]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge tag 'v3.6-rc2' into drm-intel-next
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
185 },
186 .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
214 },
215 .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
229 },
230 .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487 {
488 unsigned int val;
489
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
538
539 return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
564
565 return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
599 }
600 return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
617 }
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
631
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
635
636 return false;
637 }
638
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
648 {
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
670
671 return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678
679 {
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
684
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
704 memset(best_clock, 0, sizeof(*best_clock));
705
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
718
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
756
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
793
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
805 return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
872 flag = 0;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
953
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
997 *
998 */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1005
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1028 }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033 return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039 {
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1059 {
1060 u32 val;
1061 bool cur_state;
1062
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1071
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
1095 }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102 {
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126 {
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148 {
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167 {
1168 int reg;
1169 u32 val;
1170
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182 {
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1211 {
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1215
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1230 {
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248 {
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1261 }
1262
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1272 }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277 u32 val;
1278 bool enabled;
1279
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326 {
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342 {
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358 {
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1373 {
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1378
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380 "IBX PCH dp port still using transcoder B\n");
1381 }
1382
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, int reg)
1385 {
1386 u32 val = I915_READ(reg);
1387 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1388 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389 reg, pipe_name(pipe));
1390
1391 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392 "IBX PCH hdmi port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1397 {
1398 int reg;
1399 u32 val;
1400
1401 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1404
1405 reg = PCH_ADPA;
1406 val = I915_READ(reg);
1407 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1408 "PCH VGA enabled on transcoder %c, should be disabled\n",
1409 pipe_name(pipe));
1410
1411 reg = PCH_LVDS;
1412 val = I915_READ(reg);
1413 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1414 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415 pipe_name(pipe));
1416
1417 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1420 }
1421
1422 /**
1423 * intel_enable_pll - enable a PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1426 *
1427 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1428 * make sure the PLL reg is writable first though, since the panel write
1429 * protect mechanism may be enabled.
1430 *
1431 * Note! This is for pre-ILK only.
1432 *
1433 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1434 */
1435 void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437 int reg;
1438 u32 val;
1439
1440 /* No really, not for ILK+ */
1441 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1442
1443 /* PLL is protected by panel, make sure we can write it */
1444 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1445 assert_panel_unlocked(dev_priv, pipe);
1446
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val |= DPLL_VCO_ENABLE;
1450
1451 /* We do this three times for luck */
1452 I915_WRITE(reg, val);
1453 POSTING_READ(reg);
1454 udelay(150); /* wait for warmup */
1455 I915_WRITE(reg, val);
1456 POSTING_READ(reg);
1457 udelay(150); /* wait for warmup */
1458 I915_WRITE(reg, val);
1459 POSTING_READ(reg);
1460 udelay(150); /* wait for warmup */
1461 }
1462
1463 /**
1464 * intel_disable_pll - disable a PLL
1465 * @dev_priv: i915 private structure
1466 * @pipe: pipe PLL to disable
1467 *
1468 * Disable the PLL for @pipe, making sure the pipe is off first.
1469 *
1470 * Note! This is for pre-ILK only.
1471 */
1472 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474 int reg;
1475 u32 val;
1476
1477 /* Don't disable pipe A or pipe A PLLs if needed */
1478 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1479 return;
1480
1481 /* Make sure the pipe isn't still relying on us */
1482 assert_pipe_disabled(dev_priv, pipe);
1483
1484 reg = DPLL(pipe);
1485 val = I915_READ(reg);
1486 val &= ~DPLL_VCO_ENABLE;
1487 I915_WRITE(reg, val);
1488 POSTING_READ(reg);
1489 }
1490
1491 /* SBI access */
1492 static void
1493 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1494 {
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1498 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1499 100)) {
1500 DRM_ERROR("timeout waiting for SBI to become ready\n");
1501 goto out_unlock;
1502 }
1503
1504 I915_WRITE(SBI_ADDR,
1505 (reg << 16));
1506 I915_WRITE(SBI_DATA,
1507 value);
1508 I915_WRITE(SBI_CTL_STAT,
1509 SBI_BUSY |
1510 SBI_CTL_OP_CRWR);
1511
1512 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1513 100)) {
1514 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1515 goto out_unlock;
1516 }
1517
1518 out_unlock:
1519 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1520 }
1521
1522 static u32
1523 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1524 {
1525 unsigned long flags;
1526 u32 value = 0;
1527
1528 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1529 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1530 100)) {
1531 DRM_ERROR("timeout waiting for SBI to become ready\n");
1532 goto out_unlock;
1533 }
1534
1535 I915_WRITE(SBI_ADDR,
1536 (reg << 16));
1537 I915_WRITE(SBI_CTL_STAT,
1538 SBI_BUSY |
1539 SBI_CTL_OP_CRRD);
1540
1541 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1542 100)) {
1543 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1544 goto out_unlock;
1545 }
1546
1547 value = I915_READ(SBI_DATA);
1548
1549 out_unlock:
1550 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1551 return value;
1552 }
1553
1554 /**
1555 * intel_enable_pch_pll - enable PCH PLL
1556 * @dev_priv: i915 private structure
1557 * @pipe: pipe PLL to enable
1558 *
1559 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1560 * drives the transcoder clock.
1561 */
1562 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1563 {
1564 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1565 struct intel_pch_pll *pll;
1566 int reg;
1567 u32 val;
1568
1569 /* PCH PLLs only available on ILK, SNB and IVB */
1570 BUG_ON(dev_priv->info->gen < 5);
1571 pll = intel_crtc->pch_pll;
1572 if (pll == NULL)
1573 return;
1574
1575 if (WARN_ON(pll->refcount == 0))
1576 return;
1577
1578 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1579 pll->pll_reg, pll->active, pll->on,
1580 intel_crtc->base.base.id);
1581
1582 /* PCH refclock must be enabled first */
1583 assert_pch_refclk_enabled(dev_priv);
1584
1585 if (pll->active++ && pll->on) {
1586 assert_pch_pll_enabled(dev_priv, pll, NULL);
1587 return;
1588 }
1589
1590 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1591
1592 reg = pll->pll_reg;
1593 val = I915_READ(reg);
1594 val |= DPLL_VCO_ENABLE;
1595 I915_WRITE(reg, val);
1596 POSTING_READ(reg);
1597 udelay(200);
1598
1599 pll->on = true;
1600 }
1601
1602 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1603 {
1604 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1605 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1606 int reg;
1607 u32 val;
1608
1609 /* PCH only available on ILK+ */
1610 BUG_ON(dev_priv->info->gen < 5);
1611 if (pll == NULL)
1612 return;
1613
1614 if (WARN_ON(pll->refcount == 0))
1615 return;
1616
1617 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1618 pll->pll_reg, pll->active, pll->on,
1619 intel_crtc->base.base.id);
1620
1621 if (WARN_ON(pll->active == 0)) {
1622 assert_pch_pll_disabled(dev_priv, pll, NULL);
1623 return;
1624 }
1625
1626 if (--pll->active) {
1627 assert_pch_pll_enabled(dev_priv, pll, NULL);
1628 return;
1629 }
1630
1631 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1632
1633 /* Make sure transcoder isn't still depending on us */
1634 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1635
1636 reg = pll->pll_reg;
1637 val = I915_READ(reg);
1638 val &= ~DPLL_VCO_ENABLE;
1639 I915_WRITE(reg, val);
1640 POSTING_READ(reg);
1641 udelay(200);
1642
1643 pll->on = false;
1644 }
1645
1646 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1647 enum pipe pipe)
1648 {
1649 int reg;
1650 u32 val, pipeconf_val;
1651 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1652
1653 /* PCH only available on ILK+ */
1654 BUG_ON(dev_priv->info->gen < 5);
1655
1656 /* Make sure PCH DPLL is enabled */
1657 assert_pch_pll_enabled(dev_priv,
1658 to_intel_crtc(crtc)->pch_pll,
1659 to_intel_crtc(crtc));
1660
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1666 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1667 return;
1668 }
1669 reg = TRANSCONF(pipe);
1670 val = I915_READ(reg);
1671 pipeconf_val = I915_READ(PIPECONF(pipe));
1672
1673 if (HAS_PCH_IBX(dev_priv->dev)) {
1674 /*
1675 * make the BPC in transcoder be consistent with
1676 * that in pipeconf reg.
1677 */
1678 val &= ~PIPE_BPC_MASK;
1679 val |= pipeconf_val & PIPE_BPC_MASK;
1680 }
1681
1682 val &= ~TRANS_INTERLACE_MASK;
1683 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1684 if (HAS_PCH_IBX(dev_priv->dev) &&
1685 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1686 val |= TRANS_LEGACY_INTERLACED_ILK;
1687 else
1688 val |= TRANS_INTERLACED;
1689 else
1690 val |= TRANS_PROGRESSIVE;
1691
1692 I915_WRITE(reg, val | TRANS_ENABLE);
1693 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1694 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1695 }
1696
1697 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1698 enum pipe pipe)
1699 {
1700 int reg;
1701 u32 val;
1702
1703 /* FDI relies on the transcoder */
1704 assert_fdi_tx_disabled(dev_priv, pipe);
1705 assert_fdi_rx_disabled(dev_priv, pipe);
1706
1707 /* Ports must be off as well */
1708 assert_pch_ports_disabled(dev_priv, pipe);
1709
1710 reg = TRANSCONF(pipe);
1711 val = I915_READ(reg);
1712 val &= ~TRANS_ENABLE;
1713 I915_WRITE(reg, val);
1714 /* wait for PCH transcoder off, transcoder state */
1715 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1716 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1717 }
1718
1719 /**
1720 * intel_enable_pipe - enable a pipe, asserting requirements
1721 * @dev_priv: i915 private structure
1722 * @pipe: pipe to enable
1723 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1724 *
1725 * Enable @pipe, making sure that various hardware specific requirements
1726 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1727 *
1728 * @pipe should be %PIPE_A or %PIPE_B.
1729 *
1730 * Will wait until the pipe is actually running (i.e. first vblank) before
1731 * returning.
1732 */
1733 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1734 bool pch_port)
1735 {
1736 int reg;
1737 u32 val;
1738
1739 /*
1740 * A pipe without a PLL won't actually be able to drive bits from
1741 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1742 * need the check.
1743 */
1744 if (!HAS_PCH_SPLIT(dev_priv->dev))
1745 assert_pll_enabled(dev_priv, pipe);
1746 else {
1747 if (pch_port) {
1748 /* if driving the PCH, we need FDI enabled */
1749 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1750 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1751 }
1752 /* FIXME: assert CPU port conditions for SNB+ */
1753 }
1754
1755 reg = PIPECONF(pipe);
1756 val = I915_READ(reg);
1757 if (val & PIPECONF_ENABLE)
1758 return;
1759
1760 I915_WRITE(reg, val | PIPECONF_ENABLE);
1761 intel_wait_for_vblank(dev_priv->dev, pipe);
1762 }
1763
1764 /**
1765 * intel_disable_pipe - disable a pipe, asserting requirements
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe to disable
1768 *
1769 * Disable @pipe, making sure that various hardware specific requirements
1770 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1771 *
1772 * @pipe should be %PIPE_A or %PIPE_B.
1773 *
1774 * Will wait until the pipe has shut down before returning.
1775 */
1776 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1777 enum pipe pipe)
1778 {
1779 int reg;
1780 u32 val;
1781
1782 /*
1783 * Make sure planes won't keep trying to pump pixels to us,
1784 * or we might hang the display.
1785 */
1786 assert_planes_disabled(dev_priv, pipe);
1787
1788 /* Don't disable pipe A or pipe A PLLs if needed */
1789 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1790 return;
1791
1792 reg = PIPECONF(pipe);
1793 val = I915_READ(reg);
1794 if ((val & PIPECONF_ENABLE) == 0)
1795 return;
1796
1797 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1798 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1799 }
1800
1801 /*
1802 * Plane regs are double buffered, going from enabled->disabled needs a
1803 * trigger in order to latch. The display address reg provides this.
1804 */
1805 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1806 enum plane plane)
1807 {
1808 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1809 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1810 }
1811
1812 /**
1813 * intel_enable_plane - enable a display plane on a given pipe
1814 * @dev_priv: i915 private structure
1815 * @plane: plane to enable
1816 * @pipe: pipe being fed
1817 *
1818 * Enable @plane on @pipe, making sure that @pipe is running first.
1819 */
1820 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane, enum pipe pipe)
1822 {
1823 int reg;
1824 u32 val;
1825
1826 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1827 assert_pipe_enabled(dev_priv, pipe);
1828
1829 reg = DSPCNTR(plane);
1830 val = I915_READ(reg);
1831 if (val & DISPLAY_PLANE_ENABLE)
1832 return;
1833
1834 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1835 intel_flush_display_plane(dev_priv, plane);
1836 intel_wait_for_vblank(dev_priv->dev, pipe);
1837 }
1838
1839 /**
1840 * intel_disable_plane - disable a display plane
1841 * @dev_priv: i915 private structure
1842 * @plane: plane to disable
1843 * @pipe: pipe consuming the data
1844 *
1845 * Disable @plane; should be an independent operation.
1846 */
1847 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1848 enum plane plane, enum pipe pipe)
1849 {
1850 int reg;
1851 u32 val;
1852
1853 reg = DSPCNTR(plane);
1854 val = I915_READ(reg);
1855 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1856 return;
1857
1858 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1859 intel_flush_display_plane(dev_priv, plane);
1860 intel_wait_for_vblank(dev_priv->dev, pipe);
1861 }
1862
1863 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1864 enum pipe pipe, int reg, u32 port_sel)
1865 {
1866 u32 val = I915_READ(reg);
1867 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1868 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1869 I915_WRITE(reg, val & ~DP_PORT_EN);
1870 }
1871 }
1872
1873 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1874 enum pipe pipe, int reg)
1875 {
1876 u32 val = I915_READ(reg);
1877 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1878 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1879 reg, pipe);
1880 I915_WRITE(reg, val & ~PORT_ENABLE);
1881 }
1882 }
1883
1884 /* Disable any ports connected to this transcoder */
1885 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1886 enum pipe pipe)
1887 {
1888 u32 reg, val;
1889
1890 val = I915_READ(PCH_PP_CONTROL);
1891 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1892
1893 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1894 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1895 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1896
1897 reg = PCH_ADPA;
1898 val = I915_READ(reg);
1899 if (adpa_pipe_enabled(dev_priv, val, pipe))
1900 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1901
1902 reg = PCH_LVDS;
1903 val = I915_READ(reg);
1904 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1905 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1906 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1907 POSTING_READ(reg);
1908 udelay(100);
1909 }
1910
1911 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1912 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1913 disable_pch_hdmi(dev_priv, pipe, HDMID);
1914 }
1915
1916 int
1917 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1918 struct drm_i915_gem_object *obj,
1919 struct intel_ring_buffer *pipelined)
1920 {
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 u32 alignment;
1923 int ret;
1924
1925 switch (obj->tiling_mode) {
1926 case I915_TILING_NONE:
1927 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1928 alignment = 128 * 1024;
1929 else if (INTEL_INFO(dev)->gen >= 4)
1930 alignment = 4 * 1024;
1931 else
1932 alignment = 64 * 1024;
1933 break;
1934 case I915_TILING_X:
1935 /* pin() will align the object as required by fence */
1936 alignment = 0;
1937 break;
1938 case I915_TILING_Y:
1939 /* FIXME: Is this true? */
1940 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1941 return -EINVAL;
1942 default:
1943 BUG();
1944 }
1945
1946 dev_priv->mm.interruptible = false;
1947 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948 if (ret)
1949 goto err_interruptible;
1950
1951 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952 * fence, whereas 965+ only requires a fence if using
1953 * framebuffer compression. For simplicity, we always install
1954 * a fence as the cost is not that onerous.
1955 */
1956 ret = i915_gem_object_get_fence(obj);
1957 if (ret)
1958 goto err_unpin;
1959
1960 i915_gem_object_pin_fence(obj);
1961
1962 dev_priv->mm.interruptible = true;
1963 return 0;
1964
1965 err_unpin:
1966 i915_gem_object_unpin(obj);
1967 err_interruptible:
1968 dev_priv->mm.interruptible = true;
1969 return ret;
1970 }
1971
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1973 {
1974 i915_gem_object_unpin_fence(obj);
1975 i915_gem_object_unpin(obj);
1976 }
1977
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979 * is assumed to be a power-of-two. */
1980 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1981 unsigned int bpp,
1982 unsigned int pitch)
1983 {
1984 int tile_rows, tiles;
1985
1986 tile_rows = *y / 8;
1987 *y %= 8;
1988 tiles = *x / (512/bpp);
1989 *x %= 512/bpp;
1990
1991 return tile_rows * pitch * 8 + tiles * 4096;
1992 }
1993
1994 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1995 int x, int y)
1996 {
1997 struct drm_device *dev = crtc->dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2000 struct intel_framebuffer *intel_fb;
2001 struct drm_i915_gem_object *obj;
2002 int plane = intel_crtc->plane;
2003 unsigned long linear_offset;
2004 u32 dspcntr;
2005 u32 reg;
2006
2007 switch (plane) {
2008 case 0:
2009 case 1:
2010 break;
2011 default:
2012 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2013 return -EINVAL;
2014 }
2015
2016 intel_fb = to_intel_framebuffer(fb);
2017 obj = intel_fb->obj;
2018
2019 reg = DSPCNTR(plane);
2020 dspcntr = I915_READ(reg);
2021 /* Mask out pixel format bits in case we change it */
2022 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023 switch (fb->bits_per_pixel) {
2024 case 8:
2025 dspcntr |= DISPPLANE_8BPP;
2026 break;
2027 case 16:
2028 if (fb->depth == 15)
2029 dspcntr |= DISPPLANE_15_16BPP;
2030 else
2031 dspcntr |= DISPPLANE_16BPP;
2032 break;
2033 case 24:
2034 case 32:
2035 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2036 break;
2037 default:
2038 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2039 return -EINVAL;
2040 }
2041 if (INTEL_INFO(dev)->gen >= 4) {
2042 if (obj->tiling_mode != I915_TILING_NONE)
2043 dspcntr |= DISPPLANE_TILED;
2044 else
2045 dspcntr &= ~DISPPLANE_TILED;
2046 }
2047
2048 I915_WRITE(reg, dspcntr);
2049
2050 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2051
2052 if (INTEL_INFO(dev)->gen >= 4) {
2053 intel_crtc->dspaddr_offset =
2054 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2055 fb->bits_per_pixel / 8,
2056 fb->pitches[0]);
2057 linear_offset -= intel_crtc->dspaddr_offset;
2058 } else {
2059 intel_crtc->dspaddr_offset = linear_offset;
2060 }
2061
2062 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2063 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2064 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2065 if (INTEL_INFO(dev)->gen >= 4) {
2066 I915_MODIFY_DISPBASE(DSPSURF(plane),
2067 obj->gtt_offset + intel_crtc->dspaddr_offset);
2068 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2069 I915_WRITE(DSPLINOFF(plane), linear_offset);
2070 } else
2071 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2072 POSTING_READ(reg);
2073
2074 return 0;
2075 }
2076
2077 static int ironlake_update_plane(struct drm_crtc *crtc,
2078 struct drm_framebuffer *fb, int x, int y)
2079 {
2080 struct drm_device *dev = crtc->dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083 struct intel_framebuffer *intel_fb;
2084 struct drm_i915_gem_object *obj;
2085 int plane = intel_crtc->plane;
2086 unsigned long linear_offset;
2087 u32 dspcntr;
2088 u32 reg;
2089
2090 switch (plane) {
2091 case 0:
2092 case 1:
2093 case 2:
2094 break;
2095 default:
2096 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2097 return -EINVAL;
2098 }
2099
2100 intel_fb = to_intel_framebuffer(fb);
2101 obj = intel_fb->obj;
2102
2103 reg = DSPCNTR(plane);
2104 dspcntr = I915_READ(reg);
2105 /* Mask out pixel format bits in case we change it */
2106 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2107 switch (fb->bits_per_pixel) {
2108 case 8:
2109 dspcntr |= DISPPLANE_8BPP;
2110 break;
2111 case 16:
2112 if (fb->depth != 16)
2113 return -EINVAL;
2114
2115 dspcntr |= DISPPLANE_16BPP;
2116 break;
2117 case 24:
2118 case 32:
2119 if (fb->depth == 24)
2120 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121 else if (fb->depth == 30)
2122 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2123 else
2124 return -EINVAL;
2125 break;
2126 default:
2127 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2128 return -EINVAL;
2129 }
2130
2131 if (obj->tiling_mode != I915_TILING_NONE)
2132 dspcntr |= DISPPLANE_TILED;
2133 else
2134 dspcntr &= ~DISPPLANE_TILED;
2135
2136 /* must disable */
2137 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2138
2139 I915_WRITE(reg, dspcntr);
2140
2141 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2142 intel_crtc->dspaddr_offset =
2143 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2144 fb->bits_per_pixel / 8,
2145 fb->pitches[0]);
2146 linear_offset -= intel_crtc->dspaddr_offset;
2147
2148 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2149 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2150 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2151 I915_MODIFY_DISPBASE(DSPSURF(plane),
2152 obj->gtt_offset + intel_crtc->dspaddr_offset);
2153 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2154 I915_WRITE(DSPLINOFF(plane), linear_offset);
2155 POSTING_READ(reg);
2156
2157 return 0;
2158 }
2159
2160 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2161 static int
2162 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2163 int x, int y, enum mode_set_atomic state)
2164 {
2165 struct drm_device *dev = crtc->dev;
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167
2168 if (dev_priv->display.disable_fbc)
2169 dev_priv->display.disable_fbc(dev);
2170 intel_increase_pllclock(crtc);
2171
2172 return dev_priv->display.update_plane(crtc, fb, x, y);
2173 }
2174
2175 static int
2176 intel_finish_fb(struct drm_framebuffer *old_fb)
2177 {
2178 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2180 bool was_interruptible = dev_priv->mm.interruptible;
2181 int ret;
2182
2183 wait_event(dev_priv->pending_flip_queue,
2184 atomic_read(&dev_priv->mm.wedged) ||
2185 atomic_read(&obj->pending_flip) == 0);
2186
2187 /* Big Hammer, we also need to ensure that any pending
2188 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2189 * current scanout is retired before unpinning the old
2190 * framebuffer.
2191 *
2192 * This should only fail upon a hung GPU, in which case we
2193 * can safely continue.
2194 */
2195 dev_priv->mm.interruptible = false;
2196 ret = i915_gem_object_finish_gpu(obj);
2197 dev_priv->mm.interruptible = was_interruptible;
2198
2199 return ret;
2200 }
2201
2202 static int
2203 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2204 struct drm_framebuffer *old_fb)
2205 {
2206 struct drm_device *dev = crtc->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_i915_master_private *master_priv;
2209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210 int ret;
2211
2212 /* no fb bound */
2213 if (!crtc->fb) {
2214 DRM_ERROR("No FB bound\n");
2215 return 0;
2216 }
2217
2218 if(intel_crtc->plane > dev_priv->num_pipe) {
2219 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2220 intel_crtc->plane,
2221 dev_priv->num_pipe);
2222 return -EINVAL;
2223 }
2224
2225 mutex_lock(&dev->struct_mutex);
2226 ret = intel_pin_and_fence_fb_obj(dev,
2227 to_intel_framebuffer(crtc->fb)->obj,
2228 NULL);
2229 if (ret != 0) {
2230 mutex_unlock(&dev->struct_mutex);
2231 DRM_ERROR("pin & fence failed\n");
2232 return ret;
2233 }
2234
2235 if (old_fb)
2236 intel_finish_fb(old_fb);
2237
2238 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2239 if (ret) {
2240 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2241 mutex_unlock(&dev->struct_mutex);
2242 DRM_ERROR("failed to update base address\n");
2243 return ret;
2244 }
2245
2246 if (old_fb) {
2247 intel_wait_for_vblank(dev, intel_crtc->pipe);
2248 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2249 }
2250
2251 intel_update_fbc(dev);
2252 mutex_unlock(&dev->struct_mutex);
2253
2254 if (!dev->primary->master)
2255 return 0;
2256
2257 master_priv = dev->primary->master->driver_priv;
2258 if (!master_priv->sarea_priv)
2259 return 0;
2260
2261 if (intel_crtc->pipe) {
2262 master_priv->sarea_priv->pipeB_x = x;
2263 master_priv->sarea_priv->pipeB_y = y;
2264 } else {
2265 master_priv->sarea_priv->pipeA_x = x;
2266 master_priv->sarea_priv->pipeA_y = y;
2267 }
2268
2269 return 0;
2270 }
2271
2272 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2273 {
2274 struct drm_device *dev = crtc->dev;
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 u32 dpa_ctl;
2277
2278 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2279 dpa_ctl = I915_READ(DP_A);
2280 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2281
2282 if (clock < 200000) {
2283 u32 temp;
2284 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2285 /* workaround for 160Mhz:
2286 1) program 0x4600c bits 15:0 = 0x8124
2287 2) program 0x46010 bit 0 = 1
2288 3) program 0x46034 bit 24 = 1
2289 4) program 0x64000 bit 14 = 1
2290 */
2291 temp = I915_READ(0x4600c);
2292 temp &= 0xffff0000;
2293 I915_WRITE(0x4600c, temp | 0x8124);
2294
2295 temp = I915_READ(0x46010);
2296 I915_WRITE(0x46010, temp | 1);
2297
2298 temp = I915_READ(0x46034);
2299 I915_WRITE(0x46034, temp | (1 << 24));
2300 } else {
2301 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2302 }
2303 I915_WRITE(DP_A, dpa_ctl);
2304
2305 POSTING_READ(DP_A);
2306 udelay(500);
2307 }
2308
2309 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2310 {
2311 struct drm_device *dev = crtc->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314 int pipe = intel_crtc->pipe;
2315 u32 reg, temp;
2316
2317 /* enable normal train */
2318 reg = FDI_TX_CTL(pipe);
2319 temp = I915_READ(reg);
2320 if (IS_IVYBRIDGE(dev)) {
2321 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2322 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2323 } else {
2324 temp &= ~FDI_LINK_TRAIN_NONE;
2325 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2326 }
2327 I915_WRITE(reg, temp);
2328
2329 reg = FDI_RX_CTL(pipe);
2330 temp = I915_READ(reg);
2331 if (HAS_PCH_CPT(dev)) {
2332 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2333 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2334 } else {
2335 temp &= ~FDI_LINK_TRAIN_NONE;
2336 temp |= FDI_LINK_TRAIN_NONE;
2337 }
2338 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2339
2340 /* wait one idle pattern time */
2341 POSTING_READ(reg);
2342 udelay(1000);
2343
2344 /* IVB wants error correction enabled */
2345 if (IS_IVYBRIDGE(dev))
2346 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2347 FDI_FE_ERRC_ENABLE);
2348 }
2349
2350 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2351 {
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 flags = I915_READ(SOUTH_CHICKEN1);
2354
2355 flags |= FDI_PHASE_SYNC_OVR(pipe);
2356 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2357 flags |= FDI_PHASE_SYNC_EN(pipe);
2358 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2359 POSTING_READ(SOUTH_CHICKEN1);
2360 }
2361
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2364 {
2365 struct drm_device *dev = crtc->dev;
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 int pipe = intel_crtc->pipe;
2369 int plane = intel_crtc->plane;
2370 u32 reg, temp, tries;
2371
2372 /* FDI needs bits from pipe & plane first */
2373 assert_pipe_enabled(dev_priv, pipe);
2374 assert_plane_enabled(dev_priv, plane);
2375
2376 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377 for train result */
2378 reg = FDI_RX_IMR(pipe);
2379 temp = I915_READ(reg);
2380 temp &= ~FDI_RX_SYMBOL_LOCK;
2381 temp &= ~FDI_RX_BIT_LOCK;
2382 I915_WRITE(reg, temp);
2383 I915_READ(reg);
2384 udelay(150);
2385
2386 /* enable CPU FDI TX and PCH FDI RX */
2387 reg = FDI_TX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~(7 << 19);
2390 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_PATTERN_1;
2393 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395 reg = FDI_RX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_PATTERN_1;
2399 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401 POSTING_READ(reg);
2402 udelay(150);
2403
2404 /* Ironlake workaround, enable clock pointer after FDI enable*/
2405 if (HAS_PCH_IBX(dev)) {
2406 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2407 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2408 FDI_RX_PHASE_SYNC_POINTER_EN);
2409 }
2410
2411 reg = FDI_RX_IIR(pipe);
2412 for (tries = 0; tries < 5; tries++) {
2413 temp = I915_READ(reg);
2414 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2415
2416 if ((temp & FDI_RX_BIT_LOCK)) {
2417 DRM_DEBUG_KMS("FDI train 1 done.\n");
2418 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2419 break;
2420 }
2421 }
2422 if (tries == 5)
2423 DRM_ERROR("FDI train 1 fail!\n");
2424
2425 /* Train 2 */
2426 reg = FDI_TX_CTL(pipe);
2427 temp = I915_READ(reg);
2428 temp &= ~FDI_LINK_TRAIN_NONE;
2429 temp |= FDI_LINK_TRAIN_PATTERN_2;
2430 I915_WRITE(reg, temp);
2431
2432 reg = FDI_RX_CTL(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_LINK_TRAIN_NONE;
2435 temp |= FDI_LINK_TRAIN_PATTERN_2;
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
2439 udelay(150);
2440
2441 reg = FDI_RX_IIR(pipe);
2442 for (tries = 0; tries < 5; tries++) {
2443 temp = I915_READ(reg);
2444 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2445
2446 if (temp & FDI_RX_SYMBOL_LOCK) {
2447 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2448 DRM_DEBUG_KMS("FDI train 2 done.\n");
2449 break;
2450 }
2451 }
2452 if (tries == 5)
2453 DRM_ERROR("FDI train 2 fail!\n");
2454
2455 DRM_DEBUG_KMS("FDI train done\n");
2456
2457 }
2458
2459 static const int snb_b_fdi_train_param[] = {
2460 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2461 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2462 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2463 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2464 };
2465
2466 /* The FDI link training functions for SNB/Cougarpoint. */
2467 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2468 {
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2472 int pipe = intel_crtc->pipe;
2473 u32 reg, temp, i, retry;
2474
2475 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2476 for train result */
2477 reg = FDI_RX_IMR(pipe);
2478 temp = I915_READ(reg);
2479 temp &= ~FDI_RX_SYMBOL_LOCK;
2480 temp &= ~FDI_RX_BIT_LOCK;
2481 I915_WRITE(reg, temp);
2482
2483 POSTING_READ(reg);
2484 udelay(150);
2485
2486 /* enable CPU FDI TX and PCH FDI RX */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2494 /* SNB-B */
2495 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2496 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 if (HAS_PCH_CPT(dev))
2513 cpt_phase_pointer_enable(dev, pipe);
2514
2515 for (i = 0; i < 4; i++) {
2516 reg = FDI_TX_CTL(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2519 temp |= snb_b_fdi_train_param[i];
2520 I915_WRITE(reg, temp);
2521
2522 POSTING_READ(reg);
2523 udelay(500);
2524
2525 for (retry = 0; retry < 5; retry++) {
2526 reg = FDI_RX_IIR(pipe);
2527 temp = I915_READ(reg);
2528 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2529 if (temp & FDI_RX_BIT_LOCK) {
2530 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2531 DRM_DEBUG_KMS("FDI train 1 done.\n");
2532 break;
2533 }
2534 udelay(50);
2535 }
2536 if (retry < 5)
2537 break;
2538 }
2539 if (i == 4)
2540 DRM_ERROR("FDI train 1 fail!\n");
2541
2542 /* Train 2 */
2543 reg = FDI_TX_CTL(pipe);
2544 temp = I915_READ(reg);
2545 temp &= ~FDI_LINK_TRAIN_NONE;
2546 temp |= FDI_LINK_TRAIN_PATTERN_2;
2547 if (IS_GEN6(dev)) {
2548 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2549 /* SNB-B */
2550 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2551 }
2552 I915_WRITE(reg, temp);
2553
2554 reg = FDI_RX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 if (HAS_PCH_CPT(dev)) {
2557 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2559 } else {
2560 temp &= ~FDI_LINK_TRAIN_NONE;
2561 temp |= FDI_LINK_TRAIN_PATTERN_2;
2562 }
2563 I915_WRITE(reg, temp);
2564
2565 POSTING_READ(reg);
2566 udelay(150);
2567
2568 for (i = 0; i < 4; i++) {
2569 reg = FDI_TX_CTL(pipe);
2570 temp = I915_READ(reg);
2571 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2572 temp |= snb_b_fdi_train_param[i];
2573 I915_WRITE(reg, temp);
2574
2575 POSTING_READ(reg);
2576 udelay(500);
2577
2578 for (retry = 0; retry < 5; retry++) {
2579 reg = FDI_RX_IIR(pipe);
2580 temp = I915_READ(reg);
2581 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582 if (temp & FDI_RX_SYMBOL_LOCK) {
2583 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2584 DRM_DEBUG_KMS("FDI train 2 done.\n");
2585 break;
2586 }
2587 udelay(50);
2588 }
2589 if (retry < 5)
2590 break;
2591 }
2592 if (i == 4)
2593 DRM_ERROR("FDI train 2 fail!\n");
2594
2595 DRM_DEBUG_KMS("FDI train done.\n");
2596 }
2597
2598 /* Manual link training for Ivy Bridge A0 parts */
2599 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2600 {
2601 struct drm_device *dev = crtc->dev;
2602 struct drm_i915_private *dev_priv = dev->dev_private;
2603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2604 int pipe = intel_crtc->pipe;
2605 u32 reg, temp, i;
2606
2607 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2608 for train result */
2609 reg = FDI_RX_IMR(pipe);
2610 temp = I915_READ(reg);
2611 temp &= ~FDI_RX_SYMBOL_LOCK;
2612 temp &= ~FDI_RX_BIT_LOCK;
2613 I915_WRITE(reg, temp);
2614
2615 POSTING_READ(reg);
2616 udelay(150);
2617
2618 /* enable CPU FDI TX and PCH FDI RX */
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~(7 << 19);
2622 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2623 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2625 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2626 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2627 temp |= FDI_COMPOSITE_SYNC;
2628 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2629
2630 reg = FDI_RX_CTL(pipe);
2631 temp = I915_READ(reg);
2632 temp &= ~FDI_LINK_TRAIN_AUTO;
2633 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635 temp |= FDI_COMPOSITE_SYNC;
2636 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
2641 if (HAS_PCH_CPT(dev))
2642 cpt_phase_pointer_enable(dev, pipe);
2643
2644 for (i = 0; i < 4; i++) {
2645 reg = FDI_TX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= snb_b_fdi_train_param[i];
2649 I915_WRITE(reg, temp);
2650
2651 POSTING_READ(reg);
2652 udelay(500);
2653
2654 reg = FDI_RX_IIR(pipe);
2655 temp = I915_READ(reg);
2656 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2657
2658 if (temp & FDI_RX_BIT_LOCK ||
2659 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2660 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2661 DRM_DEBUG_KMS("FDI train 1 done.\n");
2662 break;
2663 }
2664 }
2665 if (i == 4)
2666 DRM_ERROR("FDI train 1 fail!\n");
2667
2668 /* Train 2 */
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2672 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2673 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2675 I915_WRITE(reg, temp);
2676
2677 reg = FDI_RX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2680 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2681 I915_WRITE(reg, temp);
2682
2683 POSTING_READ(reg);
2684 udelay(150);
2685
2686 for (i = 0; i < 4; i++) {
2687 reg = FDI_TX_CTL(pipe);
2688 temp = I915_READ(reg);
2689 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690 temp |= snb_b_fdi_train_param[i];
2691 I915_WRITE(reg, temp);
2692
2693 POSTING_READ(reg);
2694 udelay(500);
2695
2696 reg = FDI_RX_IIR(pipe);
2697 temp = I915_READ(reg);
2698 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2699
2700 if (temp & FDI_RX_SYMBOL_LOCK) {
2701 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2702 DRM_DEBUG_KMS("FDI train 2 done.\n");
2703 break;
2704 }
2705 }
2706 if (i == 4)
2707 DRM_ERROR("FDI train 2 fail!\n");
2708
2709 DRM_DEBUG_KMS("FDI train done.\n");
2710 }
2711
2712 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2713 {
2714 struct drm_device *dev = crtc->dev;
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2717 int pipe = intel_crtc->pipe;
2718 u32 reg, temp;
2719
2720 /* Write the TU size bits so error detection works */
2721 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2722 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2723
2724 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2725 reg = FDI_RX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~((0x7 << 19) | (0x7 << 16));
2728 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2730 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2731
2732 POSTING_READ(reg);
2733 udelay(200);
2734
2735 /* Switch from Rawclk to PCDclk */
2736 temp = I915_READ(reg);
2737 I915_WRITE(reg, temp | FDI_PCDCLK);
2738
2739 POSTING_READ(reg);
2740 udelay(200);
2741
2742 /* On Haswell, the PLL configuration for ports and pipes is handled
2743 * separately, as part of DDI setup */
2744 if (!IS_HASWELL(dev)) {
2745 /* Enable CPU FDI TX PLL, always on for Ironlake */
2746 reg = FDI_TX_CTL(pipe);
2747 temp = I915_READ(reg);
2748 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2749 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2750
2751 POSTING_READ(reg);
2752 udelay(100);
2753 }
2754 }
2755 }
2756
2757 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 u32 flags = I915_READ(SOUTH_CHICKEN1);
2761
2762 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2763 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2764 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2765 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2766 POSTING_READ(SOUTH_CHICKEN1);
2767 }
2768 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2769 {
2770 struct drm_device *dev = crtc->dev;
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773 int pipe = intel_crtc->pipe;
2774 u32 reg, temp;
2775
2776 /* disable CPU FDI tx and PCH FDI rx */
2777 reg = FDI_TX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2780 POSTING_READ(reg);
2781
2782 reg = FDI_RX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 temp &= ~(0x7 << 16);
2785 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2786 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2787
2788 POSTING_READ(reg);
2789 udelay(100);
2790
2791 /* Ironlake workaround, disable clock pointer after downing FDI */
2792 if (HAS_PCH_IBX(dev)) {
2793 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2794 I915_WRITE(FDI_RX_CHICKEN(pipe),
2795 I915_READ(FDI_RX_CHICKEN(pipe) &
2796 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2797 } else if (HAS_PCH_CPT(dev)) {
2798 cpt_phase_pointer_disable(dev, pipe);
2799 }
2800
2801 /* still set train pattern 1 */
2802 reg = FDI_TX_CTL(pipe);
2803 temp = I915_READ(reg);
2804 temp &= ~FDI_LINK_TRAIN_NONE;
2805 temp |= FDI_LINK_TRAIN_PATTERN_1;
2806 I915_WRITE(reg, temp);
2807
2808 reg = FDI_RX_CTL(pipe);
2809 temp = I915_READ(reg);
2810 if (HAS_PCH_CPT(dev)) {
2811 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2813 } else {
2814 temp &= ~FDI_LINK_TRAIN_NONE;
2815 temp |= FDI_LINK_TRAIN_PATTERN_1;
2816 }
2817 /* BPC in FDI rx is consistent with that in PIPECONF */
2818 temp &= ~(0x07 << 16);
2819 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2820 I915_WRITE(reg, temp);
2821
2822 POSTING_READ(reg);
2823 udelay(100);
2824 }
2825
2826 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829
2830 if (crtc->fb == NULL)
2831 return;
2832
2833 mutex_lock(&dev->struct_mutex);
2834 intel_finish_fb(crtc->fb);
2835 mutex_unlock(&dev->struct_mutex);
2836 }
2837
2838 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2839 {
2840 struct drm_device *dev = crtc->dev;
2841 struct intel_encoder *intel_encoder;
2842
2843 /*
2844 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2845 * must be driven by its own crtc; no sharing is possible.
2846 */
2847 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2848
2849 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2850 * CPU handles all others */
2851 if (IS_HASWELL(dev)) {
2852 /* It is still unclear how this will work on PPT, so throw up a warning */
2853 WARN_ON(!HAS_PCH_LPT(dev));
2854
2855 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2856 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2857 return true;
2858 } else {
2859 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2860 intel_encoder->type);
2861 return false;
2862 }
2863 }
2864
2865 switch (intel_encoder->type) {
2866 case INTEL_OUTPUT_EDP:
2867 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2868 return false;
2869 continue;
2870 }
2871 }
2872
2873 return true;
2874 }
2875
2876 /* Program iCLKIP clock to the desired frequency */
2877 static void lpt_program_iclkip(struct drm_crtc *crtc)
2878 {
2879 struct drm_device *dev = crtc->dev;
2880 struct drm_i915_private *dev_priv = dev->dev_private;
2881 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2882 u32 temp;
2883
2884 /* It is necessary to ungate the pixclk gate prior to programming
2885 * the divisors, and gate it back when it is done.
2886 */
2887 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2888
2889 /* Disable SSCCTL */
2890 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2891 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2892 SBI_SSCCTL_DISABLE);
2893
2894 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2895 if (crtc->mode.clock == 20000) {
2896 auxdiv = 1;
2897 divsel = 0x41;
2898 phaseinc = 0x20;
2899 } else {
2900 /* The iCLK virtual clock root frequency is in MHz,
2901 * but the crtc->mode.clock in in KHz. To get the divisors,
2902 * it is necessary to divide one by another, so we
2903 * convert the virtual clock precision to KHz here for higher
2904 * precision.
2905 */
2906 u32 iclk_virtual_root_freq = 172800 * 1000;
2907 u32 iclk_pi_range = 64;
2908 u32 desired_divisor, msb_divisor_value, pi_value;
2909
2910 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2911 msb_divisor_value = desired_divisor / iclk_pi_range;
2912 pi_value = desired_divisor % iclk_pi_range;
2913
2914 auxdiv = 0;
2915 divsel = msb_divisor_value - 2;
2916 phaseinc = pi_value;
2917 }
2918
2919 /* This should not happen with any sane values */
2920 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2921 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2922 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2923 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2924
2925 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2926 crtc->mode.clock,
2927 auxdiv,
2928 divsel,
2929 phasedir,
2930 phaseinc);
2931
2932 /* Program SSCDIVINTPHASE6 */
2933 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2934 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2935 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2936 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2937 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2938 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2939 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2940
2941 intel_sbi_write(dev_priv,
2942 SBI_SSCDIVINTPHASE6,
2943 temp);
2944
2945 /* Program SSCAUXDIV */
2946 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2947 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2948 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2949 intel_sbi_write(dev_priv,
2950 SBI_SSCAUXDIV6,
2951 temp);
2952
2953
2954 /* Enable modulator and associated divider */
2955 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2956 temp &= ~SBI_SSCCTL_DISABLE;
2957 intel_sbi_write(dev_priv,
2958 SBI_SSCCTL6,
2959 temp);
2960
2961 /* Wait for initialization time */
2962 udelay(24);
2963
2964 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2965 }
2966
2967 /*
2968 * Enable PCH resources required for PCH ports:
2969 * - PCH PLLs
2970 * - FDI training & RX/TX
2971 * - update transcoder timings
2972 * - DP transcoding bits
2973 * - transcoder
2974 */
2975 static void ironlake_pch_enable(struct drm_crtc *crtc)
2976 {
2977 struct drm_device *dev = crtc->dev;
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2980 int pipe = intel_crtc->pipe;
2981 u32 reg, temp;
2982
2983 assert_transcoder_disabled(dev_priv, pipe);
2984
2985 /* For PCH output, training FDI link */
2986 dev_priv->display.fdi_link_train(crtc);
2987
2988 intel_enable_pch_pll(intel_crtc);
2989
2990 if (HAS_PCH_LPT(dev)) {
2991 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2992 lpt_program_iclkip(crtc);
2993 } else if (HAS_PCH_CPT(dev)) {
2994 u32 sel;
2995
2996 temp = I915_READ(PCH_DPLL_SEL);
2997 switch (pipe) {
2998 default:
2999 case 0:
3000 temp |= TRANSA_DPLL_ENABLE;
3001 sel = TRANSA_DPLLB_SEL;
3002 break;
3003 case 1:
3004 temp |= TRANSB_DPLL_ENABLE;
3005 sel = TRANSB_DPLLB_SEL;
3006 break;
3007 case 2:
3008 temp |= TRANSC_DPLL_ENABLE;
3009 sel = TRANSC_DPLLB_SEL;
3010 break;
3011 }
3012 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3013 temp |= sel;
3014 else
3015 temp &= ~sel;
3016 I915_WRITE(PCH_DPLL_SEL, temp);
3017 }
3018
3019 /* set transcoder timing, panel must allow it */
3020 assert_panel_unlocked(dev_priv, pipe);
3021 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3022 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3023 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3024
3025 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3026 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3027 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3028 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3029
3030 if (!IS_HASWELL(dev))
3031 intel_fdi_normal_train(crtc);
3032
3033 /* For PCH DP, enable TRANS_DP_CTL */
3034 if (HAS_PCH_CPT(dev) &&
3035 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3036 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3037 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3038 reg = TRANS_DP_CTL(pipe);
3039 temp = I915_READ(reg);
3040 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3041 TRANS_DP_SYNC_MASK |
3042 TRANS_DP_BPC_MASK);
3043 temp |= (TRANS_DP_OUTPUT_ENABLE |
3044 TRANS_DP_ENH_FRAMING);
3045 temp |= bpc << 9; /* same format but at 11:9 */
3046
3047 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3048 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3049 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3050 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3051
3052 switch (intel_trans_dp_port_sel(crtc)) {
3053 case PCH_DP_B:
3054 temp |= TRANS_DP_PORT_SEL_B;
3055 break;
3056 case PCH_DP_C:
3057 temp |= TRANS_DP_PORT_SEL_C;
3058 break;
3059 case PCH_DP_D:
3060 temp |= TRANS_DP_PORT_SEL_D;
3061 break;
3062 default:
3063 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3064 temp |= TRANS_DP_PORT_SEL_B;
3065 break;
3066 }
3067
3068 I915_WRITE(reg, temp);
3069 }
3070
3071 intel_enable_transcoder(dev_priv, pipe);
3072 }
3073
3074 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3075 {
3076 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3077
3078 if (pll == NULL)
3079 return;
3080
3081 if (pll->refcount == 0) {
3082 WARN(1, "bad PCH PLL refcount\n");
3083 return;
3084 }
3085
3086 --pll->refcount;
3087 intel_crtc->pch_pll = NULL;
3088 }
3089
3090 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3091 {
3092 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3093 struct intel_pch_pll *pll;
3094 int i;
3095
3096 pll = intel_crtc->pch_pll;
3097 if (pll) {
3098 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3099 intel_crtc->base.base.id, pll->pll_reg);
3100 goto prepare;
3101 }
3102
3103 if (HAS_PCH_IBX(dev_priv->dev)) {
3104 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3105 i = intel_crtc->pipe;
3106 pll = &dev_priv->pch_plls[i];
3107
3108 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3109 intel_crtc->base.base.id, pll->pll_reg);
3110
3111 goto found;
3112 }
3113
3114 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3115 pll = &dev_priv->pch_plls[i];
3116
3117 /* Only want to check enabled timings first */
3118 if (pll->refcount == 0)
3119 continue;
3120
3121 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3122 fp == I915_READ(pll->fp0_reg)) {
3123 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3124 intel_crtc->base.base.id,
3125 pll->pll_reg, pll->refcount, pll->active);
3126
3127 goto found;
3128 }
3129 }
3130
3131 /* Ok no matching timings, maybe there's a free one? */
3132 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3133 pll = &dev_priv->pch_plls[i];
3134 if (pll->refcount == 0) {
3135 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3136 intel_crtc->base.base.id, pll->pll_reg);
3137 goto found;
3138 }
3139 }
3140
3141 return NULL;
3142
3143 found:
3144 intel_crtc->pch_pll = pll;
3145 pll->refcount++;
3146 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3147 prepare: /* separate function? */
3148 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3149
3150 /* Wait for the clocks to stabilize before rewriting the regs */
3151 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3152 POSTING_READ(pll->pll_reg);
3153 udelay(150);
3154
3155 I915_WRITE(pll->fp0_reg, fp);
3156 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3157 pll->on = false;
3158 return pll;
3159 }
3160
3161 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3162 {
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3165 u32 temp;
3166
3167 temp = I915_READ(dslreg);
3168 udelay(500);
3169 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3170 /* Without this, mode sets may fail silently on FDI */
3171 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3172 udelay(250);
3173 I915_WRITE(tc2reg, 0);
3174 if (wait_for(I915_READ(dslreg) != temp, 5))
3175 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3176 }
3177 }
3178
3179 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3180 {
3181 struct drm_device *dev = crtc->dev;
3182 struct drm_i915_private *dev_priv = dev->dev_private;
3183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184 int pipe = intel_crtc->pipe;
3185 int plane = intel_crtc->plane;
3186 u32 temp;
3187 bool is_pch_port;
3188
3189 if (intel_crtc->active)
3190 return;
3191
3192 intel_crtc->active = true;
3193 intel_update_watermarks(dev);
3194
3195 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3196 temp = I915_READ(PCH_LVDS);
3197 if ((temp & LVDS_PORT_EN) == 0)
3198 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3199 }
3200
3201 is_pch_port = intel_crtc_driving_pch(crtc);
3202
3203 if (is_pch_port)
3204 ironlake_fdi_pll_enable(crtc);
3205 else
3206 ironlake_fdi_disable(crtc);
3207
3208 /* Enable panel fitting for LVDS */
3209 if (dev_priv->pch_pf_size &&
3210 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3211 /* Force use of hard-coded filter coefficients
3212 * as some pre-programmed values are broken,
3213 * e.g. x201.
3214 */
3215 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3216 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3217 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3218 }
3219
3220 /*
3221 * On ILK+ LUT must be loaded before the pipe is running but with
3222 * clocks enabled
3223 */
3224 intel_crtc_load_lut(crtc);
3225
3226 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3227 intel_enable_plane(dev_priv, plane, pipe);
3228
3229 if (is_pch_port)
3230 ironlake_pch_enable(crtc);
3231
3232 mutex_lock(&dev->struct_mutex);
3233 intel_update_fbc(dev);
3234 mutex_unlock(&dev->struct_mutex);
3235
3236 intel_crtc_update_cursor(crtc, true);
3237 }
3238
3239 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3240 {
3241 struct drm_device *dev = crtc->dev;
3242 struct drm_i915_private *dev_priv = dev->dev_private;
3243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3244 int pipe = intel_crtc->pipe;
3245 int plane = intel_crtc->plane;
3246 u32 reg, temp;
3247
3248 if (!intel_crtc->active)
3249 return;
3250
3251 intel_crtc_wait_for_pending_flips(crtc);
3252 drm_vblank_off(dev, pipe);
3253 intel_crtc_update_cursor(crtc, false);
3254
3255 intel_disable_plane(dev_priv, plane, pipe);
3256
3257 if (dev_priv->cfb_plane == plane)
3258 intel_disable_fbc(dev);
3259
3260 intel_disable_pipe(dev_priv, pipe);
3261
3262 /* Disable PF */
3263 I915_WRITE(PF_CTL(pipe), 0);
3264 I915_WRITE(PF_WIN_SZ(pipe), 0);
3265
3266 ironlake_fdi_disable(crtc);
3267
3268 /* This is a horrible layering violation; we should be doing this in
3269 * the connector/encoder ->prepare instead, but we don't always have
3270 * enough information there about the config to know whether it will
3271 * actually be necessary or just cause undesired flicker.
3272 */
3273 intel_disable_pch_ports(dev_priv, pipe);
3274
3275 intel_disable_transcoder(dev_priv, pipe);
3276
3277 if (HAS_PCH_CPT(dev)) {
3278 /* disable TRANS_DP_CTL */
3279 reg = TRANS_DP_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3282 temp |= TRANS_DP_PORT_SEL_NONE;
3283 I915_WRITE(reg, temp);
3284
3285 /* disable DPLL_SEL */
3286 temp = I915_READ(PCH_DPLL_SEL);
3287 switch (pipe) {
3288 case 0:
3289 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3290 break;
3291 case 1:
3292 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3293 break;
3294 case 2:
3295 /* C shares PLL A or B */
3296 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3297 break;
3298 default:
3299 BUG(); /* wtf */
3300 }
3301 I915_WRITE(PCH_DPLL_SEL, temp);
3302 }
3303
3304 /* disable PCH DPLL */
3305 intel_disable_pch_pll(intel_crtc);
3306
3307 /* Switch from PCDclk to Rawclk */
3308 reg = FDI_RX_CTL(pipe);
3309 temp = I915_READ(reg);
3310 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3311
3312 /* Disable CPU FDI TX PLL */
3313 reg = FDI_TX_CTL(pipe);
3314 temp = I915_READ(reg);
3315 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3316
3317 POSTING_READ(reg);
3318 udelay(100);
3319
3320 reg = FDI_RX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3323
3324 /* Wait for the clocks to turn off. */
3325 POSTING_READ(reg);
3326 udelay(100);
3327
3328 intel_crtc->active = false;
3329 intel_update_watermarks(dev);
3330
3331 mutex_lock(&dev->struct_mutex);
3332 intel_update_fbc(dev);
3333 mutex_unlock(&dev->struct_mutex);
3334 }
3335
3336 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3337 {
3338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3339 int pipe = intel_crtc->pipe;
3340 int plane = intel_crtc->plane;
3341
3342 /* XXX: When our outputs are all unaware of DPMS modes other than off
3343 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3344 */
3345 switch (mode) {
3346 case DRM_MODE_DPMS_ON:
3347 case DRM_MODE_DPMS_STANDBY:
3348 case DRM_MODE_DPMS_SUSPEND:
3349 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3350 ironlake_crtc_enable(crtc);
3351 break;
3352
3353 case DRM_MODE_DPMS_OFF:
3354 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3355 ironlake_crtc_disable(crtc);
3356 break;
3357 }
3358 }
3359
3360 static void ironlake_crtc_off(struct drm_crtc *crtc)
3361 {
3362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3363 intel_put_pch_pll(intel_crtc);
3364 }
3365
3366 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3367 {
3368 if (!enable && intel_crtc->overlay) {
3369 struct drm_device *dev = intel_crtc->base.dev;
3370 struct drm_i915_private *dev_priv = dev->dev_private;
3371
3372 mutex_lock(&dev->struct_mutex);
3373 dev_priv->mm.interruptible = false;
3374 (void) intel_overlay_switch_off(intel_crtc->overlay);
3375 dev_priv->mm.interruptible = true;
3376 mutex_unlock(&dev->struct_mutex);
3377 }
3378
3379 /* Let userspace switch the overlay on again. In most cases userspace
3380 * has to recompute where to put it anyway.
3381 */
3382 }
3383
3384 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3385 {
3386 struct drm_device *dev = crtc->dev;
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3389 int pipe = intel_crtc->pipe;
3390 int plane = intel_crtc->plane;
3391
3392 if (intel_crtc->active)
3393 return;
3394
3395 intel_crtc->active = true;
3396 intel_update_watermarks(dev);
3397
3398 intel_enable_pll(dev_priv, pipe);
3399 intel_enable_pipe(dev_priv, pipe, false);
3400 intel_enable_plane(dev_priv, plane, pipe);
3401
3402 intel_crtc_load_lut(crtc);
3403 intel_update_fbc(dev);
3404
3405 /* Give the overlay scaler a chance to enable if it's on this pipe */
3406 intel_crtc_dpms_overlay(intel_crtc, true);
3407 intel_crtc_update_cursor(crtc, true);
3408 }
3409
3410 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3411 {
3412 struct drm_device *dev = crtc->dev;
3413 struct drm_i915_private *dev_priv = dev->dev_private;
3414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3415 int pipe = intel_crtc->pipe;
3416 int plane = intel_crtc->plane;
3417
3418 if (!intel_crtc->active)
3419 return;
3420
3421 /* Give the overlay scaler a chance to disable if it's on this pipe */
3422 intel_crtc_wait_for_pending_flips(crtc);
3423 drm_vblank_off(dev, pipe);
3424 intel_crtc_dpms_overlay(intel_crtc, false);
3425 intel_crtc_update_cursor(crtc, false);
3426
3427 if (dev_priv->cfb_plane == plane)
3428 intel_disable_fbc(dev);
3429
3430 intel_disable_plane(dev_priv, plane, pipe);
3431 intel_disable_pipe(dev_priv, pipe);
3432 intel_disable_pll(dev_priv, pipe);
3433
3434 intel_crtc->active = false;
3435 intel_update_fbc(dev);
3436 intel_update_watermarks(dev);
3437 }
3438
3439 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3440 {
3441 /* XXX: When our outputs are all unaware of DPMS modes other than off
3442 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3443 */
3444 switch (mode) {
3445 case DRM_MODE_DPMS_ON:
3446 case DRM_MODE_DPMS_STANDBY:
3447 case DRM_MODE_DPMS_SUSPEND:
3448 i9xx_crtc_enable(crtc);
3449 break;
3450 case DRM_MODE_DPMS_OFF:
3451 i9xx_crtc_disable(crtc);
3452 break;
3453 }
3454 }
3455
3456 static void i9xx_crtc_off(struct drm_crtc *crtc)
3457 {
3458 }
3459
3460 /**
3461 * Sets the power management mode of the pipe and plane.
3462 */
3463 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3464 {
3465 struct drm_device *dev = crtc->dev;
3466 struct drm_i915_private *dev_priv = dev->dev_private;
3467 struct drm_i915_master_private *master_priv;
3468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3469 int pipe = intel_crtc->pipe;
3470 bool enabled;
3471
3472 if (intel_crtc->dpms_mode == mode)
3473 return;
3474
3475 intel_crtc->dpms_mode = mode;
3476
3477 dev_priv->display.dpms(crtc, mode);
3478
3479 if (!dev->primary->master)
3480 return;
3481
3482 master_priv = dev->primary->master->driver_priv;
3483 if (!master_priv->sarea_priv)
3484 return;
3485
3486 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3487
3488 switch (pipe) {
3489 case 0:
3490 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3491 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3492 break;
3493 case 1:
3494 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3495 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3496 break;
3497 default:
3498 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3499 break;
3500 }
3501 }
3502
3503 static void intel_crtc_disable(struct drm_crtc *crtc)
3504 {
3505 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3506 struct drm_device *dev = crtc->dev;
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508
3509 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3510 dev_priv->display.off(crtc);
3511
3512 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3513 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3514
3515 if (crtc->fb) {
3516 mutex_lock(&dev->struct_mutex);
3517 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3518 mutex_unlock(&dev->struct_mutex);
3519 }
3520 }
3521
3522 /* Prepare for a mode set.
3523 *
3524 * Note we could be a lot smarter here. We need to figure out which outputs
3525 * will be enabled, which disabled (in short, how the config will changes)
3526 * and perform the minimum necessary steps to accomplish that, e.g. updating
3527 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3528 * panel fitting is in the proper state, etc.
3529 */
3530 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3531 {
3532 i9xx_crtc_disable(crtc);
3533 }
3534
3535 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3536 {
3537 i9xx_crtc_enable(crtc);
3538 }
3539
3540 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3541 {
3542 ironlake_crtc_disable(crtc);
3543 }
3544
3545 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3546 {
3547 ironlake_crtc_enable(crtc);
3548 }
3549
3550 void intel_encoder_prepare(struct drm_encoder *encoder)
3551 {
3552 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3553 /* lvds has its own version of prepare see intel_lvds_prepare */
3554 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3555 }
3556
3557 void intel_encoder_commit(struct drm_encoder *encoder)
3558 {
3559 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3560 struct drm_device *dev = encoder->dev;
3561 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3562
3563 /* lvds has its own version of commit see intel_lvds_commit */
3564 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3565
3566 if (HAS_PCH_CPT(dev))
3567 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3568 }
3569
3570 void intel_encoder_destroy(struct drm_encoder *encoder)
3571 {
3572 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3573
3574 drm_encoder_cleanup(encoder);
3575 kfree(intel_encoder);
3576 }
3577
3578 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3579 const struct drm_display_mode *mode,
3580 struct drm_display_mode *adjusted_mode)
3581 {
3582 struct drm_device *dev = crtc->dev;
3583
3584 if (HAS_PCH_SPLIT(dev)) {
3585 /* FDI link clock is fixed at 2.7G */
3586 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3587 return false;
3588 }
3589
3590 /* All interlaced capable intel hw wants timings in frames. Note though
3591 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3592 * timings, so we need to be careful not to clobber these.*/
3593 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3594 drm_mode_set_crtcinfo(adjusted_mode, 0);
3595
3596 return true;
3597 }
3598
3599 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3600 {
3601 return 400000; /* FIXME */
3602 }
3603
3604 static int i945_get_display_clock_speed(struct drm_device *dev)
3605 {
3606 return 400000;
3607 }
3608
3609 static int i915_get_display_clock_speed(struct drm_device *dev)
3610 {
3611 return 333000;
3612 }
3613
3614 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3615 {
3616 return 200000;
3617 }
3618
3619 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3620 {
3621 u16 gcfgc = 0;
3622
3623 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3624
3625 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3626 return 133000;
3627 else {
3628 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3629 case GC_DISPLAY_CLOCK_333_MHZ:
3630 return 333000;
3631 default:
3632 case GC_DISPLAY_CLOCK_190_200_MHZ:
3633 return 190000;
3634 }
3635 }
3636 }
3637
3638 static int i865_get_display_clock_speed(struct drm_device *dev)
3639 {
3640 return 266000;
3641 }
3642
3643 static int i855_get_display_clock_speed(struct drm_device *dev)
3644 {
3645 u16 hpllcc = 0;
3646 /* Assume that the hardware is in the high speed state. This
3647 * should be the default.
3648 */
3649 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3650 case GC_CLOCK_133_200:
3651 case GC_CLOCK_100_200:
3652 return 200000;
3653 case GC_CLOCK_166_250:
3654 return 250000;
3655 case GC_CLOCK_100_133:
3656 return 133000;
3657 }
3658
3659 /* Shouldn't happen */
3660 return 0;
3661 }
3662
3663 static int i830_get_display_clock_speed(struct drm_device *dev)
3664 {
3665 return 133000;
3666 }
3667
3668 struct fdi_m_n {
3669 u32 tu;
3670 u32 gmch_m;
3671 u32 gmch_n;
3672 u32 link_m;
3673 u32 link_n;
3674 };
3675
3676 static void
3677 fdi_reduce_ratio(u32 *num, u32 *den)
3678 {
3679 while (*num > 0xffffff || *den > 0xffffff) {
3680 *num >>= 1;
3681 *den >>= 1;
3682 }
3683 }
3684
3685 static void
3686 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3687 int link_clock, struct fdi_m_n *m_n)
3688 {
3689 m_n->tu = 64; /* default size */
3690
3691 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3692 m_n->gmch_m = bits_per_pixel * pixel_clock;
3693 m_n->gmch_n = link_clock * nlanes * 8;
3694 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3695
3696 m_n->link_m = pixel_clock;
3697 m_n->link_n = link_clock;
3698 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3699 }
3700
3701 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3702 {
3703 if (i915_panel_use_ssc >= 0)
3704 return i915_panel_use_ssc != 0;
3705 return dev_priv->lvds_use_ssc
3706 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3707 }
3708
3709 /**
3710 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3711 * @crtc: CRTC structure
3712 * @mode: requested mode
3713 *
3714 * A pipe may be connected to one or more outputs. Based on the depth of the
3715 * attached framebuffer, choose a good color depth to use on the pipe.
3716 *
3717 * If possible, match the pipe depth to the fb depth. In some cases, this
3718 * isn't ideal, because the connected output supports a lesser or restricted
3719 * set of depths. Resolve that here:
3720 * LVDS typically supports only 6bpc, so clamp down in that case
3721 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3722 * Displays may support a restricted set as well, check EDID and clamp as
3723 * appropriate.
3724 * DP may want to dither down to 6bpc to fit larger modes
3725 *
3726 * RETURNS:
3727 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3728 * true if they don't match).
3729 */
3730 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3731 unsigned int *pipe_bpp,
3732 struct drm_display_mode *mode)
3733 {
3734 struct drm_device *dev = crtc->dev;
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 struct drm_connector *connector;
3737 struct intel_encoder *intel_encoder;
3738 unsigned int display_bpc = UINT_MAX, bpc;
3739
3740 /* Walk the encoders & connectors on this crtc, get min bpc */
3741 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3742
3743 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3744 unsigned int lvds_bpc;
3745
3746 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3747 LVDS_A3_POWER_UP)
3748 lvds_bpc = 8;
3749 else
3750 lvds_bpc = 6;
3751
3752 if (lvds_bpc < display_bpc) {
3753 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3754 display_bpc = lvds_bpc;
3755 }
3756 continue;
3757 }
3758
3759 /* Not one of the known troublemakers, check the EDID */
3760 list_for_each_entry(connector, &dev->mode_config.connector_list,
3761 head) {
3762 if (connector->encoder != &intel_encoder->base)
3763 continue;
3764
3765 /* Don't use an invalid EDID bpc value */
3766 if (connector->display_info.bpc &&
3767 connector->display_info.bpc < display_bpc) {
3768 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3769 display_bpc = connector->display_info.bpc;
3770 }
3771 }
3772
3773 /*
3774 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3775 * through, clamp it down. (Note: >12bpc will be caught below.)
3776 */
3777 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3778 if (display_bpc > 8 && display_bpc < 12) {
3779 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3780 display_bpc = 12;
3781 } else {
3782 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3783 display_bpc = 8;
3784 }
3785 }
3786 }
3787
3788 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3789 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3790 display_bpc = 6;
3791 }
3792
3793 /*
3794 * We could just drive the pipe at the highest bpc all the time and
3795 * enable dithering as needed, but that costs bandwidth. So choose
3796 * the minimum value that expresses the full color range of the fb but
3797 * also stays within the max display bpc discovered above.
3798 */
3799
3800 switch (crtc->fb->depth) {
3801 case 8:
3802 bpc = 8; /* since we go through a colormap */
3803 break;
3804 case 15:
3805 case 16:
3806 bpc = 6; /* min is 18bpp */
3807 break;
3808 case 24:
3809 bpc = 8;
3810 break;
3811 case 30:
3812 bpc = 10;
3813 break;
3814 case 48:
3815 bpc = 12;
3816 break;
3817 default:
3818 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3819 bpc = min((unsigned int)8, display_bpc);
3820 break;
3821 }
3822
3823 display_bpc = min(display_bpc, bpc);
3824
3825 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3826 bpc, display_bpc);
3827
3828 *pipe_bpp = display_bpc * 3;
3829
3830 return display_bpc != bpc;
3831 }
3832
3833 static int vlv_get_refclk(struct drm_crtc *crtc)
3834 {
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 int refclk = 27000; /* for DP & HDMI */
3838
3839 return 100000; /* only one validated so far */
3840
3841 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3842 refclk = 96000;
3843 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3844 if (intel_panel_use_ssc(dev_priv))
3845 refclk = 100000;
3846 else
3847 refclk = 96000;
3848 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3849 refclk = 100000;
3850 }
3851
3852 return refclk;
3853 }
3854
3855 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3856 {
3857 struct drm_device *dev = crtc->dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 int refclk;
3860
3861 if (IS_VALLEYVIEW(dev)) {
3862 refclk = vlv_get_refclk(crtc);
3863 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3864 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3865 refclk = dev_priv->lvds_ssc_freq * 1000;
3866 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3867 refclk / 1000);
3868 } else if (!IS_GEN2(dev)) {
3869 refclk = 96000;
3870 } else {
3871 refclk = 48000;
3872 }
3873
3874 return refclk;
3875 }
3876
3877 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3878 intel_clock_t *clock)
3879 {
3880 /* SDVO TV has fixed PLL values depend on its clock range,
3881 this mirrors vbios setting. */
3882 if (adjusted_mode->clock >= 100000
3883 && adjusted_mode->clock < 140500) {
3884 clock->p1 = 2;
3885 clock->p2 = 10;
3886 clock->n = 3;
3887 clock->m1 = 16;
3888 clock->m2 = 8;
3889 } else if (adjusted_mode->clock >= 140500
3890 && adjusted_mode->clock <= 200000) {
3891 clock->p1 = 1;
3892 clock->p2 = 10;
3893 clock->n = 6;
3894 clock->m1 = 12;
3895 clock->m2 = 8;
3896 }
3897 }
3898
3899 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3900 intel_clock_t *clock,
3901 intel_clock_t *reduced_clock)
3902 {
3903 struct drm_device *dev = crtc->dev;
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3906 int pipe = intel_crtc->pipe;
3907 u32 fp, fp2 = 0;
3908
3909 if (IS_PINEVIEW(dev)) {
3910 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3911 if (reduced_clock)
3912 fp2 = (1 << reduced_clock->n) << 16 |
3913 reduced_clock->m1 << 8 | reduced_clock->m2;
3914 } else {
3915 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3916 if (reduced_clock)
3917 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3918 reduced_clock->m2;
3919 }
3920
3921 I915_WRITE(FP0(pipe), fp);
3922
3923 intel_crtc->lowfreq_avail = false;
3924 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3925 reduced_clock && i915_powersave) {
3926 I915_WRITE(FP1(pipe), fp2);
3927 intel_crtc->lowfreq_avail = true;
3928 } else {
3929 I915_WRITE(FP1(pipe), fp);
3930 }
3931 }
3932
3933 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3934 struct drm_display_mode *adjusted_mode)
3935 {
3936 struct drm_device *dev = crtc->dev;
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3939 int pipe = intel_crtc->pipe;
3940 u32 temp;
3941
3942 temp = I915_READ(LVDS);
3943 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3944 if (pipe == 1) {
3945 temp |= LVDS_PIPEB_SELECT;
3946 } else {
3947 temp &= ~LVDS_PIPEB_SELECT;
3948 }
3949 /* set the corresponsding LVDS_BORDER bit */
3950 temp |= dev_priv->lvds_border_bits;
3951 /* Set the B0-B3 data pairs corresponding to whether we're going to
3952 * set the DPLLs for dual-channel mode or not.
3953 */
3954 if (clock->p2 == 7)
3955 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3956 else
3957 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3958
3959 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3960 * appropriately here, but we need to look more thoroughly into how
3961 * panels behave in the two modes.
3962 */
3963 /* set the dithering flag on LVDS as needed */
3964 if (INTEL_INFO(dev)->gen >= 4) {
3965 if (dev_priv->lvds_dither)
3966 temp |= LVDS_ENABLE_DITHER;
3967 else
3968 temp &= ~LVDS_ENABLE_DITHER;
3969 }
3970 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3971 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3972 temp |= LVDS_HSYNC_POLARITY;
3973 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3974 temp |= LVDS_VSYNC_POLARITY;
3975 I915_WRITE(LVDS, temp);
3976 }
3977
3978 static void vlv_update_pll(struct drm_crtc *crtc,
3979 struct drm_display_mode *mode,
3980 struct drm_display_mode *adjusted_mode,
3981 intel_clock_t *clock, intel_clock_t *reduced_clock,
3982 int refclk, int num_connectors)
3983 {
3984 struct drm_device *dev = crtc->dev;
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3987 int pipe = intel_crtc->pipe;
3988 u32 dpll, mdiv, pdiv;
3989 u32 bestn, bestm1, bestm2, bestp1, bestp2;
3990 bool is_hdmi;
3991
3992 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3993
3994 bestn = clock->n;
3995 bestm1 = clock->m1;
3996 bestm2 = clock->m2;
3997 bestp1 = clock->p1;
3998 bestp2 = clock->p2;
3999
4000 /* Enable DPIO clock input */
4001 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4002 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4003 I915_WRITE(DPLL(pipe), dpll);
4004 POSTING_READ(DPLL(pipe));
4005
4006 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4007 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4008 mdiv |= ((bestn << DPIO_N_SHIFT));
4009 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4010 mdiv |= (1 << DPIO_K_SHIFT);
4011 mdiv |= DPIO_ENABLE_CALIBRATION;
4012 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4013
4014 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4015
4016 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4017 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4018 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4019 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4020
4021 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4022
4023 dpll |= DPLL_VCO_ENABLE;
4024 I915_WRITE(DPLL(pipe), dpll);
4025 POSTING_READ(DPLL(pipe));
4026 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4027 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4028
4029 if (is_hdmi) {
4030 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4031
4032 if (temp > 1)
4033 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4034 else
4035 temp = 0;
4036
4037 I915_WRITE(DPLL_MD(pipe), temp);
4038 POSTING_READ(DPLL_MD(pipe));
4039 }
4040
4041 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4042 }
4043
4044 static void i9xx_update_pll(struct drm_crtc *crtc,
4045 struct drm_display_mode *mode,
4046 struct drm_display_mode *adjusted_mode,
4047 intel_clock_t *clock, intel_clock_t *reduced_clock,
4048 int num_connectors)
4049 {
4050 struct drm_device *dev = crtc->dev;
4051 struct drm_i915_private *dev_priv = dev->dev_private;
4052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4053 int pipe = intel_crtc->pipe;
4054 u32 dpll;
4055 bool is_sdvo;
4056
4057 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4058 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4059
4060 dpll = DPLL_VGA_MODE_DIS;
4061
4062 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4063 dpll |= DPLLB_MODE_LVDS;
4064 else
4065 dpll |= DPLLB_MODE_DAC_SERIAL;
4066 if (is_sdvo) {
4067 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4068 if (pixel_multiplier > 1) {
4069 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4070 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4071 }
4072 dpll |= DPLL_DVO_HIGH_SPEED;
4073 }
4074 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4075 dpll |= DPLL_DVO_HIGH_SPEED;
4076
4077 /* compute bitmask from p1 value */
4078 if (IS_PINEVIEW(dev))
4079 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4080 else {
4081 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4082 if (IS_G4X(dev) && reduced_clock)
4083 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4084 }
4085 switch (clock->p2) {
4086 case 5:
4087 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4088 break;
4089 case 7:
4090 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4091 break;
4092 case 10:
4093 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4094 break;
4095 case 14:
4096 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4097 break;
4098 }
4099 if (INTEL_INFO(dev)->gen >= 4)
4100 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4101
4102 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4103 dpll |= PLL_REF_INPUT_TVCLKINBC;
4104 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4105 /* XXX: just matching BIOS for now */
4106 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4107 dpll |= 3;
4108 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4109 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4110 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4111 else
4112 dpll |= PLL_REF_INPUT_DREFCLK;
4113
4114 dpll |= DPLL_VCO_ENABLE;
4115 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4116 POSTING_READ(DPLL(pipe));
4117 udelay(150);
4118
4119 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4120 * This is an exception to the general rule that mode_set doesn't turn
4121 * things on.
4122 */
4123 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4124 intel_update_lvds(crtc, clock, adjusted_mode);
4125
4126 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4127 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4128
4129 I915_WRITE(DPLL(pipe), dpll);
4130
4131 /* Wait for the clocks to stabilize. */
4132 POSTING_READ(DPLL(pipe));
4133 udelay(150);
4134
4135 if (INTEL_INFO(dev)->gen >= 4) {
4136 u32 temp = 0;
4137 if (is_sdvo) {
4138 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4139 if (temp > 1)
4140 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4141 else
4142 temp = 0;
4143 }
4144 I915_WRITE(DPLL_MD(pipe), temp);
4145 } else {
4146 /* The pixel multiplier can only be updated once the
4147 * DPLL is enabled and the clocks are stable.
4148 *
4149 * So write it again.
4150 */
4151 I915_WRITE(DPLL(pipe), dpll);
4152 }
4153 }
4154
4155 static void i8xx_update_pll(struct drm_crtc *crtc,
4156 struct drm_display_mode *adjusted_mode,
4157 intel_clock_t *clock,
4158 int num_connectors)
4159 {
4160 struct drm_device *dev = crtc->dev;
4161 struct drm_i915_private *dev_priv = dev->dev_private;
4162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4163 int pipe = intel_crtc->pipe;
4164 u32 dpll;
4165
4166 dpll = DPLL_VGA_MODE_DIS;
4167
4168 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4169 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4170 } else {
4171 if (clock->p1 == 2)
4172 dpll |= PLL_P1_DIVIDE_BY_TWO;
4173 else
4174 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4175 if (clock->p2 == 4)
4176 dpll |= PLL_P2_DIVIDE_BY_4;
4177 }
4178
4179 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4180 /* XXX: just matching BIOS for now */
4181 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4182 dpll |= 3;
4183 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4184 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4185 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4186 else
4187 dpll |= PLL_REF_INPUT_DREFCLK;
4188
4189 dpll |= DPLL_VCO_ENABLE;
4190 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4191 POSTING_READ(DPLL(pipe));
4192 udelay(150);
4193
4194 I915_WRITE(DPLL(pipe), dpll);
4195
4196 /* Wait for the clocks to stabilize. */
4197 POSTING_READ(DPLL(pipe));
4198 udelay(150);
4199
4200 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4201 * This is an exception to the general rule that mode_set doesn't turn
4202 * things on.
4203 */
4204 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4205 intel_update_lvds(crtc, clock, adjusted_mode);
4206
4207 /* The pixel multiplier can only be updated once the
4208 * DPLL is enabled and the clocks are stable.
4209 *
4210 * So write it again.
4211 */
4212 I915_WRITE(DPLL(pipe), dpll);
4213 }
4214
4215 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4216 struct drm_display_mode *mode,
4217 struct drm_display_mode *adjusted_mode,
4218 int x, int y,
4219 struct drm_framebuffer *old_fb)
4220 {
4221 struct drm_device *dev = crtc->dev;
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4224 int pipe = intel_crtc->pipe;
4225 int plane = intel_crtc->plane;
4226 int refclk, num_connectors = 0;
4227 intel_clock_t clock, reduced_clock;
4228 u32 dspcntr, pipeconf, vsyncshift;
4229 bool ok, has_reduced_clock = false, is_sdvo = false;
4230 bool is_lvds = false, is_tv = false, is_dp = false;
4231 struct intel_encoder *encoder;
4232 const intel_limit_t *limit;
4233 int ret;
4234
4235 for_each_encoder_on_crtc(dev, crtc, encoder) {
4236 switch (encoder->type) {
4237 case INTEL_OUTPUT_LVDS:
4238 is_lvds = true;
4239 break;
4240 case INTEL_OUTPUT_SDVO:
4241 case INTEL_OUTPUT_HDMI:
4242 is_sdvo = true;
4243 if (encoder->needs_tv_clock)
4244 is_tv = true;
4245 break;
4246 case INTEL_OUTPUT_TVOUT:
4247 is_tv = true;
4248 break;
4249 case INTEL_OUTPUT_DISPLAYPORT:
4250 is_dp = true;
4251 break;
4252 }
4253
4254 num_connectors++;
4255 }
4256
4257 refclk = i9xx_get_refclk(crtc, num_connectors);
4258
4259 /*
4260 * Returns a set of divisors for the desired target clock with the given
4261 * refclk, or FALSE. The returned values represent the clock equation:
4262 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4263 */
4264 limit = intel_limit(crtc, refclk);
4265 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4266 &clock);
4267 if (!ok) {
4268 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4269 return -EINVAL;
4270 }
4271
4272 /* Ensure that the cursor is valid for the new mode before changing... */
4273 intel_crtc_update_cursor(crtc, true);
4274
4275 if (is_lvds && dev_priv->lvds_downclock_avail) {
4276 /*
4277 * Ensure we match the reduced clock's P to the target clock.
4278 * If the clocks don't match, we can't switch the display clock
4279 * by using the FP0/FP1. In such case we will disable the LVDS
4280 * downclock feature.
4281 */
4282 has_reduced_clock = limit->find_pll(limit, crtc,
4283 dev_priv->lvds_downclock,
4284 refclk,
4285 &clock,
4286 &reduced_clock);
4287 }
4288
4289 if (is_sdvo && is_tv)
4290 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4291
4292 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4293 &reduced_clock : NULL);
4294
4295 if (IS_GEN2(dev))
4296 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4297 else if (IS_VALLEYVIEW(dev))
4298 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4299 refclk, num_connectors);
4300 else
4301 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4302 has_reduced_clock ? &reduced_clock : NULL,
4303 num_connectors);
4304
4305 /* setup pipeconf */
4306 pipeconf = I915_READ(PIPECONF(pipe));
4307
4308 /* Set up the display plane register */
4309 dspcntr = DISPPLANE_GAMMA_ENABLE;
4310
4311 if (pipe == 0)
4312 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4313 else
4314 dspcntr |= DISPPLANE_SEL_PIPE_B;
4315
4316 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4317 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4318 * core speed.
4319 *
4320 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4321 * pipe == 0 check?
4322 */
4323 if (mode->clock >
4324 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4325 pipeconf |= PIPECONF_DOUBLE_WIDE;
4326 else
4327 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4328 }
4329
4330 /* default to 8bpc */
4331 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4332 if (is_dp) {
4333 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4334 pipeconf |= PIPECONF_BPP_6 |
4335 PIPECONF_DITHER_EN |
4336 PIPECONF_DITHER_TYPE_SP;
4337 }
4338 }
4339
4340 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4341 drm_mode_debug_printmodeline(mode);
4342
4343 if (HAS_PIPE_CXSR(dev)) {
4344 if (intel_crtc->lowfreq_avail) {
4345 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4346 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4347 } else {
4348 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4349 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4350 }
4351 }
4352
4353 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4354 if (!IS_GEN2(dev) &&
4355 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4356 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4357 /* the chip adds 2 halflines automatically */
4358 adjusted_mode->crtc_vtotal -= 1;
4359 adjusted_mode->crtc_vblank_end -= 1;
4360 vsyncshift = adjusted_mode->crtc_hsync_start
4361 - adjusted_mode->crtc_htotal/2;
4362 } else {
4363 pipeconf |= PIPECONF_PROGRESSIVE;
4364 vsyncshift = 0;
4365 }
4366
4367 if (!IS_GEN3(dev))
4368 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4369
4370 I915_WRITE(HTOTAL(pipe),
4371 (adjusted_mode->crtc_hdisplay - 1) |
4372 ((adjusted_mode->crtc_htotal - 1) << 16));
4373 I915_WRITE(HBLANK(pipe),
4374 (adjusted_mode->crtc_hblank_start - 1) |
4375 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4376 I915_WRITE(HSYNC(pipe),
4377 (adjusted_mode->crtc_hsync_start - 1) |
4378 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4379
4380 I915_WRITE(VTOTAL(pipe),
4381 (adjusted_mode->crtc_vdisplay - 1) |
4382 ((adjusted_mode->crtc_vtotal - 1) << 16));
4383 I915_WRITE(VBLANK(pipe),
4384 (adjusted_mode->crtc_vblank_start - 1) |
4385 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4386 I915_WRITE(VSYNC(pipe),
4387 (adjusted_mode->crtc_vsync_start - 1) |
4388 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4389
4390 /* pipesrc and dspsize control the size that is scaled from,
4391 * which should always be the user's requested size.
4392 */
4393 I915_WRITE(DSPSIZE(plane),
4394 ((mode->vdisplay - 1) << 16) |
4395 (mode->hdisplay - 1));
4396 I915_WRITE(DSPPOS(plane), 0);
4397 I915_WRITE(PIPESRC(pipe),
4398 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4399
4400 I915_WRITE(PIPECONF(pipe), pipeconf);
4401 POSTING_READ(PIPECONF(pipe));
4402 intel_enable_pipe(dev_priv, pipe, false);
4403
4404 intel_wait_for_vblank(dev, pipe);
4405
4406 I915_WRITE(DSPCNTR(plane), dspcntr);
4407 POSTING_READ(DSPCNTR(plane));
4408
4409 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4410
4411 intel_update_watermarks(dev);
4412
4413 return ret;
4414 }
4415
4416 /*
4417 * Initialize reference clocks when the driver loads
4418 */
4419 void ironlake_init_pch_refclk(struct drm_device *dev)
4420 {
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 struct drm_mode_config *mode_config = &dev->mode_config;
4423 struct intel_encoder *encoder;
4424 u32 temp;
4425 bool has_lvds = false;
4426 bool has_cpu_edp = false;
4427 bool has_pch_edp = false;
4428 bool has_panel = false;
4429 bool has_ck505 = false;
4430 bool can_ssc = false;
4431
4432 /* We need to take the global config into account */
4433 list_for_each_entry(encoder, &mode_config->encoder_list,
4434 base.head) {
4435 switch (encoder->type) {
4436 case INTEL_OUTPUT_LVDS:
4437 has_panel = true;
4438 has_lvds = true;
4439 break;
4440 case INTEL_OUTPUT_EDP:
4441 has_panel = true;
4442 if (intel_encoder_is_pch_edp(&encoder->base))
4443 has_pch_edp = true;
4444 else
4445 has_cpu_edp = true;
4446 break;
4447 }
4448 }
4449
4450 if (HAS_PCH_IBX(dev)) {
4451 has_ck505 = dev_priv->display_clock_mode;
4452 can_ssc = has_ck505;
4453 } else {
4454 has_ck505 = false;
4455 can_ssc = true;
4456 }
4457
4458 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4459 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4460 has_ck505);
4461
4462 /* Ironlake: try to setup display ref clock before DPLL
4463 * enabling. This is only under driver's control after
4464 * PCH B stepping, previous chipset stepping should be
4465 * ignoring this setting.
4466 */
4467 temp = I915_READ(PCH_DREF_CONTROL);
4468 /* Always enable nonspread source */
4469 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4470
4471 if (has_ck505)
4472 temp |= DREF_NONSPREAD_CK505_ENABLE;
4473 else
4474 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4475
4476 if (has_panel) {
4477 temp &= ~DREF_SSC_SOURCE_MASK;
4478 temp |= DREF_SSC_SOURCE_ENABLE;
4479
4480 /* SSC must be turned on before enabling the CPU output */
4481 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4482 DRM_DEBUG_KMS("Using SSC on panel\n");
4483 temp |= DREF_SSC1_ENABLE;
4484 } else
4485 temp &= ~DREF_SSC1_ENABLE;
4486
4487 /* Get SSC going before enabling the outputs */
4488 I915_WRITE(PCH_DREF_CONTROL, temp);
4489 POSTING_READ(PCH_DREF_CONTROL);
4490 udelay(200);
4491
4492 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4493
4494 /* Enable CPU source on CPU attached eDP */
4495 if (has_cpu_edp) {
4496 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4497 DRM_DEBUG_KMS("Using SSC on eDP\n");
4498 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4499 }
4500 else
4501 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4502 } else
4503 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4504
4505 I915_WRITE(PCH_DREF_CONTROL, temp);
4506 POSTING_READ(PCH_DREF_CONTROL);
4507 udelay(200);
4508 } else {
4509 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4510
4511 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4512
4513 /* Turn off CPU output */
4514 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4515
4516 I915_WRITE(PCH_DREF_CONTROL, temp);
4517 POSTING_READ(PCH_DREF_CONTROL);
4518 udelay(200);
4519
4520 /* Turn off the SSC source */
4521 temp &= ~DREF_SSC_SOURCE_MASK;
4522 temp |= DREF_SSC_SOURCE_DISABLE;
4523
4524 /* Turn off SSC1 */
4525 temp &= ~ DREF_SSC1_ENABLE;
4526
4527 I915_WRITE(PCH_DREF_CONTROL, temp);
4528 POSTING_READ(PCH_DREF_CONTROL);
4529 udelay(200);
4530 }
4531 }
4532
4533 static int ironlake_get_refclk(struct drm_crtc *crtc)
4534 {
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_encoder *encoder;
4538 struct intel_encoder *edp_encoder = NULL;
4539 int num_connectors = 0;
4540 bool is_lvds = false;
4541
4542 for_each_encoder_on_crtc(dev, crtc, encoder) {
4543 switch (encoder->type) {
4544 case INTEL_OUTPUT_LVDS:
4545 is_lvds = true;
4546 break;
4547 case INTEL_OUTPUT_EDP:
4548 edp_encoder = encoder;
4549 break;
4550 }
4551 num_connectors++;
4552 }
4553
4554 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4555 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4556 dev_priv->lvds_ssc_freq);
4557 return dev_priv->lvds_ssc_freq * 1000;
4558 }
4559
4560 return 120000;
4561 }
4562
4563 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4564 struct drm_display_mode *mode,
4565 struct drm_display_mode *adjusted_mode,
4566 int x, int y,
4567 struct drm_framebuffer *old_fb)
4568 {
4569 struct drm_device *dev = crtc->dev;
4570 struct drm_i915_private *dev_priv = dev->dev_private;
4571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572 int pipe = intel_crtc->pipe;
4573 int plane = intel_crtc->plane;
4574 int refclk, num_connectors = 0;
4575 intel_clock_t clock, reduced_clock;
4576 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4577 bool ok, has_reduced_clock = false, is_sdvo = false;
4578 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4579 struct intel_encoder *encoder, *edp_encoder = NULL;
4580 const intel_limit_t *limit;
4581 int ret;
4582 struct fdi_m_n m_n = {0};
4583 u32 temp;
4584 int target_clock, pixel_multiplier, lane, link_bw, factor;
4585 unsigned int pipe_bpp;
4586 bool dither;
4587 bool is_cpu_edp = false, is_pch_edp = false;
4588
4589 for_each_encoder_on_crtc(dev, crtc, encoder) {
4590 switch (encoder->type) {
4591 case INTEL_OUTPUT_LVDS:
4592 is_lvds = true;
4593 break;
4594 case INTEL_OUTPUT_SDVO:
4595 case INTEL_OUTPUT_HDMI:
4596 is_sdvo = true;
4597 if (encoder->needs_tv_clock)
4598 is_tv = true;
4599 break;
4600 case INTEL_OUTPUT_TVOUT:
4601 is_tv = true;
4602 break;
4603 case INTEL_OUTPUT_ANALOG:
4604 is_crt = true;
4605 break;
4606 case INTEL_OUTPUT_DISPLAYPORT:
4607 is_dp = true;
4608 break;
4609 case INTEL_OUTPUT_EDP:
4610 is_dp = true;
4611 if (intel_encoder_is_pch_edp(&encoder->base))
4612 is_pch_edp = true;
4613 else
4614 is_cpu_edp = true;
4615 edp_encoder = encoder;
4616 break;
4617 }
4618
4619 num_connectors++;
4620 }
4621
4622 refclk = ironlake_get_refclk(crtc);
4623
4624 /*
4625 * Returns a set of divisors for the desired target clock with the given
4626 * refclk, or FALSE. The returned values represent the clock equation:
4627 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4628 */
4629 limit = intel_limit(crtc, refclk);
4630 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4631 &clock);
4632 if (!ok) {
4633 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4634 return -EINVAL;
4635 }
4636
4637 /* Ensure that the cursor is valid for the new mode before changing... */
4638 intel_crtc_update_cursor(crtc, true);
4639
4640 if (is_lvds && dev_priv->lvds_downclock_avail) {
4641 /*
4642 * Ensure we match the reduced clock's P to the target clock.
4643 * If the clocks don't match, we can't switch the display clock
4644 * by using the FP0/FP1. In such case we will disable the LVDS
4645 * downclock feature.
4646 */
4647 has_reduced_clock = limit->find_pll(limit, crtc,
4648 dev_priv->lvds_downclock,
4649 refclk,
4650 &clock,
4651 &reduced_clock);
4652 }
4653
4654 if (is_sdvo && is_tv)
4655 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4656
4657
4658 /* FDI link */
4659 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4660 lane = 0;
4661 /* CPU eDP doesn't require FDI link, so just set DP M/N
4662 according to current link config */
4663 if (is_cpu_edp) {
4664 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4665 } else {
4666 /* FDI is a binary signal running at ~2.7GHz, encoding
4667 * each output octet as 10 bits. The actual frequency
4668 * is stored as a divider into a 100MHz clock, and the
4669 * mode pixel clock is stored in units of 1KHz.
4670 * Hence the bw of each lane in terms of the mode signal
4671 * is:
4672 */
4673 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4674 }
4675
4676 /* [e]DP over FDI requires target mode clock instead of link clock. */
4677 if (edp_encoder)
4678 target_clock = intel_edp_target_clock(edp_encoder, mode);
4679 else if (is_dp)
4680 target_clock = mode->clock;
4681 else
4682 target_clock = adjusted_mode->clock;
4683
4684 /* determine panel color depth */
4685 temp = I915_READ(PIPECONF(pipe));
4686 temp &= ~PIPE_BPC_MASK;
4687 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4688 switch (pipe_bpp) {
4689 case 18:
4690 temp |= PIPE_6BPC;
4691 break;
4692 case 24:
4693 temp |= PIPE_8BPC;
4694 break;
4695 case 30:
4696 temp |= PIPE_10BPC;
4697 break;
4698 case 36:
4699 temp |= PIPE_12BPC;
4700 break;
4701 default:
4702 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4703 pipe_bpp);
4704 temp |= PIPE_8BPC;
4705 pipe_bpp = 24;
4706 break;
4707 }
4708
4709 intel_crtc->bpp = pipe_bpp;
4710 I915_WRITE(PIPECONF(pipe), temp);
4711
4712 if (!lane) {
4713 /*
4714 * Account for spread spectrum to avoid
4715 * oversubscribing the link. Max center spread
4716 * is 2.5%; use 5% for safety's sake.
4717 */
4718 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4719 lane = bps / (link_bw * 8) + 1;
4720 }
4721
4722 intel_crtc->fdi_lanes = lane;
4723
4724 if (pixel_multiplier > 1)
4725 link_bw *= pixel_multiplier;
4726 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4727 &m_n);
4728
4729 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4730 if (has_reduced_clock)
4731 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4732 reduced_clock.m2;
4733
4734 /* Enable autotuning of the PLL clock (if permissible) */
4735 factor = 21;
4736 if (is_lvds) {
4737 if ((intel_panel_use_ssc(dev_priv) &&
4738 dev_priv->lvds_ssc_freq == 100) ||
4739 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4740 factor = 25;
4741 } else if (is_sdvo && is_tv)
4742 factor = 20;
4743
4744 if (clock.m < factor * clock.n)
4745 fp |= FP_CB_TUNE;
4746
4747 dpll = 0;
4748
4749 if (is_lvds)
4750 dpll |= DPLLB_MODE_LVDS;
4751 else
4752 dpll |= DPLLB_MODE_DAC_SERIAL;
4753 if (is_sdvo) {
4754 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4755 if (pixel_multiplier > 1) {
4756 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4757 }
4758 dpll |= DPLL_DVO_HIGH_SPEED;
4759 }
4760 if (is_dp && !is_cpu_edp)
4761 dpll |= DPLL_DVO_HIGH_SPEED;
4762
4763 /* compute bitmask from p1 value */
4764 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4765 /* also FPA1 */
4766 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4767
4768 switch (clock.p2) {
4769 case 5:
4770 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4771 break;
4772 case 7:
4773 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4774 break;
4775 case 10:
4776 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4777 break;
4778 case 14:
4779 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4780 break;
4781 }
4782
4783 if (is_sdvo && is_tv)
4784 dpll |= PLL_REF_INPUT_TVCLKINBC;
4785 else if (is_tv)
4786 /* XXX: just matching BIOS for now */
4787 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4788 dpll |= 3;
4789 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4790 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4791 else
4792 dpll |= PLL_REF_INPUT_DREFCLK;
4793
4794 /* setup pipeconf */
4795 pipeconf = I915_READ(PIPECONF(pipe));
4796
4797 /* Set up the display plane register */
4798 dspcntr = DISPPLANE_GAMMA_ENABLE;
4799
4800 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4801 drm_mode_debug_printmodeline(mode);
4802
4803 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4804 * pre-Haswell/LPT generation */
4805 if (HAS_PCH_LPT(dev)) {
4806 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4807 pipe);
4808 } else if (!is_cpu_edp) {
4809 struct intel_pch_pll *pll;
4810
4811 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4812 if (pll == NULL) {
4813 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4814 pipe);
4815 return -EINVAL;
4816 }
4817 } else
4818 intel_put_pch_pll(intel_crtc);
4819
4820 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4821 * This is an exception to the general rule that mode_set doesn't turn
4822 * things on.
4823 */
4824 if (is_lvds) {
4825 temp = I915_READ(PCH_LVDS);
4826 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4827 if (HAS_PCH_CPT(dev)) {
4828 temp &= ~PORT_TRANS_SEL_MASK;
4829 temp |= PORT_TRANS_SEL_CPT(pipe);
4830 } else {
4831 if (pipe == 1)
4832 temp |= LVDS_PIPEB_SELECT;
4833 else
4834 temp &= ~LVDS_PIPEB_SELECT;
4835 }
4836
4837 /* set the corresponsding LVDS_BORDER bit */
4838 temp |= dev_priv->lvds_border_bits;
4839 /* Set the B0-B3 data pairs corresponding to whether we're going to
4840 * set the DPLLs for dual-channel mode or not.
4841 */
4842 if (clock.p2 == 7)
4843 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4844 else
4845 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4846
4847 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4848 * appropriately here, but we need to look more thoroughly into how
4849 * panels behave in the two modes.
4850 */
4851 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4852 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4853 temp |= LVDS_HSYNC_POLARITY;
4854 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4855 temp |= LVDS_VSYNC_POLARITY;
4856 I915_WRITE(PCH_LVDS, temp);
4857 }
4858
4859 pipeconf &= ~PIPECONF_DITHER_EN;
4860 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4861 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4862 pipeconf |= PIPECONF_DITHER_EN;
4863 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4864 }
4865 if (is_dp && !is_cpu_edp) {
4866 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4867 } else {
4868 /* For non-DP output, clear any trans DP clock recovery setting.*/
4869 I915_WRITE(TRANSDATA_M1(pipe), 0);
4870 I915_WRITE(TRANSDATA_N1(pipe), 0);
4871 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4872 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4873 }
4874
4875 if (intel_crtc->pch_pll) {
4876 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4877
4878 /* Wait for the clocks to stabilize. */
4879 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4880 udelay(150);
4881
4882 /* The pixel multiplier can only be updated once the
4883 * DPLL is enabled and the clocks are stable.
4884 *
4885 * So write it again.
4886 */
4887 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4888 }
4889
4890 intel_crtc->lowfreq_avail = false;
4891 if (intel_crtc->pch_pll) {
4892 if (is_lvds && has_reduced_clock && i915_powersave) {
4893 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4894 intel_crtc->lowfreq_avail = true;
4895 } else {
4896 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4897 }
4898 }
4899
4900 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4901 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4902 pipeconf |= PIPECONF_INTERLACED_ILK;
4903 /* the chip adds 2 halflines automatically */
4904 adjusted_mode->crtc_vtotal -= 1;
4905 adjusted_mode->crtc_vblank_end -= 1;
4906 I915_WRITE(VSYNCSHIFT(pipe),
4907 adjusted_mode->crtc_hsync_start
4908 - adjusted_mode->crtc_htotal/2);
4909 } else {
4910 pipeconf |= PIPECONF_PROGRESSIVE;
4911 I915_WRITE(VSYNCSHIFT(pipe), 0);
4912 }
4913
4914 I915_WRITE(HTOTAL(pipe),
4915 (adjusted_mode->crtc_hdisplay - 1) |
4916 ((adjusted_mode->crtc_htotal - 1) << 16));
4917 I915_WRITE(HBLANK(pipe),
4918 (adjusted_mode->crtc_hblank_start - 1) |
4919 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4920 I915_WRITE(HSYNC(pipe),
4921 (adjusted_mode->crtc_hsync_start - 1) |
4922 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4923
4924 I915_WRITE(VTOTAL(pipe),
4925 (adjusted_mode->crtc_vdisplay - 1) |
4926 ((adjusted_mode->crtc_vtotal - 1) << 16));
4927 I915_WRITE(VBLANK(pipe),
4928 (adjusted_mode->crtc_vblank_start - 1) |
4929 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4930 I915_WRITE(VSYNC(pipe),
4931 (adjusted_mode->crtc_vsync_start - 1) |
4932 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4933
4934 /* pipesrc controls the size that is scaled from, which should
4935 * always be the user's requested size.
4936 */
4937 I915_WRITE(PIPESRC(pipe),
4938 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4939
4940 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4941 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4942 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4943 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4944
4945 if (is_cpu_edp)
4946 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4947
4948 I915_WRITE(PIPECONF(pipe), pipeconf);
4949 POSTING_READ(PIPECONF(pipe));
4950
4951 intel_wait_for_vblank(dev, pipe);
4952
4953 I915_WRITE(DSPCNTR(plane), dspcntr);
4954 POSTING_READ(DSPCNTR(plane));
4955
4956 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4957
4958 intel_update_watermarks(dev);
4959
4960 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4961
4962 return ret;
4963 }
4964
4965 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4966 struct drm_display_mode *mode,
4967 struct drm_display_mode *adjusted_mode,
4968 int x, int y,
4969 struct drm_framebuffer *old_fb)
4970 {
4971 struct drm_device *dev = crtc->dev;
4972 struct drm_i915_private *dev_priv = dev->dev_private;
4973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4974 int pipe = intel_crtc->pipe;
4975 int ret;
4976
4977 drm_vblank_pre_modeset(dev, pipe);
4978
4979 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4980 x, y, old_fb);
4981 drm_vblank_post_modeset(dev, pipe);
4982
4983 if (ret)
4984 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4985 else
4986 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4987
4988 return ret;
4989 }
4990
4991 static bool intel_eld_uptodate(struct drm_connector *connector,
4992 int reg_eldv, uint32_t bits_eldv,
4993 int reg_elda, uint32_t bits_elda,
4994 int reg_edid)
4995 {
4996 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4997 uint8_t *eld = connector->eld;
4998 uint32_t i;
4999
5000 i = I915_READ(reg_eldv);
5001 i &= bits_eldv;
5002
5003 if (!eld[0])
5004 return !i;
5005
5006 if (!i)
5007 return false;
5008
5009 i = I915_READ(reg_elda);
5010 i &= ~bits_elda;
5011 I915_WRITE(reg_elda, i);
5012
5013 for (i = 0; i < eld[2]; i++)
5014 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5015 return false;
5016
5017 return true;
5018 }
5019
5020 static void g4x_write_eld(struct drm_connector *connector,
5021 struct drm_crtc *crtc)
5022 {
5023 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5024 uint8_t *eld = connector->eld;
5025 uint32_t eldv;
5026 uint32_t len;
5027 uint32_t i;
5028
5029 i = I915_READ(G4X_AUD_VID_DID);
5030
5031 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5032 eldv = G4X_ELDV_DEVCL_DEVBLC;
5033 else
5034 eldv = G4X_ELDV_DEVCTG;
5035
5036 if (intel_eld_uptodate(connector,
5037 G4X_AUD_CNTL_ST, eldv,
5038 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5039 G4X_HDMIW_HDMIEDID))
5040 return;
5041
5042 i = I915_READ(G4X_AUD_CNTL_ST);
5043 i &= ~(eldv | G4X_ELD_ADDR);
5044 len = (i >> 9) & 0x1f; /* ELD buffer size */
5045 I915_WRITE(G4X_AUD_CNTL_ST, i);
5046
5047 if (!eld[0])
5048 return;
5049
5050 len = min_t(uint8_t, eld[2], len);
5051 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5052 for (i = 0; i < len; i++)
5053 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5054
5055 i = I915_READ(G4X_AUD_CNTL_ST);
5056 i |= eldv;
5057 I915_WRITE(G4X_AUD_CNTL_ST, i);
5058 }
5059
5060 static void ironlake_write_eld(struct drm_connector *connector,
5061 struct drm_crtc *crtc)
5062 {
5063 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5064 uint8_t *eld = connector->eld;
5065 uint32_t eldv;
5066 uint32_t i;
5067 int len;
5068 int hdmiw_hdmiedid;
5069 int aud_config;
5070 int aud_cntl_st;
5071 int aud_cntrl_st2;
5072
5073 if (HAS_PCH_IBX(connector->dev)) {
5074 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
5075 aud_config = IBX_AUD_CONFIG_A;
5076 aud_cntl_st = IBX_AUD_CNTL_ST_A;
5077 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5078 } else {
5079 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
5080 aud_config = CPT_AUD_CONFIG_A;
5081 aud_cntl_st = CPT_AUD_CNTL_ST_A;
5082 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5083 }
5084
5085 i = to_intel_crtc(crtc)->pipe;
5086 hdmiw_hdmiedid += i * 0x100;
5087 aud_cntl_st += i * 0x100;
5088 aud_config += i * 0x100;
5089
5090 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5091
5092 i = I915_READ(aud_cntl_st);
5093 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5094 if (!i) {
5095 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5096 /* operate blindly on all ports */
5097 eldv = IBX_ELD_VALIDB;
5098 eldv |= IBX_ELD_VALIDB << 4;
5099 eldv |= IBX_ELD_VALIDB << 8;
5100 } else {
5101 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5102 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5103 }
5104
5105 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5106 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5107 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5108 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5109 } else
5110 I915_WRITE(aud_config, 0);
5111
5112 if (intel_eld_uptodate(connector,
5113 aud_cntrl_st2, eldv,
5114 aud_cntl_st, IBX_ELD_ADDRESS,
5115 hdmiw_hdmiedid))
5116 return;
5117
5118 i = I915_READ(aud_cntrl_st2);
5119 i &= ~eldv;
5120 I915_WRITE(aud_cntrl_st2, i);
5121
5122 if (!eld[0])
5123 return;
5124
5125 i = I915_READ(aud_cntl_st);
5126 i &= ~IBX_ELD_ADDRESS;
5127 I915_WRITE(aud_cntl_st, i);
5128
5129 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5130 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5131 for (i = 0; i < len; i++)
5132 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5133
5134 i = I915_READ(aud_cntrl_st2);
5135 i |= eldv;
5136 I915_WRITE(aud_cntrl_st2, i);
5137 }
5138
5139 void intel_write_eld(struct drm_encoder *encoder,
5140 struct drm_display_mode *mode)
5141 {
5142 struct drm_crtc *crtc = encoder->crtc;
5143 struct drm_connector *connector;
5144 struct drm_device *dev = encoder->dev;
5145 struct drm_i915_private *dev_priv = dev->dev_private;
5146
5147 connector = drm_select_eld(encoder, mode);
5148 if (!connector)
5149 return;
5150
5151 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5152 connector->base.id,
5153 drm_get_connector_name(connector),
5154 connector->encoder->base.id,
5155 drm_get_encoder_name(connector->encoder));
5156
5157 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5158
5159 if (dev_priv->display.write_eld)
5160 dev_priv->display.write_eld(connector, crtc);
5161 }
5162
5163 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5164 void intel_crtc_load_lut(struct drm_crtc *crtc)
5165 {
5166 struct drm_device *dev = crtc->dev;
5167 struct drm_i915_private *dev_priv = dev->dev_private;
5168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5169 int palreg = PALETTE(intel_crtc->pipe);
5170 int i;
5171
5172 /* The clocks have to be on to load the palette. */
5173 if (!crtc->enabled || !intel_crtc->active)
5174 return;
5175
5176 /* use legacy palette for Ironlake */
5177 if (HAS_PCH_SPLIT(dev))
5178 palreg = LGC_PALETTE(intel_crtc->pipe);
5179
5180 for (i = 0; i < 256; i++) {
5181 I915_WRITE(palreg + 4 * i,
5182 (intel_crtc->lut_r[i] << 16) |
5183 (intel_crtc->lut_g[i] << 8) |
5184 intel_crtc->lut_b[i]);
5185 }
5186 }
5187
5188 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5189 {
5190 struct drm_device *dev = crtc->dev;
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5193 bool visible = base != 0;
5194 u32 cntl;
5195
5196 if (intel_crtc->cursor_visible == visible)
5197 return;
5198
5199 cntl = I915_READ(_CURACNTR);
5200 if (visible) {
5201 /* On these chipsets we can only modify the base whilst
5202 * the cursor is disabled.
5203 */
5204 I915_WRITE(_CURABASE, base);
5205
5206 cntl &= ~(CURSOR_FORMAT_MASK);
5207 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5208 cntl |= CURSOR_ENABLE |
5209 CURSOR_GAMMA_ENABLE |
5210 CURSOR_FORMAT_ARGB;
5211 } else
5212 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5213 I915_WRITE(_CURACNTR, cntl);
5214
5215 intel_crtc->cursor_visible = visible;
5216 }
5217
5218 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5219 {
5220 struct drm_device *dev = crtc->dev;
5221 struct drm_i915_private *dev_priv = dev->dev_private;
5222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5223 int pipe = intel_crtc->pipe;
5224 bool visible = base != 0;
5225
5226 if (intel_crtc->cursor_visible != visible) {
5227 uint32_t cntl = I915_READ(CURCNTR(pipe));
5228 if (base) {
5229 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5230 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5231 cntl |= pipe << 28; /* Connect to correct pipe */
5232 } else {
5233 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5234 cntl |= CURSOR_MODE_DISABLE;
5235 }
5236 I915_WRITE(CURCNTR(pipe), cntl);
5237
5238 intel_crtc->cursor_visible = visible;
5239 }
5240 /* and commit changes on next vblank */
5241 I915_WRITE(CURBASE(pipe), base);
5242 }
5243
5244 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5245 {
5246 struct drm_device *dev = crtc->dev;
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249 int pipe = intel_crtc->pipe;
5250 bool visible = base != 0;
5251
5252 if (intel_crtc->cursor_visible != visible) {
5253 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5254 if (base) {
5255 cntl &= ~CURSOR_MODE;
5256 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5257 } else {
5258 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5259 cntl |= CURSOR_MODE_DISABLE;
5260 }
5261 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5262
5263 intel_crtc->cursor_visible = visible;
5264 }
5265 /* and commit changes on next vblank */
5266 I915_WRITE(CURBASE_IVB(pipe), base);
5267 }
5268
5269 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5270 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5271 bool on)
5272 {
5273 struct drm_device *dev = crtc->dev;
5274 struct drm_i915_private *dev_priv = dev->dev_private;
5275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5276 int pipe = intel_crtc->pipe;
5277 int x = intel_crtc->cursor_x;
5278 int y = intel_crtc->cursor_y;
5279 u32 base, pos;
5280 bool visible;
5281
5282 pos = 0;
5283
5284 if (on && crtc->enabled && crtc->fb) {
5285 base = intel_crtc->cursor_addr;
5286 if (x > (int) crtc->fb->width)
5287 base = 0;
5288
5289 if (y > (int) crtc->fb->height)
5290 base = 0;
5291 } else
5292 base = 0;
5293
5294 if (x < 0) {
5295 if (x + intel_crtc->cursor_width < 0)
5296 base = 0;
5297
5298 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5299 x = -x;
5300 }
5301 pos |= x << CURSOR_X_SHIFT;
5302
5303 if (y < 0) {
5304 if (y + intel_crtc->cursor_height < 0)
5305 base = 0;
5306
5307 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5308 y = -y;
5309 }
5310 pos |= y << CURSOR_Y_SHIFT;
5311
5312 visible = base != 0;
5313 if (!visible && !intel_crtc->cursor_visible)
5314 return;
5315
5316 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5317 I915_WRITE(CURPOS_IVB(pipe), pos);
5318 ivb_update_cursor(crtc, base);
5319 } else {
5320 I915_WRITE(CURPOS(pipe), pos);
5321 if (IS_845G(dev) || IS_I865G(dev))
5322 i845_update_cursor(crtc, base);
5323 else
5324 i9xx_update_cursor(crtc, base);
5325 }
5326 }
5327
5328 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5329 struct drm_file *file,
5330 uint32_t handle,
5331 uint32_t width, uint32_t height)
5332 {
5333 struct drm_device *dev = crtc->dev;
5334 struct drm_i915_private *dev_priv = dev->dev_private;
5335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5336 struct drm_i915_gem_object *obj;
5337 uint32_t addr;
5338 int ret;
5339
5340 DRM_DEBUG_KMS("\n");
5341
5342 /* if we want to turn off the cursor ignore width and height */
5343 if (!handle) {
5344 DRM_DEBUG_KMS("cursor off\n");
5345 addr = 0;
5346 obj = NULL;
5347 mutex_lock(&dev->struct_mutex);
5348 goto finish;
5349 }
5350
5351 /* Currently we only support 64x64 cursors */
5352 if (width != 64 || height != 64) {
5353 DRM_ERROR("we currently only support 64x64 cursors\n");
5354 return -EINVAL;
5355 }
5356
5357 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5358 if (&obj->base == NULL)
5359 return -ENOENT;
5360
5361 if (obj->base.size < width * height * 4) {
5362 DRM_ERROR("buffer is to small\n");
5363 ret = -ENOMEM;
5364 goto fail;
5365 }
5366
5367 /* we only need to pin inside GTT if cursor is non-phy */
5368 mutex_lock(&dev->struct_mutex);
5369 if (!dev_priv->info->cursor_needs_physical) {
5370 if (obj->tiling_mode) {
5371 DRM_ERROR("cursor cannot be tiled\n");
5372 ret = -EINVAL;
5373 goto fail_locked;
5374 }
5375
5376 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5377 if (ret) {
5378 DRM_ERROR("failed to move cursor bo into the GTT\n");
5379 goto fail_locked;
5380 }
5381
5382 ret = i915_gem_object_put_fence(obj);
5383 if (ret) {
5384 DRM_ERROR("failed to release fence for cursor");
5385 goto fail_unpin;
5386 }
5387
5388 addr = obj->gtt_offset;
5389 } else {
5390 int align = IS_I830(dev) ? 16 * 1024 : 256;
5391 ret = i915_gem_attach_phys_object(dev, obj,
5392 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5393 align);
5394 if (ret) {
5395 DRM_ERROR("failed to attach phys object\n");
5396 goto fail_locked;
5397 }
5398 addr = obj->phys_obj->handle->busaddr;
5399 }
5400
5401 if (IS_GEN2(dev))
5402 I915_WRITE(CURSIZE, (height << 12) | width);
5403
5404 finish:
5405 if (intel_crtc->cursor_bo) {
5406 if (dev_priv->info->cursor_needs_physical) {
5407 if (intel_crtc->cursor_bo != obj)
5408 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5409 } else
5410 i915_gem_object_unpin(intel_crtc->cursor_bo);
5411 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5412 }
5413
5414 mutex_unlock(&dev->struct_mutex);
5415
5416 intel_crtc->cursor_addr = addr;
5417 intel_crtc->cursor_bo = obj;
5418 intel_crtc->cursor_width = width;
5419 intel_crtc->cursor_height = height;
5420
5421 intel_crtc_update_cursor(crtc, true);
5422
5423 return 0;
5424 fail_unpin:
5425 i915_gem_object_unpin(obj);
5426 fail_locked:
5427 mutex_unlock(&dev->struct_mutex);
5428 fail:
5429 drm_gem_object_unreference_unlocked(&obj->base);
5430 return ret;
5431 }
5432
5433 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5434 {
5435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5436
5437 intel_crtc->cursor_x = x;
5438 intel_crtc->cursor_y = y;
5439
5440 intel_crtc_update_cursor(crtc, true);
5441
5442 return 0;
5443 }
5444
5445 /** Sets the color ramps on behalf of RandR */
5446 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5447 u16 blue, int regno)
5448 {
5449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5450
5451 intel_crtc->lut_r[regno] = red >> 8;
5452 intel_crtc->lut_g[regno] = green >> 8;
5453 intel_crtc->lut_b[regno] = blue >> 8;
5454 }
5455
5456 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5457 u16 *blue, int regno)
5458 {
5459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5460
5461 *red = intel_crtc->lut_r[regno] << 8;
5462 *green = intel_crtc->lut_g[regno] << 8;
5463 *blue = intel_crtc->lut_b[regno] << 8;
5464 }
5465
5466 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5467 u16 *blue, uint32_t start, uint32_t size)
5468 {
5469 int end = (start + size > 256) ? 256 : start + size, i;
5470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5471
5472 for (i = start; i < end; i++) {
5473 intel_crtc->lut_r[i] = red[i] >> 8;
5474 intel_crtc->lut_g[i] = green[i] >> 8;
5475 intel_crtc->lut_b[i] = blue[i] >> 8;
5476 }
5477
5478 intel_crtc_load_lut(crtc);
5479 }
5480
5481 /**
5482 * Get a pipe with a simple mode set on it for doing load-based monitor
5483 * detection.
5484 *
5485 * It will be up to the load-detect code to adjust the pipe as appropriate for
5486 * its requirements. The pipe will be connected to no other encoders.
5487 *
5488 * Currently this code will only succeed if there is a pipe with no encoders
5489 * configured for it. In the future, it could choose to temporarily disable
5490 * some outputs to free up a pipe for its use.
5491 *
5492 * \return crtc, or NULL if no pipes are available.
5493 */
5494
5495 /* VESA 640x480x72Hz mode to set on the pipe */
5496 static struct drm_display_mode load_detect_mode = {
5497 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5498 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5499 };
5500
5501 static struct drm_framebuffer *
5502 intel_framebuffer_create(struct drm_device *dev,
5503 struct drm_mode_fb_cmd2 *mode_cmd,
5504 struct drm_i915_gem_object *obj)
5505 {
5506 struct intel_framebuffer *intel_fb;
5507 int ret;
5508
5509 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5510 if (!intel_fb) {
5511 drm_gem_object_unreference_unlocked(&obj->base);
5512 return ERR_PTR(-ENOMEM);
5513 }
5514
5515 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5516 if (ret) {
5517 drm_gem_object_unreference_unlocked(&obj->base);
5518 kfree(intel_fb);
5519 return ERR_PTR(ret);
5520 }
5521
5522 return &intel_fb->base;
5523 }
5524
5525 static u32
5526 intel_framebuffer_pitch_for_width(int width, int bpp)
5527 {
5528 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5529 return ALIGN(pitch, 64);
5530 }
5531
5532 static u32
5533 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5534 {
5535 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5536 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5537 }
5538
5539 static struct drm_framebuffer *
5540 intel_framebuffer_create_for_mode(struct drm_device *dev,
5541 struct drm_display_mode *mode,
5542 int depth, int bpp)
5543 {
5544 struct drm_i915_gem_object *obj;
5545 struct drm_mode_fb_cmd2 mode_cmd;
5546
5547 obj = i915_gem_alloc_object(dev,
5548 intel_framebuffer_size_for_mode(mode, bpp));
5549 if (obj == NULL)
5550 return ERR_PTR(-ENOMEM);
5551
5552 mode_cmd.width = mode->hdisplay;
5553 mode_cmd.height = mode->vdisplay;
5554 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5555 bpp);
5556 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5557
5558 return intel_framebuffer_create(dev, &mode_cmd, obj);
5559 }
5560
5561 static struct drm_framebuffer *
5562 mode_fits_in_fbdev(struct drm_device *dev,
5563 struct drm_display_mode *mode)
5564 {
5565 struct drm_i915_private *dev_priv = dev->dev_private;
5566 struct drm_i915_gem_object *obj;
5567 struct drm_framebuffer *fb;
5568
5569 if (dev_priv->fbdev == NULL)
5570 return NULL;
5571
5572 obj = dev_priv->fbdev->ifb.obj;
5573 if (obj == NULL)
5574 return NULL;
5575
5576 fb = &dev_priv->fbdev->ifb.base;
5577 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5578 fb->bits_per_pixel))
5579 return NULL;
5580
5581 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5582 return NULL;
5583
5584 return fb;
5585 }
5586
5587 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5588 struct drm_connector *connector,
5589 struct drm_display_mode *mode,
5590 struct intel_load_detect_pipe *old)
5591 {
5592 struct intel_crtc *intel_crtc;
5593 struct drm_crtc *possible_crtc;
5594 struct drm_encoder *encoder = &intel_encoder->base;
5595 struct drm_crtc *crtc = NULL;
5596 struct drm_device *dev = encoder->dev;
5597 struct drm_framebuffer *old_fb;
5598 int i = -1;
5599
5600 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5601 connector->base.id, drm_get_connector_name(connector),
5602 encoder->base.id, drm_get_encoder_name(encoder));
5603
5604 /*
5605 * Algorithm gets a little messy:
5606 *
5607 * - if the connector already has an assigned crtc, use it (but make
5608 * sure it's on first)
5609 *
5610 * - try to find the first unused crtc that can drive this connector,
5611 * and use that if we find one
5612 */
5613
5614 /* See if we already have a CRTC for this connector */
5615 if (encoder->crtc) {
5616 crtc = encoder->crtc;
5617
5618 intel_crtc = to_intel_crtc(crtc);
5619 old->dpms_mode = intel_crtc->dpms_mode;
5620 old->load_detect_temp = false;
5621
5622 /* Make sure the crtc and connector are running */
5623 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5624 struct drm_encoder_helper_funcs *encoder_funcs;
5625 struct drm_crtc_helper_funcs *crtc_funcs;
5626
5627 crtc_funcs = crtc->helper_private;
5628 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5629
5630 encoder_funcs = encoder->helper_private;
5631 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5632 }
5633
5634 return true;
5635 }
5636
5637 /* Find an unused one (if possible) */
5638 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5639 i++;
5640 if (!(encoder->possible_crtcs & (1 << i)))
5641 continue;
5642 if (!possible_crtc->enabled) {
5643 crtc = possible_crtc;
5644 break;
5645 }
5646 }
5647
5648 /*
5649 * If we didn't find an unused CRTC, don't use any.
5650 */
5651 if (!crtc) {
5652 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5653 return false;
5654 }
5655
5656 encoder->crtc = crtc;
5657 connector->encoder = encoder;
5658
5659 intel_crtc = to_intel_crtc(crtc);
5660 old->dpms_mode = intel_crtc->dpms_mode;
5661 old->load_detect_temp = true;
5662 old->release_fb = NULL;
5663
5664 if (!mode)
5665 mode = &load_detect_mode;
5666
5667 old_fb = crtc->fb;
5668
5669 /* We need a framebuffer large enough to accommodate all accesses
5670 * that the plane may generate whilst we perform load detection.
5671 * We can not rely on the fbcon either being present (we get called
5672 * during its initialisation to detect all boot displays, or it may
5673 * not even exist) or that it is large enough to satisfy the
5674 * requested mode.
5675 */
5676 crtc->fb = mode_fits_in_fbdev(dev, mode);
5677 if (crtc->fb == NULL) {
5678 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5679 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5680 old->release_fb = crtc->fb;
5681 } else
5682 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5683 if (IS_ERR(crtc->fb)) {
5684 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5685 crtc->fb = old_fb;
5686 return false;
5687 }
5688
5689 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5690 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5691 if (old->release_fb)
5692 old->release_fb->funcs->destroy(old->release_fb);
5693 crtc->fb = old_fb;
5694 return false;
5695 }
5696
5697 /* let the connector get through one full cycle before testing */
5698 intel_wait_for_vblank(dev, intel_crtc->pipe);
5699
5700 return true;
5701 }
5702
5703 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5704 struct drm_connector *connector,
5705 struct intel_load_detect_pipe *old)
5706 {
5707 struct drm_encoder *encoder = &intel_encoder->base;
5708 struct drm_device *dev = encoder->dev;
5709 struct drm_crtc *crtc = encoder->crtc;
5710 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5711 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5712
5713 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5714 connector->base.id, drm_get_connector_name(connector),
5715 encoder->base.id, drm_get_encoder_name(encoder));
5716
5717 if (old->load_detect_temp) {
5718 connector->encoder = NULL;
5719 drm_helper_disable_unused_functions(dev);
5720
5721 if (old->release_fb)
5722 old->release_fb->funcs->destroy(old->release_fb);
5723
5724 return;
5725 }
5726
5727 /* Switch crtc and encoder back off if necessary */
5728 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5729 encoder_funcs->dpms(encoder, old->dpms_mode);
5730 crtc_funcs->dpms(crtc, old->dpms_mode);
5731 }
5732 }
5733
5734 /* Returns the clock of the currently programmed mode of the given pipe. */
5735 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5736 {
5737 struct drm_i915_private *dev_priv = dev->dev_private;
5738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5739 int pipe = intel_crtc->pipe;
5740 u32 dpll = I915_READ(DPLL(pipe));
5741 u32 fp;
5742 intel_clock_t clock;
5743
5744 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5745 fp = I915_READ(FP0(pipe));
5746 else
5747 fp = I915_READ(FP1(pipe));
5748
5749 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5750 if (IS_PINEVIEW(dev)) {
5751 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5752 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5753 } else {
5754 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5755 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5756 }
5757
5758 if (!IS_GEN2(dev)) {
5759 if (IS_PINEVIEW(dev))
5760 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5761 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5762 else
5763 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5764 DPLL_FPA01_P1_POST_DIV_SHIFT);
5765
5766 switch (dpll & DPLL_MODE_MASK) {
5767 case DPLLB_MODE_DAC_SERIAL:
5768 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5769 5 : 10;
5770 break;
5771 case DPLLB_MODE_LVDS:
5772 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5773 7 : 14;
5774 break;
5775 default:
5776 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5777 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5778 return 0;
5779 }
5780
5781 /* XXX: Handle the 100Mhz refclk */
5782 intel_clock(dev, 96000, &clock);
5783 } else {
5784 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5785
5786 if (is_lvds) {
5787 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5788 DPLL_FPA01_P1_POST_DIV_SHIFT);
5789 clock.p2 = 14;
5790
5791 if ((dpll & PLL_REF_INPUT_MASK) ==
5792 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5793 /* XXX: might not be 66MHz */
5794 intel_clock(dev, 66000, &clock);
5795 } else
5796 intel_clock(dev, 48000, &clock);
5797 } else {
5798 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5799 clock.p1 = 2;
5800 else {
5801 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5802 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5803 }
5804 if (dpll & PLL_P2_DIVIDE_BY_4)
5805 clock.p2 = 4;
5806 else
5807 clock.p2 = 2;
5808
5809 intel_clock(dev, 48000, &clock);
5810 }
5811 }
5812
5813 /* XXX: It would be nice to validate the clocks, but we can't reuse
5814 * i830PllIsValid() because it relies on the xf86_config connector
5815 * configuration being accurate, which it isn't necessarily.
5816 */
5817
5818 return clock.dot;
5819 }
5820
5821 /** Returns the currently programmed mode of the given pipe. */
5822 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5823 struct drm_crtc *crtc)
5824 {
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5827 int pipe = intel_crtc->pipe;
5828 struct drm_display_mode *mode;
5829 int htot = I915_READ(HTOTAL(pipe));
5830 int hsync = I915_READ(HSYNC(pipe));
5831 int vtot = I915_READ(VTOTAL(pipe));
5832 int vsync = I915_READ(VSYNC(pipe));
5833
5834 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5835 if (!mode)
5836 return NULL;
5837
5838 mode->clock = intel_crtc_clock_get(dev, crtc);
5839 mode->hdisplay = (htot & 0xffff) + 1;
5840 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5841 mode->hsync_start = (hsync & 0xffff) + 1;
5842 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5843 mode->vdisplay = (vtot & 0xffff) + 1;
5844 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5845 mode->vsync_start = (vsync & 0xffff) + 1;
5846 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5847
5848 drm_mode_set_name(mode);
5849
5850 return mode;
5851 }
5852
5853 static void intel_increase_pllclock(struct drm_crtc *crtc)
5854 {
5855 struct drm_device *dev = crtc->dev;
5856 drm_i915_private_t *dev_priv = dev->dev_private;
5857 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5858 int pipe = intel_crtc->pipe;
5859 int dpll_reg = DPLL(pipe);
5860 int dpll;
5861
5862 if (HAS_PCH_SPLIT(dev))
5863 return;
5864
5865 if (!dev_priv->lvds_downclock_avail)
5866 return;
5867
5868 dpll = I915_READ(dpll_reg);
5869 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5870 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5871
5872 assert_panel_unlocked(dev_priv, pipe);
5873
5874 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5875 I915_WRITE(dpll_reg, dpll);
5876 intel_wait_for_vblank(dev, pipe);
5877
5878 dpll = I915_READ(dpll_reg);
5879 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5880 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5881 }
5882 }
5883
5884 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5885 {
5886 struct drm_device *dev = crtc->dev;
5887 drm_i915_private_t *dev_priv = dev->dev_private;
5888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889
5890 if (HAS_PCH_SPLIT(dev))
5891 return;
5892
5893 if (!dev_priv->lvds_downclock_avail)
5894 return;
5895
5896 /*
5897 * Since this is called by a timer, we should never get here in
5898 * the manual case.
5899 */
5900 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5901 int pipe = intel_crtc->pipe;
5902 int dpll_reg = DPLL(pipe);
5903 int dpll;
5904
5905 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5906
5907 assert_panel_unlocked(dev_priv, pipe);
5908
5909 dpll = I915_READ(dpll_reg);
5910 dpll |= DISPLAY_RATE_SELECT_FPA1;
5911 I915_WRITE(dpll_reg, dpll);
5912 intel_wait_for_vblank(dev, pipe);
5913 dpll = I915_READ(dpll_reg);
5914 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5915 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5916 }
5917
5918 }
5919
5920 void intel_mark_busy(struct drm_device *dev)
5921 {
5922 i915_update_gfx_val(dev->dev_private);
5923 }
5924
5925 void intel_mark_idle(struct drm_device *dev)
5926 {
5927 }
5928
5929 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
5930 {
5931 struct drm_device *dev = obj->base.dev;
5932 struct drm_crtc *crtc;
5933
5934 if (!i915_powersave)
5935 return;
5936
5937 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5938 if (!crtc->fb)
5939 continue;
5940
5941 if (to_intel_framebuffer(crtc->fb)->obj == obj)
5942 intel_increase_pllclock(crtc);
5943 }
5944 }
5945
5946 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
5947 {
5948 struct drm_device *dev = obj->base.dev;
5949 struct drm_crtc *crtc;
5950
5951 if (!i915_powersave)
5952 return;
5953
5954 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5955 if (!crtc->fb)
5956 continue;
5957
5958 if (to_intel_framebuffer(crtc->fb)->obj == obj)
5959 intel_decrease_pllclock(crtc);
5960 }
5961 }
5962
5963 static void intel_crtc_destroy(struct drm_crtc *crtc)
5964 {
5965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5966 struct drm_device *dev = crtc->dev;
5967 struct intel_unpin_work *work;
5968 unsigned long flags;
5969
5970 spin_lock_irqsave(&dev->event_lock, flags);
5971 work = intel_crtc->unpin_work;
5972 intel_crtc->unpin_work = NULL;
5973 spin_unlock_irqrestore(&dev->event_lock, flags);
5974
5975 if (work) {
5976 cancel_work_sync(&work->work);
5977 kfree(work);
5978 }
5979
5980 drm_crtc_cleanup(crtc);
5981
5982 kfree(intel_crtc);
5983 }
5984
5985 static void intel_unpin_work_fn(struct work_struct *__work)
5986 {
5987 struct intel_unpin_work *work =
5988 container_of(__work, struct intel_unpin_work, work);
5989
5990 mutex_lock(&work->dev->struct_mutex);
5991 intel_unpin_fb_obj(work->old_fb_obj);
5992 drm_gem_object_unreference(&work->pending_flip_obj->base);
5993 drm_gem_object_unreference(&work->old_fb_obj->base);
5994
5995 intel_update_fbc(work->dev);
5996 mutex_unlock(&work->dev->struct_mutex);
5997 kfree(work);
5998 }
5999
6000 static void do_intel_finish_page_flip(struct drm_device *dev,
6001 struct drm_crtc *crtc)
6002 {
6003 drm_i915_private_t *dev_priv = dev->dev_private;
6004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6005 struct intel_unpin_work *work;
6006 struct drm_i915_gem_object *obj;
6007 struct drm_pending_vblank_event *e;
6008 struct timeval tnow, tvbl;
6009 unsigned long flags;
6010
6011 /* Ignore early vblank irqs */
6012 if (intel_crtc == NULL)
6013 return;
6014
6015 do_gettimeofday(&tnow);
6016
6017 spin_lock_irqsave(&dev->event_lock, flags);
6018 work = intel_crtc->unpin_work;
6019 if (work == NULL || !work->pending) {
6020 spin_unlock_irqrestore(&dev->event_lock, flags);
6021 return;
6022 }
6023
6024 intel_crtc->unpin_work = NULL;
6025
6026 if (work->event) {
6027 e = work->event;
6028 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6029
6030 /* Called before vblank count and timestamps have
6031 * been updated for the vblank interval of flip
6032 * completion? Need to increment vblank count and
6033 * add one videorefresh duration to returned timestamp
6034 * to account for this. We assume this happened if we
6035 * get called over 0.9 frame durations after the last
6036 * timestamped vblank.
6037 *
6038 * This calculation can not be used with vrefresh rates
6039 * below 5Hz (10Hz to be on the safe side) without
6040 * promoting to 64 integers.
6041 */
6042 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6043 9 * crtc->framedur_ns) {
6044 e->event.sequence++;
6045 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6046 crtc->framedur_ns);
6047 }
6048
6049 e->event.tv_sec = tvbl.tv_sec;
6050 e->event.tv_usec = tvbl.tv_usec;
6051
6052 list_add_tail(&e->base.link,
6053 &e->base.file_priv->event_list);
6054 wake_up_interruptible(&e->base.file_priv->event_wait);
6055 }
6056
6057 drm_vblank_put(dev, intel_crtc->pipe);
6058
6059 spin_unlock_irqrestore(&dev->event_lock, flags);
6060
6061 obj = work->old_fb_obj;
6062
6063 atomic_clear_mask(1 << intel_crtc->plane,
6064 &obj->pending_flip.counter);
6065 if (atomic_read(&obj->pending_flip) == 0)
6066 wake_up(&dev_priv->pending_flip_queue);
6067
6068 schedule_work(&work->work);
6069
6070 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6071 }
6072
6073 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6074 {
6075 drm_i915_private_t *dev_priv = dev->dev_private;
6076 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6077
6078 do_intel_finish_page_flip(dev, crtc);
6079 }
6080
6081 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6082 {
6083 drm_i915_private_t *dev_priv = dev->dev_private;
6084 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6085
6086 do_intel_finish_page_flip(dev, crtc);
6087 }
6088
6089 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6090 {
6091 drm_i915_private_t *dev_priv = dev->dev_private;
6092 struct intel_crtc *intel_crtc =
6093 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6094 unsigned long flags;
6095
6096 spin_lock_irqsave(&dev->event_lock, flags);
6097 if (intel_crtc->unpin_work) {
6098 if ((++intel_crtc->unpin_work->pending) > 1)
6099 DRM_ERROR("Prepared flip multiple times\n");
6100 } else {
6101 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6102 }
6103 spin_unlock_irqrestore(&dev->event_lock, flags);
6104 }
6105
6106 static int intel_gen2_queue_flip(struct drm_device *dev,
6107 struct drm_crtc *crtc,
6108 struct drm_framebuffer *fb,
6109 struct drm_i915_gem_object *obj)
6110 {
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6113 u32 flip_mask;
6114 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6115 int ret;
6116
6117 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6118 if (ret)
6119 goto err;
6120
6121 ret = intel_ring_begin(ring, 6);
6122 if (ret)
6123 goto err_unpin;
6124
6125 /* Can't queue multiple flips, so wait for the previous
6126 * one to finish before executing the next.
6127 */
6128 if (intel_crtc->plane)
6129 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6130 else
6131 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6132 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6133 intel_ring_emit(ring, MI_NOOP);
6134 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6135 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6136 intel_ring_emit(ring, fb->pitches[0]);
6137 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6138 intel_ring_emit(ring, 0); /* aux display base address, unused */
6139 intel_ring_advance(ring);
6140 return 0;
6141
6142 err_unpin:
6143 intel_unpin_fb_obj(obj);
6144 err:
6145 return ret;
6146 }
6147
6148 static int intel_gen3_queue_flip(struct drm_device *dev,
6149 struct drm_crtc *crtc,
6150 struct drm_framebuffer *fb,
6151 struct drm_i915_gem_object *obj)
6152 {
6153 struct drm_i915_private *dev_priv = dev->dev_private;
6154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6155 u32 flip_mask;
6156 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6157 int ret;
6158
6159 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6160 if (ret)
6161 goto err;
6162
6163 ret = intel_ring_begin(ring, 6);
6164 if (ret)
6165 goto err_unpin;
6166
6167 if (intel_crtc->plane)
6168 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6169 else
6170 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6171 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6172 intel_ring_emit(ring, MI_NOOP);
6173 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6174 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6175 intel_ring_emit(ring, fb->pitches[0]);
6176 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6177 intel_ring_emit(ring, MI_NOOP);
6178
6179 intel_ring_advance(ring);
6180 return 0;
6181
6182 err_unpin:
6183 intel_unpin_fb_obj(obj);
6184 err:
6185 return ret;
6186 }
6187
6188 static int intel_gen4_queue_flip(struct drm_device *dev,
6189 struct drm_crtc *crtc,
6190 struct drm_framebuffer *fb,
6191 struct drm_i915_gem_object *obj)
6192 {
6193 struct drm_i915_private *dev_priv = dev->dev_private;
6194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6195 uint32_t pf, pipesrc;
6196 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6197 int ret;
6198
6199 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6200 if (ret)
6201 goto err;
6202
6203 ret = intel_ring_begin(ring, 4);
6204 if (ret)
6205 goto err_unpin;
6206
6207 /* i965+ uses the linear or tiled offsets from the
6208 * Display Registers (which do not change across a page-flip)
6209 * so we need only reprogram the base address.
6210 */
6211 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6212 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6213 intel_ring_emit(ring, fb->pitches[0]);
6214 intel_ring_emit(ring,
6215 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6216 obj->tiling_mode);
6217
6218 /* XXX Enabling the panel-fitter across page-flip is so far
6219 * untested on non-native modes, so ignore it for now.
6220 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6221 */
6222 pf = 0;
6223 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6224 intel_ring_emit(ring, pf | pipesrc);
6225 intel_ring_advance(ring);
6226 return 0;
6227
6228 err_unpin:
6229 intel_unpin_fb_obj(obj);
6230 err:
6231 return ret;
6232 }
6233
6234 static int intel_gen6_queue_flip(struct drm_device *dev,
6235 struct drm_crtc *crtc,
6236 struct drm_framebuffer *fb,
6237 struct drm_i915_gem_object *obj)
6238 {
6239 struct drm_i915_private *dev_priv = dev->dev_private;
6240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6241 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6242 uint32_t pf, pipesrc;
6243 int ret;
6244
6245 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6246 if (ret)
6247 goto err;
6248
6249 ret = intel_ring_begin(ring, 4);
6250 if (ret)
6251 goto err_unpin;
6252
6253 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6254 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6255 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6256 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6257
6258 /* Contrary to the suggestions in the documentation,
6259 * "Enable Panel Fitter" does not seem to be required when page
6260 * flipping with a non-native mode, and worse causes a normal
6261 * modeset to fail.
6262 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6263 */
6264 pf = 0;
6265 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6266 intel_ring_emit(ring, pf | pipesrc);
6267 intel_ring_advance(ring);
6268 return 0;
6269
6270 err_unpin:
6271 intel_unpin_fb_obj(obj);
6272 err:
6273 return ret;
6274 }
6275
6276 /*
6277 * On gen7 we currently use the blit ring because (in early silicon at least)
6278 * the render ring doesn't give us interrpts for page flip completion, which
6279 * means clients will hang after the first flip is queued. Fortunately the
6280 * blit ring generates interrupts properly, so use it instead.
6281 */
6282 static int intel_gen7_queue_flip(struct drm_device *dev,
6283 struct drm_crtc *crtc,
6284 struct drm_framebuffer *fb,
6285 struct drm_i915_gem_object *obj)
6286 {
6287 struct drm_i915_private *dev_priv = dev->dev_private;
6288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6289 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6290 uint32_t plane_bit = 0;
6291 int ret;
6292
6293 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6294 if (ret)
6295 goto err;
6296
6297 switch(intel_crtc->plane) {
6298 case PLANE_A:
6299 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6300 break;
6301 case PLANE_B:
6302 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6303 break;
6304 case PLANE_C:
6305 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6306 break;
6307 default:
6308 WARN_ONCE(1, "unknown plane in flip command\n");
6309 ret = -ENODEV;
6310 goto err_unpin;
6311 }
6312
6313 ret = intel_ring_begin(ring, 4);
6314 if (ret)
6315 goto err_unpin;
6316
6317 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6318 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6319 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6320 intel_ring_emit(ring, (MI_NOOP));
6321 intel_ring_advance(ring);
6322 return 0;
6323
6324 err_unpin:
6325 intel_unpin_fb_obj(obj);
6326 err:
6327 return ret;
6328 }
6329
6330 static int intel_default_queue_flip(struct drm_device *dev,
6331 struct drm_crtc *crtc,
6332 struct drm_framebuffer *fb,
6333 struct drm_i915_gem_object *obj)
6334 {
6335 return -ENODEV;
6336 }
6337
6338 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6339 struct drm_framebuffer *fb,
6340 struct drm_pending_vblank_event *event)
6341 {
6342 struct drm_device *dev = crtc->dev;
6343 struct drm_i915_private *dev_priv = dev->dev_private;
6344 struct intel_framebuffer *intel_fb;
6345 struct drm_i915_gem_object *obj;
6346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347 struct intel_unpin_work *work;
6348 unsigned long flags;
6349 int ret;
6350
6351 /* Can't change pixel format via MI display flips. */
6352 if (fb->pixel_format != crtc->fb->pixel_format)
6353 return -EINVAL;
6354
6355 /*
6356 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6357 * Note that pitch changes could also affect these register.
6358 */
6359 if (INTEL_INFO(dev)->gen > 3 &&
6360 (fb->offsets[0] != crtc->fb->offsets[0] ||
6361 fb->pitches[0] != crtc->fb->pitches[0]))
6362 return -EINVAL;
6363
6364 work = kzalloc(sizeof *work, GFP_KERNEL);
6365 if (work == NULL)
6366 return -ENOMEM;
6367
6368 work->event = event;
6369 work->dev = crtc->dev;
6370 intel_fb = to_intel_framebuffer(crtc->fb);
6371 work->old_fb_obj = intel_fb->obj;
6372 INIT_WORK(&work->work, intel_unpin_work_fn);
6373
6374 ret = drm_vblank_get(dev, intel_crtc->pipe);
6375 if (ret)
6376 goto free_work;
6377
6378 /* We borrow the event spin lock for protecting unpin_work */
6379 spin_lock_irqsave(&dev->event_lock, flags);
6380 if (intel_crtc->unpin_work) {
6381 spin_unlock_irqrestore(&dev->event_lock, flags);
6382 kfree(work);
6383 drm_vblank_put(dev, intel_crtc->pipe);
6384
6385 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6386 return -EBUSY;
6387 }
6388 intel_crtc->unpin_work = work;
6389 spin_unlock_irqrestore(&dev->event_lock, flags);
6390
6391 intel_fb = to_intel_framebuffer(fb);
6392 obj = intel_fb->obj;
6393
6394 ret = i915_mutex_lock_interruptible(dev);
6395 if (ret)
6396 goto cleanup;
6397
6398 /* Reference the objects for the scheduled work. */
6399 drm_gem_object_reference(&work->old_fb_obj->base);
6400 drm_gem_object_reference(&obj->base);
6401
6402 crtc->fb = fb;
6403
6404 work->pending_flip_obj = obj;
6405
6406 work->enable_stall_check = true;
6407
6408 /* Block clients from rendering to the new back buffer until
6409 * the flip occurs and the object is no longer visible.
6410 */
6411 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6412
6413 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6414 if (ret)
6415 goto cleanup_pending;
6416
6417 intel_disable_fbc(dev);
6418 intel_mark_fb_busy(obj);
6419 mutex_unlock(&dev->struct_mutex);
6420
6421 trace_i915_flip_request(intel_crtc->plane, obj);
6422
6423 return 0;
6424
6425 cleanup_pending:
6426 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6427 drm_gem_object_unreference(&work->old_fb_obj->base);
6428 drm_gem_object_unreference(&obj->base);
6429 mutex_unlock(&dev->struct_mutex);
6430
6431 cleanup:
6432 spin_lock_irqsave(&dev->event_lock, flags);
6433 intel_crtc->unpin_work = NULL;
6434 spin_unlock_irqrestore(&dev->event_lock, flags);
6435
6436 drm_vblank_put(dev, intel_crtc->pipe);
6437 free_work:
6438 kfree(work);
6439
6440 return ret;
6441 }
6442
6443 static void intel_sanitize_modesetting(struct drm_device *dev,
6444 int pipe, int plane)
6445 {
6446 struct drm_i915_private *dev_priv = dev->dev_private;
6447 u32 reg, val;
6448 int i;
6449
6450 /* Clear any frame start delays used for debugging left by the BIOS */
6451 for_each_pipe(i) {
6452 reg = PIPECONF(i);
6453 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6454 }
6455
6456 if (HAS_PCH_SPLIT(dev))
6457 return;
6458
6459 /* Who knows what state these registers were left in by the BIOS or
6460 * grub?
6461 *
6462 * If we leave the registers in a conflicting state (e.g. with the
6463 * display plane reading from the other pipe than the one we intend
6464 * to use) then when we attempt to teardown the active mode, we will
6465 * not disable the pipes and planes in the correct order -- leaving
6466 * a plane reading from a disabled pipe and possibly leading to
6467 * undefined behaviour.
6468 */
6469
6470 reg = DSPCNTR(plane);
6471 val = I915_READ(reg);
6472
6473 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6474 return;
6475 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6476 return;
6477
6478 /* This display plane is active and attached to the other CPU pipe. */
6479 pipe = !pipe;
6480
6481 /* Disable the plane and wait for it to stop reading from the pipe. */
6482 intel_disable_plane(dev_priv, plane, pipe);
6483 intel_disable_pipe(dev_priv, pipe);
6484 }
6485
6486 static void intel_crtc_reset(struct drm_crtc *crtc)
6487 {
6488 struct drm_device *dev = crtc->dev;
6489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6490
6491 /* Reset flags back to the 'unknown' status so that they
6492 * will be correctly set on the initial modeset.
6493 */
6494 intel_crtc->dpms_mode = -1;
6495
6496 /* We need to fix up any BIOS configuration that conflicts with
6497 * our expectations.
6498 */
6499 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6500 }
6501
6502 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6503 .dpms = intel_crtc_dpms,
6504 .mode_fixup = intel_crtc_mode_fixup,
6505 .mode_set = intel_crtc_mode_set,
6506 .mode_set_base = intel_pipe_set_base,
6507 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6508 .load_lut = intel_crtc_load_lut,
6509 .disable = intel_crtc_disable,
6510 };
6511
6512 static const struct drm_crtc_funcs intel_crtc_funcs = {
6513 .reset = intel_crtc_reset,
6514 .cursor_set = intel_crtc_cursor_set,
6515 .cursor_move = intel_crtc_cursor_move,
6516 .gamma_set = intel_crtc_gamma_set,
6517 .set_config = drm_crtc_helper_set_config,
6518 .destroy = intel_crtc_destroy,
6519 .page_flip = intel_crtc_page_flip,
6520 };
6521
6522 static void intel_pch_pll_init(struct drm_device *dev)
6523 {
6524 drm_i915_private_t *dev_priv = dev->dev_private;
6525 int i;
6526
6527 if (dev_priv->num_pch_pll == 0) {
6528 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6529 return;
6530 }
6531
6532 for (i = 0; i < dev_priv->num_pch_pll; i++) {
6533 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6534 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6535 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6536 }
6537 }
6538
6539 static void intel_crtc_init(struct drm_device *dev, int pipe)
6540 {
6541 drm_i915_private_t *dev_priv = dev->dev_private;
6542 struct intel_crtc *intel_crtc;
6543 int i;
6544
6545 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6546 if (intel_crtc == NULL)
6547 return;
6548
6549 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6550
6551 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6552 for (i = 0; i < 256; i++) {
6553 intel_crtc->lut_r[i] = i;
6554 intel_crtc->lut_g[i] = i;
6555 intel_crtc->lut_b[i] = i;
6556 }
6557
6558 /* Swap pipes & planes for FBC on pre-965 */
6559 intel_crtc->pipe = pipe;
6560 intel_crtc->plane = pipe;
6561 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6562 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6563 intel_crtc->plane = !pipe;
6564 }
6565
6566 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6567 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6568 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6569 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6570
6571 intel_crtc_reset(&intel_crtc->base);
6572 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6573 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6574
6575 if (HAS_PCH_SPLIT(dev)) {
6576 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6577 intel_helper_funcs.commit = ironlake_crtc_commit;
6578 } else {
6579 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6580 intel_helper_funcs.commit = i9xx_crtc_commit;
6581 }
6582
6583 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6584 }
6585
6586 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6587 struct drm_file *file)
6588 {
6589 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6590 struct drm_mode_object *drmmode_obj;
6591 struct intel_crtc *crtc;
6592
6593 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6594 return -ENODEV;
6595
6596 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6597 DRM_MODE_OBJECT_CRTC);
6598
6599 if (!drmmode_obj) {
6600 DRM_ERROR("no such CRTC id\n");
6601 return -EINVAL;
6602 }
6603
6604 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6605 pipe_from_crtc_id->pipe = crtc->pipe;
6606
6607 return 0;
6608 }
6609
6610 static int intel_encoder_clones(struct intel_encoder *encoder)
6611 {
6612 struct drm_device *dev = encoder->base.dev;
6613 struct intel_encoder *source_encoder;
6614 int index_mask = 0;
6615 int entry = 0;
6616
6617 list_for_each_entry(source_encoder,
6618 &dev->mode_config.encoder_list, base.head) {
6619
6620 if (encoder == source_encoder)
6621 index_mask |= (1 << entry);
6622
6623 /* Intel hw has only one MUX where enocoders could be cloned. */
6624 if (encoder->cloneable && source_encoder->cloneable)
6625 index_mask |= (1 << entry);
6626
6627 entry++;
6628 }
6629
6630 return index_mask;
6631 }
6632
6633 static bool has_edp_a(struct drm_device *dev)
6634 {
6635 struct drm_i915_private *dev_priv = dev->dev_private;
6636
6637 if (!IS_MOBILE(dev))
6638 return false;
6639
6640 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6641 return false;
6642
6643 if (IS_GEN5(dev) &&
6644 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6645 return false;
6646
6647 return true;
6648 }
6649
6650 static void intel_setup_outputs(struct drm_device *dev)
6651 {
6652 struct drm_i915_private *dev_priv = dev->dev_private;
6653 struct intel_encoder *encoder;
6654 bool dpd_is_edp = false;
6655 bool has_lvds;
6656
6657 has_lvds = intel_lvds_init(dev);
6658 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6659 /* disable the panel fitter on everything but LVDS */
6660 I915_WRITE(PFIT_CONTROL, 0);
6661 }
6662
6663 if (HAS_PCH_SPLIT(dev)) {
6664 dpd_is_edp = intel_dpd_is_edp(dev);
6665
6666 if (has_edp_a(dev))
6667 intel_dp_init(dev, DP_A, PORT_A);
6668
6669 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6670 intel_dp_init(dev, PCH_DP_D, PORT_D);
6671 }
6672
6673 intel_crt_init(dev);
6674
6675 if (IS_HASWELL(dev)) {
6676 int found;
6677
6678 /* Haswell uses DDI functions to detect digital outputs */
6679 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6680 /* DDI A only supports eDP */
6681 if (found)
6682 intel_ddi_init(dev, PORT_A);
6683
6684 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6685 * register */
6686 found = I915_READ(SFUSE_STRAP);
6687
6688 if (found & SFUSE_STRAP_DDIB_DETECTED)
6689 intel_ddi_init(dev, PORT_B);
6690 if (found & SFUSE_STRAP_DDIC_DETECTED)
6691 intel_ddi_init(dev, PORT_C);
6692 if (found & SFUSE_STRAP_DDID_DETECTED)
6693 intel_ddi_init(dev, PORT_D);
6694 } else if (HAS_PCH_SPLIT(dev)) {
6695 int found;
6696
6697 if (I915_READ(HDMIB) & PORT_DETECTED) {
6698 /* PCH SDVOB multiplex with HDMIB */
6699 found = intel_sdvo_init(dev, PCH_SDVOB, true);
6700 if (!found)
6701 intel_hdmi_init(dev, HDMIB, PORT_B);
6702 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6703 intel_dp_init(dev, PCH_DP_B, PORT_B);
6704 }
6705
6706 if (I915_READ(HDMIC) & PORT_DETECTED)
6707 intel_hdmi_init(dev, HDMIC, PORT_C);
6708
6709 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6710 intel_hdmi_init(dev, HDMID, PORT_D);
6711
6712 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6713 intel_dp_init(dev, PCH_DP_C, PORT_C);
6714
6715 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6716 intel_dp_init(dev, PCH_DP_D, PORT_D);
6717 } else if (IS_VALLEYVIEW(dev)) {
6718 int found;
6719
6720 if (I915_READ(SDVOB) & PORT_DETECTED) {
6721 /* SDVOB multiplex with HDMIB */
6722 found = intel_sdvo_init(dev, SDVOB, true);
6723 if (!found)
6724 intel_hdmi_init(dev, SDVOB, PORT_B);
6725 if (!found && (I915_READ(DP_B) & DP_DETECTED))
6726 intel_dp_init(dev, DP_B, PORT_B);
6727 }
6728
6729 if (I915_READ(SDVOC) & PORT_DETECTED)
6730 intel_hdmi_init(dev, SDVOC, PORT_C);
6731
6732 /* Shares lanes with HDMI on SDVOC */
6733 if (I915_READ(DP_C) & DP_DETECTED)
6734 intel_dp_init(dev, DP_C, PORT_C);
6735 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6736 bool found = false;
6737
6738 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6739 DRM_DEBUG_KMS("probing SDVOB\n");
6740 found = intel_sdvo_init(dev, SDVOB, true);
6741 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6742 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6743 intel_hdmi_init(dev, SDVOB, PORT_B);
6744 }
6745
6746 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6747 DRM_DEBUG_KMS("probing DP_B\n");
6748 intel_dp_init(dev, DP_B, PORT_B);
6749 }
6750 }
6751
6752 /* Before G4X SDVOC doesn't have its own detect register */
6753
6754 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6755 DRM_DEBUG_KMS("probing SDVOC\n");
6756 found = intel_sdvo_init(dev, SDVOC, false);
6757 }
6758
6759 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6760
6761 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6762 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6763 intel_hdmi_init(dev, SDVOC, PORT_C);
6764 }
6765 if (SUPPORTS_INTEGRATED_DP(dev)) {
6766 DRM_DEBUG_KMS("probing DP_C\n");
6767 intel_dp_init(dev, DP_C, PORT_C);
6768 }
6769 }
6770
6771 if (SUPPORTS_INTEGRATED_DP(dev) &&
6772 (I915_READ(DP_D) & DP_DETECTED)) {
6773 DRM_DEBUG_KMS("probing DP_D\n");
6774 intel_dp_init(dev, DP_D, PORT_D);
6775 }
6776 } else if (IS_GEN2(dev))
6777 intel_dvo_init(dev);
6778
6779 if (SUPPORTS_TV(dev))
6780 intel_tv_init(dev);
6781
6782 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6783 encoder->base.possible_crtcs = encoder->crtc_mask;
6784 encoder->base.possible_clones =
6785 intel_encoder_clones(encoder);
6786 }
6787
6788 /* disable all the possible outputs/crtcs before entering KMS mode */
6789 drm_helper_disable_unused_functions(dev);
6790
6791 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6792 ironlake_init_pch_refclk(dev);
6793 }
6794
6795 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6796 {
6797 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6798
6799 drm_framebuffer_cleanup(fb);
6800 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6801
6802 kfree(intel_fb);
6803 }
6804
6805 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6806 struct drm_file *file,
6807 unsigned int *handle)
6808 {
6809 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6810 struct drm_i915_gem_object *obj = intel_fb->obj;
6811
6812 return drm_gem_handle_create(file, &obj->base, handle);
6813 }
6814
6815 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6816 .destroy = intel_user_framebuffer_destroy,
6817 .create_handle = intel_user_framebuffer_create_handle,
6818 };
6819
6820 int intel_framebuffer_init(struct drm_device *dev,
6821 struct intel_framebuffer *intel_fb,
6822 struct drm_mode_fb_cmd2 *mode_cmd,
6823 struct drm_i915_gem_object *obj)
6824 {
6825 int ret;
6826
6827 if (obj->tiling_mode == I915_TILING_Y)
6828 return -EINVAL;
6829
6830 if (mode_cmd->pitches[0] & 63)
6831 return -EINVAL;
6832
6833 switch (mode_cmd->pixel_format) {
6834 case DRM_FORMAT_RGB332:
6835 case DRM_FORMAT_RGB565:
6836 case DRM_FORMAT_XRGB8888:
6837 case DRM_FORMAT_XBGR8888:
6838 case DRM_FORMAT_ARGB8888:
6839 case DRM_FORMAT_XRGB2101010:
6840 case DRM_FORMAT_ARGB2101010:
6841 /* RGB formats are common across chipsets */
6842 break;
6843 case DRM_FORMAT_YUYV:
6844 case DRM_FORMAT_UYVY:
6845 case DRM_FORMAT_YVYU:
6846 case DRM_FORMAT_VYUY:
6847 break;
6848 default:
6849 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6850 mode_cmd->pixel_format);
6851 return -EINVAL;
6852 }
6853
6854 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6855 if (ret) {
6856 DRM_ERROR("framebuffer init failed %d\n", ret);
6857 return ret;
6858 }
6859
6860 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6861 intel_fb->obj = obj;
6862 return 0;
6863 }
6864
6865 static struct drm_framebuffer *
6866 intel_user_framebuffer_create(struct drm_device *dev,
6867 struct drm_file *filp,
6868 struct drm_mode_fb_cmd2 *mode_cmd)
6869 {
6870 struct drm_i915_gem_object *obj;
6871
6872 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6873 mode_cmd->handles[0]));
6874 if (&obj->base == NULL)
6875 return ERR_PTR(-ENOENT);
6876
6877 return intel_framebuffer_create(dev, mode_cmd, obj);
6878 }
6879
6880 static const struct drm_mode_config_funcs intel_mode_funcs = {
6881 .fb_create = intel_user_framebuffer_create,
6882 .output_poll_changed = intel_fb_output_poll_changed,
6883 };
6884
6885 /* Set up chip specific display functions */
6886 static void intel_init_display(struct drm_device *dev)
6887 {
6888 struct drm_i915_private *dev_priv = dev->dev_private;
6889
6890 /* We always want a DPMS function */
6891 if (HAS_PCH_SPLIT(dev)) {
6892 dev_priv->display.dpms = ironlake_crtc_dpms;
6893 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6894 dev_priv->display.off = ironlake_crtc_off;
6895 dev_priv->display.update_plane = ironlake_update_plane;
6896 } else {
6897 dev_priv->display.dpms = i9xx_crtc_dpms;
6898 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6899 dev_priv->display.off = i9xx_crtc_off;
6900 dev_priv->display.update_plane = i9xx_update_plane;
6901 }
6902
6903 /* Returns the core display clock speed */
6904 if (IS_VALLEYVIEW(dev))
6905 dev_priv->display.get_display_clock_speed =
6906 valleyview_get_display_clock_speed;
6907 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6908 dev_priv->display.get_display_clock_speed =
6909 i945_get_display_clock_speed;
6910 else if (IS_I915G(dev))
6911 dev_priv->display.get_display_clock_speed =
6912 i915_get_display_clock_speed;
6913 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6914 dev_priv->display.get_display_clock_speed =
6915 i9xx_misc_get_display_clock_speed;
6916 else if (IS_I915GM(dev))
6917 dev_priv->display.get_display_clock_speed =
6918 i915gm_get_display_clock_speed;
6919 else if (IS_I865G(dev))
6920 dev_priv->display.get_display_clock_speed =
6921 i865_get_display_clock_speed;
6922 else if (IS_I85X(dev))
6923 dev_priv->display.get_display_clock_speed =
6924 i855_get_display_clock_speed;
6925 else /* 852, 830 */
6926 dev_priv->display.get_display_clock_speed =
6927 i830_get_display_clock_speed;
6928
6929 if (HAS_PCH_SPLIT(dev)) {
6930 if (IS_GEN5(dev)) {
6931 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6932 dev_priv->display.write_eld = ironlake_write_eld;
6933 } else if (IS_GEN6(dev)) {
6934 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6935 dev_priv->display.write_eld = ironlake_write_eld;
6936 } else if (IS_IVYBRIDGE(dev)) {
6937 /* FIXME: detect B0+ stepping and use auto training */
6938 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6939 dev_priv->display.write_eld = ironlake_write_eld;
6940 } else if (IS_HASWELL(dev)) {
6941 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
6942 dev_priv->display.write_eld = ironlake_write_eld;
6943 } else
6944 dev_priv->display.update_wm = NULL;
6945 } else if (IS_G4X(dev)) {
6946 dev_priv->display.write_eld = g4x_write_eld;
6947 }
6948
6949 /* Default just returns -ENODEV to indicate unsupported */
6950 dev_priv->display.queue_flip = intel_default_queue_flip;
6951
6952 switch (INTEL_INFO(dev)->gen) {
6953 case 2:
6954 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6955 break;
6956
6957 case 3:
6958 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6959 break;
6960
6961 case 4:
6962 case 5:
6963 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6964 break;
6965
6966 case 6:
6967 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6968 break;
6969 case 7:
6970 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6971 break;
6972 }
6973 }
6974
6975 /*
6976 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6977 * resume, or other times. This quirk makes sure that's the case for
6978 * affected systems.
6979 */
6980 static void quirk_pipea_force(struct drm_device *dev)
6981 {
6982 struct drm_i915_private *dev_priv = dev->dev_private;
6983
6984 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6985 DRM_INFO("applying pipe a force quirk\n");
6986 }
6987
6988 /*
6989 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6990 */
6991 static void quirk_ssc_force_disable(struct drm_device *dev)
6992 {
6993 struct drm_i915_private *dev_priv = dev->dev_private;
6994 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6995 DRM_INFO("applying lvds SSC disable quirk\n");
6996 }
6997
6998 /*
6999 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7000 * brightness value
7001 */
7002 static void quirk_invert_brightness(struct drm_device *dev)
7003 {
7004 struct drm_i915_private *dev_priv = dev->dev_private;
7005 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7006 DRM_INFO("applying inverted panel brightness quirk\n");
7007 }
7008
7009 struct intel_quirk {
7010 int device;
7011 int subsystem_vendor;
7012 int subsystem_device;
7013 void (*hook)(struct drm_device *dev);
7014 };
7015
7016 static struct intel_quirk intel_quirks[] = {
7017 /* HP Mini needs pipe A force quirk (LP: #322104) */
7018 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7019
7020 /* Thinkpad R31 needs pipe A force quirk */
7021 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7022 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7023 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7024
7025 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7026 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7027 /* ThinkPad X40 needs pipe A force quirk */
7028
7029 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7030 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7031
7032 /* 855 & before need to leave pipe A & dpll A up */
7033 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7034 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7035
7036 /* Lenovo U160 cannot use SSC on LVDS */
7037 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7038
7039 /* Sony Vaio Y cannot use SSC on LVDS */
7040 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7041
7042 /* Acer Aspire 5734Z must invert backlight brightness */
7043 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7044 };
7045
7046 static void intel_init_quirks(struct drm_device *dev)
7047 {
7048 struct pci_dev *d = dev->pdev;
7049 int i;
7050
7051 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7052 struct intel_quirk *q = &intel_quirks[i];
7053
7054 if (d->device == q->device &&
7055 (d->subsystem_vendor == q->subsystem_vendor ||
7056 q->subsystem_vendor == PCI_ANY_ID) &&
7057 (d->subsystem_device == q->subsystem_device ||
7058 q->subsystem_device == PCI_ANY_ID))
7059 q->hook(dev);
7060 }
7061 }
7062
7063 /* Disable the VGA plane that we never use */
7064 static void i915_disable_vga(struct drm_device *dev)
7065 {
7066 struct drm_i915_private *dev_priv = dev->dev_private;
7067 u8 sr1;
7068 u32 vga_reg;
7069
7070 if (HAS_PCH_SPLIT(dev))
7071 vga_reg = CPU_VGACNTRL;
7072 else
7073 vga_reg = VGACNTRL;
7074
7075 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7076 outb(SR01, VGA_SR_INDEX);
7077 sr1 = inb(VGA_SR_DATA);
7078 outb(sr1 | 1<<5, VGA_SR_DATA);
7079 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7080 udelay(300);
7081
7082 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7083 POSTING_READ(vga_reg);
7084 }
7085
7086 void intel_modeset_init_hw(struct drm_device *dev)
7087 {
7088 /* We attempt to init the necessary power wells early in the initialization
7089 * time, so the subsystems that expect power to be enabled can work.
7090 */
7091 intel_init_power_wells(dev);
7092
7093 intel_prepare_ddi(dev);
7094
7095 intel_init_clock_gating(dev);
7096
7097 mutex_lock(&dev->struct_mutex);
7098 intel_enable_gt_powersave(dev);
7099 mutex_unlock(&dev->struct_mutex);
7100 }
7101
7102 void intel_modeset_init(struct drm_device *dev)
7103 {
7104 struct drm_i915_private *dev_priv = dev->dev_private;
7105 int i, ret;
7106
7107 drm_mode_config_init(dev);
7108
7109 dev->mode_config.min_width = 0;
7110 dev->mode_config.min_height = 0;
7111
7112 dev->mode_config.preferred_depth = 24;
7113 dev->mode_config.prefer_shadow = 1;
7114
7115 dev->mode_config.funcs = &intel_mode_funcs;
7116
7117 intel_init_quirks(dev);
7118
7119 intel_init_pm(dev);
7120
7121 intel_init_display(dev);
7122
7123 if (IS_GEN2(dev)) {
7124 dev->mode_config.max_width = 2048;
7125 dev->mode_config.max_height = 2048;
7126 } else if (IS_GEN3(dev)) {
7127 dev->mode_config.max_width = 4096;
7128 dev->mode_config.max_height = 4096;
7129 } else {
7130 dev->mode_config.max_width = 8192;
7131 dev->mode_config.max_height = 8192;
7132 }
7133 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7134
7135 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7136 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7137
7138 for (i = 0; i < dev_priv->num_pipe; i++) {
7139 intel_crtc_init(dev, i);
7140 ret = intel_plane_init(dev, i);
7141 if (ret)
7142 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7143 }
7144
7145 intel_pch_pll_init(dev);
7146
7147 /* Just disable it once at startup */
7148 i915_disable_vga(dev);
7149 intel_setup_outputs(dev);
7150 }
7151
7152 void intel_modeset_gem_init(struct drm_device *dev)
7153 {
7154 intel_modeset_init_hw(dev);
7155
7156 intel_setup_overlay(dev);
7157 }
7158
7159 void intel_modeset_cleanup(struct drm_device *dev)
7160 {
7161 struct drm_i915_private *dev_priv = dev->dev_private;
7162 struct drm_crtc *crtc;
7163 struct intel_crtc *intel_crtc;
7164
7165 drm_kms_helper_poll_fini(dev);
7166 mutex_lock(&dev->struct_mutex);
7167
7168 intel_unregister_dsm_handler();
7169
7170
7171 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7172 /* Skip inactive CRTCs */
7173 if (!crtc->fb)
7174 continue;
7175
7176 intel_crtc = to_intel_crtc(crtc);
7177 intel_increase_pllclock(crtc);
7178 }
7179
7180 intel_disable_fbc(dev);
7181
7182 intel_disable_gt_powersave(dev);
7183
7184 ironlake_teardown_rc6(dev);
7185
7186 if (IS_VALLEYVIEW(dev))
7187 vlv_init_dpio(dev);
7188
7189 mutex_unlock(&dev->struct_mutex);
7190
7191 /* Disable the irq before mode object teardown, for the irq might
7192 * enqueue unpin/hotplug work. */
7193 drm_irq_uninstall(dev);
7194 cancel_work_sync(&dev_priv->hotplug_work);
7195 cancel_work_sync(&dev_priv->rps.work);
7196
7197 /* flush any delayed tasks or pending work */
7198 flush_scheduled_work();
7199
7200 drm_mode_config_cleanup(dev);
7201 }
7202
7203 /*
7204 * Return which encoder is currently attached for connector.
7205 */
7206 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7207 {
7208 return &intel_attached_encoder(connector)->base;
7209 }
7210
7211 void intel_connector_attach_encoder(struct intel_connector *connector,
7212 struct intel_encoder *encoder)
7213 {
7214 connector->encoder = encoder;
7215 drm_mode_connector_attach_encoder(&connector->base,
7216 &encoder->base);
7217 }
7218
7219 /*
7220 * set vga decode state - true == enable VGA decode
7221 */
7222 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7223 {
7224 struct drm_i915_private *dev_priv = dev->dev_private;
7225 u16 gmch_ctrl;
7226
7227 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7228 if (state)
7229 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7230 else
7231 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7232 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7233 return 0;
7234 }
7235
7236 #ifdef CONFIG_DEBUG_FS
7237 #include <linux/seq_file.h>
7238
7239 struct intel_display_error_state {
7240 struct intel_cursor_error_state {
7241 u32 control;
7242 u32 position;
7243 u32 base;
7244 u32 size;
7245 } cursor[2];
7246
7247 struct intel_pipe_error_state {
7248 u32 conf;
7249 u32 source;
7250
7251 u32 htotal;
7252 u32 hblank;
7253 u32 hsync;
7254 u32 vtotal;
7255 u32 vblank;
7256 u32 vsync;
7257 } pipe[2];
7258
7259 struct intel_plane_error_state {
7260 u32 control;
7261 u32 stride;
7262 u32 size;
7263 u32 pos;
7264 u32 addr;
7265 u32 surface;
7266 u32 tile_offset;
7267 } plane[2];
7268 };
7269
7270 struct intel_display_error_state *
7271 intel_display_capture_error_state(struct drm_device *dev)
7272 {
7273 drm_i915_private_t *dev_priv = dev->dev_private;
7274 struct intel_display_error_state *error;
7275 int i;
7276
7277 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7278 if (error == NULL)
7279 return NULL;
7280
7281 for (i = 0; i < 2; i++) {
7282 error->cursor[i].control = I915_READ(CURCNTR(i));
7283 error->cursor[i].position = I915_READ(CURPOS(i));
7284 error->cursor[i].base = I915_READ(CURBASE(i));
7285
7286 error->plane[i].control = I915_READ(DSPCNTR(i));
7287 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7288 error->plane[i].size = I915_READ(DSPSIZE(i));
7289 error->plane[i].pos = I915_READ(DSPPOS(i));
7290 error->plane[i].addr = I915_READ(DSPADDR(i));
7291 if (INTEL_INFO(dev)->gen >= 4) {
7292 error->plane[i].surface = I915_READ(DSPSURF(i));
7293 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7294 }
7295
7296 error->pipe[i].conf = I915_READ(PIPECONF(i));
7297 error->pipe[i].source = I915_READ(PIPESRC(i));
7298 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7299 error->pipe[i].hblank = I915_READ(HBLANK(i));
7300 error->pipe[i].hsync = I915_READ(HSYNC(i));
7301 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7302 error->pipe[i].vblank = I915_READ(VBLANK(i));
7303 error->pipe[i].vsync = I915_READ(VSYNC(i));
7304 }
7305
7306 return error;
7307 }
7308
7309 void
7310 intel_display_print_error_state(struct seq_file *m,
7311 struct drm_device *dev,
7312 struct intel_display_error_state *error)
7313 {
7314 int i;
7315
7316 for (i = 0; i < 2; i++) {
7317 seq_printf(m, "Pipe [%d]:\n", i);
7318 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7319 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7320 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7321 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7322 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7323 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7324 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7325 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7326
7327 seq_printf(m, "Plane [%d]:\n", i);
7328 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7329 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7330 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7331 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7332 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7333 if (INTEL_INFO(dev)->gen >= 4) {
7334 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7335 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7336 }
7337
7338 seq_printf(m, "Cursor [%d]:\n", i);
7339 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7340 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7341 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7342 }
7343 }
7344 #endif