]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Make GEM object create and create from data take dev_priv
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_i915_private *dev_priv,
119 struct intel_crtc *crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_BROXTON(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644 {
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663 }
664
665 /*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680 {
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 /*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738 {
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777 }
778
779 /*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794 {
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836 }
837
838 /*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847 {
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936 }
937
938 /*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003 {
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1015 *
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1018 *
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1021 *
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1025 */
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1032 {
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035 return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1043
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1048
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1052
1053 return line1 == line2;
1054 }
1055
1056 /*
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1059 *
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1063 *
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1066 *
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1070 *
1071 */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1199
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1202
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1224
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232 {
1233 bool cur_state;
1234
1235 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1249 {
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1254
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1259
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1268 }
1269
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1277 {
1278 u32 val;
1279 bool cur_state;
1280
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int i;
1295
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1303 }
1304
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1313 }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int sprite;
1320
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1327 }
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1334 }
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 u32 val;
1358 bool enabled;
1359
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1372
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389 {
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408 {
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424 {
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1440 {
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1453 {
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1490 {
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1493
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1497
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1502 1))
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1508 {
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1511
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1516
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1519
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1527 {
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1532
1533 mutex_lock(&dev_priv->sb_lock);
1534
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540 mutex_unlock(&dev_priv->sb_lock);
1541
1542 /*
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 */
1545 udelay(1);
1546
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 1))
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1559 {
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 assert_pipe_disabled(dev_priv, pipe);
1564
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1567
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1570
1571 if (pipe != PIPE_A) {
1572 /*
1573 * WaPixelRepeatModeFixForC0:chv
1574 *
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1577 */
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583 /*
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1586 */
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591 }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596 struct intel_crtc *crtc;
1597 int count = 0;
1598
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 }
1603
1604 return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 /*
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1626 */
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 }
1631
1632 /*
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1636 */
1637 I915_WRITE(reg, 0);
1638
1639 I915_WRITE(reg, dpll);
1640
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1644
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1651 *
1652 * So write it again.
1653 */
1654 I915_WRITE(reg, dpll);
1655 }
1656
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1673 *
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1675 *
1676 * Note! This is for pre-ILK only.
1677 */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1682
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 }
1692
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707 u32 val;
1708
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1711
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1725
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1728
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 mutex_lock(&dev_priv->sb_lock);
1738
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744 mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1750 {
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1770 }
1771
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781 {
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1786
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1801 }
1802
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807 if (HAS_PCH_IBX(dev_priv)) {
1808 /*
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1812 */
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 }
1819
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1829
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1839 {
1840 u32 val, pipeconf_val;
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1859
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1871 {
1872 i915_reg_t reg;
1873 uint32_t val;
1874
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1881
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903 u32 val;
1904
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924 WARN_ON(!crtc->config->has_pch_encoder);
1925
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1935 *
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938 */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1947
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1953
1954 /*
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1958 */
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1971 }
1972 /* FIXME: assert CPU port conditions for SNB+ */
1973 }
1974
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1981 }
1982
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1985
1986 /*
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1992 */
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2001 *
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2005 *
2006 * Will wait until the pipe has shut down before returning.
2007 */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2015
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018 /*
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2021 */
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2025
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2030
2031 /*
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2034 */
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2042
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2055 {
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2082 }
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2087 }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2092 {
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2106 {
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121 return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126 unsigned int size = 0;
2127 int i;
2128
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132 return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2139 {
2140 if (drm_rotation_90_or_270(rotation)) {
2141 *view = i915_ggtt_view_rotated;
2142 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2143 } else {
2144 *view = i915_ggtt_view_normal;
2145 }
2146 }
2147
2148 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 {
2150 if (INTEL_INFO(dev_priv)->gen >= 9)
2151 return 256 * 1024;
2152 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2153 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2154 return 128 * 1024;
2155 else if (INTEL_INFO(dev_priv)->gen >= 4)
2156 return 4 * 1024;
2157 else
2158 return 0;
2159 }
2160
2161 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2162 uint64_t fb_modifier)
2163 {
2164 switch (fb_modifier) {
2165 case DRM_FORMAT_MOD_NONE:
2166 return intel_linear_alignment(dev_priv);
2167 case I915_FORMAT_MOD_X_TILED:
2168 if (INTEL_INFO(dev_priv)->gen >= 9)
2169 return 256 * 1024;
2170 return 0;
2171 case I915_FORMAT_MOD_Y_TILED:
2172 case I915_FORMAT_MOD_Yf_TILED:
2173 return 1 * 1024 * 1024;
2174 default:
2175 MISSING_CASE(fb_modifier);
2176 return 0;
2177 }
2178 }
2179
2180 struct i915_vma *
2181 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 {
2183 struct drm_device *dev = fb->dev;
2184 struct drm_i915_private *dev_priv = to_i915(dev);
2185 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2186 struct i915_ggtt_view view;
2187 struct i915_vma *vma;
2188 u32 alignment;
2189
2190 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191
2192 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2193
2194 intel_fill_fb_ggtt_view(&view, fb, rotation);
2195
2196 /* Note that the w/a also requires 64 PTE of padding following the
2197 * bo. We currently fill all unused PTE with the shadow page and so
2198 * we should always have valid PTE following the scanout preventing
2199 * the VT-d warning.
2200 */
2201 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2202 alignment = 256 * 1024;
2203
2204 /*
2205 * Global gtt pte registers are special registers which actually forward
2206 * writes to a chunk of system memory. Which means that there is no risk
2207 * that the register values disappear as soon as we call
2208 * intel_runtime_pm_put(), so it is correct to wrap only the
2209 * pin/unpin/fence and not more.
2210 */
2211 intel_runtime_pm_get(dev_priv);
2212
2213 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2214 if (IS_ERR(vma))
2215 goto err;
2216
2217 if (i915_vma_is_map_and_fenceable(vma)) {
2218 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219 * fence, whereas 965+ only requires a fence if using
2220 * framebuffer compression. For simplicity, we always, when
2221 * possible, install a fence as the cost is not that onerous.
2222 *
2223 * If we fail to fence the tiled scanout, then either the
2224 * modeset will reject the change (which is highly unlikely as
2225 * the affected systems, all but one, do not have unmappable
2226 * space) or we will not be able to enable full powersaving
2227 * techniques (also likely not to apply due to various limits
2228 * FBC and the like impose on the size of the buffer, which
2229 * presumably we violated anyway with this unmappable buffer).
2230 * Anyway, it is presumably better to stumble onwards with
2231 * something and try to run the system in a "less than optimal"
2232 * mode that matches the user configuration.
2233 */
2234 if (i915_vma_get_fence(vma) == 0)
2235 i915_vma_pin_fence(vma);
2236 }
2237
2238 err:
2239 intel_runtime_pm_put(dev_priv);
2240 return vma;
2241 }
2242
2243 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2244 {
2245 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246 struct i915_ggtt_view view;
2247 struct i915_vma *vma;
2248
2249 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2250
2251 intel_fill_fb_ggtt_view(&view, fb, rotation);
2252 vma = i915_gem_object_to_ggtt(obj, &view);
2253
2254 i915_vma_unpin_fence(vma);
2255 i915_gem_object_unpin_from_display_plane(vma);
2256 }
2257
2258 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2259 unsigned int rotation)
2260 {
2261 if (drm_rotation_90_or_270(rotation))
2262 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2263 else
2264 return fb->pitches[plane];
2265 }
2266
2267 /*
2268 * Convert the x/y offsets into a linear offset.
2269 * Only valid with 0/180 degree rotation, which is fine since linear
2270 * offset is only used with linear buffers on pre-hsw and tiled buffers
2271 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2272 */
2273 u32 intel_fb_xy_to_linear(int x, int y,
2274 const struct intel_plane_state *state,
2275 int plane)
2276 {
2277 const struct drm_framebuffer *fb = state->base.fb;
2278 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2279 unsigned int pitch = fb->pitches[plane];
2280
2281 return y * pitch + x * cpp;
2282 }
2283
2284 /*
2285 * Add the x/y offsets derived from fb->offsets[] to the user
2286 * specified plane src x/y offsets. The resulting x/y offsets
2287 * specify the start of scanout from the beginning of the gtt mapping.
2288 */
2289 void intel_add_fb_offsets(int *x, int *y,
2290 const struct intel_plane_state *state,
2291 int plane)
2292
2293 {
2294 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2295 unsigned int rotation = state->base.rotation;
2296
2297 if (drm_rotation_90_or_270(rotation)) {
2298 *x += intel_fb->rotated[plane].x;
2299 *y += intel_fb->rotated[plane].y;
2300 } else {
2301 *x += intel_fb->normal[plane].x;
2302 *y += intel_fb->normal[plane].y;
2303 }
2304 }
2305
2306 /*
2307 * Input tile dimensions and pitch must already be
2308 * rotated to match x and y, and in pixel units.
2309 */
2310 static u32 _intel_adjust_tile_offset(int *x, int *y,
2311 unsigned int tile_width,
2312 unsigned int tile_height,
2313 unsigned int tile_size,
2314 unsigned int pitch_tiles,
2315 u32 old_offset,
2316 u32 new_offset)
2317 {
2318 unsigned int pitch_pixels = pitch_tiles * tile_width;
2319 unsigned int tiles;
2320
2321 WARN_ON(old_offset & (tile_size - 1));
2322 WARN_ON(new_offset & (tile_size - 1));
2323 WARN_ON(new_offset > old_offset);
2324
2325 tiles = (old_offset - new_offset) / tile_size;
2326
2327 *y += tiles / pitch_tiles * tile_height;
2328 *x += tiles % pitch_tiles * tile_width;
2329
2330 /* minimize x in case it got needlessly big */
2331 *y += *x / pitch_pixels * tile_height;
2332 *x %= pitch_pixels;
2333
2334 return new_offset;
2335 }
2336
2337 /*
2338 * Adjust the tile offset by moving the difference into
2339 * the x/y offsets.
2340 */
2341 static u32 intel_adjust_tile_offset(int *x, int *y,
2342 const struct intel_plane_state *state, int plane,
2343 u32 old_offset, u32 new_offset)
2344 {
2345 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2346 const struct drm_framebuffer *fb = state->base.fb;
2347 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2348 unsigned int rotation = state->base.rotation;
2349 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2350
2351 WARN_ON(new_offset > old_offset);
2352
2353 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2354 unsigned int tile_size, tile_width, tile_height;
2355 unsigned int pitch_tiles;
2356
2357 tile_size = intel_tile_size(dev_priv);
2358 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2359 fb->modifier[plane], cpp);
2360
2361 if (drm_rotation_90_or_270(rotation)) {
2362 pitch_tiles = pitch / tile_height;
2363 swap(tile_width, tile_height);
2364 } else {
2365 pitch_tiles = pitch / (tile_width * cpp);
2366 }
2367
2368 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2369 tile_size, pitch_tiles,
2370 old_offset, new_offset);
2371 } else {
2372 old_offset += *y * pitch + *x * cpp;
2373
2374 *y = (old_offset - new_offset) / pitch;
2375 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2376 }
2377
2378 return new_offset;
2379 }
2380
2381 /*
2382 * Computes the linear offset to the base tile and adjusts
2383 * x, y. bytes per pixel is assumed to be a power-of-two.
2384 *
2385 * In the 90/270 rotated case, x and y are assumed
2386 * to be already rotated to match the rotated GTT view, and
2387 * pitch is the tile_height aligned framebuffer height.
2388 *
2389 * This function is used when computing the derived information
2390 * under intel_framebuffer, so using any of that information
2391 * here is not allowed. Anything under drm_framebuffer can be
2392 * used. This is why the user has to pass in the pitch since it
2393 * is specified in the rotated orientation.
2394 */
2395 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2396 int *x, int *y,
2397 const struct drm_framebuffer *fb, int plane,
2398 unsigned int pitch,
2399 unsigned int rotation,
2400 u32 alignment)
2401 {
2402 uint64_t fb_modifier = fb->modifier[plane];
2403 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2404 u32 offset, offset_aligned;
2405
2406 if (alignment)
2407 alignment--;
2408
2409 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2410 unsigned int tile_size, tile_width, tile_height;
2411 unsigned int tile_rows, tiles, pitch_tiles;
2412
2413 tile_size = intel_tile_size(dev_priv);
2414 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2415 fb_modifier, cpp);
2416
2417 if (drm_rotation_90_or_270(rotation)) {
2418 pitch_tiles = pitch / tile_height;
2419 swap(tile_width, tile_height);
2420 } else {
2421 pitch_tiles = pitch / (tile_width * cpp);
2422 }
2423
2424 tile_rows = *y / tile_height;
2425 *y %= tile_height;
2426
2427 tiles = *x / tile_width;
2428 *x %= tile_width;
2429
2430 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2431 offset_aligned = offset & ~alignment;
2432
2433 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2434 tile_size, pitch_tiles,
2435 offset, offset_aligned);
2436 } else {
2437 offset = *y * pitch + *x * cpp;
2438 offset_aligned = offset & ~alignment;
2439
2440 *y = (offset & alignment) / pitch;
2441 *x = ((offset & alignment) - *y * pitch) / cpp;
2442 }
2443
2444 return offset_aligned;
2445 }
2446
2447 u32 intel_compute_tile_offset(int *x, int *y,
2448 const struct intel_plane_state *state,
2449 int plane)
2450 {
2451 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2452 const struct drm_framebuffer *fb = state->base.fb;
2453 unsigned int rotation = state->base.rotation;
2454 int pitch = intel_fb_pitch(fb, plane, rotation);
2455 u32 alignment;
2456
2457 /* AUX_DIST needs only 4K alignment */
2458 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2459 alignment = 4096;
2460 else
2461 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2462
2463 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2464 rotation, alignment);
2465 }
2466
2467 /* Convert the fb->offset[] linear offset into x/y offsets */
2468 static void intel_fb_offset_to_xy(int *x, int *y,
2469 const struct drm_framebuffer *fb, int plane)
2470 {
2471 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2472 unsigned int pitch = fb->pitches[plane];
2473 u32 linear_offset = fb->offsets[plane];
2474
2475 *y = linear_offset / pitch;
2476 *x = linear_offset % pitch / cpp;
2477 }
2478
2479 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2480 {
2481 switch (fb_modifier) {
2482 case I915_FORMAT_MOD_X_TILED:
2483 return I915_TILING_X;
2484 case I915_FORMAT_MOD_Y_TILED:
2485 return I915_TILING_Y;
2486 default:
2487 return I915_TILING_NONE;
2488 }
2489 }
2490
2491 static int
2492 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2493 struct drm_framebuffer *fb)
2494 {
2495 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2496 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2497 u32 gtt_offset_rotated = 0;
2498 unsigned int max_size = 0;
2499 uint32_t format = fb->pixel_format;
2500 int i, num_planes = drm_format_num_planes(format);
2501 unsigned int tile_size = intel_tile_size(dev_priv);
2502
2503 for (i = 0; i < num_planes; i++) {
2504 unsigned int width, height;
2505 unsigned int cpp, size;
2506 u32 offset;
2507 int x, y;
2508
2509 cpp = drm_format_plane_cpp(format, i);
2510 width = drm_format_plane_width(fb->width, format, i);
2511 height = drm_format_plane_height(fb->height, format, i);
2512
2513 intel_fb_offset_to_xy(&x, &y, fb, i);
2514
2515 /*
2516 * The fence (if used) is aligned to the start of the object
2517 * so having the framebuffer wrap around across the edge of the
2518 * fenced region doesn't really work. We have no API to configure
2519 * the fence start offset within the object (nor could we probably
2520 * on gen2/3). So it's just easier if we just require that the
2521 * fb layout agrees with the fence layout. We already check that the
2522 * fb stride matches the fence stride elsewhere.
2523 */
2524 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2525 (x + width) * cpp > fb->pitches[i]) {
2526 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2527 i, fb->offsets[i]);
2528 return -EINVAL;
2529 }
2530
2531 /*
2532 * First pixel of the framebuffer from
2533 * the start of the normal gtt mapping.
2534 */
2535 intel_fb->normal[i].x = x;
2536 intel_fb->normal[i].y = y;
2537
2538 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2539 fb, 0, fb->pitches[i],
2540 DRM_ROTATE_0, tile_size);
2541 offset /= tile_size;
2542
2543 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2544 unsigned int tile_width, tile_height;
2545 unsigned int pitch_tiles;
2546 struct drm_rect r;
2547
2548 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2549 fb->modifier[i], cpp);
2550
2551 rot_info->plane[i].offset = offset;
2552 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2553 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2554 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2555
2556 intel_fb->rotated[i].pitch =
2557 rot_info->plane[i].height * tile_height;
2558
2559 /* how many tiles does this plane need */
2560 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2561 /*
2562 * If the plane isn't horizontally tile aligned,
2563 * we need one more tile.
2564 */
2565 if (x != 0)
2566 size++;
2567
2568 /* rotate the x/y offsets to match the GTT view */
2569 r.x1 = x;
2570 r.y1 = y;
2571 r.x2 = x + width;
2572 r.y2 = y + height;
2573 drm_rect_rotate(&r,
2574 rot_info->plane[i].width * tile_width,
2575 rot_info->plane[i].height * tile_height,
2576 DRM_ROTATE_270);
2577 x = r.x1;
2578 y = r.y1;
2579
2580 /* rotate the tile dimensions to match the GTT view */
2581 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2582 swap(tile_width, tile_height);
2583
2584 /*
2585 * We only keep the x/y offsets, so push all of the
2586 * gtt offset into the x/y offsets.
2587 */
2588 _intel_adjust_tile_offset(&x, &y, tile_size,
2589 tile_width, tile_height, pitch_tiles,
2590 gtt_offset_rotated * tile_size, 0);
2591
2592 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2593
2594 /*
2595 * First pixel of the framebuffer from
2596 * the start of the rotated gtt mapping.
2597 */
2598 intel_fb->rotated[i].x = x;
2599 intel_fb->rotated[i].y = y;
2600 } else {
2601 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2602 x * cpp, tile_size);
2603 }
2604
2605 /* how many tiles in total needed in the bo */
2606 max_size = max(max_size, offset + size);
2607 }
2608
2609 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2610 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2611 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2612 return -EINVAL;
2613 }
2614
2615 return 0;
2616 }
2617
2618 static int i9xx_format_to_fourcc(int format)
2619 {
2620 switch (format) {
2621 case DISPPLANE_8BPP:
2622 return DRM_FORMAT_C8;
2623 case DISPPLANE_BGRX555:
2624 return DRM_FORMAT_XRGB1555;
2625 case DISPPLANE_BGRX565:
2626 return DRM_FORMAT_RGB565;
2627 default:
2628 case DISPPLANE_BGRX888:
2629 return DRM_FORMAT_XRGB8888;
2630 case DISPPLANE_RGBX888:
2631 return DRM_FORMAT_XBGR8888;
2632 case DISPPLANE_BGRX101010:
2633 return DRM_FORMAT_XRGB2101010;
2634 case DISPPLANE_RGBX101010:
2635 return DRM_FORMAT_XBGR2101010;
2636 }
2637 }
2638
2639 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2640 {
2641 switch (format) {
2642 case PLANE_CTL_FORMAT_RGB_565:
2643 return DRM_FORMAT_RGB565;
2644 default:
2645 case PLANE_CTL_FORMAT_XRGB_8888:
2646 if (rgb_order) {
2647 if (alpha)
2648 return DRM_FORMAT_ABGR8888;
2649 else
2650 return DRM_FORMAT_XBGR8888;
2651 } else {
2652 if (alpha)
2653 return DRM_FORMAT_ARGB8888;
2654 else
2655 return DRM_FORMAT_XRGB8888;
2656 }
2657 case PLANE_CTL_FORMAT_XRGB_2101010:
2658 if (rgb_order)
2659 return DRM_FORMAT_XBGR2101010;
2660 else
2661 return DRM_FORMAT_XRGB2101010;
2662 }
2663 }
2664
2665 static bool
2666 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2667 struct intel_initial_plane_config *plane_config)
2668 {
2669 struct drm_device *dev = crtc->base.dev;
2670 struct drm_i915_private *dev_priv = to_i915(dev);
2671 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2672 struct drm_i915_gem_object *obj = NULL;
2673 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2674 struct drm_framebuffer *fb = &plane_config->fb->base;
2675 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2676 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2677 PAGE_SIZE);
2678
2679 size_aligned -= base_aligned;
2680
2681 if (plane_config->size == 0)
2682 return false;
2683
2684 /* If the FB is too big, just don't use it since fbdev is not very
2685 * important and we should probably use that space with FBC or other
2686 * features. */
2687 if (size_aligned * 2 > ggtt->stolen_usable_size)
2688 return false;
2689
2690 mutex_lock(&dev->struct_mutex);
2691
2692 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2693 base_aligned,
2694 base_aligned,
2695 size_aligned);
2696 if (!obj) {
2697 mutex_unlock(&dev->struct_mutex);
2698 return false;
2699 }
2700
2701 if (plane_config->tiling == I915_TILING_X)
2702 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2703
2704 mode_cmd.pixel_format = fb->pixel_format;
2705 mode_cmd.width = fb->width;
2706 mode_cmd.height = fb->height;
2707 mode_cmd.pitches[0] = fb->pitches[0];
2708 mode_cmd.modifier[0] = fb->modifier[0];
2709 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2710
2711 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2712 &mode_cmd, obj)) {
2713 DRM_DEBUG_KMS("intel fb init failed\n");
2714 goto out_unref_obj;
2715 }
2716
2717 mutex_unlock(&dev->struct_mutex);
2718
2719 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2720 return true;
2721
2722 out_unref_obj:
2723 i915_gem_object_put(obj);
2724 mutex_unlock(&dev->struct_mutex);
2725 return false;
2726 }
2727
2728 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2729 static void
2730 update_state_fb(struct drm_plane *plane)
2731 {
2732 if (plane->fb == plane->state->fb)
2733 return;
2734
2735 if (plane->state->fb)
2736 drm_framebuffer_unreference(plane->state->fb);
2737 plane->state->fb = plane->fb;
2738 if (plane->state->fb)
2739 drm_framebuffer_reference(plane->state->fb);
2740 }
2741
2742 static void
2743 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2744 struct intel_initial_plane_config *plane_config)
2745 {
2746 struct drm_device *dev = intel_crtc->base.dev;
2747 struct drm_i915_private *dev_priv = to_i915(dev);
2748 struct drm_crtc *c;
2749 struct intel_crtc *i;
2750 struct drm_i915_gem_object *obj;
2751 struct drm_plane *primary = intel_crtc->base.primary;
2752 struct drm_plane_state *plane_state = primary->state;
2753 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2754 struct intel_plane *intel_plane = to_intel_plane(primary);
2755 struct intel_plane_state *intel_state =
2756 to_intel_plane_state(plane_state);
2757 struct drm_framebuffer *fb;
2758
2759 if (!plane_config->fb)
2760 return;
2761
2762 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2763 fb = &plane_config->fb->base;
2764 goto valid_fb;
2765 }
2766
2767 kfree(plane_config->fb);
2768
2769 /*
2770 * Failed to alloc the obj, check to see if we should share
2771 * an fb with another CRTC instead
2772 */
2773 for_each_crtc(dev, c) {
2774 i = to_intel_crtc(c);
2775
2776 if (c == &intel_crtc->base)
2777 continue;
2778
2779 if (!i->active)
2780 continue;
2781
2782 fb = c->primary->fb;
2783 if (!fb)
2784 continue;
2785
2786 obj = intel_fb_obj(fb);
2787 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2788 drm_framebuffer_reference(fb);
2789 goto valid_fb;
2790 }
2791 }
2792
2793 /*
2794 * We've failed to reconstruct the BIOS FB. Current display state
2795 * indicates that the primary plane is visible, but has a NULL FB,
2796 * which will lead to problems later if we don't fix it up. The
2797 * simplest solution is to just disable the primary plane now and
2798 * pretend the BIOS never had it enabled.
2799 */
2800 to_intel_plane_state(plane_state)->base.visible = false;
2801 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2802 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2803 intel_plane->disable_plane(primary, &intel_crtc->base);
2804
2805 return;
2806
2807 valid_fb:
2808 plane_state->src_x = 0;
2809 plane_state->src_y = 0;
2810 plane_state->src_w = fb->width << 16;
2811 plane_state->src_h = fb->height << 16;
2812
2813 plane_state->crtc_x = 0;
2814 plane_state->crtc_y = 0;
2815 plane_state->crtc_w = fb->width;
2816 plane_state->crtc_h = fb->height;
2817
2818 intel_state->base.src = drm_plane_state_src(plane_state);
2819 intel_state->base.dst = drm_plane_state_dest(plane_state);
2820
2821 obj = intel_fb_obj(fb);
2822 if (i915_gem_object_is_tiled(obj))
2823 dev_priv->preserve_bios_swizzle = true;
2824
2825 drm_framebuffer_reference(fb);
2826 primary->fb = primary->state->fb = fb;
2827 primary->crtc = primary->state->crtc = &intel_crtc->base;
2828 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2829 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2830 &obj->frontbuffer_bits);
2831 }
2832
2833 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2834 unsigned int rotation)
2835 {
2836 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2837
2838 switch (fb->modifier[plane]) {
2839 case DRM_FORMAT_MOD_NONE:
2840 case I915_FORMAT_MOD_X_TILED:
2841 switch (cpp) {
2842 case 8:
2843 return 4096;
2844 case 4:
2845 case 2:
2846 case 1:
2847 return 8192;
2848 default:
2849 MISSING_CASE(cpp);
2850 break;
2851 }
2852 break;
2853 case I915_FORMAT_MOD_Y_TILED:
2854 case I915_FORMAT_MOD_Yf_TILED:
2855 switch (cpp) {
2856 case 8:
2857 return 2048;
2858 case 4:
2859 return 4096;
2860 case 2:
2861 case 1:
2862 return 8192;
2863 default:
2864 MISSING_CASE(cpp);
2865 break;
2866 }
2867 break;
2868 default:
2869 MISSING_CASE(fb->modifier[plane]);
2870 }
2871
2872 return 2048;
2873 }
2874
2875 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2876 {
2877 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2878 const struct drm_framebuffer *fb = plane_state->base.fb;
2879 unsigned int rotation = plane_state->base.rotation;
2880 int x = plane_state->base.src.x1 >> 16;
2881 int y = plane_state->base.src.y1 >> 16;
2882 int w = drm_rect_width(&plane_state->base.src) >> 16;
2883 int h = drm_rect_height(&plane_state->base.src) >> 16;
2884 int max_width = skl_max_plane_width(fb, 0, rotation);
2885 int max_height = 4096;
2886 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2887
2888 if (w > max_width || h > max_height) {
2889 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2890 w, h, max_width, max_height);
2891 return -EINVAL;
2892 }
2893
2894 intel_add_fb_offsets(&x, &y, plane_state, 0);
2895 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2896
2897 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2898
2899 /*
2900 * AUX surface offset is specified as the distance from the
2901 * main surface offset, and it must be non-negative. Make
2902 * sure that is what we will get.
2903 */
2904 if (offset > aux_offset)
2905 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2906 offset, aux_offset & ~(alignment - 1));
2907
2908 /*
2909 * When using an X-tiled surface, the plane blows up
2910 * if the x offset + width exceed the stride.
2911 *
2912 * TODO: linear and Y-tiled seem fine, Yf untested,
2913 */
2914 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2915 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2916
2917 while ((x + w) * cpp > fb->pitches[0]) {
2918 if (offset == 0) {
2919 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2920 return -EINVAL;
2921 }
2922
2923 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2924 offset, offset - alignment);
2925 }
2926 }
2927
2928 plane_state->main.offset = offset;
2929 plane_state->main.x = x;
2930 plane_state->main.y = y;
2931
2932 return 0;
2933 }
2934
2935 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2936 {
2937 const struct drm_framebuffer *fb = plane_state->base.fb;
2938 unsigned int rotation = plane_state->base.rotation;
2939 int max_width = skl_max_plane_width(fb, 1, rotation);
2940 int max_height = 4096;
2941 int x = plane_state->base.src.x1 >> 17;
2942 int y = plane_state->base.src.y1 >> 17;
2943 int w = drm_rect_width(&plane_state->base.src) >> 17;
2944 int h = drm_rect_height(&plane_state->base.src) >> 17;
2945 u32 offset;
2946
2947 intel_add_fb_offsets(&x, &y, plane_state, 1);
2948 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2949
2950 /* FIXME not quite sure how/if these apply to the chroma plane */
2951 if (w > max_width || h > max_height) {
2952 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2953 w, h, max_width, max_height);
2954 return -EINVAL;
2955 }
2956
2957 plane_state->aux.offset = offset;
2958 plane_state->aux.x = x;
2959 plane_state->aux.y = y;
2960
2961 return 0;
2962 }
2963
2964 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2965 {
2966 const struct drm_framebuffer *fb = plane_state->base.fb;
2967 unsigned int rotation = plane_state->base.rotation;
2968 int ret;
2969
2970 /* Rotate src coordinates to match rotated GTT view */
2971 if (drm_rotation_90_or_270(rotation))
2972 drm_rect_rotate(&plane_state->base.src,
2973 fb->width << 16, fb->height << 16,
2974 DRM_ROTATE_270);
2975
2976 /*
2977 * Handle the AUX surface first since
2978 * the main surface setup depends on it.
2979 */
2980 if (fb->pixel_format == DRM_FORMAT_NV12) {
2981 ret = skl_check_nv12_aux_surface(plane_state);
2982 if (ret)
2983 return ret;
2984 } else {
2985 plane_state->aux.offset = ~0xfff;
2986 plane_state->aux.x = 0;
2987 plane_state->aux.y = 0;
2988 }
2989
2990 ret = skl_check_main_surface(plane_state);
2991 if (ret)
2992 return ret;
2993
2994 return 0;
2995 }
2996
2997 static void i9xx_update_primary_plane(struct drm_plane *primary,
2998 const struct intel_crtc_state *crtc_state,
2999 const struct intel_plane_state *plane_state)
3000 {
3001 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3003 struct drm_framebuffer *fb = plane_state->base.fb;
3004 int plane = intel_crtc->plane;
3005 u32 linear_offset;
3006 u32 dspcntr;
3007 i915_reg_t reg = DSPCNTR(plane);
3008 unsigned int rotation = plane_state->base.rotation;
3009 int x = plane_state->base.src.x1 >> 16;
3010 int y = plane_state->base.src.y1 >> 16;
3011
3012 dspcntr = DISPPLANE_GAMMA_ENABLE;
3013
3014 dspcntr |= DISPLAY_PLANE_ENABLE;
3015
3016 if (INTEL_GEN(dev_priv) < 4) {
3017 if (intel_crtc->pipe == PIPE_B)
3018 dspcntr |= DISPPLANE_SEL_PIPE_B;
3019
3020 /* pipesrc and dspsize control the size that is scaled from,
3021 * which should always be the user's requested size.
3022 */
3023 I915_WRITE(DSPSIZE(plane),
3024 ((crtc_state->pipe_src_h - 1) << 16) |
3025 (crtc_state->pipe_src_w - 1));
3026 I915_WRITE(DSPPOS(plane), 0);
3027 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3028 I915_WRITE(PRIMSIZE(plane),
3029 ((crtc_state->pipe_src_h - 1) << 16) |
3030 (crtc_state->pipe_src_w - 1));
3031 I915_WRITE(PRIMPOS(plane), 0);
3032 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3033 }
3034
3035 switch (fb->pixel_format) {
3036 case DRM_FORMAT_C8:
3037 dspcntr |= DISPPLANE_8BPP;
3038 break;
3039 case DRM_FORMAT_XRGB1555:
3040 dspcntr |= DISPPLANE_BGRX555;
3041 break;
3042 case DRM_FORMAT_RGB565:
3043 dspcntr |= DISPPLANE_BGRX565;
3044 break;
3045 case DRM_FORMAT_XRGB8888:
3046 dspcntr |= DISPPLANE_BGRX888;
3047 break;
3048 case DRM_FORMAT_XBGR8888:
3049 dspcntr |= DISPPLANE_RGBX888;
3050 break;
3051 case DRM_FORMAT_XRGB2101010:
3052 dspcntr |= DISPPLANE_BGRX101010;
3053 break;
3054 case DRM_FORMAT_XBGR2101010:
3055 dspcntr |= DISPPLANE_RGBX101010;
3056 break;
3057 default:
3058 BUG();
3059 }
3060
3061 if (INTEL_GEN(dev_priv) >= 4 &&
3062 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3063 dspcntr |= DISPPLANE_TILED;
3064
3065 if (rotation & DRM_ROTATE_180)
3066 dspcntr |= DISPPLANE_ROTATE_180;
3067
3068 if (rotation & DRM_REFLECT_X)
3069 dspcntr |= DISPPLANE_MIRROR;
3070
3071 if (IS_G4X(dev_priv))
3072 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3073
3074 intel_add_fb_offsets(&x, &y, plane_state, 0);
3075
3076 if (INTEL_GEN(dev_priv) >= 4)
3077 intel_crtc->dspaddr_offset =
3078 intel_compute_tile_offset(&x, &y, plane_state, 0);
3079
3080 if (rotation & DRM_ROTATE_180) {
3081 x += crtc_state->pipe_src_w - 1;
3082 y += crtc_state->pipe_src_h - 1;
3083 } else if (rotation & DRM_REFLECT_X) {
3084 x += crtc_state->pipe_src_w - 1;
3085 }
3086
3087 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3088
3089 if (INTEL_GEN(dev_priv) < 4)
3090 intel_crtc->dspaddr_offset = linear_offset;
3091
3092 intel_crtc->adjusted_x = x;
3093 intel_crtc->adjusted_y = y;
3094
3095 I915_WRITE(reg, dspcntr);
3096
3097 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3098 if (INTEL_GEN(dev_priv) >= 4) {
3099 I915_WRITE(DSPSURF(plane),
3100 intel_fb_gtt_offset(fb, rotation) +
3101 intel_crtc->dspaddr_offset);
3102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3103 I915_WRITE(DSPLINOFF(plane), linear_offset);
3104 } else {
3105 I915_WRITE(DSPADDR(plane),
3106 intel_fb_gtt_offset(fb, rotation) +
3107 intel_crtc->dspaddr_offset);
3108 }
3109 POSTING_READ(reg);
3110 }
3111
3112 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
3114 {
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = to_i915(dev);
3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3118 int plane = intel_crtc->plane;
3119
3120 I915_WRITE(DSPCNTR(plane), 0);
3121 if (INTEL_INFO(dev_priv)->gen >= 4)
3122 I915_WRITE(DSPSURF(plane), 0);
3123 else
3124 I915_WRITE(DSPADDR(plane), 0);
3125 POSTING_READ(DSPCNTR(plane));
3126 }
3127
3128 static void ironlake_update_primary_plane(struct drm_plane *primary,
3129 const struct intel_crtc_state *crtc_state,
3130 const struct intel_plane_state *plane_state)
3131 {
3132 struct drm_device *dev = primary->dev;
3133 struct drm_i915_private *dev_priv = to_i915(dev);
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3135 struct drm_framebuffer *fb = plane_state->base.fb;
3136 int plane = intel_crtc->plane;
3137 u32 linear_offset;
3138 u32 dspcntr;
3139 i915_reg_t reg = DSPCNTR(plane);
3140 unsigned int rotation = plane_state->base.rotation;
3141 int x = plane_state->base.src.x1 >> 16;
3142 int y = plane_state->base.src.y1 >> 16;
3143
3144 dspcntr = DISPPLANE_GAMMA_ENABLE;
3145 dspcntr |= DISPLAY_PLANE_ENABLE;
3146
3147 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3148 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3149
3150 switch (fb->pixel_format) {
3151 case DRM_FORMAT_C8:
3152 dspcntr |= DISPPLANE_8BPP;
3153 break;
3154 case DRM_FORMAT_RGB565:
3155 dspcntr |= DISPPLANE_BGRX565;
3156 break;
3157 case DRM_FORMAT_XRGB8888:
3158 dspcntr |= DISPPLANE_BGRX888;
3159 break;
3160 case DRM_FORMAT_XBGR8888:
3161 dspcntr |= DISPPLANE_RGBX888;
3162 break;
3163 case DRM_FORMAT_XRGB2101010:
3164 dspcntr |= DISPPLANE_BGRX101010;
3165 break;
3166 case DRM_FORMAT_XBGR2101010:
3167 dspcntr |= DISPPLANE_RGBX101010;
3168 break;
3169 default:
3170 BUG();
3171 }
3172
3173 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3174 dspcntr |= DISPPLANE_TILED;
3175
3176 if (rotation & DRM_ROTATE_180)
3177 dspcntr |= DISPPLANE_ROTATE_180;
3178
3179 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3180 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3181
3182 intel_add_fb_offsets(&x, &y, plane_state, 0);
3183
3184 intel_crtc->dspaddr_offset =
3185 intel_compute_tile_offset(&x, &y, plane_state, 0);
3186
3187 /* HSW+ does this automagically in hardware */
3188 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3189 rotation & DRM_ROTATE_180) {
3190 x += crtc_state->pipe_src_w - 1;
3191 y += crtc_state->pipe_src_h - 1;
3192 }
3193
3194 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3195
3196 intel_crtc->adjusted_x = x;
3197 intel_crtc->adjusted_y = y;
3198
3199 I915_WRITE(reg, dspcntr);
3200
3201 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3202 I915_WRITE(DSPSURF(plane),
3203 intel_fb_gtt_offset(fb, rotation) +
3204 intel_crtc->dspaddr_offset);
3205 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3206 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3207 } else {
3208 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3209 I915_WRITE(DSPLINOFF(plane), linear_offset);
3210 }
3211 POSTING_READ(reg);
3212 }
3213
3214 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3215 uint64_t fb_modifier, uint32_t pixel_format)
3216 {
3217 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3218 return 64;
3219 } else {
3220 int cpp = drm_format_plane_cpp(pixel_format, 0);
3221
3222 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3223 }
3224 }
3225
3226 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3227 unsigned int rotation)
3228 {
3229 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3230 struct i915_ggtt_view view;
3231 struct i915_vma *vma;
3232
3233 intel_fill_fb_ggtt_view(&view, fb, rotation);
3234
3235 vma = i915_gem_object_to_ggtt(obj, &view);
3236 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3237 view.type))
3238 return -1;
3239
3240 return i915_ggtt_offset(vma);
3241 }
3242
3243 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3244 {
3245 struct drm_device *dev = intel_crtc->base.dev;
3246 struct drm_i915_private *dev_priv = to_i915(dev);
3247
3248 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3249 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3250 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3251 }
3252
3253 /*
3254 * This function detaches (aka. unbinds) unused scalers in hardware
3255 */
3256 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3257 {
3258 struct intel_crtc_scaler_state *scaler_state;
3259 int i;
3260
3261 scaler_state = &intel_crtc->config->scaler_state;
3262
3263 /* loop through and disable scalers that aren't in use */
3264 for (i = 0; i < intel_crtc->num_scalers; i++) {
3265 if (!scaler_state->scalers[i].in_use)
3266 skl_detach_scaler(intel_crtc, i);
3267 }
3268 }
3269
3270 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3271 unsigned int rotation)
3272 {
3273 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3274 u32 stride = intel_fb_pitch(fb, plane, rotation);
3275
3276 /*
3277 * The stride is either expressed as a multiple of 64 bytes chunks for
3278 * linear buffers or in number of tiles for tiled buffers.
3279 */
3280 if (drm_rotation_90_or_270(rotation)) {
3281 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3282
3283 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3284 } else {
3285 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3286 fb->pixel_format);
3287 }
3288
3289 return stride;
3290 }
3291
3292 u32 skl_plane_ctl_format(uint32_t pixel_format)
3293 {
3294 switch (pixel_format) {
3295 case DRM_FORMAT_C8:
3296 return PLANE_CTL_FORMAT_INDEXED;
3297 case DRM_FORMAT_RGB565:
3298 return PLANE_CTL_FORMAT_RGB_565;
3299 case DRM_FORMAT_XBGR8888:
3300 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3301 case DRM_FORMAT_XRGB8888:
3302 return PLANE_CTL_FORMAT_XRGB_8888;
3303 /*
3304 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3305 * to be already pre-multiplied. We need to add a knob (or a different
3306 * DRM_FORMAT) for user-space to configure that.
3307 */
3308 case DRM_FORMAT_ABGR8888:
3309 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3310 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3311 case DRM_FORMAT_ARGB8888:
3312 return PLANE_CTL_FORMAT_XRGB_8888 |
3313 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3314 case DRM_FORMAT_XRGB2101010:
3315 return PLANE_CTL_FORMAT_XRGB_2101010;
3316 case DRM_FORMAT_XBGR2101010:
3317 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3318 case DRM_FORMAT_YUYV:
3319 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3320 case DRM_FORMAT_YVYU:
3321 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3322 case DRM_FORMAT_UYVY:
3323 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3324 case DRM_FORMAT_VYUY:
3325 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3326 default:
3327 MISSING_CASE(pixel_format);
3328 }
3329
3330 return 0;
3331 }
3332
3333 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3334 {
3335 switch (fb_modifier) {
3336 case DRM_FORMAT_MOD_NONE:
3337 break;
3338 case I915_FORMAT_MOD_X_TILED:
3339 return PLANE_CTL_TILED_X;
3340 case I915_FORMAT_MOD_Y_TILED:
3341 return PLANE_CTL_TILED_Y;
3342 case I915_FORMAT_MOD_Yf_TILED:
3343 return PLANE_CTL_TILED_YF;
3344 default:
3345 MISSING_CASE(fb_modifier);
3346 }
3347
3348 return 0;
3349 }
3350
3351 u32 skl_plane_ctl_rotation(unsigned int rotation)
3352 {
3353 switch (rotation) {
3354 case DRM_ROTATE_0:
3355 break;
3356 /*
3357 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3358 * while i915 HW rotation is clockwise, thats why this swapping.
3359 */
3360 case DRM_ROTATE_90:
3361 return PLANE_CTL_ROTATE_270;
3362 case DRM_ROTATE_180:
3363 return PLANE_CTL_ROTATE_180;
3364 case DRM_ROTATE_270:
3365 return PLANE_CTL_ROTATE_90;
3366 default:
3367 MISSING_CASE(rotation);
3368 }
3369
3370 return 0;
3371 }
3372
3373 static void skylake_update_primary_plane(struct drm_plane *plane,
3374 const struct intel_crtc_state *crtc_state,
3375 const struct intel_plane_state *plane_state)
3376 {
3377 struct drm_device *dev = plane->dev;
3378 struct drm_i915_private *dev_priv = to_i915(dev);
3379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3380 struct drm_framebuffer *fb = plane_state->base.fb;
3381 enum plane_id plane_id = to_intel_plane(plane)->id;
3382 enum pipe pipe = to_intel_plane(plane)->pipe;
3383 u32 plane_ctl;
3384 unsigned int rotation = plane_state->base.rotation;
3385 u32 stride = skl_plane_stride(fb, 0, rotation);
3386 u32 surf_addr = plane_state->main.offset;
3387 int scaler_id = plane_state->scaler_id;
3388 int src_x = plane_state->main.x;
3389 int src_y = plane_state->main.y;
3390 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3391 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3392 int dst_x = plane_state->base.dst.x1;
3393 int dst_y = plane_state->base.dst.y1;
3394 int dst_w = drm_rect_width(&plane_state->base.dst);
3395 int dst_h = drm_rect_height(&plane_state->base.dst);
3396
3397 plane_ctl = PLANE_CTL_ENABLE |
3398 PLANE_CTL_PIPE_GAMMA_ENABLE |
3399 PLANE_CTL_PIPE_CSC_ENABLE;
3400
3401 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3402 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3403 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3404 plane_ctl |= skl_plane_ctl_rotation(rotation);
3405
3406 /* Sizes are 0 based */
3407 src_w--;
3408 src_h--;
3409 dst_w--;
3410 dst_h--;
3411
3412 intel_crtc->dspaddr_offset = surf_addr;
3413
3414 intel_crtc->adjusted_x = src_x;
3415 intel_crtc->adjusted_y = src_y;
3416
3417 I915_WRITE(PLANE_CTL(pipe, plane_id), plane_ctl);
3418 I915_WRITE(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3419 I915_WRITE(PLANE_STRIDE(pipe, plane_id), stride);
3420 I915_WRITE(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3421
3422 if (scaler_id >= 0) {
3423 uint32_t ps_ctrl = 0;
3424
3425 WARN_ON(!dst_w || !dst_h);
3426 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3427 crtc_state->scaler_state.scalers[scaler_id].mode;
3428 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3429 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3430 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3431 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3432 I915_WRITE(PLANE_POS(pipe, plane_id), 0);
3433 } else {
3434 I915_WRITE(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3435 }
3436
3437 I915_WRITE(PLANE_SURF(pipe, plane_id),
3438 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3439
3440 POSTING_READ(PLANE_SURF(pipe, plane_id));
3441 }
3442
3443 static void skylake_disable_primary_plane(struct drm_plane *primary,
3444 struct drm_crtc *crtc)
3445 {
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = to_i915(dev);
3448 enum plane_id plane_id = to_intel_plane(primary)->id;
3449 enum pipe pipe = to_intel_plane(primary)->pipe;
3450
3451 I915_WRITE(PLANE_CTL(pipe, plane_id), 0);
3452 I915_WRITE(PLANE_SURF(pipe, plane_id), 0);
3453 POSTING_READ(PLANE_SURF(pipe, plane_id));
3454 }
3455
3456 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3457 static int
3458 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3459 int x, int y, enum mode_set_atomic state)
3460 {
3461 /* Support for kgdboc is disabled, this needs a major rework. */
3462 DRM_ERROR("legacy panic handler not supported any more.\n");
3463
3464 return -ENODEV;
3465 }
3466
3467 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3468 {
3469 struct intel_crtc *crtc;
3470
3471 for_each_intel_crtc(&dev_priv->drm, crtc)
3472 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3473 }
3474
3475 static void intel_update_primary_planes(struct drm_device *dev)
3476 {
3477 struct drm_crtc *crtc;
3478
3479 for_each_crtc(dev, crtc) {
3480 struct intel_plane *plane = to_intel_plane(crtc->primary);
3481 struct intel_plane_state *plane_state =
3482 to_intel_plane_state(plane->base.state);
3483
3484 if (plane_state->base.visible)
3485 plane->update_plane(&plane->base,
3486 to_intel_crtc_state(crtc->state),
3487 plane_state);
3488 }
3489 }
3490
3491 static int
3492 __intel_display_resume(struct drm_device *dev,
3493 struct drm_atomic_state *state)
3494 {
3495 struct drm_crtc_state *crtc_state;
3496 struct drm_crtc *crtc;
3497 int i, ret;
3498
3499 intel_modeset_setup_hw_state(dev);
3500 i915_redisable_vga(to_i915(dev));
3501
3502 if (!state)
3503 return 0;
3504
3505 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3506 /*
3507 * Force recalculation even if we restore
3508 * current state. With fast modeset this may not result
3509 * in a modeset when the state is compatible.
3510 */
3511 crtc_state->mode_changed = true;
3512 }
3513
3514 /* ignore any reset values/BIOS leftovers in the WM registers */
3515 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3516
3517 ret = drm_atomic_commit(state);
3518
3519 WARN_ON(ret == -EDEADLK);
3520 return ret;
3521 }
3522
3523 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3524 {
3525 return intel_has_gpu_reset(dev_priv) &&
3526 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3527 }
3528
3529 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3530 {
3531 struct drm_device *dev = &dev_priv->drm;
3532 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3533 struct drm_atomic_state *state;
3534 int ret;
3535
3536 /*
3537 * Need mode_config.mutex so that we don't
3538 * trample ongoing ->detect() and whatnot.
3539 */
3540 mutex_lock(&dev->mode_config.mutex);
3541 drm_modeset_acquire_init(ctx, 0);
3542 while (1) {
3543 ret = drm_modeset_lock_all_ctx(dev, ctx);
3544 if (ret != -EDEADLK)
3545 break;
3546
3547 drm_modeset_backoff(ctx);
3548 }
3549
3550 /* reset doesn't touch the display, but flips might get nuked anyway, */
3551 if (!i915.force_reset_modeset_test &&
3552 !gpu_reset_clobbers_display(dev_priv))
3553 return;
3554
3555 /*
3556 * Disabling the crtcs gracefully seems nicer. Also the
3557 * g33 docs say we should at least disable all the planes.
3558 */
3559 state = drm_atomic_helper_duplicate_state(dev, ctx);
3560 if (IS_ERR(state)) {
3561 ret = PTR_ERR(state);
3562 state = NULL;
3563 DRM_ERROR("Duplicating state failed with %i\n", ret);
3564 goto err;
3565 }
3566
3567 ret = drm_atomic_helper_disable_all(dev, ctx);
3568 if (ret) {
3569 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3570 goto err;
3571 }
3572
3573 dev_priv->modeset_restore_state = state;
3574 state->acquire_ctx = ctx;
3575 return;
3576
3577 err:
3578 drm_atomic_state_put(state);
3579 }
3580
3581 void intel_finish_reset(struct drm_i915_private *dev_priv)
3582 {
3583 struct drm_device *dev = &dev_priv->drm;
3584 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3585 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3586 int ret;
3587
3588 /*
3589 * Flips in the rings will be nuked by the reset,
3590 * so complete all pending flips so that user space
3591 * will get its events and not get stuck.
3592 */
3593 intel_complete_page_flips(dev_priv);
3594
3595 dev_priv->modeset_restore_state = NULL;
3596
3597 /* reset doesn't touch the display */
3598 if (!gpu_reset_clobbers_display(dev_priv)) {
3599 if (!state) {
3600 /*
3601 * Flips in the rings have been nuked by the reset,
3602 * so update the base address of all primary
3603 * planes to the the last fb to make sure we're
3604 * showing the correct fb after a reset.
3605 *
3606 * FIXME: Atomic will make this obsolete since we won't schedule
3607 * CS-based flips (which might get lost in gpu resets) any more.
3608 */
3609 intel_update_primary_planes(dev);
3610 } else {
3611 ret = __intel_display_resume(dev, state);
3612 if (ret)
3613 DRM_ERROR("Restoring old state failed with %i\n", ret);
3614 }
3615 } else {
3616 /*
3617 * The display has been reset as well,
3618 * so need a full re-initialization.
3619 */
3620 intel_runtime_pm_disable_interrupts(dev_priv);
3621 intel_runtime_pm_enable_interrupts(dev_priv);
3622
3623 intel_pps_unlock_regs_wa(dev_priv);
3624 intel_modeset_init_hw(dev);
3625
3626 spin_lock_irq(&dev_priv->irq_lock);
3627 if (dev_priv->display.hpd_irq_setup)
3628 dev_priv->display.hpd_irq_setup(dev_priv);
3629 spin_unlock_irq(&dev_priv->irq_lock);
3630
3631 ret = __intel_display_resume(dev, state);
3632 if (ret)
3633 DRM_ERROR("Restoring old state failed with %i\n", ret);
3634
3635 intel_hpd_init(dev_priv);
3636 }
3637
3638 if (state)
3639 drm_atomic_state_put(state);
3640 drm_modeset_drop_locks(ctx);
3641 drm_modeset_acquire_fini(ctx);
3642 mutex_unlock(&dev->mode_config.mutex);
3643 }
3644
3645 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3646 {
3647 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3648
3649 if (i915_reset_in_progress(error))
3650 return true;
3651
3652 if (crtc->reset_count != i915_reset_count(error))
3653 return true;
3654
3655 return false;
3656 }
3657
3658 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3659 {
3660 struct drm_device *dev = crtc->dev;
3661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3662 bool pending;
3663
3664 if (abort_flip_on_reset(intel_crtc))
3665 return false;
3666
3667 spin_lock_irq(&dev->event_lock);
3668 pending = to_intel_crtc(crtc)->flip_work != NULL;
3669 spin_unlock_irq(&dev->event_lock);
3670
3671 return pending;
3672 }
3673
3674 static void intel_update_pipe_config(struct intel_crtc *crtc,
3675 struct intel_crtc_state *old_crtc_state)
3676 {
3677 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3678 struct intel_crtc_state *pipe_config =
3679 to_intel_crtc_state(crtc->base.state);
3680
3681 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3682 crtc->base.mode = crtc->base.state->mode;
3683
3684 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3685 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3686 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3687
3688 /*
3689 * Update pipe size and adjust fitter if needed: the reason for this is
3690 * that in compute_mode_changes we check the native mode (not the pfit
3691 * mode) to see if we can flip rather than do a full mode set. In the
3692 * fastboot case, we'll flip, but if we don't update the pipesrc and
3693 * pfit state, we'll end up with a big fb scanned out into the wrong
3694 * sized surface.
3695 */
3696
3697 I915_WRITE(PIPESRC(crtc->pipe),
3698 ((pipe_config->pipe_src_w - 1) << 16) |
3699 (pipe_config->pipe_src_h - 1));
3700
3701 /* on skylake this is done by detaching scalers */
3702 if (INTEL_GEN(dev_priv) >= 9) {
3703 skl_detach_scalers(crtc);
3704
3705 if (pipe_config->pch_pfit.enabled)
3706 skylake_pfit_enable(crtc);
3707 } else if (HAS_PCH_SPLIT(dev_priv)) {
3708 if (pipe_config->pch_pfit.enabled)
3709 ironlake_pfit_enable(crtc);
3710 else if (old_crtc_state->pch_pfit.enabled)
3711 ironlake_pfit_disable(crtc, true);
3712 }
3713 }
3714
3715 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3716 {
3717 struct drm_device *dev = crtc->dev;
3718 struct drm_i915_private *dev_priv = to_i915(dev);
3719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3720 int pipe = intel_crtc->pipe;
3721 i915_reg_t reg;
3722 u32 temp;
3723
3724 /* enable normal train */
3725 reg = FDI_TX_CTL(pipe);
3726 temp = I915_READ(reg);
3727 if (IS_IVYBRIDGE(dev_priv)) {
3728 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3729 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3730 } else {
3731 temp &= ~FDI_LINK_TRAIN_NONE;
3732 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3733 }
3734 I915_WRITE(reg, temp);
3735
3736 reg = FDI_RX_CTL(pipe);
3737 temp = I915_READ(reg);
3738 if (HAS_PCH_CPT(dev_priv)) {
3739 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3740 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3741 } else {
3742 temp &= ~FDI_LINK_TRAIN_NONE;
3743 temp |= FDI_LINK_TRAIN_NONE;
3744 }
3745 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3746
3747 /* wait one idle pattern time */
3748 POSTING_READ(reg);
3749 udelay(1000);
3750
3751 /* IVB wants error correction enabled */
3752 if (IS_IVYBRIDGE(dev_priv))
3753 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3754 FDI_FE_ERRC_ENABLE);
3755 }
3756
3757 /* The FDI link training functions for ILK/Ibexpeak. */
3758 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3759 {
3760 struct drm_device *dev = crtc->dev;
3761 struct drm_i915_private *dev_priv = to_i915(dev);
3762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3763 int pipe = intel_crtc->pipe;
3764 i915_reg_t reg;
3765 u32 temp, tries;
3766
3767 /* FDI needs bits from pipe first */
3768 assert_pipe_enabled(dev_priv, pipe);
3769
3770 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3771 for train result */
3772 reg = FDI_RX_IMR(pipe);
3773 temp = I915_READ(reg);
3774 temp &= ~FDI_RX_SYMBOL_LOCK;
3775 temp &= ~FDI_RX_BIT_LOCK;
3776 I915_WRITE(reg, temp);
3777 I915_READ(reg);
3778 udelay(150);
3779
3780 /* enable CPU FDI TX and PCH FDI RX */
3781 reg = FDI_TX_CTL(pipe);
3782 temp = I915_READ(reg);
3783 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3784 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3785 temp &= ~FDI_LINK_TRAIN_NONE;
3786 temp |= FDI_LINK_TRAIN_PATTERN_1;
3787 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3788
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 temp &= ~FDI_LINK_TRAIN_NONE;
3792 temp |= FDI_LINK_TRAIN_PATTERN_1;
3793 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3794
3795 POSTING_READ(reg);
3796 udelay(150);
3797
3798 /* Ironlake workaround, enable clock pointer after FDI enable*/
3799 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3800 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3801 FDI_RX_PHASE_SYNC_POINTER_EN);
3802
3803 reg = FDI_RX_IIR(pipe);
3804 for (tries = 0; tries < 5; tries++) {
3805 temp = I915_READ(reg);
3806 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3807
3808 if ((temp & FDI_RX_BIT_LOCK)) {
3809 DRM_DEBUG_KMS("FDI train 1 done.\n");
3810 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3811 break;
3812 }
3813 }
3814 if (tries == 5)
3815 DRM_ERROR("FDI train 1 fail!\n");
3816
3817 /* Train 2 */
3818 reg = FDI_TX_CTL(pipe);
3819 temp = I915_READ(reg);
3820 temp &= ~FDI_LINK_TRAIN_NONE;
3821 temp |= FDI_LINK_TRAIN_PATTERN_2;
3822 I915_WRITE(reg, temp);
3823
3824 reg = FDI_RX_CTL(pipe);
3825 temp = I915_READ(reg);
3826 temp &= ~FDI_LINK_TRAIN_NONE;
3827 temp |= FDI_LINK_TRAIN_PATTERN_2;
3828 I915_WRITE(reg, temp);
3829
3830 POSTING_READ(reg);
3831 udelay(150);
3832
3833 reg = FDI_RX_IIR(pipe);
3834 for (tries = 0; tries < 5; tries++) {
3835 temp = I915_READ(reg);
3836 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3837
3838 if (temp & FDI_RX_SYMBOL_LOCK) {
3839 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3840 DRM_DEBUG_KMS("FDI train 2 done.\n");
3841 break;
3842 }
3843 }
3844 if (tries == 5)
3845 DRM_ERROR("FDI train 2 fail!\n");
3846
3847 DRM_DEBUG_KMS("FDI train done\n");
3848
3849 }
3850
3851 static const int snb_b_fdi_train_param[] = {
3852 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3853 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3854 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3855 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3856 };
3857
3858 /* The FDI link training functions for SNB/Cougarpoint. */
3859 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3860 {
3861 struct drm_device *dev = crtc->dev;
3862 struct drm_i915_private *dev_priv = to_i915(dev);
3863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3864 int pipe = intel_crtc->pipe;
3865 i915_reg_t reg;
3866 u32 temp, i, retry;
3867
3868 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3869 for train result */
3870 reg = FDI_RX_IMR(pipe);
3871 temp = I915_READ(reg);
3872 temp &= ~FDI_RX_SYMBOL_LOCK;
3873 temp &= ~FDI_RX_BIT_LOCK;
3874 I915_WRITE(reg, temp);
3875
3876 POSTING_READ(reg);
3877 udelay(150);
3878
3879 /* enable CPU FDI TX and PCH FDI RX */
3880 reg = FDI_TX_CTL(pipe);
3881 temp = I915_READ(reg);
3882 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3883 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3884 temp &= ~FDI_LINK_TRAIN_NONE;
3885 temp |= FDI_LINK_TRAIN_PATTERN_1;
3886 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3887 /* SNB-B */
3888 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3889 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3890
3891 I915_WRITE(FDI_RX_MISC(pipe),
3892 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3893
3894 reg = FDI_RX_CTL(pipe);
3895 temp = I915_READ(reg);
3896 if (HAS_PCH_CPT(dev_priv)) {
3897 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3898 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3899 } else {
3900 temp &= ~FDI_LINK_TRAIN_NONE;
3901 temp |= FDI_LINK_TRAIN_PATTERN_1;
3902 }
3903 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3904
3905 POSTING_READ(reg);
3906 udelay(150);
3907
3908 for (i = 0; i < 4; i++) {
3909 reg = FDI_TX_CTL(pipe);
3910 temp = I915_READ(reg);
3911 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3912 temp |= snb_b_fdi_train_param[i];
3913 I915_WRITE(reg, temp);
3914
3915 POSTING_READ(reg);
3916 udelay(500);
3917
3918 for (retry = 0; retry < 5; retry++) {
3919 reg = FDI_RX_IIR(pipe);
3920 temp = I915_READ(reg);
3921 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3922 if (temp & FDI_RX_BIT_LOCK) {
3923 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3924 DRM_DEBUG_KMS("FDI train 1 done.\n");
3925 break;
3926 }
3927 udelay(50);
3928 }
3929 if (retry < 5)
3930 break;
3931 }
3932 if (i == 4)
3933 DRM_ERROR("FDI train 1 fail!\n");
3934
3935 /* Train 2 */
3936 reg = FDI_TX_CTL(pipe);
3937 temp = I915_READ(reg);
3938 temp &= ~FDI_LINK_TRAIN_NONE;
3939 temp |= FDI_LINK_TRAIN_PATTERN_2;
3940 if (IS_GEN6(dev_priv)) {
3941 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3942 /* SNB-B */
3943 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3944 }
3945 I915_WRITE(reg, temp);
3946
3947 reg = FDI_RX_CTL(pipe);
3948 temp = I915_READ(reg);
3949 if (HAS_PCH_CPT(dev_priv)) {
3950 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3951 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3952 } else {
3953 temp &= ~FDI_LINK_TRAIN_NONE;
3954 temp |= FDI_LINK_TRAIN_PATTERN_2;
3955 }
3956 I915_WRITE(reg, temp);
3957
3958 POSTING_READ(reg);
3959 udelay(150);
3960
3961 for (i = 0; i < 4; i++) {
3962 reg = FDI_TX_CTL(pipe);
3963 temp = I915_READ(reg);
3964 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3965 temp |= snb_b_fdi_train_param[i];
3966 I915_WRITE(reg, temp);
3967
3968 POSTING_READ(reg);
3969 udelay(500);
3970
3971 for (retry = 0; retry < 5; retry++) {
3972 reg = FDI_RX_IIR(pipe);
3973 temp = I915_READ(reg);
3974 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3975 if (temp & FDI_RX_SYMBOL_LOCK) {
3976 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3977 DRM_DEBUG_KMS("FDI train 2 done.\n");
3978 break;
3979 }
3980 udelay(50);
3981 }
3982 if (retry < 5)
3983 break;
3984 }
3985 if (i == 4)
3986 DRM_ERROR("FDI train 2 fail!\n");
3987
3988 DRM_DEBUG_KMS("FDI train done.\n");
3989 }
3990
3991 /* Manual link training for Ivy Bridge A0 parts */
3992 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3993 {
3994 struct drm_device *dev = crtc->dev;
3995 struct drm_i915_private *dev_priv = to_i915(dev);
3996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3997 int pipe = intel_crtc->pipe;
3998 i915_reg_t reg;
3999 u32 temp, i, j;
4000
4001 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4002 for train result */
4003 reg = FDI_RX_IMR(pipe);
4004 temp = I915_READ(reg);
4005 temp &= ~FDI_RX_SYMBOL_LOCK;
4006 temp &= ~FDI_RX_BIT_LOCK;
4007 I915_WRITE(reg, temp);
4008
4009 POSTING_READ(reg);
4010 udelay(150);
4011
4012 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4013 I915_READ(FDI_RX_IIR(pipe)));
4014
4015 /* Try each vswing and preemphasis setting twice before moving on */
4016 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4017 /* disable first in case we need to retry */
4018 reg = FDI_TX_CTL(pipe);
4019 temp = I915_READ(reg);
4020 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4021 temp &= ~FDI_TX_ENABLE;
4022 I915_WRITE(reg, temp);
4023
4024 reg = FDI_RX_CTL(pipe);
4025 temp = I915_READ(reg);
4026 temp &= ~FDI_LINK_TRAIN_AUTO;
4027 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4028 temp &= ~FDI_RX_ENABLE;
4029 I915_WRITE(reg, temp);
4030
4031 /* enable CPU FDI TX and PCH FDI RX */
4032 reg = FDI_TX_CTL(pipe);
4033 temp = I915_READ(reg);
4034 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4035 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4036 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4037 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4038 temp |= snb_b_fdi_train_param[j/2];
4039 temp |= FDI_COMPOSITE_SYNC;
4040 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4041
4042 I915_WRITE(FDI_RX_MISC(pipe),
4043 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4044
4045 reg = FDI_RX_CTL(pipe);
4046 temp = I915_READ(reg);
4047 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4048 temp |= FDI_COMPOSITE_SYNC;
4049 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4050
4051 POSTING_READ(reg);
4052 udelay(1); /* should be 0.5us */
4053
4054 for (i = 0; i < 4; i++) {
4055 reg = FDI_RX_IIR(pipe);
4056 temp = I915_READ(reg);
4057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4058
4059 if (temp & FDI_RX_BIT_LOCK ||
4060 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4061 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4062 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4063 i);
4064 break;
4065 }
4066 udelay(1); /* should be 0.5us */
4067 }
4068 if (i == 4) {
4069 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4070 continue;
4071 }
4072
4073 /* Train 2 */
4074 reg = FDI_TX_CTL(pipe);
4075 temp = I915_READ(reg);
4076 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4077 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4078 I915_WRITE(reg, temp);
4079
4080 reg = FDI_RX_CTL(pipe);
4081 temp = I915_READ(reg);
4082 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4083 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4084 I915_WRITE(reg, temp);
4085
4086 POSTING_READ(reg);
4087 udelay(2); /* should be 1.5us */
4088
4089 for (i = 0; i < 4; i++) {
4090 reg = FDI_RX_IIR(pipe);
4091 temp = I915_READ(reg);
4092 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4093
4094 if (temp & FDI_RX_SYMBOL_LOCK ||
4095 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4096 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4097 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4098 i);
4099 goto train_done;
4100 }
4101 udelay(2); /* should be 1.5us */
4102 }
4103 if (i == 4)
4104 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4105 }
4106
4107 train_done:
4108 DRM_DEBUG_KMS("FDI train done.\n");
4109 }
4110
4111 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4112 {
4113 struct drm_device *dev = intel_crtc->base.dev;
4114 struct drm_i915_private *dev_priv = to_i915(dev);
4115 int pipe = intel_crtc->pipe;
4116 i915_reg_t reg;
4117 u32 temp;
4118
4119 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4120 reg = FDI_RX_CTL(pipe);
4121 temp = I915_READ(reg);
4122 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4123 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4124 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4125 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4126
4127 POSTING_READ(reg);
4128 udelay(200);
4129
4130 /* Switch from Rawclk to PCDclk */
4131 temp = I915_READ(reg);
4132 I915_WRITE(reg, temp | FDI_PCDCLK);
4133
4134 POSTING_READ(reg);
4135 udelay(200);
4136
4137 /* Enable CPU FDI TX PLL, always on for Ironlake */
4138 reg = FDI_TX_CTL(pipe);
4139 temp = I915_READ(reg);
4140 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4141 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4142
4143 POSTING_READ(reg);
4144 udelay(100);
4145 }
4146 }
4147
4148 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4149 {
4150 struct drm_device *dev = intel_crtc->base.dev;
4151 struct drm_i915_private *dev_priv = to_i915(dev);
4152 int pipe = intel_crtc->pipe;
4153 i915_reg_t reg;
4154 u32 temp;
4155
4156 /* Switch from PCDclk to Rawclk */
4157 reg = FDI_RX_CTL(pipe);
4158 temp = I915_READ(reg);
4159 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4160
4161 /* Disable CPU FDI TX PLL */
4162 reg = FDI_TX_CTL(pipe);
4163 temp = I915_READ(reg);
4164 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4165
4166 POSTING_READ(reg);
4167 udelay(100);
4168
4169 reg = FDI_RX_CTL(pipe);
4170 temp = I915_READ(reg);
4171 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4172
4173 /* Wait for the clocks to turn off. */
4174 POSTING_READ(reg);
4175 udelay(100);
4176 }
4177
4178 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4179 {
4180 struct drm_device *dev = crtc->dev;
4181 struct drm_i915_private *dev_priv = to_i915(dev);
4182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183 int pipe = intel_crtc->pipe;
4184 i915_reg_t reg;
4185 u32 temp;
4186
4187 /* disable CPU FDI tx and PCH FDI rx */
4188 reg = FDI_TX_CTL(pipe);
4189 temp = I915_READ(reg);
4190 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4191 POSTING_READ(reg);
4192
4193 reg = FDI_RX_CTL(pipe);
4194 temp = I915_READ(reg);
4195 temp &= ~(0x7 << 16);
4196 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4197 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4198
4199 POSTING_READ(reg);
4200 udelay(100);
4201
4202 /* Ironlake workaround, disable clock pointer after downing FDI */
4203 if (HAS_PCH_IBX(dev_priv))
4204 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4205
4206 /* still set train pattern 1 */
4207 reg = FDI_TX_CTL(pipe);
4208 temp = I915_READ(reg);
4209 temp &= ~FDI_LINK_TRAIN_NONE;
4210 temp |= FDI_LINK_TRAIN_PATTERN_1;
4211 I915_WRITE(reg, temp);
4212
4213 reg = FDI_RX_CTL(pipe);
4214 temp = I915_READ(reg);
4215 if (HAS_PCH_CPT(dev_priv)) {
4216 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4217 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4218 } else {
4219 temp &= ~FDI_LINK_TRAIN_NONE;
4220 temp |= FDI_LINK_TRAIN_PATTERN_1;
4221 }
4222 /* BPC in FDI rx is consistent with that in PIPECONF */
4223 temp &= ~(0x07 << 16);
4224 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4225 I915_WRITE(reg, temp);
4226
4227 POSTING_READ(reg);
4228 udelay(100);
4229 }
4230
4231 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4232 {
4233 struct intel_crtc *crtc;
4234
4235 /* Note that we don't need to be called with mode_config.lock here
4236 * as our list of CRTC objects is static for the lifetime of the
4237 * device and so cannot disappear as we iterate. Similarly, we can
4238 * happily treat the predicates as racy, atomic checks as userspace
4239 * cannot claim and pin a new fb without at least acquring the
4240 * struct_mutex and so serialising with us.
4241 */
4242 for_each_intel_crtc(&dev_priv->drm, crtc) {
4243 if (atomic_read(&crtc->unpin_work_count) == 0)
4244 continue;
4245
4246 if (crtc->flip_work)
4247 intel_wait_for_vblank(dev_priv, crtc->pipe);
4248
4249 return true;
4250 }
4251
4252 return false;
4253 }
4254
4255 static void page_flip_completed(struct intel_crtc *intel_crtc)
4256 {
4257 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4258 struct intel_flip_work *work = intel_crtc->flip_work;
4259
4260 intel_crtc->flip_work = NULL;
4261
4262 if (work->event)
4263 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4264
4265 drm_crtc_vblank_put(&intel_crtc->base);
4266
4267 wake_up_all(&dev_priv->pending_flip_queue);
4268 queue_work(dev_priv->wq, &work->unpin_work);
4269
4270 trace_i915_flip_complete(intel_crtc->plane,
4271 work->pending_flip_obj);
4272 }
4273
4274 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4275 {
4276 struct drm_device *dev = crtc->dev;
4277 struct drm_i915_private *dev_priv = to_i915(dev);
4278 long ret;
4279
4280 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4281
4282 ret = wait_event_interruptible_timeout(
4283 dev_priv->pending_flip_queue,
4284 !intel_crtc_has_pending_flip(crtc),
4285 60*HZ);
4286
4287 if (ret < 0)
4288 return ret;
4289
4290 if (ret == 0) {
4291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4292 struct intel_flip_work *work;
4293
4294 spin_lock_irq(&dev->event_lock);
4295 work = intel_crtc->flip_work;
4296 if (work && !is_mmio_work(work)) {
4297 WARN_ONCE(1, "Removing stuck page flip\n");
4298 page_flip_completed(intel_crtc);
4299 }
4300 spin_unlock_irq(&dev->event_lock);
4301 }
4302
4303 return 0;
4304 }
4305
4306 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4307 {
4308 u32 temp;
4309
4310 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4311
4312 mutex_lock(&dev_priv->sb_lock);
4313
4314 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4315 temp |= SBI_SSCCTL_DISABLE;
4316 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4317
4318 mutex_unlock(&dev_priv->sb_lock);
4319 }
4320
4321 /* Program iCLKIP clock to the desired frequency */
4322 static void lpt_program_iclkip(struct drm_crtc *crtc)
4323 {
4324 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4325 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4326 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4327 u32 temp;
4328
4329 lpt_disable_iclkip(dev_priv);
4330
4331 /* The iCLK virtual clock root frequency is in MHz,
4332 * but the adjusted_mode->crtc_clock in in KHz. To get the
4333 * divisors, it is necessary to divide one by another, so we
4334 * convert the virtual clock precision to KHz here for higher
4335 * precision.
4336 */
4337 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4338 u32 iclk_virtual_root_freq = 172800 * 1000;
4339 u32 iclk_pi_range = 64;
4340 u32 desired_divisor;
4341
4342 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4343 clock << auxdiv);
4344 divsel = (desired_divisor / iclk_pi_range) - 2;
4345 phaseinc = desired_divisor % iclk_pi_range;
4346
4347 /*
4348 * Near 20MHz is a corner case which is
4349 * out of range for the 7-bit divisor
4350 */
4351 if (divsel <= 0x7f)
4352 break;
4353 }
4354
4355 /* This should not happen with any sane values */
4356 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4357 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4358 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4359 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4360
4361 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4362 clock,
4363 auxdiv,
4364 divsel,
4365 phasedir,
4366 phaseinc);
4367
4368 mutex_lock(&dev_priv->sb_lock);
4369
4370 /* Program SSCDIVINTPHASE6 */
4371 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4372 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4373 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4374 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4375 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4376 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4377 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4378 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4379
4380 /* Program SSCAUXDIV */
4381 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4382 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4383 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4384 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4385
4386 /* Enable modulator and associated divider */
4387 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4388 temp &= ~SBI_SSCCTL_DISABLE;
4389 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4390
4391 mutex_unlock(&dev_priv->sb_lock);
4392
4393 /* Wait for initialization time */
4394 udelay(24);
4395
4396 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4397 }
4398
4399 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4400 {
4401 u32 divsel, phaseinc, auxdiv;
4402 u32 iclk_virtual_root_freq = 172800 * 1000;
4403 u32 iclk_pi_range = 64;
4404 u32 desired_divisor;
4405 u32 temp;
4406
4407 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4408 return 0;
4409
4410 mutex_lock(&dev_priv->sb_lock);
4411
4412 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4413 if (temp & SBI_SSCCTL_DISABLE) {
4414 mutex_unlock(&dev_priv->sb_lock);
4415 return 0;
4416 }
4417
4418 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4419 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4420 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4421 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4422 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4423
4424 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4425 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4426 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4427
4428 mutex_unlock(&dev_priv->sb_lock);
4429
4430 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4431
4432 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4433 desired_divisor << auxdiv);
4434 }
4435
4436 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4437 enum pipe pch_transcoder)
4438 {
4439 struct drm_device *dev = crtc->base.dev;
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4442
4443 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4444 I915_READ(HTOTAL(cpu_transcoder)));
4445 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4446 I915_READ(HBLANK(cpu_transcoder)));
4447 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4448 I915_READ(HSYNC(cpu_transcoder)));
4449
4450 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4451 I915_READ(VTOTAL(cpu_transcoder)));
4452 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4453 I915_READ(VBLANK(cpu_transcoder)));
4454 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4455 I915_READ(VSYNC(cpu_transcoder)));
4456 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4457 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4458 }
4459
4460 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4461 {
4462 struct drm_i915_private *dev_priv = to_i915(dev);
4463 uint32_t temp;
4464
4465 temp = I915_READ(SOUTH_CHICKEN1);
4466 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4467 return;
4468
4469 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4470 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4471
4472 temp &= ~FDI_BC_BIFURCATION_SELECT;
4473 if (enable)
4474 temp |= FDI_BC_BIFURCATION_SELECT;
4475
4476 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4477 I915_WRITE(SOUTH_CHICKEN1, temp);
4478 POSTING_READ(SOUTH_CHICKEN1);
4479 }
4480
4481 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4482 {
4483 struct drm_device *dev = intel_crtc->base.dev;
4484
4485 switch (intel_crtc->pipe) {
4486 case PIPE_A:
4487 break;
4488 case PIPE_B:
4489 if (intel_crtc->config->fdi_lanes > 2)
4490 cpt_set_fdi_bc_bifurcation(dev, false);
4491 else
4492 cpt_set_fdi_bc_bifurcation(dev, true);
4493
4494 break;
4495 case PIPE_C:
4496 cpt_set_fdi_bc_bifurcation(dev, true);
4497
4498 break;
4499 default:
4500 BUG();
4501 }
4502 }
4503
4504 /* Return which DP Port should be selected for Transcoder DP control */
4505 static enum port
4506 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4507 {
4508 struct drm_device *dev = crtc->dev;
4509 struct intel_encoder *encoder;
4510
4511 for_each_encoder_on_crtc(dev, crtc, encoder) {
4512 if (encoder->type == INTEL_OUTPUT_DP ||
4513 encoder->type == INTEL_OUTPUT_EDP)
4514 return enc_to_dig_port(&encoder->base)->port;
4515 }
4516
4517 return -1;
4518 }
4519
4520 /*
4521 * Enable PCH resources required for PCH ports:
4522 * - PCH PLLs
4523 * - FDI training & RX/TX
4524 * - update transcoder timings
4525 * - DP transcoding bits
4526 * - transcoder
4527 */
4528 static void ironlake_pch_enable(struct drm_crtc *crtc)
4529 {
4530 struct drm_device *dev = crtc->dev;
4531 struct drm_i915_private *dev_priv = to_i915(dev);
4532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4533 int pipe = intel_crtc->pipe;
4534 u32 temp;
4535
4536 assert_pch_transcoder_disabled(dev_priv, pipe);
4537
4538 if (IS_IVYBRIDGE(dev_priv))
4539 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4540
4541 /* Write the TU size bits before fdi link training, so that error
4542 * detection works. */
4543 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4544 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4545
4546 /* For PCH output, training FDI link */
4547 dev_priv->display.fdi_link_train(crtc);
4548
4549 /* We need to program the right clock selection before writing the pixel
4550 * mutliplier into the DPLL. */
4551 if (HAS_PCH_CPT(dev_priv)) {
4552 u32 sel;
4553
4554 temp = I915_READ(PCH_DPLL_SEL);
4555 temp |= TRANS_DPLL_ENABLE(pipe);
4556 sel = TRANS_DPLLB_SEL(pipe);
4557 if (intel_crtc->config->shared_dpll ==
4558 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4559 temp |= sel;
4560 else
4561 temp &= ~sel;
4562 I915_WRITE(PCH_DPLL_SEL, temp);
4563 }
4564
4565 /* XXX: pch pll's can be enabled any time before we enable the PCH
4566 * transcoder, and we actually should do this to not upset any PCH
4567 * transcoder that already use the clock when we share it.
4568 *
4569 * Note that enable_shared_dpll tries to do the right thing, but
4570 * get_shared_dpll unconditionally resets the pll - we need that to have
4571 * the right LVDS enable sequence. */
4572 intel_enable_shared_dpll(intel_crtc);
4573
4574 /* set transcoder timing, panel must allow it */
4575 assert_panel_unlocked(dev_priv, pipe);
4576 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4577
4578 intel_fdi_normal_train(crtc);
4579
4580 /* For PCH DP, enable TRANS_DP_CTL */
4581 if (HAS_PCH_CPT(dev_priv) &&
4582 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4583 const struct drm_display_mode *adjusted_mode =
4584 &intel_crtc->config->base.adjusted_mode;
4585 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4586 i915_reg_t reg = TRANS_DP_CTL(pipe);
4587 temp = I915_READ(reg);
4588 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4589 TRANS_DP_SYNC_MASK |
4590 TRANS_DP_BPC_MASK);
4591 temp |= TRANS_DP_OUTPUT_ENABLE;
4592 temp |= bpc << 9; /* same format but at 11:9 */
4593
4594 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4595 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4596 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4597 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4598
4599 switch (intel_trans_dp_port_sel(crtc)) {
4600 case PORT_B:
4601 temp |= TRANS_DP_PORT_SEL_B;
4602 break;
4603 case PORT_C:
4604 temp |= TRANS_DP_PORT_SEL_C;
4605 break;
4606 case PORT_D:
4607 temp |= TRANS_DP_PORT_SEL_D;
4608 break;
4609 default:
4610 BUG();
4611 }
4612
4613 I915_WRITE(reg, temp);
4614 }
4615
4616 ironlake_enable_pch_transcoder(dev_priv, pipe);
4617 }
4618
4619 static void lpt_pch_enable(struct drm_crtc *crtc)
4620 {
4621 struct drm_device *dev = crtc->dev;
4622 struct drm_i915_private *dev_priv = to_i915(dev);
4623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4625
4626 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4627
4628 lpt_program_iclkip(crtc);
4629
4630 /* Set transcoder timing. */
4631 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4632
4633 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4634 }
4635
4636 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4637 {
4638 struct drm_i915_private *dev_priv = to_i915(dev);
4639 i915_reg_t dslreg = PIPEDSL(pipe);
4640 u32 temp;
4641
4642 temp = I915_READ(dslreg);
4643 udelay(500);
4644 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4645 if (wait_for(I915_READ(dslreg) != temp, 5))
4646 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4647 }
4648 }
4649
4650 static int
4651 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4652 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4653 int src_w, int src_h, int dst_w, int dst_h)
4654 {
4655 struct intel_crtc_scaler_state *scaler_state =
4656 &crtc_state->scaler_state;
4657 struct intel_crtc *intel_crtc =
4658 to_intel_crtc(crtc_state->base.crtc);
4659 int need_scaling;
4660
4661 need_scaling = drm_rotation_90_or_270(rotation) ?
4662 (src_h != dst_w || src_w != dst_h):
4663 (src_w != dst_w || src_h != dst_h);
4664
4665 /*
4666 * if plane is being disabled or scaler is no more required or force detach
4667 * - free scaler binded to this plane/crtc
4668 * - in order to do this, update crtc->scaler_usage
4669 *
4670 * Here scaler state in crtc_state is set free so that
4671 * scaler can be assigned to other user. Actual register
4672 * update to free the scaler is done in plane/panel-fit programming.
4673 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4674 */
4675 if (force_detach || !need_scaling) {
4676 if (*scaler_id >= 0) {
4677 scaler_state->scaler_users &= ~(1 << scaler_user);
4678 scaler_state->scalers[*scaler_id].in_use = 0;
4679
4680 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4681 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4682 intel_crtc->pipe, scaler_user, *scaler_id,
4683 scaler_state->scaler_users);
4684 *scaler_id = -1;
4685 }
4686 return 0;
4687 }
4688
4689 /* range checks */
4690 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4691 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4692
4693 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4694 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4695 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4696 "size is out of scaler range\n",
4697 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4698 return -EINVAL;
4699 }
4700
4701 /* mark this plane as a scaler user in crtc_state */
4702 scaler_state->scaler_users |= (1 << scaler_user);
4703 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4704 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4705 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4706 scaler_state->scaler_users);
4707
4708 return 0;
4709 }
4710
4711 /**
4712 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4713 *
4714 * @state: crtc's scaler state
4715 *
4716 * Return
4717 * 0 - scaler_usage updated successfully
4718 * error - requested scaling cannot be supported or other error condition
4719 */
4720 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4721 {
4722 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4723
4724 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4725 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4726 state->pipe_src_w, state->pipe_src_h,
4727 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4728 }
4729
4730 /**
4731 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4732 *
4733 * @state: crtc's scaler state
4734 * @plane_state: atomic plane state to update
4735 *
4736 * Return
4737 * 0 - scaler_usage updated successfully
4738 * error - requested scaling cannot be supported or other error condition
4739 */
4740 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4741 struct intel_plane_state *plane_state)
4742 {
4743
4744 struct intel_plane *intel_plane =
4745 to_intel_plane(plane_state->base.plane);
4746 struct drm_framebuffer *fb = plane_state->base.fb;
4747 int ret;
4748
4749 bool force_detach = !fb || !plane_state->base.visible;
4750
4751 ret = skl_update_scaler(crtc_state, force_detach,
4752 drm_plane_index(&intel_plane->base),
4753 &plane_state->scaler_id,
4754 plane_state->base.rotation,
4755 drm_rect_width(&plane_state->base.src) >> 16,
4756 drm_rect_height(&plane_state->base.src) >> 16,
4757 drm_rect_width(&plane_state->base.dst),
4758 drm_rect_height(&plane_state->base.dst));
4759
4760 if (ret || plane_state->scaler_id < 0)
4761 return ret;
4762
4763 /* check colorkey */
4764 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4765 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4766 intel_plane->base.base.id,
4767 intel_plane->base.name);
4768 return -EINVAL;
4769 }
4770
4771 /* Check src format */
4772 switch (fb->pixel_format) {
4773 case DRM_FORMAT_RGB565:
4774 case DRM_FORMAT_XBGR8888:
4775 case DRM_FORMAT_XRGB8888:
4776 case DRM_FORMAT_ABGR8888:
4777 case DRM_FORMAT_ARGB8888:
4778 case DRM_FORMAT_XRGB2101010:
4779 case DRM_FORMAT_XBGR2101010:
4780 case DRM_FORMAT_YUYV:
4781 case DRM_FORMAT_YVYU:
4782 case DRM_FORMAT_UYVY:
4783 case DRM_FORMAT_VYUY:
4784 break;
4785 default:
4786 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4787 intel_plane->base.base.id, intel_plane->base.name,
4788 fb->base.id, fb->pixel_format);
4789 return -EINVAL;
4790 }
4791
4792 return 0;
4793 }
4794
4795 static void skylake_scaler_disable(struct intel_crtc *crtc)
4796 {
4797 int i;
4798
4799 for (i = 0; i < crtc->num_scalers; i++)
4800 skl_detach_scaler(crtc, i);
4801 }
4802
4803 static void skylake_pfit_enable(struct intel_crtc *crtc)
4804 {
4805 struct drm_device *dev = crtc->base.dev;
4806 struct drm_i915_private *dev_priv = to_i915(dev);
4807 int pipe = crtc->pipe;
4808 struct intel_crtc_scaler_state *scaler_state =
4809 &crtc->config->scaler_state;
4810
4811 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4812
4813 if (crtc->config->pch_pfit.enabled) {
4814 int id;
4815
4816 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4817 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4818 return;
4819 }
4820
4821 id = scaler_state->scaler_id;
4822 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4823 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4824 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4825 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4826
4827 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4828 }
4829 }
4830
4831 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4832 {
4833 struct drm_device *dev = crtc->base.dev;
4834 struct drm_i915_private *dev_priv = to_i915(dev);
4835 int pipe = crtc->pipe;
4836
4837 if (crtc->config->pch_pfit.enabled) {
4838 /* Force use of hard-coded filter coefficients
4839 * as some pre-programmed values are broken,
4840 * e.g. x201.
4841 */
4842 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4843 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4844 PF_PIPE_SEL_IVB(pipe));
4845 else
4846 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4847 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4848 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4849 }
4850 }
4851
4852 void hsw_enable_ips(struct intel_crtc *crtc)
4853 {
4854 struct drm_device *dev = crtc->base.dev;
4855 struct drm_i915_private *dev_priv = to_i915(dev);
4856
4857 if (!crtc->config->ips_enabled)
4858 return;
4859
4860 /*
4861 * We can only enable IPS after we enable a plane and wait for a vblank
4862 * This function is called from post_plane_update, which is run after
4863 * a vblank wait.
4864 */
4865
4866 assert_plane_enabled(dev_priv, crtc->plane);
4867 if (IS_BROADWELL(dev_priv)) {
4868 mutex_lock(&dev_priv->rps.hw_lock);
4869 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4870 mutex_unlock(&dev_priv->rps.hw_lock);
4871 /* Quoting Art Runyan: "its not safe to expect any particular
4872 * value in IPS_CTL bit 31 after enabling IPS through the
4873 * mailbox." Moreover, the mailbox may return a bogus state,
4874 * so we need to just enable it and continue on.
4875 */
4876 } else {
4877 I915_WRITE(IPS_CTL, IPS_ENABLE);
4878 /* The bit only becomes 1 in the next vblank, so this wait here
4879 * is essentially intel_wait_for_vblank. If we don't have this
4880 * and don't wait for vblanks until the end of crtc_enable, then
4881 * the HW state readout code will complain that the expected
4882 * IPS_CTL value is not the one we read. */
4883 if (intel_wait_for_register(dev_priv,
4884 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4885 50))
4886 DRM_ERROR("Timed out waiting for IPS enable\n");
4887 }
4888 }
4889
4890 void hsw_disable_ips(struct intel_crtc *crtc)
4891 {
4892 struct drm_device *dev = crtc->base.dev;
4893 struct drm_i915_private *dev_priv = to_i915(dev);
4894
4895 if (!crtc->config->ips_enabled)
4896 return;
4897
4898 assert_plane_enabled(dev_priv, crtc->plane);
4899 if (IS_BROADWELL(dev_priv)) {
4900 mutex_lock(&dev_priv->rps.hw_lock);
4901 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4902 mutex_unlock(&dev_priv->rps.hw_lock);
4903 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4904 if (intel_wait_for_register(dev_priv,
4905 IPS_CTL, IPS_ENABLE, 0,
4906 42))
4907 DRM_ERROR("Timed out waiting for IPS disable\n");
4908 } else {
4909 I915_WRITE(IPS_CTL, 0);
4910 POSTING_READ(IPS_CTL);
4911 }
4912
4913 /* We need to wait for a vblank before we can disable the plane. */
4914 intel_wait_for_vblank(dev_priv, crtc->pipe);
4915 }
4916
4917 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4918 {
4919 if (intel_crtc->overlay) {
4920 struct drm_device *dev = intel_crtc->base.dev;
4921 struct drm_i915_private *dev_priv = to_i915(dev);
4922
4923 mutex_lock(&dev->struct_mutex);
4924 dev_priv->mm.interruptible = false;
4925 (void) intel_overlay_switch_off(intel_crtc->overlay);
4926 dev_priv->mm.interruptible = true;
4927 mutex_unlock(&dev->struct_mutex);
4928 }
4929
4930 /* Let userspace switch the overlay on again. In most cases userspace
4931 * has to recompute where to put it anyway.
4932 */
4933 }
4934
4935 /**
4936 * intel_post_enable_primary - Perform operations after enabling primary plane
4937 * @crtc: the CRTC whose primary plane was just enabled
4938 *
4939 * Performs potentially sleeping operations that must be done after the primary
4940 * plane is enabled, such as updating FBC and IPS. Note that this may be
4941 * called due to an explicit primary plane update, or due to an implicit
4942 * re-enable that is caused when a sprite plane is updated to no longer
4943 * completely hide the primary plane.
4944 */
4945 static void
4946 intel_post_enable_primary(struct drm_crtc *crtc)
4947 {
4948 struct drm_device *dev = crtc->dev;
4949 struct drm_i915_private *dev_priv = to_i915(dev);
4950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4951 int pipe = intel_crtc->pipe;
4952
4953 /*
4954 * FIXME IPS should be fine as long as one plane is
4955 * enabled, but in practice it seems to have problems
4956 * when going from primary only to sprite only and vice
4957 * versa.
4958 */
4959 hsw_enable_ips(intel_crtc);
4960
4961 /*
4962 * Gen2 reports pipe underruns whenever all planes are disabled.
4963 * So don't enable underrun reporting before at least some planes
4964 * are enabled.
4965 * FIXME: Need to fix the logic to work when we turn off all planes
4966 * but leave the pipe running.
4967 */
4968 if (IS_GEN2(dev_priv))
4969 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4970
4971 /* Underruns don't always raise interrupts, so check manually. */
4972 intel_check_cpu_fifo_underruns(dev_priv);
4973 intel_check_pch_fifo_underruns(dev_priv);
4974 }
4975
4976 /* FIXME move all this to pre_plane_update() with proper state tracking */
4977 static void
4978 intel_pre_disable_primary(struct drm_crtc *crtc)
4979 {
4980 struct drm_device *dev = crtc->dev;
4981 struct drm_i915_private *dev_priv = to_i915(dev);
4982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4983 int pipe = intel_crtc->pipe;
4984
4985 /*
4986 * Gen2 reports pipe underruns whenever all planes are disabled.
4987 * So diasble underrun reporting before all the planes get disabled.
4988 * FIXME: Need to fix the logic to work when we turn off all planes
4989 * but leave the pipe running.
4990 */
4991 if (IS_GEN2(dev_priv))
4992 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4993
4994 /*
4995 * FIXME IPS should be fine as long as one plane is
4996 * enabled, but in practice it seems to have problems
4997 * when going from primary only to sprite only and vice
4998 * versa.
4999 */
5000 hsw_disable_ips(intel_crtc);
5001 }
5002
5003 /* FIXME get rid of this and use pre_plane_update */
5004 static void
5005 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5006 {
5007 struct drm_device *dev = crtc->dev;
5008 struct drm_i915_private *dev_priv = to_i915(dev);
5009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5010 int pipe = intel_crtc->pipe;
5011
5012 intel_pre_disable_primary(crtc);
5013
5014 /*
5015 * Vblank time updates from the shadow to live plane control register
5016 * are blocked if the memory self-refresh mode is active at that
5017 * moment. So to make sure the plane gets truly disabled, disable
5018 * first the self-refresh mode. The self-refresh enable bit in turn
5019 * will be checked/applied by the HW only at the next frame start
5020 * event which is after the vblank start event, so we need to have a
5021 * wait-for-vblank between disabling the plane and the pipe.
5022 */
5023 if (HAS_GMCH_DISPLAY(dev_priv)) {
5024 intel_set_memory_cxsr(dev_priv, false);
5025 dev_priv->wm.vlv.cxsr = false;
5026 intel_wait_for_vblank(dev_priv, pipe);
5027 }
5028 }
5029
5030 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5031 {
5032 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5033 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5034 struct intel_crtc_state *pipe_config =
5035 to_intel_crtc_state(crtc->base.state);
5036 struct drm_plane *primary = crtc->base.primary;
5037 struct drm_plane_state *old_pri_state =
5038 drm_atomic_get_existing_plane_state(old_state, primary);
5039
5040 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5041
5042 crtc->wm.cxsr_allowed = true;
5043
5044 if (pipe_config->update_wm_post && pipe_config->base.active)
5045 intel_update_watermarks(crtc);
5046
5047 if (old_pri_state) {
5048 struct intel_plane_state *primary_state =
5049 to_intel_plane_state(primary->state);
5050 struct intel_plane_state *old_primary_state =
5051 to_intel_plane_state(old_pri_state);
5052
5053 intel_fbc_post_update(crtc);
5054
5055 if (primary_state->base.visible &&
5056 (needs_modeset(&pipe_config->base) ||
5057 !old_primary_state->base.visible))
5058 intel_post_enable_primary(&crtc->base);
5059 }
5060 }
5061
5062 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5063 {
5064 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5065 struct drm_device *dev = crtc->base.dev;
5066 struct drm_i915_private *dev_priv = to_i915(dev);
5067 struct intel_crtc_state *pipe_config =
5068 to_intel_crtc_state(crtc->base.state);
5069 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5070 struct drm_plane *primary = crtc->base.primary;
5071 struct drm_plane_state *old_pri_state =
5072 drm_atomic_get_existing_plane_state(old_state, primary);
5073 bool modeset = needs_modeset(&pipe_config->base);
5074 struct intel_atomic_state *old_intel_state =
5075 to_intel_atomic_state(old_state);
5076
5077 if (old_pri_state) {
5078 struct intel_plane_state *primary_state =
5079 to_intel_plane_state(primary->state);
5080 struct intel_plane_state *old_primary_state =
5081 to_intel_plane_state(old_pri_state);
5082
5083 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5084
5085 if (old_primary_state->base.visible &&
5086 (modeset || !primary_state->base.visible))
5087 intel_pre_disable_primary(&crtc->base);
5088 }
5089
5090 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5091 crtc->wm.cxsr_allowed = false;
5092
5093 /*
5094 * Vblank time updates from the shadow to live plane control register
5095 * are blocked if the memory self-refresh mode is active at that
5096 * moment. So to make sure the plane gets truly disabled, disable
5097 * first the self-refresh mode. The self-refresh enable bit in turn
5098 * will be checked/applied by the HW only at the next frame start
5099 * event which is after the vblank start event, so we need to have a
5100 * wait-for-vblank between disabling the plane and the pipe.
5101 */
5102 if (old_crtc_state->base.active) {
5103 intel_set_memory_cxsr(dev_priv, false);
5104 dev_priv->wm.vlv.cxsr = false;
5105 intel_wait_for_vblank(dev_priv, crtc->pipe);
5106 }
5107 }
5108
5109 /*
5110 * IVB workaround: must disable low power watermarks for at least
5111 * one frame before enabling scaling. LP watermarks can be re-enabled
5112 * when scaling is disabled.
5113 *
5114 * WaCxSRDisabledForSpriteScaling:ivb
5115 */
5116 if (pipe_config->disable_lp_wm) {
5117 ilk_disable_lp_wm(dev);
5118 intel_wait_for_vblank(dev_priv, crtc->pipe);
5119 }
5120
5121 /*
5122 * If we're doing a modeset, we're done. No need to do any pre-vblank
5123 * watermark programming here.
5124 */
5125 if (needs_modeset(&pipe_config->base))
5126 return;
5127
5128 /*
5129 * For platforms that support atomic watermarks, program the
5130 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5131 * will be the intermediate values that are safe for both pre- and
5132 * post- vblank; when vblank happens, the 'active' values will be set
5133 * to the final 'target' values and we'll do this again to get the
5134 * optimal watermarks. For gen9+ platforms, the values we program here
5135 * will be the final target values which will get automatically latched
5136 * at vblank time; no further programming will be necessary.
5137 *
5138 * If a platform hasn't been transitioned to atomic watermarks yet,
5139 * we'll continue to update watermarks the old way, if flags tell
5140 * us to.
5141 */
5142 if (dev_priv->display.initial_watermarks != NULL)
5143 dev_priv->display.initial_watermarks(old_intel_state,
5144 pipe_config);
5145 else if (pipe_config->update_wm_pre)
5146 intel_update_watermarks(crtc);
5147 }
5148
5149 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5150 {
5151 struct drm_device *dev = crtc->dev;
5152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5153 struct drm_plane *p;
5154 int pipe = intel_crtc->pipe;
5155
5156 intel_crtc_dpms_overlay_disable(intel_crtc);
5157
5158 drm_for_each_plane_mask(p, dev, plane_mask)
5159 to_intel_plane(p)->disable_plane(p, crtc);
5160
5161 /*
5162 * FIXME: Once we grow proper nuclear flip support out of this we need
5163 * to compute the mask of flip planes precisely. For the time being
5164 * consider this a flip to a NULL plane.
5165 */
5166 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5167 }
5168
5169 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5170 struct intel_crtc_state *crtc_state,
5171 struct drm_atomic_state *old_state)
5172 {
5173 struct drm_connector_state *old_conn_state;
5174 struct drm_connector *conn;
5175 int i;
5176
5177 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5178 struct drm_connector_state *conn_state = conn->state;
5179 struct intel_encoder *encoder =
5180 to_intel_encoder(conn_state->best_encoder);
5181
5182 if (conn_state->crtc != crtc)
5183 continue;
5184
5185 if (encoder->pre_pll_enable)
5186 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5187 }
5188 }
5189
5190 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5191 struct intel_crtc_state *crtc_state,
5192 struct drm_atomic_state *old_state)
5193 {
5194 struct drm_connector_state *old_conn_state;
5195 struct drm_connector *conn;
5196 int i;
5197
5198 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5199 struct drm_connector_state *conn_state = conn->state;
5200 struct intel_encoder *encoder =
5201 to_intel_encoder(conn_state->best_encoder);
5202
5203 if (conn_state->crtc != crtc)
5204 continue;
5205
5206 if (encoder->pre_enable)
5207 encoder->pre_enable(encoder, crtc_state, conn_state);
5208 }
5209 }
5210
5211 static void intel_encoders_enable(struct drm_crtc *crtc,
5212 struct intel_crtc_state *crtc_state,
5213 struct drm_atomic_state *old_state)
5214 {
5215 struct drm_connector_state *old_conn_state;
5216 struct drm_connector *conn;
5217 int i;
5218
5219 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5220 struct drm_connector_state *conn_state = conn->state;
5221 struct intel_encoder *encoder =
5222 to_intel_encoder(conn_state->best_encoder);
5223
5224 if (conn_state->crtc != crtc)
5225 continue;
5226
5227 encoder->enable(encoder, crtc_state, conn_state);
5228 intel_opregion_notify_encoder(encoder, true);
5229 }
5230 }
5231
5232 static void intel_encoders_disable(struct drm_crtc *crtc,
5233 struct intel_crtc_state *old_crtc_state,
5234 struct drm_atomic_state *old_state)
5235 {
5236 struct drm_connector_state *old_conn_state;
5237 struct drm_connector *conn;
5238 int i;
5239
5240 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5241 struct intel_encoder *encoder =
5242 to_intel_encoder(old_conn_state->best_encoder);
5243
5244 if (old_conn_state->crtc != crtc)
5245 continue;
5246
5247 intel_opregion_notify_encoder(encoder, false);
5248 encoder->disable(encoder, old_crtc_state, old_conn_state);
5249 }
5250 }
5251
5252 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5253 struct intel_crtc_state *old_crtc_state,
5254 struct drm_atomic_state *old_state)
5255 {
5256 struct drm_connector_state *old_conn_state;
5257 struct drm_connector *conn;
5258 int i;
5259
5260 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5261 struct intel_encoder *encoder =
5262 to_intel_encoder(old_conn_state->best_encoder);
5263
5264 if (old_conn_state->crtc != crtc)
5265 continue;
5266
5267 if (encoder->post_disable)
5268 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5269 }
5270 }
5271
5272 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5273 struct intel_crtc_state *old_crtc_state,
5274 struct drm_atomic_state *old_state)
5275 {
5276 struct drm_connector_state *old_conn_state;
5277 struct drm_connector *conn;
5278 int i;
5279
5280 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5281 struct intel_encoder *encoder =
5282 to_intel_encoder(old_conn_state->best_encoder);
5283
5284 if (old_conn_state->crtc != crtc)
5285 continue;
5286
5287 if (encoder->post_pll_disable)
5288 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5289 }
5290 }
5291
5292 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5293 struct drm_atomic_state *old_state)
5294 {
5295 struct drm_crtc *crtc = pipe_config->base.crtc;
5296 struct drm_device *dev = crtc->dev;
5297 struct drm_i915_private *dev_priv = to_i915(dev);
5298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5299 int pipe = intel_crtc->pipe;
5300 struct intel_atomic_state *old_intel_state =
5301 to_intel_atomic_state(old_state);
5302
5303 if (WARN_ON(intel_crtc->active))
5304 return;
5305
5306 /*
5307 * Sometimes spurious CPU pipe underruns happen during FDI
5308 * training, at least with VGA+HDMI cloning. Suppress them.
5309 *
5310 * On ILK we get an occasional spurious CPU pipe underruns
5311 * between eDP port A enable and vdd enable. Also PCH port
5312 * enable seems to result in the occasional CPU pipe underrun.
5313 *
5314 * Spurious PCH underruns also occur during PCH enabling.
5315 */
5316 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5317 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5318 if (intel_crtc->config->has_pch_encoder)
5319 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5320
5321 if (intel_crtc->config->has_pch_encoder)
5322 intel_prepare_shared_dpll(intel_crtc);
5323
5324 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5325 intel_dp_set_m_n(intel_crtc, M1_N1);
5326
5327 intel_set_pipe_timings(intel_crtc);
5328 intel_set_pipe_src_size(intel_crtc);
5329
5330 if (intel_crtc->config->has_pch_encoder) {
5331 intel_cpu_transcoder_set_m_n(intel_crtc,
5332 &intel_crtc->config->fdi_m_n, NULL);
5333 }
5334
5335 ironlake_set_pipeconf(crtc);
5336
5337 intel_crtc->active = true;
5338
5339 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5340
5341 if (intel_crtc->config->has_pch_encoder) {
5342 /* Note: FDI PLL enabling _must_ be done before we enable the
5343 * cpu pipes, hence this is separate from all the other fdi/pch
5344 * enabling. */
5345 ironlake_fdi_pll_enable(intel_crtc);
5346 } else {
5347 assert_fdi_tx_disabled(dev_priv, pipe);
5348 assert_fdi_rx_disabled(dev_priv, pipe);
5349 }
5350
5351 ironlake_pfit_enable(intel_crtc);
5352
5353 /*
5354 * On ILK+ LUT must be loaded before the pipe is running but with
5355 * clocks enabled
5356 */
5357 intel_color_load_luts(&pipe_config->base);
5358
5359 if (dev_priv->display.initial_watermarks != NULL)
5360 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5361 intel_enable_pipe(intel_crtc);
5362
5363 if (intel_crtc->config->has_pch_encoder)
5364 ironlake_pch_enable(crtc);
5365
5366 assert_vblank_disabled(crtc);
5367 drm_crtc_vblank_on(crtc);
5368
5369 intel_encoders_enable(crtc, pipe_config, old_state);
5370
5371 if (HAS_PCH_CPT(dev_priv))
5372 cpt_verify_modeset(dev, intel_crtc->pipe);
5373
5374 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5375 if (intel_crtc->config->has_pch_encoder)
5376 intel_wait_for_vblank(dev_priv, pipe);
5377 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5378 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5379 }
5380
5381 /* IPS only exists on ULT machines and is tied to pipe A. */
5382 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5383 {
5384 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5385 }
5386
5387 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5388 struct drm_atomic_state *old_state)
5389 {
5390 struct drm_crtc *crtc = pipe_config->base.crtc;
5391 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5393 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5394 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5395 struct intel_atomic_state *old_intel_state =
5396 to_intel_atomic_state(old_state);
5397
5398 if (WARN_ON(intel_crtc->active))
5399 return;
5400
5401 if (intel_crtc->config->has_pch_encoder)
5402 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5403 false);
5404
5405 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5406
5407 if (intel_crtc->config->shared_dpll)
5408 intel_enable_shared_dpll(intel_crtc);
5409
5410 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5411 intel_dp_set_m_n(intel_crtc, M1_N1);
5412
5413 if (!transcoder_is_dsi(cpu_transcoder))
5414 intel_set_pipe_timings(intel_crtc);
5415
5416 intel_set_pipe_src_size(intel_crtc);
5417
5418 if (cpu_transcoder != TRANSCODER_EDP &&
5419 !transcoder_is_dsi(cpu_transcoder)) {
5420 I915_WRITE(PIPE_MULT(cpu_transcoder),
5421 intel_crtc->config->pixel_multiplier - 1);
5422 }
5423
5424 if (intel_crtc->config->has_pch_encoder) {
5425 intel_cpu_transcoder_set_m_n(intel_crtc,
5426 &intel_crtc->config->fdi_m_n, NULL);
5427 }
5428
5429 if (!transcoder_is_dsi(cpu_transcoder))
5430 haswell_set_pipeconf(crtc);
5431
5432 haswell_set_pipemisc(crtc);
5433
5434 intel_color_set_csc(&pipe_config->base);
5435
5436 intel_crtc->active = true;
5437
5438 if (intel_crtc->config->has_pch_encoder)
5439 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5440 else
5441 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5442
5443 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5444
5445 if (intel_crtc->config->has_pch_encoder)
5446 dev_priv->display.fdi_link_train(crtc);
5447
5448 if (!transcoder_is_dsi(cpu_transcoder))
5449 intel_ddi_enable_pipe_clock(intel_crtc);
5450
5451 if (INTEL_GEN(dev_priv) >= 9)
5452 skylake_pfit_enable(intel_crtc);
5453 else
5454 ironlake_pfit_enable(intel_crtc);
5455
5456 /*
5457 * On ILK+ LUT must be loaded before the pipe is running but with
5458 * clocks enabled
5459 */
5460 intel_color_load_luts(&pipe_config->base);
5461
5462 intel_ddi_set_pipe_settings(crtc);
5463 if (!transcoder_is_dsi(cpu_transcoder))
5464 intel_ddi_enable_transcoder_func(crtc);
5465
5466 if (dev_priv->display.initial_watermarks != NULL)
5467 dev_priv->display.initial_watermarks(old_intel_state,
5468 pipe_config);
5469 else
5470 intel_update_watermarks(intel_crtc);
5471
5472 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5473 if (!transcoder_is_dsi(cpu_transcoder))
5474 intel_enable_pipe(intel_crtc);
5475
5476 if (intel_crtc->config->has_pch_encoder)
5477 lpt_pch_enable(crtc);
5478
5479 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5480 intel_ddi_set_vc_payload_alloc(crtc, true);
5481
5482 assert_vblank_disabled(crtc);
5483 drm_crtc_vblank_on(crtc);
5484
5485 intel_encoders_enable(crtc, pipe_config, old_state);
5486
5487 if (intel_crtc->config->has_pch_encoder) {
5488 intel_wait_for_vblank(dev_priv, pipe);
5489 intel_wait_for_vblank(dev_priv, pipe);
5490 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5491 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5492 true);
5493 }
5494
5495 /* If we change the relative order between pipe/planes enabling, we need
5496 * to change the workaround. */
5497 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5498 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5499 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5500 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5501 }
5502 }
5503
5504 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5505 {
5506 struct drm_device *dev = crtc->base.dev;
5507 struct drm_i915_private *dev_priv = to_i915(dev);
5508 int pipe = crtc->pipe;
5509
5510 /* To avoid upsetting the power well on haswell only disable the pfit if
5511 * it's in use. The hw state code will make sure we get this right. */
5512 if (force || crtc->config->pch_pfit.enabled) {
5513 I915_WRITE(PF_CTL(pipe), 0);
5514 I915_WRITE(PF_WIN_POS(pipe), 0);
5515 I915_WRITE(PF_WIN_SZ(pipe), 0);
5516 }
5517 }
5518
5519 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5520 struct drm_atomic_state *old_state)
5521 {
5522 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5523 struct drm_device *dev = crtc->dev;
5524 struct drm_i915_private *dev_priv = to_i915(dev);
5525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5526 int pipe = intel_crtc->pipe;
5527
5528 /*
5529 * Sometimes spurious CPU pipe underruns happen when the
5530 * pipe is already disabled, but FDI RX/TX is still enabled.
5531 * Happens at least with VGA+HDMI cloning. Suppress them.
5532 */
5533 if (intel_crtc->config->has_pch_encoder) {
5534 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5535 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5536 }
5537
5538 intel_encoders_disable(crtc, old_crtc_state, old_state);
5539
5540 drm_crtc_vblank_off(crtc);
5541 assert_vblank_disabled(crtc);
5542
5543 intel_disable_pipe(intel_crtc);
5544
5545 ironlake_pfit_disable(intel_crtc, false);
5546
5547 if (intel_crtc->config->has_pch_encoder)
5548 ironlake_fdi_disable(crtc);
5549
5550 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5551
5552 if (intel_crtc->config->has_pch_encoder) {
5553 ironlake_disable_pch_transcoder(dev_priv, pipe);
5554
5555 if (HAS_PCH_CPT(dev_priv)) {
5556 i915_reg_t reg;
5557 u32 temp;
5558
5559 /* disable TRANS_DP_CTL */
5560 reg = TRANS_DP_CTL(pipe);
5561 temp = I915_READ(reg);
5562 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5563 TRANS_DP_PORT_SEL_MASK);
5564 temp |= TRANS_DP_PORT_SEL_NONE;
5565 I915_WRITE(reg, temp);
5566
5567 /* disable DPLL_SEL */
5568 temp = I915_READ(PCH_DPLL_SEL);
5569 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5570 I915_WRITE(PCH_DPLL_SEL, temp);
5571 }
5572
5573 ironlake_fdi_pll_disable(intel_crtc);
5574 }
5575
5576 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5577 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5578 }
5579
5580 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5581 struct drm_atomic_state *old_state)
5582 {
5583 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5584 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5586 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5587
5588 if (intel_crtc->config->has_pch_encoder)
5589 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5590 false);
5591
5592 intel_encoders_disable(crtc, old_crtc_state, old_state);
5593
5594 drm_crtc_vblank_off(crtc);
5595 assert_vblank_disabled(crtc);
5596
5597 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5598 if (!transcoder_is_dsi(cpu_transcoder))
5599 intel_disable_pipe(intel_crtc);
5600
5601 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5602 intel_ddi_set_vc_payload_alloc(crtc, false);
5603
5604 if (!transcoder_is_dsi(cpu_transcoder))
5605 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5606
5607 if (INTEL_GEN(dev_priv) >= 9)
5608 skylake_scaler_disable(intel_crtc);
5609 else
5610 ironlake_pfit_disable(intel_crtc, false);
5611
5612 if (!transcoder_is_dsi(cpu_transcoder))
5613 intel_ddi_disable_pipe_clock(intel_crtc);
5614
5615 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5616
5617 if (old_crtc_state->has_pch_encoder)
5618 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5619 true);
5620 }
5621
5622 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5623 {
5624 struct drm_device *dev = crtc->base.dev;
5625 struct drm_i915_private *dev_priv = to_i915(dev);
5626 struct intel_crtc_state *pipe_config = crtc->config;
5627
5628 if (!pipe_config->gmch_pfit.control)
5629 return;
5630
5631 /*
5632 * The panel fitter should only be adjusted whilst the pipe is disabled,
5633 * according to register description and PRM.
5634 */
5635 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5636 assert_pipe_disabled(dev_priv, crtc->pipe);
5637
5638 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5639 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5640
5641 /* Border color in case we don't scale up to the full screen. Black by
5642 * default, change to something else for debugging. */
5643 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5644 }
5645
5646 static enum intel_display_power_domain port_to_power_domain(enum port port)
5647 {
5648 switch (port) {
5649 case PORT_A:
5650 return POWER_DOMAIN_PORT_DDI_A_LANES;
5651 case PORT_B:
5652 return POWER_DOMAIN_PORT_DDI_B_LANES;
5653 case PORT_C:
5654 return POWER_DOMAIN_PORT_DDI_C_LANES;
5655 case PORT_D:
5656 return POWER_DOMAIN_PORT_DDI_D_LANES;
5657 case PORT_E:
5658 return POWER_DOMAIN_PORT_DDI_E_LANES;
5659 default:
5660 MISSING_CASE(port);
5661 return POWER_DOMAIN_PORT_OTHER;
5662 }
5663 }
5664
5665 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5666 {
5667 switch (port) {
5668 case PORT_A:
5669 return POWER_DOMAIN_AUX_A;
5670 case PORT_B:
5671 return POWER_DOMAIN_AUX_B;
5672 case PORT_C:
5673 return POWER_DOMAIN_AUX_C;
5674 case PORT_D:
5675 return POWER_DOMAIN_AUX_D;
5676 case PORT_E:
5677 /* FIXME: Check VBT for actual wiring of PORT E */
5678 return POWER_DOMAIN_AUX_D;
5679 default:
5680 MISSING_CASE(port);
5681 return POWER_DOMAIN_AUX_A;
5682 }
5683 }
5684
5685 enum intel_display_power_domain
5686 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5687 {
5688 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5689 struct intel_digital_port *intel_dig_port;
5690
5691 switch (intel_encoder->type) {
5692 case INTEL_OUTPUT_UNKNOWN:
5693 /* Only DDI platforms should ever use this output type */
5694 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5695 case INTEL_OUTPUT_DP:
5696 case INTEL_OUTPUT_HDMI:
5697 case INTEL_OUTPUT_EDP:
5698 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5699 return port_to_power_domain(intel_dig_port->port);
5700 case INTEL_OUTPUT_DP_MST:
5701 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5702 return port_to_power_domain(intel_dig_port->port);
5703 case INTEL_OUTPUT_ANALOG:
5704 return POWER_DOMAIN_PORT_CRT;
5705 case INTEL_OUTPUT_DSI:
5706 return POWER_DOMAIN_PORT_DSI;
5707 default:
5708 return POWER_DOMAIN_PORT_OTHER;
5709 }
5710 }
5711
5712 enum intel_display_power_domain
5713 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5714 {
5715 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5716 struct intel_digital_port *intel_dig_port;
5717
5718 switch (intel_encoder->type) {
5719 case INTEL_OUTPUT_UNKNOWN:
5720 case INTEL_OUTPUT_HDMI:
5721 /*
5722 * Only DDI platforms should ever use these output types.
5723 * We can get here after the HDMI detect code has already set
5724 * the type of the shared encoder. Since we can't be sure
5725 * what's the status of the given connectors, play safe and
5726 * run the DP detection too.
5727 */
5728 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5729 case INTEL_OUTPUT_DP:
5730 case INTEL_OUTPUT_EDP:
5731 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5732 return port_to_aux_power_domain(intel_dig_port->port);
5733 case INTEL_OUTPUT_DP_MST:
5734 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5735 return port_to_aux_power_domain(intel_dig_port->port);
5736 default:
5737 MISSING_CASE(intel_encoder->type);
5738 return POWER_DOMAIN_AUX_A;
5739 }
5740 }
5741
5742 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5743 struct intel_crtc_state *crtc_state)
5744 {
5745 struct drm_device *dev = crtc->dev;
5746 struct drm_encoder *encoder;
5747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5748 enum pipe pipe = intel_crtc->pipe;
5749 unsigned long mask;
5750 enum transcoder transcoder = crtc_state->cpu_transcoder;
5751
5752 if (!crtc_state->base.active)
5753 return 0;
5754
5755 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5756 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5757 if (crtc_state->pch_pfit.enabled ||
5758 crtc_state->pch_pfit.force_thru)
5759 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5760
5761 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5762 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5763
5764 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5765 }
5766
5767 if (crtc_state->shared_dpll)
5768 mask |= BIT(POWER_DOMAIN_PLLS);
5769
5770 return mask;
5771 }
5772
5773 static unsigned long
5774 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5775 struct intel_crtc_state *crtc_state)
5776 {
5777 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5779 enum intel_display_power_domain domain;
5780 unsigned long domains, new_domains, old_domains;
5781
5782 old_domains = intel_crtc->enabled_power_domains;
5783 intel_crtc->enabled_power_domains = new_domains =
5784 get_crtc_power_domains(crtc, crtc_state);
5785
5786 domains = new_domains & ~old_domains;
5787
5788 for_each_power_domain(domain, domains)
5789 intel_display_power_get(dev_priv, domain);
5790
5791 return old_domains & ~new_domains;
5792 }
5793
5794 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5795 unsigned long domains)
5796 {
5797 enum intel_display_power_domain domain;
5798
5799 for_each_power_domain(domain, domains)
5800 intel_display_power_put(dev_priv, domain);
5801 }
5802
5803 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5804 {
5805 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5806
5807 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5808 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5809 return max_cdclk_freq;
5810 else if (IS_CHERRYVIEW(dev_priv))
5811 return max_cdclk_freq*95/100;
5812 else if (INTEL_INFO(dev_priv)->gen < 4)
5813 return 2*max_cdclk_freq*90/100;
5814 else
5815 return max_cdclk_freq*90/100;
5816 }
5817
5818 static int skl_calc_cdclk(int max_pixclk, int vco);
5819
5820 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5821 {
5822 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5823 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5824 int max_cdclk, vco;
5825
5826 vco = dev_priv->skl_preferred_vco_freq;
5827 WARN_ON(vco != 8100000 && vco != 8640000);
5828
5829 /*
5830 * Use the lower (vco 8640) cdclk values as a
5831 * first guess. skl_calc_cdclk() will correct it
5832 * if the preferred vco is 8100 instead.
5833 */
5834 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5835 max_cdclk = 617143;
5836 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5837 max_cdclk = 540000;
5838 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5839 max_cdclk = 432000;
5840 else
5841 max_cdclk = 308571;
5842
5843 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5844 } else if (IS_BROXTON(dev_priv)) {
5845 dev_priv->max_cdclk_freq = 624000;
5846 } else if (IS_BROADWELL(dev_priv)) {
5847 /*
5848 * FIXME with extra cooling we can allow
5849 * 540 MHz for ULX and 675 Mhz for ULT.
5850 * How can we know if extra cooling is
5851 * available? PCI ID, VTB, something else?
5852 */
5853 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5854 dev_priv->max_cdclk_freq = 450000;
5855 else if (IS_BDW_ULX(dev_priv))
5856 dev_priv->max_cdclk_freq = 450000;
5857 else if (IS_BDW_ULT(dev_priv))
5858 dev_priv->max_cdclk_freq = 540000;
5859 else
5860 dev_priv->max_cdclk_freq = 675000;
5861 } else if (IS_CHERRYVIEW(dev_priv)) {
5862 dev_priv->max_cdclk_freq = 320000;
5863 } else if (IS_VALLEYVIEW(dev_priv)) {
5864 dev_priv->max_cdclk_freq = 400000;
5865 } else {
5866 /* otherwise assume cdclk is fixed */
5867 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5868 }
5869
5870 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5871
5872 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5873 dev_priv->max_cdclk_freq);
5874
5875 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5876 dev_priv->max_dotclk_freq);
5877 }
5878
5879 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5880 {
5881 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5882
5883 if (INTEL_GEN(dev_priv) >= 9)
5884 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5885 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5886 dev_priv->cdclk_pll.ref);
5887 else
5888 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5889 dev_priv->cdclk_freq);
5890
5891 /*
5892 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5893 * Programmng [sic] note: bit[9:2] should be programmed to the number
5894 * of cdclk that generates 4MHz reference clock freq which is used to
5895 * generate GMBus clock. This will vary with the cdclk freq.
5896 */
5897 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5898 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5899 }
5900
5901 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5902 static int skl_cdclk_decimal(int cdclk)
5903 {
5904 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5905 }
5906
5907 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5908 {
5909 int ratio;
5910
5911 if (cdclk == dev_priv->cdclk_pll.ref)
5912 return 0;
5913
5914 switch (cdclk) {
5915 default:
5916 MISSING_CASE(cdclk);
5917 case 144000:
5918 case 288000:
5919 case 384000:
5920 case 576000:
5921 ratio = 60;
5922 break;
5923 case 624000:
5924 ratio = 65;
5925 break;
5926 }
5927
5928 return dev_priv->cdclk_pll.ref * ratio;
5929 }
5930
5931 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5932 {
5933 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5934
5935 /* Timeout 200us */
5936 if (intel_wait_for_register(dev_priv,
5937 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5938 1))
5939 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5940
5941 dev_priv->cdclk_pll.vco = 0;
5942 }
5943
5944 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5945 {
5946 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5947 u32 val;
5948
5949 val = I915_READ(BXT_DE_PLL_CTL);
5950 val &= ~BXT_DE_PLL_RATIO_MASK;
5951 val |= BXT_DE_PLL_RATIO(ratio);
5952 I915_WRITE(BXT_DE_PLL_CTL, val);
5953
5954 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5955
5956 /* Timeout 200us */
5957 if (intel_wait_for_register(dev_priv,
5958 BXT_DE_PLL_ENABLE,
5959 BXT_DE_PLL_LOCK,
5960 BXT_DE_PLL_LOCK,
5961 1))
5962 DRM_ERROR("timeout waiting for DE PLL lock\n");
5963
5964 dev_priv->cdclk_pll.vco = vco;
5965 }
5966
5967 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5968 {
5969 u32 val, divider;
5970 int vco, ret;
5971
5972 vco = bxt_de_pll_vco(dev_priv, cdclk);
5973
5974 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5975
5976 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5977 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5978 case 8:
5979 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5980 break;
5981 case 4:
5982 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5983 break;
5984 case 3:
5985 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5986 break;
5987 case 2:
5988 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5989 break;
5990 default:
5991 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5992 WARN_ON(vco != 0);
5993
5994 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5995 break;
5996 }
5997
5998 /* Inform power controller of upcoming frequency change */
5999 mutex_lock(&dev_priv->rps.hw_lock);
6000 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6001 0x80000000);
6002 mutex_unlock(&dev_priv->rps.hw_lock);
6003
6004 if (ret) {
6005 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6006 ret, cdclk);
6007 return;
6008 }
6009
6010 if (dev_priv->cdclk_pll.vco != 0 &&
6011 dev_priv->cdclk_pll.vco != vco)
6012 bxt_de_pll_disable(dev_priv);
6013
6014 if (dev_priv->cdclk_pll.vco != vco)
6015 bxt_de_pll_enable(dev_priv, vco);
6016
6017 val = divider | skl_cdclk_decimal(cdclk);
6018 /*
6019 * FIXME if only the cd2x divider needs changing, it could be done
6020 * without shutting off the pipe (if only one pipe is active).
6021 */
6022 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6023 /*
6024 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6025 * enable otherwise.
6026 */
6027 if (cdclk >= 500000)
6028 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6029 I915_WRITE(CDCLK_CTL, val);
6030
6031 mutex_lock(&dev_priv->rps.hw_lock);
6032 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6033 DIV_ROUND_UP(cdclk, 25000));
6034 mutex_unlock(&dev_priv->rps.hw_lock);
6035
6036 if (ret) {
6037 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6038 ret, cdclk);
6039 return;
6040 }
6041
6042 intel_update_cdclk(dev_priv);
6043 }
6044
6045 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6046 {
6047 u32 cdctl, expected;
6048
6049 intel_update_cdclk(dev_priv);
6050
6051 if (dev_priv->cdclk_pll.vco == 0 ||
6052 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6053 goto sanitize;
6054
6055 /* DPLL okay; verify the cdclock
6056 *
6057 * Some BIOS versions leave an incorrect decimal frequency value and
6058 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6059 * so sanitize this register.
6060 */
6061 cdctl = I915_READ(CDCLK_CTL);
6062 /*
6063 * Let's ignore the pipe field, since BIOS could have configured the
6064 * dividers both synching to an active pipe, or asynchronously
6065 * (PIPE_NONE).
6066 */
6067 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6068
6069 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6070 skl_cdclk_decimal(dev_priv->cdclk_freq);
6071 /*
6072 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6073 * enable otherwise.
6074 */
6075 if (dev_priv->cdclk_freq >= 500000)
6076 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6077
6078 if (cdctl == expected)
6079 /* All well; nothing to sanitize */
6080 return;
6081
6082 sanitize:
6083 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6084
6085 /* force cdclk programming */
6086 dev_priv->cdclk_freq = 0;
6087
6088 /* force full PLL disable + enable */
6089 dev_priv->cdclk_pll.vco = -1;
6090 }
6091
6092 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6093 {
6094 bxt_sanitize_cdclk(dev_priv);
6095
6096 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6097 return;
6098
6099 /*
6100 * FIXME:
6101 * - The initial CDCLK needs to be read from VBT.
6102 * Need to make this change after VBT has changes for BXT.
6103 */
6104 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6105 }
6106
6107 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6108 {
6109 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6110 }
6111
6112 static int skl_calc_cdclk(int max_pixclk, int vco)
6113 {
6114 if (vco == 8640000) {
6115 if (max_pixclk > 540000)
6116 return 617143;
6117 else if (max_pixclk > 432000)
6118 return 540000;
6119 else if (max_pixclk > 308571)
6120 return 432000;
6121 else
6122 return 308571;
6123 } else {
6124 if (max_pixclk > 540000)
6125 return 675000;
6126 else if (max_pixclk > 450000)
6127 return 540000;
6128 else if (max_pixclk > 337500)
6129 return 450000;
6130 else
6131 return 337500;
6132 }
6133 }
6134
6135 static void
6136 skl_dpll0_update(struct drm_i915_private *dev_priv)
6137 {
6138 u32 val;
6139
6140 dev_priv->cdclk_pll.ref = 24000;
6141 dev_priv->cdclk_pll.vco = 0;
6142
6143 val = I915_READ(LCPLL1_CTL);
6144 if ((val & LCPLL_PLL_ENABLE) == 0)
6145 return;
6146
6147 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6148 return;
6149
6150 val = I915_READ(DPLL_CTRL1);
6151
6152 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6153 DPLL_CTRL1_SSC(SKL_DPLL0) |
6154 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6155 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6156 return;
6157
6158 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6159 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6160 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6161 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6162 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6163 dev_priv->cdclk_pll.vco = 8100000;
6164 break;
6165 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6166 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6167 dev_priv->cdclk_pll.vco = 8640000;
6168 break;
6169 default:
6170 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6171 break;
6172 }
6173 }
6174
6175 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6176 {
6177 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6178
6179 dev_priv->skl_preferred_vco_freq = vco;
6180
6181 if (changed)
6182 intel_update_max_cdclk(dev_priv);
6183 }
6184
6185 static void
6186 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6187 {
6188 int min_cdclk = skl_calc_cdclk(0, vco);
6189 u32 val;
6190
6191 WARN_ON(vco != 8100000 && vco != 8640000);
6192
6193 /* select the minimum CDCLK before enabling DPLL 0 */
6194 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6195 I915_WRITE(CDCLK_CTL, val);
6196 POSTING_READ(CDCLK_CTL);
6197
6198 /*
6199 * We always enable DPLL0 with the lowest link rate possible, but still
6200 * taking into account the VCO required to operate the eDP panel at the
6201 * desired frequency. The usual DP link rates operate with a VCO of
6202 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6203 * The modeset code is responsible for the selection of the exact link
6204 * rate later on, with the constraint of choosing a frequency that
6205 * works with vco.
6206 */
6207 val = I915_READ(DPLL_CTRL1);
6208
6209 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6210 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6211 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6212 if (vco == 8640000)
6213 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6214 SKL_DPLL0);
6215 else
6216 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6217 SKL_DPLL0);
6218
6219 I915_WRITE(DPLL_CTRL1, val);
6220 POSTING_READ(DPLL_CTRL1);
6221
6222 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6223
6224 if (intel_wait_for_register(dev_priv,
6225 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6226 5))
6227 DRM_ERROR("DPLL0 not locked\n");
6228
6229 dev_priv->cdclk_pll.vco = vco;
6230
6231 /* We'll want to keep using the current vco from now on. */
6232 skl_set_preferred_cdclk_vco(dev_priv, vco);
6233 }
6234
6235 static void
6236 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6237 {
6238 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6239 if (intel_wait_for_register(dev_priv,
6240 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6241 1))
6242 DRM_ERROR("Couldn't disable DPLL0\n");
6243
6244 dev_priv->cdclk_pll.vco = 0;
6245 }
6246
6247 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6248 {
6249 int ret;
6250 u32 val;
6251
6252 /* inform PCU we want to change CDCLK */
6253 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6254 mutex_lock(&dev_priv->rps.hw_lock);
6255 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6256 mutex_unlock(&dev_priv->rps.hw_lock);
6257
6258 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6259 }
6260
6261 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6262 {
6263 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6264 }
6265
6266 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6267 {
6268 u32 freq_select, pcu_ack;
6269
6270 WARN_ON((cdclk == 24000) != (vco == 0));
6271
6272 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6273
6274 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6275 DRM_ERROR("failed to inform PCU about cdclk change\n");
6276 return;
6277 }
6278
6279 /* set CDCLK_CTL */
6280 switch (cdclk) {
6281 case 450000:
6282 case 432000:
6283 freq_select = CDCLK_FREQ_450_432;
6284 pcu_ack = 1;
6285 break;
6286 case 540000:
6287 freq_select = CDCLK_FREQ_540;
6288 pcu_ack = 2;
6289 break;
6290 case 308571:
6291 case 337500:
6292 default:
6293 freq_select = CDCLK_FREQ_337_308;
6294 pcu_ack = 0;
6295 break;
6296 case 617143:
6297 case 675000:
6298 freq_select = CDCLK_FREQ_675_617;
6299 pcu_ack = 3;
6300 break;
6301 }
6302
6303 if (dev_priv->cdclk_pll.vco != 0 &&
6304 dev_priv->cdclk_pll.vco != vco)
6305 skl_dpll0_disable(dev_priv);
6306
6307 if (dev_priv->cdclk_pll.vco != vco)
6308 skl_dpll0_enable(dev_priv, vco);
6309
6310 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6311 POSTING_READ(CDCLK_CTL);
6312
6313 /* inform PCU of the change */
6314 mutex_lock(&dev_priv->rps.hw_lock);
6315 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6316 mutex_unlock(&dev_priv->rps.hw_lock);
6317
6318 intel_update_cdclk(dev_priv);
6319 }
6320
6321 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6322
6323 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6324 {
6325 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6326 }
6327
6328 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6329 {
6330 int cdclk, vco;
6331
6332 skl_sanitize_cdclk(dev_priv);
6333
6334 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6335 /*
6336 * Use the current vco as our initial
6337 * guess as to what the preferred vco is.
6338 */
6339 if (dev_priv->skl_preferred_vco_freq == 0)
6340 skl_set_preferred_cdclk_vco(dev_priv,
6341 dev_priv->cdclk_pll.vco);
6342 return;
6343 }
6344
6345 vco = dev_priv->skl_preferred_vco_freq;
6346 if (vco == 0)
6347 vco = 8100000;
6348 cdclk = skl_calc_cdclk(0, vco);
6349
6350 skl_set_cdclk(dev_priv, cdclk, vco);
6351 }
6352
6353 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6354 {
6355 uint32_t cdctl, expected;
6356
6357 /*
6358 * check if the pre-os intialized the display
6359 * There is SWF18 scratchpad register defined which is set by the
6360 * pre-os which can be used by the OS drivers to check the status
6361 */
6362 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6363 goto sanitize;
6364
6365 intel_update_cdclk(dev_priv);
6366 /* Is PLL enabled and locked ? */
6367 if (dev_priv->cdclk_pll.vco == 0 ||
6368 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6369 goto sanitize;
6370
6371 /* DPLL okay; verify the cdclock
6372 *
6373 * Noticed in some instances that the freq selection is correct but
6374 * decimal part is programmed wrong from BIOS where pre-os does not
6375 * enable display. Verify the same as well.
6376 */
6377 cdctl = I915_READ(CDCLK_CTL);
6378 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6379 skl_cdclk_decimal(dev_priv->cdclk_freq);
6380 if (cdctl == expected)
6381 /* All well; nothing to sanitize */
6382 return;
6383
6384 sanitize:
6385 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6386
6387 /* force cdclk programming */
6388 dev_priv->cdclk_freq = 0;
6389 /* force full PLL disable + enable */
6390 dev_priv->cdclk_pll.vco = -1;
6391 }
6392
6393 /* Adjust CDclk dividers to allow high res or save power if possible */
6394 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6395 {
6396 struct drm_i915_private *dev_priv = to_i915(dev);
6397 u32 val, cmd;
6398
6399 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6400 != dev_priv->cdclk_freq);
6401
6402 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6403 cmd = 2;
6404 else if (cdclk == 266667)
6405 cmd = 1;
6406 else
6407 cmd = 0;
6408
6409 mutex_lock(&dev_priv->rps.hw_lock);
6410 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6411 val &= ~DSPFREQGUAR_MASK;
6412 val |= (cmd << DSPFREQGUAR_SHIFT);
6413 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6414 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6415 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6416 50)) {
6417 DRM_ERROR("timed out waiting for CDclk change\n");
6418 }
6419 mutex_unlock(&dev_priv->rps.hw_lock);
6420
6421 mutex_lock(&dev_priv->sb_lock);
6422
6423 if (cdclk == 400000) {
6424 u32 divider;
6425
6426 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6427
6428 /* adjust cdclk divider */
6429 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6430 val &= ~CCK_FREQUENCY_VALUES;
6431 val |= divider;
6432 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6433
6434 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6435 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6436 50))
6437 DRM_ERROR("timed out waiting for CDclk change\n");
6438 }
6439
6440 /* adjust self-refresh exit latency value */
6441 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6442 val &= ~0x7f;
6443
6444 /*
6445 * For high bandwidth configs, we set a higher latency in the bunit
6446 * so that the core display fetch happens in time to avoid underruns.
6447 */
6448 if (cdclk == 400000)
6449 val |= 4500 / 250; /* 4.5 usec */
6450 else
6451 val |= 3000 / 250; /* 3.0 usec */
6452 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6453
6454 mutex_unlock(&dev_priv->sb_lock);
6455
6456 intel_update_cdclk(dev_priv);
6457 }
6458
6459 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6460 {
6461 struct drm_i915_private *dev_priv = to_i915(dev);
6462 u32 val, cmd;
6463
6464 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6465 != dev_priv->cdclk_freq);
6466
6467 switch (cdclk) {
6468 case 333333:
6469 case 320000:
6470 case 266667:
6471 case 200000:
6472 break;
6473 default:
6474 MISSING_CASE(cdclk);
6475 return;
6476 }
6477
6478 /*
6479 * Specs are full of misinformation, but testing on actual
6480 * hardware has shown that we just need to write the desired
6481 * CCK divider into the Punit register.
6482 */
6483 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6484
6485 mutex_lock(&dev_priv->rps.hw_lock);
6486 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6487 val &= ~DSPFREQGUAR_MASK_CHV;
6488 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6489 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6490 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6491 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6492 50)) {
6493 DRM_ERROR("timed out waiting for CDclk change\n");
6494 }
6495 mutex_unlock(&dev_priv->rps.hw_lock);
6496
6497 intel_update_cdclk(dev_priv);
6498 }
6499
6500 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6501 int max_pixclk)
6502 {
6503 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6504 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6505
6506 /*
6507 * Really only a few cases to deal with, as only 4 CDclks are supported:
6508 * 200MHz
6509 * 267MHz
6510 * 320/333MHz (depends on HPLL freq)
6511 * 400MHz (VLV only)
6512 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6513 * of the lower bin and adjust if needed.
6514 *
6515 * We seem to get an unstable or solid color picture at 200MHz.
6516 * Not sure what's wrong. For now use 200MHz only when all pipes
6517 * are off.
6518 */
6519 if (!IS_CHERRYVIEW(dev_priv) &&
6520 max_pixclk > freq_320*limit/100)
6521 return 400000;
6522 else if (max_pixclk > 266667*limit/100)
6523 return freq_320;
6524 else if (max_pixclk > 0)
6525 return 266667;
6526 else
6527 return 200000;
6528 }
6529
6530 static int bxt_calc_cdclk(int max_pixclk)
6531 {
6532 if (max_pixclk > 576000)
6533 return 624000;
6534 else if (max_pixclk > 384000)
6535 return 576000;
6536 else if (max_pixclk > 288000)
6537 return 384000;
6538 else if (max_pixclk > 144000)
6539 return 288000;
6540 else
6541 return 144000;
6542 }
6543
6544 /* Compute the max pixel clock for new configuration. */
6545 static int intel_mode_max_pixclk(struct drm_device *dev,
6546 struct drm_atomic_state *state)
6547 {
6548 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6549 struct drm_i915_private *dev_priv = to_i915(dev);
6550 struct drm_crtc *crtc;
6551 struct drm_crtc_state *crtc_state;
6552 unsigned max_pixclk = 0, i;
6553 enum pipe pipe;
6554
6555 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6556 sizeof(intel_state->min_pixclk));
6557
6558 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6559 int pixclk = 0;
6560
6561 if (crtc_state->enable)
6562 pixclk = crtc_state->adjusted_mode.crtc_clock;
6563
6564 intel_state->min_pixclk[i] = pixclk;
6565 }
6566
6567 for_each_pipe(dev_priv, pipe)
6568 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6569
6570 return max_pixclk;
6571 }
6572
6573 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6574 {
6575 struct drm_device *dev = state->dev;
6576 struct drm_i915_private *dev_priv = to_i915(dev);
6577 int max_pixclk = intel_mode_max_pixclk(dev, state);
6578 struct intel_atomic_state *intel_state =
6579 to_intel_atomic_state(state);
6580
6581 intel_state->cdclk = intel_state->dev_cdclk =
6582 valleyview_calc_cdclk(dev_priv, max_pixclk);
6583
6584 if (!intel_state->active_crtcs)
6585 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6586
6587 return 0;
6588 }
6589
6590 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6591 {
6592 int max_pixclk = ilk_max_pixel_rate(state);
6593 struct intel_atomic_state *intel_state =
6594 to_intel_atomic_state(state);
6595
6596 intel_state->cdclk = intel_state->dev_cdclk =
6597 bxt_calc_cdclk(max_pixclk);
6598
6599 if (!intel_state->active_crtcs)
6600 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6601
6602 return 0;
6603 }
6604
6605 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6606 {
6607 unsigned int credits, default_credits;
6608
6609 if (IS_CHERRYVIEW(dev_priv))
6610 default_credits = PFI_CREDIT(12);
6611 else
6612 default_credits = PFI_CREDIT(8);
6613
6614 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6615 /* CHV suggested value is 31 or 63 */
6616 if (IS_CHERRYVIEW(dev_priv))
6617 credits = PFI_CREDIT_63;
6618 else
6619 credits = PFI_CREDIT(15);
6620 } else {
6621 credits = default_credits;
6622 }
6623
6624 /*
6625 * WA - write default credits before re-programming
6626 * FIXME: should we also set the resend bit here?
6627 */
6628 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6629 default_credits);
6630
6631 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6632 credits | PFI_CREDIT_RESEND);
6633
6634 /*
6635 * FIXME is this guaranteed to clear
6636 * immediately or should we poll for it?
6637 */
6638 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6639 }
6640
6641 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6642 {
6643 struct drm_device *dev = old_state->dev;
6644 struct drm_i915_private *dev_priv = to_i915(dev);
6645 struct intel_atomic_state *old_intel_state =
6646 to_intel_atomic_state(old_state);
6647 unsigned req_cdclk = old_intel_state->dev_cdclk;
6648
6649 /*
6650 * FIXME: We can end up here with all power domains off, yet
6651 * with a CDCLK frequency other than the minimum. To account
6652 * for this take the PIPE-A power domain, which covers the HW
6653 * blocks needed for the following programming. This can be
6654 * removed once it's guaranteed that we get here either with
6655 * the minimum CDCLK set, or the required power domains
6656 * enabled.
6657 */
6658 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6659
6660 if (IS_CHERRYVIEW(dev_priv))
6661 cherryview_set_cdclk(dev, req_cdclk);
6662 else
6663 valleyview_set_cdclk(dev, req_cdclk);
6664
6665 vlv_program_pfi_credits(dev_priv);
6666
6667 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6668 }
6669
6670 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6671 struct drm_atomic_state *old_state)
6672 {
6673 struct drm_crtc *crtc = pipe_config->base.crtc;
6674 struct drm_device *dev = crtc->dev;
6675 struct drm_i915_private *dev_priv = to_i915(dev);
6676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6677 int pipe = intel_crtc->pipe;
6678
6679 if (WARN_ON(intel_crtc->active))
6680 return;
6681
6682 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6683 intel_dp_set_m_n(intel_crtc, M1_N1);
6684
6685 intel_set_pipe_timings(intel_crtc);
6686 intel_set_pipe_src_size(intel_crtc);
6687
6688 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6689 struct drm_i915_private *dev_priv = to_i915(dev);
6690
6691 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6692 I915_WRITE(CHV_CANVAS(pipe), 0);
6693 }
6694
6695 i9xx_set_pipeconf(intel_crtc);
6696
6697 intel_crtc->active = true;
6698
6699 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6700
6701 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6702
6703 if (IS_CHERRYVIEW(dev_priv)) {
6704 chv_prepare_pll(intel_crtc, intel_crtc->config);
6705 chv_enable_pll(intel_crtc, intel_crtc->config);
6706 } else {
6707 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6708 vlv_enable_pll(intel_crtc, intel_crtc->config);
6709 }
6710
6711 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6712
6713 i9xx_pfit_enable(intel_crtc);
6714
6715 intel_color_load_luts(&pipe_config->base);
6716
6717 intel_update_watermarks(intel_crtc);
6718 intel_enable_pipe(intel_crtc);
6719
6720 assert_vblank_disabled(crtc);
6721 drm_crtc_vblank_on(crtc);
6722
6723 intel_encoders_enable(crtc, pipe_config, old_state);
6724 }
6725
6726 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6727 {
6728 struct drm_device *dev = crtc->base.dev;
6729 struct drm_i915_private *dev_priv = to_i915(dev);
6730
6731 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6732 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6733 }
6734
6735 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6736 struct drm_atomic_state *old_state)
6737 {
6738 struct drm_crtc *crtc = pipe_config->base.crtc;
6739 struct drm_device *dev = crtc->dev;
6740 struct drm_i915_private *dev_priv = to_i915(dev);
6741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6742 enum pipe pipe = intel_crtc->pipe;
6743
6744 if (WARN_ON(intel_crtc->active))
6745 return;
6746
6747 i9xx_set_pll_dividers(intel_crtc);
6748
6749 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6750 intel_dp_set_m_n(intel_crtc, M1_N1);
6751
6752 intel_set_pipe_timings(intel_crtc);
6753 intel_set_pipe_src_size(intel_crtc);
6754
6755 i9xx_set_pipeconf(intel_crtc);
6756
6757 intel_crtc->active = true;
6758
6759 if (!IS_GEN2(dev_priv))
6760 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6761
6762 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6763
6764 i9xx_enable_pll(intel_crtc);
6765
6766 i9xx_pfit_enable(intel_crtc);
6767
6768 intel_color_load_luts(&pipe_config->base);
6769
6770 intel_update_watermarks(intel_crtc);
6771 intel_enable_pipe(intel_crtc);
6772
6773 assert_vblank_disabled(crtc);
6774 drm_crtc_vblank_on(crtc);
6775
6776 intel_encoders_enable(crtc, pipe_config, old_state);
6777 }
6778
6779 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6780 {
6781 struct drm_device *dev = crtc->base.dev;
6782 struct drm_i915_private *dev_priv = to_i915(dev);
6783
6784 if (!crtc->config->gmch_pfit.control)
6785 return;
6786
6787 assert_pipe_disabled(dev_priv, crtc->pipe);
6788
6789 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6790 I915_READ(PFIT_CONTROL));
6791 I915_WRITE(PFIT_CONTROL, 0);
6792 }
6793
6794 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6795 struct drm_atomic_state *old_state)
6796 {
6797 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6798 struct drm_device *dev = crtc->dev;
6799 struct drm_i915_private *dev_priv = to_i915(dev);
6800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6801 int pipe = intel_crtc->pipe;
6802
6803 /*
6804 * On gen2 planes are double buffered but the pipe isn't, so we must
6805 * wait for planes to fully turn off before disabling the pipe.
6806 */
6807 if (IS_GEN2(dev_priv))
6808 intel_wait_for_vblank(dev_priv, pipe);
6809
6810 intel_encoders_disable(crtc, old_crtc_state, old_state);
6811
6812 drm_crtc_vblank_off(crtc);
6813 assert_vblank_disabled(crtc);
6814
6815 intel_disable_pipe(intel_crtc);
6816
6817 i9xx_pfit_disable(intel_crtc);
6818
6819 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6820
6821 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6822 if (IS_CHERRYVIEW(dev_priv))
6823 chv_disable_pll(dev_priv, pipe);
6824 else if (IS_VALLEYVIEW(dev_priv))
6825 vlv_disable_pll(dev_priv, pipe);
6826 else
6827 i9xx_disable_pll(intel_crtc);
6828 }
6829
6830 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6831
6832 if (!IS_GEN2(dev_priv))
6833 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6834 }
6835
6836 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6837 {
6838 struct intel_encoder *encoder;
6839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6840 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6841 enum intel_display_power_domain domain;
6842 unsigned long domains;
6843 struct drm_atomic_state *state;
6844 struct intel_crtc_state *crtc_state;
6845 int ret;
6846
6847 if (!intel_crtc->active)
6848 return;
6849
6850 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6851 WARN_ON(intel_crtc->flip_work);
6852
6853 intel_pre_disable_primary_noatomic(crtc);
6854
6855 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6856 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6857 }
6858
6859 state = drm_atomic_state_alloc(crtc->dev);
6860 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6861
6862 /* Everything's already locked, -EDEADLK can't happen. */
6863 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6864 ret = drm_atomic_add_affected_connectors(state, crtc);
6865
6866 WARN_ON(IS_ERR(crtc_state) || ret);
6867
6868 dev_priv->display.crtc_disable(crtc_state, state);
6869
6870 drm_atomic_state_put(state);
6871
6872 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6873 crtc->base.id, crtc->name);
6874
6875 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6876 crtc->state->active = false;
6877 intel_crtc->active = false;
6878 crtc->enabled = false;
6879 crtc->state->connector_mask = 0;
6880 crtc->state->encoder_mask = 0;
6881
6882 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6883 encoder->base.crtc = NULL;
6884
6885 intel_fbc_disable(intel_crtc);
6886 intel_update_watermarks(intel_crtc);
6887 intel_disable_shared_dpll(intel_crtc);
6888
6889 domains = intel_crtc->enabled_power_domains;
6890 for_each_power_domain(domain, domains)
6891 intel_display_power_put(dev_priv, domain);
6892 intel_crtc->enabled_power_domains = 0;
6893
6894 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6895 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6896 }
6897
6898 /*
6899 * turn all crtc's off, but do not adjust state
6900 * This has to be paired with a call to intel_modeset_setup_hw_state.
6901 */
6902 int intel_display_suspend(struct drm_device *dev)
6903 {
6904 struct drm_i915_private *dev_priv = to_i915(dev);
6905 struct drm_atomic_state *state;
6906 int ret;
6907
6908 state = drm_atomic_helper_suspend(dev);
6909 ret = PTR_ERR_OR_ZERO(state);
6910 if (ret)
6911 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6912 else
6913 dev_priv->modeset_restore_state = state;
6914 return ret;
6915 }
6916
6917 void intel_encoder_destroy(struct drm_encoder *encoder)
6918 {
6919 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6920
6921 drm_encoder_cleanup(encoder);
6922 kfree(intel_encoder);
6923 }
6924
6925 /* Cross check the actual hw state with our own modeset state tracking (and it's
6926 * internal consistency). */
6927 static void intel_connector_verify_state(struct intel_connector *connector)
6928 {
6929 struct drm_crtc *crtc = connector->base.state->crtc;
6930
6931 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6932 connector->base.base.id,
6933 connector->base.name);
6934
6935 if (connector->get_hw_state(connector)) {
6936 struct intel_encoder *encoder = connector->encoder;
6937 struct drm_connector_state *conn_state = connector->base.state;
6938
6939 I915_STATE_WARN(!crtc,
6940 "connector enabled without attached crtc\n");
6941
6942 if (!crtc)
6943 return;
6944
6945 I915_STATE_WARN(!crtc->state->active,
6946 "connector is active, but attached crtc isn't\n");
6947
6948 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6949 return;
6950
6951 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6952 "atomic encoder doesn't match attached encoder\n");
6953
6954 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6955 "attached encoder crtc differs from connector crtc\n");
6956 } else {
6957 I915_STATE_WARN(crtc && crtc->state->active,
6958 "attached crtc is active, but connector isn't\n");
6959 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6960 "best encoder set without crtc!\n");
6961 }
6962 }
6963
6964 int intel_connector_init(struct intel_connector *connector)
6965 {
6966 drm_atomic_helper_connector_reset(&connector->base);
6967
6968 if (!connector->base.state)
6969 return -ENOMEM;
6970
6971 return 0;
6972 }
6973
6974 struct intel_connector *intel_connector_alloc(void)
6975 {
6976 struct intel_connector *connector;
6977
6978 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6979 if (!connector)
6980 return NULL;
6981
6982 if (intel_connector_init(connector) < 0) {
6983 kfree(connector);
6984 return NULL;
6985 }
6986
6987 return connector;
6988 }
6989
6990 /* Simple connector->get_hw_state implementation for encoders that support only
6991 * one connector and no cloning and hence the encoder state determines the state
6992 * of the connector. */
6993 bool intel_connector_get_hw_state(struct intel_connector *connector)
6994 {
6995 enum pipe pipe = 0;
6996 struct intel_encoder *encoder = connector->encoder;
6997
6998 return encoder->get_hw_state(encoder, &pipe);
6999 }
7000
7001 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7002 {
7003 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7004 return crtc_state->fdi_lanes;
7005
7006 return 0;
7007 }
7008
7009 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7010 struct intel_crtc_state *pipe_config)
7011 {
7012 struct drm_i915_private *dev_priv = to_i915(dev);
7013 struct drm_atomic_state *state = pipe_config->base.state;
7014 struct intel_crtc *other_crtc;
7015 struct intel_crtc_state *other_crtc_state;
7016
7017 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7018 pipe_name(pipe), pipe_config->fdi_lanes);
7019 if (pipe_config->fdi_lanes > 4) {
7020 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7021 pipe_name(pipe), pipe_config->fdi_lanes);
7022 return -EINVAL;
7023 }
7024
7025 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7026 if (pipe_config->fdi_lanes > 2) {
7027 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7028 pipe_config->fdi_lanes);
7029 return -EINVAL;
7030 } else {
7031 return 0;
7032 }
7033 }
7034
7035 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7036 return 0;
7037
7038 /* Ivybridge 3 pipe is really complicated */
7039 switch (pipe) {
7040 case PIPE_A:
7041 return 0;
7042 case PIPE_B:
7043 if (pipe_config->fdi_lanes <= 2)
7044 return 0;
7045
7046 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7047 other_crtc_state =
7048 intel_atomic_get_crtc_state(state, other_crtc);
7049 if (IS_ERR(other_crtc_state))
7050 return PTR_ERR(other_crtc_state);
7051
7052 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7053 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7054 pipe_name(pipe), pipe_config->fdi_lanes);
7055 return -EINVAL;
7056 }
7057 return 0;
7058 case PIPE_C:
7059 if (pipe_config->fdi_lanes > 2) {
7060 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7061 pipe_name(pipe), pipe_config->fdi_lanes);
7062 return -EINVAL;
7063 }
7064
7065 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7066 other_crtc_state =
7067 intel_atomic_get_crtc_state(state, other_crtc);
7068 if (IS_ERR(other_crtc_state))
7069 return PTR_ERR(other_crtc_state);
7070
7071 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7072 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7073 return -EINVAL;
7074 }
7075 return 0;
7076 default:
7077 BUG();
7078 }
7079 }
7080
7081 #define RETRY 1
7082 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7083 struct intel_crtc_state *pipe_config)
7084 {
7085 struct drm_device *dev = intel_crtc->base.dev;
7086 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7087 int lane, link_bw, fdi_dotclock, ret;
7088 bool needs_recompute = false;
7089
7090 retry:
7091 /* FDI is a binary signal running at ~2.7GHz, encoding
7092 * each output octet as 10 bits. The actual frequency
7093 * is stored as a divider into a 100MHz clock, and the
7094 * mode pixel clock is stored in units of 1KHz.
7095 * Hence the bw of each lane in terms of the mode signal
7096 * is:
7097 */
7098 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7099
7100 fdi_dotclock = adjusted_mode->crtc_clock;
7101
7102 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7103 pipe_config->pipe_bpp);
7104
7105 pipe_config->fdi_lanes = lane;
7106
7107 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7108 link_bw, &pipe_config->fdi_m_n);
7109
7110 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7111 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7112 pipe_config->pipe_bpp -= 2*3;
7113 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7114 pipe_config->pipe_bpp);
7115 needs_recompute = true;
7116 pipe_config->bw_constrained = true;
7117
7118 goto retry;
7119 }
7120
7121 if (needs_recompute)
7122 return RETRY;
7123
7124 return ret;
7125 }
7126
7127 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7128 struct intel_crtc_state *pipe_config)
7129 {
7130 if (pipe_config->pipe_bpp > 24)
7131 return false;
7132
7133 /* HSW can handle pixel rate up to cdclk? */
7134 if (IS_HASWELL(dev_priv))
7135 return true;
7136
7137 /*
7138 * We compare against max which means we must take
7139 * the increased cdclk requirement into account when
7140 * calculating the new cdclk.
7141 *
7142 * Should measure whether using a lower cdclk w/o IPS
7143 */
7144 return ilk_pipe_pixel_rate(pipe_config) <=
7145 dev_priv->max_cdclk_freq * 95 / 100;
7146 }
7147
7148 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7149 struct intel_crtc_state *pipe_config)
7150 {
7151 struct drm_device *dev = crtc->base.dev;
7152 struct drm_i915_private *dev_priv = to_i915(dev);
7153
7154 pipe_config->ips_enabled = i915.enable_ips &&
7155 hsw_crtc_supports_ips(crtc) &&
7156 pipe_config_supports_ips(dev_priv, pipe_config);
7157 }
7158
7159 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7160 {
7161 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7162
7163 /* GDG double wide on either pipe, otherwise pipe A only */
7164 return INTEL_INFO(dev_priv)->gen < 4 &&
7165 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7166 }
7167
7168 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7169 struct intel_crtc_state *pipe_config)
7170 {
7171 struct drm_device *dev = crtc->base.dev;
7172 struct drm_i915_private *dev_priv = to_i915(dev);
7173 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7174 int clock_limit = dev_priv->max_dotclk_freq;
7175
7176 if (INTEL_GEN(dev_priv) < 4) {
7177 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7178
7179 /*
7180 * Enable double wide mode when the dot clock
7181 * is > 90% of the (display) core speed.
7182 */
7183 if (intel_crtc_supports_double_wide(crtc) &&
7184 adjusted_mode->crtc_clock > clock_limit) {
7185 clock_limit = dev_priv->max_dotclk_freq;
7186 pipe_config->double_wide = true;
7187 }
7188 }
7189
7190 if (adjusted_mode->crtc_clock > clock_limit) {
7191 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7192 adjusted_mode->crtc_clock, clock_limit,
7193 yesno(pipe_config->double_wide));
7194 return -EINVAL;
7195 }
7196
7197 /*
7198 * Pipe horizontal size must be even in:
7199 * - DVO ganged mode
7200 * - LVDS dual channel mode
7201 * - Double wide pipe
7202 */
7203 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7204 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7205 pipe_config->pipe_src_w &= ~1;
7206
7207 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7208 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7209 */
7210 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7211 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7212 return -EINVAL;
7213
7214 if (HAS_IPS(dev_priv))
7215 hsw_compute_ips_config(crtc, pipe_config);
7216
7217 if (pipe_config->has_pch_encoder)
7218 return ironlake_fdi_compute_config(crtc, pipe_config);
7219
7220 return 0;
7221 }
7222
7223 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7224 {
7225 u32 cdctl;
7226
7227 skl_dpll0_update(dev_priv);
7228
7229 if (dev_priv->cdclk_pll.vco == 0)
7230 return dev_priv->cdclk_pll.ref;
7231
7232 cdctl = I915_READ(CDCLK_CTL);
7233
7234 if (dev_priv->cdclk_pll.vco == 8640000) {
7235 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7236 case CDCLK_FREQ_450_432:
7237 return 432000;
7238 case CDCLK_FREQ_337_308:
7239 return 308571;
7240 case CDCLK_FREQ_540:
7241 return 540000;
7242 case CDCLK_FREQ_675_617:
7243 return 617143;
7244 default:
7245 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7246 }
7247 } else {
7248 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7249 case CDCLK_FREQ_450_432:
7250 return 450000;
7251 case CDCLK_FREQ_337_308:
7252 return 337500;
7253 case CDCLK_FREQ_540:
7254 return 540000;
7255 case CDCLK_FREQ_675_617:
7256 return 675000;
7257 default:
7258 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7259 }
7260 }
7261
7262 return dev_priv->cdclk_pll.ref;
7263 }
7264
7265 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7266 {
7267 u32 val;
7268
7269 dev_priv->cdclk_pll.ref = 19200;
7270 dev_priv->cdclk_pll.vco = 0;
7271
7272 val = I915_READ(BXT_DE_PLL_ENABLE);
7273 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7274 return;
7275
7276 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7277 return;
7278
7279 val = I915_READ(BXT_DE_PLL_CTL);
7280 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7281 dev_priv->cdclk_pll.ref;
7282 }
7283
7284 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7285 {
7286 u32 divider;
7287 int div, vco;
7288
7289 bxt_de_pll_update(dev_priv);
7290
7291 vco = dev_priv->cdclk_pll.vco;
7292 if (vco == 0)
7293 return dev_priv->cdclk_pll.ref;
7294
7295 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7296
7297 switch (divider) {
7298 case BXT_CDCLK_CD2X_DIV_SEL_1:
7299 div = 2;
7300 break;
7301 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7302 div = 3;
7303 break;
7304 case BXT_CDCLK_CD2X_DIV_SEL_2:
7305 div = 4;
7306 break;
7307 case BXT_CDCLK_CD2X_DIV_SEL_4:
7308 div = 8;
7309 break;
7310 default:
7311 MISSING_CASE(divider);
7312 return dev_priv->cdclk_pll.ref;
7313 }
7314
7315 return DIV_ROUND_CLOSEST(vco, div);
7316 }
7317
7318 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7319 {
7320 uint32_t lcpll = I915_READ(LCPLL_CTL);
7321 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7322
7323 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7324 return 800000;
7325 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7326 return 450000;
7327 else if (freq == LCPLL_CLK_FREQ_450)
7328 return 450000;
7329 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7330 return 540000;
7331 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7332 return 337500;
7333 else
7334 return 675000;
7335 }
7336
7337 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7338 {
7339 uint32_t lcpll = I915_READ(LCPLL_CTL);
7340 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7341
7342 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7343 return 800000;
7344 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7345 return 450000;
7346 else if (freq == LCPLL_CLK_FREQ_450)
7347 return 450000;
7348 else if (IS_HSW_ULT(dev_priv))
7349 return 337500;
7350 else
7351 return 540000;
7352 }
7353
7354 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7355 {
7356 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7357 CCK_DISPLAY_CLOCK_CONTROL);
7358 }
7359
7360 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7361 {
7362 return 450000;
7363 }
7364
7365 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7366 {
7367 return 400000;
7368 }
7369
7370 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7371 {
7372 return 333333;
7373 }
7374
7375 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7376 {
7377 return 200000;
7378 }
7379
7380 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7381 {
7382 struct pci_dev *pdev = dev_priv->drm.pdev;
7383 u16 gcfgc = 0;
7384
7385 pci_read_config_word(pdev, GCFGC, &gcfgc);
7386
7387 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7388 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7389 return 266667;
7390 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7391 return 333333;
7392 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7393 return 444444;
7394 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7395 return 200000;
7396 default:
7397 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7398 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7399 return 133333;
7400 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7401 return 166667;
7402 }
7403 }
7404
7405 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7406 {
7407 struct pci_dev *pdev = dev_priv->drm.pdev;
7408 u16 gcfgc = 0;
7409
7410 pci_read_config_word(pdev, GCFGC, &gcfgc);
7411
7412 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7413 return 133333;
7414 else {
7415 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7416 case GC_DISPLAY_CLOCK_333_MHZ:
7417 return 333333;
7418 default:
7419 case GC_DISPLAY_CLOCK_190_200_MHZ:
7420 return 190000;
7421 }
7422 }
7423 }
7424
7425 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7426 {
7427 return 266667;
7428 }
7429
7430 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7431 {
7432 struct pci_dev *pdev = dev_priv->drm.pdev;
7433 u16 hpllcc = 0;
7434
7435 /*
7436 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7437 * encoding is different :(
7438 * FIXME is this the right way to detect 852GM/852GMV?
7439 */
7440 if (pdev->revision == 0x1)
7441 return 133333;
7442
7443 pci_bus_read_config_word(pdev->bus,
7444 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7445
7446 /* Assume that the hardware is in the high speed state. This
7447 * should be the default.
7448 */
7449 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7450 case GC_CLOCK_133_200:
7451 case GC_CLOCK_133_200_2:
7452 case GC_CLOCK_100_200:
7453 return 200000;
7454 case GC_CLOCK_166_250:
7455 return 250000;
7456 case GC_CLOCK_100_133:
7457 return 133333;
7458 case GC_CLOCK_133_266:
7459 case GC_CLOCK_133_266_2:
7460 case GC_CLOCK_166_266:
7461 return 266667;
7462 }
7463
7464 /* Shouldn't happen */
7465 return 0;
7466 }
7467
7468 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7469 {
7470 return 133333;
7471 }
7472
7473 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7474 {
7475 static const unsigned int blb_vco[8] = {
7476 [0] = 3200000,
7477 [1] = 4000000,
7478 [2] = 5333333,
7479 [3] = 4800000,
7480 [4] = 6400000,
7481 };
7482 static const unsigned int pnv_vco[8] = {
7483 [0] = 3200000,
7484 [1] = 4000000,
7485 [2] = 5333333,
7486 [3] = 4800000,
7487 [4] = 2666667,
7488 };
7489 static const unsigned int cl_vco[8] = {
7490 [0] = 3200000,
7491 [1] = 4000000,
7492 [2] = 5333333,
7493 [3] = 6400000,
7494 [4] = 3333333,
7495 [5] = 3566667,
7496 [6] = 4266667,
7497 };
7498 static const unsigned int elk_vco[8] = {
7499 [0] = 3200000,
7500 [1] = 4000000,
7501 [2] = 5333333,
7502 [3] = 4800000,
7503 };
7504 static const unsigned int ctg_vco[8] = {
7505 [0] = 3200000,
7506 [1] = 4000000,
7507 [2] = 5333333,
7508 [3] = 6400000,
7509 [4] = 2666667,
7510 [5] = 4266667,
7511 };
7512 const unsigned int *vco_table;
7513 unsigned int vco;
7514 uint8_t tmp = 0;
7515
7516 /* FIXME other chipsets? */
7517 if (IS_GM45(dev_priv))
7518 vco_table = ctg_vco;
7519 else if (IS_G4X(dev_priv))
7520 vco_table = elk_vco;
7521 else if (IS_CRESTLINE(dev_priv))
7522 vco_table = cl_vco;
7523 else if (IS_PINEVIEW(dev_priv))
7524 vco_table = pnv_vco;
7525 else if (IS_G33(dev_priv))
7526 vco_table = blb_vco;
7527 else
7528 return 0;
7529
7530 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7531
7532 vco = vco_table[tmp & 0x7];
7533 if (vco == 0)
7534 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7535 else
7536 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7537
7538 return vco;
7539 }
7540
7541 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7542 {
7543 struct pci_dev *pdev = dev_priv->drm.pdev;
7544 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7545 uint16_t tmp = 0;
7546
7547 pci_read_config_word(pdev, GCFGC, &tmp);
7548
7549 cdclk_sel = (tmp >> 12) & 0x1;
7550
7551 switch (vco) {
7552 case 2666667:
7553 case 4000000:
7554 case 5333333:
7555 return cdclk_sel ? 333333 : 222222;
7556 case 3200000:
7557 return cdclk_sel ? 320000 : 228571;
7558 default:
7559 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7560 return 222222;
7561 }
7562 }
7563
7564 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7565 {
7566 struct pci_dev *pdev = dev_priv->drm.pdev;
7567 static const uint8_t div_3200[] = { 16, 10, 8 };
7568 static const uint8_t div_4000[] = { 20, 12, 10 };
7569 static const uint8_t div_5333[] = { 24, 16, 14 };
7570 const uint8_t *div_table;
7571 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7572 uint16_t tmp = 0;
7573
7574 pci_read_config_word(pdev, GCFGC, &tmp);
7575
7576 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7577
7578 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7579 goto fail;
7580
7581 switch (vco) {
7582 case 3200000:
7583 div_table = div_3200;
7584 break;
7585 case 4000000:
7586 div_table = div_4000;
7587 break;
7588 case 5333333:
7589 div_table = div_5333;
7590 break;
7591 default:
7592 goto fail;
7593 }
7594
7595 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7596
7597 fail:
7598 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7599 return 200000;
7600 }
7601
7602 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7603 {
7604 struct pci_dev *pdev = dev_priv->drm.pdev;
7605 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7606 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7607 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7608 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7609 const uint8_t *div_table;
7610 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7611 uint16_t tmp = 0;
7612
7613 pci_read_config_word(pdev, GCFGC, &tmp);
7614
7615 cdclk_sel = (tmp >> 4) & 0x7;
7616
7617 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7618 goto fail;
7619
7620 switch (vco) {
7621 case 3200000:
7622 div_table = div_3200;
7623 break;
7624 case 4000000:
7625 div_table = div_4000;
7626 break;
7627 case 4800000:
7628 div_table = div_4800;
7629 break;
7630 case 5333333:
7631 div_table = div_5333;
7632 break;
7633 default:
7634 goto fail;
7635 }
7636
7637 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7638
7639 fail:
7640 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7641 return 190476;
7642 }
7643
7644 static void
7645 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7646 {
7647 while (*num > DATA_LINK_M_N_MASK ||
7648 *den > DATA_LINK_M_N_MASK) {
7649 *num >>= 1;
7650 *den >>= 1;
7651 }
7652 }
7653
7654 static void compute_m_n(unsigned int m, unsigned int n,
7655 uint32_t *ret_m, uint32_t *ret_n)
7656 {
7657 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7658 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7659 intel_reduce_m_n_ratio(ret_m, ret_n);
7660 }
7661
7662 void
7663 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7664 int pixel_clock, int link_clock,
7665 struct intel_link_m_n *m_n)
7666 {
7667 m_n->tu = 64;
7668
7669 compute_m_n(bits_per_pixel * pixel_clock,
7670 link_clock * nlanes * 8,
7671 &m_n->gmch_m, &m_n->gmch_n);
7672
7673 compute_m_n(pixel_clock, link_clock,
7674 &m_n->link_m, &m_n->link_n);
7675 }
7676
7677 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7678 {
7679 if (i915.panel_use_ssc >= 0)
7680 return i915.panel_use_ssc != 0;
7681 return dev_priv->vbt.lvds_use_ssc
7682 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7683 }
7684
7685 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7686 {
7687 return (1 << dpll->n) << 16 | dpll->m2;
7688 }
7689
7690 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7691 {
7692 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7693 }
7694
7695 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7696 struct intel_crtc_state *crtc_state,
7697 struct dpll *reduced_clock)
7698 {
7699 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7700 u32 fp, fp2 = 0;
7701
7702 if (IS_PINEVIEW(dev_priv)) {
7703 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7704 if (reduced_clock)
7705 fp2 = pnv_dpll_compute_fp(reduced_clock);
7706 } else {
7707 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7708 if (reduced_clock)
7709 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7710 }
7711
7712 crtc_state->dpll_hw_state.fp0 = fp;
7713
7714 crtc->lowfreq_avail = false;
7715 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7716 reduced_clock) {
7717 crtc_state->dpll_hw_state.fp1 = fp2;
7718 crtc->lowfreq_avail = true;
7719 } else {
7720 crtc_state->dpll_hw_state.fp1 = fp;
7721 }
7722 }
7723
7724 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7725 pipe)
7726 {
7727 u32 reg_val;
7728
7729 /*
7730 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7731 * and set it to a reasonable value instead.
7732 */
7733 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7734 reg_val &= 0xffffff00;
7735 reg_val |= 0x00000030;
7736 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7737
7738 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7739 reg_val &= 0x8cffffff;
7740 reg_val = 0x8c000000;
7741 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7742
7743 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7744 reg_val &= 0xffffff00;
7745 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7746
7747 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7748 reg_val &= 0x00ffffff;
7749 reg_val |= 0xb0000000;
7750 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7751 }
7752
7753 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7754 struct intel_link_m_n *m_n)
7755 {
7756 struct drm_device *dev = crtc->base.dev;
7757 struct drm_i915_private *dev_priv = to_i915(dev);
7758 int pipe = crtc->pipe;
7759
7760 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7761 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7762 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7763 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7764 }
7765
7766 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7767 struct intel_link_m_n *m_n,
7768 struct intel_link_m_n *m2_n2)
7769 {
7770 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7771 int pipe = crtc->pipe;
7772 enum transcoder transcoder = crtc->config->cpu_transcoder;
7773
7774 if (INTEL_GEN(dev_priv) >= 5) {
7775 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7776 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7777 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7778 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7779 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7780 * for gen < 8) and if DRRS is supported (to make sure the
7781 * registers are not unnecessarily accessed).
7782 */
7783 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7784 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7785 I915_WRITE(PIPE_DATA_M2(transcoder),
7786 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7787 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7788 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7789 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7790 }
7791 } else {
7792 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7793 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7794 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7795 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7796 }
7797 }
7798
7799 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7800 {
7801 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7802
7803 if (m_n == M1_N1) {
7804 dp_m_n = &crtc->config->dp_m_n;
7805 dp_m2_n2 = &crtc->config->dp_m2_n2;
7806 } else if (m_n == M2_N2) {
7807
7808 /*
7809 * M2_N2 registers are not supported. Hence m2_n2 divider value
7810 * needs to be programmed into M1_N1.
7811 */
7812 dp_m_n = &crtc->config->dp_m2_n2;
7813 } else {
7814 DRM_ERROR("Unsupported divider value\n");
7815 return;
7816 }
7817
7818 if (crtc->config->has_pch_encoder)
7819 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7820 else
7821 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7822 }
7823
7824 static void vlv_compute_dpll(struct intel_crtc *crtc,
7825 struct intel_crtc_state *pipe_config)
7826 {
7827 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7828 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7829 if (crtc->pipe != PIPE_A)
7830 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7831
7832 /* DPLL not used with DSI, but still need the rest set up */
7833 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7834 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7835 DPLL_EXT_BUFFER_ENABLE_VLV;
7836
7837 pipe_config->dpll_hw_state.dpll_md =
7838 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7839 }
7840
7841 static void chv_compute_dpll(struct intel_crtc *crtc,
7842 struct intel_crtc_state *pipe_config)
7843 {
7844 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7845 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7846 if (crtc->pipe != PIPE_A)
7847 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7848
7849 /* DPLL not used with DSI, but still need the rest set up */
7850 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7851 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7852
7853 pipe_config->dpll_hw_state.dpll_md =
7854 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7855 }
7856
7857 static void vlv_prepare_pll(struct intel_crtc *crtc,
7858 const struct intel_crtc_state *pipe_config)
7859 {
7860 struct drm_device *dev = crtc->base.dev;
7861 struct drm_i915_private *dev_priv = to_i915(dev);
7862 enum pipe pipe = crtc->pipe;
7863 u32 mdiv;
7864 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7865 u32 coreclk, reg_val;
7866
7867 /* Enable Refclk */
7868 I915_WRITE(DPLL(pipe),
7869 pipe_config->dpll_hw_state.dpll &
7870 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7871
7872 /* No need to actually set up the DPLL with DSI */
7873 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7874 return;
7875
7876 mutex_lock(&dev_priv->sb_lock);
7877
7878 bestn = pipe_config->dpll.n;
7879 bestm1 = pipe_config->dpll.m1;
7880 bestm2 = pipe_config->dpll.m2;
7881 bestp1 = pipe_config->dpll.p1;
7882 bestp2 = pipe_config->dpll.p2;
7883
7884 /* See eDP HDMI DPIO driver vbios notes doc */
7885
7886 /* PLL B needs special handling */
7887 if (pipe == PIPE_B)
7888 vlv_pllb_recal_opamp(dev_priv, pipe);
7889
7890 /* Set up Tx target for periodic Rcomp update */
7891 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7892
7893 /* Disable target IRef on PLL */
7894 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7895 reg_val &= 0x00ffffff;
7896 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7897
7898 /* Disable fast lock */
7899 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7900
7901 /* Set idtafcrecal before PLL is enabled */
7902 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7903 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7904 mdiv |= ((bestn << DPIO_N_SHIFT));
7905 mdiv |= (1 << DPIO_K_SHIFT);
7906
7907 /*
7908 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7909 * but we don't support that).
7910 * Note: don't use the DAC post divider as it seems unstable.
7911 */
7912 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7913 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7914
7915 mdiv |= DPIO_ENABLE_CALIBRATION;
7916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7917
7918 /* Set HBR and RBR LPF coefficients */
7919 if (pipe_config->port_clock == 162000 ||
7920 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7921 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7922 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7923 0x009f0003);
7924 else
7925 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7926 0x00d0000f);
7927
7928 if (intel_crtc_has_dp_encoder(pipe_config)) {
7929 /* Use SSC source */
7930 if (pipe == PIPE_A)
7931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7932 0x0df40000);
7933 else
7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7935 0x0df70000);
7936 } else { /* HDMI or VGA */
7937 /* Use bend source */
7938 if (pipe == PIPE_A)
7939 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7940 0x0df70000);
7941 else
7942 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7943 0x0df40000);
7944 }
7945
7946 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7947 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7948 if (intel_crtc_has_dp_encoder(crtc->config))
7949 coreclk |= 0x01000000;
7950 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7951
7952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7953 mutex_unlock(&dev_priv->sb_lock);
7954 }
7955
7956 static void chv_prepare_pll(struct intel_crtc *crtc,
7957 const struct intel_crtc_state *pipe_config)
7958 {
7959 struct drm_device *dev = crtc->base.dev;
7960 struct drm_i915_private *dev_priv = to_i915(dev);
7961 enum pipe pipe = crtc->pipe;
7962 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7963 u32 loopfilter, tribuf_calcntr;
7964 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7965 u32 dpio_val;
7966 int vco;
7967
7968 /* Enable Refclk and SSC */
7969 I915_WRITE(DPLL(pipe),
7970 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7971
7972 /* No need to actually set up the DPLL with DSI */
7973 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7974 return;
7975
7976 bestn = pipe_config->dpll.n;
7977 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7978 bestm1 = pipe_config->dpll.m1;
7979 bestm2 = pipe_config->dpll.m2 >> 22;
7980 bestp1 = pipe_config->dpll.p1;
7981 bestp2 = pipe_config->dpll.p2;
7982 vco = pipe_config->dpll.vco;
7983 dpio_val = 0;
7984 loopfilter = 0;
7985
7986 mutex_lock(&dev_priv->sb_lock);
7987
7988 /* p1 and p2 divider */
7989 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7990 5 << DPIO_CHV_S1_DIV_SHIFT |
7991 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7992 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7993 1 << DPIO_CHV_K_DIV_SHIFT);
7994
7995 /* Feedback post-divider - m2 */
7996 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7997
7998 /* Feedback refclk divider - n and m1 */
7999 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8000 DPIO_CHV_M1_DIV_BY_2 |
8001 1 << DPIO_CHV_N_DIV_SHIFT);
8002
8003 /* M2 fraction division */
8004 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8005
8006 /* M2 fraction division enable */
8007 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8008 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8009 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8010 if (bestm2_frac)
8011 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8012 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8013
8014 /* Program digital lock detect threshold */
8015 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8016 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8017 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8018 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8019 if (!bestm2_frac)
8020 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8021 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8022
8023 /* Loop filter */
8024 if (vco == 5400000) {
8025 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8026 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8027 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8028 tribuf_calcntr = 0x9;
8029 } else if (vco <= 6200000) {
8030 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8031 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8032 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8033 tribuf_calcntr = 0x9;
8034 } else if (vco <= 6480000) {
8035 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8036 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8037 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8038 tribuf_calcntr = 0x8;
8039 } else {
8040 /* Not supported. Apply the same limits as in the max case */
8041 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8042 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8043 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8044 tribuf_calcntr = 0;
8045 }
8046 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8047
8048 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8049 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8050 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8051 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8052
8053 /* AFC Recal */
8054 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8055 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8056 DPIO_AFC_RECAL);
8057
8058 mutex_unlock(&dev_priv->sb_lock);
8059 }
8060
8061 /**
8062 * vlv_force_pll_on - forcibly enable just the PLL
8063 * @dev_priv: i915 private structure
8064 * @pipe: pipe PLL to enable
8065 * @dpll: PLL configuration
8066 *
8067 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8068 * in cases where we need the PLL enabled even when @pipe is not going to
8069 * be enabled.
8070 */
8071 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8072 const struct dpll *dpll)
8073 {
8074 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8075 struct intel_crtc_state *pipe_config;
8076
8077 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8078 if (!pipe_config)
8079 return -ENOMEM;
8080
8081 pipe_config->base.crtc = &crtc->base;
8082 pipe_config->pixel_multiplier = 1;
8083 pipe_config->dpll = *dpll;
8084
8085 if (IS_CHERRYVIEW(dev_priv)) {
8086 chv_compute_dpll(crtc, pipe_config);
8087 chv_prepare_pll(crtc, pipe_config);
8088 chv_enable_pll(crtc, pipe_config);
8089 } else {
8090 vlv_compute_dpll(crtc, pipe_config);
8091 vlv_prepare_pll(crtc, pipe_config);
8092 vlv_enable_pll(crtc, pipe_config);
8093 }
8094
8095 kfree(pipe_config);
8096
8097 return 0;
8098 }
8099
8100 /**
8101 * vlv_force_pll_off - forcibly disable just the PLL
8102 * @dev_priv: i915 private structure
8103 * @pipe: pipe PLL to disable
8104 *
8105 * Disable the PLL for @pipe. To be used in cases where we need
8106 * the PLL enabled even when @pipe is not going to be enabled.
8107 */
8108 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8109 {
8110 if (IS_CHERRYVIEW(dev_priv))
8111 chv_disable_pll(dev_priv, pipe);
8112 else
8113 vlv_disable_pll(dev_priv, pipe);
8114 }
8115
8116 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8117 struct intel_crtc_state *crtc_state,
8118 struct dpll *reduced_clock)
8119 {
8120 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8121 u32 dpll;
8122 struct dpll *clock = &crtc_state->dpll;
8123
8124 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8125
8126 dpll = DPLL_VGA_MODE_DIS;
8127
8128 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8129 dpll |= DPLLB_MODE_LVDS;
8130 else
8131 dpll |= DPLLB_MODE_DAC_SERIAL;
8132
8133 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
8134 dpll |= (crtc_state->pixel_multiplier - 1)
8135 << SDVO_MULTIPLIER_SHIFT_HIRES;
8136 }
8137
8138 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8139 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8140 dpll |= DPLL_SDVO_HIGH_SPEED;
8141
8142 if (intel_crtc_has_dp_encoder(crtc_state))
8143 dpll |= DPLL_SDVO_HIGH_SPEED;
8144
8145 /* compute bitmask from p1 value */
8146 if (IS_PINEVIEW(dev_priv))
8147 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8148 else {
8149 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8150 if (IS_G4X(dev_priv) && reduced_clock)
8151 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8152 }
8153 switch (clock->p2) {
8154 case 5:
8155 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8156 break;
8157 case 7:
8158 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8159 break;
8160 case 10:
8161 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8162 break;
8163 case 14:
8164 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8165 break;
8166 }
8167 if (INTEL_GEN(dev_priv) >= 4)
8168 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8169
8170 if (crtc_state->sdvo_tv_clock)
8171 dpll |= PLL_REF_INPUT_TVCLKINBC;
8172 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8173 intel_panel_use_ssc(dev_priv))
8174 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8175 else
8176 dpll |= PLL_REF_INPUT_DREFCLK;
8177
8178 dpll |= DPLL_VCO_ENABLE;
8179 crtc_state->dpll_hw_state.dpll = dpll;
8180
8181 if (INTEL_GEN(dev_priv) >= 4) {
8182 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8183 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8184 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8185 }
8186 }
8187
8188 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8189 struct intel_crtc_state *crtc_state,
8190 struct dpll *reduced_clock)
8191 {
8192 struct drm_device *dev = crtc->base.dev;
8193 struct drm_i915_private *dev_priv = to_i915(dev);
8194 u32 dpll;
8195 struct dpll *clock = &crtc_state->dpll;
8196
8197 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8198
8199 dpll = DPLL_VGA_MODE_DIS;
8200
8201 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8202 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8203 } else {
8204 if (clock->p1 == 2)
8205 dpll |= PLL_P1_DIVIDE_BY_TWO;
8206 else
8207 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8208 if (clock->p2 == 4)
8209 dpll |= PLL_P2_DIVIDE_BY_4;
8210 }
8211
8212 if (!IS_I830(dev_priv) &&
8213 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8214 dpll |= DPLL_DVO_2X_MODE;
8215
8216 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8217 intel_panel_use_ssc(dev_priv))
8218 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8219 else
8220 dpll |= PLL_REF_INPUT_DREFCLK;
8221
8222 dpll |= DPLL_VCO_ENABLE;
8223 crtc_state->dpll_hw_state.dpll = dpll;
8224 }
8225
8226 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8227 {
8228 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8229 enum pipe pipe = intel_crtc->pipe;
8230 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8231 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8232 uint32_t crtc_vtotal, crtc_vblank_end;
8233 int vsyncshift = 0;
8234
8235 /* We need to be careful not to changed the adjusted mode, for otherwise
8236 * the hw state checker will get angry at the mismatch. */
8237 crtc_vtotal = adjusted_mode->crtc_vtotal;
8238 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8239
8240 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8241 /* the chip adds 2 halflines automatically */
8242 crtc_vtotal -= 1;
8243 crtc_vblank_end -= 1;
8244
8245 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8246 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8247 else
8248 vsyncshift = adjusted_mode->crtc_hsync_start -
8249 adjusted_mode->crtc_htotal / 2;
8250 if (vsyncshift < 0)
8251 vsyncshift += adjusted_mode->crtc_htotal;
8252 }
8253
8254 if (INTEL_GEN(dev_priv) > 3)
8255 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8256
8257 I915_WRITE(HTOTAL(cpu_transcoder),
8258 (adjusted_mode->crtc_hdisplay - 1) |
8259 ((adjusted_mode->crtc_htotal - 1) << 16));
8260 I915_WRITE(HBLANK(cpu_transcoder),
8261 (adjusted_mode->crtc_hblank_start - 1) |
8262 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8263 I915_WRITE(HSYNC(cpu_transcoder),
8264 (adjusted_mode->crtc_hsync_start - 1) |
8265 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8266
8267 I915_WRITE(VTOTAL(cpu_transcoder),
8268 (adjusted_mode->crtc_vdisplay - 1) |
8269 ((crtc_vtotal - 1) << 16));
8270 I915_WRITE(VBLANK(cpu_transcoder),
8271 (adjusted_mode->crtc_vblank_start - 1) |
8272 ((crtc_vblank_end - 1) << 16));
8273 I915_WRITE(VSYNC(cpu_transcoder),
8274 (adjusted_mode->crtc_vsync_start - 1) |
8275 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8276
8277 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8278 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8279 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8280 * bits. */
8281 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8282 (pipe == PIPE_B || pipe == PIPE_C))
8283 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8284
8285 }
8286
8287 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8288 {
8289 struct drm_device *dev = intel_crtc->base.dev;
8290 struct drm_i915_private *dev_priv = to_i915(dev);
8291 enum pipe pipe = intel_crtc->pipe;
8292
8293 /* pipesrc controls the size that is scaled from, which should
8294 * always be the user's requested size.
8295 */
8296 I915_WRITE(PIPESRC(pipe),
8297 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8298 (intel_crtc->config->pipe_src_h - 1));
8299 }
8300
8301 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8302 struct intel_crtc_state *pipe_config)
8303 {
8304 struct drm_device *dev = crtc->base.dev;
8305 struct drm_i915_private *dev_priv = to_i915(dev);
8306 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8307 uint32_t tmp;
8308
8309 tmp = I915_READ(HTOTAL(cpu_transcoder));
8310 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8311 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8312 tmp = I915_READ(HBLANK(cpu_transcoder));
8313 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8314 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8315 tmp = I915_READ(HSYNC(cpu_transcoder));
8316 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8317 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8318
8319 tmp = I915_READ(VTOTAL(cpu_transcoder));
8320 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8321 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8322 tmp = I915_READ(VBLANK(cpu_transcoder));
8323 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8324 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8325 tmp = I915_READ(VSYNC(cpu_transcoder));
8326 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8327 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8328
8329 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8330 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8331 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8332 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8333 }
8334 }
8335
8336 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8337 struct intel_crtc_state *pipe_config)
8338 {
8339 struct drm_device *dev = crtc->base.dev;
8340 struct drm_i915_private *dev_priv = to_i915(dev);
8341 u32 tmp;
8342
8343 tmp = I915_READ(PIPESRC(crtc->pipe));
8344 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8345 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8346
8347 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8348 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8349 }
8350
8351 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8352 struct intel_crtc_state *pipe_config)
8353 {
8354 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8355 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8356 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8357 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8358
8359 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8360 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8361 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8362 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8363
8364 mode->flags = pipe_config->base.adjusted_mode.flags;
8365 mode->type = DRM_MODE_TYPE_DRIVER;
8366
8367 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8368 mode->flags |= pipe_config->base.adjusted_mode.flags;
8369
8370 mode->hsync = drm_mode_hsync(mode);
8371 mode->vrefresh = drm_mode_vrefresh(mode);
8372 drm_mode_set_name(mode);
8373 }
8374
8375 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8376 {
8377 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8378 uint32_t pipeconf;
8379
8380 pipeconf = 0;
8381
8382 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8383 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8384 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8385
8386 if (intel_crtc->config->double_wide)
8387 pipeconf |= PIPECONF_DOUBLE_WIDE;
8388
8389 /* only g4x and later have fancy bpc/dither controls */
8390 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8391 IS_CHERRYVIEW(dev_priv)) {
8392 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8393 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8394 pipeconf |= PIPECONF_DITHER_EN |
8395 PIPECONF_DITHER_TYPE_SP;
8396
8397 switch (intel_crtc->config->pipe_bpp) {
8398 case 18:
8399 pipeconf |= PIPECONF_6BPC;
8400 break;
8401 case 24:
8402 pipeconf |= PIPECONF_8BPC;
8403 break;
8404 case 30:
8405 pipeconf |= PIPECONF_10BPC;
8406 break;
8407 default:
8408 /* Case prevented by intel_choose_pipe_bpp_dither. */
8409 BUG();
8410 }
8411 }
8412
8413 if (HAS_PIPE_CXSR(dev_priv)) {
8414 if (intel_crtc->lowfreq_avail) {
8415 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8416 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8417 } else {
8418 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8419 }
8420 }
8421
8422 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8423 if (INTEL_GEN(dev_priv) < 4 ||
8424 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8425 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8426 else
8427 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8428 } else
8429 pipeconf |= PIPECONF_PROGRESSIVE;
8430
8431 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8432 intel_crtc->config->limited_color_range)
8433 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8434
8435 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8436 POSTING_READ(PIPECONF(intel_crtc->pipe));
8437 }
8438
8439 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8440 struct intel_crtc_state *crtc_state)
8441 {
8442 struct drm_device *dev = crtc->base.dev;
8443 struct drm_i915_private *dev_priv = to_i915(dev);
8444 const struct intel_limit *limit;
8445 int refclk = 48000;
8446
8447 memset(&crtc_state->dpll_hw_state, 0,
8448 sizeof(crtc_state->dpll_hw_state));
8449
8450 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8451 if (intel_panel_use_ssc(dev_priv)) {
8452 refclk = dev_priv->vbt.lvds_ssc_freq;
8453 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8454 }
8455
8456 limit = &intel_limits_i8xx_lvds;
8457 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8458 limit = &intel_limits_i8xx_dvo;
8459 } else {
8460 limit = &intel_limits_i8xx_dac;
8461 }
8462
8463 if (!crtc_state->clock_set &&
8464 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8465 refclk, NULL, &crtc_state->dpll)) {
8466 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8467 return -EINVAL;
8468 }
8469
8470 i8xx_compute_dpll(crtc, crtc_state, NULL);
8471
8472 return 0;
8473 }
8474
8475 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8476 struct intel_crtc_state *crtc_state)
8477 {
8478 struct drm_device *dev = crtc->base.dev;
8479 struct drm_i915_private *dev_priv = to_i915(dev);
8480 const struct intel_limit *limit;
8481 int refclk = 96000;
8482
8483 memset(&crtc_state->dpll_hw_state, 0,
8484 sizeof(crtc_state->dpll_hw_state));
8485
8486 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8487 if (intel_panel_use_ssc(dev_priv)) {
8488 refclk = dev_priv->vbt.lvds_ssc_freq;
8489 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8490 }
8491
8492 if (intel_is_dual_link_lvds(dev))
8493 limit = &intel_limits_g4x_dual_channel_lvds;
8494 else
8495 limit = &intel_limits_g4x_single_channel_lvds;
8496 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8497 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8498 limit = &intel_limits_g4x_hdmi;
8499 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8500 limit = &intel_limits_g4x_sdvo;
8501 } else {
8502 /* The option is for other outputs */
8503 limit = &intel_limits_i9xx_sdvo;
8504 }
8505
8506 if (!crtc_state->clock_set &&
8507 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8508 refclk, NULL, &crtc_state->dpll)) {
8509 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8510 return -EINVAL;
8511 }
8512
8513 i9xx_compute_dpll(crtc, crtc_state, NULL);
8514
8515 return 0;
8516 }
8517
8518 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8519 struct intel_crtc_state *crtc_state)
8520 {
8521 struct drm_device *dev = crtc->base.dev;
8522 struct drm_i915_private *dev_priv = to_i915(dev);
8523 const struct intel_limit *limit;
8524 int refclk = 96000;
8525
8526 memset(&crtc_state->dpll_hw_state, 0,
8527 sizeof(crtc_state->dpll_hw_state));
8528
8529 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8530 if (intel_panel_use_ssc(dev_priv)) {
8531 refclk = dev_priv->vbt.lvds_ssc_freq;
8532 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8533 }
8534
8535 limit = &intel_limits_pineview_lvds;
8536 } else {
8537 limit = &intel_limits_pineview_sdvo;
8538 }
8539
8540 if (!crtc_state->clock_set &&
8541 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8542 refclk, NULL, &crtc_state->dpll)) {
8543 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8544 return -EINVAL;
8545 }
8546
8547 i9xx_compute_dpll(crtc, crtc_state, NULL);
8548
8549 return 0;
8550 }
8551
8552 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8553 struct intel_crtc_state *crtc_state)
8554 {
8555 struct drm_device *dev = crtc->base.dev;
8556 struct drm_i915_private *dev_priv = to_i915(dev);
8557 const struct intel_limit *limit;
8558 int refclk = 96000;
8559
8560 memset(&crtc_state->dpll_hw_state, 0,
8561 sizeof(crtc_state->dpll_hw_state));
8562
8563 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8564 if (intel_panel_use_ssc(dev_priv)) {
8565 refclk = dev_priv->vbt.lvds_ssc_freq;
8566 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8567 }
8568
8569 limit = &intel_limits_i9xx_lvds;
8570 } else {
8571 limit = &intel_limits_i9xx_sdvo;
8572 }
8573
8574 if (!crtc_state->clock_set &&
8575 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8576 refclk, NULL, &crtc_state->dpll)) {
8577 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8578 return -EINVAL;
8579 }
8580
8581 i9xx_compute_dpll(crtc, crtc_state, NULL);
8582
8583 return 0;
8584 }
8585
8586 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8587 struct intel_crtc_state *crtc_state)
8588 {
8589 int refclk = 100000;
8590 const struct intel_limit *limit = &intel_limits_chv;
8591
8592 memset(&crtc_state->dpll_hw_state, 0,
8593 sizeof(crtc_state->dpll_hw_state));
8594
8595 if (!crtc_state->clock_set &&
8596 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8597 refclk, NULL, &crtc_state->dpll)) {
8598 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8599 return -EINVAL;
8600 }
8601
8602 chv_compute_dpll(crtc, crtc_state);
8603
8604 return 0;
8605 }
8606
8607 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8608 struct intel_crtc_state *crtc_state)
8609 {
8610 int refclk = 100000;
8611 const struct intel_limit *limit = &intel_limits_vlv;
8612
8613 memset(&crtc_state->dpll_hw_state, 0,
8614 sizeof(crtc_state->dpll_hw_state));
8615
8616 if (!crtc_state->clock_set &&
8617 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8618 refclk, NULL, &crtc_state->dpll)) {
8619 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8620 return -EINVAL;
8621 }
8622
8623 vlv_compute_dpll(crtc, crtc_state);
8624
8625 return 0;
8626 }
8627
8628 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8629 struct intel_crtc_state *pipe_config)
8630 {
8631 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8632 uint32_t tmp;
8633
8634 if (INTEL_GEN(dev_priv) <= 3 &&
8635 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8636 return;
8637
8638 tmp = I915_READ(PFIT_CONTROL);
8639 if (!(tmp & PFIT_ENABLE))
8640 return;
8641
8642 /* Check whether the pfit is attached to our pipe. */
8643 if (INTEL_GEN(dev_priv) < 4) {
8644 if (crtc->pipe != PIPE_B)
8645 return;
8646 } else {
8647 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8648 return;
8649 }
8650
8651 pipe_config->gmch_pfit.control = tmp;
8652 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8653 }
8654
8655 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8656 struct intel_crtc_state *pipe_config)
8657 {
8658 struct drm_device *dev = crtc->base.dev;
8659 struct drm_i915_private *dev_priv = to_i915(dev);
8660 int pipe = pipe_config->cpu_transcoder;
8661 struct dpll clock;
8662 u32 mdiv;
8663 int refclk = 100000;
8664
8665 /* In case of DSI, DPLL will not be used */
8666 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8667 return;
8668
8669 mutex_lock(&dev_priv->sb_lock);
8670 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8671 mutex_unlock(&dev_priv->sb_lock);
8672
8673 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8674 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8675 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8676 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8677 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8678
8679 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8680 }
8681
8682 static void
8683 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8684 struct intel_initial_plane_config *plane_config)
8685 {
8686 struct drm_device *dev = crtc->base.dev;
8687 struct drm_i915_private *dev_priv = to_i915(dev);
8688 u32 val, base, offset;
8689 int pipe = crtc->pipe, plane = crtc->plane;
8690 int fourcc, pixel_format;
8691 unsigned int aligned_height;
8692 struct drm_framebuffer *fb;
8693 struct intel_framebuffer *intel_fb;
8694
8695 val = I915_READ(DSPCNTR(plane));
8696 if (!(val & DISPLAY_PLANE_ENABLE))
8697 return;
8698
8699 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8700 if (!intel_fb) {
8701 DRM_DEBUG_KMS("failed to alloc fb\n");
8702 return;
8703 }
8704
8705 fb = &intel_fb->base;
8706
8707 if (INTEL_GEN(dev_priv) >= 4) {
8708 if (val & DISPPLANE_TILED) {
8709 plane_config->tiling = I915_TILING_X;
8710 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8711 }
8712 }
8713
8714 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8715 fourcc = i9xx_format_to_fourcc(pixel_format);
8716 fb->pixel_format = fourcc;
8717 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8718
8719 if (INTEL_GEN(dev_priv) >= 4) {
8720 if (plane_config->tiling)
8721 offset = I915_READ(DSPTILEOFF(plane));
8722 else
8723 offset = I915_READ(DSPLINOFF(plane));
8724 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8725 } else {
8726 base = I915_READ(DSPADDR(plane));
8727 }
8728 plane_config->base = base;
8729
8730 val = I915_READ(PIPESRC(pipe));
8731 fb->width = ((val >> 16) & 0xfff) + 1;
8732 fb->height = ((val >> 0) & 0xfff) + 1;
8733
8734 val = I915_READ(DSPSTRIDE(pipe));
8735 fb->pitches[0] = val & 0xffffffc0;
8736
8737 aligned_height = intel_fb_align_height(dev, fb->height,
8738 fb->pixel_format,
8739 fb->modifier[0]);
8740
8741 plane_config->size = fb->pitches[0] * aligned_height;
8742
8743 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8744 pipe_name(pipe), plane, fb->width, fb->height,
8745 fb->bits_per_pixel, base, fb->pitches[0],
8746 plane_config->size);
8747
8748 plane_config->fb = intel_fb;
8749 }
8750
8751 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8752 struct intel_crtc_state *pipe_config)
8753 {
8754 struct drm_device *dev = crtc->base.dev;
8755 struct drm_i915_private *dev_priv = to_i915(dev);
8756 int pipe = pipe_config->cpu_transcoder;
8757 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8758 struct dpll clock;
8759 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8760 int refclk = 100000;
8761
8762 /* In case of DSI, DPLL will not be used */
8763 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8764 return;
8765
8766 mutex_lock(&dev_priv->sb_lock);
8767 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8768 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8769 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8770 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8771 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8772 mutex_unlock(&dev_priv->sb_lock);
8773
8774 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8775 clock.m2 = (pll_dw0 & 0xff) << 22;
8776 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8777 clock.m2 |= pll_dw2 & 0x3fffff;
8778 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8779 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8780 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8781
8782 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8783 }
8784
8785 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8786 struct intel_crtc_state *pipe_config)
8787 {
8788 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8789 enum intel_display_power_domain power_domain;
8790 uint32_t tmp;
8791 bool ret;
8792
8793 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8794 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8795 return false;
8796
8797 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8798 pipe_config->shared_dpll = NULL;
8799
8800 ret = false;
8801
8802 tmp = I915_READ(PIPECONF(crtc->pipe));
8803 if (!(tmp & PIPECONF_ENABLE))
8804 goto out;
8805
8806 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8807 IS_CHERRYVIEW(dev_priv)) {
8808 switch (tmp & PIPECONF_BPC_MASK) {
8809 case PIPECONF_6BPC:
8810 pipe_config->pipe_bpp = 18;
8811 break;
8812 case PIPECONF_8BPC:
8813 pipe_config->pipe_bpp = 24;
8814 break;
8815 case PIPECONF_10BPC:
8816 pipe_config->pipe_bpp = 30;
8817 break;
8818 default:
8819 break;
8820 }
8821 }
8822
8823 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8824 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8825 pipe_config->limited_color_range = true;
8826
8827 if (INTEL_GEN(dev_priv) < 4)
8828 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8829
8830 intel_get_pipe_timings(crtc, pipe_config);
8831 intel_get_pipe_src_size(crtc, pipe_config);
8832
8833 i9xx_get_pfit_config(crtc, pipe_config);
8834
8835 if (INTEL_GEN(dev_priv) >= 4) {
8836 /* No way to read it out on pipes B and C */
8837 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8838 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8839 else
8840 tmp = I915_READ(DPLL_MD(crtc->pipe));
8841 pipe_config->pixel_multiplier =
8842 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8843 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8844 pipe_config->dpll_hw_state.dpll_md = tmp;
8845 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8846 IS_G33(dev_priv)) {
8847 tmp = I915_READ(DPLL(crtc->pipe));
8848 pipe_config->pixel_multiplier =
8849 ((tmp & SDVO_MULTIPLIER_MASK)
8850 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8851 } else {
8852 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8853 * port and will be fixed up in the encoder->get_config
8854 * function. */
8855 pipe_config->pixel_multiplier = 1;
8856 }
8857 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8858 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8859 /*
8860 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8861 * on 830. Filter it out here so that we don't
8862 * report errors due to that.
8863 */
8864 if (IS_I830(dev_priv))
8865 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8866
8867 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8868 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8869 } else {
8870 /* Mask out read-only status bits. */
8871 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8872 DPLL_PORTC_READY_MASK |
8873 DPLL_PORTB_READY_MASK);
8874 }
8875
8876 if (IS_CHERRYVIEW(dev_priv))
8877 chv_crtc_clock_get(crtc, pipe_config);
8878 else if (IS_VALLEYVIEW(dev_priv))
8879 vlv_crtc_clock_get(crtc, pipe_config);
8880 else
8881 i9xx_crtc_clock_get(crtc, pipe_config);
8882
8883 /*
8884 * Normally the dotclock is filled in by the encoder .get_config()
8885 * but in case the pipe is enabled w/o any ports we need a sane
8886 * default.
8887 */
8888 pipe_config->base.adjusted_mode.crtc_clock =
8889 pipe_config->port_clock / pipe_config->pixel_multiplier;
8890
8891 ret = true;
8892
8893 out:
8894 intel_display_power_put(dev_priv, power_domain);
8895
8896 return ret;
8897 }
8898
8899 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8900 {
8901 struct intel_encoder *encoder;
8902 int i;
8903 u32 val, final;
8904 bool has_lvds = false;
8905 bool has_cpu_edp = false;
8906 bool has_panel = false;
8907 bool has_ck505 = false;
8908 bool can_ssc = false;
8909 bool using_ssc_source = false;
8910
8911 /* We need to take the global config into account */
8912 for_each_intel_encoder(&dev_priv->drm, encoder) {
8913 switch (encoder->type) {
8914 case INTEL_OUTPUT_LVDS:
8915 has_panel = true;
8916 has_lvds = true;
8917 break;
8918 case INTEL_OUTPUT_EDP:
8919 has_panel = true;
8920 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8921 has_cpu_edp = true;
8922 break;
8923 default:
8924 break;
8925 }
8926 }
8927
8928 if (HAS_PCH_IBX(dev_priv)) {
8929 has_ck505 = dev_priv->vbt.display_clock_mode;
8930 can_ssc = has_ck505;
8931 } else {
8932 has_ck505 = false;
8933 can_ssc = true;
8934 }
8935
8936 /* Check if any DPLLs are using the SSC source */
8937 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8938 u32 temp = I915_READ(PCH_DPLL(i));
8939
8940 if (!(temp & DPLL_VCO_ENABLE))
8941 continue;
8942
8943 if ((temp & PLL_REF_INPUT_MASK) ==
8944 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8945 using_ssc_source = true;
8946 break;
8947 }
8948 }
8949
8950 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8951 has_panel, has_lvds, has_ck505, using_ssc_source);
8952
8953 /* Ironlake: try to setup display ref clock before DPLL
8954 * enabling. This is only under driver's control after
8955 * PCH B stepping, previous chipset stepping should be
8956 * ignoring this setting.
8957 */
8958 val = I915_READ(PCH_DREF_CONTROL);
8959
8960 /* As we must carefully and slowly disable/enable each source in turn,
8961 * compute the final state we want first and check if we need to
8962 * make any changes at all.
8963 */
8964 final = val;
8965 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8966 if (has_ck505)
8967 final |= DREF_NONSPREAD_CK505_ENABLE;
8968 else
8969 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8970
8971 final &= ~DREF_SSC_SOURCE_MASK;
8972 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8973 final &= ~DREF_SSC1_ENABLE;
8974
8975 if (has_panel) {
8976 final |= DREF_SSC_SOURCE_ENABLE;
8977
8978 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8979 final |= DREF_SSC1_ENABLE;
8980
8981 if (has_cpu_edp) {
8982 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8983 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8984 else
8985 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8986 } else
8987 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8988 } else if (using_ssc_source) {
8989 final |= DREF_SSC_SOURCE_ENABLE;
8990 final |= DREF_SSC1_ENABLE;
8991 }
8992
8993 if (final == val)
8994 return;
8995
8996 /* Always enable nonspread source */
8997 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8998
8999 if (has_ck505)
9000 val |= DREF_NONSPREAD_CK505_ENABLE;
9001 else
9002 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9003
9004 if (has_panel) {
9005 val &= ~DREF_SSC_SOURCE_MASK;
9006 val |= DREF_SSC_SOURCE_ENABLE;
9007
9008 /* SSC must be turned on before enabling the CPU output */
9009 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9010 DRM_DEBUG_KMS("Using SSC on panel\n");
9011 val |= DREF_SSC1_ENABLE;
9012 } else
9013 val &= ~DREF_SSC1_ENABLE;
9014
9015 /* Get SSC going before enabling the outputs */
9016 I915_WRITE(PCH_DREF_CONTROL, val);
9017 POSTING_READ(PCH_DREF_CONTROL);
9018 udelay(200);
9019
9020 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9021
9022 /* Enable CPU source on CPU attached eDP */
9023 if (has_cpu_edp) {
9024 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9025 DRM_DEBUG_KMS("Using SSC on eDP\n");
9026 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9027 } else
9028 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9029 } else
9030 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9031
9032 I915_WRITE(PCH_DREF_CONTROL, val);
9033 POSTING_READ(PCH_DREF_CONTROL);
9034 udelay(200);
9035 } else {
9036 DRM_DEBUG_KMS("Disabling CPU source output\n");
9037
9038 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9039
9040 /* Turn off CPU output */
9041 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9042
9043 I915_WRITE(PCH_DREF_CONTROL, val);
9044 POSTING_READ(PCH_DREF_CONTROL);
9045 udelay(200);
9046
9047 if (!using_ssc_source) {
9048 DRM_DEBUG_KMS("Disabling SSC source\n");
9049
9050 /* Turn off the SSC source */
9051 val &= ~DREF_SSC_SOURCE_MASK;
9052 val |= DREF_SSC_SOURCE_DISABLE;
9053
9054 /* Turn off SSC1 */
9055 val &= ~DREF_SSC1_ENABLE;
9056
9057 I915_WRITE(PCH_DREF_CONTROL, val);
9058 POSTING_READ(PCH_DREF_CONTROL);
9059 udelay(200);
9060 }
9061 }
9062
9063 BUG_ON(val != final);
9064 }
9065
9066 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9067 {
9068 uint32_t tmp;
9069
9070 tmp = I915_READ(SOUTH_CHICKEN2);
9071 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9072 I915_WRITE(SOUTH_CHICKEN2, tmp);
9073
9074 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9075 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9076 DRM_ERROR("FDI mPHY reset assert timeout\n");
9077
9078 tmp = I915_READ(SOUTH_CHICKEN2);
9079 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9080 I915_WRITE(SOUTH_CHICKEN2, tmp);
9081
9082 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9083 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9084 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9085 }
9086
9087 /* WaMPhyProgramming:hsw */
9088 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9089 {
9090 uint32_t tmp;
9091
9092 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9093 tmp &= ~(0xFF << 24);
9094 tmp |= (0x12 << 24);
9095 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9096
9097 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9098 tmp |= (1 << 11);
9099 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9100
9101 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9102 tmp |= (1 << 11);
9103 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9104
9105 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9106 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9107 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9108
9109 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9110 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9111 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9112
9113 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9114 tmp &= ~(7 << 13);
9115 tmp |= (5 << 13);
9116 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9117
9118 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9119 tmp &= ~(7 << 13);
9120 tmp |= (5 << 13);
9121 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9122
9123 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9124 tmp &= ~0xFF;
9125 tmp |= 0x1C;
9126 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9127
9128 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9129 tmp &= ~0xFF;
9130 tmp |= 0x1C;
9131 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9132
9133 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9134 tmp &= ~(0xFF << 16);
9135 tmp |= (0x1C << 16);
9136 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9137
9138 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9139 tmp &= ~(0xFF << 16);
9140 tmp |= (0x1C << 16);
9141 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9142
9143 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9144 tmp |= (1 << 27);
9145 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9146
9147 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9148 tmp |= (1 << 27);
9149 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9150
9151 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9152 tmp &= ~(0xF << 28);
9153 tmp |= (4 << 28);
9154 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9155
9156 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9157 tmp &= ~(0xF << 28);
9158 tmp |= (4 << 28);
9159 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9160 }
9161
9162 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9163 * Programming" based on the parameters passed:
9164 * - Sequence to enable CLKOUT_DP
9165 * - Sequence to enable CLKOUT_DP without spread
9166 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9167 */
9168 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9169 bool with_spread, bool with_fdi)
9170 {
9171 uint32_t reg, tmp;
9172
9173 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9174 with_spread = true;
9175 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9176 with_fdi, "LP PCH doesn't have FDI\n"))
9177 with_fdi = false;
9178
9179 mutex_lock(&dev_priv->sb_lock);
9180
9181 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9182 tmp &= ~SBI_SSCCTL_DISABLE;
9183 tmp |= SBI_SSCCTL_PATHALT;
9184 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9185
9186 udelay(24);
9187
9188 if (with_spread) {
9189 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9190 tmp &= ~SBI_SSCCTL_PATHALT;
9191 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9192
9193 if (with_fdi) {
9194 lpt_reset_fdi_mphy(dev_priv);
9195 lpt_program_fdi_mphy(dev_priv);
9196 }
9197 }
9198
9199 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9200 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9201 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9202 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9203
9204 mutex_unlock(&dev_priv->sb_lock);
9205 }
9206
9207 /* Sequence to disable CLKOUT_DP */
9208 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9209 {
9210 uint32_t reg, tmp;
9211
9212 mutex_lock(&dev_priv->sb_lock);
9213
9214 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9215 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9216 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9217 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9218
9219 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9220 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9221 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9222 tmp |= SBI_SSCCTL_PATHALT;
9223 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9224 udelay(32);
9225 }
9226 tmp |= SBI_SSCCTL_DISABLE;
9227 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9228 }
9229
9230 mutex_unlock(&dev_priv->sb_lock);
9231 }
9232
9233 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9234
9235 static const uint16_t sscdivintphase[] = {
9236 [BEND_IDX( 50)] = 0x3B23,
9237 [BEND_IDX( 45)] = 0x3B23,
9238 [BEND_IDX( 40)] = 0x3C23,
9239 [BEND_IDX( 35)] = 0x3C23,
9240 [BEND_IDX( 30)] = 0x3D23,
9241 [BEND_IDX( 25)] = 0x3D23,
9242 [BEND_IDX( 20)] = 0x3E23,
9243 [BEND_IDX( 15)] = 0x3E23,
9244 [BEND_IDX( 10)] = 0x3F23,
9245 [BEND_IDX( 5)] = 0x3F23,
9246 [BEND_IDX( 0)] = 0x0025,
9247 [BEND_IDX( -5)] = 0x0025,
9248 [BEND_IDX(-10)] = 0x0125,
9249 [BEND_IDX(-15)] = 0x0125,
9250 [BEND_IDX(-20)] = 0x0225,
9251 [BEND_IDX(-25)] = 0x0225,
9252 [BEND_IDX(-30)] = 0x0325,
9253 [BEND_IDX(-35)] = 0x0325,
9254 [BEND_IDX(-40)] = 0x0425,
9255 [BEND_IDX(-45)] = 0x0425,
9256 [BEND_IDX(-50)] = 0x0525,
9257 };
9258
9259 /*
9260 * Bend CLKOUT_DP
9261 * steps -50 to 50 inclusive, in steps of 5
9262 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9263 * change in clock period = -(steps / 10) * 5.787 ps
9264 */
9265 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9266 {
9267 uint32_t tmp;
9268 int idx = BEND_IDX(steps);
9269
9270 if (WARN_ON(steps % 5 != 0))
9271 return;
9272
9273 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9274 return;
9275
9276 mutex_lock(&dev_priv->sb_lock);
9277
9278 if (steps % 10 != 0)
9279 tmp = 0xAAAAAAAB;
9280 else
9281 tmp = 0x00000000;
9282 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9283
9284 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9285 tmp &= 0xffff0000;
9286 tmp |= sscdivintphase[idx];
9287 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9288
9289 mutex_unlock(&dev_priv->sb_lock);
9290 }
9291
9292 #undef BEND_IDX
9293
9294 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9295 {
9296 struct intel_encoder *encoder;
9297 bool has_vga = false;
9298
9299 for_each_intel_encoder(&dev_priv->drm, encoder) {
9300 switch (encoder->type) {
9301 case INTEL_OUTPUT_ANALOG:
9302 has_vga = true;
9303 break;
9304 default:
9305 break;
9306 }
9307 }
9308
9309 if (has_vga) {
9310 lpt_bend_clkout_dp(dev_priv, 0);
9311 lpt_enable_clkout_dp(dev_priv, true, true);
9312 } else {
9313 lpt_disable_clkout_dp(dev_priv);
9314 }
9315 }
9316
9317 /*
9318 * Initialize reference clocks when the driver loads
9319 */
9320 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9321 {
9322 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9323 ironlake_init_pch_refclk(dev_priv);
9324 else if (HAS_PCH_LPT(dev_priv))
9325 lpt_init_pch_refclk(dev_priv);
9326 }
9327
9328 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9329 {
9330 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9332 int pipe = intel_crtc->pipe;
9333 uint32_t val;
9334
9335 val = 0;
9336
9337 switch (intel_crtc->config->pipe_bpp) {
9338 case 18:
9339 val |= PIPECONF_6BPC;
9340 break;
9341 case 24:
9342 val |= PIPECONF_8BPC;
9343 break;
9344 case 30:
9345 val |= PIPECONF_10BPC;
9346 break;
9347 case 36:
9348 val |= PIPECONF_12BPC;
9349 break;
9350 default:
9351 /* Case prevented by intel_choose_pipe_bpp_dither. */
9352 BUG();
9353 }
9354
9355 if (intel_crtc->config->dither)
9356 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9357
9358 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9359 val |= PIPECONF_INTERLACED_ILK;
9360 else
9361 val |= PIPECONF_PROGRESSIVE;
9362
9363 if (intel_crtc->config->limited_color_range)
9364 val |= PIPECONF_COLOR_RANGE_SELECT;
9365
9366 I915_WRITE(PIPECONF(pipe), val);
9367 POSTING_READ(PIPECONF(pipe));
9368 }
9369
9370 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9371 {
9372 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9374 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9375 u32 val = 0;
9376
9377 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9378 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9379
9380 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9381 val |= PIPECONF_INTERLACED_ILK;
9382 else
9383 val |= PIPECONF_PROGRESSIVE;
9384
9385 I915_WRITE(PIPECONF(cpu_transcoder), val);
9386 POSTING_READ(PIPECONF(cpu_transcoder));
9387 }
9388
9389 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9390 {
9391 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9393
9394 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9395 u32 val = 0;
9396
9397 switch (intel_crtc->config->pipe_bpp) {
9398 case 18:
9399 val |= PIPEMISC_DITHER_6_BPC;
9400 break;
9401 case 24:
9402 val |= PIPEMISC_DITHER_8_BPC;
9403 break;
9404 case 30:
9405 val |= PIPEMISC_DITHER_10_BPC;
9406 break;
9407 case 36:
9408 val |= PIPEMISC_DITHER_12_BPC;
9409 break;
9410 default:
9411 /* Case prevented by pipe_config_set_bpp. */
9412 BUG();
9413 }
9414
9415 if (intel_crtc->config->dither)
9416 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9417
9418 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9419 }
9420 }
9421
9422 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9423 {
9424 /*
9425 * Account for spread spectrum to avoid
9426 * oversubscribing the link. Max center spread
9427 * is 2.5%; use 5% for safety's sake.
9428 */
9429 u32 bps = target_clock * bpp * 21 / 20;
9430 return DIV_ROUND_UP(bps, link_bw * 8);
9431 }
9432
9433 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9434 {
9435 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9436 }
9437
9438 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9439 struct intel_crtc_state *crtc_state,
9440 struct dpll *reduced_clock)
9441 {
9442 struct drm_crtc *crtc = &intel_crtc->base;
9443 struct drm_device *dev = crtc->dev;
9444 struct drm_i915_private *dev_priv = to_i915(dev);
9445 u32 dpll, fp, fp2;
9446 int factor;
9447
9448 /* Enable autotuning of the PLL clock (if permissible) */
9449 factor = 21;
9450 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9451 if ((intel_panel_use_ssc(dev_priv) &&
9452 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9453 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9454 factor = 25;
9455 } else if (crtc_state->sdvo_tv_clock)
9456 factor = 20;
9457
9458 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9459
9460 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9461 fp |= FP_CB_TUNE;
9462
9463 if (reduced_clock) {
9464 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9465
9466 if (reduced_clock->m < factor * reduced_clock->n)
9467 fp2 |= FP_CB_TUNE;
9468 } else {
9469 fp2 = fp;
9470 }
9471
9472 dpll = 0;
9473
9474 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9475 dpll |= DPLLB_MODE_LVDS;
9476 else
9477 dpll |= DPLLB_MODE_DAC_SERIAL;
9478
9479 dpll |= (crtc_state->pixel_multiplier - 1)
9480 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9481
9482 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9483 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9484 dpll |= DPLL_SDVO_HIGH_SPEED;
9485
9486 if (intel_crtc_has_dp_encoder(crtc_state))
9487 dpll |= DPLL_SDVO_HIGH_SPEED;
9488
9489 /*
9490 * The high speed IO clock is only really required for
9491 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9492 * possible to share the DPLL between CRT and HDMI. Enabling
9493 * the clock needlessly does no real harm, except use up a
9494 * bit of power potentially.
9495 *
9496 * We'll limit this to IVB with 3 pipes, since it has only two
9497 * DPLLs and so DPLL sharing is the only way to get three pipes
9498 * driving PCH ports at the same time. On SNB we could do this,
9499 * and potentially avoid enabling the second DPLL, but it's not
9500 * clear if it''s a win or loss power wise. No point in doing
9501 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9502 */
9503 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9504 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9505 dpll |= DPLL_SDVO_HIGH_SPEED;
9506
9507 /* compute bitmask from p1 value */
9508 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9509 /* also FPA1 */
9510 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9511
9512 switch (crtc_state->dpll.p2) {
9513 case 5:
9514 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9515 break;
9516 case 7:
9517 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9518 break;
9519 case 10:
9520 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9521 break;
9522 case 14:
9523 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9524 break;
9525 }
9526
9527 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9528 intel_panel_use_ssc(dev_priv))
9529 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9530 else
9531 dpll |= PLL_REF_INPUT_DREFCLK;
9532
9533 dpll |= DPLL_VCO_ENABLE;
9534
9535 crtc_state->dpll_hw_state.dpll = dpll;
9536 crtc_state->dpll_hw_state.fp0 = fp;
9537 crtc_state->dpll_hw_state.fp1 = fp2;
9538 }
9539
9540 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9541 struct intel_crtc_state *crtc_state)
9542 {
9543 struct drm_device *dev = crtc->base.dev;
9544 struct drm_i915_private *dev_priv = to_i915(dev);
9545 struct dpll reduced_clock;
9546 bool has_reduced_clock = false;
9547 struct intel_shared_dpll *pll;
9548 const struct intel_limit *limit;
9549 int refclk = 120000;
9550
9551 memset(&crtc_state->dpll_hw_state, 0,
9552 sizeof(crtc_state->dpll_hw_state));
9553
9554 crtc->lowfreq_avail = false;
9555
9556 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9557 if (!crtc_state->has_pch_encoder)
9558 return 0;
9559
9560 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9561 if (intel_panel_use_ssc(dev_priv)) {
9562 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9563 dev_priv->vbt.lvds_ssc_freq);
9564 refclk = dev_priv->vbt.lvds_ssc_freq;
9565 }
9566
9567 if (intel_is_dual_link_lvds(dev)) {
9568 if (refclk == 100000)
9569 limit = &intel_limits_ironlake_dual_lvds_100m;
9570 else
9571 limit = &intel_limits_ironlake_dual_lvds;
9572 } else {
9573 if (refclk == 100000)
9574 limit = &intel_limits_ironlake_single_lvds_100m;
9575 else
9576 limit = &intel_limits_ironlake_single_lvds;
9577 }
9578 } else {
9579 limit = &intel_limits_ironlake_dac;
9580 }
9581
9582 if (!crtc_state->clock_set &&
9583 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9584 refclk, NULL, &crtc_state->dpll)) {
9585 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9586 return -EINVAL;
9587 }
9588
9589 ironlake_compute_dpll(crtc, crtc_state,
9590 has_reduced_clock ? &reduced_clock : NULL);
9591
9592 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9593 if (pll == NULL) {
9594 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9595 pipe_name(crtc->pipe));
9596 return -EINVAL;
9597 }
9598
9599 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9600 has_reduced_clock)
9601 crtc->lowfreq_avail = true;
9602
9603 return 0;
9604 }
9605
9606 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9607 struct intel_link_m_n *m_n)
9608 {
9609 struct drm_device *dev = crtc->base.dev;
9610 struct drm_i915_private *dev_priv = to_i915(dev);
9611 enum pipe pipe = crtc->pipe;
9612
9613 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9614 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9615 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9616 & ~TU_SIZE_MASK;
9617 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9618 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9619 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9620 }
9621
9622 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9623 enum transcoder transcoder,
9624 struct intel_link_m_n *m_n,
9625 struct intel_link_m_n *m2_n2)
9626 {
9627 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9628 enum pipe pipe = crtc->pipe;
9629
9630 if (INTEL_GEN(dev_priv) >= 5) {
9631 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9632 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9633 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9634 & ~TU_SIZE_MASK;
9635 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9636 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9637 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9638 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9639 * gen < 8) and if DRRS is supported (to make sure the
9640 * registers are not unnecessarily read).
9641 */
9642 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9643 crtc->config->has_drrs) {
9644 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9645 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9646 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9647 & ~TU_SIZE_MASK;
9648 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9649 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9650 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9651 }
9652 } else {
9653 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9654 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9655 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9656 & ~TU_SIZE_MASK;
9657 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9658 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9659 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9660 }
9661 }
9662
9663 void intel_dp_get_m_n(struct intel_crtc *crtc,
9664 struct intel_crtc_state *pipe_config)
9665 {
9666 if (pipe_config->has_pch_encoder)
9667 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9668 else
9669 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9670 &pipe_config->dp_m_n,
9671 &pipe_config->dp_m2_n2);
9672 }
9673
9674 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9675 struct intel_crtc_state *pipe_config)
9676 {
9677 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9678 &pipe_config->fdi_m_n, NULL);
9679 }
9680
9681 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9682 struct intel_crtc_state *pipe_config)
9683 {
9684 struct drm_device *dev = crtc->base.dev;
9685 struct drm_i915_private *dev_priv = to_i915(dev);
9686 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9687 uint32_t ps_ctrl = 0;
9688 int id = -1;
9689 int i;
9690
9691 /* find scaler attached to this pipe */
9692 for (i = 0; i < crtc->num_scalers; i++) {
9693 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9694 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9695 id = i;
9696 pipe_config->pch_pfit.enabled = true;
9697 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9698 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9699 break;
9700 }
9701 }
9702
9703 scaler_state->scaler_id = id;
9704 if (id >= 0) {
9705 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9706 } else {
9707 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9708 }
9709 }
9710
9711 static void
9712 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9713 struct intel_initial_plane_config *plane_config)
9714 {
9715 struct drm_device *dev = crtc->base.dev;
9716 struct drm_i915_private *dev_priv = to_i915(dev);
9717 u32 val, base, offset, stride_mult, tiling;
9718 int pipe = crtc->pipe;
9719 int fourcc, pixel_format;
9720 unsigned int aligned_height;
9721 struct drm_framebuffer *fb;
9722 struct intel_framebuffer *intel_fb;
9723
9724 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9725 if (!intel_fb) {
9726 DRM_DEBUG_KMS("failed to alloc fb\n");
9727 return;
9728 }
9729
9730 fb = &intel_fb->base;
9731
9732 val = I915_READ(PLANE_CTL(pipe, 0));
9733 if (!(val & PLANE_CTL_ENABLE))
9734 goto error;
9735
9736 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9737 fourcc = skl_format_to_fourcc(pixel_format,
9738 val & PLANE_CTL_ORDER_RGBX,
9739 val & PLANE_CTL_ALPHA_MASK);
9740 fb->pixel_format = fourcc;
9741 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9742
9743 tiling = val & PLANE_CTL_TILED_MASK;
9744 switch (tiling) {
9745 case PLANE_CTL_TILED_LINEAR:
9746 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9747 break;
9748 case PLANE_CTL_TILED_X:
9749 plane_config->tiling = I915_TILING_X;
9750 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9751 break;
9752 case PLANE_CTL_TILED_Y:
9753 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9754 break;
9755 case PLANE_CTL_TILED_YF:
9756 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9757 break;
9758 default:
9759 MISSING_CASE(tiling);
9760 goto error;
9761 }
9762
9763 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9764 plane_config->base = base;
9765
9766 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9767
9768 val = I915_READ(PLANE_SIZE(pipe, 0));
9769 fb->height = ((val >> 16) & 0xfff) + 1;
9770 fb->width = ((val >> 0) & 0x1fff) + 1;
9771
9772 val = I915_READ(PLANE_STRIDE(pipe, 0));
9773 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9774 fb->pixel_format);
9775 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9776
9777 aligned_height = intel_fb_align_height(dev, fb->height,
9778 fb->pixel_format,
9779 fb->modifier[0]);
9780
9781 plane_config->size = fb->pitches[0] * aligned_height;
9782
9783 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9784 pipe_name(pipe), fb->width, fb->height,
9785 fb->bits_per_pixel, base, fb->pitches[0],
9786 plane_config->size);
9787
9788 plane_config->fb = intel_fb;
9789 return;
9790
9791 error:
9792 kfree(intel_fb);
9793 }
9794
9795 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9796 struct intel_crtc_state *pipe_config)
9797 {
9798 struct drm_device *dev = crtc->base.dev;
9799 struct drm_i915_private *dev_priv = to_i915(dev);
9800 uint32_t tmp;
9801
9802 tmp = I915_READ(PF_CTL(crtc->pipe));
9803
9804 if (tmp & PF_ENABLE) {
9805 pipe_config->pch_pfit.enabled = true;
9806 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9807 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9808
9809 /* We currently do not free assignements of panel fitters on
9810 * ivb/hsw (since we don't use the higher upscaling modes which
9811 * differentiates them) so just WARN about this case for now. */
9812 if (IS_GEN7(dev_priv)) {
9813 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9814 PF_PIPE_SEL_IVB(crtc->pipe));
9815 }
9816 }
9817 }
9818
9819 static void
9820 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9821 struct intel_initial_plane_config *plane_config)
9822 {
9823 struct drm_device *dev = crtc->base.dev;
9824 struct drm_i915_private *dev_priv = to_i915(dev);
9825 u32 val, base, offset;
9826 int pipe = crtc->pipe;
9827 int fourcc, pixel_format;
9828 unsigned int aligned_height;
9829 struct drm_framebuffer *fb;
9830 struct intel_framebuffer *intel_fb;
9831
9832 val = I915_READ(DSPCNTR(pipe));
9833 if (!(val & DISPLAY_PLANE_ENABLE))
9834 return;
9835
9836 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9837 if (!intel_fb) {
9838 DRM_DEBUG_KMS("failed to alloc fb\n");
9839 return;
9840 }
9841
9842 fb = &intel_fb->base;
9843
9844 if (INTEL_GEN(dev_priv) >= 4) {
9845 if (val & DISPPLANE_TILED) {
9846 plane_config->tiling = I915_TILING_X;
9847 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9848 }
9849 }
9850
9851 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9852 fourcc = i9xx_format_to_fourcc(pixel_format);
9853 fb->pixel_format = fourcc;
9854 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9855
9856 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9857 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9858 offset = I915_READ(DSPOFFSET(pipe));
9859 } else {
9860 if (plane_config->tiling)
9861 offset = I915_READ(DSPTILEOFF(pipe));
9862 else
9863 offset = I915_READ(DSPLINOFF(pipe));
9864 }
9865 plane_config->base = base;
9866
9867 val = I915_READ(PIPESRC(pipe));
9868 fb->width = ((val >> 16) & 0xfff) + 1;
9869 fb->height = ((val >> 0) & 0xfff) + 1;
9870
9871 val = I915_READ(DSPSTRIDE(pipe));
9872 fb->pitches[0] = val & 0xffffffc0;
9873
9874 aligned_height = intel_fb_align_height(dev, fb->height,
9875 fb->pixel_format,
9876 fb->modifier[0]);
9877
9878 plane_config->size = fb->pitches[0] * aligned_height;
9879
9880 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9881 pipe_name(pipe), fb->width, fb->height,
9882 fb->bits_per_pixel, base, fb->pitches[0],
9883 plane_config->size);
9884
9885 plane_config->fb = intel_fb;
9886 }
9887
9888 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9889 struct intel_crtc_state *pipe_config)
9890 {
9891 struct drm_device *dev = crtc->base.dev;
9892 struct drm_i915_private *dev_priv = to_i915(dev);
9893 enum intel_display_power_domain power_domain;
9894 uint32_t tmp;
9895 bool ret;
9896
9897 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9898 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9899 return false;
9900
9901 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9902 pipe_config->shared_dpll = NULL;
9903
9904 ret = false;
9905 tmp = I915_READ(PIPECONF(crtc->pipe));
9906 if (!(tmp & PIPECONF_ENABLE))
9907 goto out;
9908
9909 switch (tmp & PIPECONF_BPC_MASK) {
9910 case PIPECONF_6BPC:
9911 pipe_config->pipe_bpp = 18;
9912 break;
9913 case PIPECONF_8BPC:
9914 pipe_config->pipe_bpp = 24;
9915 break;
9916 case PIPECONF_10BPC:
9917 pipe_config->pipe_bpp = 30;
9918 break;
9919 case PIPECONF_12BPC:
9920 pipe_config->pipe_bpp = 36;
9921 break;
9922 default:
9923 break;
9924 }
9925
9926 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9927 pipe_config->limited_color_range = true;
9928
9929 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9930 struct intel_shared_dpll *pll;
9931 enum intel_dpll_id pll_id;
9932
9933 pipe_config->has_pch_encoder = true;
9934
9935 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9936 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9937 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9938
9939 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9940
9941 if (HAS_PCH_IBX(dev_priv)) {
9942 /*
9943 * The pipe->pch transcoder and pch transcoder->pll
9944 * mapping is fixed.
9945 */
9946 pll_id = (enum intel_dpll_id) crtc->pipe;
9947 } else {
9948 tmp = I915_READ(PCH_DPLL_SEL);
9949 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9950 pll_id = DPLL_ID_PCH_PLL_B;
9951 else
9952 pll_id= DPLL_ID_PCH_PLL_A;
9953 }
9954
9955 pipe_config->shared_dpll =
9956 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9957 pll = pipe_config->shared_dpll;
9958
9959 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9960 &pipe_config->dpll_hw_state));
9961
9962 tmp = pipe_config->dpll_hw_state.dpll;
9963 pipe_config->pixel_multiplier =
9964 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9965 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9966
9967 ironlake_pch_clock_get(crtc, pipe_config);
9968 } else {
9969 pipe_config->pixel_multiplier = 1;
9970 }
9971
9972 intel_get_pipe_timings(crtc, pipe_config);
9973 intel_get_pipe_src_size(crtc, pipe_config);
9974
9975 ironlake_get_pfit_config(crtc, pipe_config);
9976
9977 ret = true;
9978
9979 out:
9980 intel_display_power_put(dev_priv, power_domain);
9981
9982 return ret;
9983 }
9984
9985 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9986 {
9987 struct drm_device *dev = &dev_priv->drm;
9988 struct intel_crtc *crtc;
9989
9990 for_each_intel_crtc(dev, crtc)
9991 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9992 pipe_name(crtc->pipe));
9993
9994 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9995 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9996 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9997 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9998 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
9999 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10000 "CPU PWM1 enabled\n");
10001 if (IS_HASWELL(dev_priv))
10002 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10003 "CPU PWM2 enabled\n");
10004 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10005 "PCH PWM1 enabled\n");
10006 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10007 "Utility pin enabled\n");
10008 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10009
10010 /*
10011 * In theory we can still leave IRQs enabled, as long as only the HPD
10012 * interrupts remain enabled. We used to check for that, but since it's
10013 * gen-specific and since we only disable LCPLL after we fully disable
10014 * the interrupts, the check below should be enough.
10015 */
10016 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10017 }
10018
10019 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10020 {
10021 if (IS_HASWELL(dev_priv))
10022 return I915_READ(D_COMP_HSW);
10023 else
10024 return I915_READ(D_COMP_BDW);
10025 }
10026
10027 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10028 {
10029 if (IS_HASWELL(dev_priv)) {
10030 mutex_lock(&dev_priv->rps.hw_lock);
10031 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10032 val))
10033 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10034 mutex_unlock(&dev_priv->rps.hw_lock);
10035 } else {
10036 I915_WRITE(D_COMP_BDW, val);
10037 POSTING_READ(D_COMP_BDW);
10038 }
10039 }
10040
10041 /*
10042 * This function implements pieces of two sequences from BSpec:
10043 * - Sequence for display software to disable LCPLL
10044 * - Sequence for display software to allow package C8+
10045 * The steps implemented here are just the steps that actually touch the LCPLL
10046 * register. Callers should take care of disabling all the display engine
10047 * functions, doing the mode unset, fixing interrupts, etc.
10048 */
10049 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10050 bool switch_to_fclk, bool allow_power_down)
10051 {
10052 uint32_t val;
10053
10054 assert_can_disable_lcpll(dev_priv);
10055
10056 val = I915_READ(LCPLL_CTL);
10057
10058 if (switch_to_fclk) {
10059 val |= LCPLL_CD_SOURCE_FCLK;
10060 I915_WRITE(LCPLL_CTL, val);
10061
10062 if (wait_for_us(I915_READ(LCPLL_CTL) &
10063 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10064 DRM_ERROR("Switching to FCLK failed\n");
10065
10066 val = I915_READ(LCPLL_CTL);
10067 }
10068
10069 val |= LCPLL_PLL_DISABLE;
10070 I915_WRITE(LCPLL_CTL, val);
10071 POSTING_READ(LCPLL_CTL);
10072
10073 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10074 DRM_ERROR("LCPLL still locked\n");
10075
10076 val = hsw_read_dcomp(dev_priv);
10077 val |= D_COMP_COMP_DISABLE;
10078 hsw_write_dcomp(dev_priv, val);
10079 ndelay(100);
10080
10081 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10082 1))
10083 DRM_ERROR("D_COMP RCOMP still in progress\n");
10084
10085 if (allow_power_down) {
10086 val = I915_READ(LCPLL_CTL);
10087 val |= LCPLL_POWER_DOWN_ALLOW;
10088 I915_WRITE(LCPLL_CTL, val);
10089 POSTING_READ(LCPLL_CTL);
10090 }
10091 }
10092
10093 /*
10094 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10095 * source.
10096 */
10097 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10098 {
10099 uint32_t val;
10100
10101 val = I915_READ(LCPLL_CTL);
10102
10103 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10104 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10105 return;
10106
10107 /*
10108 * Make sure we're not on PC8 state before disabling PC8, otherwise
10109 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10110 */
10111 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10112
10113 if (val & LCPLL_POWER_DOWN_ALLOW) {
10114 val &= ~LCPLL_POWER_DOWN_ALLOW;
10115 I915_WRITE(LCPLL_CTL, val);
10116 POSTING_READ(LCPLL_CTL);
10117 }
10118
10119 val = hsw_read_dcomp(dev_priv);
10120 val |= D_COMP_COMP_FORCE;
10121 val &= ~D_COMP_COMP_DISABLE;
10122 hsw_write_dcomp(dev_priv, val);
10123
10124 val = I915_READ(LCPLL_CTL);
10125 val &= ~LCPLL_PLL_DISABLE;
10126 I915_WRITE(LCPLL_CTL, val);
10127
10128 if (intel_wait_for_register(dev_priv,
10129 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10130 5))
10131 DRM_ERROR("LCPLL not locked yet\n");
10132
10133 if (val & LCPLL_CD_SOURCE_FCLK) {
10134 val = I915_READ(LCPLL_CTL);
10135 val &= ~LCPLL_CD_SOURCE_FCLK;
10136 I915_WRITE(LCPLL_CTL, val);
10137
10138 if (wait_for_us((I915_READ(LCPLL_CTL) &
10139 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10140 DRM_ERROR("Switching back to LCPLL failed\n");
10141 }
10142
10143 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10144 intel_update_cdclk(dev_priv);
10145 }
10146
10147 /*
10148 * Package states C8 and deeper are really deep PC states that can only be
10149 * reached when all the devices on the system allow it, so even if the graphics
10150 * device allows PC8+, it doesn't mean the system will actually get to these
10151 * states. Our driver only allows PC8+ when going into runtime PM.
10152 *
10153 * The requirements for PC8+ are that all the outputs are disabled, the power
10154 * well is disabled and most interrupts are disabled, and these are also
10155 * requirements for runtime PM. When these conditions are met, we manually do
10156 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10157 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10158 * hang the machine.
10159 *
10160 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10161 * the state of some registers, so when we come back from PC8+ we need to
10162 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10163 * need to take care of the registers kept by RC6. Notice that this happens even
10164 * if we don't put the device in PCI D3 state (which is what currently happens
10165 * because of the runtime PM support).
10166 *
10167 * For more, read "Display Sequences for Package C8" on the hardware
10168 * documentation.
10169 */
10170 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10171 {
10172 uint32_t val;
10173
10174 DRM_DEBUG_KMS("Enabling package C8+\n");
10175
10176 if (HAS_PCH_LPT_LP(dev_priv)) {
10177 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10178 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10179 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10180 }
10181
10182 lpt_disable_clkout_dp(dev_priv);
10183 hsw_disable_lcpll(dev_priv, true, true);
10184 }
10185
10186 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10187 {
10188 uint32_t val;
10189
10190 DRM_DEBUG_KMS("Disabling package C8+\n");
10191
10192 hsw_restore_lcpll(dev_priv);
10193 lpt_init_pch_refclk(dev_priv);
10194
10195 if (HAS_PCH_LPT_LP(dev_priv)) {
10196 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10197 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10198 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10199 }
10200 }
10201
10202 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10203 {
10204 struct drm_device *dev = old_state->dev;
10205 struct intel_atomic_state *old_intel_state =
10206 to_intel_atomic_state(old_state);
10207 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10208
10209 bxt_set_cdclk(to_i915(dev), req_cdclk);
10210 }
10211
10212 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10213 int pixel_rate)
10214 {
10215 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10216
10217 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10218 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10219 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10220
10221 /* BSpec says "Do not use DisplayPort with CDCLK less than
10222 * 432 MHz, audio enabled, port width x4, and link rate
10223 * HBR2 (5.4 GHz), or else there may be audio corruption or
10224 * screen corruption."
10225 */
10226 if (intel_crtc_has_dp_encoder(crtc_state) &&
10227 crtc_state->has_audio &&
10228 crtc_state->port_clock >= 540000 &&
10229 crtc_state->lane_count == 4)
10230 pixel_rate = max(432000, pixel_rate);
10231
10232 return pixel_rate;
10233 }
10234
10235 /* compute the max rate for new configuration */
10236 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10237 {
10238 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10239 struct drm_i915_private *dev_priv = to_i915(state->dev);
10240 struct drm_crtc *crtc;
10241 struct drm_crtc_state *cstate;
10242 struct intel_crtc_state *crtc_state;
10243 unsigned max_pixel_rate = 0, i;
10244 enum pipe pipe;
10245
10246 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10247 sizeof(intel_state->min_pixclk));
10248
10249 for_each_crtc_in_state(state, crtc, cstate, i) {
10250 int pixel_rate;
10251
10252 crtc_state = to_intel_crtc_state(cstate);
10253 if (!crtc_state->base.enable) {
10254 intel_state->min_pixclk[i] = 0;
10255 continue;
10256 }
10257
10258 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10259
10260 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10261 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10262 pixel_rate);
10263
10264 intel_state->min_pixclk[i] = pixel_rate;
10265 }
10266
10267 for_each_pipe(dev_priv, pipe)
10268 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10269
10270 return max_pixel_rate;
10271 }
10272
10273 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10274 {
10275 struct drm_i915_private *dev_priv = to_i915(dev);
10276 uint32_t val, data;
10277 int ret;
10278
10279 if (WARN((I915_READ(LCPLL_CTL) &
10280 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10281 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10282 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10283 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10284 "trying to change cdclk frequency with cdclk not enabled\n"))
10285 return;
10286
10287 mutex_lock(&dev_priv->rps.hw_lock);
10288 ret = sandybridge_pcode_write(dev_priv,
10289 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10290 mutex_unlock(&dev_priv->rps.hw_lock);
10291 if (ret) {
10292 DRM_ERROR("failed to inform pcode about cdclk change\n");
10293 return;
10294 }
10295
10296 val = I915_READ(LCPLL_CTL);
10297 val |= LCPLL_CD_SOURCE_FCLK;
10298 I915_WRITE(LCPLL_CTL, val);
10299
10300 if (wait_for_us(I915_READ(LCPLL_CTL) &
10301 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10302 DRM_ERROR("Switching to FCLK failed\n");
10303
10304 val = I915_READ(LCPLL_CTL);
10305 val &= ~LCPLL_CLK_FREQ_MASK;
10306
10307 switch (cdclk) {
10308 case 450000:
10309 val |= LCPLL_CLK_FREQ_450;
10310 data = 0;
10311 break;
10312 case 540000:
10313 val |= LCPLL_CLK_FREQ_54O_BDW;
10314 data = 1;
10315 break;
10316 case 337500:
10317 val |= LCPLL_CLK_FREQ_337_5_BDW;
10318 data = 2;
10319 break;
10320 case 675000:
10321 val |= LCPLL_CLK_FREQ_675_BDW;
10322 data = 3;
10323 break;
10324 default:
10325 WARN(1, "invalid cdclk frequency\n");
10326 return;
10327 }
10328
10329 I915_WRITE(LCPLL_CTL, val);
10330
10331 val = I915_READ(LCPLL_CTL);
10332 val &= ~LCPLL_CD_SOURCE_FCLK;
10333 I915_WRITE(LCPLL_CTL, val);
10334
10335 if (wait_for_us((I915_READ(LCPLL_CTL) &
10336 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10337 DRM_ERROR("Switching back to LCPLL failed\n");
10338
10339 mutex_lock(&dev_priv->rps.hw_lock);
10340 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10341 mutex_unlock(&dev_priv->rps.hw_lock);
10342
10343 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10344
10345 intel_update_cdclk(dev_priv);
10346
10347 WARN(cdclk != dev_priv->cdclk_freq,
10348 "cdclk requested %d kHz but got %d kHz\n",
10349 cdclk, dev_priv->cdclk_freq);
10350 }
10351
10352 static int broadwell_calc_cdclk(int max_pixclk)
10353 {
10354 if (max_pixclk > 540000)
10355 return 675000;
10356 else if (max_pixclk > 450000)
10357 return 540000;
10358 else if (max_pixclk > 337500)
10359 return 450000;
10360 else
10361 return 337500;
10362 }
10363
10364 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10365 {
10366 struct drm_i915_private *dev_priv = to_i915(state->dev);
10367 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10368 int max_pixclk = ilk_max_pixel_rate(state);
10369 int cdclk;
10370
10371 /*
10372 * FIXME should also account for plane ratio
10373 * once 64bpp pixel formats are supported.
10374 */
10375 cdclk = broadwell_calc_cdclk(max_pixclk);
10376
10377 if (cdclk > dev_priv->max_cdclk_freq) {
10378 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10379 cdclk, dev_priv->max_cdclk_freq);
10380 return -EINVAL;
10381 }
10382
10383 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10384 if (!intel_state->active_crtcs)
10385 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10386
10387 return 0;
10388 }
10389
10390 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10391 {
10392 struct drm_device *dev = old_state->dev;
10393 struct intel_atomic_state *old_intel_state =
10394 to_intel_atomic_state(old_state);
10395 unsigned req_cdclk = old_intel_state->dev_cdclk;
10396
10397 broadwell_set_cdclk(dev, req_cdclk);
10398 }
10399
10400 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10401 {
10402 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10403 struct drm_i915_private *dev_priv = to_i915(state->dev);
10404 const int max_pixclk = ilk_max_pixel_rate(state);
10405 int vco = intel_state->cdclk_pll_vco;
10406 int cdclk;
10407
10408 /*
10409 * FIXME should also account for plane ratio
10410 * once 64bpp pixel formats are supported.
10411 */
10412 cdclk = skl_calc_cdclk(max_pixclk, vco);
10413
10414 /*
10415 * FIXME move the cdclk caclulation to
10416 * compute_config() so we can fail gracegully.
10417 */
10418 if (cdclk > dev_priv->max_cdclk_freq) {
10419 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10420 cdclk, dev_priv->max_cdclk_freq);
10421 cdclk = dev_priv->max_cdclk_freq;
10422 }
10423
10424 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10425 if (!intel_state->active_crtcs)
10426 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10427
10428 return 0;
10429 }
10430
10431 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10432 {
10433 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10434 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10435 unsigned int req_cdclk = intel_state->dev_cdclk;
10436 unsigned int req_vco = intel_state->cdclk_pll_vco;
10437
10438 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10439 }
10440
10441 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10442 struct intel_crtc_state *crtc_state)
10443 {
10444 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10445 if (!intel_ddi_pll_select(crtc, crtc_state))
10446 return -EINVAL;
10447 }
10448
10449 crtc->lowfreq_avail = false;
10450
10451 return 0;
10452 }
10453
10454 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10455 enum port port,
10456 struct intel_crtc_state *pipe_config)
10457 {
10458 enum intel_dpll_id id;
10459
10460 switch (port) {
10461 case PORT_A:
10462 id = DPLL_ID_SKL_DPLL0;
10463 break;
10464 case PORT_B:
10465 id = DPLL_ID_SKL_DPLL1;
10466 break;
10467 case PORT_C:
10468 id = DPLL_ID_SKL_DPLL2;
10469 break;
10470 default:
10471 DRM_ERROR("Incorrect port type\n");
10472 return;
10473 }
10474
10475 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10476 }
10477
10478 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10479 enum port port,
10480 struct intel_crtc_state *pipe_config)
10481 {
10482 enum intel_dpll_id id;
10483 u32 temp;
10484
10485 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10486 id = temp >> (port * 3 + 1);
10487
10488 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10489 return;
10490
10491 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10492 }
10493
10494 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10495 enum port port,
10496 struct intel_crtc_state *pipe_config)
10497 {
10498 enum intel_dpll_id id;
10499 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10500
10501 switch (ddi_pll_sel) {
10502 case PORT_CLK_SEL_WRPLL1:
10503 id = DPLL_ID_WRPLL1;
10504 break;
10505 case PORT_CLK_SEL_WRPLL2:
10506 id = DPLL_ID_WRPLL2;
10507 break;
10508 case PORT_CLK_SEL_SPLL:
10509 id = DPLL_ID_SPLL;
10510 break;
10511 case PORT_CLK_SEL_LCPLL_810:
10512 id = DPLL_ID_LCPLL_810;
10513 break;
10514 case PORT_CLK_SEL_LCPLL_1350:
10515 id = DPLL_ID_LCPLL_1350;
10516 break;
10517 case PORT_CLK_SEL_LCPLL_2700:
10518 id = DPLL_ID_LCPLL_2700;
10519 break;
10520 default:
10521 MISSING_CASE(ddi_pll_sel);
10522 /* fall through */
10523 case PORT_CLK_SEL_NONE:
10524 return;
10525 }
10526
10527 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10528 }
10529
10530 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10531 struct intel_crtc_state *pipe_config,
10532 unsigned long *power_domain_mask)
10533 {
10534 struct drm_device *dev = crtc->base.dev;
10535 struct drm_i915_private *dev_priv = to_i915(dev);
10536 enum intel_display_power_domain power_domain;
10537 u32 tmp;
10538
10539 /*
10540 * The pipe->transcoder mapping is fixed with the exception of the eDP
10541 * transcoder handled below.
10542 */
10543 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10544
10545 /*
10546 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10547 * consistency and less surprising code; it's in always on power).
10548 */
10549 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10550 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10551 enum pipe trans_edp_pipe;
10552 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10553 default:
10554 WARN(1, "unknown pipe linked to edp transcoder\n");
10555 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10556 case TRANS_DDI_EDP_INPUT_A_ON:
10557 trans_edp_pipe = PIPE_A;
10558 break;
10559 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10560 trans_edp_pipe = PIPE_B;
10561 break;
10562 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10563 trans_edp_pipe = PIPE_C;
10564 break;
10565 }
10566
10567 if (trans_edp_pipe == crtc->pipe)
10568 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10569 }
10570
10571 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10572 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10573 return false;
10574 *power_domain_mask |= BIT(power_domain);
10575
10576 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10577
10578 return tmp & PIPECONF_ENABLE;
10579 }
10580
10581 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10582 struct intel_crtc_state *pipe_config,
10583 unsigned long *power_domain_mask)
10584 {
10585 struct drm_device *dev = crtc->base.dev;
10586 struct drm_i915_private *dev_priv = to_i915(dev);
10587 enum intel_display_power_domain power_domain;
10588 enum port port;
10589 enum transcoder cpu_transcoder;
10590 u32 tmp;
10591
10592 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10593 if (port == PORT_A)
10594 cpu_transcoder = TRANSCODER_DSI_A;
10595 else
10596 cpu_transcoder = TRANSCODER_DSI_C;
10597
10598 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10599 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10600 continue;
10601 *power_domain_mask |= BIT(power_domain);
10602
10603 /*
10604 * The PLL needs to be enabled with a valid divider
10605 * configuration, otherwise accessing DSI registers will hang
10606 * the machine. See BSpec North Display Engine
10607 * registers/MIPI[BXT]. We can break out here early, since we
10608 * need the same DSI PLL to be enabled for both DSI ports.
10609 */
10610 if (!intel_dsi_pll_is_enabled(dev_priv))
10611 break;
10612
10613 /* XXX: this works for video mode only */
10614 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10615 if (!(tmp & DPI_ENABLE))
10616 continue;
10617
10618 tmp = I915_READ(MIPI_CTRL(port));
10619 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10620 continue;
10621
10622 pipe_config->cpu_transcoder = cpu_transcoder;
10623 break;
10624 }
10625
10626 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10627 }
10628
10629 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10630 struct intel_crtc_state *pipe_config)
10631 {
10632 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10633 struct intel_shared_dpll *pll;
10634 enum port port;
10635 uint32_t tmp;
10636
10637 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10638
10639 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10640
10641 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10642 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10643 else if (IS_BROXTON(dev_priv))
10644 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10645 else
10646 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10647
10648 pll = pipe_config->shared_dpll;
10649 if (pll) {
10650 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10651 &pipe_config->dpll_hw_state));
10652 }
10653
10654 /*
10655 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10656 * DDI E. So just check whether this pipe is wired to DDI E and whether
10657 * the PCH transcoder is on.
10658 */
10659 if (INTEL_GEN(dev_priv) < 9 &&
10660 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10661 pipe_config->has_pch_encoder = true;
10662
10663 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10664 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10665 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10666
10667 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10668 }
10669 }
10670
10671 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10672 struct intel_crtc_state *pipe_config)
10673 {
10674 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10675 enum intel_display_power_domain power_domain;
10676 unsigned long power_domain_mask;
10677 bool active;
10678
10679 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10680 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10681 return false;
10682 power_domain_mask = BIT(power_domain);
10683
10684 pipe_config->shared_dpll = NULL;
10685
10686 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10687
10688 if (IS_BROXTON(dev_priv) &&
10689 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10690 WARN_ON(active);
10691 active = true;
10692 }
10693
10694 if (!active)
10695 goto out;
10696
10697 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10698 haswell_get_ddi_port_state(crtc, pipe_config);
10699 intel_get_pipe_timings(crtc, pipe_config);
10700 }
10701
10702 intel_get_pipe_src_size(crtc, pipe_config);
10703
10704 pipe_config->gamma_mode =
10705 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10706
10707 if (INTEL_GEN(dev_priv) >= 9) {
10708 skl_init_scalers(dev_priv, crtc, pipe_config);
10709
10710 pipe_config->scaler_state.scaler_id = -1;
10711 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10712 }
10713
10714 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10715 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10716 power_domain_mask |= BIT(power_domain);
10717 if (INTEL_GEN(dev_priv) >= 9)
10718 skylake_get_pfit_config(crtc, pipe_config);
10719 else
10720 ironlake_get_pfit_config(crtc, pipe_config);
10721 }
10722
10723 if (IS_HASWELL(dev_priv))
10724 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10725 (I915_READ(IPS_CTL) & IPS_ENABLE);
10726
10727 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10728 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10729 pipe_config->pixel_multiplier =
10730 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10731 } else {
10732 pipe_config->pixel_multiplier = 1;
10733 }
10734
10735 out:
10736 for_each_power_domain(power_domain, power_domain_mask)
10737 intel_display_power_put(dev_priv, power_domain);
10738
10739 return active;
10740 }
10741
10742 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10743 const struct intel_plane_state *plane_state)
10744 {
10745 struct drm_device *dev = crtc->dev;
10746 struct drm_i915_private *dev_priv = to_i915(dev);
10747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10748 uint32_t cntl = 0, size = 0;
10749
10750 if (plane_state && plane_state->base.visible) {
10751 unsigned int width = plane_state->base.crtc_w;
10752 unsigned int height = plane_state->base.crtc_h;
10753 unsigned int stride = roundup_pow_of_two(width) * 4;
10754
10755 switch (stride) {
10756 default:
10757 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10758 width, stride);
10759 stride = 256;
10760 /* fallthrough */
10761 case 256:
10762 case 512:
10763 case 1024:
10764 case 2048:
10765 break;
10766 }
10767
10768 cntl |= CURSOR_ENABLE |
10769 CURSOR_GAMMA_ENABLE |
10770 CURSOR_FORMAT_ARGB |
10771 CURSOR_STRIDE(stride);
10772
10773 size = (height << 12) | width;
10774 }
10775
10776 if (intel_crtc->cursor_cntl != 0 &&
10777 (intel_crtc->cursor_base != base ||
10778 intel_crtc->cursor_size != size ||
10779 intel_crtc->cursor_cntl != cntl)) {
10780 /* On these chipsets we can only modify the base/size/stride
10781 * whilst the cursor is disabled.
10782 */
10783 I915_WRITE(CURCNTR(PIPE_A), 0);
10784 POSTING_READ(CURCNTR(PIPE_A));
10785 intel_crtc->cursor_cntl = 0;
10786 }
10787
10788 if (intel_crtc->cursor_base != base) {
10789 I915_WRITE(CURBASE(PIPE_A), base);
10790 intel_crtc->cursor_base = base;
10791 }
10792
10793 if (intel_crtc->cursor_size != size) {
10794 I915_WRITE(CURSIZE, size);
10795 intel_crtc->cursor_size = size;
10796 }
10797
10798 if (intel_crtc->cursor_cntl != cntl) {
10799 I915_WRITE(CURCNTR(PIPE_A), cntl);
10800 POSTING_READ(CURCNTR(PIPE_A));
10801 intel_crtc->cursor_cntl = cntl;
10802 }
10803 }
10804
10805 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10806 const struct intel_plane_state *plane_state)
10807 {
10808 struct drm_device *dev = crtc->dev;
10809 struct drm_i915_private *dev_priv = to_i915(dev);
10810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10811 int pipe = intel_crtc->pipe;
10812 uint32_t cntl = 0;
10813
10814 if (plane_state && plane_state->base.visible) {
10815 cntl = MCURSOR_GAMMA_ENABLE;
10816 switch (plane_state->base.crtc_w) {
10817 case 64:
10818 cntl |= CURSOR_MODE_64_ARGB_AX;
10819 break;
10820 case 128:
10821 cntl |= CURSOR_MODE_128_ARGB_AX;
10822 break;
10823 case 256:
10824 cntl |= CURSOR_MODE_256_ARGB_AX;
10825 break;
10826 default:
10827 MISSING_CASE(plane_state->base.crtc_w);
10828 return;
10829 }
10830 cntl |= pipe << 28; /* Connect to correct pipe */
10831
10832 if (HAS_DDI(dev_priv))
10833 cntl |= CURSOR_PIPE_CSC_ENABLE;
10834
10835 if (plane_state->base.rotation & DRM_ROTATE_180)
10836 cntl |= CURSOR_ROTATE_180;
10837 }
10838
10839 if (intel_crtc->cursor_cntl != cntl) {
10840 I915_WRITE(CURCNTR(pipe), cntl);
10841 POSTING_READ(CURCNTR(pipe));
10842 intel_crtc->cursor_cntl = cntl;
10843 }
10844
10845 /* and commit changes on next vblank */
10846 I915_WRITE(CURBASE(pipe), base);
10847 POSTING_READ(CURBASE(pipe));
10848
10849 intel_crtc->cursor_base = base;
10850 }
10851
10852 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10853 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10854 const struct intel_plane_state *plane_state)
10855 {
10856 struct drm_device *dev = crtc->dev;
10857 struct drm_i915_private *dev_priv = to_i915(dev);
10858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10859 int pipe = intel_crtc->pipe;
10860 u32 base = intel_crtc->cursor_addr;
10861 u32 pos = 0;
10862
10863 if (plane_state) {
10864 int x = plane_state->base.crtc_x;
10865 int y = plane_state->base.crtc_y;
10866
10867 if (x < 0) {
10868 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10869 x = -x;
10870 }
10871 pos |= x << CURSOR_X_SHIFT;
10872
10873 if (y < 0) {
10874 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10875 y = -y;
10876 }
10877 pos |= y << CURSOR_Y_SHIFT;
10878
10879 /* ILK+ do this automagically */
10880 if (HAS_GMCH_DISPLAY(dev_priv) &&
10881 plane_state->base.rotation & DRM_ROTATE_180) {
10882 base += (plane_state->base.crtc_h *
10883 plane_state->base.crtc_w - 1) * 4;
10884 }
10885 }
10886
10887 I915_WRITE(CURPOS(pipe), pos);
10888
10889 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10890 i845_update_cursor(crtc, base, plane_state);
10891 else
10892 i9xx_update_cursor(crtc, base, plane_state);
10893 }
10894
10895 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10896 uint32_t width, uint32_t height)
10897 {
10898 if (width == 0 || height == 0)
10899 return false;
10900
10901 /*
10902 * 845g/865g are special in that they are only limited by
10903 * the width of their cursors, the height is arbitrary up to
10904 * the precision of the register. Everything else requires
10905 * square cursors, limited to a few power-of-two sizes.
10906 */
10907 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10908 if ((width & 63) != 0)
10909 return false;
10910
10911 if (width > (IS_845G(dev_priv) ? 64 : 512))
10912 return false;
10913
10914 if (height > 1023)
10915 return false;
10916 } else {
10917 switch (width | height) {
10918 case 256:
10919 case 128:
10920 if (IS_GEN2(dev_priv))
10921 return false;
10922 case 64:
10923 break;
10924 default:
10925 return false;
10926 }
10927 }
10928
10929 return true;
10930 }
10931
10932 /* VESA 640x480x72Hz mode to set on the pipe */
10933 static struct drm_display_mode load_detect_mode = {
10934 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10935 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10936 };
10937
10938 struct drm_framebuffer *
10939 __intel_framebuffer_create(struct drm_device *dev,
10940 struct drm_mode_fb_cmd2 *mode_cmd,
10941 struct drm_i915_gem_object *obj)
10942 {
10943 struct intel_framebuffer *intel_fb;
10944 int ret;
10945
10946 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10947 if (!intel_fb)
10948 return ERR_PTR(-ENOMEM);
10949
10950 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10951 if (ret)
10952 goto err;
10953
10954 return &intel_fb->base;
10955
10956 err:
10957 kfree(intel_fb);
10958 return ERR_PTR(ret);
10959 }
10960
10961 static struct drm_framebuffer *
10962 intel_framebuffer_create(struct drm_device *dev,
10963 struct drm_mode_fb_cmd2 *mode_cmd,
10964 struct drm_i915_gem_object *obj)
10965 {
10966 struct drm_framebuffer *fb;
10967 int ret;
10968
10969 ret = i915_mutex_lock_interruptible(dev);
10970 if (ret)
10971 return ERR_PTR(ret);
10972 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10973 mutex_unlock(&dev->struct_mutex);
10974
10975 return fb;
10976 }
10977
10978 static u32
10979 intel_framebuffer_pitch_for_width(int width, int bpp)
10980 {
10981 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10982 return ALIGN(pitch, 64);
10983 }
10984
10985 static u32
10986 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10987 {
10988 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10989 return PAGE_ALIGN(pitch * mode->vdisplay);
10990 }
10991
10992 static struct drm_framebuffer *
10993 intel_framebuffer_create_for_mode(struct drm_device *dev,
10994 struct drm_display_mode *mode,
10995 int depth, int bpp)
10996 {
10997 struct drm_framebuffer *fb;
10998 struct drm_i915_gem_object *obj;
10999 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11000
11001 obj = i915_gem_object_create(to_i915(dev),
11002 intel_framebuffer_size_for_mode(mode, bpp));
11003 if (IS_ERR(obj))
11004 return ERR_CAST(obj);
11005
11006 mode_cmd.width = mode->hdisplay;
11007 mode_cmd.height = mode->vdisplay;
11008 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11009 bpp);
11010 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11011
11012 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11013 if (IS_ERR(fb))
11014 i915_gem_object_put(obj);
11015
11016 return fb;
11017 }
11018
11019 static struct drm_framebuffer *
11020 mode_fits_in_fbdev(struct drm_device *dev,
11021 struct drm_display_mode *mode)
11022 {
11023 #ifdef CONFIG_DRM_FBDEV_EMULATION
11024 struct drm_i915_private *dev_priv = to_i915(dev);
11025 struct drm_i915_gem_object *obj;
11026 struct drm_framebuffer *fb;
11027
11028 if (!dev_priv->fbdev)
11029 return NULL;
11030
11031 if (!dev_priv->fbdev->fb)
11032 return NULL;
11033
11034 obj = dev_priv->fbdev->fb->obj;
11035 BUG_ON(!obj);
11036
11037 fb = &dev_priv->fbdev->fb->base;
11038 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11039 fb->bits_per_pixel))
11040 return NULL;
11041
11042 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11043 return NULL;
11044
11045 drm_framebuffer_reference(fb);
11046 return fb;
11047 #else
11048 return NULL;
11049 #endif
11050 }
11051
11052 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11053 struct drm_crtc *crtc,
11054 struct drm_display_mode *mode,
11055 struct drm_framebuffer *fb,
11056 int x, int y)
11057 {
11058 struct drm_plane_state *plane_state;
11059 int hdisplay, vdisplay;
11060 int ret;
11061
11062 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11063 if (IS_ERR(plane_state))
11064 return PTR_ERR(plane_state);
11065
11066 if (mode)
11067 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11068 else
11069 hdisplay = vdisplay = 0;
11070
11071 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11072 if (ret)
11073 return ret;
11074 drm_atomic_set_fb_for_plane(plane_state, fb);
11075 plane_state->crtc_x = 0;
11076 plane_state->crtc_y = 0;
11077 plane_state->crtc_w = hdisplay;
11078 plane_state->crtc_h = vdisplay;
11079 plane_state->src_x = x << 16;
11080 plane_state->src_y = y << 16;
11081 plane_state->src_w = hdisplay << 16;
11082 plane_state->src_h = vdisplay << 16;
11083
11084 return 0;
11085 }
11086
11087 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11088 struct drm_display_mode *mode,
11089 struct intel_load_detect_pipe *old,
11090 struct drm_modeset_acquire_ctx *ctx)
11091 {
11092 struct intel_crtc *intel_crtc;
11093 struct intel_encoder *intel_encoder =
11094 intel_attached_encoder(connector);
11095 struct drm_crtc *possible_crtc;
11096 struct drm_encoder *encoder = &intel_encoder->base;
11097 struct drm_crtc *crtc = NULL;
11098 struct drm_device *dev = encoder->dev;
11099 struct drm_i915_private *dev_priv = to_i915(dev);
11100 struct drm_framebuffer *fb;
11101 struct drm_mode_config *config = &dev->mode_config;
11102 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11103 struct drm_connector_state *connector_state;
11104 struct intel_crtc_state *crtc_state;
11105 int ret, i = -1;
11106
11107 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11108 connector->base.id, connector->name,
11109 encoder->base.id, encoder->name);
11110
11111 old->restore_state = NULL;
11112
11113 retry:
11114 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11115 if (ret)
11116 goto fail;
11117
11118 /*
11119 * Algorithm gets a little messy:
11120 *
11121 * - if the connector already has an assigned crtc, use it (but make
11122 * sure it's on first)
11123 *
11124 * - try to find the first unused crtc that can drive this connector,
11125 * and use that if we find one
11126 */
11127
11128 /* See if we already have a CRTC for this connector */
11129 if (connector->state->crtc) {
11130 crtc = connector->state->crtc;
11131
11132 ret = drm_modeset_lock(&crtc->mutex, ctx);
11133 if (ret)
11134 goto fail;
11135
11136 /* Make sure the crtc and connector are running */
11137 goto found;
11138 }
11139
11140 /* Find an unused one (if possible) */
11141 for_each_crtc(dev, possible_crtc) {
11142 i++;
11143 if (!(encoder->possible_crtcs & (1 << i)))
11144 continue;
11145
11146 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11147 if (ret)
11148 goto fail;
11149
11150 if (possible_crtc->state->enable) {
11151 drm_modeset_unlock(&possible_crtc->mutex);
11152 continue;
11153 }
11154
11155 crtc = possible_crtc;
11156 break;
11157 }
11158
11159 /*
11160 * If we didn't find an unused CRTC, don't use any.
11161 */
11162 if (!crtc) {
11163 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11164 goto fail;
11165 }
11166
11167 found:
11168 intel_crtc = to_intel_crtc(crtc);
11169
11170 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11171 if (ret)
11172 goto fail;
11173
11174 state = drm_atomic_state_alloc(dev);
11175 restore_state = drm_atomic_state_alloc(dev);
11176 if (!state || !restore_state) {
11177 ret = -ENOMEM;
11178 goto fail;
11179 }
11180
11181 state->acquire_ctx = ctx;
11182 restore_state->acquire_ctx = ctx;
11183
11184 connector_state = drm_atomic_get_connector_state(state, connector);
11185 if (IS_ERR(connector_state)) {
11186 ret = PTR_ERR(connector_state);
11187 goto fail;
11188 }
11189
11190 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11191 if (ret)
11192 goto fail;
11193
11194 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11195 if (IS_ERR(crtc_state)) {
11196 ret = PTR_ERR(crtc_state);
11197 goto fail;
11198 }
11199
11200 crtc_state->base.active = crtc_state->base.enable = true;
11201
11202 if (!mode)
11203 mode = &load_detect_mode;
11204
11205 /* We need a framebuffer large enough to accommodate all accesses
11206 * that the plane may generate whilst we perform load detection.
11207 * We can not rely on the fbcon either being present (we get called
11208 * during its initialisation to detect all boot displays, or it may
11209 * not even exist) or that it is large enough to satisfy the
11210 * requested mode.
11211 */
11212 fb = mode_fits_in_fbdev(dev, mode);
11213 if (fb == NULL) {
11214 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11215 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11216 } else
11217 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11218 if (IS_ERR(fb)) {
11219 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11220 goto fail;
11221 }
11222
11223 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11224 if (ret)
11225 goto fail;
11226
11227 drm_framebuffer_unreference(fb);
11228
11229 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11230 if (ret)
11231 goto fail;
11232
11233 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11234 if (!ret)
11235 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11236 if (!ret)
11237 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11238 if (ret) {
11239 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11240 goto fail;
11241 }
11242
11243 ret = drm_atomic_commit(state);
11244 if (ret) {
11245 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11246 goto fail;
11247 }
11248
11249 old->restore_state = restore_state;
11250
11251 /* let the connector get through one full cycle before testing */
11252 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11253 return true;
11254
11255 fail:
11256 if (state) {
11257 drm_atomic_state_put(state);
11258 state = NULL;
11259 }
11260 if (restore_state) {
11261 drm_atomic_state_put(restore_state);
11262 restore_state = NULL;
11263 }
11264
11265 if (ret == -EDEADLK) {
11266 drm_modeset_backoff(ctx);
11267 goto retry;
11268 }
11269
11270 return false;
11271 }
11272
11273 void intel_release_load_detect_pipe(struct drm_connector *connector,
11274 struct intel_load_detect_pipe *old,
11275 struct drm_modeset_acquire_ctx *ctx)
11276 {
11277 struct intel_encoder *intel_encoder =
11278 intel_attached_encoder(connector);
11279 struct drm_encoder *encoder = &intel_encoder->base;
11280 struct drm_atomic_state *state = old->restore_state;
11281 int ret;
11282
11283 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11284 connector->base.id, connector->name,
11285 encoder->base.id, encoder->name);
11286
11287 if (!state)
11288 return;
11289
11290 ret = drm_atomic_commit(state);
11291 if (ret)
11292 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11293 drm_atomic_state_put(state);
11294 }
11295
11296 static int i9xx_pll_refclk(struct drm_device *dev,
11297 const struct intel_crtc_state *pipe_config)
11298 {
11299 struct drm_i915_private *dev_priv = to_i915(dev);
11300 u32 dpll = pipe_config->dpll_hw_state.dpll;
11301
11302 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11303 return dev_priv->vbt.lvds_ssc_freq;
11304 else if (HAS_PCH_SPLIT(dev_priv))
11305 return 120000;
11306 else if (!IS_GEN2(dev_priv))
11307 return 96000;
11308 else
11309 return 48000;
11310 }
11311
11312 /* Returns the clock of the currently programmed mode of the given pipe. */
11313 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11314 struct intel_crtc_state *pipe_config)
11315 {
11316 struct drm_device *dev = crtc->base.dev;
11317 struct drm_i915_private *dev_priv = to_i915(dev);
11318 int pipe = pipe_config->cpu_transcoder;
11319 u32 dpll = pipe_config->dpll_hw_state.dpll;
11320 u32 fp;
11321 struct dpll clock;
11322 int port_clock;
11323 int refclk = i9xx_pll_refclk(dev, pipe_config);
11324
11325 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11326 fp = pipe_config->dpll_hw_state.fp0;
11327 else
11328 fp = pipe_config->dpll_hw_state.fp1;
11329
11330 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11331 if (IS_PINEVIEW(dev_priv)) {
11332 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11333 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11334 } else {
11335 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11336 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11337 }
11338
11339 if (!IS_GEN2(dev_priv)) {
11340 if (IS_PINEVIEW(dev_priv))
11341 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11342 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11343 else
11344 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11345 DPLL_FPA01_P1_POST_DIV_SHIFT);
11346
11347 switch (dpll & DPLL_MODE_MASK) {
11348 case DPLLB_MODE_DAC_SERIAL:
11349 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11350 5 : 10;
11351 break;
11352 case DPLLB_MODE_LVDS:
11353 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11354 7 : 14;
11355 break;
11356 default:
11357 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11358 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11359 return;
11360 }
11361
11362 if (IS_PINEVIEW(dev_priv))
11363 port_clock = pnv_calc_dpll_params(refclk, &clock);
11364 else
11365 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11366 } else {
11367 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11368 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11369
11370 if (is_lvds) {
11371 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11372 DPLL_FPA01_P1_POST_DIV_SHIFT);
11373
11374 if (lvds & LVDS_CLKB_POWER_UP)
11375 clock.p2 = 7;
11376 else
11377 clock.p2 = 14;
11378 } else {
11379 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11380 clock.p1 = 2;
11381 else {
11382 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11383 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11384 }
11385 if (dpll & PLL_P2_DIVIDE_BY_4)
11386 clock.p2 = 4;
11387 else
11388 clock.p2 = 2;
11389 }
11390
11391 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11392 }
11393
11394 /*
11395 * This value includes pixel_multiplier. We will use
11396 * port_clock to compute adjusted_mode.crtc_clock in the
11397 * encoder's get_config() function.
11398 */
11399 pipe_config->port_clock = port_clock;
11400 }
11401
11402 int intel_dotclock_calculate(int link_freq,
11403 const struct intel_link_m_n *m_n)
11404 {
11405 /*
11406 * The calculation for the data clock is:
11407 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11408 * But we want to avoid losing precison if possible, so:
11409 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11410 *
11411 * and the link clock is simpler:
11412 * link_clock = (m * link_clock) / n
11413 */
11414
11415 if (!m_n->link_n)
11416 return 0;
11417
11418 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11419 }
11420
11421 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11422 struct intel_crtc_state *pipe_config)
11423 {
11424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11425
11426 /* read out port_clock from the DPLL */
11427 i9xx_crtc_clock_get(crtc, pipe_config);
11428
11429 /*
11430 * In case there is an active pipe without active ports,
11431 * we may need some idea for the dotclock anyway.
11432 * Calculate one based on the FDI configuration.
11433 */
11434 pipe_config->base.adjusted_mode.crtc_clock =
11435 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11436 &pipe_config->fdi_m_n);
11437 }
11438
11439 /** Returns the currently programmed mode of the given pipe. */
11440 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11441 struct drm_crtc *crtc)
11442 {
11443 struct drm_i915_private *dev_priv = to_i915(dev);
11444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11445 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11446 struct drm_display_mode *mode;
11447 struct intel_crtc_state *pipe_config;
11448 int htot = I915_READ(HTOTAL(cpu_transcoder));
11449 int hsync = I915_READ(HSYNC(cpu_transcoder));
11450 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11451 int vsync = I915_READ(VSYNC(cpu_transcoder));
11452 enum pipe pipe = intel_crtc->pipe;
11453
11454 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11455 if (!mode)
11456 return NULL;
11457
11458 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11459 if (!pipe_config) {
11460 kfree(mode);
11461 return NULL;
11462 }
11463
11464 /*
11465 * Construct a pipe_config sufficient for getting the clock info
11466 * back out of crtc_clock_get.
11467 *
11468 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11469 * to use a real value here instead.
11470 */
11471 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11472 pipe_config->pixel_multiplier = 1;
11473 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11474 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11475 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11476 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11477
11478 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11479 mode->hdisplay = (htot & 0xffff) + 1;
11480 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11481 mode->hsync_start = (hsync & 0xffff) + 1;
11482 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11483 mode->vdisplay = (vtot & 0xffff) + 1;
11484 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11485 mode->vsync_start = (vsync & 0xffff) + 1;
11486 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11487
11488 drm_mode_set_name(mode);
11489
11490 kfree(pipe_config);
11491
11492 return mode;
11493 }
11494
11495 static void intel_crtc_destroy(struct drm_crtc *crtc)
11496 {
11497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11498 struct drm_device *dev = crtc->dev;
11499 struct intel_flip_work *work;
11500
11501 spin_lock_irq(&dev->event_lock);
11502 work = intel_crtc->flip_work;
11503 intel_crtc->flip_work = NULL;
11504 spin_unlock_irq(&dev->event_lock);
11505
11506 if (work) {
11507 cancel_work_sync(&work->mmio_work);
11508 cancel_work_sync(&work->unpin_work);
11509 kfree(work);
11510 }
11511
11512 drm_crtc_cleanup(crtc);
11513
11514 kfree(intel_crtc);
11515 }
11516
11517 static void intel_unpin_work_fn(struct work_struct *__work)
11518 {
11519 struct intel_flip_work *work =
11520 container_of(__work, struct intel_flip_work, unpin_work);
11521 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11522 struct drm_device *dev = crtc->base.dev;
11523 struct drm_plane *primary = crtc->base.primary;
11524
11525 if (is_mmio_work(work))
11526 flush_work(&work->mmio_work);
11527
11528 mutex_lock(&dev->struct_mutex);
11529 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11530 i915_gem_object_put(work->pending_flip_obj);
11531 mutex_unlock(&dev->struct_mutex);
11532
11533 i915_gem_request_put(work->flip_queued_req);
11534
11535 intel_frontbuffer_flip_complete(to_i915(dev),
11536 to_intel_plane(primary)->frontbuffer_bit);
11537 intel_fbc_post_update(crtc);
11538 drm_framebuffer_unreference(work->old_fb);
11539
11540 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11541 atomic_dec(&crtc->unpin_work_count);
11542
11543 kfree(work);
11544 }
11545
11546 /* Is 'a' after or equal to 'b'? */
11547 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11548 {
11549 return !((a - b) & 0x80000000);
11550 }
11551
11552 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11553 struct intel_flip_work *work)
11554 {
11555 struct drm_device *dev = crtc->base.dev;
11556 struct drm_i915_private *dev_priv = to_i915(dev);
11557
11558 if (abort_flip_on_reset(crtc))
11559 return true;
11560
11561 /*
11562 * The relevant registers doen't exist on pre-ctg.
11563 * As the flip done interrupt doesn't trigger for mmio
11564 * flips on gmch platforms, a flip count check isn't
11565 * really needed there. But since ctg has the registers,
11566 * include it in the check anyway.
11567 */
11568 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11569 return true;
11570
11571 /*
11572 * BDW signals flip done immediately if the plane
11573 * is disabled, even if the plane enable is already
11574 * armed to occur at the next vblank :(
11575 */
11576
11577 /*
11578 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11579 * used the same base address. In that case the mmio flip might
11580 * have completed, but the CS hasn't even executed the flip yet.
11581 *
11582 * A flip count check isn't enough as the CS might have updated
11583 * the base address just after start of vblank, but before we
11584 * managed to process the interrupt. This means we'd complete the
11585 * CS flip too soon.
11586 *
11587 * Combining both checks should get us a good enough result. It may
11588 * still happen that the CS flip has been executed, but has not
11589 * yet actually completed. But in case the base address is the same
11590 * anyway, we don't really care.
11591 */
11592 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11593 crtc->flip_work->gtt_offset &&
11594 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11595 crtc->flip_work->flip_count);
11596 }
11597
11598 static bool
11599 __pageflip_finished_mmio(struct intel_crtc *crtc,
11600 struct intel_flip_work *work)
11601 {
11602 /*
11603 * MMIO work completes when vblank is different from
11604 * flip_queued_vblank.
11605 *
11606 * Reset counter value doesn't matter, this is handled by
11607 * i915_wait_request finishing early, so no need to handle
11608 * reset here.
11609 */
11610 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11611 }
11612
11613
11614 static bool pageflip_finished(struct intel_crtc *crtc,
11615 struct intel_flip_work *work)
11616 {
11617 if (!atomic_read(&work->pending))
11618 return false;
11619
11620 smp_rmb();
11621
11622 if (is_mmio_work(work))
11623 return __pageflip_finished_mmio(crtc, work);
11624 else
11625 return __pageflip_finished_cs(crtc, work);
11626 }
11627
11628 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11629 {
11630 struct drm_device *dev = &dev_priv->drm;
11631 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11632 struct intel_flip_work *work;
11633 unsigned long flags;
11634
11635 /* Ignore early vblank irqs */
11636 if (!crtc)
11637 return;
11638
11639 /*
11640 * This is called both by irq handlers and the reset code (to complete
11641 * lost pageflips) so needs the full irqsave spinlocks.
11642 */
11643 spin_lock_irqsave(&dev->event_lock, flags);
11644 work = crtc->flip_work;
11645
11646 if (work != NULL &&
11647 !is_mmio_work(work) &&
11648 pageflip_finished(crtc, work))
11649 page_flip_completed(crtc);
11650
11651 spin_unlock_irqrestore(&dev->event_lock, flags);
11652 }
11653
11654 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11655 {
11656 struct drm_device *dev = &dev_priv->drm;
11657 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11658 struct intel_flip_work *work;
11659 unsigned long flags;
11660
11661 /* Ignore early vblank irqs */
11662 if (!crtc)
11663 return;
11664
11665 /*
11666 * This is called both by irq handlers and the reset code (to complete
11667 * lost pageflips) so needs the full irqsave spinlocks.
11668 */
11669 spin_lock_irqsave(&dev->event_lock, flags);
11670 work = crtc->flip_work;
11671
11672 if (work != NULL &&
11673 is_mmio_work(work) &&
11674 pageflip_finished(crtc, work))
11675 page_flip_completed(crtc);
11676
11677 spin_unlock_irqrestore(&dev->event_lock, flags);
11678 }
11679
11680 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11681 struct intel_flip_work *work)
11682 {
11683 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11684
11685 /* Ensure that the work item is consistent when activating it ... */
11686 smp_mb__before_atomic();
11687 atomic_set(&work->pending, 1);
11688 }
11689
11690 static int intel_gen2_queue_flip(struct drm_device *dev,
11691 struct drm_crtc *crtc,
11692 struct drm_framebuffer *fb,
11693 struct drm_i915_gem_object *obj,
11694 struct drm_i915_gem_request *req,
11695 uint32_t flags)
11696 {
11697 struct intel_ring *ring = req->ring;
11698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11699 u32 flip_mask;
11700 int ret;
11701
11702 ret = intel_ring_begin(req, 6);
11703 if (ret)
11704 return ret;
11705
11706 /* Can't queue multiple flips, so wait for the previous
11707 * one to finish before executing the next.
11708 */
11709 if (intel_crtc->plane)
11710 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11711 else
11712 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11713 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11714 intel_ring_emit(ring, MI_NOOP);
11715 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11716 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11717 intel_ring_emit(ring, fb->pitches[0]);
11718 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11719 intel_ring_emit(ring, 0); /* aux display base address, unused */
11720
11721 return 0;
11722 }
11723
11724 static int intel_gen3_queue_flip(struct drm_device *dev,
11725 struct drm_crtc *crtc,
11726 struct drm_framebuffer *fb,
11727 struct drm_i915_gem_object *obj,
11728 struct drm_i915_gem_request *req,
11729 uint32_t flags)
11730 {
11731 struct intel_ring *ring = req->ring;
11732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11733 u32 flip_mask;
11734 int ret;
11735
11736 ret = intel_ring_begin(req, 6);
11737 if (ret)
11738 return ret;
11739
11740 if (intel_crtc->plane)
11741 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11742 else
11743 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11744 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11745 intel_ring_emit(ring, MI_NOOP);
11746 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11747 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11748 intel_ring_emit(ring, fb->pitches[0]);
11749 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11750 intel_ring_emit(ring, MI_NOOP);
11751
11752 return 0;
11753 }
11754
11755 static int intel_gen4_queue_flip(struct drm_device *dev,
11756 struct drm_crtc *crtc,
11757 struct drm_framebuffer *fb,
11758 struct drm_i915_gem_object *obj,
11759 struct drm_i915_gem_request *req,
11760 uint32_t flags)
11761 {
11762 struct intel_ring *ring = req->ring;
11763 struct drm_i915_private *dev_priv = to_i915(dev);
11764 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11765 uint32_t pf, pipesrc;
11766 int ret;
11767
11768 ret = intel_ring_begin(req, 4);
11769 if (ret)
11770 return ret;
11771
11772 /* i965+ uses the linear or tiled offsets from the
11773 * Display Registers (which do not change across a page-flip)
11774 * so we need only reprogram the base address.
11775 */
11776 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11777 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11778 intel_ring_emit(ring, fb->pitches[0]);
11779 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11780 intel_fb_modifier_to_tiling(fb->modifier[0]));
11781
11782 /* XXX Enabling the panel-fitter across page-flip is so far
11783 * untested on non-native modes, so ignore it for now.
11784 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11785 */
11786 pf = 0;
11787 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11788 intel_ring_emit(ring, pf | pipesrc);
11789
11790 return 0;
11791 }
11792
11793 static int intel_gen6_queue_flip(struct drm_device *dev,
11794 struct drm_crtc *crtc,
11795 struct drm_framebuffer *fb,
11796 struct drm_i915_gem_object *obj,
11797 struct drm_i915_gem_request *req,
11798 uint32_t flags)
11799 {
11800 struct intel_ring *ring = req->ring;
11801 struct drm_i915_private *dev_priv = to_i915(dev);
11802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11803 uint32_t pf, pipesrc;
11804 int ret;
11805
11806 ret = intel_ring_begin(req, 4);
11807 if (ret)
11808 return ret;
11809
11810 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11811 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11812 intel_ring_emit(ring, fb->pitches[0] |
11813 intel_fb_modifier_to_tiling(fb->modifier[0]));
11814 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11815
11816 /* Contrary to the suggestions in the documentation,
11817 * "Enable Panel Fitter" does not seem to be required when page
11818 * flipping with a non-native mode, and worse causes a normal
11819 * modeset to fail.
11820 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11821 */
11822 pf = 0;
11823 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11824 intel_ring_emit(ring, pf | pipesrc);
11825
11826 return 0;
11827 }
11828
11829 static int intel_gen7_queue_flip(struct drm_device *dev,
11830 struct drm_crtc *crtc,
11831 struct drm_framebuffer *fb,
11832 struct drm_i915_gem_object *obj,
11833 struct drm_i915_gem_request *req,
11834 uint32_t flags)
11835 {
11836 struct drm_i915_private *dev_priv = to_i915(dev);
11837 struct intel_ring *ring = req->ring;
11838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 uint32_t plane_bit = 0;
11840 int len, ret;
11841
11842 switch (intel_crtc->plane) {
11843 case PLANE_A:
11844 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11845 break;
11846 case PLANE_B:
11847 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11848 break;
11849 case PLANE_C:
11850 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11851 break;
11852 default:
11853 WARN_ONCE(1, "unknown plane in flip command\n");
11854 return -ENODEV;
11855 }
11856
11857 len = 4;
11858 if (req->engine->id == RCS) {
11859 len += 6;
11860 /*
11861 * On Gen 8, SRM is now taking an extra dword to accommodate
11862 * 48bits addresses, and we need a NOOP for the batch size to
11863 * stay even.
11864 */
11865 if (IS_GEN8(dev_priv))
11866 len += 2;
11867 }
11868
11869 /*
11870 * BSpec MI_DISPLAY_FLIP for IVB:
11871 * "The full packet must be contained within the same cache line."
11872 *
11873 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11874 * cacheline, if we ever start emitting more commands before
11875 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11876 * then do the cacheline alignment, and finally emit the
11877 * MI_DISPLAY_FLIP.
11878 */
11879 ret = intel_ring_cacheline_align(req);
11880 if (ret)
11881 return ret;
11882
11883 ret = intel_ring_begin(req, len);
11884 if (ret)
11885 return ret;
11886
11887 /* Unmask the flip-done completion message. Note that the bspec says that
11888 * we should do this for both the BCS and RCS, and that we must not unmask
11889 * more than one flip event at any time (or ensure that one flip message
11890 * can be sent by waiting for flip-done prior to queueing new flips).
11891 * Experimentation says that BCS works despite DERRMR masking all
11892 * flip-done completion events and that unmasking all planes at once
11893 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11894 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11895 */
11896 if (req->engine->id == RCS) {
11897 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11898 intel_ring_emit_reg(ring, DERRMR);
11899 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11900 DERRMR_PIPEB_PRI_FLIP_DONE |
11901 DERRMR_PIPEC_PRI_FLIP_DONE));
11902 if (IS_GEN8(dev_priv))
11903 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11904 MI_SRM_LRM_GLOBAL_GTT);
11905 else
11906 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11907 MI_SRM_LRM_GLOBAL_GTT);
11908 intel_ring_emit_reg(ring, DERRMR);
11909 intel_ring_emit(ring,
11910 i915_ggtt_offset(req->engine->scratch) + 256);
11911 if (IS_GEN8(dev_priv)) {
11912 intel_ring_emit(ring, 0);
11913 intel_ring_emit(ring, MI_NOOP);
11914 }
11915 }
11916
11917 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11918 intel_ring_emit(ring, fb->pitches[0] |
11919 intel_fb_modifier_to_tiling(fb->modifier[0]));
11920 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11921 intel_ring_emit(ring, (MI_NOOP));
11922
11923 return 0;
11924 }
11925
11926 static bool use_mmio_flip(struct intel_engine_cs *engine,
11927 struct drm_i915_gem_object *obj)
11928 {
11929 /*
11930 * This is not being used for older platforms, because
11931 * non-availability of flip done interrupt forces us to use
11932 * CS flips. Older platforms derive flip done using some clever
11933 * tricks involving the flip_pending status bits and vblank irqs.
11934 * So using MMIO flips there would disrupt this mechanism.
11935 */
11936
11937 if (engine == NULL)
11938 return true;
11939
11940 if (INTEL_GEN(engine->i915) < 5)
11941 return false;
11942
11943 if (i915.use_mmio_flip < 0)
11944 return false;
11945 else if (i915.use_mmio_flip > 0)
11946 return true;
11947 else if (i915.enable_execlists)
11948 return true;
11949
11950 return engine != i915_gem_object_last_write_engine(obj);
11951 }
11952
11953 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11954 unsigned int rotation,
11955 struct intel_flip_work *work)
11956 {
11957 struct drm_device *dev = intel_crtc->base.dev;
11958 struct drm_i915_private *dev_priv = to_i915(dev);
11959 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11960 const enum pipe pipe = intel_crtc->pipe;
11961 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11962
11963 ctl = I915_READ(PLANE_CTL(pipe, 0));
11964 ctl &= ~PLANE_CTL_TILED_MASK;
11965 switch (fb->modifier[0]) {
11966 case DRM_FORMAT_MOD_NONE:
11967 break;
11968 case I915_FORMAT_MOD_X_TILED:
11969 ctl |= PLANE_CTL_TILED_X;
11970 break;
11971 case I915_FORMAT_MOD_Y_TILED:
11972 ctl |= PLANE_CTL_TILED_Y;
11973 break;
11974 case I915_FORMAT_MOD_Yf_TILED:
11975 ctl |= PLANE_CTL_TILED_YF;
11976 break;
11977 default:
11978 MISSING_CASE(fb->modifier[0]);
11979 }
11980
11981 /*
11982 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11983 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11984 */
11985 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11986 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11987
11988 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11989 POSTING_READ(PLANE_SURF(pipe, 0));
11990 }
11991
11992 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11993 struct intel_flip_work *work)
11994 {
11995 struct drm_device *dev = intel_crtc->base.dev;
11996 struct drm_i915_private *dev_priv = to_i915(dev);
11997 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11998 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11999 u32 dspcntr;
12000
12001 dspcntr = I915_READ(reg);
12002
12003 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12004 dspcntr |= DISPPLANE_TILED;
12005 else
12006 dspcntr &= ~DISPPLANE_TILED;
12007
12008 I915_WRITE(reg, dspcntr);
12009
12010 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12011 POSTING_READ(DSPSURF(intel_crtc->plane));
12012 }
12013
12014 static void intel_mmio_flip_work_func(struct work_struct *w)
12015 {
12016 struct intel_flip_work *work =
12017 container_of(w, struct intel_flip_work, mmio_work);
12018 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12019 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12020 struct intel_framebuffer *intel_fb =
12021 to_intel_framebuffer(crtc->base.primary->fb);
12022 struct drm_i915_gem_object *obj = intel_fb->obj;
12023
12024 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12025
12026 intel_pipe_update_start(crtc);
12027
12028 if (INTEL_GEN(dev_priv) >= 9)
12029 skl_do_mmio_flip(crtc, work->rotation, work);
12030 else
12031 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12032 ilk_do_mmio_flip(crtc, work);
12033
12034 intel_pipe_update_end(crtc, work);
12035 }
12036
12037 static int intel_default_queue_flip(struct drm_device *dev,
12038 struct drm_crtc *crtc,
12039 struct drm_framebuffer *fb,
12040 struct drm_i915_gem_object *obj,
12041 struct drm_i915_gem_request *req,
12042 uint32_t flags)
12043 {
12044 return -ENODEV;
12045 }
12046
12047 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12048 struct intel_crtc *intel_crtc,
12049 struct intel_flip_work *work)
12050 {
12051 u32 addr, vblank;
12052
12053 if (!atomic_read(&work->pending))
12054 return false;
12055
12056 smp_rmb();
12057
12058 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12059 if (work->flip_ready_vblank == 0) {
12060 if (work->flip_queued_req &&
12061 !i915_gem_request_completed(work->flip_queued_req))
12062 return false;
12063
12064 work->flip_ready_vblank = vblank;
12065 }
12066
12067 if (vblank - work->flip_ready_vblank < 3)
12068 return false;
12069
12070 /* Potential stall - if we see that the flip has happened,
12071 * assume a missed interrupt. */
12072 if (INTEL_GEN(dev_priv) >= 4)
12073 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12074 else
12075 addr = I915_READ(DSPADDR(intel_crtc->plane));
12076
12077 /* There is a potential issue here with a false positive after a flip
12078 * to the same address. We could address this by checking for a
12079 * non-incrementing frame counter.
12080 */
12081 return addr == work->gtt_offset;
12082 }
12083
12084 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12085 {
12086 struct drm_device *dev = &dev_priv->drm;
12087 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12088 struct intel_flip_work *work;
12089
12090 WARN_ON(!in_interrupt());
12091
12092 if (crtc == NULL)
12093 return;
12094
12095 spin_lock(&dev->event_lock);
12096 work = crtc->flip_work;
12097
12098 if (work != NULL && !is_mmio_work(work) &&
12099 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12100 WARN_ONCE(1,
12101 "Kicking stuck page flip: queued at %d, now %d\n",
12102 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12103 page_flip_completed(crtc);
12104 work = NULL;
12105 }
12106
12107 if (work != NULL && !is_mmio_work(work) &&
12108 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12109 intel_queue_rps_boost_for_request(work->flip_queued_req);
12110 spin_unlock(&dev->event_lock);
12111 }
12112
12113 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12114 struct drm_framebuffer *fb,
12115 struct drm_pending_vblank_event *event,
12116 uint32_t page_flip_flags)
12117 {
12118 struct drm_device *dev = crtc->dev;
12119 struct drm_i915_private *dev_priv = to_i915(dev);
12120 struct drm_framebuffer *old_fb = crtc->primary->fb;
12121 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12123 struct drm_plane *primary = crtc->primary;
12124 enum pipe pipe = intel_crtc->pipe;
12125 struct intel_flip_work *work;
12126 struct intel_engine_cs *engine;
12127 bool mmio_flip;
12128 struct drm_i915_gem_request *request;
12129 struct i915_vma *vma;
12130 int ret;
12131
12132 /*
12133 * drm_mode_page_flip_ioctl() should already catch this, but double
12134 * check to be safe. In the future we may enable pageflipping from
12135 * a disabled primary plane.
12136 */
12137 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12138 return -EBUSY;
12139
12140 /* Can't change pixel format via MI display flips. */
12141 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12142 return -EINVAL;
12143
12144 /*
12145 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12146 * Note that pitch changes could also affect these register.
12147 */
12148 if (INTEL_GEN(dev_priv) > 3 &&
12149 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12150 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12151 return -EINVAL;
12152
12153 if (i915_terminally_wedged(&dev_priv->gpu_error))
12154 goto out_hang;
12155
12156 work = kzalloc(sizeof(*work), GFP_KERNEL);
12157 if (work == NULL)
12158 return -ENOMEM;
12159
12160 work->event = event;
12161 work->crtc = crtc;
12162 work->old_fb = old_fb;
12163 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12164
12165 ret = drm_crtc_vblank_get(crtc);
12166 if (ret)
12167 goto free_work;
12168
12169 /* We borrow the event spin lock for protecting flip_work */
12170 spin_lock_irq(&dev->event_lock);
12171 if (intel_crtc->flip_work) {
12172 /* Before declaring the flip queue wedged, check if
12173 * the hardware completed the operation behind our backs.
12174 */
12175 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12176 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12177 page_flip_completed(intel_crtc);
12178 } else {
12179 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12180 spin_unlock_irq(&dev->event_lock);
12181
12182 drm_crtc_vblank_put(crtc);
12183 kfree(work);
12184 return -EBUSY;
12185 }
12186 }
12187 intel_crtc->flip_work = work;
12188 spin_unlock_irq(&dev->event_lock);
12189
12190 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12191 flush_workqueue(dev_priv->wq);
12192
12193 /* Reference the objects for the scheduled work. */
12194 drm_framebuffer_reference(work->old_fb);
12195
12196 crtc->primary->fb = fb;
12197 update_state_fb(crtc->primary);
12198
12199 work->pending_flip_obj = i915_gem_object_get(obj);
12200
12201 ret = i915_mutex_lock_interruptible(dev);
12202 if (ret)
12203 goto cleanup;
12204
12205 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12206 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12207 ret = -EIO;
12208 goto unlock;
12209 }
12210
12211 atomic_inc(&intel_crtc->unpin_work_count);
12212
12213 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12214 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12215
12216 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12217 engine = dev_priv->engine[BCS];
12218 if (fb->modifier[0] != old_fb->modifier[0])
12219 /* vlv: DISPLAY_FLIP fails to change tiling */
12220 engine = NULL;
12221 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12222 engine = dev_priv->engine[BCS];
12223 } else if (INTEL_GEN(dev_priv) >= 7) {
12224 engine = i915_gem_object_last_write_engine(obj);
12225 if (engine == NULL || engine->id != RCS)
12226 engine = dev_priv->engine[BCS];
12227 } else {
12228 engine = dev_priv->engine[RCS];
12229 }
12230
12231 mmio_flip = use_mmio_flip(engine, obj);
12232
12233 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12234 if (IS_ERR(vma)) {
12235 ret = PTR_ERR(vma);
12236 goto cleanup_pending;
12237 }
12238
12239 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12240 work->gtt_offset += intel_crtc->dspaddr_offset;
12241 work->rotation = crtc->primary->state->rotation;
12242
12243 /*
12244 * There's the potential that the next frame will not be compatible with
12245 * FBC, so we want to call pre_update() before the actual page flip.
12246 * The problem is that pre_update() caches some information about the fb
12247 * object, so we want to do this only after the object is pinned. Let's
12248 * be on the safe side and do this immediately before scheduling the
12249 * flip.
12250 */
12251 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12252 to_intel_plane_state(primary->state));
12253
12254 if (mmio_flip) {
12255 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12256 queue_work(system_unbound_wq, &work->mmio_work);
12257 } else {
12258 request = i915_gem_request_alloc(engine, engine->last_context);
12259 if (IS_ERR(request)) {
12260 ret = PTR_ERR(request);
12261 goto cleanup_unpin;
12262 }
12263
12264 ret = i915_gem_request_await_object(request, obj, false);
12265 if (ret)
12266 goto cleanup_request;
12267
12268 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12269 page_flip_flags);
12270 if (ret)
12271 goto cleanup_request;
12272
12273 intel_mark_page_flip_active(intel_crtc, work);
12274
12275 work->flip_queued_req = i915_gem_request_get(request);
12276 i915_add_request_no_flush(request);
12277 }
12278
12279 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12280 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12281 to_intel_plane(primary)->frontbuffer_bit);
12282 mutex_unlock(&dev->struct_mutex);
12283
12284 intel_frontbuffer_flip_prepare(to_i915(dev),
12285 to_intel_plane(primary)->frontbuffer_bit);
12286
12287 trace_i915_flip_request(intel_crtc->plane, obj);
12288
12289 return 0;
12290
12291 cleanup_request:
12292 i915_add_request_no_flush(request);
12293 cleanup_unpin:
12294 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12295 cleanup_pending:
12296 atomic_dec(&intel_crtc->unpin_work_count);
12297 unlock:
12298 mutex_unlock(&dev->struct_mutex);
12299 cleanup:
12300 crtc->primary->fb = old_fb;
12301 update_state_fb(crtc->primary);
12302
12303 i915_gem_object_put(obj);
12304 drm_framebuffer_unreference(work->old_fb);
12305
12306 spin_lock_irq(&dev->event_lock);
12307 intel_crtc->flip_work = NULL;
12308 spin_unlock_irq(&dev->event_lock);
12309
12310 drm_crtc_vblank_put(crtc);
12311 free_work:
12312 kfree(work);
12313
12314 if (ret == -EIO) {
12315 struct drm_atomic_state *state;
12316 struct drm_plane_state *plane_state;
12317
12318 out_hang:
12319 state = drm_atomic_state_alloc(dev);
12320 if (!state)
12321 return -ENOMEM;
12322 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12323
12324 retry:
12325 plane_state = drm_atomic_get_plane_state(state, primary);
12326 ret = PTR_ERR_OR_ZERO(plane_state);
12327 if (!ret) {
12328 drm_atomic_set_fb_for_plane(plane_state, fb);
12329
12330 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12331 if (!ret)
12332 ret = drm_atomic_commit(state);
12333 }
12334
12335 if (ret == -EDEADLK) {
12336 drm_modeset_backoff(state->acquire_ctx);
12337 drm_atomic_state_clear(state);
12338 goto retry;
12339 }
12340
12341 drm_atomic_state_put(state);
12342
12343 if (ret == 0 && event) {
12344 spin_lock_irq(&dev->event_lock);
12345 drm_crtc_send_vblank_event(crtc, event);
12346 spin_unlock_irq(&dev->event_lock);
12347 }
12348 }
12349 return ret;
12350 }
12351
12352
12353 /**
12354 * intel_wm_need_update - Check whether watermarks need updating
12355 * @plane: drm plane
12356 * @state: new plane state
12357 *
12358 * Check current plane state versus the new one to determine whether
12359 * watermarks need to be recalculated.
12360 *
12361 * Returns true or false.
12362 */
12363 static bool intel_wm_need_update(struct drm_plane *plane,
12364 struct drm_plane_state *state)
12365 {
12366 struct intel_plane_state *new = to_intel_plane_state(state);
12367 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12368
12369 /* Update watermarks on tiling or size changes. */
12370 if (new->base.visible != cur->base.visible)
12371 return true;
12372
12373 if (!cur->base.fb || !new->base.fb)
12374 return false;
12375
12376 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12377 cur->base.rotation != new->base.rotation ||
12378 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12379 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12380 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12381 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12382 return true;
12383
12384 return false;
12385 }
12386
12387 static bool needs_scaling(struct intel_plane_state *state)
12388 {
12389 int src_w = drm_rect_width(&state->base.src) >> 16;
12390 int src_h = drm_rect_height(&state->base.src) >> 16;
12391 int dst_w = drm_rect_width(&state->base.dst);
12392 int dst_h = drm_rect_height(&state->base.dst);
12393
12394 return (src_w != dst_w || src_h != dst_h);
12395 }
12396
12397 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12398 struct drm_plane_state *plane_state)
12399 {
12400 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12401 struct drm_crtc *crtc = crtc_state->crtc;
12402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12403 struct drm_plane *plane = plane_state->plane;
12404 struct drm_device *dev = crtc->dev;
12405 struct drm_i915_private *dev_priv = to_i915(dev);
12406 struct intel_plane_state *old_plane_state =
12407 to_intel_plane_state(plane->state);
12408 bool mode_changed = needs_modeset(crtc_state);
12409 bool was_crtc_enabled = crtc->state->active;
12410 bool is_crtc_enabled = crtc_state->active;
12411 bool turn_off, turn_on, visible, was_visible;
12412 struct drm_framebuffer *fb = plane_state->fb;
12413 int ret;
12414
12415 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12416 ret = skl_update_scaler_plane(
12417 to_intel_crtc_state(crtc_state),
12418 to_intel_plane_state(plane_state));
12419 if (ret)
12420 return ret;
12421 }
12422
12423 was_visible = old_plane_state->base.visible;
12424 visible = to_intel_plane_state(plane_state)->base.visible;
12425
12426 if (!was_crtc_enabled && WARN_ON(was_visible))
12427 was_visible = false;
12428
12429 /*
12430 * Visibility is calculated as if the crtc was on, but
12431 * after scaler setup everything depends on it being off
12432 * when the crtc isn't active.
12433 *
12434 * FIXME this is wrong for watermarks. Watermarks should also
12435 * be computed as if the pipe would be active. Perhaps move
12436 * per-plane wm computation to the .check_plane() hook, and
12437 * only combine the results from all planes in the current place?
12438 */
12439 if (!is_crtc_enabled)
12440 to_intel_plane_state(plane_state)->base.visible = visible = false;
12441
12442 if (!was_visible && !visible)
12443 return 0;
12444
12445 if (fb != old_plane_state->base.fb)
12446 pipe_config->fb_changed = true;
12447
12448 turn_off = was_visible && (!visible || mode_changed);
12449 turn_on = visible && (!was_visible || mode_changed);
12450
12451 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12452 intel_crtc->base.base.id,
12453 intel_crtc->base.name,
12454 plane->base.id, plane->name,
12455 fb ? fb->base.id : -1);
12456
12457 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12458 plane->base.id, plane->name,
12459 was_visible, visible,
12460 turn_off, turn_on, mode_changed);
12461
12462 if (turn_on) {
12463 pipe_config->update_wm_pre = true;
12464
12465 /* must disable cxsr around plane enable/disable */
12466 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12467 pipe_config->disable_cxsr = true;
12468 } else if (turn_off) {
12469 pipe_config->update_wm_post = true;
12470
12471 /* must disable cxsr around plane enable/disable */
12472 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12473 pipe_config->disable_cxsr = true;
12474 } else if (intel_wm_need_update(plane, plane_state)) {
12475 /* FIXME bollocks */
12476 pipe_config->update_wm_pre = true;
12477 pipe_config->update_wm_post = true;
12478 }
12479
12480 /* Pre-gen9 platforms need two-step watermark updates */
12481 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12482 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12483 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12484
12485 if (visible || was_visible)
12486 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12487
12488 /*
12489 * WaCxSRDisabledForSpriteScaling:ivb
12490 *
12491 * cstate->update_wm was already set above, so this flag will
12492 * take effect when we commit and program watermarks.
12493 */
12494 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12495 needs_scaling(to_intel_plane_state(plane_state)) &&
12496 !needs_scaling(old_plane_state))
12497 pipe_config->disable_lp_wm = true;
12498
12499 return 0;
12500 }
12501
12502 static bool encoders_cloneable(const struct intel_encoder *a,
12503 const struct intel_encoder *b)
12504 {
12505 /* masks could be asymmetric, so check both ways */
12506 return a == b || (a->cloneable & (1 << b->type) &&
12507 b->cloneable & (1 << a->type));
12508 }
12509
12510 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12511 struct intel_crtc *crtc,
12512 struct intel_encoder *encoder)
12513 {
12514 struct intel_encoder *source_encoder;
12515 struct drm_connector *connector;
12516 struct drm_connector_state *connector_state;
12517 int i;
12518
12519 for_each_connector_in_state(state, connector, connector_state, i) {
12520 if (connector_state->crtc != &crtc->base)
12521 continue;
12522
12523 source_encoder =
12524 to_intel_encoder(connector_state->best_encoder);
12525 if (!encoders_cloneable(encoder, source_encoder))
12526 return false;
12527 }
12528
12529 return true;
12530 }
12531
12532 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12533 struct drm_crtc_state *crtc_state)
12534 {
12535 struct drm_device *dev = crtc->dev;
12536 struct drm_i915_private *dev_priv = to_i915(dev);
12537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12538 struct intel_crtc_state *pipe_config =
12539 to_intel_crtc_state(crtc_state);
12540 struct drm_atomic_state *state = crtc_state->state;
12541 int ret;
12542 bool mode_changed = needs_modeset(crtc_state);
12543
12544 if (mode_changed && !crtc_state->active)
12545 pipe_config->update_wm_post = true;
12546
12547 if (mode_changed && crtc_state->enable &&
12548 dev_priv->display.crtc_compute_clock &&
12549 !WARN_ON(pipe_config->shared_dpll)) {
12550 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12551 pipe_config);
12552 if (ret)
12553 return ret;
12554 }
12555
12556 if (crtc_state->color_mgmt_changed) {
12557 ret = intel_color_check(crtc, crtc_state);
12558 if (ret)
12559 return ret;
12560
12561 /*
12562 * Changing color management on Intel hardware is
12563 * handled as part of planes update.
12564 */
12565 crtc_state->planes_changed = true;
12566 }
12567
12568 ret = 0;
12569 if (dev_priv->display.compute_pipe_wm) {
12570 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12571 if (ret) {
12572 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12573 return ret;
12574 }
12575 }
12576
12577 if (dev_priv->display.compute_intermediate_wm &&
12578 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12579 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12580 return 0;
12581
12582 /*
12583 * Calculate 'intermediate' watermarks that satisfy both the
12584 * old state and the new state. We can program these
12585 * immediately.
12586 */
12587 ret = dev_priv->display.compute_intermediate_wm(dev,
12588 intel_crtc,
12589 pipe_config);
12590 if (ret) {
12591 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12592 return ret;
12593 }
12594 } else if (dev_priv->display.compute_intermediate_wm) {
12595 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12596 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12597 }
12598
12599 if (INTEL_GEN(dev_priv) >= 9) {
12600 if (mode_changed)
12601 ret = skl_update_scaler_crtc(pipe_config);
12602
12603 if (!ret)
12604 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12605 pipe_config);
12606 }
12607
12608 return ret;
12609 }
12610
12611 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12612 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12613 .atomic_begin = intel_begin_crtc_commit,
12614 .atomic_flush = intel_finish_crtc_commit,
12615 .atomic_check = intel_crtc_atomic_check,
12616 };
12617
12618 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12619 {
12620 struct intel_connector *connector;
12621
12622 for_each_intel_connector(dev, connector) {
12623 if (connector->base.state->crtc)
12624 drm_connector_unreference(&connector->base);
12625
12626 if (connector->base.encoder) {
12627 connector->base.state->best_encoder =
12628 connector->base.encoder;
12629 connector->base.state->crtc =
12630 connector->base.encoder->crtc;
12631
12632 drm_connector_reference(&connector->base);
12633 } else {
12634 connector->base.state->best_encoder = NULL;
12635 connector->base.state->crtc = NULL;
12636 }
12637 }
12638 }
12639
12640 static void
12641 connected_sink_compute_bpp(struct intel_connector *connector,
12642 struct intel_crtc_state *pipe_config)
12643 {
12644 const struct drm_display_info *info = &connector->base.display_info;
12645 int bpp = pipe_config->pipe_bpp;
12646
12647 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12648 connector->base.base.id,
12649 connector->base.name);
12650
12651 /* Don't use an invalid EDID bpc value */
12652 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12653 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12654 bpp, info->bpc * 3);
12655 pipe_config->pipe_bpp = info->bpc * 3;
12656 }
12657
12658 /* Clamp bpp to 8 on screens without EDID 1.4 */
12659 if (info->bpc == 0 && bpp > 24) {
12660 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12661 bpp);
12662 pipe_config->pipe_bpp = 24;
12663 }
12664 }
12665
12666 static int
12667 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12668 struct intel_crtc_state *pipe_config)
12669 {
12670 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12671 struct drm_atomic_state *state;
12672 struct drm_connector *connector;
12673 struct drm_connector_state *connector_state;
12674 int bpp, i;
12675
12676 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12677 IS_CHERRYVIEW(dev_priv)))
12678 bpp = 10*3;
12679 else if (INTEL_GEN(dev_priv) >= 5)
12680 bpp = 12*3;
12681 else
12682 bpp = 8*3;
12683
12684
12685 pipe_config->pipe_bpp = bpp;
12686
12687 state = pipe_config->base.state;
12688
12689 /* Clamp display bpp to EDID value */
12690 for_each_connector_in_state(state, connector, connector_state, i) {
12691 if (connector_state->crtc != &crtc->base)
12692 continue;
12693
12694 connected_sink_compute_bpp(to_intel_connector(connector),
12695 pipe_config);
12696 }
12697
12698 return bpp;
12699 }
12700
12701 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12702 {
12703 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12704 "type: 0x%x flags: 0x%x\n",
12705 mode->crtc_clock,
12706 mode->crtc_hdisplay, mode->crtc_hsync_start,
12707 mode->crtc_hsync_end, mode->crtc_htotal,
12708 mode->crtc_vdisplay, mode->crtc_vsync_start,
12709 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12710 }
12711
12712 static inline void
12713 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12714 unsigned int lane_count, struct intel_link_m_n *m_n)
12715 {
12716 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12717 id, lane_count,
12718 m_n->gmch_m, m_n->gmch_n,
12719 m_n->link_m, m_n->link_n, m_n->tu);
12720 }
12721
12722 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12723 struct intel_crtc_state *pipe_config,
12724 const char *context)
12725 {
12726 struct drm_device *dev = crtc->base.dev;
12727 struct drm_i915_private *dev_priv = to_i915(dev);
12728 struct drm_plane *plane;
12729 struct intel_plane *intel_plane;
12730 struct intel_plane_state *state;
12731 struct drm_framebuffer *fb;
12732
12733 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12734 crtc->base.base.id, crtc->base.name, context);
12735
12736 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12737 transcoder_name(pipe_config->cpu_transcoder),
12738 pipe_config->pipe_bpp, pipe_config->dither);
12739
12740 if (pipe_config->has_pch_encoder)
12741 intel_dump_m_n_config(pipe_config, "fdi",
12742 pipe_config->fdi_lanes,
12743 &pipe_config->fdi_m_n);
12744
12745 if (intel_crtc_has_dp_encoder(pipe_config)) {
12746 intel_dump_m_n_config(pipe_config, "dp m_n",
12747 pipe_config->lane_count, &pipe_config->dp_m_n);
12748 if (pipe_config->has_drrs)
12749 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12750 pipe_config->lane_count,
12751 &pipe_config->dp_m2_n2);
12752 }
12753
12754 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12755 pipe_config->has_audio, pipe_config->has_infoframe);
12756
12757 DRM_DEBUG_KMS("requested mode:\n");
12758 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12759 DRM_DEBUG_KMS("adjusted mode:\n");
12760 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12761 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12762 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12763 pipe_config->port_clock,
12764 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12765
12766 if (INTEL_GEN(dev_priv) >= 9)
12767 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12768 crtc->num_scalers,
12769 pipe_config->scaler_state.scaler_users,
12770 pipe_config->scaler_state.scaler_id);
12771
12772 if (HAS_GMCH_DISPLAY(dev_priv))
12773 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12774 pipe_config->gmch_pfit.control,
12775 pipe_config->gmch_pfit.pgm_ratios,
12776 pipe_config->gmch_pfit.lvds_border_bits);
12777 else
12778 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12779 pipe_config->pch_pfit.pos,
12780 pipe_config->pch_pfit.size,
12781 enableddisabled(pipe_config->pch_pfit.enabled));
12782
12783 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12784 pipe_config->ips_enabled, pipe_config->double_wide);
12785
12786 if (IS_BROXTON(dev_priv)) {
12787 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12788 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12789 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12790 pipe_config->dpll_hw_state.ebb0,
12791 pipe_config->dpll_hw_state.ebb4,
12792 pipe_config->dpll_hw_state.pll0,
12793 pipe_config->dpll_hw_state.pll1,
12794 pipe_config->dpll_hw_state.pll2,
12795 pipe_config->dpll_hw_state.pll3,
12796 pipe_config->dpll_hw_state.pll6,
12797 pipe_config->dpll_hw_state.pll8,
12798 pipe_config->dpll_hw_state.pll9,
12799 pipe_config->dpll_hw_state.pll10,
12800 pipe_config->dpll_hw_state.pcsdw12);
12801 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12802 DRM_DEBUG_KMS("dpll_hw_state: "
12803 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12804 pipe_config->dpll_hw_state.ctrl1,
12805 pipe_config->dpll_hw_state.cfgcr1,
12806 pipe_config->dpll_hw_state.cfgcr2);
12807 } else if (HAS_DDI(dev_priv)) {
12808 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12809 pipe_config->dpll_hw_state.wrpll,
12810 pipe_config->dpll_hw_state.spll);
12811 } else {
12812 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12813 "fp0: 0x%x, fp1: 0x%x\n",
12814 pipe_config->dpll_hw_state.dpll,
12815 pipe_config->dpll_hw_state.dpll_md,
12816 pipe_config->dpll_hw_state.fp0,
12817 pipe_config->dpll_hw_state.fp1);
12818 }
12819
12820 DRM_DEBUG_KMS("planes on this crtc\n");
12821 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12822 struct drm_format_name_buf format_name;
12823 intel_plane = to_intel_plane(plane);
12824 if (intel_plane->pipe != crtc->pipe)
12825 continue;
12826
12827 state = to_intel_plane_state(plane->state);
12828 fb = state->base.fb;
12829 if (!fb) {
12830 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12831 plane->base.id, plane->name, state->scaler_id);
12832 continue;
12833 }
12834
12835 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12836 plane->base.id, plane->name,
12837 fb->base.id, fb->width, fb->height,
12838 drm_get_format_name(fb->pixel_format, &format_name));
12839 if (INTEL_GEN(dev_priv) >= 9)
12840 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12841 state->scaler_id,
12842 state->base.src.x1 >> 16,
12843 state->base.src.y1 >> 16,
12844 drm_rect_width(&state->base.src) >> 16,
12845 drm_rect_height(&state->base.src) >> 16,
12846 state->base.dst.x1, state->base.dst.y1,
12847 drm_rect_width(&state->base.dst),
12848 drm_rect_height(&state->base.dst));
12849 }
12850 }
12851
12852 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12853 {
12854 struct drm_device *dev = state->dev;
12855 struct drm_connector *connector;
12856 unsigned int used_ports = 0;
12857 unsigned int used_mst_ports = 0;
12858
12859 /*
12860 * Walk the connector list instead of the encoder
12861 * list to detect the problem on ddi platforms
12862 * where there's just one encoder per digital port.
12863 */
12864 drm_for_each_connector(connector, dev) {
12865 struct drm_connector_state *connector_state;
12866 struct intel_encoder *encoder;
12867
12868 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12869 if (!connector_state)
12870 connector_state = connector->state;
12871
12872 if (!connector_state->best_encoder)
12873 continue;
12874
12875 encoder = to_intel_encoder(connector_state->best_encoder);
12876
12877 WARN_ON(!connector_state->crtc);
12878
12879 switch (encoder->type) {
12880 unsigned int port_mask;
12881 case INTEL_OUTPUT_UNKNOWN:
12882 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12883 break;
12884 case INTEL_OUTPUT_DP:
12885 case INTEL_OUTPUT_HDMI:
12886 case INTEL_OUTPUT_EDP:
12887 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12888
12889 /* the same port mustn't appear more than once */
12890 if (used_ports & port_mask)
12891 return false;
12892
12893 used_ports |= port_mask;
12894 break;
12895 case INTEL_OUTPUT_DP_MST:
12896 used_mst_ports |=
12897 1 << enc_to_mst(&encoder->base)->primary->port;
12898 break;
12899 default:
12900 break;
12901 }
12902 }
12903
12904 /* can't mix MST and SST/HDMI on the same port */
12905 if (used_ports & used_mst_ports)
12906 return false;
12907
12908 return true;
12909 }
12910
12911 static void
12912 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12913 {
12914 struct drm_crtc_state tmp_state;
12915 struct intel_crtc_scaler_state scaler_state;
12916 struct intel_dpll_hw_state dpll_hw_state;
12917 struct intel_shared_dpll *shared_dpll;
12918 bool force_thru;
12919
12920 /* FIXME: before the switch to atomic started, a new pipe_config was
12921 * kzalloc'd. Code that depends on any field being zero should be
12922 * fixed, so that the crtc_state can be safely duplicated. For now,
12923 * only fields that are know to not cause problems are preserved. */
12924
12925 tmp_state = crtc_state->base;
12926 scaler_state = crtc_state->scaler_state;
12927 shared_dpll = crtc_state->shared_dpll;
12928 dpll_hw_state = crtc_state->dpll_hw_state;
12929 force_thru = crtc_state->pch_pfit.force_thru;
12930
12931 memset(crtc_state, 0, sizeof *crtc_state);
12932
12933 crtc_state->base = tmp_state;
12934 crtc_state->scaler_state = scaler_state;
12935 crtc_state->shared_dpll = shared_dpll;
12936 crtc_state->dpll_hw_state = dpll_hw_state;
12937 crtc_state->pch_pfit.force_thru = force_thru;
12938 }
12939
12940 static int
12941 intel_modeset_pipe_config(struct drm_crtc *crtc,
12942 struct intel_crtc_state *pipe_config)
12943 {
12944 struct drm_atomic_state *state = pipe_config->base.state;
12945 struct intel_encoder *encoder;
12946 struct drm_connector *connector;
12947 struct drm_connector_state *connector_state;
12948 int base_bpp, ret = -EINVAL;
12949 int i;
12950 bool retry = true;
12951
12952 clear_intel_crtc_state(pipe_config);
12953
12954 pipe_config->cpu_transcoder =
12955 (enum transcoder) to_intel_crtc(crtc)->pipe;
12956
12957 /*
12958 * Sanitize sync polarity flags based on requested ones. If neither
12959 * positive or negative polarity is requested, treat this as meaning
12960 * negative polarity.
12961 */
12962 if (!(pipe_config->base.adjusted_mode.flags &
12963 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12964 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12965
12966 if (!(pipe_config->base.adjusted_mode.flags &
12967 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12968 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12969
12970 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12971 pipe_config);
12972 if (base_bpp < 0)
12973 goto fail;
12974
12975 /*
12976 * Determine the real pipe dimensions. Note that stereo modes can
12977 * increase the actual pipe size due to the frame doubling and
12978 * insertion of additional space for blanks between the frame. This
12979 * is stored in the crtc timings. We use the requested mode to do this
12980 * computation to clearly distinguish it from the adjusted mode, which
12981 * can be changed by the connectors in the below retry loop.
12982 */
12983 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12984 &pipe_config->pipe_src_w,
12985 &pipe_config->pipe_src_h);
12986
12987 for_each_connector_in_state(state, connector, connector_state, i) {
12988 if (connector_state->crtc != crtc)
12989 continue;
12990
12991 encoder = to_intel_encoder(connector_state->best_encoder);
12992
12993 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12994 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12995 goto fail;
12996 }
12997
12998 /*
12999 * Determine output_types before calling the .compute_config()
13000 * hooks so that the hooks can use this information safely.
13001 */
13002 pipe_config->output_types |= 1 << encoder->type;
13003 }
13004
13005 encoder_retry:
13006 /* Ensure the port clock defaults are reset when retrying. */
13007 pipe_config->port_clock = 0;
13008 pipe_config->pixel_multiplier = 1;
13009
13010 /* Fill in default crtc timings, allow encoders to overwrite them. */
13011 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13012 CRTC_STEREO_DOUBLE);
13013
13014 /* Pass our mode to the connectors and the CRTC to give them a chance to
13015 * adjust it according to limitations or connector properties, and also
13016 * a chance to reject the mode entirely.
13017 */
13018 for_each_connector_in_state(state, connector, connector_state, i) {
13019 if (connector_state->crtc != crtc)
13020 continue;
13021
13022 encoder = to_intel_encoder(connector_state->best_encoder);
13023
13024 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13025 DRM_DEBUG_KMS("Encoder config failure\n");
13026 goto fail;
13027 }
13028 }
13029
13030 /* Set default port clock if not overwritten by the encoder. Needs to be
13031 * done afterwards in case the encoder adjusts the mode. */
13032 if (!pipe_config->port_clock)
13033 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13034 * pipe_config->pixel_multiplier;
13035
13036 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13037 if (ret < 0) {
13038 DRM_DEBUG_KMS("CRTC fixup failed\n");
13039 goto fail;
13040 }
13041
13042 if (ret == RETRY) {
13043 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13044 ret = -EINVAL;
13045 goto fail;
13046 }
13047
13048 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13049 retry = false;
13050 goto encoder_retry;
13051 }
13052
13053 /* Dithering seems to not pass-through bits correctly when it should, so
13054 * only enable it on 6bpc panels. */
13055 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13056 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13057 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13058
13059 fail:
13060 return ret;
13061 }
13062
13063 static void
13064 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13065 {
13066 struct drm_crtc *crtc;
13067 struct drm_crtc_state *crtc_state;
13068 int i;
13069
13070 /* Double check state. */
13071 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13072 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13073
13074 /* Update hwmode for vblank functions */
13075 if (crtc->state->active)
13076 crtc->hwmode = crtc->state->adjusted_mode;
13077 else
13078 crtc->hwmode.crtc_clock = 0;
13079
13080 /*
13081 * Update legacy state to satisfy fbc code. This can
13082 * be removed when fbc uses the atomic state.
13083 */
13084 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13085 struct drm_plane_state *plane_state = crtc->primary->state;
13086
13087 crtc->primary->fb = plane_state->fb;
13088 crtc->x = plane_state->src_x >> 16;
13089 crtc->y = plane_state->src_y >> 16;
13090 }
13091 }
13092 }
13093
13094 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13095 {
13096 int diff;
13097
13098 if (clock1 == clock2)
13099 return true;
13100
13101 if (!clock1 || !clock2)
13102 return false;
13103
13104 diff = abs(clock1 - clock2);
13105
13106 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13107 return true;
13108
13109 return false;
13110 }
13111
13112 static bool
13113 intel_compare_m_n(unsigned int m, unsigned int n,
13114 unsigned int m2, unsigned int n2,
13115 bool exact)
13116 {
13117 if (m == m2 && n == n2)
13118 return true;
13119
13120 if (exact || !m || !n || !m2 || !n2)
13121 return false;
13122
13123 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13124
13125 if (n > n2) {
13126 while (n > n2) {
13127 m2 <<= 1;
13128 n2 <<= 1;
13129 }
13130 } else if (n < n2) {
13131 while (n < n2) {
13132 m <<= 1;
13133 n <<= 1;
13134 }
13135 }
13136
13137 if (n != n2)
13138 return false;
13139
13140 return intel_fuzzy_clock_check(m, m2);
13141 }
13142
13143 static bool
13144 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13145 struct intel_link_m_n *m2_n2,
13146 bool adjust)
13147 {
13148 if (m_n->tu == m2_n2->tu &&
13149 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13150 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13151 intel_compare_m_n(m_n->link_m, m_n->link_n,
13152 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13153 if (adjust)
13154 *m2_n2 = *m_n;
13155
13156 return true;
13157 }
13158
13159 return false;
13160 }
13161
13162 static bool
13163 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13164 struct intel_crtc_state *current_config,
13165 struct intel_crtc_state *pipe_config,
13166 bool adjust)
13167 {
13168 bool ret = true;
13169
13170 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13171 do { \
13172 if (!adjust) \
13173 DRM_ERROR(fmt, ##__VA_ARGS__); \
13174 else \
13175 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13176 } while (0)
13177
13178 #define PIPE_CONF_CHECK_X(name) \
13179 if (current_config->name != pipe_config->name) { \
13180 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13181 "(expected 0x%08x, found 0x%08x)\n", \
13182 current_config->name, \
13183 pipe_config->name); \
13184 ret = false; \
13185 }
13186
13187 #define PIPE_CONF_CHECK_I(name) \
13188 if (current_config->name != pipe_config->name) { \
13189 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13190 "(expected %i, found %i)\n", \
13191 current_config->name, \
13192 pipe_config->name); \
13193 ret = false; \
13194 }
13195
13196 #define PIPE_CONF_CHECK_P(name) \
13197 if (current_config->name != pipe_config->name) { \
13198 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13199 "(expected %p, found %p)\n", \
13200 current_config->name, \
13201 pipe_config->name); \
13202 ret = false; \
13203 }
13204
13205 #define PIPE_CONF_CHECK_M_N(name) \
13206 if (!intel_compare_link_m_n(&current_config->name, \
13207 &pipe_config->name,\
13208 adjust)) { \
13209 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13210 "(expected tu %i gmch %i/%i link %i/%i, " \
13211 "found tu %i, gmch %i/%i link %i/%i)\n", \
13212 current_config->name.tu, \
13213 current_config->name.gmch_m, \
13214 current_config->name.gmch_n, \
13215 current_config->name.link_m, \
13216 current_config->name.link_n, \
13217 pipe_config->name.tu, \
13218 pipe_config->name.gmch_m, \
13219 pipe_config->name.gmch_n, \
13220 pipe_config->name.link_m, \
13221 pipe_config->name.link_n); \
13222 ret = false; \
13223 }
13224
13225 /* This is required for BDW+ where there is only one set of registers for
13226 * switching between high and low RR.
13227 * This macro can be used whenever a comparison has to be made between one
13228 * hw state and multiple sw state variables.
13229 */
13230 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13231 if (!intel_compare_link_m_n(&current_config->name, \
13232 &pipe_config->name, adjust) && \
13233 !intel_compare_link_m_n(&current_config->alt_name, \
13234 &pipe_config->name, adjust)) { \
13235 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13236 "(expected tu %i gmch %i/%i link %i/%i, " \
13237 "or tu %i gmch %i/%i link %i/%i, " \
13238 "found tu %i, gmch %i/%i link %i/%i)\n", \
13239 current_config->name.tu, \
13240 current_config->name.gmch_m, \
13241 current_config->name.gmch_n, \
13242 current_config->name.link_m, \
13243 current_config->name.link_n, \
13244 current_config->alt_name.tu, \
13245 current_config->alt_name.gmch_m, \
13246 current_config->alt_name.gmch_n, \
13247 current_config->alt_name.link_m, \
13248 current_config->alt_name.link_n, \
13249 pipe_config->name.tu, \
13250 pipe_config->name.gmch_m, \
13251 pipe_config->name.gmch_n, \
13252 pipe_config->name.link_m, \
13253 pipe_config->name.link_n); \
13254 ret = false; \
13255 }
13256
13257 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13258 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13259 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13260 "(expected %i, found %i)\n", \
13261 current_config->name & (mask), \
13262 pipe_config->name & (mask)); \
13263 ret = false; \
13264 }
13265
13266 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13267 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13268 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13269 "(expected %i, found %i)\n", \
13270 current_config->name, \
13271 pipe_config->name); \
13272 ret = false; \
13273 }
13274
13275 #define PIPE_CONF_QUIRK(quirk) \
13276 ((current_config->quirks | pipe_config->quirks) & (quirk))
13277
13278 PIPE_CONF_CHECK_I(cpu_transcoder);
13279
13280 PIPE_CONF_CHECK_I(has_pch_encoder);
13281 PIPE_CONF_CHECK_I(fdi_lanes);
13282 PIPE_CONF_CHECK_M_N(fdi_m_n);
13283
13284 PIPE_CONF_CHECK_I(lane_count);
13285 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13286
13287 if (INTEL_GEN(dev_priv) < 8) {
13288 PIPE_CONF_CHECK_M_N(dp_m_n);
13289
13290 if (current_config->has_drrs)
13291 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13292 } else
13293 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13294
13295 PIPE_CONF_CHECK_X(output_types);
13296
13297 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13298 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13299 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13300 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13301 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13302 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13303
13304 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13305 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13306 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13307 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13308 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13309 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13310
13311 PIPE_CONF_CHECK_I(pixel_multiplier);
13312 PIPE_CONF_CHECK_I(has_hdmi_sink);
13313 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13314 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13315 PIPE_CONF_CHECK_I(limited_color_range);
13316 PIPE_CONF_CHECK_I(has_infoframe);
13317
13318 PIPE_CONF_CHECK_I(has_audio);
13319
13320 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13321 DRM_MODE_FLAG_INTERLACE);
13322
13323 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13324 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13325 DRM_MODE_FLAG_PHSYNC);
13326 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13327 DRM_MODE_FLAG_NHSYNC);
13328 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13329 DRM_MODE_FLAG_PVSYNC);
13330 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13331 DRM_MODE_FLAG_NVSYNC);
13332 }
13333
13334 PIPE_CONF_CHECK_X(gmch_pfit.control);
13335 /* pfit ratios are autocomputed by the hw on gen4+ */
13336 if (INTEL_GEN(dev_priv) < 4)
13337 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13338 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13339
13340 if (!adjust) {
13341 PIPE_CONF_CHECK_I(pipe_src_w);
13342 PIPE_CONF_CHECK_I(pipe_src_h);
13343
13344 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13345 if (current_config->pch_pfit.enabled) {
13346 PIPE_CONF_CHECK_X(pch_pfit.pos);
13347 PIPE_CONF_CHECK_X(pch_pfit.size);
13348 }
13349
13350 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13351 }
13352
13353 /* BDW+ don't expose a synchronous way to read the state */
13354 if (IS_HASWELL(dev_priv))
13355 PIPE_CONF_CHECK_I(ips_enabled);
13356
13357 PIPE_CONF_CHECK_I(double_wide);
13358
13359 PIPE_CONF_CHECK_P(shared_dpll);
13360 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13361 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13362 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13363 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13364 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13365 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13366 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13367 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13368 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13369
13370 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13371 PIPE_CONF_CHECK_X(dsi_pll.div);
13372
13373 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13374 PIPE_CONF_CHECK_I(pipe_bpp);
13375
13376 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13377 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13378
13379 #undef PIPE_CONF_CHECK_X
13380 #undef PIPE_CONF_CHECK_I
13381 #undef PIPE_CONF_CHECK_P
13382 #undef PIPE_CONF_CHECK_FLAGS
13383 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13384 #undef PIPE_CONF_QUIRK
13385 #undef INTEL_ERR_OR_DBG_KMS
13386
13387 return ret;
13388 }
13389
13390 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13391 const struct intel_crtc_state *pipe_config)
13392 {
13393 if (pipe_config->has_pch_encoder) {
13394 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13395 &pipe_config->fdi_m_n);
13396 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13397
13398 /*
13399 * FDI already provided one idea for the dotclock.
13400 * Yell if the encoder disagrees.
13401 */
13402 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13403 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13404 fdi_dotclock, dotclock);
13405 }
13406 }
13407
13408 static void verify_wm_state(struct drm_crtc *crtc,
13409 struct drm_crtc_state *new_state)
13410 {
13411 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13412 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13413 struct skl_pipe_wm hw_wm, *sw_wm;
13414 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13415 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13417 const enum pipe pipe = intel_crtc->pipe;
13418 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13419
13420 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13421 return;
13422
13423 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13424 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13425
13426 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13427 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13428
13429 /* planes */
13430 for_each_universal_plane(dev_priv, pipe, plane) {
13431 hw_plane_wm = &hw_wm.planes[plane];
13432 sw_plane_wm = &sw_wm->planes[plane];
13433
13434 /* Watermarks */
13435 for (level = 0; level <= max_level; level++) {
13436 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13437 &sw_plane_wm->wm[level]))
13438 continue;
13439
13440 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13441 pipe_name(pipe), plane + 1, level,
13442 sw_plane_wm->wm[level].plane_en,
13443 sw_plane_wm->wm[level].plane_res_b,
13444 sw_plane_wm->wm[level].plane_res_l,
13445 hw_plane_wm->wm[level].plane_en,
13446 hw_plane_wm->wm[level].plane_res_b,
13447 hw_plane_wm->wm[level].plane_res_l);
13448 }
13449
13450 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13451 &sw_plane_wm->trans_wm)) {
13452 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13453 pipe_name(pipe), plane + 1,
13454 sw_plane_wm->trans_wm.plane_en,
13455 sw_plane_wm->trans_wm.plane_res_b,
13456 sw_plane_wm->trans_wm.plane_res_l,
13457 hw_plane_wm->trans_wm.plane_en,
13458 hw_plane_wm->trans_wm.plane_res_b,
13459 hw_plane_wm->trans_wm.plane_res_l);
13460 }
13461
13462 /* DDB */
13463 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13464 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13465
13466 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13467 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13468 pipe_name(pipe), plane + 1,
13469 sw_ddb_entry->start, sw_ddb_entry->end,
13470 hw_ddb_entry->start, hw_ddb_entry->end);
13471 }
13472 }
13473
13474 /*
13475 * cursor
13476 * If the cursor plane isn't active, we may not have updated it's ddb
13477 * allocation. In that case since the ddb allocation will be updated
13478 * once the plane becomes visible, we can skip this check
13479 */
13480 if (intel_crtc->cursor_addr) {
13481 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13482 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13483
13484 /* Watermarks */
13485 for (level = 0; level <= max_level; level++) {
13486 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13487 &sw_plane_wm->wm[level]))
13488 continue;
13489
13490 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13491 pipe_name(pipe), level,
13492 sw_plane_wm->wm[level].plane_en,
13493 sw_plane_wm->wm[level].plane_res_b,
13494 sw_plane_wm->wm[level].plane_res_l,
13495 hw_plane_wm->wm[level].plane_en,
13496 hw_plane_wm->wm[level].plane_res_b,
13497 hw_plane_wm->wm[level].plane_res_l);
13498 }
13499
13500 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13501 &sw_plane_wm->trans_wm)) {
13502 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13503 pipe_name(pipe),
13504 sw_plane_wm->trans_wm.plane_en,
13505 sw_plane_wm->trans_wm.plane_res_b,
13506 sw_plane_wm->trans_wm.plane_res_l,
13507 hw_plane_wm->trans_wm.plane_en,
13508 hw_plane_wm->trans_wm.plane_res_b,
13509 hw_plane_wm->trans_wm.plane_res_l);
13510 }
13511
13512 /* DDB */
13513 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13514 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13515
13516 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13517 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13518 pipe_name(pipe),
13519 sw_ddb_entry->start, sw_ddb_entry->end,
13520 hw_ddb_entry->start, hw_ddb_entry->end);
13521 }
13522 }
13523 }
13524
13525 static void
13526 verify_connector_state(struct drm_device *dev,
13527 struct drm_atomic_state *state,
13528 struct drm_crtc *crtc)
13529 {
13530 struct drm_connector *connector;
13531 struct drm_connector_state *old_conn_state;
13532 int i;
13533
13534 for_each_connector_in_state(state, connector, old_conn_state, i) {
13535 struct drm_encoder *encoder = connector->encoder;
13536 struct drm_connector_state *state = connector->state;
13537
13538 if (state->crtc != crtc)
13539 continue;
13540
13541 intel_connector_verify_state(to_intel_connector(connector));
13542
13543 I915_STATE_WARN(state->best_encoder != encoder,
13544 "connector's atomic encoder doesn't match legacy encoder\n");
13545 }
13546 }
13547
13548 static void
13549 verify_encoder_state(struct drm_device *dev)
13550 {
13551 struct intel_encoder *encoder;
13552 struct intel_connector *connector;
13553
13554 for_each_intel_encoder(dev, encoder) {
13555 bool enabled = false;
13556 enum pipe pipe;
13557
13558 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13559 encoder->base.base.id,
13560 encoder->base.name);
13561
13562 for_each_intel_connector(dev, connector) {
13563 if (connector->base.state->best_encoder != &encoder->base)
13564 continue;
13565 enabled = true;
13566
13567 I915_STATE_WARN(connector->base.state->crtc !=
13568 encoder->base.crtc,
13569 "connector's crtc doesn't match encoder crtc\n");
13570 }
13571
13572 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13573 "encoder's enabled state mismatch "
13574 "(expected %i, found %i)\n",
13575 !!encoder->base.crtc, enabled);
13576
13577 if (!encoder->base.crtc) {
13578 bool active;
13579
13580 active = encoder->get_hw_state(encoder, &pipe);
13581 I915_STATE_WARN(active,
13582 "encoder detached but still enabled on pipe %c.\n",
13583 pipe_name(pipe));
13584 }
13585 }
13586 }
13587
13588 static void
13589 verify_crtc_state(struct drm_crtc *crtc,
13590 struct drm_crtc_state *old_crtc_state,
13591 struct drm_crtc_state *new_crtc_state)
13592 {
13593 struct drm_device *dev = crtc->dev;
13594 struct drm_i915_private *dev_priv = to_i915(dev);
13595 struct intel_encoder *encoder;
13596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13597 struct intel_crtc_state *pipe_config, *sw_config;
13598 struct drm_atomic_state *old_state;
13599 bool active;
13600
13601 old_state = old_crtc_state->state;
13602 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13603 pipe_config = to_intel_crtc_state(old_crtc_state);
13604 memset(pipe_config, 0, sizeof(*pipe_config));
13605 pipe_config->base.crtc = crtc;
13606 pipe_config->base.state = old_state;
13607
13608 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13609
13610 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13611
13612 /* hw state is inconsistent with the pipe quirk */
13613 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13614 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13615 active = new_crtc_state->active;
13616
13617 I915_STATE_WARN(new_crtc_state->active != active,
13618 "crtc active state doesn't match with hw state "
13619 "(expected %i, found %i)\n", new_crtc_state->active, active);
13620
13621 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13622 "transitional active state does not match atomic hw state "
13623 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13624
13625 for_each_encoder_on_crtc(dev, crtc, encoder) {
13626 enum pipe pipe;
13627
13628 active = encoder->get_hw_state(encoder, &pipe);
13629 I915_STATE_WARN(active != new_crtc_state->active,
13630 "[ENCODER:%i] active %i with crtc active %i\n",
13631 encoder->base.base.id, active, new_crtc_state->active);
13632
13633 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13634 "Encoder connected to wrong pipe %c\n",
13635 pipe_name(pipe));
13636
13637 if (active) {
13638 pipe_config->output_types |= 1 << encoder->type;
13639 encoder->get_config(encoder, pipe_config);
13640 }
13641 }
13642
13643 if (!new_crtc_state->active)
13644 return;
13645
13646 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13647
13648 sw_config = to_intel_crtc_state(crtc->state);
13649 if (!intel_pipe_config_compare(dev_priv, sw_config,
13650 pipe_config, false)) {
13651 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13652 intel_dump_pipe_config(intel_crtc, pipe_config,
13653 "[hw state]");
13654 intel_dump_pipe_config(intel_crtc, sw_config,
13655 "[sw state]");
13656 }
13657 }
13658
13659 static void
13660 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13661 struct intel_shared_dpll *pll,
13662 struct drm_crtc *crtc,
13663 struct drm_crtc_state *new_state)
13664 {
13665 struct intel_dpll_hw_state dpll_hw_state;
13666 unsigned crtc_mask;
13667 bool active;
13668
13669 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13670
13671 DRM_DEBUG_KMS("%s\n", pll->name);
13672
13673 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13674
13675 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13676 I915_STATE_WARN(!pll->on && pll->active_mask,
13677 "pll in active use but not on in sw tracking\n");
13678 I915_STATE_WARN(pll->on && !pll->active_mask,
13679 "pll is on but not used by any active crtc\n");
13680 I915_STATE_WARN(pll->on != active,
13681 "pll on state mismatch (expected %i, found %i)\n",
13682 pll->on, active);
13683 }
13684
13685 if (!crtc) {
13686 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13687 "more active pll users than references: %x vs %x\n",
13688 pll->active_mask, pll->config.crtc_mask);
13689
13690 return;
13691 }
13692
13693 crtc_mask = 1 << drm_crtc_index(crtc);
13694
13695 if (new_state->active)
13696 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13697 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13698 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13699 else
13700 I915_STATE_WARN(pll->active_mask & crtc_mask,
13701 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13702 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13703
13704 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13705 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13706 crtc_mask, pll->config.crtc_mask);
13707
13708 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13709 &dpll_hw_state,
13710 sizeof(dpll_hw_state)),
13711 "pll hw state mismatch\n");
13712 }
13713
13714 static void
13715 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13716 struct drm_crtc_state *old_crtc_state,
13717 struct drm_crtc_state *new_crtc_state)
13718 {
13719 struct drm_i915_private *dev_priv = to_i915(dev);
13720 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13721 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13722
13723 if (new_state->shared_dpll)
13724 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13725
13726 if (old_state->shared_dpll &&
13727 old_state->shared_dpll != new_state->shared_dpll) {
13728 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13729 struct intel_shared_dpll *pll = old_state->shared_dpll;
13730
13731 I915_STATE_WARN(pll->active_mask & crtc_mask,
13732 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13733 pipe_name(drm_crtc_index(crtc)));
13734 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13735 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13736 pipe_name(drm_crtc_index(crtc)));
13737 }
13738 }
13739
13740 static void
13741 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13742 struct drm_atomic_state *state,
13743 struct drm_crtc_state *old_state,
13744 struct drm_crtc_state *new_state)
13745 {
13746 if (!needs_modeset(new_state) &&
13747 !to_intel_crtc_state(new_state)->update_pipe)
13748 return;
13749
13750 verify_wm_state(crtc, new_state);
13751 verify_connector_state(crtc->dev, state, crtc);
13752 verify_crtc_state(crtc, old_state, new_state);
13753 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13754 }
13755
13756 static void
13757 verify_disabled_dpll_state(struct drm_device *dev)
13758 {
13759 struct drm_i915_private *dev_priv = to_i915(dev);
13760 int i;
13761
13762 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13763 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13764 }
13765
13766 static void
13767 intel_modeset_verify_disabled(struct drm_device *dev,
13768 struct drm_atomic_state *state)
13769 {
13770 verify_encoder_state(dev);
13771 verify_connector_state(dev, state, NULL);
13772 verify_disabled_dpll_state(dev);
13773 }
13774
13775 static void update_scanline_offset(struct intel_crtc *crtc)
13776 {
13777 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13778
13779 /*
13780 * The scanline counter increments at the leading edge of hsync.
13781 *
13782 * On most platforms it starts counting from vtotal-1 on the
13783 * first active line. That means the scanline counter value is
13784 * always one less than what we would expect. Ie. just after
13785 * start of vblank, which also occurs at start of hsync (on the
13786 * last active line), the scanline counter will read vblank_start-1.
13787 *
13788 * On gen2 the scanline counter starts counting from 1 instead
13789 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13790 * to keep the value positive), instead of adding one.
13791 *
13792 * On HSW+ the behaviour of the scanline counter depends on the output
13793 * type. For DP ports it behaves like most other platforms, but on HDMI
13794 * there's an extra 1 line difference. So we need to add two instead of
13795 * one to the value.
13796 */
13797 if (IS_GEN2(dev_priv)) {
13798 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13799 int vtotal;
13800
13801 vtotal = adjusted_mode->crtc_vtotal;
13802 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13803 vtotal /= 2;
13804
13805 crtc->scanline_offset = vtotal - 1;
13806 } else if (HAS_DDI(dev_priv) &&
13807 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13808 crtc->scanline_offset = 2;
13809 } else
13810 crtc->scanline_offset = 1;
13811 }
13812
13813 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13814 {
13815 struct drm_device *dev = state->dev;
13816 struct drm_i915_private *dev_priv = to_i915(dev);
13817 struct intel_shared_dpll_config *shared_dpll = NULL;
13818 struct drm_crtc *crtc;
13819 struct drm_crtc_state *crtc_state;
13820 int i;
13821
13822 if (!dev_priv->display.crtc_compute_clock)
13823 return;
13824
13825 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13827 struct intel_shared_dpll *old_dpll =
13828 to_intel_crtc_state(crtc->state)->shared_dpll;
13829
13830 if (!needs_modeset(crtc_state))
13831 continue;
13832
13833 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13834
13835 if (!old_dpll)
13836 continue;
13837
13838 if (!shared_dpll)
13839 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13840
13841 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13842 }
13843 }
13844
13845 /*
13846 * This implements the workaround described in the "notes" section of the mode
13847 * set sequence documentation. When going from no pipes or single pipe to
13848 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13849 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13850 */
13851 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13852 {
13853 struct drm_crtc_state *crtc_state;
13854 struct intel_crtc *intel_crtc;
13855 struct drm_crtc *crtc;
13856 struct intel_crtc_state *first_crtc_state = NULL;
13857 struct intel_crtc_state *other_crtc_state = NULL;
13858 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13859 int i;
13860
13861 /* look at all crtc's that are going to be enabled in during modeset */
13862 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13863 intel_crtc = to_intel_crtc(crtc);
13864
13865 if (!crtc_state->active || !needs_modeset(crtc_state))
13866 continue;
13867
13868 if (first_crtc_state) {
13869 other_crtc_state = to_intel_crtc_state(crtc_state);
13870 break;
13871 } else {
13872 first_crtc_state = to_intel_crtc_state(crtc_state);
13873 first_pipe = intel_crtc->pipe;
13874 }
13875 }
13876
13877 /* No workaround needed? */
13878 if (!first_crtc_state)
13879 return 0;
13880
13881 /* w/a possibly needed, check how many crtc's are already enabled. */
13882 for_each_intel_crtc(state->dev, intel_crtc) {
13883 struct intel_crtc_state *pipe_config;
13884
13885 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13886 if (IS_ERR(pipe_config))
13887 return PTR_ERR(pipe_config);
13888
13889 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13890
13891 if (!pipe_config->base.active ||
13892 needs_modeset(&pipe_config->base))
13893 continue;
13894
13895 /* 2 or more enabled crtcs means no need for w/a */
13896 if (enabled_pipe != INVALID_PIPE)
13897 return 0;
13898
13899 enabled_pipe = intel_crtc->pipe;
13900 }
13901
13902 if (enabled_pipe != INVALID_PIPE)
13903 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13904 else if (other_crtc_state)
13905 other_crtc_state->hsw_workaround_pipe = first_pipe;
13906
13907 return 0;
13908 }
13909
13910 static int intel_lock_all_pipes(struct drm_atomic_state *state)
13911 {
13912 struct drm_crtc *crtc;
13913
13914 /* Add all pipes to the state */
13915 for_each_crtc(state->dev, crtc) {
13916 struct drm_crtc_state *crtc_state;
13917
13918 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13919 if (IS_ERR(crtc_state))
13920 return PTR_ERR(crtc_state);
13921 }
13922
13923 return 0;
13924 }
13925
13926 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13927 {
13928 struct drm_crtc *crtc;
13929
13930 /*
13931 * Add all pipes to the state, and force
13932 * a modeset on all the active ones.
13933 */
13934 for_each_crtc(state->dev, crtc) {
13935 struct drm_crtc_state *crtc_state;
13936 int ret;
13937
13938 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13939 if (IS_ERR(crtc_state))
13940 return PTR_ERR(crtc_state);
13941
13942 if (!crtc_state->active || needs_modeset(crtc_state))
13943 continue;
13944
13945 crtc_state->mode_changed = true;
13946
13947 ret = drm_atomic_add_affected_connectors(state, crtc);
13948 if (ret)
13949 return ret;
13950
13951 ret = drm_atomic_add_affected_planes(state, crtc);
13952 if (ret)
13953 return ret;
13954 }
13955
13956 return 0;
13957 }
13958
13959 static int intel_modeset_checks(struct drm_atomic_state *state)
13960 {
13961 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13962 struct drm_i915_private *dev_priv = to_i915(state->dev);
13963 struct drm_crtc *crtc;
13964 struct drm_crtc_state *crtc_state;
13965 int ret = 0, i;
13966
13967 if (!check_digital_port_conflicts(state)) {
13968 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13969 return -EINVAL;
13970 }
13971
13972 intel_state->modeset = true;
13973 intel_state->active_crtcs = dev_priv->active_crtcs;
13974
13975 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13976 if (crtc_state->active)
13977 intel_state->active_crtcs |= 1 << i;
13978 else
13979 intel_state->active_crtcs &= ~(1 << i);
13980
13981 if (crtc_state->active != crtc->state->active)
13982 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13983 }
13984
13985 /*
13986 * See if the config requires any additional preparation, e.g.
13987 * to adjust global state with pipes off. We need to do this
13988 * here so we can get the modeset_pipe updated config for the new
13989 * mode set on this crtc. For other crtcs we need to use the
13990 * adjusted_mode bits in the crtc directly.
13991 */
13992 if (dev_priv->display.modeset_calc_cdclk) {
13993 if (!intel_state->cdclk_pll_vco)
13994 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13995 if (!intel_state->cdclk_pll_vco)
13996 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13997
13998 ret = dev_priv->display.modeset_calc_cdclk(state);
13999 if (ret < 0)
14000 return ret;
14001
14002 /*
14003 * Writes to dev_priv->atomic_cdclk_freq must protected by
14004 * holding all the crtc locks, even if we don't end up
14005 * touching the hardware
14006 */
14007 if (intel_state->cdclk != dev_priv->atomic_cdclk_freq) {
14008 ret = intel_lock_all_pipes(state);
14009 if (ret < 0)
14010 return ret;
14011 }
14012
14013 /* All pipes must be switched off while we change the cdclk. */
14014 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14015 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco) {
14016 ret = intel_modeset_all_pipes(state);
14017 if (ret < 0)
14018 return ret;
14019 }
14020
14021 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14022 intel_state->cdclk, intel_state->dev_cdclk);
14023 } else {
14024 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14025 }
14026
14027 intel_modeset_clear_plls(state);
14028
14029 if (IS_HASWELL(dev_priv))
14030 return haswell_mode_set_planes_workaround(state);
14031
14032 return 0;
14033 }
14034
14035 /*
14036 * Handle calculation of various watermark data at the end of the atomic check
14037 * phase. The code here should be run after the per-crtc and per-plane 'check'
14038 * handlers to ensure that all derived state has been updated.
14039 */
14040 static int calc_watermark_data(struct drm_atomic_state *state)
14041 {
14042 struct drm_device *dev = state->dev;
14043 struct drm_i915_private *dev_priv = to_i915(dev);
14044
14045 /* Is there platform-specific watermark information to calculate? */
14046 if (dev_priv->display.compute_global_watermarks)
14047 return dev_priv->display.compute_global_watermarks(state);
14048
14049 return 0;
14050 }
14051
14052 /**
14053 * intel_atomic_check - validate state object
14054 * @dev: drm device
14055 * @state: state to validate
14056 */
14057 static int intel_atomic_check(struct drm_device *dev,
14058 struct drm_atomic_state *state)
14059 {
14060 struct drm_i915_private *dev_priv = to_i915(dev);
14061 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14062 struct drm_crtc *crtc;
14063 struct drm_crtc_state *crtc_state;
14064 int ret, i;
14065 bool any_ms = false;
14066
14067 ret = drm_atomic_helper_check_modeset(dev, state);
14068 if (ret)
14069 return ret;
14070
14071 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14072 struct intel_crtc_state *pipe_config =
14073 to_intel_crtc_state(crtc_state);
14074
14075 /* Catch I915_MODE_FLAG_INHERITED */
14076 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14077 crtc_state->mode_changed = true;
14078
14079 if (!needs_modeset(crtc_state))
14080 continue;
14081
14082 if (!crtc_state->enable) {
14083 any_ms = true;
14084 continue;
14085 }
14086
14087 /* FIXME: For only active_changed we shouldn't need to do any
14088 * state recomputation at all. */
14089
14090 ret = drm_atomic_add_affected_connectors(state, crtc);
14091 if (ret)
14092 return ret;
14093
14094 ret = intel_modeset_pipe_config(crtc, pipe_config);
14095 if (ret) {
14096 intel_dump_pipe_config(to_intel_crtc(crtc),
14097 pipe_config, "[failed]");
14098 return ret;
14099 }
14100
14101 if (i915.fastboot &&
14102 intel_pipe_config_compare(dev_priv,
14103 to_intel_crtc_state(crtc->state),
14104 pipe_config, true)) {
14105 crtc_state->mode_changed = false;
14106 to_intel_crtc_state(crtc_state)->update_pipe = true;
14107 }
14108
14109 if (needs_modeset(crtc_state))
14110 any_ms = true;
14111
14112 ret = drm_atomic_add_affected_planes(state, crtc);
14113 if (ret)
14114 return ret;
14115
14116 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14117 needs_modeset(crtc_state) ?
14118 "[modeset]" : "[fastset]");
14119 }
14120
14121 if (any_ms) {
14122 ret = intel_modeset_checks(state);
14123
14124 if (ret)
14125 return ret;
14126 } else {
14127 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14128 }
14129
14130 ret = drm_atomic_helper_check_planes(dev, state);
14131 if (ret)
14132 return ret;
14133
14134 intel_fbc_choose_crtc(dev_priv, state);
14135 return calc_watermark_data(state);
14136 }
14137
14138 static int intel_atomic_prepare_commit(struct drm_device *dev,
14139 struct drm_atomic_state *state)
14140 {
14141 struct drm_i915_private *dev_priv = to_i915(dev);
14142 struct drm_crtc_state *crtc_state;
14143 struct drm_crtc *crtc;
14144 int i, ret;
14145
14146 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14147 if (state->legacy_cursor_update)
14148 continue;
14149
14150 ret = intel_crtc_wait_for_pending_flips(crtc);
14151 if (ret)
14152 return ret;
14153
14154 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14155 flush_workqueue(dev_priv->wq);
14156 }
14157
14158 ret = mutex_lock_interruptible(&dev->struct_mutex);
14159 if (ret)
14160 return ret;
14161
14162 ret = drm_atomic_helper_prepare_planes(dev, state);
14163 mutex_unlock(&dev->struct_mutex);
14164
14165 return ret;
14166 }
14167
14168 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14169 {
14170 struct drm_device *dev = crtc->base.dev;
14171
14172 if (!dev->max_vblank_count)
14173 return drm_accurate_vblank_count(&crtc->base);
14174
14175 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14176 }
14177
14178 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14179 struct drm_i915_private *dev_priv,
14180 unsigned crtc_mask)
14181 {
14182 unsigned last_vblank_count[I915_MAX_PIPES];
14183 enum pipe pipe;
14184 int ret;
14185
14186 if (!crtc_mask)
14187 return;
14188
14189 for_each_pipe(dev_priv, pipe) {
14190 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14191 pipe);
14192
14193 if (!((1 << pipe) & crtc_mask))
14194 continue;
14195
14196 ret = drm_crtc_vblank_get(&crtc->base);
14197 if (WARN_ON(ret != 0)) {
14198 crtc_mask &= ~(1 << pipe);
14199 continue;
14200 }
14201
14202 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14203 }
14204
14205 for_each_pipe(dev_priv, pipe) {
14206 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14207 pipe);
14208 long lret;
14209
14210 if (!((1 << pipe) & crtc_mask))
14211 continue;
14212
14213 lret = wait_event_timeout(dev->vblank[pipe].queue,
14214 last_vblank_count[pipe] !=
14215 drm_crtc_vblank_count(&crtc->base),
14216 msecs_to_jiffies(50));
14217
14218 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14219
14220 drm_crtc_vblank_put(&crtc->base);
14221 }
14222 }
14223
14224 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14225 {
14226 /* fb updated, need to unpin old fb */
14227 if (crtc_state->fb_changed)
14228 return true;
14229
14230 /* wm changes, need vblank before final wm's */
14231 if (crtc_state->update_wm_post)
14232 return true;
14233
14234 /*
14235 * cxsr is re-enabled after vblank.
14236 * This is already handled by crtc_state->update_wm_post,
14237 * but added for clarity.
14238 */
14239 if (crtc_state->disable_cxsr)
14240 return true;
14241
14242 return false;
14243 }
14244
14245 static void intel_update_crtc(struct drm_crtc *crtc,
14246 struct drm_atomic_state *state,
14247 struct drm_crtc_state *old_crtc_state,
14248 unsigned int *crtc_vblank_mask)
14249 {
14250 struct drm_device *dev = crtc->dev;
14251 struct drm_i915_private *dev_priv = to_i915(dev);
14252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14253 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14254 bool modeset = needs_modeset(crtc->state);
14255
14256 if (modeset) {
14257 update_scanline_offset(intel_crtc);
14258 dev_priv->display.crtc_enable(pipe_config, state);
14259 } else {
14260 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14261 }
14262
14263 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14264 intel_fbc_enable(
14265 intel_crtc, pipe_config,
14266 to_intel_plane_state(crtc->primary->state));
14267 }
14268
14269 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14270
14271 if (needs_vblank_wait(pipe_config))
14272 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14273 }
14274
14275 static void intel_update_crtcs(struct drm_atomic_state *state,
14276 unsigned int *crtc_vblank_mask)
14277 {
14278 struct drm_crtc *crtc;
14279 struct drm_crtc_state *old_crtc_state;
14280 int i;
14281
14282 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14283 if (!crtc->state->active)
14284 continue;
14285
14286 intel_update_crtc(crtc, state, old_crtc_state,
14287 crtc_vblank_mask);
14288 }
14289 }
14290
14291 static void skl_update_crtcs(struct drm_atomic_state *state,
14292 unsigned int *crtc_vblank_mask)
14293 {
14294 struct drm_i915_private *dev_priv = to_i915(state->dev);
14295 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14296 struct drm_crtc *crtc;
14297 struct intel_crtc *intel_crtc;
14298 struct drm_crtc_state *old_crtc_state;
14299 struct intel_crtc_state *cstate;
14300 unsigned int updated = 0;
14301 bool progress;
14302 enum pipe pipe;
14303 int i;
14304
14305 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14306
14307 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14308 /* ignore allocations for crtc's that have been turned off. */
14309 if (crtc->state->active)
14310 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14311
14312 /*
14313 * Whenever the number of active pipes changes, we need to make sure we
14314 * update the pipes in the right order so that their ddb allocations
14315 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14316 * cause pipe underruns and other bad stuff.
14317 */
14318 do {
14319 progress = false;
14320
14321 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14322 bool vbl_wait = false;
14323 unsigned int cmask = drm_crtc_mask(crtc);
14324
14325 intel_crtc = to_intel_crtc(crtc);
14326 cstate = to_intel_crtc_state(crtc->state);
14327 pipe = intel_crtc->pipe;
14328
14329 if (updated & cmask || !cstate->base.active)
14330 continue;
14331
14332 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14333 continue;
14334
14335 updated |= cmask;
14336 entries[i] = &cstate->wm.skl.ddb;
14337
14338 /*
14339 * If this is an already active pipe, it's DDB changed,
14340 * and this isn't the last pipe that needs updating
14341 * then we need to wait for a vblank to pass for the
14342 * new ddb allocation to take effect.
14343 */
14344 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14345 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14346 !crtc->state->active_changed &&
14347 intel_state->wm_results.dirty_pipes != updated)
14348 vbl_wait = true;
14349
14350 intel_update_crtc(crtc, state, old_crtc_state,
14351 crtc_vblank_mask);
14352
14353 if (vbl_wait)
14354 intel_wait_for_vblank(dev_priv, pipe);
14355
14356 progress = true;
14357 }
14358 } while (progress);
14359 }
14360
14361 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14362 {
14363 struct drm_device *dev = state->dev;
14364 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14365 struct drm_i915_private *dev_priv = to_i915(dev);
14366 struct drm_crtc_state *old_crtc_state;
14367 struct drm_crtc *crtc;
14368 struct intel_crtc_state *intel_cstate;
14369 bool hw_check = intel_state->modeset;
14370 unsigned long put_domains[I915_MAX_PIPES] = {};
14371 unsigned crtc_vblank_mask = 0;
14372 int i;
14373
14374 drm_atomic_helper_wait_for_dependencies(state);
14375
14376 if (intel_state->modeset)
14377 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14378
14379 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14381
14382 if (needs_modeset(crtc->state) ||
14383 to_intel_crtc_state(crtc->state)->update_pipe) {
14384 hw_check = true;
14385
14386 put_domains[to_intel_crtc(crtc)->pipe] =
14387 modeset_get_crtc_power_domains(crtc,
14388 to_intel_crtc_state(crtc->state));
14389 }
14390
14391 if (!needs_modeset(crtc->state))
14392 continue;
14393
14394 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14395
14396 if (old_crtc_state->active) {
14397 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14398 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14399 intel_crtc->active = false;
14400 intel_fbc_disable(intel_crtc);
14401 intel_disable_shared_dpll(intel_crtc);
14402
14403 /*
14404 * Underruns don't always raise
14405 * interrupts, so check manually.
14406 */
14407 intel_check_cpu_fifo_underruns(dev_priv);
14408 intel_check_pch_fifo_underruns(dev_priv);
14409
14410 if (!crtc->state->active) {
14411 /*
14412 * Make sure we don't call initial_watermarks
14413 * for ILK-style watermark updates.
14414 */
14415 if (dev_priv->display.atomic_update_watermarks)
14416 dev_priv->display.initial_watermarks(intel_state,
14417 to_intel_crtc_state(crtc->state));
14418 else
14419 intel_update_watermarks(intel_crtc);
14420 }
14421 }
14422 }
14423
14424 /* Only after disabling all output pipelines that will be changed can we
14425 * update the the output configuration. */
14426 intel_modeset_update_crtc_state(state);
14427
14428 if (intel_state->modeset) {
14429 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14430
14431 if (dev_priv->display.modeset_commit_cdclk &&
14432 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14433 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14434 dev_priv->display.modeset_commit_cdclk(state);
14435
14436 /*
14437 * SKL workaround: bspec recommends we disable the SAGV when we
14438 * have more then one pipe enabled
14439 */
14440 if (!intel_can_enable_sagv(state))
14441 intel_disable_sagv(dev_priv);
14442
14443 intel_modeset_verify_disabled(dev, state);
14444 }
14445
14446 /* Complete the events for pipes that have now been disabled */
14447 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14448 bool modeset = needs_modeset(crtc->state);
14449
14450 /* Complete events for now disable pipes here. */
14451 if (modeset && !crtc->state->active && crtc->state->event) {
14452 spin_lock_irq(&dev->event_lock);
14453 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14454 spin_unlock_irq(&dev->event_lock);
14455
14456 crtc->state->event = NULL;
14457 }
14458 }
14459
14460 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14461 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14462
14463 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14464 * already, but still need the state for the delayed optimization. To
14465 * fix this:
14466 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14467 * - schedule that vblank worker _before_ calling hw_done
14468 * - at the start of commit_tail, cancel it _synchrously
14469 * - switch over to the vblank wait helper in the core after that since
14470 * we don't need out special handling any more.
14471 */
14472 if (!state->legacy_cursor_update)
14473 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14474
14475 /*
14476 * Now that the vblank has passed, we can go ahead and program the
14477 * optimal watermarks on platforms that need two-step watermark
14478 * programming.
14479 *
14480 * TODO: Move this (and other cleanup) to an async worker eventually.
14481 */
14482 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14483 intel_cstate = to_intel_crtc_state(crtc->state);
14484
14485 if (dev_priv->display.optimize_watermarks)
14486 dev_priv->display.optimize_watermarks(intel_state,
14487 intel_cstate);
14488 }
14489
14490 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14491 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14492
14493 if (put_domains[i])
14494 modeset_put_power_domains(dev_priv, put_domains[i]);
14495
14496 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14497 }
14498
14499 if (intel_state->modeset && intel_can_enable_sagv(state))
14500 intel_enable_sagv(dev_priv);
14501
14502 drm_atomic_helper_commit_hw_done(state);
14503
14504 if (intel_state->modeset)
14505 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14506
14507 mutex_lock(&dev->struct_mutex);
14508 drm_atomic_helper_cleanup_planes(dev, state);
14509 mutex_unlock(&dev->struct_mutex);
14510
14511 drm_atomic_helper_commit_cleanup_done(state);
14512
14513 drm_atomic_state_put(state);
14514
14515 /* As one of the primary mmio accessors, KMS has a high likelihood
14516 * of triggering bugs in unclaimed access. After we finish
14517 * modesetting, see if an error has been flagged, and if so
14518 * enable debugging for the next modeset - and hope we catch
14519 * the culprit.
14520 *
14521 * XXX note that we assume display power is on at this point.
14522 * This might hold true now but we need to add pm helper to check
14523 * unclaimed only when the hardware is on, as atomic commits
14524 * can happen also when the device is completely off.
14525 */
14526 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14527 }
14528
14529 static void intel_atomic_commit_work(struct work_struct *work)
14530 {
14531 struct drm_atomic_state *state =
14532 container_of(work, struct drm_atomic_state, commit_work);
14533
14534 intel_atomic_commit_tail(state);
14535 }
14536
14537 static int __i915_sw_fence_call
14538 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14539 enum i915_sw_fence_notify notify)
14540 {
14541 struct intel_atomic_state *state =
14542 container_of(fence, struct intel_atomic_state, commit_ready);
14543
14544 switch (notify) {
14545 case FENCE_COMPLETE:
14546 if (state->base.commit_work.func)
14547 queue_work(system_unbound_wq, &state->base.commit_work);
14548 break;
14549
14550 case FENCE_FREE:
14551 drm_atomic_state_put(&state->base);
14552 break;
14553 }
14554
14555 return NOTIFY_DONE;
14556 }
14557
14558 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14559 {
14560 struct drm_plane_state *old_plane_state;
14561 struct drm_plane *plane;
14562 int i;
14563
14564 for_each_plane_in_state(state, plane, old_plane_state, i)
14565 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14566 intel_fb_obj(plane->state->fb),
14567 to_intel_plane(plane)->frontbuffer_bit);
14568 }
14569
14570 /**
14571 * intel_atomic_commit - commit validated state object
14572 * @dev: DRM device
14573 * @state: the top-level driver state object
14574 * @nonblock: nonblocking commit
14575 *
14576 * This function commits a top-level state object that has been validated
14577 * with drm_atomic_helper_check().
14578 *
14579 * RETURNS
14580 * Zero for success or -errno.
14581 */
14582 static int intel_atomic_commit(struct drm_device *dev,
14583 struct drm_atomic_state *state,
14584 bool nonblock)
14585 {
14586 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14587 struct drm_i915_private *dev_priv = to_i915(dev);
14588 int ret = 0;
14589
14590 ret = drm_atomic_helper_setup_commit(state, nonblock);
14591 if (ret)
14592 return ret;
14593
14594 drm_atomic_state_get(state);
14595 i915_sw_fence_init(&intel_state->commit_ready,
14596 intel_atomic_commit_ready);
14597
14598 ret = intel_atomic_prepare_commit(dev, state);
14599 if (ret) {
14600 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14601 i915_sw_fence_commit(&intel_state->commit_ready);
14602 return ret;
14603 }
14604
14605 drm_atomic_helper_swap_state(state, true);
14606 dev_priv->wm.distrust_bios_wm = false;
14607 intel_shared_dpll_commit(state);
14608 intel_atomic_track_fbs(state);
14609
14610 if (intel_state->modeset) {
14611 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14612 sizeof(intel_state->min_pixclk));
14613 dev_priv->active_crtcs = intel_state->active_crtcs;
14614 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14615 }
14616
14617 drm_atomic_state_get(state);
14618 INIT_WORK(&state->commit_work,
14619 nonblock ? intel_atomic_commit_work : NULL);
14620
14621 i915_sw_fence_commit(&intel_state->commit_ready);
14622 if (!nonblock) {
14623 i915_sw_fence_wait(&intel_state->commit_ready);
14624 intel_atomic_commit_tail(state);
14625 }
14626
14627 return 0;
14628 }
14629
14630 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14631 {
14632 struct drm_device *dev = crtc->dev;
14633 struct drm_atomic_state *state;
14634 struct drm_crtc_state *crtc_state;
14635 int ret;
14636
14637 state = drm_atomic_state_alloc(dev);
14638 if (!state) {
14639 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14640 crtc->base.id, crtc->name);
14641 return;
14642 }
14643
14644 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14645
14646 retry:
14647 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14648 ret = PTR_ERR_OR_ZERO(crtc_state);
14649 if (!ret) {
14650 if (!crtc_state->active)
14651 goto out;
14652
14653 crtc_state->mode_changed = true;
14654 ret = drm_atomic_commit(state);
14655 }
14656
14657 if (ret == -EDEADLK) {
14658 drm_atomic_state_clear(state);
14659 drm_modeset_backoff(state->acquire_ctx);
14660 goto retry;
14661 }
14662
14663 out:
14664 drm_atomic_state_put(state);
14665 }
14666
14667 /*
14668 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14669 * drm_atomic_helper_legacy_gamma_set() directly.
14670 */
14671 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14672 u16 *red, u16 *green, u16 *blue,
14673 uint32_t size)
14674 {
14675 struct drm_device *dev = crtc->dev;
14676 struct drm_mode_config *config = &dev->mode_config;
14677 struct drm_crtc_state *state;
14678 int ret;
14679
14680 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14681 if (ret)
14682 return ret;
14683
14684 /*
14685 * Make sure we update the legacy properties so this works when
14686 * atomic is not enabled.
14687 */
14688
14689 state = crtc->state;
14690
14691 drm_object_property_set_value(&crtc->base,
14692 config->degamma_lut_property,
14693 (state->degamma_lut) ?
14694 state->degamma_lut->base.id : 0);
14695
14696 drm_object_property_set_value(&crtc->base,
14697 config->ctm_property,
14698 (state->ctm) ?
14699 state->ctm->base.id : 0);
14700
14701 drm_object_property_set_value(&crtc->base,
14702 config->gamma_lut_property,
14703 (state->gamma_lut) ?
14704 state->gamma_lut->base.id : 0);
14705
14706 return 0;
14707 }
14708
14709 static const struct drm_crtc_funcs intel_crtc_funcs = {
14710 .gamma_set = intel_atomic_legacy_gamma_set,
14711 .set_config = drm_atomic_helper_set_config,
14712 .set_property = drm_atomic_helper_crtc_set_property,
14713 .destroy = intel_crtc_destroy,
14714 .page_flip = intel_crtc_page_flip,
14715 .atomic_duplicate_state = intel_crtc_duplicate_state,
14716 .atomic_destroy_state = intel_crtc_destroy_state,
14717 };
14718
14719 /**
14720 * intel_prepare_plane_fb - Prepare fb for usage on plane
14721 * @plane: drm plane to prepare for
14722 * @fb: framebuffer to prepare for presentation
14723 *
14724 * Prepares a framebuffer for usage on a display plane. Generally this
14725 * involves pinning the underlying object and updating the frontbuffer tracking
14726 * bits. Some older platforms need special physical address handling for
14727 * cursor planes.
14728 *
14729 * Must be called with struct_mutex held.
14730 *
14731 * Returns 0 on success, negative error code on failure.
14732 */
14733 int
14734 intel_prepare_plane_fb(struct drm_plane *plane,
14735 struct drm_plane_state *new_state)
14736 {
14737 struct intel_atomic_state *intel_state =
14738 to_intel_atomic_state(new_state->state);
14739 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14740 struct drm_framebuffer *fb = new_state->fb;
14741 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14742 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14743 int ret;
14744
14745 if (!obj && !old_obj)
14746 return 0;
14747
14748 if (old_obj) {
14749 struct drm_crtc_state *crtc_state =
14750 drm_atomic_get_existing_crtc_state(new_state->state,
14751 plane->state->crtc);
14752
14753 /* Big Hammer, we also need to ensure that any pending
14754 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14755 * current scanout is retired before unpinning the old
14756 * framebuffer. Note that we rely on userspace rendering
14757 * into the buffer attached to the pipe they are waiting
14758 * on. If not, userspace generates a GPU hang with IPEHR
14759 * point to the MI_WAIT_FOR_EVENT.
14760 *
14761 * This should only fail upon a hung GPU, in which case we
14762 * can safely continue.
14763 */
14764 if (needs_modeset(crtc_state)) {
14765 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14766 old_obj->resv, NULL,
14767 false, 0,
14768 GFP_KERNEL);
14769 if (ret < 0)
14770 return ret;
14771 }
14772 }
14773
14774 if (new_state->fence) { /* explicit fencing */
14775 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14776 new_state->fence,
14777 I915_FENCE_TIMEOUT,
14778 GFP_KERNEL);
14779 if (ret < 0)
14780 return ret;
14781 }
14782
14783 if (!obj)
14784 return 0;
14785
14786 if (!new_state->fence) { /* implicit fencing */
14787 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14788 obj->resv, NULL,
14789 false, I915_FENCE_TIMEOUT,
14790 GFP_KERNEL);
14791 if (ret < 0)
14792 return ret;
14793
14794 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14795 }
14796
14797 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14798 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14799 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14800 ret = i915_gem_object_attach_phys(obj, align);
14801 if (ret) {
14802 DRM_DEBUG_KMS("failed to attach phys object\n");
14803 return ret;
14804 }
14805 } else {
14806 struct i915_vma *vma;
14807
14808 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14809 if (IS_ERR(vma)) {
14810 DRM_DEBUG_KMS("failed to pin object\n");
14811 return PTR_ERR(vma);
14812 }
14813 }
14814
14815 return 0;
14816 }
14817
14818 /**
14819 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14820 * @plane: drm plane to clean up for
14821 * @fb: old framebuffer that was on plane
14822 *
14823 * Cleans up a framebuffer that has just been removed from a plane.
14824 *
14825 * Must be called with struct_mutex held.
14826 */
14827 void
14828 intel_cleanup_plane_fb(struct drm_plane *plane,
14829 struct drm_plane_state *old_state)
14830 {
14831 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14832 struct intel_plane_state *old_intel_state;
14833 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14834 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14835
14836 old_intel_state = to_intel_plane_state(old_state);
14837
14838 if (!obj && !old_obj)
14839 return;
14840
14841 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14842 !INTEL_INFO(dev_priv)->cursor_needs_physical))
14843 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14844 }
14845
14846 int
14847 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14848 {
14849 int max_scale;
14850 int crtc_clock, cdclk;
14851
14852 if (!intel_crtc || !crtc_state->base.enable)
14853 return DRM_PLANE_HELPER_NO_SCALING;
14854
14855 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14856 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14857
14858 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14859 return DRM_PLANE_HELPER_NO_SCALING;
14860
14861 /*
14862 * skl max scale is lower of:
14863 * close to 3 but not 3, -1 is for that purpose
14864 * or
14865 * cdclk/crtc_clock
14866 */
14867 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14868
14869 return max_scale;
14870 }
14871
14872 static int
14873 intel_check_primary_plane(struct drm_plane *plane,
14874 struct intel_crtc_state *crtc_state,
14875 struct intel_plane_state *state)
14876 {
14877 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14878 struct drm_crtc *crtc = state->base.crtc;
14879 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14880 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14881 bool can_position = false;
14882 int ret;
14883
14884 if (INTEL_GEN(dev_priv) >= 9) {
14885 /* use scaler when colorkey is not required */
14886 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14887 min_scale = 1;
14888 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14889 }
14890 can_position = true;
14891 }
14892
14893 ret = drm_plane_helper_check_state(&state->base,
14894 &state->clip,
14895 min_scale, max_scale,
14896 can_position, true);
14897 if (ret)
14898 return ret;
14899
14900 if (!state->base.fb)
14901 return 0;
14902
14903 if (INTEL_GEN(dev_priv) >= 9) {
14904 ret = skl_check_plane_surface(state);
14905 if (ret)
14906 return ret;
14907 }
14908
14909 return 0;
14910 }
14911
14912 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14913 struct drm_crtc_state *old_crtc_state)
14914 {
14915 struct drm_device *dev = crtc->dev;
14916 struct drm_i915_private *dev_priv = to_i915(dev);
14917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14918 struct intel_crtc_state *intel_cstate =
14919 to_intel_crtc_state(crtc->state);
14920 struct intel_crtc_state *old_intel_cstate =
14921 to_intel_crtc_state(old_crtc_state);
14922 struct intel_atomic_state *old_intel_state =
14923 to_intel_atomic_state(old_crtc_state->state);
14924 bool modeset = needs_modeset(crtc->state);
14925
14926 /* Perform vblank evasion around commit operation */
14927 intel_pipe_update_start(intel_crtc);
14928
14929 if (modeset)
14930 goto out;
14931
14932 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14933 intel_color_set_csc(crtc->state);
14934 intel_color_load_luts(crtc->state);
14935 }
14936
14937 if (intel_cstate->update_pipe)
14938 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14939 else if (INTEL_GEN(dev_priv) >= 9)
14940 skl_detach_scalers(intel_crtc);
14941
14942 out:
14943 if (dev_priv->display.atomic_update_watermarks)
14944 dev_priv->display.atomic_update_watermarks(old_intel_state,
14945 intel_cstate);
14946 }
14947
14948 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14949 struct drm_crtc_state *old_crtc_state)
14950 {
14951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14952
14953 intel_pipe_update_end(intel_crtc, NULL);
14954 }
14955
14956 /**
14957 * intel_plane_destroy - destroy a plane
14958 * @plane: plane to destroy
14959 *
14960 * Common destruction function for all types of planes (primary, cursor,
14961 * sprite).
14962 */
14963 void intel_plane_destroy(struct drm_plane *plane)
14964 {
14965 drm_plane_cleanup(plane);
14966 kfree(to_intel_plane(plane));
14967 }
14968
14969 const struct drm_plane_funcs intel_plane_funcs = {
14970 .update_plane = drm_atomic_helper_update_plane,
14971 .disable_plane = drm_atomic_helper_disable_plane,
14972 .destroy = intel_plane_destroy,
14973 .set_property = drm_atomic_helper_plane_set_property,
14974 .atomic_get_property = intel_plane_atomic_get_property,
14975 .atomic_set_property = intel_plane_atomic_set_property,
14976 .atomic_duplicate_state = intel_plane_duplicate_state,
14977 .atomic_destroy_state = intel_plane_destroy_state,
14978 };
14979
14980 static struct intel_plane *
14981 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14982 {
14983 struct intel_plane *primary = NULL;
14984 struct intel_plane_state *state = NULL;
14985 const uint32_t *intel_primary_formats;
14986 unsigned int supported_rotations;
14987 unsigned int num_formats;
14988 int ret;
14989
14990 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14991 if (!primary) {
14992 ret = -ENOMEM;
14993 goto fail;
14994 }
14995
14996 state = intel_create_plane_state(&primary->base);
14997 if (!state) {
14998 ret = -ENOMEM;
14999 goto fail;
15000 }
15001
15002 primary->base.state = &state->base;
15003
15004 primary->can_scale = false;
15005 primary->max_downscale = 1;
15006 if (INTEL_GEN(dev_priv) >= 9) {
15007 primary->can_scale = true;
15008 state->scaler_id = -1;
15009 }
15010 primary->pipe = pipe;
15011 /*
15012 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15013 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15014 */
15015 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15016 primary->plane = (enum plane) !pipe;
15017 else
15018 primary->plane = (enum plane) pipe;
15019 primary->id = PLANE_PRIMARY;
15020 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15021 primary->check_plane = intel_check_primary_plane;
15022
15023 if (INTEL_GEN(dev_priv) >= 9) {
15024 intel_primary_formats = skl_primary_formats;
15025 num_formats = ARRAY_SIZE(skl_primary_formats);
15026
15027 primary->update_plane = skylake_update_primary_plane;
15028 primary->disable_plane = skylake_disable_primary_plane;
15029 } else if (HAS_PCH_SPLIT(dev_priv)) {
15030 intel_primary_formats = i965_primary_formats;
15031 num_formats = ARRAY_SIZE(i965_primary_formats);
15032
15033 primary->update_plane = ironlake_update_primary_plane;
15034 primary->disable_plane = i9xx_disable_primary_plane;
15035 } else if (INTEL_GEN(dev_priv) >= 4) {
15036 intel_primary_formats = i965_primary_formats;
15037 num_formats = ARRAY_SIZE(i965_primary_formats);
15038
15039 primary->update_plane = i9xx_update_primary_plane;
15040 primary->disable_plane = i9xx_disable_primary_plane;
15041 } else {
15042 intel_primary_formats = i8xx_primary_formats;
15043 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15044
15045 primary->update_plane = i9xx_update_primary_plane;
15046 primary->disable_plane = i9xx_disable_primary_plane;
15047 }
15048
15049 if (INTEL_GEN(dev_priv) >= 9)
15050 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15051 0, &intel_plane_funcs,
15052 intel_primary_formats, num_formats,
15053 DRM_PLANE_TYPE_PRIMARY,
15054 "plane 1%c", pipe_name(pipe));
15055 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15056 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15057 0, &intel_plane_funcs,
15058 intel_primary_formats, num_formats,
15059 DRM_PLANE_TYPE_PRIMARY,
15060 "primary %c", pipe_name(pipe));
15061 else
15062 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15063 0, &intel_plane_funcs,
15064 intel_primary_formats, num_formats,
15065 DRM_PLANE_TYPE_PRIMARY,
15066 "plane %c", plane_name(primary->plane));
15067 if (ret)
15068 goto fail;
15069
15070 if (INTEL_GEN(dev_priv) >= 9) {
15071 supported_rotations =
15072 DRM_ROTATE_0 | DRM_ROTATE_90 |
15073 DRM_ROTATE_180 | DRM_ROTATE_270;
15074 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15075 supported_rotations =
15076 DRM_ROTATE_0 | DRM_ROTATE_180 |
15077 DRM_REFLECT_X;
15078 } else if (INTEL_GEN(dev_priv) >= 4) {
15079 supported_rotations =
15080 DRM_ROTATE_0 | DRM_ROTATE_180;
15081 } else {
15082 supported_rotations = DRM_ROTATE_0;
15083 }
15084
15085 if (INTEL_GEN(dev_priv) >= 4)
15086 drm_plane_create_rotation_property(&primary->base,
15087 DRM_ROTATE_0,
15088 supported_rotations);
15089
15090 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15091
15092 return primary;
15093
15094 fail:
15095 kfree(state);
15096 kfree(primary);
15097
15098 return ERR_PTR(ret);
15099 }
15100
15101 static int
15102 intel_check_cursor_plane(struct drm_plane *plane,
15103 struct intel_crtc_state *crtc_state,
15104 struct intel_plane_state *state)
15105 {
15106 struct drm_framebuffer *fb = state->base.fb;
15107 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15108 enum pipe pipe = to_intel_plane(plane)->pipe;
15109 unsigned stride;
15110 int ret;
15111
15112 ret = drm_plane_helper_check_state(&state->base,
15113 &state->clip,
15114 DRM_PLANE_HELPER_NO_SCALING,
15115 DRM_PLANE_HELPER_NO_SCALING,
15116 true, true);
15117 if (ret)
15118 return ret;
15119
15120 /* if we want to turn off the cursor ignore width and height */
15121 if (!obj)
15122 return 0;
15123
15124 /* Check for which cursor types we support */
15125 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15126 state->base.crtc_h)) {
15127 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15128 state->base.crtc_w, state->base.crtc_h);
15129 return -EINVAL;
15130 }
15131
15132 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15133 if (obj->base.size < stride * state->base.crtc_h) {
15134 DRM_DEBUG_KMS("buffer is too small\n");
15135 return -ENOMEM;
15136 }
15137
15138 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15139 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15140 return -EINVAL;
15141 }
15142
15143 /*
15144 * There's something wrong with the cursor on CHV pipe C.
15145 * If it straddles the left edge of the screen then
15146 * moving it away from the edge or disabling it often
15147 * results in a pipe underrun, and often that can lead to
15148 * dead pipe (constant underrun reported, and it scans
15149 * out just a solid color). To recover from that, the
15150 * display power well must be turned off and on again.
15151 * Refuse the put the cursor into that compromised position.
15152 */
15153 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15154 state->base.visible && state->base.crtc_x < 0) {
15155 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15156 return -EINVAL;
15157 }
15158
15159 return 0;
15160 }
15161
15162 static void
15163 intel_disable_cursor_plane(struct drm_plane *plane,
15164 struct drm_crtc *crtc)
15165 {
15166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15167
15168 intel_crtc->cursor_addr = 0;
15169 intel_crtc_update_cursor(crtc, NULL);
15170 }
15171
15172 static void
15173 intel_update_cursor_plane(struct drm_plane *plane,
15174 const struct intel_crtc_state *crtc_state,
15175 const struct intel_plane_state *state)
15176 {
15177 struct drm_crtc *crtc = crtc_state->base.crtc;
15178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15179 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15180 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15181 uint32_t addr;
15182
15183 if (!obj)
15184 addr = 0;
15185 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15186 addr = i915_gem_object_ggtt_offset(obj, NULL);
15187 else
15188 addr = obj->phys_handle->busaddr;
15189
15190 intel_crtc->cursor_addr = addr;
15191 intel_crtc_update_cursor(crtc, state);
15192 }
15193
15194 static struct intel_plane *
15195 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15196 {
15197 struct intel_plane *cursor = NULL;
15198 struct intel_plane_state *state = NULL;
15199 int ret;
15200
15201 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15202 if (!cursor) {
15203 ret = -ENOMEM;
15204 goto fail;
15205 }
15206
15207 state = intel_create_plane_state(&cursor->base);
15208 if (!state) {
15209 ret = -ENOMEM;
15210 goto fail;
15211 }
15212
15213 cursor->base.state = &state->base;
15214
15215 cursor->can_scale = false;
15216 cursor->max_downscale = 1;
15217 cursor->pipe = pipe;
15218 cursor->plane = pipe;
15219 cursor->id = PLANE_CURSOR;
15220 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15221 cursor->check_plane = intel_check_cursor_plane;
15222 cursor->update_plane = intel_update_cursor_plane;
15223 cursor->disable_plane = intel_disable_cursor_plane;
15224
15225 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15226 0, &intel_plane_funcs,
15227 intel_cursor_formats,
15228 ARRAY_SIZE(intel_cursor_formats),
15229 DRM_PLANE_TYPE_CURSOR,
15230 "cursor %c", pipe_name(pipe));
15231 if (ret)
15232 goto fail;
15233
15234 if (INTEL_GEN(dev_priv) >= 4)
15235 drm_plane_create_rotation_property(&cursor->base,
15236 DRM_ROTATE_0,
15237 DRM_ROTATE_0 |
15238 DRM_ROTATE_180);
15239
15240 if (INTEL_GEN(dev_priv) >= 9)
15241 state->scaler_id = -1;
15242
15243 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15244
15245 return cursor;
15246
15247 fail:
15248 kfree(state);
15249 kfree(cursor);
15250
15251 return ERR_PTR(ret);
15252 }
15253
15254 static void skl_init_scalers(struct drm_i915_private *dev_priv,
15255 struct intel_crtc *crtc,
15256 struct intel_crtc_state *crtc_state)
15257 {
15258 struct intel_crtc_scaler_state *scaler_state =
15259 &crtc_state->scaler_state;
15260 int i;
15261
15262 for (i = 0; i < crtc->num_scalers; i++) {
15263 struct intel_scaler *scaler = &scaler_state->scalers[i];
15264
15265 scaler->in_use = 0;
15266 scaler->mode = PS_SCALER_MODE_DYN;
15267 }
15268
15269 scaler_state->scaler_id = -1;
15270 }
15271
15272 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15273 {
15274 struct intel_crtc *intel_crtc;
15275 struct intel_crtc_state *crtc_state = NULL;
15276 struct intel_plane *primary = NULL;
15277 struct intel_plane *cursor = NULL;
15278 int sprite, ret;
15279
15280 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15281 if (!intel_crtc)
15282 return -ENOMEM;
15283
15284 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15285 if (!crtc_state) {
15286 ret = -ENOMEM;
15287 goto fail;
15288 }
15289 intel_crtc->config = crtc_state;
15290 intel_crtc->base.state = &crtc_state->base;
15291 crtc_state->base.crtc = &intel_crtc->base;
15292
15293 /* initialize shared scalers */
15294 if (INTEL_GEN(dev_priv) >= 9) {
15295 if (pipe == PIPE_C)
15296 intel_crtc->num_scalers = 1;
15297 else
15298 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15299
15300 skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15301 }
15302
15303 primary = intel_primary_plane_create(dev_priv, pipe);
15304 if (IS_ERR(primary)) {
15305 ret = PTR_ERR(primary);
15306 goto fail;
15307 }
15308 intel_crtc->plane_ids_mask |= BIT(primary->id);
15309
15310 for_each_sprite(dev_priv, pipe, sprite) {
15311 struct intel_plane *plane;
15312
15313 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15314 if (IS_ERR(plane)) {
15315 ret = PTR_ERR(plane);
15316 goto fail;
15317 }
15318 intel_crtc->plane_ids_mask |= BIT(plane->id);
15319 }
15320
15321 cursor = intel_cursor_plane_create(dev_priv, pipe);
15322 if (IS_ERR(cursor)) {
15323 ret = PTR_ERR(cursor);
15324 goto fail;
15325 }
15326 intel_crtc->plane_ids_mask |= BIT(cursor->id);
15327
15328 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15329 &primary->base, &cursor->base,
15330 &intel_crtc_funcs,
15331 "pipe %c", pipe_name(pipe));
15332 if (ret)
15333 goto fail;
15334
15335 intel_crtc->pipe = pipe;
15336 intel_crtc->plane = primary->plane;
15337
15338 intel_crtc->cursor_base = ~0;
15339 intel_crtc->cursor_cntl = ~0;
15340 intel_crtc->cursor_size = ~0;
15341
15342 intel_crtc->wm.cxsr_allowed = true;
15343
15344 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15345 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15346 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15347 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15348
15349 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15350
15351 intel_color_init(&intel_crtc->base);
15352
15353 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15354
15355 return 0;
15356
15357 fail:
15358 /*
15359 * drm_mode_config_cleanup() will free up any
15360 * crtcs/planes already initialized.
15361 */
15362 kfree(crtc_state);
15363 kfree(intel_crtc);
15364
15365 return ret;
15366 }
15367
15368 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15369 {
15370 struct drm_encoder *encoder = connector->base.encoder;
15371 struct drm_device *dev = connector->base.dev;
15372
15373 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15374
15375 if (!encoder || WARN_ON(!encoder->crtc))
15376 return INVALID_PIPE;
15377
15378 return to_intel_crtc(encoder->crtc)->pipe;
15379 }
15380
15381 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15382 struct drm_file *file)
15383 {
15384 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15385 struct drm_crtc *drmmode_crtc;
15386 struct intel_crtc *crtc;
15387
15388 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15389 if (!drmmode_crtc)
15390 return -ENOENT;
15391
15392 crtc = to_intel_crtc(drmmode_crtc);
15393 pipe_from_crtc_id->pipe = crtc->pipe;
15394
15395 return 0;
15396 }
15397
15398 static int intel_encoder_clones(struct intel_encoder *encoder)
15399 {
15400 struct drm_device *dev = encoder->base.dev;
15401 struct intel_encoder *source_encoder;
15402 int index_mask = 0;
15403 int entry = 0;
15404
15405 for_each_intel_encoder(dev, source_encoder) {
15406 if (encoders_cloneable(encoder, source_encoder))
15407 index_mask |= (1 << entry);
15408
15409 entry++;
15410 }
15411
15412 return index_mask;
15413 }
15414
15415 static bool has_edp_a(struct drm_i915_private *dev_priv)
15416 {
15417 if (!IS_MOBILE(dev_priv))
15418 return false;
15419
15420 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15421 return false;
15422
15423 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15424 return false;
15425
15426 return true;
15427 }
15428
15429 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15430 {
15431 if (INTEL_GEN(dev_priv) >= 9)
15432 return false;
15433
15434 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15435 return false;
15436
15437 if (IS_CHERRYVIEW(dev_priv))
15438 return false;
15439
15440 if (HAS_PCH_LPT_H(dev_priv) &&
15441 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15442 return false;
15443
15444 /* DDI E can't be used if DDI A requires 4 lanes */
15445 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15446 return false;
15447
15448 if (!dev_priv->vbt.int_crt_support)
15449 return false;
15450
15451 return true;
15452 }
15453
15454 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15455 {
15456 int pps_num;
15457 int pps_idx;
15458
15459 if (HAS_DDI(dev_priv))
15460 return;
15461 /*
15462 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15463 * everywhere where registers can be write protected.
15464 */
15465 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15466 pps_num = 2;
15467 else
15468 pps_num = 1;
15469
15470 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15471 u32 val = I915_READ(PP_CONTROL(pps_idx));
15472
15473 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15474 I915_WRITE(PP_CONTROL(pps_idx), val);
15475 }
15476 }
15477
15478 static void intel_pps_init(struct drm_i915_private *dev_priv)
15479 {
15480 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15481 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15482 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15483 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15484 else
15485 dev_priv->pps_mmio_base = PPS_BASE;
15486
15487 intel_pps_unlock_regs_wa(dev_priv);
15488 }
15489
15490 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15491 {
15492 struct intel_encoder *encoder;
15493 bool dpd_is_edp = false;
15494
15495 intel_pps_init(dev_priv);
15496
15497 /*
15498 * intel_edp_init_connector() depends on this completing first, to
15499 * prevent the registeration of both eDP and LVDS and the incorrect
15500 * sharing of the PPS.
15501 */
15502 intel_lvds_init(dev_priv);
15503
15504 if (intel_crt_present(dev_priv))
15505 intel_crt_init(dev_priv);
15506
15507 if (IS_BROXTON(dev_priv)) {
15508 /*
15509 * FIXME: Broxton doesn't support port detection via the
15510 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15511 * detect the ports.
15512 */
15513 intel_ddi_init(dev_priv, PORT_A);
15514 intel_ddi_init(dev_priv, PORT_B);
15515 intel_ddi_init(dev_priv, PORT_C);
15516
15517 intel_dsi_init(dev_priv);
15518 } else if (HAS_DDI(dev_priv)) {
15519 int found;
15520
15521 /*
15522 * Haswell uses DDI functions to detect digital outputs.
15523 * On SKL pre-D0 the strap isn't connected, so we assume
15524 * it's there.
15525 */
15526 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15527 /* WaIgnoreDDIAStrap: skl */
15528 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15529 intel_ddi_init(dev_priv, PORT_A);
15530
15531 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15532 * register */
15533 found = I915_READ(SFUSE_STRAP);
15534
15535 if (found & SFUSE_STRAP_DDIB_DETECTED)
15536 intel_ddi_init(dev_priv, PORT_B);
15537 if (found & SFUSE_STRAP_DDIC_DETECTED)
15538 intel_ddi_init(dev_priv, PORT_C);
15539 if (found & SFUSE_STRAP_DDID_DETECTED)
15540 intel_ddi_init(dev_priv, PORT_D);
15541 /*
15542 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15543 */
15544 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15545 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15546 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15547 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15548 intel_ddi_init(dev_priv, PORT_E);
15549
15550 } else if (HAS_PCH_SPLIT(dev_priv)) {
15551 int found;
15552 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15553
15554 if (has_edp_a(dev_priv))
15555 intel_dp_init(dev_priv, DP_A, PORT_A);
15556
15557 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15558 /* PCH SDVOB multiplex with HDMIB */
15559 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15560 if (!found)
15561 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15562 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15563 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15564 }
15565
15566 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15567 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15568
15569 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15570 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15571
15572 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15573 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15574
15575 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15576 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15577 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15578 bool has_edp, has_port;
15579
15580 /*
15581 * The DP_DETECTED bit is the latched state of the DDC
15582 * SDA pin at boot. However since eDP doesn't require DDC
15583 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15584 * eDP ports may have been muxed to an alternate function.
15585 * Thus we can't rely on the DP_DETECTED bit alone to detect
15586 * eDP ports. Consult the VBT as well as DP_DETECTED to
15587 * detect eDP ports.
15588 *
15589 * Sadly the straps seem to be missing sometimes even for HDMI
15590 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15591 * and VBT for the presence of the port. Additionally we can't
15592 * trust the port type the VBT declares as we've seen at least
15593 * HDMI ports that the VBT claim are DP or eDP.
15594 */
15595 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15596 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15597 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15598 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15599 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15600 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15601
15602 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15603 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15604 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15605 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15606 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15607 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15608
15609 if (IS_CHERRYVIEW(dev_priv)) {
15610 /*
15611 * eDP not supported on port D,
15612 * so no need to worry about it
15613 */
15614 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15615 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15616 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15617 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15618 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15619 }
15620
15621 intel_dsi_init(dev_priv);
15622 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15623 bool found = false;
15624
15625 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15626 DRM_DEBUG_KMS("probing SDVOB\n");
15627 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15628 if (!found && IS_G4X(dev_priv)) {
15629 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15630 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15631 }
15632
15633 if (!found && IS_G4X(dev_priv))
15634 intel_dp_init(dev_priv, DP_B, PORT_B);
15635 }
15636
15637 /* Before G4X SDVOC doesn't have its own detect register */
15638
15639 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15640 DRM_DEBUG_KMS("probing SDVOC\n");
15641 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15642 }
15643
15644 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15645
15646 if (IS_G4X(dev_priv)) {
15647 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15648 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15649 }
15650 if (IS_G4X(dev_priv))
15651 intel_dp_init(dev_priv, DP_C, PORT_C);
15652 }
15653
15654 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15655 intel_dp_init(dev_priv, DP_D, PORT_D);
15656 } else if (IS_GEN2(dev_priv))
15657 intel_dvo_init(dev_priv);
15658
15659 if (SUPPORTS_TV(dev_priv))
15660 intel_tv_init(dev_priv);
15661
15662 intel_psr_init(dev_priv);
15663
15664 for_each_intel_encoder(&dev_priv->drm, encoder) {
15665 encoder->base.possible_crtcs = encoder->crtc_mask;
15666 encoder->base.possible_clones =
15667 intel_encoder_clones(encoder);
15668 }
15669
15670 intel_init_pch_refclk(dev_priv);
15671
15672 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15673 }
15674
15675 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15676 {
15677 struct drm_device *dev = fb->dev;
15678 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15679
15680 drm_framebuffer_cleanup(fb);
15681 mutex_lock(&dev->struct_mutex);
15682 WARN_ON(!intel_fb->obj->framebuffer_references--);
15683 i915_gem_object_put(intel_fb->obj);
15684 mutex_unlock(&dev->struct_mutex);
15685 kfree(intel_fb);
15686 }
15687
15688 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15689 struct drm_file *file,
15690 unsigned int *handle)
15691 {
15692 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15693 struct drm_i915_gem_object *obj = intel_fb->obj;
15694
15695 if (obj->userptr.mm) {
15696 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15697 return -EINVAL;
15698 }
15699
15700 return drm_gem_handle_create(file, &obj->base, handle);
15701 }
15702
15703 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15704 struct drm_file *file,
15705 unsigned flags, unsigned color,
15706 struct drm_clip_rect *clips,
15707 unsigned num_clips)
15708 {
15709 struct drm_device *dev = fb->dev;
15710 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15711 struct drm_i915_gem_object *obj = intel_fb->obj;
15712
15713 mutex_lock(&dev->struct_mutex);
15714 if (obj->pin_display && obj->cache_dirty)
15715 i915_gem_clflush_object(obj, true);
15716 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15717 mutex_unlock(&dev->struct_mutex);
15718
15719 return 0;
15720 }
15721
15722 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15723 .destroy = intel_user_framebuffer_destroy,
15724 .create_handle = intel_user_framebuffer_create_handle,
15725 .dirty = intel_user_framebuffer_dirty,
15726 };
15727
15728 static
15729 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15730 uint64_t fb_modifier, uint32_t pixel_format)
15731 {
15732 u32 gen = INTEL_INFO(dev_priv)->gen;
15733
15734 if (gen >= 9) {
15735 int cpp = drm_format_plane_cpp(pixel_format, 0);
15736
15737 /* "The stride in bytes must not exceed the of the size of 8K
15738 * pixels and 32K bytes."
15739 */
15740 return min(8192 * cpp, 32768);
15741 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15742 !IS_CHERRYVIEW(dev_priv)) {
15743 return 32*1024;
15744 } else if (gen >= 4) {
15745 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15746 return 16*1024;
15747 else
15748 return 32*1024;
15749 } else if (gen >= 3) {
15750 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15751 return 8*1024;
15752 else
15753 return 16*1024;
15754 } else {
15755 /* XXX DSPC is limited to 4k tiled */
15756 return 8*1024;
15757 }
15758 }
15759
15760 static int intel_framebuffer_init(struct drm_device *dev,
15761 struct intel_framebuffer *intel_fb,
15762 struct drm_mode_fb_cmd2 *mode_cmd,
15763 struct drm_i915_gem_object *obj)
15764 {
15765 struct drm_i915_private *dev_priv = to_i915(dev);
15766 unsigned int tiling = i915_gem_object_get_tiling(obj);
15767 int ret;
15768 u32 pitch_limit, stride_alignment;
15769 struct drm_format_name_buf format_name;
15770
15771 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15772
15773 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15774 /*
15775 * If there's a fence, enforce that
15776 * the fb modifier and tiling mode match.
15777 */
15778 if (tiling != I915_TILING_NONE &&
15779 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15780 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15781 return -EINVAL;
15782 }
15783 } else {
15784 if (tiling == I915_TILING_X) {
15785 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15786 } else if (tiling == I915_TILING_Y) {
15787 DRM_DEBUG("No Y tiling for legacy addfb\n");
15788 return -EINVAL;
15789 }
15790 }
15791
15792 /* Passed in modifier sanity checking. */
15793 switch (mode_cmd->modifier[0]) {
15794 case I915_FORMAT_MOD_Y_TILED:
15795 case I915_FORMAT_MOD_Yf_TILED:
15796 if (INTEL_GEN(dev_priv) < 9) {
15797 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15798 mode_cmd->modifier[0]);
15799 return -EINVAL;
15800 }
15801 case DRM_FORMAT_MOD_NONE:
15802 case I915_FORMAT_MOD_X_TILED:
15803 break;
15804 default:
15805 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15806 mode_cmd->modifier[0]);
15807 return -EINVAL;
15808 }
15809
15810 /*
15811 * gen2/3 display engine uses the fence if present,
15812 * so the tiling mode must match the fb modifier exactly.
15813 */
15814 if (INTEL_INFO(dev_priv)->gen < 4 &&
15815 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15816 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15817 return -EINVAL;
15818 }
15819
15820 stride_alignment = intel_fb_stride_alignment(dev_priv,
15821 mode_cmd->modifier[0],
15822 mode_cmd->pixel_format);
15823 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15824 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15825 mode_cmd->pitches[0], stride_alignment);
15826 return -EINVAL;
15827 }
15828
15829 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15830 mode_cmd->pixel_format);
15831 if (mode_cmd->pitches[0] > pitch_limit) {
15832 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15833 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15834 "tiled" : "linear",
15835 mode_cmd->pitches[0], pitch_limit);
15836 return -EINVAL;
15837 }
15838
15839 /*
15840 * If there's a fence, enforce that
15841 * the fb pitch and fence stride match.
15842 */
15843 if (tiling != I915_TILING_NONE &&
15844 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15845 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15846 mode_cmd->pitches[0],
15847 i915_gem_object_get_stride(obj));
15848 return -EINVAL;
15849 }
15850
15851 /* Reject formats not supported by any plane early. */
15852 switch (mode_cmd->pixel_format) {
15853 case DRM_FORMAT_C8:
15854 case DRM_FORMAT_RGB565:
15855 case DRM_FORMAT_XRGB8888:
15856 case DRM_FORMAT_ARGB8888:
15857 break;
15858 case DRM_FORMAT_XRGB1555:
15859 if (INTEL_GEN(dev_priv) > 3) {
15860 DRM_DEBUG("unsupported pixel format: %s\n",
15861 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15862 return -EINVAL;
15863 }
15864 break;
15865 case DRM_FORMAT_ABGR8888:
15866 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15867 INTEL_GEN(dev_priv) < 9) {
15868 DRM_DEBUG("unsupported pixel format: %s\n",
15869 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15870 return -EINVAL;
15871 }
15872 break;
15873 case DRM_FORMAT_XBGR8888:
15874 case DRM_FORMAT_XRGB2101010:
15875 case DRM_FORMAT_XBGR2101010:
15876 if (INTEL_GEN(dev_priv) < 4) {
15877 DRM_DEBUG("unsupported pixel format: %s\n",
15878 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15879 return -EINVAL;
15880 }
15881 break;
15882 case DRM_FORMAT_ABGR2101010:
15883 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15884 DRM_DEBUG("unsupported pixel format: %s\n",
15885 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15886 return -EINVAL;
15887 }
15888 break;
15889 case DRM_FORMAT_YUYV:
15890 case DRM_FORMAT_UYVY:
15891 case DRM_FORMAT_YVYU:
15892 case DRM_FORMAT_VYUY:
15893 if (INTEL_GEN(dev_priv) < 5) {
15894 DRM_DEBUG("unsupported pixel format: %s\n",
15895 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15896 return -EINVAL;
15897 }
15898 break;
15899 default:
15900 DRM_DEBUG("unsupported pixel format: %s\n",
15901 drm_get_format_name(mode_cmd->pixel_format, &format_name));
15902 return -EINVAL;
15903 }
15904
15905 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15906 if (mode_cmd->offsets[0] != 0)
15907 return -EINVAL;
15908
15909 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15910 intel_fb->obj = obj;
15911
15912 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15913 if (ret)
15914 return ret;
15915
15916 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15917 if (ret) {
15918 DRM_ERROR("framebuffer init failed %d\n", ret);
15919 return ret;
15920 }
15921
15922 intel_fb->obj->framebuffer_references++;
15923
15924 return 0;
15925 }
15926
15927 static struct drm_framebuffer *
15928 intel_user_framebuffer_create(struct drm_device *dev,
15929 struct drm_file *filp,
15930 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15931 {
15932 struct drm_framebuffer *fb;
15933 struct drm_i915_gem_object *obj;
15934 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15935
15936 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15937 if (!obj)
15938 return ERR_PTR(-ENOENT);
15939
15940 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15941 if (IS_ERR(fb))
15942 i915_gem_object_put(obj);
15943
15944 return fb;
15945 }
15946
15947 static const struct drm_mode_config_funcs intel_mode_funcs = {
15948 .fb_create = intel_user_framebuffer_create,
15949 .output_poll_changed = intel_fbdev_output_poll_changed,
15950 .atomic_check = intel_atomic_check,
15951 .atomic_commit = intel_atomic_commit,
15952 .atomic_state_alloc = intel_atomic_state_alloc,
15953 .atomic_state_clear = intel_atomic_state_clear,
15954 };
15955
15956 /**
15957 * intel_init_display_hooks - initialize the display modesetting hooks
15958 * @dev_priv: device private
15959 */
15960 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15961 {
15962 if (INTEL_INFO(dev_priv)->gen >= 9) {
15963 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15964 dev_priv->display.get_initial_plane_config =
15965 skylake_get_initial_plane_config;
15966 dev_priv->display.crtc_compute_clock =
15967 haswell_crtc_compute_clock;
15968 dev_priv->display.crtc_enable = haswell_crtc_enable;
15969 dev_priv->display.crtc_disable = haswell_crtc_disable;
15970 } else if (HAS_DDI(dev_priv)) {
15971 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15972 dev_priv->display.get_initial_plane_config =
15973 ironlake_get_initial_plane_config;
15974 dev_priv->display.crtc_compute_clock =
15975 haswell_crtc_compute_clock;
15976 dev_priv->display.crtc_enable = haswell_crtc_enable;
15977 dev_priv->display.crtc_disable = haswell_crtc_disable;
15978 } else if (HAS_PCH_SPLIT(dev_priv)) {
15979 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15980 dev_priv->display.get_initial_plane_config =
15981 ironlake_get_initial_plane_config;
15982 dev_priv->display.crtc_compute_clock =
15983 ironlake_crtc_compute_clock;
15984 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15985 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15986 } else if (IS_CHERRYVIEW(dev_priv)) {
15987 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15988 dev_priv->display.get_initial_plane_config =
15989 i9xx_get_initial_plane_config;
15990 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15991 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15992 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15993 } else if (IS_VALLEYVIEW(dev_priv)) {
15994 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15995 dev_priv->display.get_initial_plane_config =
15996 i9xx_get_initial_plane_config;
15997 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15998 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15999 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16000 } else if (IS_G4X(dev_priv)) {
16001 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16002 dev_priv->display.get_initial_plane_config =
16003 i9xx_get_initial_plane_config;
16004 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16005 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16006 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16007 } else if (IS_PINEVIEW(dev_priv)) {
16008 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16009 dev_priv->display.get_initial_plane_config =
16010 i9xx_get_initial_plane_config;
16011 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16012 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16013 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16014 } else if (!IS_GEN2(dev_priv)) {
16015 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16016 dev_priv->display.get_initial_plane_config =
16017 i9xx_get_initial_plane_config;
16018 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16019 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16020 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16021 } else {
16022 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16023 dev_priv->display.get_initial_plane_config =
16024 i9xx_get_initial_plane_config;
16025 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16026 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16027 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16028 }
16029
16030 /* Returns the core display clock speed */
16031 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16032 dev_priv->display.get_display_clock_speed =
16033 skylake_get_display_clock_speed;
16034 else if (IS_BROXTON(dev_priv))
16035 dev_priv->display.get_display_clock_speed =
16036 broxton_get_display_clock_speed;
16037 else if (IS_BROADWELL(dev_priv))
16038 dev_priv->display.get_display_clock_speed =
16039 broadwell_get_display_clock_speed;
16040 else if (IS_HASWELL(dev_priv))
16041 dev_priv->display.get_display_clock_speed =
16042 haswell_get_display_clock_speed;
16043 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16044 dev_priv->display.get_display_clock_speed =
16045 valleyview_get_display_clock_speed;
16046 else if (IS_GEN5(dev_priv))
16047 dev_priv->display.get_display_clock_speed =
16048 ilk_get_display_clock_speed;
16049 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16050 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16051 dev_priv->display.get_display_clock_speed =
16052 i945_get_display_clock_speed;
16053 else if (IS_GM45(dev_priv))
16054 dev_priv->display.get_display_clock_speed =
16055 gm45_get_display_clock_speed;
16056 else if (IS_CRESTLINE(dev_priv))
16057 dev_priv->display.get_display_clock_speed =
16058 i965gm_get_display_clock_speed;
16059 else if (IS_PINEVIEW(dev_priv))
16060 dev_priv->display.get_display_clock_speed =
16061 pnv_get_display_clock_speed;
16062 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16063 dev_priv->display.get_display_clock_speed =
16064 g33_get_display_clock_speed;
16065 else if (IS_I915G(dev_priv))
16066 dev_priv->display.get_display_clock_speed =
16067 i915_get_display_clock_speed;
16068 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16069 dev_priv->display.get_display_clock_speed =
16070 i9xx_misc_get_display_clock_speed;
16071 else if (IS_I915GM(dev_priv))
16072 dev_priv->display.get_display_clock_speed =
16073 i915gm_get_display_clock_speed;
16074 else if (IS_I865G(dev_priv))
16075 dev_priv->display.get_display_clock_speed =
16076 i865_get_display_clock_speed;
16077 else if (IS_I85X(dev_priv))
16078 dev_priv->display.get_display_clock_speed =
16079 i85x_get_display_clock_speed;
16080 else { /* 830 */
16081 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16082 dev_priv->display.get_display_clock_speed =
16083 i830_get_display_clock_speed;
16084 }
16085
16086 if (IS_GEN5(dev_priv)) {
16087 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16088 } else if (IS_GEN6(dev_priv)) {
16089 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16090 } else if (IS_IVYBRIDGE(dev_priv)) {
16091 /* FIXME: detect B0+ stepping and use auto training */
16092 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16093 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16094 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16095 }
16096
16097 if (IS_BROADWELL(dev_priv)) {
16098 dev_priv->display.modeset_commit_cdclk =
16099 broadwell_modeset_commit_cdclk;
16100 dev_priv->display.modeset_calc_cdclk =
16101 broadwell_modeset_calc_cdclk;
16102 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16103 dev_priv->display.modeset_commit_cdclk =
16104 valleyview_modeset_commit_cdclk;
16105 dev_priv->display.modeset_calc_cdclk =
16106 valleyview_modeset_calc_cdclk;
16107 } else if (IS_BROXTON(dev_priv)) {
16108 dev_priv->display.modeset_commit_cdclk =
16109 bxt_modeset_commit_cdclk;
16110 dev_priv->display.modeset_calc_cdclk =
16111 bxt_modeset_calc_cdclk;
16112 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16113 dev_priv->display.modeset_commit_cdclk =
16114 skl_modeset_commit_cdclk;
16115 dev_priv->display.modeset_calc_cdclk =
16116 skl_modeset_calc_cdclk;
16117 }
16118
16119 if (dev_priv->info.gen >= 9)
16120 dev_priv->display.update_crtcs = skl_update_crtcs;
16121 else
16122 dev_priv->display.update_crtcs = intel_update_crtcs;
16123
16124 switch (INTEL_INFO(dev_priv)->gen) {
16125 case 2:
16126 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16127 break;
16128
16129 case 3:
16130 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16131 break;
16132
16133 case 4:
16134 case 5:
16135 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16136 break;
16137
16138 case 6:
16139 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16140 break;
16141 case 7:
16142 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16143 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16144 break;
16145 case 9:
16146 /* Drop through - unsupported since execlist only. */
16147 default:
16148 /* Default just returns -ENODEV to indicate unsupported */
16149 dev_priv->display.queue_flip = intel_default_queue_flip;
16150 }
16151 }
16152
16153 /*
16154 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16155 * resume, or other times. This quirk makes sure that's the case for
16156 * affected systems.
16157 */
16158 static void quirk_pipea_force(struct drm_device *dev)
16159 {
16160 struct drm_i915_private *dev_priv = to_i915(dev);
16161
16162 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16163 DRM_INFO("applying pipe a force quirk\n");
16164 }
16165
16166 static void quirk_pipeb_force(struct drm_device *dev)
16167 {
16168 struct drm_i915_private *dev_priv = to_i915(dev);
16169
16170 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16171 DRM_INFO("applying pipe b force quirk\n");
16172 }
16173
16174 /*
16175 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16176 */
16177 static void quirk_ssc_force_disable(struct drm_device *dev)
16178 {
16179 struct drm_i915_private *dev_priv = to_i915(dev);
16180 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16181 DRM_INFO("applying lvds SSC disable quirk\n");
16182 }
16183
16184 /*
16185 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16186 * brightness value
16187 */
16188 static void quirk_invert_brightness(struct drm_device *dev)
16189 {
16190 struct drm_i915_private *dev_priv = to_i915(dev);
16191 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16192 DRM_INFO("applying inverted panel brightness quirk\n");
16193 }
16194
16195 /* Some VBT's incorrectly indicate no backlight is present */
16196 static void quirk_backlight_present(struct drm_device *dev)
16197 {
16198 struct drm_i915_private *dev_priv = to_i915(dev);
16199 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16200 DRM_INFO("applying backlight present quirk\n");
16201 }
16202
16203 struct intel_quirk {
16204 int device;
16205 int subsystem_vendor;
16206 int subsystem_device;
16207 void (*hook)(struct drm_device *dev);
16208 };
16209
16210 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16211 struct intel_dmi_quirk {
16212 void (*hook)(struct drm_device *dev);
16213 const struct dmi_system_id (*dmi_id_list)[];
16214 };
16215
16216 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16217 {
16218 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16219 return 1;
16220 }
16221
16222 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16223 {
16224 .dmi_id_list = &(const struct dmi_system_id[]) {
16225 {
16226 .callback = intel_dmi_reverse_brightness,
16227 .ident = "NCR Corporation",
16228 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16229 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16230 },
16231 },
16232 { } /* terminating entry */
16233 },
16234 .hook = quirk_invert_brightness,
16235 },
16236 };
16237
16238 static struct intel_quirk intel_quirks[] = {
16239 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16240 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16241
16242 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16243 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16244
16245 /* 830 needs to leave pipe A & dpll A up */
16246 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16247
16248 /* 830 needs to leave pipe B & dpll B up */
16249 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16250
16251 /* Lenovo U160 cannot use SSC on LVDS */
16252 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16253
16254 /* Sony Vaio Y cannot use SSC on LVDS */
16255 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16256
16257 /* Acer Aspire 5734Z must invert backlight brightness */
16258 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16259
16260 /* Acer/eMachines G725 */
16261 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16262
16263 /* Acer/eMachines e725 */
16264 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16265
16266 /* Acer/Packard Bell NCL20 */
16267 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16268
16269 /* Acer Aspire 4736Z */
16270 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16271
16272 /* Acer Aspire 5336 */
16273 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16274
16275 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16276 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16277
16278 /* Acer C720 Chromebook (Core i3 4005U) */
16279 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16280
16281 /* Apple Macbook 2,1 (Core 2 T7400) */
16282 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16283
16284 /* Apple Macbook 4,1 */
16285 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16286
16287 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16288 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16289
16290 /* HP Chromebook 14 (Celeron 2955U) */
16291 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16292
16293 /* Dell Chromebook 11 */
16294 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16295
16296 /* Dell Chromebook 11 (2015 version) */
16297 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16298 };
16299
16300 static void intel_init_quirks(struct drm_device *dev)
16301 {
16302 struct pci_dev *d = dev->pdev;
16303 int i;
16304
16305 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16306 struct intel_quirk *q = &intel_quirks[i];
16307
16308 if (d->device == q->device &&
16309 (d->subsystem_vendor == q->subsystem_vendor ||
16310 q->subsystem_vendor == PCI_ANY_ID) &&
16311 (d->subsystem_device == q->subsystem_device ||
16312 q->subsystem_device == PCI_ANY_ID))
16313 q->hook(dev);
16314 }
16315 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16316 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16317 intel_dmi_quirks[i].hook(dev);
16318 }
16319 }
16320
16321 /* Disable the VGA plane that we never use */
16322 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16323 {
16324 struct pci_dev *pdev = dev_priv->drm.pdev;
16325 u8 sr1;
16326 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16327
16328 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16329 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16330 outb(SR01, VGA_SR_INDEX);
16331 sr1 = inb(VGA_SR_DATA);
16332 outb(sr1 | 1<<5, VGA_SR_DATA);
16333 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16334 udelay(300);
16335
16336 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16337 POSTING_READ(vga_reg);
16338 }
16339
16340 void intel_modeset_init_hw(struct drm_device *dev)
16341 {
16342 struct drm_i915_private *dev_priv = to_i915(dev);
16343
16344 intel_update_cdclk(dev_priv);
16345
16346 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16347
16348 intel_init_clock_gating(dev_priv);
16349 }
16350
16351 /*
16352 * Calculate what we think the watermarks should be for the state we've read
16353 * out of the hardware and then immediately program those watermarks so that
16354 * we ensure the hardware settings match our internal state.
16355 *
16356 * We can calculate what we think WM's should be by creating a duplicate of the
16357 * current state (which was constructed during hardware readout) and running it
16358 * through the atomic check code to calculate new watermark values in the
16359 * state object.
16360 */
16361 static void sanitize_watermarks(struct drm_device *dev)
16362 {
16363 struct drm_i915_private *dev_priv = to_i915(dev);
16364 struct drm_atomic_state *state;
16365 struct intel_atomic_state *intel_state;
16366 struct drm_crtc *crtc;
16367 struct drm_crtc_state *cstate;
16368 struct drm_modeset_acquire_ctx ctx;
16369 int ret;
16370 int i;
16371
16372 /* Only supported on platforms that use atomic watermark design */
16373 if (!dev_priv->display.optimize_watermarks)
16374 return;
16375
16376 /*
16377 * We need to hold connection_mutex before calling duplicate_state so
16378 * that the connector loop is protected.
16379 */
16380 drm_modeset_acquire_init(&ctx, 0);
16381 retry:
16382 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16383 if (ret == -EDEADLK) {
16384 drm_modeset_backoff(&ctx);
16385 goto retry;
16386 } else if (WARN_ON(ret)) {
16387 goto fail;
16388 }
16389
16390 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16391 if (WARN_ON(IS_ERR(state)))
16392 goto fail;
16393
16394 intel_state = to_intel_atomic_state(state);
16395
16396 /*
16397 * Hardware readout is the only time we don't want to calculate
16398 * intermediate watermarks (since we don't trust the current
16399 * watermarks).
16400 */
16401 intel_state->skip_intermediate_wm = true;
16402
16403 ret = intel_atomic_check(dev, state);
16404 if (ret) {
16405 /*
16406 * If we fail here, it means that the hardware appears to be
16407 * programmed in a way that shouldn't be possible, given our
16408 * understanding of watermark requirements. This might mean a
16409 * mistake in the hardware readout code or a mistake in the
16410 * watermark calculations for a given platform. Raise a WARN
16411 * so that this is noticeable.
16412 *
16413 * If this actually happens, we'll have to just leave the
16414 * BIOS-programmed watermarks untouched and hope for the best.
16415 */
16416 WARN(true, "Could not determine valid watermarks for inherited state\n");
16417 goto put_state;
16418 }
16419
16420 /* Write calculated watermark values back */
16421 for_each_crtc_in_state(state, crtc, cstate, i) {
16422 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16423
16424 cs->wm.need_postvbl_update = true;
16425 dev_priv->display.optimize_watermarks(intel_state, cs);
16426 }
16427
16428 put_state:
16429 drm_atomic_state_put(state);
16430 fail:
16431 drm_modeset_drop_locks(&ctx);
16432 drm_modeset_acquire_fini(&ctx);
16433 }
16434
16435 int intel_modeset_init(struct drm_device *dev)
16436 {
16437 struct drm_i915_private *dev_priv = to_i915(dev);
16438 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16439 enum pipe pipe;
16440 struct intel_crtc *crtc;
16441
16442 drm_mode_config_init(dev);
16443
16444 dev->mode_config.min_width = 0;
16445 dev->mode_config.min_height = 0;
16446
16447 dev->mode_config.preferred_depth = 24;
16448 dev->mode_config.prefer_shadow = 1;
16449
16450 dev->mode_config.allow_fb_modifiers = true;
16451
16452 dev->mode_config.funcs = &intel_mode_funcs;
16453
16454 intel_init_quirks(dev);
16455
16456 intel_init_pm(dev_priv);
16457
16458 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16459 return 0;
16460
16461 /*
16462 * There may be no VBT; and if the BIOS enabled SSC we can
16463 * just keep using it to avoid unnecessary flicker. Whereas if the
16464 * BIOS isn't using it, don't assume it will work even if the VBT
16465 * indicates as much.
16466 */
16467 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16468 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16469 DREF_SSC1_ENABLE);
16470
16471 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16472 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16473 bios_lvds_use_ssc ? "en" : "dis",
16474 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16475 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16476 }
16477 }
16478
16479 if (IS_GEN2(dev_priv)) {
16480 dev->mode_config.max_width = 2048;
16481 dev->mode_config.max_height = 2048;
16482 } else if (IS_GEN3(dev_priv)) {
16483 dev->mode_config.max_width = 4096;
16484 dev->mode_config.max_height = 4096;
16485 } else {
16486 dev->mode_config.max_width = 8192;
16487 dev->mode_config.max_height = 8192;
16488 }
16489
16490 if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16491 dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16492 dev->mode_config.cursor_height = 1023;
16493 } else if (IS_GEN2(dev_priv)) {
16494 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16495 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16496 } else {
16497 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16498 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16499 }
16500
16501 dev->mode_config.fb_base = ggtt->mappable_base;
16502
16503 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16504 INTEL_INFO(dev_priv)->num_pipes,
16505 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16506
16507 for_each_pipe(dev_priv, pipe) {
16508 int ret;
16509
16510 ret = intel_crtc_init(dev_priv, pipe);
16511 if (ret) {
16512 drm_mode_config_cleanup(dev);
16513 return ret;
16514 }
16515 }
16516
16517 intel_update_czclk(dev_priv);
16518 intel_update_cdclk(dev_priv);
16519 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16520
16521 intel_shared_dpll_init(dev);
16522
16523 if (dev_priv->max_cdclk_freq == 0)
16524 intel_update_max_cdclk(dev_priv);
16525
16526 /* Just disable it once at startup */
16527 i915_disable_vga(dev_priv);
16528 intel_setup_outputs(dev_priv);
16529
16530 drm_modeset_lock_all(dev);
16531 intel_modeset_setup_hw_state(dev);
16532 drm_modeset_unlock_all(dev);
16533
16534 for_each_intel_crtc(dev, crtc) {
16535 struct intel_initial_plane_config plane_config = {};
16536
16537 if (!crtc->active)
16538 continue;
16539
16540 /*
16541 * Note that reserving the BIOS fb up front prevents us
16542 * from stuffing other stolen allocations like the ring
16543 * on top. This prevents some ugliness at boot time, and
16544 * can even allow for smooth boot transitions if the BIOS
16545 * fb is large enough for the active pipe configuration.
16546 */
16547 dev_priv->display.get_initial_plane_config(crtc,
16548 &plane_config);
16549
16550 /*
16551 * If the fb is shared between multiple heads, we'll
16552 * just get the first one.
16553 */
16554 intel_find_initial_plane_obj(crtc, &plane_config);
16555 }
16556
16557 /*
16558 * Make sure hardware watermarks really match the state we read out.
16559 * Note that we need to do this after reconstructing the BIOS fb's
16560 * since the watermark calculation done here will use pstate->fb.
16561 */
16562 sanitize_watermarks(dev);
16563
16564 return 0;
16565 }
16566
16567 static void intel_enable_pipe_a(struct drm_device *dev)
16568 {
16569 struct intel_connector *connector;
16570 struct drm_connector *crt = NULL;
16571 struct intel_load_detect_pipe load_detect_temp;
16572 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16573
16574 /* We can't just switch on the pipe A, we need to set things up with a
16575 * proper mode and output configuration. As a gross hack, enable pipe A
16576 * by enabling the load detect pipe once. */
16577 for_each_intel_connector(dev, connector) {
16578 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16579 crt = &connector->base;
16580 break;
16581 }
16582 }
16583
16584 if (!crt)
16585 return;
16586
16587 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16588 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16589 }
16590
16591 static bool
16592 intel_check_plane_mapping(struct intel_crtc *crtc)
16593 {
16594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16595 u32 val;
16596
16597 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16598 return true;
16599
16600 val = I915_READ(DSPCNTR(!crtc->plane));
16601
16602 if ((val & DISPLAY_PLANE_ENABLE) &&
16603 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16604 return false;
16605
16606 return true;
16607 }
16608
16609 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16610 {
16611 struct drm_device *dev = crtc->base.dev;
16612 struct intel_encoder *encoder;
16613
16614 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16615 return true;
16616
16617 return false;
16618 }
16619
16620 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16621 {
16622 struct drm_device *dev = encoder->base.dev;
16623 struct intel_connector *connector;
16624
16625 for_each_connector_on_encoder(dev, &encoder->base, connector)
16626 return connector;
16627
16628 return NULL;
16629 }
16630
16631 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16632 enum transcoder pch_transcoder)
16633 {
16634 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16635 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16636 }
16637
16638 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16639 {
16640 struct drm_device *dev = crtc->base.dev;
16641 struct drm_i915_private *dev_priv = to_i915(dev);
16642 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16643
16644 /* Clear any frame start delays used for debugging left by the BIOS */
16645 if (!transcoder_is_dsi(cpu_transcoder)) {
16646 i915_reg_t reg = PIPECONF(cpu_transcoder);
16647
16648 I915_WRITE(reg,
16649 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16650 }
16651
16652 /* restore vblank interrupts to correct state */
16653 drm_crtc_vblank_reset(&crtc->base);
16654 if (crtc->active) {
16655 struct intel_plane *plane;
16656
16657 drm_crtc_vblank_on(&crtc->base);
16658
16659 /* Disable everything but the primary plane */
16660 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16661 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16662 continue;
16663
16664 plane->disable_plane(&plane->base, &crtc->base);
16665 }
16666 }
16667
16668 /* We need to sanitize the plane -> pipe mapping first because this will
16669 * disable the crtc (and hence change the state) if it is wrong. Note
16670 * that gen4+ has a fixed plane -> pipe mapping. */
16671 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16672 bool plane;
16673
16674 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16675 crtc->base.base.id, crtc->base.name);
16676
16677 /* Pipe has the wrong plane attached and the plane is active.
16678 * Temporarily change the plane mapping and disable everything
16679 * ... */
16680 plane = crtc->plane;
16681 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16682 crtc->plane = !plane;
16683 intel_crtc_disable_noatomic(&crtc->base);
16684 crtc->plane = plane;
16685 }
16686
16687 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16688 crtc->pipe == PIPE_A && !crtc->active) {
16689 /* BIOS forgot to enable pipe A, this mostly happens after
16690 * resume. Force-enable the pipe to fix this, the update_dpms
16691 * call below we restore the pipe to the right state, but leave
16692 * the required bits on. */
16693 intel_enable_pipe_a(dev);
16694 }
16695
16696 /* Adjust the state of the output pipe according to whether we
16697 * have active connectors/encoders. */
16698 if (crtc->active && !intel_crtc_has_encoders(crtc))
16699 intel_crtc_disable_noatomic(&crtc->base);
16700
16701 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16702 /*
16703 * We start out with underrun reporting disabled to avoid races.
16704 * For correct bookkeeping mark this on active crtcs.
16705 *
16706 * Also on gmch platforms we dont have any hardware bits to
16707 * disable the underrun reporting. Which means we need to start
16708 * out with underrun reporting disabled also on inactive pipes,
16709 * since otherwise we'll complain about the garbage we read when
16710 * e.g. coming up after runtime pm.
16711 *
16712 * No protection against concurrent access is required - at
16713 * worst a fifo underrun happens which also sets this to false.
16714 */
16715 crtc->cpu_fifo_underrun_disabled = true;
16716 /*
16717 * We track the PCH trancoder underrun reporting state
16718 * within the crtc. With crtc for pipe A housing the underrun
16719 * reporting state for PCH transcoder A, crtc for pipe B housing
16720 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16721 * and marking underrun reporting as disabled for the non-existing
16722 * PCH transcoders B and C would prevent enabling the south
16723 * error interrupt (see cpt_can_enable_serr_int()).
16724 */
16725 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16726 crtc->pch_fifo_underrun_disabled = true;
16727 }
16728 }
16729
16730 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16731 {
16732 struct intel_connector *connector;
16733
16734 /* We need to check both for a crtc link (meaning that the
16735 * encoder is active and trying to read from a pipe) and the
16736 * pipe itself being active. */
16737 bool has_active_crtc = encoder->base.crtc &&
16738 to_intel_crtc(encoder->base.crtc)->active;
16739
16740 connector = intel_encoder_find_connector(encoder);
16741 if (connector && !has_active_crtc) {
16742 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16743 encoder->base.base.id,
16744 encoder->base.name);
16745
16746 /* Connector is active, but has no active pipe. This is
16747 * fallout from our resume register restoring. Disable
16748 * the encoder manually again. */
16749 if (encoder->base.crtc) {
16750 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16751
16752 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16753 encoder->base.base.id,
16754 encoder->base.name);
16755 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16756 if (encoder->post_disable)
16757 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16758 }
16759 encoder->base.crtc = NULL;
16760
16761 /* Inconsistent output/port/pipe state happens presumably due to
16762 * a bug in one of the get_hw_state functions. Or someplace else
16763 * in our code, like the register restore mess on resume. Clamp
16764 * things to off as a safer default. */
16765
16766 connector->base.dpms = DRM_MODE_DPMS_OFF;
16767 connector->base.encoder = NULL;
16768 }
16769 /* Enabled encoders without active connectors will be fixed in
16770 * the crtc fixup. */
16771 }
16772
16773 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16774 {
16775 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16776
16777 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16778 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16779 i915_disable_vga(dev_priv);
16780 }
16781 }
16782
16783 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16784 {
16785 /* This function can be called both from intel_modeset_setup_hw_state or
16786 * at a very early point in our resume sequence, where the power well
16787 * structures are not yet restored. Since this function is at a very
16788 * paranoid "someone might have enabled VGA while we were not looking"
16789 * level, just check if the power well is enabled instead of trying to
16790 * follow the "don't touch the power well if we don't need it" policy
16791 * the rest of the driver uses. */
16792 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16793 return;
16794
16795 i915_redisable_vga_power_on(dev_priv);
16796
16797 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16798 }
16799
16800 static bool primary_get_hw_state(struct intel_plane *plane)
16801 {
16802 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16803
16804 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16805 }
16806
16807 /* FIXME read out full plane state for all planes */
16808 static void readout_plane_state(struct intel_crtc *crtc)
16809 {
16810 struct drm_plane *primary = crtc->base.primary;
16811 struct intel_plane_state *plane_state =
16812 to_intel_plane_state(primary->state);
16813
16814 plane_state->base.visible = crtc->active &&
16815 primary_get_hw_state(to_intel_plane(primary));
16816
16817 if (plane_state->base.visible)
16818 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16819 }
16820
16821 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16822 {
16823 struct drm_i915_private *dev_priv = to_i915(dev);
16824 enum pipe pipe;
16825 struct intel_crtc *crtc;
16826 struct intel_encoder *encoder;
16827 struct intel_connector *connector;
16828 int i;
16829
16830 dev_priv->active_crtcs = 0;
16831
16832 for_each_intel_crtc(dev, crtc) {
16833 struct intel_crtc_state *crtc_state = crtc->config;
16834 int pixclk = 0;
16835
16836 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16837 memset(crtc_state, 0, sizeof(*crtc_state));
16838 crtc_state->base.crtc = &crtc->base;
16839
16840 crtc_state->base.active = crtc_state->base.enable =
16841 dev_priv->display.get_pipe_config(crtc, crtc_state);
16842
16843 crtc->base.enabled = crtc_state->base.enable;
16844 crtc->active = crtc_state->base.active;
16845
16846 if (crtc_state->base.active) {
16847 dev_priv->active_crtcs |= 1 << crtc->pipe;
16848
16849 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16850 pixclk = ilk_pipe_pixel_rate(crtc_state);
16851 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16852 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16853 else
16854 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16855
16856 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16857 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16858 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16859 }
16860
16861 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16862
16863 readout_plane_state(crtc);
16864
16865 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16866 crtc->base.base.id, crtc->base.name,
16867 enableddisabled(crtc->active));
16868 }
16869
16870 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16871 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16872
16873 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16874 &pll->config.hw_state);
16875 pll->config.crtc_mask = 0;
16876 for_each_intel_crtc(dev, crtc) {
16877 if (crtc->active && crtc->config->shared_dpll == pll)
16878 pll->config.crtc_mask |= 1 << crtc->pipe;
16879 }
16880 pll->active_mask = pll->config.crtc_mask;
16881
16882 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16883 pll->name, pll->config.crtc_mask, pll->on);
16884 }
16885
16886 for_each_intel_encoder(dev, encoder) {
16887 pipe = 0;
16888
16889 if (encoder->get_hw_state(encoder, &pipe)) {
16890 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16891
16892 encoder->base.crtc = &crtc->base;
16893 crtc->config->output_types |= 1 << encoder->type;
16894 encoder->get_config(encoder, crtc->config);
16895 } else {
16896 encoder->base.crtc = NULL;
16897 }
16898
16899 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16900 encoder->base.base.id, encoder->base.name,
16901 enableddisabled(encoder->base.crtc),
16902 pipe_name(pipe));
16903 }
16904
16905 for_each_intel_connector(dev, connector) {
16906 if (connector->get_hw_state(connector)) {
16907 connector->base.dpms = DRM_MODE_DPMS_ON;
16908
16909 encoder = connector->encoder;
16910 connector->base.encoder = &encoder->base;
16911
16912 if (encoder->base.crtc &&
16913 encoder->base.crtc->state->active) {
16914 /*
16915 * This has to be done during hardware readout
16916 * because anything calling .crtc_disable may
16917 * rely on the connector_mask being accurate.
16918 */
16919 encoder->base.crtc->state->connector_mask |=
16920 1 << drm_connector_index(&connector->base);
16921 encoder->base.crtc->state->encoder_mask |=
16922 1 << drm_encoder_index(&encoder->base);
16923 }
16924
16925 } else {
16926 connector->base.dpms = DRM_MODE_DPMS_OFF;
16927 connector->base.encoder = NULL;
16928 }
16929 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16930 connector->base.base.id, connector->base.name,
16931 enableddisabled(connector->base.encoder));
16932 }
16933
16934 for_each_intel_crtc(dev, crtc) {
16935 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16936
16937 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16938 if (crtc->base.state->active) {
16939 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16940 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16941 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16942
16943 /*
16944 * The initial mode needs to be set in order to keep
16945 * the atomic core happy. It wants a valid mode if the
16946 * crtc's enabled, so we do the above call.
16947 *
16948 * At this point some state updated by the connectors
16949 * in their ->detect() callback has not run yet, so
16950 * no recalculation can be done yet.
16951 *
16952 * Even if we could do a recalculation and modeset
16953 * right now it would cause a double modeset if
16954 * fbdev or userspace chooses a different initial mode.
16955 *
16956 * If that happens, someone indicated they wanted a
16957 * mode change, which means it's safe to do a full
16958 * recalculation.
16959 */
16960 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16961
16962 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16963 update_scanline_offset(crtc);
16964 }
16965
16966 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16967 }
16968 }
16969
16970 /* Scan out the current hw modeset state,
16971 * and sanitizes it to the current state
16972 */
16973 static void
16974 intel_modeset_setup_hw_state(struct drm_device *dev)
16975 {
16976 struct drm_i915_private *dev_priv = to_i915(dev);
16977 enum pipe pipe;
16978 struct intel_crtc *crtc;
16979 struct intel_encoder *encoder;
16980 int i;
16981
16982 intel_modeset_readout_hw_state(dev);
16983
16984 /* HW state is read out, now we need to sanitize this mess. */
16985 for_each_intel_encoder(dev, encoder) {
16986 intel_sanitize_encoder(encoder);
16987 }
16988
16989 for_each_pipe(dev_priv, pipe) {
16990 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16991
16992 intel_sanitize_crtc(crtc);
16993 intel_dump_pipe_config(crtc, crtc->config,
16994 "[setup_hw_state]");
16995 }
16996
16997 intel_modeset_update_connector_atomic_state(dev);
16998
16999 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17000 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17001
17002 if (!pll->on || pll->active_mask)
17003 continue;
17004
17005 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
17006
17007 pll->funcs.disable(dev_priv, pll);
17008 pll->on = false;
17009 }
17010
17011 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17012 vlv_wm_get_hw_state(dev);
17013 else if (IS_GEN9(dev_priv))
17014 skl_wm_get_hw_state(dev);
17015 else if (HAS_PCH_SPLIT(dev_priv))
17016 ilk_wm_get_hw_state(dev);
17017
17018 for_each_intel_crtc(dev, crtc) {
17019 unsigned long put_domains;
17020
17021 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17022 if (WARN_ON(put_domains))
17023 modeset_put_power_domains(dev_priv, put_domains);
17024 }
17025 intel_display_set_init_power(dev_priv, false);
17026
17027 intel_fbc_init_pipe_state(dev_priv);
17028 }
17029
17030 void intel_display_resume(struct drm_device *dev)
17031 {
17032 struct drm_i915_private *dev_priv = to_i915(dev);
17033 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17034 struct drm_modeset_acquire_ctx ctx;
17035 int ret;
17036
17037 dev_priv->modeset_restore_state = NULL;
17038 if (state)
17039 state->acquire_ctx = &ctx;
17040
17041 /*
17042 * This is a cludge because with real atomic modeset mode_config.mutex
17043 * won't be taken. Unfortunately some probed state like
17044 * audio_codec_enable is still protected by mode_config.mutex, so lock
17045 * it here for now.
17046 */
17047 mutex_lock(&dev->mode_config.mutex);
17048 drm_modeset_acquire_init(&ctx, 0);
17049
17050 while (1) {
17051 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17052 if (ret != -EDEADLK)
17053 break;
17054
17055 drm_modeset_backoff(&ctx);
17056 }
17057
17058 if (!ret)
17059 ret = __intel_display_resume(dev, state);
17060
17061 drm_modeset_drop_locks(&ctx);
17062 drm_modeset_acquire_fini(&ctx);
17063 mutex_unlock(&dev->mode_config.mutex);
17064
17065 if (ret)
17066 DRM_ERROR("Restoring old state failed with %i\n", ret);
17067 drm_atomic_state_put(state);
17068 }
17069
17070 void intel_modeset_gem_init(struct drm_device *dev)
17071 {
17072 struct drm_i915_private *dev_priv = to_i915(dev);
17073 struct drm_crtc *c;
17074 struct drm_i915_gem_object *obj;
17075
17076 intel_init_gt_powersave(dev_priv);
17077
17078 intel_modeset_init_hw(dev);
17079
17080 intel_setup_overlay(dev_priv);
17081
17082 /*
17083 * Make sure any fbs we allocated at startup are properly
17084 * pinned & fenced. When we do the allocation it's too early
17085 * for this.
17086 */
17087 for_each_crtc(dev, c) {
17088 struct i915_vma *vma;
17089
17090 obj = intel_fb_obj(c->primary->fb);
17091 if (obj == NULL)
17092 continue;
17093
17094 mutex_lock(&dev->struct_mutex);
17095 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17096 c->primary->state->rotation);
17097 mutex_unlock(&dev->struct_mutex);
17098 if (IS_ERR(vma)) {
17099 DRM_ERROR("failed to pin boot fb on pipe %d\n",
17100 to_intel_crtc(c)->pipe);
17101 drm_framebuffer_unreference(c->primary->fb);
17102 c->primary->fb = NULL;
17103 c->primary->crtc = c->primary->state->crtc = NULL;
17104 update_state_fb(c->primary);
17105 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17106 }
17107 }
17108 }
17109
17110 int intel_connector_register(struct drm_connector *connector)
17111 {
17112 struct intel_connector *intel_connector = to_intel_connector(connector);
17113 int ret;
17114
17115 ret = intel_backlight_device_register(intel_connector);
17116 if (ret)
17117 goto err;
17118
17119 return 0;
17120
17121 err:
17122 return ret;
17123 }
17124
17125 void intel_connector_unregister(struct drm_connector *connector)
17126 {
17127 struct intel_connector *intel_connector = to_intel_connector(connector);
17128
17129 intel_backlight_device_unregister(intel_connector);
17130 intel_panel_destroy_backlight(connector);
17131 }
17132
17133 void intel_modeset_cleanup(struct drm_device *dev)
17134 {
17135 struct drm_i915_private *dev_priv = to_i915(dev);
17136
17137 intel_disable_gt_powersave(dev_priv);
17138
17139 /*
17140 * Interrupts and polling as the first thing to avoid creating havoc.
17141 * Too much stuff here (turning of connectors, ...) would
17142 * experience fancy races otherwise.
17143 */
17144 intel_irq_uninstall(dev_priv);
17145
17146 /*
17147 * Due to the hpd irq storm handling the hotplug work can re-arm the
17148 * poll handlers. Hence disable polling after hpd handling is shut down.
17149 */
17150 drm_kms_helper_poll_fini(dev);
17151
17152 intel_unregister_dsm_handler();
17153
17154 intel_fbc_global_disable(dev_priv);
17155
17156 /* flush any delayed tasks or pending work */
17157 flush_scheduled_work();
17158
17159 drm_mode_config_cleanup(dev);
17160
17161 intel_cleanup_overlay(dev_priv);
17162
17163 intel_cleanup_gt_powersave(dev_priv);
17164
17165 intel_teardown_gmbus(dev);
17166 }
17167
17168 void intel_connector_attach_encoder(struct intel_connector *connector,
17169 struct intel_encoder *encoder)
17170 {
17171 connector->encoder = encoder;
17172 drm_mode_connector_attach_encoder(&connector->base,
17173 &encoder->base);
17174 }
17175
17176 /*
17177 * set vga decode state - true == enable VGA decode
17178 */
17179 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17180 {
17181 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17182 u16 gmch_ctrl;
17183
17184 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17185 DRM_ERROR("failed to read control word\n");
17186 return -EIO;
17187 }
17188
17189 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17190 return 0;
17191
17192 if (state)
17193 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17194 else
17195 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17196
17197 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17198 DRM_ERROR("failed to write control word\n");
17199 return -EIO;
17200 }
17201
17202 return 0;
17203 }
17204
17205 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17206
17207 struct intel_display_error_state {
17208
17209 u32 power_well_driver;
17210
17211 int num_transcoders;
17212
17213 struct intel_cursor_error_state {
17214 u32 control;
17215 u32 position;
17216 u32 base;
17217 u32 size;
17218 } cursor[I915_MAX_PIPES];
17219
17220 struct intel_pipe_error_state {
17221 bool power_domain_on;
17222 u32 source;
17223 u32 stat;
17224 } pipe[I915_MAX_PIPES];
17225
17226 struct intel_plane_error_state {
17227 u32 control;
17228 u32 stride;
17229 u32 size;
17230 u32 pos;
17231 u32 addr;
17232 u32 surface;
17233 u32 tile_offset;
17234 } plane[I915_MAX_PIPES];
17235
17236 struct intel_transcoder_error_state {
17237 bool power_domain_on;
17238 enum transcoder cpu_transcoder;
17239
17240 u32 conf;
17241
17242 u32 htotal;
17243 u32 hblank;
17244 u32 hsync;
17245 u32 vtotal;
17246 u32 vblank;
17247 u32 vsync;
17248 } transcoder[4];
17249 };
17250
17251 struct intel_display_error_state *
17252 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17253 {
17254 struct intel_display_error_state *error;
17255 int transcoders[] = {
17256 TRANSCODER_A,
17257 TRANSCODER_B,
17258 TRANSCODER_C,
17259 TRANSCODER_EDP,
17260 };
17261 int i;
17262
17263 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17264 return NULL;
17265
17266 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17267 if (error == NULL)
17268 return NULL;
17269
17270 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17271 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17272
17273 for_each_pipe(dev_priv, i) {
17274 error->pipe[i].power_domain_on =
17275 __intel_display_power_is_enabled(dev_priv,
17276 POWER_DOMAIN_PIPE(i));
17277 if (!error->pipe[i].power_domain_on)
17278 continue;
17279
17280 error->cursor[i].control = I915_READ(CURCNTR(i));
17281 error->cursor[i].position = I915_READ(CURPOS(i));
17282 error->cursor[i].base = I915_READ(CURBASE(i));
17283
17284 error->plane[i].control = I915_READ(DSPCNTR(i));
17285 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17286 if (INTEL_GEN(dev_priv) <= 3) {
17287 error->plane[i].size = I915_READ(DSPSIZE(i));
17288 error->plane[i].pos = I915_READ(DSPPOS(i));
17289 }
17290 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17291 error->plane[i].addr = I915_READ(DSPADDR(i));
17292 if (INTEL_GEN(dev_priv) >= 4) {
17293 error->plane[i].surface = I915_READ(DSPSURF(i));
17294 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17295 }
17296
17297 error->pipe[i].source = I915_READ(PIPESRC(i));
17298
17299 if (HAS_GMCH_DISPLAY(dev_priv))
17300 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17301 }
17302
17303 /* Note: this does not include DSI transcoders. */
17304 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17305 if (HAS_DDI(dev_priv))
17306 error->num_transcoders++; /* Account for eDP. */
17307
17308 for (i = 0; i < error->num_transcoders; i++) {
17309 enum transcoder cpu_transcoder = transcoders[i];
17310
17311 error->transcoder[i].power_domain_on =
17312 __intel_display_power_is_enabled(dev_priv,
17313 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17314 if (!error->transcoder[i].power_domain_on)
17315 continue;
17316
17317 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17318
17319 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17320 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17321 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17322 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17323 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17324 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17325 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17326 }
17327
17328 return error;
17329 }
17330
17331 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17332
17333 void
17334 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17335 struct drm_i915_private *dev_priv,
17336 struct intel_display_error_state *error)
17337 {
17338 int i;
17339
17340 if (!error)
17341 return;
17342
17343 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17344 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17345 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17346 error->power_well_driver);
17347 for_each_pipe(dev_priv, i) {
17348 err_printf(m, "Pipe [%d]:\n", i);
17349 err_printf(m, " Power: %s\n",
17350 onoff(error->pipe[i].power_domain_on));
17351 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17352 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17353
17354 err_printf(m, "Plane [%d]:\n", i);
17355 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17356 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17357 if (INTEL_GEN(dev_priv) <= 3) {
17358 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17359 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17360 }
17361 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17362 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17363 if (INTEL_GEN(dev_priv) >= 4) {
17364 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17365 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17366 }
17367
17368 err_printf(m, "Cursor [%d]:\n", i);
17369 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17370 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17371 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17372 }
17373
17374 for (i = 0; i < error->num_transcoders; i++) {
17375 err_printf(m, "CPU transcoder: %s\n",
17376 transcoder_name(error->transcoder[i].cpu_transcoder));
17377 err_printf(m, " Power: %s\n",
17378 onoff(error->transcoder[i].power_domain_on));
17379 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17380 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17381 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17382 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17383 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17384 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17385 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17386 }
17387 }
17388
17389 #endif