 out:
10016 intel_display_power_put(dev_priv, power_domain);
10017
10018 return ret;
10019 }
10020
10021 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10022 {
10023 struct drm_device *dev = &dev_priv->drm;
10024 struct intel_crtc *crtc;
10025
10026 for_each_intel_crtc(dev, crtc)
10027 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10028 pipe_name(crtc->pipe));
10029
10030 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10031 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10032 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10033 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10034 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10035 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10036 "CPU PWM1 enabled\n");
10037 if (IS_HASWELL(dev_priv))
10038 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10039 "CPU PWM2 enabled\n");
10040 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10041 "PCH PWM1 enabled\n");
10042 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10043 "Utility pin enabled\n");
10044 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10045
10046 /*
10047 * In theory we can still leave IRQs enabled, as long as only the HPD
10048 * interrupts remain enabled. We used to check for that, but since it's
10049 * gen-specific and since we only disable LCPLL after we fully disable
10050 * the interrupts, the check below should be enough.
10051 */
10052 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10053 }
10054
10055 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10056 {
10057 if (IS_HASWELL(dev_priv))
10058 return I915_READ(D_COMP_HSW);
10059 else
10060 return I915_READ(D_COMP_BDW);
10061 }
10062
10063 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10064 {
10065 if (IS_HASWELL(dev_priv)) {
10066 mutex_lock(&dev_priv->rps.hw_lock);
10067 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10068 val))
10069 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10070 mutex_unlock(&dev_priv->rps.hw_lock);
10071 } else {
10072 I915_WRITE(D_COMP_BDW, val);
10073 POSTING_READ(D_COMP_BDW);
10074 }
10075 }
10076
10077 /*
10078 * This function implements pieces of two sequences from BSpec:
10079 * - Sequence for display software to disable LCPLL
10080 * - Sequence for display software to allow package C8+
10081 * The steps implemented here are just the steps that actually touch the LCPLL
10082 * register. Callers should take care of disabling all the display engine
10083 * functions, doing the mode unset, fixing interrupts, etc.
10084 */
10085 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10086 bool switch_to_fclk, bool allow_power_down)
10087 {
10088 uint32_t val;
10089
10090 assert_can_disable_lcpll(dev_priv);
10091
10092 val = I915_READ(LCPLL_CTL);
10093
10094 if (switch_to_fclk) {
10095 val |= LCPLL_CD_SOURCE_FCLK;
10096 I915_WRITE(LCPLL_CTL, val);
10097
10098 if (wait_for_us(I915_READ(LCPLL_CTL) &
10099 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10100 DRM_ERROR("Switching to FCLK failed\n");
10101
10102 val = I915_READ(LCPLL_CTL);
10103 }
10104
10105 val |= LCPLL_PLL_DISABLE;
10106 I915_WRITE(LCPLL_CTL, val);
10107 POSTING_READ(LCPLL_CTL);
10108
10109 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10110 DRM_ERROR("LCPLL still locked\n");
10111
10112 val = hsw_read_dcomp(dev_priv);
10113 val |= D_COMP_COMP_DISABLE;
10114 hsw_write_dcomp(dev_priv, val);
10115 ndelay(100);
10116
10117 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10118 1))
10119 DRM_ERROR("D_COMP RCOMP still in progress\n");
10120
10121 if (allow_power_down) {
10122 val = I915_READ(LCPLL_CTL);
10123 val |= LCPLL_POWER_DOWN_ALLOW;
10124 I915_WRITE(LCPLL_CTL, val);
10125 POSTING_READ(LCPLL_CTL);
10126 }
10127 }
10128
10129 /*
10130 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10131 * source.
10132 */
10133 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10134 {
10135 uint32_t val;
10136
10137 val = I915_READ(LCPLL_CTL);
10138
10139 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10140 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10141 return;
10142
10143 /*
10144 * Make sure we're not on PC8 state before disabling PC8, otherwise
10145 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10146 */
10147 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10148
10149 if (val & LCPLL_POWER_DOWN_ALLOW) {
10150 val &= ~LCPLL_POWER_DOWN_ALLOW;
10151 I915_WRITE(LCPLL_CTL, val);
10152 POSTING_READ(LCPLL_CTL);
10153 }
10154
10155 val = hsw_read_dcomp(dev_priv);
10156 val |= D_COMP_COMP_FORCE;
10157 val &= ~D_COMP_COMP_DISABLE;
10158 hsw_write_dcomp(dev_priv, val);
10159
10160 val = I915_READ(LCPLL_CTL);
10161 val &= ~LCPLL_PLL_DISABLE;
10162 I915_WRITE(LCPLL_CTL, val);
10163
10164 if (intel_wait_for_register(dev_priv,
10165 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10166 5))
10167 DRM_ERROR("LCPLL not locked yet\n");
10168
10169 if (val & LCPLL_CD_SOURCE_FCLK) {
10170 val = I915_READ(LCPLL_CTL);
10171 val &= ~LCPLL_CD_SOURCE_FCLK;
10172 I915_WRITE(LCPLL_CTL, val);
10173
10174 if (wait_for_us((I915_READ(LCPLL_CTL) &
10175 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10176 DRM_ERROR("Switching back to LCPLL failed\n");
10177 }
10178
10179 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10180 intel_update_cdclk(dev_priv);
10181 }
10182
10183 /*
10184 * Package states C8 and deeper are really deep PC states that can only be
10185 * reached when all the devices on the system allow it, so even if the graphics
10186 * device allows PC8+, it doesn't mean the system will actually get to these
10187 * states. Our driver only allows PC8+ when going into runtime PM.
10188 *
10189 * The requirements for PC8+ are that all the outputs are disabled, the power
10190 * well is disabled and most interrupts are disabled, and these are also
10191 * requirements for runtime PM. When these conditions are met, we manually do
10192 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10193 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10194 * hang the machine.
10195 *
10196 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10197 * the state of some registers, so when we come back from PC8+ we need to
10198 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10199 * need to take care of the registers kept by RC6. Notice that this happens even
10200 * if we don't put the device in PCI D3 state (which is what currently happens
10201 * because of the runtime PM support).
10202 *
10203 * For more, read "Display Sequences for Package C8" on the hardware
10204 * documentation.
10205 */
10206 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10207 {
10208 uint32_t val;
10209
10210 DRM_DEBUG_KMS("Enabling package C8+\n");
10211
10212 if (HAS_PCH_LPT_LP(dev_priv)) {
10213 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10214 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10215 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10216 }
10217
10218 lpt_disable_clkout_dp(dev_priv);
10219 hsw_disable_lcpll(dev_priv, true, true);
10220 }
10221
10222 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10223 {
10224 uint32_t val;
10225
10226 DRM_DEBUG_KMS("Disabling package C8+\n");
10227
10228 hsw_restore_lcpll(dev_priv);
10229 lpt_init_pch_refclk(dev_priv);
10230
10231 if (HAS_PCH_LPT_LP(dev_priv)) {
10232 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10233 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10234 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10235 }
10236 }
10237
10238 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10239 {
10240 struct drm_device *dev = old_state->dev;
10241 struct intel_atomic_state *old_intel_state =
10242 to_intel_atomic_state(old_state);
10243 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10244
10245 bxt_set_cdclk(to_i915(dev), req_cdclk);
10246 }
10247
10248 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10249 int pixel_rate)
10250 {
10251 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10252
10253 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10254 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10255 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10256
10257 /* BSpec says "Do not use DisplayPort with CDCLK less than
10258 * 432 MHz, audio enabled, port width x4, and link rate
10259 * HBR2 (5.4 GHz), or else there may be audio corruption or
10260 * screen corruption."
10261 */
10262 if (intel_crtc_has_dp_encoder(crtc_state) &&
10263 crtc_state->has_audio &&
10264 crtc_state->port_clock >= 540000 &&
10265 crtc_state->lane_count == 4)
10266 pixel_rate = max(432000, pixel_rate);
10267
10268 return pixel_rate;
10269 }
10270
10271 /* compute the max rate for new configuration */
10272 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10273 {
10274 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10275 struct drm_i915_private *dev_priv = to_i915(state->dev);
10276 struct drm_crtc *crtc;
10277 struct drm_crtc_state *cstate;
10278 struct intel_crtc_state *crtc_state;
10279 unsigned max_pixel_rate = 0, i;
10280 enum pipe pipe;
10281
10282 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10283 sizeof(intel_state->min_pixclk));
10284
10285 for_each_crtc_in_state(state, crtc, cstate, i) {
10286 int pixel_rate;
10287
10288 crtc_state = to_intel_crtc_state(cstate);
10289 if (!crtc_state->base.enable) {
10290 intel_state->min_pixclk[i] = 0;
10291 continue;
10292 }
10293
10294 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10295
10296 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10297 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10298 pixel_rate);
10299
10300 intel_state->min_pixclk[i] = pixel_rate;
10301 }
10302
10303 for_each_pipe(dev_priv, pipe)
10304 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10305
10306 return max_pixel_rate;
10307 }
10308
10309 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10310 {
10311 struct drm_i915_private *dev_priv = to_i915(dev);
10312 uint32_t val, data;
10313 int ret;
10314
10315 if (WARN((I915_READ(LCPLL_CTL) &
10316 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10317 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10318 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10319 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10320 "trying to change cdclk frequency with cdclk not enabled\n"))
10321 return;
10322
10323 mutex_lock(&dev_priv->rps.hw_lock);
10324 ret = sandybridge_pcode_write(dev_priv,
10325 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10326 mutex_unlock(&dev_priv->rps.hw_lock);
10327 if (ret) {
10328 DRM_ERROR("failed to inform pcode about cdclk change\n");
10329 return;
10330 }
10331
10332 val = I915_READ(LCPLL_CTL);
10333 val |= LCPLL_CD_SOURCE_FCLK;
10334 I915_WRITE(LCPLL_CTL, val);
10335
10336 if (wait_for_us(I915_READ(LCPLL_CTL) &
10337 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10338 DRM_ERROR("Switching to FCLK failed\n");
10339
10340 val = I915_READ(LCPLL_CTL);
10341 val &= ~LCPLL_CLK_FREQ_MASK;
10342
10343 switch (cdclk) {
10344 case 450000:
10345 val |= LCPLL_CLK_FREQ_450;
10346 data = 0;
10347 break;
10348 case 540000:
10349 val |= LCPLL_CLK_FREQ_54O_BDW;
10350 data = 1;
10351 break;
10352 case 337500:
10353 val |= LCPLL_CLK_FREQ_337_5_BDW;
10354 data = 2;
10355 break;
10356 case 675000:
10357 val |= LCPLL_CLK_FREQ_675_BDW;
10358 data = 3;
10359 break;
10360 default:
10361 WARN(1, "invalid cdclk frequency\n");
10362 return;
10363 }
10364
10365 I915_WRITE(LCPLL_CTL, val);
10366
10367 val = I915_READ(LCPLL_CTL);
10368 val &= ~LCPLL_CD_SOURCE_FCLK;
10369 I915_WRITE(LCPLL_CTL, val);
10370
10371 if (wait_for_us((I915_READ(LCPLL_CTL) &
10372 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10373 DRM_ERROR("Switching back to LCPLL failed\n");
10374
10375 mutex_lock(&dev_priv->rps.hw_lock);
10376 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10377 mutex_unlock(&dev_priv->rps.hw_lock);
10378
10379 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10380
10381 intel_update_cdclk(dev_priv);
10382
10383 WARN(cdclk != dev_priv->cdclk_freq,
10384 "cdclk requested %d kHz but got %d kHz\n",
10385 cdclk, dev_priv->cdclk_freq);
10386 }
10387
10388 static int broadwell_calc_cdclk(int max_pixclk)
10389 {
10390 if (max_pixclk > 540000)
10391 return 675000;
10392 else if (max_pixclk > 450000)
10393 return 540000;
10394 else if (max_pixclk > 337500)
10395 return 450000;
10396 else
10397 return 337500;
10398 }
10399
10400 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10401 {
10402 struct drm_i915_private *dev_priv = to_i915(state->dev);
10403 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10404 int max_pixclk = ilk_max_pixel_rate(state);
10405 int cdclk;
10406
10407 /*
10408 * FIXME should also account for plane ratio
10409 * once 64bpp pixel formats are supported.
10410 */
10411 cdclk = broadwell_calc_cdclk(max_pixclk);
10412
10413 if (cdclk > dev_priv->max_cdclk_freq) {
10414 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10415 cdclk, dev_priv->max_cdclk_freq);
10416 return -EINVAL;
10417 }
10418
10419 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10420 if (!intel_state->active_crtcs)
10421 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10422
10423 return 0;
10424 }
10425
10426 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10427 {
10428 struct drm_device *dev = old_state->dev;
10429 struct intel_atomic_state *old_intel_state =
10430 to_intel_atomic_state(old_state);
10431 unsigned req_cdclk = old_intel_state->dev_cdclk;
10432
10433 broadwell_set_cdclk(dev, req_cdclk);
10434 }
10435
10436 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10437 {
10438 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10439 struct drm_i915_private *dev_priv = to_i915(state->dev);
10440 const int max_pixclk = ilk_max_pixel_rate(state);
10441 int vco = intel_state->cdclk_pll_vco;
10442 int cdclk;
10443
10444 /*
10445 * FIXME should also account for plane ratio
10446 * once 64bpp pixel formats are supported.
10447 */
10448 cdclk = skl_calc_cdclk(max_pixclk, vco);
10449
10450 /*
10451 * FIXME move the cdclk caclulation to
10452 * compute_config() so we can fail gracegully.
10453 */
10454 if (cdclk > dev_priv->max_cdclk_freq) {
10455 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10456 cdclk, dev_priv->max_cdclk_freq);
10457 cdclk = dev_priv->max_cdclk_freq;
10458 }
10459
10460 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10461 if (!intel_state->active_crtcs)
10462 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10463
10464 return 0;
10465 }
10466
10467 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10468 {
10469 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10470 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10471 unsigned int req_cdclk = intel_state->dev_cdclk;
10472 unsigned int req_vco = intel_state->cdclk_pll_vco;
10473
10474 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10475 }
10476
10477 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10478 struct intel_crtc_state *crtc_state)
10479 {
10480 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10481 if (!intel_ddi_pll_select(crtc, crtc_state))
10482 return -EINVAL;
10483 }
10484
10485 crtc->lowfreq_avail = false;
10486
10487 return 0;
10488 }
10489
10490 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10491 enum port port,
10492 struct intel_crtc_state *pipe_config)
10493 {
10494 enum intel_dpll_id id;
10495
10496 switch (port) {
10497 case PORT_A:
10498 id = DPLL_ID_SKL_DPLL0;
10499 break;
10500 case PORT_B:
10501 id = DPLL_ID_SKL_DPLL1;
10502 break;
10503 case PORT_C:
10504 id = DPLL_ID_SKL_DPLL2;
10505 break;
10506 default:
10507 DRM_ERROR("Incorrect port type\n");
10508 return;
10509 }
10510
10511 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10512 }
10513
10514 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10515 enum port port,
10516 struct intel_crtc_state *pipe_config)
10517 {
10518 enum intel_dpll_id id;
10519 u32 temp;
10520
10521 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10522 id = temp >> (port * 3 + 1);
10523
10524 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10525 return;
10526
10527 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10528 }
10529
10530 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10531 enum port port,
10532 struct intel_crtc_state *pipe_config)
10533 {
10534 enum intel_dpll_id id;
10535 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10536
10537 switch (ddi_pll_sel) {
10538 case PORT_CLK_SEL_WRPLL1:
10539 id = DPLL_ID_WRPLL1;
10540 break;
10541 case PORT_CLK_SEL_WRPLL2:
10542 id = DPLL_ID_WRPLL2;
10543 break;
10544 case PORT_CLK_SEL_SPLL:
10545 id = DPLL_ID_SPLL;
10546 break;
10547 case PORT_CLK_SEL_LCPLL_810:
10548 id = DPLL_ID_LCPLL_810;
10549 break;
10550 case PORT_CLK_SEL_LCPLL_1350:
10551 id = DPLL_ID_LCPLL_1350;
10552 break;
10553 case PORT_CLK_SEL_LCPLL_2700:
10554 id = DPLL_ID_LCPLL_2700;
10555 break;
10556 default:
10557 MISSING_CASE(ddi_pll_sel);
10558 /* fall through */
10559 case PORT_CLK_SEL_NONE:
10560 return;
10561 }
10562
10563 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10564 }
10565
10566 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10567 struct intel_crtc_state *pipe_config,
10568 unsigned long *power_domain_mask)
10569 {
10570 struct drm_device *dev = crtc->base.dev;
10571 struct drm_i915_private *dev_priv = to_i915(dev);
10572 enum intel_display_power_domain power_domain;
10573 u32 tmp;
10574
10575 /*
10576 * The pipe->transcoder mapping is fixed with the exception of the eDP
10577 * transcoder handled below.
10578 */
10579 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10580
10581 /*
10582 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10583 * consistency and less surprising code; it's in always on power).
10584 */
10585 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10586 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10587 enum pipe trans_edp_pipe;
10588 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10589 default:
10590 WARN(1, "unknown pipe linked to edp transcoder\n");
10591 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10592 case TRANS_DDI_EDP_INPUT_A_ON:
10593 trans_edp_pipe = PIPE_A;
10594 break;
10595 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10596 trans_edp_pipe = PIPE_B;
10597 break;
10598 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10599 trans_edp_pipe = PIPE_C;
10600 break;
10601 }
10602
10603 if (trans_edp_pipe == crtc->pipe)
10604 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10605 }
10606
10607 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10608 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10609 return false;
10610 *power_domain_mask |= BIT(power_domain);
10611
10612 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10613
10614 return tmp & PIPECONF_ENABLE;
10615 }
10616
10617 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10618 struct intel_crtc_state *pipe_config,
10619 unsigned long *power_domain_mask)
10620 {
10621 struct drm_device *dev = crtc->base.dev;
10622 struct drm_i915_private *dev_priv = to_i915(dev);
10623 enum intel_display_power_domain power_domain;
10624 enum port port;
10625 enum transcoder cpu_transcoder;
10626 u32 tmp;
10627
10628 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10629 if (port == PORT_A)
10630 cpu_transcoder = TRANSCODER_DSI_A;
10631 else
10632 cpu_transcoder = TRANSCODER_DSI_C;
10633
10634 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10635 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10636 continue;
10637 *power_domain_mask |= BIT(power_domain);
10638
10639 /*
10640 * The PLL needs to be enabled with a valid divider
10641 * configuration, otherwise accessing DSI registers will hang
10642 * the machine. See BSpec North Display Engine
10643 * registers/MIPI[BXT]. We can break out here early, since we
10644 * need the same DSI PLL to be enabled for both DSI ports.
10645 */
10646 if (!intel_dsi_pll_is_enabled(dev_priv))
10647 break;
10648
10649 /* XXX: this works for video mode only */
10650 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10651 if (!(tmp & DPI_ENABLE))
10652 continue;
10653
10654 tmp = I915_READ(MIPI_CTRL(port));
10655 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10656 continue;
10657
10658 pipe_config->cpu_transcoder = cpu_transcoder;
10659 break;
10660 }
10661
10662 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10663 }
10664
10665 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10666 struct intel_crtc_state *pipe_config)
10667 {
10668 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10669 struct intel_shared_dpll *pll;
10670 enum port port;
10671 uint32_t tmp;
10672
10673 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10674
10675 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10676
10677 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10678 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10679 else if (IS_GEN9_LP(dev_priv))
10680 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10681 else
10682 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10683
10684 pll = pipe_config->shared_dpll;
10685 if (pll) {
10686 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10687 &pipe_config->dpll_hw_state));
10688 }
10689
10690 /*
10691 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10692 * DDI E. So just check whether this pipe is wired to DDI E and whether
10693 * the PCH transcoder is on.
10694 */
10695 if (INTEL_GEN(dev_priv) < 9 &&
10696 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10697 pipe_config->has_pch_encoder = true;
10698
10699 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10700 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10701 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10702
10703 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10704 }
10705 }
10706
10707 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10708 struct intel_crtc_state *pipe_config)
10709 {
10710 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10711 enum intel_display_power_domain power_domain;
10712 unsigned long power_domain_mask;
10713 bool active;
10714
10715 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10716 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10717 return false;
10718 power_domain_mask = BIT(power_domain);
10719
10720 pipe_config->shared_dpll = NULL;
10721
10722 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10723
10724 if (IS_GEN9_LP(dev_priv) &&
10725 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10726 WARN_ON(active);
10727 active = true;
10728 }
10729
10730 if (!active)
10731 goto out;
10732
10733 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10734 haswell_get_ddi_port_state(crtc, pipe_config);
10735 intel_get_pipe_timings(crtc, pipe_config);
10736 }
10737
10738 intel_get_pipe_src_size(crtc, pipe_config);
10739
10740 pipe_config->gamma_mode =
10741 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10742
10743 if (INTEL_GEN(dev_priv) >= 9) {
10744 intel_crtc_init_scalers(crtc, pipe_config);
10745
10746 pipe_config->scaler_state.scaler_id = -1;
10747 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10748 }
10749
10750 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10751 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10752 power_domain_mask |= BIT(power_domain);
10753 if (INTEL_GEN(dev_priv) >= 9)
10754 skylake_get_pfit_config(crtc, pipe_config);
10755 else
10756 ironlake_get_pfit_config(crtc, pipe_config);
10757 }
10758
10759 if (IS_HASWELL(dev_priv))
10760 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10761 (I915_READ(IPS_CTL) & IPS_ENABLE);
10762
10763 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10764 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10765 pipe_config->pixel_multiplier =
10766 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10767 } else {
10768 pipe_config->pixel_multiplier = 1;
10769 }
10770
10771 out:
10772 for_each_power_domain(power_domain, power_domain_mask)
10773 intel_display_power_put(dev_priv, power_domain);
10774
10775 return active;
10776 }
10777
10778 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10779 const struct intel_plane_state *plane_state)
10780 {
10781 struct drm_device *dev = crtc->dev;
10782 struct drm_i915_private *dev_priv = to_i915(dev);
10783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10784 uint32_t cntl = 0, size = 0;
10785
10786 if (plane_state && plane_state->base.visible) {
10787 unsigned int width = plane_state->base.crtc_w;
10788 unsigned int height = plane_state->base.crtc_h;
10789 unsigned int stride = roundup_pow_of_two(width) * 4;
10790
10791 switch (stride) {
10792 default:
10793 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10794 width, stride);
10795 stride = 256;
10796 /* fallthrough */
10797 case 256:
10798 case 512:
10799 case 1024:
10800 case 2048:
10801 break;
10802 }
10803
10804 cntl |= CURSOR_ENABLE |
10805 CURSOR_GAMMA_ENABLE |
10806 CURSOR_FORMAT_ARGB |
10807 CURSOR_STRIDE(stride);
10808
10809 size = (height << 12) | width;
10810 }
10811
10812 if (intel_crtc->cursor_cntl != 0 &&
10813 (intel_crtc->cursor_base != base ||
10814 intel_crtc->cursor_size != size ||
10815 intel_crtc->cursor_cntl != cntl)) {
10816 /* On these chipsets we can only modify the base/size/stride
10817 * whilst the cursor is disabled.
10818 */
10819 I915_WRITE(CURCNTR(PIPE_A), 0);
10820 POSTING_READ(CURCNTR(PIPE_A));
10821 intel_crtc->cursor_cntl = 0;
10822 }
10823
10824 if (intel_crtc->cursor_base != base) {
10825 I915_WRITE(CURBASE(PIPE_A), base);
10826 intel_crtc->cursor_base = base;
10827 }
10828
10829 if (intel_crtc->cursor_size != size) {
10830 I915_WRITE(CURSIZE, size);
10831 intel_crtc->cursor_size = size;
10832 }
10833
10834 if (intel_crtc->cursor_cntl != cntl) {
10835 I915_WRITE(CURCNTR(PIPE_A), cntl);
10836 POSTING_READ(CURCNTR(PIPE_A));
10837 intel_crtc->cursor_cntl = cntl;
10838 }
10839 }
10840
10841 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10842 const struct intel_plane_state *plane_state)
10843 {
10844 struct drm_device *dev = crtc->dev;
10845 struct drm_i915_private *dev_priv = to_i915(dev);
10846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10847 int pipe = intel_crtc->pipe;
10848 uint32_t cntl = 0;
10849
10850 if (plane_state && plane_state->base.visible) {
10851 cntl = MCURSOR_GAMMA_ENABLE;
10852 switch (plane_state->base.crtc_w) {
10853 case 64:
10854 cntl |= CURSOR_MODE_64_ARGB_AX;
10855 break;
10856 case 128:
10857 cntl |= CURSOR_MODE_128_ARGB_AX;
10858 break;
10859 case 256:
10860 cntl |= CURSOR_MODE_256_ARGB_AX;
10861 break;
10862 default:
10863 MISSING_CASE(plane_state->base.crtc_w);
10864 return;
10865 }
10866 cntl |= pipe << 28; /* Connect to correct pipe */
10867
10868 if (HAS_DDI(dev_priv))
10869 cntl |= CURSOR_PIPE_CSC_ENABLE;
10870
10871 if (plane_state->base.rotation & DRM_ROTATE_180)
10872 cntl |= CURSOR_ROTATE_180;
10873 }
10874
10875 if (intel_crtc->cursor_cntl != cntl) {
10876 I915_WRITE(CURCNTR(pipe), cntl);
10877 POSTING_READ(CURCNTR(pipe));
10878 intel_crtc->cursor_cntl = cntl;
10879 }
10880
10881 /* and commit changes on next vblank */
10882 I915_WRITE(CURBASE(pipe), base);
10883 POSTING_READ(CURBASE(pipe));
10884
10885 intel_crtc->cursor_base = base;
10886 }
10887
10888 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10889 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10890 const struct intel_plane_state *plane_state)
10891 {
10892 struct drm_device *dev = crtc->dev;
10893 struct drm_i915_private *dev_priv = to_i915(dev);
10894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10895 int pipe = intel_crtc->pipe;
10896 u32 base = intel_crtc->cursor_addr;
10897 u32 pos = 0;
10898
10899 if (plane_state) {
10900 int x = plane_state->base.crtc_x;
10901 int y = plane_state->base.crtc_y;
10902
10903 if (x < 0) {
10904 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10905 x = -x;
10906 }
10907 pos |= x << CURSOR_X_SHIFT;
10908
10909 if (y < 0) {
10910 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10911 y = -y;
10912 }
10913 pos |= y << CURSOR_Y_SHIFT;
10914
10915 /* ILK+ do this automagically */
10916 if (HAS_GMCH_DISPLAY(dev_priv) &&
10917 plane_state->base.rotation & DRM_ROTATE_180) {
10918 base += (plane_state->base.crtc_h *
10919 plane_state->base.crtc_w - 1) * 4;
10920 }
10921 }
10922
10923 I915_WRITE(CURPOS(pipe), pos);
10924
10925 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
10926 i845_update_cursor(crtc, base, plane_state);
10927 else
10928 i9xx_update_cursor(crtc, base, plane_state);
10929 }
10930
10931 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10932 uint32_t width, uint32_t height)
10933 {
10934 if (width == 0 || height == 0)
10935 return false;
10936
10937 /*
10938 * 845g/865g are special in that they are only limited by
10939 * the width of their cursors, the height is arbitrary up to
10940 * the precision of the register. Everything else requires
10941 * square cursors, limited to a few power-of-two sizes.
10942 */
10943 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
10944 if ((width & 63) != 0)
10945 return false;
10946
10947 if (width > (IS_I845G(dev_priv) ? 64 : 512))
10948 return false;
10949
10950 if (height > 1023)
10951 return false;
10952 } else {
10953 switch (width | height) {
10954 case 256:
10955 case 128:
10956 if (IS_GEN2(dev_priv))
10957 return false;
10958 case 64:
10959 break;
10960 default:
10961 return false;
10962 }
10963 }
10964
10965 return true;
10966 }
10967
10968 /* VESA 640x480x72Hz mode to set on the pipe */
10969 static struct drm_display_mode load_detect_mode = {
10970 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10971 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10972 };
10973
10974 struct drm_framebuffer *
10975 __intel_framebuffer_create(struct drm_device *dev,
10976 struct drm_mode_fb_cmd2 *mode_cmd,
10977 struct drm_i915_gem_object *obj)
10978 {
10979 struct intel_framebuffer *intel_fb;
10980 int ret;
10981
10982 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10983 if (!intel_fb)
10984 return ERR_PTR(-ENOMEM);
10985
10986 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10987 if (ret)
10988 goto err;
10989
10990 return &intel_fb->base;
10991
10992 err:
10993 kfree(intel_fb);
10994 return ERR_PTR(ret);
10995 }
10996
10997 static struct drm_framebuffer *
10998 intel_framebuffer_create(struct drm_device *dev,
10999 struct drm_mode_fb_cmd2 *mode_cmd,
11000 struct drm_i915_gem_object *obj)
11001 {
11002 struct drm_framebuffer *fb;
11003 int ret;
11004
11005 ret = i915_mutex_lock_interruptible(dev);
11006 if (ret)
11007 return ERR_PTR(ret);
11008 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11009 mutex_unlock(&dev->struct_mutex);
11010
11011 return fb;
11012 }
11013
11014 static u32
11015 intel_framebuffer_pitch_for_width(int width, int bpp)
11016 {
11017 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11018 return ALIGN(pitch, 64);
11019 }
11020
11021 static u32
11022 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11023 {
11024 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11025 return PAGE_ALIGN(pitch * mode->vdisplay);
11026 }
11027
11028 static struct drm_framebuffer *
11029 intel_framebuffer_create_for_mode(struct drm_device *dev,
11030 struct drm_display_mode *mode,
11031 int depth, int bpp)
11032 {
11033 struct drm_framebuffer *fb;
11034 struct drm_i915_gem_object *obj;
11035 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11036
11037 obj = i915_gem_object_create(to_i915(dev),
11038 intel_framebuffer_size_for_mode(mode, bpp));
11039 if (IS_ERR(obj))
11040 return ERR_CAST(obj);
11041
11042 mode_cmd.width = mode->hdisplay;
11043 mode_cmd.height = mode->vdisplay;
11044 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11045 bpp);
11046 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11047
11048 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11049 if (IS_ERR(fb))
11050 i915_gem_object_put(obj);
11051
11052 return fb;
11053 }
11054
11055 static struct drm_framebuffer *
11056 mode_fits_in_fbdev(struct drm_device *dev,
11057 struct drm_display_mode *mode)
11058 {
11059 #ifdef CONFIG_DRM_FBDEV_EMULATION
11060 struct drm_i915_private *dev_priv = to_i915(dev);
11061 struct drm_i915_gem_object *obj;
11062 struct drm_framebuffer *fb;
11063
11064 if (!dev_priv->fbdev)
11065 return NULL;
11066
11067 if (!dev_priv->fbdev->fb)
11068 return NULL;
11069
11070 obj = dev_priv->fbdev->fb->obj;
11071 BUG_ON(!obj);
11072
11073 fb = &dev_priv->fbdev->fb->base;
11074 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11075 fb->format->cpp[0] * 8))
11076 return NULL;
11077
11078 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11079 return NULL;
11080
11081 drm_framebuffer_reference(fb);
11082 return fb;
11083 #else
11084 return NULL;
11085 #endif
11086 }
11087
11088 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11089 struct drm_crtc *crtc,
11090 struct drm_display_mode *mode,
11091 struct drm_framebuffer *fb,
11092 int x, int y)
11093 {
11094 struct drm_plane_state *plane_state;
11095 int hdisplay, vdisplay;
11096 int ret;
11097
11098 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11099 if (IS_ERR(plane_state))
11100 return PTR_ERR(plane_state);
11101
11102 if (mode)
11103 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
11104 else
11105 hdisplay = vdisplay = 0;
11106
11107 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11108 if (ret)
11109 return ret;
11110 drm_atomic_set_fb_for_plane(plane_state, fb);
11111 plane_state->crtc_x = 0;
11112 plane_state->crtc_y = 0;
11113 plane_state->crtc_w = hdisplay;
11114 plane_state->crtc_h = vdisplay;
11115 plane_state->src_x = x << 16;
11116 plane_state->src_y = y << 16;
11117 plane_state->src_w = hdisplay << 16;
11118 plane_state->src_h = vdisplay << 16;
11119
11120 return 0;
11121 }
11122
11123 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11124 struct drm_display_mode *mode,
11125 struct intel_load_detect_pipe *old,
11126 struct drm_modeset_acquire_ctx *ctx)
11127 {
11128 struct intel_crtc *intel_crtc;
11129 struct intel_encoder *intel_encoder =
11130 intel_attached_encoder(connector);
11131 struct drm_crtc *possible_crtc;
11132 struct drm_encoder *encoder = &intel_encoder->base;
11133 struct drm_crtc *crtc = NULL;
11134 struct drm_device *dev = encoder->dev;
11135 struct drm_i915_private *dev_priv = to_i915(dev);
11136 struct drm_framebuffer *fb;
11137 struct drm_mode_config *config = &dev->mode_config;
11138 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11139 struct drm_connector_state *connector_state;
11140 struct intel_crtc_state *crtc_state;
11141 int ret, i = -1;
11142
11143 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11144 connector->base.id, connector->name,
11145 encoder->base.id, encoder->name);
11146
11147 old->restore_state = NULL;
11148
11149 retry:
11150 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11151 if (ret)
11152 goto fail;
11153
11154 /*
11155 * Algorithm gets a little messy:
11156 *
11157 * - if the connector already has an assigned crtc, use it (but make
11158 * sure it's on first)
11159 *
11160 * - try to find the first unused crtc that can drive this connector,
11161 * and use that if we find one
11162 */
11163
11164 /* See if we already have a CRTC for this connector */
11165 if (connector->state->crtc) {
11166 crtc = connector->state->crtc;
11167
11168 ret = drm_modeset_lock(&crtc->mutex, ctx);
11169 if (ret)
11170 goto fail;
11171
11172 /* Make sure the crtc and connector are running */
11173 goto found;
11174 }
11175
11176 /* Find an unused one (if possible) */
11177 for_each_crtc(dev, possible_crtc) {
11178 i++;
11179 if (!(encoder->possible_crtcs & (1 << i)))
11180 continue;
11181
11182 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11183 if (ret)
11184 goto fail;
11185
11186 if (possible_crtc->state->enable) {
11187 drm_modeset_unlock(&possible_crtc->mutex);
11188 continue;
11189 }
11190
11191 crtc = possible_crtc;
11192 break;
11193 }
11194
11195 /*
11196 * If we didn't find an unused CRTC, don't use any.
11197 */
11198 if (!crtc) {
11199 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11200 goto fail;
11201 }
11202
11203 found:
11204 intel_crtc = to_intel_crtc(crtc);
11205
11206 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11207 if (ret)
11208 goto fail;
11209
11210 state = drm_atomic_state_alloc(dev);
11211 restore_state = drm_atomic_state_alloc(dev);
11212 if (!state || !restore_state) {
11213 ret = -ENOMEM;
11214 goto fail;
11215 }
11216
11217 state->acquire_ctx = ctx;
11218 restore_state->acquire_ctx = ctx;
11219
11220 connector_state = drm_atomic_get_connector_state(state, connector);
11221 if (IS_ERR(connector_state)) {
11222 ret = PTR_ERR(connector_state);
11223 goto fail;
11224 }
11225
11226 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11227 if (ret)
11228 goto fail;
11229
11230 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11231 if (IS_ERR(crtc_state)) {
11232 ret = PTR_ERR(crtc_state);
11233 goto fail;
11234 }
11235
11236 crtc_state->base.active = crtc_state->base.enable = true;
11237
11238 if (!mode)
11239 mode = &load_detect_mode;
11240
11241 /* We need a framebuffer large enough to accommodate all accesses
11242 * that the plane may generate whilst we perform load detection.
11243 * We can not rely on the fbcon either being present (we get called
11244 * during its initialisation to detect all boot displays, or it may
11245 * not even exist) or that it is large enough to satisfy the
11246 * requested mode.
11247 */
11248 fb = mode_fits_in_fbdev(dev, mode);
11249 if (fb == NULL) {
11250 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11251 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11252 } else
11253 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11254 if (IS_ERR(fb)) {
11255 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11256 goto fail;
11257 }
11258
11259 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11260 if (ret)
11261 goto fail;
11262
11263 drm_framebuffer_unreference(fb);
11264
11265 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11266 if (ret)
11267 goto fail;
11268
11269 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11270 if (!ret)
11271 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11272 if (!ret)
11273 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11274 if (ret) {
11275 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11276 goto fail;
11277 }
11278
11279 ret = drm_atomic_commit(state);
11280 if (ret) {
11281 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11282 goto fail;
11283 }
11284
11285 old->restore_state = restore_state;
11286 drm_atomic_state_put(state);
11287
11288 /* let the connector get through one full cycle before testing */
11289 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11290 return true;
11291
11292 fail:
11293 if (state) {
11294 drm_atomic_state_put(state);
11295 state = NULL;
11296 }
11297 if (restore_state) {
11298 drm_atomic_state_put(restore_state);
11299 restore_state = NULL;
11300 }
11301
11302 if (ret == -EDEADLK) {
11303 drm_modeset_backoff(ctx);
11304 goto retry;
11305 }
11306
11307 return false;
11308 }
11309
11310 void intel_release_load_detect_pipe(struct drm_connector *connector,
11311 struct intel_load_detect_pipe *old,
11312 struct drm_modeset_acquire_ctx *ctx)
11313 {
11314 struct intel_encoder *intel_encoder =
11315 intel_attached_encoder(connector);
11316 struct drm_encoder *encoder = &intel_encoder->base;
11317 struct drm_atomic_state *state = old->restore_state;
11318 int ret;
11319
11320 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11321 connector->base.id, connector->name,
11322 encoder->base.id, encoder->name);
11323
11324 if (!state)
11325 return;
11326
11327 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11328 if (ret)
11329 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11330 drm_atomic_state_put(state);
11331 }
11332
11333 static int i9xx_pll_refclk(struct drm_device *dev,
11334 const struct intel_crtc_state *pipe_config)
11335 {
11336 struct drm_i915_private *dev_priv = to_i915(dev);
11337 u32 dpll = pipe_config->dpll_hw_state.dpll;
11338
11339 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11340 return dev_priv->vbt.lvds_ssc_freq;
11341 else if (HAS_PCH_SPLIT(dev_priv))
11342 return 120000;
11343 else if (!IS_GEN2(dev_priv))
11344 return 96000;
11345 else
11346 return 48000;
11347 }
11348
11349 /* Returns the clock of the currently programmed mode of the given pipe. */
11350 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11351 struct intel_crtc_state *pipe_config)
11352 {
11353 struct drm_device *dev = crtc->base.dev;
11354 struct drm_i915_private *dev_priv = to_i915(dev);
11355 int pipe = pipe_config->cpu_transcoder;
11356 u32 dpll = pipe_config->dpll_hw_state.dpll;
11357 u32 fp;
11358 struct dpll clock;
11359 int port_clock;
11360 int refclk = i9xx_pll_refclk(dev, pipe_config);
11361
11362 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11363 fp = pipe_config->dpll_hw_state.fp0;
11364 else
11365 fp = pipe_config->dpll_hw_state.fp1;
11366
11367 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11368 if (IS_PINEVIEW(dev_priv)) {
11369 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11370 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11371 } else {
11372 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11373 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11374 }
11375
11376 if (!IS_GEN2(dev_priv)) {
11377 if (IS_PINEVIEW(dev_priv))
11378 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11379 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11380 else
11381 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11382 DPLL_FPA01_P1_POST_DIV_SHIFT);
11383
11384 switch (dpll & DPLL_MODE_MASK) {
11385 case DPLLB_MODE_DAC_SERIAL:
11386 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11387 5 : 10;
11388 break;
11389 case DPLLB_MODE_LVDS:
11390 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11391 7 : 14;
11392 break;
11393 default:
11394 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11395 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11396 return;
11397 }
11398
11399 if (IS_PINEVIEW(dev_priv))
11400 port_clock = pnv_calc_dpll_params(refclk, &clock);
11401 else
11402 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11403 } else {
11404 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11405 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11406
11407 if (is_lvds) {
11408 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11409 DPLL_FPA01_P1_POST_DIV_SHIFT);
11410
11411 if (lvds & LVDS_CLKB_POWER_UP)
11412 clock.p2 = 7;
11413 else
11414 clock.p2 = 14;
11415 } else {
11416 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11417 clock.p1 = 2;
11418 else {
11419 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11420 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11421 }
11422 if (dpll & PLL_P2_DIVIDE_BY_4)
11423 clock.p2 = 4;
11424 else
11425 clock.p2 = 2;
11426 }
11427
11428 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11429 }
11430
11431 /*
11432 * This value includes pixel_multiplier. We will use
11433 * port_clock to compute adjusted_mode.crtc_clock in the
11434 * encoder's get_config() function.
11435 */
11436 pipe_config->port_clock = port_clock;
11437 }
11438
11439 int intel_dotclock_calculate(int link_freq,
11440 const struct intel_link_m_n *m_n)
11441 {
11442 /*
11443 * The calculation for the data clock is:
11444 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11445 * But we want to avoid losing precison if possible, so:
11446 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11447 *
11448 * and the link clock is simpler:
11449 * link_clock = (m * link_clock) / n
11450 */
11451
11452 if (!m_n->link_n)
11453 return 0;
11454
11455 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11456 }
11457
11458 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11459 struct intel_crtc_state *pipe_config)
11460 {
11461 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11462
11463 /* read out port_clock from the DPLL */
11464 i9xx_crtc_clock_get(crtc, pipe_config);
11465
11466 /*
11467 * In case there is an active pipe without active ports,
11468 * we may need some idea for the dotclock anyway.
11469 * Calculate one based on the FDI configuration.
11470 */
11471 pipe_config->base.adjusted_mode.crtc_clock =
11472 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11473 &pipe_config->fdi_m_n);
11474 }
11475
11476 /** Returns the currently programmed mode of the given pipe. */
11477 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11478 struct drm_crtc *crtc)
11479 {
11480 struct drm_i915_private *dev_priv = to_i915(dev);
11481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11482 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11483 struct drm_display_mode *mode;
11484 struct intel_crtc_state *pipe_config;
11485 int htot = I915_READ(HTOTAL(cpu_transcoder));
11486 int hsync = I915_READ(HSYNC(cpu_transcoder));
11487 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11488 int vsync = I915_READ(VSYNC(cpu_transcoder));
11489 enum pipe pipe = intel_crtc->pipe;
11490
11491 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11492 if (!mode)
11493 return NULL;
11494
11495 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11496 if (!pipe_config) {
11497 kfree(mode);
11498 return NULL;
11499 }
11500
11501 /*
11502 * Construct a pipe_config sufficient for getting the clock info
11503 * back out of crtc_clock_get.
11504 *
11505 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11506 * to use a real value here instead.
11507 */
11508 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11509 pipe_config->pixel_multiplier = 1;
11510 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11511 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11512 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11513 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11514
11515 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11516 mode->hdisplay = (htot & 0xffff) + 1;
11517 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11518 mode->hsync_start = (hsync & 0xffff) + 1;
11519 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11520 mode->vdisplay = (vtot & 0xffff) + 1;
11521 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11522 mode->vsync_start = (vsync & 0xffff) + 1;
11523 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11524
11525 drm_mode_set_name(mode);
11526
11527 kfree(pipe_config);
11528
11529 return mode;
11530 }
11531
11532 static void intel_crtc_destroy(struct drm_crtc *crtc)
11533 {
11534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11535 struct drm_device *dev = crtc->dev;
11536 struct intel_flip_work *work;
11537
11538 spin_lock_irq(&dev->event_lock);
11539 work = intel_crtc->flip_work;
11540 intel_crtc->flip_work = NULL;
11541 spin_unlock_irq(&dev->event_lock);
11542
11543 if (work) {
11544 cancel_work_sync(&work->mmio_work);
11545 cancel_work_sync(&work->unpin_work);
11546 kfree(work);
11547 }
11548
11549 drm_crtc_cleanup(crtc);
11550
11551 kfree(intel_crtc);
11552 }
11553
11554 static void intel_unpin_work_fn(struct work_struct *__work)
11555 {
11556 struct intel_flip_work *work =
11557 container_of(__work, struct intel_flip_work, unpin_work);
11558 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11559 struct drm_device *dev = crtc->base.dev;
11560 struct drm_plane *primary = crtc->base.primary;
11561
11562 if (is_mmio_work(work))
11563 flush_work(&work->mmio_work);
11564
11565 mutex_lock(&dev->struct_mutex);
11566 intel_unpin_fb_vma(work->old_vma);
11567 i915_gem_object_put(work->pending_flip_obj);
11568 mutex_unlock(&dev->struct_mutex);
11569
11570 i915_gem_request_put(work->flip_queued_req);
11571
11572 intel_frontbuffer_flip_complete(to_i915(dev),
11573 to_intel_plane(primary)->frontbuffer_bit);
11574 intel_fbc_post_update(crtc);
11575 drm_framebuffer_unreference(work->old_fb);
11576
11577 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11578 atomic_dec(&crtc->unpin_work_count);
11579
11580 kfree(work);
11581 }
11582
11583 /* Is 'a' after or equal to 'b'? */
11584 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11585 {
11586 return !((a - b) & 0x80000000);
11587 }
11588
11589 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11590 struct intel_flip_work *work)
11591 {
11592 struct drm_device *dev = crtc->base.dev;
11593 struct drm_i915_private *dev_priv = to_i915(dev);
11594
11595 if (abort_flip_on_reset(crtc))
11596 return true;
11597
11598 /*
11599 * The relevant registers doen't exist on pre-ctg.
11600 * As the flip done interrupt doesn't trigger for mmio
11601 * flips on gmch platforms, a flip count check isn't
11602 * really needed there. But since ctg has the registers,
11603 * include it in the check anyway.
11604 */
11605 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11606 return true;
11607
11608 /*
11609 * BDW signals flip done immediately if the plane
11610 * is disabled, even if the plane enable is already
11611 * armed to occur at the next vblank :(
11612 */
11613
11614 /*
11615 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11616 * used the same base address. In that case the mmio flip might
11617 * have completed, but the CS hasn't even executed the flip yet.
11618 *
11619 * A flip count check isn't enough as the CS might have updated
11620 * the base address just after start of vblank, but before we
11621 * managed to process the interrupt. This means we'd complete the
11622 * CS flip too soon.
11623 *
11624 * Combining both checks should get us a good enough result. It may
11625 * still happen that the CS flip has been executed, but has not
11626 * yet actually completed. But in case the base address is the same
11627 * anyway, we don't really care.
11628 */
11629 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11630 crtc->flip_work->gtt_offset &&
11631 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11632 crtc->flip_work->flip_count);
11633 }
11634
11635 static bool
11636 __pageflip_finished_mmio(struct intel_crtc *crtc,
11637 struct intel_flip_work *work)
11638 {
11639 /*
11640 * MMIO work completes when vblank is different from
11641 * flip_queued_vblank.
11642 *
11643 * Reset counter value doesn't matter, this is handled by
11644 * i915_wait_request finishing early, so no need to handle
11645 * reset here.
11646 */
11647 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11648 }
11649
11650
11651 static bool pageflip_finished(struct intel_crtc *crtc,
11652 struct intel_flip_work *work)
11653 {
11654 if (!atomic_read(&work->pending))
11655 return false;
11656
11657 smp_rmb();
11658
11659 if (is_mmio_work(work))
11660 return __pageflip_finished_mmio(crtc, work);
11661 else
11662 return __pageflip_finished_cs(crtc, work);
11663 }
11664
11665 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11666 {
11667 struct drm_device *dev = &dev_priv->drm;
11668 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11669 struct intel_flip_work *work;
11670 unsigned long flags;
11671
11672 /* Ignore early vblank irqs */
11673 if (!crtc)
11674 return;
11675
11676 /*
11677 * This is called both by irq handlers and the reset code (to complete
11678 * lost pageflips) so needs the full irqsave spinlocks.
11679 */
11680 spin_lock_irqsave(&dev->event_lock, flags);
11681 work = crtc->flip_work;
11682
11683 if (work != NULL &&
11684 !is_mmio_work(work) &&
11685 pageflip_finished(crtc, work))
11686 page_flip_completed(crtc);
11687
11688 spin_unlock_irqrestore(&dev->event_lock, flags);
11689 }
11690
11691 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11692 {
11693 struct drm_device *dev = &dev_priv->drm;
11694 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11695 struct intel_flip_work *work;
11696 unsigned long flags;
11697
11698 /* Ignore early vblank irqs */
11699 if (!crtc)
11700 return;
11701
11702 /*
11703 * This is called both by irq handlers and the reset code (to complete
11704 * lost pageflips) so needs the full irqsave spinlocks.
11705 */
11706 spin_lock_irqsave(&dev->event_lock, flags);
11707 work = crtc->flip_work;
11708
11709 if (work != NULL &&
11710 is_mmio_work(work) &&
11711 pageflip_finished(crtc, work))
11712 page_flip_completed(crtc);
11713
11714 spin_unlock_irqrestore(&dev->event_lock, flags);
11715 }
11716
11717 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11718 struct intel_flip_work *work)
11719 {
11720 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11721
11722 /* Ensure that the work item is consistent when activating it ... */
11723 smp_mb__before_atomic();
11724 atomic_set(&work->pending, 1);
11725 }
11726
11727 static int intel_gen2_queue_flip(struct drm_device *dev,
11728 struct drm_crtc *crtc,
11729 struct drm_framebuffer *fb,
11730 struct drm_i915_gem_object *obj,
11731 struct drm_i915_gem_request *req,
11732 uint32_t flags)
11733 {
11734 struct intel_ring *ring = req->ring;
11735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11736 u32 flip_mask;
11737 int ret;
11738
11739 ret = intel_ring_begin(req, 6);
11740 if (ret)
11741 return ret;
11742
11743 /* Can't queue multiple flips, so wait for the previous
11744 * one to finish before executing the next.
11745 */
11746 if (intel_crtc->plane)
11747 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11748 else
11749 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11750 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11751 intel_ring_emit(ring, MI_NOOP);
11752 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11753 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11754 intel_ring_emit(ring, fb->pitches[0]);
11755 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11756 intel_ring_emit(ring, 0); /* aux display base address, unused */
11757
11758 return 0;
11759 }
11760
11761 static int intel_gen3_queue_flip(struct drm_device *dev,
11762 struct drm_crtc *crtc,
11763 struct drm_framebuffer *fb,
11764 struct drm_i915_gem_object *obj,
11765 struct drm_i915_gem_request *req,
11766 uint32_t flags)
11767 {
11768 struct intel_ring *ring = req->ring;
11769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11770 u32 flip_mask;
11771 int ret;
11772
11773 ret = intel_ring_begin(req, 6);
11774 if (ret)
11775 return ret;
11776
11777 if (intel_crtc->plane)
11778 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11779 else
11780 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11781 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11782 intel_ring_emit(ring, MI_NOOP);
11783 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11784 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11785 intel_ring_emit(ring, fb->pitches[0]);
11786 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11787 intel_ring_emit(ring, MI_NOOP);
11788
11789 return 0;
11790 }
11791
11792 static int intel_gen4_queue_flip(struct drm_device *dev,
11793 struct drm_crtc *crtc,
11794 struct drm_framebuffer *fb,
11795 struct drm_i915_gem_object *obj,
11796 struct drm_i915_gem_request *req,
11797 uint32_t flags)
11798 {
11799 struct intel_ring *ring = req->ring;
11800 struct drm_i915_private *dev_priv = to_i915(dev);
11801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11802 uint32_t pf, pipesrc;
11803 int ret;
11804
11805 ret = intel_ring_begin(req, 4);
11806 if (ret)
11807 return ret;
11808
11809 /* i965+ uses the linear or tiled offsets from the
11810 * Display Registers (which do not change across a page-flip)
11811 * so we need only reprogram the base address.
11812 */
11813 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11814 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11815 intel_ring_emit(ring, fb->pitches[0]);
11816 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11817 intel_fb_modifier_to_tiling(fb->modifier));
11818
11819 /* XXX Enabling the panel-fitter across page-flip is so far
11820 * untested on non-native modes, so ignore it for now.
11821 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11822 */
11823 pf = 0;
11824 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11825 intel_ring_emit(ring, pf | pipesrc);
11826
11827 return 0;
11828 }
11829
11830 static int intel_gen6_queue_flip(struct drm_device *dev,
11831 struct drm_crtc *crtc,
11832 struct drm_framebuffer *fb,
11833 struct drm_i915_gem_object *obj,
11834 struct drm_i915_gem_request *req,
11835 uint32_t flags)
11836 {
11837 struct intel_ring *ring = req->ring;
11838 struct drm_i915_private *dev_priv = to_i915(dev);
11839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11840 uint32_t pf, pipesrc;
11841 int ret;
11842
11843 ret = intel_ring_begin(req, 4);
11844 if (ret)
11845 return ret;
11846
11847 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11848 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11849 intel_ring_emit(ring, fb->pitches[0] |
11850 intel_fb_modifier_to_tiling(fb->modifier));
11851 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11852
11853 /* Contrary to the suggestions in the documentation,
11854 * "Enable Panel Fitter" does not seem to be required when page
11855 * flipping with a non-native mode, and worse causes a normal
11856 * modeset to fail.
11857 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11858 */
11859 pf = 0;
11860 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11861 intel_ring_emit(ring, pf | pipesrc);
11862
11863 return 0;
11864 }
11865
11866 static int intel_gen7_queue_flip(struct drm_device *dev,
11867 struct drm_crtc *crtc,
11868 struct drm_framebuffer *fb,
11869 struct drm_i915_gem_object *obj,
11870 struct drm_i915_gem_request *req,
11871 uint32_t flags)
11872 {
11873 struct drm_i915_private *dev_priv = to_i915(dev);
11874 struct intel_ring *ring = req->ring;
11875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11876 uint32_t plane_bit = 0;
11877 int len, ret;
11878
11879 switch (intel_crtc->plane) {
11880 case PLANE_A:
11881 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11882 break;
11883 case PLANE_B:
11884 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11885 break;
11886 case PLANE_C:
11887 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11888 break;
11889 default:
11890 WARN_ONCE(1, "unknown plane in flip command\n");
11891 return -ENODEV;
11892 }
11893
11894 len = 4;
11895 if (req->engine->id == RCS) {
11896 len += 6;
11897 /*
11898 * On Gen 8, SRM is now taking an extra dword to accommodate
11899 * 48bits addresses, and we need a NOOP for the batch size to
11900 * stay even.
11901 */
11902 if (IS_GEN8(dev_priv))
11903 len += 2;
11904 }
11905
11906 /*
11907 * BSpec MI_DISPLAY_FLIP for IVB:
11908 * "The full packet must be contained within the same cache line."
11909 *
11910 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11911 * cacheline, if we ever start emitting more commands before
11912 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11913 * then do the cacheline alignment, and finally emit the
11914 * MI_DISPLAY_FLIP.
11915 */
11916 ret = intel_ring_cacheline_align(req);
11917 if (ret)
11918 return ret;
11919
11920 ret = intel_ring_begin(req, len);
11921 if (ret)
11922 return ret;
11923
11924 /* Unmask the flip-done completion message. Note that the bspec says that
11925 * we should do this for both the BCS and RCS, and that we must not unmask
11926 * more than one flip event at any time (or ensure that one flip message
11927 * can be sent by waiting for flip-done prior to queueing new flips).
11928 * Experimentation says that BCS works despite DERRMR masking all
11929 * flip-done completion events and that unmasking all planes at once
11930 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11931 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11932 */
11933 if (req->engine->id == RCS) {
11934 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11935 intel_ring_emit_reg(ring, DERRMR);
11936 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11937 DERRMR_PIPEB_PRI_FLIP_DONE |
11938 DERRMR_PIPEC_PRI_FLIP_DONE));
11939 if (IS_GEN8(dev_priv))
11940 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11941 MI_SRM_LRM_GLOBAL_GTT);
11942 else
11943 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11944 MI_SRM_LRM_GLOBAL_GTT);
11945 intel_ring_emit_reg(ring, DERRMR);
11946 intel_ring_emit(ring,
11947 i915_ggtt_offset(req->engine->scratch) + 256);
11948 if (IS_GEN8(dev_priv)) {
11949 intel_ring_emit(ring, 0);
11950 intel_ring_emit(ring, MI_NOOP);
11951 }
11952 }
11953
11954 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11955 intel_ring_emit(ring, fb->pitches[0] |
11956 intel_fb_modifier_to_tiling(fb->modifier));
11957 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11958 intel_ring_emit(ring, (MI_NOOP));
11959
11960 return 0;
11961 }
11962
11963 static bool use_mmio_flip(struct intel_engine_cs *engine,
11964 struct drm_i915_gem_object *obj)
11965 {
11966 /*
11967 * This is not being used for older platforms, because
11968 * non-availability of flip done interrupt forces us to use
11969 * CS flips. Older platforms derive flip done using some clever
11970 * tricks involving the flip_pending status bits and vblank irqs.
11971 * So using MMIO flips there would disrupt this mechanism.
11972 */
11973
11974 if (engine == NULL)
11975 return true;
11976
11977 if (INTEL_GEN(engine->i915) < 5)
11978 return false;
11979
11980 if (i915.use_mmio_flip < 0)
11981 return false;
11982 else if (i915.use_mmio_flip > 0)
11983 return true;
11984 else if (i915.enable_execlists)
11985 return true;
11986
11987 return engine != i915_gem_object_last_write_engine(obj);
11988 }
11989
11990 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11991 unsigned int rotation,
11992 struct intel_flip_work *work)
11993 {
11994 struct drm_device *dev = intel_crtc->base.dev;
11995 struct drm_i915_private *dev_priv = to_i915(dev);
11996 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11997 const enum pipe pipe = intel_crtc->pipe;
11998 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11999
12000 ctl = I915_READ(PLANE_CTL(pipe, 0));
12001 ctl &= ~PLANE_CTL_TILED_MASK;
12002 switch (fb->modifier) {
12003 case DRM_FORMAT_MOD_NONE:
12004 break;
12005 case I915_FORMAT_MOD_X_TILED:
12006 ctl |= PLANE_CTL_TILED_X;
12007 break;
12008 case I915_FORMAT_MOD_Y_TILED:
12009 ctl |= PLANE_CTL_TILED_Y;
12010 break;
12011 case I915_FORMAT_MOD_Yf_TILED:
12012 ctl |= PLANE_CTL_TILED_YF;
12013 break;
12014 default:
12015 MISSING_CASE(fb->modifier);
12016 }
12017
12018 /*
12019 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12020 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12021 */
12022 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12023 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12024
12025 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12026 POSTING_READ(PLANE_SURF(pipe, 0));
12027 }
12028
12029 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12030 struct intel_flip_work *work)
12031 {
12032 struct drm_device *dev = intel_crtc->base.dev;
12033 struct drm_i915_private *dev_priv = to_i915(dev);
12034 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12035 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12036 u32 dspcntr;
12037
12038 dspcntr = I915_READ(reg);
12039
12040 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12041 dspcntr |= DISPPLANE_TILED;
12042 else
12043 dspcntr &= ~DISPPLANE_TILED;
12044
12045 I915_WRITE(reg, dspcntr);
12046
12047 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12048 POSTING_READ(DSPSURF(intel_crtc->plane));
12049 }
12050
12051 static void intel_mmio_flip_work_func(struct work_struct *w)
12052 {
12053 struct intel_flip_work *work =
12054 container_of(w, struct intel_flip_work, mmio_work);
12055 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12056 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12057 struct intel_framebuffer *intel_fb =
12058 to_intel_framebuffer(crtc->base.primary->fb);
12059 struct drm_i915_gem_object *obj = intel_fb->obj;
12060
12061 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12062
12063 intel_pipe_update_start(crtc);
12064
12065 if (INTEL_GEN(dev_priv) >= 9)
12066 skl_do_mmio_flip(crtc, work->rotation, work);
12067 else
12068 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12069 ilk_do_mmio_flip(crtc, work);
12070
12071 intel_pipe_update_end(crtc, work);
12072 }
12073
12074 static int intel_default_queue_flip(struct drm_device *dev,
12075 struct drm_crtc *crtc,
12076 struct drm_framebuffer *fb,
12077 struct drm_i915_gem_object *obj,
12078 struct drm_i915_gem_request *req,
12079 uint32_t flags)
12080 {
12081 return -ENODEV;
12082 }
12083
12084 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12085 struct intel_crtc *intel_crtc,
12086 struct intel_flip_work *work)
12087 {
12088 u32 addr, vblank;
12089
12090 if (!atomic_read(&work->pending))
12091 return false;
12092
12093 smp_rmb();
12094
12095 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12096 if (work->flip_ready_vblank == 0) {
12097 if (work->flip_queued_req &&
12098 !i915_gem_request_completed(work->flip_queued_req))
12099 return false;
12100
12101 work->flip_ready_vblank = vblank;
12102 }
12103
12104 if (vblank - work->flip_ready_vblank < 3)
12105 return false;
12106
12107 /* Potential stall - if we see that the flip has happened,
12108 * assume a missed interrupt. */
12109 if (INTEL_GEN(dev_priv) >= 4)
12110 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12111 else
12112 addr = I915_READ(DSPADDR(intel_crtc->plane));
12113
12114 /* There is a potential issue here with a false positive after a flip
12115 * to the same address. We could address this by checking for a
12116 * non-incrementing frame counter.
12117 */
12118 return addr == work->gtt_offset;
12119 }
12120
12121 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12122 {
12123 struct drm_device *dev = &dev_priv->drm;
12124 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12125 struct intel_flip_work *work;
12126
12127 WARN_ON(!in_interrupt());
12128
12129 if (crtc == NULL)
12130 return;
12131
12132 spin_lock(&dev->event_lock);
12133 work = crtc->flip_work;
12134
12135 if (work != NULL && !is_mmio_work(work) &&
12136 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12137 WARN_ONCE(1,
12138 "Kicking stuck page flip: queued at %d, now %d\n",
12139 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12140 page_flip_completed(crtc);
12141 work = NULL;
12142 }
12143
12144 if (work != NULL && !is_mmio_work(work) &&
12145 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12146 intel_queue_rps_boost_for_request(work->flip_queued_req);
12147 spin_unlock(&dev->event_lock);
12148 }
12149
12150 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12151 struct drm_framebuffer *fb,
12152 struct drm_pending_vblank_event *event,
12153 uint32_t page_flip_flags)
12154 {
12155 struct drm_device *dev = crtc->dev;
12156 struct drm_i915_private *dev_priv = to_i915(dev);
12157 struct drm_framebuffer *old_fb = crtc->primary->fb;
12158 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12160 struct drm_plane *primary = crtc->primary;
12161 enum pipe pipe = intel_crtc->pipe;
12162 struct intel_flip_work *work;
12163 struct intel_engine_cs *engine;
12164 bool mmio_flip;
12165 struct drm_i915_gem_request *request;
12166 struct i915_vma *vma;
12167 int ret;
12168
12169 /*
12170 * drm_mode_page_flip_ioctl() should already catch this, but double
12171 * check to be safe. In the future we may enable pageflipping from
12172 * a disabled primary plane.
12173 */
12174 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12175 return -EBUSY;
12176
12177 /* Can't change pixel format via MI display flips. */
12178 if (fb->format != crtc->primary->fb->format)
12179 return -EINVAL;
12180
12181 /*
12182 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12183 * Note that pitch changes could also affect these register.
12184 */
12185 if (INTEL_GEN(dev_priv) > 3 &&
12186 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12187 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12188 return -EINVAL;
12189
12190 if (i915_terminally_wedged(&dev_priv->gpu_error))
12191 goto out_hang;
12192
12193 work = kzalloc(sizeof(*work), GFP_KERNEL);
12194 if (work == NULL)
12195 return -ENOMEM;
12196
12197 work->event = event;
12198 work->crtc = crtc;
12199 work->old_fb = old_fb;
12200 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12201
12202 ret = drm_crtc_vblank_get(crtc);
12203 if (ret)
12204 goto free_work;
12205
12206 /* We borrow the event spin lock for protecting flip_work */
12207 spin_lock_irq(&dev->event_lock);
12208 if (intel_crtc->flip_work) {
12209 /* Before declaring the flip queue wedged, check if
12210 * the hardware completed the operation behind our backs.
12211 */
12212 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12213 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12214 page_flip_completed(intel_crtc);
12215 } else {
12216 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12217 spin_unlock_irq(&dev->event_lock);
12218
12219 drm_crtc_vblank_put(crtc);
12220 kfree(work);
12221 return -EBUSY;
12222 }
12223 }
12224 intel_crtc->flip_work = work;
12225 spin_unlock_irq(&dev->event_lock);
12226
12227 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12228 flush_workqueue(dev_priv->wq);
12229
12230 /* Reference the objects for the scheduled work. */
12231 drm_framebuffer_reference(work->old_fb);
12232
12233 crtc->primary->fb = fb;
12234 update_state_fb(crtc->primary);
12235
12236 work->pending_flip_obj = i915_gem_object_get(obj);
12237
12238 ret = i915_mutex_lock_interruptible(dev);
12239 if (ret)
12240 goto cleanup;
12241
12242 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12243 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12244 ret = -EIO;
12245 goto unlock;
12246 }
12247
12248 atomic_inc(&intel_crtc->unpin_work_count);
12249
12250 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12251 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12252
12253 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12254 engine = dev_priv->engine[BCS];
12255 if (fb->modifier != old_fb->modifier)
12256 /* vlv: DISPLAY_FLIP fails to change tiling */
12257 engine = NULL;
12258 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12259 engine = dev_priv->engine[BCS];
12260 } else if (INTEL_GEN(dev_priv) >= 7) {
12261 engine = i915_gem_object_last_write_engine(obj);
12262 if (engine == NULL || engine->id != RCS)
12263 engine = dev_priv->engine[BCS];
12264 } else {
12265 engine = dev_priv->engine[RCS];
12266 }
12267
12268 mmio_flip = use_mmio_flip(engine, obj);
12269
12270 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12271 if (IS_ERR(vma)) {
12272 ret = PTR_ERR(vma);
12273 goto cleanup_pending;
12274 }
12275
12276 work->old_vma = to_intel_plane_state(primary->state)->vma;
12277 to_intel_plane_state(primary->state)->vma = vma;
12278
12279 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12280 work->rotation = crtc->primary->state->rotation;
12281
12282 /*
12283 * There's the potential that the next frame will not be compatible with
12284 * FBC, so we want to call pre_update() before the actual page flip.
12285 * The problem is that pre_update() caches some information about the fb
12286 * object, so we want to do this only after the object is pinned. Let's
12287 * be on the safe side and do this immediately before scheduling the
12288 * flip.
12289 */
12290 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12291 to_intel_plane_state(primary->state));
12292
12293 if (mmio_flip) {
12294 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12295 queue_work(system_unbound_wq, &work->mmio_work);
12296 } else {
12297 request = i915_gem_request_alloc(engine,
12298 dev_priv->kernel_context);
12299 if (IS_ERR(request)) {
12300 ret = PTR_ERR(request);
12301 goto cleanup_unpin;
12302 }
12303
12304 ret = i915_gem_request_await_object(request, obj, false);
12305 if (ret)
12306 goto cleanup_request;
12307
12308 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12309 page_flip_flags);
12310 if (ret)
12311 goto cleanup_request;
12312
12313 intel_mark_page_flip_active(intel_crtc, work);
12314
12315 work->flip_queued_req = i915_gem_request_get(request);
12316 i915_add_request_no_flush(request);
12317 }
12318
12319 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12320 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12321 to_intel_plane(primary)->frontbuffer_bit);
12322 mutex_unlock(&dev->struct_mutex);
12323
12324 intel_frontbuffer_flip_prepare(to_i915(dev),
12325 to_intel_plane(primary)->frontbuffer_bit);
12326
12327 trace_i915_flip_request(intel_crtc->plane, obj);
12328
12329 return 0;
12330
12331 cleanup_request:
12332 i915_add_request_no_flush(request);
12333 cleanup_unpin:
12334 to_intel_plane_state(primary->state)->vma = work->old_vma;
12335 intel_unpin_fb_vma(vma);
12336 cleanup_pending:
12337 atomic_dec(&intel_crtc->unpin_work_count);
12338 unlock:
12339 mutex_unlock(&dev->struct_mutex);
12340 cleanup:
12341 crtc->primary->fb = old_fb;
12342 update_state_fb(crtc->primary);
12343
12344 i915_gem_object_put(obj);
12345 drm_framebuffer_unreference(work->old_fb);
12346
12347 spin_lock_irq(&dev->event_lock);
12348 intel_crtc->flip_work = NULL;
12349 spin_unlock_irq(&dev->event_lock);
12350
12351 drm_crtc_vblank_put(crtc);
12352 free_work:
12353 kfree(work);
12354
12355 if (ret == -EIO) {
12356 struct drm_atomic_state *state;
12357 struct drm_plane_state *plane_state;
12358
12359 out_hang:
12360 state = drm_atomic_state_alloc(dev);
12361 if (!state)
12362 return -ENOMEM;
12363 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12364
12365 retry:
12366 plane_state = drm_atomic_get_plane_state(state, primary);
12367 ret = PTR_ERR_OR_ZERO(plane_state);
12368 if (!ret) {
12369 drm_atomic_set_fb_for_plane(plane_state, fb);
12370
12371 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12372 if (!ret)
12373 ret = drm_atomic_commit(state);
12374 }
12375
12376 if (ret == -EDEADLK) {
12377 drm_modeset_backoff(state->acquire_ctx);
12378 drm_atomic_state_clear(state);
12379 goto retry;
12380 }
12381
12382 drm_atomic_state_put(state);
12383
12384 if (ret == 0 && event) {
12385 spin_lock_irq(&dev->event_lock);
12386 drm_crtc_send_vblank_event(crtc, event);
12387 spin_unlock_irq(&dev->event_lock);
12388 }
12389 }
12390 return ret;
12391 }
12392
12393
12394 /**
12395 * intel_wm_need_update - Check whether watermarks need updating
12396 * @plane: drm plane
12397 * @state: new plane state
12398 *
12399 * Check current plane state versus the new one to determine whether
12400 * watermarks need to be recalculated.
12401 *
12402 * Returns true or false.
12403 */
12404 static bool intel_wm_need_update(struct drm_plane *plane,
12405 struct drm_plane_state *state)
12406 {
12407 struct intel_plane_state *new = to_intel_plane_state(state);
12408 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12409
12410 /* Update watermarks on tiling or size changes. */
12411 if (new->base.visible != cur->base.visible)
12412 return true;
12413
12414 if (!cur->base.fb || !new->base.fb)
12415 return false;
12416
12417 if (cur->base.fb->modifier != new->base.fb->modifier ||
12418 cur->base.rotation != new->base.rotation ||
12419 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12420 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12421 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12422 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12423 return true;
12424
12425 return false;
12426 }
12427
12428 static bool needs_scaling(struct intel_plane_state *state)
12429 {
12430 int src_w = drm_rect_width(&state->base.src) >> 16;
12431 int src_h = drm_rect_height(&state->base.src) >> 16;
12432 int dst_w = drm_rect_width(&state->base.dst);
12433 int dst_h = drm_rect_height(&state->base.dst);
12434
12435 return (src_w != dst_w || src_h != dst_h);
12436 }
12437
12438 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12439 struct drm_plane_state *plane_state)
12440 {
12441 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12442 struct drm_crtc *crtc = crtc_state->crtc;
12443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12444 struct drm_plane *plane = plane_state->plane;
12445 struct drm_device *dev = crtc->dev;
12446 struct drm_i915_private *dev_priv = to_i915(dev);
12447 struct intel_plane_state *old_plane_state =
12448 to_intel_plane_state(plane->state);
12449 bool mode_changed = needs_modeset(crtc_state);
12450 bool was_crtc_enabled = crtc->state->active;
12451 bool is_crtc_enabled = crtc_state->active;
12452 bool turn_off, turn_on, visible, was_visible;
12453 struct drm_framebuffer *fb = plane_state->fb;
12454 int ret;
12455
12456 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12457 ret = skl_update_scaler_plane(
12458 to_intel_crtc_state(crtc_state),
12459 to_intel_plane_state(plane_state));
12460 if (ret)
12461 return ret;
12462 }
12463
12464 was_visible = old_plane_state->base.visible;
12465 visible = plane_state->visible;
12466
12467 if (!was_crtc_enabled && WARN_ON(was_visible))
12468 was_visible = false;
12469
12470 /*
12471 * Visibility is calculated as if the crtc was on, but
12472 * after scaler setup everything depends on it being off
12473 * when the crtc isn't active.
12474 *
12475 * FIXME this is wrong for watermarks. Watermarks should also
12476 * be computed as if the pipe would be active. Perhaps move
12477 * per-plane wm computation to the .check_plane() hook, and
12478 * only combine the results from all planes in the current place?
12479 */
12480 if (!is_crtc_enabled)
12481 plane_state->visible = visible = false;
12482
12483 if (!was_visible && !visible)
12484 return 0;
12485
12486 if (fb != old_plane_state->base.fb)
12487 pipe_config->fb_changed = true;
12488
12489 turn_off = was_visible && (!visible || mode_changed);
12490 turn_on = visible && (!was_visible || mode_changed);
12491
12492 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12493 intel_crtc->base.base.id,
12494 intel_crtc->base.name,
12495 plane->base.id, plane->name,
12496 fb ? fb->base.id : -1);
12497
12498 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12499 plane->base.id, plane->name,
12500 was_visible, visible,
12501 turn_off, turn_on, mode_changed);
12502
12503 if (turn_on) {
12504 pipe_config->update_wm_pre = true;
12505
12506 /* must disable cxsr around plane enable/disable */
12507 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12508 pipe_config->disable_cxsr = true;
12509 } else if (turn_off) {
12510 pipe_config->update_wm_post = true;
12511
12512 /* must disable cxsr around plane enable/disable */
12513 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12514 pipe_config->disable_cxsr = true;
12515 } else if (intel_wm_need_update(plane, plane_state)) {
12516 /* FIXME bollocks */
12517 pipe_config->update_wm_pre = true;
12518 pipe_config->update_wm_post = true;
12519 }
12520
12521 /* Pre-gen9 platforms need two-step watermark updates */
12522 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12523 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12524 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12525
12526 if (visible || was_visible)
12527 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12528
12529 /*
12530 * WaCxSRDisabledForSpriteScaling:ivb
12531 *
12532 * cstate->update_wm was already set above, so this flag will
12533 * take effect when we commit and program watermarks.
12534 */
12535 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12536 needs_scaling(to_intel_plane_state(plane_state)) &&
12537 !needs_scaling(old_plane_state))
12538 pipe_config->disable_lp_wm = true;
12539
12540 return 0;
12541 }
12542
12543 static bool encoders_cloneable(const struct intel_encoder *a,
12544 const struct intel_encoder *b)
12545 {
12546 /* masks could be asymmetric, so check both ways */
12547 return a == b || (a->cloneable & (1 << b->type) &&
12548 b->cloneable & (1 << a->type));
12549 }
12550
12551 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12552 struct intel_crtc *crtc,
12553 struct intel_encoder *encoder)
12554 {
12555 struct intel_encoder *source_encoder;
12556 struct drm_connector *connector;
12557 struct drm_connector_state *connector_state;
12558 int i;
12559
12560 for_each_connector_in_state(state, connector, connector_state, i) {
12561 if (connector_state->crtc != &crtc->base)
12562 continue;
12563
12564 source_encoder =
12565 to_intel_encoder(connector_state->best_encoder);
12566 if (!encoders_cloneable(encoder, source_encoder))
12567 return false;
12568 }
12569
12570 return true;
12571 }
12572
12573 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12574 struct drm_crtc_state *crtc_state)
12575 {
12576 struct drm_device *dev = crtc->dev;
12577 struct drm_i915_private *dev_priv = to_i915(dev);
12578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12579 struct intel_crtc_state *pipe_config =
12580 to_intel_crtc_state(crtc_state);
12581 struct drm_atomic_state *state = crtc_state->state;
12582 int ret;
12583 bool mode_changed = needs_modeset(crtc_state);
12584
12585 if (mode_changed && !crtc_state->active)
12586 pipe_config->update_wm_post = true;
12587
12588 if (mode_changed && crtc_state->enable &&
12589 dev_priv->display.crtc_compute_clock &&
12590 !WARN_ON(pipe_config->shared_dpll)) {
12591 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12592 pipe_config);
12593 if (ret)
12594 return ret;
12595 }
12596
12597 if (crtc_state->color_mgmt_changed) {
12598 ret = intel_color_check(crtc, crtc_state);
12599 if (ret)
12600 return ret;
12601
12602 /*
12603 * Changing color management on Intel hardware is
12604 * handled as part of planes update.
12605 */
12606 crtc_state->planes_changed = true;
12607 }
12608
12609 ret = 0;
12610 if (dev_priv->display.compute_pipe_wm) {
12611 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12612 if (ret) {
12613 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12614 return ret;
12615 }
12616 }
12617
12618 if (dev_priv->display.compute_intermediate_wm &&
12619 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12620 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12621 return 0;
12622
12623 /*
12624 * Calculate 'intermediate' watermarks that satisfy both the
12625 * old state and the new state. We can program these
12626 * immediately.
12627 */
12628 ret = dev_priv->display.compute_intermediate_wm(dev,
12629 intel_crtc,
12630 pipe_config);
12631 if (ret) {
12632 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12633 return ret;
12634 }
12635 } else if (dev_priv->display.compute_intermediate_wm) {
12636 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12637 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12638 }
12639
12640 if (INTEL_GEN(dev_priv) >= 9) {
12641 if (mode_changed)
12642 ret = skl_update_scaler_crtc(pipe_config);
12643
12644 if (!ret)
12645 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12646 pipe_config);
12647 }
12648
12649 return ret;
12650 }
12651
12652 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12653 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12654 .atomic_begin = intel_begin_crtc_commit,
12655 .atomic_flush = intel_finish_crtc_commit,
12656 .atomic_check = intel_crtc_atomic_check,
12657 };
12658
12659 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12660 {
12661 struct intel_connector *connector;
12662
12663 for_each_intel_connector(dev, connector) {
12664 if (connector->base.state->crtc)
12665 drm_connector_unreference(&connector->base);
12666
12667 if (connector->base.encoder) {
12668 connector->base.state->best_encoder =
12669 connector->base.encoder;
12670 connector->base.state->crtc =
12671 connector->base.encoder->crtc;
12672
12673 drm_connector_reference(&connector->base);
12674 } else {
12675 connector->base.state->best_encoder = NULL;
12676 connector->base.state->crtc = NULL;
12677 }
12678 }
12679 }
12680
12681 static void
12682 connected_sink_compute_bpp(struct intel_connector *connector,
12683 struct intel_crtc_state *pipe_config)
12684 {
12685 const struct drm_display_info *info = &connector->base.display_info;
12686 int bpp = pipe_config->pipe_bpp;
12687
12688 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12689 connector->base.base.id,
12690 connector->base.name);
12691
12692 /* Don't use an invalid EDID bpc value */
12693 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12694 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12695 bpp, info->bpc * 3);
12696 pipe_config->pipe_bpp = info->bpc * 3;
12697 }
12698
12699 /* Clamp bpp to 8 on screens without EDID 1.4 */
12700 if (info->bpc == 0 && bpp > 24) {
12701 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12702 bpp);
12703 pipe_config->pipe_bpp = 24;
12704 }
12705 }
12706
12707 static int
12708 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12709 struct intel_crtc_state *pipe_config)
12710 {
12711 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12712 struct drm_atomic_state *state;
12713 struct drm_connector *connector;
12714 struct drm_connector_state *connector_state;
12715 int bpp, i;
12716
12717 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12718 IS_CHERRYVIEW(dev_priv)))
12719 bpp = 10*3;
12720 else if (INTEL_GEN(dev_priv) >= 5)
12721 bpp = 12*3;
12722 else
12723 bpp = 8*3;
12724
12725
12726 pipe_config->pipe_bpp = bpp;
12727
12728 state = pipe_config->base.state;
12729
12730 /* Clamp display bpp to EDID value */
12731 for_each_connector_in_state(state, connector, connector_state, i) {
12732 if (connector_state->crtc != &crtc->base)
12733 continue;
12734
12735 connected_sink_compute_bpp(to_intel_connector(connector),
12736 pipe_config);
12737 }
12738
12739 return bpp;
12740 }
12741
12742 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12743 {
12744 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12745 "type: 0x%x flags: 0x%x\n",
12746 mode->crtc_clock,
12747 mode->crtc_hdisplay, mode->crtc_hsync_start,
12748 mode->crtc_hsync_end, mode->crtc_htotal,
12749 mode->crtc_vdisplay, mode->crtc_vsync_start,
12750 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12751 }
12752
12753 static inline void
12754 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12755 unsigned int lane_count, struct intel_link_m_n *m_n)
12756 {
12757 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12758 id, lane_count,
12759 m_n->gmch_m, m_n->gmch_n,
12760 m_n->link_m, m_n->link_n, m_n->tu);
12761 }
12762
12763 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12764 struct intel_crtc_state *pipe_config,
12765 const char *context)
12766 {
12767 struct drm_device *dev = crtc->base.dev;
12768 struct drm_i915_private *dev_priv = to_i915(dev);
12769 struct drm_plane *plane;
12770 struct intel_plane *intel_plane;
12771 struct intel_plane_state *state;
12772 struct drm_framebuffer *fb;
12773
12774 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12775 crtc->base.base.id, crtc->base.name, context);
12776
12777 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12778 transcoder_name(pipe_config->cpu_transcoder),
12779 pipe_config->pipe_bpp, pipe_config->dither);
12780
12781 if (pipe_config->has_pch_encoder)
12782 intel_dump_m_n_config(pipe_config, "fdi",
12783 pipe_config->fdi_lanes,
12784 &pipe_config->fdi_m_n);
12785
12786 if (intel_crtc_has_dp_encoder(pipe_config)) {
12787 intel_dump_m_n_config(pipe_config, "dp m_n",
12788 pipe_config->lane_count, &pipe_config->dp_m_n);
12789 if (pipe_config->has_drrs)
12790 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12791 pipe_config->lane_count,
12792 &pipe_config->dp_m2_n2);
12793 }
12794
12795 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12796 pipe_config->has_audio, pipe_config->has_infoframe);
12797
12798 DRM_DEBUG_KMS("requested mode:\n");
12799 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12800 DRM_DEBUG_KMS("adjusted mode:\n");
12801 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12802 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12803 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12804 pipe_config->port_clock,
12805 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12806
12807 if (INTEL_GEN(dev_priv) >= 9)
12808 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12809 crtc->num_scalers,
12810 pipe_config->scaler_state.scaler_users,
12811 pipe_config->scaler_state.scaler_id);
12812
12813 if (HAS_GMCH_DISPLAY(dev_priv))
12814 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12815 pipe_config->gmch_pfit.control,
12816 pipe_config->gmch_pfit.pgm_ratios,
12817 pipe_config->gmch_pfit.lvds_border_bits);
12818 else
12819 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12820 pipe_config->pch_pfit.pos,
12821 pipe_config->pch_pfit.size,
12822 enableddisabled(pipe_config->pch_pfit.enabled));
12823
12824 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12825 pipe_config->ips_enabled, pipe_config->double_wide);
12826
12827 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12828
12829 DRM_DEBUG_KMS("planes on this crtc\n");
12830 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12831 struct drm_format_name_buf format_name;
12832 intel_plane = to_intel_plane(plane);
12833 if (intel_plane->pipe != crtc->pipe)
12834 continue;
12835
12836 state = to_intel_plane_state(plane->state);
12837 fb = state->base.fb;
12838 if (!fb) {
12839 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12840 plane->base.id, plane->name, state->scaler_id);
12841 continue;
12842 }
12843
12844 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12845 plane->base.id, plane->name,
12846 fb->base.id, fb->width, fb->height,
12847 drm_get_format_name(fb->format->format, &format_name));
12848 if (INTEL_GEN(dev_priv) >= 9)
12849 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12850 state->scaler_id,
12851 state->base.src.x1 >> 16,
12852 state->base.src.y1 >> 16,
12853 drm_rect_width(&state->base.src) >> 16,
12854 drm_rect_height(&state->base.src) >> 16,
12855 state->base.dst.x1, state->base.dst.y1,
12856 drm_rect_width(&state->base.dst),
12857 drm_rect_height(&state->base.dst));
12858 }
12859 }
12860
12861 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12862 {
12863 struct drm_device *dev = state->dev;
12864 struct drm_connector *connector;
12865 unsigned int used_ports = 0;
12866 unsigned int used_mst_ports = 0;
12867
12868 /*
12869 * Walk the connector list instead of the encoder
12870 * list to detect the problem on ddi platforms
12871 * where there's just one encoder per digital port.
12872 */
12873 drm_for_each_connector(connector, dev) {
12874 struct drm_connector_state *connector_state;
12875 struct intel_encoder *encoder;
12876
12877 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12878 if (!connector_state)
12879 connector_state = connector->state;
12880
12881 if (!connector_state->best_encoder)
12882 continue;
12883
12884 encoder = to_intel_encoder(connector_state->best_encoder);
12885
12886 WARN_ON(!connector_state->crtc);
12887
12888 switch (encoder->type) {
12889 unsigned int port_mask;
12890 case INTEL_OUTPUT_UNKNOWN:
12891 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12892 break;
12893 case INTEL_OUTPUT_DP:
12894 case INTEL_OUTPUT_HDMI:
12895 case INTEL_OUTPUT_EDP:
12896 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12897
12898 /* the same port mustn't appear more than once */
12899 if (used_ports & port_mask)
12900 return false;
12901
12902 used_ports |= port_mask;
12903 break;
12904 case INTEL_OUTPUT_DP_MST:
12905 used_mst_ports |=
12906 1 << enc_to_mst(&encoder->base)->primary->port;
12907 break;
12908 default:
12909 break;
12910 }
12911 }
12912
12913 /* can't mix MST and SST/HDMI on the same port */
12914 if (used_ports & used_mst_ports)
12915 return false;
12916
12917 return true;
12918 }
12919
12920 static void
12921 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12922 {
12923 struct drm_crtc_state tmp_state;
12924 struct intel_crtc_scaler_state scaler_state;
12925 struct intel_dpll_hw_state dpll_hw_state;
12926 struct intel_shared_dpll *shared_dpll;
12927 bool force_thru;
12928
12929 /* FIXME: before the switch to atomic started, a new pipe_config was
12930 * kzalloc'd. Code that depends on any field being zero should be
12931 * fixed, so that the crtc_state can be safely duplicated. For now,
12932 * only fields that are know to not cause problems are preserved. */
12933
12934 tmp_state = crtc_state->base;
12935 scaler_state = crtc_state->scaler_state;
12936 shared_dpll = crtc_state->shared_dpll;
12937 dpll_hw_state = crtc_state->dpll_hw_state;
12938 force_thru = crtc_state->pch_pfit.force_thru;
12939
12940 memset(crtc_state, 0, sizeof *crtc_state);
12941
12942 crtc_state->base = tmp_state;
12943 crtc_state->scaler_state = scaler_state;
12944 crtc_state->shared_dpll = shared_dpll;
12945 crtc_state->dpll_hw_state = dpll_hw_state;
12946 crtc_state->pch_pfit.force_thru = force_thru;
12947 }
12948
12949 static int
12950 intel_modeset_pipe_config(struct drm_crtc *crtc,
12951 struct intel_crtc_state *pipe_config)
12952 {
12953 struct drm_atomic_state *state = pipe_config->base.state;
12954 struct intel_encoder *encoder;
12955 struct drm_connector *connector;
12956 struct drm_connector_state *connector_state;
12957 int base_bpp, ret = -EINVAL;
12958 int i;
12959 bool retry = true;
12960
12961 clear_intel_crtc_state(pipe_config);
12962
12963 pipe_config->cpu_transcoder =
12964 (enum transcoder) to_intel_crtc(crtc)->pipe;
12965
12966 /*
12967 * Sanitize sync polarity flags based on requested ones. If neither
12968 * positive or negative polarity is requested, treat this as meaning
12969 * negative polarity.
12970 */
12971 if (!(pipe_config->base.adjusted_mode.flags &
12972 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12973 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12974
12975 if (!(pipe_config->base.adjusted_mode.flags &
12976 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12977 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12978
12979 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12980 pipe_config);
12981 if (base_bpp < 0)
12982 goto fail;
12983
12984 /*
12985 * Determine the real pipe dimensions. Note that stereo modes can
12986 * increase the actual pipe size due to the frame doubling and
12987 * insertion of additional space for blanks between the frame. This
12988 * is stored in the crtc timings. We use the requested mode to do this
12989 * computation to clearly distinguish it from the adjusted mode, which
12990 * can be changed by the connectors in the below retry loop.
12991 */
12992 drm_mode_get_hv_timing(&pipe_config->base.mode,
12993 &pipe_config->pipe_src_w,
12994 &pipe_config->pipe_src_h);
12995
12996 for_each_connector_in_state(state, connector, connector_state, i) {
12997 if (connector_state->crtc != crtc)
12998 continue;
12999
13000 encoder = to_intel_encoder(connector_state->best_encoder);
13001
13002 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13003 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13004 goto fail;
13005 }
13006
13007 /*
13008 * Determine output_types before calling the .compute_config()
13009 * hooks so that the hooks can use this information safely.
13010 */
13011 pipe_config->output_types |= 1 << encoder->type;
13012 }
13013
13014 encoder_retry:
13015 /* Ensure the port clock defaults are reset when retrying. */
13016 pipe_config->port_clock = 0;
13017 pipe_config->pixel_multiplier = 1;
13018
13019 /* Fill in default crtc timings, allow encoders to overwrite them. */
13020 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13021 CRTC_STEREO_DOUBLE);
13022
13023 /* Pass our mode to the connectors and the CRTC to give them a chance to
13024 * adjust it according to limitations or connector properties, and also
13025 * a chance to reject the mode entirely.
13026 */
13027 for_each_connector_in_state(state, connector, connector_state, i) {
13028 if (connector_state->crtc != crtc)
13029 continue;
13030
13031 encoder = to_intel_encoder(connector_state->best_encoder);
13032
13033 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13034 DRM_DEBUG_KMS("Encoder config failure\n");
13035 goto fail;
13036 }
13037 }
13038
13039 /* Set default port clock if not overwritten by the encoder. Needs to be
13040 * done afterwards in case the encoder adjusts the mode. */
13041 if (!pipe_config->port_clock)
13042 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13043 * pipe_config->pixel_multiplier;
13044
13045 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13046 if (ret < 0) {
13047 DRM_DEBUG_KMS("CRTC fixup failed\n");
13048 goto fail;
13049 }
13050
13051 if (ret == RETRY) {
13052 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13053 ret = -EINVAL;
13054 goto fail;
13055 }
13056
13057 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13058 retry = false;
13059 goto encoder_retry;
13060 }
13061
13062 /* Dithering seems to not pass-through bits correctly when it should, so
13063 * only enable it on 6bpc panels. */
13064 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13065 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13066 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13067
13068 fail:
13069 return ret;
13070 }
13071
13072 static void
13073 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13074 {
13075 struct drm_crtc *crtc;
13076 struct drm_crtc_state *crtc_state;
13077 int i;
13078
13079 /* Double check state. */
13080 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13081 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13082
13083 /* Update hwmode for vblank functions */
13084 if (crtc->state->active)
13085 crtc->hwmode = crtc->state->adjusted_mode;
13086 else
13087 crtc->hwmode.crtc_clock = 0;
13088
13089 /*
13090 * Update legacy state to satisfy fbc code. This can
13091 * be removed when fbc uses the atomic state.
13092 */
13093 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13094 struct drm_plane_state *plane_state = crtc->primary->state;
13095
13096 crtc->primary->fb = plane_state->fb;
13097 crtc->x = plane_state->src_x >> 16;
13098 crtc->y = plane_state->src_y >> 16;
13099 }
13100 }
13101 }
13102
13103 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13104 {
13105 int diff;
13106
13107 if (clock1 == clock2)
13108 return true;
13109
13110 if (!clock1 || !clock2)
13111 return false;
13112
13113 diff = abs(clock1 - clock2);
13114
13115 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13116 return true;
13117
13118 return false;
13119 }
13120
13121 static bool
13122 intel_compare_m_n(unsigned int m, unsigned int n,
13123 unsigned int m2, unsigned int n2,
13124 bool exact)
13125 {
13126 if (m == m2 && n == n2)
13127 return true;
13128
13129 if (exact || !m || !n || !m2 || !n2)
13130 return false;
13131
13132 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13133
13134 if (n > n2) {
13135 while (n > n2) {
13136 m2 <<= 1;
13137 n2 <<= 1;
13138 }
13139 } else if (n < n2) {
13140 while (n < n2) {
13141 m <<= 1;
13142 n <<= 1;
13143 }
13144 }
13145
13146 if (n != n2)
13147 return false;
13148
13149 return intel_fuzzy_clock_check(m, m2);
13150 }
13151
13152 static bool
13153 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13154 struct intel_link_m_n *m2_n2,
13155 bool adjust)
13156 {
13157 if (m_n->tu == m2_n2->tu &&
13158 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13159 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13160 intel_compare_m_n(m_n->link_m, m_n->link_n,
13161 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13162 if (adjust)
13163 *m2_n2 = *m_n;
13164
13165 return true;
13166 }
13167
13168 return false;
13169 }
13170
13171 static void __printf(3, 4)
13172 pipe_config_err(bool adjust, const char *name, const char *format, ...)
13173 {
13174 char *level;
13175 unsigned int category;
13176 struct va_format vaf;
13177 va_list args;
13178
13179 if (adjust) {
13180 level = KERN_DEBUG;
13181 category = DRM_UT_KMS;
13182 } else {
13183 level = KERN_ERR;
13184 category = DRM_UT_NONE;
13185 }
13186
13187 va_start(args, format);
13188 vaf.fmt = format;
13189 vaf.va = &args;
13190
13191 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
13192
13193 va_end(args);
13194 }
13195
13196 static bool
13197 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13198 struct intel_crtc_state *current_config,
13199 struct intel_crtc_state *pipe_config,
13200 bool adjust)
13201 {
13202 bool ret = true;
13203
13204 #define PIPE_CONF_CHECK_X(name) \
13205 if (current_config->name != pipe_config->name) { \
13206 pipe_config_err(adjust, __stringify(name), \
13207 "(expected 0x%08x, found 0x%08x)\n", \
13208 current_config->name, \
13209 pipe_config->name); \
13210 ret = false; \
13211 }
13212
13213 #define PIPE_CONF_CHECK_I(name) \
13214 if (current_config->name != pipe_config->name) { \
13215 pipe_config_err(adjust, __stringify(name), \
13216 "(expected %i, found %i)\n", \
13217 current_config->name, \
13218 pipe_config->name); \
13219 ret = false; \
13220 }
13221
13222 #define PIPE_CONF_CHECK_P(name) \
13223 if (current_config->name != pipe_config->name) { \
13224 pipe_config_err(adjust, __stringify(name), \
13225 "(expected %p, found %p)\n", \
13226 current_config->name, \
13227 pipe_config->name); \
13228 ret = false; \
13229 }
13230
13231 #define PIPE_CONF_CHECK_M_N(name) \
13232 if (!intel_compare_link_m_n(&current_config->name, \
13233 &pipe_config->name,\
13234 adjust)) { \
13235 pipe_config_err(adjust, __stringify(name), \
13236 "(expected tu %i gmch %i/%i link %i/%i, " \
13237 "found tu %i, gmch %i/%i link %i/%i)\n", \
13238 current_config->name.tu, \
13239 current_config->name.gmch_m, \
13240 current_config->name.gmch_n, \
13241 current_config->name.link_m, \
13242 current_config->name.link_n, \
13243 pipe_config->name.tu, \
13244 pipe_config->name.gmch_m, \
13245 pipe_config->name.gmch_n, \
13246 pipe_config->name.link_m, \
13247 pipe_config->name.link_n); \
13248 ret = false; \
13249 }
13250
13251 /* This is required for BDW+ where there is only one set of registers for
13252 * switching between high and low RR.
13253 * This macro can be used whenever a comparison has to be made between one
13254 * hw state and multiple sw state variables.
13255 */
13256 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13257 if (!intel_compare_link_m_n(&current_config->name, \
13258 &pipe_config->name, adjust) && \
13259 !intel_compare_link_m_n(&current_config->alt_name, \
13260 &pipe_config->name, adjust)) { \
13261 pipe_config_err(adjust, __stringify(name), \
13262 "(expected tu %i gmch %i/%i link %i/%i, " \
13263 "or tu %i gmch %i/%i link %i/%i, " \
13264 "found tu %i, gmch %i/%i link %i/%i)\n", \
13265 current_config->name.tu, \
13266 current_config->name.gmch_m, \
13267 current_config->name.gmch_n, \
13268 current_config->name.link_m, \
13269 current_config->name.link_n, \
13270 current_config->alt_name.tu, \
13271 current_config->alt_name.gmch_m, \
13272 current_config->alt_name.gmch_n, \
13273 current_config->alt_name.link_m, \
13274 current_config->alt_name.link_n, \
13275 pipe_config->name.tu, \
13276 pipe_config->name.gmch_m, \
13277 pipe_config->name.gmch_n, \
13278 pipe_config->name.link_m, \
13279 pipe_config->name.link_n); \
13280 ret = false; \
13281 }
13282
13283 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13284 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13285 pipe_config_err(adjust, __stringify(name), \
13286 "(%x) (expected %i, found %i)\n", \
13287 (mask), \
13288 current_config->name & (mask), \
13289 pipe_config->name & (mask)); \
13290 ret = false; \
13291 }
13292
13293 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13294 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13295 pipe_config_err(adjust, __stringify(name), \
13296 "(expected %i, found %i)\n", \
13297 current_config->name, \
13298 pipe_config->name); \
13299 ret = false; \
13300 }
13301
13302 #define PIPE_CONF_QUIRK(quirk) \
13303 ((current_config->quirks | pipe_config->quirks) & (quirk))
13304
13305 PIPE_CONF_CHECK_I(cpu_transcoder);
13306
13307 PIPE_CONF_CHECK_I(has_pch_encoder);
13308 PIPE_CONF_CHECK_I(fdi_lanes);
13309 PIPE_CONF_CHECK_M_N(fdi_m_n);
13310
13311 PIPE_CONF_CHECK_I(lane_count);
13312 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13313
13314 if (INTEL_GEN(dev_priv) < 8) {
13315 PIPE_CONF_CHECK_M_N(dp_m_n);
13316
13317 if (current_config->has_drrs)
13318 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13319 } else
13320 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13321
13322 PIPE_CONF_CHECK_X(output_types);
13323
13324 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13325 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13326 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13327 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13328 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13329 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13330
13331 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13332 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13333 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13334 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13335 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13336 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13337
13338 PIPE_CONF_CHECK_I(pixel_multiplier);
13339 PIPE_CONF_CHECK_I(has_hdmi_sink);
13340 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13341 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13342 PIPE_CONF_CHECK_I(limited_color_range);
13343 PIPE_CONF_CHECK_I(has_infoframe);
13344
13345 PIPE_CONF_CHECK_I(has_audio);
13346
13347 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13348 DRM_MODE_FLAG_INTERLACE);
13349
13350 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13351 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13352 DRM_MODE_FLAG_PHSYNC);
13353 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13354 DRM_MODE_FLAG_NHSYNC);
13355 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13356 DRM_MODE_FLAG_PVSYNC);
13357 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13358 DRM_MODE_FLAG_NVSYNC);
13359 }
13360
13361 PIPE_CONF_CHECK_X(gmch_pfit.control);
13362 /* pfit ratios are autocomputed by the hw on gen4+ */
13363 if (INTEL_GEN(dev_priv) < 4)
13364 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13365 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13366
13367 if (!adjust) {
13368 PIPE_CONF_CHECK_I(pipe_src_w);
13369 PIPE_CONF_CHECK_I(pipe_src_h);
13370
13371 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13372 if (current_config->pch_pfit.enabled) {
13373 PIPE_CONF_CHECK_X(pch_pfit.pos);
13374 PIPE_CONF_CHECK_X(pch_pfit.size);
13375 }
13376
13377 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13378 }
13379
13380 /* BDW+ don't expose a synchronous way to read the state */
13381 if (IS_HASWELL(dev_priv))
13382 PIPE_CONF_CHECK_I(ips_enabled);
13383
13384 PIPE_CONF_CHECK_I(double_wide);
13385
13386 PIPE_CONF_CHECK_P(shared_dpll);
13387 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13388 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13389 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13390 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13391 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13392 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13393 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13394 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13395 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13396
13397 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13398 PIPE_CONF_CHECK_X(dsi_pll.div);
13399
13400 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13401 PIPE_CONF_CHECK_I(pipe_bpp);
13402
13403 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13404 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13405
13406 #undef PIPE_CONF_CHECK_X
13407 #undef PIPE_CONF_CHECK_I
13408 #undef PIPE_CONF_CHECK_P
13409 #undef PIPE_CONF_CHECK_FLAGS
13410 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13411 #undef PIPE_CONF_QUIRK
13412
13413 return ret;
13414 }
13415
13416 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13417 const struct intel_crtc_state *pipe_config)
13418 {
13419 if (pipe_config->has_pch_encoder) {
13420 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13421 &pipe_config->fdi_m_n);
13422 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13423
13424 /*
13425 * FDI already provided one idea for the dotclock.
13426 * Yell if the encoder disagrees.
13427 */
13428 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13429 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13430 fdi_dotclock, dotclock);
13431 }
13432 }
13433
13434 static void verify_wm_state(struct drm_crtc *crtc,
13435 struct drm_crtc_state *new_state)
13436 {
13437 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13438 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13439 struct skl_pipe_wm hw_wm, *sw_wm;
13440 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13441 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13443 const enum pipe pipe = intel_crtc->pipe;
13444 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13445
13446 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13447 return;
13448
13449 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13450 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13451
13452 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13453 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13454
13455 /* planes */
13456 for_each_universal_plane(dev_priv, pipe, plane) {
13457 hw_plane_wm = &hw_wm.planes[plane];
13458 sw_plane_wm = &sw_wm->planes[plane];
13459
13460 /* Watermarks */
13461 for (level = 0; level <= max_level; level++) {
13462 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13463 &sw_plane_wm->wm[level]))
13464 continue;
13465
13466 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13467 pipe_name(pipe), plane + 1, level,
13468 sw_plane_wm->wm[level].plane_en,
13469 sw_plane_wm->wm[level].plane_res_b,
13470 sw_plane_wm->wm[level].plane_res_l,
13471 hw_plane_wm->wm[level].plane_en,
13472 hw_plane_wm->wm[level].plane_res_b,
13473 hw_plane_wm->wm[level].plane_res_l);
13474 }
13475
13476 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13477 &sw_plane_wm->trans_wm)) {
13478 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13479 pipe_name(pipe), plane + 1,
13480 sw_plane_wm->trans_wm.plane_en,
13481 sw_plane_wm->trans_wm.plane_res_b,
13482 sw_plane_wm->trans_wm.plane_res_l,
13483 hw_plane_wm->trans_wm.plane_en,
13484 hw_plane_wm->trans_wm.plane_res_b,
13485 hw_plane_wm->trans_wm.plane_res_l);
13486 }
13487
13488 /* DDB */
13489 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13490 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13491
13492 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13493 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13494 pipe_name(pipe), plane + 1,
13495 sw_ddb_entry->start, sw_ddb_entry->end,
13496 hw_ddb_entry->start, hw_ddb_entry->end);
13497 }
13498 }
13499
13500 /*
13501 * cursor
13502 * If the cursor plane isn't active, we may not have updated it's ddb
13503 * allocation. In that case since the ddb allocation will be updated
13504 * once the plane becomes visible, we can skip this check
13505 */
13506 if (intel_crtc->cursor_addr) {
13507 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13508 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13509
13510 /* Watermarks */
13511 for (level = 0; level <= max_level; level++) {
13512 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13513 &sw_plane_wm->wm[level]))
13514 continue;
13515
13516 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13517 pipe_name(pipe), level,
13518 sw_plane_wm->wm[level].plane_en,
13519 sw_plane_wm->wm[level].plane_res_b,
13520 sw_plane_wm->wm[level].plane_res_l,
13521 hw_plane_wm->wm[level].plane_en,
13522 hw_plane_wm->wm[level].plane_res_b,
13523 hw_plane_wm->wm[level].plane_res_l);
13524 }
13525
13526 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13527 &sw_plane_wm->trans_wm)) {
13528 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13529 pipe_name(pipe),
13530 sw_plane_wm->trans_wm.plane_en,
13531 sw_plane_wm->trans_wm.plane_res_b,
13532 sw_plane_wm->trans_wm.plane_res_l,
13533 hw_plane_wm->trans_wm.plane_en,
13534 hw_plane_wm->trans_wm.plane_res_b,
13535 hw_plane_wm->trans_wm.plane_res_l);
13536 }
13537
13538 /* DDB */
13539 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13540 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13541
13542 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13543 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13544 pipe_name(pipe),
13545 sw_ddb_entry->start, sw_ddb_entry->end,
13546 hw_ddb_entry->start, hw_ddb_entry->end);
13547 }
13548 }
13549 }
13550
13551 static void
13552 verify_connector_state(struct drm_device *dev,
13553 struct drm_atomic_state *state,
13554 struct drm_crtc *crtc)
13555 {
13556 struct drm_connector *connector;
13557 struct drm_connector_state *old_conn_state;
13558 int i;
13559
13560 for_each_connector_in_state(state, connector, old_conn_state, i) {
13561 struct drm_encoder *encoder = connector->encoder;
13562 struct drm_connector_state *state = connector->state;
13563
13564 if (state->crtc != crtc)
13565 continue;
13566
13567 intel_connector_verify_state(to_intel_connector(connector));
13568
13569 I915_STATE_WARN(state->best_encoder != encoder,
13570 "connector's atomic encoder doesn't match legacy encoder\n");
13571 }
13572 }
13573
13574 static void
13575 verify_encoder_state(struct drm_device *dev)
13576 {
13577 struct intel_encoder *encoder;
13578 struct intel_connector *connector;
13579
13580 for_each_intel_encoder(dev, encoder) {
13581 bool enabled = false;
13582 enum pipe pipe;
13583
13584 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13585 encoder->base.base.id,
13586 encoder->base.name);
13587
13588 for_each_intel_connector(dev, connector) {
13589 if (connector->base.state->best_encoder != &encoder->base)
13590 continue;
13591 enabled = true;
13592
13593 I915_STATE_WARN(connector->base.state->crtc !=
13594 encoder->base.crtc,
13595 "connector's crtc doesn't match encoder crtc\n");
13596 }
13597
13598 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13599 "encoder's enabled state mismatch "
13600 "(expected %i, found %i)\n",
13601 !!encoder->base.crtc, enabled);
13602
13603 if (!encoder->base.crtc) {
13604 bool active;
13605
13606 active = encoder->get_hw_state(encoder, &pipe);
13607 I915_STATE_WARN(active,
13608 "encoder detached but still enabled on pipe %c.\n",
13609 pipe_name(pipe));
13610 }
13611 }
13612 }
13613
13614 static void
13615 verify_crtc_state(struct drm_crtc *crtc,
13616 struct drm_crtc_state *old_crtc_state,
13617 struct drm_crtc_state *new_crtc_state)
13618 {
13619 struct drm_device *dev = crtc->dev;
13620 struct drm_i915_private *dev_priv = to_i915(dev);
13621 struct intel_encoder *encoder;
13622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13623 struct intel_crtc_state *pipe_config, *sw_config;
13624 struct drm_atomic_state *old_state;
13625 bool active;
13626
13627 old_state = old_crtc_state->state;
13628 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13629 pipe_config = to_intel_crtc_state(old_crtc_state);
13630 memset(pipe_config, 0, sizeof(*pipe_config));
13631 pipe_config->base.crtc = crtc;
13632 pipe_config->base.state = old_state;
13633
13634 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13635
13636 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13637
13638 /* hw state is inconsistent with the pipe quirk */
13639 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13640 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13641 active = new_crtc_state->active;
13642
13643 I915_STATE_WARN(new_crtc_state->active != active,
13644 "crtc active state doesn't match with hw state "
13645 "(expected %i, found %i)\n", new_crtc_state->active, active);
13646
13647 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13648 "transitional active state does not match atomic hw state "
13649 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13650
13651 for_each_encoder_on_crtc(dev, crtc, encoder) {
13652 enum pipe pipe;
13653
13654 active = encoder->get_hw_state(encoder, &pipe);
13655 I915_STATE_WARN(active != new_crtc_state->active,
13656 "[ENCODER:%i] active %i with crtc active %i\n",
13657 encoder->base.base.id, active, new_crtc_state->active);
13658
13659 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13660 "Encoder connected to wrong pipe %c\n",
13661 pipe_name(pipe));
13662
13663 if (active) {
13664 pipe_config->output_types |= 1 << encoder->type;
13665 encoder->get_config(encoder, pipe_config);
13666 }
13667 }
13668
13669 if (!new_crtc_state->active)
13670 return;
13671
13672 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13673
13674 sw_config = to_intel_crtc_state(crtc->state);
13675 if (!intel_pipe_config_compare(dev_priv, sw_config,
13676 pipe_config, false)) {
13677 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13678 intel_dump_pipe_config(intel_crtc, pipe_config,
13679 "[hw state]");
13680 intel_dump_pipe_config(intel_crtc, sw_config,
13681 "[sw state]");
13682 }
13683 }
13684
13685 static void
13686 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13687 struct intel_shared_dpll *pll,
13688 struct drm_crtc *crtc,
13689 struct drm_crtc_state *new_state)
13690 {
13691 struct intel_dpll_hw_state dpll_hw_state;
13692 unsigned crtc_mask;
13693 bool active;
13694
13695 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13696
13697 DRM_DEBUG_KMS("%s\n", pll->name);
13698
13699 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13700
13701 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13702 I915_STATE_WARN(!pll->on && pll->active_mask,
13703 "pll in active use but not on in sw tracking\n");
13704 I915_STATE_WARN(pll->on && !pll->active_mask,
13705 "pll is on but not used by any active crtc\n");
13706 I915_STATE_WARN(pll->on != active,
13707 "pll on state mismatch (expected %i, found %i)\n",
13708 pll->on, active);
13709 }
13710
13711 if (!crtc) {
13712 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13713 "more active pll users than references: %x vs %x\n",
13714 pll->active_mask, pll->state.crtc_mask);
13715
13716 return;
13717 }
13718
13719 crtc_mask = 1 << drm_crtc_index(crtc);
13720
13721 if (new_state->active)
13722 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13723 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13724 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13725 else
13726 I915_STATE_WARN(pll->active_mask & crtc_mask,
13727 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13728 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13729
13730 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13731 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13732 crtc_mask, pll->state.crtc_mask);
13733
13734 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13735 &dpll_hw_state,
13736 sizeof(dpll_hw_state)),
13737 "pll hw state mismatch\n");
13738 }
13739
13740 static void
13741 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13742 struct drm_crtc_state *old_crtc_state,
13743 struct drm_crtc_state *new_crtc_state)
13744 {
13745 struct drm_i915_private *dev_priv = to_i915(dev);
13746 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13747 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13748
13749 if (new_state->shared_dpll)
13750 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13751
13752 if (old_state->shared_dpll &&
13753 old_state->shared_dpll != new_state->shared_dpll) {
13754 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13755 struct intel_shared_dpll *pll = old_state->shared_dpll;
13756
13757 I915_STATE_WARN(pll->active_mask & crtc_mask,
13758 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13759 pipe_name(drm_crtc_index(crtc)));
13760 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13761 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13762 pipe_name(drm_crtc_index(crtc)));
13763 }
13764 }
13765
13766 static void
13767 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13768 struct drm_atomic_state *state,
13769 struct drm_crtc_state *old_state,
13770 struct drm_crtc_state *new_state)
13771 {
13772 if (!needs_modeset(new_state) &&
13773 !to_intel_crtc_state(new_state)->update_pipe)
13774 return;
13775
13776 verify_wm_state(crtc, new_state);
13777 verify_connector_state(crtc->dev, state, crtc);
13778 verify_crtc_state(crtc, old_state, new_state);
13779 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13780 }
13781
13782 static void
13783 verify_disabled_dpll_state(struct drm_device *dev)
13784 {
13785 struct drm_i915_private *dev_priv = to_i915(dev);
13786 int i;
13787
13788 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13789 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13790 }
13791
13792 static void
13793 intel_modeset_verify_disabled(struct drm_device *dev,
13794 struct drm_atomic_state *state)
13795 {
13796 verify_encoder_state(dev);
13797 verify_connector_state(dev, state, NULL);
13798 verify_disabled_dpll_state(dev);
13799 }
13800
13801 static void update_scanline_offset(struct intel_crtc *crtc)
13802 {
13803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13804
13805 /*
13806 * The scanline counter increments at the leading edge of hsync.
13807 *
13808 * On most platforms it starts counting from vtotal-1 on the
13809 * first active line. That means the scanline counter value is
13810 * always one less than what we would expect. Ie. just after
13811 * start of vblank, which also occurs at start of hsync (on the
13812 * last active line), the scanline counter will read vblank_start-1.
13813 *
13814 * On gen2 the scanline counter starts counting from 1 instead
13815 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13816 * to keep the value positive), instead of adding one.
13817 *
13818 * On HSW+ the behaviour of the scanline counter depends on the output
13819 * type. For DP ports it behaves like most other platforms, but on HDMI
13820 * there's an extra 1 line difference. So we need to add two instead of
13821 * one to the value.
13822 */
13823 if (IS_GEN2(dev_priv)) {
13824 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13825 int vtotal;
13826
13827 vtotal = adjusted_mode->crtc_vtotal;
13828 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13829 vtotal /= 2;
13830
13831 crtc->scanline_offset = vtotal - 1;
13832 } else if (HAS_DDI(dev_priv) &&
13833 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13834 crtc->scanline_offset = 2;
13835 } else
13836 crtc->scanline_offset = 1;
13837 }
13838
13839 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13840 {
13841 struct drm_device *dev = state->dev;
13842 struct drm_i915_private *dev_priv = to_i915(dev);
13843 struct drm_crtc *crtc;
13844 struct drm_crtc_state *crtc_state;
13845 int i;
13846
13847 if (!dev_priv->display.crtc_compute_clock)
13848 return;
13849
13850 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13852 struct intel_shared_dpll *old_dpll =
13853 to_intel_crtc_state(crtc->state)->shared_dpll;
13854
13855 if (!needs_modeset(crtc_state))
13856 continue;
13857
13858 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13859
13860 if (!old_dpll)
13861 continue;
13862
13863 intel_release_shared_dpll(old_dpll, intel_crtc, state);
13864 }
13865 }
13866
13867 /*
13868 * This implements the workaround described in the "notes" section of the mode
13869 * set sequence documentation. When going from no pipes or single pipe to
13870 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13871 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13872 */
13873 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13874 {
13875 struct drm_crtc_state *crtc_state;
13876 struct intel_crtc *intel_crtc;
13877 struct drm_crtc *crtc;
13878 struct intel_crtc_state *first_crtc_state = NULL;
13879 struct intel_crtc_state *other_crtc_state = NULL;
13880 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13881 int i;
13882
13883 /* look at all crtc's that are going to be enabled in during modeset */
13884 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13885 intel_crtc = to_intel_crtc(crtc);
13886
13887 if (!crtc_state->active || !needs_modeset(crtc_state))
13888 continue;
13889
13890 if (first_crtc_state) {
13891 other_crtc_state = to_intel_crtc_state(crtc_state);
13892 break;
13893 } else {
13894 first_crtc_state = to_intel_crtc_state(crtc_state);
13895 first_pipe = intel_crtc->pipe;
13896 }
13897 }
13898
13899 /* No workaround needed? */
13900 if (!first_crtc_state)
13901 return 0;
13902
13903 /* w/a possibly needed, check how many crtc's are already enabled. */
13904 for_each_intel_crtc(state->dev, intel_crtc) {
13905 struct intel_crtc_state *pipe_config;
13906
13907 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13908 if (IS_ERR(pipe_config))
13909 return PTR_ERR(pipe_config);
13910
13911 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13912
13913 if (!pipe_config->base.active ||
13914 needs_modeset(&pipe_config->base))
13915 continue;
13916
13917 /* 2 or more enabled crtcs means no need for w/a */
13918 if (enabled_pipe != INVALID_PIPE)
13919 return 0;
13920
13921 enabled_pipe = intel_crtc->pipe;
13922 }
13923
13924 if (enabled_pipe != INVALID_PIPE)
13925 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13926 else if (other_crtc_state)
13927 other_crtc_state->hsw_workaround_pipe = first_pipe;
13928
13929 return 0;
13930 }
13931
13932 static int intel_lock_all_pipes(struct drm_atomic_state *state)
13933 {
13934 struct drm_crtc *crtc;
13935
13936 /* Add all pipes to the state */
13937 for_each_crtc(state->dev, crtc) {
13938 struct drm_crtc_state *crtc_state;
13939
13940 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13941 if (IS_ERR(crtc_state))
13942 return PTR_ERR(crtc_state);
13943 }
13944
13945 return 0;
13946 }
13947
13948 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13949 {
13950 struct drm_crtc *crtc;
13951
13952 /*
13953 * Add all pipes to the state, and force
13954 * a modeset on all the active ones.
13955 */
13956 for_each_crtc(state->dev, crtc) {
13957 struct drm_crtc_state *crtc_state;
13958 int ret;
13959
13960 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13961 if (IS_ERR(crtc_state))
13962 return PTR_ERR(crtc_state);
13963
13964 if (!crtc_state->active || needs_modeset(crtc_state))
13965 continue;
13966
13967 crtc_state->mode_changed = true;
13968
13969 ret = drm_atomic_add_affected_connectors(state, crtc);
13970 if (ret)
13971 return ret;
13972
13973 ret = drm_atomic_add_affected_planes(state, crtc);
13974 if (ret)
13975 return ret;
13976 }
13977
13978 return 0;
13979 }
13980
13981 static int intel_modeset_checks(struct drm_atomic_state *state)
13982 {
13983 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13984 struct drm_i915_private *dev_priv = to_i915(state->dev);
13985 struct drm_crtc *crtc;
13986 struct drm_crtc_state *crtc_state;
13987 int ret = 0, i;
13988
13989 if (!check_digital_port_conflicts(state)) {
13990 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13991 return -EINVAL;
13992 }
13993
13994 intel_state->modeset = true;
13995 intel_state->active_crtcs = dev_priv->active_crtcs;
13996
13997 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13998 if (crtc_state->active)
13999 intel_state->active_crtcs |= 1 << i;
14000 else
14001 intel_state->active_crtcs &= ~(1 << i);
14002
14003 if (crtc_state->active != crtc->state->active)
14004 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
14005 }
14006
14007 /*
14008 * See if the config requires any additional preparation, e.g.
14009 * to adjust global state with pipes off. We need to do this
14010 * here so we can get the modeset_pipe updated config for the new
14011 * mode set on this crtc. For other crtcs we need to use the
14012 * adjusted_mode bits in the crtc directly.
14013 */
14014 if (dev_priv->display.modeset_calc_cdclk) {
14015 if (!intel_state->cdclk_pll_vco)
14016 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
14017 if (!intel_state->cdclk_pll_vco)
14018 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
14019
14020 ret = dev_priv->display.modeset_calc_cdclk(state);
14021 if (ret < 0)
14022 return ret;
14023
14024 /*
14025 * Writes to dev_priv->atomic_cdclk_freq must protected by
14026 * holding all the crtc locks, even if we don't end up
14027 * touching the hardware
14028 */
14029 if (intel_state->cdclk != dev_priv->atomic_cdclk_freq) {
14030 ret = intel_lock_all_pipes(state);
14031 if (ret < 0)
14032 return ret;
14033 }
14034
14035 /* All pipes must be switched off while we change the cdclk. */
14036 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14037 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco) {
14038 ret = intel_modeset_all_pipes(state);
14039 if (ret < 0)
14040 return ret;
14041 }
14042
14043 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14044 intel_state->cdclk, intel_state->dev_cdclk);
14045 } else {
14046 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14047 }
14048
14049 intel_modeset_clear_plls(state);
14050
14051 if (IS_HASWELL(dev_priv))
14052 return haswell_mode_set_planes_workaround(state);
14053
14054 return 0;
14055 }
14056
14057 /*
14058 * Handle calculation of various watermark data at the end of the atomic check
14059 * phase. The code here should be run after the per-crtc and per-plane 'check'
14060 * handlers to ensure that all derived state has been updated.
14061 */
14062 static int calc_watermark_data(struct drm_atomic_state *state)
14063 {
14064 struct drm_device *dev = state->dev;
14065 struct drm_i915_private *dev_priv = to_i915(dev);
14066
14067 /* Is there platform-specific watermark information to calculate? */
14068 if (dev_priv->display.compute_global_watermarks)
14069 return dev_priv->display.compute_global_watermarks(state);
14070
14071 return 0;
14072 }
14073
14074 /**
14075 * intel_atomic_check - validate state object
14076 * @dev: drm device
14077 * @state: state to validate
14078 */
14079 static int intel_atomic_check(struct drm_device *dev,
14080 struct drm_atomic_state *state)
14081 {
14082 struct drm_i915_private *dev_priv = to_i915(dev);
14083 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14084 struct drm_crtc *crtc;
14085 struct drm_crtc_state *crtc_state;
14086 int ret, i;
14087 bool any_ms = false;
14088
14089 ret = drm_atomic_helper_check_modeset(dev, state);
14090 if (ret)
14091 return ret;
14092
14093 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14094 struct intel_crtc_state *pipe_config =
14095 to_intel_crtc_state(crtc_state);
14096
14097 /* Catch I915_MODE_FLAG_INHERITED */
14098 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14099 crtc_state->mode_changed = true;
14100
14101 if (!needs_modeset(crtc_state))
14102 continue;
14103
14104 if (!crtc_state->enable) {
14105 any_ms = true;
14106 continue;
14107 }
14108
14109 /* FIXME: For only active_changed we shouldn't need to do any
14110 * state recomputation at all. */
14111
14112 ret = drm_atomic_add_affected_connectors(state, crtc);
14113 if (ret)
14114 return ret;
14115
14116 ret = intel_modeset_pipe_config(crtc, pipe_config);
14117 if (ret) {
14118 intel_dump_pipe_config(to_intel_crtc(crtc),
14119 pipe_config, "[failed]");
14120 return ret;
14121 }
14122
14123 if (i915.fastboot &&
14124 intel_pipe_config_compare(dev_priv,
14125 to_intel_crtc_state(crtc->state),
14126 pipe_config, true)) {
14127 crtc_state->mode_changed = false;
14128 to_intel_crtc_state(crtc_state)->update_pipe = true;
14129 }
14130
14131 if (needs_modeset(crtc_state))
14132 any_ms = true;
14133
14134 ret = drm_atomic_add_affected_planes(state, crtc);
14135 if (ret)
14136 return ret;
14137
14138 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14139 needs_modeset(crtc_state) ?
14140 "[modeset]" : "[fastset]");
14141 }
14142
14143 if (any_ms) {
14144 ret = intel_modeset_checks(state);
14145
14146 if (ret)
14147 return ret;
14148 } else {
14149 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14150 }
14151
14152 ret = drm_atomic_helper_check_planes(dev, state);
14153 if (ret)
14154 return ret;
14155
14156 intel_fbc_choose_crtc(dev_priv, state);
14157 return calc_watermark_data(state);
14158 }
14159
14160 static int intel_atomic_prepare_commit(struct drm_device *dev,
14161 struct drm_atomic_state *state)
14162 {
14163 struct drm_i915_private *dev_priv = to_i915(dev);
14164 struct drm_crtc_state *crtc_state;
14165 struct drm_crtc *crtc;
14166 int i, ret;
14167
14168 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14169 if (state->legacy_cursor_update)
14170 continue;
14171
14172 ret = intel_crtc_wait_for_pending_flips(crtc);
14173 if (ret)
14174 return ret;
14175
14176 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14177 flush_workqueue(dev_priv->wq);
14178 }
14179
14180 ret = mutex_lock_interruptible(&dev->struct_mutex);
14181 if (ret)
14182 return ret;
14183
14184 ret = drm_atomic_helper_prepare_planes(dev, state);
14185 mutex_unlock(&dev->struct_mutex);
14186
14187 return ret;
14188 }
14189
14190 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14191 {
14192 struct drm_device *dev = crtc->base.dev;
14193
14194 if (!dev->max_vblank_count)
14195 return drm_accurate_vblank_count(&crtc->base);
14196
14197 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14198 }
14199
14200 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14201 struct drm_i915_private *dev_priv,
14202 unsigned crtc_mask)
14203 {
14204 unsigned last_vblank_count[I915_MAX_PIPES];
14205 enum pipe pipe;
14206 int ret;
14207
14208 if (!crtc_mask)
14209 return;
14210
14211 for_each_pipe(dev_priv, pipe) {
14212 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14213 pipe);
14214
14215 if (!((1 << pipe) & crtc_mask))
14216 continue;
14217
14218 ret = drm_crtc_vblank_get(&crtc->base);
14219 if (WARN_ON(ret != 0)) {
14220 crtc_mask &= ~(1 << pipe);
14221 continue;
14222 }
14223
14224 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14225 }
14226
14227 for_each_pipe(dev_priv, pipe) {
14228 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14229 pipe);
14230 long lret;
14231
14232 if (!((1 << pipe) & crtc_mask))
14233 continue;
14234
14235 lret = wait_event_timeout(dev->vblank[pipe].queue,
14236 last_vblank_count[pipe] !=
14237 drm_crtc_vblank_count(&crtc->base),
14238 msecs_to_jiffies(50));
14239
14240 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14241
14242 drm_crtc_vblank_put(&crtc->base);
14243 }
14244 }
14245
14246 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14247 {
14248 /* fb updated, need to unpin old fb */
14249 if (crtc_state->fb_changed)
14250 return true;
14251
14252 /* wm changes, need vblank before final wm's */
14253 if (crtc_state->update_wm_post)
14254 return true;
14255
14256 /*
14257 * cxsr is re-enabled after vblank.
14258 * This is already handled by crtc_state->update_wm_post,
14259 * but added for clarity.
14260 */
14261 if (crtc_state->disable_cxsr)
14262 return true;
14263
14264 return false;
14265 }
14266
14267 static void intel_update_crtc(struct drm_crtc *crtc,
14268 struct drm_atomic_state *state,
14269 struct drm_crtc_state *old_crtc_state,
14270 unsigned int *crtc_vblank_mask)
14271 {
14272 struct drm_device *dev = crtc->dev;
14273 struct drm_i915_private *dev_priv = to_i915(dev);
14274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14275 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14276 bool modeset = needs_modeset(crtc->state);
14277
14278 if (modeset) {
14279 update_scanline_offset(intel_crtc);
14280 dev_priv->display.crtc_enable(pipe_config, state);
14281 } else {
14282 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14283 }
14284
14285 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14286 intel_fbc_enable(
14287 intel_crtc, pipe_config,
14288 to_intel_plane_state(crtc->primary->state));
14289 }
14290
14291 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14292
14293 if (needs_vblank_wait(pipe_config))
14294 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14295 }
14296
14297 static void intel_update_crtcs(struct drm_atomic_state *state,
14298 unsigned int *crtc_vblank_mask)
14299 {
14300 struct drm_crtc *crtc;
14301 struct drm_crtc_state *old_crtc_state;
14302 int i;
14303
14304 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14305 if (!crtc->state->active)
14306 continue;
14307
14308 intel_update_crtc(crtc, state, old_crtc_state,
14309 crtc_vblank_mask);
14310 }
14311 }
14312
14313 static void skl_update_crtcs(struct drm_atomic_state *state,
14314 unsigned int *crtc_vblank_mask)
14315 {
14316 struct drm_i915_private *dev_priv = to_i915(state->dev);
14317 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14318 struct drm_crtc *crtc;
14319 struct intel_crtc *intel_crtc;
14320 struct drm_crtc_state *old_crtc_state;
14321 struct intel_crtc_state *cstate;
14322 unsigned int updated = 0;
14323 bool progress;
14324 enum pipe pipe;
14325 int i;
14326
14327 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14328
14329 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14330 /* ignore allocations for crtc's that have been turned off. */
14331 if (crtc->state->active)
14332 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14333
14334 /*
14335 * Whenever the number of active pipes changes, we need to make sure we
14336 * update the pipes in the right order so that their ddb allocations
14337 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14338 * cause pipe underruns and other bad stuff.
14339 */
14340 do {
14341 progress = false;
14342
14343 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14344 bool vbl_wait = false;
14345 unsigned int cmask = drm_crtc_mask(crtc);
14346
14347 intel_crtc = to_intel_crtc(crtc);
14348 cstate = to_intel_crtc_state(crtc->state);
14349 pipe = intel_crtc->pipe;
14350
14351 if (updated & cmask || !cstate->base.active)
14352 continue;
14353
14354 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14355 continue;
14356
14357 updated |= cmask;
14358 entries[i] = &cstate->wm.skl.ddb;
14359
14360 /*
14361 * If this is an already active pipe, it's DDB changed,
14362 * and this isn't the last pipe that needs updating
14363 * then we need to wait for a vblank to pass for the
14364 * new ddb allocation to take effect.
14365 */
14366 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14367 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14368 !crtc->state->active_changed &&
14369 intel_state->wm_results.dirty_pipes != updated)
14370 vbl_wait = true;
14371
14372 intel_update_crtc(crtc, state, old_crtc_state,
14373 crtc_vblank_mask);
14374
14375 if (vbl_wait)
14376 intel_wait_for_vblank(dev_priv, pipe);
14377
14378 progress = true;
14379 }
14380 } while (progress);
14381 }
14382
14383 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14384 {
14385 struct drm_device *dev = state->dev;
14386 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14387 struct drm_i915_private *dev_priv = to_i915(dev);
14388 struct drm_crtc_state *old_crtc_state;
14389 struct drm_crtc *crtc;
14390 struct intel_crtc_state *intel_cstate;
14391 bool hw_check = intel_state->modeset;
14392 unsigned long put_domains[I915_MAX_PIPES] = {};
14393 unsigned crtc_vblank_mask = 0;
14394 int i;
14395
14396 drm_atomic_helper_wait_for_dependencies(state);
14397
14398 if (intel_state->modeset)
14399 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14400
14401 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14403
14404 if (needs_modeset(crtc->state) ||
14405 to_intel_crtc_state(crtc->state)->update_pipe) {
14406 hw_check = true;
14407
14408 put_domains[to_intel_crtc(crtc)->pipe] =
14409 modeset_get_crtc_power_domains(crtc,
14410 to_intel_crtc_state(crtc->state));
14411 }
14412
14413 if (!needs_modeset(crtc->state))
14414 continue;
14415
14416 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14417
14418 if (old_crtc_state->active) {
14419 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14420 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14421 intel_crtc->active = false;
14422 intel_fbc_disable(intel_crtc);
14423 intel_disable_shared_dpll(intel_crtc);
14424
14425 /*
14426 * Underruns don't always raise
14427 * interrupts, so check manually.
14428 */
14429 intel_check_cpu_fifo_underruns(dev_priv);
14430 intel_check_pch_fifo_underruns(dev_priv);
14431
14432 if (!crtc->state->active) {
14433 /*
14434 * Make sure we don't call initial_watermarks
14435 * for ILK-style watermark updates.
14436 */
14437 if (dev_priv->display.atomic_update_watermarks)
14438 dev_priv->display.initial_watermarks(intel_state,
14439 to_intel_crtc_state(crtc->state));
14440 else
14441 intel_update_watermarks(intel_crtc);
14442 }
14443 }
14444 }
14445
14446 /* Only after disabling all output pipelines that will be changed can we
14447 * update the the output configuration. */
14448 intel_modeset_update_crtc_state(state);
14449
14450 if (intel_state->modeset) {
14451 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14452
14453 if (dev_priv->display.modeset_commit_cdclk &&
14454 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14455 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14456 dev_priv->display.modeset_commit_cdclk(state);
14457
14458 /*
14459 * SKL workaround: bspec recommends we disable the SAGV when we
14460 * have more then one pipe enabled
14461 */
14462 if (!intel_can_enable_sagv(state))
14463 intel_disable_sagv(dev_priv);
14464
14465 intel_modeset_verify_disabled(dev, state);
14466 }
14467
14468 /* Complete the events for pipes that have now been disabled */
14469 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14470 bool modeset = needs_modeset(crtc->state);
14471
14472 /* Complete events for now disable pipes here. */
14473 if (modeset && !crtc->state->active && crtc->state->event) {
14474 spin_lock_irq(&dev->event_lock);
14475 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14476 spin_unlock_irq(&dev->event_lock);
14477
14478 crtc->state->event = NULL;
14479 }
14480 }
14481
14482 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14483 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14484
14485 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14486 * already, but still need the state for the delayed optimization. To
14487 * fix this:
14488 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14489 * - schedule that vblank worker _before_ calling hw_done
14490 * - at the start of commit_tail, cancel it _synchrously
14491 * - switch over to the vblank wait helper in the core after that since
14492 * we don't need out special handling any more.
14493 */
14494 if (!state->legacy_cursor_update)
14495 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14496
14497 /*
14498 * Now that the vblank has passed, we can go ahead and program the
14499 * optimal watermarks on platforms that need two-step watermark
14500 * programming.
14501 *
14502 * TODO: Move this (and other cleanup) to an async worker eventually.
14503 */
14504 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14505 intel_cstate = to_intel_crtc_state(crtc->state);
14506
14507 if (dev_priv->display.optimize_watermarks)
14508 dev_priv->display.optimize_watermarks(intel_state,
14509 intel_cstate);
14510 }
14511
14512 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14513 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14514
14515 if (put_domains[i])
14516 modeset_put_power_domains(dev_priv, put_domains[i]);
14517
14518 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14519 }
14520
14521 if (intel_state->modeset && intel_can_enable_sagv(state))
14522 intel_enable_sagv(dev_priv);
14523
14524 drm_atomic_helper_commit_hw_done(state);
14525
14526 if (intel_state->modeset)
14527 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14528
14529 mutex_lock(&dev->struct_mutex);
14530 drm_atomic_helper_cleanup_planes(dev, state);
14531 mutex_unlock(&dev->struct_mutex);
14532
14533 drm_atomic_helper_commit_cleanup_done(state);
14534
14535 drm_atomic_state_put(state);
14536
14537 /* As one of the primary mmio accessors, KMS has a high likelihood
14538 * of triggering bugs in unclaimed access. After we finish
14539 * modesetting, see if an error has been flagged, and if so
14540 * enable debugging for the next modeset - and hope we catch
14541 * the culprit.
14542 *
14543 * XXX note that we assume display power is on at this point.
14544 * This might hold true now but we need to add pm helper to check
14545 * unclaimed only when the hardware is on, as atomic commits
14546 * can happen also when the device is completely off.
14547 */
14548 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14549 }
14550
14551 static void intel_atomic_commit_work(struct work_struct *work)
14552 {
14553 struct drm_atomic_state *state =
14554 container_of(work, struct drm_atomic_state, commit_work);
14555
14556 intel_atomic_commit_tail(state);
14557 }
14558
14559 static int __i915_sw_fence_call
14560 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14561 enum i915_sw_fence_notify notify)
14562 {
14563 struct intel_atomic_state *state =
14564 container_of(fence, struct intel_atomic_state, commit_ready);
14565
14566 switch (notify) {
14567 case FENCE_COMPLETE:
14568 if (state->base.commit_work.func)
14569 queue_work(system_unbound_wq, &state->base.commit_work);
14570 break;
14571
14572 case FENCE_FREE:
14573 {
14574 struct intel_atomic_helper *helper =
14575 &to_i915(state->base.dev)->atomic_helper;
14576
14577 if (llist_add(&state->freed, &helper->free_list))
14578 schedule_work(&helper->free_work);
14579 break;
14580 }
14581 }
14582
14583 return NOTIFY_DONE;
14584 }
14585
14586 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14587 {
14588 struct drm_plane_state *old_plane_state;
14589 struct drm_plane *plane;
14590 int i;
14591
14592 for_each_plane_in_state(state, plane, old_plane_state, i)
14593 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14594 intel_fb_obj(plane->state->fb),
14595 to_intel_plane(plane)->frontbuffer_bit);
14596 }
14597
14598 /**
14599 * intel_atomic_commit - commit validated state object
14600 * @dev: DRM device
14601 * @state: the top-level driver state object
14602 * @nonblock: nonblocking commit
14603 *
14604 * This function commits a top-level state object that has been validated
14605 * with drm_atomic_helper_check().
14606 *
14607 * RETURNS
14608 * Zero for success or -errno.
14609 */
14610 static int intel_atomic_commit(struct drm_device *dev,
14611 struct drm_atomic_state *state,
14612 bool nonblock)
14613 {
14614 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14615 struct drm_i915_private *dev_priv = to_i915(dev);
14616 int ret = 0;
14617
14618 ret = drm_atomic_helper_setup_commit(state, nonblock);
14619 if (ret)
14620 return ret;
14621
14622 drm_atomic_state_get(state);
14623 i915_sw_fence_init(&intel_state->commit_ready,
14624 intel_atomic_commit_ready);
14625
14626 ret = intel_atomic_prepare_commit(dev, state);
14627 if (ret) {
14628 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14629 i915_sw_fence_commit(&intel_state->commit_ready);
14630 return ret;
14631 }
14632
14633 drm_atomic_helper_swap_state(state, true);
14634 dev_priv->wm.distrust_bios_wm = false;
14635 intel_shared_dpll_swap_state(state);
14636 intel_atomic_track_fbs(state);
14637
14638 if (intel_state->modeset) {
14639 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14640 sizeof(intel_state->min_pixclk));
14641 dev_priv->active_crtcs = intel_state->active_crtcs;
14642 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14643 }
14644
14645 drm_atomic_state_get(state);
14646 INIT_WORK(&state->commit_work,
14647 nonblock ? intel_atomic_commit_work : NULL);
14648
14649 i915_sw_fence_commit(&intel_state->commit_ready);
14650 if (!nonblock) {
14651 i915_sw_fence_wait(&intel_state->commit_ready);
14652 intel_atomic_commit_tail(state);
14653 }
14654
14655 return 0;
14656 }
14657
14658 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14659 {
14660 struct drm_device *dev = crtc->dev;
14661 struct drm_atomic_state *state;
14662 struct drm_crtc_state *crtc_state;
14663 int ret;
14664
14665 state = drm_atomic_state_alloc(dev);
14666 if (!state) {
14667 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14668 crtc->base.id, crtc->name);
14669 return;
14670 }
14671
14672 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14673
14674 retry:
14675 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14676 ret = PTR_ERR_OR_ZERO(crtc_state);
14677 if (!ret) {
14678 if (!crtc_state->active)
14679 goto out;
14680
14681 crtc_state->mode_changed = true;
14682 ret = drm_atomic_commit(state);
14683 }
14684
14685 if (ret == -EDEADLK) {
14686 drm_atomic_state_clear(state);
14687 drm_modeset_backoff(state->acquire_ctx);
14688 goto retry;
14689 }
14690
14691 out:
14692 drm_atomic_state_put(state);
14693 }
14694
14695 /*
14696 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14697 * drm_atomic_helper_legacy_gamma_set() directly.
14698 */
14699 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14700 u16 *red, u16 *green, u16 *blue,
14701 uint32_t size)
14702 {
14703 struct drm_device *dev = crtc->dev;
14704 struct drm_mode_config *config = &dev->mode_config;
14705 struct drm_crtc_state *state;
14706 int ret;
14707
14708 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14709 if (ret)
14710 return ret;
14711
14712 /*
14713 * Make sure we update the legacy properties so this works when
14714 * atomic is not enabled.
14715 */
14716
14717 state = crtc->state;
14718
14719 drm_object_property_set_value(&crtc->base,
14720 config->degamma_lut_property,
14721 (state->degamma_lut) ?
14722 state->degamma_lut->base.id : 0);
14723
14724 drm_object_property_set_value(&crtc->base,
14725 config->ctm_property,
14726 (state->ctm) ?
14727 state->ctm->base.id : 0);
14728
14729 drm_object_property_set_value(&crtc->base,
14730 config->gamma_lut_property,
14731 (state->gamma_lut) ?
14732 state->gamma_lut->base.id : 0);
14733
14734 return 0;
14735 }
14736
14737 static const struct drm_crtc_funcs intel_crtc_funcs = {
14738 .gamma_set = intel_atomic_legacy_gamma_set,
14739 .set_config = drm_atomic_helper_set_config,
14740 .set_property = drm_atomic_helper_crtc_set_property,
14741 .destroy = intel_crtc_destroy,
14742 .page_flip = intel_crtc_page_flip,
14743 .atomic_duplicate_state = intel_crtc_duplicate_state,
14744 .atomic_destroy_state = intel_crtc_destroy_state,
14745 .set_crc_source = intel_crtc_set_crc_source,
14746 };
14747
14748 /**
14749 * intel_prepare_plane_fb - Prepare fb for usage on plane
14750 * @plane: drm plane to prepare for
14751 * @fb: framebuffer to prepare for presentation
14752 *
14753 * Prepares a framebuffer for usage on a display plane. Generally this
14754 * involves pinning the underlying object and updating the frontbuffer tracking
14755 * bits. Some older platforms need special physical address handling for
14756 * cursor planes.
14757 *
14758 * Must be called with struct_mutex held.
14759 *
14760 * Returns 0 on success, negative error code on failure.
14761 */
14762 int
14763 intel_prepare_plane_fb(struct drm_plane *plane,
14764 struct drm_plane_state *new_state)
14765 {
14766 struct intel_atomic_state *intel_state =
14767 to_intel_atomic_state(new_state->state);
14768 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14769 struct drm_framebuffer *fb = new_state->fb;
14770 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14771 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14772 int ret;
14773
14774 if (!obj && !old_obj)
14775 return 0;
14776
14777 if (old_obj) {
14778 struct drm_crtc_state *crtc_state =
14779 drm_atomic_get_existing_crtc_state(new_state->state,
14780 plane->state->crtc);
14781
14782 /* Big Hammer, we also need to ensure that any pending
14783 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14784 * current scanout is retired before unpinning the old
14785 * framebuffer. Note that we rely on userspace rendering
14786 * into the buffer attached to the pipe they are waiting
14787 * on. If not, userspace generates a GPU hang with IPEHR
14788 * point to the MI_WAIT_FOR_EVENT.
14789 *
14790 * This should only fail upon a hung GPU, in which case we
14791 * can safely continue.
14792 */
14793 if (needs_modeset(crtc_state)) {
14794 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14795 old_obj->resv, NULL,
14796 false, 0,
14797 GFP_KERNEL);
14798 if (ret < 0)
14799 return ret;
14800 }
14801 }
14802
14803 if (new_state->fence) { /* explicit fencing */
14804 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14805 new_state->fence,
14806 I915_FENCE_TIMEOUT,
14807 GFP_KERNEL);
14808 if (ret < 0)
14809 return ret;
14810 }
14811
14812 if (!obj)
14813 return 0;
14814
14815 if (!new_state->fence) { /* implicit fencing */
14816 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14817 obj->resv, NULL,
14818 false, I915_FENCE_TIMEOUT,
14819 GFP_KERNEL);
14820 if (ret < 0)
14821 return ret;
14822
14823 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14824 }
14825
14826 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14827 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14828 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14829 ret = i915_gem_object_attach_phys(obj, align);
14830 if (ret) {
14831 DRM_DEBUG_KMS("failed to attach phys object\n");
14832 return ret;
14833 }
14834 } else {
14835 struct i915_vma *vma;
14836
14837 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14838 if (IS_ERR(vma)) {
14839 DRM_DEBUG_KMS("failed to pin object\n");
14840 return PTR_ERR(vma);
14841 }
14842
14843 to_intel_plane_state(new_state)->vma = vma;
14844 }
14845
14846 return 0;
14847 }
14848
14849 /**
14850 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14851 * @plane: drm plane to clean up for
14852 * @fb: old framebuffer that was on plane
14853 *
14854 * Cleans up a framebuffer that has just been removed from a plane.
14855 *
14856 * Must be called with struct_mutex held.
14857 */
14858 void
14859 intel_cleanup_plane_fb(struct drm_plane *plane,
14860 struct drm_plane_state *old_state)
14861 {
14862 struct i915_vma *vma;
14863
14864 /* Should only be called after a successful intel_prepare_plane_fb()! */
14865 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14866 if (vma)
14867 intel_unpin_fb_vma(vma);
14868 }
14869
14870 int
14871 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14872 {
14873 int max_scale;
14874 int crtc_clock, cdclk;
14875
14876 if (!intel_crtc || !crtc_state->base.enable)
14877 return DRM_PLANE_HELPER_NO_SCALING;
14878
14879 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14880 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14881
14882 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14883 return DRM_PLANE_HELPER_NO_SCALING;
14884
14885 /*
14886 * skl max scale is lower of:
14887 * close to 3 but not 3, -1 is for that purpose
14888 * or
14889 * cdclk/crtc_clock
14890 */
14891 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14892
14893 return max_scale;
14894 }
14895
14896 static int
14897 intel_check_primary_plane(struct drm_plane *plane,
14898 struct intel_crtc_state *crtc_state,
14899 struct intel_plane_state *state)
14900 {
14901 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14902 struct drm_crtc *crtc = state->base.crtc;
14903 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14904 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14905 bool can_position = false;
14906 int ret;
14907
14908 if (INTEL_GEN(dev_priv) >= 9) {
14909 /* use scaler when colorkey is not required */
14910 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14911 min_scale = 1;
14912 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14913 }
14914 can_position = true;
14915 }
14916
14917 ret = drm_plane_helper_check_state(&state->base,
14918 &state->clip,
14919 min_scale, max_scale,
14920 can_position, true);
14921 if (ret)
14922 return ret;
14923
14924 if (!state->base.fb)
14925 return 0;
14926
14927 if (INTEL_GEN(dev_priv) >= 9) {
14928 ret = skl_check_plane_surface(state);
14929 if (ret)
14930 return ret;
14931 }
14932
14933 return 0;
14934 }
14935
14936 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14937 struct drm_crtc_state *old_crtc_state)
14938 {
14939 struct drm_device *dev = crtc->dev;
14940 struct drm_i915_private *dev_priv = to_i915(dev);
14941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14942 struct intel_crtc_state *intel_cstate =
14943 to_intel_crtc_state(crtc->state);
14944 struct intel_crtc_state *old_intel_cstate =
14945 to_intel_crtc_state(old_crtc_state);
14946 struct intel_atomic_state *old_intel_state =
14947 to_intel_atomic_state(old_crtc_state->state);
14948 bool modeset = needs_modeset(crtc->state);
14949
14950 /* Perform vblank evasion around commit operation */
14951 intel_pipe_update_start(intel_crtc);
14952
14953 if (modeset)
14954 goto out;
14955
14956 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14957 intel_color_set_csc(crtc->state);
14958 intel_color_load_luts(crtc->state);
14959 }
14960
14961 if (intel_cstate->update_pipe)
14962 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14963 else if (INTEL_GEN(dev_priv) >= 9)
14964 skl_detach_scalers(intel_crtc);
14965
14966 out:
14967 if (dev_priv->display.atomic_update_watermarks)
14968 dev_priv->display.atomic_update_watermarks(old_intel_state,
14969 intel_cstate);
14970 }
14971
14972 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14973 struct drm_crtc_state *old_crtc_state)
14974 {
14975 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14976
14977 intel_pipe_update_end(intel_crtc, NULL);
14978 }
14979
14980 /**
14981 * intel_plane_destroy - destroy a plane
14982 * @plane: plane to destroy
14983 *
14984 * Common destruction function for all types of planes (primary, cursor,
14985 * sprite).
14986 */
14987 void intel_plane_destroy(struct drm_plane *plane)
14988 {
14989 drm_plane_cleanup(plane);
14990 kfree(to_intel_plane(plane));
14991 }
14992
14993 const struct drm_plane_funcs intel_plane_funcs = {
14994 .update_plane = drm_atomic_helper_update_plane,
14995 .disable_plane = drm_atomic_helper_disable_plane,
14996 .destroy = intel_plane_destroy,
14997 .set_property = drm_atomic_helper_plane_set_property,
14998 .atomic_get_property = intel_plane_atomic_get_property,
14999 .atomic_set_property = intel_plane_atomic_set_property,
15000 .atomic_duplicate_state = intel_plane_duplicate_state,
15001 .atomic_destroy_state = intel_plane_destroy_state,
15002 };
15003
15004 static int
15005 intel_legacy_cursor_update(struct drm_plane *plane,
15006 struct drm_crtc *crtc,
15007 struct drm_framebuffer *fb,
15008 int crtc_x, int crtc_y,
15009 unsigned int crtc_w, unsigned int crtc_h,
15010 uint32_t src_x, uint32_t src_y,
15011 uint32_t src_w, uint32_t src_h)
15012 {
15013 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
15014 int ret;
15015 struct drm_plane_state *old_plane_state, *new_plane_state;
15016 struct intel_plane *intel_plane = to_intel_plane(plane);
15017 struct drm_framebuffer *old_fb;
15018 struct drm_crtc_state *crtc_state = crtc->state;
15019 struct i915_vma *old_vma;
15020
15021 /*
15022 * When crtc is inactive or there is a modeset pending,
15023 * wait for it to complete in the slowpath
15024 */
15025 if (!crtc_state->active || needs_modeset(crtc_state) ||
15026 to_intel_crtc_state(crtc_state)->update_pipe)
15027 goto slow;
15028
15029 old_plane_state = plane->state;
15030
15031 /*
15032 * If any parameters change that may affect watermarks,
15033 * take the slowpath. Only changing fb or position should be
15034 * in the fastpath.
15035 */
15036 if (old_plane_state->crtc != crtc ||
15037 old_plane_state->src_w != src_w ||
15038 old_plane_state->src_h != src_h ||
15039 old_plane_state->crtc_w != crtc_w ||
15040 old_plane_state->crtc_h != crtc_h ||
15041 !old_plane_state->visible ||
15042 old_plane_state->fb->modifier != fb->modifier)
15043 goto slow;
15044
15045 new_plane_state = intel_plane_duplicate_state(plane);
15046 if (!new_plane_state)
15047 return -ENOMEM;
15048
15049 drm_atomic_set_fb_for_plane(new_plane_state, fb);
15050
15051 new_plane_state->src_x = src_x;
15052 new_plane_state->src_y = src_y;
15053 new_plane_state->src_w = src_w;
15054 new_plane_state->src_h = src_h;
15055 new_plane_state->crtc_x = crtc_x;
15056 new_plane_state->crtc_y = crtc_y;
15057 new_plane_state->crtc_w = crtc_w;
15058 new_plane_state->crtc_h = crtc_h;
15059
15060 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
15061 to_intel_plane_state(new_plane_state));
15062 if (ret)
15063 goto out_free;
15064
15065 /* Visibility changed, must take slowpath. */
15066 if (!new_plane_state->visible)
15067 goto slow_free;
15068
15069 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
15070 if (ret)
15071 goto out_free;
15072
15073 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
15074 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
15075
15076 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
15077 if (ret) {
15078 DRM_DEBUG_KMS("failed to attach phys object\n");
15079 goto out_unlock;
15080 }
15081 } else {
15082 struct i915_vma *vma;
15083
15084 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
15085 if (IS_ERR(vma)) {
15086 DRM_DEBUG_KMS("failed to pin object\n");
15087
15088 ret = PTR_ERR(vma);
15089 goto out_unlock;
15090 }
15091
15092 to_intel_plane_state(new_plane_state)->vma = vma;
15093 }
15094
15095 old_fb = old_plane_state->fb;
15096 old_vma = to_intel_plane_state(old_plane_state)->vma;
15097
15098 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
15099 intel_plane->frontbuffer_bit);
15100
15101 /* Swap plane state */
15102 new_plane_state->fence = old_plane_state->fence;
15103 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
15104 new_plane_state->fence = NULL;
15105 new_plane_state->fb = old_fb;
15106 to_intel_plane_state(new_plane_state)->vma = old_vma;
15107
15108 intel_plane->update_plane(plane,
15109 to_intel_crtc_state(crtc->state),
15110 to_intel_plane_state(plane->state));
15111
15112 intel_cleanup_plane_fb(plane, new_plane_state);
15113
15114 out_unlock:
15115 mutex_unlock(&dev_priv->drm.struct_mutex);
15116 out_free:
15117 intel_plane_destroy_state(plane, new_plane_state);
15118 return ret;
15119
15120 slow_free:
15121 intel_plane_destroy_state(plane, new_plane_state);
15122 slow:
15123 return drm_atomic_helper_update_plane(plane, crtc, fb,
15124 crtc_x, crtc_y, crtc_w, crtc_h,
15125 src_x, src_y, src_w, src_h);
15126 }
15127
15128 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15129 .update_plane = intel_legacy_cursor_update,
15130 .disable_plane = drm_atomic_helper_disable_plane,
15131 .destroy = intel_plane_destroy,
15132 .set_property = drm_atomic_helper_plane_set_property,
15133 .atomic_get_property = intel_plane_atomic_get_property,
15134 .atomic_set_property = intel_plane_atomic_set_property,
15135 .atomic_duplicate_state = intel_plane_duplicate_state,
15136 .atomic_destroy_state = intel_plane_destroy_state,
15137 };
15138
15139 static struct intel_plane *
15140 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15141 {
15142 struct intel_plane *primary = NULL;
15143 struct intel_plane_state *state = NULL;
15144 const uint32_t *intel_primary_formats;
15145 unsigned int supported_rotations;
15146 unsigned int num_formats;
15147 int ret;
15148
15149 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
15150 if (!primary) {
15151 ret = -ENOMEM;
15152 goto fail;
15153 }
15154
15155 state = intel_create_plane_state(&primary->base);
15156 if (!state) {
15157 ret = -ENOMEM;
15158 goto fail;
15159 }
15160
15161 primary->base.state = &state->base;
15162
15163 primary->can_scale = false;
15164 primary->max_downscale = 1;
15165 if (INTEL_GEN(dev_priv) >= 9) {
15166 primary->can_scale = true;
15167 state->scaler_id = -1;
15168 }
15169 primary->pipe = pipe;
15170 /*
15171 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15172 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15173 */
15174 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15175 primary->plane = (enum plane) !pipe;
15176 else
15177 primary->plane = (enum plane) pipe;
15178 primary->id = PLANE_PRIMARY;
15179 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15180 primary->check_plane = intel_check_primary_plane;
15181
15182 if (INTEL_GEN(dev_priv) >= 9) {
15183 intel_primary_formats = skl_primary_formats;
15184 num_formats = ARRAY_SIZE(skl_primary_formats);
15185
15186 primary->update_plane = skylake_update_primary_plane;
15187 primary->disable_plane = skylake_disable_primary_plane;
15188 } else if (HAS_PCH_SPLIT(dev_priv)) {
15189 intel_primary_formats = i965_primary_formats;
15190 num_formats = ARRAY_SIZE(i965_primary_formats);
15191
15192 primary->update_plane = ironlake_update_primary_plane;
15193 primary->disable_plane = i9xx_disable_primary_plane;
15194 } else if (INTEL_GEN(dev_priv) >= 4) {
15195 intel_primary_formats = i965_primary_formats;
15196 num_formats = ARRAY_SIZE(i965_primary_formats);
15197
15198 primary->update_plane = i9xx_update_primary_plane;
15199 primary->disable_plane = i9xx_disable_primary_plane;
15200 } else {
15201 intel_primary_formats = i8xx_primary_formats;
15202 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15203
15204 primary->update_plane = i9xx_update_primary_plane;
15205 primary->disable_plane = i9xx_disable_primary_plane;
15206 }
15207
15208 if (INTEL_GEN(dev_priv) >= 9)
15209 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15210 0, &intel_plane_funcs,
15211 intel_primary_formats, num_formats,
15212 DRM_PLANE_TYPE_PRIMARY,
15213 "plane 1%c", pipe_name(pipe));
15214 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15215 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15216 0, &intel_plane_funcs,
15217 intel_primary_formats, num_formats,
15218 DRM_PLANE_TYPE_PRIMARY,
15219 "primary %c", pipe_name(pipe));
15220 else
15221 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15222 0, &intel_plane_funcs,
15223 intel_primary_formats, num_formats,
15224 DRM_PLANE_TYPE_PRIMARY,
15225 "plane %c", plane_name(primary->plane));
15226 if (ret)
15227 goto fail;
15228
15229 if (INTEL_GEN(dev_priv) >= 9) {
15230 supported_rotations =
15231 DRM_ROTATE_0 | DRM_ROTATE_90 |
15232 DRM_ROTATE_180 | DRM_ROTATE_270;
15233 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15234 supported_rotations =
15235 DRM_ROTATE_0 | DRM_ROTATE_180 |
15236 DRM_REFLECT_X;
15237 } else if (INTEL_GEN(dev_priv) >= 4) {
15238 supported_rotations =
15239 DRM_ROTATE_0 | DRM_ROTATE_180;
15240 } else {
15241 supported_rotations = DRM_ROTATE_0;
15242 }
15243
15244 if (INTEL_GEN(dev_priv) >= 4)
15245 drm_plane_create_rotation_property(&primary->base,
15246 DRM_ROTATE_0,
15247 supported_rotations);
15248
15249 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15250
15251 return primary;
15252
15253 fail:
15254 kfree(state);
15255 kfree(primary);
15256
15257 return ERR_PTR(ret);
15258 }
15259
15260 static int
15261 intel_check_cursor_plane(struct drm_plane *plane,
15262 struct intel_crtc_state *crtc_state,
15263 struct intel_plane_state *state)
15264 {
15265 struct drm_framebuffer *fb = state->base.fb;
15266 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15267 enum pipe pipe = to_intel_plane(plane)->pipe;
15268 unsigned stride;
15269 int ret;
15270
15271 ret = drm_plane_helper_check_state(&state->base,
15272 &state->clip,
15273 DRM_PLANE_HELPER_NO_SCALING,
15274 DRM_PLANE_HELPER_NO_SCALING,
15275 true, true);
15276 if (ret)
15277 return ret;
15278
15279 /* if we want to turn off the cursor ignore width and height */
15280 if (!obj)
15281 return 0;
15282
15283 /* Check for which cursor types we support */
15284 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15285 state->base.crtc_h)) {
15286 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15287 state->base.crtc_w, state->base.crtc_h);
15288 return -EINVAL;
15289 }
15290
15291 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15292 if (obj->base.size < stride * state->base.crtc_h) {
15293 DRM_DEBUG_KMS("buffer is too small\n");
15294 return -ENOMEM;
15295 }
15296
15297 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15298 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15299 return -EINVAL;
15300 }
15301
15302 /*
15303 * There's something wrong with the cursor on CHV pipe C.
15304 * If it straddles the left edge of the screen then
15305 * moving it away from the edge or disabling it often
15306 * results in a pipe underrun, and often that can lead to
15307 * dead pipe (constant underrun reported, and it scans
15308 * out just a solid color). To recover from that, the
15309 * display power well must be turned off and on again.
15310 * Refuse the put the cursor into that compromised position.
15311 */
15312 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15313 state->base.visible && state->base.crtc_x < 0) {
15314 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15315 return -EINVAL;
15316 }
15317
15318 return 0;
15319 }
15320
15321 static void
15322 intel_disable_cursor_plane(struct drm_plane *plane,
15323 struct drm_crtc *crtc)
15324 {
15325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15326
15327 intel_crtc->cursor_addr = 0;
15328 intel_crtc_update_cursor(crtc, NULL);
15329 }
15330
15331 static void
15332 intel_update_cursor_plane(struct drm_plane *plane,
15333 const struct intel_crtc_state *crtc_state,
15334 const struct intel_plane_state *state)
15335 {
15336 struct drm_crtc *crtc = crtc_state->base.crtc;
15337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15338 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15339 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15340 uint32_t addr;
15341
15342 if (!obj)
15343 addr = 0;
15344 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15345 addr = intel_plane_ggtt_offset(state);
15346 else
15347 addr = obj->phys_handle->busaddr;
15348
15349 intel_crtc->cursor_addr = addr;
15350 intel_crtc_update_cursor(crtc, state);
15351 }
15352
15353 static struct intel_plane *
15354 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15355 {
15356 struct intel_plane *cursor = NULL;
15357 struct intel_plane_state *state = NULL;
15358 int ret;
15359
15360 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15361 if (!cursor) {
15362 ret = -ENOMEM;
15363 goto fail;
15364 }
15365
15366 state = intel_create_plane_state(&cursor->base);
15367 if (!state) {
15368 ret = -ENOMEM;
15369 goto fail;
15370 }
15371
15372 cursor->base.state = &state->base;
15373
15374 cursor->can_scale = false;
15375 cursor->max_downscale = 1;
15376 cursor->pipe = pipe;
15377 cursor->plane = pipe;
15378 cursor->id = PLANE_CURSOR;
15379 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15380 cursor->check_plane = intel_check_cursor_plane;
15381 cursor->update_plane = intel_update_cursor_plane;
15382 cursor->disable_plane = intel_disable_cursor_plane;
15383
15384 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15385 0, &intel_cursor_plane_funcs,
15386 intel_cursor_formats,
15387 ARRAY_SIZE(intel_cursor_formats),
15388 DRM_PLANE_TYPE_CURSOR,
15389 "cursor %c", pipe_name(pipe));
15390 if (ret)
15391 goto fail;
15392
15393 if (INTEL_GEN(dev_priv) >= 4)
15394 drm_plane_create_rotation_property(&cursor->base,
15395 DRM_ROTATE_0,
15396 DRM_ROTATE_0 |
15397 DRM_ROTATE_180);
15398
15399 if (INTEL_GEN(dev_priv) >= 9)
15400 state->scaler_id = -1;
15401
15402 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15403
15404 return cursor;
15405
15406 fail:
15407 kfree(state);
15408 kfree(cursor);
15409
15410 return ERR_PTR(ret);
15411 }
15412
15413 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15414 struct intel_crtc_state *crtc_state)
15415 {
15416 struct intel_crtc_scaler_state *scaler_state =
15417 &crtc_state->scaler_state;
15418 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15419 int i;
15420
15421 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
15422 if (!crtc->num_scalers)
15423 return;
15424
15425 for (i = 0; i < crtc->num_scalers; i++) {
15426 struct intel_scaler *scaler = &scaler_state->scalers[i];
15427
15428 scaler->in_use = 0;
15429 scaler->mode = PS_SCALER_MODE_DYN;
15430 }
15431
15432 scaler_state->scaler_id = -1;
15433 }
15434
15435 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15436 {
15437 struct intel_crtc *intel_crtc;
15438 struct intel_crtc_state *crtc_state = NULL;
15439 struct intel_plane *primary = NULL;
15440 struct intel_plane *cursor = NULL;
15441 int sprite, ret;
15442
15443 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15444 if (!intel_crtc)
15445 return -ENOMEM;
15446
15447 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15448 if (!crtc_state) {
15449 ret = -ENOMEM;
15450 goto fail;
15451 }
15452 intel_crtc->config = crtc_state;
15453 intel_crtc->base.state = &crtc_state->base;
15454 crtc_state->base.crtc = &intel_crtc->base;
15455
15456 primary = intel_primary_plane_create(dev_priv, pipe);
15457 if (IS_ERR(primary)) {
15458 ret = PTR_ERR(primary);
15459 goto fail;
15460 }
15461 intel_crtc->plane_ids_mask |= BIT(primary->id);
15462
15463 for_each_sprite(dev_priv, pipe, sprite) {
15464 struct intel_plane *plane;
15465
15466 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15467 if (IS_ERR(plane)) {
15468 ret = PTR_ERR(plane);
15469 goto fail;
15470 }
15471 intel_crtc->plane_ids_mask |= BIT(plane->id);
15472 }
15473
15474 cursor = intel_cursor_plane_create(dev_priv, pipe);
15475 if (IS_ERR(cursor)) {
15476 ret = PTR_ERR(cursor);
15477 goto fail;
15478 }
15479 intel_crtc->plane_ids_mask |= BIT(cursor->id);
15480
15481 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15482 &primary->base, &cursor->base,
15483 &intel_crtc_funcs,
15484 "pipe %c", pipe_name(pipe));
15485 if (ret)
15486 goto fail;
15487
15488 intel_crtc->pipe = pipe;
15489 intel_crtc->plane = primary->plane;
15490
15491 intel_crtc->cursor_base = ~0;
15492 intel_crtc->cursor_cntl = ~0;
15493 intel_crtc->cursor_size = ~0;
15494
15495 intel_crtc->wm.cxsr_allowed = true;
15496
15497 /* initialize shared scalers */
15498 intel_crtc_init_scalers(intel_crtc, crtc_state);
15499
15500 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15501 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15502 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15503 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15504
15505 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15506
15507 intel_color_init(&intel_crtc->base);
15508
15509 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15510
15511 return 0;
15512
15513 fail:
15514 /*
15515 * drm_mode_config_cleanup() will free up any
15516 * crtcs/planes already initialized.
15517 */
15518 kfree(crtc_state);
15519 kfree(intel_crtc);
15520
15521 return ret;
15522 }
15523
15524 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15525 {
15526 struct drm_encoder *encoder = connector->base.encoder;
15527 struct drm_device *dev = connector->base.dev;
15528
15529 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15530
15531 if (!encoder || WARN_ON(!encoder->crtc))
15532 return INVALID_PIPE;
15533
15534 return to_intel_crtc(encoder->crtc)->pipe;
15535 }
15536
15537 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15538 struct drm_file *file)
15539 {
15540 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15541 struct drm_crtc *drmmode_crtc;
15542 struct intel_crtc *crtc;
15543
15544 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15545 if (!drmmode_crtc)
15546 return -ENOENT;
15547
15548 crtc = to_intel_crtc(drmmode_crtc);
15549 pipe_from_crtc_id->pipe = crtc->pipe;
15550
15551 return 0;
15552 }
15553
15554 static int intel_encoder_clones(struct intel_encoder *encoder)
15555 {
15556 struct drm_device *dev = encoder->base.dev;
15557 struct intel_encoder *source_encoder;
15558 int index_mask = 0;
15559 int entry = 0;
15560
15561 for_each_intel_encoder(dev, source_encoder) {
15562 if (encoders_cloneable(encoder, source_encoder))
15563 index_mask |= (1 << entry);
15564
15565 entry++;
15566 }
15567
15568 return index_mask;
15569 }
15570
15571 static bool has_edp_a(struct drm_i915_private *dev_priv)
15572 {
15573 if (!IS_MOBILE(dev_priv))
15574 return false;
15575
15576 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15577 return false;
15578
15579 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15580 return false;
15581
15582 return true;
15583 }
15584
15585 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15586 {
15587 if (INTEL_GEN(dev_priv) >= 9)
15588 return false;
15589
15590 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15591 return false;
15592
15593 if (IS_CHERRYVIEW(dev_priv))
15594 return false;
15595
15596 if (HAS_PCH_LPT_H(dev_priv) &&
15597 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15598 return false;
15599
15600 /* DDI E can't be used if DDI A requires 4 lanes */
15601 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15602 return false;
15603
15604 if (!dev_priv->vbt.int_crt_support)
15605 return false;
15606
15607 return true;
15608 }
15609
15610 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15611 {
15612 int pps_num;
15613 int pps_idx;
15614
15615 if (HAS_DDI(dev_priv))
15616 return;
15617 /*
15618 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15619 * everywhere where registers can be write protected.
15620 */
15621 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15622 pps_num = 2;
15623 else
15624 pps_num = 1;
15625
15626 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15627 u32 val = I915_READ(PP_CONTROL(pps_idx));
15628
15629 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15630 I915_WRITE(PP_CONTROL(pps_idx), val);
15631 }
15632 }
15633
15634 static void intel_pps_init(struct drm_i915_private *dev_priv)
15635 {
15636 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15637 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15638 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15639 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15640 else
15641 dev_priv->pps_mmio_base = PPS_BASE;
15642
15643 intel_pps_unlock_regs_wa(dev_priv);
15644 }
15645
15646 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15647 {
15648 struct intel_encoder *encoder;
15649 bool dpd_is_edp = false;
15650
15651 intel_pps_init(dev_priv);
15652
15653 /*
15654 * intel_edp_init_connector() depends on this completing first, to
15655 * prevent the registeration of both eDP and LVDS and the incorrect
15656 * sharing of the PPS.
15657 */
15658 intel_lvds_init(dev_priv);
15659
15660 if (intel_crt_present(dev_priv))
15661 intel_crt_init(dev_priv);
15662
15663 if (IS_GEN9_LP(dev_priv)) {
15664 /*
15665 * FIXME: Broxton doesn't support port detection via the
15666 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15667 * detect the ports.
15668 */
15669 intel_ddi_init(dev_priv, PORT_A);
15670 intel_ddi_init(dev_priv, PORT_B);
15671 intel_ddi_init(dev_priv, PORT_C);
15672
15673 intel_dsi_init(dev_priv);
15674 } else if (HAS_DDI(dev_priv)) {
15675 int found;
15676
15677 /*
15678 * Haswell uses DDI functions to detect digital outputs.
15679 * On SKL pre-D0 the strap isn't connected, so we assume
15680 * it's there.
15681 */
15682 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15683 /* WaIgnoreDDIAStrap: skl */
15684 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15685 intel_ddi_init(dev_priv, PORT_A);
15686
15687 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15688 * register */
15689 found = I915_READ(SFUSE_STRAP);
15690
15691 if (found & SFUSE_STRAP_DDIB_DETECTED)
15692 intel_ddi_init(dev_priv, PORT_B);
15693 if (found & SFUSE_STRAP_DDIC_DETECTED)
15694 intel_ddi_init(dev_priv, PORT_C);
15695 if (found & SFUSE_STRAP_DDID_DETECTED)
15696 intel_ddi_init(dev_priv, PORT_D);
15697 /*
15698 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15699 */
15700 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15701 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15702 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15703 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15704 intel_ddi_init(dev_priv, PORT_E);
15705
15706 } else if (HAS_PCH_SPLIT(dev_priv)) {
15707 int found;
15708 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15709
15710 if (has_edp_a(dev_priv))
15711 intel_dp_init(dev_priv, DP_A, PORT_A);
15712
15713 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15714 /* PCH SDVOB multiplex with HDMIB */
15715 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15716 if (!found)
15717 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15718 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15719 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15720 }
15721
15722 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15723 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15724
15725 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15726 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15727
15728 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15729 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15730
15731 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15732 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15733 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15734 bool has_edp, has_port;
15735
15736 /*
15737 * The DP_DETECTED bit is the latched state of the DDC
15738 * SDA pin at boot. However since eDP doesn't require DDC
15739 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15740 * eDP ports may have been muxed to an alternate function.
15741 * Thus we can't rely on the DP_DETECTED bit alone to detect
15742 * eDP ports. Consult the VBT as well as DP_DETECTED to
15743 * detect eDP ports.
15744 *
15745 * Sadly the straps seem to be missing sometimes even for HDMI
15746 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15747 * and VBT for the presence of the port. Additionally we can't
15748 * trust the port type the VBT declares as we've seen at least
15749 * HDMI ports that the VBT claim are DP or eDP.
15750 */
15751 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15752 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15753 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15754 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15755 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15756 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15757
15758 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15759 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15760 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15761 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15762 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15763 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15764
15765 if (IS_CHERRYVIEW(dev_priv)) {
15766 /*
15767 * eDP not supported on port D,
15768 * so no need to worry about it
15769 */
15770 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15771 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15772 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15773 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15774 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15775 }
15776
15777 intel_dsi_init(dev_priv);
15778 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15779 bool found = false;
15780
15781 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15782 DRM_DEBUG_KMS("probing SDVOB\n");
15783 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15784 if (!found && IS_G4X(dev_priv)) {
15785 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15786 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15787 }
15788
15789 if (!found && IS_G4X(dev_priv))
15790 intel_dp_init(dev_priv, DP_B, PORT_B);
15791 }
15792
15793 /* Before G4X SDVOC doesn't have its own detect register */
15794
15795 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15796 DRM_DEBUG_KMS("probing SDVOC\n");
15797 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15798 }
15799
15800 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15801
15802 if (IS_G4X(dev_priv)) {
15803 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15804 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15805 }
15806 if (IS_G4X(dev_priv))
15807 intel_dp_init(dev_priv, DP_C, PORT_C);
15808 }
15809
15810 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15811 intel_dp_init(dev_priv, DP_D, PORT_D);
15812 } else if (IS_GEN2(dev_priv))
15813 intel_dvo_init(dev_priv);
15814
15815 if (SUPPORTS_TV(dev_priv))
15816 intel_tv_init(dev_priv);
15817
15818 intel_psr_init(dev_priv);
15819
15820 for_each_intel_encoder(&dev_priv->drm, encoder) {
15821 encoder->base.possible_crtcs = encoder->crtc_mask;
15822 encoder->base.possible_clones =
15823 intel_encoder_clones(encoder);
15824 }
15825
15826 intel_init_pch_refclk(dev_priv);
15827
15828 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15829 }
15830
15831 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15832 {
15833 struct drm_device *dev = fb->dev;
15834 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15835
15836 drm_framebuffer_cleanup(fb);
15837 mutex_lock(&dev->struct_mutex);
15838 WARN_ON(!intel_fb->obj->framebuffer_references--);
15839 i915_gem_object_put(intel_fb->obj);
15840 mutex_unlock(&dev->struct_mutex);
15841 kfree(intel_fb);
15842 }
15843
15844 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15845 struct drm_file *file,
15846 unsigned int *handle)
15847 {
15848 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15849 struct drm_i915_gem_object *obj = intel_fb->obj;
15850
15851 if (obj->userptr.mm) {
15852 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15853 return -EINVAL;
15854 }
15855
15856 return drm_gem_handle_create(file, &obj->base, handle);
15857 }
15858
15859 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15860 struct drm_file *file,
15861 unsigned flags, unsigned color,
15862 struct drm_clip_rect *clips,
15863 unsigned num_clips)
15864 {
15865 struct drm_device *dev = fb->dev;
15866 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15867 struct drm_i915_gem_object *obj = intel_fb->obj;
15868
15869 mutex_lock(&dev->struct_mutex);
15870 if (obj->pin_display && obj->cache_dirty)
15871 i915_gem_clflush_object(obj, true);
15872 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15873 mutex_unlock(&dev->struct_mutex);
15874
15875 return 0;
15876 }
15877
15878 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15879 .destroy = intel_user_framebuffer_destroy,
15880 .create_handle = intel_user_framebuffer_create_handle,
15881 .dirty = intel_user_framebuffer_dirty,
15882 };
15883
15884 static
15885 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15886 uint64_t fb_modifier, uint32_t pixel_format)
15887 {
15888 u32 gen = INTEL_INFO(dev_priv)->gen;
15889
15890 if (gen >= 9) {
15891 int cpp = drm_format_plane_cpp(pixel_format, 0);
15892
15893 /* "The stride in bytes must not exceed the of the size of 8K
15894 * pixels and 32K bytes."
15895 */
15896 return min(8192 * cpp, 32768);
15897 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15898 !IS_CHERRYVIEW(dev_priv)) {
15899 return 32*1024;
15900 } else if (gen >= 4) {
15901 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15902 return 16*1024;
15903 else
15904 return 32*1024;
15905 } else if (gen >= 3) {
15906 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15907 return 8*1024;
15908 else
15909 return 16*1024;
15910 } else {
15911 /* XXX DSPC is limited to 4k tiled */
15912 return 8*1024;
15913 }
15914 }
15915
15916 static int intel_framebuffer_init(struct drm_device *dev,
15917 struct intel_framebuffer *intel_fb,
15918 struct drm_mode_fb_cmd2 *mode_cmd,
15919 struct drm_i915_gem_object *obj)
15920 {
15921 struct drm_i915_private *dev_priv = to_i915(dev);
15922 unsigned int tiling = i915_gem_object_get_tiling(obj);
15923 int ret;
15924 u32 pitch_limit, stride_alignment;
15925 struct drm_format_name_buf format_name;
15926
15927 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15928
15929 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15930 /*
15931 * If there's a fence, enforce that
15932 * the fb modifier and tiling mode match.
15933 */
15934 if (tiling != I915_TILING_NONE &&
15935 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15936 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15937 return -EINVAL;
15938 }
15939 } else {
15940 if (tiling == I915_TILING_X) {
15941 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15942 } else if (tiling == I915_TILING_Y) {
15943 DRM_DEBUG("No Y tiling for legacy addfb\n");
15944 return -EINVAL;
15945 }
15946 }
15947
15948 /* Passed in modifier sanity checking. */
15949 switch (mode_cmd->modifier[0]) {
15950 case I915_FORMAT_MOD_Y_TILED:
15951 case I915_FORMAT_MOD_Yf_TILED:
15952 if (INTEL_GEN(dev_priv) < 9) {
15953 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15954 mode_cmd->modifier[0]);
15955 return -EINVAL;
15956 }
15957 case DRM_FORMAT_MOD_NONE:
15958 case I915_FORMAT_MOD_X_TILED:
15959 break;
15960 default:
15961 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15962 mode_cmd->modifier[0]);
15963 return -EINVAL;
15964 }
15965
15966 /*
15967 * gen2/3 display engine uses the fence if present,
15968 * so the tiling mode must match the fb modifier exactly.
15969 */
15970 if (INTEL_INFO(dev_priv)->gen < 4 &&
15971 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15972 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15973 return -EINVAL;
15974 }
15975
15976 stride_alignment = intel_fb_stride_alignment(dev_priv,
15977 mode_cmd->modifier[0],
15978 mode_cmd->pixel_format);
15979 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15980 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15981 mode_cmd->pitches[0], stride_alignment);
15982 return -EINVAL;
15983 }
15984
15985 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15986 mode_cmd->pixel_format);
15987 if (mode_cmd->pitches[0] > pitch_limit) {
15988 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15989 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15990 "tiled" : "linear",
15991 mode_cmd->pitches[0], pitch_limit);
15992 return -EINVAL;
15993 }
15994
15995 /*
15996 * If there's a fence, enforce that
15997 * the fb pitch and fence stride match.
15998 */
15999 if (tiling != I915_TILING_NONE &&
16000 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
16001 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
16002 mode_cmd->pitches[0],
16003 i915_gem_object_get_stride(obj));
16004 return -EINVAL;
16005 }
16006
16007 /* Reject formats not supported by any plane early. */
16008 switch (mode_cmd->pixel_format) {
16009 case DRM_FORMAT_C8:
16010 case DRM_FORMAT_RGB565:
16011 case DRM_FORMAT_XRGB8888:
16012 case DRM_FORMAT_ARGB8888:
16013 break;
16014 case DRM_FORMAT_XRGB1555:
16015 if (INTEL_GEN(dev_priv) > 3) {
16016 DRM_DEBUG("unsupported pixel format: %s\n",
16017 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16018 return -EINVAL;
16019 }
16020 break;
16021 case DRM_FORMAT_ABGR8888:
16022 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
16023 INTEL_GEN(dev_priv) < 9) {
16024 DRM_DEBUG("unsupported pixel format: %s\n",
16025 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16026 return -EINVAL;
16027 }
16028 break;
16029 case DRM_FORMAT_XBGR8888:
16030 case DRM_FORMAT_XRGB2101010:
16031 case DRM_FORMAT_XBGR2101010:
16032 if (INTEL_GEN(dev_priv) < 4) {
16033 DRM_DEBUG("unsupported pixel format: %s\n",
16034 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16035 return -EINVAL;
16036 }
16037 break;
16038 case DRM_FORMAT_ABGR2101010:
16039 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
16040 DRM_DEBUG("unsupported pixel format: %s\n",
16041 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16042 return -EINVAL;
16043 }
16044 break;
16045 case DRM_FORMAT_YUYV:
16046 case DRM_FORMAT_UYVY:
16047 case DRM_FORMAT_YVYU:
16048 case DRM_FORMAT_VYUY:
16049 if (INTEL_GEN(dev_priv) < 5) {
16050 DRM_DEBUG("unsupported pixel format: %s\n",
16051 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16052 return -EINVAL;
16053 }
16054 break;
16055 default:
16056 DRM_DEBUG("unsupported pixel format: %s\n",
16057 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16058 return -EINVAL;
16059 }
16060
16061 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16062 if (mode_cmd->offsets[0] != 0)
16063 return -EINVAL;
16064
16065 drm_helper_mode_fill_fb_struct(dev, &intel_fb->base, mode_cmd);
16066 intel_fb->obj = obj;
16067
16068 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
16069 if (ret)
16070 return ret;
16071
16072 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
16073 if (ret) {
16074 DRM_ERROR("framebuffer init failed %d\n", ret);
16075 return ret;
16076 }
16077
16078 intel_fb->obj->framebuffer_references++;
16079
16080 return 0;
16081 }
16082
16083 static struct drm_framebuffer *
16084 intel_user_framebuffer_create(struct drm_device *dev,
16085 struct drm_file *filp,
16086 const struct drm_mode_fb_cmd2 *user_mode_cmd)
16087 {
16088 struct drm_framebuffer *fb;
16089 struct drm_i915_gem_object *obj;
16090 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16091
16092 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16093 if (!obj)
16094 return ERR_PTR(-ENOENT);
16095
16096 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
16097 if (IS_ERR(fb))
16098 i915_gem_object_put(obj);
16099
16100 return fb;
16101 }
16102
16103 static void intel_atomic_state_free(struct drm_atomic_state *state)
16104 {
16105 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16106
16107 drm_atomic_state_default_release(state);
16108
16109 i915_sw_fence_fini(&intel_state->commit_ready);
16110
16111 kfree(state);
16112 }
16113
16114 static const struct drm_mode_config_funcs intel_mode_funcs = {
16115 .fb_create = intel_user_framebuffer_create,
16116 .output_poll_changed = intel_fbdev_output_poll_changed,
16117 .atomic_check = intel_atomic_check,
16118 .atomic_commit = intel_atomic_commit,
16119 .atomic_state_alloc = intel_atomic_state_alloc,
16120 .atomic_state_clear = intel_atomic_state_clear,
16121 .atomic_state_free = intel_atomic_state_free,
16122 };
16123
16124 /**
16125 * intel_init_display_hooks - initialize the display modesetting hooks
16126 * @dev_priv: device private
16127 */
16128 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16129 {
16130 if (INTEL_INFO(dev_priv)->gen >= 9) {
16131 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16132 dev_priv->display.get_initial_plane_config =
16133 skylake_get_initial_plane_config;
16134 dev_priv->display.crtc_compute_clock =
16135 haswell_crtc_compute_clock;
16136 dev_priv->display.crtc_enable = haswell_crtc_enable;
16137 dev_priv->display.crtc_disable = haswell_crtc_disable;
16138 } else if (HAS_DDI(dev_priv)) {
16139 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16140 dev_priv->display.get_initial_plane_config =
16141 ironlake_get_initial_plane_config;
16142 dev_priv->display.crtc_compute_clock =
16143 haswell_crtc_compute_clock;
16144 dev_priv->display.crtc_enable = haswell_crtc_enable;
16145 dev_priv->display.crtc_disable = haswell_crtc_disable;
16146 } else if (HAS_PCH_SPLIT(dev_priv)) {
16147 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16148 dev_priv->display.get_initial_plane_config =
16149 ironlake_get_initial_plane_config;
16150 dev_priv->display.crtc_compute_clock =
16151 ironlake_crtc_compute_clock;
16152 dev_priv->display.crtc_enable = ironlake_crtc_enable;
16153 dev_priv->display.crtc_disable = ironlake_crtc_disable;
16154 } else if (IS_CHERRYVIEW(dev_priv)) {
16155 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16156 dev_priv->display.get_initial_plane_config =
16157 i9xx_get_initial_plane_config;
16158 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16159 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16160 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16161 } else if (IS_VALLEYVIEW(dev_priv)) {
16162 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16163 dev_priv->display.get_initial_plane_config =
16164 i9xx_get_initial_plane_config;
16165 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16166 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16167 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16168 } else if (IS_G4X(dev_priv)) {
16169 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16170 dev_priv->display.get_initial_plane_config =
16171 i9xx_get_initial_plane_config;
16172 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16173 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16174 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16175 } else if (IS_PINEVIEW(dev_priv)) {
16176 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16177 dev_priv->display.get_initial_plane_config =
16178 i9xx_get_initial_plane_config;
16179 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16180 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16181 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16182 } else if (!IS_GEN2(dev_priv)) {
16183 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16184 dev_priv->display.get_initial_plane_config =
16185 i9xx_get_initial_plane_config;
16186 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16187 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16188 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16189 } else {
16190 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16191 dev_priv->display.get_initial_plane_config =
16192 i9xx_get_initial_plane_config;
16193 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16194 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16195 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16196 }
16197
16198 /* Returns the core display clock speed */
16199 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16200 dev_priv->display.get_display_clock_speed =
16201 skylake_get_display_clock_speed;
16202 else if (IS_GEN9_LP(dev_priv))
16203 dev_priv->display.get_display_clock_speed =
16204 broxton_get_display_clock_speed;
16205 else if (IS_BROADWELL(dev_priv))
16206 dev_priv->display.get_display_clock_speed =
16207 broadwell_get_display_clock_speed;
16208 else if (IS_HASWELL(dev_priv))
16209 dev_priv->display.get_display_clock_speed =
16210 haswell_get_display_clock_speed;
16211 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16212 dev_priv->display.get_display_clock_speed =
16213 valleyview_get_display_clock_speed;
16214 else if (IS_GEN5(dev_priv))
16215 dev_priv->display.get_display_clock_speed =
16216 ilk_get_display_clock_speed;
16217 else if (IS_I945G(dev_priv) || IS_I965G(dev_priv) ||
16218 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16219 dev_priv->display.get_display_clock_speed =
16220 i945_get_display_clock_speed;
16221 else if (IS_GM45(dev_priv))
16222 dev_priv->display.get_display_clock_speed =
16223 gm45_get_display_clock_speed;
16224 else if (IS_I965GM(dev_priv))
16225 dev_priv->display.get_display_clock_speed =
16226 i965gm_get_display_clock_speed;
16227 else if (IS_PINEVIEW(dev_priv))
16228 dev_priv->display.get_display_clock_speed =
16229 pnv_get_display_clock_speed;
16230 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16231 dev_priv->display.get_display_clock_speed =
16232 g33_get_display_clock_speed;
16233 else if (IS_I915G(dev_priv))
16234 dev_priv->display.get_display_clock_speed =
16235 i915_get_display_clock_speed;
16236 else if (IS_I945GM(dev_priv) || IS_I845G(dev_priv))
16237 dev_priv->display.get_display_clock_speed =
16238 i9xx_misc_get_display_clock_speed;
16239 else if (IS_I915GM(dev_priv))
16240 dev_priv->display.get_display_clock_speed =
16241 i915gm_get_display_clock_speed;
16242 else if (IS_I865G(dev_priv))
16243 dev_priv->display.get_display_clock_speed =
16244 i865_get_display_clock_speed;
16245 else if (IS_I85X(dev_priv))
16246 dev_priv->display.get_display_clock_speed =
16247 i85x_get_display_clock_speed;
16248 else { /* 830 */
16249 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16250 dev_priv->display.get_display_clock_speed =
16251 i830_get_display_clock_speed;
16252 }
16253
16254 if (IS_GEN5(dev_priv)) {
16255 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16256 } else if (IS_GEN6(dev_priv)) {
16257 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16258 } else if (IS_IVYBRIDGE(dev_priv)) {
16259 /* FIXME: detect B0+ stepping and use auto training */
16260 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16261 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16262 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16263 }
16264
16265 if (IS_BROADWELL(dev_priv)) {
16266 dev_priv->display.modeset_commit_cdclk =
16267 broadwell_modeset_commit_cdclk;
16268 dev_priv->display.modeset_calc_cdclk =
16269 broadwell_modeset_calc_cdclk;
16270 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16271 dev_priv->display.modeset_commit_cdclk =
16272 valleyview_modeset_commit_cdclk;
16273 dev_priv->display.modeset_calc_cdclk =
16274 valleyview_modeset_calc_cdclk;
16275 } else if (IS_GEN9_LP(dev_priv)) {
16276 dev_priv->display.modeset_commit_cdclk =
16277 bxt_modeset_commit_cdclk;
16278 dev_priv->display.modeset_calc_cdclk =
16279 bxt_modeset_calc_cdclk;
16280 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16281 dev_priv->display.modeset_commit_cdclk =
16282 skl_modeset_commit_cdclk;
16283 dev_priv->display.modeset_calc_cdclk =
16284 skl_modeset_calc_cdclk;
16285 }
16286
16287 if (dev_priv->info.gen >= 9)
16288 dev_priv->display.update_crtcs = skl_update_crtcs;
16289 else
16290 dev_priv->display.update_crtcs = intel_update_crtcs;
16291
16292 switch (INTEL_INFO(dev_priv)->gen) {
16293 case 2:
16294 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16295 break;
16296
16297 case 3:
16298 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16299 break;
16300
16301 case 4:
16302 case 5:
16303 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16304 break;
16305
16306 case 6:
16307 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16308 break;
16309 case 7:
16310 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16311 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16312 break;
16313 case 9:
16314 /* Drop through - unsupported since execlist only. */
16315 default:
16316 /* Default just returns -ENODEV to indicate unsupported */
16317 dev_priv->display.queue_flip = intel_default_queue_flip;
16318 }
16319 }
16320
16321 /*
16322 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16323 * resume, or other times. This quirk makes sure that's the case for
16324 * affected systems.
16325 */
16326 static void quirk_pipea_force(struct drm_device *dev)
16327 {
16328 struct drm_i915_private *dev_priv = to_i915(dev);
16329
16330 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16331 DRM_INFO("applying pipe a force quirk\n");
16332 }
16333
16334 static void quirk_pipeb_force(struct drm_device *dev)
16335 {
16336 struct drm_i915_private *dev_priv = to_i915(dev);
16337
16338 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16339 DRM_INFO("applying pipe b force quirk\n");
16340 }
16341
16342 /*
16343 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16344 */
16345 static void quirk_ssc_force_disable(struct drm_device *dev)
16346 {
16347 struct drm_i915_private *dev_priv = to_i915(dev);
16348 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16349 DRM_INFO("applying lvds SSC disable quirk\n");
16350 }
16351
16352 /*
16353 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16354 * brightness value
16355 */
16356 static void quirk_invert_brightness(struct drm_device *dev)
16357 {
16358 struct drm_i915_private *dev_priv = to_i915(dev);
16359 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16360 DRM_INFO("applying inverted panel brightness quirk\n");
16361 }
16362
16363 /* Some VBT's incorrectly indicate no backlight is present */
16364 static void quirk_backlight_present(struct drm_device *dev)
16365 {
16366 struct drm_i915_private *dev_priv = to_i915(dev);
16367 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16368 DRM_INFO("applying backlight present quirk\n");
16369 }
16370
16371 struct intel_quirk {
16372 int device;
16373 int subsystem_vendor;
16374 int subsystem_device;
16375 void (*hook)(struct drm_device *dev);
16376 };
16377
16378 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16379 struct intel_dmi_quirk {
16380 void (*hook)(struct drm_device *dev);
16381 const struct dmi_system_id (*dmi_id_list)[];
16382 };
16383
16384 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16385 {
16386 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16387 return 1;
16388 }
16389
16390 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16391 {
16392 .dmi_id_list = &(const struct dmi_system_id[]) {
16393 {
16394 .callback = intel_dmi_reverse_brightness,
16395 .ident = "NCR Corporation",
16396 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16397 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16398 },
16399 },
16400 { } /* terminating entry */
16401 },
16402 .hook = quirk_invert_brightness,
16403 },
16404 };
16405
16406 static struct intel_quirk intel_quirks[] = {
16407 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16408 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16409
16410 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16411 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16412
16413 /* 830 needs to leave pipe A & dpll A up */
16414 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16415
16416 /* 830 needs to leave pipe B & dpll B up */
16417 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16418
16419 /* Lenovo U160 cannot use SSC on LVDS */
16420 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16421
16422 /* Sony Vaio Y cannot use SSC on LVDS */
16423 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16424
16425 /* Acer Aspire 5734Z must invert backlight brightness */
16426 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16427
16428 /* Acer/eMachines G725 */
16429 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16430
16431 /* Acer/eMachines e725 */
16432 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16433
16434 /* Acer/Packard Bell NCL20 */
16435 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16436
16437 /* Acer Aspire 4736Z */
16438 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16439
16440 /* Acer Aspire 5336 */
16441 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16442
16443 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16444 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16445
16446 /* Acer C720 Chromebook (Core i3 4005U) */
16447 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16448
16449 /* Apple Macbook 2,1 (Core 2 T7400) */
16450 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16451
16452 /* Apple Macbook 4,1 */
16453 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16454
16455 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16456 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16457
16458 /* HP Chromebook 14 (Celeron 2955U) */
16459 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16460
16461 /* Dell Chromebook 11 */
16462 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16463
16464 /* Dell Chromebook 11 (2015 version) */
16465 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16466 };
16467
16468 static void intel_init_quirks(struct drm_device *dev)
16469 {
16470 struct pci_dev *d = dev->pdev;
16471 int i;
16472
16473 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16474 struct intel_quirk *q = &intel_quirks[i];
16475
16476 if (d->device == q->device &&
16477 (d->subsystem_vendor == q->subsystem_vendor ||
16478 q->subsystem_vendor == PCI_ANY_ID) &&
16479 (d->subsystem_device == q->subsystem_device ||
16480 q->subsystem_device == PCI_ANY_ID))
16481 q->hook(dev);
16482 }
16483 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16484 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16485 intel_dmi_quirks[i].hook(dev);
16486 }
16487 }
16488
16489 /* Disable the VGA plane that we never use */
16490 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16491 {
16492 struct pci_dev *pdev = dev_priv->drm.pdev;
16493 u8 sr1;
16494 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16495
16496 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16497 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16498 outb(SR01, VGA_SR_INDEX);
16499 sr1 = inb(VGA_SR_DATA);
16500 outb(sr1 | 1<<5, VGA_SR_DATA);
16501 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16502 udelay(300);
16503
16504 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16505 POSTING_READ(vga_reg);
16506 }
16507
16508 void intel_modeset_init_hw(struct drm_device *dev)
16509 {
16510 struct drm_i915_private *dev_priv = to_i915(dev);
16511
16512 intel_update_cdclk(dev_priv);
16513
16514 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16515
16516 intel_init_clock_gating(dev_priv);
16517 }
16518
16519 /*
16520 * Calculate what we think the watermarks should be for the state we've read
16521 * out of the hardware and then immediately program those watermarks so that
16522 * we ensure the hardware settings match our internal state.
16523 *
16524 * We can calculate what we think WM's should be by creating a duplicate of the
16525 * current state (which was constructed during hardware readout) and running it
16526 * through the atomic check code to calculate new watermark values in the
16527 * state object.
16528 */
16529 static void sanitize_watermarks(struct drm_device *dev)
16530 {
16531 struct drm_i915_private *dev_priv = to_i915(dev);
16532 struct drm_atomic_state *state;
16533 struct intel_atomic_state *intel_state;
16534 struct drm_crtc *crtc;
16535 struct drm_crtc_state *cstate;
16536 struct drm_modeset_acquire_ctx ctx;
16537 int ret;
16538 int i;
16539
16540 /* Only supported on platforms that use atomic watermark design */
16541 if (!dev_priv->display.optimize_watermarks)
16542 return;
16543
16544 /*
16545 * We need to hold connection_mutex before calling duplicate_state so
16546 * that the connector loop is protected.
16547 */
16548 drm_modeset_acquire_init(&ctx, 0);
16549 retry:
16550 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16551 if (ret == -EDEADLK) {
16552 drm_modeset_backoff(&ctx);
16553 goto retry;
16554 } else if (WARN_ON(ret)) {
16555 goto fail;
16556 }
16557
16558 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16559 if (WARN_ON(IS_ERR(state)))
16560 goto fail;
16561
16562 intel_state = to_intel_atomic_state(state);
16563
16564 /*
16565 * Hardware readout is the only time we don't want to calculate
16566 * intermediate watermarks (since we don't trust the current
16567 * watermarks).
16568 */
16569 intel_state->skip_intermediate_wm = true;
16570
16571 ret = intel_atomic_check(dev, state);
16572 if (ret) {
16573 /*
16574 * If we fail here, it means that the hardware appears to be
16575 * programmed in a way that shouldn't be possible, given our
16576 * understanding of watermark requirements. This might mean a
16577 * mistake in the hardware readout code or a mistake in the
16578 * watermark calculations for a given platform. Raise a WARN
16579 * so that this is noticeable.
16580 *
16581 * If this actually happens, we'll have to just leave the
16582 * BIOS-programmed watermarks untouched and hope for the best.
16583 */
16584 WARN(true, "Could not determine valid watermarks for inherited state\n");
16585 goto put_state;
16586 }
16587
16588 /* Write calculated watermark values back */
16589 for_each_crtc_in_state(state, crtc, cstate, i) {
16590 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16591
16592 cs->wm.need_postvbl_update = true;
16593 dev_priv->display.optimize_watermarks(intel_state, cs);
16594 }
16595
16596 put_state:
16597 drm_atomic_state_put(state);
16598 fail:
16599 drm_modeset_drop_locks(&ctx);
16600 drm_modeset_acquire_fini(&ctx);
16601 }
16602
16603 static void intel_atomic_helper_free_state(struct work_struct *work)
16604 {
16605 struct drm_i915_private *dev_priv =
16606 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16607 struct intel_atomic_state *state, *next;
16608 struct llist_node *freed;
16609
16610 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16611 llist_for_each_entry_safe(state, next, freed, freed)
16612 drm_atomic_state_put(&state->base);
16613 }
16614
16615 int intel_modeset_init(struct drm_device *dev)
16616 {
16617 struct drm_i915_private *dev_priv = to_i915(dev);
16618 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16619 enum pipe pipe;
16620 struct intel_crtc *crtc;
16621
16622 drm_mode_config_init(dev);
16623
16624 dev->mode_config.min_width = 0;
16625 dev->mode_config.min_height = 0;
16626
16627 dev->mode_config.preferred_depth = 24;
16628 dev->mode_config.prefer_shadow = 1;
16629
16630 dev->mode_config.allow_fb_modifiers = true;
16631
16632 dev->mode_config.funcs = &intel_mode_funcs;
16633
16634 INIT_WORK(&dev_priv->atomic_helper.free_work,
16635 intel_atomic_helper_free_state);
16636
16637 intel_init_quirks(dev);
16638
16639 intel_init_pm(dev_priv);
16640
16641 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16642 return 0;
16643
16644 /*
16645 * There may be no VBT; and if the BIOS enabled SSC we can
16646 * just keep using it to avoid unnecessary flicker. Whereas if the
16647 * BIOS isn't using it, don't assume it will work even if the VBT
16648 * indicates as much.
16649 */
16650 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16651 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16652 DREF_SSC1_ENABLE);
16653
16654 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16655 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16656 bios_lvds_use_ssc ? "en" : "dis",
16657 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16658 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16659 }
16660 }
16661
16662 if (IS_GEN2(dev_priv)) {
16663 dev->mode_config.max_width = 2048;
16664 dev->mode_config.max_height = 2048;
16665 } else if (IS_GEN3(dev_priv)) {
16666 dev->mode_config.max_width = 4096;
16667 dev->mode_config.max_height = 4096;
16668 } else {
16669 dev->mode_config.max_width = 8192;
16670 dev->mode_config.max_height = 8192;
16671 }
16672
16673 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16674 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
16675 dev->mode_config.cursor_height = 1023;
16676 } else if (IS_GEN2(dev_priv)) {
16677 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16678 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16679 } else {
16680 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16681 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16682 }
16683
16684 dev->mode_config.fb_base = ggtt->mappable_base;
16685
16686 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16687 INTEL_INFO(dev_priv)->num_pipes,
16688 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16689
16690 for_each_pipe(dev_priv, pipe) {
16691 int ret;
16692
16693 ret = intel_crtc_init(dev_priv, pipe);
16694 if (ret) {
16695 drm_mode_config_cleanup(dev);
16696 return ret;
16697 }
16698 }
16699
16700 intel_update_czclk(dev_priv);
16701 intel_update_cdclk(dev_priv);
16702 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16703
16704 intel_shared_dpll_init(dev);
16705
16706 if (dev_priv->max_cdclk_freq == 0)
16707 intel_update_max_cdclk(dev_priv);
16708
16709 /* Just disable it once at startup */
16710 i915_disable_vga(dev_priv);
16711 intel_setup_outputs(dev_priv);
16712
16713 drm_modeset_lock_all(dev);
16714 intel_modeset_setup_hw_state(dev);
16715 drm_modeset_unlock_all(dev);
16716
16717 for_each_intel_crtc(dev, crtc) {
16718 struct intel_initial_plane_config plane_config = {};
16719
16720 if (!crtc->active)
16721 continue;
16722
16723 /*
16724 * Note that reserving the BIOS fb up front prevents us
16725 * from stuffing other stolen allocations like the ring
16726 * on top. This prevents some ugliness at boot time, and
16727 * can even allow for smooth boot transitions if the BIOS
16728 * fb is large enough for the active pipe configuration.
16729 */
16730 dev_priv->display.get_initial_plane_config(crtc,
16731 &plane_config);
16732
16733 /*
16734 * If the fb is shared between multiple heads, we'll
16735 * just get the first one.
16736 */
16737 intel_find_initial_plane_obj(crtc, &plane_config);
16738 }
16739
16740 /*
16741 * Make sure hardware watermarks really match the state we read out.
16742 * Note that we need to do this after reconstructing the BIOS fb's
16743 * since the watermark calculation done here will use pstate->fb.
16744 */
16745 sanitize_watermarks(dev);
16746
16747 return 0;
16748 }
16749
16750 static void intel_enable_pipe_a(struct drm_device *dev)
16751 {
16752 struct intel_connector *connector;
16753 struct drm_connector *crt = NULL;
16754 struct intel_load_detect_pipe load_detect_temp;
16755 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16756
16757 /* We can't just switch on the pipe A, we need to set things up with a
16758 * proper mode and output configuration. As a gross hack, enable pipe A
16759 * by enabling the load detect pipe once. */
16760 for_each_intel_connector(dev, connector) {
16761 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16762 crt = &connector->base;
16763 break;
16764 }
16765 }
16766
16767 if (!crt)
16768 return;
16769
16770 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16771 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16772 }
16773
16774 static bool
16775 intel_check_plane_mapping(struct intel_crtc *crtc)
16776 {
16777 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16778 u32 val;
16779
16780 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16781 return true;
16782
16783 val = I915_READ(DSPCNTR(!crtc->plane));
16784
16785 if ((val & DISPLAY_PLANE_ENABLE) &&
16786 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16787 return false;
16788
16789 return true;
16790 }
16791
16792 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16793 {
16794 struct drm_device *dev = crtc->base.dev;
16795 struct intel_encoder *encoder;
16796
16797 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16798 return true;
16799
16800 return false;
16801 }
16802
16803 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16804 {
16805 struct drm_device *dev = encoder->base.dev;
16806 struct intel_connector *connector;
16807
16808 for_each_connector_on_encoder(dev, &encoder->base, connector)
16809 return connector;
16810
16811 return NULL;
16812 }
16813
16814 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16815 enum transcoder pch_transcoder)
16816 {
16817 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16818 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16819 }
16820
16821 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16822 {
16823 struct drm_device *dev = crtc->base.dev;
16824 struct drm_i915_private *dev_priv = to_i915(dev);
16825 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16826
16827 /* Clear any frame start delays used for debugging left by the BIOS */
16828 if (!transcoder_is_dsi(cpu_transcoder)) {
16829 i915_reg_t reg = PIPECONF(cpu_transcoder);
16830
16831 I915_WRITE(reg,
16832 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16833 }
16834
16835 /* restore vblank interrupts to correct state */
16836 drm_crtc_vblank_reset(&crtc->base);
16837 if (crtc->active) {
16838 struct intel_plane *plane;
16839
16840 drm_crtc_vblank_on(&crtc->base);
16841
16842 /* Disable everything but the primary plane */
16843 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16844 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16845 continue;
16846
16847 plane->disable_plane(&plane->base, &crtc->base);
16848 }
16849 }
16850
16851 /* We need to sanitize the plane -> pipe mapping first because this will
16852 * disable the crtc (and hence change the state) if it is wrong. Note
16853 * that gen4+ has a fixed plane -> pipe mapping. */
16854 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16855 bool plane;
16856
16857 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16858 crtc->base.base.id, crtc->base.name);
16859
16860 /* Pipe has the wrong plane attached and the plane is active.
16861 * Temporarily change the plane mapping and disable everything
16862 * ... */
16863 plane = crtc->plane;
16864 crtc->base.primary->state->visible = true;
16865 crtc->plane = !plane;
16866 intel_crtc_disable_noatomic(&crtc->base);
16867 crtc->plane = plane;
16868 }
16869
16870 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16871 crtc->pipe == PIPE_A && !crtc->active) {
16872 /* BIOS forgot to enable pipe A, this mostly happens after
16873 * resume. Force-enable the pipe to fix this, the update_dpms
16874 * call below we restore the pipe to the right state, but leave
16875 * the required bits on. */
16876 intel_enable_pipe_a(dev);
16877 }
16878
16879 /* Adjust the state of the output pipe according to whether we
16880 * have active connectors/encoders. */
16881 if (crtc->active && !intel_crtc_has_encoders(crtc))
16882 intel_crtc_disable_noatomic(&crtc->base);
16883
16884 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16885 /*
16886 * We start out with underrun reporting disabled to avoid races.
16887 * For correct bookkeeping mark this on active crtcs.
16888 *
16889 * Also on gmch platforms we dont have any hardware bits to
16890 * disable the underrun reporting. Which means we need to start
16891 * out with underrun reporting disabled also on inactive pipes,
16892 * since otherwise we'll complain about the garbage we read when
16893 * e.g. coming up after runtime pm.
16894 *
16895 * No protection against concurrent access is required - at
16896 * worst a fifo underrun happens which also sets this to false.
16897 */
16898 crtc->cpu_fifo_underrun_disabled = true;
16899 /*
16900 * We track the PCH trancoder underrun reporting state
16901 * within the crtc. With crtc for pipe A housing the underrun
16902 * reporting state for PCH transcoder A, crtc for pipe B housing
16903 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16904 * and marking underrun reporting as disabled for the non-existing
16905 * PCH transcoders B and C would prevent enabling the south
16906 * error interrupt (see cpt_can_enable_serr_int()).
16907 */
16908 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16909 crtc->pch_fifo_underrun_disabled = true;
16910 }
16911 }
16912
16913 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16914 {
16915 struct intel_connector *connector;
16916
16917 /* We need to check both for a crtc link (meaning that the
16918 * encoder is active and trying to read from a pipe) and the
16919 * pipe itself being active. */
16920 bool has_active_crtc = encoder->base.crtc &&
16921 to_intel_crtc(encoder->base.crtc)->active;
16922
16923 connector = intel_encoder_find_connector(encoder);
16924 if (connector && !has_active_crtc) {
16925 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16926 encoder->base.base.id,
16927 encoder->base.name);
16928
16929 /* Connector is active, but has no active pipe. This is
16930 * fallout from our resume register restoring. Disable
16931 * the encoder manually again. */
16932 if (encoder->base.crtc) {
16933 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16934
16935 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16936 encoder->base.base.id,
16937 encoder->base.name);
16938 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16939 if (encoder->post_disable)
16940 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16941 }
16942 encoder->base.crtc = NULL;
16943
16944 /* Inconsistent output/port/pipe state happens presumably due to
16945 * a bug in one of the get_hw_state functions. Or someplace else
16946 * in our code, like the register restore mess on resume. Clamp
16947 * things to off as a safer default. */
16948
16949 connector->base.dpms = DRM_MODE_DPMS_OFF;
16950 connector->base.encoder = NULL;
16951 }
16952 /* Enabled encoders without active connectors will be fixed in
16953 * the crtc fixup. */
16954 }
16955
16956 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16957 {
16958 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16959
16960 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16961 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16962 i915_disable_vga(dev_priv);
16963 }
16964 }
16965
16966 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16967 {
16968 /* This function can be called both from intel_modeset_setup_hw_state or
16969 * at a very early point in our resume sequence, where the power well
16970 * structures are not yet restored. Since this function is at a very
16971 * paranoid "someone might have enabled VGA while we were not looking"
16972 * level, just check if the power well is enabled instead of trying to
16973 * follow the "don't touch the power well if we don't need it" policy
16974 * the rest of the driver uses. */
16975 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16976 return;
16977
16978 i915_redisable_vga_power_on(dev_priv);
16979
16980 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16981 }
16982
16983 static bool primary_get_hw_state(struct intel_plane *plane)
16984 {
16985 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16986
16987 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16988 }
16989
16990 /* FIXME read out full plane state for all planes */
16991 static void readout_plane_state(struct intel_crtc *crtc)
16992 {
16993 struct drm_plane *primary = crtc->base.primary;
16994 struct intel_plane_state *plane_state =
16995 to_intel_plane_state(primary->state);
16996
16997 plane_state->base.visible = crtc->active &&
16998 primary_get_hw_state(to_intel_plane(primary));
16999
17000 if (plane_state->base.visible)
17001 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
17002 }
17003
17004 static void intel_modeset_readout_hw_state(struct drm_device *dev)
17005 {
17006 struct drm_i915_private *dev_priv = to_i915(dev);
17007 enum pipe pipe;
17008 struct intel_crtc *crtc;
17009 struct intel_encoder *encoder;
17010 struct intel_connector *connector;
17011 int i;
17012
17013 dev_priv->active_crtcs = 0;
17014
17015 for_each_intel_crtc(dev, crtc) {
17016 struct intel_crtc_state *crtc_state =
17017 to_intel_crtc_state(crtc->base.state);
17018
17019 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
17020 memset(crtc_state, 0, sizeof(*crtc_state));
17021 crtc_state->base.crtc = &crtc->base;
17022
17023 crtc_state->base.active = crtc_state->base.enable =
17024 dev_priv->display.get_pipe_config(crtc, crtc_state);
17025
17026 crtc->base.enabled = crtc_state->base.enable;
17027 crtc->active = crtc_state->base.active;
17028
17029 if (crtc_state->base.active)
17030 dev_priv->active_crtcs |= 1 << crtc->pipe;
17031
17032 readout_plane_state(crtc);
17033
17034 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17035 crtc->base.base.id, crtc->base.name,
17036 enableddisabled(crtc_state->base.active));
17037 }
17038
17039 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17040 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17041
17042 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
17043 &pll->state.hw_state);
17044 pll->state.crtc_mask = 0;
17045 for_each_intel_crtc(dev, crtc) {
17046 struct intel_crtc_state *crtc_state =
17047 to_intel_crtc_state(crtc->base.state);
17048
17049 if (crtc_state->base.active &&
17050 crtc_state->shared_dpll == pll)
17051 pll->state.crtc_mask |= 1 << crtc->pipe;
17052 }
17053 pll->active_mask = pll->state.crtc_mask;
17054
17055 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17056 pll->name, pll->state.crtc_mask, pll->on);
17057 }
17058
17059 for_each_intel_encoder(dev, encoder) {
17060 pipe = 0;
17061
17062 if (encoder->get_hw_state(encoder, &pipe)) {
17063 struct intel_crtc_state *crtc_state;
17064
17065 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17066 crtc_state = to_intel_crtc_state(crtc->base.state);
17067
17068 encoder->base.crtc = &crtc->base;
17069 crtc_state->output_types |= 1 << encoder->type;
17070 encoder->get_config(encoder, crtc_state);
17071 } else {
17072 encoder->base.crtc = NULL;
17073 }
17074
17075 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17076 encoder->base.base.id, encoder->base.name,
17077 enableddisabled(encoder->base.crtc),
17078 pipe_name(pipe));
17079 }
17080
17081 for_each_intel_connector(dev, connector) {
17082 if (connector->get_hw_state(connector)) {
17083 connector->base.dpms = DRM_MODE_DPMS_ON;
17084
17085 encoder = connector->encoder;
17086 connector->base.encoder = &encoder->base;
17087
17088 if (encoder->base.crtc &&
17089 encoder->base.crtc->state->active) {
17090 /*
17091 * This has to be done during hardware readout
17092 * because anything calling .crtc_disable may
17093 * rely on the connector_mask being accurate.
17094 */
17095 encoder->base.crtc->state->connector_mask |=
17096 1 << drm_connector_index(&connector->base);
17097 encoder->base.crtc->state->encoder_mask |=
17098 1 << drm_encoder_index(&encoder->base);
17099 }
17100
17101 } else {
17102 connector->base.dpms = DRM_MODE_DPMS_OFF;
17103 connector->base.encoder = NULL;
17104 }
17105 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17106 connector->base.base.id, connector->base.name,
17107 enableddisabled(connector->base.encoder));
17108 }
17109
17110 for_each_intel_crtc(dev, crtc) {
17111 struct intel_crtc_state *crtc_state =
17112 to_intel_crtc_state(crtc->base.state);
17113 int pixclk = 0;
17114
17115 crtc->base.hwmode = crtc_state->base.adjusted_mode;
17116
17117 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
17118 if (crtc_state->base.active) {
17119 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
17120 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
17121 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
17122
17123 /*
17124 * The initial mode needs to be set in order to keep
17125 * the atomic core happy. It wants a valid mode if the
17126 * crtc's enabled, so we do the above call.
17127 *
17128 * But we don't set all the derived state fully, hence
17129 * set a flag to indicate that a full recalculation is
17130 * needed on the next commit.
17131 */
17132 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
17133
17134 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
17135 pixclk = ilk_pipe_pixel_rate(crtc_state);
17136 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17137 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
17138 else
17139 WARN_ON(dev_priv->display.modeset_calc_cdclk);
17140
17141 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
17142 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
17143 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
17144
17145 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
17146 update_scanline_offset(crtc);
17147 }
17148
17149 dev_priv->min_pixclk[crtc->pipe] = pixclk;
17150
17151 intel_pipe_config_sanity_check(dev_priv, crtc_state);
17152 }
17153 }
17154
17155 /* Scan out the current hw modeset state,
17156 * and sanitizes it to the current state
17157 */
17158 static void
17159 intel_modeset_setup_hw_state(struct drm_device *dev)
17160 {
17161 struct drm_i915_private *dev_priv = to_i915(dev);
17162 enum pipe pipe;
17163 struct intel_crtc *crtc;
17164 struct intel_encoder *encoder;
17165 int i;
17166
17167 intel_modeset_readout_hw_state(dev);
17168
17169 /* HW state is read out, now we need to sanitize this mess. */
17170 for_each_intel_encoder(dev, encoder) {
17171 intel_sanitize_encoder(encoder);
17172 }
17173
17174 for_each_pipe(dev_priv, pipe) {
17175 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17176
17177 intel_sanitize_crtc(crtc);
17178 intel_dump_pipe_config(crtc, crtc->config,
17179 "[setup_hw_state]");
17180 }
17181
17182 intel_modeset_update_connector_atomic_state(dev);
17183
17184 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17185 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17186
17187 if (!pll->on || pll->active_mask)
17188 continue;
17189
17190 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
17191
17192 pll->funcs.disable(dev_priv, pll);
17193 pll->on = false;
17194 }
17195
17196 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17197 vlv_wm_get_hw_state(dev);
17198 else if (IS_GEN9(dev_priv))
17199 skl_wm_get_hw_state(dev);
17200 else if (HAS_PCH_SPLIT(dev_priv))
17201 ilk_wm_get_hw_state(dev);
17202
17203 for_each_intel_crtc(dev, crtc) {
17204 unsigned long put_domains;
17205
17206 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17207 if (WARN_ON(put_domains))
17208 modeset_put_power_domains(dev_priv, put_domains);
17209 }
17210 intel_display_set_init_power(dev_priv, false);
17211
17212 intel_fbc_init_pipe_state(dev_priv);
17213 }
17214
17215 void intel_display_resume(struct drm_device *dev)
17216 {
17217 struct drm_i915_private *dev_priv = to_i915(dev);
17218 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17219 struct drm_modeset_acquire_ctx ctx;
17220 int ret;
17221
17222 dev_priv->modeset_restore_state = NULL;
17223 if (state)
17224 state->acquire_ctx = &ctx;
17225
17226 /*
17227 * This is a cludge because with real atomic modeset mode_config.mutex
17228 * won't be taken. Unfortunately some probed state like
17229 * audio_codec_enable is still protected by mode_config.mutex, so lock
17230 * it here for now.
17231 */
17232 mutex_lock(&dev->mode_config.mutex);
17233 drm_modeset_acquire_init(&ctx, 0);
17234
17235 while (1) {
17236 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17237 if (ret != -EDEADLK)
17238 break;
17239
17240 drm_modeset_backoff(&ctx);
17241 }
17242
17243 if (!ret)
17244 ret = __intel_display_resume(dev, state, &ctx);
17245
17246 drm_modeset_drop_locks(&ctx);
17247 drm_modeset_acquire_fini(&ctx);
17248 mutex_unlock(&dev->mode_config.mutex);
17249
17250 if (ret)
17251 DRM_ERROR("Restoring old state failed with %i\n", ret);
17252 if (state)
17253 drm_atomic_state_put(state);
17254 }
17255
17256 void intel_modeset_gem_init(struct drm_device *dev)
17257 {
17258 struct drm_i915_private *dev_priv = to_i915(dev);
17259
17260 intel_init_gt_powersave(dev_priv);
17261
17262 intel_modeset_init_hw(dev);
17263
17264 intel_setup_overlay(dev_priv);
17265 }
17266
17267 int intel_connector_register(struct drm_connector *connector)
17268 {
17269 struct intel_connector *intel_connector = to_intel_connector(connector);
17270 int ret;
17271
17272 ret = intel_backlight_device_register(intel_connector);
17273 if (ret)
17274 goto err;
17275
17276 return 0;
17277
17278 err:
17279 return ret;
17280 }
17281
17282 void intel_connector_unregister(struct drm_connector *connector)
17283 {
17284 struct intel_connector *intel_connector = to_intel_connector(connector);
17285
17286 intel_backlight_device_unregister(intel_connector);
17287 intel_panel_destroy_backlight(connector);
17288 }
17289
17290 void intel_modeset_cleanup(struct drm_device *dev)
17291 {
17292 struct drm_i915_private *dev_priv = to_i915(dev);
17293
17294 flush_work(&dev_priv->atomic_helper.free_work);
17295 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17296
17297 intel_disable_gt_powersave(dev_priv);
17298
17299 /*
17300 * Interrupts and polling as the first thing to avoid creating havoc.
17301 * Too much stuff here (turning of connectors, ...) would
17302 * experience fancy races otherwise.
17303 */
17304 intel_irq_uninstall(dev_priv);
17305
17306 /*
17307 * Due to the hpd irq storm handling the hotplug work can re-arm the
17308 * poll handlers. Hence disable polling after hpd handling is shut down.
17309 */
17310 drm_kms_helper_poll_fini(dev);
17311
17312 intel_unregister_dsm_handler();
17313
17314 intel_fbc_global_disable(dev_priv);
17315
17316 /* flush any delayed tasks or pending work */
17317 flush_scheduled_work();
17318
17319 drm_mode_config_cleanup(dev);
17320
17321 intel_cleanup_overlay(dev_priv);
17322
17323 intel_cleanup_gt_powersave(dev_priv);
17324
17325 intel_teardown_gmbus(dev_priv);
17326 }
17327
17328 void intel_connector_attach_encoder(struct intel_connector *connector,
17329 struct intel_encoder *encoder)
17330 {
17331 connector->encoder = encoder;
17332 drm_mode_connector_attach_encoder(&connector->base,
17333 &encoder->base);
17334 }
17335
17336 /*
17337 * set vga decode state - true == enable VGA decode
17338 */
17339 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17340 {
17341 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17342 u16 gmch_ctrl;
17343
17344 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17345 DRM_ERROR("failed to read control word\n");
17346 return -EIO;
17347 }
17348
17349 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17350 return 0;
17351
17352 if (state)
17353 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17354 else
17355 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17356
17357 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17358 DRM_ERROR("failed to write control word\n");
17359 return -EIO;
17360 }
17361
17362 return 0;
17363 }
17364
17365 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17366
17367 struct intel_display_error_state {
17368
17369 u32 power_well_driver;
17370
17371 int num_transcoders;
17372
17373 struct intel_cursor_error_state {
17374 u32 control;
17375 u32 position;
17376 u32 base;
17377 u32 size;
17378 } cursor[I915_MAX_PIPES];
17379
17380 struct intel_pipe_error_state {
17381 bool power_domain_on;
17382 u32 source;
17383 u32 stat;
17384 } pipe[I915_MAX_PIPES];
17385
17386 struct intel_plane_error_state {
17387 u32 control;
17388 u32 stride;
17389 u32 size;
17390 u32 pos;
17391 u32 addr;
17392 u32 surface;
17393 u32 tile_offset;
17394 } plane[I915_MAX_PIPES];
17395
17396 struct intel_transcoder_error_state {
17397 bool power_domain_on;
17398 enum transcoder cpu_transcoder;
17399
17400 u32 conf;
17401
17402 u32 htotal;
17403 u32 hblank;
17404 u32 hsync;
17405 u32 vtotal;
17406 u32 vblank;
17407 u32 vsync;
17408 } transcoder[4];
17409 };
17410
17411 struct intel_display_error_state *
17412 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17413 {
17414 struct intel_display_error_state *error;
17415 int transcoders[] = {
17416 TRANSCODER_A,
17417 TRANSCODER_B,
17418 TRANSCODER_C,
17419 TRANSCODER_EDP,
17420 };
17421 int i;
17422
17423 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17424 return NULL;
17425
17426 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17427 if (error == NULL)
17428 return NULL;
17429
17430 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17431 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17432
17433 for_each_pipe(dev_priv, i) {
17434 error->pipe[i].power_domain_on =
17435 __intel_display_power_is_enabled(dev_priv,
17436 POWER_DOMAIN_PIPE(i));
17437 if (!error->pipe[i].power_domain_on)
17438 continue;
17439
17440 error->cursor[i].control = I915_READ(CURCNTR(i));
17441 error->cursor[i].position = I915_READ(CURPOS(i));
17442 error->cursor[i].base = I915_READ(CURBASE(i));
17443
17444 error->plane[i].control = I915_READ(DSPCNTR(i));
17445 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17446 if (INTEL_GEN(dev_priv) <= 3) {
17447 error->plane[i].size = I915_READ(DSPSIZE(i));
17448 error->plane[i].pos = I915_READ(DSPPOS(i));
17449 }
17450 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17451 error->plane[i].addr = I915_READ(DSPADDR(i));
17452 if (INTEL_GEN(dev_priv) >= 4) {
17453 error->plane[i].surface = I915_READ(DSPSURF(i));
17454 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17455 }
17456
17457 error->pipe[i].source = I915_READ(PIPESRC(i));
17458
17459 if (HAS_GMCH_DISPLAY(dev_priv))
17460 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17461 }
17462
17463 /* Note: this does not include DSI transcoders. */
17464 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17465 if (HAS_DDI(dev_priv))
17466 error->num_transcoders++; /* Account for eDP. */
17467
17468 for (i = 0; i < error->num_transcoders; i++) {
17469 enum transcoder cpu_transcoder = transcoders[i];
17470
17471 error->transcoder[i].power_domain_on =
17472 __intel_display_power_is_enabled(dev_priv,
17473 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17474 if (!error->transcoder[i].power_domain_on)
17475 continue;
17476
17477 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17478
17479 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17480 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17481 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17482 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17483 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17484 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17485 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17486 }
17487
17488 return error;
17489 }
17490
17491 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17492
17493 void
17494 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17495 struct drm_i915_private *dev_priv,
17496 struct intel_display_error_state *error)
17497 {
17498 int i;
17499
17500 if (!error)
17501 return;
17502
17503 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17504 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17505 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17506 error->power_well_driver);
17507 for_each_pipe(dev_priv, i) {
17508 err_printf(m, "Pipe [%d]:\n", i);
17509 err_printf(m, " Power: %s\n",
17510 onoff(error->pipe[i].power_domain_on));
17511 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17512 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17513
17514 err_printf(m, "Plane [%d]:\n", i);
17515 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17516 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17517 if (INTEL_GEN(dev_priv) <= 3) {
17518 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17519 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17520 }
17521 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17522 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17523 if (INTEL_GEN(dev_priv) >= 4) {
17524 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17525 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17526 }
17527
17528 err_printf(m, "Cursor [%d]:\n", i);
17529 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17530 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17531 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17532 }
17533
17534 for (i = 0; i < error->num_transcoders; i++) {
17535 err_printf(m, "CPU transcoder: %s\n",
17536 transcoder_name(error->transcoder[i].cpu_transcoder));
17537 err_printf(m, " Power: %s\n",
17538 onoff(error->transcoder[i].power_domain_on));
17539 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17540 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17541 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17542 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17543 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17544 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17545 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17546 }
17547 }
17548
17549 #endif