]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branches 'asoc/topic/wm8904', 'asoc/topic/wm8955' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90 struct intel_framebuffer *ifb,
91 struct drm_mode_fb_cmd2 *mode_cmd,
92 struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96 struct intel_link_m_n *m_n,
97 struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108 struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110 int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4800000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402 /* FIXME: find real dot limits */
403 .dot = { .min = 0, .max = INT_MAX },
404 .vco = { .min = 4800000, .max = 6700000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 /* FIXME: find real m2 limits */
408 .m2 = { .min = 2 << 22, .max = 255 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416 return drm_atomic_crtc_needs_modeset(state);
417 }
418
419 /**
420 * Returns whether any output on the specified pipe is of the specified type
421 */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424 struct drm_device *dev = crtc->base.dev;
425 struct intel_encoder *encoder;
426
427 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428 if (encoder->type == type)
429 return true;
430
431 return false;
432 }
433
434 /**
435 * Returns whether any output on the specified pipe will have the specified
436 * type after a staged modeset is complete, i.e., the same as
437 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438 * encoder->crtc.
439 */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441 int type)
442 {
443 struct drm_atomic_state *state = crtc_state->base.state;
444 struct drm_connector *connector;
445 struct drm_connector_state *connector_state;
446 struct intel_encoder *encoder;
447 int i, num_connectors = 0;
448
449 for_each_connector_in_state(state, connector, connector_state, i) {
450 if (connector_state->crtc != crtc_state->base.crtc)
451 continue;
452
453 num_connectors++;
454
455 encoder = to_intel_encoder(connector_state->best_encoder);
456 if (encoder->type == type)
457 return true;
458 }
459
460 WARN_ON(num_connectors == 0);
461
462 return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468 struct drm_device *dev = crtc_state->base.crtc->dev;
469 const intel_limit_t *limit;
470
471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472 if (intel_is_dual_link_lvds(dev)) {
473 if (refclk == 100000)
474 limit = &intel_limits_ironlake_dual_lvds_100m;
475 else
476 limit = &intel_limits_ironlake_dual_lvds;
477 } else {
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_single_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_single_lvds;
482 }
483 } else
484 limit = &intel_limits_ironlake_dac;
485
486 return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492 struct drm_device *dev = crtc_state->base.crtc->dev;
493 const intel_limit_t *limit;
494
495 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496 if (intel_is_dual_link_lvds(dev))
497 limit = &intel_limits_g4x_dual_channel_lvds;
498 else
499 limit = &intel_limits_g4x_single_channel_lvds;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502 limit = &intel_limits_g4x_hdmi;
503 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504 limit = &intel_limits_g4x_sdvo;
505 } else /* The option is for other outputs */
506 limit = &intel_limits_i9xx_sdvo;
507
508 return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514 struct drm_device *dev = crtc_state->base.crtc->dev;
515 const intel_limit_t *limit;
516
517 if (IS_BROXTON(dev))
518 limit = &intel_limits_bxt;
519 else if (HAS_PCH_SPLIT(dev))
520 limit = intel_ironlake_limit(crtc_state, refclk);
521 else if (IS_G4X(dev)) {
522 limit = intel_g4x_limit(crtc_state);
523 } else if (IS_PINEVIEW(dev)) {
524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525 limit = &intel_limits_pineview_lvds;
526 else
527 limit = &intel_limits_pineview_sdvo;
528 } else if (IS_CHERRYVIEW(dev)) {
529 limit = &intel_limits_chv;
530 } else if (IS_VALLEYVIEW(dev)) {
531 limit = &intel_limits_vlv;
532 } else if (!IS_GEN2(dev)) {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i9xx_lvds;
535 else
536 limit = &intel_limits_i9xx_sdvo;
537 } else {
538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i8xx_lvds;
540 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541 limit = &intel_limits_i8xx_dvo;
542 else
543 limit = &intel_limits_i8xx_dac;
544 }
545 return limit;
546 }
547
548 /*
549 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552 * The helpers' return value is the rate of the clock that is fed to the
553 * display engine's pipe which can be the above fast dot clock rate or a
554 * divided-down version of it.
555 */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559 clock->m = clock->m2 + 2;
560 clock->p = clock->p1 * clock->p2;
561 if (WARN_ON(clock->n == 0 || clock->p == 0))
562 return 0;
563 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566 return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576 clock->m = i9xx_dpll_compute_m(clock);
577 clock->p = clock->p1 * clock->p2;
578 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579 return 0;
580 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583 return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
591 return 0;
592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595 return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600 clock->m = clock->m1 * clock->m2;
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n == 0 || clock->p == 0))
603 return 0;
604 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605 clock->n << 22);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608 return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613 * Returns whether the given set of divisors are valid for a given refclk with
614 * the given connectors.
615 */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618 const intel_limit_t *limit,
619 const intel_clock_t *clock)
620 {
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
624 INTELPllInvalid("p1 out of range\n");
625 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
626 INTELPllInvalid("m2 out of range\n");
627 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
628 INTELPllInvalid("m1 out of range\n");
629
630 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631 if (clock->m1 <= clock->m2)
632 INTELPllInvalid("m1 <= m2\n");
633
634 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635 if (clock->p < limit->p.min || limit->p.max < clock->p)
636 INTELPllInvalid("p out of range\n");
637 if (clock->m < limit->m.min || limit->m.max < clock->m)
638 INTELPllInvalid("m out of range\n");
639 }
640
641 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642 INTELPllInvalid("vco out of range\n");
643 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644 * connector, etc., rather than just a single range.
645 */
646 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647 INTELPllInvalid("dot out of range\n");
648
649 return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654 const struct intel_crtc_state *crtc_state,
655 int target)
656 {
657 struct drm_device *dev = crtc_state->base.crtc->dev;
658
659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660 /*
661 * For LVDS just rely on its current settings for dual-channel.
662 * We haven't figured out how to reliably set up different
663 * single/dual channel state, if we even can.
664 */
665 if (intel_is_dual_link_lvds(dev))
666 return limit->p2.p2_fast;
667 else
668 return limit->p2.p2_slow;
669 } else {
670 if (target < limit->p2.dot_limit)
671 return limit->p2.p2_slow;
672 else
673 return limit->p2.p2_fast;
674 }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679 struct intel_crtc_state *crtc_state,
680 int target, int refclk, intel_clock_t *match_clock,
681 intel_clock_t *best_clock)
682 {
683 struct drm_device *dev = crtc_state->base.crtc->dev;
684 intel_clock_t clock;
685 int err = target;
686
687 memset(best_clock, 0, sizeof(*best_clock));
688
689 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
695 if (clock.m2 >= clock.m1)
696 break;
697 for (clock.n = limit->n.min;
698 clock.n <= limit->n.max; clock.n++) {
699 for (clock.p1 = limit->p1.min;
700 clock.p1 <= limit->p1.max; clock.p1++) {
701 int this_err;
702
703 i9xx_calc_dpll_params(refclk, &clock);
704 if (!intel_PLL_is_valid(dev, limit,
705 &clock))
706 continue;
707 if (match_clock &&
708 clock.p != match_clock->p)
709 continue;
710
711 this_err = abs(clock.dot - target);
712 if (this_err < err) {
713 *best_clock = clock;
714 err = this_err;
715 }
716 }
717 }
718 }
719 }
720
721 return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726 struct intel_crtc_state *crtc_state,
727 int target, int refclk, intel_clock_t *match_clock,
728 intel_clock_t *best_clock)
729 {
730 struct drm_device *dev = crtc_state->base.crtc->dev;
731 intel_clock_t clock;
732 int err = target;
733
734 memset(best_clock, 0, sizeof(*best_clock));
735
736 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739 clock.m1++) {
740 for (clock.m2 = limit->m2.min;
741 clock.m2 <= limit->m2.max; clock.m2++) {
742 for (clock.n = limit->n.min;
743 clock.n <= limit->n.max; clock.n++) {
744 for (clock.p1 = limit->p1.min;
745 clock.p1 <= limit->p1.max; clock.p1++) {
746 int this_err;
747
748 pnv_calc_dpll_params(refclk, &clock);
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
751 continue;
752 if (match_clock &&
753 clock.p != match_clock->p)
754 continue;
755
756 this_err = abs(clock.dot - target);
757 if (this_err < err) {
758 *best_clock = clock;
759 err = this_err;
760 }
761 }
762 }
763 }
764 }
765
766 return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
774 {
775 struct drm_device *dev = crtc_state->base.crtc->dev;
776 intel_clock_t clock;
777 int max_n;
778 bool found = false;
779 /* approximately equals target * 0.00585 */
780 int err_most = (target >> 8) + (target >> 9);
781
782 memset(best_clock, 0, sizeof(*best_clock));
783
784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786 max_n = limit->n.max;
787 /* based on hardware requirement, prefer smaller n to precision */
788 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789 /* based on hardware requirement, prefere larger m1,m2 */
790 for (clock.m1 = limit->m1.max;
791 clock.m1 >= limit->m1.min; clock.m1--) {
792 for (clock.m2 = limit->m2.max;
793 clock.m2 >= limit->m2.min; clock.m2--) {
794 for (clock.p1 = limit->p1.max;
795 clock.p1 >= limit->p1.min; clock.p1--) {
796 int this_err;
797
798 i9xx_calc_dpll_params(refclk, &clock);
799 if (!intel_PLL_is_valid(dev, limit,
800 &clock))
801 continue;
802
803 this_err = abs(clock.dot - target);
804 if (this_err < err_most) {
805 *best_clock = clock;
806 err_most = this_err;
807 max_n = clock.n;
808 found = true;
809 }
810 }
811 }
812 }
813 }
814 return found;
815 }
816
817 /*
818 * Check if the calculated PLL configuration is more optimal compared to the
819 * best configuration and error found so far. Return the calculated error.
820 */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822 const intel_clock_t *calculated_clock,
823 const intel_clock_t *best_clock,
824 unsigned int best_error_ppm,
825 unsigned int *error_ppm)
826 {
827 /*
828 * For CHV ignore the error and consider only the P value.
829 * Prefer a bigger P value based on HW requirements.
830 */
831 if (IS_CHERRYVIEW(dev)) {
832 *error_ppm = 0;
833
834 return calculated_clock->p > best_clock->p;
835 }
836
837 if (WARN_ON_ONCE(!target_freq))
838 return false;
839
840 *error_ppm = div_u64(1000000ULL *
841 abs(target_freq - calculated_clock->dot),
842 target_freq);
843 /*
844 * Prefer a better P value over a better (smaller) error if the error
845 * is small. Ensure this preference for future configurations too by
846 * setting the error to 0.
847 */
848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849 *error_ppm = 0;
850
851 return true;
852 }
853
854 return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864 struct drm_device *dev = crtc->base.dev;
865 intel_clock_t clock;
866 unsigned int bestppm = 1000000;
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
869 bool found = false;
870
871 target *= 5; /* fast clock */
872
873 memset(best_clock, 0, sizeof(*best_clock));
874
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880 clock.p = clock.p1 * clock.p2;
881 /* based on hardware requirement, prefer bigger m1,m2 values */
882 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883 unsigned int ppm;
884
885 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886 refclk * clock.m1);
887
888 vlv_calc_dpll_params(refclk, &clock);
889
890 if (!intel_PLL_is_valid(dev, limit,
891 &clock))
892 continue;
893
894 if (!vlv_PLL_is_optimal(dev, target,
895 &clock,
896 best_clock,
897 bestppm, &ppm))
898 continue;
899
900 *best_clock = clock;
901 bestppm = ppm;
902 found = true;
903 }
904 }
905 }
906 }
907
908 return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913 struct intel_crtc_state *crtc_state,
914 int target, int refclk, intel_clock_t *match_clock,
915 intel_clock_t *best_clock)
916 {
917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918 struct drm_device *dev = crtc->base.dev;
919 unsigned int best_error_ppm;
920 intel_clock_t clock;
921 uint64_t m2;
922 int found = false;
923
924 memset(best_clock, 0, sizeof(*best_clock));
925 best_error_ppm = 1000000;
926
927 /*
928 * Based on hardware doc, the n always set to 1, and m1 always
929 * set to 2. If requires to support 200Mhz refclk, we need to
930 * revisit this because n may not 1 anymore.
931 */
932 clock.n = 1, clock.m1 = 2;
933 target *= 5; /* fast clock */
934
935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936 for (clock.p2 = limit->p2.p2_fast;
937 clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 unsigned int error_ppm;
940
941 clock.p = clock.p1 * clock.p2;
942
943 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944 clock.n) << 22, refclk * clock.m1);
945
946 if (m2 > INT_MAX/clock.m1)
947 continue;
948
949 clock.m2 = m2;
950
951 chv_calc_dpll_params(refclk, &clock);
952
953 if (!intel_PLL_is_valid(dev, limit, &clock))
954 continue;
955
956 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957 best_error_ppm, &error_ppm))
958 continue;
959
960 *best_clock = clock;
961 best_error_ppm = error_ppm;
962 found = true;
963 }
964 }
965
966 return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970 intel_clock_t *best_clock)
971 {
972 int refclk = i9xx_get_refclk(crtc_state, 0);
973
974 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975 target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982 /* Be paranoid as we can arrive here with only partial
983 * state retrieved from the hardware during setup.
984 *
985 * We can ditch the adjusted_mode.crtc_clock check as soon
986 * as Haswell has gained clock readout/fastboot support.
987 *
988 * We can ditch the crtc->primary->fb check as soon as we can
989 * properly reconstruct framebuffers.
990 *
991 * FIXME: The intel_crtc->active here should be switched to
992 * crtc->state->active once we have proper CRTC states wired up
993 * for atomic.
994 */
995 return intel_crtc->active && crtc->primary->state->fb &&
996 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000 enum pipe pipe)
1001 {
1002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005 return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 reg = PIPEDSL(pipe);
1012 u32 line1, line2;
1013 u32 line_mask;
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 line1 = I915_READ(reg) & line_mask;
1021 msleep(5);
1022 line2 = I915_READ(reg) & line_mask;
1023
1024 return line1 == line2;
1025 }
1026
1027 /*
1028 * intel_wait_for_pipe_off - wait for pipe to turn off
1029 * @crtc: crtc whose pipe to wait for
1030 *
1031 * After disabling a pipe, we can't wait for vblank in the usual way,
1032 * spinning on the vblank interrupt status bit, since we won't actually
1033 * see an interrupt when the pipe is disabled.
1034 *
1035 * On Gen4 and above:
1036 * wait for the pipe register state bit to turn off
1037 *
1038 * Otherwise:
1039 * wait for the display line value to settle (it usually
1040 * ends up stopping at the start of the next frame).
1041 *
1042 */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045 struct drm_device *dev = crtc->base.dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048 enum pipe pipe = crtc->pipe;
1049
1050 if (INTEL_INFO(dev)->gen >= 4) {
1051 int reg = PIPECONF(cpu_transcoder);
1052
1053 /* Wait for the Pipe State to go off */
1054 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055 100))
1056 WARN(1, "pipe_off wait timed out\n");
1057 } else {
1058 /* Wait for the display line to settle */
1059 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060 WARN(1, "pipe_off wait timed out\n");
1061 }
1062 }
1063
1064 /*
1065 * ibx_digital_port_connected - is the specified port connected?
1066 * @dev_priv: i915 private structure
1067 * @port: the port to test
1068 *
1069 * Returns true if @port is connected, false otherwise.
1070 */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072 struct intel_digital_port *port)
1073 {
1074 u32 bit;
1075
1076 if (HAS_PCH_IBX(dev_priv->dev)) {
1077 switch (port->port) {
1078 case PORT_B:
1079 bit = SDE_PORTB_HOTPLUG;
1080 break;
1081 case PORT_C:
1082 bit = SDE_PORTC_HOTPLUG;
1083 break;
1084 case PORT_D:
1085 bit = SDE_PORTD_HOTPLUG;
1086 break;
1087 default:
1088 return true;
1089 }
1090 } else {
1091 switch (port->port) {
1092 case PORT_B:
1093 bit = SDE_PORTB_HOTPLUG_CPT;
1094 break;
1095 case PORT_C:
1096 bit = SDE_PORTC_HOTPLUG_CPT;
1097 break;
1098 case PORT_D:
1099 bit = SDE_PORTD_HOTPLUG_CPT;
1100 break;
1101 case PORT_E:
1102 bit = SDE_PORTE_HOTPLUG_SPT;
1103 break;
1104 default:
1105 return true;
1106 }
1107 }
1108
1109 return I915_READ(SDEISR) & bit;
1110 }
1111
1112 static const char *state_string(bool enabled)
1113 {
1114 return enabled ? "on" : "off";
1115 }
1116
1117 /* Only for pre-ILK configs */
1118 void assert_pll(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 int reg;
1122 u32 val;
1123 bool cur_state;
1124
1125 reg = DPLL(pipe);
1126 val = I915_READ(reg);
1127 cur_state = !!(val & DPLL_VCO_ENABLE);
1128 I915_STATE_WARN(cur_state != state,
1129 "PLL state assertion failure (expected %s, current %s)\n",
1130 state_string(state), state_string(cur_state));
1131 }
1132
1133 /* XXX: the dsi pll is shared between MIPI DSI ports */
1134 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1135 {
1136 u32 val;
1137 bool cur_state;
1138
1139 mutex_lock(&dev_priv->sb_lock);
1140 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1141 mutex_unlock(&dev_priv->sb_lock);
1142
1143 cur_state = val & DSI_PLL_VCO_EN;
1144 I915_STATE_WARN(cur_state != state,
1145 "DSI PLL state assertion failure (expected %s, current %s)\n",
1146 state_string(state), state_string(cur_state));
1147 }
1148 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1149 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1150
1151 struct intel_shared_dpll *
1152 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1153 {
1154 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1155
1156 if (crtc->config->shared_dpll < 0)
1157 return NULL;
1158
1159 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1160 }
1161
1162 /* For ILK+ */
1163 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1164 struct intel_shared_dpll *pll,
1165 bool state)
1166 {
1167 bool cur_state;
1168 struct intel_dpll_hw_state hw_state;
1169
1170 if (WARN (!pll,
1171 "asserting DPLL %s with no DPLL\n", state_string(state)))
1172 return;
1173
1174 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1175 I915_STATE_WARN(cur_state != state,
1176 "%s assertion failure (expected %s, current %s)\n",
1177 pll->name, state_string(state), state_string(cur_state));
1178 }
1179
1180 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1182 {
1183 int reg;
1184 u32 val;
1185 bool cur_state;
1186 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1187 pipe);
1188
1189 if (HAS_DDI(dev_priv->dev)) {
1190 /* DDI does not have a specific FDI_TX register */
1191 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1192 val = I915_READ(reg);
1193 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1194 } else {
1195 reg = FDI_TX_CTL(pipe);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & FDI_TX_ENABLE);
1198 }
1199 I915_STATE_WARN(cur_state != state,
1200 "FDI TX state assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
1202 }
1203 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1204 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1205
1206 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1207 enum pipe pipe, bool state)
1208 {
1209 int reg;
1210 u32 val;
1211 bool cur_state;
1212
1213 reg = FDI_RX_CTL(pipe);
1214 val = I915_READ(reg);
1215 cur_state = !!(val & FDI_RX_ENABLE);
1216 I915_STATE_WARN(cur_state != state,
1217 "FDI RX state assertion failure (expected %s, current %s)\n",
1218 state_string(state), state_string(cur_state));
1219 }
1220 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1221 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1222
1223 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1224 enum pipe pipe)
1225 {
1226 int reg;
1227 u32 val;
1228
1229 /* ILK FDI PLL is always enabled */
1230 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1231 return;
1232
1233 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1234 if (HAS_DDI(dev_priv->dev))
1235 return;
1236
1237 reg = FDI_TX_CTL(pipe);
1238 val = I915_READ(reg);
1239 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1240 }
1241
1242 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, bool state)
1244 {
1245 int reg;
1246 u32 val;
1247 bool cur_state;
1248
1249 reg = FDI_RX_CTL(pipe);
1250 val = I915_READ(reg);
1251 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1252 I915_STATE_WARN(cur_state != state,
1253 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1254 state_string(state), state_string(cur_state));
1255 }
1256
1257 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1258 enum pipe pipe)
1259 {
1260 struct drm_device *dev = dev_priv->dev;
1261 int pp_reg;
1262 u32 val;
1263 enum pipe panel_pipe = PIPE_A;
1264 bool locked = true;
1265
1266 if (WARN_ON(HAS_DDI(dev)))
1267 return;
1268
1269 if (HAS_PCH_SPLIT(dev)) {
1270 u32 port_sel;
1271
1272 pp_reg = PCH_PP_CONTROL;
1273 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1274
1275 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1276 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1277 panel_pipe = PIPE_B;
1278 /* XXX: else fix for eDP */
1279 } else if (IS_VALLEYVIEW(dev)) {
1280 /* presumably write lock depends on pipe, not port select */
1281 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1282 panel_pipe = pipe;
1283 } else {
1284 pp_reg = PP_CONTROL;
1285 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1286 panel_pipe = PIPE_B;
1287 }
1288
1289 val = I915_READ(pp_reg);
1290 if (!(val & PANEL_POWER_ON) ||
1291 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1292 locked = false;
1293
1294 I915_STATE_WARN(panel_pipe == pipe && locked,
1295 "panel assertion failure, pipe %c regs locked\n",
1296 pipe_name(pipe));
1297 }
1298
1299 static void assert_cursor(struct drm_i915_private *dev_priv,
1300 enum pipe pipe, bool state)
1301 {
1302 struct drm_device *dev = dev_priv->dev;
1303 bool cur_state;
1304
1305 if (IS_845G(dev) || IS_I865G(dev))
1306 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1307 else
1308 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1309
1310 I915_STATE_WARN(cur_state != state,
1311 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1312 pipe_name(pipe), state_string(state), state_string(cur_state));
1313 }
1314 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1315 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1316
1317 void assert_pipe(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, bool state)
1319 {
1320 int reg;
1321 u32 val;
1322 bool cur_state;
1323 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1324 pipe);
1325
1326 /* if we need the pipe quirk it must be always on */
1327 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1328 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1329 state = true;
1330
1331 if (!intel_display_power_is_enabled(dev_priv,
1332 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1333 cur_state = false;
1334 } else {
1335 reg = PIPECONF(cpu_transcoder);
1336 val = I915_READ(reg);
1337 cur_state = !!(val & PIPECONF_ENABLE);
1338 }
1339
1340 I915_STATE_WARN(cur_state != state,
1341 "pipe %c assertion failure (expected %s, current %s)\n",
1342 pipe_name(pipe), state_string(state), state_string(cur_state));
1343 }
1344
1345 static void assert_plane(struct drm_i915_private *dev_priv,
1346 enum plane plane, bool state)
1347 {
1348 int reg;
1349 u32 val;
1350 bool cur_state;
1351
1352 reg = DSPCNTR(plane);
1353 val = I915_READ(reg);
1354 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1355 I915_STATE_WARN(cur_state != state,
1356 "plane %c assertion failure (expected %s, current %s)\n",
1357 plane_name(plane), state_string(state), state_string(cur_state));
1358 }
1359
1360 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1361 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1362
1363 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe)
1365 {
1366 struct drm_device *dev = dev_priv->dev;
1367 int reg, i;
1368 u32 val;
1369 int cur_pipe;
1370
1371 /* Primary planes are fixed to pipes on gen4+ */
1372 if (INTEL_INFO(dev)->gen >= 4) {
1373 reg = DSPCNTR(pipe);
1374 val = I915_READ(reg);
1375 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1376 "plane %c assertion failure, should be disabled but not\n",
1377 plane_name(pipe));
1378 return;
1379 }
1380
1381 /* Need to check both planes against the pipe */
1382 for_each_pipe(dev_priv, i) {
1383 reg = DSPCNTR(i);
1384 val = I915_READ(reg);
1385 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1386 DISPPLANE_SEL_PIPE_SHIFT;
1387 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1388 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1389 plane_name(i), pipe_name(pipe));
1390 }
1391 }
1392
1393 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe)
1395 {
1396 struct drm_device *dev = dev_priv->dev;
1397 int reg, sprite;
1398 u32 val;
1399
1400 if (INTEL_INFO(dev)->gen >= 9) {
1401 for_each_sprite(dev_priv, pipe, sprite) {
1402 val = I915_READ(PLANE_CTL(pipe, sprite));
1403 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1404 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1405 sprite, pipe_name(pipe));
1406 }
1407 } else if (IS_VALLEYVIEW(dev)) {
1408 for_each_sprite(dev_priv, pipe, sprite) {
1409 reg = SPCNTR(pipe, sprite);
1410 val = I915_READ(reg);
1411 I915_STATE_WARN(val & SP_ENABLE,
1412 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1413 sprite_name(pipe, sprite), pipe_name(pipe));
1414 }
1415 } else if (INTEL_INFO(dev)->gen >= 7) {
1416 reg = SPRCTL(pipe);
1417 val = I915_READ(reg);
1418 I915_STATE_WARN(val & SPRITE_ENABLE,
1419 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1420 plane_name(pipe), pipe_name(pipe));
1421 } else if (INTEL_INFO(dev)->gen >= 5) {
1422 reg = DVSCNTR(pipe);
1423 val = I915_READ(reg);
1424 I915_STATE_WARN(val & DVS_ENABLE,
1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1426 plane_name(pipe), pipe_name(pipe));
1427 }
1428 }
1429
1430 static void assert_vblank_disabled(struct drm_crtc *crtc)
1431 {
1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1433 drm_crtc_vblank_put(crtc);
1434 }
1435
1436 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1437 {
1438 u32 val;
1439 bool enabled;
1440
1441 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1442
1443 val = I915_READ(PCH_DREF_CONTROL);
1444 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1445 DREF_SUPERSPREAD_SOURCE_MASK));
1446 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1447 }
1448
1449 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe)
1451 {
1452 int reg;
1453 u32 val;
1454 bool enabled;
1455
1456 reg = PCH_TRANSCONF(pipe);
1457 val = I915_READ(reg);
1458 enabled = !!(val & TRANS_ENABLE);
1459 I915_STATE_WARN(enabled,
1460 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1461 pipe_name(pipe));
1462 }
1463
1464 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe, u32 port_sel, u32 val)
1466 {
1467 if ((val & DP_PORT_EN) == 0)
1468 return false;
1469
1470 if (HAS_PCH_CPT(dev_priv->dev)) {
1471 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1472 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1473 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1474 return false;
1475 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1476 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1477 return false;
1478 } else {
1479 if ((val & DP_PIPE_MASK) != (pipe << 30))
1480 return false;
1481 }
1482 return true;
1483 }
1484
1485 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1486 enum pipe pipe, u32 val)
1487 {
1488 if ((val & SDVO_ENABLE) == 0)
1489 return false;
1490
1491 if (HAS_PCH_CPT(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1493 return false;
1494 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1495 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1496 return false;
1497 } else {
1498 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1499 return false;
1500 }
1501 return true;
1502 }
1503
1504 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506 {
1507 if ((val & LVDS_PORT_EN) == 0)
1508 return false;
1509
1510 if (HAS_PCH_CPT(dev_priv->dev)) {
1511 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1512 return false;
1513 } else {
1514 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1515 return false;
1516 }
1517 return true;
1518 }
1519
1520 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1521 enum pipe pipe, u32 val)
1522 {
1523 if ((val & ADPA_DAC_ENABLE) == 0)
1524 return false;
1525 if (HAS_PCH_CPT(dev_priv->dev)) {
1526 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1527 return false;
1528 } else {
1529 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1530 return false;
1531 }
1532 return true;
1533 }
1534
1535 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1536 enum pipe pipe, int reg, u32 port_sel)
1537 {
1538 u32 val = I915_READ(reg);
1539 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1540 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1541 reg, pipe_name(pipe));
1542
1543 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1544 && (val & DP_PIPEB_SELECT),
1545 "IBX PCH dp port still using transcoder B\n");
1546 }
1547
1548 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg)
1550 {
1551 u32 val = I915_READ(reg);
1552 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1553 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg, pipe_name(pipe));
1555
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1557 && (val & SDVO_PIPE_B_SELECT),
1558 "IBX PCH hdmi port still using transcoder B\n");
1559 }
1560
1561 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe)
1563 {
1564 int reg;
1565 u32 val;
1566
1567 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1568 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1569 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1570
1571 reg = PCH_ADPA;
1572 val = I915_READ(reg);
1573 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1574 "PCH VGA enabled on transcoder %c, should be disabled\n",
1575 pipe_name(pipe));
1576
1577 reg = PCH_LVDS;
1578 val = I915_READ(reg);
1579 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1580 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1581 pipe_name(pipe));
1582
1583 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1584 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1585 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1586 }
1587
1588 static void intel_init_dpio(struct drm_device *dev)
1589 {
1590 struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592 if (!IS_VALLEYVIEW(dev))
1593 return;
1594
1595 /*
1596 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1597 * CHV x1 PHY (DP/HDMI D)
1598 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1599 */
1600 if (IS_CHERRYVIEW(dev)) {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1602 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1603 } else {
1604 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1605 }
1606 }
1607
1608 static void vlv_enable_pll(struct intel_crtc *crtc,
1609 const struct intel_crtc_state *pipe_config)
1610 {
1611 struct drm_device *dev = crtc->base.dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 int reg = DPLL(crtc->pipe);
1614 u32 dpll = pipe_config->dpll_hw_state.dpll;
1615
1616 assert_pipe_disabled(dev_priv, crtc->pipe);
1617
1618 /* No really, not for ILK+ */
1619 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1620
1621 /* PLL is protected by panel, make sure we can write it */
1622 if (IS_MOBILE(dev_priv->dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150);
1628
1629 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1630 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1631
1632 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1633 POSTING_READ(DPLL_MD(crtc->pipe));
1634
1635 /* We do this three times for luck */
1636 I915_WRITE(reg, dpll);
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639 I915_WRITE(reg, dpll);
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642 I915_WRITE(reg, dpll);
1643 POSTING_READ(reg);
1644 udelay(150); /* wait for warmup */
1645 }
1646
1647 static void chv_enable_pll(struct intel_crtc *crtc,
1648 const struct intel_crtc_state *pipe_config)
1649 {
1650 struct drm_device *dev = crtc->base.dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 int pipe = crtc->pipe;
1653 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1654 u32 tmp;
1655
1656 assert_pipe_disabled(dev_priv, crtc->pipe);
1657
1658 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1659
1660 mutex_lock(&dev_priv->sb_lock);
1661
1662 /* Enable back the 10bit clock to display controller */
1663 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1664 tmp |= DPIO_DCLKP_EN;
1665 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1666
1667 mutex_unlock(&dev_priv->sb_lock);
1668
1669 /*
1670 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1671 */
1672 udelay(1);
1673
1674 /* Enable PLL */
1675 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1676
1677 /* Check PLL is locked */
1678 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1679 DRM_ERROR("PLL %d failed to lock\n", pipe);
1680
1681 /* not sure when this should be written */
1682 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1683 POSTING_READ(DPLL_MD(pipe));
1684 }
1685
1686 static int intel_num_dvo_pipes(struct drm_device *dev)
1687 {
1688 struct intel_crtc *crtc;
1689 int count = 0;
1690
1691 for_each_intel_crtc(dev, crtc)
1692 count += crtc->base.state->active &&
1693 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1694
1695 return count;
1696 }
1697
1698 static void i9xx_enable_pll(struct intel_crtc *crtc)
1699 {
1700 struct drm_device *dev = crtc->base.dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702 int reg = DPLL(crtc->pipe);
1703 u32 dpll = crtc->config->dpll_hw_state.dpll;
1704
1705 assert_pipe_disabled(dev_priv, crtc->pipe);
1706
1707 /* No really, not for ILK+ */
1708 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1709
1710 /* PLL is protected by panel, make sure we can write it */
1711 if (IS_MOBILE(dev) && !IS_I830(dev))
1712 assert_panel_unlocked(dev_priv, crtc->pipe);
1713
1714 /* Enable DVO 2x clock on both PLLs if necessary */
1715 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1716 /*
1717 * It appears to be important that we don't enable this
1718 * for the current pipe before otherwise configuring the
1719 * PLL. No idea how this should be handled if multiple
1720 * DVO outputs are enabled simultaneosly.
1721 */
1722 dpll |= DPLL_DVO_2X_MODE;
1723 I915_WRITE(DPLL(!crtc->pipe),
1724 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1725 }
1726
1727 /*
1728 * Apparently we need to have VGA mode enabled prior to changing
1729 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1730 * dividers, even though the register value does change.
1731 */
1732 I915_WRITE(reg, 0);
1733
1734 I915_WRITE(reg, dpll);
1735
1736 /* Wait for the clocks to stabilize. */
1737 POSTING_READ(reg);
1738 udelay(150);
1739
1740 if (INTEL_INFO(dev)->gen >= 4) {
1741 I915_WRITE(DPLL_MD(crtc->pipe),
1742 crtc->config->dpll_hw_state.dpll_md);
1743 } else {
1744 /* The pixel multiplier can only be updated once the
1745 * DPLL is enabled and the clocks are stable.
1746 *
1747 * So write it again.
1748 */
1749 I915_WRITE(reg, dpll);
1750 }
1751
1752 /* We do this three times for luck */
1753 I915_WRITE(reg, dpll);
1754 POSTING_READ(reg);
1755 udelay(150); /* wait for warmup */
1756 I915_WRITE(reg, dpll);
1757 POSTING_READ(reg);
1758 udelay(150); /* wait for warmup */
1759 I915_WRITE(reg, dpll);
1760 POSTING_READ(reg);
1761 udelay(150); /* wait for warmup */
1762 }
1763
1764 /**
1765 * i9xx_disable_pll - disable a PLL
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe PLL to disable
1768 *
1769 * Disable the PLL for @pipe, making sure the pipe is off first.
1770 *
1771 * Note! This is for pre-ILK only.
1772 */
1773 static void i9xx_disable_pll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 enum pipe pipe = crtc->pipe;
1778
1779 /* Disable DVO 2x clock on both PLLs if necessary */
1780 if (IS_I830(dev) &&
1781 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1782 !intel_num_dvo_pipes(dev)) {
1783 I915_WRITE(DPLL(PIPE_B),
1784 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1785 I915_WRITE(DPLL(PIPE_A),
1786 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1787 }
1788
1789 /* Don't disable pipe or pipe PLLs if needed */
1790 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1791 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1792 return;
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
1797 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1798 POSTING_READ(DPLL(pipe));
1799 }
1800
1801 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1802 {
1803 u32 val;
1804
1805 /* Make sure the pipe isn't still relying on us */
1806 assert_pipe_disabled(dev_priv, pipe);
1807
1808 /*
1809 * Leave integrated clock source and reference clock enabled for pipe B.
1810 * The latter is needed for VGA hotplug / manual detection.
1811 */
1812 val = DPLL_VGA_MODE_DIS;
1813 if (pipe == PIPE_B)
1814 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1815 I915_WRITE(DPLL(pipe), val);
1816 POSTING_READ(DPLL(pipe));
1817
1818 }
1819
1820 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1821 {
1822 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1823 u32 val;
1824
1825 /* Make sure the pipe isn't still relying on us */
1826 assert_pipe_disabled(dev_priv, pipe);
1827
1828 /* Set PLL en = 0 */
1829 val = DPLL_SSC_REF_CLK_CHV |
1830 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1831 if (pipe != PIPE_A)
1832 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1833 I915_WRITE(DPLL(pipe), val);
1834 POSTING_READ(DPLL(pipe));
1835
1836 mutex_lock(&dev_priv->sb_lock);
1837
1838 /* Disable 10bit clock to display controller */
1839 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1840 val &= ~DPIO_DCLKP_EN;
1841 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1842
1843 /* disable left/right clock distribution */
1844 if (pipe != PIPE_B) {
1845 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1846 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1847 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1848 } else {
1849 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1850 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1851 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1852 }
1853
1854 mutex_unlock(&dev_priv->sb_lock);
1855 }
1856
1857 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1858 struct intel_digital_port *dport,
1859 unsigned int expected_mask)
1860 {
1861 u32 port_mask;
1862 int dpll_reg;
1863
1864 switch (dport->port) {
1865 case PORT_B:
1866 port_mask = DPLL_PORTB_READY_MASK;
1867 dpll_reg = DPLL(0);
1868 break;
1869 case PORT_C:
1870 port_mask = DPLL_PORTC_READY_MASK;
1871 dpll_reg = DPLL(0);
1872 expected_mask <<= 4;
1873 break;
1874 case PORT_D:
1875 port_mask = DPLL_PORTD_READY_MASK;
1876 dpll_reg = DPIO_PHY_STATUS;
1877 break;
1878 default:
1879 BUG();
1880 }
1881
1882 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1883 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1884 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1885 }
1886
1887 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1888 {
1889 struct drm_device *dev = crtc->base.dev;
1890 struct drm_i915_private *dev_priv = dev->dev_private;
1891 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1892
1893 if (WARN_ON(pll == NULL))
1894 return;
1895
1896 WARN_ON(!pll->config.crtc_mask);
1897 if (pll->active == 0) {
1898 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1899 WARN_ON(pll->on);
1900 assert_shared_dpll_disabled(dev_priv, pll);
1901
1902 pll->mode_set(dev_priv, pll);
1903 }
1904 }
1905
1906 /**
1907 * intel_enable_shared_dpll - enable PCH PLL
1908 * @dev_priv: i915 private structure
1909 * @pipe: pipe PLL to enable
1910 *
1911 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1912 * drives the transcoder clock.
1913 */
1914 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1915 {
1916 struct drm_device *dev = crtc->base.dev;
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1919
1920 if (WARN_ON(pll == NULL))
1921 return;
1922
1923 if (WARN_ON(pll->config.crtc_mask == 0))
1924 return;
1925
1926 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1927 pll->name, pll->active, pll->on,
1928 crtc->base.base.id);
1929
1930 if (pll->active++) {
1931 WARN_ON(!pll->on);
1932 assert_shared_dpll_enabled(dev_priv, pll);
1933 return;
1934 }
1935 WARN_ON(pll->on);
1936
1937 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1938
1939 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1940 pll->enable(dev_priv, pll);
1941 pll->on = true;
1942 }
1943
1944 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1945 {
1946 struct drm_device *dev = crtc->base.dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1949
1950 /* PCH only available on ILK+ */
1951 if (INTEL_INFO(dev)->gen < 5)
1952 return;
1953
1954 if (pll == NULL)
1955 return;
1956
1957 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1958 return;
1959
1960 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1961 pll->name, pll->active, pll->on,
1962 crtc->base.base.id);
1963
1964 if (WARN_ON(pll->active == 0)) {
1965 assert_shared_dpll_disabled(dev_priv, pll);
1966 return;
1967 }
1968
1969 assert_shared_dpll_enabled(dev_priv, pll);
1970 WARN_ON(!pll->on);
1971 if (--pll->active)
1972 return;
1973
1974 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1975 pll->disable(dev_priv, pll);
1976 pll->on = false;
1977
1978 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1979 }
1980
1981 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1982 enum pipe pipe)
1983 {
1984 struct drm_device *dev = dev_priv->dev;
1985 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1987 uint32_t reg, val, pipeconf_val;
1988
1989 /* PCH only available on ILK+ */
1990 BUG_ON(!HAS_PCH_SPLIT(dev));
1991
1992 /* Make sure PCH DPLL is enabled */
1993 assert_shared_dpll_enabled(dev_priv,
1994 intel_crtc_to_shared_dpll(intel_crtc));
1995
1996 /* FDI must be feeding us bits for PCH ports */
1997 assert_fdi_tx_enabled(dev_priv, pipe);
1998 assert_fdi_rx_enabled(dev_priv, pipe);
1999
2000 if (HAS_PCH_CPT(dev)) {
2001 /* Workaround: Set the timing override bit before enabling the
2002 * pch transcoder. */
2003 reg = TRANS_CHICKEN2(pipe);
2004 val = I915_READ(reg);
2005 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2006 I915_WRITE(reg, val);
2007 }
2008
2009 reg = PCH_TRANSCONF(pipe);
2010 val = I915_READ(reg);
2011 pipeconf_val = I915_READ(PIPECONF(pipe));
2012
2013 if (HAS_PCH_IBX(dev_priv->dev)) {
2014 /*
2015 * Make the BPC in transcoder be consistent with
2016 * that in pipeconf reg. For HDMI we must use 8bpc
2017 * here for both 8bpc and 12bpc.
2018 */
2019 val &= ~PIPECONF_BPC_MASK;
2020 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2021 val |= PIPECONF_8BPC;
2022 else
2023 val |= pipeconf_val & PIPECONF_BPC_MASK;
2024 }
2025
2026 val &= ~TRANS_INTERLACE_MASK;
2027 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2028 if (HAS_PCH_IBX(dev_priv->dev) &&
2029 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2030 val |= TRANS_LEGACY_INTERLACED_ILK;
2031 else
2032 val |= TRANS_INTERLACED;
2033 else
2034 val |= TRANS_PROGRESSIVE;
2035
2036 I915_WRITE(reg, val | TRANS_ENABLE);
2037 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2038 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2039 }
2040
2041 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2042 enum transcoder cpu_transcoder)
2043 {
2044 u32 val, pipeconf_val;
2045
2046 /* PCH only available on ILK+ */
2047 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2048
2049 /* FDI must be feeding us bits for PCH ports */
2050 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2051 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2052
2053 /* Workaround: set timing override bit. */
2054 val = I915_READ(_TRANSA_CHICKEN2);
2055 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2056 I915_WRITE(_TRANSA_CHICKEN2, val);
2057
2058 val = TRANS_ENABLE;
2059 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2060
2061 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2062 PIPECONF_INTERLACED_ILK)
2063 val |= TRANS_INTERLACED;
2064 else
2065 val |= TRANS_PROGRESSIVE;
2066
2067 I915_WRITE(LPT_TRANSCONF, val);
2068 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2069 DRM_ERROR("Failed to enable PCH transcoder\n");
2070 }
2071
2072 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2073 enum pipe pipe)
2074 {
2075 struct drm_device *dev = dev_priv->dev;
2076 uint32_t reg, val;
2077
2078 /* FDI relies on the transcoder */
2079 assert_fdi_tx_disabled(dev_priv, pipe);
2080 assert_fdi_rx_disabled(dev_priv, pipe);
2081
2082 /* Ports must be off as well */
2083 assert_pch_ports_disabled(dev_priv, pipe);
2084
2085 reg = PCH_TRANSCONF(pipe);
2086 val = I915_READ(reg);
2087 val &= ~TRANS_ENABLE;
2088 I915_WRITE(reg, val);
2089 /* wait for PCH transcoder off, transcoder state */
2090 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2091 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2092
2093 if (!HAS_PCH_IBX(dev)) {
2094 /* Workaround: Clear the timing override chicken bit again. */
2095 reg = TRANS_CHICKEN2(pipe);
2096 val = I915_READ(reg);
2097 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2098 I915_WRITE(reg, val);
2099 }
2100 }
2101
2102 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2103 {
2104 u32 val;
2105
2106 val = I915_READ(LPT_TRANSCONF);
2107 val &= ~TRANS_ENABLE;
2108 I915_WRITE(LPT_TRANSCONF, val);
2109 /* wait for PCH transcoder off, transcoder state */
2110 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2111 DRM_ERROR("Failed to disable PCH transcoder\n");
2112
2113 /* Workaround: clear timing override bit. */
2114 val = I915_READ(_TRANSA_CHICKEN2);
2115 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2116 I915_WRITE(_TRANSA_CHICKEN2, val);
2117 }
2118
2119 /**
2120 * intel_enable_pipe - enable a pipe, asserting requirements
2121 * @crtc: crtc responsible for the pipe
2122 *
2123 * Enable @crtc's pipe, making sure that various hardware specific requirements
2124 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2125 */
2126 static void intel_enable_pipe(struct intel_crtc *crtc)
2127 {
2128 struct drm_device *dev = crtc->base.dev;
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 enum pipe pipe = crtc->pipe;
2131 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2132 pipe);
2133 enum pipe pch_transcoder;
2134 int reg;
2135 u32 val;
2136
2137 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2138
2139 assert_planes_disabled(dev_priv, pipe);
2140 assert_cursor_disabled(dev_priv, pipe);
2141 assert_sprites_disabled(dev_priv, pipe);
2142
2143 if (HAS_PCH_LPT(dev_priv->dev))
2144 pch_transcoder = TRANSCODER_A;
2145 else
2146 pch_transcoder = pipe;
2147
2148 /*
2149 * A pipe without a PLL won't actually be able to drive bits from
2150 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2151 * need the check.
2152 */
2153 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2154 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2155 assert_dsi_pll_enabled(dev_priv);
2156 else
2157 assert_pll_enabled(dev_priv, pipe);
2158 else {
2159 if (crtc->config->has_pch_encoder) {
2160 /* if driving the PCH, we need FDI enabled */
2161 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2162 assert_fdi_tx_pll_enabled(dev_priv,
2163 (enum pipe) cpu_transcoder);
2164 }
2165 /* FIXME: assert CPU port conditions for SNB+ */
2166 }
2167
2168 reg = PIPECONF(cpu_transcoder);
2169 val = I915_READ(reg);
2170 if (val & PIPECONF_ENABLE) {
2171 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2172 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2173 return;
2174 }
2175
2176 I915_WRITE(reg, val | PIPECONF_ENABLE);
2177 POSTING_READ(reg);
2178 }
2179
2180 /**
2181 * intel_disable_pipe - disable a pipe, asserting requirements
2182 * @crtc: crtc whose pipes is to be disabled
2183 *
2184 * Disable the pipe of @crtc, making sure that various hardware
2185 * specific requirements are met, if applicable, e.g. plane
2186 * disabled, panel fitter off, etc.
2187 *
2188 * Will wait until the pipe has shut down before returning.
2189 */
2190 static void intel_disable_pipe(struct intel_crtc *crtc)
2191 {
2192 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2193 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2194 enum pipe pipe = crtc->pipe;
2195 int reg;
2196 u32 val;
2197
2198 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2199
2200 /*
2201 * Make sure planes won't keep trying to pump pixels to us,
2202 * or we might hang the display.
2203 */
2204 assert_planes_disabled(dev_priv, pipe);
2205 assert_cursor_disabled(dev_priv, pipe);
2206 assert_sprites_disabled(dev_priv, pipe);
2207
2208 reg = PIPECONF(cpu_transcoder);
2209 val = I915_READ(reg);
2210 if ((val & PIPECONF_ENABLE) == 0)
2211 return;
2212
2213 /*
2214 * Double wide has implications for planes
2215 * so best keep it disabled when not needed.
2216 */
2217 if (crtc->config->double_wide)
2218 val &= ~PIPECONF_DOUBLE_WIDE;
2219
2220 /* Don't disable pipe or pipe PLLs if needed */
2221 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2222 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2223 val &= ~PIPECONF_ENABLE;
2224
2225 I915_WRITE(reg, val);
2226 if ((val & PIPECONF_ENABLE) == 0)
2227 intel_wait_for_pipe_off(crtc);
2228 }
2229
2230 static bool need_vtd_wa(struct drm_device *dev)
2231 {
2232 #ifdef CONFIG_INTEL_IOMMU
2233 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2234 return true;
2235 #endif
2236 return false;
2237 }
2238
2239 unsigned int
2240 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2241 uint64_t fb_format_modifier)
2242 {
2243 unsigned int tile_height;
2244 uint32_t pixel_bytes;
2245
2246 switch (fb_format_modifier) {
2247 case DRM_FORMAT_MOD_NONE:
2248 tile_height = 1;
2249 break;
2250 case I915_FORMAT_MOD_X_TILED:
2251 tile_height = IS_GEN2(dev) ? 16 : 8;
2252 break;
2253 case I915_FORMAT_MOD_Y_TILED:
2254 tile_height = 32;
2255 break;
2256 case I915_FORMAT_MOD_Yf_TILED:
2257 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2258 switch (pixel_bytes) {
2259 default:
2260 case 1:
2261 tile_height = 64;
2262 break;
2263 case 2:
2264 case 4:
2265 tile_height = 32;
2266 break;
2267 case 8:
2268 tile_height = 16;
2269 break;
2270 case 16:
2271 WARN_ONCE(1,
2272 "128-bit pixels are not supported for display!");
2273 tile_height = 16;
2274 break;
2275 }
2276 break;
2277 default:
2278 MISSING_CASE(fb_format_modifier);
2279 tile_height = 1;
2280 break;
2281 }
2282
2283 return tile_height;
2284 }
2285
2286 unsigned int
2287 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2288 uint32_t pixel_format, uint64_t fb_format_modifier)
2289 {
2290 return ALIGN(height, intel_tile_height(dev, pixel_format,
2291 fb_format_modifier));
2292 }
2293
2294 static int
2295 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2296 const struct drm_plane_state *plane_state)
2297 {
2298 struct intel_rotation_info *info = &view->rotation_info;
2299 unsigned int tile_height, tile_pitch;
2300
2301 *view = i915_ggtt_view_normal;
2302
2303 if (!plane_state)
2304 return 0;
2305
2306 if (!intel_rotation_90_or_270(plane_state->rotation))
2307 return 0;
2308
2309 *view = i915_ggtt_view_rotated;
2310
2311 info->height = fb->height;
2312 info->pixel_format = fb->pixel_format;
2313 info->pitch = fb->pitches[0];
2314 info->fb_modifier = fb->modifier[0];
2315
2316 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2317 fb->modifier[0]);
2318 tile_pitch = PAGE_SIZE / tile_height;
2319 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2320 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2321 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2322
2323 return 0;
2324 }
2325
2326 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2327 {
2328 if (INTEL_INFO(dev_priv)->gen >= 9)
2329 return 256 * 1024;
2330 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2331 IS_VALLEYVIEW(dev_priv))
2332 return 128 * 1024;
2333 else if (INTEL_INFO(dev_priv)->gen >= 4)
2334 return 4 * 1024;
2335 else
2336 return 0;
2337 }
2338
2339 int
2340 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2341 struct drm_framebuffer *fb,
2342 const struct drm_plane_state *plane_state,
2343 struct intel_engine_cs *pipelined,
2344 struct drm_i915_gem_request **pipelined_request)
2345 {
2346 struct drm_device *dev = fb->dev;
2347 struct drm_i915_private *dev_priv = dev->dev_private;
2348 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2349 struct i915_ggtt_view view;
2350 u32 alignment;
2351 int ret;
2352
2353 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2354
2355 switch (fb->modifier[0]) {
2356 case DRM_FORMAT_MOD_NONE:
2357 alignment = intel_linear_alignment(dev_priv);
2358 break;
2359 case I915_FORMAT_MOD_X_TILED:
2360 if (INTEL_INFO(dev)->gen >= 9)
2361 alignment = 256 * 1024;
2362 else {
2363 /* pin() will align the object as required by fence */
2364 alignment = 0;
2365 }
2366 break;
2367 case I915_FORMAT_MOD_Y_TILED:
2368 case I915_FORMAT_MOD_Yf_TILED:
2369 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2370 "Y tiling bo slipped through, driver bug!\n"))
2371 return -EINVAL;
2372 alignment = 1 * 1024 * 1024;
2373 break;
2374 default:
2375 MISSING_CASE(fb->modifier[0]);
2376 return -EINVAL;
2377 }
2378
2379 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2380 if (ret)
2381 return ret;
2382
2383 /* Note that the w/a also requires 64 PTE of padding following the
2384 * bo. We currently fill all unused PTE with the shadow page and so
2385 * we should always have valid PTE following the scanout preventing
2386 * the VT-d warning.
2387 */
2388 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2389 alignment = 256 * 1024;
2390
2391 /*
2392 * Global gtt pte registers are special registers which actually forward
2393 * writes to a chunk of system memory. Which means that there is no risk
2394 * that the register values disappear as soon as we call
2395 * intel_runtime_pm_put(), so it is correct to wrap only the
2396 * pin/unpin/fence and not more.
2397 */
2398 intel_runtime_pm_get(dev_priv);
2399
2400 dev_priv->mm.interruptible = false;
2401 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2402 pipelined_request, &view);
2403 if (ret)
2404 goto err_interruptible;
2405
2406 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2407 * fence, whereas 965+ only requires a fence if using
2408 * framebuffer compression. For simplicity, we always install
2409 * a fence as the cost is not that onerous.
2410 */
2411 ret = i915_gem_object_get_fence(obj);
2412 if (ret == -EDEADLK) {
2413 /*
2414 * -EDEADLK means there are no free fences
2415 * no pending flips.
2416 *
2417 * This is propagated to atomic, but it uses
2418 * -EDEADLK to force a locking recovery, so
2419 * change the returned error to -EBUSY.
2420 */
2421 ret = -EBUSY;
2422 goto err_unpin;
2423 } else if (ret)
2424 goto err_unpin;
2425
2426 i915_gem_object_pin_fence(obj);
2427
2428 dev_priv->mm.interruptible = true;
2429 intel_runtime_pm_put(dev_priv);
2430 return 0;
2431
2432 err_unpin:
2433 i915_gem_object_unpin_from_display_plane(obj, &view);
2434 err_interruptible:
2435 dev_priv->mm.interruptible = true;
2436 intel_runtime_pm_put(dev_priv);
2437 return ret;
2438 }
2439
2440 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2441 const struct drm_plane_state *plane_state)
2442 {
2443 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2444 struct i915_ggtt_view view;
2445 int ret;
2446
2447 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2448
2449 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2450 WARN_ONCE(ret, "Couldn't get view from plane state!");
2451
2452 i915_gem_object_unpin_fence(obj);
2453 i915_gem_object_unpin_from_display_plane(obj, &view);
2454 }
2455
2456 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2457 * is assumed to be a power-of-two. */
2458 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2459 int *x, int *y,
2460 unsigned int tiling_mode,
2461 unsigned int cpp,
2462 unsigned int pitch)
2463 {
2464 if (tiling_mode != I915_TILING_NONE) {
2465 unsigned int tile_rows, tiles;
2466
2467 tile_rows = *y / 8;
2468 *y %= 8;
2469
2470 tiles = *x / (512/cpp);
2471 *x %= 512/cpp;
2472
2473 return tile_rows * pitch * 8 + tiles * 4096;
2474 } else {
2475 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2476 unsigned int offset;
2477
2478 offset = *y * pitch + *x * cpp;
2479 *y = (offset & alignment) / pitch;
2480 *x = ((offset & alignment) - *y * pitch) / cpp;
2481 return offset & ~alignment;
2482 }
2483 }
2484
2485 static int i9xx_format_to_fourcc(int format)
2486 {
2487 switch (format) {
2488 case DISPPLANE_8BPP:
2489 return DRM_FORMAT_C8;
2490 case DISPPLANE_BGRX555:
2491 return DRM_FORMAT_XRGB1555;
2492 case DISPPLANE_BGRX565:
2493 return DRM_FORMAT_RGB565;
2494 default:
2495 case DISPPLANE_BGRX888:
2496 return DRM_FORMAT_XRGB8888;
2497 case DISPPLANE_RGBX888:
2498 return DRM_FORMAT_XBGR8888;
2499 case DISPPLANE_BGRX101010:
2500 return DRM_FORMAT_XRGB2101010;
2501 case DISPPLANE_RGBX101010:
2502 return DRM_FORMAT_XBGR2101010;
2503 }
2504 }
2505
2506 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2507 {
2508 switch (format) {
2509 case PLANE_CTL_FORMAT_RGB_565:
2510 return DRM_FORMAT_RGB565;
2511 default:
2512 case PLANE_CTL_FORMAT_XRGB_8888:
2513 if (rgb_order) {
2514 if (alpha)
2515 return DRM_FORMAT_ABGR8888;
2516 else
2517 return DRM_FORMAT_XBGR8888;
2518 } else {
2519 if (alpha)
2520 return DRM_FORMAT_ARGB8888;
2521 else
2522 return DRM_FORMAT_XRGB8888;
2523 }
2524 case PLANE_CTL_FORMAT_XRGB_2101010:
2525 if (rgb_order)
2526 return DRM_FORMAT_XBGR2101010;
2527 else
2528 return DRM_FORMAT_XRGB2101010;
2529 }
2530 }
2531
2532 static bool
2533 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2534 struct intel_initial_plane_config *plane_config)
2535 {
2536 struct drm_device *dev = crtc->base.dev;
2537 struct drm_i915_gem_object *obj = NULL;
2538 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2539 struct drm_framebuffer *fb = &plane_config->fb->base;
2540 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2541 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2542 PAGE_SIZE);
2543
2544 size_aligned -= base_aligned;
2545
2546 if (plane_config->size == 0)
2547 return false;
2548
2549 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2550 base_aligned,
2551 base_aligned,
2552 size_aligned);
2553 if (!obj)
2554 return false;
2555
2556 obj->tiling_mode = plane_config->tiling;
2557 if (obj->tiling_mode == I915_TILING_X)
2558 obj->stride = fb->pitches[0];
2559
2560 mode_cmd.pixel_format = fb->pixel_format;
2561 mode_cmd.width = fb->width;
2562 mode_cmd.height = fb->height;
2563 mode_cmd.pitches[0] = fb->pitches[0];
2564 mode_cmd.modifier[0] = fb->modifier[0];
2565 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2566
2567 mutex_lock(&dev->struct_mutex);
2568 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2569 &mode_cmd, obj)) {
2570 DRM_DEBUG_KMS("intel fb init failed\n");
2571 goto out_unref_obj;
2572 }
2573 mutex_unlock(&dev->struct_mutex);
2574
2575 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2576 return true;
2577
2578 out_unref_obj:
2579 drm_gem_object_unreference(&obj->base);
2580 mutex_unlock(&dev->struct_mutex);
2581 return false;
2582 }
2583
2584 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2585 static void
2586 update_state_fb(struct drm_plane *plane)
2587 {
2588 if (plane->fb == plane->state->fb)
2589 return;
2590
2591 if (plane->state->fb)
2592 drm_framebuffer_unreference(plane->state->fb);
2593 plane->state->fb = plane->fb;
2594 if (plane->state->fb)
2595 drm_framebuffer_reference(plane->state->fb);
2596 }
2597
2598 static void
2599 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2600 struct intel_initial_plane_config *plane_config)
2601 {
2602 struct drm_device *dev = intel_crtc->base.dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct drm_crtc *c;
2605 struct intel_crtc *i;
2606 struct drm_i915_gem_object *obj;
2607 struct drm_plane *primary = intel_crtc->base.primary;
2608 struct drm_plane_state *plane_state = primary->state;
2609 struct drm_framebuffer *fb;
2610
2611 if (!plane_config->fb)
2612 return;
2613
2614 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2615 fb = &plane_config->fb->base;
2616 goto valid_fb;
2617 }
2618
2619 kfree(plane_config->fb);
2620
2621 /*
2622 * Failed to alloc the obj, check to see if we should share
2623 * an fb with another CRTC instead
2624 */
2625 for_each_crtc(dev, c) {
2626 i = to_intel_crtc(c);
2627
2628 if (c == &intel_crtc->base)
2629 continue;
2630
2631 if (!i->active)
2632 continue;
2633
2634 fb = c->primary->fb;
2635 if (!fb)
2636 continue;
2637
2638 obj = intel_fb_obj(fb);
2639 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2640 drm_framebuffer_reference(fb);
2641 goto valid_fb;
2642 }
2643 }
2644
2645 return;
2646
2647 valid_fb:
2648 plane_state->src_x = plane_state->src_y = 0;
2649 plane_state->src_w = fb->width << 16;
2650 plane_state->src_h = fb->height << 16;
2651
2652 plane_state->crtc_x = plane_state->src_y = 0;
2653 plane_state->crtc_w = fb->width;
2654 plane_state->crtc_h = fb->height;
2655
2656 obj = intel_fb_obj(fb);
2657 if (obj->tiling_mode != I915_TILING_NONE)
2658 dev_priv->preserve_bios_swizzle = true;
2659
2660 drm_framebuffer_reference(fb);
2661 primary->fb = primary->state->fb = fb;
2662 primary->crtc = primary->state->crtc = &intel_crtc->base;
2663 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2664 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2665 }
2666
2667 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2668 struct drm_framebuffer *fb,
2669 int x, int y)
2670 {
2671 struct drm_device *dev = crtc->dev;
2672 struct drm_i915_private *dev_priv = dev->dev_private;
2673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2674 struct drm_plane *primary = crtc->primary;
2675 bool visible = to_intel_plane_state(primary->state)->visible;
2676 struct drm_i915_gem_object *obj;
2677 int plane = intel_crtc->plane;
2678 unsigned long linear_offset;
2679 u32 dspcntr;
2680 u32 reg = DSPCNTR(plane);
2681 int pixel_size;
2682
2683 if (!visible || !fb) {
2684 I915_WRITE(reg, 0);
2685 if (INTEL_INFO(dev)->gen >= 4)
2686 I915_WRITE(DSPSURF(plane), 0);
2687 else
2688 I915_WRITE(DSPADDR(plane), 0);
2689 POSTING_READ(reg);
2690 return;
2691 }
2692
2693 obj = intel_fb_obj(fb);
2694 if (WARN_ON(obj == NULL))
2695 return;
2696
2697 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2698
2699 dspcntr = DISPPLANE_GAMMA_ENABLE;
2700
2701 dspcntr |= DISPLAY_PLANE_ENABLE;
2702
2703 if (INTEL_INFO(dev)->gen < 4) {
2704 if (intel_crtc->pipe == PIPE_B)
2705 dspcntr |= DISPPLANE_SEL_PIPE_B;
2706
2707 /* pipesrc and dspsize control the size that is scaled from,
2708 * which should always be the user's requested size.
2709 */
2710 I915_WRITE(DSPSIZE(plane),
2711 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2712 (intel_crtc->config->pipe_src_w - 1));
2713 I915_WRITE(DSPPOS(plane), 0);
2714 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2715 I915_WRITE(PRIMSIZE(plane),
2716 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2717 (intel_crtc->config->pipe_src_w - 1));
2718 I915_WRITE(PRIMPOS(plane), 0);
2719 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2720 }
2721
2722 switch (fb->pixel_format) {
2723 case DRM_FORMAT_C8:
2724 dspcntr |= DISPPLANE_8BPP;
2725 break;
2726 case DRM_FORMAT_XRGB1555:
2727 dspcntr |= DISPPLANE_BGRX555;
2728 break;
2729 case DRM_FORMAT_RGB565:
2730 dspcntr |= DISPPLANE_BGRX565;
2731 break;
2732 case DRM_FORMAT_XRGB8888:
2733 dspcntr |= DISPPLANE_BGRX888;
2734 break;
2735 case DRM_FORMAT_XBGR8888:
2736 dspcntr |= DISPPLANE_RGBX888;
2737 break;
2738 case DRM_FORMAT_XRGB2101010:
2739 dspcntr |= DISPPLANE_BGRX101010;
2740 break;
2741 case DRM_FORMAT_XBGR2101010:
2742 dspcntr |= DISPPLANE_RGBX101010;
2743 break;
2744 default:
2745 BUG();
2746 }
2747
2748 if (INTEL_INFO(dev)->gen >= 4 &&
2749 obj->tiling_mode != I915_TILING_NONE)
2750 dspcntr |= DISPPLANE_TILED;
2751
2752 if (IS_G4X(dev))
2753 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2754
2755 linear_offset = y * fb->pitches[0] + x * pixel_size;
2756
2757 if (INTEL_INFO(dev)->gen >= 4) {
2758 intel_crtc->dspaddr_offset =
2759 intel_gen4_compute_page_offset(dev_priv,
2760 &x, &y, obj->tiling_mode,
2761 pixel_size,
2762 fb->pitches[0]);
2763 linear_offset -= intel_crtc->dspaddr_offset;
2764 } else {
2765 intel_crtc->dspaddr_offset = linear_offset;
2766 }
2767
2768 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2769 dspcntr |= DISPPLANE_ROTATE_180;
2770
2771 x += (intel_crtc->config->pipe_src_w - 1);
2772 y += (intel_crtc->config->pipe_src_h - 1);
2773
2774 /* Finding the last pixel of the last line of the display
2775 data and adding to linear_offset*/
2776 linear_offset +=
2777 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2778 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2779 }
2780
2781 I915_WRITE(reg, dspcntr);
2782
2783 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2784 if (INTEL_INFO(dev)->gen >= 4) {
2785 I915_WRITE(DSPSURF(plane),
2786 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2787 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2788 I915_WRITE(DSPLINOFF(plane), linear_offset);
2789 } else
2790 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2791 POSTING_READ(reg);
2792 }
2793
2794 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2795 struct drm_framebuffer *fb,
2796 int x, int y)
2797 {
2798 struct drm_device *dev = crtc->dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801 struct drm_plane *primary = crtc->primary;
2802 bool visible = to_intel_plane_state(primary->state)->visible;
2803 struct drm_i915_gem_object *obj;
2804 int plane = intel_crtc->plane;
2805 unsigned long linear_offset;
2806 u32 dspcntr;
2807 u32 reg = DSPCNTR(plane);
2808 int pixel_size;
2809
2810 if (!visible || !fb) {
2811 I915_WRITE(reg, 0);
2812 I915_WRITE(DSPSURF(plane), 0);
2813 POSTING_READ(reg);
2814 return;
2815 }
2816
2817 obj = intel_fb_obj(fb);
2818 if (WARN_ON(obj == NULL))
2819 return;
2820
2821 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2822
2823 dspcntr = DISPPLANE_GAMMA_ENABLE;
2824
2825 dspcntr |= DISPLAY_PLANE_ENABLE;
2826
2827 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2828 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2829
2830 switch (fb->pixel_format) {
2831 case DRM_FORMAT_C8:
2832 dspcntr |= DISPPLANE_8BPP;
2833 break;
2834 case DRM_FORMAT_RGB565:
2835 dspcntr |= DISPPLANE_BGRX565;
2836 break;
2837 case DRM_FORMAT_XRGB8888:
2838 dspcntr |= DISPPLANE_BGRX888;
2839 break;
2840 case DRM_FORMAT_XBGR8888:
2841 dspcntr |= DISPPLANE_RGBX888;
2842 break;
2843 case DRM_FORMAT_XRGB2101010:
2844 dspcntr |= DISPPLANE_BGRX101010;
2845 break;
2846 case DRM_FORMAT_XBGR2101010:
2847 dspcntr |= DISPPLANE_RGBX101010;
2848 break;
2849 default:
2850 BUG();
2851 }
2852
2853 if (obj->tiling_mode != I915_TILING_NONE)
2854 dspcntr |= DISPPLANE_TILED;
2855
2856 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2857 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2858
2859 linear_offset = y * fb->pitches[0] + x * pixel_size;
2860 intel_crtc->dspaddr_offset =
2861 intel_gen4_compute_page_offset(dev_priv,
2862 &x, &y, obj->tiling_mode,
2863 pixel_size,
2864 fb->pitches[0]);
2865 linear_offset -= intel_crtc->dspaddr_offset;
2866 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2867 dspcntr |= DISPPLANE_ROTATE_180;
2868
2869 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2870 x += (intel_crtc->config->pipe_src_w - 1);
2871 y += (intel_crtc->config->pipe_src_h - 1);
2872
2873 /* Finding the last pixel of the last line of the display
2874 data and adding to linear_offset*/
2875 linear_offset +=
2876 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2877 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2878 }
2879 }
2880
2881 I915_WRITE(reg, dspcntr);
2882
2883 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2884 I915_WRITE(DSPSURF(plane),
2885 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2886 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2887 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2888 } else {
2889 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2890 I915_WRITE(DSPLINOFF(plane), linear_offset);
2891 }
2892 POSTING_READ(reg);
2893 }
2894
2895 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2896 uint32_t pixel_format)
2897 {
2898 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2899
2900 /*
2901 * The stride is either expressed as a multiple of 64 bytes
2902 * chunks for linear buffers or in number of tiles for tiled
2903 * buffers.
2904 */
2905 switch (fb_modifier) {
2906 case DRM_FORMAT_MOD_NONE:
2907 return 64;
2908 case I915_FORMAT_MOD_X_TILED:
2909 if (INTEL_INFO(dev)->gen == 2)
2910 return 128;
2911 return 512;
2912 case I915_FORMAT_MOD_Y_TILED:
2913 /* No need to check for old gens and Y tiling since this is
2914 * about the display engine and those will be blocked before
2915 * we get here.
2916 */
2917 return 128;
2918 case I915_FORMAT_MOD_Yf_TILED:
2919 if (bits_per_pixel == 8)
2920 return 64;
2921 else
2922 return 128;
2923 default:
2924 MISSING_CASE(fb_modifier);
2925 return 64;
2926 }
2927 }
2928
2929 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2930 struct drm_i915_gem_object *obj)
2931 {
2932 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2933
2934 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2935 view = &i915_ggtt_view_rotated;
2936
2937 return i915_gem_obj_ggtt_offset_view(obj, view);
2938 }
2939
2940 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2941 {
2942 struct drm_device *dev = intel_crtc->base.dev;
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944
2945 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2946 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2947 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2948 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949 intel_crtc->base.base.id, intel_crtc->pipe, id);
2950 }
2951
2952 /*
2953 * This function detaches (aka. unbinds) unused scalers in hardware
2954 */
2955 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2956 {
2957 struct intel_crtc_scaler_state *scaler_state;
2958 int i;
2959
2960 scaler_state = &intel_crtc->config->scaler_state;
2961
2962 /* loop through and disable scalers that aren't in use */
2963 for (i = 0; i < intel_crtc->num_scalers; i++) {
2964 if (!scaler_state->scalers[i].in_use)
2965 skl_detach_scaler(intel_crtc, i);
2966 }
2967 }
2968
2969 u32 skl_plane_ctl_format(uint32_t pixel_format)
2970 {
2971 switch (pixel_format) {
2972 case DRM_FORMAT_C8:
2973 return PLANE_CTL_FORMAT_INDEXED;
2974 case DRM_FORMAT_RGB565:
2975 return PLANE_CTL_FORMAT_RGB_565;
2976 case DRM_FORMAT_XBGR8888:
2977 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2978 case DRM_FORMAT_XRGB8888:
2979 return PLANE_CTL_FORMAT_XRGB_8888;
2980 /*
2981 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2982 * to be already pre-multiplied. We need to add a knob (or a different
2983 * DRM_FORMAT) for user-space to configure that.
2984 */
2985 case DRM_FORMAT_ABGR8888:
2986 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2987 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2988 case DRM_FORMAT_ARGB8888:
2989 return PLANE_CTL_FORMAT_XRGB_8888 |
2990 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2991 case DRM_FORMAT_XRGB2101010:
2992 return PLANE_CTL_FORMAT_XRGB_2101010;
2993 case DRM_FORMAT_XBGR2101010:
2994 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2995 case DRM_FORMAT_YUYV:
2996 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2997 case DRM_FORMAT_YVYU:
2998 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2999 case DRM_FORMAT_UYVY:
3000 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3001 case DRM_FORMAT_VYUY:
3002 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3003 default:
3004 MISSING_CASE(pixel_format);
3005 }
3006
3007 return 0;
3008 }
3009
3010 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3011 {
3012 switch (fb_modifier) {
3013 case DRM_FORMAT_MOD_NONE:
3014 break;
3015 case I915_FORMAT_MOD_X_TILED:
3016 return PLANE_CTL_TILED_X;
3017 case I915_FORMAT_MOD_Y_TILED:
3018 return PLANE_CTL_TILED_Y;
3019 case I915_FORMAT_MOD_Yf_TILED:
3020 return PLANE_CTL_TILED_YF;
3021 default:
3022 MISSING_CASE(fb_modifier);
3023 }
3024
3025 return 0;
3026 }
3027
3028 u32 skl_plane_ctl_rotation(unsigned int rotation)
3029 {
3030 switch (rotation) {
3031 case BIT(DRM_ROTATE_0):
3032 break;
3033 /*
3034 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3035 * while i915 HW rotation is clockwise, thats why this swapping.
3036 */
3037 case BIT(DRM_ROTATE_90):
3038 return PLANE_CTL_ROTATE_270;
3039 case BIT(DRM_ROTATE_180):
3040 return PLANE_CTL_ROTATE_180;
3041 case BIT(DRM_ROTATE_270):
3042 return PLANE_CTL_ROTATE_90;
3043 default:
3044 MISSING_CASE(rotation);
3045 }
3046
3047 return 0;
3048 }
3049
3050 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3051 struct drm_framebuffer *fb,
3052 int x, int y)
3053 {
3054 struct drm_device *dev = crtc->dev;
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057 struct drm_plane *plane = crtc->primary;
3058 bool visible = to_intel_plane_state(plane->state)->visible;
3059 struct drm_i915_gem_object *obj;
3060 int pipe = intel_crtc->pipe;
3061 u32 plane_ctl, stride_div, stride;
3062 u32 tile_height, plane_offset, plane_size;
3063 unsigned int rotation;
3064 int x_offset, y_offset;
3065 unsigned long surf_addr;
3066 struct intel_crtc_state *crtc_state = intel_crtc->config;
3067 struct intel_plane_state *plane_state;
3068 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3069 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3070 int scaler_id = -1;
3071
3072 plane_state = to_intel_plane_state(plane->state);
3073
3074 if (!visible || !fb) {
3075 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3076 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3077 POSTING_READ(PLANE_CTL(pipe, 0));
3078 return;
3079 }
3080
3081 plane_ctl = PLANE_CTL_ENABLE |
3082 PLANE_CTL_PIPE_GAMMA_ENABLE |
3083 PLANE_CTL_PIPE_CSC_ENABLE;
3084
3085 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3086 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3087 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3088
3089 rotation = plane->state->rotation;
3090 plane_ctl |= skl_plane_ctl_rotation(rotation);
3091
3092 obj = intel_fb_obj(fb);
3093 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3094 fb->pixel_format);
3095 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3096
3097 /*
3098 * FIXME: intel_plane_state->src, dst aren't set when transitional
3099 * update_plane helpers are called from legacy paths.
3100 * Once full atomic crtc is available, below check can be avoided.
3101 */
3102 if (drm_rect_width(&plane_state->src)) {
3103 scaler_id = plane_state->scaler_id;
3104 src_x = plane_state->src.x1 >> 16;
3105 src_y = plane_state->src.y1 >> 16;
3106 src_w = drm_rect_width(&plane_state->src) >> 16;
3107 src_h = drm_rect_height(&plane_state->src) >> 16;
3108 dst_x = plane_state->dst.x1;
3109 dst_y = plane_state->dst.y1;
3110 dst_w = drm_rect_width(&plane_state->dst);
3111 dst_h = drm_rect_height(&plane_state->dst);
3112
3113 WARN_ON(x != src_x || y != src_y);
3114 } else {
3115 src_w = intel_crtc->config->pipe_src_w;
3116 src_h = intel_crtc->config->pipe_src_h;
3117 }
3118
3119 if (intel_rotation_90_or_270(rotation)) {
3120 /* stride = Surface height in tiles */
3121 tile_height = intel_tile_height(dev, fb->pixel_format,
3122 fb->modifier[0]);
3123 stride = DIV_ROUND_UP(fb->height, tile_height);
3124 x_offset = stride * tile_height - y - src_h;
3125 y_offset = x;
3126 plane_size = (src_w - 1) << 16 | (src_h - 1);
3127 } else {
3128 stride = fb->pitches[0] / stride_div;
3129 x_offset = x;
3130 y_offset = y;
3131 plane_size = (src_h - 1) << 16 | (src_w - 1);
3132 }
3133 plane_offset = y_offset << 16 | x_offset;
3134
3135 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3136 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3137 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3138 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3139
3140 if (scaler_id >= 0) {
3141 uint32_t ps_ctrl = 0;
3142
3143 WARN_ON(!dst_w || !dst_h);
3144 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3145 crtc_state->scaler_state.scalers[scaler_id].mode;
3146 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3147 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3148 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3149 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3150 I915_WRITE(PLANE_POS(pipe, 0), 0);
3151 } else {
3152 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3153 }
3154
3155 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3156
3157 POSTING_READ(PLANE_SURF(pipe, 0));
3158 }
3159
3160 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3161 static int
3162 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3163 int x, int y, enum mode_set_atomic state)
3164 {
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167
3168 if (dev_priv->fbc.disable_fbc)
3169 dev_priv->fbc.disable_fbc(dev_priv);
3170
3171 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3172
3173 return 0;
3174 }
3175
3176 static void intel_complete_page_flips(struct drm_device *dev)
3177 {
3178 struct drm_crtc *crtc;
3179
3180 for_each_crtc(dev, crtc) {
3181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3182 enum plane plane = intel_crtc->plane;
3183
3184 intel_prepare_page_flip(dev, plane);
3185 intel_finish_page_flip_plane(dev, plane);
3186 }
3187 }
3188
3189 static void intel_update_primary_planes(struct drm_device *dev)
3190 {
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192 struct drm_crtc *crtc;
3193
3194 for_each_crtc(dev, crtc) {
3195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3196
3197 drm_modeset_lock(&crtc->mutex, NULL);
3198 /*
3199 * FIXME: Once we have proper support for primary planes (and
3200 * disabling them without disabling the entire crtc) allow again
3201 * a NULL crtc->primary->fb.
3202 */
3203 if (intel_crtc->active && crtc->primary->fb)
3204 dev_priv->display.update_primary_plane(crtc,
3205 crtc->primary->fb,
3206 crtc->x,
3207 crtc->y);
3208 drm_modeset_unlock(&crtc->mutex);
3209 }
3210 }
3211
3212 void intel_prepare_reset(struct drm_device *dev)
3213 {
3214 /* no reset support for gen2 */
3215 if (IS_GEN2(dev))
3216 return;
3217
3218 /* reset doesn't touch the display */
3219 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3220 return;
3221
3222 drm_modeset_lock_all(dev);
3223 /*
3224 * Disabling the crtcs gracefully seems nicer. Also the
3225 * g33 docs say we should at least disable all the planes.
3226 */
3227 intel_display_suspend(dev);
3228 }
3229
3230 void intel_finish_reset(struct drm_device *dev)
3231 {
3232 struct drm_i915_private *dev_priv = to_i915(dev);
3233
3234 /*
3235 * Flips in the rings will be nuked by the reset,
3236 * so complete all pending flips so that user space
3237 * will get its events and not get stuck.
3238 */
3239 intel_complete_page_flips(dev);
3240
3241 /* no reset support for gen2 */
3242 if (IS_GEN2(dev))
3243 return;
3244
3245 /* reset doesn't touch the display */
3246 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3247 /*
3248 * Flips in the rings have been nuked by the reset,
3249 * so update the base address of all primary
3250 * planes to the the last fb to make sure we're
3251 * showing the correct fb after a reset.
3252 */
3253 intel_update_primary_planes(dev);
3254 return;
3255 }
3256
3257 /*
3258 * The display has been reset as well,
3259 * so need a full re-initialization.
3260 */
3261 intel_runtime_pm_disable_interrupts(dev_priv);
3262 intel_runtime_pm_enable_interrupts(dev_priv);
3263
3264 intel_modeset_init_hw(dev);
3265
3266 spin_lock_irq(&dev_priv->irq_lock);
3267 if (dev_priv->display.hpd_irq_setup)
3268 dev_priv->display.hpd_irq_setup(dev);
3269 spin_unlock_irq(&dev_priv->irq_lock);
3270
3271 intel_display_resume(dev);
3272
3273 intel_hpd_init(dev_priv);
3274
3275 drm_modeset_unlock_all(dev);
3276 }
3277
3278 static void
3279 intel_finish_fb(struct drm_framebuffer *old_fb)
3280 {
3281 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3282 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3283 bool was_interruptible = dev_priv->mm.interruptible;
3284 int ret;
3285
3286 /* Big Hammer, we also need to ensure that any pending
3287 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3288 * current scanout is retired before unpinning the old
3289 * framebuffer. Note that we rely on userspace rendering
3290 * into the buffer attached to the pipe they are waiting
3291 * on. If not, userspace generates a GPU hang with IPEHR
3292 * point to the MI_WAIT_FOR_EVENT.
3293 *
3294 * This should only fail upon a hung GPU, in which case we
3295 * can safely continue.
3296 */
3297 dev_priv->mm.interruptible = false;
3298 ret = i915_gem_object_wait_rendering(obj, true);
3299 dev_priv->mm.interruptible = was_interruptible;
3300
3301 WARN_ON(ret);
3302 }
3303
3304 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3305 {
3306 struct drm_device *dev = crtc->dev;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309 bool pending;
3310
3311 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3312 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3313 return false;
3314
3315 spin_lock_irq(&dev->event_lock);
3316 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3317 spin_unlock_irq(&dev->event_lock);
3318
3319 return pending;
3320 }
3321
3322 static void intel_update_pipe_size(struct intel_crtc *crtc)
3323 {
3324 struct drm_device *dev = crtc->base.dev;
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 const struct drm_display_mode *adjusted_mode;
3327
3328 if (!i915.fastboot)
3329 return;
3330
3331 /*
3332 * Update pipe size and adjust fitter if needed: the reason for this is
3333 * that in compute_mode_changes we check the native mode (not the pfit
3334 * mode) to see if we can flip rather than do a full mode set. In the
3335 * fastboot case, we'll flip, but if we don't update the pipesrc and
3336 * pfit state, we'll end up with a big fb scanned out into the wrong
3337 * sized surface.
3338 *
3339 * To fix this properly, we need to hoist the checks up into
3340 * compute_mode_changes (or above), check the actual pfit state and
3341 * whether the platform allows pfit disable with pipe active, and only
3342 * then update the pipesrc and pfit state, even on the flip path.
3343 */
3344
3345 adjusted_mode = &crtc->config->base.adjusted_mode;
3346
3347 I915_WRITE(PIPESRC(crtc->pipe),
3348 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3349 (adjusted_mode->crtc_vdisplay - 1));
3350 if (!crtc->config->pch_pfit.enabled &&
3351 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3352 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3353 I915_WRITE(PF_CTL(crtc->pipe), 0);
3354 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3355 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3356 }
3357 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3358 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3359 }
3360
3361 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3362 {
3363 struct drm_device *dev = crtc->dev;
3364 struct drm_i915_private *dev_priv = dev->dev_private;
3365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366 int pipe = intel_crtc->pipe;
3367 u32 reg, temp;
3368
3369 /* enable normal train */
3370 reg = FDI_TX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 if (IS_IVYBRIDGE(dev)) {
3373 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3374 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3375 } else {
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3378 }
3379 I915_WRITE(reg, temp);
3380
3381 reg = FDI_RX_CTL(pipe);
3382 temp = I915_READ(reg);
3383 if (HAS_PCH_CPT(dev)) {
3384 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3385 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3386 } else {
3387 temp &= ~FDI_LINK_TRAIN_NONE;
3388 temp |= FDI_LINK_TRAIN_NONE;
3389 }
3390 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3391
3392 /* wait one idle pattern time */
3393 POSTING_READ(reg);
3394 udelay(1000);
3395
3396 /* IVB wants error correction enabled */
3397 if (IS_IVYBRIDGE(dev))
3398 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3399 FDI_FE_ERRC_ENABLE);
3400 }
3401
3402 /* The FDI link training functions for ILK/Ibexpeak. */
3403 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3404 {
3405 struct drm_device *dev = crtc->dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3408 int pipe = intel_crtc->pipe;
3409 u32 reg, temp, tries;
3410
3411 /* FDI needs bits from pipe first */
3412 assert_pipe_enabled(dev_priv, pipe);
3413
3414 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3415 for train result */
3416 reg = FDI_RX_IMR(pipe);
3417 temp = I915_READ(reg);
3418 temp &= ~FDI_RX_SYMBOL_LOCK;
3419 temp &= ~FDI_RX_BIT_LOCK;
3420 I915_WRITE(reg, temp);
3421 I915_READ(reg);
3422 udelay(150);
3423
3424 /* enable CPU FDI TX and PCH FDI RX */
3425 reg = FDI_TX_CTL(pipe);
3426 temp = I915_READ(reg);
3427 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3428 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3429 temp &= ~FDI_LINK_TRAIN_NONE;
3430 temp |= FDI_LINK_TRAIN_PATTERN_1;
3431 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3432
3433 reg = FDI_RX_CTL(pipe);
3434 temp = I915_READ(reg);
3435 temp &= ~FDI_LINK_TRAIN_NONE;
3436 temp |= FDI_LINK_TRAIN_PATTERN_1;
3437 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3438
3439 POSTING_READ(reg);
3440 udelay(150);
3441
3442 /* Ironlake workaround, enable clock pointer after FDI enable*/
3443 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3444 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3445 FDI_RX_PHASE_SYNC_POINTER_EN);
3446
3447 reg = FDI_RX_IIR(pipe);
3448 for (tries = 0; tries < 5; tries++) {
3449 temp = I915_READ(reg);
3450 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3451
3452 if ((temp & FDI_RX_BIT_LOCK)) {
3453 DRM_DEBUG_KMS("FDI train 1 done.\n");
3454 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3455 break;
3456 }
3457 }
3458 if (tries == 5)
3459 DRM_ERROR("FDI train 1 fail!\n");
3460
3461 /* Train 2 */
3462 reg = FDI_TX_CTL(pipe);
3463 temp = I915_READ(reg);
3464 temp &= ~FDI_LINK_TRAIN_NONE;
3465 temp |= FDI_LINK_TRAIN_PATTERN_2;
3466 I915_WRITE(reg, temp);
3467
3468 reg = FDI_RX_CTL(pipe);
3469 temp = I915_READ(reg);
3470 temp &= ~FDI_LINK_TRAIN_NONE;
3471 temp |= FDI_LINK_TRAIN_PATTERN_2;
3472 I915_WRITE(reg, temp);
3473
3474 POSTING_READ(reg);
3475 udelay(150);
3476
3477 reg = FDI_RX_IIR(pipe);
3478 for (tries = 0; tries < 5; tries++) {
3479 temp = I915_READ(reg);
3480 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3481
3482 if (temp & FDI_RX_SYMBOL_LOCK) {
3483 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3484 DRM_DEBUG_KMS("FDI train 2 done.\n");
3485 break;
3486 }
3487 }
3488 if (tries == 5)
3489 DRM_ERROR("FDI train 2 fail!\n");
3490
3491 DRM_DEBUG_KMS("FDI train done\n");
3492
3493 }
3494
3495 static const int snb_b_fdi_train_param[] = {
3496 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3497 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3498 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3499 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3500 };
3501
3502 /* The FDI link training functions for SNB/Cougarpoint. */
3503 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3504 {
3505 struct drm_device *dev = crtc->dev;
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3508 int pipe = intel_crtc->pipe;
3509 u32 reg, temp, i, retry;
3510
3511 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3512 for train result */
3513 reg = FDI_RX_IMR(pipe);
3514 temp = I915_READ(reg);
3515 temp &= ~FDI_RX_SYMBOL_LOCK;
3516 temp &= ~FDI_RX_BIT_LOCK;
3517 I915_WRITE(reg, temp);
3518
3519 POSTING_READ(reg);
3520 udelay(150);
3521
3522 /* enable CPU FDI TX and PCH FDI RX */
3523 reg = FDI_TX_CTL(pipe);
3524 temp = I915_READ(reg);
3525 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3526 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3527 temp &= ~FDI_LINK_TRAIN_NONE;
3528 temp |= FDI_LINK_TRAIN_PATTERN_1;
3529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3530 /* SNB-B */
3531 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3532 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3533
3534 I915_WRITE(FDI_RX_MISC(pipe),
3535 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3536
3537 reg = FDI_RX_CTL(pipe);
3538 temp = I915_READ(reg);
3539 if (HAS_PCH_CPT(dev)) {
3540 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3541 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3542 } else {
3543 temp &= ~FDI_LINK_TRAIN_NONE;
3544 temp |= FDI_LINK_TRAIN_PATTERN_1;
3545 }
3546 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3547
3548 POSTING_READ(reg);
3549 udelay(150);
3550
3551 for (i = 0; i < 4; i++) {
3552 reg = FDI_TX_CTL(pipe);
3553 temp = I915_READ(reg);
3554 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3555 temp |= snb_b_fdi_train_param[i];
3556 I915_WRITE(reg, temp);
3557
3558 POSTING_READ(reg);
3559 udelay(500);
3560
3561 for (retry = 0; retry < 5; retry++) {
3562 reg = FDI_RX_IIR(pipe);
3563 temp = I915_READ(reg);
3564 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3565 if (temp & FDI_RX_BIT_LOCK) {
3566 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3567 DRM_DEBUG_KMS("FDI train 1 done.\n");
3568 break;
3569 }
3570 udelay(50);
3571 }
3572 if (retry < 5)
3573 break;
3574 }
3575 if (i == 4)
3576 DRM_ERROR("FDI train 1 fail!\n");
3577
3578 /* Train 2 */
3579 reg = FDI_TX_CTL(pipe);
3580 temp = I915_READ(reg);
3581 temp &= ~FDI_LINK_TRAIN_NONE;
3582 temp |= FDI_LINK_TRAIN_PATTERN_2;
3583 if (IS_GEN6(dev)) {
3584 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3585 /* SNB-B */
3586 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3587 }
3588 I915_WRITE(reg, temp);
3589
3590 reg = FDI_RX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 if (HAS_PCH_CPT(dev)) {
3593 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3594 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3595 } else {
3596 temp &= ~FDI_LINK_TRAIN_NONE;
3597 temp |= FDI_LINK_TRAIN_PATTERN_2;
3598 }
3599 I915_WRITE(reg, temp);
3600
3601 POSTING_READ(reg);
3602 udelay(150);
3603
3604 for (i = 0; i < 4; i++) {
3605 reg = FDI_TX_CTL(pipe);
3606 temp = I915_READ(reg);
3607 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3608 temp |= snb_b_fdi_train_param[i];
3609 I915_WRITE(reg, temp);
3610
3611 POSTING_READ(reg);
3612 udelay(500);
3613
3614 for (retry = 0; retry < 5; retry++) {
3615 reg = FDI_RX_IIR(pipe);
3616 temp = I915_READ(reg);
3617 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3618 if (temp & FDI_RX_SYMBOL_LOCK) {
3619 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3620 DRM_DEBUG_KMS("FDI train 2 done.\n");
3621 break;
3622 }
3623 udelay(50);
3624 }
3625 if (retry < 5)
3626 break;
3627 }
3628 if (i == 4)
3629 DRM_ERROR("FDI train 2 fail!\n");
3630
3631 DRM_DEBUG_KMS("FDI train done.\n");
3632 }
3633
3634 /* Manual link training for Ivy Bridge A0 parts */
3635 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3636 {
3637 struct drm_device *dev = crtc->dev;
3638 struct drm_i915_private *dev_priv = dev->dev_private;
3639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3640 int pipe = intel_crtc->pipe;
3641 u32 reg, temp, i, j;
3642
3643 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3644 for train result */
3645 reg = FDI_RX_IMR(pipe);
3646 temp = I915_READ(reg);
3647 temp &= ~FDI_RX_SYMBOL_LOCK;
3648 temp &= ~FDI_RX_BIT_LOCK;
3649 I915_WRITE(reg, temp);
3650
3651 POSTING_READ(reg);
3652 udelay(150);
3653
3654 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3655 I915_READ(FDI_RX_IIR(pipe)));
3656
3657 /* Try each vswing and preemphasis setting twice before moving on */
3658 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3659 /* disable first in case we need to retry */
3660 reg = FDI_TX_CTL(pipe);
3661 temp = I915_READ(reg);
3662 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3663 temp &= ~FDI_TX_ENABLE;
3664 I915_WRITE(reg, temp);
3665
3666 reg = FDI_RX_CTL(pipe);
3667 temp = I915_READ(reg);
3668 temp &= ~FDI_LINK_TRAIN_AUTO;
3669 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3670 temp &= ~FDI_RX_ENABLE;
3671 I915_WRITE(reg, temp);
3672
3673 /* enable CPU FDI TX and PCH FDI RX */
3674 reg = FDI_TX_CTL(pipe);
3675 temp = I915_READ(reg);
3676 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3677 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3678 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3679 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3680 temp |= snb_b_fdi_train_param[j/2];
3681 temp |= FDI_COMPOSITE_SYNC;
3682 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3683
3684 I915_WRITE(FDI_RX_MISC(pipe),
3685 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3686
3687 reg = FDI_RX_CTL(pipe);
3688 temp = I915_READ(reg);
3689 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3690 temp |= FDI_COMPOSITE_SYNC;
3691 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3692
3693 POSTING_READ(reg);
3694 udelay(1); /* should be 0.5us */
3695
3696 for (i = 0; i < 4; i++) {
3697 reg = FDI_RX_IIR(pipe);
3698 temp = I915_READ(reg);
3699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3700
3701 if (temp & FDI_RX_BIT_LOCK ||
3702 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3703 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3704 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3705 i);
3706 break;
3707 }
3708 udelay(1); /* should be 0.5us */
3709 }
3710 if (i == 4) {
3711 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3712 continue;
3713 }
3714
3715 /* Train 2 */
3716 reg = FDI_TX_CTL(pipe);
3717 temp = I915_READ(reg);
3718 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3719 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3720 I915_WRITE(reg, temp);
3721
3722 reg = FDI_RX_CTL(pipe);
3723 temp = I915_READ(reg);
3724 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3725 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3726 I915_WRITE(reg, temp);
3727
3728 POSTING_READ(reg);
3729 udelay(2); /* should be 1.5us */
3730
3731 for (i = 0; i < 4; i++) {
3732 reg = FDI_RX_IIR(pipe);
3733 temp = I915_READ(reg);
3734 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3735
3736 if (temp & FDI_RX_SYMBOL_LOCK ||
3737 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3738 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3739 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3740 i);
3741 goto train_done;
3742 }
3743 udelay(2); /* should be 1.5us */
3744 }
3745 if (i == 4)
3746 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3747 }
3748
3749 train_done:
3750 DRM_DEBUG_KMS("FDI train done.\n");
3751 }
3752
3753 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3754 {
3755 struct drm_device *dev = intel_crtc->base.dev;
3756 struct drm_i915_private *dev_priv = dev->dev_private;
3757 int pipe = intel_crtc->pipe;
3758 u32 reg, temp;
3759
3760
3761 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3762 reg = FDI_RX_CTL(pipe);
3763 temp = I915_READ(reg);
3764 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3765 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3766 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3767 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3768
3769 POSTING_READ(reg);
3770 udelay(200);
3771
3772 /* Switch from Rawclk to PCDclk */
3773 temp = I915_READ(reg);
3774 I915_WRITE(reg, temp | FDI_PCDCLK);
3775
3776 POSTING_READ(reg);
3777 udelay(200);
3778
3779 /* Enable CPU FDI TX PLL, always on for Ironlake */
3780 reg = FDI_TX_CTL(pipe);
3781 temp = I915_READ(reg);
3782 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3783 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3784
3785 POSTING_READ(reg);
3786 udelay(100);
3787 }
3788 }
3789
3790 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3791 {
3792 struct drm_device *dev = intel_crtc->base.dev;
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 int pipe = intel_crtc->pipe;
3795 u32 reg, temp;
3796
3797 /* Switch from PCDclk to Rawclk */
3798 reg = FDI_RX_CTL(pipe);
3799 temp = I915_READ(reg);
3800 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3801
3802 /* Disable CPU FDI TX PLL */
3803 reg = FDI_TX_CTL(pipe);
3804 temp = I915_READ(reg);
3805 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3806
3807 POSTING_READ(reg);
3808 udelay(100);
3809
3810 reg = FDI_RX_CTL(pipe);
3811 temp = I915_READ(reg);
3812 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3813
3814 /* Wait for the clocks to turn off. */
3815 POSTING_READ(reg);
3816 udelay(100);
3817 }
3818
3819 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3820 {
3821 struct drm_device *dev = crtc->dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3824 int pipe = intel_crtc->pipe;
3825 u32 reg, temp;
3826
3827 /* disable CPU FDI tx and PCH FDI rx */
3828 reg = FDI_TX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3831 POSTING_READ(reg);
3832
3833 reg = FDI_RX_CTL(pipe);
3834 temp = I915_READ(reg);
3835 temp &= ~(0x7 << 16);
3836 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3837 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3838
3839 POSTING_READ(reg);
3840 udelay(100);
3841
3842 /* Ironlake workaround, disable clock pointer after downing FDI */
3843 if (HAS_PCH_IBX(dev))
3844 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3845
3846 /* still set train pattern 1 */
3847 reg = FDI_TX_CTL(pipe);
3848 temp = I915_READ(reg);
3849 temp &= ~FDI_LINK_TRAIN_NONE;
3850 temp |= FDI_LINK_TRAIN_PATTERN_1;
3851 I915_WRITE(reg, temp);
3852
3853 reg = FDI_RX_CTL(pipe);
3854 temp = I915_READ(reg);
3855 if (HAS_PCH_CPT(dev)) {
3856 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3857 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3858 } else {
3859 temp &= ~FDI_LINK_TRAIN_NONE;
3860 temp |= FDI_LINK_TRAIN_PATTERN_1;
3861 }
3862 /* BPC in FDI rx is consistent with that in PIPECONF */
3863 temp &= ~(0x07 << 16);
3864 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3865 I915_WRITE(reg, temp);
3866
3867 POSTING_READ(reg);
3868 udelay(100);
3869 }
3870
3871 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3872 {
3873 struct intel_crtc *crtc;
3874
3875 /* Note that we don't need to be called with mode_config.lock here
3876 * as our list of CRTC objects is static for the lifetime of the
3877 * device and so cannot disappear as we iterate. Similarly, we can
3878 * happily treat the predicates as racy, atomic checks as userspace
3879 * cannot claim and pin a new fb without at least acquring the
3880 * struct_mutex and so serialising with us.
3881 */
3882 for_each_intel_crtc(dev, crtc) {
3883 if (atomic_read(&crtc->unpin_work_count) == 0)
3884 continue;
3885
3886 if (crtc->unpin_work)
3887 intel_wait_for_vblank(dev, crtc->pipe);
3888
3889 return true;
3890 }
3891
3892 return false;
3893 }
3894
3895 static void page_flip_completed(struct intel_crtc *intel_crtc)
3896 {
3897 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3898 struct intel_unpin_work *work = intel_crtc->unpin_work;
3899
3900 /* ensure that the unpin work is consistent wrt ->pending. */
3901 smp_rmb();
3902 intel_crtc->unpin_work = NULL;
3903
3904 if (work->event)
3905 drm_send_vblank_event(intel_crtc->base.dev,
3906 intel_crtc->pipe,
3907 work->event);
3908
3909 drm_crtc_vblank_put(&intel_crtc->base);
3910
3911 wake_up_all(&dev_priv->pending_flip_queue);
3912 queue_work(dev_priv->wq, &work->work);
3913
3914 trace_i915_flip_complete(intel_crtc->plane,
3915 work->pending_flip_obj);
3916 }
3917
3918 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3919 {
3920 struct drm_device *dev = crtc->dev;
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922
3923 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3924 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3925 !intel_crtc_has_pending_flip(crtc),
3926 60*HZ) == 0)) {
3927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3928
3929 spin_lock_irq(&dev->event_lock);
3930 if (intel_crtc->unpin_work) {
3931 WARN_ONCE(1, "Removing stuck page flip\n");
3932 page_flip_completed(intel_crtc);
3933 }
3934 spin_unlock_irq(&dev->event_lock);
3935 }
3936
3937 if (crtc->primary->fb) {
3938 mutex_lock(&dev->struct_mutex);
3939 intel_finish_fb(crtc->primary->fb);
3940 mutex_unlock(&dev->struct_mutex);
3941 }
3942 }
3943
3944 /* Program iCLKIP clock to the desired frequency */
3945 static void lpt_program_iclkip(struct drm_crtc *crtc)
3946 {
3947 struct drm_device *dev = crtc->dev;
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3950 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3951 u32 temp;
3952
3953 mutex_lock(&dev_priv->sb_lock);
3954
3955 /* It is necessary to ungate the pixclk gate prior to programming
3956 * the divisors, and gate it back when it is done.
3957 */
3958 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3959
3960 /* Disable SSCCTL */
3961 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3962 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3963 SBI_SSCCTL_DISABLE,
3964 SBI_ICLK);
3965
3966 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3967 if (clock == 20000) {
3968 auxdiv = 1;
3969 divsel = 0x41;
3970 phaseinc = 0x20;
3971 } else {
3972 /* The iCLK virtual clock root frequency is in MHz,
3973 * but the adjusted_mode->crtc_clock in in KHz. To get the
3974 * divisors, it is necessary to divide one by another, so we
3975 * convert the virtual clock precision to KHz here for higher
3976 * precision.
3977 */
3978 u32 iclk_virtual_root_freq = 172800 * 1000;
3979 u32 iclk_pi_range = 64;
3980 u32 desired_divisor, msb_divisor_value, pi_value;
3981
3982 desired_divisor = (iclk_virtual_root_freq / clock);
3983 msb_divisor_value = desired_divisor / iclk_pi_range;
3984 pi_value = desired_divisor % iclk_pi_range;
3985
3986 auxdiv = 0;
3987 divsel = msb_divisor_value - 2;
3988 phaseinc = pi_value;
3989 }
3990
3991 /* This should not happen with any sane values */
3992 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3993 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3994 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3995 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3996
3997 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3998 clock,
3999 auxdiv,
4000 divsel,
4001 phasedir,
4002 phaseinc);
4003
4004 /* Program SSCDIVINTPHASE6 */
4005 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4006 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4007 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4008 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4009 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4010 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4011 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4012 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4013
4014 /* Program SSCAUXDIV */
4015 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4016 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4017 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4018 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4019
4020 /* Enable modulator and associated divider */
4021 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4022 temp &= ~SBI_SSCCTL_DISABLE;
4023 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4024
4025 /* Wait for initialization time */
4026 udelay(24);
4027
4028 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4029
4030 mutex_unlock(&dev_priv->sb_lock);
4031 }
4032
4033 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4034 enum pipe pch_transcoder)
4035 {
4036 struct drm_device *dev = crtc->base.dev;
4037 struct drm_i915_private *dev_priv = dev->dev_private;
4038 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4039
4040 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4041 I915_READ(HTOTAL(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4043 I915_READ(HBLANK(cpu_transcoder)));
4044 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4045 I915_READ(HSYNC(cpu_transcoder)));
4046
4047 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4048 I915_READ(VTOTAL(cpu_transcoder)));
4049 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4050 I915_READ(VBLANK(cpu_transcoder)));
4051 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4052 I915_READ(VSYNC(cpu_transcoder)));
4053 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4054 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4055 }
4056
4057 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 uint32_t temp;
4061
4062 temp = I915_READ(SOUTH_CHICKEN1);
4063 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4064 return;
4065
4066 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4067 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4068
4069 temp &= ~FDI_BC_BIFURCATION_SELECT;
4070 if (enable)
4071 temp |= FDI_BC_BIFURCATION_SELECT;
4072
4073 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4074 I915_WRITE(SOUTH_CHICKEN1, temp);
4075 POSTING_READ(SOUTH_CHICKEN1);
4076 }
4077
4078 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4079 {
4080 struct drm_device *dev = intel_crtc->base.dev;
4081
4082 switch (intel_crtc->pipe) {
4083 case PIPE_A:
4084 break;
4085 case PIPE_B:
4086 if (intel_crtc->config->fdi_lanes > 2)
4087 cpt_set_fdi_bc_bifurcation(dev, false);
4088 else
4089 cpt_set_fdi_bc_bifurcation(dev, true);
4090
4091 break;
4092 case PIPE_C:
4093 cpt_set_fdi_bc_bifurcation(dev, true);
4094
4095 break;
4096 default:
4097 BUG();
4098 }
4099 }
4100
4101 /*
4102 * Enable PCH resources required for PCH ports:
4103 * - PCH PLLs
4104 * - FDI training & RX/TX
4105 * - update transcoder timings
4106 * - DP transcoding bits
4107 * - transcoder
4108 */
4109 static void ironlake_pch_enable(struct drm_crtc *crtc)
4110 {
4111 struct drm_device *dev = crtc->dev;
4112 struct drm_i915_private *dev_priv = dev->dev_private;
4113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4114 int pipe = intel_crtc->pipe;
4115 u32 reg, temp;
4116
4117 assert_pch_transcoder_disabled(dev_priv, pipe);
4118
4119 if (IS_IVYBRIDGE(dev))
4120 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4121
4122 /* Write the TU size bits before fdi link training, so that error
4123 * detection works. */
4124 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4125 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4126
4127 /* For PCH output, training FDI link */
4128 dev_priv->display.fdi_link_train(crtc);
4129
4130 /* We need to program the right clock selection before writing the pixel
4131 * mutliplier into the DPLL. */
4132 if (HAS_PCH_CPT(dev)) {
4133 u32 sel;
4134
4135 temp = I915_READ(PCH_DPLL_SEL);
4136 temp |= TRANS_DPLL_ENABLE(pipe);
4137 sel = TRANS_DPLLB_SEL(pipe);
4138 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4139 temp |= sel;
4140 else
4141 temp &= ~sel;
4142 I915_WRITE(PCH_DPLL_SEL, temp);
4143 }
4144
4145 /* XXX: pch pll's can be enabled any time before we enable the PCH
4146 * transcoder, and we actually should do this to not upset any PCH
4147 * transcoder that already use the clock when we share it.
4148 *
4149 * Note that enable_shared_dpll tries to do the right thing, but
4150 * get_shared_dpll unconditionally resets the pll - we need that to have
4151 * the right LVDS enable sequence. */
4152 intel_enable_shared_dpll(intel_crtc);
4153
4154 /* set transcoder timing, panel must allow it */
4155 assert_panel_unlocked(dev_priv, pipe);
4156 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4157
4158 intel_fdi_normal_train(crtc);
4159
4160 /* For PCH DP, enable TRANS_DP_CTL */
4161 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4162 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4163 reg = TRANS_DP_CTL(pipe);
4164 temp = I915_READ(reg);
4165 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4166 TRANS_DP_SYNC_MASK |
4167 TRANS_DP_BPC_MASK);
4168 temp |= TRANS_DP_OUTPUT_ENABLE;
4169 temp |= bpc << 9; /* same format but at 11:9 */
4170
4171 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4172 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4173 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4174 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4175
4176 switch (intel_trans_dp_port_sel(crtc)) {
4177 case PCH_DP_B:
4178 temp |= TRANS_DP_PORT_SEL_B;
4179 break;
4180 case PCH_DP_C:
4181 temp |= TRANS_DP_PORT_SEL_C;
4182 break;
4183 case PCH_DP_D:
4184 temp |= TRANS_DP_PORT_SEL_D;
4185 break;
4186 default:
4187 BUG();
4188 }
4189
4190 I915_WRITE(reg, temp);
4191 }
4192
4193 ironlake_enable_pch_transcoder(dev_priv, pipe);
4194 }
4195
4196 static void lpt_pch_enable(struct drm_crtc *crtc)
4197 {
4198 struct drm_device *dev = crtc->dev;
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4201 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4202
4203 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4204
4205 lpt_program_iclkip(crtc);
4206
4207 /* Set transcoder timing. */
4208 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4209
4210 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4211 }
4212
4213 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4214 struct intel_crtc_state *crtc_state)
4215 {
4216 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4217 struct intel_shared_dpll *pll;
4218 struct intel_shared_dpll_config *shared_dpll;
4219 enum intel_dpll_id i;
4220
4221 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4222
4223 if (HAS_PCH_IBX(dev_priv->dev)) {
4224 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4225 i = (enum intel_dpll_id) crtc->pipe;
4226 pll = &dev_priv->shared_dplls[i];
4227
4228 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4229 crtc->base.base.id, pll->name);
4230
4231 WARN_ON(shared_dpll[i].crtc_mask);
4232
4233 goto found;
4234 }
4235
4236 if (IS_BROXTON(dev_priv->dev)) {
4237 /* PLL is attached to port in bxt */
4238 struct intel_encoder *encoder;
4239 struct intel_digital_port *intel_dig_port;
4240
4241 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4242 if (WARN_ON(!encoder))
4243 return NULL;
4244
4245 intel_dig_port = enc_to_dig_port(&encoder->base);
4246 /* 1:1 mapping between ports and PLLs */
4247 i = (enum intel_dpll_id)intel_dig_port->port;
4248 pll = &dev_priv->shared_dplls[i];
4249 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4250 crtc->base.base.id, pll->name);
4251 WARN_ON(shared_dpll[i].crtc_mask);
4252
4253 goto found;
4254 }
4255
4256 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4257 pll = &dev_priv->shared_dplls[i];
4258
4259 /* Only want to check enabled timings first */
4260 if (shared_dpll[i].crtc_mask == 0)
4261 continue;
4262
4263 if (memcmp(&crtc_state->dpll_hw_state,
4264 &shared_dpll[i].hw_state,
4265 sizeof(crtc_state->dpll_hw_state)) == 0) {
4266 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4267 crtc->base.base.id, pll->name,
4268 shared_dpll[i].crtc_mask,
4269 pll->active);
4270 goto found;
4271 }
4272 }
4273
4274 /* Ok no matching timings, maybe there's a free one? */
4275 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4276 pll = &dev_priv->shared_dplls[i];
4277 if (shared_dpll[i].crtc_mask == 0) {
4278 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4279 crtc->base.base.id, pll->name);
4280 goto found;
4281 }
4282 }
4283
4284 return NULL;
4285
4286 found:
4287 if (shared_dpll[i].crtc_mask == 0)
4288 shared_dpll[i].hw_state =
4289 crtc_state->dpll_hw_state;
4290
4291 crtc_state->shared_dpll = i;
4292 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4293 pipe_name(crtc->pipe));
4294
4295 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4296
4297 return pll;
4298 }
4299
4300 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4301 {
4302 struct drm_i915_private *dev_priv = to_i915(state->dev);
4303 struct intel_shared_dpll_config *shared_dpll;
4304 struct intel_shared_dpll *pll;
4305 enum intel_dpll_id i;
4306
4307 if (!to_intel_atomic_state(state)->dpll_set)
4308 return;
4309
4310 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4311 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4312 pll = &dev_priv->shared_dplls[i];
4313 pll->config = shared_dpll[i];
4314 }
4315 }
4316
4317 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4318 {
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 int dslreg = PIPEDSL(pipe);
4321 u32 temp;
4322
4323 temp = I915_READ(dslreg);
4324 udelay(500);
4325 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4326 if (wait_for(I915_READ(dslreg) != temp, 5))
4327 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4328 }
4329 }
4330
4331 static int
4332 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4333 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4334 int src_w, int src_h, int dst_w, int dst_h)
4335 {
4336 struct intel_crtc_scaler_state *scaler_state =
4337 &crtc_state->scaler_state;
4338 struct intel_crtc *intel_crtc =
4339 to_intel_crtc(crtc_state->base.crtc);
4340 int need_scaling;
4341
4342 need_scaling = intel_rotation_90_or_270(rotation) ?
4343 (src_h != dst_w || src_w != dst_h):
4344 (src_w != dst_w || src_h != dst_h);
4345
4346 /*
4347 * if plane is being disabled or scaler is no more required or force detach
4348 * - free scaler binded to this plane/crtc
4349 * - in order to do this, update crtc->scaler_usage
4350 *
4351 * Here scaler state in crtc_state is set free so that
4352 * scaler can be assigned to other user. Actual register
4353 * update to free the scaler is done in plane/panel-fit programming.
4354 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4355 */
4356 if (force_detach || !need_scaling) {
4357 if (*scaler_id >= 0) {
4358 scaler_state->scaler_users &= ~(1 << scaler_user);
4359 scaler_state->scalers[*scaler_id].in_use = 0;
4360
4361 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4362 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4363 intel_crtc->pipe, scaler_user, *scaler_id,
4364 scaler_state->scaler_users);
4365 *scaler_id = -1;
4366 }
4367 return 0;
4368 }
4369
4370 /* range checks */
4371 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4372 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4373
4374 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4375 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4376 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4377 "size is out of scaler range\n",
4378 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4379 return -EINVAL;
4380 }
4381
4382 /* mark this plane as a scaler user in crtc_state */
4383 scaler_state->scaler_users |= (1 << scaler_user);
4384 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4385 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4386 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4387 scaler_state->scaler_users);
4388
4389 return 0;
4390 }
4391
4392 /**
4393 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4394 *
4395 * @state: crtc's scaler state
4396 *
4397 * Return
4398 * 0 - scaler_usage updated successfully
4399 * error - requested scaling cannot be supported or other error condition
4400 */
4401 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4402 {
4403 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4404 struct drm_display_mode *adjusted_mode =
4405 &state->base.adjusted_mode;
4406
4407 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4408 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4409
4410 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4411 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4412 state->pipe_src_w, state->pipe_src_h,
4413 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4414 }
4415
4416 /**
4417 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4418 *
4419 * @state: crtc's scaler state
4420 * @plane_state: atomic plane state to update
4421 *
4422 * Return
4423 * 0 - scaler_usage updated successfully
4424 * error - requested scaling cannot be supported or other error condition
4425 */
4426 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4427 struct intel_plane_state *plane_state)
4428 {
4429
4430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4431 struct intel_plane *intel_plane =
4432 to_intel_plane(plane_state->base.plane);
4433 struct drm_framebuffer *fb = plane_state->base.fb;
4434 int ret;
4435
4436 bool force_detach = !fb || !plane_state->visible;
4437
4438 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4439 intel_plane->base.base.id, intel_crtc->pipe,
4440 drm_plane_index(&intel_plane->base));
4441
4442 ret = skl_update_scaler(crtc_state, force_detach,
4443 drm_plane_index(&intel_plane->base),
4444 &plane_state->scaler_id,
4445 plane_state->base.rotation,
4446 drm_rect_width(&plane_state->src) >> 16,
4447 drm_rect_height(&plane_state->src) >> 16,
4448 drm_rect_width(&plane_state->dst),
4449 drm_rect_height(&plane_state->dst));
4450
4451 if (ret || plane_state->scaler_id < 0)
4452 return ret;
4453
4454 /* check colorkey */
4455 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4456 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4457 intel_plane->base.base.id);
4458 return -EINVAL;
4459 }
4460
4461 /* Check src format */
4462 switch (fb->pixel_format) {
4463 case DRM_FORMAT_RGB565:
4464 case DRM_FORMAT_XBGR8888:
4465 case DRM_FORMAT_XRGB8888:
4466 case DRM_FORMAT_ABGR8888:
4467 case DRM_FORMAT_ARGB8888:
4468 case DRM_FORMAT_XRGB2101010:
4469 case DRM_FORMAT_XBGR2101010:
4470 case DRM_FORMAT_YUYV:
4471 case DRM_FORMAT_YVYU:
4472 case DRM_FORMAT_UYVY:
4473 case DRM_FORMAT_VYUY:
4474 break;
4475 default:
4476 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4477 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4478 return -EINVAL;
4479 }
4480
4481 return 0;
4482 }
4483
4484 static void skylake_scaler_disable(struct intel_crtc *crtc)
4485 {
4486 int i;
4487
4488 for (i = 0; i < crtc->num_scalers; i++)
4489 skl_detach_scaler(crtc, i);
4490 }
4491
4492 static void skylake_pfit_enable(struct intel_crtc *crtc)
4493 {
4494 struct drm_device *dev = crtc->base.dev;
4495 struct drm_i915_private *dev_priv = dev->dev_private;
4496 int pipe = crtc->pipe;
4497 struct intel_crtc_scaler_state *scaler_state =
4498 &crtc->config->scaler_state;
4499
4500 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4501
4502 if (crtc->config->pch_pfit.enabled) {
4503 int id;
4504
4505 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4506 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4507 return;
4508 }
4509
4510 id = scaler_state->scaler_id;
4511 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4512 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4513 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4514 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4515
4516 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4517 }
4518 }
4519
4520 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4521 {
4522 struct drm_device *dev = crtc->base.dev;
4523 struct drm_i915_private *dev_priv = dev->dev_private;
4524 int pipe = crtc->pipe;
4525
4526 if (crtc->config->pch_pfit.enabled) {
4527 /* Force use of hard-coded filter coefficients
4528 * as some pre-programmed values are broken,
4529 * e.g. x201.
4530 */
4531 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4532 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4533 PF_PIPE_SEL_IVB(pipe));
4534 else
4535 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4536 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4537 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4538 }
4539 }
4540
4541 void hsw_enable_ips(struct intel_crtc *crtc)
4542 {
4543 struct drm_device *dev = crtc->base.dev;
4544 struct drm_i915_private *dev_priv = dev->dev_private;
4545
4546 if (!crtc->config->ips_enabled)
4547 return;
4548
4549 /* We can only enable IPS after we enable a plane and wait for a vblank */
4550 intel_wait_for_vblank(dev, crtc->pipe);
4551
4552 assert_plane_enabled(dev_priv, crtc->plane);
4553 if (IS_BROADWELL(dev)) {
4554 mutex_lock(&dev_priv->rps.hw_lock);
4555 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4556 mutex_unlock(&dev_priv->rps.hw_lock);
4557 /* Quoting Art Runyan: "its not safe to expect any particular
4558 * value in IPS_CTL bit 31 after enabling IPS through the
4559 * mailbox." Moreover, the mailbox may return a bogus state,
4560 * so we need to just enable it and continue on.
4561 */
4562 } else {
4563 I915_WRITE(IPS_CTL, IPS_ENABLE);
4564 /* The bit only becomes 1 in the next vblank, so this wait here
4565 * is essentially intel_wait_for_vblank. If we don't have this
4566 * and don't wait for vblanks until the end of crtc_enable, then
4567 * the HW state readout code will complain that the expected
4568 * IPS_CTL value is not the one we read. */
4569 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4570 DRM_ERROR("Timed out waiting for IPS enable\n");
4571 }
4572 }
4573
4574 void hsw_disable_ips(struct intel_crtc *crtc)
4575 {
4576 struct drm_device *dev = crtc->base.dev;
4577 struct drm_i915_private *dev_priv = dev->dev_private;
4578
4579 if (!crtc->config->ips_enabled)
4580 return;
4581
4582 assert_plane_enabled(dev_priv, crtc->plane);
4583 if (IS_BROADWELL(dev)) {
4584 mutex_lock(&dev_priv->rps.hw_lock);
4585 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4586 mutex_unlock(&dev_priv->rps.hw_lock);
4587 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4588 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4589 DRM_ERROR("Timed out waiting for IPS disable\n");
4590 } else {
4591 I915_WRITE(IPS_CTL, 0);
4592 POSTING_READ(IPS_CTL);
4593 }
4594
4595 /* We need to wait for a vblank before we can disable the plane. */
4596 intel_wait_for_vblank(dev, crtc->pipe);
4597 }
4598
4599 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4600 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4601 {
4602 struct drm_device *dev = crtc->dev;
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4605 enum pipe pipe = intel_crtc->pipe;
4606 int palreg = PALETTE(pipe);
4607 int i;
4608 bool reenable_ips = false;
4609
4610 /* The clocks have to be on to load the palette. */
4611 if (!crtc->state->active)
4612 return;
4613
4614 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4615 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4616 assert_dsi_pll_enabled(dev_priv);
4617 else
4618 assert_pll_enabled(dev_priv, pipe);
4619 }
4620
4621 /* use legacy palette for Ironlake */
4622 if (!HAS_GMCH_DISPLAY(dev))
4623 palreg = LGC_PALETTE(pipe);
4624
4625 /* Workaround : Do not read or write the pipe palette/gamma data while
4626 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4627 */
4628 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4629 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4630 GAMMA_MODE_MODE_SPLIT)) {
4631 hsw_disable_ips(intel_crtc);
4632 reenable_ips = true;
4633 }
4634
4635 for (i = 0; i < 256; i++) {
4636 I915_WRITE(palreg + 4 * i,
4637 (intel_crtc->lut_r[i] << 16) |
4638 (intel_crtc->lut_g[i] << 8) |
4639 intel_crtc->lut_b[i]);
4640 }
4641
4642 if (reenable_ips)
4643 hsw_enable_ips(intel_crtc);
4644 }
4645
4646 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4647 {
4648 if (intel_crtc->overlay) {
4649 struct drm_device *dev = intel_crtc->base.dev;
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651
4652 mutex_lock(&dev->struct_mutex);
4653 dev_priv->mm.interruptible = false;
4654 (void) intel_overlay_switch_off(intel_crtc->overlay);
4655 dev_priv->mm.interruptible = true;
4656 mutex_unlock(&dev->struct_mutex);
4657 }
4658
4659 /* Let userspace switch the overlay on again. In most cases userspace
4660 * has to recompute where to put it anyway.
4661 */
4662 }
4663
4664 /**
4665 * intel_post_enable_primary - Perform operations after enabling primary plane
4666 * @crtc: the CRTC whose primary plane was just enabled
4667 *
4668 * Performs potentially sleeping operations that must be done after the primary
4669 * plane is enabled, such as updating FBC and IPS. Note that this may be
4670 * called due to an explicit primary plane update, or due to an implicit
4671 * re-enable that is caused when a sprite plane is updated to no longer
4672 * completely hide the primary plane.
4673 */
4674 static void
4675 intel_post_enable_primary(struct drm_crtc *crtc)
4676 {
4677 struct drm_device *dev = crtc->dev;
4678 struct drm_i915_private *dev_priv = dev->dev_private;
4679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4680 int pipe = intel_crtc->pipe;
4681
4682 /*
4683 * BDW signals flip done immediately if the plane
4684 * is disabled, even if the plane enable is already
4685 * armed to occur at the next vblank :(
4686 */
4687 if (IS_BROADWELL(dev))
4688 intel_wait_for_vblank(dev, pipe);
4689
4690 /*
4691 * FIXME IPS should be fine as long as one plane is
4692 * enabled, but in practice it seems to have problems
4693 * when going from primary only to sprite only and vice
4694 * versa.
4695 */
4696 hsw_enable_ips(intel_crtc);
4697
4698 /*
4699 * Gen2 reports pipe underruns whenever all planes are disabled.
4700 * So don't enable underrun reporting before at least some planes
4701 * are enabled.
4702 * FIXME: Need to fix the logic to work when we turn off all planes
4703 * but leave the pipe running.
4704 */
4705 if (IS_GEN2(dev))
4706 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4707
4708 /* Underruns don't raise interrupts, so check manually. */
4709 if (HAS_GMCH_DISPLAY(dev))
4710 i9xx_check_fifo_underruns(dev_priv);
4711 }
4712
4713 /**
4714 * intel_pre_disable_primary - Perform operations before disabling primary plane
4715 * @crtc: the CRTC whose primary plane is to be disabled
4716 *
4717 * Performs potentially sleeping operations that must be done before the
4718 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4719 * be called due to an explicit primary plane update, or due to an implicit
4720 * disable that is caused when a sprite plane completely hides the primary
4721 * plane.
4722 */
4723 static void
4724 intel_pre_disable_primary(struct drm_crtc *crtc)
4725 {
4726 struct drm_device *dev = crtc->dev;
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4729 int pipe = intel_crtc->pipe;
4730
4731 /*
4732 * Gen2 reports pipe underruns whenever all planes are disabled.
4733 * So diasble underrun reporting before all the planes get disabled.
4734 * FIXME: Need to fix the logic to work when we turn off all planes
4735 * but leave the pipe running.
4736 */
4737 if (IS_GEN2(dev))
4738 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4739
4740 /*
4741 * Vblank time updates from the shadow to live plane control register
4742 * are blocked if the memory self-refresh mode is active at that
4743 * moment. So to make sure the plane gets truly disabled, disable
4744 * first the self-refresh mode. The self-refresh enable bit in turn
4745 * will be checked/applied by the HW only at the next frame start
4746 * event which is after the vblank start event, so we need to have a
4747 * wait-for-vblank between disabling the plane and the pipe.
4748 */
4749 if (HAS_GMCH_DISPLAY(dev)) {
4750 intel_set_memory_cxsr(dev_priv, false);
4751 dev_priv->wm.vlv.cxsr = false;
4752 intel_wait_for_vblank(dev, pipe);
4753 }
4754
4755 /*
4756 * FIXME IPS should be fine as long as one plane is
4757 * enabled, but in practice it seems to have problems
4758 * when going from primary only to sprite only and vice
4759 * versa.
4760 */
4761 hsw_disable_ips(intel_crtc);
4762 }
4763
4764 static void intel_post_plane_update(struct intel_crtc *crtc)
4765 {
4766 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4767 struct drm_device *dev = crtc->base.dev;
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 struct drm_plane *plane;
4770
4771 if (atomic->wait_vblank)
4772 intel_wait_for_vblank(dev, crtc->pipe);
4773
4774 intel_frontbuffer_flip(dev, atomic->fb_bits);
4775
4776 if (atomic->disable_cxsr)
4777 crtc->wm.cxsr_allowed = true;
4778
4779 if (crtc->atomic.update_wm_post)
4780 intel_update_watermarks(&crtc->base);
4781
4782 if (atomic->update_fbc)
4783 intel_fbc_update(dev_priv);
4784
4785 if (atomic->post_enable_primary)
4786 intel_post_enable_primary(&crtc->base);
4787
4788 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4789 intel_update_sprite_watermarks(plane, &crtc->base,
4790 0, 0, 0, false, false);
4791
4792 memset(atomic, 0, sizeof(*atomic));
4793 }
4794
4795 static void intel_pre_plane_update(struct intel_crtc *crtc)
4796 {
4797 struct drm_device *dev = crtc->base.dev;
4798 struct drm_i915_private *dev_priv = dev->dev_private;
4799 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4800 struct drm_plane *p;
4801
4802 /* Track fb's for any planes being disabled */
4803 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4804 struct intel_plane *plane = to_intel_plane(p);
4805
4806 mutex_lock(&dev->struct_mutex);
4807 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4808 plane->frontbuffer_bit);
4809 mutex_unlock(&dev->struct_mutex);
4810 }
4811
4812 if (atomic->wait_for_flips)
4813 intel_crtc_wait_for_pending_flips(&crtc->base);
4814
4815 if (atomic->disable_fbc)
4816 intel_fbc_disable_crtc(crtc);
4817
4818 if (crtc->atomic.disable_ips)
4819 hsw_disable_ips(crtc);
4820
4821 if (atomic->pre_disable_primary)
4822 intel_pre_disable_primary(&crtc->base);
4823
4824 if (atomic->disable_cxsr) {
4825 crtc->wm.cxsr_allowed = false;
4826 intel_set_memory_cxsr(dev_priv, false);
4827 }
4828 }
4829
4830 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4831 {
4832 struct drm_device *dev = crtc->dev;
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834 struct drm_plane *p;
4835 int pipe = intel_crtc->pipe;
4836
4837 intel_crtc_dpms_overlay_disable(intel_crtc);
4838
4839 drm_for_each_plane_mask(p, dev, plane_mask)
4840 to_intel_plane(p)->disable_plane(p, crtc);
4841
4842 /*
4843 * FIXME: Once we grow proper nuclear flip support out of this we need
4844 * to compute the mask of flip planes precisely. For the time being
4845 * consider this a flip to a NULL plane.
4846 */
4847 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4848 }
4849
4850 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4851 {
4852 struct drm_device *dev = crtc->dev;
4853 struct drm_i915_private *dev_priv = dev->dev_private;
4854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855 struct intel_encoder *encoder;
4856 int pipe = intel_crtc->pipe;
4857
4858 if (WARN_ON(intel_crtc->active))
4859 return;
4860
4861 if (intel_crtc->config->has_pch_encoder)
4862 intel_prepare_shared_dpll(intel_crtc);
4863
4864 if (intel_crtc->config->has_dp_encoder)
4865 intel_dp_set_m_n(intel_crtc, M1_N1);
4866
4867 intel_set_pipe_timings(intel_crtc);
4868
4869 if (intel_crtc->config->has_pch_encoder) {
4870 intel_cpu_transcoder_set_m_n(intel_crtc,
4871 &intel_crtc->config->fdi_m_n, NULL);
4872 }
4873
4874 ironlake_set_pipeconf(crtc);
4875
4876 intel_crtc->active = true;
4877
4878 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4879 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4880
4881 for_each_encoder_on_crtc(dev, crtc, encoder)
4882 if (encoder->pre_enable)
4883 encoder->pre_enable(encoder);
4884
4885 if (intel_crtc->config->has_pch_encoder) {
4886 /* Note: FDI PLL enabling _must_ be done before we enable the
4887 * cpu pipes, hence this is separate from all the other fdi/pch
4888 * enabling. */
4889 ironlake_fdi_pll_enable(intel_crtc);
4890 } else {
4891 assert_fdi_tx_disabled(dev_priv, pipe);
4892 assert_fdi_rx_disabled(dev_priv, pipe);
4893 }
4894
4895 ironlake_pfit_enable(intel_crtc);
4896
4897 /*
4898 * On ILK+ LUT must be loaded before the pipe is running but with
4899 * clocks enabled
4900 */
4901 intel_crtc_load_lut(crtc);
4902
4903 intel_update_watermarks(crtc);
4904 intel_enable_pipe(intel_crtc);
4905
4906 if (intel_crtc->config->has_pch_encoder)
4907 ironlake_pch_enable(crtc);
4908
4909 assert_vblank_disabled(crtc);
4910 drm_crtc_vblank_on(crtc);
4911
4912 for_each_encoder_on_crtc(dev, crtc, encoder)
4913 encoder->enable(encoder);
4914
4915 if (HAS_PCH_CPT(dev))
4916 cpt_verify_modeset(dev, intel_crtc->pipe);
4917 }
4918
4919 /* IPS only exists on ULT machines and is tied to pipe A. */
4920 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4921 {
4922 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4923 }
4924
4925 static void haswell_crtc_enable(struct drm_crtc *crtc)
4926 {
4927 struct drm_device *dev = crtc->dev;
4928 struct drm_i915_private *dev_priv = dev->dev_private;
4929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4930 struct intel_encoder *encoder;
4931 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4932 struct intel_crtc_state *pipe_config =
4933 to_intel_crtc_state(crtc->state);
4934
4935 if (WARN_ON(intel_crtc->active))
4936 return;
4937
4938 if (intel_crtc_to_shared_dpll(intel_crtc))
4939 intel_enable_shared_dpll(intel_crtc);
4940
4941 if (intel_crtc->config->has_dp_encoder)
4942 intel_dp_set_m_n(intel_crtc, M1_N1);
4943
4944 intel_set_pipe_timings(intel_crtc);
4945
4946 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4947 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4948 intel_crtc->config->pixel_multiplier - 1);
4949 }
4950
4951 if (intel_crtc->config->has_pch_encoder) {
4952 intel_cpu_transcoder_set_m_n(intel_crtc,
4953 &intel_crtc->config->fdi_m_n, NULL);
4954 }
4955
4956 haswell_set_pipeconf(crtc);
4957
4958 intel_set_pipe_csc(crtc);
4959
4960 intel_crtc->active = true;
4961
4962 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4963 for_each_encoder_on_crtc(dev, crtc, encoder)
4964 if (encoder->pre_enable)
4965 encoder->pre_enable(encoder);
4966
4967 if (intel_crtc->config->has_pch_encoder) {
4968 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4969 true);
4970 dev_priv->display.fdi_link_train(crtc);
4971 }
4972
4973 intel_ddi_enable_pipe_clock(intel_crtc);
4974
4975 if (INTEL_INFO(dev)->gen == 9)
4976 skylake_pfit_enable(intel_crtc);
4977 else if (INTEL_INFO(dev)->gen < 9)
4978 ironlake_pfit_enable(intel_crtc);
4979 else
4980 MISSING_CASE(INTEL_INFO(dev)->gen);
4981
4982 /*
4983 * On ILK+ LUT must be loaded before the pipe is running but with
4984 * clocks enabled
4985 */
4986 intel_crtc_load_lut(crtc);
4987
4988 intel_ddi_set_pipe_settings(crtc);
4989 intel_ddi_enable_transcoder_func(crtc);
4990
4991 intel_update_watermarks(crtc);
4992 intel_enable_pipe(intel_crtc);
4993
4994 if (intel_crtc->config->has_pch_encoder)
4995 lpt_pch_enable(crtc);
4996
4997 if (intel_crtc->config->dp_encoder_is_mst)
4998 intel_ddi_set_vc_payload_alloc(crtc, true);
4999
5000 assert_vblank_disabled(crtc);
5001 drm_crtc_vblank_on(crtc);
5002
5003 for_each_encoder_on_crtc(dev, crtc, encoder) {
5004 encoder->enable(encoder);
5005 intel_opregion_notify_encoder(encoder, true);
5006 }
5007
5008 /* If we change the relative order between pipe/planes enabling, we need
5009 * to change the workaround. */
5010 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5011 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5012 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5013 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5014 }
5015 }
5016
5017 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5018 {
5019 struct drm_device *dev = crtc->base.dev;
5020 struct drm_i915_private *dev_priv = dev->dev_private;
5021 int pipe = crtc->pipe;
5022
5023 /* To avoid upsetting the power well on haswell only disable the pfit if
5024 * it's in use. The hw state code will make sure we get this right. */
5025 if (crtc->config->pch_pfit.enabled) {
5026 I915_WRITE(PF_CTL(pipe), 0);
5027 I915_WRITE(PF_WIN_POS(pipe), 0);
5028 I915_WRITE(PF_WIN_SZ(pipe), 0);
5029 }
5030 }
5031
5032 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5033 {
5034 struct drm_device *dev = crtc->dev;
5035 struct drm_i915_private *dev_priv = dev->dev_private;
5036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5037 struct intel_encoder *encoder;
5038 int pipe = intel_crtc->pipe;
5039 u32 reg, temp;
5040
5041 for_each_encoder_on_crtc(dev, crtc, encoder)
5042 encoder->disable(encoder);
5043
5044 drm_crtc_vblank_off(crtc);
5045 assert_vblank_disabled(crtc);
5046
5047 if (intel_crtc->config->has_pch_encoder)
5048 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5049
5050 intel_disable_pipe(intel_crtc);
5051
5052 ironlake_pfit_disable(intel_crtc);
5053
5054 if (intel_crtc->config->has_pch_encoder)
5055 ironlake_fdi_disable(crtc);
5056
5057 for_each_encoder_on_crtc(dev, crtc, encoder)
5058 if (encoder->post_disable)
5059 encoder->post_disable(encoder);
5060
5061 if (intel_crtc->config->has_pch_encoder) {
5062 ironlake_disable_pch_transcoder(dev_priv, pipe);
5063
5064 if (HAS_PCH_CPT(dev)) {
5065 /* disable TRANS_DP_CTL */
5066 reg = TRANS_DP_CTL(pipe);
5067 temp = I915_READ(reg);
5068 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5069 TRANS_DP_PORT_SEL_MASK);
5070 temp |= TRANS_DP_PORT_SEL_NONE;
5071 I915_WRITE(reg, temp);
5072
5073 /* disable DPLL_SEL */
5074 temp = I915_READ(PCH_DPLL_SEL);
5075 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5076 I915_WRITE(PCH_DPLL_SEL, temp);
5077 }
5078
5079 ironlake_fdi_pll_disable(intel_crtc);
5080 }
5081
5082 intel_crtc->active = false;
5083 intel_update_watermarks(crtc);
5084 }
5085
5086 static void haswell_crtc_disable(struct drm_crtc *crtc)
5087 {
5088 struct drm_device *dev = crtc->dev;
5089 struct drm_i915_private *dev_priv = dev->dev_private;
5090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5091 struct intel_encoder *encoder;
5092 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5093
5094 for_each_encoder_on_crtc(dev, crtc, encoder) {
5095 intel_opregion_notify_encoder(encoder, false);
5096 encoder->disable(encoder);
5097 }
5098
5099 drm_crtc_vblank_off(crtc);
5100 assert_vblank_disabled(crtc);
5101
5102 if (intel_crtc->config->has_pch_encoder)
5103 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5104 false);
5105 intel_disable_pipe(intel_crtc);
5106
5107 if (intel_crtc->config->dp_encoder_is_mst)
5108 intel_ddi_set_vc_payload_alloc(crtc, false);
5109
5110 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5111
5112 if (INTEL_INFO(dev)->gen == 9)
5113 skylake_scaler_disable(intel_crtc);
5114 else if (INTEL_INFO(dev)->gen < 9)
5115 ironlake_pfit_disable(intel_crtc);
5116 else
5117 MISSING_CASE(INTEL_INFO(dev)->gen);
5118
5119 intel_ddi_disable_pipe_clock(intel_crtc);
5120
5121 if (intel_crtc->config->has_pch_encoder) {
5122 lpt_disable_pch_transcoder(dev_priv);
5123 intel_ddi_fdi_disable(crtc);
5124 }
5125
5126 for_each_encoder_on_crtc(dev, crtc, encoder)
5127 if (encoder->post_disable)
5128 encoder->post_disable(encoder);
5129
5130 intel_crtc->active = false;
5131 intel_update_watermarks(crtc);
5132 }
5133
5134 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5135 {
5136 struct drm_device *dev = crtc->base.dev;
5137 struct drm_i915_private *dev_priv = dev->dev_private;
5138 struct intel_crtc_state *pipe_config = crtc->config;
5139
5140 if (!pipe_config->gmch_pfit.control)
5141 return;
5142
5143 /*
5144 * The panel fitter should only be adjusted whilst the pipe is disabled,
5145 * according to register description and PRM.
5146 */
5147 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5148 assert_pipe_disabled(dev_priv, crtc->pipe);
5149
5150 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5151 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5152
5153 /* Border color in case we don't scale up to the full screen. Black by
5154 * default, change to something else for debugging. */
5155 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5156 }
5157
5158 static enum intel_display_power_domain port_to_power_domain(enum port port)
5159 {
5160 switch (port) {
5161 case PORT_A:
5162 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5163 case PORT_B:
5164 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5165 case PORT_C:
5166 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5167 case PORT_D:
5168 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5169 case PORT_E:
5170 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5171 default:
5172 WARN_ON_ONCE(1);
5173 return POWER_DOMAIN_PORT_OTHER;
5174 }
5175 }
5176
5177 #define for_each_power_domain(domain, mask) \
5178 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5179 if ((1 << (domain)) & (mask))
5180
5181 enum intel_display_power_domain
5182 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5183 {
5184 struct drm_device *dev = intel_encoder->base.dev;
5185 struct intel_digital_port *intel_dig_port;
5186
5187 switch (intel_encoder->type) {
5188 case INTEL_OUTPUT_UNKNOWN:
5189 /* Only DDI platforms should ever use this output type */
5190 WARN_ON_ONCE(!HAS_DDI(dev));
5191 case INTEL_OUTPUT_DISPLAYPORT:
5192 case INTEL_OUTPUT_HDMI:
5193 case INTEL_OUTPUT_EDP:
5194 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5195 return port_to_power_domain(intel_dig_port->port);
5196 case INTEL_OUTPUT_DP_MST:
5197 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5198 return port_to_power_domain(intel_dig_port->port);
5199 case INTEL_OUTPUT_ANALOG:
5200 return POWER_DOMAIN_PORT_CRT;
5201 case INTEL_OUTPUT_DSI:
5202 return POWER_DOMAIN_PORT_DSI;
5203 default:
5204 return POWER_DOMAIN_PORT_OTHER;
5205 }
5206 }
5207
5208 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5209 {
5210 struct drm_device *dev = crtc->dev;
5211 struct intel_encoder *intel_encoder;
5212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213 enum pipe pipe = intel_crtc->pipe;
5214 unsigned long mask;
5215 enum transcoder transcoder;
5216
5217 if (!crtc->state->active)
5218 return 0;
5219
5220 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5221
5222 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5223 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5224 if (intel_crtc->config->pch_pfit.enabled ||
5225 intel_crtc->config->pch_pfit.force_thru)
5226 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5227
5228 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5229 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5230
5231 return mask;
5232 }
5233
5234 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5235 {
5236 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238 enum intel_display_power_domain domain;
5239 unsigned long domains, new_domains, old_domains;
5240
5241 old_domains = intel_crtc->enabled_power_domains;
5242 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5243
5244 domains = new_domains & ~old_domains;
5245
5246 for_each_power_domain(domain, domains)
5247 intel_display_power_get(dev_priv, domain);
5248
5249 return old_domains & ~new_domains;
5250 }
5251
5252 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5253 unsigned long domains)
5254 {
5255 enum intel_display_power_domain domain;
5256
5257 for_each_power_domain(domain, domains)
5258 intel_display_power_put(dev_priv, domain);
5259 }
5260
5261 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5262 {
5263 struct drm_device *dev = state->dev;
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265 unsigned long put_domains[I915_MAX_PIPES] = {};
5266 struct drm_crtc_state *crtc_state;
5267 struct drm_crtc *crtc;
5268 int i;
5269
5270 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5271 if (needs_modeset(crtc->state))
5272 put_domains[to_intel_crtc(crtc)->pipe] =
5273 modeset_get_crtc_power_domains(crtc);
5274 }
5275
5276 if (dev_priv->display.modeset_commit_cdclk) {
5277 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5278
5279 if (cdclk != dev_priv->cdclk_freq &&
5280 !WARN_ON(!state->allow_modeset))
5281 dev_priv->display.modeset_commit_cdclk(state);
5282 }
5283
5284 for (i = 0; i < I915_MAX_PIPES; i++)
5285 if (put_domains[i])
5286 modeset_put_power_domains(dev_priv, put_domains[i]);
5287 }
5288
5289 static void intel_update_max_cdclk(struct drm_device *dev)
5290 {
5291 struct drm_i915_private *dev_priv = dev->dev_private;
5292
5293 if (IS_SKYLAKE(dev)) {
5294 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5295
5296 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5297 dev_priv->max_cdclk_freq = 675000;
5298 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5299 dev_priv->max_cdclk_freq = 540000;
5300 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5301 dev_priv->max_cdclk_freq = 450000;
5302 else
5303 dev_priv->max_cdclk_freq = 337500;
5304 } else if (IS_BROADWELL(dev)) {
5305 /*
5306 * FIXME with extra cooling we can allow
5307 * 540 MHz for ULX and 675 Mhz for ULT.
5308 * How can we know if extra cooling is
5309 * available? PCI ID, VTB, something else?
5310 */
5311 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5312 dev_priv->max_cdclk_freq = 450000;
5313 else if (IS_BDW_ULX(dev))
5314 dev_priv->max_cdclk_freq = 450000;
5315 else if (IS_BDW_ULT(dev))
5316 dev_priv->max_cdclk_freq = 540000;
5317 else
5318 dev_priv->max_cdclk_freq = 675000;
5319 } else if (IS_CHERRYVIEW(dev)) {
5320 dev_priv->max_cdclk_freq = 320000;
5321 } else if (IS_VALLEYVIEW(dev)) {
5322 dev_priv->max_cdclk_freq = 400000;
5323 } else {
5324 /* otherwise assume cdclk is fixed */
5325 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5326 }
5327
5328 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5329 dev_priv->max_cdclk_freq);
5330 }
5331
5332 static void intel_update_cdclk(struct drm_device *dev)
5333 {
5334 struct drm_i915_private *dev_priv = dev->dev_private;
5335
5336 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5337 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5338 dev_priv->cdclk_freq);
5339
5340 /*
5341 * Program the gmbus_freq based on the cdclk frequency.
5342 * BSpec erroneously claims we should aim for 4MHz, but
5343 * in fact 1MHz is the correct frequency.
5344 */
5345 if (IS_VALLEYVIEW(dev)) {
5346 /*
5347 * Program the gmbus_freq based on the cdclk frequency.
5348 * BSpec erroneously claims we should aim for 4MHz, but
5349 * in fact 1MHz is the correct frequency.
5350 */
5351 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5352 }
5353
5354 if (dev_priv->max_cdclk_freq == 0)
5355 intel_update_max_cdclk(dev);
5356 }
5357
5358 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5359 {
5360 struct drm_i915_private *dev_priv = dev->dev_private;
5361 uint32_t divider;
5362 uint32_t ratio;
5363 uint32_t current_freq;
5364 int ret;
5365
5366 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5367 switch (frequency) {
5368 case 144000:
5369 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5370 ratio = BXT_DE_PLL_RATIO(60);
5371 break;
5372 case 288000:
5373 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5374 ratio = BXT_DE_PLL_RATIO(60);
5375 break;
5376 case 384000:
5377 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5378 ratio = BXT_DE_PLL_RATIO(60);
5379 break;
5380 case 576000:
5381 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5382 ratio = BXT_DE_PLL_RATIO(60);
5383 break;
5384 case 624000:
5385 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5386 ratio = BXT_DE_PLL_RATIO(65);
5387 break;
5388 case 19200:
5389 /*
5390 * Bypass frequency with DE PLL disabled. Init ratio, divider
5391 * to suppress GCC warning.
5392 */
5393 ratio = 0;
5394 divider = 0;
5395 break;
5396 default:
5397 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5398
5399 return;
5400 }
5401
5402 mutex_lock(&dev_priv->rps.hw_lock);
5403 /* Inform power controller of upcoming frequency change */
5404 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5405 0x80000000);
5406 mutex_unlock(&dev_priv->rps.hw_lock);
5407
5408 if (ret) {
5409 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5410 ret, frequency);
5411 return;
5412 }
5413
5414 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5415 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5416 current_freq = current_freq * 500 + 1000;
5417
5418 /*
5419 * DE PLL has to be disabled when
5420 * - setting to 19.2MHz (bypass, PLL isn't used)
5421 * - before setting to 624MHz (PLL needs toggling)
5422 * - before setting to any frequency from 624MHz (PLL needs toggling)
5423 */
5424 if (frequency == 19200 || frequency == 624000 ||
5425 current_freq == 624000) {
5426 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5427 /* Timeout 200us */
5428 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5429 1))
5430 DRM_ERROR("timout waiting for DE PLL unlock\n");
5431 }
5432
5433 if (frequency != 19200) {
5434 uint32_t val;
5435
5436 val = I915_READ(BXT_DE_PLL_CTL);
5437 val &= ~BXT_DE_PLL_RATIO_MASK;
5438 val |= ratio;
5439 I915_WRITE(BXT_DE_PLL_CTL, val);
5440
5441 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5442 /* Timeout 200us */
5443 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5444 DRM_ERROR("timeout waiting for DE PLL lock\n");
5445
5446 val = I915_READ(CDCLK_CTL);
5447 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5448 val |= divider;
5449 /*
5450 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5451 * enable otherwise.
5452 */
5453 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5454 if (frequency >= 500000)
5455 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5456
5457 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5458 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5459 val |= (frequency - 1000) / 500;
5460 I915_WRITE(CDCLK_CTL, val);
5461 }
5462
5463 mutex_lock(&dev_priv->rps.hw_lock);
5464 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5465 DIV_ROUND_UP(frequency, 25000));
5466 mutex_unlock(&dev_priv->rps.hw_lock);
5467
5468 if (ret) {
5469 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5470 ret, frequency);
5471 return;
5472 }
5473
5474 intel_update_cdclk(dev);
5475 }
5476
5477 void broxton_init_cdclk(struct drm_device *dev)
5478 {
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 uint32_t val;
5481
5482 /*
5483 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5484 * or else the reset will hang because there is no PCH to respond.
5485 * Move the handshake programming to initialization sequence.
5486 * Previously was left up to BIOS.
5487 */
5488 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5489 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5490 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5491
5492 /* Enable PG1 for cdclk */
5493 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5494
5495 /* check if cd clock is enabled */
5496 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5497 DRM_DEBUG_KMS("Display already initialized\n");
5498 return;
5499 }
5500
5501 /*
5502 * FIXME:
5503 * - The initial CDCLK needs to be read from VBT.
5504 * Need to make this change after VBT has changes for BXT.
5505 * - check if setting the max (or any) cdclk freq is really necessary
5506 * here, it belongs to modeset time
5507 */
5508 broxton_set_cdclk(dev, 624000);
5509
5510 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5511 POSTING_READ(DBUF_CTL);
5512
5513 udelay(10);
5514
5515 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5516 DRM_ERROR("DBuf power enable timeout!\n");
5517 }
5518
5519 void broxton_uninit_cdclk(struct drm_device *dev)
5520 {
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5524 POSTING_READ(DBUF_CTL);
5525
5526 udelay(10);
5527
5528 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5529 DRM_ERROR("DBuf power disable timeout!\n");
5530
5531 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5532 broxton_set_cdclk(dev, 19200);
5533
5534 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5535 }
5536
5537 static const struct skl_cdclk_entry {
5538 unsigned int freq;
5539 unsigned int vco;
5540 } skl_cdclk_frequencies[] = {
5541 { .freq = 308570, .vco = 8640 },
5542 { .freq = 337500, .vco = 8100 },
5543 { .freq = 432000, .vco = 8640 },
5544 { .freq = 450000, .vco = 8100 },
5545 { .freq = 540000, .vco = 8100 },
5546 { .freq = 617140, .vco = 8640 },
5547 { .freq = 675000, .vco = 8100 },
5548 };
5549
5550 static unsigned int skl_cdclk_decimal(unsigned int freq)
5551 {
5552 return (freq - 1000) / 500;
5553 }
5554
5555 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5556 {
5557 unsigned int i;
5558
5559 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5560 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5561
5562 if (e->freq == freq)
5563 return e->vco;
5564 }
5565
5566 return 8100;
5567 }
5568
5569 static void
5570 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5571 {
5572 unsigned int min_freq;
5573 u32 val;
5574
5575 /* select the minimum CDCLK before enabling DPLL 0 */
5576 val = I915_READ(CDCLK_CTL);
5577 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5578 val |= CDCLK_FREQ_337_308;
5579
5580 if (required_vco == 8640)
5581 min_freq = 308570;
5582 else
5583 min_freq = 337500;
5584
5585 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5586
5587 I915_WRITE(CDCLK_CTL, val);
5588 POSTING_READ(CDCLK_CTL);
5589
5590 /*
5591 * We always enable DPLL0 with the lowest link rate possible, but still
5592 * taking into account the VCO required to operate the eDP panel at the
5593 * desired frequency. The usual DP link rates operate with a VCO of
5594 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5595 * The modeset code is responsible for the selection of the exact link
5596 * rate later on, with the constraint of choosing a frequency that
5597 * works with required_vco.
5598 */
5599 val = I915_READ(DPLL_CTRL1);
5600
5601 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5602 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5603 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5604 if (required_vco == 8640)
5605 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5606 SKL_DPLL0);
5607 else
5608 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5609 SKL_DPLL0);
5610
5611 I915_WRITE(DPLL_CTRL1, val);
5612 POSTING_READ(DPLL_CTRL1);
5613
5614 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5615
5616 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5617 DRM_ERROR("DPLL0 not locked\n");
5618 }
5619
5620 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5621 {
5622 int ret;
5623 u32 val;
5624
5625 /* inform PCU we want to change CDCLK */
5626 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5627 mutex_lock(&dev_priv->rps.hw_lock);
5628 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5629 mutex_unlock(&dev_priv->rps.hw_lock);
5630
5631 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5632 }
5633
5634 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5635 {
5636 unsigned int i;
5637
5638 for (i = 0; i < 15; i++) {
5639 if (skl_cdclk_pcu_ready(dev_priv))
5640 return true;
5641 udelay(10);
5642 }
5643
5644 return false;
5645 }
5646
5647 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5648 {
5649 struct drm_device *dev = dev_priv->dev;
5650 u32 freq_select, pcu_ack;
5651
5652 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5653
5654 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5655 DRM_ERROR("failed to inform PCU about cdclk change\n");
5656 return;
5657 }
5658
5659 /* set CDCLK_CTL */
5660 switch(freq) {
5661 case 450000:
5662 case 432000:
5663 freq_select = CDCLK_FREQ_450_432;
5664 pcu_ack = 1;
5665 break;
5666 case 540000:
5667 freq_select = CDCLK_FREQ_540;
5668 pcu_ack = 2;
5669 break;
5670 case 308570:
5671 case 337500:
5672 default:
5673 freq_select = CDCLK_FREQ_337_308;
5674 pcu_ack = 0;
5675 break;
5676 case 617140:
5677 case 675000:
5678 freq_select = CDCLK_FREQ_675_617;
5679 pcu_ack = 3;
5680 break;
5681 }
5682
5683 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5684 POSTING_READ(CDCLK_CTL);
5685
5686 /* inform PCU of the change */
5687 mutex_lock(&dev_priv->rps.hw_lock);
5688 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5689 mutex_unlock(&dev_priv->rps.hw_lock);
5690
5691 intel_update_cdclk(dev);
5692 }
5693
5694 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5695 {
5696 /* disable DBUF power */
5697 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5698 POSTING_READ(DBUF_CTL);
5699
5700 udelay(10);
5701
5702 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5703 DRM_ERROR("DBuf power disable timeout\n");
5704
5705 /* disable DPLL0 */
5706 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5707 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5708 DRM_ERROR("Couldn't disable DPLL0\n");
5709
5710 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5711 }
5712
5713 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5714 {
5715 u32 val;
5716 unsigned int required_vco;
5717
5718 /* enable PCH reset handshake */
5719 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5720 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5721
5722 /* enable PG1 and Misc I/O */
5723 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5724
5725 /* DPLL0 not enabled (happens on early BIOS versions) */
5726 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5727 /* enable DPLL0 */
5728 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5729 skl_dpll0_enable(dev_priv, required_vco);
5730 }
5731
5732 /* set CDCLK to the frequency the BIOS chose */
5733 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5734
5735 /* enable DBUF power */
5736 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5737 POSTING_READ(DBUF_CTL);
5738
5739 udelay(10);
5740
5741 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5742 DRM_ERROR("DBuf power enable timeout\n");
5743 }
5744
5745 /* returns HPLL frequency in kHz */
5746 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5747 {
5748 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5749
5750 /* Obtain SKU information */
5751 mutex_lock(&dev_priv->sb_lock);
5752 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5753 CCK_FUSE_HPLL_FREQ_MASK;
5754 mutex_unlock(&dev_priv->sb_lock);
5755
5756 return vco_freq[hpll_freq] * 1000;
5757 }
5758
5759 /* Adjust CDclk dividers to allow high res or save power if possible */
5760 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5761 {
5762 struct drm_i915_private *dev_priv = dev->dev_private;
5763 u32 val, cmd;
5764
5765 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5766 != dev_priv->cdclk_freq);
5767
5768 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5769 cmd = 2;
5770 else if (cdclk == 266667)
5771 cmd = 1;
5772 else
5773 cmd = 0;
5774
5775 mutex_lock(&dev_priv->rps.hw_lock);
5776 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5777 val &= ~DSPFREQGUAR_MASK;
5778 val |= (cmd << DSPFREQGUAR_SHIFT);
5779 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5780 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5781 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5782 50)) {
5783 DRM_ERROR("timed out waiting for CDclk change\n");
5784 }
5785 mutex_unlock(&dev_priv->rps.hw_lock);
5786
5787 mutex_lock(&dev_priv->sb_lock);
5788
5789 if (cdclk == 400000) {
5790 u32 divider;
5791
5792 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5793
5794 /* adjust cdclk divider */
5795 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5796 val &= ~DISPLAY_FREQUENCY_VALUES;
5797 val |= divider;
5798 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5799
5800 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5801 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5802 50))
5803 DRM_ERROR("timed out waiting for CDclk change\n");
5804 }
5805
5806 /* adjust self-refresh exit latency value */
5807 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5808 val &= ~0x7f;
5809
5810 /*
5811 * For high bandwidth configs, we set a higher latency in the bunit
5812 * so that the core display fetch happens in time to avoid underruns.
5813 */
5814 if (cdclk == 400000)
5815 val |= 4500 / 250; /* 4.5 usec */
5816 else
5817 val |= 3000 / 250; /* 3.0 usec */
5818 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5819
5820 mutex_unlock(&dev_priv->sb_lock);
5821
5822 intel_update_cdclk(dev);
5823 }
5824
5825 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5826 {
5827 struct drm_i915_private *dev_priv = dev->dev_private;
5828 u32 val, cmd;
5829
5830 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5831 != dev_priv->cdclk_freq);
5832
5833 switch (cdclk) {
5834 case 333333:
5835 case 320000:
5836 case 266667:
5837 case 200000:
5838 break;
5839 default:
5840 MISSING_CASE(cdclk);
5841 return;
5842 }
5843
5844 /*
5845 * Specs are full of misinformation, but testing on actual
5846 * hardware has shown that we just need to write the desired
5847 * CCK divider into the Punit register.
5848 */
5849 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5850
5851 mutex_lock(&dev_priv->rps.hw_lock);
5852 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5853 val &= ~DSPFREQGUAR_MASK_CHV;
5854 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5855 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5856 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5857 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5858 50)) {
5859 DRM_ERROR("timed out waiting for CDclk change\n");
5860 }
5861 mutex_unlock(&dev_priv->rps.hw_lock);
5862
5863 intel_update_cdclk(dev);
5864 }
5865
5866 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5867 int max_pixclk)
5868 {
5869 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5870 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5871
5872 /*
5873 * Really only a few cases to deal with, as only 4 CDclks are supported:
5874 * 200MHz
5875 * 267MHz
5876 * 320/333MHz (depends on HPLL freq)
5877 * 400MHz (VLV only)
5878 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5879 * of the lower bin and adjust if needed.
5880 *
5881 * We seem to get an unstable or solid color picture at 200MHz.
5882 * Not sure what's wrong. For now use 200MHz only when all pipes
5883 * are off.
5884 */
5885 if (!IS_CHERRYVIEW(dev_priv) &&
5886 max_pixclk > freq_320*limit/100)
5887 return 400000;
5888 else if (max_pixclk > 266667*limit/100)
5889 return freq_320;
5890 else if (max_pixclk > 0)
5891 return 266667;
5892 else
5893 return 200000;
5894 }
5895
5896 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5897 int max_pixclk)
5898 {
5899 /*
5900 * FIXME:
5901 * - remove the guardband, it's not needed on BXT
5902 * - set 19.2MHz bypass frequency if there are no active pipes
5903 */
5904 if (max_pixclk > 576000*9/10)
5905 return 624000;
5906 else if (max_pixclk > 384000*9/10)
5907 return 576000;
5908 else if (max_pixclk > 288000*9/10)
5909 return 384000;
5910 else if (max_pixclk > 144000*9/10)
5911 return 288000;
5912 else
5913 return 144000;
5914 }
5915
5916 /* Compute the max pixel clock for new configuration. Uses atomic state if
5917 * that's non-NULL, look at current state otherwise. */
5918 static int intel_mode_max_pixclk(struct drm_device *dev,
5919 struct drm_atomic_state *state)
5920 {
5921 struct intel_crtc *intel_crtc;
5922 struct intel_crtc_state *crtc_state;
5923 int max_pixclk = 0;
5924
5925 for_each_intel_crtc(dev, intel_crtc) {
5926 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5927 if (IS_ERR(crtc_state))
5928 return PTR_ERR(crtc_state);
5929
5930 if (!crtc_state->base.enable)
5931 continue;
5932
5933 max_pixclk = max(max_pixclk,
5934 crtc_state->base.adjusted_mode.crtc_clock);
5935 }
5936
5937 return max_pixclk;
5938 }
5939
5940 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5941 {
5942 struct drm_device *dev = state->dev;
5943 struct drm_i915_private *dev_priv = dev->dev_private;
5944 int max_pixclk = intel_mode_max_pixclk(dev, state);
5945
5946 if (max_pixclk < 0)
5947 return max_pixclk;
5948
5949 to_intel_atomic_state(state)->cdclk =
5950 valleyview_calc_cdclk(dev_priv, max_pixclk);
5951
5952 return 0;
5953 }
5954
5955 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5956 {
5957 struct drm_device *dev = state->dev;
5958 struct drm_i915_private *dev_priv = dev->dev_private;
5959 int max_pixclk = intel_mode_max_pixclk(dev, state);
5960
5961 if (max_pixclk < 0)
5962 return max_pixclk;
5963
5964 to_intel_atomic_state(state)->cdclk =
5965 broxton_calc_cdclk(dev_priv, max_pixclk);
5966
5967 return 0;
5968 }
5969
5970 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5971 {
5972 unsigned int credits, default_credits;
5973
5974 if (IS_CHERRYVIEW(dev_priv))
5975 default_credits = PFI_CREDIT(12);
5976 else
5977 default_credits = PFI_CREDIT(8);
5978
5979 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5980 /* CHV suggested value is 31 or 63 */
5981 if (IS_CHERRYVIEW(dev_priv))
5982 credits = PFI_CREDIT_63;
5983 else
5984 credits = PFI_CREDIT(15);
5985 } else {
5986 credits = default_credits;
5987 }
5988
5989 /*
5990 * WA - write default credits before re-programming
5991 * FIXME: should we also set the resend bit here?
5992 */
5993 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5994 default_credits);
5995
5996 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5997 credits | PFI_CREDIT_RESEND);
5998
5999 /*
6000 * FIXME is this guaranteed to clear
6001 * immediately or should we poll for it?
6002 */
6003 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6004 }
6005
6006 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6007 {
6008 struct drm_device *dev = old_state->dev;
6009 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6010 struct drm_i915_private *dev_priv = dev->dev_private;
6011
6012 /*
6013 * FIXME: We can end up here with all power domains off, yet
6014 * with a CDCLK frequency other than the minimum. To account
6015 * for this take the PIPE-A power domain, which covers the HW
6016 * blocks needed for the following programming. This can be
6017 * removed once it's guaranteed that we get here either with
6018 * the minimum CDCLK set, or the required power domains
6019 * enabled.
6020 */
6021 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6022
6023 if (IS_CHERRYVIEW(dev))
6024 cherryview_set_cdclk(dev, req_cdclk);
6025 else
6026 valleyview_set_cdclk(dev, req_cdclk);
6027
6028 vlv_program_pfi_credits(dev_priv);
6029
6030 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6031 }
6032
6033 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6034 {
6035 struct drm_device *dev = crtc->dev;
6036 struct drm_i915_private *dev_priv = to_i915(dev);
6037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6038 struct intel_encoder *encoder;
6039 int pipe = intel_crtc->pipe;
6040 bool is_dsi;
6041
6042 if (WARN_ON(intel_crtc->active))
6043 return;
6044
6045 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6046
6047 if (!is_dsi) {
6048 if (IS_CHERRYVIEW(dev))
6049 chv_prepare_pll(intel_crtc, intel_crtc->config);
6050 else
6051 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6052 }
6053
6054 if (intel_crtc->config->has_dp_encoder)
6055 intel_dp_set_m_n(intel_crtc, M1_N1);
6056
6057 intel_set_pipe_timings(intel_crtc);
6058
6059 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061
6062 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6063 I915_WRITE(CHV_CANVAS(pipe), 0);
6064 }
6065
6066 i9xx_set_pipeconf(intel_crtc);
6067
6068 intel_crtc->active = true;
6069
6070 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6071
6072 for_each_encoder_on_crtc(dev, crtc, encoder)
6073 if (encoder->pre_pll_enable)
6074 encoder->pre_pll_enable(encoder);
6075
6076 if (!is_dsi) {
6077 if (IS_CHERRYVIEW(dev))
6078 chv_enable_pll(intel_crtc, intel_crtc->config);
6079 else
6080 vlv_enable_pll(intel_crtc, intel_crtc->config);
6081 }
6082
6083 for_each_encoder_on_crtc(dev, crtc, encoder)
6084 if (encoder->pre_enable)
6085 encoder->pre_enable(encoder);
6086
6087 i9xx_pfit_enable(intel_crtc);
6088
6089 intel_crtc_load_lut(crtc);
6090
6091 intel_enable_pipe(intel_crtc);
6092
6093 assert_vblank_disabled(crtc);
6094 drm_crtc_vblank_on(crtc);
6095
6096 for_each_encoder_on_crtc(dev, crtc, encoder)
6097 encoder->enable(encoder);
6098 }
6099
6100 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6101 {
6102 struct drm_device *dev = crtc->base.dev;
6103 struct drm_i915_private *dev_priv = dev->dev_private;
6104
6105 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6106 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6107 }
6108
6109 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6110 {
6111 struct drm_device *dev = crtc->dev;
6112 struct drm_i915_private *dev_priv = to_i915(dev);
6113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6114 struct intel_encoder *encoder;
6115 int pipe = intel_crtc->pipe;
6116
6117 if (WARN_ON(intel_crtc->active))
6118 return;
6119
6120 i9xx_set_pll_dividers(intel_crtc);
6121
6122 if (intel_crtc->config->has_dp_encoder)
6123 intel_dp_set_m_n(intel_crtc, M1_N1);
6124
6125 intel_set_pipe_timings(intel_crtc);
6126
6127 i9xx_set_pipeconf(intel_crtc);
6128
6129 intel_crtc->active = true;
6130
6131 if (!IS_GEN2(dev))
6132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6133
6134 for_each_encoder_on_crtc(dev, crtc, encoder)
6135 if (encoder->pre_enable)
6136 encoder->pre_enable(encoder);
6137
6138 i9xx_enable_pll(intel_crtc);
6139
6140 i9xx_pfit_enable(intel_crtc);
6141
6142 intel_crtc_load_lut(crtc);
6143
6144 intel_update_watermarks(crtc);
6145 intel_enable_pipe(intel_crtc);
6146
6147 assert_vblank_disabled(crtc);
6148 drm_crtc_vblank_on(crtc);
6149
6150 for_each_encoder_on_crtc(dev, crtc, encoder)
6151 encoder->enable(encoder);
6152 }
6153
6154 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6155 {
6156 struct drm_device *dev = crtc->base.dev;
6157 struct drm_i915_private *dev_priv = dev->dev_private;
6158
6159 if (!crtc->config->gmch_pfit.control)
6160 return;
6161
6162 assert_pipe_disabled(dev_priv, crtc->pipe);
6163
6164 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6165 I915_READ(PFIT_CONTROL));
6166 I915_WRITE(PFIT_CONTROL, 0);
6167 }
6168
6169 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6170 {
6171 struct drm_device *dev = crtc->dev;
6172 struct drm_i915_private *dev_priv = dev->dev_private;
6173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6174 struct intel_encoder *encoder;
6175 int pipe = intel_crtc->pipe;
6176
6177 /*
6178 * On gen2 planes are double buffered but the pipe isn't, so we must
6179 * wait for planes to fully turn off before disabling the pipe.
6180 * We also need to wait on all gmch platforms because of the
6181 * self-refresh mode constraint explained above.
6182 */
6183 intel_wait_for_vblank(dev, pipe);
6184
6185 for_each_encoder_on_crtc(dev, crtc, encoder)
6186 encoder->disable(encoder);
6187
6188 drm_crtc_vblank_off(crtc);
6189 assert_vblank_disabled(crtc);
6190
6191 intel_disable_pipe(intel_crtc);
6192
6193 i9xx_pfit_disable(intel_crtc);
6194
6195 for_each_encoder_on_crtc(dev, crtc, encoder)
6196 if (encoder->post_disable)
6197 encoder->post_disable(encoder);
6198
6199 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6200 if (IS_CHERRYVIEW(dev))
6201 chv_disable_pll(dev_priv, pipe);
6202 else if (IS_VALLEYVIEW(dev))
6203 vlv_disable_pll(dev_priv, pipe);
6204 else
6205 i9xx_disable_pll(intel_crtc);
6206 }
6207
6208 if (!IS_GEN2(dev))
6209 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6210
6211 intel_crtc->active = false;
6212 intel_update_watermarks(crtc);
6213 }
6214
6215 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6216 {
6217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6218 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6219 enum intel_display_power_domain domain;
6220 unsigned long domains;
6221
6222 if (!intel_crtc->active)
6223 return;
6224
6225 if (to_intel_plane_state(crtc->primary->state)->visible) {
6226 intel_crtc_wait_for_pending_flips(crtc);
6227 intel_pre_disable_primary(crtc);
6228 }
6229
6230 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6231 dev_priv->display.crtc_disable(crtc);
6232 intel_disable_shared_dpll(intel_crtc);
6233
6234 domains = intel_crtc->enabled_power_domains;
6235 for_each_power_domain(domain, domains)
6236 intel_display_power_put(dev_priv, domain);
6237 intel_crtc->enabled_power_domains = 0;
6238 }
6239
6240 /*
6241 * turn all crtc's off, but do not adjust state
6242 * This has to be paired with a call to intel_modeset_setup_hw_state.
6243 */
6244 int intel_display_suspend(struct drm_device *dev)
6245 {
6246 struct drm_mode_config *config = &dev->mode_config;
6247 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6248 struct drm_atomic_state *state;
6249 struct drm_crtc *crtc;
6250 unsigned crtc_mask = 0;
6251 int ret = 0;
6252
6253 if (WARN_ON(!ctx))
6254 return 0;
6255
6256 lockdep_assert_held(&ctx->ww_ctx);
6257 state = drm_atomic_state_alloc(dev);
6258 if (WARN_ON(!state))
6259 return -ENOMEM;
6260
6261 state->acquire_ctx = ctx;
6262 state->allow_modeset = true;
6263
6264 for_each_crtc(dev, crtc) {
6265 struct drm_crtc_state *crtc_state =
6266 drm_atomic_get_crtc_state(state, crtc);
6267
6268 ret = PTR_ERR_OR_ZERO(crtc_state);
6269 if (ret)
6270 goto free;
6271
6272 if (!crtc_state->active)
6273 continue;
6274
6275 crtc_state->active = false;
6276 crtc_mask |= 1 << drm_crtc_index(crtc);
6277 }
6278
6279 if (crtc_mask) {
6280 ret = drm_atomic_commit(state);
6281
6282 if (!ret) {
6283 for_each_crtc(dev, crtc)
6284 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6285 crtc->state->active = true;
6286
6287 return ret;
6288 }
6289 }
6290
6291 free:
6292 if (ret)
6293 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6294 drm_atomic_state_free(state);
6295 return ret;
6296 }
6297
6298 void intel_encoder_destroy(struct drm_encoder *encoder)
6299 {
6300 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6301
6302 drm_encoder_cleanup(encoder);
6303 kfree(intel_encoder);
6304 }
6305
6306 /* Cross check the actual hw state with our own modeset state tracking (and it's
6307 * internal consistency). */
6308 static void intel_connector_check_state(struct intel_connector *connector)
6309 {
6310 struct drm_crtc *crtc = connector->base.state->crtc;
6311
6312 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6313 connector->base.base.id,
6314 connector->base.name);
6315
6316 if (connector->get_hw_state(connector)) {
6317 struct intel_encoder *encoder = connector->encoder;
6318 struct drm_connector_state *conn_state = connector->base.state;
6319
6320 I915_STATE_WARN(!crtc,
6321 "connector enabled without attached crtc\n");
6322
6323 if (!crtc)
6324 return;
6325
6326 I915_STATE_WARN(!crtc->state->active,
6327 "connector is active, but attached crtc isn't\n");
6328
6329 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6330 return;
6331
6332 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6333 "atomic encoder doesn't match attached encoder\n");
6334
6335 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6336 "attached encoder crtc differs from connector crtc\n");
6337 } else {
6338 I915_STATE_WARN(crtc && crtc->state->active,
6339 "attached crtc is active, but connector isn't\n");
6340 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6341 "best encoder set without crtc!\n");
6342 }
6343 }
6344
6345 int intel_connector_init(struct intel_connector *connector)
6346 {
6347 struct drm_connector_state *connector_state;
6348
6349 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6350 if (!connector_state)
6351 return -ENOMEM;
6352
6353 connector->base.state = connector_state;
6354 return 0;
6355 }
6356
6357 struct intel_connector *intel_connector_alloc(void)
6358 {
6359 struct intel_connector *connector;
6360
6361 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6362 if (!connector)
6363 return NULL;
6364
6365 if (intel_connector_init(connector) < 0) {
6366 kfree(connector);
6367 return NULL;
6368 }
6369
6370 return connector;
6371 }
6372
6373 /* Simple connector->get_hw_state implementation for encoders that support only
6374 * one connector and no cloning and hence the encoder state determines the state
6375 * of the connector. */
6376 bool intel_connector_get_hw_state(struct intel_connector *connector)
6377 {
6378 enum pipe pipe = 0;
6379 struct intel_encoder *encoder = connector->encoder;
6380
6381 return encoder->get_hw_state(encoder, &pipe);
6382 }
6383
6384 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6385 {
6386 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6387 return crtc_state->fdi_lanes;
6388
6389 return 0;
6390 }
6391
6392 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6393 struct intel_crtc_state *pipe_config)
6394 {
6395 struct drm_atomic_state *state = pipe_config->base.state;
6396 struct intel_crtc *other_crtc;
6397 struct intel_crtc_state *other_crtc_state;
6398
6399 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6400 pipe_name(pipe), pipe_config->fdi_lanes);
6401 if (pipe_config->fdi_lanes > 4) {
6402 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6403 pipe_name(pipe), pipe_config->fdi_lanes);
6404 return -EINVAL;
6405 }
6406
6407 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6408 if (pipe_config->fdi_lanes > 2) {
6409 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6410 pipe_config->fdi_lanes);
6411 return -EINVAL;
6412 } else {
6413 return 0;
6414 }
6415 }
6416
6417 if (INTEL_INFO(dev)->num_pipes == 2)
6418 return 0;
6419
6420 /* Ivybridge 3 pipe is really complicated */
6421 switch (pipe) {
6422 case PIPE_A:
6423 return 0;
6424 case PIPE_B:
6425 if (pipe_config->fdi_lanes <= 2)
6426 return 0;
6427
6428 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6429 other_crtc_state =
6430 intel_atomic_get_crtc_state(state, other_crtc);
6431 if (IS_ERR(other_crtc_state))
6432 return PTR_ERR(other_crtc_state);
6433
6434 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6435 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6436 pipe_name(pipe), pipe_config->fdi_lanes);
6437 return -EINVAL;
6438 }
6439 return 0;
6440 case PIPE_C:
6441 if (pipe_config->fdi_lanes > 2) {
6442 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6443 pipe_name(pipe), pipe_config->fdi_lanes);
6444 return -EINVAL;
6445 }
6446
6447 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6448 other_crtc_state =
6449 intel_atomic_get_crtc_state(state, other_crtc);
6450 if (IS_ERR(other_crtc_state))
6451 return PTR_ERR(other_crtc_state);
6452
6453 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6454 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6455 return -EINVAL;
6456 }
6457 return 0;
6458 default:
6459 BUG();
6460 }
6461 }
6462
6463 #define RETRY 1
6464 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6465 struct intel_crtc_state *pipe_config)
6466 {
6467 struct drm_device *dev = intel_crtc->base.dev;
6468 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6469 int lane, link_bw, fdi_dotclock, ret;
6470 bool needs_recompute = false;
6471
6472 retry:
6473 /* FDI is a binary signal running at ~2.7GHz, encoding
6474 * each output octet as 10 bits. The actual frequency
6475 * is stored as a divider into a 100MHz clock, and the
6476 * mode pixel clock is stored in units of 1KHz.
6477 * Hence the bw of each lane in terms of the mode signal
6478 * is:
6479 */
6480 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6481
6482 fdi_dotclock = adjusted_mode->crtc_clock;
6483
6484 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6485 pipe_config->pipe_bpp);
6486
6487 pipe_config->fdi_lanes = lane;
6488
6489 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6490 link_bw, &pipe_config->fdi_m_n);
6491
6492 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6493 intel_crtc->pipe, pipe_config);
6494 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6495 pipe_config->pipe_bpp -= 2*3;
6496 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6497 pipe_config->pipe_bpp);
6498 needs_recompute = true;
6499 pipe_config->bw_constrained = true;
6500
6501 goto retry;
6502 }
6503
6504 if (needs_recompute)
6505 return RETRY;
6506
6507 return ret;
6508 }
6509
6510 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6511 struct intel_crtc_state *pipe_config)
6512 {
6513 if (pipe_config->pipe_bpp > 24)
6514 return false;
6515
6516 /* HSW can handle pixel rate up to cdclk? */
6517 if (IS_HASWELL(dev_priv->dev))
6518 return true;
6519
6520 /*
6521 * We compare against max which means we must take
6522 * the increased cdclk requirement into account when
6523 * calculating the new cdclk.
6524 *
6525 * Should measure whether using a lower cdclk w/o IPS
6526 */
6527 return ilk_pipe_pixel_rate(pipe_config) <=
6528 dev_priv->max_cdclk_freq * 95 / 100;
6529 }
6530
6531 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6532 struct intel_crtc_state *pipe_config)
6533 {
6534 struct drm_device *dev = crtc->base.dev;
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536
6537 pipe_config->ips_enabled = i915.enable_ips &&
6538 hsw_crtc_supports_ips(crtc) &&
6539 pipe_config_supports_ips(dev_priv, pipe_config);
6540 }
6541
6542 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6543 struct intel_crtc_state *pipe_config)
6544 {
6545 struct drm_device *dev = crtc->base.dev;
6546 struct drm_i915_private *dev_priv = dev->dev_private;
6547 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548
6549 /* FIXME should check pixel clock limits on all platforms */
6550 if (INTEL_INFO(dev)->gen < 4) {
6551 int clock_limit = dev_priv->max_cdclk_freq;
6552
6553 /*
6554 * Enable pixel doubling when the dot clock
6555 * is > 90% of the (display) core speed.
6556 *
6557 * GDG double wide on either pipe,
6558 * otherwise pipe A only.
6559 */
6560 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6561 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6562 clock_limit *= 2;
6563 pipe_config->double_wide = true;
6564 }
6565
6566 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6567 return -EINVAL;
6568 }
6569
6570 /*
6571 * Pipe horizontal size must be even in:
6572 * - DVO ganged mode
6573 * - LVDS dual channel mode
6574 * - Double wide pipe
6575 */
6576 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6577 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6578 pipe_config->pipe_src_w &= ~1;
6579
6580 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6581 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6582 */
6583 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6584 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6585 return -EINVAL;
6586
6587 if (HAS_IPS(dev))
6588 hsw_compute_ips_config(crtc, pipe_config);
6589
6590 if (pipe_config->has_pch_encoder)
6591 return ironlake_fdi_compute_config(crtc, pipe_config);
6592
6593 return 0;
6594 }
6595
6596 static int skylake_get_display_clock_speed(struct drm_device *dev)
6597 {
6598 struct drm_i915_private *dev_priv = to_i915(dev);
6599 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6600 uint32_t cdctl = I915_READ(CDCLK_CTL);
6601 uint32_t linkrate;
6602
6603 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6604 return 24000; /* 24MHz is the cd freq with NSSC ref */
6605
6606 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6607 return 540000;
6608
6609 linkrate = (I915_READ(DPLL_CTRL1) &
6610 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6611
6612 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6613 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6614 /* vco 8640 */
6615 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6616 case CDCLK_FREQ_450_432:
6617 return 432000;
6618 case CDCLK_FREQ_337_308:
6619 return 308570;
6620 case CDCLK_FREQ_675_617:
6621 return 617140;
6622 default:
6623 WARN(1, "Unknown cd freq selection\n");
6624 }
6625 } else {
6626 /* vco 8100 */
6627 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6628 case CDCLK_FREQ_450_432:
6629 return 450000;
6630 case CDCLK_FREQ_337_308:
6631 return 337500;
6632 case CDCLK_FREQ_675_617:
6633 return 675000;
6634 default:
6635 WARN(1, "Unknown cd freq selection\n");
6636 }
6637 }
6638
6639 /* error case, do as if DPLL0 isn't enabled */
6640 return 24000;
6641 }
6642
6643 static int broxton_get_display_clock_speed(struct drm_device *dev)
6644 {
6645 struct drm_i915_private *dev_priv = to_i915(dev);
6646 uint32_t cdctl = I915_READ(CDCLK_CTL);
6647 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6648 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6649 int cdclk;
6650
6651 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6652 return 19200;
6653
6654 cdclk = 19200 * pll_ratio / 2;
6655
6656 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6657 case BXT_CDCLK_CD2X_DIV_SEL_1:
6658 return cdclk; /* 576MHz or 624MHz */
6659 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6660 return cdclk * 2 / 3; /* 384MHz */
6661 case BXT_CDCLK_CD2X_DIV_SEL_2:
6662 return cdclk / 2; /* 288MHz */
6663 case BXT_CDCLK_CD2X_DIV_SEL_4:
6664 return cdclk / 4; /* 144MHz */
6665 }
6666
6667 /* error case, do as if DE PLL isn't enabled */
6668 return 19200;
6669 }
6670
6671 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6672 {
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674 uint32_t lcpll = I915_READ(LCPLL_CTL);
6675 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6676
6677 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6678 return 800000;
6679 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6680 return 450000;
6681 else if (freq == LCPLL_CLK_FREQ_450)
6682 return 450000;
6683 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6684 return 540000;
6685 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6686 return 337500;
6687 else
6688 return 675000;
6689 }
6690
6691 static int haswell_get_display_clock_speed(struct drm_device *dev)
6692 {
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 uint32_t lcpll = I915_READ(LCPLL_CTL);
6695 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6696
6697 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6698 return 800000;
6699 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6700 return 450000;
6701 else if (freq == LCPLL_CLK_FREQ_450)
6702 return 450000;
6703 else if (IS_HSW_ULT(dev))
6704 return 337500;
6705 else
6706 return 540000;
6707 }
6708
6709 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6710 {
6711 struct drm_i915_private *dev_priv = dev->dev_private;
6712 u32 val;
6713 int divider;
6714
6715 if (dev_priv->hpll_freq == 0)
6716 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6717
6718 mutex_lock(&dev_priv->sb_lock);
6719 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6720 mutex_unlock(&dev_priv->sb_lock);
6721
6722 divider = val & DISPLAY_FREQUENCY_VALUES;
6723
6724 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6725 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6726 "cdclk change in progress\n");
6727
6728 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6729 }
6730
6731 static int ilk_get_display_clock_speed(struct drm_device *dev)
6732 {
6733 return 450000;
6734 }
6735
6736 static int i945_get_display_clock_speed(struct drm_device *dev)
6737 {
6738 return 400000;
6739 }
6740
6741 static int i915_get_display_clock_speed(struct drm_device *dev)
6742 {
6743 return 333333;
6744 }
6745
6746 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6747 {
6748 return 200000;
6749 }
6750
6751 static int pnv_get_display_clock_speed(struct drm_device *dev)
6752 {
6753 u16 gcfgc = 0;
6754
6755 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6756
6757 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6758 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6759 return 266667;
6760 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6761 return 333333;
6762 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6763 return 444444;
6764 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6765 return 200000;
6766 default:
6767 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6768 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6769 return 133333;
6770 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6771 return 166667;
6772 }
6773 }
6774
6775 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6776 {
6777 u16 gcfgc = 0;
6778
6779 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6780
6781 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6782 return 133333;
6783 else {
6784 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6785 case GC_DISPLAY_CLOCK_333_MHZ:
6786 return 333333;
6787 default:
6788 case GC_DISPLAY_CLOCK_190_200_MHZ:
6789 return 190000;
6790 }
6791 }
6792 }
6793
6794 static int i865_get_display_clock_speed(struct drm_device *dev)
6795 {
6796 return 266667;
6797 }
6798
6799 static int i85x_get_display_clock_speed(struct drm_device *dev)
6800 {
6801 u16 hpllcc = 0;
6802
6803 /*
6804 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6805 * encoding is different :(
6806 * FIXME is this the right way to detect 852GM/852GMV?
6807 */
6808 if (dev->pdev->revision == 0x1)
6809 return 133333;
6810
6811 pci_bus_read_config_word(dev->pdev->bus,
6812 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6813
6814 /* Assume that the hardware is in the high speed state. This
6815 * should be the default.
6816 */
6817 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6818 case GC_CLOCK_133_200:
6819 case GC_CLOCK_133_200_2:
6820 case GC_CLOCK_100_200:
6821 return 200000;
6822 case GC_CLOCK_166_250:
6823 return 250000;
6824 case GC_CLOCK_100_133:
6825 return 133333;
6826 case GC_CLOCK_133_266:
6827 case GC_CLOCK_133_266_2:
6828 case GC_CLOCK_166_266:
6829 return 266667;
6830 }
6831
6832 /* Shouldn't happen */
6833 return 0;
6834 }
6835
6836 static int i830_get_display_clock_speed(struct drm_device *dev)
6837 {
6838 return 133333;
6839 }
6840
6841 static unsigned int intel_hpll_vco(struct drm_device *dev)
6842 {
6843 struct drm_i915_private *dev_priv = dev->dev_private;
6844 static const unsigned int blb_vco[8] = {
6845 [0] = 3200000,
6846 [1] = 4000000,
6847 [2] = 5333333,
6848 [3] = 4800000,
6849 [4] = 6400000,
6850 };
6851 static const unsigned int pnv_vco[8] = {
6852 [0] = 3200000,
6853 [1] = 4000000,
6854 [2] = 5333333,
6855 [3] = 4800000,
6856 [4] = 2666667,
6857 };
6858 static const unsigned int cl_vco[8] = {
6859 [0] = 3200000,
6860 [1] = 4000000,
6861 [2] = 5333333,
6862 [3] = 6400000,
6863 [4] = 3333333,
6864 [5] = 3566667,
6865 [6] = 4266667,
6866 };
6867 static const unsigned int elk_vco[8] = {
6868 [0] = 3200000,
6869 [1] = 4000000,
6870 [2] = 5333333,
6871 [3] = 4800000,
6872 };
6873 static const unsigned int ctg_vco[8] = {
6874 [0] = 3200000,
6875 [1] = 4000000,
6876 [2] = 5333333,
6877 [3] = 6400000,
6878 [4] = 2666667,
6879 [5] = 4266667,
6880 };
6881 const unsigned int *vco_table;
6882 unsigned int vco;
6883 uint8_t tmp = 0;
6884
6885 /* FIXME other chipsets? */
6886 if (IS_GM45(dev))
6887 vco_table = ctg_vco;
6888 else if (IS_G4X(dev))
6889 vco_table = elk_vco;
6890 else if (IS_CRESTLINE(dev))
6891 vco_table = cl_vco;
6892 else if (IS_PINEVIEW(dev))
6893 vco_table = pnv_vco;
6894 else if (IS_G33(dev))
6895 vco_table = blb_vco;
6896 else
6897 return 0;
6898
6899 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6900
6901 vco = vco_table[tmp & 0x7];
6902 if (vco == 0)
6903 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6904 else
6905 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6906
6907 return vco;
6908 }
6909
6910 static int gm45_get_display_clock_speed(struct drm_device *dev)
6911 {
6912 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6913 uint16_t tmp = 0;
6914
6915 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6916
6917 cdclk_sel = (tmp >> 12) & 0x1;
6918
6919 switch (vco) {
6920 case 2666667:
6921 case 4000000:
6922 case 5333333:
6923 return cdclk_sel ? 333333 : 222222;
6924 case 3200000:
6925 return cdclk_sel ? 320000 : 228571;
6926 default:
6927 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6928 return 222222;
6929 }
6930 }
6931
6932 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6933 {
6934 static const uint8_t div_3200[] = { 16, 10, 8 };
6935 static const uint8_t div_4000[] = { 20, 12, 10 };
6936 static const uint8_t div_5333[] = { 24, 16, 14 };
6937 const uint8_t *div_table;
6938 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6939 uint16_t tmp = 0;
6940
6941 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6942
6943 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6944
6945 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6946 goto fail;
6947
6948 switch (vco) {
6949 case 3200000:
6950 div_table = div_3200;
6951 break;
6952 case 4000000:
6953 div_table = div_4000;
6954 break;
6955 case 5333333:
6956 div_table = div_5333;
6957 break;
6958 default:
6959 goto fail;
6960 }
6961
6962 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6963
6964 fail:
6965 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6966 return 200000;
6967 }
6968
6969 static int g33_get_display_clock_speed(struct drm_device *dev)
6970 {
6971 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6972 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6973 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6974 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6975 const uint8_t *div_table;
6976 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6977 uint16_t tmp = 0;
6978
6979 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6980
6981 cdclk_sel = (tmp >> 4) & 0x7;
6982
6983 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6984 goto fail;
6985
6986 switch (vco) {
6987 case 3200000:
6988 div_table = div_3200;
6989 break;
6990 case 4000000:
6991 div_table = div_4000;
6992 break;
6993 case 4800000:
6994 div_table = div_4800;
6995 break;
6996 case 5333333:
6997 div_table = div_5333;
6998 break;
6999 default:
7000 goto fail;
7001 }
7002
7003 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7004
7005 fail:
7006 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7007 return 190476;
7008 }
7009
7010 static void
7011 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7012 {
7013 while (*num > DATA_LINK_M_N_MASK ||
7014 *den > DATA_LINK_M_N_MASK) {
7015 *num >>= 1;
7016 *den >>= 1;
7017 }
7018 }
7019
7020 static void compute_m_n(unsigned int m, unsigned int n,
7021 uint32_t *ret_m, uint32_t *ret_n)
7022 {
7023 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7024 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7025 intel_reduce_m_n_ratio(ret_m, ret_n);
7026 }
7027
7028 void
7029 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7030 int pixel_clock, int link_clock,
7031 struct intel_link_m_n *m_n)
7032 {
7033 m_n->tu = 64;
7034
7035 compute_m_n(bits_per_pixel * pixel_clock,
7036 link_clock * nlanes * 8,
7037 &m_n->gmch_m, &m_n->gmch_n);
7038
7039 compute_m_n(pixel_clock, link_clock,
7040 &m_n->link_m, &m_n->link_n);
7041 }
7042
7043 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7044 {
7045 if (i915.panel_use_ssc >= 0)
7046 return i915.panel_use_ssc != 0;
7047 return dev_priv->vbt.lvds_use_ssc
7048 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7049 }
7050
7051 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7052 int num_connectors)
7053 {
7054 struct drm_device *dev = crtc_state->base.crtc->dev;
7055 struct drm_i915_private *dev_priv = dev->dev_private;
7056 int refclk;
7057
7058 WARN_ON(!crtc_state->base.state);
7059
7060 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7061 refclk = 100000;
7062 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7063 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7064 refclk = dev_priv->vbt.lvds_ssc_freq;
7065 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7066 } else if (!IS_GEN2(dev)) {
7067 refclk = 96000;
7068 } else {
7069 refclk = 48000;
7070 }
7071
7072 return refclk;
7073 }
7074
7075 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7076 {
7077 return (1 << dpll->n) << 16 | dpll->m2;
7078 }
7079
7080 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7081 {
7082 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7083 }
7084
7085 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7086 struct intel_crtc_state *crtc_state,
7087 intel_clock_t *reduced_clock)
7088 {
7089 struct drm_device *dev = crtc->base.dev;
7090 u32 fp, fp2 = 0;
7091
7092 if (IS_PINEVIEW(dev)) {
7093 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7094 if (reduced_clock)
7095 fp2 = pnv_dpll_compute_fp(reduced_clock);
7096 } else {
7097 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7098 if (reduced_clock)
7099 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7100 }
7101
7102 crtc_state->dpll_hw_state.fp0 = fp;
7103
7104 crtc->lowfreq_avail = false;
7105 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7106 reduced_clock) {
7107 crtc_state->dpll_hw_state.fp1 = fp2;
7108 crtc->lowfreq_avail = true;
7109 } else {
7110 crtc_state->dpll_hw_state.fp1 = fp;
7111 }
7112 }
7113
7114 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7115 pipe)
7116 {
7117 u32 reg_val;
7118
7119 /*
7120 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7121 * and set it to a reasonable value instead.
7122 */
7123 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7124 reg_val &= 0xffffff00;
7125 reg_val |= 0x00000030;
7126 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7127
7128 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7129 reg_val &= 0x8cffffff;
7130 reg_val = 0x8c000000;
7131 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7132
7133 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7134 reg_val &= 0xffffff00;
7135 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7136
7137 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7138 reg_val &= 0x00ffffff;
7139 reg_val |= 0xb0000000;
7140 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7141 }
7142
7143 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7144 struct intel_link_m_n *m_n)
7145 {
7146 struct drm_device *dev = crtc->base.dev;
7147 struct drm_i915_private *dev_priv = dev->dev_private;
7148 int pipe = crtc->pipe;
7149
7150 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7151 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7152 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7153 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7154 }
7155
7156 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7157 struct intel_link_m_n *m_n,
7158 struct intel_link_m_n *m2_n2)
7159 {
7160 struct drm_device *dev = crtc->base.dev;
7161 struct drm_i915_private *dev_priv = dev->dev_private;
7162 int pipe = crtc->pipe;
7163 enum transcoder transcoder = crtc->config->cpu_transcoder;
7164
7165 if (INTEL_INFO(dev)->gen >= 5) {
7166 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7167 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7168 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7169 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7170 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7171 * for gen < 8) and if DRRS is supported (to make sure the
7172 * registers are not unnecessarily accessed).
7173 */
7174 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7175 crtc->config->has_drrs) {
7176 I915_WRITE(PIPE_DATA_M2(transcoder),
7177 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7178 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7179 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7180 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7181 }
7182 } else {
7183 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7184 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7185 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7186 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7187 }
7188 }
7189
7190 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7191 {
7192 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7193
7194 if (m_n == M1_N1) {
7195 dp_m_n = &crtc->config->dp_m_n;
7196 dp_m2_n2 = &crtc->config->dp_m2_n2;
7197 } else if (m_n == M2_N2) {
7198
7199 /*
7200 * M2_N2 registers are not supported. Hence m2_n2 divider value
7201 * needs to be programmed into M1_N1.
7202 */
7203 dp_m_n = &crtc->config->dp_m2_n2;
7204 } else {
7205 DRM_ERROR("Unsupported divider value\n");
7206 return;
7207 }
7208
7209 if (crtc->config->has_pch_encoder)
7210 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7211 else
7212 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7213 }
7214
7215 static void vlv_compute_dpll(struct intel_crtc *crtc,
7216 struct intel_crtc_state *pipe_config)
7217 {
7218 u32 dpll, dpll_md;
7219
7220 /*
7221 * Enable DPIO clock input. We should never disable the reference
7222 * clock for pipe B, since VGA hotplug / manual detection depends
7223 * on it.
7224 */
7225 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7226 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7227 /* We should never disable this, set it here for state tracking */
7228 if (crtc->pipe == PIPE_B)
7229 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7230 dpll |= DPLL_VCO_ENABLE;
7231 pipe_config->dpll_hw_state.dpll = dpll;
7232
7233 dpll_md = (pipe_config->pixel_multiplier - 1)
7234 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7235 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7236 }
7237
7238 static void vlv_prepare_pll(struct intel_crtc *crtc,
7239 const struct intel_crtc_state *pipe_config)
7240 {
7241 struct drm_device *dev = crtc->base.dev;
7242 struct drm_i915_private *dev_priv = dev->dev_private;
7243 int pipe = crtc->pipe;
7244 u32 mdiv;
7245 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7246 u32 coreclk, reg_val;
7247
7248 mutex_lock(&dev_priv->sb_lock);
7249
7250 bestn = pipe_config->dpll.n;
7251 bestm1 = pipe_config->dpll.m1;
7252 bestm2 = pipe_config->dpll.m2;
7253 bestp1 = pipe_config->dpll.p1;
7254 bestp2 = pipe_config->dpll.p2;
7255
7256 /* See eDP HDMI DPIO driver vbios notes doc */
7257
7258 /* PLL B needs special handling */
7259 if (pipe == PIPE_B)
7260 vlv_pllb_recal_opamp(dev_priv, pipe);
7261
7262 /* Set up Tx target for periodic Rcomp update */
7263 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7264
7265 /* Disable target IRef on PLL */
7266 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7267 reg_val &= 0x00ffffff;
7268 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7269
7270 /* Disable fast lock */
7271 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7272
7273 /* Set idtafcrecal before PLL is enabled */
7274 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7275 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7276 mdiv |= ((bestn << DPIO_N_SHIFT));
7277 mdiv |= (1 << DPIO_K_SHIFT);
7278
7279 /*
7280 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7281 * but we don't support that).
7282 * Note: don't use the DAC post divider as it seems unstable.
7283 */
7284 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7285 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7286
7287 mdiv |= DPIO_ENABLE_CALIBRATION;
7288 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7289
7290 /* Set HBR and RBR LPF coefficients */
7291 if (pipe_config->port_clock == 162000 ||
7292 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7293 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7294 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7295 0x009f0003);
7296 else
7297 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7298 0x00d0000f);
7299
7300 if (pipe_config->has_dp_encoder) {
7301 /* Use SSC source */
7302 if (pipe == PIPE_A)
7303 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7304 0x0df40000);
7305 else
7306 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7307 0x0df70000);
7308 } else { /* HDMI or VGA */
7309 /* Use bend source */
7310 if (pipe == PIPE_A)
7311 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7312 0x0df70000);
7313 else
7314 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7315 0x0df40000);
7316 }
7317
7318 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7319 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7320 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7321 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7322 coreclk |= 0x01000000;
7323 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7324
7325 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7326 mutex_unlock(&dev_priv->sb_lock);
7327 }
7328
7329 static void chv_compute_dpll(struct intel_crtc *crtc,
7330 struct intel_crtc_state *pipe_config)
7331 {
7332 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7333 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7334 DPLL_VCO_ENABLE;
7335 if (crtc->pipe != PIPE_A)
7336 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7337
7338 pipe_config->dpll_hw_state.dpll_md =
7339 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7340 }
7341
7342 static void chv_prepare_pll(struct intel_crtc *crtc,
7343 const struct intel_crtc_state *pipe_config)
7344 {
7345 struct drm_device *dev = crtc->base.dev;
7346 struct drm_i915_private *dev_priv = dev->dev_private;
7347 int pipe = crtc->pipe;
7348 int dpll_reg = DPLL(crtc->pipe);
7349 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7350 u32 loopfilter, tribuf_calcntr;
7351 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7352 u32 dpio_val;
7353 int vco;
7354
7355 bestn = pipe_config->dpll.n;
7356 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7357 bestm1 = pipe_config->dpll.m1;
7358 bestm2 = pipe_config->dpll.m2 >> 22;
7359 bestp1 = pipe_config->dpll.p1;
7360 bestp2 = pipe_config->dpll.p2;
7361 vco = pipe_config->dpll.vco;
7362 dpio_val = 0;
7363 loopfilter = 0;
7364
7365 /*
7366 * Enable Refclk and SSC
7367 */
7368 I915_WRITE(dpll_reg,
7369 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7370
7371 mutex_lock(&dev_priv->sb_lock);
7372
7373 /* p1 and p2 divider */
7374 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7375 5 << DPIO_CHV_S1_DIV_SHIFT |
7376 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7377 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7378 1 << DPIO_CHV_K_DIV_SHIFT);
7379
7380 /* Feedback post-divider - m2 */
7381 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7382
7383 /* Feedback refclk divider - n and m1 */
7384 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7385 DPIO_CHV_M1_DIV_BY_2 |
7386 1 << DPIO_CHV_N_DIV_SHIFT);
7387
7388 /* M2 fraction division */
7389 if (bestm2_frac)
7390 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7391
7392 /* M2 fraction division enable */
7393 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7394 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7395 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7396 if (bestm2_frac)
7397 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7398 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7399
7400 /* Program digital lock detect threshold */
7401 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7402 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7403 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7404 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7405 if (!bestm2_frac)
7406 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7407 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7408
7409 /* Loop filter */
7410 if (vco == 5400000) {
7411 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7412 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7413 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7414 tribuf_calcntr = 0x9;
7415 } else if (vco <= 6200000) {
7416 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7417 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7418 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7419 tribuf_calcntr = 0x9;
7420 } else if (vco <= 6480000) {
7421 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7422 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7423 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7424 tribuf_calcntr = 0x8;
7425 } else {
7426 /* Not supported. Apply the same limits as in the max case */
7427 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7428 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7429 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7430 tribuf_calcntr = 0;
7431 }
7432 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7433
7434 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7435 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7436 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7437 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7438
7439 /* AFC Recal */
7440 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7441 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7442 DPIO_AFC_RECAL);
7443
7444 mutex_unlock(&dev_priv->sb_lock);
7445 }
7446
7447 /**
7448 * vlv_force_pll_on - forcibly enable just the PLL
7449 * @dev_priv: i915 private structure
7450 * @pipe: pipe PLL to enable
7451 * @dpll: PLL configuration
7452 *
7453 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7454 * in cases where we need the PLL enabled even when @pipe is not going to
7455 * be enabled.
7456 */
7457 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7458 const struct dpll *dpll)
7459 {
7460 struct intel_crtc *crtc =
7461 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7462 struct intel_crtc_state pipe_config = {
7463 .base.crtc = &crtc->base,
7464 .pixel_multiplier = 1,
7465 .dpll = *dpll,
7466 };
7467
7468 if (IS_CHERRYVIEW(dev)) {
7469 chv_compute_dpll(crtc, &pipe_config);
7470 chv_prepare_pll(crtc, &pipe_config);
7471 chv_enable_pll(crtc, &pipe_config);
7472 } else {
7473 vlv_compute_dpll(crtc, &pipe_config);
7474 vlv_prepare_pll(crtc, &pipe_config);
7475 vlv_enable_pll(crtc, &pipe_config);
7476 }
7477 }
7478
7479 /**
7480 * vlv_force_pll_off - forcibly disable just the PLL
7481 * @dev_priv: i915 private structure
7482 * @pipe: pipe PLL to disable
7483 *
7484 * Disable the PLL for @pipe. To be used in cases where we need
7485 * the PLL enabled even when @pipe is not going to be enabled.
7486 */
7487 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7488 {
7489 if (IS_CHERRYVIEW(dev))
7490 chv_disable_pll(to_i915(dev), pipe);
7491 else
7492 vlv_disable_pll(to_i915(dev), pipe);
7493 }
7494
7495 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7496 struct intel_crtc_state *crtc_state,
7497 intel_clock_t *reduced_clock,
7498 int num_connectors)
7499 {
7500 struct drm_device *dev = crtc->base.dev;
7501 struct drm_i915_private *dev_priv = dev->dev_private;
7502 u32 dpll;
7503 bool is_sdvo;
7504 struct dpll *clock = &crtc_state->dpll;
7505
7506 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7507
7508 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7509 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7510
7511 dpll = DPLL_VGA_MODE_DIS;
7512
7513 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7514 dpll |= DPLLB_MODE_LVDS;
7515 else
7516 dpll |= DPLLB_MODE_DAC_SERIAL;
7517
7518 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7519 dpll |= (crtc_state->pixel_multiplier - 1)
7520 << SDVO_MULTIPLIER_SHIFT_HIRES;
7521 }
7522
7523 if (is_sdvo)
7524 dpll |= DPLL_SDVO_HIGH_SPEED;
7525
7526 if (crtc_state->has_dp_encoder)
7527 dpll |= DPLL_SDVO_HIGH_SPEED;
7528
7529 /* compute bitmask from p1 value */
7530 if (IS_PINEVIEW(dev))
7531 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7532 else {
7533 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7534 if (IS_G4X(dev) && reduced_clock)
7535 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7536 }
7537 switch (clock->p2) {
7538 case 5:
7539 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7540 break;
7541 case 7:
7542 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7543 break;
7544 case 10:
7545 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7546 break;
7547 case 14:
7548 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7549 break;
7550 }
7551 if (INTEL_INFO(dev)->gen >= 4)
7552 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7553
7554 if (crtc_state->sdvo_tv_clock)
7555 dpll |= PLL_REF_INPUT_TVCLKINBC;
7556 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7557 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7558 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7559 else
7560 dpll |= PLL_REF_INPUT_DREFCLK;
7561
7562 dpll |= DPLL_VCO_ENABLE;
7563 crtc_state->dpll_hw_state.dpll = dpll;
7564
7565 if (INTEL_INFO(dev)->gen >= 4) {
7566 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7567 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7568 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7569 }
7570 }
7571
7572 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7573 struct intel_crtc_state *crtc_state,
7574 intel_clock_t *reduced_clock,
7575 int num_connectors)
7576 {
7577 struct drm_device *dev = crtc->base.dev;
7578 struct drm_i915_private *dev_priv = dev->dev_private;
7579 u32 dpll;
7580 struct dpll *clock = &crtc_state->dpll;
7581
7582 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7583
7584 dpll = DPLL_VGA_MODE_DIS;
7585
7586 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7587 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7588 } else {
7589 if (clock->p1 == 2)
7590 dpll |= PLL_P1_DIVIDE_BY_TWO;
7591 else
7592 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7593 if (clock->p2 == 4)
7594 dpll |= PLL_P2_DIVIDE_BY_4;
7595 }
7596
7597 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7598 dpll |= DPLL_DVO_2X_MODE;
7599
7600 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7601 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7602 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7603 else
7604 dpll |= PLL_REF_INPUT_DREFCLK;
7605
7606 dpll |= DPLL_VCO_ENABLE;
7607 crtc_state->dpll_hw_state.dpll = dpll;
7608 }
7609
7610 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7611 {
7612 struct drm_device *dev = intel_crtc->base.dev;
7613 struct drm_i915_private *dev_priv = dev->dev_private;
7614 enum pipe pipe = intel_crtc->pipe;
7615 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7616 struct drm_display_mode *adjusted_mode =
7617 &intel_crtc->config->base.adjusted_mode;
7618 uint32_t crtc_vtotal, crtc_vblank_end;
7619 int vsyncshift = 0;
7620
7621 /* We need to be careful not to changed the adjusted mode, for otherwise
7622 * the hw state checker will get angry at the mismatch. */
7623 crtc_vtotal = adjusted_mode->crtc_vtotal;
7624 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7625
7626 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7627 /* the chip adds 2 halflines automatically */
7628 crtc_vtotal -= 1;
7629 crtc_vblank_end -= 1;
7630
7631 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7632 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7633 else
7634 vsyncshift = adjusted_mode->crtc_hsync_start -
7635 adjusted_mode->crtc_htotal / 2;
7636 if (vsyncshift < 0)
7637 vsyncshift += adjusted_mode->crtc_htotal;
7638 }
7639
7640 if (INTEL_INFO(dev)->gen > 3)
7641 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7642
7643 I915_WRITE(HTOTAL(cpu_transcoder),
7644 (adjusted_mode->crtc_hdisplay - 1) |
7645 ((adjusted_mode->crtc_htotal - 1) << 16));
7646 I915_WRITE(HBLANK(cpu_transcoder),
7647 (adjusted_mode->crtc_hblank_start - 1) |
7648 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7649 I915_WRITE(HSYNC(cpu_transcoder),
7650 (adjusted_mode->crtc_hsync_start - 1) |
7651 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7652
7653 I915_WRITE(VTOTAL(cpu_transcoder),
7654 (adjusted_mode->crtc_vdisplay - 1) |
7655 ((crtc_vtotal - 1) << 16));
7656 I915_WRITE(VBLANK(cpu_transcoder),
7657 (adjusted_mode->crtc_vblank_start - 1) |
7658 ((crtc_vblank_end - 1) << 16));
7659 I915_WRITE(VSYNC(cpu_transcoder),
7660 (adjusted_mode->crtc_vsync_start - 1) |
7661 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7662
7663 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7664 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7665 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7666 * bits. */
7667 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7668 (pipe == PIPE_B || pipe == PIPE_C))
7669 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7670
7671 /* pipesrc controls the size that is scaled from, which should
7672 * always be the user's requested size.
7673 */
7674 I915_WRITE(PIPESRC(pipe),
7675 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7676 (intel_crtc->config->pipe_src_h - 1));
7677 }
7678
7679 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7680 struct intel_crtc_state *pipe_config)
7681 {
7682 struct drm_device *dev = crtc->base.dev;
7683 struct drm_i915_private *dev_priv = dev->dev_private;
7684 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7685 uint32_t tmp;
7686
7687 tmp = I915_READ(HTOTAL(cpu_transcoder));
7688 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7689 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7690 tmp = I915_READ(HBLANK(cpu_transcoder));
7691 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7692 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7693 tmp = I915_READ(HSYNC(cpu_transcoder));
7694 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7695 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7696
7697 tmp = I915_READ(VTOTAL(cpu_transcoder));
7698 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7699 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7700 tmp = I915_READ(VBLANK(cpu_transcoder));
7701 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7702 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7703 tmp = I915_READ(VSYNC(cpu_transcoder));
7704 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7705 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7706
7707 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7708 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7709 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7710 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7711 }
7712
7713 tmp = I915_READ(PIPESRC(crtc->pipe));
7714 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7715 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7716
7717 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7718 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7719 }
7720
7721 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7722 struct intel_crtc_state *pipe_config)
7723 {
7724 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7725 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7726 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7727 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7728
7729 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7730 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7731 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7732 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7733
7734 mode->flags = pipe_config->base.adjusted_mode.flags;
7735 mode->type = DRM_MODE_TYPE_DRIVER;
7736
7737 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7738 mode->flags |= pipe_config->base.adjusted_mode.flags;
7739
7740 mode->hsync = drm_mode_hsync(mode);
7741 mode->vrefresh = drm_mode_vrefresh(mode);
7742 drm_mode_set_name(mode);
7743 }
7744
7745 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7746 {
7747 struct drm_device *dev = intel_crtc->base.dev;
7748 struct drm_i915_private *dev_priv = dev->dev_private;
7749 uint32_t pipeconf;
7750
7751 pipeconf = 0;
7752
7753 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7754 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7755 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7756
7757 if (intel_crtc->config->double_wide)
7758 pipeconf |= PIPECONF_DOUBLE_WIDE;
7759
7760 /* only g4x and later have fancy bpc/dither controls */
7761 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7762 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7763 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7764 pipeconf |= PIPECONF_DITHER_EN |
7765 PIPECONF_DITHER_TYPE_SP;
7766
7767 switch (intel_crtc->config->pipe_bpp) {
7768 case 18:
7769 pipeconf |= PIPECONF_6BPC;
7770 break;
7771 case 24:
7772 pipeconf |= PIPECONF_8BPC;
7773 break;
7774 case 30:
7775 pipeconf |= PIPECONF_10BPC;
7776 break;
7777 default:
7778 /* Case prevented by intel_choose_pipe_bpp_dither. */
7779 BUG();
7780 }
7781 }
7782
7783 if (HAS_PIPE_CXSR(dev)) {
7784 if (intel_crtc->lowfreq_avail) {
7785 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7786 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7787 } else {
7788 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7789 }
7790 }
7791
7792 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7793 if (INTEL_INFO(dev)->gen < 4 ||
7794 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7795 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7796 else
7797 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7798 } else
7799 pipeconf |= PIPECONF_PROGRESSIVE;
7800
7801 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7802 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7803
7804 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7805 POSTING_READ(PIPECONF(intel_crtc->pipe));
7806 }
7807
7808 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7809 struct intel_crtc_state *crtc_state)
7810 {
7811 struct drm_device *dev = crtc->base.dev;
7812 struct drm_i915_private *dev_priv = dev->dev_private;
7813 int refclk, num_connectors = 0;
7814 intel_clock_t clock;
7815 bool ok;
7816 bool is_dsi = false;
7817 struct intel_encoder *encoder;
7818 const intel_limit_t *limit;
7819 struct drm_atomic_state *state = crtc_state->base.state;
7820 struct drm_connector *connector;
7821 struct drm_connector_state *connector_state;
7822 int i;
7823
7824 memset(&crtc_state->dpll_hw_state, 0,
7825 sizeof(crtc_state->dpll_hw_state));
7826
7827 for_each_connector_in_state(state, connector, connector_state, i) {
7828 if (connector_state->crtc != &crtc->base)
7829 continue;
7830
7831 encoder = to_intel_encoder(connector_state->best_encoder);
7832
7833 switch (encoder->type) {
7834 case INTEL_OUTPUT_DSI:
7835 is_dsi = true;
7836 break;
7837 default:
7838 break;
7839 }
7840
7841 num_connectors++;
7842 }
7843
7844 if (is_dsi)
7845 return 0;
7846
7847 if (!crtc_state->clock_set) {
7848 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7849
7850 /*
7851 * Returns a set of divisors for the desired target clock with
7852 * the given refclk, or FALSE. The returned values represent
7853 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7854 * 2) / p1 / p2.
7855 */
7856 limit = intel_limit(crtc_state, refclk);
7857 ok = dev_priv->display.find_dpll(limit, crtc_state,
7858 crtc_state->port_clock,
7859 refclk, NULL, &clock);
7860 if (!ok) {
7861 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7862 return -EINVAL;
7863 }
7864
7865 /* Compat-code for transition, will disappear. */
7866 crtc_state->dpll.n = clock.n;
7867 crtc_state->dpll.m1 = clock.m1;
7868 crtc_state->dpll.m2 = clock.m2;
7869 crtc_state->dpll.p1 = clock.p1;
7870 crtc_state->dpll.p2 = clock.p2;
7871 }
7872
7873 if (IS_GEN2(dev)) {
7874 i8xx_compute_dpll(crtc, crtc_state, NULL,
7875 num_connectors);
7876 } else if (IS_CHERRYVIEW(dev)) {
7877 chv_compute_dpll(crtc, crtc_state);
7878 } else if (IS_VALLEYVIEW(dev)) {
7879 vlv_compute_dpll(crtc, crtc_state);
7880 } else {
7881 i9xx_compute_dpll(crtc, crtc_state, NULL,
7882 num_connectors);
7883 }
7884
7885 return 0;
7886 }
7887
7888 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7889 struct intel_crtc_state *pipe_config)
7890 {
7891 struct drm_device *dev = crtc->base.dev;
7892 struct drm_i915_private *dev_priv = dev->dev_private;
7893 uint32_t tmp;
7894
7895 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7896 return;
7897
7898 tmp = I915_READ(PFIT_CONTROL);
7899 if (!(tmp & PFIT_ENABLE))
7900 return;
7901
7902 /* Check whether the pfit is attached to our pipe. */
7903 if (INTEL_INFO(dev)->gen < 4) {
7904 if (crtc->pipe != PIPE_B)
7905 return;
7906 } else {
7907 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7908 return;
7909 }
7910
7911 pipe_config->gmch_pfit.control = tmp;
7912 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7913 if (INTEL_INFO(dev)->gen < 5)
7914 pipe_config->gmch_pfit.lvds_border_bits =
7915 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7916 }
7917
7918 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7919 struct intel_crtc_state *pipe_config)
7920 {
7921 struct drm_device *dev = crtc->base.dev;
7922 struct drm_i915_private *dev_priv = dev->dev_private;
7923 int pipe = pipe_config->cpu_transcoder;
7924 intel_clock_t clock;
7925 u32 mdiv;
7926 int refclk = 100000;
7927
7928 /* In case of MIPI DPLL will not even be used */
7929 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7930 return;
7931
7932 mutex_lock(&dev_priv->sb_lock);
7933 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7934 mutex_unlock(&dev_priv->sb_lock);
7935
7936 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7937 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7938 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7939 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7940 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7941
7942 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7943 }
7944
7945 static void
7946 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7947 struct intel_initial_plane_config *plane_config)
7948 {
7949 struct drm_device *dev = crtc->base.dev;
7950 struct drm_i915_private *dev_priv = dev->dev_private;
7951 u32 val, base, offset;
7952 int pipe = crtc->pipe, plane = crtc->plane;
7953 int fourcc, pixel_format;
7954 unsigned int aligned_height;
7955 struct drm_framebuffer *fb;
7956 struct intel_framebuffer *intel_fb;
7957
7958 val = I915_READ(DSPCNTR(plane));
7959 if (!(val & DISPLAY_PLANE_ENABLE))
7960 return;
7961
7962 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7963 if (!intel_fb) {
7964 DRM_DEBUG_KMS("failed to alloc fb\n");
7965 return;
7966 }
7967
7968 fb = &intel_fb->base;
7969
7970 if (INTEL_INFO(dev)->gen >= 4) {
7971 if (val & DISPPLANE_TILED) {
7972 plane_config->tiling = I915_TILING_X;
7973 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7974 }
7975 }
7976
7977 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7978 fourcc = i9xx_format_to_fourcc(pixel_format);
7979 fb->pixel_format = fourcc;
7980 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7981
7982 if (INTEL_INFO(dev)->gen >= 4) {
7983 if (plane_config->tiling)
7984 offset = I915_READ(DSPTILEOFF(plane));
7985 else
7986 offset = I915_READ(DSPLINOFF(plane));
7987 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7988 } else {
7989 base = I915_READ(DSPADDR(plane));
7990 }
7991 plane_config->base = base;
7992
7993 val = I915_READ(PIPESRC(pipe));
7994 fb->width = ((val >> 16) & 0xfff) + 1;
7995 fb->height = ((val >> 0) & 0xfff) + 1;
7996
7997 val = I915_READ(DSPSTRIDE(pipe));
7998 fb->pitches[0] = val & 0xffffffc0;
7999
8000 aligned_height = intel_fb_align_height(dev, fb->height,
8001 fb->pixel_format,
8002 fb->modifier[0]);
8003
8004 plane_config->size = fb->pitches[0] * aligned_height;
8005
8006 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8007 pipe_name(pipe), plane, fb->width, fb->height,
8008 fb->bits_per_pixel, base, fb->pitches[0],
8009 plane_config->size);
8010
8011 plane_config->fb = intel_fb;
8012 }
8013
8014 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8015 struct intel_crtc_state *pipe_config)
8016 {
8017 struct drm_device *dev = crtc->base.dev;
8018 struct drm_i915_private *dev_priv = dev->dev_private;
8019 int pipe = pipe_config->cpu_transcoder;
8020 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8021 intel_clock_t clock;
8022 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8023 int refclk = 100000;
8024
8025 mutex_lock(&dev_priv->sb_lock);
8026 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8027 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8028 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8029 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8030 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8031 mutex_unlock(&dev_priv->sb_lock);
8032
8033 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8034 clock.m2 = (pll_dw0 & 0xff) << 22;
8035 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8036 clock.m2 |= pll_dw2 & 0x3fffff;
8037 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8038 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8039 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8040
8041 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8042 }
8043
8044 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8045 struct intel_crtc_state *pipe_config)
8046 {
8047 struct drm_device *dev = crtc->base.dev;
8048 struct drm_i915_private *dev_priv = dev->dev_private;
8049 uint32_t tmp;
8050
8051 if (!intel_display_power_is_enabled(dev_priv,
8052 POWER_DOMAIN_PIPE(crtc->pipe)))
8053 return false;
8054
8055 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8056 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8057
8058 tmp = I915_READ(PIPECONF(crtc->pipe));
8059 if (!(tmp & PIPECONF_ENABLE))
8060 return false;
8061
8062 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8063 switch (tmp & PIPECONF_BPC_MASK) {
8064 case PIPECONF_6BPC:
8065 pipe_config->pipe_bpp = 18;
8066 break;
8067 case PIPECONF_8BPC:
8068 pipe_config->pipe_bpp = 24;
8069 break;
8070 case PIPECONF_10BPC:
8071 pipe_config->pipe_bpp = 30;
8072 break;
8073 default:
8074 break;
8075 }
8076 }
8077
8078 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8079 pipe_config->limited_color_range = true;
8080
8081 if (INTEL_INFO(dev)->gen < 4)
8082 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8083
8084 intel_get_pipe_timings(crtc, pipe_config);
8085
8086 i9xx_get_pfit_config(crtc, pipe_config);
8087
8088 if (INTEL_INFO(dev)->gen >= 4) {
8089 tmp = I915_READ(DPLL_MD(crtc->pipe));
8090 pipe_config->pixel_multiplier =
8091 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8092 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8093 pipe_config->dpll_hw_state.dpll_md = tmp;
8094 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8095 tmp = I915_READ(DPLL(crtc->pipe));
8096 pipe_config->pixel_multiplier =
8097 ((tmp & SDVO_MULTIPLIER_MASK)
8098 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8099 } else {
8100 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8101 * port and will be fixed up in the encoder->get_config
8102 * function. */
8103 pipe_config->pixel_multiplier = 1;
8104 }
8105 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8106 if (!IS_VALLEYVIEW(dev)) {
8107 /*
8108 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8109 * on 830. Filter it out here so that we don't
8110 * report errors due to that.
8111 */
8112 if (IS_I830(dev))
8113 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8114
8115 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8116 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8117 } else {
8118 /* Mask out read-only status bits. */
8119 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8120 DPLL_PORTC_READY_MASK |
8121 DPLL_PORTB_READY_MASK);
8122 }
8123
8124 if (IS_CHERRYVIEW(dev))
8125 chv_crtc_clock_get(crtc, pipe_config);
8126 else if (IS_VALLEYVIEW(dev))
8127 vlv_crtc_clock_get(crtc, pipe_config);
8128 else
8129 i9xx_crtc_clock_get(crtc, pipe_config);
8130
8131 return true;
8132 }
8133
8134 static void ironlake_init_pch_refclk(struct drm_device *dev)
8135 {
8136 struct drm_i915_private *dev_priv = dev->dev_private;
8137 struct intel_encoder *encoder;
8138 u32 val, final;
8139 bool has_lvds = false;
8140 bool has_cpu_edp = false;
8141 bool has_panel = false;
8142 bool has_ck505 = false;
8143 bool can_ssc = false;
8144
8145 /* We need to take the global config into account */
8146 for_each_intel_encoder(dev, encoder) {
8147 switch (encoder->type) {
8148 case INTEL_OUTPUT_LVDS:
8149 has_panel = true;
8150 has_lvds = true;
8151 break;
8152 case INTEL_OUTPUT_EDP:
8153 has_panel = true;
8154 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8155 has_cpu_edp = true;
8156 break;
8157 default:
8158 break;
8159 }
8160 }
8161
8162 if (HAS_PCH_IBX(dev)) {
8163 has_ck505 = dev_priv->vbt.display_clock_mode;
8164 can_ssc = has_ck505;
8165 } else {
8166 has_ck505 = false;
8167 can_ssc = true;
8168 }
8169
8170 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8171 has_panel, has_lvds, has_ck505);
8172
8173 /* Ironlake: try to setup display ref clock before DPLL
8174 * enabling. This is only under driver's control after
8175 * PCH B stepping, previous chipset stepping should be
8176 * ignoring this setting.
8177 */
8178 val = I915_READ(PCH_DREF_CONTROL);
8179
8180 /* As we must carefully and slowly disable/enable each source in turn,
8181 * compute the final state we want first and check if we need to
8182 * make any changes at all.
8183 */
8184 final = val;
8185 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8186 if (has_ck505)
8187 final |= DREF_NONSPREAD_CK505_ENABLE;
8188 else
8189 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8190
8191 final &= ~DREF_SSC_SOURCE_MASK;
8192 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8193 final &= ~DREF_SSC1_ENABLE;
8194
8195 if (has_panel) {
8196 final |= DREF_SSC_SOURCE_ENABLE;
8197
8198 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8199 final |= DREF_SSC1_ENABLE;
8200
8201 if (has_cpu_edp) {
8202 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8203 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8204 else
8205 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8206 } else
8207 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8208 } else {
8209 final |= DREF_SSC_SOURCE_DISABLE;
8210 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8211 }
8212
8213 if (final == val)
8214 return;
8215
8216 /* Always enable nonspread source */
8217 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8218
8219 if (has_ck505)
8220 val |= DREF_NONSPREAD_CK505_ENABLE;
8221 else
8222 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8223
8224 if (has_panel) {
8225 val &= ~DREF_SSC_SOURCE_MASK;
8226 val |= DREF_SSC_SOURCE_ENABLE;
8227
8228 /* SSC must be turned on before enabling the CPU output */
8229 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8230 DRM_DEBUG_KMS("Using SSC on panel\n");
8231 val |= DREF_SSC1_ENABLE;
8232 } else
8233 val &= ~DREF_SSC1_ENABLE;
8234
8235 /* Get SSC going before enabling the outputs */
8236 I915_WRITE(PCH_DREF_CONTROL, val);
8237 POSTING_READ(PCH_DREF_CONTROL);
8238 udelay(200);
8239
8240 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8241
8242 /* Enable CPU source on CPU attached eDP */
8243 if (has_cpu_edp) {
8244 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8245 DRM_DEBUG_KMS("Using SSC on eDP\n");
8246 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8247 } else
8248 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8249 } else
8250 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8251
8252 I915_WRITE(PCH_DREF_CONTROL, val);
8253 POSTING_READ(PCH_DREF_CONTROL);
8254 udelay(200);
8255 } else {
8256 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8257
8258 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8259
8260 /* Turn off CPU output */
8261 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8262
8263 I915_WRITE(PCH_DREF_CONTROL, val);
8264 POSTING_READ(PCH_DREF_CONTROL);
8265 udelay(200);
8266
8267 /* Turn off the SSC source */
8268 val &= ~DREF_SSC_SOURCE_MASK;
8269 val |= DREF_SSC_SOURCE_DISABLE;
8270
8271 /* Turn off SSC1 */
8272 val &= ~DREF_SSC1_ENABLE;
8273
8274 I915_WRITE(PCH_DREF_CONTROL, val);
8275 POSTING_READ(PCH_DREF_CONTROL);
8276 udelay(200);
8277 }
8278
8279 BUG_ON(val != final);
8280 }
8281
8282 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8283 {
8284 uint32_t tmp;
8285
8286 tmp = I915_READ(SOUTH_CHICKEN2);
8287 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8288 I915_WRITE(SOUTH_CHICKEN2, tmp);
8289
8290 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8291 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8292 DRM_ERROR("FDI mPHY reset assert timeout\n");
8293
8294 tmp = I915_READ(SOUTH_CHICKEN2);
8295 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8296 I915_WRITE(SOUTH_CHICKEN2, tmp);
8297
8298 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8299 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8300 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8301 }
8302
8303 /* WaMPhyProgramming:hsw */
8304 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8305 {
8306 uint32_t tmp;
8307
8308 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8309 tmp &= ~(0xFF << 24);
8310 tmp |= (0x12 << 24);
8311 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8312
8313 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8314 tmp |= (1 << 11);
8315 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8316
8317 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8318 tmp |= (1 << 11);
8319 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8320
8321 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8322 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8323 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8324
8325 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8326 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8327 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8328
8329 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8330 tmp &= ~(7 << 13);
8331 tmp |= (5 << 13);
8332 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8333
8334 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8335 tmp &= ~(7 << 13);
8336 tmp |= (5 << 13);
8337 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8338
8339 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8340 tmp &= ~0xFF;
8341 tmp |= 0x1C;
8342 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8343
8344 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8345 tmp &= ~0xFF;
8346 tmp |= 0x1C;
8347 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8348
8349 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8350 tmp &= ~(0xFF << 16);
8351 tmp |= (0x1C << 16);
8352 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8353
8354 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8355 tmp &= ~(0xFF << 16);
8356 tmp |= (0x1C << 16);
8357 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8358
8359 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8360 tmp |= (1 << 27);
8361 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8362
8363 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8364 tmp |= (1 << 27);
8365 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8366
8367 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8368 tmp &= ~(0xF << 28);
8369 tmp |= (4 << 28);
8370 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8371
8372 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8373 tmp &= ~(0xF << 28);
8374 tmp |= (4 << 28);
8375 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8376 }
8377
8378 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8379 * Programming" based on the parameters passed:
8380 * - Sequence to enable CLKOUT_DP
8381 * - Sequence to enable CLKOUT_DP without spread
8382 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8383 */
8384 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8385 bool with_fdi)
8386 {
8387 struct drm_i915_private *dev_priv = dev->dev_private;
8388 uint32_t reg, tmp;
8389
8390 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8391 with_spread = true;
8392 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8393 with_fdi, "LP PCH doesn't have FDI\n"))
8394 with_fdi = false;
8395
8396 mutex_lock(&dev_priv->sb_lock);
8397
8398 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8399 tmp &= ~SBI_SSCCTL_DISABLE;
8400 tmp |= SBI_SSCCTL_PATHALT;
8401 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8402
8403 udelay(24);
8404
8405 if (with_spread) {
8406 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8407 tmp &= ~SBI_SSCCTL_PATHALT;
8408 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8409
8410 if (with_fdi) {
8411 lpt_reset_fdi_mphy(dev_priv);
8412 lpt_program_fdi_mphy(dev_priv);
8413 }
8414 }
8415
8416 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8417 SBI_GEN0 : SBI_DBUFF0;
8418 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8419 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8420 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8421
8422 mutex_unlock(&dev_priv->sb_lock);
8423 }
8424
8425 /* Sequence to disable CLKOUT_DP */
8426 static void lpt_disable_clkout_dp(struct drm_device *dev)
8427 {
8428 struct drm_i915_private *dev_priv = dev->dev_private;
8429 uint32_t reg, tmp;
8430
8431 mutex_lock(&dev_priv->sb_lock);
8432
8433 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8434 SBI_GEN0 : SBI_DBUFF0;
8435 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8436 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8437 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8438
8439 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8440 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8441 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8442 tmp |= SBI_SSCCTL_PATHALT;
8443 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8444 udelay(32);
8445 }
8446 tmp |= SBI_SSCCTL_DISABLE;
8447 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8448 }
8449
8450 mutex_unlock(&dev_priv->sb_lock);
8451 }
8452
8453 static void lpt_init_pch_refclk(struct drm_device *dev)
8454 {
8455 struct intel_encoder *encoder;
8456 bool has_vga = false;
8457
8458 for_each_intel_encoder(dev, encoder) {
8459 switch (encoder->type) {
8460 case INTEL_OUTPUT_ANALOG:
8461 has_vga = true;
8462 break;
8463 default:
8464 break;
8465 }
8466 }
8467
8468 if (has_vga)
8469 lpt_enable_clkout_dp(dev, true, true);
8470 else
8471 lpt_disable_clkout_dp(dev);
8472 }
8473
8474 /*
8475 * Initialize reference clocks when the driver loads
8476 */
8477 void intel_init_pch_refclk(struct drm_device *dev)
8478 {
8479 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8480 ironlake_init_pch_refclk(dev);
8481 else if (HAS_PCH_LPT(dev))
8482 lpt_init_pch_refclk(dev);
8483 }
8484
8485 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8486 {
8487 struct drm_device *dev = crtc_state->base.crtc->dev;
8488 struct drm_i915_private *dev_priv = dev->dev_private;
8489 struct drm_atomic_state *state = crtc_state->base.state;
8490 struct drm_connector *connector;
8491 struct drm_connector_state *connector_state;
8492 struct intel_encoder *encoder;
8493 int num_connectors = 0, i;
8494 bool is_lvds = false;
8495
8496 for_each_connector_in_state(state, connector, connector_state, i) {
8497 if (connector_state->crtc != crtc_state->base.crtc)
8498 continue;
8499
8500 encoder = to_intel_encoder(connector_state->best_encoder);
8501
8502 switch (encoder->type) {
8503 case INTEL_OUTPUT_LVDS:
8504 is_lvds = true;
8505 break;
8506 default:
8507 break;
8508 }
8509 num_connectors++;
8510 }
8511
8512 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8513 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8514 dev_priv->vbt.lvds_ssc_freq);
8515 return dev_priv->vbt.lvds_ssc_freq;
8516 }
8517
8518 return 120000;
8519 }
8520
8521 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8522 {
8523 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8525 int pipe = intel_crtc->pipe;
8526 uint32_t val;
8527
8528 val = 0;
8529
8530 switch (intel_crtc->config->pipe_bpp) {
8531 case 18:
8532 val |= PIPECONF_6BPC;
8533 break;
8534 case 24:
8535 val |= PIPECONF_8BPC;
8536 break;
8537 case 30:
8538 val |= PIPECONF_10BPC;
8539 break;
8540 case 36:
8541 val |= PIPECONF_12BPC;
8542 break;
8543 default:
8544 /* Case prevented by intel_choose_pipe_bpp_dither. */
8545 BUG();
8546 }
8547
8548 if (intel_crtc->config->dither)
8549 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8550
8551 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8552 val |= PIPECONF_INTERLACED_ILK;
8553 else
8554 val |= PIPECONF_PROGRESSIVE;
8555
8556 if (intel_crtc->config->limited_color_range)
8557 val |= PIPECONF_COLOR_RANGE_SELECT;
8558
8559 I915_WRITE(PIPECONF(pipe), val);
8560 POSTING_READ(PIPECONF(pipe));
8561 }
8562
8563 /*
8564 * Set up the pipe CSC unit.
8565 *
8566 * Currently only full range RGB to limited range RGB conversion
8567 * is supported, but eventually this should handle various
8568 * RGB<->YCbCr scenarios as well.
8569 */
8570 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8571 {
8572 struct drm_device *dev = crtc->dev;
8573 struct drm_i915_private *dev_priv = dev->dev_private;
8574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8575 int pipe = intel_crtc->pipe;
8576 uint16_t coeff = 0x7800; /* 1.0 */
8577
8578 /*
8579 * TODO: Check what kind of values actually come out of the pipe
8580 * with these coeff/postoff values and adjust to get the best
8581 * accuracy. Perhaps we even need to take the bpc value into
8582 * consideration.
8583 */
8584
8585 if (intel_crtc->config->limited_color_range)
8586 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8587
8588 /*
8589 * GY/GU and RY/RU should be the other way around according
8590 * to BSpec, but reality doesn't agree. Just set them up in
8591 * a way that results in the correct picture.
8592 */
8593 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8594 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8595
8596 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8597 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8598
8599 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8600 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8601
8602 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8603 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8604 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8605
8606 if (INTEL_INFO(dev)->gen > 6) {
8607 uint16_t postoff = 0;
8608
8609 if (intel_crtc->config->limited_color_range)
8610 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8611
8612 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8613 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8614 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8615
8616 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8617 } else {
8618 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8619
8620 if (intel_crtc->config->limited_color_range)
8621 mode |= CSC_BLACK_SCREEN_OFFSET;
8622
8623 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8624 }
8625 }
8626
8627 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8628 {
8629 struct drm_device *dev = crtc->dev;
8630 struct drm_i915_private *dev_priv = dev->dev_private;
8631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8632 enum pipe pipe = intel_crtc->pipe;
8633 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8634 uint32_t val;
8635
8636 val = 0;
8637
8638 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8639 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8640
8641 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8642 val |= PIPECONF_INTERLACED_ILK;
8643 else
8644 val |= PIPECONF_PROGRESSIVE;
8645
8646 I915_WRITE(PIPECONF(cpu_transcoder), val);
8647 POSTING_READ(PIPECONF(cpu_transcoder));
8648
8649 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8650 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8651
8652 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8653 val = 0;
8654
8655 switch (intel_crtc->config->pipe_bpp) {
8656 case 18:
8657 val |= PIPEMISC_DITHER_6_BPC;
8658 break;
8659 case 24:
8660 val |= PIPEMISC_DITHER_8_BPC;
8661 break;
8662 case 30:
8663 val |= PIPEMISC_DITHER_10_BPC;
8664 break;
8665 case 36:
8666 val |= PIPEMISC_DITHER_12_BPC;
8667 break;
8668 default:
8669 /* Case prevented by pipe_config_set_bpp. */
8670 BUG();
8671 }
8672
8673 if (intel_crtc->config->dither)
8674 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8675
8676 I915_WRITE(PIPEMISC(pipe), val);
8677 }
8678 }
8679
8680 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8681 struct intel_crtc_state *crtc_state,
8682 intel_clock_t *clock,
8683 bool *has_reduced_clock,
8684 intel_clock_t *reduced_clock)
8685 {
8686 struct drm_device *dev = crtc->dev;
8687 struct drm_i915_private *dev_priv = dev->dev_private;
8688 int refclk;
8689 const intel_limit_t *limit;
8690 bool ret;
8691
8692 refclk = ironlake_get_refclk(crtc_state);
8693
8694 /*
8695 * Returns a set of divisors for the desired target clock with the given
8696 * refclk, or FALSE. The returned values represent the clock equation:
8697 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8698 */
8699 limit = intel_limit(crtc_state, refclk);
8700 ret = dev_priv->display.find_dpll(limit, crtc_state,
8701 crtc_state->port_clock,
8702 refclk, NULL, clock);
8703 if (!ret)
8704 return false;
8705
8706 return true;
8707 }
8708
8709 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8710 {
8711 /*
8712 * Account for spread spectrum to avoid
8713 * oversubscribing the link. Max center spread
8714 * is 2.5%; use 5% for safety's sake.
8715 */
8716 u32 bps = target_clock * bpp * 21 / 20;
8717 return DIV_ROUND_UP(bps, link_bw * 8);
8718 }
8719
8720 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8721 {
8722 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8723 }
8724
8725 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8726 struct intel_crtc_state *crtc_state,
8727 u32 *fp,
8728 intel_clock_t *reduced_clock, u32 *fp2)
8729 {
8730 struct drm_crtc *crtc = &intel_crtc->base;
8731 struct drm_device *dev = crtc->dev;
8732 struct drm_i915_private *dev_priv = dev->dev_private;
8733 struct drm_atomic_state *state = crtc_state->base.state;
8734 struct drm_connector *connector;
8735 struct drm_connector_state *connector_state;
8736 struct intel_encoder *encoder;
8737 uint32_t dpll;
8738 int factor, num_connectors = 0, i;
8739 bool is_lvds = false, is_sdvo = false;
8740
8741 for_each_connector_in_state(state, connector, connector_state, i) {
8742 if (connector_state->crtc != crtc_state->base.crtc)
8743 continue;
8744
8745 encoder = to_intel_encoder(connector_state->best_encoder);
8746
8747 switch (encoder->type) {
8748 case INTEL_OUTPUT_LVDS:
8749 is_lvds = true;
8750 break;
8751 case INTEL_OUTPUT_SDVO:
8752 case INTEL_OUTPUT_HDMI:
8753 is_sdvo = true;
8754 break;
8755 default:
8756 break;
8757 }
8758
8759 num_connectors++;
8760 }
8761
8762 /* Enable autotuning of the PLL clock (if permissible) */
8763 factor = 21;
8764 if (is_lvds) {
8765 if ((intel_panel_use_ssc(dev_priv) &&
8766 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8767 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8768 factor = 25;
8769 } else if (crtc_state->sdvo_tv_clock)
8770 factor = 20;
8771
8772 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8773 *fp |= FP_CB_TUNE;
8774
8775 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8776 *fp2 |= FP_CB_TUNE;
8777
8778 dpll = 0;
8779
8780 if (is_lvds)
8781 dpll |= DPLLB_MODE_LVDS;
8782 else
8783 dpll |= DPLLB_MODE_DAC_SERIAL;
8784
8785 dpll |= (crtc_state->pixel_multiplier - 1)
8786 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8787
8788 if (is_sdvo)
8789 dpll |= DPLL_SDVO_HIGH_SPEED;
8790 if (crtc_state->has_dp_encoder)
8791 dpll |= DPLL_SDVO_HIGH_SPEED;
8792
8793 /* compute bitmask from p1 value */
8794 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8795 /* also FPA1 */
8796 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8797
8798 switch (crtc_state->dpll.p2) {
8799 case 5:
8800 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8801 break;
8802 case 7:
8803 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8804 break;
8805 case 10:
8806 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8807 break;
8808 case 14:
8809 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8810 break;
8811 }
8812
8813 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8814 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8815 else
8816 dpll |= PLL_REF_INPUT_DREFCLK;
8817
8818 return dpll | DPLL_VCO_ENABLE;
8819 }
8820
8821 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8822 struct intel_crtc_state *crtc_state)
8823 {
8824 struct drm_device *dev = crtc->base.dev;
8825 intel_clock_t clock, reduced_clock;
8826 u32 dpll = 0, fp = 0, fp2 = 0;
8827 bool ok, has_reduced_clock = false;
8828 bool is_lvds = false;
8829 struct intel_shared_dpll *pll;
8830
8831 memset(&crtc_state->dpll_hw_state, 0,
8832 sizeof(crtc_state->dpll_hw_state));
8833
8834 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8835
8836 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8837 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8838
8839 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8840 &has_reduced_clock, &reduced_clock);
8841 if (!ok && !crtc_state->clock_set) {
8842 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8843 return -EINVAL;
8844 }
8845 /* Compat-code for transition, will disappear. */
8846 if (!crtc_state->clock_set) {
8847 crtc_state->dpll.n = clock.n;
8848 crtc_state->dpll.m1 = clock.m1;
8849 crtc_state->dpll.m2 = clock.m2;
8850 crtc_state->dpll.p1 = clock.p1;
8851 crtc_state->dpll.p2 = clock.p2;
8852 }
8853
8854 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8855 if (crtc_state->has_pch_encoder) {
8856 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8857 if (has_reduced_clock)
8858 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8859
8860 dpll = ironlake_compute_dpll(crtc, crtc_state,
8861 &fp, &reduced_clock,
8862 has_reduced_clock ? &fp2 : NULL);
8863
8864 crtc_state->dpll_hw_state.dpll = dpll;
8865 crtc_state->dpll_hw_state.fp0 = fp;
8866 if (has_reduced_clock)
8867 crtc_state->dpll_hw_state.fp1 = fp2;
8868 else
8869 crtc_state->dpll_hw_state.fp1 = fp;
8870
8871 pll = intel_get_shared_dpll(crtc, crtc_state);
8872 if (pll == NULL) {
8873 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8874 pipe_name(crtc->pipe));
8875 return -EINVAL;
8876 }
8877 }
8878
8879 if (is_lvds && has_reduced_clock)
8880 crtc->lowfreq_avail = true;
8881 else
8882 crtc->lowfreq_avail = false;
8883
8884 return 0;
8885 }
8886
8887 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8888 struct intel_link_m_n *m_n)
8889 {
8890 struct drm_device *dev = crtc->base.dev;
8891 struct drm_i915_private *dev_priv = dev->dev_private;
8892 enum pipe pipe = crtc->pipe;
8893
8894 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8895 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8896 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8897 & ~TU_SIZE_MASK;
8898 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8899 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8900 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8901 }
8902
8903 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8904 enum transcoder transcoder,
8905 struct intel_link_m_n *m_n,
8906 struct intel_link_m_n *m2_n2)
8907 {
8908 struct drm_device *dev = crtc->base.dev;
8909 struct drm_i915_private *dev_priv = dev->dev_private;
8910 enum pipe pipe = crtc->pipe;
8911
8912 if (INTEL_INFO(dev)->gen >= 5) {
8913 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8914 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8915 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8916 & ~TU_SIZE_MASK;
8917 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8918 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8919 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8920 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8921 * gen < 8) and if DRRS is supported (to make sure the
8922 * registers are not unnecessarily read).
8923 */
8924 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8925 crtc->config->has_drrs) {
8926 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8927 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8928 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8929 & ~TU_SIZE_MASK;
8930 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8931 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8932 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8933 }
8934 } else {
8935 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8936 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8937 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8938 & ~TU_SIZE_MASK;
8939 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8940 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8941 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8942 }
8943 }
8944
8945 void intel_dp_get_m_n(struct intel_crtc *crtc,
8946 struct intel_crtc_state *pipe_config)
8947 {
8948 if (pipe_config->has_pch_encoder)
8949 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8950 else
8951 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8952 &pipe_config->dp_m_n,
8953 &pipe_config->dp_m2_n2);
8954 }
8955
8956 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8957 struct intel_crtc_state *pipe_config)
8958 {
8959 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8960 &pipe_config->fdi_m_n, NULL);
8961 }
8962
8963 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8964 struct intel_crtc_state *pipe_config)
8965 {
8966 struct drm_device *dev = crtc->base.dev;
8967 struct drm_i915_private *dev_priv = dev->dev_private;
8968 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8969 uint32_t ps_ctrl = 0;
8970 int id = -1;
8971 int i;
8972
8973 /* find scaler attached to this pipe */
8974 for (i = 0; i < crtc->num_scalers; i++) {
8975 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8976 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8977 id = i;
8978 pipe_config->pch_pfit.enabled = true;
8979 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8980 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8981 break;
8982 }
8983 }
8984
8985 scaler_state->scaler_id = id;
8986 if (id >= 0) {
8987 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8988 } else {
8989 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8990 }
8991 }
8992
8993 static void
8994 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8995 struct intel_initial_plane_config *plane_config)
8996 {
8997 struct drm_device *dev = crtc->base.dev;
8998 struct drm_i915_private *dev_priv = dev->dev_private;
8999 u32 val, base, offset, stride_mult, tiling;
9000 int pipe = crtc->pipe;
9001 int fourcc, pixel_format;
9002 unsigned int aligned_height;
9003 struct drm_framebuffer *fb;
9004 struct intel_framebuffer *intel_fb;
9005
9006 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9007 if (!intel_fb) {
9008 DRM_DEBUG_KMS("failed to alloc fb\n");
9009 return;
9010 }
9011
9012 fb = &intel_fb->base;
9013
9014 val = I915_READ(PLANE_CTL(pipe, 0));
9015 if (!(val & PLANE_CTL_ENABLE))
9016 goto error;
9017
9018 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9019 fourcc = skl_format_to_fourcc(pixel_format,
9020 val & PLANE_CTL_ORDER_RGBX,
9021 val & PLANE_CTL_ALPHA_MASK);
9022 fb->pixel_format = fourcc;
9023 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9024
9025 tiling = val & PLANE_CTL_TILED_MASK;
9026 switch (tiling) {
9027 case PLANE_CTL_TILED_LINEAR:
9028 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9029 break;
9030 case PLANE_CTL_TILED_X:
9031 plane_config->tiling = I915_TILING_X;
9032 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9033 break;
9034 case PLANE_CTL_TILED_Y:
9035 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9036 break;
9037 case PLANE_CTL_TILED_YF:
9038 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9039 break;
9040 default:
9041 MISSING_CASE(tiling);
9042 goto error;
9043 }
9044
9045 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9046 plane_config->base = base;
9047
9048 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9049
9050 val = I915_READ(PLANE_SIZE(pipe, 0));
9051 fb->height = ((val >> 16) & 0xfff) + 1;
9052 fb->width = ((val >> 0) & 0x1fff) + 1;
9053
9054 val = I915_READ(PLANE_STRIDE(pipe, 0));
9055 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9056 fb->pixel_format);
9057 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9058
9059 aligned_height = intel_fb_align_height(dev, fb->height,
9060 fb->pixel_format,
9061 fb->modifier[0]);
9062
9063 plane_config->size = fb->pitches[0] * aligned_height;
9064
9065 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9066 pipe_name(pipe), fb->width, fb->height,
9067 fb->bits_per_pixel, base, fb->pitches[0],
9068 plane_config->size);
9069
9070 plane_config->fb = intel_fb;
9071 return;
9072
9073 error:
9074 kfree(fb);
9075 }
9076
9077 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9078 struct intel_crtc_state *pipe_config)
9079 {
9080 struct drm_device *dev = crtc->base.dev;
9081 struct drm_i915_private *dev_priv = dev->dev_private;
9082 uint32_t tmp;
9083
9084 tmp = I915_READ(PF_CTL(crtc->pipe));
9085
9086 if (tmp & PF_ENABLE) {
9087 pipe_config->pch_pfit.enabled = true;
9088 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9089 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9090
9091 /* We currently do not free assignements of panel fitters on
9092 * ivb/hsw (since we don't use the higher upscaling modes which
9093 * differentiates them) so just WARN about this case for now. */
9094 if (IS_GEN7(dev)) {
9095 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9096 PF_PIPE_SEL_IVB(crtc->pipe));
9097 }
9098 }
9099 }
9100
9101 static void
9102 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9103 struct intel_initial_plane_config *plane_config)
9104 {
9105 struct drm_device *dev = crtc->base.dev;
9106 struct drm_i915_private *dev_priv = dev->dev_private;
9107 u32 val, base, offset;
9108 int pipe = crtc->pipe;
9109 int fourcc, pixel_format;
9110 unsigned int aligned_height;
9111 struct drm_framebuffer *fb;
9112 struct intel_framebuffer *intel_fb;
9113
9114 val = I915_READ(DSPCNTR(pipe));
9115 if (!(val & DISPLAY_PLANE_ENABLE))
9116 return;
9117
9118 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9119 if (!intel_fb) {
9120 DRM_DEBUG_KMS("failed to alloc fb\n");
9121 return;
9122 }
9123
9124 fb = &intel_fb->base;
9125
9126 if (INTEL_INFO(dev)->gen >= 4) {
9127 if (val & DISPPLANE_TILED) {
9128 plane_config->tiling = I915_TILING_X;
9129 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9130 }
9131 }
9132
9133 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9134 fourcc = i9xx_format_to_fourcc(pixel_format);
9135 fb->pixel_format = fourcc;
9136 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9137
9138 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9139 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9140 offset = I915_READ(DSPOFFSET(pipe));
9141 } else {
9142 if (plane_config->tiling)
9143 offset = I915_READ(DSPTILEOFF(pipe));
9144 else
9145 offset = I915_READ(DSPLINOFF(pipe));
9146 }
9147 plane_config->base = base;
9148
9149 val = I915_READ(PIPESRC(pipe));
9150 fb->width = ((val >> 16) & 0xfff) + 1;
9151 fb->height = ((val >> 0) & 0xfff) + 1;
9152
9153 val = I915_READ(DSPSTRIDE(pipe));
9154 fb->pitches[0] = val & 0xffffffc0;
9155
9156 aligned_height = intel_fb_align_height(dev, fb->height,
9157 fb->pixel_format,
9158 fb->modifier[0]);
9159
9160 plane_config->size = fb->pitches[0] * aligned_height;
9161
9162 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9163 pipe_name(pipe), fb->width, fb->height,
9164 fb->bits_per_pixel, base, fb->pitches[0],
9165 plane_config->size);
9166
9167 plane_config->fb = intel_fb;
9168 }
9169
9170 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9171 struct intel_crtc_state *pipe_config)
9172 {
9173 struct drm_device *dev = crtc->base.dev;
9174 struct drm_i915_private *dev_priv = dev->dev_private;
9175 uint32_t tmp;
9176
9177 if (!intel_display_power_is_enabled(dev_priv,
9178 POWER_DOMAIN_PIPE(crtc->pipe)))
9179 return false;
9180
9181 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9182 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9183
9184 tmp = I915_READ(PIPECONF(crtc->pipe));
9185 if (!(tmp & PIPECONF_ENABLE))
9186 return false;
9187
9188 switch (tmp & PIPECONF_BPC_MASK) {
9189 case PIPECONF_6BPC:
9190 pipe_config->pipe_bpp = 18;
9191 break;
9192 case PIPECONF_8BPC:
9193 pipe_config->pipe_bpp = 24;
9194 break;
9195 case PIPECONF_10BPC:
9196 pipe_config->pipe_bpp = 30;
9197 break;
9198 case PIPECONF_12BPC:
9199 pipe_config->pipe_bpp = 36;
9200 break;
9201 default:
9202 break;
9203 }
9204
9205 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9206 pipe_config->limited_color_range = true;
9207
9208 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9209 struct intel_shared_dpll *pll;
9210
9211 pipe_config->has_pch_encoder = true;
9212
9213 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9214 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9215 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9216
9217 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9218
9219 if (HAS_PCH_IBX(dev_priv->dev)) {
9220 pipe_config->shared_dpll =
9221 (enum intel_dpll_id) crtc->pipe;
9222 } else {
9223 tmp = I915_READ(PCH_DPLL_SEL);
9224 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9225 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9226 else
9227 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9228 }
9229
9230 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9231
9232 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9233 &pipe_config->dpll_hw_state));
9234
9235 tmp = pipe_config->dpll_hw_state.dpll;
9236 pipe_config->pixel_multiplier =
9237 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9238 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9239
9240 ironlake_pch_clock_get(crtc, pipe_config);
9241 } else {
9242 pipe_config->pixel_multiplier = 1;
9243 }
9244
9245 intel_get_pipe_timings(crtc, pipe_config);
9246
9247 ironlake_get_pfit_config(crtc, pipe_config);
9248
9249 return true;
9250 }
9251
9252 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9253 {
9254 struct drm_device *dev = dev_priv->dev;
9255 struct intel_crtc *crtc;
9256
9257 for_each_intel_crtc(dev, crtc)
9258 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9259 pipe_name(crtc->pipe));
9260
9261 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9262 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9263 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9264 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9265 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9266 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9267 "CPU PWM1 enabled\n");
9268 if (IS_HASWELL(dev))
9269 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9270 "CPU PWM2 enabled\n");
9271 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9272 "PCH PWM1 enabled\n");
9273 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9274 "Utility pin enabled\n");
9275 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9276
9277 /*
9278 * In theory we can still leave IRQs enabled, as long as only the HPD
9279 * interrupts remain enabled. We used to check for that, but since it's
9280 * gen-specific and since we only disable LCPLL after we fully disable
9281 * the interrupts, the check below should be enough.
9282 */
9283 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9284 }
9285
9286 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9287 {
9288 struct drm_device *dev = dev_priv->dev;
9289
9290 if (IS_HASWELL(dev))
9291 return I915_READ(D_COMP_HSW);
9292 else
9293 return I915_READ(D_COMP_BDW);
9294 }
9295
9296 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9297 {
9298 struct drm_device *dev = dev_priv->dev;
9299
9300 if (IS_HASWELL(dev)) {
9301 mutex_lock(&dev_priv->rps.hw_lock);
9302 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9303 val))
9304 DRM_ERROR("Failed to write to D_COMP\n");
9305 mutex_unlock(&dev_priv->rps.hw_lock);
9306 } else {
9307 I915_WRITE(D_COMP_BDW, val);
9308 POSTING_READ(D_COMP_BDW);
9309 }
9310 }
9311
9312 /*
9313 * This function implements pieces of two sequences from BSpec:
9314 * - Sequence for display software to disable LCPLL
9315 * - Sequence for display software to allow package C8+
9316 * The steps implemented here are just the steps that actually touch the LCPLL
9317 * register. Callers should take care of disabling all the display engine
9318 * functions, doing the mode unset, fixing interrupts, etc.
9319 */
9320 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9321 bool switch_to_fclk, bool allow_power_down)
9322 {
9323 uint32_t val;
9324
9325 assert_can_disable_lcpll(dev_priv);
9326
9327 val = I915_READ(LCPLL_CTL);
9328
9329 if (switch_to_fclk) {
9330 val |= LCPLL_CD_SOURCE_FCLK;
9331 I915_WRITE(LCPLL_CTL, val);
9332
9333 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9334 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9335 DRM_ERROR("Switching to FCLK failed\n");
9336
9337 val = I915_READ(LCPLL_CTL);
9338 }
9339
9340 val |= LCPLL_PLL_DISABLE;
9341 I915_WRITE(LCPLL_CTL, val);
9342 POSTING_READ(LCPLL_CTL);
9343
9344 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9345 DRM_ERROR("LCPLL still locked\n");
9346
9347 val = hsw_read_dcomp(dev_priv);
9348 val |= D_COMP_COMP_DISABLE;
9349 hsw_write_dcomp(dev_priv, val);
9350 ndelay(100);
9351
9352 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9353 1))
9354 DRM_ERROR("D_COMP RCOMP still in progress\n");
9355
9356 if (allow_power_down) {
9357 val = I915_READ(LCPLL_CTL);
9358 val |= LCPLL_POWER_DOWN_ALLOW;
9359 I915_WRITE(LCPLL_CTL, val);
9360 POSTING_READ(LCPLL_CTL);
9361 }
9362 }
9363
9364 /*
9365 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9366 * source.
9367 */
9368 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9369 {
9370 uint32_t val;
9371
9372 val = I915_READ(LCPLL_CTL);
9373
9374 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9375 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9376 return;
9377
9378 /*
9379 * Make sure we're not on PC8 state before disabling PC8, otherwise
9380 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9381 */
9382 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9383
9384 if (val & LCPLL_POWER_DOWN_ALLOW) {
9385 val &= ~LCPLL_POWER_DOWN_ALLOW;
9386 I915_WRITE(LCPLL_CTL, val);
9387 POSTING_READ(LCPLL_CTL);
9388 }
9389
9390 val = hsw_read_dcomp(dev_priv);
9391 val |= D_COMP_COMP_FORCE;
9392 val &= ~D_COMP_COMP_DISABLE;
9393 hsw_write_dcomp(dev_priv, val);
9394
9395 val = I915_READ(LCPLL_CTL);
9396 val &= ~LCPLL_PLL_DISABLE;
9397 I915_WRITE(LCPLL_CTL, val);
9398
9399 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9400 DRM_ERROR("LCPLL not locked yet\n");
9401
9402 if (val & LCPLL_CD_SOURCE_FCLK) {
9403 val = I915_READ(LCPLL_CTL);
9404 val &= ~LCPLL_CD_SOURCE_FCLK;
9405 I915_WRITE(LCPLL_CTL, val);
9406
9407 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9408 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9409 DRM_ERROR("Switching back to LCPLL failed\n");
9410 }
9411
9412 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9413 intel_update_cdclk(dev_priv->dev);
9414 }
9415
9416 /*
9417 * Package states C8 and deeper are really deep PC states that can only be
9418 * reached when all the devices on the system allow it, so even if the graphics
9419 * device allows PC8+, it doesn't mean the system will actually get to these
9420 * states. Our driver only allows PC8+ when going into runtime PM.
9421 *
9422 * The requirements for PC8+ are that all the outputs are disabled, the power
9423 * well is disabled and most interrupts are disabled, and these are also
9424 * requirements for runtime PM. When these conditions are met, we manually do
9425 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9426 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9427 * hang the machine.
9428 *
9429 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9430 * the state of some registers, so when we come back from PC8+ we need to
9431 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9432 * need to take care of the registers kept by RC6. Notice that this happens even
9433 * if we don't put the device in PCI D3 state (which is what currently happens
9434 * because of the runtime PM support).
9435 *
9436 * For more, read "Display Sequences for Package C8" on the hardware
9437 * documentation.
9438 */
9439 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9440 {
9441 struct drm_device *dev = dev_priv->dev;
9442 uint32_t val;
9443
9444 DRM_DEBUG_KMS("Enabling package C8+\n");
9445
9446 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9447 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9448 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9449 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9450 }
9451
9452 lpt_disable_clkout_dp(dev);
9453 hsw_disable_lcpll(dev_priv, true, true);
9454 }
9455
9456 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9457 {
9458 struct drm_device *dev = dev_priv->dev;
9459 uint32_t val;
9460
9461 DRM_DEBUG_KMS("Disabling package C8+\n");
9462
9463 hsw_restore_lcpll(dev_priv);
9464 lpt_init_pch_refclk(dev);
9465
9466 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9467 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9468 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9469 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9470 }
9471
9472 intel_prepare_ddi(dev);
9473 }
9474
9475 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9476 {
9477 struct drm_device *dev = old_state->dev;
9478 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9479
9480 broxton_set_cdclk(dev, req_cdclk);
9481 }
9482
9483 /* compute the max rate for new configuration */
9484 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9485 {
9486 struct intel_crtc *intel_crtc;
9487 struct intel_crtc_state *crtc_state;
9488 int max_pixel_rate = 0;
9489
9490 for_each_intel_crtc(state->dev, intel_crtc) {
9491 int pixel_rate;
9492
9493 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9494 if (IS_ERR(crtc_state))
9495 return PTR_ERR(crtc_state);
9496
9497 if (!crtc_state->base.enable)
9498 continue;
9499
9500 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9501
9502 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9503 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9504 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9505
9506 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9507 }
9508
9509 return max_pixel_rate;
9510 }
9511
9512 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9513 {
9514 struct drm_i915_private *dev_priv = dev->dev_private;
9515 uint32_t val, data;
9516 int ret;
9517
9518 if (WARN((I915_READ(LCPLL_CTL) &
9519 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9520 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9521 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9522 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9523 "trying to change cdclk frequency with cdclk not enabled\n"))
9524 return;
9525
9526 mutex_lock(&dev_priv->rps.hw_lock);
9527 ret = sandybridge_pcode_write(dev_priv,
9528 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9529 mutex_unlock(&dev_priv->rps.hw_lock);
9530 if (ret) {
9531 DRM_ERROR("failed to inform pcode about cdclk change\n");
9532 return;
9533 }
9534
9535 val = I915_READ(LCPLL_CTL);
9536 val |= LCPLL_CD_SOURCE_FCLK;
9537 I915_WRITE(LCPLL_CTL, val);
9538
9539 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9540 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9541 DRM_ERROR("Switching to FCLK failed\n");
9542
9543 val = I915_READ(LCPLL_CTL);
9544 val &= ~LCPLL_CLK_FREQ_MASK;
9545
9546 switch (cdclk) {
9547 case 450000:
9548 val |= LCPLL_CLK_FREQ_450;
9549 data = 0;
9550 break;
9551 case 540000:
9552 val |= LCPLL_CLK_FREQ_54O_BDW;
9553 data = 1;
9554 break;
9555 case 337500:
9556 val |= LCPLL_CLK_FREQ_337_5_BDW;
9557 data = 2;
9558 break;
9559 case 675000:
9560 val |= LCPLL_CLK_FREQ_675_BDW;
9561 data = 3;
9562 break;
9563 default:
9564 WARN(1, "invalid cdclk frequency\n");
9565 return;
9566 }
9567
9568 I915_WRITE(LCPLL_CTL, val);
9569
9570 val = I915_READ(LCPLL_CTL);
9571 val &= ~LCPLL_CD_SOURCE_FCLK;
9572 I915_WRITE(LCPLL_CTL, val);
9573
9574 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9575 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9576 DRM_ERROR("Switching back to LCPLL failed\n");
9577
9578 mutex_lock(&dev_priv->rps.hw_lock);
9579 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9580 mutex_unlock(&dev_priv->rps.hw_lock);
9581
9582 intel_update_cdclk(dev);
9583
9584 WARN(cdclk != dev_priv->cdclk_freq,
9585 "cdclk requested %d kHz but got %d kHz\n",
9586 cdclk, dev_priv->cdclk_freq);
9587 }
9588
9589 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9590 {
9591 struct drm_i915_private *dev_priv = to_i915(state->dev);
9592 int max_pixclk = ilk_max_pixel_rate(state);
9593 int cdclk;
9594
9595 /*
9596 * FIXME should also account for plane ratio
9597 * once 64bpp pixel formats are supported.
9598 */
9599 if (max_pixclk > 540000)
9600 cdclk = 675000;
9601 else if (max_pixclk > 450000)
9602 cdclk = 540000;
9603 else if (max_pixclk > 337500)
9604 cdclk = 450000;
9605 else
9606 cdclk = 337500;
9607
9608 /*
9609 * FIXME move the cdclk caclulation to
9610 * compute_config() so we can fail gracegully.
9611 */
9612 if (cdclk > dev_priv->max_cdclk_freq) {
9613 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9614 cdclk, dev_priv->max_cdclk_freq);
9615 cdclk = dev_priv->max_cdclk_freq;
9616 }
9617
9618 to_intel_atomic_state(state)->cdclk = cdclk;
9619
9620 return 0;
9621 }
9622
9623 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9624 {
9625 struct drm_device *dev = old_state->dev;
9626 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9627
9628 broadwell_set_cdclk(dev, req_cdclk);
9629 }
9630
9631 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9632 struct intel_crtc_state *crtc_state)
9633 {
9634 if (!intel_ddi_pll_select(crtc, crtc_state))
9635 return -EINVAL;
9636
9637 crtc->lowfreq_avail = false;
9638
9639 return 0;
9640 }
9641
9642 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9643 enum port port,
9644 struct intel_crtc_state *pipe_config)
9645 {
9646 switch (port) {
9647 case PORT_A:
9648 pipe_config->ddi_pll_sel = SKL_DPLL0;
9649 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9650 break;
9651 case PORT_B:
9652 pipe_config->ddi_pll_sel = SKL_DPLL1;
9653 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9654 break;
9655 case PORT_C:
9656 pipe_config->ddi_pll_sel = SKL_DPLL2;
9657 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9658 break;
9659 default:
9660 DRM_ERROR("Incorrect port type\n");
9661 }
9662 }
9663
9664 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9665 enum port port,
9666 struct intel_crtc_state *pipe_config)
9667 {
9668 u32 temp, dpll_ctl1;
9669
9670 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9671 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9672
9673 switch (pipe_config->ddi_pll_sel) {
9674 case SKL_DPLL0:
9675 /*
9676 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9677 * of the shared DPLL framework and thus needs to be read out
9678 * separately
9679 */
9680 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9681 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9682 break;
9683 case SKL_DPLL1:
9684 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9685 break;
9686 case SKL_DPLL2:
9687 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9688 break;
9689 case SKL_DPLL3:
9690 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9691 break;
9692 }
9693 }
9694
9695 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9696 enum port port,
9697 struct intel_crtc_state *pipe_config)
9698 {
9699 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9700
9701 switch (pipe_config->ddi_pll_sel) {
9702 case PORT_CLK_SEL_WRPLL1:
9703 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9704 break;
9705 case PORT_CLK_SEL_WRPLL2:
9706 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9707 break;
9708 }
9709 }
9710
9711 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9712 struct intel_crtc_state *pipe_config)
9713 {
9714 struct drm_device *dev = crtc->base.dev;
9715 struct drm_i915_private *dev_priv = dev->dev_private;
9716 struct intel_shared_dpll *pll;
9717 enum port port;
9718 uint32_t tmp;
9719
9720 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9721
9722 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9723
9724 if (IS_SKYLAKE(dev))
9725 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9726 else if (IS_BROXTON(dev))
9727 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9728 else
9729 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9730
9731 if (pipe_config->shared_dpll >= 0) {
9732 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9733
9734 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9735 &pipe_config->dpll_hw_state));
9736 }
9737
9738 /*
9739 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9740 * DDI E. So just check whether this pipe is wired to DDI E and whether
9741 * the PCH transcoder is on.
9742 */
9743 if (INTEL_INFO(dev)->gen < 9 &&
9744 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9745 pipe_config->has_pch_encoder = true;
9746
9747 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9748 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9749 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9750
9751 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9752 }
9753 }
9754
9755 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9756 struct intel_crtc_state *pipe_config)
9757 {
9758 struct drm_device *dev = crtc->base.dev;
9759 struct drm_i915_private *dev_priv = dev->dev_private;
9760 enum intel_display_power_domain pfit_domain;
9761 uint32_t tmp;
9762
9763 if (!intel_display_power_is_enabled(dev_priv,
9764 POWER_DOMAIN_PIPE(crtc->pipe)))
9765 return false;
9766
9767 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9768 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9769
9770 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9771 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9772 enum pipe trans_edp_pipe;
9773 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9774 default:
9775 WARN(1, "unknown pipe linked to edp transcoder\n");
9776 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9777 case TRANS_DDI_EDP_INPUT_A_ON:
9778 trans_edp_pipe = PIPE_A;
9779 break;
9780 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9781 trans_edp_pipe = PIPE_B;
9782 break;
9783 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9784 trans_edp_pipe = PIPE_C;
9785 break;
9786 }
9787
9788 if (trans_edp_pipe == crtc->pipe)
9789 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9790 }
9791
9792 if (!intel_display_power_is_enabled(dev_priv,
9793 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9794 return false;
9795
9796 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9797 if (!(tmp & PIPECONF_ENABLE))
9798 return false;
9799
9800 haswell_get_ddi_port_state(crtc, pipe_config);
9801
9802 intel_get_pipe_timings(crtc, pipe_config);
9803
9804 if (INTEL_INFO(dev)->gen >= 9) {
9805 skl_init_scalers(dev, crtc, pipe_config);
9806 }
9807
9808 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9809
9810 if (INTEL_INFO(dev)->gen >= 9) {
9811 pipe_config->scaler_state.scaler_id = -1;
9812 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9813 }
9814
9815 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9816 if (INTEL_INFO(dev)->gen == 9)
9817 skylake_get_pfit_config(crtc, pipe_config);
9818 else if (INTEL_INFO(dev)->gen < 9)
9819 ironlake_get_pfit_config(crtc, pipe_config);
9820 else
9821 MISSING_CASE(INTEL_INFO(dev)->gen);
9822 }
9823
9824 if (IS_HASWELL(dev))
9825 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9826 (I915_READ(IPS_CTL) & IPS_ENABLE);
9827
9828 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9829 pipe_config->pixel_multiplier =
9830 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9831 } else {
9832 pipe_config->pixel_multiplier = 1;
9833 }
9834
9835 return true;
9836 }
9837
9838 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9839 {
9840 struct drm_device *dev = crtc->dev;
9841 struct drm_i915_private *dev_priv = dev->dev_private;
9842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9843 uint32_t cntl = 0, size = 0;
9844
9845 if (base) {
9846 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9847 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9848 unsigned int stride = roundup_pow_of_two(width) * 4;
9849
9850 switch (stride) {
9851 default:
9852 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9853 width, stride);
9854 stride = 256;
9855 /* fallthrough */
9856 case 256:
9857 case 512:
9858 case 1024:
9859 case 2048:
9860 break;
9861 }
9862
9863 cntl |= CURSOR_ENABLE |
9864 CURSOR_GAMMA_ENABLE |
9865 CURSOR_FORMAT_ARGB |
9866 CURSOR_STRIDE(stride);
9867
9868 size = (height << 12) | width;
9869 }
9870
9871 if (intel_crtc->cursor_cntl != 0 &&
9872 (intel_crtc->cursor_base != base ||
9873 intel_crtc->cursor_size != size ||
9874 intel_crtc->cursor_cntl != cntl)) {
9875 /* On these chipsets we can only modify the base/size/stride
9876 * whilst the cursor is disabled.
9877 */
9878 I915_WRITE(_CURACNTR, 0);
9879 POSTING_READ(_CURACNTR);
9880 intel_crtc->cursor_cntl = 0;
9881 }
9882
9883 if (intel_crtc->cursor_base != base) {
9884 I915_WRITE(_CURABASE, base);
9885 intel_crtc->cursor_base = base;
9886 }
9887
9888 if (intel_crtc->cursor_size != size) {
9889 I915_WRITE(CURSIZE, size);
9890 intel_crtc->cursor_size = size;
9891 }
9892
9893 if (intel_crtc->cursor_cntl != cntl) {
9894 I915_WRITE(_CURACNTR, cntl);
9895 POSTING_READ(_CURACNTR);
9896 intel_crtc->cursor_cntl = cntl;
9897 }
9898 }
9899
9900 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9901 {
9902 struct drm_device *dev = crtc->dev;
9903 struct drm_i915_private *dev_priv = dev->dev_private;
9904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9905 int pipe = intel_crtc->pipe;
9906 uint32_t cntl;
9907
9908 cntl = 0;
9909 if (base) {
9910 cntl = MCURSOR_GAMMA_ENABLE;
9911 switch (intel_crtc->base.cursor->state->crtc_w) {
9912 case 64:
9913 cntl |= CURSOR_MODE_64_ARGB_AX;
9914 break;
9915 case 128:
9916 cntl |= CURSOR_MODE_128_ARGB_AX;
9917 break;
9918 case 256:
9919 cntl |= CURSOR_MODE_256_ARGB_AX;
9920 break;
9921 default:
9922 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9923 return;
9924 }
9925 cntl |= pipe << 28; /* Connect to correct pipe */
9926
9927 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9928 cntl |= CURSOR_PIPE_CSC_ENABLE;
9929 }
9930
9931 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9932 cntl |= CURSOR_ROTATE_180;
9933
9934 if (intel_crtc->cursor_cntl != cntl) {
9935 I915_WRITE(CURCNTR(pipe), cntl);
9936 POSTING_READ(CURCNTR(pipe));
9937 intel_crtc->cursor_cntl = cntl;
9938 }
9939
9940 /* and commit changes on next vblank */
9941 I915_WRITE(CURBASE(pipe), base);
9942 POSTING_READ(CURBASE(pipe));
9943
9944 intel_crtc->cursor_base = base;
9945 }
9946
9947 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9948 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9949 bool on)
9950 {
9951 struct drm_device *dev = crtc->dev;
9952 struct drm_i915_private *dev_priv = dev->dev_private;
9953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9954 int pipe = intel_crtc->pipe;
9955 int x = crtc->cursor_x;
9956 int y = crtc->cursor_y;
9957 u32 base = 0, pos = 0;
9958
9959 if (on)
9960 base = intel_crtc->cursor_addr;
9961
9962 if (x >= intel_crtc->config->pipe_src_w)
9963 base = 0;
9964
9965 if (y >= intel_crtc->config->pipe_src_h)
9966 base = 0;
9967
9968 if (x < 0) {
9969 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9970 base = 0;
9971
9972 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9973 x = -x;
9974 }
9975 pos |= x << CURSOR_X_SHIFT;
9976
9977 if (y < 0) {
9978 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9979 base = 0;
9980
9981 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9982 y = -y;
9983 }
9984 pos |= y << CURSOR_Y_SHIFT;
9985
9986 if (base == 0 && intel_crtc->cursor_base == 0)
9987 return;
9988
9989 I915_WRITE(CURPOS(pipe), pos);
9990
9991 /* ILK+ do this automagically */
9992 if (HAS_GMCH_DISPLAY(dev) &&
9993 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9994 base += (intel_crtc->base.cursor->state->crtc_h *
9995 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9996 }
9997
9998 if (IS_845G(dev) || IS_I865G(dev))
9999 i845_update_cursor(crtc, base);
10000 else
10001 i9xx_update_cursor(crtc, base);
10002 }
10003
10004 static bool cursor_size_ok(struct drm_device *dev,
10005 uint32_t width, uint32_t height)
10006 {
10007 if (width == 0 || height == 0)
10008 return false;
10009
10010 /*
10011 * 845g/865g are special in that they are only limited by
10012 * the width of their cursors, the height is arbitrary up to
10013 * the precision of the register. Everything else requires
10014 * square cursors, limited to a few power-of-two sizes.
10015 */
10016 if (IS_845G(dev) || IS_I865G(dev)) {
10017 if ((width & 63) != 0)
10018 return false;
10019
10020 if (width > (IS_845G(dev) ? 64 : 512))
10021 return false;
10022
10023 if (height > 1023)
10024 return false;
10025 } else {
10026 switch (width | height) {
10027 case 256:
10028 case 128:
10029 if (IS_GEN2(dev))
10030 return false;
10031 case 64:
10032 break;
10033 default:
10034 return false;
10035 }
10036 }
10037
10038 return true;
10039 }
10040
10041 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10042 u16 *blue, uint32_t start, uint32_t size)
10043 {
10044 int end = (start + size > 256) ? 256 : start + size, i;
10045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10046
10047 for (i = start; i < end; i++) {
10048 intel_crtc->lut_r[i] = red[i] >> 8;
10049 intel_crtc->lut_g[i] = green[i] >> 8;
10050 intel_crtc->lut_b[i] = blue[i] >> 8;
10051 }
10052
10053 intel_crtc_load_lut(crtc);
10054 }
10055
10056 /* VESA 640x480x72Hz mode to set on the pipe */
10057 static struct drm_display_mode load_detect_mode = {
10058 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10059 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10060 };
10061
10062 struct drm_framebuffer *
10063 __intel_framebuffer_create(struct drm_device *dev,
10064 struct drm_mode_fb_cmd2 *mode_cmd,
10065 struct drm_i915_gem_object *obj)
10066 {
10067 struct intel_framebuffer *intel_fb;
10068 int ret;
10069
10070 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10071 if (!intel_fb) {
10072 drm_gem_object_unreference(&obj->base);
10073 return ERR_PTR(-ENOMEM);
10074 }
10075
10076 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10077 if (ret)
10078 goto err;
10079
10080 return &intel_fb->base;
10081 err:
10082 drm_gem_object_unreference(&obj->base);
10083 kfree(intel_fb);
10084
10085 return ERR_PTR(ret);
10086 }
10087
10088 static struct drm_framebuffer *
10089 intel_framebuffer_create(struct drm_device *dev,
10090 struct drm_mode_fb_cmd2 *mode_cmd,
10091 struct drm_i915_gem_object *obj)
10092 {
10093 struct drm_framebuffer *fb;
10094 int ret;
10095
10096 ret = i915_mutex_lock_interruptible(dev);
10097 if (ret)
10098 return ERR_PTR(ret);
10099 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10100 mutex_unlock(&dev->struct_mutex);
10101
10102 return fb;
10103 }
10104
10105 static u32
10106 intel_framebuffer_pitch_for_width(int width, int bpp)
10107 {
10108 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10109 return ALIGN(pitch, 64);
10110 }
10111
10112 static u32
10113 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10114 {
10115 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10116 return PAGE_ALIGN(pitch * mode->vdisplay);
10117 }
10118
10119 static struct drm_framebuffer *
10120 intel_framebuffer_create_for_mode(struct drm_device *dev,
10121 struct drm_display_mode *mode,
10122 int depth, int bpp)
10123 {
10124 struct drm_i915_gem_object *obj;
10125 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10126
10127 obj = i915_gem_alloc_object(dev,
10128 intel_framebuffer_size_for_mode(mode, bpp));
10129 if (obj == NULL)
10130 return ERR_PTR(-ENOMEM);
10131
10132 mode_cmd.width = mode->hdisplay;
10133 mode_cmd.height = mode->vdisplay;
10134 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10135 bpp);
10136 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10137
10138 return intel_framebuffer_create(dev, &mode_cmd, obj);
10139 }
10140
10141 static struct drm_framebuffer *
10142 mode_fits_in_fbdev(struct drm_device *dev,
10143 struct drm_display_mode *mode)
10144 {
10145 #ifdef CONFIG_DRM_FBDEV_EMULATION
10146 struct drm_i915_private *dev_priv = dev->dev_private;
10147 struct drm_i915_gem_object *obj;
10148 struct drm_framebuffer *fb;
10149
10150 if (!dev_priv->fbdev)
10151 return NULL;
10152
10153 if (!dev_priv->fbdev->fb)
10154 return NULL;
10155
10156 obj = dev_priv->fbdev->fb->obj;
10157 BUG_ON(!obj);
10158
10159 fb = &dev_priv->fbdev->fb->base;
10160 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10161 fb->bits_per_pixel))
10162 return NULL;
10163
10164 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10165 return NULL;
10166
10167 return fb;
10168 #else
10169 return NULL;
10170 #endif
10171 }
10172
10173 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10174 struct drm_crtc *crtc,
10175 struct drm_display_mode *mode,
10176 struct drm_framebuffer *fb,
10177 int x, int y)
10178 {
10179 struct drm_plane_state *plane_state;
10180 int hdisplay, vdisplay;
10181 int ret;
10182
10183 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10184 if (IS_ERR(plane_state))
10185 return PTR_ERR(plane_state);
10186
10187 if (mode)
10188 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10189 else
10190 hdisplay = vdisplay = 0;
10191
10192 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10193 if (ret)
10194 return ret;
10195 drm_atomic_set_fb_for_plane(plane_state, fb);
10196 plane_state->crtc_x = 0;
10197 plane_state->crtc_y = 0;
10198 plane_state->crtc_w = hdisplay;
10199 plane_state->crtc_h = vdisplay;
10200 plane_state->src_x = x << 16;
10201 plane_state->src_y = y << 16;
10202 plane_state->src_w = hdisplay << 16;
10203 plane_state->src_h = vdisplay << 16;
10204
10205 return 0;
10206 }
10207
10208 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10209 struct drm_display_mode *mode,
10210 struct intel_load_detect_pipe *old,
10211 struct drm_modeset_acquire_ctx *ctx)
10212 {
10213 struct intel_crtc *intel_crtc;
10214 struct intel_encoder *intel_encoder =
10215 intel_attached_encoder(connector);
10216 struct drm_crtc *possible_crtc;
10217 struct drm_encoder *encoder = &intel_encoder->base;
10218 struct drm_crtc *crtc = NULL;
10219 struct drm_device *dev = encoder->dev;
10220 struct drm_framebuffer *fb;
10221 struct drm_mode_config *config = &dev->mode_config;
10222 struct drm_atomic_state *state = NULL;
10223 struct drm_connector_state *connector_state;
10224 struct intel_crtc_state *crtc_state;
10225 int ret, i = -1;
10226
10227 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10228 connector->base.id, connector->name,
10229 encoder->base.id, encoder->name);
10230
10231 retry:
10232 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10233 if (ret)
10234 goto fail;
10235
10236 /*
10237 * Algorithm gets a little messy:
10238 *
10239 * - if the connector already has an assigned crtc, use it (but make
10240 * sure it's on first)
10241 *
10242 * - try to find the first unused crtc that can drive this connector,
10243 * and use that if we find one
10244 */
10245
10246 /* See if we already have a CRTC for this connector */
10247 if (encoder->crtc) {
10248 crtc = encoder->crtc;
10249
10250 ret = drm_modeset_lock(&crtc->mutex, ctx);
10251 if (ret)
10252 goto fail;
10253 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10254 if (ret)
10255 goto fail;
10256
10257 old->dpms_mode = connector->dpms;
10258 old->load_detect_temp = false;
10259
10260 /* Make sure the crtc and connector are running */
10261 if (connector->dpms != DRM_MODE_DPMS_ON)
10262 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10263
10264 return true;
10265 }
10266
10267 /* Find an unused one (if possible) */
10268 for_each_crtc(dev, possible_crtc) {
10269 i++;
10270 if (!(encoder->possible_crtcs & (1 << i)))
10271 continue;
10272 if (possible_crtc->state->enable)
10273 continue;
10274
10275 crtc = possible_crtc;
10276 break;
10277 }
10278
10279 /*
10280 * If we didn't find an unused CRTC, don't use any.
10281 */
10282 if (!crtc) {
10283 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10284 goto fail;
10285 }
10286
10287 ret = drm_modeset_lock(&crtc->mutex, ctx);
10288 if (ret)
10289 goto fail;
10290 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10291 if (ret)
10292 goto fail;
10293
10294 intel_crtc = to_intel_crtc(crtc);
10295 old->dpms_mode = connector->dpms;
10296 old->load_detect_temp = true;
10297 old->release_fb = NULL;
10298
10299 state = drm_atomic_state_alloc(dev);
10300 if (!state)
10301 return false;
10302
10303 state->acquire_ctx = ctx;
10304
10305 connector_state = drm_atomic_get_connector_state(state, connector);
10306 if (IS_ERR(connector_state)) {
10307 ret = PTR_ERR(connector_state);
10308 goto fail;
10309 }
10310
10311 connector_state->crtc = crtc;
10312 connector_state->best_encoder = &intel_encoder->base;
10313
10314 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10315 if (IS_ERR(crtc_state)) {
10316 ret = PTR_ERR(crtc_state);
10317 goto fail;
10318 }
10319
10320 crtc_state->base.active = crtc_state->base.enable = true;
10321
10322 if (!mode)
10323 mode = &load_detect_mode;
10324
10325 /* We need a framebuffer large enough to accommodate all accesses
10326 * that the plane may generate whilst we perform load detection.
10327 * We can not rely on the fbcon either being present (we get called
10328 * during its initialisation to detect all boot displays, or it may
10329 * not even exist) or that it is large enough to satisfy the
10330 * requested mode.
10331 */
10332 fb = mode_fits_in_fbdev(dev, mode);
10333 if (fb == NULL) {
10334 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10335 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10336 old->release_fb = fb;
10337 } else
10338 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10339 if (IS_ERR(fb)) {
10340 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10341 goto fail;
10342 }
10343
10344 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10345 if (ret)
10346 goto fail;
10347
10348 drm_mode_copy(&crtc_state->base.mode, mode);
10349
10350 if (drm_atomic_commit(state)) {
10351 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10352 if (old->release_fb)
10353 old->release_fb->funcs->destroy(old->release_fb);
10354 goto fail;
10355 }
10356 crtc->primary->crtc = crtc;
10357
10358 /* let the connector get through one full cycle before testing */
10359 intel_wait_for_vblank(dev, intel_crtc->pipe);
10360 return true;
10361
10362 fail:
10363 drm_atomic_state_free(state);
10364 state = NULL;
10365
10366 if (ret == -EDEADLK) {
10367 drm_modeset_backoff(ctx);
10368 goto retry;
10369 }
10370
10371 return false;
10372 }
10373
10374 void intel_release_load_detect_pipe(struct drm_connector *connector,
10375 struct intel_load_detect_pipe *old,
10376 struct drm_modeset_acquire_ctx *ctx)
10377 {
10378 struct drm_device *dev = connector->dev;
10379 struct intel_encoder *intel_encoder =
10380 intel_attached_encoder(connector);
10381 struct drm_encoder *encoder = &intel_encoder->base;
10382 struct drm_crtc *crtc = encoder->crtc;
10383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10384 struct drm_atomic_state *state;
10385 struct drm_connector_state *connector_state;
10386 struct intel_crtc_state *crtc_state;
10387 int ret;
10388
10389 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10390 connector->base.id, connector->name,
10391 encoder->base.id, encoder->name);
10392
10393 if (old->load_detect_temp) {
10394 state = drm_atomic_state_alloc(dev);
10395 if (!state)
10396 goto fail;
10397
10398 state->acquire_ctx = ctx;
10399
10400 connector_state = drm_atomic_get_connector_state(state, connector);
10401 if (IS_ERR(connector_state))
10402 goto fail;
10403
10404 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10405 if (IS_ERR(crtc_state))
10406 goto fail;
10407
10408 connector_state->best_encoder = NULL;
10409 connector_state->crtc = NULL;
10410
10411 crtc_state->base.enable = crtc_state->base.active = false;
10412
10413 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10414 0, 0);
10415 if (ret)
10416 goto fail;
10417
10418 ret = drm_atomic_commit(state);
10419 if (ret)
10420 goto fail;
10421
10422 if (old->release_fb) {
10423 drm_framebuffer_unregister_private(old->release_fb);
10424 drm_framebuffer_unreference(old->release_fb);
10425 }
10426
10427 return;
10428 }
10429
10430 /* Switch crtc and encoder back off if necessary */
10431 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10432 connector->funcs->dpms(connector, old->dpms_mode);
10433
10434 return;
10435 fail:
10436 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10437 drm_atomic_state_free(state);
10438 }
10439
10440 static int i9xx_pll_refclk(struct drm_device *dev,
10441 const struct intel_crtc_state *pipe_config)
10442 {
10443 struct drm_i915_private *dev_priv = dev->dev_private;
10444 u32 dpll = pipe_config->dpll_hw_state.dpll;
10445
10446 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10447 return dev_priv->vbt.lvds_ssc_freq;
10448 else if (HAS_PCH_SPLIT(dev))
10449 return 120000;
10450 else if (!IS_GEN2(dev))
10451 return 96000;
10452 else
10453 return 48000;
10454 }
10455
10456 /* Returns the clock of the currently programmed mode of the given pipe. */
10457 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10458 struct intel_crtc_state *pipe_config)
10459 {
10460 struct drm_device *dev = crtc->base.dev;
10461 struct drm_i915_private *dev_priv = dev->dev_private;
10462 int pipe = pipe_config->cpu_transcoder;
10463 u32 dpll = pipe_config->dpll_hw_state.dpll;
10464 u32 fp;
10465 intel_clock_t clock;
10466 int port_clock;
10467 int refclk = i9xx_pll_refclk(dev, pipe_config);
10468
10469 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10470 fp = pipe_config->dpll_hw_state.fp0;
10471 else
10472 fp = pipe_config->dpll_hw_state.fp1;
10473
10474 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10475 if (IS_PINEVIEW(dev)) {
10476 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10477 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10478 } else {
10479 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10480 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10481 }
10482
10483 if (!IS_GEN2(dev)) {
10484 if (IS_PINEVIEW(dev))
10485 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10486 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10487 else
10488 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10489 DPLL_FPA01_P1_POST_DIV_SHIFT);
10490
10491 switch (dpll & DPLL_MODE_MASK) {
10492 case DPLLB_MODE_DAC_SERIAL:
10493 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10494 5 : 10;
10495 break;
10496 case DPLLB_MODE_LVDS:
10497 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10498 7 : 14;
10499 break;
10500 default:
10501 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10502 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10503 return;
10504 }
10505
10506 if (IS_PINEVIEW(dev))
10507 port_clock = pnv_calc_dpll_params(refclk, &clock);
10508 else
10509 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10510 } else {
10511 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10512 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10513
10514 if (is_lvds) {
10515 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10516 DPLL_FPA01_P1_POST_DIV_SHIFT);
10517
10518 if (lvds & LVDS_CLKB_POWER_UP)
10519 clock.p2 = 7;
10520 else
10521 clock.p2 = 14;
10522 } else {
10523 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10524 clock.p1 = 2;
10525 else {
10526 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10527 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10528 }
10529 if (dpll & PLL_P2_DIVIDE_BY_4)
10530 clock.p2 = 4;
10531 else
10532 clock.p2 = 2;
10533 }
10534
10535 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10536 }
10537
10538 /*
10539 * This value includes pixel_multiplier. We will use
10540 * port_clock to compute adjusted_mode.crtc_clock in the
10541 * encoder's get_config() function.
10542 */
10543 pipe_config->port_clock = port_clock;
10544 }
10545
10546 int intel_dotclock_calculate(int link_freq,
10547 const struct intel_link_m_n *m_n)
10548 {
10549 /*
10550 * The calculation for the data clock is:
10551 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10552 * But we want to avoid losing precison if possible, so:
10553 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10554 *
10555 * and the link clock is simpler:
10556 * link_clock = (m * link_clock) / n
10557 */
10558
10559 if (!m_n->link_n)
10560 return 0;
10561
10562 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10563 }
10564
10565 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10566 struct intel_crtc_state *pipe_config)
10567 {
10568 struct drm_device *dev = crtc->base.dev;
10569
10570 /* read out port_clock from the DPLL */
10571 i9xx_crtc_clock_get(crtc, pipe_config);
10572
10573 /*
10574 * This value does not include pixel_multiplier.
10575 * We will check that port_clock and adjusted_mode.crtc_clock
10576 * agree once we know their relationship in the encoder's
10577 * get_config() function.
10578 */
10579 pipe_config->base.adjusted_mode.crtc_clock =
10580 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10581 &pipe_config->fdi_m_n);
10582 }
10583
10584 /** Returns the currently programmed mode of the given pipe. */
10585 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10586 struct drm_crtc *crtc)
10587 {
10588 struct drm_i915_private *dev_priv = dev->dev_private;
10589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10590 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10591 struct drm_display_mode *mode;
10592 struct intel_crtc_state pipe_config;
10593 int htot = I915_READ(HTOTAL(cpu_transcoder));
10594 int hsync = I915_READ(HSYNC(cpu_transcoder));
10595 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10596 int vsync = I915_READ(VSYNC(cpu_transcoder));
10597 enum pipe pipe = intel_crtc->pipe;
10598
10599 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10600 if (!mode)
10601 return NULL;
10602
10603 /*
10604 * Construct a pipe_config sufficient for getting the clock info
10605 * back out of crtc_clock_get.
10606 *
10607 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10608 * to use a real value here instead.
10609 */
10610 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10611 pipe_config.pixel_multiplier = 1;
10612 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10613 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10614 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10615 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10616
10617 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10618 mode->hdisplay = (htot & 0xffff) + 1;
10619 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10620 mode->hsync_start = (hsync & 0xffff) + 1;
10621 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10622 mode->vdisplay = (vtot & 0xffff) + 1;
10623 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10624 mode->vsync_start = (vsync & 0xffff) + 1;
10625 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10626
10627 drm_mode_set_name(mode);
10628
10629 return mode;
10630 }
10631
10632 void intel_mark_busy(struct drm_device *dev)
10633 {
10634 struct drm_i915_private *dev_priv = dev->dev_private;
10635
10636 if (dev_priv->mm.busy)
10637 return;
10638
10639 intel_runtime_pm_get(dev_priv);
10640 i915_update_gfx_val(dev_priv);
10641 if (INTEL_INFO(dev)->gen >= 6)
10642 gen6_rps_busy(dev_priv);
10643 dev_priv->mm.busy = true;
10644 }
10645
10646 void intel_mark_idle(struct drm_device *dev)
10647 {
10648 struct drm_i915_private *dev_priv = dev->dev_private;
10649
10650 if (!dev_priv->mm.busy)
10651 return;
10652
10653 dev_priv->mm.busy = false;
10654
10655 if (INTEL_INFO(dev)->gen >= 6)
10656 gen6_rps_idle(dev->dev_private);
10657
10658 intel_runtime_pm_put(dev_priv);
10659 }
10660
10661 static void intel_crtc_destroy(struct drm_crtc *crtc)
10662 {
10663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10664 struct drm_device *dev = crtc->dev;
10665 struct intel_unpin_work *work;
10666
10667 spin_lock_irq(&dev->event_lock);
10668 work = intel_crtc->unpin_work;
10669 intel_crtc->unpin_work = NULL;
10670 spin_unlock_irq(&dev->event_lock);
10671
10672 if (work) {
10673 cancel_work_sync(&work->work);
10674 kfree(work);
10675 }
10676
10677 drm_crtc_cleanup(crtc);
10678
10679 kfree(intel_crtc);
10680 }
10681
10682 static void intel_unpin_work_fn(struct work_struct *__work)
10683 {
10684 struct intel_unpin_work *work =
10685 container_of(__work, struct intel_unpin_work, work);
10686 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10687 struct drm_device *dev = crtc->base.dev;
10688 struct drm_plane *primary = crtc->base.primary;
10689
10690 mutex_lock(&dev->struct_mutex);
10691 intel_unpin_fb_obj(work->old_fb, primary->state);
10692 drm_gem_object_unreference(&work->pending_flip_obj->base);
10693
10694 if (work->flip_queued_req)
10695 i915_gem_request_assign(&work->flip_queued_req, NULL);
10696 mutex_unlock(&dev->struct_mutex);
10697
10698 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10699 drm_framebuffer_unreference(work->old_fb);
10700
10701 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10702 atomic_dec(&crtc->unpin_work_count);
10703
10704 kfree(work);
10705 }
10706
10707 static void do_intel_finish_page_flip(struct drm_device *dev,
10708 struct drm_crtc *crtc)
10709 {
10710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10711 struct intel_unpin_work *work;
10712 unsigned long flags;
10713
10714 /* Ignore early vblank irqs */
10715 if (intel_crtc == NULL)
10716 return;
10717
10718 /*
10719 * This is called both by irq handlers and the reset code (to complete
10720 * lost pageflips) so needs the full irqsave spinlocks.
10721 */
10722 spin_lock_irqsave(&dev->event_lock, flags);
10723 work = intel_crtc->unpin_work;
10724
10725 /* Ensure we don't miss a work->pending update ... */
10726 smp_rmb();
10727
10728 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10729 spin_unlock_irqrestore(&dev->event_lock, flags);
10730 return;
10731 }
10732
10733 page_flip_completed(intel_crtc);
10734
10735 spin_unlock_irqrestore(&dev->event_lock, flags);
10736 }
10737
10738 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10739 {
10740 struct drm_i915_private *dev_priv = dev->dev_private;
10741 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10742
10743 do_intel_finish_page_flip(dev, crtc);
10744 }
10745
10746 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10747 {
10748 struct drm_i915_private *dev_priv = dev->dev_private;
10749 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10750
10751 do_intel_finish_page_flip(dev, crtc);
10752 }
10753
10754 /* Is 'a' after or equal to 'b'? */
10755 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10756 {
10757 return !((a - b) & 0x80000000);
10758 }
10759
10760 static bool page_flip_finished(struct intel_crtc *crtc)
10761 {
10762 struct drm_device *dev = crtc->base.dev;
10763 struct drm_i915_private *dev_priv = dev->dev_private;
10764
10765 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10766 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10767 return true;
10768
10769 /*
10770 * The relevant registers doen't exist on pre-ctg.
10771 * As the flip done interrupt doesn't trigger for mmio
10772 * flips on gmch platforms, a flip count check isn't
10773 * really needed there. But since ctg has the registers,
10774 * include it in the check anyway.
10775 */
10776 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10777 return true;
10778
10779 /*
10780 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10781 * used the same base address. In that case the mmio flip might
10782 * have completed, but the CS hasn't even executed the flip yet.
10783 *
10784 * A flip count check isn't enough as the CS might have updated
10785 * the base address just after start of vblank, but before we
10786 * managed to process the interrupt. This means we'd complete the
10787 * CS flip too soon.
10788 *
10789 * Combining both checks should get us a good enough result. It may
10790 * still happen that the CS flip has been executed, but has not
10791 * yet actually completed. But in case the base address is the same
10792 * anyway, we don't really care.
10793 */
10794 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10795 crtc->unpin_work->gtt_offset &&
10796 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10797 crtc->unpin_work->flip_count);
10798 }
10799
10800 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10801 {
10802 struct drm_i915_private *dev_priv = dev->dev_private;
10803 struct intel_crtc *intel_crtc =
10804 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10805 unsigned long flags;
10806
10807
10808 /*
10809 * This is called both by irq handlers and the reset code (to complete
10810 * lost pageflips) so needs the full irqsave spinlocks.
10811 *
10812 * NB: An MMIO update of the plane base pointer will also
10813 * generate a page-flip completion irq, i.e. every modeset
10814 * is also accompanied by a spurious intel_prepare_page_flip().
10815 */
10816 spin_lock_irqsave(&dev->event_lock, flags);
10817 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10818 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10819 spin_unlock_irqrestore(&dev->event_lock, flags);
10820 }
10821
10822 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10823 {
10824 /* Ensure that the work item is consistent when activating it ... */
10825 smp_wmb();
10826 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10827 /* and that it is marked active as soon as the irq could fire. */
10828 smp_wmb();
10829 }
10830
10831 static int intel_gen2_queue_flip(struct drm_device *dev,
10832 struct drm_crtc *crtc,
10833 struct drm_framebuffer *fb,
10834 struct drm_i915_gem_object *obj,
10835 struct drm_i915_gem_request *req,
10836 uint32_t flags)
10837 {
10838 struct intel_engine_cs *ring = req->ring;
10839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10840 u32 flip_mask;
10841 int ret;
10842
10843 ret = intel_ring_begin(req, 6);
10844 if (ret)
10845 return ret;
10846
10847 /* Can't queue multiple flips, so wait for the previous
10848 * one to finish before executing the next.
10849 */
10850 if (intel_crtc->plane)
10851 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10852 else
10853 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10854 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10855 intel_ring_emit(ring, MI_NOOP);
10856 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10857 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10858 intel_ring_emit(ring, fb->pitches[0]);
10859 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10860 intel_ring_emit(ring, 0); /* aux display base address, unused */
10861
10862 intel_mark_page_flip_active(intel_crtc);
10863 return 0;
10864 }
10865
10866 static int intel_gen3_queue_flip(struct drm_device *dev,
10867 struct drm_crtc *crtc,
10868 struct drm_framebuffer *fb,
10869 struct drm_i915_gem_object *obj,
10870 struct drm_i915_gem_request *req,
10871 uint32_t flags)
10872 {
10873 struct intel_engine_cs *ring = req->ring;
10874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10875 u32 flip_mask;
10876 int ret;
10877
10878 ret = intel_ring_begin(req, 6);
10879 if (ret)
10880 return ret;
10881
10882 if (intel_crtc->plane)
10883 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10884 else
10885 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10886 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10887 intel_ring_emit(ring, MI_NOOP);
10888 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10889 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10890 intel_ring_emit(ring, fb->pitches[0]);
10891 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10892 intel_ring_emit(ring, MI_NOOP);
10893
10894 intel_mark_page_flip_active(intel_crtc);
10895 return 0;
10896 }
10897
10898 static int intel_gen4_queue_flip(struct drm_device *dev,
10899 struct drm_crtc *crtc,
10900 struct drm_framebuffer *fb,
10901 struct drm_i915_gem_object *obj,
10902 struct drm_i915_gem_request *req,
10903 uint32_t flags)
10904 {
10905 struct intel_engine_cs *ring = req->ring;
10906 struct drm_i915_private *dev_priv = dev->dev_private;
10907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10908 uint32_t pf, pipesrc;
10909 int ret;
10910
10911 ret = intel_ring_begin(req, 4);
10912 if (ret)
10913 return ret;
10914
10915 /* i965+ uses the linear or tiled offsets from the
10916 * Display Registers (which do not change across a page-flip)
10917 * so we need only reprogram the base address.
10918 */
10919 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10920 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10921 intel_ring_emit(ring, fb->pitches[0]);
10922 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10923 obj->tiling_mode);
10924
10925 /* XXX Enabling the panel-fitter across page-flip is so far
10926 * untested on non-native modes, so ignore it for now.
10927 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10928 */
10929 pf = 0;
10930 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10931 intel_ring_emit(ring, pf | pipesrc);
10932
10933 intel_mark_page_flip_active(intel_crtc);
10934 return 0;
10935 }
10936
10937 static int intel_gen6_queue_flip(struct drm_device *dev,
10938 struct drm_crtc *crtc,
10939 struct drm_framebuffer *fb,
10940 struct drm_i915_gem_object *obj,
10941 struct drm_i915_gem_request *req,
10942 uint32_t flags)
10943 {
10944 struct intel_engine_cs *ring = req->ring;
10945 struct drm_i915_private *dev_priv = dev->dev_private;
10946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10947 uint32_t pf, pipesrc;
10948 int ret;
10949
10950 ret = intel_ring_begin(req, 4);
10951 if (ret)
10952 return ret;
10953
10954 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10955 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10956 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10957 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10958
10959 /* Contrary to the suggestions in the documentation,
10960 * "Enable Panel Fitter" does not seem to be required when page
10961 * flipping with a non-native mode, and worse causes a normal
10962 * modeset to fail.
10963 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10964 */
10965 pf = 0;
10966 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10967 intel_ring_emit(ring, pf | pipesrc);
10968
10969 intel_mark_page_flip_active(intel_crtc);
10970 return 0;
10971 }
10972
10973 static int intel_gen7_queue_flip(struct drm_device *dev,
10974 struct drm_crtc *crtc,
10975 struct drm_framebuffer *fb,
10976 struct drm_i915_gem_object *obj,
10977 struct drm_i915_gem_request *req,
10978 uint32_t flags)
10979 {
10980 struct intel_engine_cs *ring = req->ring;
10981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10982 uint32_t plane_bit = 0;
10983 int len, ret;
10984
10985 switch (intel_crtc->plane) {
10986 case PLANE_A:
10987 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10988 break;
10989 case PLANE_B:
10990 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10991 break;
10992 case PLANE_C:
10993 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10994 break;
10995 default:
10996 WARN_ONCE(1, "unknown plane in flip command\n");
10997 return -ENODEV;
10998 }
10999
11000 len = 4;
11001 if (ring->id == RCS) {
11002 len += 6;
11003 /*
11004 * On Gen 8, SRM is now taking an extra dword to accommodate
11005 * 48bits addresses, and we need a NOOP for the batch size to
11006 * stay even.
11007 */
11008 if (IS_GEN8(dev))
11009 len += 2;
11010 }
11011
11012 /*
11013 * BSpec MI_DISPLAY_FLIP for IVB:
11014 * "The full packet must be contained within the same cache line."
11015 *
11016 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11017 * cacheline, if we ever start emitting more commands before
11018 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11019 * then do the cacheline alignment, and finally emit the
11020 * MI_DISPLAY_FLIP.
11021 */
11022 ret = intel_ring_cacheline_align(req);
11023 if (ret)
11024 return ret;
11025
11026 ret = intel_ring_begin(req, len);
11027 if (ret)
11028 return ret;
11029
11030 /* Unmask the flip-done completion message. Note that the bspec says that
11031 * we should do this for both the BCS and RCS, and that we must not unmask
11032 * more than one flip event at any time (or ensure that one flip message
11033 * can be sent by waiting for flip-done prior to queueing new flips).
11034 * Experimentation says that BCS works despite DERRMR masking all
11035 * flip-done completion events and that unmasking all planes at once
11036 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11037 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11038 */
11039 if (ring->id == RCS) {
11040 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11041 intel_ring_emit(ring, DERRMR);
11042 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11043 DERRMR_PIPEB_PRI_FLIP_DONE |
11044 DERRMR_PIPEC_PRI_FLIP_DONE));
11045 if (IS_GEN8(dev))
11046 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11047 MI_SRM_LRM_GLOBAL_GTT);
11048 else
11049 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11050 MI_SRM_LRM_GLOBAL_GTT);
11051 intel_ring_emit(ring, DERRMR);
11052 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11053 if (IS_GEN8(dev)) {
11054 intel_ring_emit(ring, 0);
11055 intel_ring_emit(ring, MI_NOOP);
11056 }
11057 }
11058
11059 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11060 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11061 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11062 intel_ring_emit(ring, (MI_NOOP));
11063
11064 intel_mark_page_flip_active(intel_crtc);
11065 return 0;
11066 }
11067
11068 static bool use_mmio_flip(struct intel_engine_cs *ring,
11069 struct drm_i915_gem_object *obj)
11070 {
11071 /*
11072 * This is not being used for older platforms, because
11073 * non-availability of flip done interrupt forces us to use
11074 * CS flips. Older platforms derive flip done using some clever
11075 * tricks involving the flip_pending status bits and vblank irqs.
11076 * So using MMIO flips there would disrupt this mechanism.
11077 */
11078
11079 if (ring == NULL)
11080 return true;
11081
11082 if (INTEL_INFO(ring->dev)->gen < 5)
11083 return false;
11084
11085 if (i915.use_mmio_flip < 0)
11086 return false;
11087 else if (i915.use_mmio_flip > 0)
11088 return true;
11089 else if (i915.enable_execlists)
11090 return true;
11091 else
11092 return ring != i915_gem_request_get_ring(obj->last_write_req);
11093 }
11094
11095 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11096 {
11097 struct drm_device *dev = intel_crtc->base.dev;
11098 struct drm_i915_private *dev_priv = dev->dev_private;
11099 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11100 const enum pipe pipe = intel_crtc->pipe;
11101 u32 ctl, stride;
11102
11103 ctl = I915_READ(PLANE_CTL(pipe, 0));
11104 ctl &= ~PLANE_CTL_TILED_MASK;
11105 switch (fb->modifier[0]) {
11106 case DRM_FORMAT_MOD_NONE:
11107 break;
11108 case I915_FORMAT_MOD_X_TILED:
11109 ctl |= PLANE_CTL_TILED_X;
11110 break;
11111 case I915_FORMAT_MOD_Y_TILED:
11112 ctl |= PLANE_CTL_TILED_Y;
11113 break;
11114 case I915_FORMAT_MOD_Yf_TILED:
11115 ctl |= PLANE_CTL_TILED_YF;
11116 break;
11117 default:
11118 MISSING_CASE(fb->modifier[0]);
11119 }
11120
11121 /*
11122 * The stride is either expressed as a multiple of 64 bytes chunks for
11123 * linear buffers or in number of tiles for tiled buffers.
11124 */
11125 stride = fb->pitches[0] /
11126 intel_fb_stride_alignment(dev, fb->modifier[0],
11127 fb->pixel_format);
11128
11129 /*
11130 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11131 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11132 */
11133 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11134 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11135
11136 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11137 POSTING_READ(PLANE_SURF(pipe, 0));
11138 }
11139
11140 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11141 {
11142 struct drm_device *dev = intel_crtc->base.dev;
11143 struct drm_i915_private *dev_priv = dev->dev_private;
11144 struct intel_framebuffer *intel_fb =
11145 to_intel_framebuffer(intel_crtc->base.primary->fb);
11146 struct drm_i915_gem_object *obj = intel_fb->obj;
11147 u32 dspcntr;
11148 u32 reg;
11149
11150 reg = DSPCNTR(intel_crtc->plane);
11151 dspcntr = I915_READ(reg);
11152
11153 if (obj->tiling_mode != I915_TILING_NONE)
11154 dspcntr |= DISPPLANE_TILED;
11155 else
11156 dspcntr &= ~DISPPLANE_TILED;
11157
11158 I915_WRITE(reg, dspcntr);
11159
11160 I915_WRITE(DSPSURF(intel_crtc->plane),
11161 intel_crtc->unpin_work->gtt_offset);
11162 POSTING_READ(DSPSURF(intel_crtc->plane));
11163
11164 }
11165
11166 /*
11167 * XXX: This is the temporary way to update the plane registers until we get
11168 * around to using the usual plane update functions for MMIO flips
11169 */
11170 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11171 {
11172 struct drm_device *dev = intel_crtc->base.dev;
11173 u32 start_vbl_count;
11174
11175 intel_mark_page_flip_active(intel_crtc);
11176
11177 intel_pipe_update_start(intel_crtc, &start_vbl_count);
11178
11179 if (INTEL_INFO(dev)->gen >= 9)
11180 skl_do_mmio_flip(intel_crtc);
11181 else
11182 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11183 ilk_do_mmio_flip(intel_crtc);
11184
11185 intel_pipe_update_end(intel_crtc, start_vbl_count);
11186 }
11187
11188 static void intel_mmio_flip_work_func(struct work_struct *work)
11189 {
11190 struct intel_mmio_flip *mmio_flip =
11191 container_of(work, struct intel_mmio_flip, work);
11192
11193 if (mmio_flip->req)
11194 WARN_ON(__i915_wait_request(mmio_flip->req,
11195 mmio_flip->crtc->reset_counter,
11196 false, NULL,
11197 &mmio_flip->i915->rps.mmioflips));
11198
11199 intel_do_mmio_flip(mmio_flip->crtc);
11200
11201 i915_gem_request_unreference__unlocked(mmio_flip->req);
11202 kfree(mmio_flip);
11203 }
11204
11205 static int intel_queue_mmio_flip(struct drm_device *dev,
11206 struct drm_crtc *crtc,
11207 struct drm_framebuffer *fb,
11208 struct drm_i915_gem_object *obj,
11209 struct intel_engine_cs *ring,
11210 uint32_t flags)
11211 {
11212 struct intel_mmio_flip *mmio_flip;
11213
11214 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11215 if (mmio_flip == NULL)
11216 return -ENOMEM;
11217
11218 mmio_flip->i915 = to_i915(dev);
11219 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11220 mmio_flip->crtc = to_intel_crtc(crtc);
11221
11222 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11223 schedule_work(&mmio_flip->work);
11224
11225 return 0;
11226 }
11227
11228 static int intel_default_queue_flip(struct drm_device *dev,
11229 struct drm_crtc *crtc,
11230 struct drm_framebuffer *fb,
11231 struct drm_i915_gem_object *obj,
11232 struct drm_i915_gem_request *req,
11233 uint32_t flags)
11234 {
11235 return -ENODEV;
11236 }
11237
11238 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11239 struct drm_crtc *crtc)
11240 {
11241 struct drm_i915_private *dev_priv = dev->dev_private;
11242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11243 struct intel_unpin_work *work = intel_crtc->unpin_work;
11244 u32 addr;
11245
11246 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11247 return true;
11248
11249 if (!work->enable_stall_check)
11250 return false;
11251
11252 if (work->flip_ready_vblank == 0) {
11253 if (work->flip_queued_req &&
11254 !i915_gem_request_completed(work->flip_queued_req, true))
11255 return false;
11256
11257 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11258 }
11259
11260 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11261 return false;
11262
11263 /* Potential stall - if we see that the flip has happened,
11264 * assume a missed interrupt. */
11265 if (INTEL_INFO(dev)->gen >= 4)
11266 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11267 else
11268 addr = I915_READ(DSPADDR(intel_crtc->plane));
11269
11270 /* There is a potential issue here with a false positive after a flip
11271 * to the same address. We could address this by checking for a
11272 * non-incrementing frame counter.
11273 */
11274 return addr == work->gtt_offset;
11275 }
11276
11277 void intel_check_page_flip(struct drm_device *dev, int pipe)
11278 {
11279 struct drm_i915_private *dev_priv = dev->dev_private;
11280 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11282 struct intel_unpin_work *work;
11283
11284 WARN_ON(!in_interrupt());
11285
11286 if (crtc == NULL)
11287 return;
11288
11289 spin_lock(&dev->event_lock);
11290 work = intel_crtc->unpin_work;
11291 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11292 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11293 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11294 page_flip_completed(intel_crtc);
11295 work = NULL;
11296 }
11297 if (work != NULL &&
11298 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11299 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11300 spin_unlock(&dev->event_lock);
11301 }
11302
11303 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11304 struct drm_framebuffer *fb,
11305 struct drm_pending_vblank_event *event,
11306 uint32_t page_flip_flags)
11307 {
11308 struct drm_device *dev = crtc->dev;
11309 struct drm_i915_private *dev_priv = dev->dev_private;
11310 struct drm_framebuffer *old_fb = crtc->primary->fb;
11311 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11313 struct drm_plane *primary = crtc->primary;
11314 enum pipe pipe = intel_crtc->pipe;
11315 struct intel_unpin_work *work;
11316 struct intel_engine_cs *ring;
11317 bool mmio_flip;
11318 struct drm_i915_gem_request *request = NULL;
11319 int ret;
11320
11321 /*
11322 * drm_mode_page_flip_ioctl() should already catch this, but double
11323 * check to be safe. In the future we may enable pageflipping from
11324 * a disabled primary plane.
11325 */
11326 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11327 return -EBUSY;
11328
11329 /* Can't change pixel format via MI display flips. */
11330 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11331 return -EINVAL;
11332
11333 /*
11334 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11335 * Note that pitch changes could also affect these register.
11336 */
11337 if (INTEL_INFO(dev)->gen > 3 &&
11338 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11339 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11340 return -EINVAL;
11341
11342 if (i915_terminally_wedged(&dev_priv->gpu_error))
11343 goto out_hang;
11344
11345 work = kzalloc(sizeof(*work), GFP_KERNEL);
11346 if (work == NULL)
11347 return -ENOMEM;
11348
11349 work->event = event;
11350 work->crtc = crtc;
11351 work->old_fb = old_fb;
11352 INIT_WORK(&work->work, intel_unpin_work_fn);
11353
11354 ret = drm_crtc_vblank_get(crtc);
11355 if (ret)
11356 goto free_work;
11357
11358 /* We borrow the event spin lock for protecting unpin_work */
11359 spin_lock_irq(&dev->event_lock);
11360 if (intel_crtc->unpin_work) {
11361 /* Before declaring the flip queue wedged, check if
11362 * the hardware completed the operation behind our backs.
11363 */
11364 if (__intel_pageflip_stall_check(dev, crtc)) {
11365 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11366 page_flip_completed(intel_crtc);
11367 } else {
11368 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11369 spin_unlock_irq(&dev->event_lock);
11370
11371 drm_crtc_vblank_put(crtc);
11372 kfree(work);
11373 return -EBUSY;
11374 }
11375 }
11376 intel_crtc->unpin_work = work;
11377 spin_unlock_irq(&dev->event_lock);
11378
11379 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11380 flush_workqueue(dev_priv->wq);
11381
11382 /* Reference the objects for the scheduled work. */
11383 drm_framebuffer_reference(work->old_fb);
11384 drm_gem_object_reference(&obj->base);
11385
11386 crtc->primary->fb = fb;
11387 update_state_fb(crtc->primary);
11388
11389 work->pending_flip_obj = obj;
11390
11391 ret = i915_mutex_lock_interruptible(dev);
11392 if (ret)
11393 goto cleanup;
11394
11395 atomic_inc(&intel_crtc->unpin_work_count);
11396 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11397
11398 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11399 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11400
11401 if (IS_VALLEYVIEW(dev)) {
11402 ring = &dev_priv->ring[BCS];
11403 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11404 /* vlv: DISPLAY_FLIP fails to change tiling */
11405 ring = NULL;
11406 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11407 ring = &dev_priv->ring[BCS];
11408 } else if (INTEL_INFO(dev)->gen >= 7) {
11409 ring = i915_gem_request_get_ring(obj->last_write_req);
11410 if (ring == NULL || ring->id != RCS)
11411 ring = &dev_priv->ring[BCS];
11412 } else {
11413 ring = &dev_priv->ring[RCS];
11414 }
11415
11416 mmio_flip = use_mmio_flip(ring, obj);
11417
11418 /* When using CS flips, we want to emit semaphores between rings.
11419 * However, when using mmio flips we will create a task to do the
11420 * synchronisation, so all we want here is to pin the framebuffer
11421 * into the display plane and skip any waits.
11422 */
11423 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11424 crtc->primary->state,
11425 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11426 if (ret)
11427 goto cleanup_pending;
11428
11429 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11430 + intel_crtc->dspaddr_offset;
11431
11432 if (mmio_flip) {
11433 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11434 page_flip_flags);
11435 if (ret)
11436 goto cleanup_unpin;
11437
11438 i915_gem_request_assign(&work->flip_queued_req,
11439 obj->last_write_req);
11440 } else {
11441 if (!request) {
11442 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11443 if (ret)
11444 goto cleanup_unpin;
11445 }
11446
11447 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11448 page_flip_flags);
11449 if (ret)
11450 goto cleanup_unpin;
11451
11452 i915_gem_request_assign(&work->flip_queued_req, request);
11453 }
11454
11455 if (request)
11456 i915_add_request_no_flush(request);
11457
11458 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11459 work->enable_stall_check = true;
11460
11461 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11462 to_intel_plane(primary)->frontbuffer_bit);
11463 mutex_unlock(&dev->struct_mutex);
11464
11465 intel_fbc_disable_crtc(intel_crtc);
11466 intel_frontbuffer_flip_prepare(dev,
11467 to_intel_plane(primary)->frontbuffer_bit);
11468
11469 trace_i915_flip_request(intel_crtc->plane, obj);
11470
11471 return 0;
11472
11473 cleanup_unpin:
11474 intel_unpin_fb_obj(fb, crtc->primary->state);
11475 cleanup_pending:
11476 if (request)
11477 i915_gem_request_cancel(request);
11478 atomic_dec(&intel_crtc->unpin_work_count);
11479 mutex_unlock(&dev->struct_mutex);
11480 cleanup:
11481 crtc->primary->fb = old_fb;
11482 update_state_fb(crtc->primary);
11483
11484 drm_gem_object_unreference_unlocked(&obj->base);
11485 drm_framebuffer_unreference(work->old_fb);
11486
11487 spin_lock_irq(&dev->event_lock);
11488 intel_crtc->unpin_work = NULL;
11489 spin_unlock_irq(&dev->event_lock);
11490
11491 drm_crtc_vblank_put(crtc);
11492 free_work:
11493 kfree(work);
11494
11495 if (ret == -EIO) {
11496 struct drm_atomic_state *state;
11497 struct drm_plane_state *plane_state;
11498
11499 out_hang:
11500 state = drm_atomic_state_alloc(dev);
11501 if (!state)
11502 return -ENOMEM;
11503 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11504
11505 retry:
11506 plane_state = drm_atomic_get_plane_state(state, primary);
11507 ret = PTR_ERR_OR_ZERO(plane_state);
11508 if (!ret) {
11509 drm_atomic_set_fb_for_plane(plane_state, fb);
11510
11511 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11512 if (!ret)
11513 ret = drm_atomic_commit(state);
11514 }
11515
11516 if (ret == -EDEADLK) {
11517 drm_modeset_backoff(state->acquire_ctx);
11518 drm_atomic_state_clear(state);
11519 goto retry;
11520 }
11521
11522 if (ret)
11523 drm_atomic_state_free(state);
11524
11525 if (ret == 0 && event) {
11526 spin_lock_irq(&dev->event_lock);
11527 drm_send_vblank_event(dev, pipe, event);
11528 spin_unlock_irq(&dev->event_lock);
11529 }
11530 }
11531 return ret;
11532 }
11533
11534
11535 /**
11536 * intel_wm_need_update - Check whether watermarks need updating
11537 * @plane: drm plane
11538 * @state: new plane state
11539 *
11540 * Check current plane state versus the new one to determine whether
11541 * watermarks need to be recalculated.
11542 *
11543 * Returns true or false.
11544 */
11545 static bool intel_wm_need_update(struct drm_plane *plane,
11546 struct drm_plane_state *state)
11547 {
11548 /* Update watermarks on tiling changes. */
11549 if (!plane->state->fb || !state->fb ||
11550 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11551 plane->state->rotation != state->rotation)
11552 return true;
11553
11554 if (plane->state->crtc_w != state->crtc_w)
11555 return true;
11556
11557 return false;
11558 }
11559
11560 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11561 struct drm_plane_state *plane_state)
11562 {
11563 struct drm_crtc *crtc = crtc_state->crtc;
11564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11565 struct drm_plane *plane = plane_state->plane;
11566 struct drm_device *dev = crtc->dev;
11567 struct drm_i915_private *dev_priv = dev->dev_private;
11568 struct intel_plane_state *old_plane_state =
11569 to_intel_plane_state(plane->state);
11570 int idx = intel_crtc->base.base.id, ret;
11571 int i = drm_plane_index(plane);
11572 bool mode_changed = needs_modeset(crtc_state);
11573 bool was_crtc_enabled = crtc->state->active;
11574 bool is_crtc_enabled = crtc_state->active;
11575
11576 bool turn_off, turn_on, visible, was_visible;
11577 struct drm_framebuffer *fb = plane_state->fb;
11578
11579 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11580 plane->type != DRM_PLANE_TYPE_CURSOR) {
11581 ret = skl_update_scaler_plane(
11582 to_intel_crtc_state(crtc_state),
11583 to_intel_plane_state(plane_state));
11584 if (ret)
11585 return ret;
11586 }
11587
11588 /*
11589 * Disabling a plane is always okay; we just need to update
11590 * fb tracking in a special way since cleanup_fb() won't
11591 * get called by the plane helpers.
11592 */
11593 if (old_plane_state->base.fb && !fb)
11594 intel_crtc->atomic.disabled_planes |= 1 << i;
11595
11596 was_visible = old_plane_state->visible;
11597 visible = to_intel_plane_state(plane_state)->visible;
11598
11599 if (!was_crtc_enabled && WARN_ON(was_visible))
11600 was_visible = false;
11601
11602 if (!is_crtc_enabled && WARN_ON(visible))
11603 visible = false;
11604
11605 if (!was_visible && !visible)
11606 return 0;
11607
11608 turn_off = was_visible && (!visible || mode_changed);
11609 turn_on = visible && (!was_visible || mode_changed);
11610
11611 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11612 plane->base.id, fb ? fb->base.id : -1);
11613
11614 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11615 plane->base.id, was_visible, visible,
11616 turn_off, turn_on, mode_changed);
11617
11618 if (turn_on) {
11619 intel_crtc->atomic.update_wm_pre = true;
11620 /* must disable cxsr around plane enable/disable */
11621 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11622 intel_crtc->atomic.disable_cxsr = true;
11623 /* to potentially re-enable cxsr */
11624 intel_crtc->atomic.wait_vblank = true;
11625 intel_crtc->atomic.update_wm_post = true;
11626 }
11627 } else if (turn_off) {
11628 intel_crtc->atomic.update_wm_post = true;
11629 /* must disable cxsr around plane enable/disable */
11630 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11631 if (is_crtc_enabled)
11632 intel_crtc->atomic.wait_vblank = true;
11633 intel_crtc->atomic.disable_cxsr = true;
11634 }
11635 } else if (intel_wm_need_update(plane, plane_state)) {
11636 intel_crtc->atomic.update_wm_pre = true;
11637 }
11638
11639 if (visible)
11640 intel_crtc->atomic.fb_bits |=
11641 to_intel_plane(plane)->frontbuffer_bit;
11642
11643 switch (plane->type) {
11644 case DRM_PLANE_TYPE_PRIMARY:
11645 intel_crtc->atomic.wait_for_flips = true;
11646 intel_crtc->atomic.pre_disable_primary = turn_off;
11647 intel_crtc->atomic.post_enable_primary = turn_on;
11648
11649 if (turn_off) {
11650 /*
11651 * FIXME: Actually if we will still have any other
11652 * plane enabled on the pipe we could let IPS enabled
11653 * still, but for now lets consider that when we make
11654 * primary invisible by setting DSPCNTR to 0 on
11655 * update_primary_plane function IPS needs to be
11656 * disable.
11657 */
11658 intel_crtc->atomic.disable_ips = true;
11659
11660 intel_crtc->atomic.disable_fbc = true;
11661 }
11662
11663 /*
11664 * FBC does not work on some platforms for rotated
11665 * planes, so disable it when rotation is not 0 and
11666 * update it when rotation is set back to 0.
11667 *
11668 * FIXME: This is redundant with the fbc update done in
11669 * the primary plane enable function except that that
11670 * one is done too late. We eventually need to unify
11671 * this.
11672 */
11673
11674 if (visible &&
11675 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11676 dev_priv->fbc.crtc == intel_crtc &&
11677 plane_state->rotation != BIT(DRM_ROTATE_0))
11678 intel_crtc->atomic.disable_fbc = true;
11679
11680 /*
11681 * BDW signals flip done immediately if the plane
11682 * is disabled, even if the plane enable is already
11683 * armed to occur at the next vblank :(
11684 */
11685 if (turn_on && IS_BROADWELL(dev))
11686 intel_crtc->atomic.wait_vblank = true;
11687
11688 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11689 break;
11690 case DRM_PLANE_TYPE_CURSOR:
11691 break;
11692 case DRM_PLANE_TYPE_OVERLAY:
11693 if (turn_off && !mode_changed) {
11694 intel_crtc->atomic.wait_vblank = true;
11695 intel_crtc->atomic.update_sprite_watermarks |=
11696 1 << i;
11697 }
11698 }
11699 return 0;
11700 }
11701
11702 static bool encoders_cloneable(const struct intel_encoder *a,
11703 const struct intel_encoder *b)
11704 {
11705 /* masks could be asymmetric, so check both ways */
11706 return a == b || (a->cloneable & (1 << b->type) &&
11707 b->cloneable & (1 << a->type));
11708 }
11709
11710 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11711 struct intel_crtc *crtc,
11712 struct intel_encoder *encoder)
11713 {
11714 struct intel_encoder *source_encoder;
11715 struct drm_connector *connector;
11716 struct drm_connector_state *connector_state;
11717 int i;
11718
11719 for_each_connector_in_state(state, connector, connector_state, i) {
11720 if (connector_state->crtc != &crtc->base)
11721 continue;
11722
11723 source_encoder =
11724 to_intel_encoder(connector_state->best_encoder);
11725 if (!encoders_cloneable(encoder, source_encoder))
11726 return false;
11727 }
11728
11729 return true;
11730 }
11731
11732 static bool check_encoder_cloning(struct drm_atomic_state *state,
11733 struct intel_crtc *crtc)
11734 {
11735 struct intel_encoder *encoder;
11736 struct drm_connector *connector;
11737 struct drm_connector_state *connector_state;
11738 int i;
11739
11740 for_each_connector_in_state(state, connector, connector_state, i) {
11741 if (connector_state->crtc != &crtc->base)
11742 continue;
11743
11744 encoder = to_intel_encoder(connector_state->best_encoder);
11745 if (!check_single_encoder_cloning(state, crtc, encoder))
11746 return false;
11747 }
11748
11749 return true;
11750 }
11751
11752 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11753 struct drm_crtc_state *crtc_state)
11754 {
11755 struct drm_device *dev = crtc->dev;
11756 struct drm_i915_private *dev_priv = dev->dev_private;
11757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11758 struct intel_crtc_state *pipe_config =
11759 to_intel_crtc_state(crtc_state);
11760 struct drm_atomic_state *state = crtc_state->state;
11761 int ret;
11762 bool mode_changed = needs_modeset(crtc_state);
11763
11764 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11765 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11766 return -EINVAL;
11767 }
11768
11769 if (mode_changed && !crtc_state->active)
11770 intel_crtc->atomic.update_wm_post = true;
11771
11772 if (mode_changed && crtc_state->enable &&
11773 dev_priv->display.crtc_compute_clock &&
11774 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11775 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11776 pipe_config);
11777 if (ret)
11778 return ret;
11779 }
11780
11781 ret = 0;
11782 if (INTEL_INFO(dev)->gen >= 9) {
11783 if (mode_changed)
11784 ret = skl_update_scaler_crtc(pipe_config);
11785
11786 if (!ret)
11787 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11788 pipe_config);
11789 }
11790
11791 return ret;
11792 }
11793
11794 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11795 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11796 .load_lut = intel_crtc_load_lut,
11797 .atomic_begin = intel_begin_crtc_commit,
11798 .atomic_flush = intel_finish_crtc_commit,
11799 .atomic_check = intel_crtc_atomic_check,
11800 };
11801
11802 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11803 {
11804 struct intel_connector *connector;
11805
11806 for_each_intel_connector(dev, connector) {
11807 if (connector->base.encoder) {
11808 connector->base.state->best_encoder =
11809 connector->base.encoder;
11810 connector->base.state->crtc =
11811 connector->base.encoder->crtc;
11812 } else {
11813 connector->base.state->best_encoder = NULL;
11814 connector->base.state->crtc = NULL;
11815 }
11816 }
11817 }
11818
11819 static void
11820 connected_sink_compute_bpp(struct intel_connector *connector,
11821 struct intel_crtc_state *pipe_config)
11822 {
11823 int bpp = pipe_config->pipe_bpp;
11824
11825 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11826 connector->base.base.id,
11827 connector->base.name);
11828
11829 /* Don't use an invalid EDID bpc value */
11830 if (connector->base.display_info.bpc &&
11831 connector->base.display_info.bpc * 3 < bpp) {
11832 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11833 bpp, connector->base.display_info.bpc*3);
11834 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11835 }
11836
11837 /* Clamp bpp to 8 on screens without EDID 1.4 */
11838 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11839 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11840 bpp);
11841 pipe_config->pipe_bpp = 24;
11842 }
11843 }
11844
11845 static int
11846 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11847 struct intel_crtc_state *pipe_config)
11848 {
11849 struct drm_device *dev = crtc->base.dev;
11850 struct drm_atomic_state *state;
11851 struct drm_connector *connector;
11852 struct drm_connector_state *connector_state;
11853 int bpp, i;
11854
11855 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11856 bpp = 10*3;
11857 else if (INTEL_INFO(dev)->gen >= 5)
11858 bpp = 12*3;
11859 else
11860 bpp = 8*3;
11861
11862
11863 pipe_config->pipe_bpp = bpp;
11864
11865 state = pipe_config->base.state;
11866
11867 /* Clamp display bpp to EDID value */
11868 for_each_connector_in_state(state, connector, connector_state, i) {
11869 if (connector_state->crtc != &crtc->base)
11870 continue;
11871
11872 connected_sink_compute_bpp(to_intel_connector(connector),
11873 pipe_config);
11874 }
11875
11876 return bpp;
11877 }
11878
11879 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11880 {
11881 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11882 "type: 0x%x flags: 0x%x\n",
11883 mode->crtc_clock,
11884 mode->crtc_hdisplay, mode->crtc_hsync_start,
11885 mode->crtc_hsync_end, mode->crtc_htotal,
11886 mode->crtc_vdisplay, mode->crtc_vsync_start,
11887 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11888 }
11889
11890 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11891 struct intel_crtc_state *pipe_config,
11892 const char *context)
11893 {
11894 struct drm_device *dev = crtc->base.dev;
11895 struct drm_plane *plane;
11896 struct intel_plane *intel_plane;
11897 struct intel_plane_state *state;
11898 struct drm_framebuffer *fb;
11899
11900 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11901 context, pipe_config, pipe_name(crtc->pipe));
11902
11903 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11904 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11905 pipe_config->pipe_bpp, pipe_config->dither);
11906 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11907 pipe_config->has_pch_encoder,
11908 pipe_config->fdi_lanes,
11909 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11910 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11911 pipe_config->fdi_m_n.tu);
11912 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11913 pipe_config->has_dp_encoder,
11914 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11915 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11916 pipe_config->dp_m_n.tu);
11917
11918 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11919 pipe_config->has_dp_encoder,
11920 pipe_config->dp_m2_n2.gmch_m,
11921 pipe_config->dp_m2_n2.gmch_n,
11922 pipe_config->dp_m2_n2.link_m,
11923 pipe_config->dp_m2_n2.link_n,
11924 pipe_config->dp_m2_n2.tu);
11925
11926 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11927 pipe_config->has_audio,
11928 pipe_config->has_infoframe);
11929
11930 DRM_DEBUG_KMS("requested mode:\n");
11931 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11932 DRM_DEBUG_KMS("adjusted mode:\n");
11933 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11934 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11935 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11936 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11937 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11938 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11939 crtc->num_scalers,
11940 pipe_config->scaler_state.scaler_users,
11941 pipe_config->scaler_state.scaler_id);
11942 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11943 pipe_config->gmch_pfit.control,
11944 pipe_config->gmch_pfit.pgm_ratios,
11945 pipe_config->gmch_pfit.lvds_border_bits);
11946 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11947 pipe_config->pch_pfit.pos,
11948 pipe_config->pch_pfit.size,
11949 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11950 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11951 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11952
11953 if (IS_BROXTON(dev)) {
11954 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11955 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11956 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11957 pipe_config->ddi_pll_sel,
11958 pipe_config->dpll_hw_state.ebb0,
11959 pipe_config->dpll_hw_state.ebb4,
11960 pipe_config->dpll_hw_state.pll0,
11961 pipe_config->dpll_hw_state.pll1,
11962 pipe_config->dpll_hw_state.pll2,
11963 pipe_config->dpll_hw_state.pll3,
11964 pipe_config->dpll_hw_state.pll6,
11965 pipe_config->dpll_hw_state.pll8,
11966 pipe_config->dpll_hw_state.pll9,
11967 pipe_config->dpll_hw_state.pll10,
11968 pipe_config->dpll_hw_state.pcsdw12);
11969 } else if (IS_SKYLAKE(dev)) {
11970 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11971 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11972 pipe_config->ddi_pll_sel,
11973 pipe_config->dpll_hw_state.ctrl1,
11974 pipe_config->dpll_hw_state.cfgcr1,
11975 pipe_config->dpll_hw_state.cfgcr2);
11976 } else if (HAS_DDI(dev)) {
11977 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11978 pipe_config->ddi_pll_sel,
11979 pipe_config->dpll_hw_state.wrpll);
11980 } else {
11981 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11982 "fp0: 0x%x, fp1: 0x%x\n",
11983 pipe_config->dpll_hw_state.dpll,
11984 pipe_config->dpll_hw_state.dpll_md,
11985 pipe_config->dpll_hw_state.fp0,
11986 pipe_config->dpll_hw_state.fp1);
11987 }
11988
11989 DRM_DEBUG_KMS("planes on this crtc\n");
11990 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11991 intel_plane = to_intel_plane(plane);
11992 if (intel_plane->pipe != crtc->pipe)
11993 continue;
11994
11995 state = to_intel_plane_state(plane->state);
11996 fb = state->base.fb;
11997 if (!fb) {
11998 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11999 "disabled, scaler_id = %d\n",
12000 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12001 plane->base.id, intel_plane->pipe,
12002 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12003 drm_plane_index(plane), state->scaler_id);
12004 continue;
12005 }
12006
12007 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12008 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12009 plane->base.id, intel_plane->pipe,
12010 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12011 drm_plane_index(plane));
12012 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12013 fb->base.id, fb->width, fb->height, fb->pixel_format);
12014 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12015 state->scaler_id,
12016 state->src.x1 >> 16, state->src.y1 >> 16,
12017 drm_rect_width(&state->src) >> 16,
12018 drm_rect_height(&state->src) >> 16,
12019 state->dst.x1, state->dst.y1,
12020 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12021 }
12022 }
12023
12024 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12025 {
12026 struct drm_device *dev = state->dev;
12027 struct intel_encoder *encoder;
12028 struct drm_connector *connector;
12029 struct drm_connector_state *connector_state;
12030 unsigned int used_ports = 0;
12031 int i;
12032
12033 /*
12034 * Walk the connector list instead of the encoder
12035 * list to detect the problem on ddi platforms
12036 * where there's just one encoder per digital port.
12037 */
12038 for_each_connector_in_state(state, connector, connector_state, i) {
12039 if (!connector_state->best_encoder)
12040 continue;
12041
12042 encoder = to_intel_encoder(connector_state->best_encoder);
12043
12044 WARN_ON(!connector_state->crtc);
12045
12046 switch (encoder->type) {
12047 unsigned int port_mask;
12048 case INTEL_OUTPUT_UNKNOWN:
12049 if (WARN_ON(!HAS_DDI(dev)))
12050 break;
12051 case INTEL_OUTPUT_DISPLAYPORT:
12052 case INTEL_OUTPUT_HDMI:
12053 case INTEL_OUTPUT_EDP:
12054 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12055
12056 /* the same port mustn't appear more than once */
12057 if (used_ports & port_mask)
12058 return false;
12059
12060 used_ports |= port_mask;
12061 default:
12062 break;
12063 }
12064 }
12065
12066 return true;
12067 }
12068
12069 static void
12070 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12071 {
12072 struct drm_crtc_state tmp_state;
12073 struct intel_crtc_scaler_state scaler_state;
12074 struct intel_dpll_hw_state dpll_hw_state;
12075 enum intel_dpll_id shared_dpll;
12076 uint32_t ddi_pll_sel;
12077 bool force_thru;
12078
12079 /* FIXME: before the switch to atomic started, a new pipe_config was
12080 * kzalloc'd. Code that depends on any field being zero should be
12081 * fixed, so that the crtc_state can be safely duplicated. For now,
12082 * only fields that are know to not cause problems are preserved. */
12083
12084 tmp_state = crtc_state->base;
12085 scaler_state = crtc_state->scaler_state;
12086 shared_dpll = crtc_state->shared_dpll;
12087 dpll_hw_state = crtc_state->dpll_hw_state;
12088 ddi_pll_sel = crtc_state->ddi_pll_sel;
12089 force_thru = crtc_state->pch_pfit.force_thru;
12090
12091 memset(crtc_state, 0, sizeof *crtc_state);
12092
12093 crtc_state->base = tmp_state;
12094 crtc_state->scaler_state = scaler_state;
12095 crtc_state->shared_dpll = shared_dpll;
12096 crtc_state->dpll_hw_state = dpll_hw_state;
12097 crtc_state->ddi_pll_sel = ddi_pll_sel;
12098 crtc_state->pch_pfit.force_thru = force_thru;
12099 }
12100
12101 static int
12102 intel_modeset_pipe_config(struct drm_crtc *crtc,
12103 struct intel_crtc_state *pipe_config)
12104 {
12105 struct drm_atomic_state *state = pipe_config->base.state;
12106 struct intel_encoder *encoder;
12107 struct drm_connector *connector;
12108 struct drm_connector_state *connector_state;
12109 int base_bpp, ret = -EINVAL;
12110 int i;
12111 bool retry = true;
12112
12113 clear_intel_crtc_state(pipe_config);
12114
12115 pipe_config->cpu_transcoder =
12116 (enum transcoder) to_intel_crtc(crtc)->pipe;
12117
12118 /*
12119 * Sanitize sync polarity flags based on requested ones. If neither
12120 * positive or negative polarity is requested, treat this as meaning
12121 * negative polarity.
12122 */
12123 if (!(pipe_config->base.adjusted_mode.flags &
12124 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12125 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12126
12127 if (!(pipe_config->base.adjusted_mode.flags &
12128 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12129 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12130
12131 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12132 * plane pixel format and any sink constraints into account. Returns the
12133 * source plane bpp so that dithering can be selected on mismatches
12134 * after encoders and crtc also have had their say. */
12135 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12136 pipe_config);
12137 if (base_bpp < 0)
12138 goto fail;
12139
12140 /*
12141 * Determine the real pipe dimensions. Note that stereo modes can
12142 * increase the actual pipe size due to the frame doubling and
12143 * insertion of additional space for blanks between the frame. This
12144 * is stored in the crtc timings. We use the requested mode to do this
12145 * computation to clearly distinguish it from the adjusted mode, which
12146 * can be changed by the connectors in the below retry loop.
12147 */
12148 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12149 &pipe_config->pipe_src_w,
12150 &pipe_config->pipe_src_h);
12151
12152 encoder_retry:
12153 /* Ensure the port clock defaults are reset when retrying. */
12154 pipe_config->port_clock = 0;
12155 pipe_config->pixel_multiplier = 1;
12156
12157 /* Fill in default crtc timings, allow encoders to overwrite them. */
12158 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12159 CRTC_STEREO_DOUBLE);
12160
12161 /* Pass our mode to the connectors and the CRTC to give them a chance to
12162 * adjust it according to limitations or connector properties, and also
12163 * a chance to reject the mode entirely.
12164 */
12165 for_each_connector_in_state(state, connector, connector_state, i) {
12166 if (connector_state->crtc != crtc)
12167 continue;
12168
12169 encoder = to_intel_encoder(connector_state->best_encoder);
12170
12171 if (!(encoder->compute_config(encoder, pipe_config))) {
12172 DRM_DEBUG_KMS("Encoder config failure\n");
12173 goto fail;
12174 }
12175 }
12176
12177 /* Set default port clock if not overwritten by the encoder. Needs to be
12178 * done afterwards in case the encoder adjusts the mode. */
12179 if (!pipe_config->port_clock)
12180 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12181 * pipe_config->pixel_multiplier;
12182
12183 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12184 if (ret < 0) {
12185 DRM_DEBUG_KMS("CRTC fixup failed\n");
12186 goto fail;
12187 }
12188
12189 if (ret == RETRY) {
12190 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12191 ret = -EINVAL;
12192 goto fail;
12193 }
12194
12195 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12196 retry = false;
12197 goto encoder_retry;
12198 }
12199
12200 /* Dithering seems to not pass-through bits correctly when it should, so
12201 * only enable it on 6bpc panels. */
12202 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12203 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12204 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12205
12206 fail:
12207 return ret;
12208 }
12209
12210 static void
12211 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12212 {
12213 struct drm_crtc *crtc;
12214 struct drm_crtc_state *crtc_state;
12215 int i;
12216
12217 /* Double check state. */
12218 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12219 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12220
12221 /* Update hwmode for vblank functions */
12222 if (crtc->state->active)
12223 crtc->hwmode = crtc->state->adjusted_mode;
12224 else
12225 crtc->hwmode.crtc_clock = 0;
12226 }
12227 }
12228
12229 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12230 {
12231 int diff;
12232
12233 if (clock1 == clock2)
12234 return true;
12235
12236 if (!clock1 || !clock2)
12237 return false;
12238
12239 diff = abs(clock1 - clock2);
12240
12241 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12242 return true;
12243
12244 return false;
12245 }
12246
12247 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12248 list_for_each_entry((intel_crtc), \
12249 &(dev)->mode_config.crtc_list, \
12250 base.head) \
12251 if (mask & (1 <<(intel_crtc)->pipe))
12252
12253
12254 static bool
12255 intel_compare_m_n(unsigned int m, unsigned int n,
12256 unsigned int m2, unsigned int n2,
12257 bool exact)
12258 {
12259 if (m == m2 && n == n2)
12260 return true;
12261
12262 if (exact || !m || !n || !m2 || !n2)
12263 return false;
12264
12265 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12266
12267 if (m > m2) {
12268 while (m > m2) {
12269 m2 <<= 1;
12270 n2 <<= 1;
12271 }
12272 } else if (m < m2) {
12273 while (m < m2) {
12274 m <<= 1;
12275 n <<= 1;
12276 }
12277 }
12278
12279 return m == m2 && n == n2;
12280 }
12281
12282 static bool
12283 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12284 struct intel_link_m_n *m2_n2,
12285 bool adjust)
12286 {
12287 if (m_n->tu == m2_n2->tu &&
12288 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12289 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12290 intel_compare_m_n(m_n->link_m, m_n->link_n,
12291 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12292 if (adjust)
12293 *m2_n2 = *m_n;
12294
12295 return true;
12296 }
12297
12298 return false;
12299 }
12300
12301 static bool
12302 intel_pipe_config_compare(struct drm_device *dev,
12303 struct intel_crtc_state *current_config,
12304 struct intel_crtc_state *pipe_config,
12305 bool adjust)
12306 {
12307 bool ret = true;
12308
12309 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12310 do { \
12311 if (!adjust) \
12312 DRM_ERROR(fmt, ##__VA_ARGS__); \
12313 else \
12314 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12315 } while (0)
12316
12317 #define PIPE_CONF_CHECK_X(name) \
12318 if (current_config->name != pipe_config->name) { \
12319 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12320 "(expected 0x%08x, found 0x%08x)\n", \
12321 current_config->name, \
12322 pipe_config->name); \
12323 ret = false; \
12324 }
12325
12326 #define PIPE_CONF_CHECK_I(name) \
12327 if (current_config->name != pipe_config->name) { \
12328 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12329 "(expected %i, found %i)\n", \
12330 current_config->name, \
12331 pipe_config->name); \
12332 ret = false; \
12333 }
12334
12335 #define PIPE_CONF_CHECK_M_N(name) \
12336 if (!intel_compare_link_m_n(&current_config->name, \
12337 &pipe_config->name,\
12338 adjust)) { \
12339 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12340 "(expected tu %i gmch %i/%i link %i/%i, " \
12341 "found tu %i, gmch %i/%i link %i/%i)\n", \
12342 current_config->name.tu, \
12343 current_config->name.gmch_m, \
12344 current_config->name.gmch_n, \
12345 current_config->name.link_m, \
12346 current_config->name.link_n, \
12347 pipe_config->name.tu, \
12348 pipe_config->name.gmch_m, \
12349 pipe_config->name.gmch_n, \
12350 pipe_config->name.link_m, \
12351 pipe_config->name.link_n); \
12352 ret = false; \
12353 }
12354
12355 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12356 if (!intel_compare_link_m_n(&current_config->name, \
12357 &pipe_config->name, adjust) && \
12358 !intel_compare_link_m_n(&current_config->alt_name, \
12359 &pipe_config->name, adjust)) { \
12360 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12361 "(expected tu %i gmch %i/%i link %i/%i, " \
12362 "or tu %i gmch %i/%i link %i/%i, " \
12363 "found tu %i, gmch %i/%i link %i/%i)\n", \
12364 current_config->name.tu, \
12365 current_config->name.gmch_m, \
12366 current_config->name.gmch_n, \
12367 current_config->name.link_m, \
12368 current_config->name.link_n, \
12369 current_config->alt_name.tu, \
12370 current_config->alt_name.gmch_m, \
12371 current_config->alt_name.gmch_n, \
12372 current_config->alt_name.link_m, \
12373 current_config->alt_name.link_n, \
12374 pipe_config->name.tu, \
12375 pipe_config->name.gmch_m, \
12376 pipe_config->name.gmch_n, \
12377 pipe_config->name.link_m, \
12378 pipe_config->name.link_n); \
12379 ret = false; \
12380 }
12381
12382 /* This is required for BDW+ where there is only one set of registers for
12383 * switching between high and low RR.
12384 * This macro can be used whenever a comparison has to be made between one
12385 * hw state and multiple sw state variables.
12386 */
12387 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12388 if ((current_config->name != pipe_config->name) && \
12389 (current_config->alt_name != pipe_config->name)) { \
12390 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12391 "(expected %i or %i, found %i)\n", \
12392 current_config->name, \
12393 current_config->alt_name, \
12394 pipe_config->name); \
12395 ret = false; \
12396 }
12397
12398 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12399 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12400 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12401 "(expected %i, found %i)\n", \
12402 current_config->name & (mask), \
12403 pipe_config->name & (mask)); \
12404 ret = false; \
12405 }
12406
12407 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12408 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12409 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12410 "(expected %i, found %i)\n", \
12411 current_config->name, \
12412 pipe_config->name); \
12413 ret = false; \
12414 }
12415
12416 #define PIPE_CONF_QUIRK(quirk) \
12417 ((current_config->quirks | pipe_config->quirks) & (quirk))
12418
12419 PIPE_CONF_CHECK_I(cpu_transcoder);
12420
12421 PIPE_CONF_CHECK_I(has_pch_encoder);
12422 PIPE_CONF_CHECK_I(fdi_lanes);
12423 PIPE_CONF_CHECK_M_N(fdi_m_n);
12424
12425 PIPE_CONF_CHECK_I(has_dp_encoder);
12426
12427 if (INTEL_INFO(dev)->gen < 8) {
12428 PIPE_CONF_CHECK_M_N(dp_m_n);
12429
12430 PIPE_CONF_CHECK_I(has_drrs);
12431 if (current_config->has_drrs)
12432 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12433 } else
12434 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12435
12436 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12437 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12438 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12439 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12440 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12441 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12442
12443 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12444 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12445 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12446 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12447 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12448 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12449
12450 PIPE_CONF_CHECK_I(pixel_multiplier);
12451 PIPE_CONF_CHECK_I(has_hdmi_sink);
12452 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12453 IS_VALLEYVIEW(dev))
12454 PIPE_CONF_CHECK_I(limited_color_range);
12455 PIPE_CONF_CHECK_I(has_infoframe);
12456
12457 PIPE_CONF_CHECK_I(has_audio);
12458
12459 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12460 DRM_MODE_FLAG_INTERLACE);
12461
12462 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12463 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12464 DRM_MODE_FLAG_PHSYNC);
12465 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12466 DRM_MODE_FLAG_NHSYNC);
12467 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12468 DRM_MODE_FLAG_PVSYNC);
12469 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12470 DRM_MODE_FLAG_NVSYNC);
12471 }
12472
12473 PIPE_CONF_CHECK_I(pipe_src_w);
12474 PIPE_CONF_CHECK_I(pipe_src_h);
12475
12476 PIPE_CONF_CHECK_I(gmch_pfit.control);
12477 /* pfit ratios are autocomputed by the hw on gen4+ */
12478 if (INTEL_INFO(dev)->gen < 4)
12479 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12480 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12481
12482 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12483 if (current_config->pch_pfit.enabled) {
12484 PIPE_CONF_CHECK_I(pch_pfit.pos);
12485 PIPE_CONF_CHECK_I(pch_pfit.size);
12486 }
12487
12488 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12489
12490 /* BDW+ don't expose a synchronous way to read the state */
12491 if (IS_HASWELL(dev))
12492 PIPE_CONF_CHECK_I(ips_enabled);
12493
12494 PIPE_CONF_CHECK_I(double_wide);
12495
12496 PIPE_CONF_CHECK_X(ddi_pll_sel);
12497
12498 PIPE_CONF_CHECK_I(shared_dpll);
12499 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12500 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12501 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12502 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12503 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12504 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12505 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12506 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12507
12508 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12509 PIPE_CONF_CHECK_I(pipe_bpp);
12510
12511 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12512 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12513
12514 #undef PIPE_CONF_CHECK_X
12515 #undef PIPE_CONF_CHECK_I
12516 #undef PIPE_CONF_CHECK_I_ALT
12517 #undef PIPE_CONF_CHECK_FLAGS
12518 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12519 #undef PIPE_CONF_QUIRK
12520 #undef INTEL_ERR_OR_DBG_KMS
12521
12522 return ret;
12523 }
12524
12525 static void check_wm_state(struct drm_device *dev)
12526 {
12527 struct drm_i915_private *dev_priv = dev->dev_private;
12528 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12529 struct intel_crtc *intel_crtc;
12530 int plane;
12531
12532 if (INTEL_INFO(dev)->gen < 9)
12533 return;
12534
12535 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12536 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12537
12538 for_each_intel_crtc(dev, intel_crtc) {
12539 struct skl_ddb_entry *hw_entry, *sw_entry;
12540 const enum pipe pipe = intel_crtc->pipe;
12541
12542 if (!intel_crtc->active)
12543 continue;
12544
12545 /* planes */
12546 for_each_plane(dev_priv, pipe, plane) {
12547 hw_entry = &hw_ddb.plane[pipe][plane];
12548 sw_entry = &sw_ddb->plane[pipe][plane];
12549
12550 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12551 continue;
12552
12553 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12554 "(expected (%u,%u), found (%u,%u))\n",
12555 pipe_name(pipe), plane + 1,
12556 sw_entry->start, sw_entry->end,
12557 hw_entry->start, hw_entry->end);
12558 }
12559
12560 /* cursor */
12561 hw_entry = &hw_ddb.cursor[pipe];
12562 sw_entry = &sw_ddb->cursor[pipe];
12563
12564 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12565 continue;
12566
12567 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12568 "(expected (%u,%u), found (%u,%u))\n",
12569 pipe_name(pipe),
12570 sw_entry->start, sw_entry->end,
12571 hw_entry->start, hw_entry->end);
12572 }
12573 }
12574
12575 static void
12576 check_connector_state(struct drm_device *dev,
12577 struct drm_atomic_state *old_state)
12578 {
12579 struct drm_connector_state *old_conn_state;
12580 struct drm_connector *connector;
12581 int i;
12582
12583 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12584 struct drm_encoder *encoder = connector->encoder;
12585 struct drm_connector_state *state = connector->state;
12586
12587 /* This also checks the encoder/connector hw state with the
12588 * ->get_hw_state callbacks. */
12589 intel_connector_check_state(to_intel_connector(connector));
12590
12591 I915_STATE_WARN(state->best_encoder != encoder,
12592 "connector's atomic encoder doesn't match legacy encoder\n");
12593 }
12594 }
12595
12596 static void
12597 check_encoder_state(struct drm_device *dev)
12598 {
12599 struct intel_encoder *encoder;
12600 struct intel_connector *connector;
12601
12602 for_each_intel_encoder(dev, encoder) {
12603 bool enabled = false;
12604 enum pipe pipe;
12605
12606 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12607 encoder->base.base.id,
12608 encoder->base.name);
12609
12610 for_each_intel_connector(dev, connector) {
12611 if (connector->base.state->best_encoder != &encoder->base)
12612 continue;
12613 enabled = true;
12614
12615 I915_STATE_WARN(connector->base.state->crtc !=
12616 encoder->base.crtc,
12617 "connector's crtc doesn't match encoder crtc\n");
12618 }
12619
12620 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12621 "encoder's enabled state mismatch "
12622 "(expected %i, found %i)\n",
12623 !!encoder->base.crtc, enabled);
12624
12625 if (!encoder->base.crtc) {
12626 bool active;
12627
12628 active = encoder->get_hw_state(encoder, &pipe);
12629 I915_STATE_WARN(active,
12630 "encoder detached but still enabled on pipe %c.\n",
12631 pipe_name(pipe));
12632 }
12633 }
12634 }
12635
12636 static void
12637 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12638 {
12639 struct drm_i915_private *dev_priv = dev->dev_private;
12640 struct intel_encoder *encoder;
12641 struct drm_crtc_state *old_crtc_state;
12642 struct drm_crtc *crtc;
12643 int i;
12644
12645 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12647 struct intel_crtc_state *pipe_config, *sw_config;
12648 bool active;
12649
12650 if (!needs_modeset(crtc->state))
12651 continue;
12652
12653 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12654 pipe_config = to_intel_crtc_state(old_crtc_state);
12655 memset(pipe_config, 0, sizeof(*pipe_config));
12656 pipe_config->base.crtc = crtc;
12657 pipe_config->base.state = old_state;
12658
12659 DRM_DEBUG_KMS("[CRTC:%d]\n",
12660 crtc->base.id);
12661
12662 active = dev_priv->display.get_pipe_config(intel_crtc,
12663 pipe_config);
12664
12665 /* hw state is inconsistent with the pipe quirk */
12666 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12667 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12668 active = crtc->state->active;
12669
12670 I915_STATE_WARN(crtc->state->active != active,
12671 "crtc active state doesn't match with hw state "
12672 "(expected %i, found %i)\n", crtc->state->active, active);
12673
12674 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12675 "transitional active state does not match atomic hw state "
12676 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12677
12678 for_each_encoder_on_crtc(dev, crtc, encoder) {
12679 enum pipe pipe;
12680
12681 active = encoder->get_hw_state(encoder, &pipe);
12682 I915_STATE_WARN(active != crtc->state->active,
12683 "[ENCODER:%i] active %i with crtc active %i\n",
12684 encoder->base.base.id, active, crtc->state->active);
12685
12686 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12687 "Encoder connected to wrong pipe %c\n",
12688 pipe_name(pipe));
12689
12690 if (active)
12691 encoder->get_config(encoder, pipe_config);
12692 }
12693
12694 if (!crtc->state->active)
12695 continue;
12696
12697 sw_config = to_intel_crtc_state(crtc->state);
12698 if (!intel_pipe_config_compare(dev, sw_config,
12699 pipe_config, false)) {
12700 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12701 intel_dump_pipe_config(intel_crtc, pipe_config,
12702 "[hw state]");
12703 intel_dump_pipe_config(intel_crtc, sw_config,
12704 "[sw state]");
12705 }
12706 }
12707 }
12708
12709 static void
12710 check_shared_dpll_state(struct drm_device *dev)
12711 {
12712 struct drm_i915_private *dev_priv = dev->dev_private;
12713 struct intel_crtc *crtc;
12714 struct intel_dpll_hw_state dpll_hw_state;
12715 int i;
12716
12717 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12718 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12719 int enabled_crtcs = 0, active_crtcs = 0;
12720 bool active;
12721
12722 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12723
12724 DRM_DEBUG_KMS("%s\n", pll->name);
12725
12726 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12727
12728 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12729 "more active pll users than references: %i vs %i\n",
12730 pll->active, hweight32(pll->config.crtc_mask));
12731 I915_STATE_WARN(pll->active && !pll->on,
12732 "pll in active use but not on in sw tracking\n");
12733 I915_STATE_WARN(pll->on && !pll->active,
12734 "pll in on but not on in use in sw tracking\n");
12735 I915_STATE_WARN(pll->on != active,
12736 "pll on state mismatch (expected %i, found %i)\n",
12737 pll->on, active);
12738
12739 for_each_intel_crtc(dev, crtc) {
12740 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12741 enabled_crtcs++;
12742 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12743 active_crtcs++;
12744 }
12745 I915_STATE_WARN(pll->active != active_crtcs,
12746 "pll active crtcs mismatch (expected %i, found %i)\n",
12747 pll->active, active_crtcs);
12748 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12749 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12750 hweight32(pll->config.crtc_mask), enabled_crtcs);
12751
12752 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12753 sizeof(dpll_hw_state)),
12754 "pll hw state mismatch\n");
12755 }
12756 }
12757
12758 static void
12759 intel_modeset_check_state(struct drm_device *dev,
12760 struct drm_atomic_state *old_state)
12761 {
12762 check_wm_state(dev);
12763 check_connector_state(dev, old_state);
12764 check_encoder_state(dev);
12765 check_crtc_state(dev, old_state);
12766 check_shared_dpll_state(dev);
12767 }
12768
12769 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12770 int dotclock)
12771 {
12772 /*
12773 * FDI already provided one idea for the dotclock.
12774 * Yell if the encoder disagrees.
12775 */
12776 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12777 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12778 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12779 }
12780
12781 static void update_scanline_offset(struct intel_crtc *crtc)
12782 {
12783 struct drm_device *dev = crtc->base.dev;
12784
12785 /*
12786 * The scanline counter increments at the leading edge of hsync.
12787 *
12788 * On most platforms it starts counting from vtotal-1 on the
12789 * first active line. That means the scanline counter value is
12790 * always one less than what we would expect. Ie. just after
12791 * start of vblank, which also occurs at start of hsync (on the
12792 * last active line), the scanline counter will read vblank_start-1.
12793 *
12794 * On gen2 the scanline counter starts counting from 1 instead
12795 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12796 * to keep the value positive), instead of adding one.
12797 *
12798 * On HSW+ the behaviour of the scanline counter depends on the output
12799 * type. For DP ports it behaves like most other platforms, but on HDMI
12800 * there's an extra 1 line difference. So we need to add two instead of
12801 * one to the value.
12802 */
12803 if (IS_GEN2(dev)) {
12804 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12805 int vtotal;
12806
12807 vtotal = mode->crtc_vtotal;
12808 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12809 vtotal /= 2;
12810
12811 crtc->scanline_offset = vtotal - 1;
12812 } else if (HAS_DDI(dev) &&
12813 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12814 crtc->scanline_offset = 2;
12815 } else
12816 crtc->scanline_offset = 1;
12817 }
12818
12819 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12820 {
12821 struct drm_device *dev = state->dev;
12822 struct drm_i915_private *dev_priv = to_i915(dev);
12823 struct intel_shared_dpll_config *shared_dpll = NULL;
12824 struct intel_crtc *intel_crtc;
12825 struct intel_crtc_state *intel_crtc_state;
12826 struct drm_crtc *crtc;
12827 struct drm_crtc_state *crtc_state;
12828 int i;
12829
12830 if (!dev_priv->display.crtc_compute_clock)
12831 return;
12832
12833 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12834 int dpll;
12835
12836 intel_crtc = to_intel_crtc(crtc);
12837 intel_crtc_state = to_intel_crtc_state(crtc_state);
12838 dpll = intel_crtc_state->shared_dpll;
12839
12840 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12841 continue;
12842
12843 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12844
12845 if (!shared_dpll)
12846 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12847
12848 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12849 }
12850 }
12851
12852 /*
12853 * This implements the workaround described in the "notes" section of the mode
12854 * set sequence documentation. When going from no pipes or single pipe to
12855 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12856 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12857 */
12858 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12859 {
12860 struct drm_crtc_state *crtc_state;
12861 struct intel_crtc *intel_crtc;
12862 struct drm_crtc *crtc;
12863 struct intel_crtc_state *first_crtc_state = NULL;
12864 struct intel_crtc_state *other_crtc_state = NULL;
12865 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12866 int i;
12867
12868 /* look at all crtc's that are going to be enabled in during modeset */
12869 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12870 intel_crtc = to_intel_crtc(crtc);
12871
12872 if (!crtc_state->active || !needs_modeset(crtc_state))
12873 continue;
12874
12875 if (first_crtc_state) {
12876 other_crtc_state = to_intel_crtc_state(crtc_state);
12877 break;
12878 } else {
12879 first_crtc_state = to_intel_crtc_state(crtc_state);
12880 first_pipe = intel_crtc->pipe;
12881 }
12882 }
12883
12884 /* No workaround needed? */
12885 if (!first_crtc_state)
12886 return 0;
12887
12888 /* w/a possibly needed, check how many crtc's are already enabled. */
12889 for_each_intel_crtc(state->dev, intel_crtc) {
12890 struct intel_crtc_state *pipe_config;
12891
12892 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12893 if (IS_ERR(pipe_config))
12894 return PTR_ERR(pipe_config);
12895
12896 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12897
12898 if (!pipe_config->base.active ||
12899 needs_modeset(&pipe_config->base))
12900 continue;
12901
12902 /* 2 or more enabled crtcs means no need for w/a */
12903 if (enabled_pipe != INVALID_PIPE)
12904 return 0;
12905
12906 enabled_pipe = intel_crtc->pipe;
12907 }
12908
12909 if (enabled_pipe != INVALID_PIPE)
12910 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12911 else if (other_crtc_state)
12912 other_crtc_state->hsw_workaround_pipe = first_pipe;
12913
12914 return 0;
12915 }
12916
12917 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12918 {
12919 struct drm_crtc *crtc;
12920 struct drm_crtc_state *crtc_state;
12921 int ret = 0;
12922
12923 /* add all active pipes to the state */
12924 for_each_crtc(state->dev, crtc) {
12925 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12926 if (IS_ERR(crtc_state))
12927 return PTR_ERR(crtc_state);
12928
12929 if (!crtc_state->active || needs_modeset(crtc_state))
12930 continue;
12931
12932 crtc_state->mode_changed = true;
12933
12934 ret = drm_atomic_add_affected_connectors(state, crtc);
12935 if (ret)
12936 break;
12937
12938 ret = drm_atomic_add_affected_planes(state, crtc);
12939 if (ret)
12940 break;
12941 }
12942
12943 return ret;
12944 }
12945
12946
12947 static int intel_modeset_checks(struct drm_atomic_state *state)
12948 {
12949 struct drm_device *dev = state->dev;
12950 struct drm_i915_private *dev_priv = dev->dev_private;
12951 int ret;
12952
12953 if (!check_digital_port_conflicts(state)) {
12954 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12955 return -EINVAL;
12956 }
12957
12958 /*
12959 * See if the config requires any additional preparation, e.g.
12960 * to adjust global state with pipes off. We need to do this
12961 * here so we can get the modeset_pipe updated config for the new
12962 * mode set on this crtc. For other crtcs we need to use the
12963 * adjusted_mode bits in the crtc directly.
12964 */
12965 if (dev_priv->display.modeset_calc_cdclk) {
12966 unsigned int cdclk;
12967
12968 ret = dev_priv->display.modeset_calc_cdclk(state);
12969
12970 cdclk = to_intel_atomic_state(state)->cdclk;
12971 if (!ret && cdclk != dev_priv->cdclk_freq)
12972 ret = intel_modeset_all_pipes(state);
12973
12974 if (ret < 0)
12975 return ret;
12976 } else
12977 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12978
12979 intel_modeset_clear_plls(state);
12980
12981 if (IS_HASWELL(dev))
12982 return haswell_mode_set_planes_workaround(state);
12983
12984 return 0;
12985 }
12986
12987 /**
12988 * intel_atomic_check - validate state object
12989 * @dev: drm device
12990 * @state: state to validate
12991 */
12992 static int intel_atomic_check(struct drm_device *dev,
12993 struct drm_atomic_state *state)
12994 {
12995 struct drm_crtc *crtc;
12996 struct drm_crtc_state *crtc_state;
12997 int ret, i;
12998 bool any_ms = false;
12999
13000 ret = drm_atomic_helper_check_modeset(dev, state);
13001 if (ret)
13002 return ret;
13003
13004 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13005 struct intel_crtc_state *pipe_config =
13006 to_intel_crtc_state(crtc_state);
13007
13008 /* Catch I915_MODE_FLAG_INHERITED */
13009 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13010 crtc_state->mode_changed = true;
13011
13012 if (!crtc_state->enable) {
13013 if (needs_modeset(crtc_state))
13014 any_ms = true;
13015 continue;
13016 }
13017
13018 if (!needs_modeset(crtc_state))
13019 continue;
13020
13021 /* FIXME: For only active_changed we shouldn't need to do any
13022 * state recomputation at all. */
13023
13024 ret = drm_atomic_add_affected_connectors(state, crtc);
13025 if (ret)
13026 return ret;
13027
13028 ret = intel_modeset_pipe_config(crtc, pipe_config);
13029 if (ret)
13030 return ret;
13031
13032 if (i915.fastboot &&
13033 intel_pipe_config_compare(state->dev,
13034 to_intel_crtc_state(crtc->state),
13035 pipe_config, true)) {
13036 crtc_state->mode_changed = false;
13037 }
13038
13039 if (needs_modeset(crtc_state)) {
13040 any_ms = true;
13041
13042 ret = drm_atomic_add_affected_planes(state, crtc);
13043 if (ret)
13044 return ret;
13045 }
13046
13047 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13048 needs_modeset(crtc_state) ?
13049 "[modeset]" : "[fastset]");
13050 }
13051
13052 if (any_ms) {
13053 ret = intel_modeset_checks(state);
13054
13055 if (ret)
13056 return ret;
13057 } else
13058 to_intel_atomic_state(state)->cdclk =
13059 to_i915(state->dev)->cdclk_freq;
13060
13061 return drm_atomic_helper_check_planes(state->dev, state);
13062 }
13063
13064 /**
13065 * intel_atomic_commit - commit validated state object
13066 * @dev: DRM device
13067 * @state: the top-level driver state object
13068 * @async: asynchronous commit
13069 *
13070 * This function commits a top-level state object that has been validated
13071 * with drm_atomic_helper_check().
13072 *
13073 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13074 * we can only handle plane-related operations and do not yet support
13075 * asynchronous commit.
13076 *
13077 * RETURNS
13078 * Zero for success or -errno.
13079 */
13080 static int intel_atomic_commit(struct drm_device *dev,
13081 struct drm_atomic_state *state,
13082 bool async)
13083 {
13084 struct drm_i915_private *dev_priv = dev->dev_private;
13085 struct drm_crtc *crtc;
13086 struct drm_crtc_state *crtc_state;
13087 int ret = 0;
13088 int i;
13089 bool any_ms = false;
13090
13091 if (async) {
13092 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13093 return -EINVAL;
13094 }
13095
13096 ret = drm_atomic_helper_prepare_planes(dev, state);
13097 if (ret)
13098 return ret;
13099
13100 drm_atomic_helper_swap_state(dev, state);
13101
13102 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13104
13105 if (!needs_modeset(crtc->state))
13106 continue;
13107
13108 any_ms = true;
13109 intel_pre_plane_update(intel_crtc);
13110
13111 if (crtc_state->active) {
13112 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13113 dev_priv->display.crtc_disable(crtc);
13114 intel_crtc->active = false;
13115 intel_disable_shared_dpll(intel_crtc);
13116 }
13117 }
13118
13119 /* Only after disabling all output pipelines that will be changed can we
13120 * update the the output configuration. */
13121 intel_modeset_update_crtc_state(state);
13122
13123 if (any_ms) {
13124 intel_shared_dpll_commit(state);
13125
13126 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13127 modeset_update_crtc_power_domains(state);
13128 }
13129
13130 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13131 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13133 bool modeset = needs_modeset(crtc->state);
13134
13135 if (modeset && crtc->state->active) {
13136 update_scanline_offset(to_intel_crtc(crtc));
13137 dev_priv->display.crtc_enable(crtc);
13138 }
13139
13140 if (!modeset)
13141 intel_pre_plane_update(intel_crtc);
13142
13143 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13144 intel_post_plane_update(intel_crtc);
13145 }
13146
13147 /* FIXME: add subpixel order */
13148
13149 drm_atomic_helper_wait_for_vblanks(dev, state);
13150 drm_atomic_helper_cleanup_planes(dev, state);
13151
13152 if (any_ms)
13153 intel_modeset_check_state(dev, state);
13154
13155 drm_atomic_state_free(state);
13156
13157 return 0;
13158 }
13159
13160 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13161 {
13162 struct drm_device *dev = crtc->dev;
13163 struct drm_atomic_state *state;
13164 struct drm_crtc_state *crtc_state;
13165 int ret;
13166
13167 state = drm_atomic_state_alloc(dev);
13168 if (!state) {
13169 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13170 crtc->base.id);
13171 return;
13172 }
13173
13174 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13175
13176 retry:
13177 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13178 ret = PTR_ERR_OR_ZERO(crtc_state);
13179 if (!ret) {
13180 if (!crtc_state->active)
13181 goto out;
13182
13183 crtc_state->mode_changed = true;
13184 ret = drm_atomic_commit(state);
13185 }
13186
13187 if (ret == -EDEADLK) {
13188 drm_atomic_state_clear(state);
13189 drm_modeset_backoff(state->acquire_ctx);
13190 goto retry;
13191 }
13192
13193 if (ret)
13194 out:
13195 drm_atomic_state_free(state);
13196 }
13197
13198 #undef for_each_intel_crtc_masked
13199
13200 static const struct drm_crtc_funcs intel_crtc_funcs = {
13201 .gamma_set = intel_crtc_gamma_set,
13202 .set_config = drm_atomic_helper_set_config,
13203 .destroy = intel_crtc_destroy,
13204 .page_flip = intel_crtc_page_flip,
13205 .atomic_duplicate_state = intel_crtc_duplicate_state,
13206 .atomic_destroy_state = intel_crtc_destroy_state,
13207 };
13208
13209 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13210 struct intel_shared_dpll *pll,
13211 struct intel_dpll_hw_state *hw_state)
13212 {
13213 uint32_t val;
13214
13215 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13216 return false;
13217
13218 val = I915_READ(PCH_DPLL(pll->id));
13219 hw_state->dpll = val;
13220 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13221 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13222
13223 return val & DPLL_VCO_ENABLE;
13224 }
13225
13226 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13227 struct intel_shared_dpll *pll)
13228 {
13229 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13230 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13231 }
13232
13233 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13234 struct intel_shared_dpll *pll)
13235 {
13236 /* PCH refclock must be enabled first */
13237 ibx_assert_pch_refclk_enabled(dev_priv);
13238
13239 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13240
13241 /* Wait for the clocks to stabilize. */
13242 POSTING_READ(PCH_DPLL(pll->id));
13243 udelay(150);
13244
13245 /* The pixel multiplier can only be updated once the
13246 * DPLL is enabled and the clocks are stable.
13247 *
13248 * So write it again.
13249 */
13250 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13251 POSTING_READ(PCH_DPLL(pll->id));
13252 udelay(200);
13253 }
13254
13255 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13256 struct intel_shared_dpll *pll)
13257 {
13258 struct drm_device *dev = dev_priv->dev;
13259 struct intel_crtc *crtc;
13260
13261 /* Make sure no transcoder isn't still depending on us. */
13262 for_each_intel_crtc(dev, crtc) {
13263 if (intel_crtc_to_shared_dpll(crtc) == pll)
13264 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13265 }
13266
13267 I915_WRITE(PCH_DPLL(pll->id), 0);
13268 POSTING_READ(PCH_DPLL(pll->id));
13269 udelay(200);
13270 }
13271
13272 static char *ibx_pch_dpll_names[] = {
13273 "PCH DPLL A",
13274 "PCH DPLL B",
13275 };
13276
13277 static void ibx_pch_dpll_init(struct drm_device *dev)
13278 {
13279 struct drm_i915_private *dev_priv = dev->dev_private;
13280 int i;
13281
13282 dev_priv->num_shared_dpll = 2;
13283
13284 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13285 dev_priv->shared_dplls[i].id = i;
13286 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13287 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13288 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13289 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13290 dev_priv->shared_dplls[i].get_hw_state =
13291 ibx_pch_dpll_get_hw_state;
13292 }
13293 }
13294
13295 static void intel_shared_dpll_init(struct drm_device *dev)
13296 {
13297 struct drm_i915_private *dev_priv = dev->dev_private;
13298
13299 intel_update_cdclk(dev);
13300
13301 if (HAS_DDI(dev))
13302 intel_ddi_pll_init(dev);
13303 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13304 ibx_pch_dpll_init(dev);
13305 else
13306 dev_priv->num_shared_dpll = 0;
13307
13308 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13309 }
13310
13311 /**
13312 * intel_prepare_plane_fb - Prepare fb for usage on plane
13313 * @plane: drm plane to prepare for
13314 * @fb: framebuffer to prepare for presentation
13315 *
13316 * Prepares a framebuffer for usage on a display plane. Generally this
13317 * involves pinning the underlying object and updating the frontbuffer tracking
13318 * bits. Some older platforms need special physical address handling for
13319 * cursor planes.
13320 *
13321 * Returns 0 on success, negative error code on failure.
13322 */
13323 int
13324 intel_prepare_plane_fb(struct drm_plane *plane,
13325 struct drm_framebuffer *fb,
13326 const struct drm_plane_state *new_state)
13327 {
13328 struct drm_device *dev = plane->dev;
13329 struct intel_plane *intel_plane = to_intel_plane(plane);
13330 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13331 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13332 int ret = 0;
13333
13334 if (!obj)
13335 return 0;
13336
13337 mutex_lock(&dev->struct_mutex);
13338
13339 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13340 INTEL_INFO(dev)->cursor_needs_physical) {
13341 int align = IS_I830(dev) ? 16 * 1024 : 256;
13342 ret = i915_gem_object_attach_phys(obj, align);
13343 if (ret)
13344 DRM_DEBUG_KMS("failed to attach phys object\n");
13345 } else {
13346 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13347 }
13348
13349 if (ret == 0)
13350 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13351
13352 mutex_unlock(&dev->struct_mutex);
13353
13354 return ret;
13355 }
13356
13357 /**
13358 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13359 * @plane: drm plane to clean up for
13360 * @fb: old framebuffer that was on plane
13361 *
13362 * Cleans up a framebuffer that has just been removed from a plane.
13363 */
13364 void
13365 intel_cleanup_plane_fb(struct drm_plane *plane,
13366 struct drm_framebuffer *fb,
13367 const struct drm_plane_state *old_state)
13368 {
13369 struct drm_device *dev = plane->dev;
13370 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13371
13372 if (WARN_ON(!obj))
13373 return;
13374
13375 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13376 !INTEL_INFO(dev)->cursor_needs_physical) {
13377 mutex_lock(&dev->struct_mutex);
13378 intel_unpin_fb_obj(fb, old_state);
13379 mutex_unlock(&dev->struct_mutex);
13380 }
13381 }
13382
13383 int
13384 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13385 {
13386 int max_scale;
13387 struct drm_device *dev;
13388 struct drm_i915_private *dev_priv;
13389 int crtc_clock, cdclk;
13390
13391 if (!intel_crtc || !crtc_state)
13392 return DRM_PLANE_HELPER_NO_SCALING;
13393
13394 dev = intel_crtc->base.dev;
13395 dev_priv = dev->dev_private;
13396 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13397 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13398
13399 if (!crtc_clock || !cdclk)
13400 return DRM_PLANE_HELPER_NO_SCALING;
13401
13402 /*
13403 * skl max scale is lower of:
13404 * close to 3 but not 3, -1 is for that purpose
13405 * or
13406 * cdclk/crtc_clock
13407 */
13408 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13409
13410 return max_scale;
13411 }
13412
13413 static int
13414 intel_check_primary_plane(struct drm_plane *plane,
13415 struct intel_crtc_state *crtc_state,
13416 struct intel_plane_state *state)
13417 {
13418 struct drm_crtc *crtc = state->base.crtc;
13419 struct drm_framebuffer *fb = state->base.fb;
13420 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13421 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13422 bool can_position = false;
13423
13424 /* use scaler when colorkey is not required */
13425 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13426 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13427 min_scale = 1;
13428 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13429 can_position = true;
13430 }
13431
13432 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13433 &state->dst, &state->clip,
13434 min_scale, max_scale,
13435 can_position, true,
13436 &state->visible);
13437 }
13438
13439 static void
13440 intel_commit_primary_plane(struct drm_plane *plane,
13441 struct intel_plane_state *state)
13442 {
13443 struct drm_crtc *crtc = state->base.crtc;
13444 struct drm_framebuffer *fb = state->base.fb;
13445 struct drm_device *dev = plane->dev;
13446 struct drm_i915_private *dev_priv = dev->dev_private;
13447 struct intel_crtc *intel_crtc;
13448 struct drm_rect *src = &state->src;
13449
13450 crtc = crtc ? crtc : plane->crtc;
13451 intel_crtc = to_intel_crtc(crtc);
13452
13453 plane->fb = fb;
13454 crtc->x = src->x1 >> 16;
13455 crtc->y = src->y1 >> 16;
13456
13457 if (!crtc->state->active)
13458 return;
13459
13460 if (state->visible)
13461 /* FIXME: kill this fastboot hack */
13462 intel_update_pipe_size(intel_crtc);
13463
13464 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13465 }
13466
13467 static void
13468 intel_disable_primary_plane(struct drm_plane *plane,
13469 struct drm_crtc *crtc)
13470 {
13471 struct drm_device *dev = plane->dev;
13472 struct drm_i915_private *dev_priv = dev->dev_private;
13473
13474 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13475 }
13476
13477 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13478 struct drm_crtc_state *old_crtc_state)
13479 {
13480 struct drm_device *dev = crtc->dev;
13481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13482
13483 if (intel_crtc->atomic.update_wm_pre)
13484 intel_update_watermarks(crtc);
13485
13486 /* Perform vblank evasion around commit operation */
13487 if (crtc->state->active)
13488 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13489
13490 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13491 skl_detach_scalers(intel_crtc);
13492 }
13493
13494 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13495 struct drm_crtc_state *old_crtc_state)
13496 {
13497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13498
13499 if (crtc->state->active)
13500 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13501 }
13502
13503 /**
13504 * intel_plane_destroy - destroy a plane
13505 * @plane: plane to destroy
13506 *
13507 * Common destruction function for all types of planes (primary, cursor,
13508 * sprite).
13509 */
13510 void intel_plane_destroy(struct drm_plane *plane)
13511 {
13512 struct intel_plane *intel_plane = to_intel_plane(plane);
13513 drm_plane_cleanup(plane);
13514 kfree(intel_plane);
13515 }
13516
13517 const struct drm_plane_funcs intel_plane_funcs = {
13518 .update_plane = drm_atomic_helper_update_plane,
13519 .disable_plane = drm_atomic_helper_disable_plane,
13520 .destroy = intel_plane_destroy,
13521 .set_property = drm_atomic_helper_plane_set_property,
13522 .atomic_get_property = intel_plane_atomic_get_property,
13523 .atomic_set_property = intel_plane_atomic_set_property,
13524 .atomic_duplicate_state = intel_plane_duplicate_state,
13525 .atomic_destroy_state = intel_plane_destroy_state,
13526
13527 };
13528
13529 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13530 int pipe)
13531 {
13532 struct intel_plane *primary;
13533 struct intel_plane_state *state;
13534 const uint32_t *intel_primary_formats;
13535 unsigned int num_formats;
13536
13537 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13538 if (primary == NULL)
13539 return NULL;
13540
13541 state = intel_create_plane_state(&primary->base);
13542 if (!state) {
13543 kfree(primary);
13544 return NULL;
13545 }
13546 primary->base.state = &state->base;
13547
13548 primary->can_scale = false;
13549 primary->max_downscale = 1;
13550 if (INTEL_INFO(dev)->gen >= 9) {
13551 primary->can_scale = true;
13552 state->scaler_id = -1;
13553 }
13554 primary->pipe = pipe;
13555 primary->plane = pipe;
13556 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13557 primary->check_plane = intel_check_primary_plane;
13558 primary->commit_plane = intel_commit_primary_plane;
13559 primary->disable_plane = intel_disable_primary_plane;
13560 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13561 primary->plane = !pipe;
13562
13563 if (INTEL_INFO(dev)->gen >= 9) {
13564 intel_primary_formats = skl_primary_formats;
13565 num_formats = ARRAY_SIZE(skl_primary_formats);
13566 } else if (INTEL_INFO(dev)->gen >= 4) {
13567 intel_primary_formats = i965_primary_formats;
13568 num_formats = ARRAY_SIZE(i965_primary_formats);
13569 } else {
13570 intel_primary_formats = i8xx_primary_formats;
13571 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13572 }
13573
13574 drm_universal_plane_init(dev, &primary->base, 0,
13575 &intel_plane_funcs,
13576 intel_primary_formats, num_formats,
13577 DRM_PLANE_TYPE_PRIMARY);
13578
13579 if (INTEL_INFO(dev)->gen >= 4)
13580 intel_create_rotation_property(dev, primary);
13581
13582 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13583
13584 return &primary->base;
13585 }
13586
13587 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13588 {
13589 if (!dev->mode_config.rotation_property) {
13590 unsigned long flags = BIT(DRM_ROTATE_0) |
13591 BIT(DRM_ROTATE_180);
13592
13593 if (INTEL_INFO(dev)->gen >= 9)
13594 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13595
13596 dev->mode_config.rotation_property =
13597 drm_mode_create_rotation_property(dev, flags);
13598 }
13599 if (dev->mode_config.rotation_property)
13600 drm_object_attach_property(&plane->base.base,
13601 dev->mode_config.rotation_property,
13602 plane->base.state->rotation);
13603 }
13604
13605 static int
13606 intel_check_cursor_plane(struct drm_plane *plane,
13607 struct intel_crtc_state *crtc_state,
13608 struct intel_plane_state *state)
13609 {
13610 struct drm_crtc *crtc = crtc_state->base.crtc;
13611 struct drm_framebuffer *fb = state->base.fb;
13612 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13613 unsigned stride;
13614 int ret;
13615
13616 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13617 &state->dst, &state->clip,
13618 DRM_PLANE_HELPER_NO_SCALING,
13619 DRM_PLANE_HELPER_NO_SCALING,
13620 true, true, &state->visible);
13621 if (ret)
13622 return ret;
13623
13624 /* if we want to turn off the cursor ignore width and height */
13625 if (!obj)
13626 return 0;
13627
13628 /* Check for which cursor types we support */
13629 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13630 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13631 state->base.crtc_w, state->base.crtc_h);
13632 return -EINVAL;
13633 }
13634
13635 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13636 if (obj->base.size < stride * state->base.crtc_h) {
13637 DRM_DEBUG_KMS("buffer is too small\n");
13638 return -ENOMEM;
13639 }
13640
13641 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13642 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13643 return -EINVAL;
13644 }
13645
13646 return 0;
13647 }
13648
13649 static void
13650 intel_disable_cursor_plane(struct drm_plane *plane,
13651 struct drm_crtc *crtc)
13652 {
13653 intel_crtc_update_cursor(crtc, false);
13654 }
13655
13656 static void
13657 intel_commit_cursor_plane(struct drm_plane *plane,
13658 struct intel_plane_state *state)
13659 {
13660 struct drm_crtc *crtc = state->base.crtc;
13661 struct drm_device *dev = plane->dev;
13662 struct intel_crtc *intel_crtc;
13663 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13664 uint32_t addr;
13665
13666 crtc = crtc ? crtc : plane->crtc;
13667 intel_crtc = to_intel_crtc(crtc);
13668
13669 plane->fb = state->base.fb;
13670 crtc->cursor_x = state->base.crtc_x;
13671 crtc->cursor_y = state->base.crtc_y;
13672
13673 if (intel_crtc->cursor_bo == obj)
13674 goto update;
13675
13676 if (!obj)
13677 addr = 0;
13678 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13679 addr = i915_gem_obj_ggtt_offset(obj);
13680 else
13681 addr = obj->phys_handle->busaddr;
13682
13683 intel_crtc->cursor_addr = addr;
13684 intel_crtc->cursor_bo = obj;
13685
13686 update:
13687 if (crtc->state->active)
13688 intel_crtc_update_cursor(crtc, state->visible);
13689 }
13690
13691 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13692 int pipe)
13693 {
13694 struct intel_plane *cursor;
13695 struct intel_plane_state *state;
13696
13697 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13698 if (cursor == NULL)
13699 return NULL;
13700
13701 state = intel_create_plane_state(&cursor->base);
13702 if (!state) {
13703 kfree(cursor);
13704 return NULL;
13705 }
13706 cursor->base.state = &state->base;
13707
13708 cursor->can_scale = false;
13709 cursor->max_downscale = 1;
13710 cursor->pipe = pipe;
13711 cursor->plane = pipe;
13712 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13713 cursor->check_plane = intel_check_cursor_plane;
13714 cursor->commit_plane = intel_commit_cursor_plane;
13715 cursor->disable_plane = intel_disable_cursor_plane;
13716
13717 drm_universal_plane_init(dev, &cursor->base, 0,
13718 &intel_plane_funcs,
13719 intel_cursor_formats,
13720 ARRAY_SIZE(intel_cursor_formats),
13721 DRM_PLANE_TYPE_CURSOR);
13722
13723 if (INTEL_INFO(dev)->gen >= 4) {
13724 if (!dev->mode_config.rotation_property)
13725 dev->mode_config.rotation_property =
13726 drm_mode_create_rotation_property(dev,
13727 BIT(DRM_ROTATE_0) |
13728 BIT(DRM_ROTATE_180));
13729 if (dev->mode_config.rotation_property)
13730 drm_object_attach_property(&cursor->base.base,
13731 dev->mode_config.rotation_property,
13732 state->base.rotation);
13733 }
13734
13735 if (INTEL_INFO(dev)->gen >=9)
13736 state->scaler_id = -1;
13737
13738 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13739
13740 return &cursor->base;
13741 }
13742
13743 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13744 struct intel_crtc_state *crtc_state)
13745 {
13746 int i;
13747 struct intel_scaler *intel_scaler;
13748 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13749
13750 for (i = 0; i < intel_crtc->num_scalers; i++) {
13751 intel_scaler = &scaler_state->scalers[i];
13752 intel_scaler->in_use = 0;
13753 intel_scaler->mode = PS_SCALER_MODE_DYN;
13754 }
13755
13756 scaler_state->scaler_id = -1;
13757 }
13758
13759 static void intel_crtc_init(struct drm_device *dev, int pipe)
13760 {
13761 struct drm_i915_private *dev_priv = dev->dev_private;
13762 struct intel_crtc *intel_crtc;
13763 struct intel_crtc_state *crtc_state = NULL;
13764 struct drm_plane *primary = NULL;
13765 struct drm_plane *cursor = NULL;
13766 int i, ret;
13767
13768 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13769 if (intel_crtc == NULL)
13770 return;
13771
13772 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13773 if (!crtc_state)
13774 goto fail;
13775 intel_crtc->config = crtc_state;
13776 intel_crtc->base.state = &crtc_state->base;
13777 crtc_state->base.crtc = &intel_crtc->base;
13778
13779 /* initialize shared scalers */
13780 if (INTEL_INFO(dev)->gen >= 9) {
13781 if (pipe == PIPE_C)
13782 intel_crtc->num_scalers = 1;
13783 else
13784 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13785
13786 skl_init_scalers(dev, intel_crtc, crtc_state);
13787 }
13788
13789 primary = intel_primary_plane_create(dev, pipe);
13790 if (!primary)
13791 goto fail;
13792
13793 cursor = intel_cursor_plane_create(dev, pipe);
13794 if (!cursor)
13795 goto fail;
13796
13797 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13798 cursor, &intel_crtc_funcs);
13799 if (ret)
13800 goto fail;
13801
13802 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13803 for (i = 0; i < 256; i++) {
13804 intel_crtc->lut_r[i] = i;
13805 intel_crtc->lut_g[i] = i;
13806 intel_crtc->lut_b[i] = i;
13807 }
13808
13809 /*
13810 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13811 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13812 */
13813 intel_crtc->pipe = pipe;
13814 intel_crtc->plane = pipe;
13815 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13816 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13817 intel_crtc->plane = !pipe;
13818 }
13819
13820 intel_crtc->cursor_base = ~0;
13821 intel_crtc->cursor_cntl = ~0;
13822 intel_crtc->cursor_size = ~0;
13823
13824 intel_crtc->wm.cxsr_allowed = true;
13825
13826 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13827 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13828 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13829 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13830
13831 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13832
13833 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13834 return;
13835
13836 fail:
13837 if (primary)
13838 drm_plane_cleanup(primary);
13839 if (cursor)
13840 drm_plane_cleanup(cursor);
13841 kfree(crtc_state);
13842 kfree(intel_crtc);
13843 }
13844
13845 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13846 {
13847 struct drm_encoder *encoder = connector->base.encoder;
13848 struct drm_device *dev = connector->base.dev;
13849
13850 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13851
13852 if (!encoder || WARN_ON(!encoder->crtc))
13853 return INVALID_PIPE;
13854
13855 return to_intel_crtc(encoder->crtc)->pipe;
13856 }
13857
13858 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13859 struct drm_file *file)
13860 {
13861 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13862 struct drm_crtc *drmmode_crtc;
13863 struct intel_crtc *crtc;
13864
13865 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13866
13867 if (!drmmode_crtc) {
13868 DRM_ERROR("no such CRTC id\n");
13869 return -ENOENT;
13870 }
13871
13872 crtc = to_intel_crtc(drmmode_crtc);
13873 pipe_from_crtc_id->pipe = crtc->pipe;
13874
13875 return 0;
13876 }
13877
13878 static int intel_encoder_clones(struct intel_encoder *encoder)
13879 {
13880 struct drm_device *dev = encoder->base.dev;
13881 struct intel_encoder *source_encoder;
13882 int index_mask = 0;
13883 int entry = 0;
13884
13885 for_each_intel_encoder(dev, source_encoder) {
13886 if (encoders_cloneable(encoder, source_encoder))
13887 index_mask |= (1 << entry);
13888
13889 entry++;
13890 }
13891
13892 return index_mask;
13893 }
13894
13895 static bool has_edp_a(struct drm_device *dev)
13896 {
13897 struct drm_i915_private *dev_priv = dev->dev_private;
13898
13899 if (!IS_MOBILE(dev))
13900 return false;
13901
13902 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13903 return false;
13904
13905 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13906 return false;
13907
13908 return true;
13909 }
13910
13911 static bool intel_crt_present(struct drm_device *dev)
13912 {
13913 struct drm_i915_private *dev_priv = dev->dev_private;
13914
13915 if (INTEL_INFO(dev)->gen >= 9)
13916 return false;
13917
13918 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13919 return false;
13920
13921 if (IS_CHERRYVIEW(dev))
13922 return false;
13923
13924 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13925 return false;
13926
13927 return true;
13928 }
13929
13930 static void intel_setup_outputs(struct drm_device *dev)
13931 {
13932 struct drm_i915_private *dev_priv = dev->dev_private;
13933 struct intel_encoder *encoder;
13934 bool dpd_is_edp = false;
13935
13936 intel_lvds_init(dev);
13937
13938 if (intel_crt_present(dev))
13939 intel_crt_init(dev);
13940
13941 if (IS_BROXTON(dev)) {
13942 /*
13943 * FIXME: Broxton doesn't support port detection via the
13944 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13945 * detect the ports.
13946 */
13947 intel_ddi_init(dev, PORT_A);
13948 intel_ddi_init(dev, PORT_B);
13949 intel_ddi_init(dev, PORT_C);
13950 } else if (HAS_DDI(dev)) {
13951 int found;
13952
13953 /*
13954 * Haswell uses DDI functions to detect digital outputs.
13955 * On SKL pre-D0 the strap isn't connected, so we assume
13956 * it's there.
13957 */
13958 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13959 /* WaIgnoreDDIAStrap: skl */
13960 if (found || IS_SKYLAKE(dev))
13961 intel_ddi_init(dev, PORT_A);
13962
13963 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13964 * register */
13965 found = I915_READ(SFUSE_STRAP);
13966
13967 if (found & SFUSE_STRAP_DDIB_DETECTED)
13968 intel_ddi_init(dev, PORT_B);
13969 if (found & SFUSE_STRAP_DDIC_DETECTED)
13970 intel_ddi_init(dev, PORT_C);
13971 if (found & SFUSE_STRAP_DDID_DETECTED)
13972 intel_ddi_init(dev, PORT_D);
13973 /*
13974 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13975 */
13976 if (IS_SKYLAKE(dev) &&
13977 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13978 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13979 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13980 intel_ddi_init(dev, PORT_E);
13981
13982 } else if (HAS_PCH_SPLIT(dev)) {
13983 int found;
13984 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13985
13986 if (has_edp_a(dev))
13987 intel_dp_init(dev, DP_A, PORT_A);
13988
13989 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13990 /* PCH SDVOB multiplex with HDMIB */
13991 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13992 if (!found)
13993 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13994 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13995 intel_dp_init(dev, PCH_DP_B, PORT_B);
13996 }
13997
13998 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13999 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14000
14001 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14002 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14003
14004 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14005 intel_dp_init(dev, PCH_DP_C, PORT_C);
14006
14007 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14008 intel_dp_init(dev, PCH_DP_D, PORT_D);
14009 } else if (IS_VALLEYVIEW(dev)) {
14010 /*
14011 * The DP_DETECTED bit is the latched state of the DDC
14012 * SDA pin at boot. However since eDP doesn't require DDC
14013 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14014 * eDP ports may have been muxed to an alternate function.
14015 * Thus we can't rely on the DP_DETECTED bit alone to detect
14016 * eDP ports. Consult the VBT as well as DP_DETECTED to
14017 * detect eDP ports.
14018 */
14019 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14020 !intel_dp_is_edp(dev, PORT_B))
14021 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14022 PORT_B);
14023 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14024 intel_dp_is_edp(dev, PORT_B))
14025 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14026
14027 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14028 !intel_dp_is_edp(dev, PORT_C))
14029 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14030 PORT_C);
14031 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14032 intel_dp_is_edp(dev, PORT_C))
14033 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14034
14035 if (IS_CHERRYVIEW(dev)) {
14036 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14037 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14038 PORT_D);
14039 /* eDP not supported on port D, so don't check VBT */
14040 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14041 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14042 }
14043
14044 intel_dsi_init(dev);
14045 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14046 bool found = false;
14047
14048 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14049 DRM_DEBUG_KMS("probing SDVOB\n");
14050 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14051 if (!found && IS_G4X(dev)) {
14052 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14053 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14054 }
14055
14056 if (!found && IS_G4X(dev))
14057 intel_dp_init(dev, DP_B, PORT_B);
14058 }
14059
14060 /* Before G4X SDVOC doesn't have its own detect register */
14061
14062 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14063 DRM_DEBUG_KMS("probing SDVOC\n");
14064 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14065 }
14066
14067 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14068
14069 if (IS_G4X(dev)) {
14070 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14071 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14072 }
14073 if (IS_G4X(dev))
14074 intel_dp_init(dev, DP_C, PORT_C);
14075 }
14076
14077 if (IS_G4X(dev) &&
14078 (I915_READ(DP_D) & DP_DETECTED))
14079 intel_dp_init(dev, DP_D, PORT_D);
14080 } else if (IS_GEN2(dev))
14081 intel_dvo_init(dev);
14082
14083 if (SUPPORTS_TV(dev))
14084 intel_tv_init(dev);
14085
14086 intel_psr_init(dev);
14087
14088 for_each_intel_encoder(dev, encoder) {
14089 encoder->base.possible_crtcs = encoder->crtc_mask;
14090 encoder->base.possible_clones =
14091 intel_encoder_clones(encoder);
14092 }
14093
14094 intel_init_pch_refclk(dev);
14095
14096 drm_helper_move_panel_connectors_to_head(dev);
14097 }
14098
14099 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14100 {
14101 struct drm_device *dev = fb->dev;
14102 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14103
14104 drm_framebuffer_cleanup(fb);
14105 mutex_lock(&dev->struct_mutex);
14106 WARN_ON(!intel_fb->obj->framebuffer_references--);
14107 drm_gem_object_unreference(&intel_fb->obj->base);
14108 mutex_unlock(&dev->struct_mutex);
14109 kfree(intel_fb);
14110 }
14111
14112 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14113 struct drm_file *file,
14114 unsigned int *handle)
14115 {
14116 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14117 struct drm_i915_gem_object *obj = intel_fb->obj;
14118
14119 if (obj->userptr.mm) {
14120 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14121 return -EINVAL;
14122 }
14123
14124 return drm_gem_handle_create(file, &obj->base, handle);
14125 }
14126
14127 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14128 struct drm_file *file,
14129 unsigned flags, unsigned color,
14130 struct drm_clip_rect *clips,
14131 unsigned num_clips)
14132 {
14133 struct drm_device *dev = fb->dev;
14134 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14135 struct drm_i915_gem_object *obj = intel_fb->obj;
14136
14137 mutex_lock(&dev->struct_mutex);
14138 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14139 mutex_unlock(&dev->struct_mutex);
14140
14141 return 0;
14142 }
14143
14144 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14145 .destroy = intel_user_framebuffer_destroy,
14146 .create_handle = intel_user_framebuffer_create_handle,
14147 .dirty = intel_user_framebuffer_dirty,
14148 };
14149
14150 static
14151 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14152 uint32_t pixel_format)
14153 {
14154 u32 gen = INTEL_INFO(dev)->gen;
14155
14156 if (gen >= 9) {
14157 /* "The stride in bytes must not exceed the of the size of 8K
14158 * pixels and 32K bytes."
14159 */
14160 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14161 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14162 return 32*1024;
14163 } else if (gen >= 4) {
14164 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14165 return 16*1024;
14166 else
14167 return 32*1024;
14168 } else if (gen >= 3) {
14169 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14170 return 8*1024;
14171 else
14172 return 16*1024;
14173 } else {
14174 /* XXX DSPC is limited to 4k tiled */
14175 return 8*1024;
14176 }
14177 }
14178
14179 static int intel_framebuffer_init(struct drm_device *dev,
14180 struct intel_framebuffer *intel_fb,
14181 struct drm_mode_fb_cmd2 *mode_cmd,
14182 struct drm_i915_gem_object *obj)
14183 {
14184 unsigned int aligned_height;
14185 int ret;
14186 u32 pitch_limit, stride_alignment;
14187
14188 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14189
14190 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14191 /* Enforce that fb modifier and tiling mode match, but only for
14192 * X-tiled. This is needed for FBC. */
14193 if (!!(obj->tiling_mode == I915_TILING_X) !=
14194 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14195 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14196 return -EINVAL;
14197 }
14198 } else {
14199 if (obj->tiling_mode == I915_TILING_X)
14200 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14201 else if (obj->tiling_mode == I915_TILING_Y) {
14202 DRM_DEBUG("No Y tiling for legacy addfb\n");
14203 return -EINVAL;
14204 }
14205 }
14206
14207 /* Passed in modifier sanity checking. */
14208 switch (mode_cmd->modifier[0]) {
14209 case I915_FORMAT_MOD_Y_TILED:
14210 case I915_FORMAT_MOD_Yf_TILED:
14211 if (INTEL_INFO(dev)->gen < 9) {
14212 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14213 mode_cmd->modifier[0]);
14214 return -EINVAL;
14215 }
14216 case DRM_FORMAT_MOD_NONE:
14217 case I915_FORMAT_MOD_X_TILED:
14218 break;
14219 default:
14220 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14221 mode_cmd->modifier[0]);
14222 return -EINVAL;
14223 }
14224
14225 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14226 mode_cmd->pixel_format);
14227 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14228 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14229 mode_cmd->pitches[0], stride_alignment);
14230 return -EINVAL;
14231 }
14232
14233 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14234 mode_cmd->pixel_format);
14235 if (mode_cmd->pitches[0] > pitch_limit) {
14236 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14237 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14238 "tiled" : "linear",
14239 mode_cmd->pitches[0], pitch_limit);
14240 return -EINVAL;
14241 }
14242
14243 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14244 mode_cmd->pitches[0] != obj->stride) {
14245 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14246 mode_cmd->pitches[0], obj->stride);
14247 return -EINVAL;
14248 }
14249
14250 /* Reject formats not supported by any plane early. */
14251 switch (mode_cmd->pixel_format) {
14252 case DRM_FORMAT_C8:
14253 case DRM_FORMAT_RGB565:
14254 case DRM_FORMAT_XRGB8888:
14255 case DRM_FORMAT_ARGB8888:
14256 break;
14257 case DRM_FORMAT_XRGB1555:
14258 if (INTEL_INFO(dev)->gen > 3) {
14259 DRM_DEBUG("unsupported pixel format: %s\n",
14260 drm_get_format_name(mode_cmd->pixel_format));
14261 return -EINVAL;
14262 }
14263 break;
14264 case DRM_FORMAT_ABGR8888:
14265 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14266 DRM_DEBUG("unsupported pixel format: %s\n",
14267 drm_get_format_name(mode_cmd->pixel_format));
14268 return -EINVAL;
14269 }
14270 break;
14271 case DRM_FORMAT_XBGR8888:
14272 case DRM_FORMAT_XRGB2101010:
14273 case DRM_FORMAT_XBGR2101010:
14274 if (INTEL_INFO(dev)->gen < 4) {
14275 DRM_DEBUG("unsupported pixel format: %s\n",
14276 drm_get_format_name(mode_cmd->pixel_format));
14277 return -EINVAL;
14278 }
14279 break;
14280 case DRM_FORMAT_ABGR2101010:
14281 if (!IS_VALLEYVIEW(dev)) {
14282 DRM_DEBUG("unsupported pixel format: %s\n",
14283 drm_get_format_name(mode_cmd->pixel_format));
14284 return -EINVAL;
14285 }
14286 break;
14287 case DRM_FORMAT_YUYV:
14288 case DRM_FORMAT_UYVY:
14289 case DRM_FORMAT_YVYU:
14290 case DRM_FORMAT_VYUY:
14291 if (INTEL_INFO(dev)->gen < 5) {
14292 DRM_DEBUG("unsupported pixel format: %s\n",
14293 drm_get_format_name(mode_cmd->pixel_format));
14294 return -EINVAL;
14295 }
14296 break;
14297 default:
14298 DRM_DEBUG("unsupported pixel format: %s\n",
14299 drm_get_format_name(mode_cmd->pixel_format));
14300 return -EINVAL;
14301 }
14302
14303 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14304 if (mode_cmd->offsets[0] != 0)
14305 return -EINVAL;
14306
14307 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14308 mode_cmd->pixel_format,
14309 mode_cmd->modifier[0]);
14310 /* FIXME drm helper for size checks (especially planar formats)? */
14311 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14312 return -EINVAL;
14313
14314 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14315 intel_fb->obj = obj;
14316 intel_fb->obj->framebuffer_references++;
14317
14318 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14319 if (ret) {
14320 DRM_ERROR("framebuffer init failed %d\n", ret);
14321 return ret;
14322 }
14323
14324 return 0;
14325 }
14326
14327 static struct drm_framebuffer *
14328 intel_user_framebuffer_create(struct drm_device *dev,
14329 struct drm_file *filp,
14330 struct drm_mode_fb_cmd2 *mode_cmd)
14331 {
14332 struct drm_i915_gem_object *obj;
14333
14334 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14335 mode_cmd->handles[0]));
14336 if (&obj->base == NULL)
14337 return ERR_PTR(-ENOENT);
14338
14339 return intel_framebuffer_create(dev, mode_cmd, obj);
14340 }
14341
14342 #ifndef CONFIG_DRM_FBDEV_EMULATION
14343 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14344 {
14345 }
14346 #endif
14347
14348 static const struct drm_mode_config_funcs intel_mode_funcs = {
14349 .fb_create = intel_user_framebuffer_create,
14350 .output_poll_changed = intel_fbdev_output_poll_changed,
14351 .atomic_check = intel_atomic_check,
14352 .atomic_commit = intel_atomic_commit,
14353 .atomic_state_alloc = intel_atomic_state_alloc,
14354 .atomic_state_clear = intel_atomic_state_clear,
14355 };
14356
14357 /* Set up chip specific display functions */
14358 static void intel_init_display(struct drm_device *dev)
14359 {
14360 struct drm_i915_private *dev_priv = dev->dev_private;
14361
14362 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14363 dev_priv->display.find_dpll = g4x_find_best_dpll;
14364 else if (IS_CHERRYVIEW(dev))
14365 dev_priv->display.find_dpll = chv_find_best_dpll;
14366 else if (IS_VALLEYVIEW(dev))
14367 dev_priv->display.find_dpll = vlv_find_best_dpll;
14368 else if (IS_PINEVIEW(dev))
14369 dev_priv->display.find_dpll = pnv_find_best_dpll;
14370 else
14371 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14372
14373 if (INTEL_INFO(dev)->gen >= 9) {
14374 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14375 dev_priv->display.get_initial_plane_config =
14376 skylake_get_initial_plane_config;
14377 dev_priv->display.crtc_compute_clock =
14378 haswell_crtc_compute_clock;
14379 dev_priv->display.crtc_enable = haswell_crtc_enable;
14380 dev_priv->display.crtc_disable = haswell_crtc_disable;
14381 dev_priv->display.update_primary_plane =
14382 skylake_update_primary_plane;
14383 } else if (HAS_DDI(dev)) {
14384 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14385 dev_priv->display.get_initial_plane_config =
14386 ironlake_get_initial_plane_config;
14387 dev_priv->display.crtc_compute_clock =
14388 haswell_crtc_compute_clock;
14389 dev_priv->display.crtc_enable = haswell_crtc_enable;
14390 dev_priv->display.crtc_disable = haswell_crtc_disable;
14391 dev_priv->display.update_primary_plane =
14392 ironlake_update_primary_plane;
14393 } else if (HAS_PCH_SPLIT(dev)) {
14394 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14395 dev_priv->display.get_initial_plane_config =
14396 ironlake_get_initial_plane_config;
14397 dev_priv->display.crtc_compute_clock =
14398 ironlake_crtc_compute_clock;
14399 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14400 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14401 dev_priv->display.update_primary_plane =
14402 ironlake_update_primary_plane;
14403 } else if (IS_VALLEYVIEW(dev)) {
14404 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14405 dev_priv->display.get_initial_plane_config =
14406 i9xx_get_initial_plane_config;
14407 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14408 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14409 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14410 dev_priv->display.update_primary_plane =
14411 i9xx_update_primary_plane;
14412 } else {
14413 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14414 dev_priv->display.get_initial_plane_config =
14415 i9xx_get_initial_plane_config;
14416 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14417 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14418 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14419 dev_priv->display.update_primary_plane =
14420 i9xx_update_primary_plane;
14421 }
14422
14423 /* Returns the core display clock speed */
14424 if (IS_SKYLAKE(dev))
14425 dev_priv->display.get_display_clock_speed =
14426 skylake_get_display_clock_speed;
14427 else if (IS_BROXTON(dev))
14428 dev_priv->display.get_display_clock_speed =
14429 broxton_get_display_clock_speed;
14430 else if (IS_BROADWELL(dev))
14431 dev_priv->display.get_display_clock_speed =
14432 broadwell_get_display_clock_speed;
14433 else if (IS_HASWELL(dev))
14434 dev_priv->display.get_display_clock_speed =
14435 haswell_get_display_clock_speed;
14436 else if (IS_VALLEYVIEW(dev))
14437 dev_priv->display.get_display_clock_speed =
14438 valleyview_get_display_clock_speed;
14439 else if (IS_GEN5(dev))
14440 dev_priv->display.get_display_clock_speed =
14441 ilk_get_display_clock_speed;
14442 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14443 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14444 dev_priv->display.get_display_clock_speed =
14445 i945_get_display_clock_speed;
14446 else if (IS_GM45(dev))
14447 dev_priv->display.get_display_clock_speed =
14448 gm45_get_display_clock_speed;
14449 else if (IS_CRESTLINE(dev))
14450 dev_priv->display.get_display_clock_speed =
14451 i965gm_get_display_clock_speed;
14452 else if (IS_PINEVIEW(dev))
14453 dev_priv->display.get_display_clock_speed =
14454 pnv_get_display_clock_speed;
14455 else if (IS_G33(dev) || IS_G4X(dev))
14456 dev_priv->display.get_display_clock_speed =
14457 g33_get_display_clock_speed;
14458 else if (IS_I915G(dev))
14459 dev_priv->display.get_display_clock_speed =
14460 i915_get_display_clock_speed;
14461 else if (IS_I945GM(dev) || IS_845G(dev))
14462 dev_priv->display.get_display_clock_speed =
14463 i9xx_misc_get_display_clock_speed;
14464 else if (IS_PINEVIEW(dev))
14465 dev_priv->display.get_display_clock_speed =
14466 pnv_get_display_clock_speed;
14467 else if (IS_I915GM(dev))
14468 dev_priv->display.get_display_clock_speed =
14469 i915gm_get_display_clock_speed;
14470 else if (IS_I865G(dev))
14471 dev_priv->display.get_display_clock_speed =
14472 i865_get_display_clock_speed;
14473 else if (IS_I85X(dev))
14474 dev_priv->display.get_display_clock_speed =
14475 i85x_get_display_clock_speed;
14476 else { /* 830 */
14477 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14478 dev_priv->display.get_display_clock_speed =
14479 i830_get_display_clock_speed;
14480 }
14481
14482 if (IS_GEN5(dev)) {
14483 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14484 } else if (IS_GEN6(dev)) {
14485 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14486 } else if (IS_IVYBRIDGE(dev)) {
14487 /* FIXME: detect B0+ stepping and use auto training */
14488 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14489 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14490 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14491 if (IS_BROADWELL(dev)) {
14492 dev_priv->display.modeset_commit_cdclk =
14493 broadwell_modeset_commit_cdclk;
14494 dev_priv->display.modeset_calc_cdclk =
14495 broadwell_modeset_calc_cdclk;
14496 }
14497 } else if (IS_VALLEYVIEW(dev)) {
14498 dev_priv->display.modeset_commit_cdclk =
14499 valleyview_modeset_commit_cdclk;
14500 dev_priv->display.modeset_calc_cdclk =
14501 valleyview_modeset_calc_cdclk;
14502 } else if (IS_BROXTON(dev)) {
14503 dev_priv->display.modeset_commit_cdclk =
14504 broxton_modeset_commit_cdclk;
14505 dev_priv->display.modeset_calc_cdclk =
14506 broxton_modeset_calc_cdclk;
14507 }
14508
14509 switch (INTEL_INFO(dev)->gen) {
14510 case 2:
14511 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14512 break;
14513
14514 case 3:
14515 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14516 break;
14517
14518 case 4:
14519 case 5:
14520 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14521 break;
14522
14523 case 6:
14524 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14525 break;
14526 case 7:
14527 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14528 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14529 break;
14530 case 9:
14531 /* Drop through - unsupported since execlist only. */
14532 default:
14533 /* Default just returns -ENODEV to indicate unsupported */
14534 dev_priv->display.queue_flip = intel_default_queue_flip;
14535 }
14536
14537 intel_panel_init_backlight_funcs(dev);
14538
14539 mutex_init(&dev_priv->pps_mutex);
14540 }
14541
14542 /*
14543 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14544 * resume, or other times. This quirk makes sure that's the case for
14545 * affected systems.
14546 */
14547 static void quirk_pipea_force(struct drm_device *dev)
14548 {
14549 struct drm_i915_private *dev_priv = dev->dev_private;
14550
14551 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14552 DRM_INFO("applying pipe a force quirk\n");
14553 }
14554
14555 static void quirk_pipeb_force(struct drm_device *dev)
14556 {
14557 struct drm_i915_private *dev_priv = dev->dev_private;
14558
14559 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14560 DRM_INFO("applying pipe b force quirk\n");
14561 }
14562
14563 /*
14564 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14565 */
14566 static void quirk_ssc_force_disable(struct drm_device *dev)
14567 {
14568 struct drm_i915_private *dev_priv = dev->dev_private;
14569 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14570 DRM_INFO("applying lvds SSC disable quirk\n");
14571 }
14572
14573 /*
14574 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14575 * brightness value
14576 */
14577 static void quirk_invert_brightness(struct drm_device *dev)
14578 {
14579 struct drm_i915_private *dev_priv = dev->dev_private;
14580 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14581 DRM_INFO("applying inverted panel brightness quirk\n");
14582 }
14583
14584 /* Some VBT's incorrectly indicate no backlight is present */
14585 static void quirk_backlight_present(struct drm_device *dev)
14586 {
14587 struct drm_i915_private *dev_priv = dev->dev_private;
14588 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14589 DRM_INFO("applying backlight present quirk\n");
14590 }
14591
14592 struct intel_quirk {
14593 int device;
14594 int subsystem_vendor;
14595 int subsystem_device;
14596 void (*hook)(struct drm_device *dev);
14597 };
14598
14599 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14600 struct intel_dmi_quirk {
14601 void (*hook)(struct drm_device *dev);
14602 const struct dmi_system_id (*dmi_id_list)[];
14603 };
14604
14605 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14606 {
14607 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14608 return 1;
14609 }
14610
14611 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14612 {
14613 .dmi_id_list = &(const struct dmi_system_id[]) {
14614 {
14615 .callback = intel_dmi_reverse_brightness,
14616 .ident = "NCR Corporation",
14617 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14618 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14619 },
14620 },
14621 { } /* terminating entry */
14622 },
14623 .hook = quirk_invert_brightness,
14624 },
14625 };
14626
14627 static struct intel_quirk intel_quirks[] = {
14628 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14629 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14630
14631 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14632 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14633
14634 /* 830 needs to leave pipe A & dpll A up */
14635 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14636
14637 /* 830 needs to leave pipe B & dpll B up */
14638 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14639
14640 /* Lenovo U160 cannot use SSC on LVDS */
14641 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14642
14643 /* Sony Vaio Y cannot use SSC on LVDS */
14644 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14645
14646 /* Acer Aspire 5734Z must invert backlight brightness */
14647 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14648
14649 /* Acer/eMachines G725 */
14650 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14651
14652 /* Acer/eMachines e725 */
14653 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14654
14655 /* Acer/Packard Bell NCL20 */
14656 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14657
14658 /* Acer Aspire 4736Z */
14659 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14660
14661 /* Acer Aspire 5336 */
14662 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14663
14664 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14665 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14666
14667 /* Acer C720 Chromebook (Core i3 4005U) */
14668 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14669
14670 /* Apple Macbook 2,1 (Core 2 T7400) */
14671 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14672
14673 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14674 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14675
14676 /* HP Chromebook 14 (Celeron 2955U) */
14677 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14678
14679 /* Dell Chromebook 11 */
14680 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14681 };
14682
14683 static void intel_init_quirks(struct drm_device *dev)
14684 {
14685 struct pci_dev *d = dev->pdev;
14686 int i;
14687
14688 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14689 struct intel_quirk *q = &intel_quirks[i];
14690
14691 if (d->device == q->device &&
14692 (d->subsystem_vendor == q->subsystem_vendor ||
14693 q->subsystem_vendor == PCI_ANY_ID) &&
14694 (d->subsystem_device == q->subsystem_device ||
14695 q->subsystem_device == PCI_ANY_ID))
14696 q->hook(dev);
14697 }
14698 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14699 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14700 intel_dmi_quirks[i].hook(dev);
14701 }
14702 }
14703
14704 /* Disable the VGA plane that we never use */
14705 static void i915_disable_vga(struct drm_device *dev)
14706 {
14707 struct drm_i915_private *dev_priv = dev->dev_private;
14708 u8 sr1;
14709 u32 vga_reg = i915_vgacntrl_reg(dev);
14710
14711 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14712 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14713 outb(SR01, VGA_SR_INDEX);
14714 sr1 = inb(VGA_SR_DATA);
14715 outb(sr1 | 1<<5, VGA_SR_DATA);
14716 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14717 udelay(300);
14718
14719 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14720 POSTING_READ(vga_reg);
14721 }
14722
14723 void intel_modeset_init_hw(struct drm_device *dev)
14724 {
14725 intel_update_cdclk(dev);
14726 intel_prepare_ddi(dev);
14727 intel_init_clock_gating(dev);
14728 intel_enable_gt_powersave(dev);
14729 }
14730
14731 void intel_modeset_init(struct drm_device *dev)
14732 {
14733 struct drm_i915_private *dev_priv = dev->dev_private;
14734 int sprite, ret;
14735 enum pipe pipe;
14736 struct intel_crtc *crtc;
14737
14738 drm_mode_config_init(dev);
14739
14740 dev->mode_config.min_width = 0;
14741 dev->mode_config.min_height = 0;
14742
14743 dev->mode_config.preferred_depth = 24;
14744 dev->mode_config.prefer_shadow = 1;
14745
14746 dev->mode_config.allow_fb_modifiers = true;
14747
14748 dev->mode_config.funcs = &intel_mode_funcs;
14749
14750 intel_init_quirks(dev);
14751
14752 intel_init_pm(dev);
14753
14754 if (INTEL_INFO(dev)->num_pipes == 0)
14755 return;
14756
14757 /*
14758 * There may be no VBT; and if the BIOS enabled SSC we can
14759 * just keep using it to avoid unnecessary flicker. Whereas if the
14760 * BIOS isn't using it, don't assume it will work even if the VBT
14761 * indicates as much.
14762 */
14763 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14764 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14765 DREF_SSC1_ENABLE);
14766
14767 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14768 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14769 bios_lvds_use_ssc ? "en" : "dis",
14770 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14771 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14772 }
14773 }
14774
14775 intel_init_display(dev);
14776 intel_init_audio(dev);
14777
14778 if (IS_GEN2(dev)) {
14779 dev->mode_config.max_width = 2048;
14780 dev->mode_config.max_height = 2048;
14781 } else if (IS_GEN3(dev)) {
14782 dev->mode_config.max_width = 4096;
14783 dev->mode_config.max_height = 4096;
14784 } else {
14785 dev->mode_config.max_width = 8192;
14786 dev->mode_config.max_height = 8192;
14787 }
14788
14789 if (IS_845G(dev) || IS_I865G(dev)) {
14790 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14791 dev->mode_config.cursor_height = 1023;
14792 } else if (IS_GEN2(dev)) {
14793 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14794 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14795 } else {
14796 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14797 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14798 }
14799
14800 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14801
14802 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14803 INTEL_INFO(dev)->num_pipes,
14804 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14805
14806 for_each_pipe(dev_priv, pipe) {
14807 intel_crtc_init(dev, pipe);
14808 for_each_sprite(dev_priv, pipe, sprite) {
14809 ret = intel_plane_init(dev, pipe, sprite);
14810 if (ret)
14811 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14812 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14813 }
14814 }
14815
14816 intel_init_dpio(dev);
14817
14818 intel_shared_dpll_init(dev);
14819
14820 /* Just disable it once at startup */
14821 i915_disable_vga(dev);
14822 intel_setup_outputs(dev);
14823
14824 /* Just in case the BIOS is doing something questionable. */
14825 intel_fbc_disable(dev_priv);
14826
14827 drm_modeset_lock_all(dev);
14828 intel_modeset_setup_hw_state(dev);
14829 drm_modeset_unlock_all(dev);
14830
14831 for_each_intel_crtc(dev, crtc) {
14832 struct intel_initial_plane_config plane_config = {};
14833
14834 if (!crtc->active)
14835 continue;
14836
14837 /*
14838 * Note that reserving the BIOS fb up front prevents us
14839 * from stuffing other stolen allocations like the ring
14840 * on top. This prevents some ugliness at boot time, and
14841 * can even allow for smooth boot transitions if the BIOS
14842 * fb is large enough for the active pipe configuration.
14843 */
14844 dev_priv->display.get_initial_plane_config(crtc,
14845 &plane_config);
14846
14847 /*
14848 * If the fb is shared between multiple heads, we'll
14849 * just get the first one.
14850 */
14851 intel_find_initial_plane_obj(crtc, &plane_config);
14852 }
14853 }
14854
14855 static void intel_enable_pipe_a(struct drm_device *dev)
14856 {
14857 struct intel_connector *connector;
14858 struct drm_connector *crt = NULL;
14859 struct intel_load_detect_pipe load_detect_temp;
14860 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14861
14862 /* We can't just switch on the pipe A, we need to set things up with a
14863 * proper mode and output configuration. As a gross hack, enable pipe A
14864 * by enabling the load detect pipe once. */
14865 for_each_intel_connector(dev, connector) {
14866 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14867 crt = &connector->base;
14868 break;
14869 }
14870 }
14871
14872 if (!crt)
14873 return;
14874
14875 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14876 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14877 }
14878
14879 static bool
14880 intel_check_plane_mapping(struct intel_crtc *crtc)
14881 {
14882 struct drm_device *dev = crtc->base.dev;
14883 struct drm_i915_private *dev_priv = dev->dev_private;
14884 u32 reg, val;
14885
14886 if (INTEL_INFO(dev)->num_pipes == 1)
14887 return true;
14888
14889 reg = DSPCNTR(!crtc->plane);
14890 val = I915_READ(reg);
14891
14892 if ((val & DISPLAY_PLANE_ENABLE) &&
14893 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14894 return false;
14895
14896 return true;
14897 }
14898
14899 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14900 {
14901 struct drm_device *dev = crtc->base.dev;
14902 struct drm_i915_private *dev_priv = dev->dev_private;
14903 struct intel_encoder *encoder;
14904 u32 reg;
14905 bool enable;
14906
14907 /* Clear any frame start delays used for debugging left by the BIOS */
14908 reg = PIPECONF(crtc->config->cpu_transcoder);
14909 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14910
14911 /* restore vblank interrupts to correct state */
14912 drm_crtc_vblank_reset(&crtc->base);
14913 if (crtc->active) {
14914 struct intel_plane *plane;
14915
14916 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
14917 update_scanline_offset(crtc);
14918 drm_crtc_vblank_on(&crtc->base);
14919
14920 /* Disable everything but the primary plane */
14921 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14922 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14923 continue;
14924
14925 plane->disable_plane(&plane->base, &crtc->base);
14926 }
14927 }
14928
14929 /* We need to sanitize the plane -> pipe mapping first because this will
14930 * disable the crtc (and hence change the state) if it is wrong. Note
14931 * that gen4+ has a fixed plane -> pipe mapping. */
14932 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14933 bool plane;
14934
14935 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14936 crtc->base.base.id);
14937
14938 /* Pipe has the wrong plane attached and the plane is active.
14939 * Temporarily change the plane mapping and disable everything
14940 * ... */
14941 plane = crtc->plane;
14942 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14943 crtc->plane = !plane;
14944 intel_crtc_disable_noatomic(&crtc->base);
14945 crtc->plane = plane;
14946 }
14947
14948 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14949 crtc->pipe == PIPE_A && !crtc->active) {
14950 /* BIOS forgot to enable pipe A, this mostly happens after
14951 * resume. Force-enable the pipe to fix this, the update_dpms
14952 * call below we restore the pipe to the right state, but leave
14953 * the required bits on. */
14954 intel_enable_pipe_a(dev);
14955 }
14956
14957 /* Adjust the state of the output pipe according to whether we
14958 * have active connectors/encoders. */
14959 enable = false;
14960 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14961 enable = true;
14962 break;
14963 }
14964
14965 if (!enable)
14966 intel_crtc_disable_noatomic(&crtc->base);
14967
14968 if (crtc->active != crtc->base.state->active) {
14969
14970 /* This can happen either due to bugs in the get_hw_state
14971 * functions or because of calls to intel_crtc_disable_noatomic,
14972 * or because the pipe is force-enabled due to the
14973 * pipe A quirk. */
14974 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14975 crtc->base.base.id,
14976 crtc->base.state->enable ? "enabled" : "disabled",
14977 crtc->active ? "enabled" : "disabled");
14978
14979 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
14980 crtc->base.state->active = crtc->active;
14981 crtc->base.enabled = crtc->active;
14982
14983 /* Because we only establish the connector -> encoder ->
14984 * crtc links if something is active, this means the
14985 * crtc is now deactivated. Break the links. connector
14986 * -> encoder links are only establish when things are
14987 * actually up, hence no need to break them. */
14988 WARN_ON(crtc->active);
14989
14990 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14991 encoder->base.crtc = NULL;
14992 }
14993
14994 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14995 /*
14996 * We start out with underrun reporting disabled to avoid races.
14997 * For correct bookkeeping mark this on active crtcs.
14998 *
14999 * Also on gmch platforms we dont have any hardware bits to
15000 * disable the underrun reporting. Which means we need to start
15001 * out with underrun reporting disabled also on inactive pipes,
15002 * since otherwise we'll complain about the garbage we read when
15003 * e.g. coming up after runtime pm.
15004 *
15005 * No protection against concurrent access is required - at
15006 * worst a fifo underrun happens which also sets this to false.
15007 */
15008 crtc->cpu_fifo_underrun_disabled = true;
15009 crtc->pch_fifo_underrun_disabled = true;
15010 }
15011 }
15012
15013 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15014 {
15015 struct intel_connector *connector;
15016 struct drm_device *dev = encoder->base.dev;
15017 bool active = false;
15018
15019 /* We need to check both for a crtc link (meaning that the
15020 * encoder is active and trying to read from a pipe) and the
15021 * pipe itself being active. */
15022 bool has_active_crtc = encoder->base.crtc &&
15023 to_intel_crtc(encoder->base.crtc)->active;
15024
15025 for_each_intel_connector(dev, connector) {
15026 if (connector->base.encoder != &encoder->base)
15027 continue;
15028
15029 active = true;
15030 break;
15031 }
15032
15033 if (active && !has_active_crtc) {
15034 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15035 encoder->base.base.id,
15036 encoder->base.name);
15037
15038 /* Connector is active, but has no active pipe. This is
15039 * fallout from our resume register restoring. Disable
15040 * the encoder manually again. */
15041 if (encoder->base.crtc) {
15042 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15043 encoder->base.base.id,
15044 encoder->base.name);
15045 encoder->disable(encoder);
15046 if (encoder->post_disable)
15047 encoder->post_disable(encoder);
15048 }
15049 encoder->base.crtc = NULL;
15050
15051 /* Inconsistent output/port/pipe state happens presumably due to
15052 * a bug in one of the get_hw_state functions. Or someplace else
15053 * in our code, like the register restore mess on resume. Clamp
15054 * things to off as a safer default. */
15055 for_each_intel_connector(dev, connector) {
15056 if (connector->encoder != encoder)
15057 continue;
15058 connector->base.dpms = DRM_MODE_DPMS_OFF;
15059 connector->base.encoder = NULL;
15060 }
15061 }
15062 /* Enabled encoders without active connectors will be fixed in
15063 * the crtc fixup. */
15064 }
15065
15066 void i915_redisable_vga_power_on(struct drm_device *dev)
15067 {
15068 struct drm_i915_private *dev_priv = dev->dev_private;
15069 u32 vga_reg = i915_vgacntrl_reg(dev);
15070
15071 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15072 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15073 i915_disable_vga(dev);
15074 }
15075 }
15076
15077 void i915_redisable_vga(struct drm_device *dev)
15078 {
15079 struct drm_i915_private *dev_priv = dev->dev_private;
15080
15081 /* This function can be called both from intel_modeset_setup_hw_state or
15082 * at a very early point in our resume sequence, where the power well
15083 * structures are not yet restored. Since this function is at a very
15084 * paranoid "someone might have enabled VGA while we were not looking"
15085 * level, just check if the power well is enabled instead of trying to
15086 * follow the "don't touch the power well if we don't need it" policy
15087 * the rest of the driver uses. */
15088 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15089 return;
15090
15091 i915_redisable_vga_power_on(dev);
15092 }
15093
15094 static bool primary_get_hw_state(struct intel_plane *plane)
15095 {
15096 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15097
15098 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15099 }
15100
15101 /* FIXME read out full plane state for all planes */
15102 static void readout_plane_state(struct intel_crtc *crtc)
15103 {
15104 struct drm_plane *primary = crtc->base.primary;
15105 struct intel_plane_state *plane_state =
15106 to_intel_plane_state(primary->state);
15107
15108 plane_state->visible =
15109 primary_get_hw_state(to_intel_plane(primary));
15110
15111 if (plane_state->visible)
15112 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15113 }
15114
15115 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15116 {
15117 struct drm_i915_private *dev_priv = dev->dev_private;
15118 enum pipe pipe;
15119 struct intel_crtc *crtc;
15120 struct intel_encoder *encoder;
15121 struct intel_connector *connector;
15122 int i;
15123
15124 for_each_intel_crtc(dev, crtc) {
15125 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15126 memset(crtc->config, 0, sizeof(*crtc->config));
15127 crtc->config->base.crtc = &crtc->base;
15128
15129 crtc->active = dev_priv->display.get_pipe_config(crtc,
15130 crtc->config);
15131
15132 crtc->base.state->active = crtc->active;
15133 crtc->base.enabled = crtc->active;
15134
15135 readout_plane_state(crtc);
15136
15137 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15138 crtc->base.base.id,
15139 crtc->active ? "enabled" : "disabled");
15140 }
15141
15142 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15143 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15144
15145 pll->on = pll->get_hw_state(dev_priv, pll,
15146 &pll->config.hw_state);
15147 pll->active = 0;
15148 pll->config.crtc_mask = 0;
15149 for_each_intel_crtc(dev, crtc) {
15150 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15151 pll->active++;
15152 pll->config.crtc_mask |= 1 << crtc->pipe;
15153 }
15154 }
15155
15156 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15157 pll->name, pll->config.crtc_mask, pll->on);
15158
15159 if (pll->config.crtc_mask)
15160 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15161 }
15162
15163 for_each_intel_encoder(dev, encoder) {
15164 pipe = 0;
15165
15166 if (encoder->get_hw_state(encoder, &pipe)) {
15167 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15168 encoder->base.crtc = &crtc->base;
15169 encoder->get_config(encoder, crtc->config);
15170 } else {
15171 encoder->base.crtc = NULL;
15172 }
15173
15174 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15175 encoder->base.base.id,
15176 encoder->base.name,
15177 encoder->base.crtc ? "enabled" : "disabled",
15178 pipe_name(pipe));
15179 }
15180
15181 for_each_intel_connector(dev, connector) {
15182 if (connector->get_hw_state(connector)) {
15183 connector->base.dpms = DRM_MODE_DPMS_ON;
15184 connector->base.encoder = &connector->encoder->base;
15185 } else {
15186 connector->base.dpms = DRM_MODE_DPMS_OFF;
15187 connector->base.encoder = NULL;
15188 }
15189 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15190 connector->base.base.id,
15191 connector->base.name,
15192 connector->base.encoder ? "enabled" : "disabled");
15193 }
15194
15195 for_each_intel_crtc(dev, crtc) {
15196 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15197
15198 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15199 if (crtc->base.state->active) {
15200 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15201 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15202 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15203
15204 /*
15205 * The initial mode needs to be set in order to keep
15206 * the atomic core happy. It wants a valid mode if the
15207 * crtc's enabled, so we do the above call.
15208 *
15209 * At this point some state updated by the connectors
15210 * in their ->detect() callback has not run yet, so
15211 * no recalculation can be done yet.
15212 *
15213 * Even if we could do a recalculation and modeset
15214 * right now it would cause a double modeset if
15215 * fbdev or userspace chooses a different initial mode.
15216 *
15217 * If that happens, someone indicated they wanted a
15218 * mode change, which means it's safe to do a full
15219 * recalculation.
15220 */
15221 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15222 }
15223 }
15224 }
15225
15226 /* Scan out the current hw modeset state,
15227 * and sanitizes it to the current state
15228 */
15229 static void
15230 intel_modeset_setup_hw_state(struct drm_device *dev)
15231 {
15232 struct drm_i915_private *dev_priv = dev->dev_private;
15233 enum pipe pipe;
15234 struct intel_crtc *crtc;
15235 struct intel_encoder *encoder;
15236 int i;
15237
15238 intel_modeset_readout_hw_state(dev);
15239
15240 /* HW state is read out, now we need to sanitize this mess. */
15241 for_each_intel_encoder(dev, encoder) {
15242 intel_sanitize_encoder(encoder);
15243 }
15244
15245 for_each_pipe(dev_priv, pipe) {
15246 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15247 intel_sanitize_crtc(crtc);
15248 intel_dump_pipe_config(crtc, crtc->config,
15249 "[setup_hw_state]");
15250 }
15251
15252 intel_modeset_update_connector_atomic_state(dev);
15253
15254 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15255 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15256
15257 if (!pll->on || pll->active)
15258 continue;
15259
15260 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15261
15262 pll->disable(dev_priv, pll);
15263 pll->on = false;
15264 }
15265
15266 if (IS_VALLEYVIEW(dev))
15267 vlv_wm_get_hw_state(dev);
15268 else if (IS_GEN9(dev))
15269 skl_wm_get_hw_state(dev);
15270 else if (HAS_PCH_SPLIT(dev))
15271 ilk_wm_get_hw_state(dev);
15272
15273 for_each_intel_crtc(dev, crtc) {
15274 unsigned long put_domains;
15275
15276 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15277 if (WARN_ON(put_domains))
15278 modeset_put_power_domains(dev_priv, put_domains);
15279 }
15280 intel_display_set_init_power(dev_priv, false);
15281 }
15282
15283 void intel_display_resume(struct drm_device *dev)
15284 {
15285 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15286 struct intel_connector *conn;
15287 struct intel_plane *plane;
15288 struct drm_crtc *crtc;
15289 int ret;
15290
15291 if (!state)
15292 return;
15293
15294 state->acquire_ctx = dev->mode_config.acquire_ctx;
15295
15296 /* preserve complete old state, including dpll */
15297 intel_atomic_get_shared_dpll_state(state);
15298
15299 for_each_crtc(dev, crtc) {
15300 struct drm_crtc_state *crtc_state =
15301 drm_atomic_get_crtc_state(state, crtc);
15302
15303 ret = PTR_ERR_OR_ZERO(crtc_state);
15304 if (ret)
15305 goto err;
15306
15307 /* force a restore */
15308 crtc_state->mode_changed = true;
15309 }
15310
15311 for_each_intel_plane(dev, plane) {
15312 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15313 if (ret)
15314 goto err;
15315 }
15316
15317 for_each_intel_connector(dev, conn) {
15318 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15319 if (ret)
15320 goto err;
15321 }
15322
15323 intel_modeset_setup_hw_state(dev);
15324
15325 i915_redisable_vga(dev);
15326 ret = drm_atomic_commit(state);
15327 if (!ret)
15328 return;
15329
15330 err:
15331 DRM_ERROR("Restoring old state failed with %i\n", ret);
15332 drm_atomic_state_free(state);
15333 }
15334
15335 void intel_modeset_gem_init(struct drm_device *dev)
15336 {
15337 struct drm_crtc *c;
15338 struct drm_i915_gem_object *obj;
15339 int ret;
15340
15341 mutex_lock(&dev->struct_mutex);
15342 intel_init_gt_powersave(dev);
15343 mutex_unlock(&dev->struct_mutex);
15344
15345 intel_modeset_init_hw(dev);
15346
15347 intel_setup_overlay(dev);
15348
15349 /*
15350 * Make sure any fbs we allocated at startup are properly
15351 * pinned & fenced. When we do the allocation it's too early
15352 * for this.
15353 */
15354 for_each_crtc(dev, c) {
15355 obj = intel_fb_obj(c->primary->fb);
15356 if (obj == NULL)
15357 continue;
15358
15359 mutex_lock(&dev->struct_mutex);
15360 ret = intel_pin_and_fence_fb_obj(c->primary,
15361 c->primary->fb,
15362 c->primary->state,
15363 NULL, NULL);
15364 mutex_unlock(&dev->struct_mutex);
15365 if (ret) {
15366 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15367 to_intel_crtc(c)->pipe);
15368 drm_framebuffer_unreference(c->primary->fb);
15369 c->primary->fb = NULL;
15370 c->primary->crtc = c->primary->state->crtc = NULL;
15371 update_state_fb(c->primary);
15372 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15373 }
15374 }
15375
15376 intel_backlight_register(dev);
15377 }
15378
15379 void intel_connector_unregister(struct intel_connector *intel_connector)
15380 {
15381 struct drm_connector *connector = &intel_connector->base;
15382
15383 intel_panel_destroy_backlight(connector);
15384 drm_connector_unregister(connector);
15385 }
15386
15387 void intel_modeset_cleanup(struct drm_device *dev)
15388 {
15389 struct drm_i915_private *dev_priv = dev->dev_private;
15390 struct drm_connector *connector;
15391
15392 intel_disable_gt_powersave(dev);
15393
15394 intel_backlight_unregister(dev);
15395
15396 /*
15397 * Interrupts and polling as the first thing to avoid creating havoc.
15398 * Too much stuff here (turning of connectors, ...) would
15399 * experience fancy races otherwise.
15400 */
15401 intel_irq_uninstall(dev_priv);
15402
15403 /*
15404 * Due to the hpd irq storm handling the hotplug work can re-arm the
15405 * poll handlers. Hence disable polling after hpd handling is shut down.
15406 */
15407 drm_kms_helper_poll_fini(dev);
15408
15409 intel_unregister_dsm_handler();
15410
15411 intel_fbc_disable(dev_priv);
15412
15413 /* flush any delayed tasks or pending work */
15414 flush_scheduled_work();
15415
15416 /* destroy the backlight and sysfs files before encoders/connectors */
15417 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15418 struct intel_connector *intel_connector;
15419
15420 intel_connector = to_intel_connector(connector);
15421 intel_connector->unregister(intel_connector);
15422 }
15423
15424 drm_mode_config_cleanup(dev);
15425
15426 intel_cleanup_overlay(dev);
15427
15428 mutex_lock(&dev->struct_mutex);
15429 intel_cleanup_gt_powersave(dev);
15430 mutex_unlock(&dev->struct_mutex);
15431 }
15432
15433 /*
15434 * Return which encoder is currently attached for connector.
15435 */
15436 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15437 {
15438 return &intel_attached_encoder(connector)->base;
15439 }
15440
15441 void intel_connector_attach_encoder(struct intel_connector *connector,
15442 struct intel_encoder *encoder)
15443 {
15444 connector->encoder = encoder;
15445 drm_mode_connector_attach_encoder(&connector->base,
15446 &encoder->base);
15447 }
15448
15449 /*
15450 * set vga decode state - true == enable VGA decode
15451 */
15452 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15453 {
15454 struct drm_i915_private *dev_priv = dev->dev_private;
15455 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15456 u16 gmch_ctrl;
15457
15458 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15459 DRM_ERROR("failed to read control word\n");
15460 return -EIO;
15461 }
15462
15463 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15464 return 0;
15465
15466 if (state)
15467 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15468 else
15469 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15470
15471 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15472 DRM_ERROR("failed to write control word\n");
15473 return -EIO;
15474 }
15475
15476 return 0;
15477 }
15478
15479 struct intel_display_error_state {
15480
15481 u32 power_well_driver;
15482
15483 int num_transcoders;
15484
15485 struct intel_cursor_error_state {
15486 u32 control;
15487 u32 position;
15488 u32 base;
15489 u32 size;
15490 } cursor[I915_MAX_PIPES];
15491
15492 struct intel_pipe_error_state {
15493 bool power_domain_on;
15494 u32 source;
15495 u32 stat;
15496 } pipe[I915_MAX_PIPES];
15497
15498 struct intel_plane_error_state {
15499 u32 control;
15500 u32 stride;
15501 u32 size;
15502 u32 pos;
15503 u32 addr;
15504 u32 surface;
15505 u32 tile_offset;
15506 } plane[I915_MAX_PIPES];
15507
15508 struct intel_transcoder_error_state {
15509 bool power_domain_on;
15510 enum transcoder cpu_transcoder;
15511
15512 u32 conf;
15513
15514 u32 htotal;
15515 u32 hblank;
15516 u32 hsync;
15517 u32 vtotal;
15518 u32 vblank;
15519 u32 vsync;
15520 } transcoder[4];
15521 };
15522
15523 struct intel_display_error_state *
15524 intel_display_capture_error_state(struct drm_device *dev)
15525 {
15526 struct drm_i915_private *dev_priv = dev->dev_private;
15527 struct intel_display_error_state *error;
15528 int transcoders[] = {
15529 TRANSCODER_A,
15530 TRANSCODER_B,
15531 TRANSCODER_C,
15532 TRANSCODER_EDP,
15533 };
15534 int i;
15535
15536 if (INTEL_INFO(dev)->num_pipes == 0)
15537 return NULL;
15538
15539 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15540 if (error == NULL)
15541 return NULL;
15542
15543 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15544 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15545
15546 for_each_pipe(dev_priv, i) {
15547 error->pipe[i].power_domain_on =
15548 __intel_display_power_is_enabled(dev_priv,
15549 POWER_DOMAIN_PIPE(i));
15550 if (!error->pipe[i].power_domain_on)
15551 continue;
15552
15553 error->cursor[i].control = I915_READ(CURCNTR(i));
15554 error->cursor[i].position = I915_READ(CURPOS(i));
15555 error->cursor[i].base = I915_READ(CURBASE(i));
15556
15557 error->plane[i].control = I915_READ(DSPCNTR(i));
15558 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15559 if (INTEL_INFO(dev)->gen <= 3) {
15560 error->plane[i].size = I915_READ(DSPSIZE(i));
15561 error->plane[i].pos = I915_READ(DSPPOS(i));
15562 }
15563 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15564 error->plane[i].addr = I915_READ(DSPADDR(i));
15565 if (INTEL_INFO(dev)->gen >= 4) {
15566 error->plane[i].surface = I915_READ(DSPSURF(i));
15567 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15568 }
15569
15570 error->pipe[i].source = I915_READ(PIPESRC(i));
15571
15572 if (HAS_GMCH_DISPLAY(dev))
15573 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15574 }
15575
15576 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15577 if (HAS_DDI(dev_priv->dev))
15578 error->num_transcoders++; /* Account for eDP. */
15579
15580 for (i = 0; i < error->num_transcoders; i++) {
15581 enum transcoder cpu_transcoder = transcoders[i];
15582
15583 error->transcoder[i].power_domain_on =
15584 __intel_display_power_is_enabled(dev_priv,
15585 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15586 if (!error->transcoder[i].power_domain_on)
15587 continue;
15588
15589 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15590
15591 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15592 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15593 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15594 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15595 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15596 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15597 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15598 }
15599
15600 return error;
15601 }
15602
15603 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15604
15605 void
15606 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15607 struct drm_device *dev,
15608 struct intel_display_error_state *error)
15609 {
15610 struct drm_i915_private *dev_priv = dev->dev_private;
15611 int i;
15612
15613 if (!error)
15614 return;
15615
15616 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15617 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15618 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15619 error->power_well_driver);
15620 for_each_pipe(dev_priv, i) {
15621 err_printf(m, "Pipe [%d]:\n", i);
15622 err_printf(m, " Power: %s\n",
15623 error->pipe[i].power_domain_on ? "on" : "off");
15624 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15625 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15626
15627 err_printf(m, "Plane [%d]:\n", i);
15628 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15629 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15630 if (INTEL_INFO(dev)->gen <= 3) {
15631 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15632 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15633 }
15634 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15635 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15636 if (INTEL_INFO(dev)->gen >= 4) {
15637 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15638 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15639 }
15640
15641 err_printf(m, "Cursor [%d]:\n", i);
15642 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15643 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15644 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15645 }
15646
15647 for (i = 0; i < error->num_transcoders; i++) {
15648 err_printf(m, "CPU transcoder: %c\n",
15649 transcoder_name(error->transcoder[i].cpu_transcoder));
15650 err_printf(m, " Power: %s\n",
15651 error->transcoder[i].power_domain_on ? "on" : "off");
15652 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15653 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15654 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15655 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15656 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15657 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15658 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15659 }
15660 }
15661
15662 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15663 {
15664 struct intel_crtc *crtc;
15665
15666 for_each_intel_crtc(dev, crtc) {
15667 struct intel_unpin_work *work;
15668
15669 spin_lock_irq(&dev->event_lock);
15670
15671 work = crtc->unpin_work;
15672
15673 if (work && work->event &&
15674 work->event->base.file_priv == file) {
15675 kfree(work->event);
15676 work->event = NULL;
15677 }
15678
15679 spin_unlock_irq(&dev->event_lock);
15680 }
15681 }