]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129 struct {
130 int min, max;
131 } dot, vco, n, m, m1, m2, p, p1;
132
133 struct {
134 int dot_limit;
135 int p2_slow, p2_fast;
136 } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144 /* Obtain SKU information */
145 mutex_lock(&dev_priv->sb_lock);
146 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147 CCK_FUSE_HPLL_FREQ_MASK;
148 mutex_unlock(&dev_priv->sb_lock);
149
150 return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154 const char *name, u32 reg, int ref_freq)
155 {
156 u32 val;
157 int divider;
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173 const char *name, u32 reg)
174 {
175 if (dev_priv->hpll_freq == 0)
176 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178 return vlv_get_cck_clock(dev_priv, name, reg,
179 dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191 /* RAWCLK_FREQ_VLV register updated from power well code */
192 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193 CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199 uint32_t clkcfg;
200
201 /* hrawclock is 1/4 the FSB frequency */
202 clkcfg = I915_READ(CLKCFG);
203 switch (clkcfg & CLKCFG_FSB_MASK) {
204 case CLKCFG_FSB_400:
205 return 100000;
206 case CLKCFG_FSB_533:
207 return 133333;
208 case CLKCFG_FSB_667:
209 return 166667;
210 case CLKCFG_FSB_800:
211 return 200000;
212 case CLKCFG_FSB_1067:
213 return 266667;
214 case CLKCFG_FSB_1333:
215 return 333333;
216 /* these two are just a guess; one of them might be right */
217 case CLKCFG_FSB_1600:
218 case CLKCFG_FSB_1600_ALT:
219 return 400000;
220 default:
221 return 133333;
222 }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227 if (HAS_PCH_SPLIT(dev_priv))
228 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233 else
234 return; /* no rawclk on other platforms, or no need to know it */
235
236 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242 return;
243
244 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245 CCK_CZ_CLOCK_CONTROL);
246
247 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252 const struct intel_crtc_state *pipe_config)
253 {
254 if (HAS_DDI(dev_priv))
255 return pipe_config->port_clock; /* SPLL */
256 else if (IS_GEN5(dev_priv))
257 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258 else
259 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 2, .max = 33 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276 .dot = { .min = 25000, .max = 350000 },
277 .vco = { .min = 908000, .max = 1512000 },
278 .n = { .min = 2, .max = 16 },
279 .m = { .min = 96, .max = 140 },
280 .m1 = { .min = 18, .max = 26 },
281 .m2 = { .min = 6, .max = 16 },
282 .p = { .min = 4, .max = 128 },
283 .p1 = { .min = 2, .max = 33 },
284 .p2 = { .dot_limit = 165000,
285 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 908000, .max = 1512000 },
291 .n = { .min = 2, .max = 16 },
292 .m = { .min = 96, .max = 140 },
293 .m1 = { .min = 18, .max = 26 },
294 .m2 = { .min = 6, .max = 16 },
295 .p = { .min = 4, .max = 128 },
296 .p1 = { .min = 1, .max = 6 },
297 .p2 = { .dot_limit = 165000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302 .dot = { .min = 20000, .max = 400000 },
303 .vco = { .min = 1400000, .max = 2800000 },
304 .n = { .min = 1, .max = 6 },
305 .m = { .min = 70, .max = 120 },
306 .m1 = { .min = 8, .max = 18 },
307 .m2 = { .min = 3, .max = 7 },
308 .p = { .min = 5, .max = 80 },
309 .p1 = { .min = 1, .max = 8 },
310 .p2 = { .dot_limit = 200000,
311 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315 .dot = { .min = 20000, .max = 400000 },
316 .vco = { .min = 1400000, .max = 2800000 },
317 .n = { .min = 1, .max = 6 },
318 .m = { .min = 70, .max = 120 },
319 .m1 = { .min = 8, .max = 18 },
320 .m2 = { .min = 3, .max = 7 },
321 .p = { .min = 7, .max = 98 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 112000,
324 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329 .dot = { .min = 25000, .max = 270000 },
330 .vco = { .min = 1750000, .max = 3500000},
331 .n = { .min = 1, .max = 4 },
332 .m = { .min = 104, .max = 138 },
333 .m1 = { .min = 17, .max = 23 },
334 .m2 = { .min = 5, .max = 11 },
335 .p = { .min = 10, .max = 30 },
336 .p1 = { .min = 1, .max = 3},
337 .p2 = { .dot_limit = 270000,
338 .p2_slow = 10,
339 .p2_fast = 10
340 },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344 .dot = { .min = 22000, .max = 400000 },
345 .vco = { .min = 1750000, .max = 3500000},
346 .n = { .min = 1, .max = 4 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 16, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8},
352 .p2 = { .dot_limit = 165000,
353 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357 .dot = { .min = 20000, .max = 115000 },
358 .vco = { .min = 1750000, .max = 3500000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 104, .max = 138 },
361 .m1 = { .min = 17, .max = 23 },
362 .m2 = { .min = 5, .max = 11 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 0,
366 .p2_slow = 14, .p2_fast = 14
367 },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371 .dot = { .min = 80000, .max = 224000 },
372 .vco = { .min = 1750000, .max = 3500000 },
373 .n = { .min = 1, .max = 3 },
374 .m = { .min = 104, .max = 138 },
375 .m1 = { .min = 17, .max = 23 },
376 .m2 = { .min = 5, .max = 11 },
377 .p = { .min = 14, .max = 42 },
378 .p1 = { .min = 2, .max = 6 },
379 .p2 = { .dot_limit = 0,
380 .p2_slow = 7, .p2_fast = 7
381 },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385 .dot = { .min = 20000, .max = 400000},
386 .vco = { .min = 1700000, .max = 3500000 },
387 /* Pineview's Ncounter is a ring counter */
388 .n = { .min = 3, .max = 6 },
389 .m = { .min = 2, .max = 256 },
390 /* Pineview only has one combined m divider, which we treat as m2. */
391 .m1 = { .min = 0, .max = 0 },
392 .m2 = { .min = 0, .max = 254 },
393 .p = { .min = 5, .max = 80 },
394 .p1 = { .min = 1, .max = 8 },
395 .p2 = { .dot_limit = 200000,
396 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400 .dot = { .min = 20000, .max = 400000 },
401 .vco = { .min = 1700000, .max = 3500000 },
402 .n = { .min = 3, .max = 6 },
403 .m = { .min = 2, .max = 256 },
404 .m1 = { .min = 0, .max = 0 },
405 .m2 = { .min = 0, .max = 254 },
406 .p = { .min = 7, .max = 112 },
407 .p1 = { .min = 1, .max = 8 },
408 .p2 = { .dot_limit = 112000,
409 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413 *
414 * We calculate clock using (register_value + 2) for N/M1/M2, so here
415 * the range value for them is (actual_value - 2).
416 */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 5 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 5, .max = 80 },
425 .p1 = { .min = 1, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 3 },
434 .m = { .min = 79, .max = 118 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 127 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 56 },
451 .p1 = { .min = 2, .max = 8 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458 .dot = { .min = 25000, .max = 350000 },
459 .vco = { .min = 1760000, .max = 3510000 },
460 .n = { .min = 1, .max = 2 },
461 .m = { .min = 79, .max = 126 },
462 .m1 = { .min = 12, .max = 22 },
463 .m2 = { .min = 5, .max = 9 },
464 .p = { .min = 28, .max = 112 },
465 .p1 = { .min = 2, .max = 8 },
466 .p2 = { .dot_limit = 225000,
467 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471 .dot = { .min = 25000, .max = 350000 },
472 .vco = { .min = 1760000, .max = 3510000 },
473 .n = { .min = 1, .max = 3 },
474 .m = { .min = 79, .max = 126 },
475 .m1 = { .min = 12, .max = 22 },
476 .m2 = { .min = 5, .max = 9 },
477 .p = { .min = 14, .max = 42 },
478 .p1 = { .min = 2, .max = 6 },
479 .p2 = { .dot_limit = 225000,
480 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484 /*
485 * These are the data rate limits (measured in fast clocks)
486 * since those are the strictest limits we have. The fast
487 * clock and actual rate limits are more relaxed, so checking
488 * them would make no difference.
489 */
490 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491 .vco = { .min = 4000000, .max = 6000000 },
492 .n = { .min = 1, .max = 7 },
493 .m1 = { .min = 2, .max = 3 },
494 .m2 = { .min = 11, .max = 156 },
495 .p1 = { .min = 2, .max = 3 },
496 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500 /*
501 * These are the data rate limits (measured in fast clocks)
502 * since those are the strictest limits we have. The fast
503 * clock and actual rate limits are more relaxed, so checking
504 * them would make no difference.
505 */
506 .dot = { .min = 25000 * 5, .max = 540000 * 5},
507 .vco = { .min = 4800000, .max = 6480000 },
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 .m2 = { .min = 24 << 22, .max = 175 << 22 },
511 .p1 = { .min = 2, .max = 4 },
512 .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516 /* FIXME: find real dot limits */
517 .dot = { .min = 0, .max = INT_MAX },
518 .vco = { .min = 4800000, .max = 6700000 },
519 .n = { .min = 1, .max = 1 },
520 .m1 = { .min = 2, .max = 2 },
521 /* FIXME: find real m2 limits */
522 .m2 = { .min = 2 << 22, .max = 255 << 22 },
523 .p1 = { .min = 2, .max = 4 },
524 .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530 return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /*
534 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
535 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
536 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
537 * The helpers' return value is the rate of the clock that is fed to the
538 * display engine's pipe which can be the above fast dot clock rate or a
539 * divided-down version of it.
540 */
541 /* m1 is reserved as 0 in Pineview, n is a ring counter */
542 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
543 {
544 clock->m = clock->m2 + 2;
545 clock->p = clock->p1 * clock->p2;
546 if (WARN_ON(clock->n == 0 || clock->p == 0))
547 return 0;
548 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
549 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
550
551 return clock->dot;
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return 0;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567
568 return clock->dot;
569 }
570
571 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
572 {
573 clock->m = clock->m1 * clock->m2;
574 clock->p = clock->p1 * clock->p2;
575 if (WARN_ON(clock->n == 0 || clock->p == 0))
576 return 0;
577 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
578 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
579
580 return clock->dot / 5;
581 }
582
583 int chv_calc_dpll_params(int refclk, struct dpll *clock)
584 {
585 clock->m = clock->m1 * clock->m2;
586 clock->p = clock->p1 * clock->p2;
587 if (WARN_ON(clock->n == 0 || clock->p == 0))
588 return 0;
589 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
590 clock->n << 22);
591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593 return clock->dot / 5;
594 }
595
596 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598 * Returns whether the given set of divisors are valid for a given refclk with
599 * the given connectors.
600 */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603 const struct intel_limit *limit,
604 const struct dpll *clock)
605 {
606 if (clock->n < limit->n.min || limit->n.max < clock->n)
607 INTELPllInvalid("n out of range\n");
608 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
609 INTELPllInvalid("p1 out of range\n");
610 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
611 INTELPllInvalid("m2 out of range\n");
612 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
613 INTELPllInvalid("m1 out of range\n");
614
615 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
616 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
617 if (clock->m1 <= clock->m2)
618 INTELPllInvalid("m1 <= m2\n");
619
620 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
621 if (clock->p < limit->p.min || limit->p.max < clock->p)
622 INTELPllInvalid("p out of range\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 }
626
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static int
639 i9xx_select_p2_div(const struct intel_limit *limit,
640 const struct intel_crtc_state *crtc_state,
641 int target)
642 {
643 struct drm_device *dev = crtc_state->base.crtc->dev;
644
645 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
646 /*
647 * For LVDS just rely on its current settings for dual-channel.
648 * We haven't figured out how to reliably set up different
649 * single/dual channel state, if we even can.
650 */
651 if (intel_is_dual_link_lvds(dev))
652 return limit->p2.p2_fast;
653 else
654 return limit->p2.p2_slow;
655 } else {
656 if (target < limit->p2.dot_limit)
657 return limit->p2.p2_slow;
658 else
659 return limit->p2.p2_fast;
660 }
661 }
662
663 /*
664 * Returns a set of divisors for the desired target clock with the given
665 * refclk, or FALSE. The returned values represent the clock equation:
666 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667 *
668 * Target and reference clocks are specified in kHz.
669 *
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
672 */
673 static bool
674 i9xx_find_best_dpll(const struct intel_limit *limit,
675 struct intel_crtc_state *crtc_state,
676 int target, int refclk, struct dpll *match_clock,
677 struct dpll *best_clock)
678 {
679 struct drm_device *dev = crtc_state->base.crtc->dev;
680 struct dpll clock;
681 int err = target;
682
683 memset(best_clock, 0, sizeof(*best_clock));
684
685 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 if (clock.m2 >= clock.m1)
692 break;
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
697 int this_err;
698
699 i9xx_calc_dpll_params(refclk, &clock);
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 /*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE. The returned values represent the clock equation:
723 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 *
725 * Target and reference clocks are specified in kHz.
726 *
727 * If match_clock is provided, then best_clock P divider must match the P
728 * divider from @match_clock used for LVDS downclocking.
729 */
730 static bool
731 pnv_find_best_dpll(const struct intel_limit *limit,
732 struct intel_crtc_state *crtc_state,
733 int target, int refclk, struct dpll *match_clock,
734 struct dpll *best_clock)
735 {
736 struct drm_device *dev = crtc_state->base.crtc->dev;
737 struct dpll clock;
738 int err = target;
739
740 memset(best_clock, 0, sizeof(*best_clock));
741
742 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
743
744 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
745 clock.m1++) {
746 for (clock.m2 = limit->m2.min;
747 clock.m2 <= limit->m2.max; clock.m2++) {
748 for (clock.n = limit->n.min;
749 clock.n <= limit->n.max; clock.n++) {
750 for (clock.p1 = limit->p1.min;
751 clock.p1 <= limit->p1.max; clock.p1++) {
752 int this_err;
753
754 pnv_calc_dpll_params(refclk, &clock);
755 if (!intel_PLL_is_valid(dev, limit,
756 &clock))
757 continue;
758 if (match_clock &&
759 clock.p != match_clock->p)
760 continue;
761
762 this_err = abs(clock.dot - target);
763 if (this_err < err) {
764 *best_clock = clock;
765 err = this_err;
766 }
767 }
768 }
769 }
770 }
771
772 return (err != target);
773 }
774
775 /*
776 * Returns a set of divisors for the desired target clock with the given
777 * refclk, or FALSE. The returned values represent the clock equation:
778 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
779 *
780 * Target and reference clocks are specified in kHz.
781 *
782 * If match_clock is provided, then best_clock P divider must match the P
783 * divider from @match_clock used for LVDS downclocking.
784 */
785 static bool
786 g4x_find_best_dpll(const struct intel_limit *limit,
787 struct intel_crtc_state *crtc_state,
788 int target, int refclk, struct dpll *match_clock,
789 struct dpll *best_clock)
790 {
791 struct drm_device *dev = crtc_state->base.crtc->dev;
792 struct dpll clock;
793 int max_n;
794 bool found = false;
795 /* approximately equals target * 0.00585 */
796 int err_most = (target >> 8) + (target >> 9);
797
798 memset(best_clock, 0, sizeof(*best_clock));
799
800 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
801
802 max_n = limit->n.max;
803 /* based on hardware requirement, prefer smaller n to precision */
804 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
805 /* based on hardware requirement, prefere larger m1,m2 */
806 for (clock.m1 = limit->m1.max;
807 clock.m1 >= limit->m1.min; clock.m1--) {
808 for (clock.m2 = limit->m2.max;
809 clock.m2 >= limit->m2.min; clock.m2--) {
810 for (clock.p1 = limit->p1.max;
811 clock.p1 >= limit->p1.min; clock.p1--) {
812 int this_err;
813
814 i9xx_calc_dpll_params(refclk, &clock);
815 if (!intel_PLL_is_valid(dev, limit,
816 &clock))
817 continue;
818
819 this_err = abs(clock.dot - target);
820 if (this_err < err_most) {
821 *best_clock = clock;
822 err_most = this_err;
823 max_n = clock.n;
824 found = true;
825 }
826 }
827 }
828 }
829 }
830 return found;
831 }
832
833 /*
834 * Check if the calculated PLL configuration is more optimal compared to the
835 * best configuration and error found so far. Return the calculated error.
836 */
837 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
838 const struct dpll *calculated_clock,
839 const struct dpll *best_clock,
840 unsigned int best_error_ppm,
841 unsigned int *error_ppm)
842 {
843 /*
844 * For CHV ignore the error and consider only the P value.
845 * Prefer a bigger P value based on HW requirements.
846 */
847 if (IS_CHERRYVIEW(dev)) {
848 *error_ppm = 0;
849
850 return calculated_clock->p > best_clock->p;
851 }
852
853 if (WARN_ON_ONCE(!target_freq))
854 return false;
855
856 *error_ppm = div_u64(1000000ULL *
857 abs(target_freq - calculated_clock->dot),
858 target_freq);
859 /*
860 * Prefer a better P value over a better (smaller) error if the error
861 * is small. Ensure this preference for future configurations too by
862 * setting the error to 0.
863 */
864 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
865 *error_ppm = 0;
866
867 return true;
868 }
869
870 return *error_ppm + 10 < best_error_ppm;
871 }
872
873 /*
874 * Returns a set of divisors for the desired target clock with the given
875 * refclk, or FALSE. The returned values represent the clock equation:
876 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
877 */
878 static bool
879 vlv_find_best_dpll(const struct intel_limit *limit,
880 struct intel_crtc_state *crtc_state,
881 int target, int refclk, struct dpll *match_clock,
882 struct dpll *best_clock)
883 {
884 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
885 struct drm_device *dev = crtc->base.dev;
886 struct dpll clock;
887 unsigned int bestppm = 1000000;
888 /* min update 19.2 MHz */
889 int max_n = min(limit->n.max, refclk / 19200);
890 bool found = false;
891
892 target *= 5; /* fast clock */
893
894 memset(best_clock, 0, sizeof(*best_clock));
895
896 /* based on hardware requirement, prefer smaller n to precision */
897 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
898 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
899 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
900 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
901 clock.p = clock.p1 * clock.p2;
902 /* based on hardware requirement, prefer bigger m1,m2 values */
903 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
904 unsigned int ppm;
905
906 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
907 refclk * clock.m1);
908
909 vlv_calc_dpll_params(refclk, &clock);
910
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
914
915 if (!vlv_PLL_is_optimal(dev, target,
916 &clock,
917 best_clock,
918 bestppm, &ppm))
919 continue;
920
921 *best_clock = clock;
922 bestppm = ppm;
923 found = true;
924 }
925 }
926 }
927 }
928
929 return found;
930 }
931
932 /*
933 * Returns a set of divisors for the desired target clock with the given
934 * refclk, or FALSE. The returned values represent the clock equation:
935 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
936 */
937 static bool
938 chv_find_best_dpll(const struct intel_limit *limit,
939 struct intel_crtc_state *crtc_state,
940 int target, int refclk, struct dpll *match_clock,
941 struct dpll *best_clock)
942 {
943 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
944 struct drm_device *dev = crtc->base.dev;
945 unsigned int best_error_ppm;
946 struct dpll clock;
947 uint64_t m2;
948 int found = false;
949
950 memset(best_clock, 0, sizeof(*best_clock));
951 best_error_ppm = 1000000;
952
953 /*
954 * Based on hardware doc, the n always set to 1, and m1 always
955 * set to 2. If requires to support 200Mhz refclk, we need to
956 * revisit this because n may not 1 anymore.
957 */
958 clock.n = 1, clock.m1 = 2;
959 target *= 5; /* fast clock */
960
961 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
962 for (clock.p2 = limit->p2.p2_fast;
963 clock.p2 >= limit->p2.p2_slow;
964 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
965 unsigned int error_ppm;
966
967 clock.p = clock.p1 * clock.p2;
968
969 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
970 clock.n) << 22, refclk * clock.m1);
971
972 if (m2 > INT_MAX/clock.m1)
973 continue;
974
975 clock.m2 = m2;
976
977 chv_calc_dpll_params(refclk, &clock);
978
979 if (!intel_PLL_is_valid(dev, limit, &clock))
980 continue;
981
982 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
983 best_error_ppm, &error_ppm))
984 continue;
985
986 *best_clock = clock;
987 best_error_ppm = error_ppm;
988 found = true;
989 }
990 }
991
992 return found;
993 }
994
995 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
996 struct dpll *best_clock)
997 {
998 int refclk = 100000;
999 const struct intel_limit *limit = &intel_limits_bxt;
1000
1001 return chv_find_best_dpll(limit, crtc_state,
1002 target_clock, refclk, NULL, best_clock);
1003 }
1004
1005 bool intel_crtc_active(struct drm_crtc *crtc)
1006 {
1007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008
1009 /* Be paranoid as we can arrive here with only partial
1010 * state retrieved from the hardware during setup.
1011 *
1012 * We can ditch the adjusted_mode.crtc_clock check as soon
1013 * as Haswell has gained clock readout/fastboot support.
1014 *
1015 * We can ditch the crtc->primary->fb check as soon as we can
1016 * properly reconstruct framebuffers.
1017 *
1018 * FIXME: The intel_crtc->active here should be switched to
1019 * crtc->state->active once we have proper CRTC states wired up
1020 * for atomic.
1021 */
1022 return intel_crtc->active && crtc->primary->state->fb &&
1023 intel_crtc->config->base.adjusted_mode.crtc_clock;
1024 }
1025
1026 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1031
1032 return intel_crtc->config->cpu_transcoder;
1033 }
1034
1035 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1036 {
1037 struct drm_i915_private *dev_priv = to_i915(dev);
1038 i915_reg_t reg = PIPEDSL(pipe);
1039 u32 line1, line2;
1040 u32 line_mask;
1041
1042 if (IS_GEN2(dev))
1043 line_mask = DSL_LINEMASK_GEN2;
1044 else
1045 line_mask = DSL_LINEMASK_GEN3;
1046
1047 line1 = I915_READ(reg) & line_mask;
1048 msleep(5);
1049 line2 = I915_READ(reg) & line_mask;
1050
1051 return line1 == line2;
1052 }
1053
1054 /*
1055 * intel_wait_for_pipe_off - wait for pipe to turn off
1056 * @crtc: crtc whose pipe to wait for
1057 *
1058 * After disabling a pipe, we can't wait for vblank in the usual way,
1059 * spinning on the vblank interrupt status bit, since we won't actually
1060 * see an interrupt when the pipe is disabled.
1061 *
1062 * On Gen4 and above:
1063 * wait for the pipe register state bit to turn off
1064 *
1065 * Otherwise:
1066 * wait for the display line value to settle (it usually
1067 * ends up stopping at the start of the next frame).
1068 *
1069 */
1070 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1071 {
1072 struct drm_device *dev = crtc->base.dev;
1073 struct drm_i915_private *dev_priv = to_i915(dev);
1074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1075 enum pipe pipe = crtc->pipe;
1076
1077 if (INTEL_INFO(dev)->gen >= 4) {
1078 i915_reg_t reg = PIPECONF(cpu_transcoder);
1079
1080 /* Wait for the Pipe State to go off */
1081 if (intel_wait_for_register(dev_priv,
1082 reg, I965_PIPECONF_ACTIVE, 0,
1083 100))
1084 WARN(1, "pipe_off wait timed out\n");
1085 } else {
1086 /* Wait for the display line to settle */
1087 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1088 WARN(1, "pipe_off wait timed out\n");
1089 }
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 u32 val;
1097 bool cur_state;
1098
1099 val = I915_READ(DPLL(pipe));
1100 cur_state = !!(val & DPLL_VCO_ENABLE);
1101 I915_STATE_WARN(cur_state != state,
1102 "PLL state assertion failure (expected %s, current %s)\n",
1103 onoff(state), onoff(cur_state));
1104 }
1105
1106 /* XXX: the dsi pll is shared between MIPI DSI ports */
1107 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1108 {
1109 u32 val;
1110 bool cur_state;
1111
1112 mutex_lock(&dev_priv->sb_lock);
1113 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1114 mutex_unlock(&dev_priv->sb_lock);
1115
1116 cur_state = val & DSI_PLL_VCO_EN;
1117 I915_STATE_WARN(cur_state != state,
1118 "DSI PLL state assertion failure (expected %s, current %s)\n",
1119 onoff(state), onoff(cur_state));
1120 }
1121
1122 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
1124 {
1125 bool cur_state;
1126 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1127 pipe);
1128
1129 if (HAS_DDI(dev_priv)) {
1130 /* DDI does not have a specific FDI_TX register */
1131 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133 } else {
1134 u32 val = I915_READ(FDI_TX_CTL(pipe));
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
1137 I915_STATE_WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 u32 val;
1148 bool cur_state;
1149
1150 val = I915_READ(FDI_RX_CTL(pipe));
1151 cur_state = !!(val & FDI_RX_ENABLE);
1152 I915_STATE_WARN(cur_state != state,
1153 "FDI RX state assertion failure (expected %s, current %s)\n",
1154 onoff(state), onoff(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161 {
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (IS_GEN5(dev_priv))
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv))
1170 return;
1171
1172 val = I915_READ(FDI_TX_CTL(pipe));
1173 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1174 }
1175
1176 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, bool state)
1178 {
1179 u32 val;
1180 bool cur_state;
1181
1182 val = I915_READ(FDI_RX_CTL(pipe));
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 I915_STATE_WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 onoff(state), onoff(cur_state));
1187 }
1188
1189 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191 {
1192 struct drm_device *dev = &dev_priv->drm;
1193 i915_reg_t pp_reg;
1194 u32 val;
1195 enum pipe panel_pipe = PIPE_A;
1196 bool locked = true;
1197
1198 if (WARN_ON(HAS_DDI(dev)))
1199 return;
1200
1201 if (HAS_PCH_SPLIT(dev)) {
1202 u32 port_sel;
1203
1204 pp_reg = PCH_PP_CONTROL;
1205 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1206
1207 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1208 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1209 panel_pipe = PIPE_B;
1210 /* XXX: else fix for eDP */
1211 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1212 /* presumably write lock depends on pipe, not port select */
1213 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1214 panel_pipe = pipe;
1215 } else {
1216 pp_reg = PP_CONTROL;
1217 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1218 panel_pipe = PIPE_B;
1219 }
1220
1221 val = I915_READ(pp_reg);
1222 if (!(val & PANEL_POWER_ON) ||
1223 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1224 locked = false;
1225
1226 I915_STATE_WARN(panel_pipe == pipe && locked,
1227 "panel assertion failure, pipe %c regs locked\n",
1228 pipe_name(pipe));
1229 }
1230
1231 static void assert_cursor(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
1233 {
1234 struct drm_device *dev = &dev_priv->drm;
1235 bool cur_state;
1236
1237 if (IS_845G(dev) || IS_I865G(dev))
1238 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1239 else
1240 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1241
1242 I915_STATE_WARN(cur_state != state,
1243 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), onoff(state), onoff(cur_state));
1245 }
1246 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1247 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1248
1249 void assert_pipe(struct drm_i915_private *dev_priv,
1250 enum pipe pipe, bool state)
1251 {
1252 bool cur_state;
1253 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1254 pipe);
1255 enum intel_display_power_domain power_domain;
1256
1257 /* if we need the pipe quirk it must be always on */
1258 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1259 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1260 state = true;
1261
1262 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1263 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1264 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1265 cur_state = !!(val & PIPECONF_ENABLE);
1266
1267 intel_display_power_put(dev_priv, power_domain);
1268 } else {
1269 cur_state = false;
1270 }
1271
1272 I915_STATE_WARN(cur_state != state,
1273 "pipe %c assertion failure (expected %s, current %s)\n",
1274 pipe_name(pipe), onoff(state), onoff(cur_state));
1275 }
1276
1277 static void assert_plane(struct drm_i915_private *dev_priv,
1278 enum plane plane, bool state)
1279 {
1280 u32 val;
1281 bool cur_state;
1282
1283 val = I915_READ(DSPCNTR(plane));
1284 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1285 I915_STATE_WARN(cur_state != state,
1286 "plane %c assertion failure (expected %s, current %s)\n",
1287 plane_name(plane), onoff(state), onoff(cur_state));
1288 }
1289
1290 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1291 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1292
1293 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1294 enum pipe pipe)
1295 {
1296 struct drm_device *dev = &dev_priv->drm;
1297 int i;
1298
1299 /* Primary planes are fixed to pipes on gen4+ */
1300 if (INTEL_INFO(dev)->gen >= 4) {
1301 u32 val = I915_READ(DSPCNTR(pipe));
1302 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1303 "plane %c assertion failure, should be disabled but not\n",
1304 plane_name(pipe));
1305 return;
1306 }
1307
1308 /* Need to check both planes against the pipe */
1309 for_each_pipe(dev_priv, i) {
1310 u32 val = I915_READ(DSPCNTR(i));
1311 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1312 DISPPLANE_SEL_PIPE_SHIFT;
1313 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1314 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1315 plane_name(i), pipe_name(pipe));
1316 }
1317 }
1318
1319 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1320 enum pipe pipe)
1321 {
1322 struct drm_device *dev = &dev_priv->drm;
1323 int sprite;
1324
1325 if (INTEL_INFO(dev)->gen >= 9) {
1326 for_each_sprite(dev_priv, pipe, sprite) {
1327 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1328 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1329 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1330 sprite, pipe_name(pipe));
1331 }
1332 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1333 for_each_sprite(dev_priv, pipe, sprite) {
1334 u32 val = I915_READ(SPCNTR(pipe, sprite));
1335 I915_STATE_WARN(val & SP_ENABLE,
1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 sprite_name(pipe, sprite), pipe_name(pipe));
1338 }
1339 } else if (INTEL_INFO(dev)->gen >= 7) {
1340 u32 val = I915_READ(SPRCTL(pipe));
1341 I915_STATE_WARN(val & SPRITE_ENABLE,
1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343 plane_name(pipe), pipe_name(pipe));
1344 } else if (INTEL_INFO(dev)->gen >= 5) {
1345 u32 val = I915_READ(DVSCNTR(pipe));
1346 I915_STATE_WARN(val & DVS_ENABLE,
1347 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348 plane_name(pipe), pipe_name(pipe));
1349 }
1350 }
1351
1352 static void assert_vblank_disabled(struct drm_crtc *crtc)
1353 {
1354 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1355 drm_crtc_vblank_put(crtc);
1356 }
1357
1358 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360 {
1361 u32 val;
1362 bool enabled;
1363
1364 val = I915_READ(PCH_TRANSCONF(pipe));
1365 enabled = !!(val & TRANS_ENABLE);
1366 I915_STATE_WARN(enabled,
1367 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1368 pipe_name(pipe));
1369 }
1370
1371 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, u32 port_sel, u32 val)
1373 {
1374 if ((val & DP_PORT_EN) == 0)
1375 return false;
1376
1377 if (HAS_PCH_CPT(dev_priv)) {
1378 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1379 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380 return false;
1381 } else if (IS_CHERRYVIEW(dev_priv)) {
1382 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383 return false;
1384 } else {
1385 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1393 {
1394 if ((val & SDVO_ENABLE) == 0)
1395 return false;
1396
1397 if (HAS_PCH_CPT(dev_priv)) {
1398 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399 return false;
1400 } else if (IS_CHERRYVIEW(dev_priv)) {
1401 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402 return false;
1403 } else {
1404 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405 return false;
1406 }
1407 return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 val)
1412 {
1413 if ((val & LVDS_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv)) {
1417 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418 return false;
1419 } else {
1420 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421 return false;
1422 }
1423 return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, u32 val)
1428 {
1429 if ((val & ADPA_DAC_ENABLE) == 0)
1430 return false;
1431 if (HAS_PCH_CPT(dev_priv)) {
1432 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433 return false;
1434 } else {
1435 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436 return false;
1437 }
1438 return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe, i915_reg_t reg,
1443 u32 port_sel)
1444 {
1445 u32 val = I915_READ(reg);
1446 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1447 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1448 i915_mmio_reg_offset(reg), pipe_name(pipe));
1449
1450 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1451 && (val & DP_PIPEB_SELECT),
1452 "IBX PCH dp port still using transcoder B\n");
1453 }
1454
1455 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1456 enum pipe pipe, i915_reg_t reg)
1457 {
1458 u32 val = I915_READ(reg);
1459 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1460 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1461 i915_mmio_reg_offset(reg), pipe_name(pipe));
1462
1463 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1464 && (val & SDVO_PIPE_B_SELECT),
1465 "IBX PCH hdmi port still using transcoder B\n");
1466 }
1467
1468 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe)
1470 {
1471 u32 val;
1472
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477 val = I915_READ(PCH_ADPA);
1478 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 val = I915_READ(PCH_LVDS);
1483 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1484 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1485 pipe_name(pipe));
1486
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 }
1491
1492 static void _vlv_enable_pll(struct intel_crtc *crtc,
1493 const struct intel_crtc_state *pipe_config)
1494 {
1495 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1496 enum pipe pipe = crtc->pipe;
1497
1498 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1499 POSTING_READ(DPLL(pipe));
1500 udelay(150);
1501
1502 if (intel_wait_for_register(dev_priv,
1503 DPLL(pipe),
1504 DPLL_LOCK_VLV,
1505 DPLL_LOCK_VLV,
1506 1))
1507 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1512 {
1513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1514 enum pipe pipe = crtc->pipe;
1515
1516 assert_pipe_disabled(dev_priv, pipe);
1517
1518 /* PLL is protected by panel, make sure we can write it */
1519 assert_panel_unlocked(dev_priv, pipe);
1520
1521 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1522 _vlv_enable_pll(crtc, pipe_config);
1523
1524 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1525 POSTING_READ(DPLL_MD(pipe));
1526 }
1527
1528
1529 static void _chv_enable_pll(struct intel_crtc *crtc,
1530 const struct intel_crtc_state *pipe_config)
1531 {
1532 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 enum pipe pipe = crtc->pipe;
1534 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1535 u32 tmp;
1536
1537 mutex_lock(&dev_priv->sb_lock);
1538
1539 /* Enable back the 10bit clock to display controller */
1540 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 tmp |= DPIO_DCLKP_EN;
1542 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544 mutex_unlock(&dev_priv->sb_lock);
1545
1546 /*
1547 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548 */
1549 udelay(1);
1550
1551 /* Enable PLL */
1552 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1553
1554 /* Check PLL is locked */
1555 if (intel_wait_for_register(dev_priv,
1556 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1557 1))
1558 DRM_ERROR("PLL %d failed to lock\n", pipe);
1559 }
1560
1561 static void chv_enable_pll(struct intel_crtc *crtc,
1562 const struct intel_crtc_state *pipe_config)
1563 {
1564 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1565 enum pipe pipe = crtc->pipe;
1566
1567 assert_pipe_disabled(dev_priv, pipe);
1568
1569 /* PLL is protected by panel, make sure we can write it */
1570 assert_panel_unlocked(dev_priv, pipe);
1571
1572 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1573 _chv_enable_pll(crtc, pipe_config);
1574
1575 if (pipe != PIPE_A) {
1576 /*
1577 * WaPixelRepeatModeFixForC0:chv
1578 *
1579 * DPLLCMD is AWOL. Use chicken bits to propagate
1580 * the value from DPLLBMD to either pipe B or C.
1581 */
1582 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1583 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1584 I915_WRITE(CBR4_VLV, 0);
1585 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1586
1587 /*
1588 * DPLLB VGA mode also seems to cause problems.
1589 * We should always have it disabled.
1590 */
1591 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1592 } else {
1593 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1594 POSTING_READ(DPLL_MD(pipe));
1595 }
1596 }
1597
1598 static int intel_num_dvo_pipes(struct drm_device *dev)
1599 {
1600 struct intel_crtc *crtc;
1601 int count = 0;
1602
1603 for_each_intel_crtc(dev, crtc) {
1604 count += crtc->base.state->active &&
1605 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1606 }
1607
1608 return count;
1609 }
1610
1611 static void i9xx_enable_pll(struct intel_crtc *crtc)
1612 {
1613 struct drm_device *dev = crtc->base.dev;
1614 struct drm_i915_private *dev_priv = to_i915(dev);
1615 i915_reg_t reg = DPLL(crtc->pipe);
1616 u32 dpll = crtc->config->dpll_hw_state.dpll;
1617
1618 assert_pipe_disabled(dev_priv, crtc->pipe);
1619
1620 /* PLL is protected by panel, make sure we can write it */
1621 if (IS_MOBILE(dev) && !IS_I830(dev))
1622 assert_panel_unlocked(dev_priv, crtc->pipe);
1623
1624 /* Enable DVO 2x clock on both PLLs if necessary */
1625 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1626 /*
1627 * It appears to be important that we don't enable this
1628 * for the current pipe before otherwise configuring the
1629 * PLL. No idea how this should be handled if multiple
1630 * DVO outputs are enabled simultaneosly.
1631 */
1632 dpll |= DPLL_DVO_2X_MODE;
1633 I915_WRITE(DPLL(!crtc->pipe),
1634 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1635 }
1636
1637 /*
1638 * Apparently we need to have VGA mode enabled prior to changing
1639 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1640 * dividers, even though the register value does change.
1641 */
1642 I915_WRITE(reg, 0);
1643
1644 I915_WRITE(reg, dpll);
1645
1646 /* Wait for the clocks to stabilize. */
1647 POSTING_READ(reg);
1648 udelay(150);
1649
1650 if (INTEL_INFO(dev)->gen >= 4) {
1651 I915_WRITE(DPLL_MD(crtc->pipe),
1652 crtc->config->dpll_hw_state.dpll_md);
1653 } else {
1654 /* The pixel multiplier can only be updated once the
1655 * DPLL is enabled and the clocks are stable.
1656 *
1657 * So write it again.
1658 */
1659 I915_WRITE(reg, dpll);
1660 }
1661
1662 /* We do this three times for luck */
1663 I915_WRITE(reg, dpll);
1664 POSTING_READ(reg);
1665 udelay(150); /* wait for warmup */
1666 I915_WRITE(reg, dpll);
1667 POSTING_READ(reg);
1668 udelay(150); /* wait for warmup */
1669 I915_WRITE(reg, dpll);
1670 POSTING_READ(reg);
1671 udelay(150); /* wait for warmup */
1672 }
1673
1674 /**
1675 * i9xx_disable_pll - disable a PLL
1676 * @dev_priv: i915 private structure
1677 * @pipe: pipe PLL to disable
1678 *
1679 * Disable the PLL for @pipe, making sure the pipe is off first.
1680 *
1681 * Note! This is for pre-ILK only.
1682 */
1683 static void i9xx_disable_pll(struct intel_crtc *crtc)
1684 {
1685 struct drm_device *dev = crtc->base.dev;
1686 struct drm_i915_private *dev_priv = to_i915(dev);
1687 enum pipe pipe = crtc->pipe;
1688
1689 /* Disable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) &&
1691 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1692 !intel_num_dvo_pipes(dev)) {
1693 I915_WRITE(DPLL(PIPE_B),
1694 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1695 I915_WRITE(DPLL(PIPE_A),
1696 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1697 }
1698
1699 /* Don't disable pipe or pipe PLLs if needed */
1700 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1701 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1702 return;
1703
1704 /* Make sure the pipe isn't still relying on us */
1705 assert_pipe_disabled(dev_priv, pipe);
1706
1707 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1708 POSTING_READ(DPLL(pipe));
1709 }
1710
1711 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713 u32 val;
1714
1715 /* Make sure the pipe isn't still relying on us */
1716 assert_pipe_disabled(dev_priv, pipe);
1717
1718 val = DPLL_INTEGRATED_REF_CLK_VLV |
1719 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1720 if (pipe != PIPE_A)
1721 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1722
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
1725 }
1726
1727 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1728 {
1729 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1730 u32 val;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
1735 val = DPLL_SSC_REF_CLK_CHV |
1736 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737 if (pipe != PIPE_A)
1738 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739
1740 I915_WRITE(DPLL(pipe), val);
1741 POSTING_READ(DPLL(pipe));
1742
1743 mutex_lock(&dev_priv->sb_lock);
1744
1745 /* Disable 10bit clock to display controller */
1746 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1747 val &= ~DPIO_DCLKP_EN;
1748 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1749
1750 mutex_unlock(&dev_priv->sb_lock);
1751 }
1752
1753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1754 struct intel_digital_port *dport,
1755 unsigned int expected_mask)
1756 {
1757 u32 port_mask;
1758 i915_reg_t dpll_reg;
1759
1760 switch (dport->port) {
1761 case PORT_B:
1762 port_mask = DPLL_PORTB_READY_MASK;
1763 dpll_reg = DPLL(0);
1764 break;
1765 case PORT_C:
1766 port_mask = DPLL_PORTC_READY_MASK;
1767 dpll_reg = DPLL(0);
1768 expected_mask <<= 4;
1769 break;
1770 case PORT_D:
1771 port_mask = DPLL_PORTD_READY_MASK;
1772 dpll_reg = DPIO_PHY_STATUS;
1773 break;
1774 default:
1775 BUG();
1776 }
1777
1778 if (intel_wait_for_register(dev_priv,
1779 dpll_reg, port_mask, expected_mask,
1780 1000))
1781 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1782 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1783 }
1784
1785 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1786 enum pipe pipe)
1787 {
1788 struct drm_device *dev = &dev_priv->drm;
1789 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791 i915_reg_t reg;
1792 uint32_t val, pipeconf_val;
1793
1794 /* Make sure PCH DPLL is enabled */
1795 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1796
1797 /* FDI must be feeding us bits for PCH ports */
1798 assert_fdi_tx_enabled(dev_priv, pipe);
1799 assert_fdi_rx_enabled(dev_priv, pipe);
1800
1801 if (HAS_PCH_CPT(dev)) {
1802 /* Workaround: Set the timing override bit before enabling the
1803 * pch transcoder. */
1804 reg = TRANS_CHICKEN2(pipe);
1805 val = I915_READ(reg);
1806 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 I915_WRITE(reg, val);
1808 }
1809
1810 reg = PCH_TRANSCONF(pipe);
1811 val = I915_READ(reg);
1812 pipeconf_val = I915_READ(PIPECONF(pipe));
1813
1814 if (HAS_PCH_IBX(dev_priv)) {
1815 /*
1816 * Make the BPC in transcoder be consistent with
1817 * that in pipeconf reg. For HDMI we must use 8bpc
1818 * here for both 8bpc and 12bpc.
1819 */
1820 val &= ~PIPECONF_BPC_MASK;
1821 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1822 val |= PIPECONF_8BPC;
1823 else
1824 val |= pipeconf_val & PIPECONF_BPC_MASK;
1825 }
1826
1827 val &= ~TRANS_INTERLACE_MASK;
1828 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1829 if (HAS_PCH_IBX(dev_priv) &&
1830 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1831 val |= TRANS_LEGACY_INTERLACED_ILK;
1832 else
1833 val |= TRANS_INTERLACED;
1834 else
1835 val |= TRANS_PROGRESSIVE;
1836
1837 I915_WRITE(reg, val | TRANS_ENABLE);
1838 if (intel_wait_for_register(dev_priv,
1839 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1840 100))
1841 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1842 }
1843
1844 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1845 enum transcoder cpu_transcoder)
1846 {
1847 u32 val, pipeconf_val;
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1851 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1852
1853 /* Workaround: set timing override bit. */
1854 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1855 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1856 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1857
1858 val = TRANS_ENABLE;
1859 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1860
1861 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1862 PIPECONF_INTERLACED_ILK)
1863 val |= TRANS_INTERLACED;
1864 else
1865 val |= TRANS_PROGRESSIVE;
1866
1867 I915_WRITE(LPT_TRANSCONF, val);
1868 if (intel_wait_for_register(dev_priv,
1869 LPT_TRANSCONF,
1870 TRANS_STATE_ENABLE,
1871 TRANS_STATE_ENABLE,
1872 100))
1873 DRM_ERROR("Failed to enable PCH transcoder\n");
1874 }
1875
1876 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1877 enum pipe pipe)
1878 {
1879 struct drm_device *dev = &dev_priv->drm;
1880 i915_reg_t reg;
1881 uint32_t val;
1882
1883 /* FDI relies on the transcoder */
1884 assert_fdi_tx_disabled(dev_priv, pipe);
1885 assert_fdi_rx_disabled(dev_priv, pipe);
1886
1887 /* Ports must be off as well */
1888 assert_pch_ports_disabled(dev_priv, pipe);
1889
1890 reg = PCH_TRANSCONF(pipe);
1891 val = I915_READ(reg);
1892 val &= ~TRANS_ENABLE;
1893 I915_WRITE(reg, val);
1894 /* wait for PCH transcoder off, transcoder state */
1895 if (intel_wait_for_register(dev_priv,
1896 reg, TRANS_STATE_ENABLE, 0,
1897 50))
1898 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1899
1900 if (HAS_PCH_CPT(dev)) {
1901 /* Workaround: Clear the timing override chicken bit again. */
1902 reg = TRANS_CHICKEN2(pipe);
1903 val = I915_READ(reg);
1904 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1905 I915_WRITE(reg, val);
1906 }
1907 }
1908
1909 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1910 {
1911 u32 val;
1912
1913 val = I915_READ(LPT_TRANSCONF);
1914 val &= ~TRANS_ENABLE;
1915 I915_WRITE(LPT_TRANSCONF, val);
1916 /* wait for PCH transcoder off, transcoder state */
1917 if (intel_wait_for_register(dev_priv,
1918 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1919 50))
1920 DRM_ERROR("Failed to disable PCH transcoder\n");
1921
1922 /* Workaround: clear timing override bit. */
1923 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1924 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1925 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1926 }
1927
1928 /**
1929 * intel_enable_pipe - enable a pipe, asserting requirements
1930 * @crtc: crtc responsible for the pipe
1931 *
1932 * Enable @crtc's pipe, making sure that various hardware specific requirements
1933 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1934 */
1935 static void intel_enable_pipe(struct intel_crtc *crtc)
1936 {
1937 struct drm_device *dev = crtc->base.dev;
1938 struct drm_i915_private *dev_priv = to_i915(dev);
1939 enum pipe pipe = crtc->pipe;
1940 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1941 enum pipe pch_transcoder;
1942 i915_reg_t reg;
1943 u32 val;
1944
1945 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1946
1947 assert_planes_disabled(dev_priv, pipe);
1948 assert_cursor_disabled(dev_priv, pipe);
1949 assert_sprites_disabled(dev_priv, pipe);
1950
1951 if (HAS_PCH_LPT(dev_priv))
1952 pch_transcoder = TRANSCODER_A;
1953 else
1954 pch_transcoder = pipe;
1955
1956 /*
1957 * A pipe without a PLL won't actually be able to drive bits from
1958 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1959 * need the check.
1960 */
1961 if (HAS_GMCH_DISPLAY(dev_priv))
1962 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1963 assert_dsi_pll_enabled(dev_priv);
1964 else
1965 assert_pll_enabled(dev_priv, pipe);
1966 else {
1967 if (crtc->config->has_pch_encoder) {
1968 /* if driving the PCH, we need FDI enabled */
1969 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1970 assert_fdi_tx_pll_enabled(dev_priv,
1971 (enum pipe) cpu_transcoder);
1972 }
1973 /* FIXME: assert CPU port conditions for SNB+ */
1974 }
1975
1976 reg = PIPECONF(cpu_transcoder);
1977 val = I915_READ(reg);
1978 if (val & PIPECONF_ENABLE) {
1979 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1980 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1981 return;
1982 }
1983
1984 I915_WRITE(reg, val | PIPECONF_ENABLE);
1985 POSTING_READ(reg);
1986
1987 /*
1988 * Until the pipe starts DSL will read as 0, which would cause
1989 * an apparent vblank timestamp jump, which messes up also the
1990 * frame count when it's derived from the timestamps. So let's
1991 * wait for the pipe to start properly before we call
1992 * drm_crtc_vblank_on()
1993 */
1994 if (dev->max_vblank_count == 0 &&
1995 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1996 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1997 }
1998
1999 /**
2000 * intel_disable_pipe - disable a pipe, asserting requirements
2001 * @crtc: crtc whose pipes is to be disabled
2002 *
2003 * Disable the pipe of @crtc, making sure that various hardware
2004 * specific requirements are met, if applicable, e.g. plane
2005 * disabled, panel fitter off, etc.
2006 *
2007 * Will wait until the pipe has shut down before returning.
2008 */
2009 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 {
2011 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2012 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2013 enum pipe pipe = crtc->pipe;
2014 i915_reg_t reg;
2015 u32 val;
2016
2017 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2018
2019 /*
2020 * Make sure planes won't keep trying to pump pixels to us,
2021 * or we might hang the display.
2022 */
2023 assert_planes_disabled(dev_priv, pipe);
2024 assert_cursor_disabled(dev_priv, pipe);
2025 assert_sprites_disabled(dev_priv, pipe);
2026
2027 reg = PIPECONF(cpu_transcoder);
2028 val = I915_READ(reg);
2029 if ((val & PIPECONF_ENABLE) == 0)
2030 return;
2031
2032 /*
2033 * Double wide has implications for planes
2034 * so best keep it disabled when not needed.
2035 */
2036 if (crtc->config->double_wide)
2037 val &= ~PIPECONF_DOUBLE_WIDE;
2038
2039 /* Don't disable pipe or pipe PLLs if needed */
2040 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2041 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2042 val &= ~PIPECONF_ENABLE;
2043
2044 I915_WRITE(reg, val);
2045 if ((val & PIPECONF_ENABLE) == 0)
2046 intel_wait_for_pipe_off(crtc);
2047 }
2048
2049 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 {
2051 return IS_GEN2(dev_priv) ? 2048 : 4096;
2052 }
2053
2054 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2055 uint64_t fb_modifier, unsigned int cpp)
2056 {
2057 switch (fb_modifier) {
2058 case DRM_FORMAT_MOD_NONE:
2059 return cpp;
2060 case I915_FORMAT_MOD_X_TILED:
2061 if (IS_GEN2(dev_priv))
2062 return 128;
2063 else
2064 return 512;
2065 case I915_FORMAT_MOD_Y_TILED:
2066 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2067 return 128;
2068 else
2069 return 512;
2070 case I915_FORMAT_MOD_Yf_TILED:
2071 switch (cpp) {
2072 case 1:
2073 return 64;
2074 case 2:
2075 case 4:
2076 return 128;
2077 case 8:
2078 case 16:
2079 return 256;
2080 default:
2081 MISSING_CASE(cpp);
2082 return cpp;
2083 }
2084 break;
2085 default:
2086 MISSING_CASE(fb_modifier);
2087 return cpp;
2088 }
2089 }
2090
2091 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2092 uint64_t fb_modifier, unsigned int cpp)
2093 {
2094 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2095 return 1;
2096 else
2097 return intel_tile_size(dev_priv) /
2098 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2099 }
2100
2101 /* Return the tile dimensions in pixel units */
2102 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2103 unsigned int *tile_width,
2104 unsigned int *tile_height,
2105 uint64_t fb_modifier,
2106 unsigned int cpp)
2107 {
2108 unsigned int tile_width_bytes =
2109 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110
2111 *tile_width = tile_width_bytes / cpp;
2112 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2113 }
2114
2115 unsigned int
2116 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2117 uint32_t pixel_format, uint64_t fb_modifier)
2118 {
2119 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2120 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121
2122 return ALIGN(height, tile_height);
2123 }
2124
2125 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 {
2127 unsigned int size = 0;
2128 int i;
2129
2130 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2131 size += rot_info->plane[i].width * rot_info->plane[i].height;
2132
2133 return size;
2134 }
2135
2136 static void
2137 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2138 const struct drm_framebuffer *fb,
2139 unsigned int rotation)
2140 {
2141 if (intel_rotation_90_or_270(rotation)) {
2142 *view = i915_ggtt_view_rotated;
2143 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2144 } else {
2145 *view = i915_ggtt_view_normal;
2146 }
2147 }
2148
2149 static void
2150 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2151 struct drm_framebuffer *fb)
2152 {
2153 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2154 unsigned int tile_size, tile_width, tile_height, cpp;
2155
2156 tile_size = intel_tile_size(dev_priv);
2157
2158 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2159 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2160 fb->modifier[0], cpp);
2161
2162 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2163 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2164
2165 if (info->pixel_format == DRM_FORMAT_NV12) {
2166 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2167 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2168 fb->modifier[1], cpp);
2169
2170 info->uv_offset = fb->offsets[1];
2171 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2172 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2173 }
2174 }
2175
2176 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2177 {
2178 if (INTEL_INFO(dev_priv)->gen >= 9)
2179 return 256 * 1024;
2180 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2181 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2182 return 128 * 1024;
2183 else if (INTEL_INFO(dev_priv)->gen >= 4)
2184 return 4 * 1024;
2185 else
2186 return 0;
2187 }
2188
2189 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2190 uint64_t fb_modifier)
2191 {
2192 switch (fb_modifier) {
2193 case DRM_FORMAT_MOD_NONE:
2194 return intel_linear_alignment(dev_priv);
2195 case I915_FORMAT_MOD_X_TILED:
2196 if (INTEL_INFO(dev_priv)->gen >= 9)
2197 return 256 * 1024;
2198 return 0;
2199 case I915_FORMAT_MOD_Y_TILED:
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb_modifier);
2204 return 0;
2205 }
2206 }
2207
2208 int
2209 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2210 unsigned int rotation)
2211 {
2212 struct drm_device *dev = fb->dev;
2213 struct drm_i915_private *dev_priv = to_i915(dev);
2214 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2215 struct i915_ggtt_view view;
2216 u32 alignment;
2217 int ret;
2218
2219 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2220
2221 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2222
2223 intel_fill_fb_ggtt_view(&view, fb, rotation);
2224
2225 /* Note that the w/a also requires 64 PTE of padding following the
2226 * bo. We currently fill all unused PTE with the shadow page and so
2227 * we should always have valid PTE following the scanout preventing
2228 * the VT-d warning.
2229 */
2230 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2231 alignment = 256 * 1024;
2232
2233 /*
2234 * Global gtt pte registers are special registers which actually forward
2235 * writes to a chunk of system memory. Which means that there is no risk
2236 * that the register values disappear as soon as we call
2237 * intel_runtime_pm_put(), so it is correct to wrap only the
2238 * pin/unpin/fence and not more.
2239 */
2240 intel_runtime_pm_get(dev_priv);
2241
2242 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2243 &view);
2244 if (ret)
2245 goto err_pm;
2246
2247 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2248 * fence, whereas 965+ only requires a fence if using
2249 * framebuffer compression. For simplicity, we always install
2250 * a fence as the cost is not that onerous.
2251 */
2252 if (view.type == I915_GGTT_VIEW_NORMAL) {
2253 ret = i915_gem_object_get_fence(obj);
2254 if (ret == -EDEADLK) {
2255 /*
2256 * -EDEADLK means there are no free fences
2257 * no pending flips.
2258 *
2259 * This is propagated to atomic, but it uses
2260 * -EDEADLK to force a locking recovery, so
2261 * change the returned error to -EBUSY.
2262 */
2263 ret = -EBUSY;
2264 goto err_unpin;
2265 } else if (ret)
2266 goto err_unpin;
2267
2268 i915_gem_object_pin_fence(obj);
2269 }
2270
2271 intel_runtime_pm_put(dev_priv);
2272 return 0;
2273
2274 err_unpin:
2275 i915_gem_object_unpin_from_display_plane(obj, &view);
2276 err_pm:
2277 intel_runtime_pm_put(dev_priv);
2278 return ret;
2279 }
2280
2281 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2282 {
2283 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2284 struct i915_ggtt_view view;
2285
2286 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
2288 intel_fill_fb_ggtt_view(&view, fb, rotation);
2289
2290 if (view.type == I915_GGTT_VIEW_NORMAL)
2291 i915_gem_object_unpin_fence(obj);
2292
2293 i915_gem_object_unpin_from_display_plane(obj, &view);
2294 }
2295
2296 /*
2297 * Adjust the tile offset by moving the difference into
2298 * the x/y offsets.
2299 *
2300 * Input tile dimensions and pitch must already be
2301 * rotated to match x and y, and in pixel units.
2302 */
2303 static u32 intel_adjust_tile_offset(int *x, int *y,
2304 unsigned int tile_width,
2305 unsigned int tile_height,
2306 unsigned int tile_size,
2307 unsigned int pitch_tiles,
2308 u32 old_offset,
2309 u32 new_offset)
2310 {
2311 unsigned int tiles;
2312
2313 WARN_ON(old_offset & (tile_size - 1));
2314 WARN_ON(new_offset & (tile_size - 1));
2315 WARN_ON(new_offset > old_offset);
2316
2317 tiles = (old_offset - new_offset) / tile_size;
2318
2319 *y += tiles / pitch_tiles * tile_height;
2320 *x += tiles % pitch_tiles * tile_width;
2321
2322 return new_offset;
2323 }
2324
2325 /*
2326 * Computes the linear offset to the base tile and adjusts
2327 * x, y. bytes per pixel is assumed to be a power-of-two.
2328 *
2329 * In the 90/270 rotated case, x and y are assumed
2330 * to be already rotated to match the rotated GTT view, and
2331 * pitch is the tile_height aligned framebuffer height.
2332 */
2333 u32 intel_compute_tile_offset(int *x, int *y,
2334 const struct drm_framebuffer *fb, int plane,
2335 unsigned int pitch,
2336 unsigned int rotation)
2337 {
2338 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2339 uint64_t fb_modifier = fb->modifier[plane];
2340 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2341 u32 offset, offset_aligned, alignment;
2342
2343 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2344 if (alignment)
2345 alignment--;
2346
2347 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int tile_rows, tiles, pitch_tiles;
2350
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb_modifier, cpp);
2354
2355 if (intel_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 tile_rows = *y / tile_height;
2363 *y %= tile_height;
2364
2365 tiles = *x / tile_width;
2366 *x %= tile_width;
2367
2368 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 offset_aligned = offset & ~alignment;
2370
2371 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 tile_size, pitch_tiles,
2373 offset, offset_aligned);
2374 } else {
2375 offset = *y * pitch + *x * cpp;
2376 offset_aligned = offset & ~alignment;
2377
2378 *y = (offset & alignment) / pitch;
2379 *x = ((offset & alignment) - *y * pitch) / cpp;
2380 }
2381
2382 return offset_aligned;
2383 }
2384
2385 static int i9xx_format_to_fourcc(int format)
2386 {
2387 switch (format) {
2388 case DISPPLANE_8BPP:
2389 return DRM_FORMAT_C8;
2390 case DISPPLANE_BGRX555:
2391 return DRM_FORMAT_XRGB1555;
2392 case DISPPLANE_BGRX565:
2393 return DRM_FORMAT_RGB565;
2394 default:
2395 case DISPPLANE_BGRX888:
2396 return DRM_FORMAT_XRGB8888;
2397 case DISPPLANE_RGBX888:
2398 return DRM_FORMAT_XBGR8888;
2399 case DISPPLANE_BGRX101010:
2400 return DRM_FORMAT_XRGB2101010;
2401 case DISPPLANE_RGBX101010:
2402 return DRM_FORMAT_XBGR2101010;
2403 }
2404 }
2405
2406 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2407 {
2408 switch (format) {
2409 case PLANE_CTL_FORMAT_RGB_565:
2410 return DRM_FORMAT_RGB565;
2411 default:
2412 case PLANE_CTL_FORMAT_XRGB_8888:
2413 if (rgb_order) {
2414 if (alpha)
2415 return DRM_FORMAT_ABGR8888;
2416 else
2417 return DRM_FORMAT_XBGR8888;
2418 } else {
2419 if (alpha)
2420 return DRM_FORMAT_ARGB8888;
2421 else
2422 return DRM_FORMAT_XRGB8888;
2423 }
2424 case PLANE_CTL_FORMAT_XRGB_2101010:
2425 if (rgb_order)
2426 return DRM_FORMAT_XBGR2101010;
2427 else
2428 return DRM_FORMAT_XRGB2101010;
2429 }
2430 }
2431
2432 static bool
2433 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2434 struct intel_initial_plane_config *plane_config)
2435 {
2436 struct drm_device *dev = crtc->base.dev;
2437 struct drm_i915_private *dev_priv = to_i915(dev);
2438 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2439 struct drm_i915_gem_object *obj = NULL;
2440 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2441 struct drm_framebuffer *fb = &plane_config->fb->base;
2442 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2443 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2444 PAGE_SIZE);
2445
2446 size_aligned -= base_aligned;
2447
2448 if (plane_config->size == 0)
2449 return false;
2450
2451 /* If the FB is too big, just don't use it since fbdev is not very
2452 * important and we should probably use that space with FBC or other
2453 * features. */
2454 if (size_aligned * 2 > ggtt->stolen_usable_size)
2455 return false;
2456
2457 mutex_lock(&dev->struct_mutex);
2458
2459 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2460 base_aligned,
2461 base_aligned,
2462 size_aligned);
2463 if (!obj) {
2464 mutex_unlock(&dev->struct_mutex);
2465 return false;
2466 }
2467
2468 obj->tiling_mode = plane_config->tiling;
2469 if (obj->tiling_mode == I915_TILING_X)
2470 obj->stride = fb->pitches[0];
2471
2472 mode_cmd.pixel_format = fb->pixel_format;
2473 mode_cmd.width = fb->width;
2474 mode_cmd.height = fb->height;
2475 mode_cmd.pitches[0] = fb->pitches[0];
2476 mode_cmd.modifier[0] = fb->modifier[0];
2477 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2478
2479 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2480 &mode_cmd, obj)) {
2481 DRM_DEBUG_KMS("intel fb init failed\n");
2482 goto out_unref_obj;
2483 }
2484
2485 mutex_unlock(&dev->struct_mutex);
2486
2487 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2488 return true;
2489
2490 out_unref_obj:
2491 drm_gem_object_unreference(&obj->base);
2492 mutex_unlock(&dev->struct_mutex);
2493 return false;
2494 }
2495
2496 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2497 static void
2498 update_state_fb(struct drm_plane *plane)
2499 {
2500 if (plane->fb == plane->state->fb)
2501 return;
2502
2503 if (plane->state->fb)
2504 drm_framebuffer_unreference(plane->state->fb);
2505 plane->state->fb = plane->fb;
2506 if (plane->state->fb)
2507 drm_framebuffer_reference(plane->state->fb);
2508 }
2509
2510 static void
2511 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2512 struct intel_initial_plane_config *plane_config)
2513 {
2514 struct drm_device *dev = intel_crtc->base.dev;
2515 struct drm_i915_private *dev_priv = to_i915(dev);
2516 struct drm_crtc *c;
2517 struct intel_crtc *i;
2518 struct drm_i915_gem_object *obj;
2519 struct drm_plane *primary = intel_crtc->base.primary;
2520 struct drm_plane_state *plane_state = primary->state;
2521 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2522 struct intel_plane *intel_plane = to_intel_plane(primary);
2523 struct intel_plane_state *intel_state =
2524 to_intel_plane_state(plane_state);
2525 struct drm_framebuffer *fb;
2526
2527 if (!plane_config->fb)
2528 return;
2529
2530 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2531 fb = &plane_config->fb->base;
2532 goto valid_fb;
2533 }
2534
2535 kfree(plane_config->fb);
2536
2537 /*
2538 * Failed to alloc the obj, check to see if we should share
2539 * an fb with another CRTC instead
2540 */
2541 for_each_crtc(dev, c) {
2542 i = to_intel_crtc(c);
2543
2544 if (c == &intel_crtc->base)
2545 continue;
2546
2547 if (!i->active)
2548 continue;
2549
2550 fb = c->primary->fb;
2551 if (!fb)
2552 continue;
2553
2554 obj = intel_fb_obj(fb);
2555 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2556 drm_framebuffer_reference(fb);
2557 goto valid_fb;
2558 }
2559 }
2560
2561 /*
2562 * We've failed to reconstruct the BIOS FB. Current display state
2563 * indicates that the primary plane is visible, but has a NULL FB,
2564 * which will lead to problems later if we don't fix it up. The
2565 * simplest solution is to just disable the primary plane now and
2566 * pretend the BIOS never had it enabled.
2567 */
2568 to_intel_plane_state(plane_state)->visible = false;
2569 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2570 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2571 intel_plane->disable_plane(primary, &intel_crtc->base);
2572
2573 return;
2574
2575 valid_fb:
2576 plane_state->src_x = 0;
2577 plane_state->src_y = 0;
2578 plane_state->src_w = fb->width << 16;
2579 plane_state->src_h = fb->height << 16;
2580
2581 plane_state->crtc_x = 0;
2582 plane_state->crtc_y = 0;
2583 plane_state->crtc_w = fb->width;
2584 plane_state->crtc_h = fb->height;
2585
2586 intel_state->src.x1 = plane_state->src_x;
2587 intel_state->src.y1 = plane_state->src_y;
2588 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2589 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2590 intel_state->dst.x1 = plane_state->crtc_x;
2591 intel_state->dst.y1 = plane_state->crtc_y;
2592 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2593 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2594
2595 obj = intel_fb_obj(fb);
2596 if (obj->tiling_mode != I915_TILING_NONE)
2597 dev_priv->preserve_bios_swizzle = true;
2598
2599 drm_framebuffer_reference(fb);
2600 primary->fb = primary->state->fb = fb;
2601 primary->crtc = primary->state->crtc = &intel_crtc->base;
2602 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2603 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2604 }
2605
2606 static void i9xx_update_primary_plane(struct drm_plane *primary,
2607 const struct intel_crtc_state *crtc_state,
2608 const struct intel_plane_state *plane_state)
2609 {
2610 struct drm_device *dev = primary->dev;
2611 struct drm_i915_private *dev_priv = to_i915(dev);
2612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2613 struct drm_framebuffer *fb = plane_state->base.fb;
2614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2615 int plane = intel_crtc->plane;
2616 u32 linear_offset;
2617 u32 dspcntr;
2618 i915_reg_t reg = DSPCNTR(plane);
2619 unsigned int rotation = plane_state->base.rotation;
2620 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2621 int x = plane_state->src.x1 >> 16;
2622 int y = plane_state->src.y1 >> 16;
2623
2624 dspcntr = DISPPLANE_GAMMA_ENABLE;
2625
2626 dspcntr |= DISPLAY_PLANE_ENABLE;
2627
2628 if (INTEL_INFO(dev)->gen < 4) {
2629 if (intel_crtc->pipe == PIPE_B)
2630 dspcntr |= DISPPLANE_SEL_PIPE_B;
2631
2632 /* pipesrc and dspsize control the size that is scaled from,
2633 * which should always be the user's requested size.
2634 */
2635 I915_WRITE(DSPSIZE(plane),
2636 ((crtc_state->pipe_src_h - 1) << 16) |
2637 (crtc_state->pipe_src_w - 1));
2638 I915_WRITE(DSPPOS(plane), 0);
2639 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2640 I915_WRITE(PRIMSIZE(plane),
2641 ((crtc_state->pipe_src_h - 1) << 16) |
2642 (crtc_state->pipe_src_w - 1));
2643 I915_WRITE(PRIMPOS(plane), 0);
2644 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2645 }
2646
2647 switch (fb->pixel_format) {
2648 case DRM_FORMAT_C8:
2649 dspcntr |= DISPPLANE_8BPP;
2650 break;
2651 case DRM_FORMAT_XRGB1555:
2652 dspcntr |= DISPPLANE_BGRX555;
2653 break;
2654 case DRM_FORMAT_RGB565:
2655 dspcntr |= DISPPLANE_BGRX565;
2656 break;
2657 case DRM_FORMAT_XRGB8888:
2658 dspcntr |= DISPPLANE_BGRX888;
2659 break;
2660 case DRM_FORMAT_XBGR8888:
2661 dspcntr |= DISPPLANE_RGBX888;
2662 break;
2663 case DRM_FORMAT_XRGB2101010:
2664 dspcntr |= DISPPLANE_BGRX101010;
2665 break;
2666 case DRM_FORMAT_XBGR2101010:
2667 dspcntr |= DISPPLANE_RGBX101010;
2668 break;
2669 default:
2670 BUG();
2671 }
2672
2673 if (INTEL_INFO(dev)->gen >= 4 &&
2674 obj->tiling_mode != I915_TILING_NONE)
2675 dspcntr |= DISPPLANE_TILED;
2676
2677 if (IS_G4X(dev))
2678 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2679
2680 linear_offset = y * fb->pitches[0] + x * cpp;
2681
2682 if (INTEL_INFO(dev)->gen >= 4) {
2683 intel_crtc->dspaddr_offset =
2684 intel_compute_tile_offset(&x, &y, fb, 0,
2685 fb->pitches[0], rotation);
2686 linear_offset -= intel_crtc->dspaddr_offset;
2687 } else {
2688 intel_crtc->dspaddr_offset = linear_offset;
2689 }
2690
2691 if (rotation == BIT(DRM_ROTATE_180)) {
2692 dspcntr |= DISPPLANE_ROTATE_180;
2693
2694 x += (crtc_state->pipe_src_w - 1);
2695 y += (crtc_state->pipe_src_h - 1);
2696
2697 /* Finding the last pixel of the last line of the display
2698 data and adding to linear_offset*/
2699 linear_offset +=
2700 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2701 (crtc_state->pipe_src_w - 1) * cpp;
2702 }
2703
2704 intel_crtc->adjusted_x = x;
2705 intel_crtc->adjusted_y = y;
2706
2707 I915_WRITE(reg, dspcntr);
2708
2709 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2710 if (INTEL_INFO(dev)->gen >= 4) {
2711 I915_WRITE(DSPSURF(plane),
2712 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2713 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2714 I915_WRITE(DSPLINOFF(plane), linear_offset);
2715 } else
2716 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2717 POSTING_READ(reg);
2718 }
2719
2720 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2721 struct drm_crtc *crtc)
2722 {
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = to_i915(dev);
2725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 int plane = intel_crtc->plane;
2727
2728 I915_WRITE(DSPCNTR(plane), 0);
2729 if (INTEL_INFO(dev_priv)->gen >= 4)
2730 I915_WRITE(DSPSURF(plane), 0);
2731 else
2732 I915_WRITE(DSPADDR(plane), 0);
2733 POSTING_READ(DSPCNTR(plane));
2734 }
2735
2736 static void ironlake_update_primary_plane(struct drm_plane *primary,
2737 const struct intel_crtc_state *crtc_state,
2738 const struct intel_plane_state *plane_state)
2739 {
2740 struct drm_device *dev = primary->dev;
2741 struct drm_i915_private *dev_priv = to_i915(dev);
2742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2743 struct drm_framebuffer *fb = plane_state->base.fb;
2744 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2745 int plane = intel_crtc->plane;
2746 u32 linear_offset;
2747 u32 dspcntr;
2748 i915_reg_t reg = DSPCNTR(plane);
2749 unsigned int rotation = plane_state->base.rotation;
2750 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2751 int x = plane_state->src.x1 >> 16;
2752 int y = plane_state->src.y1 >> 16;
2753
2754 dspcntr = DISPPLANE_GAMMA_ENABLE;
2755 dspcntr |= DISPLAY_PLANE_ENABLE;
2756
2757 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2758 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2759
2760 switch (fb->pixel_format) {
2761 case DRM_FORMAT_C8:
2762 dspcntr |= DISPPLANE_8BPP;
2763 break;
2764 case DRM_FORMAT_RGB565:
2765 dspcntr |= DISPPLANE_BGRX565;
2766 break;
2767 case DRM_FORMAT_XRGB8888:
2768 dspcntr |= DISPPLANE_BGRX888;
2769 break;
2770 case DRM_FORMAT_XBGR8888:
2771 dspcntr |= DISPPLANE_RGBX888;
2772 break;
2773 case DRM_FORMAT_XRGB2101010:
2774 dspcntr |= DISPPLANE_BGRX101010;
2775 break;
2776 case DRM_FORMAT_XBGR2101010:
2777 dspcntr |= DISPPLANE_RGBX101010;
2778 break;
2779 default:
2780 BUG();
2781 }
2782
2783 if (obj->tiling_mode != I915_TILING_NONE)
2784 dspcntr |= DISPPLANE_TILED;
2785
2786 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2787 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2788
2789 linear_offset = y * fb->pitches[0] + x * cpp;
2790 intel_crtc->dspaddr_offset =
2791 intel_compute_tile_offset(&x, &y, fb, 0,
2792 fb->pitches[0], rotation);
2793 linear_offset -= intel_crtc->dspaddr_offset;
2794 if (rotation == BIT(DRM_ROTATE_180)) {
2795 dspcntr |= DISPPLANE_ROTATE_180;
2796
2797 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2798 x += (crtc_state->pipe_src_w - 1);
2799 y += (crtc_state->pipe_src_h - 1);
2800
2801 /* Finding the last pixel of the last line of the display
2802 data and adding to linear_offset*/
2803 linear_offset +=
2804 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2805 (crtc_state->pipe_src_w - 1) * cpp;
2806 }
2807 }
2808
2809 intel_crtc->adjusted_x = x;
2810 intel_crtc->adjusted_y = y;
2811
2812 I915_WRITE(reg, dspcntr);
2813
2814 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2815 I915_WRITE(DSPSURF(plane),
2816 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2817 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2818 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2819 } else {
2820 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2821 I915_WRITE(DSPLINOFF(plane), linear_offset);
2822 }
2823 POSTING_READ(reg);
2824 }
2825
2826 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2827 uint64_t fb_modifier, uint32_t pixel_format)
2828 {
2829 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2830 return 64;
2831 } else {
2832 int cpp = drm_format_plane_cpp(pixel_format, 0);
2833
2834 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2835 }
2836 }
2837
2838 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2839 struct drm_i915_gem_object *obj,
2840 unsigned int plane)
2841 {
2842 struct i915_ggtt_view view;
2843 struct i915_vma *vma;
2844 u64 offset;
2845
2846 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2847 intel_plane->base.state->rotation);
2848
2849 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2850 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2851 view.type))
2852 return -1;
2853
2854 offset = vma->node.start;
2855
2856 if (plane == 1) {
2857 offset += vma->ggtt_view.params.rotated.uv_start_page *
2858 PAGE_SIZE;
2859 }
2860
2861 WARN_ON(upper_32_bits(offset));
2862
2863 return lower_32_bits(offset);
2864 }
2865
2866 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2867 {
2868 struct drm_device *dev = intel_crtc->base.dev;
2869 struct drm_i915_private *dev_priv = to_i915(dev);
2870
2871 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2872 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2873 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2874 }
2875
2876 /*
2877 * This function detaches (aka. unbinds) unused scalers in hardware
2878 */
2879 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2880 {
2881 struct intel_crtc_scaler_state *scaler_state;
2882 int i;
2883
2884 scaler_state = &intel_crtc->config->scaler_state;
2885
2886 /* loop through and disable scalers that aren't in use */
2887 for (i = 0; i < intel_crtc->num_scalers; i++) {
2888 if (!scaler_state->scalers[i].in_use)
2889 skl_detach_scaler(intel_crtc, i);
2890 }
2891 }
2892
2893 u32 skl_plane_ctl_format(uint32_t pixel_format)
2894 {
2895 switch (pixel_format) {
2896 case DRM_FORMAT_C8:
2897 return PLANE_CTL_FORMAT_INDEXED;
2898 case DRM_FORMAT_RGB565:
2899 return PLANE_CTL_FORMAT_RGB_565;
2900 case DRM_FORMAT_XBGR8888:
2901 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2902 case DRM_FORMAT_XRGB8888:
2903 return PLANE_CTL_FORMAT_XRGB_8888;
2904 /*
2905 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2906 * to be already pre-multiplied. We need to add a knob (or a different
2907 * DRM_FORMAT) for user-space to configure that.
2908 */
2909 case DRM_FORMAT_ABGR8888:
2910 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2911 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2912 case DRM_FORMAT_ARGB8888:
2913 return PLANE_CTL_FORMAT_XRGB_8888 |
2914 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2915 case DRM_FORMAT_XRGB2101010:
2916 return PLANE_CTL_FORMAT_XRGB_2101010;
2917 case DRM_FORMAT_XBGR2101010:
2918 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2919 case DRM_FORMAT_YUYV:
2920 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2921 case DRM_FORMAT_YVYU:
2922 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2923 case DRM_FORMAT_UYVY:
2924 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2925 case DRM_FORMAT_VYUY:
2926 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2927 default:
2928 MISSING_CASE(pixel_format);
2929 }
2930
2931 return 0;
2932 }
2933
2934 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2935 {
2936 switch (fb_modifier) {
2937 case DRM_FORMAT_MOD_NONE:
2938 break;
2939 case I915_FORMAT_MOD_X_TILED:
2940 return PLANE_CTL_TILED_X;
2941 case I915_FORMAT_MOD_Y_TILED:
2942 return PLANE_CTL_TILED_Y;
2943 case I915_FORMAT_MOD_Yf_TILED:
2944 return PLANE_CTL_TILED_YF;
2945 default:
2946 MISSING_CASE(fb_modifier);
2947 }
2948
2949 return 0;
2950 }
2951
2952 u32 skl_plane_ctl_rotation(unsigned int rotation)
2953 {
2954 switch (rotation) {
2955 case BIT(DRM_ROTATE_0):
2956 break;
2957 /*
2958 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2959 * while i915 HW rotation is clockwise, thats why this swapping.
2960 */
2961 case BIT(DRM_ROTATE_90):
2962 return PLANE_CTL_ROTATE_270;
2963 case BIT(DRM_ROTATE_180):
2964 return PLANE_CTL_ROTATE_180;
2965 case BIT(DRM_ROTATE_270):
2966 return PLANE_CTL_ROTATE_90;
2967 default:
2968 MISSING_CASE(rotation);
2969 }
2970
2971 return 0;
2972 }
2973
2974 static void skylake_update_primary_plane(struct drm_plane *plane,
2975 const struct intel_crtc_state *crtc_state,
2976 const struct intel_plane_state *plane_state)
2977 {
2978 struct drm_device *dev = plane->dev;
2979 struct drm_i915_private *dev_priv = to_i915(dev);
2980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2981 struct drm_framebuffer *fb = plane_state->base.fb;
2982 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2983 int pipe = intel_crtc->pipe;
2984 u32 plane_ctl, stride_div, stride;
2985 u32 tile_height, plane_offset, plane_size;
2986 unsigned int rotation = plane_state->base.rotation;
2987 int x_offset, y_offset;
2988 u32 surf_addr;
2989 int scaler_id = plane_state->scaler_id;
2990 int src_x = plane_state->src.x1 >> 16;
2991 int src_y = plane_state->src.y1 >> 16;
2992 int src_w = drm_rect_width(&plane_state->src) >> 16;
2993 int src_h = drm_rect_height(&plane_state->src) >> 16;
2994 int dst_x = plane_state->dst.x1;
2995 int dst_y = plane_state->dst.y1;
2996 int dst_w = drm_rect_width(&plane_state->dst);
2997 int dst_h = drm_rect_height(&plane_state->dst);
2998
2999 plane_ctl = PLANE_CTL_ENABLE |
3000 PLANE_CTL_PIPE_GAMMA_ENABLE |
3001 PLANE_CTL_PIPE_CSC_ENABLE;
3002
3003 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3004 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3005 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3006 plane_ctl |= skl_plane_ctl_rotation(rotation);
3007
3008 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3009 fb->pixel_format);
3010 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3011
3012 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3013
3014 if (intel_rotation_90_or_270(rotation)) {
3015 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3016
3017 /* stride = Surface height in tiles */
3018 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3019 stride = DIV_ROUND_UP(fb->height, tile_height);
3020 x_offset = stride * tile_height - src_y - src_h;
3021 y_offset = src_x;
3022 plane_size = (src_w - 1) << 16 | (src_h - 1);
3023 } else {
3024 stride = fb->pitches[0] / stride_div;
3025 x_offset = src_x;
3026 y_offset = src_y;
3027 plane_size = (src_h - 1) << 16 | (src_w - 1);
3028 }
3029 plane_offset = y_offset << 16 | x_offset;
3030
3031 intel_crtc->adjusted_x = x_offset;
3032 intel_crtc->adjusted_y = y_offset;
3033
3034 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3035 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3036 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3037 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3038
3039 if (scaler_id >= 0) {
3040 uint32_t ps_ctrl = 0;
3041
3042 WARN_ON(!dst_w || !dst_h);
3043 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3044 crtc_state->scaler_state.scalers[scaler_id].mode;
3045 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3046 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3047 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3048 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3049 I915_WRITE(PLANE_POS(pipe, 0), 0);
3050 } else {
3051 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3052 }
3053
3054 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3055
3056 POSTING_READ(PLANE_SURF(pipe, 0));
3057 }
3058
3059 static void skylake_disable_primary_plane(struct drm_plane *primary,
3060 struct drm_crtc *crtc)
3061 {
3062 struct drm_device *dev = crtc->dev;
3063 struct drm_i915_private *dev_priv = to_i915(dev);
3064 int pipe = to_intel_crtc(crtc)->pipe;
3065
3066 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3067 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3068 POSTING_READ(PLANE_SURF(pipe, 0));
3069 }
3070
3071 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3072 static int
3073 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3074 int x, int y, enum mode_set_atomic state)
3075 {
3076 /* Support for kgdboc is disabled, this needs a major rework. */
3077 DRM_ERROR("legacy panic handler not supported any more.\n");
3078
3079 return -ENODEV;
3080 }
3081
3082 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3083 {
3084 struct intel_crtc *crtc;
3085
3086 for_each_intel_crtc(&dev_priv->drm, crtc)
3087 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3088 }
3089
3090 static void intel_update_primary_planes(struct drm_device *dev)
3091 {
3092 struct drm_crtc *crtc;
3093
3094 for_each_crtc(dev, crtc) {
3095 struct intel_plane *plane = to_intel_plane(crtc->primary);
3096 struct intel_plane_state *plane_state;
3097
3098 drm_modeset_lock_crtc(crtc, &plane->base);
3099 plane_state = to_intel_plane_state(plane->base.state);
3100
3101 if (plane_state->visible)
3102 plane->update_plane(&plane->base,
3103 to_intel_crtc_state(crtc->state),
3104 plane_state);
3105
3106 drm_modeset_unlock_crtc(crtc);
3107 }
3108 }
3109
3110 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3111 {
3112 /* no reset support for gen2 */
3113 if (IS_GEN2(dev_priv))
3114 return;
3115
3116 /* reset doesn't touch the display */
3117 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3118 return;
3119
3120 drm_modeset_lock_all(&dev_priv->drm);
3121 /*
3122 * Disabling the crtcs gracefully seems nicer. Also the
3123 * g33 docs say we should at least disable all the planes.
3124 */
3125 intel_display_suspend(&dev_priv->drm);
3126 }
3127
3128 void intel_finish_reset(struct drm_i915_private *dev_priv)
3129 {
3130 /*
3131 * Flips in the rings will be nuked by the reset,
3132 * so complete all pending flips so that user space
3133 * will get its events and not get stuck.
3134 */
3135 intel_complete_page_flips(dev_priv);
3136
3137 /* no reset support for gen2 */
3138 if (IS_GEN2(dev_priv))
3139 return;
3140
3141 /* reset doesn't touch the display */
3142 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3143 /*
3144 * Flips in the rings have been nuked by the reset,
3145 * so update the base address of all primary
3146 * planes to the the last fb to make sure we're
3147 * showing the correct fb after a reset.
3148 *
3149 * FIXME: Atomic will make this obsolete since we won't schedule
3150 * CS-based flips (which might get lost in gpu resets) any more.
3151 */
3152 intel_update_primary_planes(&dev_priv->drm);
3153 return;
3154 }
3155
3156 /*
3157 * The display has been reset as well,
3158 * so need a full re-initialization.
3159 */
3160 intel_runtime_pm_disable_interrupts(dev_priv);
3161 intel_runtime_pm_enable_interrupts(dev_priv);
3162
3163 intel_modeset_init_hw(&dev_priv->drm);
3164
3165 spin_lock_irq(&dev_priv->irq_lock);
3166 if (dev_priv->display.hpd_irq_setup)
3167 dev_priv->display.hpd_irq_setup(dev_priv);
3168 spin_unlock_irq(&dev_priv->irq_lock);
3169
3170 intel_display_resume(&dev_priv->drm);
3171
3172 intel_hpd_init(dev_priv);
3173
3174 drm_modeset_unlock_all(&dev_priv->drm);
3175 }
3176
3177 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3178 {
3179 struct drm_device *dev = crtc->dev;
3180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181 unsigned reset_counter;
3182 bool pending;
3183
3184 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3185 if (intel_crtc->reset_counter != reset_counter)
3186 return false;
3187
3188 spin_lock_irq(&dev->event_lock);
3189 pending = to_intel_crtc(crtc)->flip_work != NULL;
3190 spin_unlock_irq(&dev->event_lock);
3191
3192 return pending;
3193 }
3194
3195 static void intel_update_pipe_config(struct intel_crtc *crtc,
3196 struct intel_crtc_state *old_crtc_state)
3197 {
3198 struct drm_device *dev = crtc->base.dev;
3199 struct drm_i915_private *dev_priv = to_i915(dev);
3200 struct intel_crtc_state *pipe_config =
3201 to_intel_crtc_state(crtc->base.state);
3202
3203 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3204 crtc->base.mode = crtc->base.state->mode;
3205
3206 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3207 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3208 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3209
3210 /*
3211 * Update pipe size and adjust fitter if needed: the reason for this is
3212 * that in compute_mode_changes we check the native mode (not the pfit
3213 * mode) to see if we can flip rather than do a full mode set. In the
3214 * fastboot case, we'll flip, but if we don't update the pipesrc and
3215 * pfit state, we'll end up with a big fb scanned out into the wrong
3216 * sized surface.
3217 */
3218
3219 I915_WRITE(PIPESRC(crtc->pipe),
3220 ((pipe_config->pipe_src_w - 1) << 16) |
3221 (pipe_config->pipe_src_h - 1));
3222
3223 /* on skylake this is done by detaching scalers */
3224 if (INTEL_INFO(dev)->gen >= 9) {
3225 skl_detach_scalers(crtc);
3226
3227 if (pipe_config->pch_pfit.enabled)
3228 skylake_pfit_enable(crtc);
3229 } else if (HAS_PCH_SPLIT(dev)) {
3230 if (pipe_config->pch_pfit.enabled)
3231 ironlake_pfit_enable(crtc);
3232 else if (old_crtc_state->pch_pfit.enabled)
3233 ironlake_pfit_disable(crtc, true);
3234 }
3235 }
3236
3237 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3238 {
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = to_i915(dev);
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 int pipe = intel_crtc->pipe;
3243 i915_reg_t reg;
3244 u32 temp;
3245
3246 /* enable normal train */
3247 reg = FDI_TX_CTL(pipe);
3248 temp = I915_READ(reg);
3249 if (IS_IVYBRIDGE(dev)) {
3250 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3251 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3252 } else {
3253 temp &= ~FDI_LINK_TRAIN_NONE;
3254 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3255 }
3256 I915_WRITE(reg, temp);
3257
3258 reg = FDI_RX_CTL(pipe);
3259 temp = I915_READ(reg);
3260 if (HAS_PCH_CPT(dev)) {
3261 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3262 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3263 } else {
3264 temp &= ~FDI_LINK_TRAIN_NONE;
3265 temp |= FDI_LINK_TRAIN_NONE;
3266 }
3267 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3268
3269 /* wait one idle pattern time */
3270 POSTING_READ(reg);
3271 udelay(1000);
3272
3273 /* IVB wants error correction enabled */
3274 if (IS_IVYBRIDGE(dev))
3275 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3276 FDI_FE_ERRC_ENABLE);
3277 }
3278
3279 /* The FDI link training functions for ILK/Ibexpeak. */
3280 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3281 {
3282 struct drm_device *dev = crtc->dev;
3283 struct drm_i915_private *dev_priv = to_i915(dev);
3284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285 int pipe = intel_crtc->pipe;
3286 i915_reg_t reg;
3287 u32 temp, tries;
3288
3289 /* FDI needs bits from pipe first */
3290 assert_pipe_enabled(dev_priv, pipe);
3291
3292 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3293 for train result */
3294 reg = FDI_RX_IMR(pipe);
3295 temp = I915_READ(reg);
3296 temp &= ~FDI_RX_SYMBOL_LOCK;
3297 temp &= ~FDI_RX_BIT_LOCK;
3298 I915_WRITE(reg, temp);
3299 I915_READ(reg);
3300 udelay(150);
3301
3302 /* enable CPU FDI TX and PCH FDI RX */
3303 reg = FDI_TX_CTL(pipe);
3304 temp = I915_READ(reg);
3305 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3307 temp &= ~FDI_LINK_TRAIN_NONE;
3308 temp |= FDI_LINK_TRAIN_PATTERN_1;
3309 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3310
3311 reg = FDI_RX_CTL(pipe);
3312 temp = I915_READ(reg);
3313 temp &= ~FDI_LINK_TRAIN_NONE;
3314 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3316
3317 POSTING_READ(reg);
3318 udelay(150);
3319
3320 /* Ironlake workaround, enable clock pointer after FDI enable*/
3321 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3322 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3323 FDI_RX_PHASE_SYNC_POINTER_EN);
3324
3325 reg = FDI_RX_IIR(pipe);
3326 for (tries = 0; tries < 5; tries++) {
3327 temp = I915_READ(reg);
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if ((temp & FDI_RX_BIT_LOCK)) {
3331 DRM_DEBUG_KMS("FDI train 1 done.\n");
3332 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333 break;
3334 }
3335 }
3336 if (tries == 5)
3337 DRM_ERROR("FDI train 1 fail!\n");
3338
3339 /* Train 2 */
3340 reg = FDI_TX_CTL(pipe);
3341 temp = I915_READ(reg);
3342 temp &= ~FDI_LINK_TRAIN_NONE;
3343 temp |= FDI_LINK_TRAIN_PATTERN_2;
3344 I915_WRITE(reg, temp);
3345
3346 reg = FDI_RX_CTL(pipe);
3347 temp = I915_READ(reg);
3348 temp &= ~FDI_LINK_TRAIN_NONE;
3349 temp |= FDI_LINK_TRAIN_PATTERN_2;
3350 I915_WRITE(reg, temp);
3351
3352 POSTING_READ(reg);
3353 udelay(150);
3354
3355 reg = FDI_RX_IIR(pipe);
3356 for (tries = 0; tries < 5; tries++) {
3357 temp = I915_READ(reg);
3358 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3359
3360 if (temp & FDI_RX_SYMBOL_LOCK) {
3361 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3362 DRM_DEBUG_KMS("FDI train 2 done.\n");
3363 break;
3364 }
3365 }
3366 if (tries == 5)
3367 DRM_ERROR("FDI train 2 fail!\n");
3368
3369 DRM_DEBUG_KMS("FDI train done\n");
3370
3371 }
3372
3373 static const int snb_b_fdi_train_param[] = {
3374 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3375 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3376 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3377 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3378 };
3379
3380 /* The FDI link training functions for SNB/Cougarpoint. */
3381 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3382 {
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = to_i915(dev);
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 int pipe = intel_crtc->pipe;
3387 i915_reg_t reg;
3388 u32 temp, i, retry;
3389
3390 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3391 for train result */
3392 reg = FDI_RX_IMR(pipe);
3393 temp = I915_READ(reg);
3394 temp &= ~FDI_RX_SYMBOL_LOCK;
3395 temp &= ~FDI_RX_BIT_LOCK;
3396 I915_WRITE(reg, temp);
3397
3398 POSTING_READ(reg);
3399 udelay(150);
3400
3401 /* enable CPU FDI TX and PCH FDI RX */
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
3404 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406 temp &= ~FDI_LINK_TRAIN_NONE;
3407 temp |= FDI_LINK_TRAIN_PATTERN_1;
3408 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3409 /* SNB-B */
3410 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3411 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3412
3413 I915_WRITE(FDI_RX_MISC(pipe),
3414 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3415
3416 reg = FDI_RX_CTL(pipe);
3417 temp = I915_READ(reg);
3418 if (HAS_PCH_CPT(dev)) {
3419 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3421 } else {
3422 temp &= ~FDI_LINK_TRAIN_NONE;
3423 temp |= FDI_LINK_TRAIN_PATTERN_1;
3424 }
3425 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427 POSTING_READ(reg);
3428 udelay(150);
3429
3430 for (i = 0; i < 4; i++) {
3431 reg = FDI_TX_CTL(pipe);
3432 temp = I915_READ(reg);
3433 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3434 temp |= snb_b_fdi_train_param[i];
3435 I915_WRITE(reg, temp);
3436
3437 POSTING_READ(reg);
3438 udelay(500);
3439
3440 for (retry = 0; retry < 5; retry++) {
3441 reg = FDI_RX_IIR(pipe);
3442 temp = I915_READ(reg);
3443 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3444 if (temp & FDI_RX_BIT_LOCK) {
3445 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446 DRM_DEBUG_KMS("FDI train 1 done.\n");
3447 break;
3448 }
3449 udelay(50);
3450 }
3451 if (retry < 5)
3452 break;
3453 }
3454 if (i == 4)
3455 DRM_ERROR("FDI train 1 fail!\n");
3456
3457 /* Train 2 */
3458 reg = FDI_TX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_2;
3462 if (IS_GEN6(dev)) {
3463 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3464 /* SNB-B */
3465 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3466 }
3467 I915_WRITE(reg, temp);
3468
3469 reg = FDI_RX_CTL(pipe);
3470 temp = I915_READ(reg);
3471 if (HAS_PCH_CPT(dev)) {
3472 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3473 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3474 } else {
3475 temp &= ~FDI_LINK_TRAIN_NONE;
3476 temp |= FDI_LINK_TRAIN_PATTERN_2;
3477 }
3478 I915_WRITE(reg, temp);
3479
3480 POSTING_READ(reg);
3481 udelay(150);
3482
3483 for (i = 0; i < 4; i++) {
3484 reg = FDI_TX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487 temp |= snb_b_fdi_train_param[i];
3488 I915_WRITE(reg, temp);
3489
3490 POSTING_READ(reg);
3491 udelay(500);
3492
3493 for (retry = 0; retry < 5; retry++) {
3494 reg = FDI_RX_IIR(pipe);
3495 temp = I915_READ(reg);
3496 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497 if (temp & FDI_RX_SYMBOL_LOCK) {
3498 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3499 DRM_DEBUG_KMS("FDI train 2 done.\n");
3500 break;
3501 }
3502 udelay(50);
3503 }
3504 if (retry < 5)
3505 break;
3506 }
3507 if (i == 4)
3508 DRM_ERROR("FDI train 2 fail!\n");
3509
3510 DRM_DEBUG_KMS("FDI train done.\n");
3511 }
3512
3513 /* Manual link training for Ivy Bridge A0 parts */
3514 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3515 {
3516 struct drm_device *dev = crtc->dev;
3517 struct drm_i915_private *dev_priv = to_i915(dev);
3518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3519 int pipe = intel_crtc->pipe;
3520 i915_reg_t reg;
3521 u32 temp, i, j;
3522
3523 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3524 for train result */
3525 reg = FDI_RX_IMR(pipe);
3526 temp = I915_READ(reg);
3527 temp &= ~FDI_RX_SYMBOL_LOCK;
3528 temp &= ~FDI_RX_BIT_LOCK;
3529 I915_WRITE(reg, temp);
3530
3531 POSTING_READ(reg);
3532 udelay(150);
3533
3534 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3535 I915_READ(FDI_RX_IIR(pipe)));
3536
3537 /* Try each vswing and preemphasis setting twice before moving on */
3538 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3539 /* disable first in case we need to retry */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3543 temp &= ~FDI_TX_ENABLE;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 temp &= ~FDI_LINK_TRAIN_AUTO;
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp &= ~FDI_RX_ENABLE;
3551 I915_WRITE(reg, temp);
3552
3553 /* enable CPU FDI TX and PCH FDI RX */
3554 reg = FDI_TX_CTL(pipe);
3555 temp = I915_READ(reg);
3556 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3557 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3558 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 temp |= snb_b_fdi_train_param[j/2];
3561 temp |= FDI_COMPOSITE_SYNC;
3562 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3563
3564 I915_WRITE(FDI_RX_MISC(pipe),
3565 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3566
3567 reg = FDI_RX_CTL(pipe);
3568 temp = I915_READ(reg);
3569 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3570 temp |= FDI_COMPOSITE_SYNC;
3571 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3572
3573 POSTING_READ(reg);
3574 udelay(1); /* should be 0.5us */
3575
3576 for (i = 0; i < 4; i++) {
3577 reg = FDI_RX_IIR(pipe);
3578 temp = I915_READ(reg);
3579 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3580
3581 if (temp & FDI_RX_BIT_LOCK ||
3582 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3583 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3584 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3585 i);
3586 break;
3587 }
3588 udelay(1); /* should be 0.5us */
3589 }
3590 if (i == 4) {
3591 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3592 continue;
3593 }
3594
3595 /* Train 2 */
3596 reg = FDI_TX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3599 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3600 I915_WRITE(reg, temp);
3601
3602 reg = FDI_RX_CTL(pipe);
3603 temp = I915_READ(reg);
3604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3605 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3606 I915_WRITE(reg, temp);
3607
3608 POSTING_READ(reg);
3609 udelay(2); /* should be 1.5us */
3610
3611 for (i = 0; i < 4; i++) {
3612 reg = FDI_RX_IIR(pipe);
3613 temp = I915_READ(reg);
3614 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3615
3616 if (temp & FDI_RX_SYMBOL_LOCK ||
3617 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3618 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3619 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3620 i);
3621 goto train_done;
3622 }
3623 udelay(2); /* should be 1.5us */
3624 }
3625 if (i == 4)
3626 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3627 }
3628
3629 train_done:
3630 DRM_DEBUG_KMS("FDI train done.\n");
3631 }
3632
3633 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3634 {
3635 struct drm_device *dev = intel_crtc->base.dev;
3636 struct drm_i915_private *dev_priv = to_i915(dev);
3637 int pipe = intel_crtc->pipe;
3638 i915_reg_t reg;
3639 u32 temp;
3640
3641 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3642 reg = FDI_RX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3645 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3646 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3647 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3648
3649 POSTING_READ(reg);
3650 udelay(200);
3651
3652 /* Switch from Rawclk to PCDclk */
3653 temp = I915_READ(reg);
3654 I915_WRITE(reg, temp | FDI_PCDCLK);
3655
3656 POSTING_READ(reg);
3657 udelay(200);
3658
3659 /* Enable CPU FDI TX PLL, always on for Ironlake */
3660 reg = FDI_TX_CTL(pipe);
3661 temp = I915_READ(reg);
3662 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3663 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3664
3665 POSTING_READ(reg);
3666 udelay(100);
3667 }
3668 }
3669
3670 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3671 {
3672 struct drm_device *dev = intel_crtc->base.dev;
3673 struct drm_i915_private *dev_priv = to_i915(dev);
3674 int pipe = intel_crtc->pipe;
3675 i915_reg_t reg;
3676 u32 temp;
3677
3678 /* Switch from PCDclk to Rawclk */
3679 reg = FDI_RX_CTL(pipe);
3680 temp = I915_READ(reg);
3681 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3682
3683 /* Disable CPU FDI TX PLL */
3684 reg = FDI_TX_CTL(pipe);
3685 temp = I915_READ(reg);
3686 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3687
3688 POSTING_READ(reg);
3689 udelay(100);
3690
3691 reg = FDI_RX_CTL(pipe);
3692 temp = I915_READ(reg);
3693 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3694
3695 /* Wait for the clocks to turn off. */
3696 POSTING_READ(reg);
3697 udelay(100);
3698 }
3699
3700 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3701 {
3702 struct drm_device *dev = crtc->dev;
3703 struct drm_i915_private *dev_priv = to_i915(dev);
3704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705 int pipe = intel_crtc->pipe;
3706 i915_reg_t reg;
3707 u32 temp;
3708
3709 /* disable CPU FDI tx and PCH FDI rx */
3710 reg = FDI_TX_CTL(pipe);
3711 temp = I915_READ(reg);
3712 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3713 POSTING_READ(reg);
3714
3715 reg = FDI_RX_CTL(pipe);
3716 temp = I915_READ(reg);
3717 temp &= ~(0x7 << 16);
3718 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3719 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3720
3721 POSTING_READ(reg);
3722 udelay(100);
3723
3724 /* Ironlake workaround, disable clock pointer after downing FDI */
3725 if (HAS_PCH_IBX(dev))
3726 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3727
3728 /* still set train pattern 1 */
3729 reg = FDI_TX_CTL(pipe);
3730 temp = I915_READ(reg);
3731 temp &= ~FDI_LINK_TRAIN_NONE;
3732 temp |= FDI_LINK_TRAIN_PATTERN_1;
3733 I915_WRITE(reg, temp);
3734
3735 reg = FDI_RX_CTL(pipe);
3736 temp = I915_READ(reg);
3737 if (HAS_PCH_CPT(dev)) {
3738 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3739 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3740 } else {
3741 temp &= ~FDI_LINK_TRAIN_NONE;
3742 temp |= FDI_LINK_TRAIN_PATTERN_1;
3743 }
3744 /* BPC in FDI rx is consistent with that in PIPECONF */
3745 temp &= ~(0x07 << 16);
3746 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3747 I915_WRITE(reg, temp);
3748
3749 POSTING_READ(reg);
3750 udelay(100);
3751 }
3752
3753 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3754 {
3755 struct intel_crtc *crtc;
3756
3757 /* Note that we don't need to be called with mode_config.lock here
3758 * as our list of CRTC objects is static for the lifetime of the
3759 * device and so cannot disappear as we iterate. Similarly, we can
3760 * happily treat the predicates as racy, atomic checks as userspace
3761 * cannot claim and pin a new fb without at least acquring the
3762 * struct_mutex and so serialising with us.
3763 */
3764 for_each_intel_crtc(dev, crtc) {
3765 if (atomic_read(&crtc->unpin_work_count) == 0)
3766 continue;
3767
3768 if (crtc->flip_work)
3769 intel_wait_for_vblank(dev, crtc->pipe);
3770
3771 return true;
3772 }
3773
3774 return false;
3775 }
3776
3777 static void page_flip_completed(struct intel_crtc *intel_crtc)
3778 {
3779 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3780 struct intel_flip_work *work = intel_crtc->flip_work;
3781
3782 intel_crtc->flip_work = NULL;
3783
3784 if (work->event)
3785 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3786
3787 drm_crtc_vblank_put(&intel_crtc->base);
3788
3789 wake_up_all(&dev_priv->pending_flip_queue);
3790 queue_work(dev_priv->wq, &work->unpin_work);
3791
3792 trace_i915_flip_complete(intel_crtc->plane,
3793 work->pending_flip_obj);
3794 }
3795
3796 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3797 {
3798 struct drm_device *dev = crtc->dev;
3799 struct drm_i915_private *dev_priv = to_i915(dev);
3800 long ret;
3801
3802 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3803
3804 ret = wait_event_interruptible_timeout(
3805 dev_priv->pending_flip_queue,
3806 !intel_crtc_has_pending_flip(crtc),
3807 60*HZ);
3808
3809 if (ret < 0)
3810 return ret;
3811
3812 if (ret == 0) {
3813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814 struct intel_flip_work *work;
3815
3816 spin_lock_irq(&dev->event_lock);
3817 work = intel_crtc->flip_work;
3818 if (work && !is_mmio_work(work)) {
3819 WARN_ONCE(1, "Removing stuck page flip\n");
3820 page_flip_completed(intel_crtc);
3821 }
3822 spin_unlock_irq(&dev->event_lock);
3823 }
3824
3825 return 0;
3826 }
3827
3828 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3829 {
3830 u32 temp;
3831
3832 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834 mutex_lock(&dev_priv->sb_lock);
3835
3836 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3837 temp |= SBI_SSCCTL_DISABLE;
3838 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3839
3840 mutex_unlock(&dev_priv->sb_lock);
3841 }
3842
3843 /* Program iCLKIP clock to the desired frequency */
3844 static void lpt_program_iclkip(struct drm_crtc *crtc)
3845 {
3846 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3847 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3848 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3849 u32 temp;
3850
3851 lpt_disable_iclkip(dev_priv);
3852
3853 /* The iCLK virtual clock root frequency is in MHz,
3854 * but the adjusted_mode->crtc_clock in in KHz. To get the
3855 * divisors, it is necessary to divide one by another, so we
3856 * convert the virtual clock precision to KHz here for higher
3857 * precision.
3858 */
3859 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3860 u32 iclk_virtual_root_freq = 172800 * 1000;
3861 u32 iclk_pi_range = 64;
3862 u32 desired_divisor;
3863
3864 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3865 clock << auxdiv);
3866 divsel = (desired_divisor / iclk_pi_range) - 2;
3867 phaseinc = desired_divisor % iclk_pi_range;
3868
3869 /*
3870 * Near 20MHz is a corner case which is
3871 * out of range for the 7-bit divisor
3872 */
3873 if (divsel <= 0x7f)
3874 break;
3875 }
3876
3877 /* This should not happen with any sane values */
3878 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3879 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3880 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3881 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3882
3883 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3884 clock,
3885 auxdiv,
3886 divsel,
3887 phasedir,
3888 phaseinc);
3889
3890 mutex_lock(&dev_priv->sb_lock);
3891
3892 /* Program SSCDIVINTPHASE6 */
3893 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3894 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3895 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3896 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3897 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3898 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3899 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3900 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3901
3902 /* Program SSCAUXDIV */
3903 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3904 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3905 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3906 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3907
3908 /* Enable modulator and associated divider */
3909 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3910 temp &= ~SBI_SSCCTL_DISABLE;
3911 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3912
3913 mutex_unlock(&dev_priv->sb_lock);
3914
3915 /* Wait for initialization time */
3916 udelay(24);
3917
3918 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3919 }
3920
3921 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3922 {
3923 u32 divsel, phaseinc, auxdiv;
3924 u32 iclk_virtual_root_freq = 172800 * 1000;
3925 u32 iclk_pi_range = 64;
3926 u32 desired_divisor;
3927 u32 temp;
3928
3929 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3930 return 0;
3931
3932 mutex_lock(&dev_priv->sb_lock);
3933
3934 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3935 if (temp & SBI_SSCCTL_DISABLE) {
3936 mutex_unlock(&dev_priv->sb_lock);
3937 return 0;
3938 }
3939
3940 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3941 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3942 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3943 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3944 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3945
3946 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3947 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3948 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3949
3950 mutex_unlock(&dev_priv->sb_lock);
3951
3952 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3953
3954 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3955 desired_divisor << auxdiv);
3956 }
3957
3958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3959 enum pipe pch_transcoder)
3960 {
3961 struct drm_device *dev = crtc->base.dev;
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3964
3965 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3966 I915_READ(HTOTAL(cpu_transcoder)));
3967 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3968 I915_READ(HBLANK(cpu_transcoder)));
3969 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3970 I915_READ(HSYNC(cpu_transcoder)));
3971
3972 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3973 I915_READ(VTOTAL(cpu_transcoder)));
3974 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3975 I915_READ(VBLANK(cpu_transcoder)));
3976 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3977 I915_READ(VSYNC(cpu_transcoder)));
3978 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3979 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3980 }
3981
3982 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3983 {
3984 struct drm_i915_private *dev_priv = to_i915(dev);
3985 uint32_t temp;
3986
3987 temp = I915_READ(SOUTH_CHICKEN1);
3988 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3989 return;
3990
3991 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3992 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3993
3994 temp &= ~FDI_BC_BIFURCATION_SELECT;
3995 if (enable)
3996 temp |= FDI_BC_BIFURCATION_SELECT;
3997
3998 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3999 I915_WRITE(SOUTH_CHICKEN1, temp);
4000 POSTING_READ(SOUTH_CHICKEN1);
4001 }
4002
4003 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4004 {
4005 struct drm_device *dev = intel_crtc->base.dev;
4006
4007 switch (intel_crtc->pipe) {
4008 case PIPE_A:
4009 break;
4010 case PIPE_B:
4011 if (intel_crtc->config->fdi_lanes > 2)
4012 cpt_set_fdi_bc_bifurcation(dev, false);
4013 else
4014 cpt_set_fdi_bc_bifurcation(dev, true);
4015
4016 break;
4017 case PIPE_C:
4018 cpt_set_fdi_bc_bifurcation(dev, true);
4019
4020 break;
4021 default:
4022 BUG();
4023 }
4024 }
4025
4026 /* Return which DP Port should be selected for Transcoder DP control */
4027 static enum port
4028 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4029 {
4030 struct drm_device *dev = crtc->dev;
4031 struct intel_encoder *encoder;
4032
4033 for_each_encoder_on_crtc(dev, crtc, encoder) {
4034 if (encoder->type == INTEL_OUTPUT_DP ||
4035 encoder->type == INTEL_OUTPUT_EDP)
4036 return enc_to_dig_port(&encoder->base)->port;
4037 }
4038
4039 return -1;
4040 }
4041
4042 /*
4043 * Enable PCH resources required for PCH ports:
4044 * - PCH PLLs
4045 * - FDI training & RX/TX
4046 * - update transcoder timings
4047 * - DP transcoding bits
4048 * - transcoder
4049 */
4050 static void ironlake_pch_enable(struct drm_crtc *crtc)
4051 {
4052 struct drm_device *dev = crtc->dev;
4053 struct drm_i915_private *dev_priv = to_i915(dev);
4054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055 int pipe = intel_crtc->pipe;
4056 u32 temp;
4057
4058 assert_pch_transcoder_disabled(dev_priv, pipe);
4059
4060 if (IS_IVYBRIDGE(dev))
4061 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4062
4063 /* Write the TU size bits before fdi link training, so that error
4064 * detection works. */
4065 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4066 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4067
4068 /* For PCH output, training FDI link */
4069 dev_priv->display.fdi_link_train(crtc);
4070
4071 /* We need to program the right clock selection before writing the pixel
4072 * mutliplier into the DPLL. */
4073 if (HAS_PCH_CPT(dev)) {
4074 u32 sel;
4075
4076 temp = I915_READ(PCH_DPLL_SEL);
4077 temp |= TRANS_DPLL_ENABLE(pipe);
4078 sel = TRANS_DPLLB_SEL(pipe);
4079 if (intel_crtc->config->shared_dpll ==
4080 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4081 temp |= sel;
4082 else
4083 temp &= ~sel;
4084 I915_WRITE(PCH_DPLL_SEL, temp);
4085 }
4086
4087 /* XXX: pch pll's can be enabled any time before we enable the PCH
4088 * transcoder, and we actually should do this to not upset any PCH
4089 * transcoder that already use the clock when we share it.
4090 *
4091 * Note that enable_shared_dpll tries to do the right thing, but
4092 * get_shared_dpll unconditionally resets the pll - we need that to have
4093 * the right LVDS enable sequence. */
4094 intel_enable_shared_dpll(intel_crtc);
4095
4096 /* set transcoder timing, panel must allow it */
4097 assert_panel_unlocked(dev_priv, pipe);
4098 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4099
4100 intel_fdi_normal_train(crtc);
4101
4102 /* For PCH DP, enable TRANS_DP_CTL */
4103 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4104 const struct drm_display_mode *adjusted_mode =
4105 &intel_crtc->config->base.adjusted_mode;
4106 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4107 i915_reg_t reg = TRANS_DP_CTL(pipe);
4108 temp = I915_READ(reg);
4109 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4110 TRANS_DP_SYNC_MASK |
4111 TRANS_DP_BPC_MASK);
4112 temp |= TRANS_DP_OUTPUT_ENABLE;
4113 temp |= bpc << 9; /* same format but at 11:9 */
4114
4115 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4116 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4117 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4118 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4119
4120 switch (intel_trans_dp_port_sel(crtc)) {
4121 case PORT_B:
4122 temp |= TRANS_DP_PORT_SEL_B;
4123 break;
4124 case PORT_C:
4125 temp |= TRANS_DP_PORT_SEL_C;
4126 break;
4127 case PORT_D:
4128 temp |= TRANS_DP_PORT_SEL_D;
4129 break;
4130 default:
4131 BUG();
4132 }
4133
4134 I915_WRITE(reg, temp);
4135 }
4136
4137 ironlake_enable_pch_transcoder(dev_priv, pipe);
4138 }
4139
4140 static void lpt_pch_enable(struct drm_crtc *crtc)
4141 {
4142 struct drm_device *dev = crtc->dev;
4143 struct drm_i915_private *dev_priv = to_i915(dev);
4144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4146
4147 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4148
4149 lpt_program_iclkip(crtc);
4150
4151 /* Set transcoder timing. */
4152 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4153
4154 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4155 }
4156
4157 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4158 {
4159 struct drm_i915_private *dev_priv = to_i915(dev);
4160 i915_reg_t dslreg = PIPEDSL(pipe);
4161 u32 temp;
4162
4163 temp = I915_READ(dslreg);
4164 udelay(500);
4165 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4166 if (wait_for(I915_READ(dslreg) != temp, 5))
4167 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4168 }
4169 }
4170
4171 static int
4172 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4173 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4174 int src_w, int src_h, int dst_w, int dst_h)
4175 {
4176 struct intel_crtc_scaler_state *scaler_state =
4177 &crtc_state->scaler_state;
4178 struct intel_crtc *intel_crtc =
4179 to_intel_crtc(crtc_state->base.crtc);
4180 int need_scaling;
4181
4182 need_scaling = intel_rotation_90_or_270(rotation) ?
4183 (src_h != dst_w || src_w != dst_h):
4184 (src_w != dst_w || src_h != dst_h);
4185
4186 /*
4187 * if plane is being disabled or scaler is no more required or force detach
4188 * - free scaler binded to this plane/crtc
4189 * - in order to do this, update crtc->scaler_usage
4190 *
4191 * Here scaler state in crtc_state is set free so that
4192 * scaler can be assigned to other user. Actual register
4193 * update to free the scaler is done in plane/panel-fit programming.
4194 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4195 */
4196 if (force_detach || !need_scaling) {
4197 if (*scaler_id >= 0) {
4198 scaler_state->scaler_users &= ~(1 << scaler_user);
4199 scaler_state->scalers[*scaler_id].in_use = 0;
4200
4201 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4202 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4203 intel_crtc->pipe, scaler_user, *scaler_id,
4204 scaler_state->scaler_users);
4205 *scaler_id = -1;
4206 }
4207 return 0;
4208 }
4209
4210 /* range checks */
4211 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4212 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4213
4214 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4215 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4216 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4217 "size is out of scaler range\n",
4218 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4219 return -EINVAL;
4220 }
4221
4222 /* mark this plane as a scaler user in crtc_state */
4223 scaler_state->scaler_users |= (1 << scaler_user);
4224 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4225 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4226 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4227 scaler_state->scaler_users);
4228
4229 return 0;
4230 }
4231
4232 /**
4233 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4234 *
4235 * @state: crtc's scaler state
4236 *
4237 * Return
4238 * 0 - scaler_usage updated successfully
4239 * error - requested scaling cannot be supported or other error condition
4240 */
4241 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4242 {
4243 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4244 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4245
4246 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4247 intel_crtc->base.base.id, intel_crtc->base.name,
4248 intel_crtc->pipe, SKL_CRTC_INDEX);
4249
4250 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4251 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4252 state->pipe_src_w, state->pipe_src_h,
4253 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4254 }
4255
4256 /**
4257 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4258 *
4259 * @state: crtc's scaler state
4260 * @plane_state: atomic plane state to update
4261 *
4262 * Return
4263 * 0 - scaler_usage updated successfully
4264 * error - requested scaling cannot be supported or other error condition
4265 */
4266 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4267 struct intel_plane_state *plane_state)
4268 {
4269
4270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4271 struct intel_plane *intel_plane =
4272 to_intel_plane(plane_state->base.plane);
4273 struct drm_framebuffer *fb = plane_state->base.fb;
4274 int ret;
4275
4276 bool force_detach = !fb || !plane_state->visible;
4277
4278 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4279 intel_plane->base.base.id, intel_plane->base.name,
4280 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4281
4282 ret = skl_update_scaler(crtc_state, force_detach,
4283 drm_plane_index(&intel_plane->base),
4284 &plane_state->scaler_id,
4285 plane_state->base.rotation,
4286 drm_rect_width(&plane_state->src) >> 16,
4287 drm_rect_height(&plane_state->src) >> 16,
4288 drm_rect_width(&plane_state->dst),
4289 drm_rect_height(&plane_state->dst));
4290
4291 if (ret || plane_state->scaler_id < 0)
4292 return ret;
4293
4294 /* check colorkey */
4295 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4296 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4297 intel_plane->base.base.id,
4298 intel_plane->base.name);
4299 return -EINVAL;
4300 }
4301
4302 /* Check src format */
4303 switch (fb->pixel_format) {
4304 case DRM_FORMAT_RGB565:
4305 case DRM_FORMAT_XBGR8888:
4306 case DRM_FORMAT_XRGB8888:
4307 case DRM_FORMAT_ABGR8888:
4308 case DRM_FORMAT_ARGB8888:
4309 case DRM_FORMAT_XRGB2101010:
4310 case DRM_FORMAT_XBGR2101010:
4311 case DRM_FORMAT_YUYV:
4312 case DRM_FORMAT_YVYU:
4313 case DRM_FORMAT_UYVY:
4314 case DRM_FORMAT_VYUY:
4315 break;
4316 default:
4317 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4318 intel_plane->base.base.id, intel_plane->base.name,
4319 fb->base.id, fb->pixel_format);
4320 return -EINVAL;
4321 }
4322
4323 return 0;
4324 }
4325
4326 static void skylake_scaler_disable(struct intel_crtc *crtc)
4327 {
4328 int i;
4329
4330 for (i = 0; i < crtc->num_scalers; i++)
4331 skl_detach_scaler(crtc, i);
4332 }
4333
4334 static void skylake_pfit_enable(struct intel_crtc *crtc)
4335 {
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = to_i915(dev);
4338 int pipe = crtc->pipe;
4339 struct intel_crtc_scaler_state *scaler_state =
4340 &crtc->config->scaler_state;
4341
4342 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4343
4344 if (crtc->config->pch_pfit.enabled) {
4345 int id;
4346
4347 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4348 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4349 return;
4350 }
4351
4352 id = scaler_state->scaler_id;
4353 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4354 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4355 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4356 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4357
4358 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4359 }
4360 }
4361
4362 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4363 {
4364 struct drm_device *dev = crtc->base.dev;
4365 struct drm_i915_private *dev_priv = to_i915(dev);
4366 int pipe = crtc->pipe;
4367
4368 if (crtc->config->pch_pfit.enabled) {
4369 /* Force use of hard-coded filter coefficients
4370 * as some pre-programmed values are broken,
4371 * e.g. x201.
4372 */
4373 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4374 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4375 PF_PIPE_SEL_IVB(pipe));
4376 else
4377 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4378 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4379 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4380 }
4381 }
4382
4383 void hsw_enable_ips(struct intel_crtc *crtc)
4384 {
4385 struct drm_device *dev = crtc->base.dev;
4386 struct drm_i915_private *dev_priv = to_i915(dev);
4387
4388 if (!crtc->config->ips_enabled)
4389 return;
4390
4391 /*
4392 * We can only enable IPS after we enable a plane and wait for a vblank
4393 * This function is called from post_plane_update, which is run after
4394 * a vblank wait.
4395 */
4396
4397 assert_plane_enabled(dev_priv, crtc->plane);
4398 if (IS_BROADWELL(dev)) {
4399 mutex_lock(&dev_priv->rps.hw_lock);
4400 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4401 mutex_unlock(&dev_priv->rps.hw_lock);
4402 /* Quoting Art Runyan: "its not safe to expect any particular
4403 * value in IPS_CTL bit 31 after enabling IPS through the
4404 * mailbox." Moreover, the mailbox may return a bogus state,
4405 * so we need to just enable it and continue on.
4406 */
4407 } else {
4408 I915_WRITE(IPS_CTL, IPS_ENABLE);
4409 /* The bit only becomes 1 in the next vblank, so this wait here
4410 * is essentially intel_wait_for_vblank. If we don't have this
4411 * and don't wait for vblanks until the end of crtc_enable, then
4412 * the HW state readout code will complain that the expected
4413 * IPS_CTL value is not the one we read. */
4414 if (intel_wait_for_register(dev_priv,
4415 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4416 50))
4417 DRM_ERROR("Timed out waiting for IPS enable\n");
4418 }
4419 }
4420
4421 void hsw_disable_ips(struct intel_crtc *crtc)
4422 {
4423 struct drm_device *dev = crtc->base.dev;
4424 struct drm_i915_private *dev_priv = to_i915(dev);
4425
4426 if (!crtc->config->ips_enabled)
4427 return;
4428
4429 assert_plane_enabled(dev_priv, crtc->plane);
4430 if (IS_BROADWELL(dev)) {
4431 mutex_lock(&dev_priv->rps.hw_lock);
4432 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4433 mutex_unlock(&dev_priv->rps.hw_lock);
4434 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4435 if (intel_wait_for_register(dev_priv,
4436 IPS_CTL, IPS_ENABLE, 0,
4437 42))
4438 DRM_ERROR("Timed out waiting for IPS disable\n");
4439 } else {
4440 I915_WRITE(IPS_CTL, 0);
4441 POSTING_READ(IPS_CTL);
4442 }
4443
4444 /* We need to wait for a vblank before we can disable the plane. */
4445 intel_wait_for_vblank(dev, crtc->pipe);
4446 }
4447
4448 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4449 {
4450 if (intel_crtc->overlay) {
4451 struct drm_device *dev = intel_crtc->base.dev;
4452 struct drm_i915_private *dev_priv = to_i915(dev);
4453
4454 mutex_lock(&dev->struct_mutex);
4455 dev_priv->mm.interruptible = false;
4456 (void) intel_overlay_switch_off(intel_crtc->overlay);
4457 dev_priv->mm.interruptible = true;
4458 mutex_unlock(&dev->struct_mutex);
4459 }
4460
4461 /* Let userspace switch the overlay on again. In most cases userspace
4462 * has to recompute where to put it anyway.
4463 */
4464 }
4465
4466 /**
4467 * intel_post_enable_primary - Perform operations after enabling primary plane
4468 * @crtc: the CRTC whose primary plane was just enabled
4469 *
4470 * Performs potentially sleeping operations that must be done after the primary
4471 * plane is enabled, such as updating FBC and IPS. Note that this may be
4472 * called due to an explicit primary plane update, or due to an implicit
4473 * re-enable that is caused when a sprite plane is updated to no longer
4474 * completely hide the primary plane.
4475 */
4476 static void
4477 intel_post_enable_primary(struct drm_crtc *crtc)
4478 {
4479 struct drm_device *dev = crtc->dev;
4480 struct drm_i915_private *dev_priv = to_i915(dev);
4481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482 int pipe = intel_crtc->pipe;
4483
4484 /*
4485 * FIXME IPS should be fine as long as one plane is
4486 * enabled, but in practice it seems to have problems
4487 * when going from primary only to sprite only and vice
4488 * versa.
4489 */
4490 hsw_enable_ips(intel_crtc);
4491
4492 /*
4493 * Gen2 reports pipe underruns whenever all planes are disabled.
4494 * So don't enable underrun reporting before at least some planes
4495 * are enabled.
4496 * FIXME: Need to fix the logic to work when we turn off all planes
4497 * but leave the pipe running.
4498 */
4499 if (IS_GEN2(dev))
4500 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4501
4502 /* Underruns don't always raise interrupts, so check manually. */
4503 intel_check_cpu_fifo_underruns(dev_priv);
4504 intel_check_pch_fifo_underruns(dev_priv);
4505 }
4506
4507 /* FIXME move all this to pre_plane_update() with proper state tracking */
4508 static void
4509 intel_pre_disable_primary(struct drm_crtc *crtc)
4510 {
4511 struct drm_device *dev = crtc->dev;
4512 struct drm_i915_private *dev_priv = to_i915(dev);
4513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514 int pipe = intel_crtc->pipe;
4515
4516 /*
4517 * Gen2 reports pipe underruns whenever all planes are disabled.
4518 * So diasble underrun reporting before all the planes get disabled.
4519 * FIXME: Need to fix the logic to work when we turn off all planes
4520 * but leave the pipe running.
4521 */
4522 if (IS_GEN2(dev))
4523 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4524
4525 /*
4526 * FIXME IPS should be fine as long as one plane is
4527 * enabled, but in practice it seems to have problems
4528 * when going from primary only to sprite only and vice
4529 * versa.
4530 */
4531 hsw_disable_ips(intel_crtc);
4532 }
4533
4534 /* FIXME get rid of this and use pre_plane_update */
4535 static void
4536 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4537 {
4538 struct drm_device *dev = crtc->dev;
4539 struct drm_i915_private *dev_priv = to_i915(dev);
4540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541 int pipe = intel_crtc->pipe;
4542
4543 intel_pre_disable_primary(crtc);
4544
4545 /*
4546 * Vblank time updates from the shadow to live plane control register
4547 * are blocked if the memory self-refresh mode is active at that
4548 * moment. So to make sure the plane gets truly disabled, disable
4549 * first the self-refresh mode. The self-refresh enable bit in turn
4550 * will be checked/applied by the HW only at the next frame start
4551 * event which is after the vblank start event, so we need to have a
4552 * wait-for-vblank between disabling the plane and the pipe.
4553 */
4554 if (HAS_GMCH_DISPLAY(dev)) {
4555 intel_set_memory_cxsr(dev_priv, false);
4556 dev_priv->wm.vlv.cxsr = false;
4557 intel_wait_for_vblank(dev, pipe);
4558 }
4559 }
4560
4561 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4562 {
4563 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4564 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4565 struct intel_crtc_state *pipe_config =
4566 to_intel_crtc_state(crtc->base.state);
4567 struct drm_device *dev = crtc->base.dev;
4568 struct drm_plane *primary = crtc->base.primary;
4569 struct drm_plane_state *old_pri_state =
4570 drm_atomic_get_existing_plane_state(old_state, primary);
4571
4572 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4573
4574 crtc->wm.cxsr_allowed = true;
4575
4576 if (pipe_config->update_wm_post && pipe_config->base.active)
4577 intel_update_watermarks(&crtc->base);
4578
4579 if (old_pri_state) {
4580 struct intel_plane_state *primary_state =
4581 to_intel_plane_state(primary->state);
4582 struct intel_plane_state *old_primary_state =
4583 to_intel_plane_state(old_pri_state);
4584
4585 intel_fbc_post_update(crtc);
4586
4587 if (primary_state->visible &&
4588 (needs_modeset(&pipe_config->base) ||
4589 !old_primary_state->visible))
4590 intel_post_enable_primary(&crtc->base);
4591 }
4592 }
4593
4594 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4595 {
4596 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4597 struct drm_device *dev = crtc->base.dev;
4598 struct drm_i915_private *dev_priv = to_i915(dev);
4599 struct intel_crtc_state *pipe_config =
4600 to_intel_crtc_state(crtc->base.state);
4601 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4602 struct drm_plane *primary = crtc->base.primary;
4603 struct drm_plane_state *old_pri_state =
4604 drm_atomic_get_existing_plane_state(old_state, primary);
4605 bool modeset = needs_modeset(&pipe_config->base);
4606
4607 if (old_pri_state) {
4608 struct intel_plane_state *primary_state =
4609 to_intel_plane_state(primary->state);
4610 struct intel_plane_state *old_primary_state =
4611 to_intel_plane_state(old_pri_state);
4612
4613 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4614
4615 if (old_primary_state->visible &&
4616 (modeset || !primary_state->visible))
4617 intel_pre_disable_primary(&crtc->base);
4618 }
4619
4620 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4621 crtc->wm.cxsr_allowed = false;
4622
4623 /*
4624 * Vblank time updates from the shadow to live plane control register
4625 * are blocked if the memory self-refresh mode is active at that
4626 * moment. So to make sure the plane gets truly disabled, disable
4627 * first the self-refresh mode. The self-refresh enable bit in turn
4628 * will be checked/applied by the HW only at the next frame start
4629 * event which is after the vblank start event, so we need to have a
4630 * wait-for-vblank between disabling the plane and the pipe.
4631 */
4632 if (old_crtc_state->base.active) {
4633 intel_set_memory_cxsr(dev_priv, false);
4634 dev_priv->wm.vlv.cxsr = false;
4635 intel_wait_for_vblank(dev, crtc->pipe);
4636 }
4637 }
4638
4639 /*
4640 * IVB workaround: must disable low power watermarks for at least
4641 * one frame before enabling scaling. LP watermarks can be re-enabled
4642 * when scaling is disabled.
4643 *
4644 * WaCxSRDisabledForSpriteScaling:ivb
4645 */
4646 if (pipe_config->disable_lp_wm) {
4647 ilk_disable_lp_wm(dev);
4648 intel_wait_for_vblank(dev, crtc->pipe);
4649 }
4650
4651 /*
4652 * If we're doing a modeset, we're done. No need to do any pre-vblank
4653 * watermark programming here.
4654 */
4655 if (needs_modeset(&pipe_config->base))
4656 return;
4657
4658 /*
4659 * For platforms that support atomic watermarks, program the
4660 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4661 * will be the intermediate values that are safe for both pre- and
4662 * post- vblank; when vblank happens, the 'active' values will be set
4663 * to the final 'target' values and we'll do this again to get the
4664 * optimal watermarks. For gen9+ platforms, the values we program here
4665 * will be the final target values which will get automatically latched
4666 * at vblank time; no further programming will be necessary.
4667 *
4668 * If a platform hasn't been transitioned to atomic watermarks yet,
4669 * we'll continue to update watermarks the old way, if flags tell
4670 * us to.
4671 */
4672 if (dev_priv->display.initial_watermarks != NULL)
4673 dev_priv->display.initial_watermarks(pipe_config);
4674 else if (pipe_config->update_wm_pre)
4675 intel_update_watermarks(&crtc->base);
4676 }
4677
4678 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4679 {
4680 struct drm_device *dev = crtc->dev;
4681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4682 struct drm_plane *p;
4683 int pipe = intel_crtc->pipe;
4684
4685 intel_crtc_dpms_overlay_disable(intel_crtc);
4686
4687 drm_for_each_plane_mask(p, dev, plane_mask)
4688 to_intel_plane(p)->disable_plane(p, crtc);
4689
4690 /*
4691 * FIXME: Once we grow proper nuclear flip support out of this we need
4692 * to compute the mask of flip planes precisely. For the time being
4693 * consider this a flip to a NULL plane.
4694 */
4695 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4696 }
4697
4698 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4699 {
4700 struct drm_device *dev = crtc->dev;
4701 struct drm_i915_private *dev_priv = to_i915(dev);
4702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4703 struct intel_encoder *encoder;
4704 int pipe = intel_crtc->pipe;
4705 struct intel_crtc_state *pipe_config =
4706 to_intel_crtc_state(crtc->state);
4707
4708 if (WARN_ON(intel_crtc->active))
4709 return;
4710
4711 /*
4712 * Sometimes spurious CPU pipe underruns happen during FDI
4713 * training, at least with VGA+HDMI cloning. Suppress them.
4714 *
4715 * On ILK we get an occasional spurious CPU pipe underruns
4716 * between eDP port A enable and vdd enable. Also PCH port
4717 * enable seems to result in the occasional CPU pipe underrun.
4718 *
4719 * Spurious PCH underruns also occur during PCH enabling.
4720 */
4721 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4722 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4723 if (intel_crtc->config->has_pch_encoder)
4724 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4725
4726 if (intel_crtc->config->has_pch_encoder)
4727 intel_prepare_shared_dpll(intel_crtc);
4728
4729 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4730 intel_dp_set_m_n(intel_crtc, M1_N1);
4731
4732 intel_set_pipe_timings(intel_crtc);
4733 intel_set_pipe_src_size(intel_crtc);
4734
4735 if (intel_crtc->config->has_pch_encoder) {
4736 intel_cpu_transcoder_set_m_n(intel_crtc,
4737 &intel_crtc->config->fdi_m_n, NULL);
4738 }
4739
4740 ironlake_set_pipeconf(crtc);
4741
4742 intel_crtc->active = true;
4743
4744 for_each_encoder_on_crtc(dev, crtc, encoder)
4745 if (encoder->pre_enable)
4746 encoder->pre_enable(encoder);
4747
4748 if (intel_crtc->config->has_pch_encoder) {
4749 /* Note: FDI PLL enabling _must_ be done before we enable the
4750 * cpu pipes, hence this is separate from all the other fdi/pch
4751 * enabling. */
4752 ironlake_fdi_pll_enable(intel_crtc);
4753 } else {
4754 assert_fdi_tx_disabled(dev_priv, pipe);
4755 assert_fdi_rx_disabled(dev_priv, pipe);
4756 }
4757
4758 ironlake_pfit_enable(intel_crtc);
4759
4760 /*
4761 * On ILK+ LUT must be loaded before the pipe is running but with
4762 * clocks enabled
4763 */
4764 intel_color_load_luts(&pipe_config->base);
4765
4766 if (dev_priv->display.initial_watermarks != NULL)
4767 dev_priv->display.initial_watermarks(intel_crtc->config);
4768 intel_enable_pipe(intel_crtc);
4769
4770 if (intel_crtc->config->has_pch_encoder)
4771 ironlake_pch_enable(crtc);
4772
4773 assert_vblank_disabled(crtc);
4774 drm_crtc_vblank_on(crtc);
4775
4776 for_each_encoder_on_crtc(dev, crtc, encoder)
4777 encoder->enable(encoder);
4778
4779 if (HAS_PCH_CPT(dev))
4780 cpt_verify_modeset(dev, intel_crtc->pipe);
4781
4782 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4783 if (intel_crtc->config->has_pch_encoder)
4784 intel_wait_for_vblank(dev, pipe);
4785 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4786 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4787 }
4788
4789 /* IPS only exists on ULT machines and is tied to pipe A. */
4790 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4791 {
4792 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4793 }
4794
4795 static void haswell_crtc_enable(struct drm_crtc *crtc)
4796 {
4797 struct drm_device *dev = crtc->dev;
4798 struct drm_i915_private *dev_priv = to_i915(dev);
4799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4800 struct intel_encoder *encoder;
4801 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4802 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4803 struct intel_crtc_state *pipe_config =
4804 to_intel_crtc_state(crtc->state);
4805
4806 if (WARN_ON(intel_crtc->active))
4807 return;
4808
4809 if (intel_crtc->config->has_pch_encoder)
4810 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4811 false);
4812
4813 for_each_encoder_on_crtc(dev, crtc, encoder)
4814 if (encoder->pre_pll_enable)
4815 encoder->pre_pll_enable(encoder);
4816
4817 if (intel_crtc->config->shared_dpll)
4818 intel_enable_shared_dpll(intel_crtc);
4819
4820 if (intel_crtc_has_dp_encoder(intel_crtc->config))
4821 intel_dp_set_m_n(intel_crtc, M1_N1);
4822
4823 if (!transcoder_is_dsi(cpu_transcoder))
4824 intel_set_pipe_timings(intel_crtc);
4825
4826 intel_set_pipe_src_size(intel_crtc);
4827
4828 if (cpu_transcoder != TRANSCODER_EDP &&
4829 !transcoder_is_dsi(cpu_transcoder)) {
4830 I915_WRITE(PIPE_MULT(cpu_transcoder),
4831 intel_crtc->config->pixel_multiplier - 1);
4832 }
4833
4834 if (intel_crtc->config->has_pch_encoder) {
4835 intel_cpu_transcoder_set_m_n(intel_crtc,
4836 &intel_crtc->config->fdi_m_n, NULL);
4837 }
4838
4839 if (!transcoder_is_dsi(cpu_transcoder))
4840 haswell_set_pipeconf(crtc);
4841
4842 haswell_set_pipemisc(crtc);
4843
4844 intel_color_set_csc(&pipe_config->base);
4845
4846 intel_crtc->active = true;
4847
4848 if (intel_crtc->config->has_pch_encoder)
4849 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4850 else
4851 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4852
4853 for_each_encoder_on_crtc(dev, crtc, encoder) {
4854 if (encoder->pre_enable)
4855 encoder->pre_enable(encoder);
4856 }
4857
4858 if (intel_crtc->config->has_pch_encoder)
4859 dev_priv->display.fdi_link_train(crtc);
4860
4861 if (!transcoder_is_dsi(cpu_transcoder))
4862 intel_ddi_enable_pipe_clock(intel_crtc);
4863
4864 if (INTEL_INFO(dev)->gen >= 9)
4865 skylake_pfit_enable(intel_crtc);
4866 else
4867 ironlake_pfit_enable(intel_crtc);
4868
4869 /*
4870 * On ILK+ LUT must be loaded before the pipe is running but with
4871 * clocks enabled
4872 */
4873 intel_color_load_luts(&pipe_config->base);
4874
4875 intel_ddi_set_pipe_settings(crtc);
4876 if (!transcoder_is_dsi(cpu_transcoder))
4877 intel_ddi_enable_transcoder_func(crtc);
4878
4879 if (dev_priv->display.initial_watermarks != NULL)
4880 dev_priv->display.initial_watermarks(pipe_config);
4881 else
4882 intel_update_watermarks(crtc);
4883
4884 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4885 if (!transcoder_is_dsi(cpu_transcoder))
4886 intel_enable_pipe(intel_crtc);
4887
4888 if (intel_crtc->config->has_pch_encoder)
4889 lpt_pch_enable(crtc);
4890
4891 if (intel_crtc->config->dp_encoder_is_mst)
4892 intel_ddi_set_vc_payload_alloc(crtc, true);
4893
4894 assert_vblank_disabled(crtc);
4895 drm_crtc_vblank_on(crtc);
4896
4897 for_each_encoder_on_crtc(dev, crtc, encoder) {
4898 encoder->enable(encoder);
4899 intel_opregion_notify_encoder(encoder, true);
4900 }
4901
4902 if (intel_crtc->config->has_pch_encoder) {
4903 intel_wait_for_vblank(dev, pipe);
4904 intel_wait_for_vblank(dev, pipe);
4905 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4907 true);
4908 }
4909
4910 /* If we change the relative order between pipe/planes enabling, we need
4911 * to change the workaround. */
4912 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4913 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4914 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4915 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4916 }
4917 }
4918
4919 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4920 {
4921 struct drm_device *dev = crtc->base.dev;
4922 struct drm_i915_private *dev_priv = to_i915(dev);
4923 int pipe = crtc->pipe;
4924
4925 /* To avoid upsetting the power well on haswell only disable the pfit if
4926 * it's in use. The hw state code will make sure we get this right. */
4927 if (force || crtc->config->pch_pfit.enabled) {
4928 I915_WRITE(PF_CTL(pipe), 0);
4929 I915_WRITE(PF_WIN_POS(pipe), 0);
4930 I915_WRITE(PF_WIN_SZ(pipe), 0);
4931 }
4932 }
4933
4934 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4935 {
4936 struct drm_device *dev = crtc->dev;
4937 struct drm_i915_private *dev_priv = to_i915(dev);
4938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939 struct intel_encoder *encoder;
4940 int pipe = intel_crtc->pipe;
4941
4942 /*
4943 * Sometimes spurious CPU pipe underruns happen when the
4944 * pipe is already disabled, but FDI RX/TX is still enabled.
4945 * Happens at least with VGA+HDMI cloning. Suppress them.
4946 */
4947 if (intel_crtc->config->has_pch_encoder) {
4948 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4949 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4950 }
4951
4952 for_each_encoder_on_crtc(dev, crtc, encoder)
4953 encoder->disable(encoder);
4954
4955 drm_crtc_vblank_off(crtc);
4956 assert_vblank_disabled(crtc);
4957
4958 intel_disable_pipe(intel_crtc);
4959
4960 ironlake_pfit_disable(intel_crtc, false);
4961
4962 if (intel_crtc->config->has_pch_encoder)
4963 ironlake_fdi_disable(crtc);
4964
4965 for_each_encoder_on_crtc(dev, crtc, encoder)
4966 if (encoder->post_disable)
4967 encoder->post_disable(encoder);
4968
4969 if (intel_crtc->config->has_pch_encoder) {
4970 ironlake_disable_pch_transcoder(dev_priv, pipe);
4971
4972 if (HAS_PCH_CPT(dev)) {
4973 i915_reg_t reg;
4974 u32 temp;
4975
4976 /* disable TRANS_DP_CTL */
4977 reg = TRANS_DP_CTL(pipe);
4978 temp = I915_READ(reg);
4979 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4980 TRANS_DP_PORT_SEL_MASK);
4981 temp |= TRANS_DP_PORT_SEL_NONE;
4982 I915_WRITE(reg, temp);
4983
4984 /* disable DPLL_SEL */
4985 temp = I915_READ(PCH_DPLL_SEL);
4986 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4987 I915_WRITE(PCH_DPLL_SEL, temp);
4988 }
4989
4990 ironlake_fdi_pll_disable(intel_crtc);
4991 }
4992
4993 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4994 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4995 }
4996
4997 static void haswell_crtc_disable(struct drm_crtc *crtc)
4998 {
4999 struct drm_device *dev = crtc->dev;
5000 struct drm_i915_private *dev_priv = to_i915(dev);
5001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5002 struct intel_encoder *encoder;
5003 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5004
5005 if (intel_crtc->config->has_pch_encoder)
5006 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5007 false);
5008
5009 for_each_encoder_on_crtc(dev, crtc, encoder) {
5010 intel_opregion_notify_encoder(encoder, false);
5011 encoder->disable(encoder);
5012 }
5013
5014 drm_crtc_vblank_off(crtc);
5015 assert_vblank_disabled(crtc);
5016
5017 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5018 if (!transcoder_is_dsi(cpu_transcoder))
5019 intel_disable_pipe(intel_crtc);
5020
5021 if (intel_crtc->config->dp_encoder_is_mst)
5022 intel_ddi_set_vc_payload_alloc(crtc, false);
5023
5024 if (!transcoder_is_dsi(cpu_transcoder))
5025 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5026
5027 if (INTEL_INFO(dev)->gen >= 9)
5028 skylake_scaler_disable(intel_crtc);
5029 else
5030 ironlake_pfit_disable(intel_crtc, false);
5031
5032 if (!transcoder_is_dsi(cpu_transcoder))
5033 intel_ddi_disable_pipe_clock(intel_crtc);
5034
5035 for_each_encoder_on_crtc(dev, crtc, encoder)
5036 if (encoder->post_disable)
5037 encoder->post_disable(encoder);
5038
5039 if (intel_crtc->config->has_pch_encoder) {
5040 lpt_disable_pch_transcoder(dev_priv);
5041 lpt_disable_iclkip(dev_priv);
5042 intel_ddi_fdi_disable(crtc);
5043
5044 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5045 true);
5046 }
5047 }
5048
5049 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5050 {
5051 struct drm_device *dev = crtc->base.dev;
5052 struct drm_i915_private *dev_priv = to_i915(dev);
5053 struct intel_crtc_state *pipe_config = crtc->config;
5054
5055 if (!pipe_config->gmch_pfit.control)
5056 return;
5057
5058 /*
5059 * The panel fitter should only be adjusted whilst the pipe is disabled,
5060 * according to register description and PRM.
5061 */
5062 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5063 assert_pipe_disabled(dev_priv, crtc->pipe);
5064
5065 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5066 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5067
5068 /* Border color in case we don't scale up to the full screen. Black by
5069 * default, change to something else for debugging. */
5070 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5071 }
5072
5073 static enum intel_display_power_domain port_to_power_domain(enum port port)
5074 {
5075 switch (port) {
5076 case PORT_A:
5077 return POWER_DOMAIN_PORT_DDI_A_LANES;
5078 case PORT_B:
5079 return POWER_DOMAIN_PORT_DDI_B_LANES;
5080 case PORT_C:
5081 return POWER_DOMAIN_PORT_DDI_C_LANES;
5082 case PORT_D:
5083 return POWER_DOMAIN_PORT_DDI_D_LANES;
5084 case PORT_E:
5085 return POWER_DOMAIN_PORT_DDI_E_LANES;
5086 default:
5087 MISSING_CASE(port);
5088 return POWER_DOMAIN_PORT_OTHER;
5089 }
5090 }
5091
5092 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5093 {
5094 switch (port) {
5095 case PORT_A:
5096 return POWER_DOMAIN_AUX_A;
5097 case PORT_B:
5098 return POWER_DOMAIN_AUX_B;
5099 case PORT_C:
5100 return POWER_DOMAIN_AUX_C;
5101 case PORT_D:
5102 return POWER_DOMAIN_AUX_D;
5103 case PORT_E:
5104 /* FIXME: Check VBT for actual wiring of PORT E */
5105 return POWER_DOMAIN_AUX_D;
5106 default:
5107 MISSING_CASE(port);
5108 return POWER_DOMAIN_AUX_A;
5109 }
5110 }
5111
5112 enum intel_display_power_domain
5113 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5114 {
5115 struct drm_device *dev = intel_encoder->base.dev;
5116 struct intel_digital_port *intel_dig_port;
5117
5118 switch (intel_encoder->type) {
5119 case INTEL_OUTPUT_UNKNOWN:
5120 /* Only DDI platforms should ever use this output type */
5121 WARN_ON_ONCE(!HAS_DDI(dev));
5122 case INTEL_OUTPUT_DP:
5123 case INTEL_OUTPUT_HDMI:
5124 case INTEL_OUTPUT_EDP:
5125 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5126 return port_to_power_domain(intel_dig_port->port);
5127 case INTEL_OUTPUT_DP_MST:
5128 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5129 return port_to_power_domain(intel_dig_port->port);
5130 case INTEL_OUTPUT_ANALOG:
5131 return POWER_DOMAIN_PORT_CRT;
5132 case INTEL_OUTPUT_DSI:
5133 return POWER_DOMAIN_PORT_DSI;
5134 default:
5135 return POWER_DOMAIN_PORT_OTHER;
5136 }
5137 }
5138
5139 enum intel_display_power_domain
5140 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142 struct drm_device *dev = intel_encoder->base.dev;
5143 struct intel_digital_port *intel_dig_port;
5144
5145 switch (intel_encoder->type) {
5146 case INTEL_OUTPUT_UNKNOWN:
5147 case INTEL_OUTPUT_HDMI:
5148 /*
5149 * Only DDI platforms should ever use these output types.
5150 * We can get here after the HDMI detect code has already set
5151 * the type of the shared encoder. Since we can't be sure
5152 * what's the status of the given connectors, play safe and
5153 * run the DP detection too.
5154 */
5155 WARN_ON_ONCE(!HAS_DDI(dev));
5156 case INTEL_OUTPUT_DP:
5157 case INTEL_OUTPUT_EDP:
5158 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5159 return port_to_aux_power_domain(intel_dig_port->port);
5160 case INTEL_OUTPUT_DP_MST:
5161 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5162 return port_to_aux_power_domain(intel_dig_port->port);
5163 default:
5164 MISSING_CASE(intel_encoder->type);
5165 return POWER_DOMAIN_AUX_A;
5166 }
5167 }
5168
5169 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5170 struct intel_crtc_state *crtc_state)
5171 {
5172 struct drm_device *dev = crtc->dev;
5173 struct drm_encoder *encoder;
5174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175 enum pipe pipe = intel_crtc->pipe;
5176 unsigned long mask;
5177 enum transcoder transcoder = crtc_state->cpu_transcoder;
5178
5179 if (!crtc_state->base.active)
5180 return 0;
5181
5182 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5183 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5184 if (crtc_state->pch_pfit.enabled ||
5185 crtc_state->pch_pfit.force_thru)
5186 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5187
5188 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5189 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5190
5191 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5192 }
5193
5194 if (crtc_state->shared_dpll)
5195 mask |= BIT(POWER_DOMAIN_PLLS);
5196
5197 return mask;
5198 }
5199
5200 static unsigned long
5201 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5202 struct intel_crtc_state *crtc_state)
5203 {
5204 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206 enum intel_display_power_domain domain;
5207 unsigned long domains, new_domains, old_domains;
5208
5209 old_domains = intel_crtc->enabled_power_domains;
5210 intel_crtc->enabled_power_domains = new_domains =
5211 get_crtc_power_domains(crtc, crtc_state);
5212
5213 domains = new_domains & ~old_domains;
5214
5215 for_each_power_domain(domain, domains)
5216 intel_display_power_get(dev_priv, domain);
5217
5218 return old_domains & ~new_domains;
5219 }
5220
5221 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5222 unsigned long domains)
5223 {
5224 enum intel_display_power_domain domain;
5225
5226 for_each_power_domain(domain, domains)
5227 intel_display_power_put(dev_priv, domain);
5228 }
5229
5230 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5231 {
5232 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5233
5234 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5235 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5236 return max_cdclk_freq;
5237 else if (IS_CHERRYVIEW(dev_priv))
5238 return max_cdclk_freq*95/100;
5239 else if (INTEL_INFO(dev_priv)->gen < 4)
5240 return 2*max_cdclk_freq*90/100;
5241 else
5242 return max_cdclk_freq*90/100;
5243 }
5244
5245 static int skl_calc_cdclk(int max_pixclk, int vco);
5246
5247 static void intel_update_max_cdclk(struct drm_device *dev)
5248 {
5249 struct drm_i915_private *dev_priv = to_i915(dev);
5250
5251 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5252 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5253 int max_cdclk, vco;
5254
5255 vco = dev_priv->skl_preferred_vco_freq;
5256 WARN_ON(vco != 8100000 && vco != 8640000);
5257
5258 /*
5259 * Use the lower (vco 8640) cdclk values as a
5260 * first guess. skl_calc_cdclk() will correct it
5261 * if the preferred vco is 8100 instead.
5262 */
5263 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264 max_cdclk = 617143;
5265 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266 max_cdclk = 540000;
5267 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268 max_cdclk = 432000;
5269 else
5270 max_cdclk = 308571;
5271
5272 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5273 } else if (IS_BROXTON(dev)) {
5274 dev_priv->max_cdclk_freq = 624000;
5275 } else if (IS_BROADWELL(dev)) {
5276 /*
5277 * FIXME with extra cooling we can allow
5278 * 540 MHz for ULX and 675 Mhz for ULT.
5279 * How can we know if extra cooling is
5280 * available? PCI ID, VTB, something else?
5281 */
5282 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5283 dev_priv->max_cdclk_freq = 450000;
5284 else if (IS_BDW_ULX(dev))
5285 dev_priv->max_cdclk_freq = 450000;
5286 else if (IS_BDW_ULT(dev))
5287 dev_priv->max_cdclk_freq = 540000;
5288 else
5289 dev_priv->max_cdclk_freq = 675000;
5290 } else if (IS_CHERRYVIEW(dev)) {
5291 dev_priv->max_cdclk_freq = 320000;
5292 } else if (IS_VALLEYVIEW(dev)) {
5293 dev_priv->max_cdclk_freq = 400000;
5294 } else {
5295 /* otherwise assume cdclk is fixed */
5296 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5297 }
5298
5299 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5300
5301 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302 dev_priv->max_cdclk_freq);
5303
5304 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5305 dev_priv->max_dotclk_freq);
5306 }
5307
5308 static void intel_update_cdclk(struct drm_device *dev)
5309 {
5310 struct drm_i915_private *dev_priv = to_i915(dev);
5311
5312 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5313
5314 if (INTEL_GEN(dev_priv) >= 9)
5315 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5316 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5317 dev_priv->cdclk_pll.ref);
5318 else
5319 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5320 dev_priv->cdclk_freq);
5321
5322 /*
5323 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5324 * Programmng [sic] note: bit[9:2] should be programmed to the number
5325 * of cdclk that generates 4MHz reference clock freq which is used to
5326 * generate GMBus clock. This will vary with the cdclk freq.
5327 */
5328 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5329 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5330 }
5331
5332 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5333 static int skl_cdclk_decimal(int cdclk)
5334 {
5335 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5336 }
5337
5338 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5339 {
5340 int ratio;
5341
5342 if (cdclk == dev_priv->cdclk_pll.ref)
5343 return 0;
5344
5345 switch (cdclk) {
5346 default:
5347 MISSING_CASE(cdclk);
5348 case 144000:
5349 case 288000:
5350 case 384000:
5351 case 576000:
5352 ratio = 60;
5353 break;
5354 case 624000:
5355 ratio = 65;
5356 break;
5357 }
5358
5359 return dev_priv->cdclk_pll.ref * ratio;
5360 }
5361
5362 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5363 {
5364 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5365
5366 /* Timeout 200us */
5367 if (intel_wait_for_register(dev_priv,
5368 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5369 1))
5370 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5371
5372 dev_priv->cdclk_pll.vco = 0;
5373 }
5374
5375 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5376 {
5377 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5378 u32 val;
5379
5380 val = I915_READ(BXT_DE_PLL_CTL);
5381 val &= ~BXT_DE_PLL_RATIO_MASK;
5382 val |= BXT_DE_PLL_RATIO(ratio);
5383 I915_WRITE(BXT_DE_PLL_CTL, val);
5384
5385 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5386
5387 /* Timeout 200us */
5388 if (intel_wait_for_register(dev_priv,
5389 BXT_DE_PLL_ENABLE,
5390 BXT_DE_PLL_LOCK,
5391 BXT_DE_PLL_LOCK,
5392 1))
5393 DRM_ERROR("timeout waiting for DE PLL lock\n");
5394
5395 dev_priv->cdclk_pll.vco = vco;
5396 }
5397
5398 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5399 {
5400 u32 val, divider;
5401 int vco, ret;
5402
5403 vco = bxt_de_pll_vco(dev_priv, cdclk);
5404
5405 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5406
5407 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5408 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5409 case 8:
5410 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5411 break;
5412 case 4:
5413 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414 break;
5415 case 3:
5416 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5417 break;
5418 case 2:
5419 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5420 break;
5421 default:
5422 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5423 WARN_ON(vco != 0);
5424
5425 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426 break;
5427 }
5428
5429 /* Inform power controller of upcoming frequency change */
5430 mutex_lock(&dev_priv->rps.hw_lock);
5431 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432 0x80000000);
5433 mutex_unlock(&dev_priv->rps.hw_lock);
5434
5435 if (ret) {
5436 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5437 ret, cdclk);
5438 return;
5439 }
5440
5441 if (dev_priv->cdclk_pll.vco != 0 &&
5442 dev_priv->cdclk_pll.vco != vco)
5443 bxt_de_pll_disable(dev_priv);
5444
5445 if (dev_priv->cdclk_pll.vco != vco)
5446 bxt_de_pll_enable(dev_priv, vco);
5447
5448 val = divider | skl_cdclk_decimal(cdclk);
5449 /*
5450 * FIXME if only the cd2x divider needs changing, it could be done
5451 * without shutting off the pipe (if only one pipe is active).
5452 */
5453 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5454 /*
5455 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5456 * enable otherwise.
5457 */
5458 if (cdclk >= 500000)
5459 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5460 I915_WRITE(CDCLK_CTL, val);
5461
5462 mutex_lock(&dev_priv->rps.hw_lock);
5463 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5464 DIV_ROUND_UP(cdclk, 25000));
5465 mutex_unlock(&dev_priv->rps.hw_lock);
5466
5467 if (ret) {
5468 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5469 ret, cdclk);
5470 return;
5471 }
5472
5473 intel_update_cdclk(&dev_priv->drm);
5474 }
5475
5476 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5477 {
5478 u32 cdctl, expected;
5479
5480 intel_update_cdclk(&dev_priv->drm);
5481
5482 if (dev_priv->cdclk_pll.vco == 0 ||
5483 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5484 goto sanitize;
5485
5486 /* DPLL okay; verify the cdclock
5487 *
5488 * Some BIOS versions leave an incorrect decimal frequency value and
5489 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5490 * so sanitize this register.
5491 */
5492 cdctl = I915_READ(CDCLK_CTL);
5493 /*
5494 * Let's ignore the pipe field, since BIOS could have configured the
5495 * dividers both synching to an active pipe, or asynchronously
5496 * (PIPE_NONE).
5497 */
5498 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5499
5500 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5501 skl_cdclk_decimal(dev_priv->cdclk_freq);
5502 /*
5503 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5504 * enable otherwise.
5505 */
5506 if (dev_priv->cdclk_freq >= 500000)
5507 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5508
5509 if (cdctl == expected)
5510 /* All well; nothing to sanitize */
5511 return;
5512
5513 sanitize:
5514 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5515
5516 /* force cdclk programming */
5517 dev_priv->cdclk_freq = 0;
5518
5519 /* force full PLL disable + enable */
5520 dev_priv->cdclk_pll.vco = -1;
5521 }
5522
5523 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5524 {
5525 bxt_sanitize_cdclk(dev_priv);
5526
5527 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5528 return;
5529
5530 /*
5531 * FIXME:
5532 * - The initial CDCLK needs to be read from VBT.
5533 * Need to make this change after VBT has changes for BXT.
5534 */
5535 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5536 }
5537
5538 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5539 {
5540 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5541 }
5542
5543 static int skl_calc_cdclk(int max_pixclk, int vco)
5544 {
5545 if (vco == 8640000) {
5546 if (max_pixclk > 540000)
5547 return 617143;
5548 else if (max_pixclk > 432000)
5549 return 540000;
5550 else if (max_pixclk > 308571)
5551 return 432000;
5552 else
5553 return 308571;
5554 } else {
5555 if (max_pixclk > 540000)
5556 return 675000;
5557 else if (max_pixclk > 450000)
5558 return 540000;
5559 else if (max_pixclk > 337500)
5560 return 450000;
5561 else
5562 return 337500;
5563 }
5564 }
5565
5566 static void
5567 skl_dpll0_update(struct drm_i915_private *dev_priv)
5568 {
5569 u32 val;
5570
5571 dev_priv->cdclk_pll.ref = 24000;
5572 dev_priv->cdclk_pll.vco = 0;
5573
5574 val = I915_READ(LCPLL1_CTL);
5575 if ((val & LCPLL_PLL_ENABLE) == 0)
5576 return;
5577
5578 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5579 return;
5580
5581 val = I915_READ(DPLL_CTRL1);
5582
5583 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5584 DPLL_CTRL1_SSC(SKL_DPLL0) |
5585 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5586 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5587 return;
5588
5589 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5590 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5591 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5592 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5593 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5594 dev_priv->cdclk_pll.vco = 8100000;
5595 break;
5596 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5597 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5598 dev_priv->cdclk_pll.vco = 8640000;
5599 break;
5600 default:
5601 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5602 break;
5603 }
5604 }
5605
5606 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5607 {
5608 bool changed = dev_priv->skl_preferred_vco_freq != vco;
5609
5610 dev_priv->skl_preferred_vco_freq = vco;
5611
5612 if (changed)
5613 intel_update_max_cdclk(&dev_priv->drm);
5614 }
5615
5616 static void
5617 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5618 {
5619 int min_cdclk = skl_calc_cdclk(0, vco);
5620 u32 val;
5621
5622 WARN_ON(vco != 8100000 && vco != 8640000);
5623
5624 /* select the minimum CDCLK before enabling DPLL 0 */
5625 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5626 I915_WRITE(CDCLK_CTL, val);
5627 POSTING_READ(CDCLK_CTL);
5628
5629 /*
5630 * We always enable DPLL0 with the lowest link rate possible, but still
5631 * taking into account the VCO required to operate the eDP panel at the
5632 * desired frequency. The usual DP link rates operate with a VCO of
5633 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5634 * The modeset code is responsible for the selection of the exact link
5635 * rate later on, with the constraint of choosing a frequency that
5636 * works with vco.
5637 */
5638 val = I915_READ(DPLL_CTRL1);
5639
5640 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5641 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5642 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5643 if (vco == 8640000)
5644 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5645 SKL_DPLL0);
5646 else
5647 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5648 SKL_DPLL0);
5649
5650 I915_WRITE(DPLL_CTRL1, val);
5651 POSTING_READ(DPLL_CTRL1);
5652
5653 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5654
5655 if (intel_wait_for_register(dev_priv,
5656 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5657 5))
5658 DRM_ERROR("DPLL0 not locked\n");
5659
5660 dev_priv->cdclk_pll.vco = vco;
5661
5662 /* We'll want to keep using the current vco from now on. */
5663 skl_set_preferred_cdclk_vco(dev_priv, vco);
5664 }
5665
5666 static void
5667 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5668 {
5669 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5670 if (intel_wait_for_register(dev_priv,
5671 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5672 1))
5673 DRM_ERROR("Couldn't disable DPLL0\n");
5674
5675 dev_priv->cdclk_pll.vco = 0;
5676 }
5677
5678 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5679 {
5680 int ret;
5681 u32 val;
5682
5683 /* inform PCU we want to change CDCLK */
5684 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5685 mutex_lock(&dev_priv->rps.hw_lock);
5686 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5687 mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5690 }
5691
5692 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5693 {
5694 unsigned int i;
5695
5696 for (i = 0; i < 15; i++) {
5697 if (skl_cdclk_pcu_ready(dev_priv))
5698 return true;
5699 udelay(10);
5700 }
5701
5702 return false;
5703 }
5704
5705 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5706 {
5707 struct drm_device *dev = &dev_priv->drm;
5708 u32 freq_select, pcu_ack;
5709
5710 WARN_ON((cdclk == 24000) != (vco == 0));
5711
5712 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5713
5714 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5715 DRM_ERROR("failed to inform PCU about cdclk change\n");
5716 return;
5717 }
5718
5719 /* set CDCLK_CTL */
5720 switch (cdclk) {
5721 case 450000:
5722 case 432000:
5723 freq_select = CDCLK_FREQ_450_432;
5724 pcu_ack = 1;
5725 break;
5726 case 540000:
5727 freq_select = CDCLK_FREQ_540;
5728 pcu_ack = 2;
5729 break;
5730 case 308571:
5731 case 337500:
5732 default:
5733 freq_select = CDCLK_FREQ_337_308;
5734 pcu_ack = 0;
5735 break;
5736 case 617143:
5737 case 675000:
5738 freq_select = CDCLK_FREQ_675_617;
5739 pcu_ack = 3;
5740 break;
5741 }
5742
5743 if (dev_priv->cdclk_pll.vco != 0 &&
5744 dev_priv->cdclk_pll.vco != vco)
5745 skl_dpll0_disable(dev_priv);
5746
5747 if (dev_priv->cdclk_pll.vco != vco)
5748 skl_dpll0_enable(dev_priv, vco);
5749
5750 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5751 POSTING_READ(CDCLK_CTL);
5752
5753 /* inform PCU of the change */
5754 mutex_lock(&dev_priv->rps.hw_lock);
5755 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5756 mutex_unlock(&dev_priv->rps.hw_lock);
5757
5758 intel_update_cdclk(dev);
5759 }
5760
5761 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5762
5763 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5764 {
5765 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5766 }
5767
5768 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5769 {
5770 int cdclk, vco;
5771
5772 skl_sanitize_cdclk(dev_priv);
5773
5774 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5775 /*
5776 * Use the current vco as our initial
5777 * guess as to what the preferred vco is.
5778 */
5779 if (dev_priv->skl_preferred_vco_freq == 0)
5780 skl_set_preferred_cdclk_vco(dev_priv,
5781 dev_priv->cdclk_pll.vco);
5782 return;
5783 }
5784
5785 vco = dev_priv->skl_preferred_vco_freq;
5786 if (vco == 0)
5787 vco = 8100000;
5788 cdclk = skl_calc_cdclk(0, vco);
5789
5790 skl_set_cdclk(dev_priv, cdclk, vco);
5791 }
5792
5793 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5794 {
5795 uint32_t cdctl, expected;
5796
5797 /*
5798 * check if the pre-os intialized the display
5799 * There is SWF18 scratchpad register defined which is set by the
5800 * pre-os which can be used by the OS drivers to check the status
5801 */
5802 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5803 goto sanitize;
5804
5805 intel_update_cdclk(&dev_priv->drm);
5806 /* Is PLL enabled and locked ? */
5807 if (dev_priv->cdclk_pll.vco == 0 ||
5808 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5809 goto sanitize;
5810
5811 /* DPLL okay; verify the cdclock
5812 *
5813 * Noticed in some instances that the freq selection is correct but
5814 * decimal part is programmed wrong from BIOS where pre-os does not
5815 * enable display. Verify the same as well.
5816 */
5817 cdctl = I915_READ(CDCLK_CTL);
5818 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5819 skl_cdclk_decimal(dev_priv->cdclk_freq);
5820 if (cdctl == expected)
5821 /* All well; nothing to sanitize */
5822 return;
5823
5824 sanitize:
5825 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5826
5827 /* force cdclk programming */
5828 dev_priv->cdclk_freq = 0;
5829 /* force full PLL disable + enable */
5830 dev_priv->cdclk_pll.vco = -1;
5831 }
5832
5833 /* Adjust CDclk dividers to allow high res or save power if possible */
5834 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5835 {
5836 struct drm_i915_private *dev_priv = to_i915(dev);
5837 u32 val, cmd;
5838
5839 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5840 != dev_priv->cdclk_freq);
5841
5842 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5843 cmd = 2;
5844 else if (cdclk == 266667)
5845 cmd = 1;
5846 else
5847 cmd = 0;
5848
5849 mutex_lock(&dev_priv->rps.hw_lock);
5850 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5851 val &= ~DSPFREQGUAR_MASK;
5852 val |= (cmd << DSPFREQGUAR_SHIFT);
5853 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5854 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5855 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5856 50)) {
5857 DRM_ERROR("timed out waiting for CDclk change\n");
5858 }
5859 mutex_unlock(&dev_priv->rps.hw_lock);
5860
5861 mutex_lock(&dev_priv->sb_lock);
5862
5863 if (cdclk == 400000) {
5864 u32 divider;
5865
5866 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5867
5868 /* adjust cdclk divider */
5869 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5870 val &= ~CCK_FREQUENCY_VALUES;
5871 val |= divider;
5872 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5873
5874 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5875 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5876 50))
5877 DRM_ERROR("timed out waiting for CDclk change\n");
5878 }
5879
5880 /* adjust self-refresh exit latency value */
5881 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5882 val &= ~0x7f;
5883
5884 /*
5885 * For high bandwidth configs, we set a higher latency in the bunit
5886 * so that the core display fetch happens in time to avoid underruns.
5887 */
5888 if (cdclk == 400000)
5889 val |= 4500 / 250; /* 4.5 usec */
5890 else
5891 val |= 3000 / 250; /* 3.0 usec */
5892 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5893
5894 mutex_unlock(&dev_priv->sb_lock);
5895
5896 intel_update_cdclk(dev);
5897 }
5898
5899 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5900 {
5901 struct drm_i915_private *dev_priv = to_i915(dev);
5902 u32 val, cmd;
5903
5904 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5905 != dev_priv->cdclk_freq);
5906
5907 switch (cdclk) {
5908 case 333333:
5909 case 320000:
5910 case 266667:
5911 case 200000:
5912 break;
5913 default:
5914 MISSING_CASE(cdclk);
5915 return;
5916 }
5917
5918 /*
5919 * Specs are full of misinformation, but testing on actual
5920 * hardware has shown that we just need to write the desired
5921 * CCK divider into the Punit register.
5922 */
5923 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5924
5925 mutex_lock(&dev_priv->rps.hw_lock);
5926 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5927 val &= ~DSPFREQGUAR_MASK_CHV;
5928 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5929 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5930 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5931 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5932 50)) {
5933 DRM_ERROR("timed out waiting for CDclk change\n");
5934 }
5935 mutex_unlock(&dev_priv->rps.hw_lock);
5936
5937 intel_update_cdclk(dev);
5938 }
5939
5940 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5941 int max_pixclk)
5942 {
5943 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5944 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5945
5946 /*
5947 * Really only a few cases to deal with, as only 4 CDclks are supported:
5948 * 200MHz
5949 * 267MHz
5950 * 320/333MHz (depends on HPLL freq)
5951 * 400MHz (VLV only)
5952 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5953 * of the lower bin and adjust if needed.
5954 *
5955 * We seem to get an unstable or solid color picture at 200MHz.
5956 * Not sure what's wrong. For now use 200MHz only when all pipes
5957 * are off.
5958 */
5959 if (!IS_CHERRYVIEW(dev_priv) &&
5960 max_pixclk > freq_320*limit/100)
5961 return 400000;
5962 else if (max_pixclk > 266667*limit/100)
5963 return freq_320;
5964 else if (max_pixclk > 0)
5965 return 266667;
5966 else
5967 return 200000;
5968 }
5969
5970 static int bxt_calc_cdclk(int max_pixclk)
5971 {
5972 if (max_pixclk > 576000)
5973 return 624000;
5974 else if (max_pixclk > 384000)
5975 return 576000;
5976 else if (max_pixclk > 288000)
5977 return 384000;
5978 else if (max_pixclk > 144000)
5979 return 288000;
5980 else
5981 return 144000;
5982 }
5983
5984 /* Compute the max pixel clock for new configuration. */
5985 static int intel_mode_max_pixclk(struct drm_device *dev,
5986 struct drm_atomic_state *state)
5987 {
5988 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5989 struct drm_i915_private *dev_priv = to_i915(dev);
5990 struct drm_crtc *crtc;
5991 struct drm_crtc_state *crtc_state;
5992 unsigned max_pixclk = 0, i;
5993 enum pipe pipe;
5994
5995 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5996 sizeof(intel_state->min_pixclk));
5997
5998 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5999 int pixclk = 0;
6000
6001 if (crtc_state->enable)
6002 pixclk = crtc_state->adjusted_mode.crtc_clock;
6003
6004 intel_state->min_pixclk[i] = pixclk;
6005 }
6006
6007 for_each_pipe(dev_priv, pipe)
6008 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6009
6010 return max_pixclk;
6011 }
6012
6013 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6014 {
6015 struct drm_device *dev = state->dev;
6016 struct drm_i915_private *dev_priv = to_i915(dev);
6017 int max_pixclk = intel_mode_max_pixclk(dev, state);
6018 struct intel_atomic_state *intel_state =
6019 to_intel_atomic_state(state);
6020
6021 intel_state->cdclk = intel_state->dev_cdclk =
6022 valleyview_calc_cdclk(dev_priv, max_pixclk);
6023
6024 if (!intel_state->active_crtcs)
6025 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6026
6027 return 0;
6028 }
6029
6030 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6031 {
6032 int max_pixclk = ilk_max_pixel_rate(state);
6033 struct intel_atomic_state *intel_state =
6034 to_intel_atomic_state(state);
6035
6036 intel_state->cdclk = intel_state->dev_cdclk =
6037 bxt_calc_cdclk(max_pixclk);
6038
6039 if (!intel_state->active_crtcs)
6040 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6041
6042 return 0;
6043 }
6044
6045 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6046 {
6047 unsigned int credits, default_credits;
6048
6049 if (IS_CHERRYVIEW(dev_priv))
6050 default_credits = PFI_CREDIT(12);
6051 else
6052 default_credits = PFI_CREDIT(8);
6053
6054 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6055 /* CHV suggested value is 31 or 63 */
6056 if (IS_CHERRYVIEW(dev_priv))
6057 credits = PFI_CREDIT_63;
6058 else
6059 credits = PFI_CREDIT(15);
6060 } else {
6061 credits = default_credits;
6062 }
6063
6064 /*
6065 * WA - write default credits before re-programming
6066 * FIXME: should we also set the resend bit here?
6067 */
6068 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6069 default_credits);
6070
6071 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6072 credits | PFI_CREDIT_RESEND);
6073
6074 /*
6075 * FIXME is this guaranteed to clear
6076 * immediately or should we poll for it?
6077 */
6078 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6079 }
6080
6081 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6082 {
6083 struct drm_device *dev = old_state->dev;
6084 struct drm_i915_private *dev_priv = to_i915(dev);
6085 struct intel_atomic_state *old_intel_state =
6086 to_intel_atomic_state(old_state);
6087 unsigned req_cdclk = old_intel_state->dev_cdclk;
6088
6089 /*
6090 * FIXME: We can end up here with all power domains off, yet
6091 * with a CDCLK frequency other than the minimum. To account
6092 * for this take the PIPE-A power domain, which covers the HW
6093 * blocks needed for the following programming. This can be
6094 * removed once it's guaranteed that we get here either with
6095 * the minimum CDCLK set, or the required power domains
6096 * enabled.
6097 */
6098 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6099
6100 if (IS_CHERRYVIEW(dev))
6101 cherryview_set_cdclk(dev, req_cdclk);
6102 else
6103 valleyview_set_cdclk(dev, req_cdclk);
6104
6105 vlv_program_pfi_credits(dev_priv);
6106
6107 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6108 }
6109
6110 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6111 {
6112 struct drm_device *dev = crtc->dev;
6113 struct drm_i915_private *dev_priv = to_i915(dev);
6114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6115 struct intel_encoder *encoder;
6116 struct intel_crtc_state *pipe_config =
6117 to_intel_crtc_state(crtc->state);
6118 int pipe = intel_crtc->pipe;
6119
6120 if (WARN_ON(intel_crtc->active))
6121 return;
6122
6123 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6124 intel_dp_set_m_n(intel_crtc, M1_N1);
6125
6126 intel_set_pipe_timings(intel_crtc);
6127 intel_set_pipe_src_size(intel_crtc);
6128
6129 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6130 struct drm_i915_private *dev_priv = to_i915(dev);
6131
6132 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6133 I915_WRITE(CHV_CANVAS(pipe), 0);
6134 }
6135
6136 i9xx_set_pipeconf(intel_crtc);
6137
6138 intel_crtc->active = true;
6139
6140 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6141
6142 for_each_encoder_on_crtc(dev, crtc, encoder)
6143 if (encoder->pre_pll_enable)
6144 encoder->pre_pll_enable(encoder);
6145
6146 if (IS_CHERRYVIEW(dev)) {
6147 chv_prepare_pll(intel_crtc, intel_crtc->config);
6148 chv_enable_pll(intel_crtc, intel_crtc->config);
6149 } else {
6150 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6151 vlv_enable_pll(intel_crtc, intel_crtc->config);
6152 }
6153
6154 for_each_encoder_on_crtc(dev, crtc, encoder)
6155 if (encoder->pre_enable)
6156 encoder->pre_enable(encoder);
6157
6158 i9xx_pfit_enable(intel_crtc);
6159
6160 intel_color_load_luts(&pipe_config->base);
6161
6162 intel_update_watermarks(crtc);
6163 intel_enable_pipe(intel_crtc);
6164
6165 assert_vblank_disabled(crtc);
6166 drm_crtc_vblank_on(crtc);
6167
6168 for_each_encoder_on_crtc(dev, crtc, encoder)
6169 encoder->enable(encoder);
6170 }
6171
6172 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6173 {
6174 struct drm_device *dev = crtc->base.dev;
6175 struct drm_i915_private *dev_priv = to_i915(dev);
6176
6177 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6178 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6179 }
6180
6181 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6182 {
6183 struct drm_device *dev = crtc->dev;
6184 struct drm_i915_private *dev_priv = to_i915(dev);
6185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6186 struct intel_encoder *encoder;
6187 struct intel_crtc_state *pipe_config =
6188 to_intel_crtc_state(crtc->state);
6189 enum pipe pipe = intel_crtc->pipe;
6190
6191 if (WARN_ON(intel_crtc->active))
6192 return;
6193
6194 i9xx_set_pll_dividers(intel_crtc);
6195
6196 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6197 intel_dp_set_m_n(intel_crtc, M1_N1);
6198
6199 intel_set_pipe_timings(intel_crtc);
6200 intel_set_pipe_src_size(intel_crtc);
6201
6202 i9xx_set_pipeconf(intel_crtc);
6203
6204 intel_crtc->active = true;
6205
6206 if (!IS_GEN2(dev))
6207 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6208
6209 for_each_encoder_on_crtc(dev, crtc, encoder)
6210 if (encoder->pre_enable)
6211 encoder->pre_enable(encoder);
6212
6213 i9xx_enable_pll(intel_crtc);
6214
6215 i9xx_pfit_enable(intel_crtc);
6216
6217 intel_color_load_luts(&pipe_config->base);
6218
6219 intel_update_watermarks(crtc);
6220 intel_enable_pipe(intel_crtc);
6221
6222 assert_vblank_disabled(crtc);
6223 drm_crtc_vblank_on(crtc);
6224
6225 for_each_encoder_on_crtc(dev, crtc, encoder)
6226 encoder->enable(encoder);
6227 }
6228
6229 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6230 {
6231 struct drm_device *dev = crtc->base.dev;
6232 struct drm_i915_private *dev_priv = to_i915(dev);
6233
6234 if (!crtc->config->gmch_pfit.control)
6235 return;
6236
6237 assert_pipe_disabled(dev_priv, crtc->pipe);
6238
6239 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6240 I915_READ(PFIT_CONTROL));
6241 I915_WRITE(PFIT_CONTROL, 0);
6242 }
6243
6244 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6245 {
6246 struct drm_device *dev = crtc->dev;
6247 struct drm_i915_private *dev_priv = to_i915(dev);
6248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6249 struct intel_encoder *encoder;
6250 int pipe = intel_crtc->pipe;
6251
6252 /*
6253 * On gen2 planes are double buffered but the pipe isn't, so we must
6254 * wait for planes to fully turn off before disabling the pipe.
6255 */
6256 if (IS_GEN2(dev))
6257 intel_wait_for_vblank(dev, pipe);
6258
6259 for_each_encoder_on_crtc(dev, crtc, encoder)
6260 encoder->disable(encoder);
6261
6262 drm_crtc_vblank_off(crtc);
6263 assert_vblank_disabled(crtc);
6264
6265 intel_disable_pipe(intel_crtc);
6266
6267 i9xx_pfit_disable(intel_crtc);
6268
6269 for_each_encoder_on_crtc(dev, crtc, encoder)
6270 if (encoder->post_disable)
6271 encoder->post_disable(encoder);
6272
6273 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6274 if (IS_CHERRYVIEW(dev))
6275 chv_disable_pll(dev_priv, pipe);
6276 else if (IS_VALLEYVIEW(dev))
6277 vlv_disable_pll(dev_priv, pipe);
6278 else
6279 i9xx_disable_pll(intel_crtc);
6280 }
6281
6282 for_each_encoder_on_crtc(dev, crtc, encoder)
6283 if (encoder->post_pll_disable)
6284 encoder->post_pll_disable(encoder);
6285
6286 if (!IS_GEN2(dev))
6287 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6288 }
6289
6290 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6291 {
6292 struct intel_encoder *encoder;
6293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6294 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6295 enum intel_display_power_domain domain;
6296 unsigned long domains;
6297
6298 if (!intel_crtc->active)
6299 return;
6300
6301 if (to_intel_plane_state(crtc->primary->state)->visible) {
6302 WARN_ON(intel_crtc->flip_work);
6303
6304 intel_pre_disable_primary_noatomic(crtc);
6305
6306 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6307 to_intel_plane_state(crtc->primary->state)->visible = false;
6308 }
6309
6310 dev_priv->display.crtc_disable(crtc);
6311
6312 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6313 crtc->base.id, crtc->name);
6314
6315 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6316 crtc->state->active = false;
6317 intel_crtc->active = false;
6318 crtc->enabled = false;
6319 crtc->state->connector_mask = 0;
6320 crtc->state->encoder_mask = 0;
6321
6322 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6323 encoder->base.crtc = NULL;
6324
6325 intel_fbc_disable(intel_crtc);
6326 intel_update_watermarks(crtc);
6327 intel_disable_shared_dpll(intel_crtc);
6328
6329 domains = intel_crtc->enabled_power_domains;
6330 for_each_power_domain(domain, domains)
6331 intel_display_power_put(dev_priv, domain);
6332 intel_crtc->enabled_power_domains = 0;
6333
6334 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6335 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6336 }
6337
6338 /*
6339 * turn all crtc's off, but do not adjust state
6340 * This has to be paired with a call to intel_modeset_setup_hw_state.
6341 */
6342 int intel_display_suspend(struct drm_device *dev)
6343 {
6344 struct drm_i915_private *dev_priv = to_i915(dev);
6345 struct drm_atomic_state *state;
6346 int ret;
6347
6348 state = drm_atomic_helper_suspend(dev);
6349 ret = PTR_ERR_OR_ZERO(state);
6350 if (ret)
6351 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6352 else
6353 dev_priv->modeset_restore_state = state;
6354 return ret;
6355 }
6356
6357 void intel_encoder_destroy(struct drm_encoder *encoder)
6358 {
6359 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6360
6361 drm_encoder_cleanup(encoder);
6362 kfree(intel_encoder);
6363 }
6364
6365 /* Cross check the actual hw state with our own modeset state tracking (and it's
6366 * internal consistency). */
6367 static void intel_connector_verify_state(struct intel_connector *connector)
6368 {
6369 struct drm_crtc *crtc = connector->base.state->crtc;
6370
6371 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372 connector->base.base.id,
6373 connector->base.name);
6374
6375 if (connector->get_hw_state(connector)) {
6376 struct intel_encoder *encoder = connector->encoder;
6377 struct drm_connector_state *conn_state = connector->base.state;
6378
6379 I915_STATE_WARN(!crtc,
6380 "connector enabled without attached crtc\n");
6381
6382 if (!crtc)
6383 return;
6384
6385 I915_STATE_WARN(!crtc->state->active,
6386 "connector is active, but attached crtc isn't\n");
6387
6388 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6389 return;
6390
6391 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6392 "atomic encoder doesn't match attached encoder\n");
6393
6394 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6395 "attached encoder crtc differs from connector crtc\n");
6396 } else {
6397 I915_STATE_WARN(crtc && crtc->state->active,
6398 "attached crtc is active, but connector isn't\n");
6399 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6400 "best encoder set without crtc!\n");
6401 }
6402 }
6403
6404 int intel_connector_init(struct intel_connector *connector)
6405 {
6406 drm_atomic_helper_connector_reset(&connector->base);
6407
6408 if (!connector->base.state)
6409 return -ENOMEM;
6410
6411 return 0;
6412 }
6413
6414 struct intel_connector *intel_connector_alloc(void)
6415 {
6416 struct intel_connector *connector;
6417
6418 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6419 if (!connector)
6420 return NULL;
6421
6422 if (intel_connector_init(connector) < 0) {
6423 kfree(connector);
6424 return NULL;
6425 }
6426
6427 return connector;
6428 }
6429
6430 /* Simple connector->get_hw_state implementation for encoders that support only
6431 * one connector and no cloning and hence the encoder state determines the state
6432 * of the connector. */
6433 bool intel_connector_get_hw_state(struct intel_connector *connector)
6434 {
6435 enum pipe pipe = 0;
6436 struct intel_encoder *encoder = connector->encoder;
6437
6438 return encoder->get_hw_state(encoder, &pipe);
6439 }
6440
6441 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6442 {
6443 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6444 return crtc_state->fdi_lanes;
6445
6446 return 0;
6447 }
6448
6449 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6450 struct intel_crtc_state *pipe_config)
6451 {
6452 struct drm_atomic_state *state = pipe_config->base.state;
6453 struct intel_crtc *other_crtc;
6454 struct intel_crtc_state *other_crtc_state;
6455
6456 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6457 pipe_name(pipe), pipe_config->fdi_lanes);
6458 if (pipe_config->fdi_lanes > 4) {
6459 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6460 pipe_name(pipe), pipe_config->fdi_lanes);
6461 return -EINVAL;
6462 }
6463
6464 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6465 if (pipe_config->fdi_lanes > 2) {
6466 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6467 pipe_config->fdi_lanes);
6468 return -EINVAL;
6469 } else {
6470 return 0;
6471 }
6472 }
6473
6474 if (INTEL_INFO(dev)->num_pipes == 2)
6475 return 0;
6476
6477 /* Ivybridge 3 pipe is really complicated */
6478 switch (pipe) {
6479 case PIPE_A:
6480 return 0;
6481 case PIPE_B:
6482 if (pipe_config->fdi_lanes <= 2)
6483 return 0;
6484
6485 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6486 other_crtc_state =
6487 intel_atomic_get_crtc_state(state, other_crtc);
6488 if (IS_ERR(other_crtc_state))
6489 return PTR_ERR(other_crtc_state);
6490
6491 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6492 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6493 pipe_name(pipe), pipe_config->fdi_lanes);
6494 return -EINVAL;
6495 }
6496 return 0;
6497 case PIPE_C:
6498 if (pipe_config->fdi_lanes > 2) {
6499 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6500 pipe_name(pipe), pipe_config->fdi_lanes);
6501 return -EINVAL;
6502 }
6503
6504 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6505 other_crtc_state =
6506 intel_atomic_get_crtc_state(state, other_crtc);
6507 if (IS_ERR(other_crtc_state))
6508 return PTR_ERR(other_crtc_state);
6509
6510 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6511 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6512 return -EINVAL;
6513 }
6514 return 0;
6515 default:
6516 BUG();
6517 }
6518 }
6519
6520 #define RETRY 1
6521 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6522 struct intel_crtc_state *pipe_config)
6523 {
6524 struct drm_device *dev = intel_crtc->base.dev;
6525 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6526 int lane, link_bw, fdi_dotclock, ret;
6527 bool needs_recompute = false;
6528
6529 retry:
6530 /* FDI is a binary signal running at ~2.7GHz, encoding
6531 * each output octet as 10 bits. The actual frequency
6532 * is stored as a divider into a 100MHz clock, and the
6533 * mode pixel clock is stored in units of 1KHz.
6534 * Hence the bw of each lane in terms of the mode signal
6535 * is:
6536 */
6537 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6538
6539 fdi_dotclock = adjusted_mode->crtc_clock;
6540
6541 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6542 pipe_config->pipe_bpp);
6543
6544 pipe_config->fdi_lanes = lane;
6545
6546 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6547 link_bw, &pipe_config->fdi_m_n);
6548
6549 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6550 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6551 pipe_config->pipe_bpp -= 2*3;
6552 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6553 pipe_config->pipe_bpp);
6554 needs_recompute = true;
6555 pipe_config->bw_constrained = true;
6556
6557 goto retry;
6558 }
6559
6560 if (needs_recompute)
6561 return RETRY;
6562
6563 return ret;
6564 }
6565
6566 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6567 struct intel_crtc_state *pipe_config)
6568 {
6569 if (pipe_config->pipe_bpp > 24)
6570 return false;
6571
6572 /* HSW can handle pixel rate up to cdclk? */
6573 if (IS_HASWELL(dev_priv))
6574 return true;
6575
6576 /*
6577 * We compare against max which means we must take
6578 * the increased cdclk requirement into account when
6579 * calculating the new cdclk.
6580 *
6581 * Should measure whether using a lower cdclk w/o IPS
6582 */
6583 return ilk_pipe_pixel_rate(pipe_config) <=
6584 dev_priv->max_cdclk_freq * 95 / 100;
6585 }
6586
6587 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6588 struct intel_crtc_state *pipe_config)
6589 {
6590 struct drm_device *dev = crtc->base.dev;
6591 struct drm_i915_private *dev_priv = to_i915(dev);
6592
6593 pipe_config->ips_enabled = i915.enable_ips &&
6594 hsw_crtc_supports_ips(crtc) &&
6595 pipe_config_supports_ips(dev_priv, pipe_config);
6596 }
6597
6598 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6599 {
6600 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6601
6602 /* GDG double wide on either pipe, otherwise pipe A only */
6603 return INTEL_INFO(dev_priv)->gen < 4 &&
6604 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6605 }
6606
6607 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6608 struct intel_crtc_state *pipe_config)
6609 {
6610 struct drm_device *dev = crtc->base.dev;
6611 struct drm_i915_private *dev_priv = to_i915(dev);
6612 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6613 int clock_limit = dev_priv->max_dotclk_freq;
6614
6615 if (INTEL_INFO(dev)->gen < 4) {
6616 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6617
6618 /*
6619 * Enable double wide mode when the dot clock
6620 * is > 90% of the (display) core speed.
6621 */
6622 if (intel_crtc_supports_double_wide(crtc) &&
6623 adjusted_mode->crtc_clock > clock_limit) {
6624 clock_limit = dev_priv->max_dotclk_freq;
6625 pipe_config->double_wide = true;
6626 }
6627 }
6628
6629 if (adjusted_mode->crtc_clock > clock_limit) {
6630 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6631 adjusted_mode->crtc_clock, clock_limit,
6632 yesno(pipe_config->double_wide));
6633 return -EINVAL;
6634 }
6635
6636 /*
6637 * Pipe horizontal size must be even in:
6638 * - DVO ganged mode
6639 * - LVDS dual channel mode
6640 * - Double wide pipe
6641 */
6642 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6643 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6644 pipe_config->pipe_src_w &= ~1;
6645
6646 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6647 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6648 */
6649 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6650 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6651 return -EINVAL;
6652
6653 if (HAS_IPS(dev))
6654 hsw_compute_ips_config(crtc, pipe_config);
6655
6656 if (pipe_config->has_pch_encoder)
6657 return ironlake_fdi_compute_config(crtc, pipe_config);
6658
6659 return 0;
6660 }
6661
6662 static int skylake_get_display_clock_speed(struct drm_device *dev)
6663 {
6664 struct drm_i915_private *dev_priv = to_i915(dev);
6665 uint32_t cdctl;
6666
6667 skl_dpll0_update(dev_priv);
6668
6669 if (dev_priv->cdclk_pll.vco == 0)
6670 return dev_priv->cdclk_pll.ref;
6671
6672 cdctl = I915_READ(CDCLK_CTL);
6673
6674 if (dev_priv->cdclk_pll.vco == 8640000) {
6675 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6676 case CDCLK_FREQ_450_432:
6677 return 432000;
6678 case CDCLK_FREQ_337_308:
6679 return 308571;
6680 case CDCLK_FREQ_540:
6681 return 540000;
6682 case CDCLK_FREQ_675_617:
6683 return 617143;
6684 default:
6685 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6686 }
6687 } else {
6688 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6689 case CDCLK_FREQ_450_432:
6690 return 450000;
6691 case CDCLK_FREQ_337_308:
6692 return 337500;
6693 case CDCLK_FREQ_540:
6694 return 540000;
6695 case CDCLK_FREQ_675_617:
6696 return 675000;
6697 default:
6698 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6699 }
6700 }
6701
6702 return dev_priv->cdclk_pll.ref;
6703 }
6704
6705 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6706 {
6707 u32 val;
6708
6709 dev_priv->cdclk_pll.ref = 19200;
6710 dev_priv->cdclk_pll.vco = 0;
6711
6712 val = I915_READ(BXT_DE_PLL_ENABLE);
6713 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6714 return;
6715
6716 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6717 return;
6718
6719 val = I915_READ(BXT_DE_PLL_CTL);
6720 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6721 dev_priv->cdclk_pll.ref;
6722 }
6723
6724 static int broxton_get_display_clock_speed(struct drm_device *dev)
6725 {
6726 struct drm_i915_private *dev_priv = to_i915(dev);
6727 u32 divider;
6728 int div, vco;
6729
6730 bxt_de_pll_update(dev_priv);
6731
6732 vco = dev_priv->cdclk_pll.vco;
6733 if (vco == 0)
6734 return dev_priv->cdclk_pll.ref;
6735
6736 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6737
6738 switch (divider) {
6739 case BXT_CDCLK_CD2X_DIV_SEL_1:
6740 div = 2;
6741 break;
6742 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6743 div = 3;
6744 break;
6745 case BXT_CDCLK_CD2X_DIV_SEL_2:
6746 div = 4;
6747 break;
6748 case BXT_CDCLK_CD2X_DIV_SEL_4:
6749 div = 8;
6750 break;
6751 default:
6752 MISSING_CASE(divider);
6753 return dev_priv->cdclk_pll.ref;
6754 }
6755
6756 return DIV_ROUND_CLOSEST(vco, div);
6757 }
6758
6759 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6760 {
6761 struct drm_i915_private *dev_priv = to_i915(dev);
6762 uint32_t lcpll = I915_READ(LCPLL_CTL);
6763 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6764
6765 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6766 return 800000;
6767 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6768 return 450000;
6769 else if (freq == LCPLL_CLK_FREQ_450)
6770 return 450000;
6771 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6772 return 540000;
6773 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6774 return 337500;
6775 else
6776 return 675000;
6777 }
6778
6779 static int haswell_get_display_clock_speed(struct drm_device *dev)
6780 {
6781 struct drm_i915_private *dev_priv = to_i915(dev);
6782 uint32_t lcpll = I915_READ(LCPLL_CTL);
6783 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6784
6785 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6786 return 800000;
6787 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6788 return 450000;
6789 else if (freq == LCPLL_CLK_FREQ_450)
6790 return 450000;
6791 else if (IS_HSW_ULT(dev))
6792 return 337500;
6793 else
6794 return 540000;
6795 }
6796
6797 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6798 {
6799 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6800 CCK_DISPLAY_CLOCK_CONTROL);
6801 }
6802
6803 static int ilk_get_display_clock_speed(struct drm_device *dev)
6804 {
6805 return 450000;
6806 }
6807
6808 static int i945_get_display_clock_speed(struct drm_device *dev)
6809 {
6810 return 400000;
6811 }
6812
6813 static int i915_get_display_clock_speed(struct drm_device *dev)
6814 {
6815 return 333333;
6816 }
6817
6818 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 return 200000;
6821 }
6822
6823 static int pnv_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 u16 gcfgc = 0;
6826
6827 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6828
6829 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6830 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6831 return 266667;
6832 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6833 return 333333;
6834 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6835 return 444444;
6836 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6837 return 200000;
6838 default:
6839 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6840 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6841 return 133333;
6842 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6843 return 166667;
6844 }
6845 }
6846
6847 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6848 {
6849 u16 gcfgc = 0;
6850
6851 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6852
6853 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6854 return 133333;
6855 else {
6856 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6857 case GC_DISPLAY_CLOCK_333_MHZ:
6858 return 333333;
6859 default:
6860 case GC_DISPLAY_CLOCK_190_200_MHZ:
6861 return 190000;
6862 }
6863 }
6864 }
6865
6866 static int i865_get_display_clock_speed(struct drm_device *dev)
6867 {
6868 return 266667;
6869 }
6870
6871 static int i85x_get_display_clock_speed(struct drm_device *dev)
6872 {
6873 u16 hpllcc = 0;
6874
6875 /*
6876 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6877 * encoding is different :(
6878 * FIXME is this the right way to detect 852GM/852GMV?
6879 */
6880 if (dev->pdev->revision == 0x1)
6881 return 133333;
6882
6883 pci_bus_read_config_word(dev->pdev->bus,
6884 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6885
6886 /* Assume that the hardware is in the high speed state. This
6887 * should be the default.
6888 */
6889 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6890 case GC_CLOCK_133_200:
6891 case GC_CLOCK_133_200_2:
6892 case GC_CLOCK_100_200:
6893 return 200000;
6894 case GC_CLOCK_166_250:
6895 return 250000;
6896 case GC_CLOCK_100_133:
6897 return 133333;
6898 case GC_CLOCK_133_266:
6899 case GC_CLOCK_133_266_2:
6900 case GC_CLOCK_166_266:
6901 return 266667;
6902 }
6903
6904 /* Shouldn't happen */
6905 return 0;
6906 }
6907
6908 static int i830_get_display_clock_speed(struct drm_device *dev)
6909 {
6910 return 133333;
6911 }
6912
6913 static unsigned int intel_hpll_vco(struct drm_device *dev)
6914 {
6915 struct drm_i915_private *dev_priv = to_i915(dev);
6916 static const unsigned int blb_vco[8] = {
6917 [0] = 3200000,
6918 [1] = 4000000,
6919 [2] = 5333333,
6920 [3] = 4800000,
6921 [4] = 6400000,
6922 };
6923 static const unsigned int pnv_vco[8] = {
6924 [0] = 3200000,
6925 [1] = 4000000,
6926 [2] = 5333333,
6927 [3] = 4800000,
6928 [4] = 2666667,
6929 };
6930 static const unsigned int cl_vco[8] = {
6931 [0] = 3200000,
6932 [1] = 4000000,
6933 [2] = 5333333,
6934 [3] = 6400000,
6935 [4] = 3333333,
6936 [5] = 3566667,
6937 [6] = 4266667,
6938 };
6939 static const unsigned int elk_vco[8] = {
6940 [0] = 3200000,
6941 [1] = 4000000,
6942 [2] = 5333333,
6943 [3] = 4800000,
6944 };
6945 static const unsigned int ctg_vco[8] = {
6946 [0] = 3200000,
6947 [1] = 4000000,
6948 [2] = 5333333,
6949 [3] = 6400000,
6950 [4] = 2666667,
6951 [5] = 4266667,
6952 };
6953 const unsigned int *vco_table;
6954 unsigned int vco;
6955 uint8_t tmp = 0;
6956
6957 /* FIXME other chipsets? */
6958 if (IS_GM45(dev))
6959 vco_table = ctg_vco;
6960 else if (IS_G4X(dev))
6961 vco_table = elk_vco;
6962 else if (IS_CRESTLINE(dev))
6963 vco_table = cl_vco;
6964 else if (IS_PINEVIEW(dev))
6965 vco_table = pnv_vco;
6966 else if (IS_G33(dev))
6967 vco_table = blb_vco;
6968 else
6969 return 0;
6970
6971 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6972
6973 vco = vco_table[tmp & 0x7];
6974 if (vco == 0)
6975 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6976 else
6977 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6978
6979 return vco;
6980 }
6981
6982 static int gm45_get_display_clock_speed(struct drm_device *dev)
6983 {
6984 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6985 uint16_t tmp = 0;
6986
6987 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6988
6989 cdclk_sel = (tmp >> 12) & 0x1;
6990
6991 switch (vco) {
6992 case 2666667:
6993 case 4000000:
6994 case 5333333:
6995 return cdclk_sel ? 333333 : 222222;
6996 case 3200000:
6997 return cdclk_sel ? 320000 : 228571;
6998 default:
6999 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7000 return 222222;
7001 }
7002 }
7003
7004 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7005 {
7006 static const uint8_t div_3200[] = { 16, 10, 8 };
7007 static const uint8_t div_4000[] = { 20, 12, 10 };
7008 static const uint8_t div_5333[] = { 24, 16, 14 };
7009 const uint8_t *div_table;
7010 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7011 uint16_t tmp = 0;
7012
7013 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7014
7015 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7016
7017 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7018 goto fail;
7019
7020 switch (vco) {
7021 case 3200000:
7022 div_table = div_3200;
7023 break;
7024 case 4000000:
7025 div_table = div_4000;
7026 break;
7027 case 5333333:
7028 div_table = div_5333;
7029 break;
7030 default:
7031 goto fail;
7032 }
7033
7034 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7035
7036 fail:
7037 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7038 return 200000;
7039 }
7040
7041 static int g33_get_display_clock_speed(struct drm_device *dev)
7042 {
7043 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7044 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7045 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7046 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7047 const uint8_t *div_table;
7048 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7049 uint16_t tmp = 0;
7050
7051 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7052
7053 cdclk_sel = (tmp >> 4) & 0x7;
7054
7055 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7056 goto fail;
7057
7058 switch (vco) {
7059 case 3200000:
7060 div_table = div_3200;
7061 break;
7062 case 4000000:
7063 div_table = div_4000;
7064 break;
7065 case 4800000:
7066 div_table = div_4800;
7067 break;
7068 case 5333333:
7069 div_table = div_5333;
7070 break;
7071 default:
7072 goto fail;
7073 }
7074
7075 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7076
7077 fail:
7078 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7079 return 190476;
7080 }
7081
7082 static void
7083 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7084 {
7085 while (*num > DATA_LINK_M_N_MASK ||
7086 *den > DATA_LINK_M_N_MASK) {
7087 *num >>= 1;
7088 *den >>= 1;
7089 }
7090 }
7091
7092 static void compute_m_n(unsigned int m, unsigned int n,
7093 uint32_t *ret_m, uint32_t *ret_n)
7094 {
7095 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7096 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7097 intel_reduce_m_n_ratio(ret_m, ret_n);
7098 }
7099
7100 void
7101 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7102 int pixel_clock, int link_clock,
7103 struct intel_link_m_n *m_n)
7104 {
7105 m_n->tu = 64;
7106
7107 compute_m_n(bits_per_pixel * pixel_clock,
7108 link_clock * nlanes * 8,
7109 &m_n->gmch_m, &m_n->gmch_n);
7110
7111 compute_m_n(pixel_clock, link_clock,
7112 &m_n->link_m, &m_n->link_n);
7113 }
7114
7115 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7116 {
7117 if (i915.panel_use_ssc >= 0)
7118 return i915.panel_use_ssc != 0;
7119 return dev_priv->vbt.lvds_use_ssc
7120 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7121 }
7122
7123 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7124 {
7125 return (1 << dpll->n) << 16 | dpll->m2;
7126 }
7127
7128 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7129 {
7130 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7131 }
7132
7133 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7134 struct intel_crtc_state *crtc_state,
7135 struct dpll *reduced_clock)
7136 {
7137 struct drm_device *dev = crtc->base.dev;
7138 u32 fp, fp2 = 0;
7139
7140 if (IS_PINEVIEW(dev)) {
7141 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7142 if (reduced_clock)
7143 fp2 = pnv_dpll_compute_fp(reduced_clock);
7144 } else {
7145 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7146 if (reduced_clock)
7147 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7148 }
7149
7150 crtc_state->dpll_hw_state.fp0 = fp;
7151
7152 crtc->lowfreq_avail = false;
7153 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7154 reduced_clock) {
7155 crtc_state->dpll_hw_state.fp1 = fp2;
7156 crtc->lowfreq_avail = true;
7157 } else {
7158 crtc_state->dpll_hw_state.fp1 = fp;
7159 }
7160 }
7161
7162 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7163 pipe)
7164 {
7165 u32 reg_val;
7166
7167 /*
7168 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7169 * and set it to a reasonable value instead.
7170 */
7171 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7172 reg_val &= 0xffffff00;
7173 reg_val |= 0x00000030;
7174 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7175
7176 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7177 reg_val &= 0x8cffffff;
7178 reg_val = 0x8c000000;
7179 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7180
7181 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7182 reg_val &= 0xffffff00;
7183 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7184
7185 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7186 reg_val &= 0x00ffffff;
7187 reg_val |= 0xb0000000;
7188 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7189 }
7190
7191 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7192 struct intel_link_m_n *m_n)
7193 {
7194 struct drm_device *dev = crtc->base.dev;
7195 struct drm_i915_private *dev_priv = to_i915(dev);
7196 int pipe = crtc->pipe;
7197
7198 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7199 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7200 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7201 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7202 }
7203
7204 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7205 struct intel_link_m_n *m_n,
7206 struct intel_link_m_n *m2_n2)
7207 {
7208 struct drm_device *dev = crtc->base.dev;
7209 struct drm_i915_private *dev_priv = to_i915(dev);
7210 int pipe = crtc->pipe;
7211 enum transcoder transcoder = crtc->config->cpu_transcoder;
7212
7213 if (INTEL_INFO(dev)->gen >= 5) {
7214 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7215 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7216 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7217 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7218 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7219 * for gen < 8) and if DRRS is supported (to make sure the
7220 * registers are not unnecessarily accessed).
7221 */
7222 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7223 crtc->config->has_drrs) {
7224 I915_WRITE(PIPE_DATA_M2(transcoder),
7225 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7226 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7227 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7228 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7229 }
7230 } else {
7231 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7232 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7233 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7234 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7235 }
7236 }
7237
7238 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7239 {
7240 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7241
7242 if (m_n == M1_N1) {
7243 dp_m_n = &crtc->config->dp_m_n;
7244 dp_m2_n2 = &crtc->config->dp_m2_n2;
7245 } else if (m_n == M2_N2) {
7246
7247 /*
7248 * M2_N2 registers are not supported. Hence m2_n2 divider value
7249 * needs to be programmed into M1_N1.
7250 */
7251 dp_m_n = &crtc->config->dp_m2_n2;
7252 } else {
7253 DRM_ERROR("Unsupported divider value\n");
7254 return;
7255 }
7256
7257 if (crtc->config->has_pch_encoder)
7258 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7259 else
7260 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7261 }
7262
7263 static void vlv_compute_dpll(struct intel_crtc *crtc,
7264 struct intel_crtc_state *pipe_config)
7265 {
7266 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7267 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7268 if (crtc->pipe != PIPE_A)
7269 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7270
7271 /* DPLL not used with DSI, but still need the rest set up */
7272 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7273 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7274 DPLL_EXT_BUFFER_ENABLE_VLV;
7275
7276 pipe_config->dpll_hw_state.dpll_md =
7277 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7278 }
7279
7280 static void chv_compute_dpll(struct intel_crtc *crtc,
7281 struct intel_crtc_state *pipe_config)
7282 {
7283 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7284 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7285 if (crtc->pipe != PIPE_A)
7286 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7287
7288 /* DPLL not used with DSI, but still need the rest set up */
7289 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7290 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7291
7292 pipe_config->dpll_hw_state.dpll_md =
7293 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7294 }
7295
7296 static void vlv_prepare_pll(struct intel_crtc *crtc,
7297 const struct intel_crtc_state *pipe_config)
7298 {
7299 struct drm_device *dev = crtc->base.dev;
7300 struct drm_i915_private *dev_priv = to_i915(dev);
7301 enum pipe pipe = crtc->pipe;
7302 u32 mdiv;
7303 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7304 u32 coreclk, reg_val;
7305
7306 /* Enable Refclk */
7307 I915_WRITE(DPLL(pipe),
7308 pipe_config->dpll_hw_state.dpll &
7309 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7310
7311 /* No need to actually set up the DPLL with DSI */
7312 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7313 return;
7314
7315 mutex_lock(&dev_priv->sb_lock);
7316
7317 bestn = pipe_config->dpll.n;
7318 bestm1 = pipe_config->dpll.m1;
7319 bestm2 = pipe_config->dpll.m2;
7320 bestp1 = pipe_config->dpll.p1;
7321 bestp2 = pipe_config->dpll.p2;
7322
7323 /* See eDP HDMI DPIO driver vbios notes doc */
7324
7325 /* PLL B needs special handling */
7326 if (pipe == PIPE_B)
7327 vlv_pllb_recal_opamp(dev_priv, pipe);
7328
7329 /* Set up Tx target for periodic Rcomp update */
7330 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7331
7332 /* Disable target IRef on PLL */
7333 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7334 reg_val &= 0x00ffffff;
7335 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7336
7337 /* Disable fast lock */
7338 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7339
7340 /* Set idtafcrecal before PLL is enabled */
7341 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7342 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7343 mdiv |= ((bestn << DPIO_N_SHIFT));
7344 mdiv |= (1 << DPIO_K_SHIFT);
7345
7346 /*
7347 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7348 * but we don't support that).
7349 * Note: don't use the DAC post divider as it seems unstable.
7350 */
7351 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7352 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7353
7354 mdiv |= DPIO_ENABLE_CALIBRATION;
7355 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7356
7357 /* Set HBR and RBR LPF coefficients */
7358 if (pipe_config->port_clock == 162000 ||
7359 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7360 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7361 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7362 0x009f0003);
7363 else
7364 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7365 0x00d0000f);
7366
7367 if (intel_crtc_has_dp_encoder(pipe_config)) {
7368 /* Use SSC source */
7369 if (pipe == PIPE_A)
7370 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7371 0x0df40000);
7372 else
7373 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7374 0x0df70000);
7375 } else { /* HDMI or VGA */
7376 /* Use bend source */
7377 if (pipe == PIPE_A)
7378 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7379 0x0df70000);
7380 else
7381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7382 0x0df40000);
7383 }
7384
7385 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7386 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7387 if (intel_crtc_has_dp_encoder(crtc->config))
7388 coreclk |= 0x01000000;
7389 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7390
7391 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7392 mutex_unlock(&dev_priv->sb_lock);
7393 }
7394
7395 static void chv_prepare_pll(struct intel_crtc *crtc,
7396 const struct intel_crtc_state *pipe_config)
7397 {
7398 struct drm_device *dev = crtc->base.dev;
7399 struct drm_i915_private *dev_priv = to_i915(dev);
7400 enum pipe pipe = crtc->pipe;
7401 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7402 u32 loopfilter, tribuf_calcntr;
7403 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7404 u32 dpio_val;
7405 int vco;
7406
7407 /* Enable Refclk and SSC */
7408 I915_WRITE(DPLL(pipe),
7409 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7410
7411 /* No need to actually set up the DPLL with DSI */
7412 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7413 return;
7414
7415 bestn = pipe_config->dpll.n;
7416 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7417 bestm1 = pipe_config->dpll.m1;
7418 bestm2 = pipe_config->dpll.m2 >> 22;
7419 bestp1 = pipe_config->dpll.p1;
7420 bestp2 = pipe_config->dpll.p2;
7421 vco = pipe_config->dpll.vco;
7422 dpio_val = 0;
7423 loopfilter = 0;
7424
7425 mutex_lock(&dev_priv->sb_lock);
7426
7427 /* p1 and p2 divider */
7428 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7429 5 << DPIO_CHV_S1_DIV_SHIFT |
7430 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7431 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7432 1 << DPIO_CHV_K_DIV_SHIFT);
7433
7434 /* Feedback post-divider - m2 */
7435 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7436
7437 /* Feedback refclk divider - n and m1 */
7438 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7439 DPIO_CHV_M1_DIV_BY_2 |
7440 1 << DPIO_CHV_N_DIV_SHIFT);
7441
7442 /* M2 fraction division */
7443 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7444
7445 /* M2 fraction division enable */
7446 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7447 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7448 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7449 if (bestm2_frac)
7450 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7451 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7452
7453 /* Program digital lock detect threshold */
7454 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7455 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7456 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7457 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7458 if (!bestm2_frac)
7459 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7460 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7461
7462 /* Loop filter */
7463 if (vco == 5400000) {
7464 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7465 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7466 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7467 tribuf_calcntr = 0x9;
7468 } else if (vco <= 6200000) {
7469 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7470 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7471 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7472 tribuf_calcntr = 0x9;
7473 } else if (vco <= 6480000) {
7474 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7475 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7476 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7477 tribuf_calcntr = 0x8;
7478 } else {
7479 /* Not supported. Apply the same limits as in the max case */
7480 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7481 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7482 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7483 tribuf_calcntr = 0;
7484 }
7485 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7486
7487 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7488 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7489 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7490 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7491
7492 /* AFC Recal */
7493 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7494 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7495 DPIO_AFC_RECAL);
7496
7497 mutex_unlock(&dev_priv->sb_lock);
7498 }
7499
7500 /**
7501 * vlv_force_pll_on - forcibly enable just the PLL
7502 * @dev_priv: i915 private structure
7503 * @pipe: pipe PLL to enable
7504 * @dpll: PLL configuration
7505 *
7506 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7507 * in cases where we need the PLL enabled even when @pipe is not going to
7508 * be enabled.
7509 */
7510 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7511 const struct dpll *dpll)
7512 {
7513 struct intel_crtc *crtc =
7514 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7515 struct intel_crtc_state *pipe_config;
7516
7517 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7518 if (!pipe_config)
7519 return -ENOMEM;
7520
7521 pipe_config->base.crtc = &crtc->base;
7522 pipe_config->pixel_multiplier = 1;
7523 pipe_config->dpll = *dpll;
7524
7525 if (IS_CHERRYVIEW(dev)) {
7526 chv_compute_dpll(crtc, pipe_config);
7527 chv_prepare_pll(crtc, pipe_config);
7528 chv_enable_pll(crtc, pipe_config);
7529 } else {
7530 vlv_compute_dpll(crtc, pipe_config);
7531 vlv_prepare_pll(crtc, pipe_config);
7532 vlv_enable_pll(crtc, pipe_config);
7533 }
7534
7535 kfree(pipe_config);
7536
7537 return 0;
7538 }
7539
7540 /**
7541 * vlv_force_pll_off - forcibly disable just the PLL
7542 * @dev_priv: i915 private structure
7543 * @pipe: pipe PLL to disable
7544 *
7545 * Disable the PLL for @pipe. To be used in cases where we need
7546 * the PLL enabled even when @pipe is not going to be enabled.
7547 */
7548 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7549 {
7550 if (IS_CHERRYVIEW(dev))
7551 chv_disable_pll(to_i915(dev), pipe);
7552 else
7553 vlv_disable_pll(to_i915(dev), pipe);
7554 }
7555
7556 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7557 struct intel_crtc_state *crtc_state,
7558 struct dpll *reduced_clock)
7559 {
7560 struct drm_device *dev = crtc->base.dev;
7561 struct drm_i915_private *dev_priv = to_i915(dev);
7562 u32 dpll;
7563 struct dpll *clock = &crtc_state->dpll;
7564
7565 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7566
7567 dpll = DPLL_VGA_MODE_DIS;
7568
7569 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7570 dpll |= DPLLB_MODE_LVDS;
7571 else
7572 dpll |= DPLLB_MODE_DAC_SERIAL;
7573
7574 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7575 dpll |= (crtc_state->pixel_multiplier - 1)
7576 << SDVO_MULTIPLIER_SHIFT_HIRES;
7577 }
7578
7579 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7580 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7581 dpll |= DPLL_SDVO_HIGH_SPEED;
7582
7583 if (intel_crtc_has_dp_encoder(crtc_state))
7584 dpll |= DPLL_SDVO_HIGH_SPEED;
7585
7586 /* compute bitmask from p1 value */
7587 if (IS_PINEVIEW(dev))
7588 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7589 else {
7590 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7591 if (IS_G4X(dev) && reduced_clock)
7592 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7593 }
7594 switch (clock->p2) {
7595 case 5:
7596 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7597 break;
7598 case 7:
7599 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7600 break;
7601 case 10:
7602 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7603 break;
7604 case 14:
7605 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7606 break;
7607 }
7608 if (INTEL_INFO(dev)->gen >= 4)
7609 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7610
7611 if (crtc_state->sdvo_tv_clock)
7612 dpll |= PLL_REF_INPUT_TVCLKINBC;
7613 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7614 intel_panel_use_ssc(dev_priv))
7615 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7616 else
7617 dpll |= PLL_REF_INPUT_DREFCLK;
7618
7619 dpll |= DPLL_VCO_ENABLE;
7620 crtc_state->dpll_hw_state.dpll = dpll;
7621
7622 if (INTEL_INFO(dev)->gen >= 4) {
7623 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7624 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7625 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7626 }
7627 }
7628
7629 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7630 struct intel_crtc_state *crtc_state,
7631 struct dpll *reduced_clock)
7632 {
7633 struct drm_device *dev = crtc->base.dev;
7634 struct drm_i915_private *dev_priv = to_i915(dev);
7635 u32 dpll;
7636 struct dpll *clock = &crtc_state->dpll;
7637
7638 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7639
7640 dpll = DPLL_VGA_MODE_DIS;
7641
7642 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7643 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7644 } else {
7645 if (clock->p1 == 2)
7646 dpll |= PLL_P1_DIVIDE_BY_TWO;
7647 else
7648 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7649 if (clock->p2 == 4)
7650 dpll |= PLL_P2_DIVIDE_BY_4;
7651 }
7652
7653 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7654 dpll |= DPLL_DVO_2X_MODE;
7655
7656 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7657 intel_panel_use_ssc(dev_priv))
7658 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7659 else
7660 dpll |= PLL_REF_INPUT_DREFCLK;
7661
7662 dpll |= DPLL_VCO_ENABLE;
7663 crtc_state->dpll_hw_state.dpll = dpll;
7664 }
7665
7666 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7667 {
7668 struct drm_device *dev = intel_crtc->base.dev;
7669 struct drm_i915_private *dev_priv = to_i915(dev);
7670 enum pipe pipe = intel_crtc->pipe;
7671 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7672 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7673 uint32_t crtc_vtotal, crtc_vblank_end;
7674 int vsyncshift = 0;
7675
7676 /* We need to be careful not to changed the adjusted mode, for otherwise
7677 * the hw state checker will get angry at the mismatch. */
7678 crtc_vtotal = adjusted_mode->crtc_vtotal;
7679 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7680
7681 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7682 /* the chip adds 2 halflines automatically */
7683 crtc_vtotal -= 1;
7684 crtc_vblank_end -= 1;
7685
7686 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7687 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7688 else
7689 vsyncshift = adjusted_mode->crtc_hsync_start -
7690 adjusted_mode->crtc_htotal / 2;
7691 if (vsyncshift < 0)
7692 vsyncshift += adjusted_mode->crtc_htotal;
7693 }
7694
7695 if (INTEL_INFO(dev)->gen > 3)
7696 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7697
7698 I915_WRITE(HTOTAL(cpu_transcoder),
7699 (adjusted_mode->crtc_hdisplay - 1) |
7700 ((adjusted_mode->crtc_htotal - 1) << 16));
7701 I915_WRITE(HBLANK(cpu_transcoder),
7702 (adjusted_mode->crtc_hblank_start - 1) |
7703 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7704 I915_WRITE(HSYNC(cpu_transcoder),
7705 (adjusted_mode->crtc_hsync_start - 1) |
7706 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7707
7708 I915_WRITE(VTOTAL(cpu_transcoder),
7709 (adjusted_mode->crtc_vdisplay - 1) |
7710 ((crtc_vtotal - 1) << 16));
7711 I915_WRITE(VBLANK(cpu_transcoder),
7712 (adjusted_mode->crtc_vblank_start - 1) |
7713 ((crtc_vblank_end - 1) << 16));
7714 I915_WRITE(VSYNC(cpu_transcoder),
7715 (adjusted_mode->crtc_vsync_start - 1) |
7716 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7717
7718 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7719 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7720 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7721 * bits. */
7722 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7723 (pipe == PIPE_B || pipe == PIPE_C))
7724 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7725
7726 }
7727
7728 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7729 {
7730 struct drm_device *dev = intel_crtc->base.dev;
7731 struct drm_i915_private *dev_priv = to_i915(dev);
7732 enum pipe pipe = intel_crtc->pipe;
7733
7734 /* pipesrc controls the size that is scaled from, which should
7735 * always be the user's requested size.
7736 */
7737 I915_WRITE(PIPESRC(pipe),
7738 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7739 (intel_crtc->config->pipe_src_h - 1));
7740 }
7741
7742 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7743 struct intel_crtc_state *pipe_config)
7744 {
7745 struct drm_device *dev = crtc->base.dev;
7746 struct drm_i915_private *dev_priv = to_i915(dev);
7747 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7748 uint32_t tmp;
7749
7750 tmp = I915_READ(HTOTAL(cpu_transcoder));
7751 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7752 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7753 tmp = I915_READ(HBLANK(cpu_transcoder));
7754 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7755 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7756 tmp = I915_READ(HSYNC(cpu_transcoder));
7757 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7758 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7759
7760 tmp = I915_READ(VTOTAL(cpu_transcoder));
7761 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7762 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7763 tmp = I915_READ(VBLANK(cpu_transcoder));
7764 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7765 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7766 tmp = I915_READ(VSYNC(cpu_transcoder));
7767 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7768 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7769
7770 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7771 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7772 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7773 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7774 }
7775 }
7776
7777 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7778 struct intel_crtc_state *pipe_config)
7779 {
7780 struct drm_device *dev = crtc->base.dev;
7781 struct drm_i915_private *dev_priv = to_i915(dev);
7782 u32 tmp;
7783
7784 tmp = I915_READ(PIPESRC(crtc->pipe));
7785 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7786 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7787
7788 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7789 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7790 }
7791
7792 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7793 struct intel_crtc_state *pipe_config)
7794 {
7795 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7796 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7797 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7798 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7799
7800 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7801 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7802 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7803 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7804
7805 mode->flags = pipe_config->base.adjusted_mode.flags;
7806 mode->type = DRM_MODE_TYPE_DRIVER;
7807
7808 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7809 mode->flags |= pipe_config->base.adjusted_mode.flags;
7810
7811 mode->hsync = drm_mode_hsync(mode);
7812 mode->vrefresh = drm_mode_vrefresh(mode);
7813 drm_mode_set_name(mode);
7814 }
7815
7816 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7817 {
7818 struct drm_device *dev = intel_crtc->base.dev;
7819 struct drm_i915_private *dev_priv = to_i915(dev);
7820 uint32_t pipeconf;
7821
7822 pipeconf = 0;
7823
7824 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7825 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7826 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7827
7828 if (intel_crtc->config->double_wide)
7829 pipeconf |= PIPECONF_DOUBLE_WIDE;
7830
7831 /* only g4x and later have fancy bpc/dither controls */
7832 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7833 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7834 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7835 pipeconf |= PIPECONF_DITHER_EN |
7836 PIPECONF_DITHER_TYPE_SP;
7837
7838 switch (intel_crtc->config->pipe_bpp) {
7839 case 18:
7840 pipeconf |= PIPECONF_6BPC;
7841 break;
7842 case 24:
7843 pipeconf |= PIPECONF_8BPC;
7844 break;
7845 case 30:
7846 pipeconf |= PIPECONF_10BPC;
7847 break;
7848 default:
7849 /* Case prevented by intel_choose_pipe_bpp_dither. */
7850 BUG();
7851 }
7852 }
7853
7854 if (HAS_PIPE_CXSR(dev)) {
7855 if (intel_crtc->lowfreq_avail) {
7856 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7857 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7858 } else {
7859 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7860 }
7861 }
7862
7863 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7864 if (INTEL_INFO(dev)->gen < 4 ||
7865 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7866 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7867 else
7868 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7869 } else
7870 pipeconf |= PIPECONF_PROGRESSIVE;
7871
7872 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7873 intel_crtc->config->limited_color_range)
7874 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7875
7876 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7877 POSTING_READ(PIPECONF(intel_crtc->pipe));
7878 }
7879
7880 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7881 struct intel_crtc_state *crtc_state)
7882 {
7883 struct drm_device *dev = crtc->base.dev;
7884 struct drm_i915_private *dev_priv = to_i915(dev);
7885 const struct intel_limit *limit;
7886 int refclk = 48000;
7887
7888 memset(&crtc_state->dpll_hw_state, 0,
7889 sizeof(crtc_state->dpll_hw_state));
7890
7891 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7892 if (intel_panel_use_ssc(dev_priv)) {
7893 refclk = dev_priv->vbt.lvds_ssc_freq;
7894 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7895 }
7896
7897 limit = &intel_limits_i8xx_lvds;
7898 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7899 limit = &intel_limits_i8xx_dvo;
7900 } else {
7901 limit = &intel_limits_i8xx_dac;
7902 }
7903
7904 if (!crtc_state->clock_set &&
7905 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7906 refclk, NULL, &crtc_state->dpll)) {
7907 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7908 return -EINVAL;
7909 }
7910
7911 i8xx_compute_dpll(crtc, crtc_state, NULL);
7912
7913 return 0;
7914 }
7915
7916 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7917 struct intel_crtc_state *crtc_state)
7918 {
7919 struct drm_device *dev = crtc->base.dev;
7920 struct drm_i915_private *dev_priv = to_i915(dev);
7921 const struct intel_limit *limit;
7922 int refclk = 96000;
7923
7924 memset(&crtc_state->dpll_hw_state, 0,
7925 sizeof(crtc_state->dpll_hw_state));
7926
7927 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7928 if (intel_panel_use_ssc(dev_priv)) {
7929 refclk = dev_priv->vbt.lvds_ssc_freq;
7930 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7931 }
7932
7933 if (intel_is_dual_link_lvds(dev))
7934 limit = &intel_limits_g4x_dual_channel_lvds;
7935 else
7936 limit = &intel_limits_g4x_single_channel_lvds;
7937 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7938 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7939 limit = &intel_limits_g4x_hdmi;
7940 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7941 limit = &intel_limits_g4x_sdvo;
7942 } else {
7943 /* The option is for other outputs */
7944 limit = &intel_limits_i9xx_sdvo;
7945 }
7946
7947 if (!crtc_state->clock_set &&
7948 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7949 refclk, NULL, &crtc_state->dpll)) {
7950 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7951 return -EINVAL;
7952 }
7953
7954 i9xx_compute_dpll(crtc, crtc_state, NULL);
7955
7956 return 0;
7957 }
7958
7959 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7960 struct intel_crtc_state *crtc_state)
7961 {
7962 struct drm_device *dev = crtc->base.dev;
7963 struct drm_i915_private *dev_priv = to_i915(dev);
7964 const struct intel_limit *limit;
7965 int refclk = 96000;
7966
7967 memset(&crtc_state->dpll_hw_state, 0,
7968 sizeof(crtc_state->dpll_hw_state));
7969
7970 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7971 if (intel_panel_use_ssc(dev_priv)) {
7972 refclk = dev_priv->vbt.lvds_ssc_freq;
7973 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7974 }
7975
7976 limit = &intel_limits_pineview_lvds;
7977 } else {
7978 limit = &intel_limits_pineview_sdvo;
7979 }
7980
7981 if (!crtc_state->clock_set &&
7982 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7983 refclk, NULL, &crtc_state->dpll)) {
7984 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7985 return -EINVAL;
7986 }
7987
7988 i9xx_compute_dpll(crtc, crtc_state, NULL);
7989
7990 return 0;
7991 }
7992
7993 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7994 struct intel_crtc_state *crtc_state)
7995 {
7996 struct drm_device *dev = crtc->base.dev;
7997 struct drm_i915_private *dev_priv = to_i915(dev);
7998 const struct intel_limit *limit;
7999 int refclk = 96000;
8000
8001 memset(&crtc_state->dpll_hw_state, 0,
8002 sizeof(crtc_state->dpll_hw_state));
8003
8004 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8005 if (intel_panel_use_ssc(dev_priv)) {
8006 refclk = dev_priv->vbt.lvds_ssc_freq;
8007 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8008 }
8009
8010 limit = &intel_limits_i9xx_lvds;
8011 } else {
8012 limit = &intel_limits_i9xx_sdvo;
8013 }
8014
8015 if (!crtc_state->clock_set &&
8016 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8017 refclk, NULL, &crtc_state->dpll)) {
8018 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8019 return -EINVAL;
8020 }
8021
8022 i9xx_compute_dpll(crtc, crtc_state, NULL);
8023
8024 return 0;
8025 }
8026
8027 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8028 struct intel_crtc_state *crtc_state)
8029 {
8030 int refclk = 100000;
8031 const struct intel_limit *limit = &intel_limits_chv;
8032
8033 memset(&crtc_state->dpll_hw_state, 0,
8034 sizeof(crtc_state->dpll_hw_state));
8035
8036 if (!crtc_state->clock_set &&
8037 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8038 refclk, NULL, &crtc_state->dpll)) {
8039 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8040 return -EINVAL;
8041 }
8042
8043 chv_compute_dpll(crtc, crtc_state);
8044
8045 return 0;
8046 }
8047
8048 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8049 struct intel_crtc_state *crtc_state)
8050 {
8051 int refclk = 100000;
8052 const struct intel_limit *limit = &intel_limits_vlv;
8053
8054 memset(&crtc_state->dpll_hw_state, 0,
8055 sizeof(crtc_state->dpll_hw_state));
8056
8057 if (!crtc_state->clock_set &&
8058 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8059 refclk, NULL, &crtc_state->dpll)) {
8060 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8061 return -EINVAL;
8062 }
8063
8064 vlv_compute_dpll(crtc, crtc_state);
8065
8066 return 0;
8067 }
8068
8069 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8070 struct intel_crtc_state *pipe_config)
8071 {
8072 struct drm_device *dev = crtc->base.dev;
8073 struct drm_i915_private *dev_priv = to_i915(dev);
8074 uint32_t tmp;
8075
8076 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8077 return;
8078
8079 tmp = I915_READ(PFIT_CONTROL);
8080 if (!(tmp & PFIT_ENABLE))
8081 return;
8082
8083 /* Check whether the pfit is attached to our pipe. */
8084 if (INTEL_INFO(dev)->gen < 4) {
8085 if (crtc->pipe != PIPE_B)
8086 return;
8087 } else {
8088 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8089 return;
8090 }
8091
8092 pipe_config->gmch_pfit.control = tmp;
8093 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8094 }
8095
8096 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8097 struct intel_crtc_state *pipe_config)
8098 {
8099 struct drm_device *dev = crtc->base.dev;
8100 struct drm_i915_private *dev_priv = to_i915(dev);
8101 int pipe = pipe_config->cpu_transcoder;
8102 struct dpll clock;
8103 u32 mdiv;
8104 int refclk = 100000;
8105
8106 /* In case of DSI, DPLL will not be used */
8107 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8108 return;
8109
8110 mutex_lock(&dev_priv->sb_lock);
8111 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8112 mutex_unlock(&dev_priv->sb_lock);
8113
8114 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8115 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8116 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8117 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8118 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8119
8120 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8121 }
8122
8123 static void
8124 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8125 struct intel_initial_plane_config *plane_config)
8126 {
8127 struct drm_device *dev = crtc->base.dev;
8128 struct drm_i915_private *dev_priv = to_i915(dev);
8129 u32 val, base, offset;
8130 int pipe = crtc->pipe, plane = crtc->plane;
8131 int fourcc, pixel_format;
8132 unsigned int aligned_height;
8133 struct drm_framebuffer *fb;
8134 struct intel_framebuffer *intel_fb;
8135
8136 val = I915_READ(DSPCNTR(plane));
8137 if (!(val & DISPLAY_PLANE_ENABLE))
8138 return;
8139
8140 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8141 if (!intel_fb) {
8142 DRM_DEBUG_KMS("failed to alloc fb\n");
8143 return;
8144 }
8145
8146 fb = &intel_fb->base;
8147
8148 if (INTEL_INFO(dev)->gen >= 4) {
8149 if (val & DISPPLANE_TILED) {
8150 plane_config->tiling = I915_TILING_X;
8151 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8152 }
8153 }
8154
8155 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8156 fourcc = i9xx_format_to_fourcc(pixel_format);
8157 fb->pixel_format = fourcc;
8158 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8159
8160 if (INTEL_INFO(dev)->gen >= 4) {
8161 if (plane_config->tiling)
8162 offset = I915_READ(DSPTILEOFF(plane));
8163 else
8164 offset = I915_READ(DSPLINOFF(plane));
8165 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8166 } else {
8167 base = I915_READ(DSPADDR(plane));
8168 }
8169 plane_config->base = base;
8170
8171 val = I915_READ(PIPESRC(pipe));
8172 fb->width = ((val >> 16) & 0xfff) + 1;
8173 fb->height = ((val >> 0) & 0xfff) + 1;
8174
8175 val = I915_READ(DSPSTRIDE(pipe));
8176 fb->pitches[0] = val & 0xffffffc0;
8177
8178 aligned_height = intel_fb_align_height(dev, fb->height,
8179 fb->pixel_format,
8180 fb->modifier[0]);
8181
8182 plane_config->size = fb->pitches[0] * aligned_height;
8183
8184 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8185 pipe_name(pipe), plane, fb->width, fb->height,
8186 fb->bits_per_pixel, base, fb->pitches[0],
8187 plane_config->size);
8188
8189 plane_config->fb = intel_fb;
8190 }
8191
8192 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8193 struct intel_crtc_state *pipe_config)
8194 {
8195 struct drm_device *dev = crtc->base.dev;
8196 struct drm_i915_private *dev_priv = to_i915(dev);
8197 int pipe = pipe_config->cpu_transcoder;
8198 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8199 struct dpll clock;
8200 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8201 int refclk = 100000;
8202
8203 /* In case of DSI, DPLL will not be used */
8204 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8205 return;
8206
8207 mutex_lock(&dev_priv->sb_lock);
8208 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8209 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8210 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8211 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8212 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8213 mutex_unlock(&dev_priv->sb_lock);
8214
8215 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8216 clock.m2 = (pll_dw0 & 0xff) << 22;
8217 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8218 clock.m2 |= pll_dw2 & 0x3fffff;
8219 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8220 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8221 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8222
8223 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8224 }
8225
8226 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8227 struct intel_crtc_state *pipe_config)
8228 {
8229 struct drm_device *dev = crtc->base.dev;
8230 struct drm_i915_private *dev_priv = to_i915(dev);
8231 enum intel_display_power_domain power_domain;
8232 uint32_t tmp;
8233 bool ret;
8234
8235 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8236 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8237 return false;
8238
8239 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8240 pipe_config->shared_dpll = NULL;
8241
8242 ret = false;
8243
8244 tmp = I915_READ(PIPECONF(crtc->pipe));
8245 if (!(tmp & PIPECONF_ENABLE))
8246 goto out;
8247
8248 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8249 switch (tmp & PIPECONF_BPC_MASK) {
8250 case PIPECONF_6BPC:
8251 pipe_config->pipe_bpp = 18;
8252 break;
8253 case PIPECONF_8BPC:
8254 pipe_config->pipe_bpp = 24;
8255 break;
8256 case PIPECONF_10BPC:
8257 pipe_config->pipe_bpp = 30;
8258 break;
8259 default:
8260 break;
8261 }
8262 }
8263
8264 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8265 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8266 pipe_config->limited_color_range = true;
8267
8268 if (INTEL_INFO(dev)->gen < 4)
8269 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8270
8271 intel_get_pipe_timings(crtc, pipe_config);
8272 intel_get_pipe_src_size(crtc, pipe_config);
8273
8274 i9xx_get_pfit_config(crtc, pipe_config);
8275
8276 if (INTEL_INFO(dev)->gen >= 4) {
8277 /* No way to read it out on pipes B and C */
8278 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8279 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8280 else
8281 tmp = I915_READ(DPLL_MD(crtc->pipe));
8282 pipe_config->pixel_multiplier =
8283 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8284 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8285 pipe_config->dpll_hw_state.dpll_md = tmp;
8286 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8287 tmp = I915_READ(DPLL(crtc->pipe));
8288 pipe_config->pixel_multiplier =
8289 ((tmp & SDVO_MULTIPLIER_MASK)
8290 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8291 } else {
8292 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8293 * port and will be fixed up in the encoder->get_config
8294 * function. */
8295 pipe_config->pixel_multiplier = 1;
8296 }
8297 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8298 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8299 /*
8300 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8301 * on 830. Filter it out here so that we don't
8302 * report errors due to that.
8303 */
8304 if (IS_I830(dev))
8305 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8306
8307 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8308 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8309 } else {
8310 /* Mask out read-only status bits. */
8311 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8312 DPLL_PORTC_READY_MASK |
8313 DPLL_PORTB_READY_MASK);
8314 }
8315
8316 if (IS_CHERRYVIEW(dev))
8317 chv_crtc_clock_get(crtc, pipe_config);
8318 else if (IS_VALLEYVIEW(dev))
8319 vlv_crtc_clock_get(crtc, pipe_config);
8320 else
8321 i9xx_crtc_clock_get(crtc, pipe_config);
8322
8323 /*
8324 * Normally the dotclock is filled in by the encoder .get_config()
8325 * but in case the pipe is enabled w/o any ports we need a sane
8326 * default.
8327 */
8328 pipe_config->base.adjusted_mode.crtc_clock =
8329 pipe_config->port_clock / pipe_config->pixel_multiplier;
8330
8331 ret = true;
8332
8333 out:
8334 intel_display_power_put(dev_priv, power_domain);
8335
8336 return ret;
8337 }
8338
8339 static void ironlake_init_pch_refclk(struct drm_device *dev)
8340 {
8341 struct drm_i915_private *dev_priv = to_i915(dev);
8342 struct intel_encoder *encoder;
8343 int i;
8344 u32 val, final;
8345 bool has_lvds = false;
8346 bool has_cpu_edp = false;
8347 bool has_panel = false;
8348 bool has_ck505 = false;
8349 bool can_ssc = false;
8350 bool using_ssc_source = false;
8351
8352 /* We need to take the global config into account */
8353 for_each_intel_encoder(dev, encoder) {
8354 switch (encoder->type) {
8355 case INTEL_OUTPUT_LVDS:
8356 has_panel = true;
8357 has_lvds = true;
8358 break;
8359 case INTEL_OUTPUT_EDP:
8360 has_panel = true;
8361 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8362 has_cpu_edp = true;
8363 break;
8364 default:
8365 break;
8366 }
8367 }
8368
8369 if (HAS_PCH_IBX(dev)) {
8370 has_ck505 = dev_priv->vbt.display_clock_mode;
8371 can_ssc = has_ck505;
8372 } else {
8373 has_ck505 = false;
8374 can_ssc = true;
8375 }
8376
8377 /* Check if any DPLLs are using the SSC source */
8378 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8379 u32 temp = I915_READ(PCH_DPLL(i));
8380
8381 if (!(temp & DPLL_VCO_ENABLE))
8382 continue;
8383
8384 if ((temp & PLL_REF_INPUT_MASK) ==
8385 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8386 using_ssc_source = true;
8387 break;
8388 }
8389 }
8390
8391 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8392 has_panel, has_lvds, has_ck505, using_ssc_source);
8393
8394 /* Ironlake: try to setup display ref clock before DPLL
8395 * enabling. This is only under driver's control after
8396 * PCH B stepping, previous chipset stepping should be
8397 * ignoring this setting.
8398 */
8399 val = I915_READ(PCH_DREF_CONTROL);
8400
8401 /* As we must carefully and slowly disable/enable each source in turn,
8402 * compute the final state we want first and check if we need to
8403 * make any changes at all.
8404 */
8405 final = val;
8406 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8407 if (has_ck505)
8408 final |= DREF_NONSPREAD_CK505_ENABLE;
8409 else
8410 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8411
8412 final &= ~DREF_SSC_SOURCE_MASK;
8413 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8414 final &= ~DREF_SSC1_ENABLE;
8415
8416 if (has_panel) {
8417 final |= DREF_SSC_SOURCE_ENABLE;
8418
8419 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8420 final |= DREF_SSC1_ENABLE;
8421
8422 if (has_cpu_edp) {
8423 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8424 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8425 else
8426 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8427 } else
8428 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8429 } else if (using_ssc_source) {
8430 final |= DREF_SSC_SOURCE_ENABLE;
8431 final |= DREF_SSC1_ENABLE;
8432 }
8433
8434 if (final == val)
8435 return;
8436
8437 /* Always enable nonspread source */
8438 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8439
8440 if (has_ck505)
8441 val |= DREF_NONSPREAD_CK505_ENABLE;
8442 else
8443 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8444
8445 if (has_panel) {
8446 val &= ~DREF_SSC_SOURCE_MASK;
8447 val |= DREF_SSC_SOURCE_ENABLE;
8448
8449 /* SSC must be turned on before enabling the CPU output */
8450 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8451 DRM_DEBUG_KMS("Using SSC on panel\n");
8452 val |= DREF_SSC1_ENABLE;
8453 } else
8454 val &= ~DREF_SSC1_ENABLE;
8455
8456 /* Get SSC going before enabling the outputs */
8457 I915_WRITE(PCH_DREF_CONTROL, val);
8458 POSTING_READ(PCH_DREF_CONTROL);
8459 udelay(200);
8460
8461 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8462
8463 /* Enable CPU source on CPU attached eDP */
8464 if (has_cpu_edp) {
8465 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8466 DRM_DEBUG_KMS("Using SSC on eDP\n");
8467 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8468 } else
8469 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8470 } else
8471 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8472
8473 I915_WRITE(PCH_DREF_CONTROL, val);
8474 POSTING_READ(PCH_DREF_CONTROL);
8475 udelay(200);
8476 } else {
8477 DRM_DEBUG_KMS("Disabling CPU source output\n");
8478
8479 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8480
8481 /* Turn off CPU output */
8482 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8483
8484 I915_WRITE(PCH_DREF_CONTROL, val);
8485 POSTING_READ(PCH_DREF_CONTROL);
8486 udelay(200);
8487
8488 if (!using_ssc_source) {
8489 DRM_DEBUG_KMS("Disabling SSC source\n");
8490
8491 /* Turn off the SSC source */
8492 val &= ~DREF_SSC_SOURCE_MASK;
8493 val |= DREF_SSC_SOURCE_DISABLE;
8494
8495 /* Turn off SSC1 */
8496 val &= ~DREF_SSC1_ENABLE;
8497
8498 I915_WRITE(PCH_DREF_CONTROL, val);
8499 POSTING_READ(PCH_DREF_CONTROL);
8500 udelay(200);
8501 }
8502 }
8503
8504 BUG_ON(val != final);
8505 }
8506
8507 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8508 {
8509 uint32_t tmp;
8510
8511 tmp = I915_READ(SOUTH_CHICKEN2);
8512 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8513 I915_WRITE(SOUTH_CHICKEN2, tmp);
8514
8515 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8516 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8517 DRM_ERROR("FDI mPHY reset assert timeout\n");
8518
8519 tmp = I915_READ(SOUTH_CHICKEN2);
8520 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8521 I915_WRITE(SOUTH_CHICKEN2, tmp);
8522
8523 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8524 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8525 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8526 }
8527
8528 /* WaMPhyProgramming:hsw */
8529 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8530 {
8531 uint32_t tmp;
8532
8533 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8534 tmp &= ~(0xFF << 24);
8535 tmp |= (0x12 << 24);
8536 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8537
8538 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8539 tmp |= (1 << 11);
8540 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8541
8542 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8543 tmp |= (1 << 11);
8544 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8545
8546 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8547 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8548 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8549
8550 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8551 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8552 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8553
8554 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8555 tmp &= ~(7 << 13);
8556 tmp |= (5 << 13);
8557 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8558
8559 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8560 tmp &= ~(7 << 13);
8561 tmp |= (5 << 13);
8562 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8563
8564 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8565 tmp &= ~0xFF;
8566 tmp |= 0x1C;
8567 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8568
8569 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8570 tmp &= ~0xFF;
8571 tmp |= 0x1C;
8572 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8573
8574 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8575 tmp &= ~(0xFF << 16);
8576 tmp |= (0x1C << 16);
8577 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8578
8579 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8580 tmp &= ~(0xFF << 16);
8581 tmp |= (0x1C << 16);
8582 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8583
8584 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8585 tmp |= (1 << 27);
8586 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8587
8588 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8589 tmp |= (1 << 27);
8590 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8591
8592 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8593 tmp &= ~(0xF << 28);
8594 tmp |= (4 << 28);
8595 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8596
8597 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8598 tmp &= ~(0xF << 28);
8599 tmp |= (4 << 28);
8600 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8601 }
8602
8603 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8604 * Programming" based on the parameters passed:
8605 * - Sequence to enable CLKOUT_DP
8606 * - Sequence to enable CLKOUT_DP without spread
8607 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8608 */
8609 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8610 bool with_fdi)
8611 {
8612 struct drm_i915_private *dev_priv = to_i915(dev);
8613 uint32_t reg, tmp;
8614
8615 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8616 with_spread = true;
8617 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8618 with_fdi = false;
8619
8620 mutex_lock(&dev_priv->sb_lock);
8621
8622 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8623 tmp &= ~SBI_SSCCTL_DISABLE;
8624 tmp |= SBI_SSCCTL_PATHALT;
8625 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8626
8627 udelay(24);
8628
8629 if (with_spread) {
8630 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8631 tmp &= ~SBI_SSCCTL_PATHALT;
8632 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8633
8634 if (with_fdi) {
8635 lpt_reset_fdi_mphy(dev_priv);
8636 lpt_program_fdi_mphy(dev_priv);
8637 }
8638 }
8639
8640 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8641 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8642 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8643 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8644
8645 mutex_unlock(&dev_priv->sb_lock);
8646 }
8647
8648 /* Sequence to disable CLKOUT_DP */
8649 static void lpt_disable_clkout_dp(struct drm_device *dev)
8650 {
8651 struct drm_i915_private *dev_priv = to_i915(dev);
8652 uint32_t reg, tmp;
8653
8654 mutex_lock(&dev_priv->sb_lock);
8655
8656 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8657 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8658 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8659 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8660
8661 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8662 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8663 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8664 tmp |= SBI_SSCCTL_PATHALT;
8665 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8666 udelay(32);
8667 }
8668 tmp |= SBI_SSCCTL_DISABLE;
8669 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8670 }
8671
8672 mutex_unlock(&dev_priv->sb_lock);
8673 }
8674
8675 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8676
8677 static const uint16_t sscdivintphase[] = {
8678 [BEND_IDX( 50)] = 0x3B23,
8679 [BEND_IDX( 45)] = 0x3B23,
8680 [BEND_IDX( 40)] = 0x3C23,
8681 [BEND_IDX( 35)] = 0x3C23,
8682 [BEND_IDX( 30)] = 0x3D23,
8683 [BEND_IDX( 25)] = 0x3D23,
8684 [BEND_IDX( 20)] = 0x3E23,
8685 [BEND_IDX( 15)] = 0x3E23,
8686 [BEND_IDX( 10)] = 0x3F23,
8687 [BEND_IDX( 5)] = 0x3F23,
8688 [BEND_IDX( 0)] = 0x0025,
8689 [BEND_IDX( -5)] = 0x0025,
8690 [BEND_IDX(-10)] = 0x0125,
8691 [BEND_IDX(-15)] = 0x0125,
8692 [BEND_IDX(-20)] = 0x0225,
8693 [BEND_IDX(-25)] = 0x0225,
8694 [BEND_IDX(-30)] = 0x0325,
8695 [BEND_IDX(-35)] = 0x0325,
8696 [BEND_IDX(-40)] = 0x0425,
8697 [BEND_IDX(-45)] = 0x0425,
8698 [BEND_IDX(-50)] = 0x0525,
8699 };
8700
8701 /*
8702 * Bend CLKOUT_DP
8703 * steps -50 to 50 inclusive, in steps of 5
8704 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8705 * change in clock period = -(steps / 10) * 5.787 ps
8706 */
8707 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8708 {
8709 uint32_t tmp;
8710 int idx = BEND_IDX(steps);
8711
8712 if (WARN_ON(steps % 5 != 0))
8713 return;
8714
8715 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8716 return;
8717
8718 mutex_lock(&dev_priv->sb_lock);
8719
8720 if (steps % 10 != 0)
8721 tmp = 0xAAAAAAAB;
8722 else
8723 tmp = 0x00000000;
8724 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8725
8726 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8727 tmp &= 0xffff0000;
8728 tmp |= sscdivintphase[idx];
8729 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8730
8731 mutex_unlock(&dev_priv->sb_lock);
8732 }
8733
8734 #undef BEND_IDX
8735
8736 static void lpt_init_pch_refclk(struct drm_device *dev)
8737 {
8738 struct intel_encoder *encoder;
8739 bool has_vga = false;
8740
8741 for_each_intel_encoder(dev, encoder) {
8742 switch (encoder->type) {
8743 case INTEL_OUTPUT_ANALOG:
8744 has_vga = true;
8745 break;
8746 default:
8747 break;
8748 }
8749 }
8750
8751 if (has_vga) {
8752 lpt_bend_clkout_dp(to_i915(dev), 0);
8753 lpt_enable_clkout_dp(dev, true, true);
8754 } else {
8755 lpt_disable_clkout_dp(dev);
8756 }
8757 }
8758
8759 /*
8760 * Initialize reference clocks when the driver loads
8761 */
8762 void intel_init_pch_refclk(struct drm_device *dev)
8763 {
8764 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8765 ironlake_init_pch_refclk(dev);
8766 else if (HAS_PCH_LPT(dev))
8767 lpt_init_pch_refclk(dev);
8768 }
8769
8770 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8771 {
8772 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8774 int pipe = intel_crtc->pipe;
8775 uint32_t val;
8776
8777 val = 0;
8778
8779 switch (intel_crtc->config->pipe_bpp) {
8780 case 18:
8781 val |= PIPECONF_6BPC;
8782 break;
8783 case 24:
8784 val |= PIPECONF_8BPC;
8785 break;
8786 case 30:
8787 val |= PIPECONF_10BPC;
8788 break;
8789 case 36:
8790 val |= PIPECONF_12BPC;
8791 break;
8792 default:
8793 /* Case prevented by intel_choose_pipe_bpp_dither. */
8794 BUG();
8795 }
8796
8797 if (intel_crtc->config->dither)
8798 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8799
8800 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8801 val |= PIPECONF_INTERLACED_ILK;
8802 else
8803 val |= PIPECONF_PROGRESSIVE;
8804
8805 if (intel_crtc->config->limited_color_range)
8806 val |= PIPECONF_COLOR_RANGE_SELECT;
8807
8808 I915_WRITE(PIPECONF(pipe), val);
8809 POSTING_READ(PIPECONF(pipe));
8810 }
8811
8812 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8813 {
8814 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8816 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8817 u32 val = 0;
8818
8819 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8820 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8821
8822 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8823 val |= PIPECONF_INTERLACED_ILK;
8824 else
8825 val |= PIPECONF_PROGRESSIVE;
8826
8827 I915_WRITE(PIPECONF(cpu_transcoder), val);
8828 POSTING_READ(PIPECONF(cpu_transcoder));
8829 }
8830
8831 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8832 {
8833 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8835
8836 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8837 u32 val = 0;
8838
8839 switch (intel_crtc->config->pipe_bpp) {
8840 case 18:
8841 val |= PIPEMISC_DITHER_6_BPC;
8842 break;
8843 case 24:
8844 val |= PIPEMISC_DITHER_8_BPC;
8845 break;
8846 case 30:
8847 val |= PIPEMISC_DITHER_10_BPC;
8848 break;
8849 case 36:
8850 val |= PIPEMISC_DITHER_12_BPC;
8851 break;
8852 default:
8853 /* Case prevented by pipe_config_set_bpp. */
8854 BUG();
8855 }
8856
8857 if (intel_crtc->config->dither)
8858 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8859
8860 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8861 }
8862 }
8863
8864 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8865 {
8866 /*
8867 * Account for spread spectrum to avoid
8868 * oversubscribing the link. Max center spread
8869 * is 2.5%; use 5% for safety's sake.
8870 */
8871 u32 bps = target_clock * bpp * 21 / 20;
8872 return DIV_ROUND_UP(bps, link_bw * 8);
8873 }
8874
8875 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8876 {
8877 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8878 }
8879
8880 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8881 struct intel_crtc_state *crtc_state,
8882 struct dpll *reduced_clock)
8883 {
8884 struct drm_crtc *crtc = &intel_crtc->base;
8885 struct drm_device *dev = crtc->dev;
8886 struct drm_i915_private *dev_priv = to_i915(dev);
8887 u32 dpll, fp, fp2;
8888 int factor;
8889
8890 /* Enable autotuning of the PLL clock (if permissible) */
8891 factor = 21;
8892 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8893 if ((intel_panel_use_ssc(dev_priv) &&
8894 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8895 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8896 factor = 25;
8897 } else if (crtc_state->sdvo_tv_clock)
8898 factor = 20;
8899
8900 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8901
8902 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8903 fp |= FP_CB_TUNE;
8904
8905 if (reduced_clock) {
8906 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8907
8908 if (reduced_clock->m < factor * reduced_clock->n)
8909 fp2 |= FP_CB_TUNE;
8910 } else {
8911 fp2 = fp;
8912 }
8913
8914 dpll = 0;
8915
8916 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8917 dpll |= DPLLB_MODE_LVDS;
8918 else
8919 dpll |= DPLLB_MODE_DAC_SERIAL;
8920
8921 dpll |= (crtc_state->pixel_multiplier - 1)
8922 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8923
8924 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8925 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8926 dpll |= DPLL_SDVO_HIGH_SPEED;
8927
8928 if (intel_crtc_has_dp_encoder(crtc_state))
8929 dpll |= DPLL_SDVO_HIGH_SPEED;
8930
8931 /* compute bitmask from p1 value */
8932 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8933 /* also FPA1 */
8934 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8935
8936 switch (crtc_state->dpll.p2) {
8937 case 5:
8938 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8939 break;
8940 case 7:
8941 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8942 break;
8943 case 10:
8944 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8945 break;
8946 case 14:
8947 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8948 break;
8949 }
8950
8951 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8952 intel_panel_use_ssc(dev_priv))
8953 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8954 else
8955 dpll |= PLL_REF_INPUT_DREFCLK;
8956
8957 dpll |= DPLL_VCO_ENABLE;
8958
8959 crtc_state->dpll_hw_state.dpll = dpll;
8960 crtc_state->dpll_hw_state.fp0 = fp;
8961 crtc_state->dpll_hw_state.fp1 = fp2;
8962 }
8963
8964 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8965 struct intel_crtc_state *crtc_state)
8966 {
8967 struct drm_device *dev = crtc->base.dev;
8968 struct drm_i915_private *dev_priv = to_i915(dev);
8969 struct dpll reduced_clock;
8970 bool has_reduced_clock = false;
8971 struct intel_shared_dpll *pll;
8972 const struct intel_limit *limit;
8973 int refclk = 120000;
8974
8975 memset(&crtc_state->dpll_hw_state, 0,
8976 sizeof(crtc_state->dpll_hw_state));
8977
8978 crtc->lowfreq_avail = false;
8979
8980 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8981 if (!crtc_state->has_pch_encoder)
8982 return 0;
8983
8984 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8985 if (intel_panel_use_ssc(dev_priv)) {
8986 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8987 dev_priv->vbt.lvds_ssc_freq);
8988 refclk = dev_priv->vbt.lvds_ssc_freq;
8989 }
8990
8991 if (intel_is_dual_link_lvds(dev)) {
8992 if (refclk == 100000)
8993 limit = &intel_limits_ironlake_dual_lvds_100m;
8994 else
8995 limit = &intel_limits_ironlake_dual_lvds;
8996 } else {
8997 if (refclk == 100000)
8998 limit = &intel_limits_ironlake_single_lvds_100m;
8999 else
9000 limit = &intel_limits_ironlake_single_lvds;
9001 }
9002 } else {
9003 limit = &intel_limits_ironlake_dac;
9004 }
9005
9006 if (!crtc_state->clock_set &&
9007 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9008 refclk, NULL, &crtc_state->dpll)) {
9009 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9010 return -EINVAL;
9011 }
9012
9013 ironlake_compute_dpll(crtc, crtc_state,
9014 has_reduced_clock ? &reduced_clock : NULL);
9015
9016 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9017 if (pll == NULL) {
9018 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9019 pipe_name(crtc->pipe));
9020 return -EINVAL;
9021 }
9022
9023 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9024 has_reduced_clock)
9025 crtc->lowfreq_avail = true;
9026
9027 return 0;
9028 }
9029
9030 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9031 struct intel_link_m_n *m_n)
9032 {
9033 struct drm_device *dev = crtc->base.dev;
9034 struct drm_i915_private *dev_priv = to_i915(dev);
9035 enum pipe pipe = crtc->pipe;
9036
9037 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9038 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9039 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9040 & ~TU_SIZE_MASK;
9041 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9042 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9043 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9044 }
9045
9046 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9047 enum transcoder transcoder,
9048 struct intel_link_m_n *m_n,
9049 struct intel_link_m_n *m2_n2)
9050 {
9051 struct drm_device *dev = crtc->base.dev;
9052 struct drm_i915_private *dev_priv = to_i915(dev);
9053 enum pipe pipe = crtc->pipe;
9054
9055 if (INTEL_INFO(dev)->gen >= 5) {
9056 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9057 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9058 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9059 & ~TU_SIZE_MASK;
9060 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9061 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9062 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9063 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9064 * gen < 8) and if DRRS is supported (to make sure the
9065 * registers are not unnecessarily read).
9066 */
9067 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9068 crtc->config->has_drrs) {
9069 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9070 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9071 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9072 & ~TU_SIZE_MASK;
9073 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9074 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9075 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9076 }
9077 } else {
9078 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9079 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9080 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9081 & ~TU_SIZE_MASK;
9082 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9083 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9084 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9085 }
9086 }
9087
9088 void intel_dp_get_m_n(struct intel_crtc *crtc,
9089 struct intel_crtc_state *pipe_config)
9090 {
9091 if (pipe_config->has_pch_encoder)
9092 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9093 else
9094 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9095 &pipe_config->dp_m_n,
9096 &pipe_config->dp_m2_n2);
9097 }
9098
9099 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9100 struct intel_crtc_state *pipe_config)
9101 {
9102 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9103 &pipe_config->fdi_m_n, NULL);
9104 }
9105
9106 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9107 struct intel_crtc_state *pipe_config)
9108 {
9109 struct drm_device *dev = crtc->base.dev;
9110 struct drm_i915_private *dev_priv = to_i915(dev);
9111 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9112 uint32_t ps_ctrl = 0;
9113 int id = -1;
9114 int i;
9115
9116 /* find scaler attached to this pipe */
9117 for (i = 0; i < crtc->num_scalers; i++) {
9118 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9119 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9120 id = i;
9121 pipe_config->pch_pfit.enabled = true;
9122 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9123 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9124 break;
9125 }
9126 }
9127
9128 scaler_state->scaler_id = id;
9129 if (id >= 0) {
9130 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9131 } else {
9132 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9133 }
9134 }
9135
9136 static void
9137 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9138 struct intel_initial_plane_config *plane_config)
9139 {
9140 struct drm_device *dev = crtc->base.dev;
9141 struct drm_i915_private *dev_priv = to_i915(dev);
9142 u32 val, base, offset, stride_mult, tiling;
9143 int pipe = crtc->pipe;
9144 int fourcc, pixel_format;
9145 unsigned int aligned_height;
9146 struct drm_framebuffer *fb;
9147 struct intel_framebuffer *intel_fb;
9148
9149 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9150 if (!intel_fb) {
9151 DRM_DEBUG_KMS("failed to alloc fb\n");
9152 return;
9153 }
9154
9155 fb = &intel_fb->base;
9156
9157 val = I915_READ(PLANE_CTL(pipe, 0));
9158 if (!(val & PLANE_CTL_ENABLE))
9159 goto error;
9160
9161 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9162 fourcc = skl_format_to_fourcc(pixel_format,
9163 val & PLANE_CTL_ORDER_RGBX,
9164 val & PLANE_CTL_ALPHA_MASK);
9165 fb->pixel_format = fourcc;
9166 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9167
9168 tiling = val & PLANE_CTL_TILED_MASK;
9169 switch (tiling) {
9170 case PLANE_CTL_TILED_LINEAR:
9171 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9172 break;
9173 case PLANE_CTL_TILED_X:
9174 plane_config->tiling = I915_TILING_X;
9175 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9176 break;
9177 case PLANE_CTL_TILED_Y:
9178 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9179 break;
9180 case PLANE_CTL_TILED_YF:
9181 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9182 break;
9183 default:
9184 MISSING_CASE(tiling);
9185 goto error;
9186 }
9187
9188 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9189 plane_config->base = base;
9190
9191 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9192
9193 val = I915_READ(PLANE_SIZE(pipe, 0));
9194 fb->height = ((val >> 16) & 0xfff) + 1;
9195 fb->width = ((val >> 0) & 0x1fff) + 1;
9196
9197 val = I915_READ(PLANE_STRIDE(pipe, 0));
9198 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9199 fb->pixel_format);
9200 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9201
9202 aligned_height = intel_fb_align_height(dev, fb->height,
9203 fb->pixel_format,
9204 fb->modifier[0]);
9205
9206 plane_config->size = fb->pitches[0] * aligned_height;
9207
9208 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9209 pipe_name(pipe), fb->width, fb->height,
9210 fb->bits_per_pixel, base, fb->pitches[0],
9211 plane_config->size);
9212
9213 plane_config->fb = intel_fb;
9214 return;
9215
9216 error:
9217 kfree(fb);
9218 }
9219
9220 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9221 struct intel_crtc_state *pipe_config)
9222 {
9223 struct drm_device *dev = crtc->base.dev;
9224 struct drm_i915_private *dev_priv = to_i915(dev);
9225 uint32_t tmp;
9226
9227 tmp = I915_READ(PF_CTL(crtc->pipe));
9228
9229 if (tmp & PF_ENABLE) {
9230 pipe_config->pch_pfit.enabled = true;
9231 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9232 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9233
9234 /* We currently do not free assignements of panel fitters on
9235 * ivb/hsw (since we don't use the higher upscaling modes which
9236 * differentiates them) so just WARN about this case for now. */
9237 if (IS_GEN7(dev)) {
9238 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9239 PF_PIPE_SEL_IVB(crtc->pipe));
9240 }
9241 }
9242 }
9243
9244 static void
9245 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9246 struct intel_initial_plane_config *plane_config)
9247 {
9248 struct drm_device *dev = crtc->base.dev;
9249 struct drm_i915_private *dev_priv = to_i915(dev);
9250 u32 val, base, offset;
9251 int pipe = crtc->pipe;
9252 int fourcc, pixel_format;
9253 unsigned int aligned_height;
9254 struct drm_framebuffer *fb;
9255 struct intel_framebuffer *intel_fb;
9256
9257 val = I915_READ(DSPCNTR(pipe));
9258 if (!(val & DISPLAY_PLANE_ENABLE))
9259 return;
9260
9261 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9262 if (!intel_fb) {
9263 DRM_DEBUG_KMS("failed to alloc fb\n");
9264 return;
9265 }
9266
9267 fb = &intel_fb->base;
9268
9269 if (INTEL_INFO(dev)->gen >= 4) {
9270 if (val & DISPPLANE_TILED) {
9271 plane_config->tiling = I915_TILING_X;
9272 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9273 }
9274 }
9275
9276 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9277 fourcc = i9xx_format_to_fourcc(pixel_format);
9278 fb->pixel_format = fourcc;
9279 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9280
9281 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9282 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9283 offset = I915_READ(DSPOFFSET(pipe));
9284 } else {
9285 if (plane_config->tiling)
9286 offset = I915_READ(DSPTILEOFF(pipe));
9287 else
9288 offset = I915_READ(DSPLINOFF(pipe));
9289 }
9290 plane_config->base = base;
9291
9292 val = I915_READ(PIPESRC(pipe));
9293 fb->width = ((val >> 16) & 0xfff) + 1;
9294 fb->height = ((val >> 0) & 0xfff) + 1;
9295
9296 val = I915_READ(DSPSTRIDE(pipe));
9297 fb->pitches[0] = val & 0xffffffc0;
9298
9299 aligned_height = intel_fb_align_height(dev, fb->height,
9300 fb->pixel_format,
9301 fb->modifier[0]);
9302
9303 plane_config->size = fb->pitches[0] * aligned_height;
9304
9305 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9306 pipe_name(pipe), fb->width, fb->height,
9307 fb->bits_per_pixel, base, fb->pitches[0],
9308 plane_config->size);
9309
9310 plane_config->fb = intel_fb;
9311 }
9312
9313 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9314 struct intel_crtc_state *pipe_config)
9315 {
9316 struct drm_device *dev = crtc->base.dev;
9317 struct drm_i915_private *dev_priv = to_i915(dev);
9318 enum intel_display_power_domain power_domain;
9319 uint32_t tmp;
9320 bool ret;
9321
9322 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9323 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9324 return false;
9325
9326 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9327 pipe_config->shared_dpll = NULL;
9328
9329 ret = false;
9330 tmp = I915_READ(PIPECONF(crtc->pipe));
9331 if (!(tmp & PIPECONF_ENABLE))
9332 goto out;
9333
9334 switch (tmp & PIPECONF_BPC_MASK) {
9335 case PIPECONF_6BPC:
9336 pipe_config->pipe_bpp = 18;
9337 break;
9338 case PIPECONF_8BPC:
9339 pipe_config->pipe_bpp = 24;
9340 break;
9341 case PIPECONF_10BPC:
9342 pipe_config->pipe_bpp = 30;
9343 break;
9344 case PIPECONF_12BPC:
9345 pipe_config->pipe_bpp = 36;
9346 break;
9347 default:
9348 break;
9349 }
9350
9351 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9352 pipe_config->limited_color_range = true;
9353
9354 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9355 struct intel_shared_dpll *pll;
9356 enum intel_dpll_id pll_id;
9357
9358 pipe_config->has_pch_encoder = true;
9359
9360 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9361 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9362 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9363
9364 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9365
9366 if (HAS_PCH_IBX(dev_priv)) {
9367 /*
9368 * The pipe->pch transcoder and pch transcoder->pll
9369 * mapping is fixed.
9370 */
9371 pll_id = (enum intel_dpll_id) crtc->pipe;
9372 } else {
9373 tmp = I915_READ(PCH_DPLL_SEL);
9374 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9375 pll_id = DPLL_ID_PCH_PLL_B;
9376 else
9377 pll_id= DPLL_ID_PCH_PLL_A;
9378 }
9379
9380 pipe_config->shared_dpll =
9381 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9382 pll = pipe_config->shared_dpll;
9383
9384 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9385 &pipe_config->dpll_hw_state));
9386
9387 tmp = pipe_config->dpll_hw_state.dpll;
9388 pipe_config->pixel_multiplier =
9389 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9390 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9391
9392 ironlake_pch_clock_get(crtc, pipe_config);
9393 } else {
9394 pipe_config->pixel_multiplier = 1;
9395 }
9396
9397 intel_get_pipe_timings(crtc, pipe_config);
9398 intel_get_pipe_src_size(crtc, pipe_config);
9399
9400 ironlake_get_pfit_config(crtc, pipe_config);
9401
9402 ret = true;
9403
9404 out:
9405 intel_display_power_put(dev_priv, power_domain);
9406
9407 return ret;
9408 }
9409
9410 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9411 {
9412 struct drm_device *dev = &dev_priv->drm;
9413 struct intel_crtc *crtc;
9414
9415 for_each_intel_crtc(dev, crtc)
9416 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9417 pipe_name(crtc->pipe));
9418
9419 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9420 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9421 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9422 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9423 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9424 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9425 "CPU PWM1 enabled\n");
9426 if (IS_HASWELL(dev))
9427 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9428 "CPU PWM2 enabled\n");
9429 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9430 "PCH PWM1 enabled\n");
9431 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9432 "Utility pin enabled\n");
9433 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9434
9435 /*
9436 * In theory we can still leave IRQs enabled, as long as only the HPD
9437 * interrupts remain enabled. We used to check for that, but since it's
9438 * gen-specific and since we only disable LCPLL after we fully disable
9439 * the interrupts, the check below should be enough.
9440 */
9441 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9442 }
9443
9444 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9445 {
9446 struct drm_device *dev = &dev_priv->drm;
9447
9448 if (IS_HASWELL(dev))
9449 return I915_READ(D_COMP_HSW);
9450 else
9451 return I915_READ(D_COMP_BDW);
9452 }
9453
9454 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9455 {
9456 struct drm_device *dev = &dev_priv->drm;
9457
9458 if (IS_HASWELL(dev)) {
9459 mutex_lock(&dev_priv->rps.hw_lock);
9460 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9461 val))
9462 DRM_ERROR("Failed to write to D_COMP\n");
9463 mutex_unlock(&dev_priv->rps.hw_lock);
9464 } else {
9465 I915_WRITE(D_COMP_BDW, val);
9466 POSTING_READ(D_COMP_BDW);
9467 }
9468 }
9469
9470 /*
9471 * This function implements pieces of two sequences from BSpec:
9472 * - Sequence for display software to disable LCPLL
9473 * - Sequence for display software to allow package C8+
9474 * The steps implemented here are just the steps that actually touch the LCPLL
9475 * register. Callers should take care of disabling all the display engine
9476 * functions, doing the mode unset, fixing interrupts, etc.
9477 */
9478 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9479 bool switch_to_fclk, bool allow_power_down)
9480 {
9481 uint32_t val;
9482
9483 assert_can_disable_lcpll(dev_priv);
9484
9485 val = I915_READ(LCPLL_CTL);
9486
9487 if (switch_to_fclk) {
9488 val |= LCPLL_CD_SOURCE_FCLK;
9489 I915_WRITE(LCPLL_CTL, val);
9490
9491 if (wait_for_us(I915_READ(LCPLL_CTL) &
9492 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9493 DRM_ERROR("Switching to FCLK failed\n");
9494
9495 val = I915_READ(LCPLL_CTL);
9496 }
9497
9498 val |= LCPLL_PLL_DISABLE;
9499 I915_WRITE(LCPLL_CTL, val);
9500 POSTING_READ(LCPLL_CTL);
9501
9502 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9503 DRM_ERROR("LCPLL still locked\n");
9504
9505 val = hsw_read_dcomp(dev_priv);
9506 val |= D_COMP_COMP_DISABLE;
9507 hsw_write_dcomp(dev_priv, val);
9508 ndelay(100);
9509
9510 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9511 1))
9512 DRM_ERROR("D_COMP RCOMP still in progress\n");
9513
9514 if (allow_power_down) {
9515 val = I915_READ(LCPLL_CTL);
9516 val |= LCPLL_POWER_DOWN_ALLOW;
9517 I915_WRITE(LCPLL_CTL, val);
9518 POSTING_READ(LCPLL_CTL);
9519 }
9520 }
9521
9522 /*
9523 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9524 * source.
9525 */
9526 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9527 {
9528 uint32_t val;
9529
9530 val = I915_READ(LCPLL_CTL);
9531
9532 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9533 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9534 return;
9535
9536 /*
9537 * Make sure we're not on PC8 state before disabling PC8, otherwise
9538 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9539 */
9540 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9541
9542 if (val & LCPLL_POWER_DOWN_ALLOW) {
9543 val &= ~LCPLL_POWER_DOWN_ALLOW;
9544 I915_WRITE(LCPLL_CTL, val);
9545 POSTING_READ(LCPLL_CTL);
9546 }
9547
9548 val = hsw_read_dcomp(dev_priv);
9549 val |= D_COMP_COMP_FORCE;
9550 val &= ~D_COMP_COMP_DISABLE;
9551 hsw_write_dcomp(dev_priv, val);
9552
9553 val = I915_READ(LCPLL_CTL);
9554 val &= ~LCPLL_PLL_DISABLE;
9555 I915_WRITE(LCPLL_CTL, val);
9556
9557 if (intel_wait_for_register(dev_priv,
9558 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
9559 5))
9560 DRM_ERROR("LCPLL not locked yet\n");
9561
9562 if (val & LCPLL_CD_SOURCE_FCLK) {
9563 val = I915_READ(LCPLL_CTL);
9564 val &= ~LCPLL_CD_SOURCE_FCLK;
9565 I915_WRITE(LCPLL_CTL, val);
9566
9567 if (wait_for_us((I915_READ(LCPLL_CTL) &
9568 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9569 DRM_ERROR("Switching back to LCPLL failed\n");
9570 }
9571
9572 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9573 intel_update_cdclk(&dev_priv->drm);
9574 }
9575
9576 /*
9577 * Package states C8 and deeper are really deep PC states that can only be
9578 * reached when all the devices on the system allow it, so even if the graphics
9579 * device allows PC8+, it doesn't mean the system will actually get to these
9580 * states. Our driver only allows PC8+ when going into runtime PM.
9581 *
9582 * The requirements for PC8+ are that all the outputs are disabled, the power
9583 * well is disabled and most interrupts are disabled, and these are also
9584 * requirements for runtime PM. When these conditions are met, we manually do
9585 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9586 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9587 * hang the machine.
9588 *
9589 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9590 * the state of some registers, so when we come back from PC8+ we need to
9591 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9592 * need to take care of the registers kept by RC6. Notice that this happens even
9593 * if we don't put the device in PCI D3 state (which is what currently happens
9594 * because of the runtime PM support).
9595 *
9596 * For more, read "Display Sequences for Package C8" on the hardware
9597 * documentation.
9598 */
9599 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9600 {
9601 struct drm_device *dev = &dev_priv->drm;
9602 uint32_t val;
9603
9604 DRM_DEBUG_KMS("Enabling package C8+\n");
9605
9606 if (HAS_PCH_LPT_LP(dev)) {
9607 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9608 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9609 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9610 }
9611
9612 lpt_disable_clkout_dp(dev);
9613 hsw_disable_lcpll(dev_priv, true, true);
9614 }
9615
9616 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9617 {
9618 struct drm_device *dev = &dev_priv->drm;
9619 uint32_t val;
9620
9621 DRM_DEBUG_KMS("Disabling package C8+\n");
9622
9623 hsw_restore_lcpll(dev_priv);
9624 lpt_init_pch_refclk(dev);
9625
9626 if (HAS_PCH_LPT_LP(dev)) {
9627 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9628 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9629 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9630 }
9631 }
9632
9633 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9634 {
9635 struct drm_device *dev = old_state->dev;
9636 struct intel_atomic_state *old_intel_state =
9637 to_intel_atomic_state(old_state);
9638 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9639
9640 bxt_set_cdclk(to_i915(dev), req_cdclk);
9641 }
9642
9643 /* compute the max rate for new configuration */
9644 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9645 {
9646 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9647 struct drm_i915_private *dev_priv = to_i915(state->dev);
9648 struct drm_crtc *crtc;
9649 struct drm_crtc_state *cstate;
9650 struct intel_crtc_state *crtc_state;
9651 unsigned max_pixel_rate = 0, i;
9652 enum pipe pipe;
9653
9654 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9655 sizeof(intel_state->min_pixclk));
9656
9657 for_each_crtc_in_state(state, crtc, cstate, i) {
9658 int pixel_rate;
9659
9660 crtc_state = to_intel_crtc_state(cstate);
9661 if (!crtc_state->base.enable) {
9662 intel_state->min_pixclk[i] = 0;
9663 continue;
9664 }
9665
9666 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9667
9668 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9669 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9670 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9671
9672 intel_state->min_pixclk[i] = pixel_rate;
9673 }
9674
9675 for_each_pipe(dev_priv, pipe)
9676 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9677
9678 return max_pixel_rate;
9679 }
9680
9681 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9682 {
9683 struct drm_i915_private *dev_priv = to_i915(dev);
9684 uint32_t val, data;
9685 int ret;
9686
9687 if (WARN((I915_READ(LCPLL_CTL) &
9688 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9689 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9690 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9691 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9692 "trying to change cdclk frequency with cdclk not enabled\n"))
9693 return;
9694
9695 mutex_lock(&dev_priv->rps.hw_lock);
9696 ret = sandybridge_pcode_write(dev_priv,
9697 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9698 mutex_unlock(&dev_priv->rps.hw_lock);
9699 if (ret) {
9700 DRM_ERROR("failed to inform pcode about cdclk change\n");
9701 return;
9702 }
9703
9704 val = I915_READ(LCPLL_CTL);
9705 val |= LCPLL_CD_SOURCE_FCLK;
9706 I915_WRITE(LCPLL_CTL, val);
9707
9708 if (wait_for_us(I915_READ(LCPLL_CTL) &
9709 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9710 DRM_ERROR("Switching to FCLK failed\n");
9711
9712 val = I915_READ(LCPLL_CTL);
9713 val &= ~LCPLL_CLK_FREQ_MASK;
9714
9715 switch (cdclk) {
9716 case 450000:
9717 val |= LCPLL_CLK_FREQ_450;
9718 data = 0;
9719 break;
9720 case 540000:
9721 val |= LCPLL_CLK_FREQ_54O_BDW;
9722 data = 1;
9723 break;
9724 case 337500:
9725 val |= LCPLL_CLK_FREQ_337_5_BDW;
9726 data = 2;
9727 break;
9728 case 675000:
9729 val |= LCPLL_CLK_FREQ_675_BDW;
9730 data = 3;
9731 break;
9732 default:
9733 WARN(1, "invalid cdclk frequency\n");
9734 return;
9735 }
9736
9737 I915_WRITE(LCPLL_CTL, val);
9738
9739 val = I915_READ(LCPLL_CTL);
9740 val &= ~LCPLL_CD_SOURCE_FCLK;
9741 I915_WRITE(LCPLL_CTL, val);
9742
9743 if (wait_for_us((I915_READ(LCPLL_CTL) &
9744 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9745 DRM_ERROR("Switching back to LCPLL failed\n");
9746
9747 mutex_lock(&dev_priv->rps.hw_lock);
9748 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9749 mutex_unlock(&dev_priv->rps.hw_lock);
9750
9751 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9752
9753 intel_update_cdclk(dev);
9754
9755 WARN(cdclk != dev_priv->cdclk_freq,
9756 "cdclk requested %d kHz but got %d kHz\n",
9757 cdclk, dev_priv->cdclk_freq);
9758 }
9759
9760 static int broadwell_calc_cdclk(int max_pixclk)
9761 {
9762 if (max_pixclk > 540000)
9763 return 675000;
9764 else if (max_pixclk > 450000)
9765 return 540000;
9766 else if (max_pixclk > 337500)
9767 return 450000;
9768 else
9769 return 337500;
9770 }
9771
9772 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9773 {
9774 struct drm_i915_private *dev_priv = to_i915(state->dev);
9775 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9776 int max_pixclk = ilk_max_pixel_rate(state);
9777 int cdclk;
9778
9779 /*
9780 * FIXME should also account for plane ratio
9781 * once 64bpp pixel formats are supported.
9782 */
9783 cdclk = broadwell_calc_cdclk(max_pixclk);
9784
9785 if (cdclk > dev_priv->max_cdclk_freq) {
9786 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9787 cdclk, dev_priv->max_cdclk_freq);
9788 return -EINVAL;
9789 }
9790
9791 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9792 if (!intel_state->active_crtcs)
9793 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9794
9795 return 0;
9796 }
9797
9798 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9799 {
9800 struct drm_device *dev = old_state->dev;
9801 struct intel_atomic_state *old_intel_state =
9802 to_intel_atomic_state(old_state);
9803 unsigned req_cdclk = old_intel_state->dev_cdclk;
9804
9805 broadwell_set_cdclk(dev, req_cdclk);
9806 }
9807
9808 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9809 {
9810 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9811 struct drm_i915_private *dev_priv = to_i915(state->dev);
9812 const int max_pixclk = ilk_max_pixel_rate(state);
9813 int vco = intel_state->cdclk_pll_vco;
9814 int cdclk;
9815
9816 /*
9817 * FIXME should also account for plane ratio
9818 * once 64bpp pixel formats are supported.
9819 */
9820 cdclk = skl_calc_cdclk(max_pixclk, vco);
9821
9822 /*
9823 * FIXME move the cdclk caclulation to
9824 * compute_config() so we can fail gracegully.
9825 */
9826 if (cdclk > dev_priv->max_cdclk_freq) {
9827 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9828 cdclk, dev_priv->max_cdclk_freq);
9829 cdclk = dev_priv->max_cdclk_freq;
9830 }
9831
9832 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9833 if (!intel_state->active_crtcs)
9834 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9835
9836 return 0;
9837 }
9838
9839 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9840 {
9841 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9842 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9843 unsigned int req_cdclk = intel_state->dev_cdclk;
9844 unsigned int req_vco = intel_state->cdclk_pll_vco;
9845
9846 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9847 }
9848
9849 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9850 struct intel_crtc_state *crtc_state)
9851 {
9852 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9853 if (!intel_ddi_pll_select(crtc, crtc_state))
9854 return -EINVAL;
9855 }
9856
9857 crtc->lowfreq_avail = false;
9858
9859 return 0;
9860 }
9861
9862 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9863 enum port port,
9864 struct intel_crtc_state *pipe_config)
9865 {
9866 enum intel_dpll_id id;
9867
9868 switch (port) {
9869 case PORT_A:
9870 pipe_config->ddi_pll_sel = SKL_DPLL0;
9871 id = DPLL_ID_SKL_DPLL0;
9872 break;
9873 case PORT_B:
9874 pipe_config->ddi_pll_sel = SKL_DPLL1;
9875 id = DPLL_ID_SKL_DPLL1;
9876 break;
9877 case PORT_C:
9878 pipe_config->ddi_pll_sel = SKL_DPLL2;
9879 id = DPLL_ID_SKL_DPLL2;
9880 break;
9881 default:
9882 DRM_ERROR("Incorrect port type\n");
9883 return;
9884 }
9885
9886 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9887 }
9888
9889 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9890 enum port port,
9891 struct intel_crtc_state *pipe_config)
9892 {
9893 enum intel_dpll_id id;
9894 u32 temp;
9895
9896 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9897 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9898
9899 switch (pipe_config->ddi_pll_sel) {
9900 case SKL_DPLL0:
9901 id = DPLL_ID_SKL_DPLL0;
9902 break;
9903 case SKL_DPLL1:
9904 id = DPLL_ID_SKL_DPLL1;
9905 break;
9906 case SKL_DPLL2:
9907 id = DPLL_ID_SKL_DPLL2;
9908 break;
9909 case SKL_DPLL3:
9910 id = DPLL_ID_SKL_DPLL3;
9911 break;
9912 default:
9913 MISSING_CASE(pipe_config->ddi_pll_sel);
9914 return;
9915 }
9916
9917 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9918 }
9919
9920 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9921 enum port port,
9922 struct intel_crtc_state *pipe_config)
9923 {
9924 enum intel_dpll_id id;
9925
9926 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9927
9928 switch (pipe_config->ddi_pll_sel) {
9929 case PORT_CLK_SEL_WRPLL1:
9930 id = DPLL_ID_WRPLL1;
9931 break;
9932 case PORT_CLK_SEL_WRPLL2:
9933 id = DPLL_ID_WRPLL2;
9934 break;
9935 case PORT_CLK_SEL_SPLL:
9936 id = DPLL_ID_SPLL;
9937 break;
9938 case PORT_CLK_SEL_LCPLL_810:
9939 id = DPLL_ID_LCPLL_810;
9940 break;
9941 case PORT_CLK_SEL_LCPLL_1350:
9942 id = DPLL_ID_LCPLL_1350;
9943 break;
9944 case PORT_CLK_SEL_LCPLL_2700:
9945 id = DPLL_ID_LCPLL_2700;
9946 break;
9947 default:
9948 MISSING_CASE(pipe_config->ddi_pll_sel);
9949 /* fall through */
9950 case PORT_CLK_SEL_NONE:
9951 return;
9952 }
9953
9954 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9955 }
9956
9957 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9958 struct intel_crtc_state *pipe_config,
9959 unsigned long *power_domain_mask)
9960 {
9961 struct drm_device *dev = crtc->base.dev;
9962 struct drm_i915_private *dev_priv = to_i915(dev);
9963 enum intel_display_power_domain power_domain;
9964 u32 tmp;
9965
9966 /*
9967 * The pipe->transcoder mapping is fixed with the exception of the eDP
9968 * transcoder handled below.
9969 */
9970 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9971
9972 /*
9973 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9974 * consistency and less surprising code; it's in always on power).
9975 */
9976 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9977 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9978 enum pipe trans_edp_pipe;
9979 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9980 default:
9981 WARN(1, "unknown pipe linked to edp transcoder\n");
9982 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9983 case TRANS_DDI_EDP_INPUT_A_ON:
9984 trans_edp_pipe = PIPE_A;
9985 break;
9986 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9987 trans_edp_pipe = PIPE_B;
9988 break;
9989 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9990 trans_edp_pipe = PIPE_C;
9991 break;
9992 }
9993
9994 if (trans_edp_pipe == crtc->pipe)
9995 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9996 }
9997
9998 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9999 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10000 return false;
10001 *power_domain_mask |= BIT(power_domain);
10002
10003 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10004
10005 return tmp & PIPECONF_ENABLE;
10006 }
10007
10008 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10009 struct intel_crtc_state *pipe_config,
10010 unsigned long *power_domain_mask)
10011 {
10012 struct drm_device *dev = crtc->base.dev;
10013 struct drm_i915_private *dev_priv = to_i915(dev);
10014 enum intel_display_power_domain power_domain;
10015 enum port port;
10016 enum transcoder cpu_transcoder;
10017 u32 tmp;
10018
10019 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10020 if (port == PORT_A)
10021 cpu_transcoder = TRANSCODER_DSI_A;
10022 else
10023 cpu_transcoder = TRANSCODER_DSI_C;
10024
10025 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10026 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10027 continue;
10028 *power_domain_mask |= BIT(power_domain);
10029
10030 /*
10031 * The PLL needs to be enabled with a valid divider
10032 * configuration, otherwise accessing DSI registers will hang
10033 * the machine. See BSpec North Display Engine
10034 * registers/MIPI[BXT]. We can break out here early, since we
10035 * need the same DSI PLL to be enabled for both DSI ports.
10036 */
10037 if (!intel_dsi_pll_is_enabled(dev_priv))
10038 break;
10039
10040 /* XXX: this works for video mode only */
10041 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10042 if (!(tmp & DPI_ENABLE))
10043 continue;
10044
10045 tmp = I915_READ(MIPI_CTRL(port));
10046 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10047 continue;
10048
10049 pipe_config->cpu_transcoder = cpu_transcoder;
10050 break;
10051 }
10052
10053 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10054 }
10055
10056 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10057 struct intel_crtc_state *pipe_config)
10058 {
10059 struct drm_device *dev = crtc->base.dev;
10060 struct drm_i915_private *dev_priv = to_i915(dev);
10061 struct intel_shared_dpll *pll;
10062 enum port port;
10063 uint32_t tmp;
10064
10065 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10066
10067 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10068
10069 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10070 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10071 else if (IS_BROXTON(dev))
10072 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10073 else
10074 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10075
10076 pll = pipe_config->shared_dpll;
10077 if (pll) {
10078 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10079 &pipe_config->dpll_hw_state));
10080 }
10081
10082 /*
10083 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10084 * DDI E. So just check whether this pipe is wired to DDI E and whether
10085 * the PCH transcoder is on.
10086 */
10087 if (INTEL_INFO(dev)->gen < 9 &&
10088 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10089 pipe_config->has_pch_encoder = true;
10090
10091 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10092 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10093 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10094
10095 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10096 }
10097 }
10098
10099 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10100 struct intel_crtc_state *pipe_config)
10101 {
10102 struct drm_device *dev = crtc->base.dev;
10103 struct drm_i915_private *dev_priv = to_i915(dev);
10104 enum intel_display_power_domain power_domain;
10105 unsigned long power_domain_mask;
10106 bool active;
10107
10108 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10109 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10110 return false;
10111 power_domain_mask = BIT(power_domain);
10112
10113 pipe_config->shared_dpll = NULL;
10114
10115 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10116
10117 if (IS_BROXTON(dev_priv) &&
10118 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10119 WARN_ON(active);
10120 active = true;
10121 }
10122
10123 if (!active)
10124 goto out;
10125
10126 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10127 haswell_get_ddi_port_state(crtc, pipe_config);
10128 intel_get_pipe_timings(crtc, pipe_config);
10129 }
10130
10131 intel_get_pipe_src_size(crtc, pipe_config);
10132
10133 pipe_config->gamma_mode =
10134 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10135
10136 if (INTEL_INFO(dev)->gen >= 9) {
10137 skl_init_scalers(dev, crtc, pipe_config);
10138 }
10139
10140 if (INTEL_INFO(dev)->gen >= 9) {
10141 pipe_config->scaler_state.scaler_id = -1;
10142 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10143 }
10144
10145 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10146 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10147 power_domain_mask |= BIT(power_domain);
10148 if (INTEL_INFO(dev)->gen >= 9)
10149 skylake_get_pfit_config(crtc, pipe_config);
10150 else
10151 ironlake_get_pfit_config(crtc, pipe_config);
10152 }
10153
10154 if (IS_HASWELL(dev))
10155 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10156 (I915_READ(IPS_CTL) & IPS_ENABLE);
10157
10158 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10159 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10160 pipe_config->pixel_multiplier =
10161 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10162 } else {
10163 pipe_config->pixel_multiplier = 1;
10164 }
10165
10166 out:
10167 for_each_power_domain(power_domain, power_domain_mask)
10168 intel_display_power_put(dev_priv, power_domain);
10169
10170 return active;
10171 }
10172
10173 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10174 const struct intel_plane_state *plane_state)
10175 {
10176 struct drm_device *dev = crtc->dev;
10177 struct drm_i915_private *dev_priv = to_i915(dev);
10178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10179 uint32_t cntl = 0, size = 0;
10180
10181 if (plane_state && plane_state->visible) {
10182 unsigned int width = plane_state->base.crtc_w;
10183 unsigned int height = plane_state->base.crtc_h;
10184 unsigned int stride = roundup_pow_of_two(width) * 4;
10185
10186 switch (stride) {
10187 default:
10188 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10189 width, stride);
10190 stride = 256;
10191 /* fallthrough */
10192 case 256:
10193 case 512:
10194 case 1024:
10195 case 2048:
10196 break;
10197 }
10198
10199 cntl |= CURSOR_ENABLE |
10200 CURSOR_GAMMA_ENABLE |
10201 CURSOR_FORMAT_ARGB |
10202 CURSOR_STRIDE(stride);
10203
10204 size = (height << 12) | width;
10205 }
10206
10207 if (intel_crtc->cursor_cntl != 0 &&
10208 (intel_crtc->cursor_base != base ||
10209 intel_crtc->cursor_size != size ||
10210 intel_crtc->cursor_cntl != cntl)) {
10211 /* On these chipsets we can only modify the base/size/stride
10212 * whilst the cursor is disabled.
10213 */
10214 I915_WRITE(CURCNTR(PIPE_A), 0);
10215 POSTING_READ(CURCNTR(PIPE_A));
10216 intel_crtc->cursor_cntl = 0;
10217 }
10218
10219 if (intel_crtc->cursor_base != base) {
10220 I915_WRITE(CURBASE(PIPE_A), base);
10221 intel_crtc->cursor_base = base;
10222 }
10223
10224 if (intel_crtc->cursor_size != size) {
10225 I915_WRITE(CURSIZE, size);
10226 intel_crtc->cursor_size = size;
10227 }
10228
10229 if (intel_crtc->cursor_cntl != cntl) {
10230 I915_WRITE(CURCNTR(PIPE_A), cntl);
10231 POSTING_READ(CURCNTR(PIPE_A));
10232 intel_crtc->cursor_cntl = cntl;
10233 }
10234 }
10235
10236 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10237 const struct intel_plane_state *plane_state)
10238 {
10239 struct drm_device *dev = crtc->dev;
10240 struct drm_i915_private *dev_priv = to_i915(dev);
10241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10242 int pipe = intel_crtc->pipe;
10243 uint32_t cntl = 0;
10244
10245 if (plane_state && plane_state->visible) {
10246 cntl = MCURSOR_GAMMA_ENABLE;
10247 switch (plane_state->base.crtc_w) {
10248 case 64:
10249 cntl |= CURSOR_MODE_64_ARGB_AX;
10250 break;
10251 case 128:
10252 cntl |= CURSOR_MODE_128_ARGB_AX;
10253 break;
10254 case 256:
10255 cntl |= CURSOR_MODE_256_ARGB_AX;
10256 break;
10257 default:
10258 MISSING_CASE(plane_state->base.crtc_w);
10259 return;
10260 }
10261 cntl |= pipe << 28; /* Connect to correct pipe */
10262
10263 if (HAS_DDI(dev))
10264 cntl |= CURSOR_PIPE_CSC_ENABLE;
10265
10266 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10267 cntl |= CURSOR_ROTATE_180;
10268 }
10269
10270 if (intel_crtc->cursor_cntl != cntl) {
10271 I915_WRITE(CURCNTR(pipe), cntl);
10272 POSTING_READ(CURCNTR(pipe));
10273 intel_crtc->cursor_cntl = cntl;
10274 }
10275
10276 /* and commit changes on next vblank */
10277 I915_WRITE(CURBASE(pipe), base);
10278 POSTING_READ(CURBASE(pipe));
10279
10280 intel_crtc->cursor_base = base;
10281 }
10282
10283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10284 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10285 const struct intel_plane_state *plane_state)
10286 {
10287 struct drm_device *dev = crtc->dev;
10288 struct drm_i915_private *dev_priv = to_i915(dev);
10289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10290 int pipe = intel_crtc->pipe;
10291 u32 base = intel_crtc->cursor_addr;
10292 u32 pos = 0;
10293
10294 if (plane_state) {
10295 int x = plane_state->base.crtc_x;
10296 int y = plane_state->base.crtc_y;
10297
10298 if (x < 0) {
10299 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10300 x = -x;
10301 }
10302 pos |= x << CURSOR_X_SHIFT;
10303
10304 if (y < 0) {
10305 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10306 y = -y;
10307 }
10308 pos |= y << CURSOR_Y_SHIFT;
10309
10310 /* ILK+ do this automagically */
10311 if (HAS_GMCH_DISPLAY(dev) &&
10312 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10313 base += (plane_state->base.crtc_h *
10314 plane_state->base.crtc_w - 1) * 4;
10315 }
10316 }
10317
10318 I915_WRITE(CURPOS(pipe), pos);
10319
10320 if (IS_845G(dev) || IS_I865G(dev))
10321 i845_update_cursor(crtc, base, plane_state);
10322 else
10323 i9xx_update_cursor(crtc, base, plane_state);
10324 }
10325
10326 static bool cursor_size_ok(struct drm_device *dev,
10327 uint32_t width, uint32_t height)
10328 {
10329 if (width == 0 || height == 0)
10330 return false;
10331
10332 /*
10333 * 845g/865g are special in that they are only limited by
10334 * the width of their cursors, the height is arbitrary up to
10335 * the precision of the register. Everything else requires
10336 * square cursors, limited to a few power-of-two sizes.
10337 */
10338 if (IS_845G(dev) || IS_I865G(dev)) {
10339 if ((width & 63) != 0)
10340 return false;
10341
10342 if (width > (IS_845G(dev) ? 64 : 512))
10343 return false;
10344
10345 if (height > 1023)
10346 return false;
10347 } else {
10348 switch (width | height) {
10349 case 256:
10350 case 128:
10351 if (IS_GEN2(dev))
10352 return false;
10353 case 64:
10354 break;
10355 default:
10356 return false;
10357 }
10358 }
10359
10360 return true;
10361 }
10362
10363 /* VESA 640x480x72Hz mode to set on the pipe */
10364 static struct drm_display_mode load_detect_mode = {
10365 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10366 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10367 };
10368
10369 struct drm_framebuffer *
10370 __intel_framebuffer_create(struct drm_device *dev,
10371 struct drm_mode_fb_cmd2 *mode_cmd,
10372 struct drm_i915_gem_object *obj)
10373 {
10374 struct intel_framebuffer *intel_fb;
10375 int ret;
10376
10377 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10378 if (!intel_fb)
10379 return ERR_PTR(-ENOMEM);
10380
10381 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10382 if (ret)
10383 goto err;
10384
10385 return &intel_fb->base;
10386
10387 err:
10388 kfree(intel_fb);
10389 return ERR_PTR(ret);
10390 }
10391
10392 static struct drm_framebuffer *
10393 intel_framebuffer_create(struct drm_device *dev,
10394 struct drm_mode_fb_cmd2 *mode_cmd,
10395 struct drm_i915_gem_object *obj)
10396 {
10397 struct drm_framebuffer *fb;
10398 int ret;
10399
10400 ret = i915_mutex_lock_interruptible(dev);
10401 if (ret)
10402 return ERR_PTR(ret);
10403 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10404 mutex_unlock(&dev->struct_mutex);
10405
10406 return fb;
10407 }
10408
10409 static u32
10410 intel_framebuffer_pitch_for_width(int width, int bpp)
10411 {
10412 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10413 return ALIGN(pitch, 64);
10414 }
10415
10416 static u32
10417 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10418 {
10419 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10420 return PAGE_ALIGN(pitch * mode->vdisplay);
10421 }
10422
10423 static struct drm_framebuffer *
10424 intel_framebuffer_create_for_mode(struct drm_device *dev,
10425 struct drm_display_mode *mode,
10426 int depth, int bpp)
10427 {
10428 struct drm_framebuffer *fb;
10429 struct drm_i915_gem_object *obj;
10430 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10431
10432 obj = i915_gem_object_create(dev,
10433 intel_framebuffer_size_for_mode(mode, bpp));
10434 if (IS_ERR(obj))
10435 return ERR_CAST(obj);
10436
10437 mode_cmd.width = mode->hdisplay;
10438 mode_cmd.height = mode->vdisplay;
10439 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10440 bpp);
10441 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10442
10443 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10444 if (IS_ERR(fb))
10445 drm_gem_object_unreference_unlocked(&obj->base);
10446
10447 return fb;
10448 }
10449
10450 static struct drm_framebuffer *
10451 mode_fits_in_fbdev(struct drm_device *dev,
10452 struct drm_display_mode *mode)
10453 {
10454 #ifdef CONFIG_DRM_FBDEV_EMULATION
10455 struct drm_i915_private *dev_priv = to_i915(dev);
10456 struct drm_i915_gem_object *obj;
10457 struct drm_framebuffer *fb;
10458
10459 if (!dev_priv->fbdev)
10460 return NULL;
10461
10462 if (!dev_priv->fbdev->fb)
10463 return NULL;
10464
10465 obj = dev_priv->fbdev->fb->obj;
10466 BUG_ON(!obj);
10467
10468 fb = &dev_priv->fbdev->fb->base;
10469 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10470 fb->bits_per_pixel))
10471 return NULL;
10472
10473 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10474 return NULL;
10475
10476 drm_framebuffer_reference(fb);
10477 return fb;
10478 #else
10479 return NULL;
10480 #endif
10481 }
10482
10483 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10484 struct drm_crtc *crtc,
10485 struct drm_display_mode *mode,
10486 struct drm_framebuffer *fb,
10487 int x, int y)
10488 {
10489 struct drm_plane_state *plane_state;
10490 int hdisplay, vdisplay;
10491 int ret;
10492
10493 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10494 if (IS_ERR(plane_state))
10495 return PTR_ERR(plane_state);
10496
10497 if (mode)
10498 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10499 else
10500 hdisplay = vdisplay = 0;
10501
10502 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10503 if (ret)
10504 return ret;
10505 drm_atomic_set_fb_for_plane(plane_state, fb);
10506 plane_state->crtc_x = 0;
10507 plane_state->crtc_y = 0;
10508 plane_state->crtc_w = hdisplay;
10509 plane_state->crtc_h = vdisplay;
10510 plane_state->src_x = x << 16;
10511 plane_state->src_y = y << 16;
10512 plane_state->src_w = hdisplay << 16;
10513 plane_state->src_h = vdisplay << 16;
10514
10515 return 0;
10516 }
10517
10518 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10519 struct drm_display_mode *mode,
10520 struct intel_load_detect_pipe *old,
10521 struct drm_modeset_acquire_ctx *ctx)
10522 {
10523 struct intel_crtc *intel_crtc;
10524 struct intel_encoder *intel_encoder =
10525 intel_attached_encoder(connector);
10526 struct drm_crtc *possible_crtc;
10527 struct drm_encoder *encoder = &intel_encoder->base;
10528 struct drm_crtc *crtc = NULL;
10529 struct drm_device *dev = encoder->dev;
10530 struct drm_framebuffer *fb;
10531 struct drm_mode_config *config = &dev->mode_config;
10532 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10533 struct drm_connector_state *connector_state;
10534 struct intel_crtc_state *crtc_state;
10535 int ret, i = -1;
10536
10537 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10538 connector->base.id, connector->name,
10539 encoder->base.id, encoder->name);
10540
10541 old->restore_state = NULL;
10542
10543 retry:
10544 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10545 if (ret)
10546 goto fail;
10547
10548 /*
10549 * Algorithm gets a little messy:
10550 *
10551 * - if the connector already has an assigned crtc, use it (but make
10552 * sure it's on first)
10553 *
10554 * - try to find the first unused crtc that can drive this connector,
10555 * and use that if we find one
10556 */
10557
10558 /* See if we already have a CRTC for this connector */
10559 if (connector->state->crtc) {
10560 crtc = connector->state->crtc;
10561
10562 ret = drm_modeset_lock(&crtc->mutex, ctx);
10563 if (ret)
10564 goto fail;
10565
10566 /* Make sure the crtc and connector are running */
10567 goto found;
10568 }
10569
10570 /* Find an unused one (if possible) */
10571 for_each_crtc(dev, possible_crtc) {
10572 i++;
10573 if (!(encoder->possible_crtcs & (1 << i)))
10574 continue;
10575
10576 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10577 if (ret)
10578 goto fail;
10579
10580 if (possible_crtc->state->enable) {
10581 drm_modeset_unlock(&possible_crtc->mutex);
10582 continue;
10583 }
10584
10585 crtc = possible_crtc;
10586 break;
10587 }
10588
10589 /*
10590 * If we didn't find an unused CRTC, don't use any.
10591 */
10592 if (!crtc) {
10593 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10594 goto fail;
10595 }
10596
10597 found:
10598 intel_crtc = to_intel_crtc(crtc);
10599
10600 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10601 if (ret)
10602 goto fail;
10603
10604 state = drm_atomic_state_alloc(dev);
10605 restore_state = drm_atomic_state_alloc(dev);
10606 if (!state || !restore_state) {
10607 ret = -ENOMEM;
10608 goto fail;
10609 }
10610
10611 state->acquire_ctx = ctx;
10612 restore_state->acquire_ctx = ctx;
10613
10614 connector_state = drm_atomic_get_connector_state(state, connector);
10615 if (IS_ERR(connector_state)) {
10616 ret = PTR_ERR(connector_state);
10617 goto fail;
10618 }
10619
10620 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10621 if (ret)
10622 goto fail;
10623
10624 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10625 if (IS_ERR(crtc_state)) {
10626 ret = PTR_ERR(crtc_state);
10627 goto fail;
10628 }
10629
10630 crtc_state->base.active = crtc_state->base.enable = true;
10631
10632 if (!mode)
10633 mode = &load_detect_mode;
10634
10635 /* We need a framebuffer large enough to accommodate all accesses
10636 * that the plane may generate whilst we perform load detection.
10637 * We can not rely on the fbcon either being present (we get called
10638 * during its initialisation to detect all boot displays, or it may
10639 * not even exist) or that it is large enough to satisfy the
10640 * requested mode.
10641 */
10642 fb = mode_fits_in_fbdev(dev, mode);
10643 if (fb == NULL) {
10644 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10645 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10646 } else
10647 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10648 if (IS_ERR(fb)) {
10649 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10650 goto fail;
10651 }
10652
10653 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10654 if (ret)
10655 goto fail;
10656
10657 drm_framebuffer_unreference(fb);
10658
10659 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10660 if (ret)
10661 goto fail;
10662
10663 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10664 if (!ret)
10665 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10666 if (!ret)
10667 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10668 if (ret) {
10669 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10670 goto fail;
10671 }
10672
10673 ret = drm_atomic_commit(state);
10674 if (ret) {
10675 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10676 goto fail;
10677 }
10678
10679 old->restore_state = restore_state;
10680
10681 /* let the connector get through one full cycle before testing */
10682 intel_wait_for_vblank(dev, intel_crtc->pipe);
10683 return true;
10684
10685 fail:
10686 drm_atomic_state_free(state);
10687 drm_atomic_state_free(restore_state);
10688 restore_state = state = NULL;
10689
10690 if (ret == -EDEADLK) {
10691 drm_modeset_backoff(ctx);
10692 goto retry;
10693 }
10694
10695 return false;
10696 }
10697
10698 void intel_release_load_detect_pipe(struct drm_connector *connector,
10699 struct intel_load_detect_pipe *old,
10700 struct drm_modeset_acquire_ctx *ctx)
10701 {
10702 struct intel_encoder *intel_encoder =
10703 intel_attached_encoder(connector);
10704 struct drm_encoder *encoder = &intel_encoder->base;
10705 struct drm_atomic_state *state = old->restore_state;
10706 int ret;
10707
10708 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10709 connector->base.id, connector->name,
10710 encoder->base.id, encoder->name);
10711
10712 if (!state)
10713 return;
10714
10715 ret = drm_atomic_commit(state);
10716 if (ret) {
10717 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10718 drm_atomic_state_free(state);
10719 }
10720 }
10721
10722 static int i9xx_pll_refclk(struct drm_device *dev,
10723 const struct intel_crtc_state *pipe_config)
10724 {
10725 struct drm_i915_private *dev_priv = to_i915(dev);
10726 u32 dpll = pipe_config->dpll_hw_state.dpll;
10727
10728 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10729 return dev_priv->vbt.lvds_ssc_freq;
10730 else if (HAS_PCH_SPLIT(dev))
10731 return 120000;
10732 else if (!IS_GEN2(dev))
10733 return 96000;
10734 else
10735 return 48000;
10736 }
10737
10738 /* Returns the clock of the currently programmed mode of the given pipe. */
10739 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10740 struct intel_crtc_state *pipe_config)
10741 {
10742 struct drm_device *dev = crtc->base.dev;
10743 struct drm_i915_private *dev_priv = to_i915(dev);
10744 int pipe = pipe_config->cpu_transcoder;
10745 u32 dpll = pipe_config->dpll_hw_state.dpll;
10746 u32 fp;
10747 struct dpll clock;
10748 int port_clock;
10749 int refclk = i9xx_pll_refclk(dev, pipe_config);
10750
10751 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10752 fp = pipe_config->dpll_hw_state.fp0;
10753 else
10754 fp = pipe_config->dpll_hw_state.fp1;
10755
10756 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10757 if (IS_PINEVIEW(dev)) {
10758 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10759 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10760 } else {
10761 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10762 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10763 }
10764
10765 if (!IS_GEN2(dev)) {
10766 if (IS_PINEVIEW(dev))
10767 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10768 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10769 else
10770 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10771 DPLL_FPA01_P1_POST_DIV_SHIFT);
10772
10773 switch (dpll & DPLL_MODE_MASK) {
10774 case DPLLB_MODE_DAC_SERIAL:
10775 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10776 5 : 10;
10777 break;
10778 case DPLLB_MODE_LVDS:
10779 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10780 7 : 14;
10781 break;
10782 default:
10783 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10784 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10785 return;
10786 }
10787
10788 if (IS_PINEVIEW(dev))
10789 port_clock = pnv_calc_dpll_params(refclk, &clock);
10790 else
10791 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10792 } else {
10793 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10794 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10795
10796 if (is_lvds) {
10797 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10798 DPLL_FPA01_P1_POST_DIV_SHIFT);
10799
10800 if (lvds & LVDS_CLKB_POWER_UP)
10801 clock.p2 = 7;
10802 else
10803 clock.p2 = 14;
10804 } else {
10805 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10806 clock.p1 = 2;
10807 else {
10808 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10809 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10810 }
10811 if (dpll & PLL_P2_DIVIDE_BY_4)
10812 clock.p2 = 4;
10813 else
10814 clock.p2 = 2;
10815 }
10816
10817 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10818 }
10819
10820 /*
10821 * This value includes pixel_multiplier. We will use
10822 * port_clock to compute adjusted_mode.crtc_clock in the
10823 * encoder's get_config() function.
10824 */
10825 pipe_config->port_clock = port_clock;
10826 }
10827
10828 int intel_dotclock_calculate(int link_freq,
10829 const struct intel_link_m_n *m_n)
10830 {
10831 /*
10832 * The calculation for the data clock is:
10833 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10834 * But we want to avoid losing precison if possible, so:
10835 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10836 *
10837 * and the link clock is simpler:
10838 * link_clock = (m * link_clock) / n
10839 */
10840
10841 if (!m_n->link_n)
10842 return 0;
10843
10844 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10845 }
10846
10847 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10848 struct intel_crtc_state *pipe_config)
10849 {
10850 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10851
10852 /* read out port_clock from the DPLL */
10853 i9xx_crtc_clock_get(crtc, pipe_config);
10854
10855 /*
10856 * In case there is an active pipe without active ports,
10857 * we may need some idea for the dotclock anyway.
10858 * Calculate one based on the FDI configuration.
10859 */
10860 pipe_config->base.adjusted_mode.crtc_clock =
10861 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10862 &pipe_config->fdi_m_n);
10863 }
10864
10865 /** Returns the currently programmed mode of the given pipe. */
10866 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10867 struct drm_crtc *crtc)
10868 {
10869 struct drm_i915_private *dev_priv = to_i915(dev);
10870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10871 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10872 struct drm_display_mode *mode;
10873 struct intel_crtc_state *pipe_config;
10874 int htot = I915_READ(HTOTAL(cpu_transcoder));
10875 int hsync = I915_READ(HSYNC(cpu_transcoder));
10876 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10877 int vsync = I915_READ(VSYNC(cpu_transcoder));
10878 enum pipe pipe = intel_crtc->pipe;
10879
10880 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10881 if (!mode)
10882 return NULL;
10883
10884 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10885 if (!pipe_config) {
10886 kfree(mode);
10887 return NULL;
10888 }
10889
10890 /*
10891 * Construct a pipe_config sufficient for getting the clock info
10892 * back out of crtc_clock_get.
10893 *
10894 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10895 * to use a real value here instead.
10896 */
10897 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10898 pipe_config->pixel_multiplier = 1;
10899 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10900 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10901 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10902 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10903
10904 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10905 mode->hdisplay = (htot & 0xffff) + 1;
10906 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10907 mode->hsync_start = (hsync & 0xffff) + 1;
10908 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10909 mode->vdisplay = (vtot & 0xffff) + 1;
10910 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10911 mode->vsync_start = (vsync & 0xffff) + 1;
10912 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10913
10914 drm_mode_set_name(mode);
10915
10916 kfree(pipe_config);
10917
10918 return mode;
10919 }
10920
10921 static void intel_crtc_destroy(struct drm_crtc *crtc)
10922 {
10923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10924 struct drm_device *dev = crtc->dev;
10925 struct intel_flip_work *work;
10926
10927 spin_lock_irq(&dev->event_lock);
10928 work = intel_crtc->flip_work;
10929 intel_crtc->flip_work = NULL;
10930 spin_unlock_irq(&dev->event_lock);
10931
10932 if (work) {
10933 cancel_work_sync(&work->mmio_work);
10934 cancel_work_sync(&work->unpin_work);
10935 kfree(work);
10936 }
10937
10938 drm_crtc_cleanup(crtc);
10939
10940 kfree(intel_crtc);
10941 }
10942
10943 static void intel_unpin_work_fn(struct work_struct *__work)
10944 {
10945 struct intel_flip_work *work =
10946 container_of(__work, struct intel_flip_work, unpin_work);
10947 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10948 struct drm_device *dev = crtc->base.dev;
10949 struct drm_plane *primary = crtc->base.primary;
10950
10951 if (is_mmio_work(work))
10952 flush_work(&work->mmio_work);
10953
10954 mutex_lock(&dev->struct_mutex);
10955 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10956 drm_gem_object_unreference(&work->pending_flip_obj->base);
10957
10958 if (work->flip_queued_req)
10959 i915_gem_request_assign(&work->flip_queued_req, NULL);
10960 mutex_unlock(&dev->struct_mutex);
10961
10962 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10963 intel_fbc_post_update(crtc);
10964 drm_framebuffer_unreference(work->old_fb);
10965
10966 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10967 atomic_dec(&crtc->unpin_work_count);
10968
10969 kfree(work);
10970 }
10971
10972 /* Is 'a' after or equal to 'b'? */
10973 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10974 {
10975 return !((a - b) & 0x80000000);
10976 }
10977
10978 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10979 struct intel_flip_work *work)
10980 {
10981 struct drm_device *dev = crtc->base.dev;
10982 struct drm_i915_private *dev_priv = to_i915(dev);
10983 unsigned reset_counter;
10984
10985 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10986 if (crtc->reset_counter != reset_counter)
10987 return true;
10988
10989 /*
10990 * The relevant registers doen't exist on pre-ctg.
10991 * As the flip done interrupt doesn't trigger for mmio
10992 * flips on gmch platforms, a flip count check isn't
10993 * really needed there. But since ctg has the registers,
10994 * include it in the check anyway.
10995 */
10996 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10997 return true;
10998
10999 /*
11000 * BDW signals flip done immediately if the plane
11001 * is disabled, even if the plane enable is already
11002 * armed to occur at the next vblank :(
11003 */
11004
11005 /*
11006 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11007 * used the same base address. In that case the mmio flip might
11008 * have completed, but the CS hasn't even executed the flip yet.
11009 *
11010 * A flip count check isn't enough as the CS might have updated
11011 * the base address just after start of vblank, but before we
11012 * managed to process the interrupt. This means we'd complete the
11013 * CS flip too soon.
11014 *
11015 * Combining both checks should get us a good enough result. It may
11016 * still happen that the CS flip has been executed, but has not
11017 * yet actually completed. But in case the base address is the same
11018 * anyway, we don't really care.
11019 */
11020 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11021 crtc->flip_work->gtt_offset &&
11022 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11023 crtc->flip_work->flip_count);
11024 }
11025
11026 static bool
11027 __pageflip_finished_mmio(struct intel_crtc *crtc,
11028 struct intel_flip_work *work)
11029 {
11030 /*
11031 * MMIO work completes when vblank is different from
11032 * flip_queued_vblank.
11033 *
11034 * Reset counter value doesn't matter, this is handled by
11035 * i915_wait_request finishing early, so no need to handle
11036 * reset here.
11037 */
11038 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11039 }
11040
11041
11042 static bool pageflip_finished(struct intel_crtc *crtc,
11043 struct intel_flip_work *work)
11044 {
11045 if (!atomic_read(&work->pending))
11046 return false;
11047
11048 smp_rmb();
11049
11050 if (is_mmio_work(work))
11051 return __pageflip_finished_mmio(crtc, work);
11052 else
11053 return __pageflip_finished_cs(crtc, work);
11054 }
11055
11056 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11057 {
11058 struct drm_device *dev = &dev_priv->drm;
11059 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11061 struct intel_flip_work *work;
11062 unsigned long flags;
11063
11064 /* Ignore early vblank irqs */
11065 if (!crtc)
11066 return;
11067
11068 /*
11069 * This is called both by irq handlers and the reset code (to complete
11070 * lost pageflips) so needs the full irqsave spinlocks.
11071 */
11072 spin_lock_irqsave(&dev->event_lock, flags);
11073 work = intel_crtc->flip_work;
11074
11075 if (work != NULL &&
11076 !is_mmio_work(work) &&
11077 pageflip_finished(intel_crtc, work))
11078 page_flip_completed(intel_crtc);
11079
11080 spin_unlock_irqrestore(&dev->event_lock, flags);
11081 }
11082
11083 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11084 {
11085 struct drm_device *dev = &dev_priv->drm;
11086 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11088 struct intel_flip_work *work;
11089 unsigned long flags;
11090
11091 /* Ignore early vblank irqs */
11092 if (!crtc)
11093 return;
11094
11095 /*
11096 * This is called both by irq handlers and the reset code (to complete
11097 * lost pageflips) so needs the full irqsave spinlocks.
11098 */
11099 spin_lock_irqsave(&dev->event_lock, flags);
11100 work = intel_crtc->flip_work;
11101
11102 if (work != NULL &&
11103 is_mmio_work(work) &&
11104 pageflip_finished(intel_crtc, work))
11105 page_flip_completed(intel_crtc);
11106
11107 spin_unlock_irqrestore(&dev->event_lock, flags);
11108 }
11109
11110 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11111 struct intel_flip_work *work)
11112 {
11113 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11114
11115 /* Ensure that the work item is consistent when activating it ... */
11116 smp_mb__before_atomic();
11117 atomic_set(&work->pending, 1);
11118 }
11119
11120 static int intel_gen2_queue_flip(struct drm_device *dev,
11121 struct drm_crtc *crtc,
11122 struct drm_framebuffer *fb,
11123 struct drm_i915_gem_object *obj,
11124 struct drm_i915_gem_request *req,
11125 uint32_t flags)
11126 {
11127 struct intel_engine_cs *engine = req->engine;
11128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11129 u32 flip_mask;
11130 int ret;
11131
11132 ret = intel_ring_begin(req, 6);
11133 if (ret)
11134 return ret;
11135
11136 /* Can't queue multiple flips, so wait for the previous
11137 * one to finish before executing the next.
11138 */
11139 if (intel_crtc->plane)
11140 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11141 else
11142 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11143 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11144 intel_ring_emit(engine, MI_NOOP);
11145 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11146 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11147 intel_ring_emit(engine, fb->pitches[0]);
11148 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11149 intel_ring_emit(engine, 0); /* aux display base address, unused */
11150
11151 return 0;
11152 }
11153
11154 static int intel_gen3_queue_flip(struct drm_device *dev,
11155 struct drm_crtc *crtc,
11156 struct drm_framebuffer *fb,
11157 struct drm_i915_gem_object *obj,
11158 struct drm_i915_gem_request *req,
11159 uint32_t flags)
11160 {
11161 struct intel_engine_cs *engine = req->engine;
11162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11163 u32 flip_mask;
11164 int ret;
11165
11166 ret = intel_ring_begin(req, 6);
11167 if (ret)
11168 return ret;
11169
11170 if (intel_crtc->plane)
11171 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11172 else
11173 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11174 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11175 intel_ring_emit(engine, MI_NOOP);
11176 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11177 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11178 intel_ring_emit(engine, fb->pitches[0]);
11179 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11180 intel_ring_emit(engine, MI_NOOP);
11181
11182 return 0;
11183 }
11184
11185 static int intel_gen4_queue_flip(struct drm_device *dev,
11186 struct drm_crtc *crtc,
11187 struct drm_framebuffer *fb,
11188 struct drm_i915_gem_object *obj,
11189 struct drm_i915_gem_request *req,
11190 uint32_t flags)
11191 {
11192 struct intel_engine_cs *engine = req->engine;
11193 struct drm_i915_private *dev_priv = to_i915(dev);
11194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11195 uint32_t pf, pipesrc;
11196 int ret;
11197
11198 ret = intel_ring_begin(req, 4);
11199 if (ret)
11200 return ret;
11201
11202 /* i965+ uses the linear or tiled offsets from the
11203 * Display Registers (which do not change across a page-flip)
11204 * so we need only reprogram the base address.
11205 */
11206 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11207 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11208 intel_ring_emit(engine, fb->pitches[0]);
11209 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11210 obj->tiling_mode);
11211
11212 /* XXX Enabling the panel-fitter across page-flip is so far
11213 * untested on non-native modes, so ignore it for now.
11214 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11215 */
11216 pf = 0;
11217 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11218 intel_ring_emit(engine, pf | pipesrc);
11219
11220 return 0;
11221 }
11222
11223 static int intel_gen6_queue_flip(struct drm_device *dev,
11224 struct drm_crtc *crtc,
11225 struct drm_framebuffer *fb,
11226 struct drm_i915_gem_object *obj,
11227 struct drm_i915_gem_request *req,
11228 uint32_t flags)
11229 {
11230 struct intel_engine_cs *engine = req->engine;
11231 struct drm_i915_private *dev_priv = to_i915(dev);
11232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11233 uint32_t pf, pipesrc;
11234 int ret;
11235
11236 ret = intel_ring_begin(req, 4);
11237 if (ret)
11238 return ret;
11239
11240 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11241 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11242 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11243 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11244
11245 /* Contrary to the suggestions in the documentation,
11246 * "Enable Panel Fitter" does not seem to be required when page
11247 * flipping with a non-native mode, and worse causes a normal
11248 * modeset to fail.
11249 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11250 */
11251 pf = 0;
11252 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11253 intel_ring_emit(engine, pf | pipesrc);
11254
11255 return 0;
11256 }
11257
11258 static int intel_gen7_queue_flip(struct drm_device *dev,
11259 struct drm_crtc *crtc,
11260 struct drm_framebuffer *fb,
11261 struct drm_i915_gem_object *obj,
11262 struct drm_i915_gem_request *req,
11263 uint32_t flags)
11264 {
11265 struct intel_engine_cs *engine = req->engine;
11266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11267 uint32_t plane_bit = 0;
11268 int len, ret;
11269
11270 switch (intel_crtc->plane) {
11271 case PLANE_A:
11272 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11273 break;
11274 case PLANE_B:
11275 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11276 break;
11277 case PLANE_C:
11278 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11279 break;
11280 default:
11281 WARN_ONCE(1, "unknown plane in flip command\n");
11282 return -ENODEV;
11283 }
11284
11285 len = 4;
11286 if (engine->id == RCS) {
11287 len += 6;
11288 /*
11289 * On Gen 8, SRM is now taking an extra dword to accommodate
11290 * 48bits addresses, and we need a NOOP for the batch size to
11291 * stay even.
11292 */
11293 if (IS_GEN8(dev))
11294 len += 2;
11295 }
11296
11297 /*
11298 * BSpec MI_DISPLAY_FLIP for IVB:
11299 * "The full packet must be contained within the same cache line."
11300 *
11301 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11302 * cacheline, if we ever start emitting more commands before
11303 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11304 * then do the cacheline alignment, and finally emit the
11305 * MI_DISPLAY_FLIP.
11306 */
11307 ret = intel_ring_cacheline_align(req);
11308 if (ret)
11309 return ret;
11310
11311 ret = intel_ring_begin(req, len);
11312 if (ret)
11313 return ret;
11314
11315 /* Unmask the flip-done completion message. Note that the bspec says that
11316 * we should do this for both the BCS and RCS, and that we must not unmask
11317 * more than one flip event at any time (or ensure that one flip message
11318 * can be sent by waiting for flip-done prior to queueing new flips).
11319 * Experimentation says that BCS works despite DERRMR masking all
11320 * flip-done completion events and that unmasking all planes at once
11321 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11322 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11323 */
11324 if (engine->id == RCS) {
11325 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11326 intel_ring_emit_reg(engine, DERRMR);
11327 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11328 DERRMR_PIPEB_PRI_FLIP_DONE |
11329 DERRMR_PIPEC_PRI_FLIP_DONE));
11330 if (IS_GEN8(dev))
11331 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11332 MI_SRM_LRM_GLOBAL_GTT);
11333 else
11334 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11335 MI_SRM_LRM_GLOBAL_GTT);
11336 intel_ring_emit_reg(engine, DERRMR);
11337 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11338 if (IS_GEN8(dev)) {
11339 intel_ring_emit(engine, 0);
11340 intel_ring_emit(engine, MI_NOOP);
11341 }
11342 }
11343
11344 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11345 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11346 intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11347 intel_ring_emit(engine, (MI_NOOP));
11348
11349 return 0;
11350 }
11351
11352 static bool use_mmio_flip(struct intel_engine_cs *engine,
11353 struct drm_i915_gem_object *obj)
11354 {
11355 struct reservation_object *resv;
11356
11357 /*
11358 * This is not being used for older platforms, because
11359 * non-availability of flip done interrupt forces us to use
11360 * CS flips. Older platforms derive flip done using some clever
11361 * tricks involving the flip_pending status bits and vblank irqs.
11362 * So using MMIO flips there would disrupt this mechanism.
11363 */
11364
11365 if (engine == NULL)
11366 return true;
11367
11368 if (INTEL_GEN(engine->i915) < 5)
11369 return false;
11370
11371 if (i915.use_mmio_flip < 0)
11372 return false;
11373 else if (i915.use_mmio_flip > 0)
11374 return true;
11375 else if (i915.enable_execlists)
11376 return true;
11377
11378 resv = i915_gem_object_get_dmabuf_resv(obj);
11379 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11380 return true;
11381
11382 return engine != i915_gem_request_get_engine(obj->last_write_req);
11383 }
11384
11385 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11386 unsigned int rotation,
11387 struct intel_flip_work *work)
11388 {
11389 struct drm_device *dev = intel_crtc->base.dev;
11390 struct drm_i915_private *dev_priv = to_i915(dev);
11391 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11392 const enum pipe pipe = intel_crtc->pipe;
11393 u32 ctl, stride, tile_height;
11394
11395 ctl = I915_READ(PLANE_CTL(pipe, 0));
11396 ctl &= ~PLANE_CTL_TILED_MASK;
11397 switch (fb->modifier[0]) {
11398 case DRM_FORMAT_MOD_NONE:
11399 break;
11400 case I915_FORMAT_MOD_X_TILED:
11401 ctl |= PLANE_CTL_TILED_X;
11402 break;
11403 case I915_FORMAT_MOD_Y_TILED:
11404 ctl |= PLANE_CTL_TILED_Y;
11405 break;
11406 case I915_FORMAT_MOD_Yf_TILED:
11407 ctl |= PLANE_CTL_TILED_YF;
11408 break;
11409 default:
11410 MISSING_CASE(fb->modifier[0]);
11411 }
11412
11413 /*
11414 * The stride is either expressed as a multiple of 64 bytes chunks for
11415 * linear buffers or in number of tiles for tiled buffers.
11416 */
11417 if (intel_rotation_90_or_270(rotation)) {
11418 /* stride = Surface height in tiles */
11419 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11420 stride = DIV_ROUND_UP(fb->height, tile_height);
11421 } else {
11422 stride = fb->pitches[0] /
11423 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11424 fb->pixel_format);
11425 }
11426
11427 /*
11428 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11429 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11430 */
11431 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11432 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11433
11434 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11435 POSTING_READ(PLANE_SURF(pipe, 0));
11436 }
11437
11438 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11439 struct intel_flip_work *work)
11440 {
11441 struct drm_device *dev = intel_crtc->base.dev;
11442 struct drm_i915_private *dev_priv = to_i915(dev);
11443 struct intel_framebuffer *intel_fb =
11444 to_intel_framebuffer(intel_crtc->base.primary->fb);
11445 struct drm_i915_gem_object *obj = intel_fb->obj;
11446 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11447 u32 dspcntr;
11448
11449 dspcntr = I915_READ(reg);
11450
11451 if (obj->tiling_mode != I915_TILING_NONE)
11452 dspcntr |= DISPPLANE_TILED;
11453 else
11454 dspcntr &= ~DISPPLANE_TILED;
11455
11456 I915_WRITE(reg, dspcntr);
11457
11458 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11459 POSTING_READ(DSPSURF(intel_crtc->plane));
11460 }
11461
11462 static void intel_mmio_flip_work_func(struct work_struct *w)
11463 {
11464 struct intel_flip_work *work =
11465 container_of(w, struct intel_flip_work, mmio_work);
11466 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11467 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11468 struct intel_framebuffer *intel_fb =
11469 to_intel_framebuffer(crtc->base.primary->fb);
11470 struct drm_i915_gem_object *obj = intel_fb->obj;
11471 struct reservation_object *resv;
11472
11473 if (work->flip_queued_req)
11474 WARN_ON(__i915_wait_request(work->flip_queued_req,
11475 false, NULL,
11476 &dev_priv->rps.mmioflips));
11477
11478 /* For framebuffer backed by dmabuf, wait for fence */
11479 resv = i915_gem_object_get_dmabuf_resv(obj);
11480 if (resv)
11481 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11482 MAX_SCHEDULE_TIMEOUT) < 0);
11483
11484 intel_pipe_update_start(crtc);
11485
11486 if (INTEL_GEN(dev_priv) >= 9)
11487 skl_do_mmio_flip(crtc, work->rotation, work);
11488 else
11489 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11490 ilk_do_mmio_flip(crtc, work);
11491
11492 intel_pipe_update_end(crtc, work);
11493 }
11494
11495 static int intel_default_queue_flip(struct drm_device *dev,
11496 struct drm_crtc *crtc,
11497 struct drm_framebuffer *fb,
11498 struct drm_i915_gem_object *obj,
11499 struct drm_i915_gem_request *req,
11500 uint32_t flags)
11501 {
11502 return -ENODEV;
11503 }
11504
11505 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11506 struct intel_crtc *intel_crtc,
11507 struct intel_flip_work *work)
11508 {
11509 u32 addr, vblank;
11510
11511 if (!atomic_read(&work->pending))
11512 return false;
11513
11514 smp_rmb();
11515
11516 vblank = intel_crtc_get_vblank_counter(intel_crtc);
11517 if (work->flip_ready_vblank == 0) {
11518 if (work->flip_queued_req &&
11519 !i915_gem_request_completed(work->flip_queued_req))
11520 return false;
11521
11522 work->flip_ready_vblank = vblank;
11523 }
11524
11525 if (vblank - work->flip_ready_vblank < 3)
11526 return false;
11527
11528 /* Potential stall - if we see that the flip has happened,
11529 * assume a missed interrupt. */
11530 if (INTEL_GEN(dev_priv) >= 4)
11531 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11532 else
11533 addr = I915_READ(DSPADDR(intel_crtc->plane));
11534
11535 /* There is a potential issue here with a false positive after a flip
11536 * to the same address. We could address this by checking for a
11537 * non-incrementing frame counter.
11538 */
11539 return addr == work->gtt_offset;
11540 }
11541
11542 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11543 {
11544 struct drm_device *dev = &dev_priv->drm;
11545 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11546 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11547 struct intel_flip_work *work;
11548
11549 WARN_ON(!in_interrupt());
11550
11551 if (crtc == NULL)
11552 return;
11553
11554 spin_lock(&dev->event_lock);
11555 work = intel_crtc->flip_work;
11556
11557 if (work != NULL && !is_mmio_work(work) &&
11558 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11559 WARN_ONCE(1,
11560 "Kicking stuck page flip: queued at %d, now %d\n",
11561 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11562 page_flip_completed(intel_crtc);
11563 work = NULL;
11564 }
11565
11566 if (work != NULL && !is_mmio_work(work) &&
11567 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11568 intel_queue_rps_boost_for_request(work->flip_queued_req);
11569 spin_unlock(&dev->event_lock);
11570 }
11571
11572 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11573 struct drm_framebuffer *fb,
11574 struct drm_pending_vblank_event *event,
11575 uint32_t page_flip_flags)
11576 {
11577 struct drm_device *dev = crtc->dev;
11578 struct drm_i915_private *dev_priv = to_i915(dev);
11579 struct drm_framebuffer *old_fb = crtc->primary->fb;
11580 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11582 struct drm_plane *primary = crtc->primary;
11583 enum pipe pipe = intel_crtc->pipe;
11584 struct intel_flip_work *work;
11585 struct intel_engine_cs *engine;
11586 bool mmio_flip;
11587 struct drm_i915_gem_request *request = NULL;
11588 int ret;
11589
11590 /*
11591 * drm_mode_page_flip_ioctl() should already catch this, but double
11592 * check to be safe. In the future we may enable pageflipping from
11593 * a disabled primary plane.
11594 */
11595 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11596 return -EBUSY;
11597
11598 /* Can't change pixel format via MI display flips. */
11599 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11600 return -EINVAL;
11601
11602 /*
11603 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11604 * Note that pitch changes could also affect these register.
11605 */
11606 if (INTEL_INFO(dev)->gen > 3 &&
11607 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11608 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11609 return -EINVAL;
11610
11611 if (i915_terminally_wedged(&dev_priv->gpu_error))
11612 goto out_hang;
11613
11614 work = kzalloc(sizeof(*work), GFP_KERNEL);
11615 if (work == NULL)
11616 return -ENOMEM;
11617
11618 work->event = event;
11619 work->crtc = crtc;
11620 work->old_fb = old_fb;
11621 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11622
11623 ret = drm_crtc_vblank_get(crtc);
11624 if (ret)
11625 goto free_work;
11626
11627 /* We borrow the event spin lock for protecting flip_work */
11628 spin_lock_irq(&dev->event_lock);
11629 if (intel_crtc->flip_work) {
11630 /* Before declaring the flip queue wedged, check if
11631 * the hardware completed the operation behind our backs.
11632 */
11633 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11634 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11635 page_flip_completed(intel_crtc);
11636 } else {
11637 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11638 spin_unlock_irq(&dev->event_lock);
11639
11640 drm_crtc_vblank_put(crtc);
11641 kfree(work);
11642 return -EBUSY;
11643 }
11644 }
11645 intel_crtc->flip_work = work;
11646 spin_unlock_irq(&dev->event_lock);
11647
11648 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11649 flush_workqueue(dev_priv->wq);
11650
11651 /* Reference the objects for the scheduled work. */
11652 drm_framebuffer_reference(work->old_fb);
11653 drm_gem_object_reference(&obj->base);
11654
11655 crtc->primary->fb = fb;
11656 update_state_fb(crtc->primary);
11657
11658 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11659 to_intel_plane_state(primary->state));
11660
11661 work->pending_flip_obj = obj;
11662
11663 ret = i915_mutex_lock_interruptible(dev);
11664 if (ret)
11665 goto cleanup;
11666
11667 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11668 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11669 ret = -EIO;
11670 goto cleanup;
11671 }
11672
11673 atomic_inc(&intel_crtc->unpin_work_count);
11674
11675 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11676 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11677
11678 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11679 engine = &dev_priv->engine[BCS];
11680 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11681 /* vlv: DISPLAY_FLIP fails to change tiling */
11682 engine = NULL;
11683 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11684 engine = &dev_priv->engine[BCS];
11685 } else if (INTEL_INFO(dev)->gen >= 7) {
11686 engine = i915_gem_request_get_engine(obj->last_write_req);
11687 if (engine == NULL || engine->id != RCS)
11688 engine = &dev_priv->engine[BCS];
11689 } else {
11690 engine = &dev_priv->engine[RCS];
11691 }
11692
11693 mmio_flip = use_mmio_flip(engine, obj);
11694
11695 /* When using CS flips, we want to emit semaphores between rings.
11696 * However, when using mmio flips we will create a task to do the
11697 * synchronisation, so all we want here is to pin the framebuffer
11698 * into the display plane and skip any waits.
11699 */
11700 if (!mmio_flip) {
11701 ret = i915_gem_object_sync(obj, engine, &request);
11702 if (!ret && !request) {
11703 request = i915_gem_request_alloc(engine, NULL);
11704 ret = PTR_ERR_OR_ZERO(request);
11705 }
11706
11707 if (ret)
11708 goto cleanup_pending;
11709 }
11710
11711 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11712 if (ret)
11713 goto cleanup_pending;
11714
11715 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11716 obj, 0);
11717 work->gtt_offset += intel_crtc->dspaddr_offset;
11718 work->rotation = crtc->primary->state->rotation;
11719
11720 if (mmio_flip) {
11721 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11722
11723 i915_gem_request_assign(&work->flip_queued_req,
11724 obj->last_write_req);
11725
11726 schedule_work(&work->mmio_work);
11727 } else {
11728 i915_gem_request_assign(&work->flip_queued_req, request);
11729 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11730 page_flip_flags);
11731 if (ret)
11732 goto cleanup_unpin;
11733
11734 intel_mark_page_flip_active(intel_crtc, work);
11735
11736 i915_add_request_no_flush(request);
11737 }
11738
11739 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11740 to_intel_plane(primary)->frontbuffer_bit);
11741 mutex_unlock(&dev->struct_mutex);
11742
11743 intel_frontbuffer_flip_prepare(dev,
11744 to_intel_plane(primary)->frontbuffer_bit);
11745
11746 trace_i915_flip_request(intel_crtc->plane, obj);
11747
11748 return 0;
11749
11750 cleanup_unpin:
11751 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11752 cleanup_pending:
11753 if (!IS_ERR_OR_NULL(request))
11754 i915_add_request_no_flush(request);
11755 atomic_dec(&intel_crtc->unpin_work_count);
11756 mutex_unlock(&dev->struct_mutex);
11757 cleanup:
11758 crtc->primary->fb = old_fb;
11759 update_state_fb(crtc->primary);
11760
11761 drm_gem_object_unreference_unlocked(&obj->base);
11762 drm_framebuffer_unreference(work->old_fb);
11763
11764 spin_lock_irq(&dev->event_lock);
11765 intel_crtc->flip_work = NULL;
11766 spin_unlock_irq(&dev->event_lock);
11767
11768 drm_crtc_vblank_put(crtc);
11769 free_work:
11770 kfree(work);
11771
11772 if (ret == -EIO) {
11773 struct drm_atomic_state *state;
11774 struct drm_plane_state *plane_state;
11775
11776 out_hang:
11777 state = drm_atomic_state_alloc(dev);
11778 if (!state)
11779 return -ENOMEM;
11780 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11781
11782 retry:
11783 plane_state = drm_atomic_get_plane_state(state, primary);
11784 ret = PTR_ERR_OR_ZERO(plane_state);
11785 if (!ret) {
11786 drm_atomic_set_fb_for_plane(plane_state, fb);
11787
11788 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11789 if (!ret)
11790 ret = drm_atomic_commit(state);
11791 }
11792
11793 if (ret == -EDEADLK) {
11794 drm_modeset_backoff(state->acquire_ctx);
11795 drm_atomic_state_clear(state);
11796 goto retry;
11797 }
11798
11799 if (ret)
11800 drm_atomic_state_free(state);
11801
11802 if (ret == 0 && event) {
11803 spin_lock_irq(&dev->event_lock);
11804 drm_crtc_send_vblank_event(crtc, event);
11805 spin_unlock_irq(&dev->event_lock);
11806 }
11807 }
11808 return ret;
11809 }
11810
11811
11812 /**
11813 * intel_wm_need_update - Check whether watermarks need updating
11814 * @plane: drm plane
11815 * @state: new plane state
11816 *
11817 * Check current plane state versus the new one to determine whether
11818 * watermarks need to be recalculated.
11819 *
11820 * Returns true or false.
11821 */
11822 static bool intel_wm_need_update(struct drm_plane *plane,
11823 struct drm_plane_state *state)
11824 {
11825 struct intel_plane_state *new = to_intel_plane_state(state);
11826 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11827
11828 /* Update watermarks on tiling or size changes. */
11829 if (new->visible != cur->visible)
11830 return true;
11831
11832 if (!cur->base.fb || !new->base.fb)
11833 return false;
11834
11835 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11836 cur->base.rotation != new->base.rotation ||
11837 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11838 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11839 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11840 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11841 return true;
11842
11843 return false;
11844 }
11845
11846 static bool needs_scaling(struct intel_plane_state *state)
11847 {
11848 int src_w = drm_rect_width(&state->src) >> 16;
11849 int src_h = drm_rect_height(&state->src) >> 16;
11850 int dst_w = drm_rect_width(&state->dst);
11851 int dst_h = drm_rect_height(&state->dst);
11852
11853 return (src_w != dst_w || src_h != dst_h);
11854 }
11855
11856 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11857 struct drm_plane_state *plane_state)
11858 {
11859 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11860 struct drm_crtc *crtc = crtc_state->crtc;
11861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11862 struct drm_plane *plane = plane_state->plane;
11863 struct drm_device *dev = crtc->dev;
11864 struct drm_i915_private *dev_priv = to_i915(dev);
11865 struct intel_plane_state *old_plane_state =
11866 to_intel_plane_state(plane->state);
11867 bool mode_changed = needs_modeset(crtc_state);
11868 bool was_crtc_enabled = crtc->state->active;
11869 bool is_crtc_enabled = crtc_state->active;
11870 bool turn_off, turn_on, visible, was_visible;
11871 struct drm_framebuffer *fb = plane_state->fb;
11872 int ret;
11873
11874 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
11875 ret = skl_update_scaler_plane(
11876 to_intel_crtc_state(crtc_state),
11877 to_intel_plane_state(plane_state));
11878 if (ret)
11879 return ret;
11880 }
11881
11882 was_visible = old_plane_state->visible;
11883 visible = to_intel_plane_state(plane_state)->visible;
11884
11885 if (!was_crtc_enabled && WARN_ON(was_visible))
11886 was_visible = false;
11887
11888 /*
11889 * Visibility is calculated as if the crtc was on, but
11890 * after scaler setup everything depends on it being off
11891 * when the crtc isn't active.
11892 *
11893 * FIXME this is wrong for watermarks. Watermarks should also
11894 * be computed as if the pipe would be active. Perhaps move
11895 * per-plane wm computation to the .check_plane() hook, and
11896 * only combine the results from all planes in the current place?
11897 */
11898 if (!is_crtc_enabled)
11899 to_intel_plane_state(plane_state)->visible = visible = false;
11900
11901 if (!was_visible && !visible)
11902 return 0;
11903
11904 if (fb != old_plane_state->base.fb)
11905 pipe_config->fb_changed = true;
11906
11907 turn_off = was_visible && (!visible || mode_changed);
11908 turn_on = visible && (!was_visible || mode_changed);
11909
11910 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11911 intel_crtc->base.base.id,
11912 intel_crtc->base.name,
11913 plane->base.id, plane->name,
11914 fb ? fb->base.id : -1);
11915
11916 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11917 plane->base.id, plane->name,
11918 was_visible, visible,
11919 turn_off, turn_on, mode_changed);
11920
11921 if (turn_on) {
11922 pipe_config->update_wm_pre = true;
11923
11924 /* must disable cxsr around plane enable/disable */
11925 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11926 pipe_config->disable_cxsr = true;
11927 } else if (turn_off) {
11928 pipe_config->update_wm_post = true;
11929
11930 /* must disable cxsr around plane enable/disable */
11931 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11932 pipe_config->disable_cxsr = true;
11933 } else if (intel_wm_need_update(plane, plane_state)) {
11934 /* FIXME bollocks */
11935 pipe_config->update_wm_pre = true;
11936 pipe_config->update_wm_post = true;
11937 }
11938
11939 /* Pre-gen9 platforms need two-step watermark updates */
11940 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11941 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11942 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11943
11944 if (visible || was_visible)
11945 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11946
11947 /*
11948 * WaCxSRDisabledForSpriteScaling:ivb
11949 *
11950 * cstate->update_wm was already set above, so this flag will
11951 * take effect when we commit and program watermarks.
11952 */
11953 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11954 needs_scaling(to_intel_plane_state(plane_state)) &&
11955 !needs_scaling(old_plane_state))
11956 pipe_config->disable_lp_wm = true;
11957
11958 return 0;
11959 }
11960
11961 static bool encoders_cloneable(const struct intel_encoder *a,
11962 const struct intel_encoder *b)
11963 {
11964 /* masks could be asymmetric, so check both ways */
11965 return a == b || (a->cloneable & (1 << b->type) &&
11966 b->cloneable & (1 << a->type));
11967 }
11968
11969 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11970 struct intel_crtc *crtc,
11971 struct intel_encoder *encoder)
11972 {
11973 struct intel_encoder *source_encoder;
11974 struct drm_connector *connector;
11975 struct drm_connector_state *connector_state;
11976 int i;
11977
11978 for_each_connector_in_state(state, connector, connector_state, i) {
11979 if (connector_state->crtc != &crtc->base)
11980 continue;
11981
11982 source_encoder =
11983 to_intel_encoder(connector_state->best_encoder);
11984 if (!encoders_cloneable(encoder, source_encoder))
11985 return false;
11986 }
11987
11988 return true;
11989 }
11990
11991 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11992 struct drm_crtc_state *crtc_state)
11993 {
11994 struct drm_device *dev = crtc->dev;
11995 struct drm_i915_private *dev_priv = to_i915(dev);
11996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11997 struct intel_crtc_state *pipe_config =
11998 to_intel_crtc_state(crtc_state);
11999 struct drm_atomic_state *state = crtc_state->state;
12000 int ret;
12001 bool mode_changed = needs_modeset(crtc_state);
12002
12003 if (mode_changed && !crtc_state->active)
12004 pipe_config->update_wm_post = true;
12005
12006 if (mode_changed && crtc_state->enable &&
12007 dev_priv->display.crtc_compute_clock &&
12008 !WARN_ON(pipe_config->shared_dpll)) {
12009 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12010 pipe_config);
12011 if (ret)
12012 return ret;
12013 }
12014
12015 if (crtc_state->color_mgmt_changed) {
12016 ret = intel_color_check(crtc, crtc_state);
12017 if (ret)
12018 return ret;
12019
12020 /*
12021 * Changing color management on Intel hardware is
12022 * handled as part of planes update.
12023 */
12024 crtc_state->planes_changed = true;
12025 }
12026
12027 ret = 0;
12028 if (dev_priv->display.compute_pipe_wm) {
12029 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12030 if (ret) {
12031 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12032 return ret;
12033 }
12034 }
12035
12036 if (dev_priv->display.compute_intermediate_wm &&
12037 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12038 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12039 return 0;
12040
12041 /*
12042 * Calculate 'intermediate' watermarks that satisfy both the
12043 * old state and the new state. We can program these
12044 * immediately.
12045 */
12046 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12047 intel_crtc,
12048 pipe_config);
12049 if (ret) {
12050 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12051 return ret;
12052 }
12053 } else if (dev_priv->display.compute_intermediate_wm) {
12054 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12055 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12056 }
12057
12058 if (INTEL_INFO(dev)->gen >= 9) {
12059 if (mode_changed)
12060 ret = skl_update_scaler_crtc(pipe_config);
12061
12062 if (!ret)
12063 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12064 pipe_config);
12065 }
12066
12067 return ret;
12068 }
12069
12070 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12071 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12072 .atomic_begin = intel_begin_crtc_commit,
12073 .atomic_flush = intel_finish_crtc_commit,
12074 .atomic_check = intel_crtc_atomic_check,
12075 };
12076
12077 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12078 {
12079 struct intel_connector *connector;
12080
12081 for_each_intel_connector(dev, connector) {
12082 if (connector->base.state->crtc)
12083 drm_connector_unreference(&connector->base);
12084
12085 if (connector->base.encoder) {
12086 connector->base.state->best_encoder =
12087 connector->base.encoder;
12088 connector->base.state->crtc =
12089 connector->base.encoder->crtc;
12090
12091 drm_connector_reference(&connector->base);
12092 } else {
12093 connector->base.state->best_encoder = NULL;
12094 connector->base.state->crtc = NULL;
12095 }
12096 }
12097 }
12098
12099 static void
12100 connected_sink_compute_bpp(struct intel_connector *connector,
12101 struct intel_crtc_state *pipe_config)
12102 {
12103 int bpp = pipe_config->pipe_bpp;
12104
12105 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12106 connector->base.base.id,
12107 connector->base.name);
12108
12109 /* Don't use an invalid EDID bpc value */
12110 if (connector->base.display_info.bpc &&
12111 connector->base.display_info.bpc * 3 < bpp) {
12112 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12113 bpp, connector->base.display_info.bpc*3);
12114 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12115 }
12116
12117 /* Clamp bpp to default limit on screens without EDID 1.4 */
12118 if (connector->base.display_info.bpc == 0) {
12119 int type = connector->base.connector_type;
12120 int clamp_bpp = 24;
12121
12122 /* Fall back to 18 bpp when DP sink capability is unknown. */
12123 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12124 type == DRM_MODE_CONNECTOR_eDP)
12125 clamp_bpp = 18;
12126
12127 if (bpp > clamp_bpp) {
12128 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12129 bpp, clamp_bpp);
12130 pipe_config->pipe_bpp = clamp_bpp;
12131 }
12132 }
12133 }
12134
12135 static int
12136 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12137 struct intel_crtc_state *pipe_config)
12138 {
12139 struct drm_device *dev = crtc->base.dev;
12140 struct drm_atomic_state *state;
12141 struct drm_connector *connector;
12142 struct drm_connector_state *connector_state;
12143 int bpp, i;
12144
12145 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12146 bpp = 10*3;
12147 else if (INTEL_INFO(dev)->gen >= 5)
12148 bpp = 12*3;
12149 else
12150 bpp = 8*3;
12151
12152
12153 pipe_config->pipe_bpp = bpp;
12154
12155 state = pipe_config->base.state;
12156
12157 /* Clamp display bpp to EDID value */
12158 for_each_connector_in_state(state, connector, connector_state, i) {
12159 if (connector_state->crtc != &crtc->base)
12160 continue;
12161
12162 connected_sink_compute_bpp(to_intel_connector(connector),
12163 pipe_config);
12164 }
12165
12166 return bpp;
12167 }
12168
12169 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12170 {
12171 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12172 "type: 0x%x flags: 0x%x\n",
12173 mode->crtc_clock,
12174 mode->crtc_hdisplay, mode->crtc_hsync_start,
12175 mode->crtc_hsync_end, mode->crtc_htotal,
12176 mode->crtc_vdisplay, mode->crtc_vsync_start,
12177 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12178 }
12179
12180 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12181 struct intel_crtc_state *pipe_config,
12182 const char *context)
12183 {
12184 struct drm_device *dev = crtc->base.dev;
12185 struct drm_plane *plane;
12186 struct intel_plane *intel_plane;
12187 struct intel_plane_state *state;
12188 struct drm_framebuffer *fb;
12189
12190 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12191 crtc->base.base.id, crtc->base.name,
12192 context, pipe_config, pipe_name(crtc->pipe));
12193
12194 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12195 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12196 pipe_config->pipe_bpp, pipe_config->dither);
12197 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12198 pipe_config->has_pch_encoder,
12199 pipe_config->fdi_lanes,
12200 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12201 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12202 pipe_config->fdi_m_n.tu);
12203 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12204 intel_crtc_has_dp_encoder(pipe_config),
12205 pipe_config->lane_count,
12206 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12207 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12208 pipe_config->dp_m_n.tu);
12209
12210 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12211 intel_crtc_has_dp_encoder(pipe_config),
12212 pipe_config->lane_count,
12213 pipe_config->dp_m2_n2.gmch_m,
12214 pipe_config->dp_m2_n2.gmch_n,
12215 pipe_config->dp_m2_n2.link_m,
12216 pipe_config->dp_m2_n2.link_n,
12217 pipe_config->dp_m2_n2.tu);
12218
12219 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12220 pipe_config->has_audio,
12221 pipe_config->has_infoframe);
12222
12223 DRM_DEBUG_KMS("requested mode:\n");
12224 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12225 DRM_DEBUG_KMS("adjusted mode:\n");
12226 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12227 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12228 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12229 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12230 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12231 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12232 crtc->num_scalers,
12233 pipe_config->scaler_state.scaler_users,
12234 pipe_config->scaler_state.scaler_id);
12235 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12236 pipe_config->gmch_pfit.control,
12237 pipe_config->gmch_pfit.pgm_ratios,
12238 pipe_config->gmch_pfit.lvds_border_bits);
12239 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12240 pipe_config->pch_pfit.pos,
12241 pipe_config->pch_pfit.size,
12242 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12243 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12244 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12245
12246 if (IS_BROXTON(dev)) {
12247 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12248 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12249 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12250 pipe_config->ddi_pll_sel,
12251 pipe_config->dpll_hw_state.ebb0,
12252 pipe_config->dpll_hw_state.ebb4,
12253 pipe_config->dpll_hw_state.pll0,
12254 pipe_config->dpll_hw_state.pll1,
12255 pipe_config->dpll_hw_state.pll2,
12256 pipe_config->dpll_hw_state.pll3,
12257 pipe_config->dpll_hw_state.pll6,
12258 pipe_config->dpll_hw_state.pll8,
12259 pipe_config->dpll_hw_state.pll9,
12260 pipe_config->dpll_hw_state.pll10,
12261 pipe_config->dpll_hw_state.pcsdw12);
12262 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12263 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12264 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12265 pipe_config->ddi_pll_sel,
12266 pipe_config->dpll_hw_state.ctrl1,
12267 pipe_config->dpll_hw_state.cfgcr1,
12268 pipe_config->dpll_hw_state.cfgcr2);
12269 } else if (HAS_DDI(dev)) {
12270 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12271 pipe_config->ddi_pll_sel,
12272 pipe_config->dpll_hw_state.wrpll,
12273 pipe_config->dpll_hw_state.spll);
12274 } else {
12275 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12276 "fp0: 0x%x, fp1: 0x%x\n",
12277 pipe_config->dpll_hw_state.dpll,
12278 pipe_config->dpll_hw_state.dpll_md,
12279 pipe_config->dpll_hw_state.fp0,
12280 pipe_config->dpll_hw_state.fp1);
12281 }
12282
12283 DRM_DEBUG_KMS("planes on this crtc\n");
12284 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12285 intel_plane = to_intel_plane(plane);
12286 if (intel_plane->pipe != crtc->pipe)
12287 continue;
12288
12289 state = to_intel_plane_state(plane->state);
12290 fb = state->base.fb;
12291 if (!fb) {
12292 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12293 plane->base.id, plane->name, state->scaler_id);
12294 continue;
12295 }
12296
12297 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12298 plane->base.id, plane->name);
12299 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12300 fb->base.id, fb->width, fb->height,
12301 drm_get_format_name(fb->pixel_format));
12302 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12303 state->scaler_id,
12304 state->src.x1 >> 16, state->src.y1 >> 16,
12305 drm_rect_width(&state->src) >> 16,
12306 drm_rect_height(&state->src) >> 16,
12307 state->dst.x1, state->dst.y1,
12308 drm_rect_width(&state->dst),
12309 drm_rect_height(&state->dst));
12310 }
12311 }
12312
12313 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12314 {
12315 struct drm_device *dev = state->dev;
12316 struct drm_connector *connector;
12317 unsigned int used_ports = 0;
12318
12319 /*
12320 * Walk the connector list instead of the encoder
12321 * list to detect the problem on ddi platforms
12322 * where there's just one encoder per digital port.
12323 */
12324 drm_for_each_connector(connector, dev) {
12325 struct drm_connector_state *connector_state;
12326 struct intel_encoder *encoder;
12327
12328 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12329 if (!connector_state)
12330 connector_state = connector->state;
12331
12332 if (!connector_state->best_encoder)
12333 continue;
12334
12335 encoder = to_intel_encoder(connector_state->best_encoder);
12336
12337 WARN_ON(!connector_state->crtc);
12338
12339 switch (encoder->type) {
12340 unsigned int port_mask;
12341 case INTEL_OUTPUT_UNKNOWN:
12342 if (WARN_ON(!HAS_DDI(dev)))
12343 break;
12344 case INTEL_OUTPUT_DP:
12345 case INTEL_OUTPUT_HDMI:
12346 case INTEL_OUTPUT_EDP:
12347 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12348
12349 /* the same port mustn't appear more than once */
12350 if (used_ports & port_mask)
12351 return false;
12352
12353 used_ports |= port_mask;
12354 default:
12355 break;
12356 }
12357 }
12358
12359 return true;
12360 }
12361
12362 static void
12363 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12364 {
12365 struct drm_crtc_state tmp_state;
12366 struct intel_crtc_scaler_state scaler_state;
12367 struct intel_dpll_hw_state dpll_hw_state;
12368 struct intel_shared_dpll *shared_dpll;
12369 uint32_t ddi_pll_sel;
12370 bool force_thru;
12371
12372 /* FIXME: before the switch to atomic started, a new pipe_config was
12373 * kzalloc'd. Code that depends on any field being zero should be
12374 * fixed, so that the crtc_state can be safely duplicated. For now,
12375 * only fields that are know to not cause problems are preserved. */
12376
12377 tmp_state = crtc_state->base;
12378 scaler_state = crtc_state->scaler_state;
12379 shared_dpll = crtc_state->shared_dpll;
12380 dpll_hw_state = crtc_state->dpll_hw_state;
12381 ddi_pll_sel = crtc_state->ddi_pll_sel;
12382 force_thru = crtc_state->pch_pfit.force_thru;
12383
12384 memset(crtc_state, 0, sizeof *crtc_state);
12385
12386 crtc_state->base = tmp_state;
12387 crtc_state->scaler_state = scaler_state;
12388 crtc_state->shared_dpll = shared_dpll;
12389 crtc_state->dpll_hw_state = dpll_hw_state;
12390 crtc_state->ddi_pll_sel = ddi_pll_sel;
12391 crtc_state->pch_pfit.force_thru = force_thru;
12392 }
12393
12394 static int
12395 intel_modeset_pipe_config(struct drm_crtc *crtc,
12396 struct intel_crtc_state *pipe_config)
12397 {
12398 struct drm_atomic_state *state = pipe_config->base.state;
12399 struct intel_encoder *encoder;
12400 struct drm_connector *connector;
12401 struct drm_connector_state *connector_state;
12402 int base_bpp, ret = -EINVAL;
12403 int i;
12404 bool retry = true;
12405
12406 clear_intel_crtc_state(pipe_config);
12407
12408 pipe_config->cpu_transcoder =
12409 (enum transcoder) to_intel_crtc(crtc)->pipe;
12410
12411 /*
12412 * Sanitize sync polarity flags based on requested ones. If neither
12413 * positive or negative polarity is requested, treat this as meaning
12414 * negative polarity.
12415 */
12416 if (!(pipe_config->base.adjusted_mode.flags &
12417 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12418 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12419
12420 if (!(pipe_config->base.adjusted_mode.flags &
12421 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12422 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12423
12424 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12425 pipe_config);
12426 if (base_bpp < 0)
12427 goto fail;
12428
12429 /*
12430 * Determine the real pipe dimensions. Note that stereo modes can
12431 * increase the actual pipe size due to the frame doubling and
12432 * insertion of additional space for blanks between the frame. This
12433 * is stored in the crtc timings. We use the requested mode to do this
12434 * computation to clearly distinguish it from the adjusted mode, which
12435 * can be changed by the connectors in the below retry loop.
12436 */
12437 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12438 &pipe_config->pipe_src_w,
12439 &pipe_config->pipe_src_h);
12440
12441 for_each_connector_in_state(state, connector, connector_state, i) {
12442 if (connector_state->crtc != crtc)
12443 continue;
12444
12445 encoder = to_intel_encoder(connector_state->best_encoder);
12446
12447 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12448 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12449 goto fail;
12450 }
12451
12452 /*
12453 * Determine output_types before calling the .compute_config()
12454 * hooks so that the hooks can use this information safely.
12455 */
12456 pipe_config->output_types |= 1 << encoder->type;
12457 }
12458
12459 encoder_retry:
12460 /* Ensure the port clock defaults are reset when retrying. */
12461 pipe_config->port_clock = 0;
12462 pipe_config->pixel_multiplier = 1;
12463
12464 /* Fill in default crtc timings, allow encoders to overwrite them. */
12465 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12466 CRTC_STEREO_DOUBLE);
12467
12468 /* Pass our mode to the connectors and the CRTC to give them a chance to
12469 * adjust it according to limitations or connector properties, and also
12470 * a chance to reject the mode entirely.
12471 */
12472 for_each_connector_in_state(state, connector, connector_state, i) {
12473 if (connector_state->crtc != crtc)
12474 continue;
12475
12476 encoder = to_intel_encoder(connector_state->best_encoder);
12477
12478 if (!(encoder->compute_config(encoder, pipe_config))) {
12479 DRM_DEBUG_KMS("Encoder config failure\n");
12480 goto fail;
12481 }
12482 }
12483
12484 /* Set default port clock if not overwritten by the encoder. Needs to be
12485 * done afterwards in case the encoder adjusts the mode. */
12486 if (!pipe_config->port_clock)
12487 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12488 * pipe_config->pixel_multiplier;
12489
12490 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12491 if (ret < 0) {
12492 DRM_DEBUG_KMS("CRTC fixup failed\n");
12493 goto fail;
12494 }
12495
12496 if (ret == RETRY) {
12497 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12498 ret = -EINVAL;
12499 goto fail;
12500 }
12501
12502 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12503 retry = false;
12504 goto encoder_retry;
12505 }
12506
12507 /* Dithering seems to not pass-through bits correctly when it should, so
12508 * only enable it on 6bpc panels. */
12509 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12510 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12511 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12512
12513 fail:
12514 return ret;
12515 }
12516
12517 static void
12518 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12519 {
12520 struct drm_crtc *crtc;
12521 struct drm_crtc_state *crtc_state;
12522 int i;
12523
12524 /* Double check state. */
12525 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12526 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12527
12528 /* Update hwmode for vblank functions */
12529 if (crtc->state->active)
12530 crtc->hwmode = crtc->state->adjusted_mode;
12531 else
12532 crtc->hwmode.crtc_clock = 0;
12533
12534 /*
12535 * Update legacy state to satisfy fbc code. This can
12536 * be removed when fbc uses the atomic state.
12537 */
12538 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12539 struct drm_plane_state *plane_state = crtc->primary->state;
12540
12541 crtc->primary->fb = plane_state->fb;
12542 crtc->x = plane_state->src_x >> 16;
12543 crtc->y = plane_state->src_y >> 16;
12544 }
12545 }
12546 }
12547
12548 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12549 {
12550 int diff;
12551
12552 if (clock1 == clock2)
12553 return true;
12554
12555 if (!clock1 || !clock2)
12556 return false;
12557
12558 diff = abs(clock1 - clock2);
12559
12560 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12561 return true;
12562
12563 return false;
12564 }
12565
12566 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12567 list_for_each_entry((intel_crtc), \
12568 &(dev)->mode_config.crtc_list, \
12569 base.head) \
12570 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12571
12572 static bool
12573 intel_compare_m_n(unsigned int m, unsigned int n,
12574 unsigned int m2, unsigned int n2,
12575 bool exact)
12576 {
12577 if (m == m2 && n == n2)
12578 return true;
12579
12580 if (exact || !m || !n || !m2 || !n2)
12581 return false;
12582
12583 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12584
12585 if (n > n2) {
12586 while (n > n2) {
12587 m2 <<= 1;
12588 n2 <<= 1;
12589 }
12590 } else if (n < n2) {
12591 while (n < n2) {
12592 m <<= 1;
12593 n <<= 1;
12594 }
12595 }
12596
12597 if (n != n2)
12598 return false;
12599
12600 return intel_fuzzy_clock_check(m, m2);
12601 }
12602
12603 static bool
12604 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12605 struct intel_link_m_n *m2_n2,
12606 bool adjust)
12607 {
12608 if (m_n->tu == m2_n2->tu &&
12609 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12610 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12611 intel_compare_m_n(m_n->link_m, m_n->link_n,
12612 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12613 if (adjust)
12614 *m2_n2 = *m_n;
12615
12616 return true;
12617 }
12618
12619 return false;
12620 }
12621
12622 static bool
12623 intel_pipe_config_compare(struct drm_device *dev,
12624 struct intel_crtc_state *current_config,
12625 struct intel_crtc_state *pipe_config,
12626 bool adjust)
12627 {
12628 bool ret = true;
12629
12630 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12631 do { \
12632 if (!adjust) \
12633 DRM_ERROR(fmt, ##__VA_ARGS__); \
12634 else \
12635 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12636 } while (0)
12637
12638 #define PIPE_CONF_CHECK_X(name) \
12639 if (current_config->name != pipe_config->name) { \
12640 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12641 "(expected 0x%08x, found 0x%08x)\n", \
12642 current_config->name, \
12643 pipe_config->name); \
12644 ret = false; \
12645 }
12646
12647 #define PIPE_CONF_CHECK_I(name) \
12648 if (current_config->name != pipe_config->name) { \
12649 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12650 "(expected %i, found %i)\n", \
12651 current_config->name, \
12652 pipe_config->name); \
12653 ret = false; \
12654 }
12655
12656 #define PIPE_CONF_CHECK_P(name) \
12657 if (current_config->name != pipe_config->name) { \
12658 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12659 "(expected %p, found %p)\n", \
12660 current_config->name, \
12661 pipe_config->name); \
12662 ret = false; \
12663 }
12664
12665 #define PIPE_CONF_CHECK_M_N(name) \
12666 if (!intel_compare_link_m_n(&current_config->name, \
12667 &pipe_config->name,\
12668 adjust)) { \
12669 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12670 "(expected tu %i gmch %i/%i link %i/%i, " \
12671 "found tu %i, gmch %i/%i link %i/%i)\n", \
12672 current_config->name.tu, \
12673 current_config->name.gmch_m, \
12674 current_config->name.gmch_n, \
12675 current_config->name.link_m, \
12676 current_config->name.link_n, \
12677 pipe_config->name.tu, \
12678 pipe_config->name.gmch_m, \
12679 pipe_config->name.gmch_n, \
12680 pipe_config->name.link_m, \
12681 pipe_config->name.link_n); \
12682 ret = false; \
12683 }
12684
12685 /* This is required for BDW+ where there is only one set of registers for
12686 * switching between high and low RR.
12687 * This macro can be used whenever a comparison has to be made between one
12688 * hw state and multiple sw state variables.
12689 */
12690 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12691 if (!intel_compare_link_m_n(&current_config->name, \
12692 &pipe_config->name, adjust) && \
12693 !intel_compare_link_m_n(&current_config->alt_name, \
12694 &pipe_config->name, adjust)) { \
12695 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12696 "(expected tu %i gmch %i/%i link %i/%i, " \
12697 "or tu %i gmch %i/%i link %i/%i, " \
12698 "found tu %i, gmch %i/%i link %i/%i)\n", \
12699 current_config->name.tu, \
12700 current_config->name.gmch_m, \
12701 current_config->name.gmch_n, \
12702 current_config->name.link_m, \
12703 current_config->name.link_n, \
12704 current_config->alt_name.tu, \
12705 current_config->alt_name.gmch_m, \
12706 current_config->alt_name.gmch_n, \
12707 current_config->alt_name.link_m, \
12708 current_config->alt_name.link_n, \
12709 pipe_config->name.tu, \
12710 pipe_config->name.gmch_m, \
12711 pipe_config->name.gmch_n, \
12712 pipe_config->name.link_m, \
12713 pipe_config->name.link_n); \
12714 ret = false; \
12715 }
12716
12717 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12718 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12719 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12720 "(expected %i, found %i)\n", \
12721 current_config->name & (mask), \
12722 pipe_config->name & (mask)); \
12723 ret = false; \
12724 }
12725
12726 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12727 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12728 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12729 "(expected %i, found %i)\n", \
12730 current_config->name, \
12731 pipe_config->name); \
12732 ret = false; \
12733 }
12734
12735 #define PIPE_CONF_QUIRK(quirk) \
12736 ((current_config->quirks | pipe_config->quirks) & (quirk))
12737
12738 PIPE_CONF_CHECK_I(cpu_transcoder);
12739
12740 PIPE_CONF_CHECK_I(has_pch_encoder);
12741 PIPE_CONF_CHECK_I(fdi_lanes);
12742 PIPE_CONF_CHECK_M_N(fdi_m_n);
12743
12744 PIPE_CONF_CHECK_I(lane_count);
12745 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12746
12747 if (INTEL_INFO(dev)->gen < 8) {
12748 PIPE_CONF_CHECK_M_N(dp_m_n);
12749
12750 if (current_config->has_drrs)
12751 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12752 } else
12753 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12754
12755 PIPE_CONF_CHECK_X(output_types);
12756
12757 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12758 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12759 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12760 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12761 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12762 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12763
12764 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12765 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12766 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12767 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12768 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12769 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12770
12771 PIPE_CONF_CHECK_I(pixel_multiplier);
12772 PIPE_CONF_CHECK_I(has_hdmi_sink);
12773 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12774 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12775 PIPE_CONF_CHECK_I(limited_color_range);
12776 PIPE_CONF_CHECK_I(has_infoframe);
12777
12778 PIPE_CONF_CHECK_I(has_audio);
12779
12780 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12781 DRM_MODE_FLAG_INTERLACE);
12782
12783 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12784 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12785 DRM_MODE_FLAG_PHSYNC);
12786 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12787 DRM_MODE_FLAG_NHSYNC);
12788 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12789 DRM_MODE_FLAG_PVSYNC);
12790 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12791 DRM_MODE_FLAG_NVSYNC);
12792 }
12793
12794 PIPE_CONF_CHECK_X(gmch_pfit.control);
12795 /* pfit ratios are autocomputed by the hw on gen4+ */
12796 if (INTEL_INFO(dev)->gen < 4)
12797 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12798 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12799
12800 if (!adjust) {
12801 PIPE_CONF_CHECK_I(pipe_src_w);
12802 PIPE_CONF_CHECK_I(pipe_src_h);
12803
12804 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12805 if (current_config->pch_pfit.enabled) {
12806 PIPE_CONF_CHECK_X(pch_pfit.pos);
12807 PIPE_CONF_CHECK_X(pch_pfit.size);
12808 }
12809
12810 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12811 }
12812
12813 /* BDW+ don't expose a synchronous way to read the state */
12814 if (IS_HASWELL(dev))
12815 PIPE_CONF_CHECK_I(ips_enabled);
12816
12817 PIPE_CONF_CHECK_I(double_wide);
12818
12819 PIPE_CONF_CHECK_X(ddi_pll_sel);
12820
12821 PIPE_CONF_CHECK_P(shared_dpll);
12822 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12823 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12824 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12825 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12826 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12827 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12828 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12829 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12830 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12831
12832 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12833 PIPE_CONF_CHECK_X(dsi_pll.div);
12834
12835 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12836 PIPE_CONF_CHECK_I(pipe_bpp);
12837
12838 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12839 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12840
12841 #undef PIPE_CONF_CHECK_X
12842 #undef PIPE_CONF_CHECK_I
12843 #undef PIPE_CONF_CHECK_P
12844 #undef PIPE_CONF_CHECK_FLAGS
12845 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12846 #undef PIPE_CONF_QUIRK
12847 #undef INTEL_ERR_OR_DBG_KMS
12848
12849 return ret;
12850 }
12851
12852 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12853 const struct intel_crtc_state *pipe_config)
12854 {
12855 if (pipe_config->has_pch_encoder) {
12856 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12857 &pipe_config->fdi_m_n);
12858 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12859
12860 /*
12861 * FDI already provided one idea for the dotclock.
12862 * Yell if the encoder disagrees.
12863 */
12864 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12865 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12866 fdi_dotclock, dotclock);
12867 }
12868 }
12869
12870 static void verify_wm_state(struct drm_crtc *crtc,
12871 struct drm_crtc_state *new_state)
12872 {
12873 struct drm_device *dev = crtc->dev;
12874 struct drm_i915_private *dev_priv = to_i915(dev);
12875 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12876 struct skl_ddb_entry *hw_entry, *sw_entry;
12877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12878 const enum pipe pipe = intel_crtc->pipe;
12879 int plane;
12880
12881 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12882 return;
12883
12884 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12885 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12886
12887 /* planes */
12888 for_each_plane(dev_priv, pipe, plane) {
12889 hw_entry = &hw_ddb.plane[pipe][plane];
12890 sw_entry = &sw_ddb->plane[pipe][plane];
12891
12892 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12893 continue;
12894
12895 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12896 "(expected (%u,%u), found (%u,%u))\n",
12897 pipe_name(pipe), plane + 1,
12898 sw_entry->start, sw_entry->end,
12899 hw_entry->start, hw_entry->end);
12900 }
12901
12902 /* cursor */
12903 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12904 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12905
12906 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12907 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12908 "(expected (%u,%u), found (%u,%u))\n",
12909 pipe_name(pipe),
12910 sw_entry->start, sw_entry->end,
12911 hw_entry->start, hw_entry->end);
12912 }
12913 }
12914
12915 static void
12916 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12917 {
12918 struct drm_connector *connector;
12919
12920 drm_for_each_connector(connector, dev) {
12921 struct drm_encoder *encoder = connector->encoder;
12922 struct drm_connector_state *state = connector->state;
12923
12924 if (state->crtc != crtc)
12925 continue;
12926
12927 intel_connector_verify_state(to_intel_connector(connector));
12928
12929 I915_STATE_WARN(state->best_encoder != encoder,
12930 "connector's atomic encoder doesn't match legacy encoder\n");
12931 }
12932 }
12933
12934 static void
12935 verify_encoder_state(struct drm_device *dev)
12936 {
12937 struct intel_encoder *encoder;
12938 struct intel_connector *connector;
12939
12940 for_each_intel_encoder(dev, encoder) {
12941 bool enabled = false;
12942 enum pipe pipe;
12943
12944 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12945 encoder->base.base.id,
12946 encoder->base.name);
12947
12948 for_each_intel_connector(dev, connector) {
12949 if (connector->base.state->best_encoder != &encoder->base)
12950 continue;
12951 enabled = true;
12952
12953 I915_STATE_WARN(connector->base.state->crtc !=
12954 encoder->base.crtc,
12955 "connector's crtc doesn't match encoder crtc\n");
12956 }
12957
12958 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12959 "encoder's enabled state mismatch "
12960 "(expected %i, found %i)\n",
12961 !!encoder->base.crtc, enabled);
12962
12963 if (!encoder->base.crtc) {
12964 bool active;
12965
12966 active = encoder->get_hw_state(encoder, &pipe);
12967 I915_STATE_WARN(active,
12968 "encoder detached but still enabled on pipe %c.\n",
12969 pipe_name(pipe));
12970 }
12971 }
12972 }
12973
12974 static void
12975 verify_crtc_state(struct drm_crtc *crtc,
12976 struct drm_crtc_state *old_crtc_state,
12977 struct drm_crtc_state *new_crtc_state)
12978 {
12979 struct drm_device *dev = crtc->dev;
12980 struct drm_i915_private *dev_priv = to_i915(dev);
12981 struct intel_encoder *encoder;
12982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12983 struct intel_crtc_state *pipe_config, *sw_config;
12984 struct drm_atomic_state *old_state;
12985 bool active;
12986
12987 old_state = old_crtc_state->state;
12988 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12989 pipe_config = to_intel_crtc_state(old_crtc_state);
12990 memset(pipe_config, 0, sizeof(*pipe_config));
12991 pipe_config->base.crtc = crtc;
12992 pipe_config->base.state = old_state;
12993
12994 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12995
12996 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12997
12998 /* hw state is inconsistent with the pipe quirk */
12999 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13000 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13001 active = new_crtc_state->active;
13002
13003 I915_STATE_WARN(new_crtc_state->active != active,
13004 "crtc active state doesn't match with hw state "
13005 "(expected %i, found %i)\n", new_crtc_state->active, active);
13006
13007 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13008 "transitional active state does not match atomic hw state "
13009 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13010
13011 for_each_encoder_on_crtc(dev, crtc, encoder) {
13012 enum pipe pipe;
13013
13014 active = encoder->get_hw_state(encoder, &pipe);
13015 I915_STATE_WARN(active != new_crtc_state->active,
13016 "[ENCODER:%i] active %i with crtc active %i\n",
13017 encoder->base.base.id, active, new_crtc_state->active);
13018
13019 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13020 "Encoder connected to wrong pipe %c\n",
13021 pipe_name(pipe));
13022
13023 if (active) {
13024 pipe_config->output_types |= 1 << encoder->type;
13025 encoder->get_config(encoder, pipe_config);
13026 }
13027 }
13028
13029 if (!new_crtc_state->active)
13030 return;
13031
13032 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13033
13034 sw_config = to_intel_crtc_state(crtc->state);
13035 if (!intel_pipe_config_compare(dev, sw_config,
13036 pipe_config, false)) {
13037 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13038 intel_dump_pipe_config(intel_crtc, pipe_config,
13039 "[hw state]");
13040 intel_dump_pipe_config(intel_crtc, sw_config,
13041 "[sw state]");
13042 }
13043 }
13044
13045 static void
13046 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13047 struct intel_shared_dpll *pll,
13048 struct drm_crtc *crtc,
13049 struct drm_crtc_state *new_state)
13050 {
13051 struct intel_dpll_hw_state dpll_hw_state;
13052 unsigned crtc_mask;
13053 bool active;
13054
13055 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13056
13057 DRM_DEBUG_KMS("%s\n", pll->name);
13058
13059 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13060
13061 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13062 I915_STATE_WARN(!pll->on && pll->active_mask,
13063 "pll in active use but not on in sw tracking\n");
13064 I915_STATE_WARN(pll->on && !pll->active_mask,
13065 "pll is on but not used by any active crtc\n");
13066 I915_STATE_WARN(pll->on != active,
13067 "pll on state mismatch (expected %i, found %i)\n",
13068 pll->on, active);
13069 }
13070
13071 if (!crtc) {
13072 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13073 "more active pll users than references: %x vs %x\n",
13074 pll->active_mask, pll->config.crtc_mask);
13075
13076 return;
13077 }
13078
13079 crtc_mask = 1 << drm_crtc_index(crtc);
13080
13081 if (new_state->active)
13082 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13083 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13084 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13085 else
13086 I915_STATE_WARN(pll->active_mask & crtc_mask,
13087 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13088 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13089
13090 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13091 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13092 crtc_mask, pll->config.crtc_mask);
13093
13094 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13095 &dpll_hw_state,
13096 sizeof(dpll_hw_state)),
13097 "pll hw state mismatch\n");
13098 }
13099
13100 static void
13101 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13102 struct drm_crtc_state *old_crtc_state,
13103 struct drm_crtc_state *new_crtc_state)
13104 {
13105 struct drm_i915_private *dev_priv = to_i915(dev);
13106 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13107 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13108
13109 if (new_state->shared_dpll)
13110 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13111
13112 if (old_state->shared_dpll &&
13113 old_state->shared_dpll != new_state->shared_dpll) {
13114 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13115 struct intel_shared_dpll *pll = old_state->shared_dpll;
13116
13117 I915_STATE_WARN(pll->active_mask & crtc_mask,
13118 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13119 pipe_name(drm_crtc_index(crtc)));
13120 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13121 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13122 pipe_name(drm_crtc_index(crtc)));
13123 }
13124 }
13125
13126 static void
13127 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13128 struct drm_crtc_state *old_state,
13129 struct drm_crtc_state *new_state)
13130 {
13131 if (!needs_modeset(new_state) &&
13132 !to_intel_crtc_state(new_state)->update_pipe)
13133 return;
13134
13135 verify_wm_state(crtc, new_state);
13136 verify_connector_state(crtc->dev, crtc);
13137 verify_crtc_state(crtc, old_state, new_state);
13138 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13139 }
13140
13141 static void
13142 verify_disabled_dpll_state(struct drm_device *dev)
13143 {
13144 struct drm_i915_private *dev_priv = to_i915(dev);
13145 int i;
13146
13147 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13148 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13149 }
13150
13151 static void
13152 intel_modeset_verify_disabled(struct drm_device *dev)
13153 {
13154 verify_encoder_state(dev);
13155 verify_connector_state(dev, NULL);
13156 verify_disabled_dpll_state(dev);
13157 }
13158
13159 static void update_scanline_offset(struct intel_crtc *crtc)
13160 {
13161 struct drm_device *dev = crtc->base.dev;
13162
13163 /*
13164 * The scanline counter increments at the leading edge of hsync.
13165 *
13166 * On most platforms it starts counting from vtotal-1 on the
13167 * first active line. That means the scanline counter value is
13168 * always one less than what we would expect. Ie. just after
13169 * start of vblank, which also occurs at start of hsync (on the
13170 * last active line), the scanline counter will read vblank_start-1.
13171 *
13172 * On gen2 the scanline counter starts counting from 1 instead
13173 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13174 * to keep the value positive), instead of adding one.
13175 *
13176 * On HSW+ the behaviour of the scanline counter depends on the output
13177 * type. For DP ports it behaves like most other platforms, but on HDMI
13178 * there's an extra 1 line difference. So we need to add two instead of
13179 * one to the value.
13180 */
13181 if (IS_GEN2(dev)) {
13182 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13183 int vtotal;
13184
13185 vtotal = adjusted_mode->crtc_vtotal;
13186 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13187 vtotal /= 2;
13188
13189 crtc->scanline_offset = vtotal - 1;
13190 } else if (HAS_DDI(dev) &&
13191 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13192 crtc->scanline_offset = 2;
13193 } else
13194 crtc->scanline_offset = 1;
13195 }
13196
13197 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13198 {
13199 struct drm_device *dev = state->dev;
13200 struct drm_i915_private *dev_priv = to_i915(dev);
13201 struct intel_shared_dpll_config *shared_dpll = NULL;
13202 struct drm_crtc *crtc;
13203 struct drm_crtc_state *crtc_state;
13204 int i;
13205
13206 if (!dev_priv->display.crtc_compute_clock)
13207 return;
13208
13209 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13211 struct intel_shared_dpll *old_dpll =
13212 to_intel_crtc_state(crtc->state)->shared_dpll;
13213
13214 if (!needs_modeset(crtc_state))
13215 continue;
13216
13217 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13218
13219 if (!old_dpll)
13220 continue;
13221
13222 if (!shared_dpll)
13223 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13224
13225 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13226 }
13227 }
13228
13229 /*
13230 * This implements the workaround described in the "notes" section of the mode
13231 * set sequence documentation. When going from no pipes or single pipe to
13232 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13233 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13234 */
13235 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13236 {
13237 struct drm_crtc_state *crtc_state;
13238 struct intel_crtc *intel_crtc;
13239 struct drm_crtc *crtc;
13240 struct intel_crtc_state *first_crtc_state = NULL;
13241 struct intel_crtc_state *other_crtc_state = NULL;
13242 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13243 int i;
13244
13245 /* look at all crtc's that are going to be enabled in during modeset */
13246 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13247 intel_crtc = to_intel_crtc(crtc);
13248
13249 if (!crtc_state->active || !needs_modeset(crtc_state))
13250 continue;
13251
13252 if (first_crtc_state) {
13253 other_crtc_state = to_intel_crtc_state(crtc_state);
13254 break;
13255 } else {
13256 first_crtc_state = to_intel_crtc_state(crtc_state);
13257 first_pipe = intel_crtc->pipe;
13258 }
13259 }
13260
13261 /* No workaround needed? */
13262 if (!first_crtc_state)
13263 return 0;
13264
13265 /* w/a possibly needed, check how many crtc's are already enabled. */
13266 for_each_intel_crtc(state->dev, intel_crtc) {
13267 struct intel_crtc_state *pipe_config;
13268
13269 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13270 if (IS_ERR(pipe_config))
13271 return PTR_ERR(pipe_config);
13272
13273 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13274
13275 if (!pipe_config->base.active ||
13276 needs_modeset(&pipe_config->base))
13277 continue;
13278
13279 /* 2 or more enabled crtcs means no need for w/a */
13280 if (enabled_pipe != INVALID_PIPE)
13281 return 0;
13282
13283 enabled_pipe = intel_crtc->pipe;
13284 }
13285
13286 if (enabled_pipe != INVALID_PIPE)
13287 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13288 else if (other_crtc_state)
13289 other_crtc_state->hsw_workaround_pipe = first_pipe;
13290
13291 return 0;
13292 }
13293
13294 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13295 {
13296 struct drm_crtc *crtc;
13297 struct drm_crtc_state *crtc_state;
13298 int ret = 0;
13299
13300 /* add all active pipes to the state */
13301 for_each_crtc(state->dev, crtc) {
13302 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13303 if (IS_ERR(crtc_state))
13304 return PTR_ERR(crtc_state);
13305
13306 if (!crtc_state->active || needs_modeset(crtc_state))
13307 continue;
13308
13309 crtc_state->mode_changed = true;
13310
13311 ret = drm_atomic_add_affected_connectors(state, crtc);
13312 if (ret)
13313 break;
13314
13315 ret = drm_atomic_add_affected_planes(state, crtc);
13316 if (ret)
13317 break;
13318 }
13319
13320 return ret;
13321 }
13322
13323 static int intel_modeset_checks(struct drm_atomic_state *state)
13324 {
13325 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13326 struct drm_i915_private *dev_priv = to_i915(state->dev);
13327 struct drm_crtc *crtc;
13328 struct drm_crtc_state *crtc_state;
13329 int ret = 0, i;
13330
13331 if (!check_digital_port_conflicts(state)) {
13332 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13333 return -EINVAL;
13334 }
13335
13336 intel_state->modeset = true;
13337 intel_state->active_crtcs = dev_priv->active_crtcs;
13338
13339 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13340 if (crtc_state->active)
13341 intel_state->active_crtcs |= 1 << i;
13342 else
13343 intel_state->active_crtcs &= ~(1 << i);
13344
13345 if (crtc_state->active != crtc->state->active)
13346 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13347 }
13348
13349 /*
13350 * See if the config requires any additional preparation, e.g.
13351 * to adjust global state with pipes off. We need to do this
13352 * here so we can get the modeset_pipe updated config for the new
13353 * mode set on this crtc. For other crtcs we need to use the
13354 * adjusted_mode bits in the crtc directly.
13355 */
13356 if (dev_priv->display.modeset_calc_cdclk) {
13357 if (!intel_state->cdclk_pll_vco)
13358 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13359 if (!intel_state->cdclk_pll_vco)
13360 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13361
13362 ret = dev_priv->display.modeset_calc_cdclk(state);
13363 if (ret < 0)
13364 return ret;
13365
13366 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13367 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13368 ret = intel_modeset_all_pipes(state);
13369
13370 if (ret < 0)
13371 return ret;
13372
13373 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13374 intel_state->cdclk, intel_state->dev_cdclk);
13375 } else
13376 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13377
13378 intel_modeset_clear_plls(state);
13379
13380 if (IS_HASWELL(dev_priv))
13381 return haswell_mode_set_planes_workaround(state);
13382
13383 return 0;
13384 }
13385
13386 /*
13387 * Handle calculation of various watermark data at the end of the atomic check
13388 * phase. The code here should be run after the per-crtc and per-plane 'check'
13389 * handlers to ensure that all derived state has been updated.
13390 */
13391 static int calc_watermark_data(struct drm_atomic_state *state)
13392 {
13393 struct drm_device *dev = state->dev;
13394 struct drm_i915_private *dev_priv = to_i915(dev);
13395
13396 /* Is there platform-specific watermark information to calculate? */
13397 if (dev_priv->display.compute_global_watermarks)
13398 return dev_priv->display.compute_global_watermarks(state);
13399
13400 return 0;
13401 }
13402
13403 /**
13404 * intel_atomic_check - validate state object
13405 * @dev: drm device
13406 * @state: state to validate
13407 */
13408 static int intel_atomic_check(struct drm_device *dev,
13409 struct drm_atomic_state *state)
13410 {
13411 struct drm_i915_private *dev_priv = to_i915(dev);
13412 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13413 struct drm_crtc *crtc;
13414 struct drm_crtc_state *crtc_state;
13415 int ret, i;
13416 bool any_ms = false;
13417
13418 ret = drm_atomic_helper_check_modeset(dev, state);
13419 if (ret)
13420 return ret;
13421
13422 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13423 struct intel_crtc_state *pipe_config =
13424 to_intel_crtc_state(crtc_state);
13425
13426 /* Catch I915_MODE_FLAG_INHERITED */
13427 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13428 crtc_state->mode_changed = true;
13429
13430 if (!needs_modeset(crtc_state))
13431 continue;
13432
13433 if (!crtc_state->enable) {
13434 any_ms = true;
13435 continue;
13436 }
13437
13438 /* FIXME: For only active_changed we shouldn't need to do any
13439 * state recomputation at all. */
13440
13441 ret = drm_atomic_add_affected_connectors(state, crtc);
13442 if (ret)
13443 return ret;
13444
13445 ret = intel_modeset_pipe_config(crtc, pipe_config);
13446 if (ret) {
13447 intel_dump_pipe_config(to_intel_crtc(crtc),
13448 pipe_config, "[failed]");
13449 return ret;
13450 }
13451
13452 if (i915.fastboot &&
13453 intel_pipe_config_compare(dev,
13454 to_intel_crtc_state(crtc->state),
13455 pipe_config, true)) {
13456 crtc_state->mode_changed = false;
13457 to_intel_crtc_state(crtc_state)->update_pipe = true;
13458 }
13459
13460 if (needs_modeset(crtc_state))
13461 any_ms = true;
13462
13463 ret = drm_atomic_add_affected_planes(state, crtc);
13464 if (ret)
13465 return ret;
13466
13467 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13468 needs_modeset(crtc_state) ?
13469 "[modeset]" : "[fastset]");
13470 }
13471
13472 if (any_ms) {
13473 ret = intel_modeset_checks(state);
13474
13475 if (ret)
13476 return ret;
13477 } else
13478 intel_state->cdclk = dev_priv->cdclk_freq;
13479
13480 ret = drm_atomic_helper_check_planes(dev, state);
13481 if (ret)
13482 return ret;
13483
13484 intel_fbc_choose_crtc(dev_priv, state);
13485 return calc_watermark_data(state);
13486 }
13487
13488 static int intel_atomic_prepare_commit(struct drm_device *dev,
13489 struct drm_atomic_state *state,
13490 bool nonblock)
13491 {
13492 struct drm_i915_private *dev_priv = to_i915(dev);
13493 struct drm_plane_state *plane_state;
13494 struct drm_crtc_state *crtc_state;
13495 struct drm_plane *plane;
13496 struct drm_crtc *crtc;
13497 int i, ret;
13498
13499 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13500 if (state->legacy_cursor_update)
13501 continue;
13502
13503 ret = intel_crtc_wait_for_pending_flips(crtc);
13504 if (ret)
13505 return ret;
13506
13507 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13508 flush_workqueue(dev_priv->wq);
13509 }
13510
13511 ret = mutex_lock_interruptible(&dev->struct_mutex);
13512 if (ret)
13513 return ret;
13514
13515 ret = drm_atomic_helper_prepare_planes(dev, state);
13516 mutex_unlock(&dev->struct_mutex);
13517
13518 if (!ret && !nonblock) {
13519 for_each_plane_in_state(state, plane, plane_state, i) {
13520 struct intel_plane_state *intel_plane_state =
13521 to_intel_plane_state(plane_state);
13522
13523 if (!intel_plane_state->wait_req)
13524 continue;
13525
13526 ret = __i915_wait_request(intel_plane_state->wait_req,
13527 true, NULL, NULL);
13528 if (ret) {
13529 /* Any hang should be swallowed by the wait */
13530 WARN_ON(ret == -EIO);
13531 mutex_lock(&dev->struct_mutex);
13532 drm_atomic_helper_cleanup_planes(dev, state);
13533 mutex_unlock(&dev->struct_mutex);
13534 break;
13535 }
13536 }
13537 }
13538
13539 return ret;
13540 }
13541
13542 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13543 {
13544 struct drm_device *dev = crtc->base.dev;
13545
13546 if (!dev->max_vblank_count)
13547 return drm_accurate_vblank_count(&crtc->base);
13548
13549 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13550 }
13551
13552 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13553 struct drm_i915_private *dev_priv,
13554 unsigned crtc_mask)
13555 {
13556 unsigned last_vblank_count[I915_MAX_PIPES];
13557 enum pipe pipe;
13558 int ret;
13559
13560 if (!crtc_mask)
13561 return;
13562
13563 for_each_pipe(dev_priv, pipe) {
13564 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13565
13566 if (!((1 << pipe) & crtc_mask))
13567 continue;
13568
13569 ret = drm_crtc_vblank_get(crtc);
13570 if (WARN_ON(ret != 0)) {
13571 crtc_mask &= ~(1 << pipe);
13572 continue;
13573 }
13574
13575 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13576 }
13577
13578 for_each_pipe(dev_priv, pipe) {
13579 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13580 long lret;
13581
13582 if (!((1 << pipe) & crtc_mask))
13583 continue;
13584
13585 lret = wait_event_timeout(dev->vblank[pipe].queue,
13586 last_vblank_count[pipe] !=
13587 drm_crtc_vblank_count(crtc),
13588 msecs_to_jiffies(50));
13589
13590 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13591
13592 drm_crtc_vblank_put(crtc);
13593 }
13594 }
13595
13596 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13597 {
13598 /* fb updated, need to unpin old fb */
13599 if (crtc_state->fb_changed)
13600 return true;
13601
13602 /* wm changes, need vblank before final wm's */
13603 if (crtc_state->update_wm_post)
13604 return true;
13605
13606 /*
13607 * cxsr is re-enabled after vblank.
13608 * This is already handled by crtc_state->update_wm_post,
13609 * but added for clarity.
13610 */
13611 if (crtc_state->disable_cxsr)
13612 return true;
13613
13614 return false;
13615 }
13616
13617 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13618 {
13619 struct drm_device *dev = state->dev;
13620 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13621 struct drm_i915_private *dev_priv = to_i915(dev);
13622 struct drm_crtc_state *old_crtc_state;
13623 struct drm_crtc *crtc;
13624 struct intel_crtc_state *intel_cstate;
13625 struct drm_plane *plane;
13626 struct drm_plane_state *plane_state;
13627 bool hw_check = intel_state->modeset;
13628 unsigned long put_domains[I915_MAX_PIPES] = {};
13629 unsigned crtc_vblank_mask = 0;
13630 int i, ret;
13631
13632 for_each_plane_in_state(state, plane, plane_state, i) {
13633 struct intel_plane_state *intel_plane_state =
13634 to_intel_plane_state(plane_state);
13635
13636 if (!intel_plane_state->wait_req)
13637 continue;
13638
13639 ret = __i915_wait_request(intel_plane_state->wait_req,
13640 true, NULL, NULL);
13641 /* EIO should be eaten, and we can't get interrupted in the
13642 * worker, and blocking commits have waited already. */
13643 WARN_ON(ret);
13644 }
13645
13646 drm_atomic_helper_wait_for_dependencies(state);
13647
13648 if (intel_state->modeset) {
13649 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13650 sizeof(intel_state->min_pixclk));
13651 dev_priv->active_crtcs = intel_state->active_crtcs;
13652 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13653
13654 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13655 }
13656
13657 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13659
13660 if (needs_modeset(crtc->state) ||
13661 to_intel_crtc_state(crtc->state)->update_pipe) {
13662 hw_check = true;
13663
13664 put_domains[to_intel_crtc(crtc)->pipe] =
13665 modeset_get_crtc_power_domains(crtc,
13666 to_intel_crtc_state(crtc->state));
13667 }
13668
13669 if (!needs_modeset(crtc->state))
13670 continue;
13671
13672 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13673
13674 if (old_crtc_state->active) {
13675 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13676 dev_priv->display.crtc_disable(crtc);
13677 intel_crtc->active = false;
13678 intel_fbc_disable(intel_crtc);
13679 intel_disable_shared_dpll(intel_crtc);
13680
13681 /*
13682 * Underruns don't always raise
13683 * interrupts, so check manually.
13684 */
13685 intel_check_cpu_fifo_underruns(dev_priv);
13686 intel_check_pch_fifo_underruns(dev_priv);
13687
13688 if (!crtc->state->active)
13689 intel_update_watermarks(crtc);
13690 }
13691 }
13692
13693 /* Only after disabling all output pipelines that will be changed can we
13694 * update the the output configuration. */
13695 intel_modeset_update_crtc_state(state);
13696
13697 if (intel_state->modeset) {
13698 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13699
13700 if (dev_priv->display.modeset_commit_cdclk &&
13701 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13702 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13703 dev_priv->display.modeset_commit_cdclk(state);
13704
13705 intel_modeset_verify_disabled(dev);
13706 }
13707
13708 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13709 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13711 bool modeset = needs_modeset(crtc->state);
13712 struct intel_crtc_state *pipe_config =
13713 to_intel_crtc_state(crtc->state);
13714
13715 if (modeset && crtc->state->active) {
13716 update_scanline_offset(to_intel_crtc(crtc));
13717 dev_priv->display.crtc_enable(crtc);
13718 }
13719
13720 /* Complete events for now disable pipes here. */
13721 if (modeset && !crtc->state->active && crtc->state->event) {
13722 spin_lock_irq(&dev->event_lock);
13723 drm_crtc_send_vblank_event(crtc, crtc->state->event);
13724 spin_unlock_irq(&dev->event_lock);
13725
13726 crtc->state->event = NULL;
13727 }
13728
13729 if (!modeset)
13730 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13731
13732 if (crtc->state->active &&
13733 drm_atomic_get_existing_plane_state(state, crtc->primary))
13734 intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13735
13736 if (crtc->state->active)
13737 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13738
13739 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13740 crtc_vblank_mask |= 1 << i;
13741 }
13742
13743 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13744 * already, but still need the state for the delayed optimization. To
13745 * fix this:
13746 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13747 * - schedule that vblank worker _before_ calling hw_done
13748 * - at the start of commit_tail, cancel it _synchrously
13749 * - switch over to the vblank wait helper in the core after that since
13750 * we don't need out special handling any more.
13751 */
13752 if (!state->legacy_cursor_update)
13753 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13754
13755 /*
13756 * Now that the vblank has passed, we can go ahead and program the
13757 * optimal watermarks on platforms that need two-step watermark
13758 * programming.
13759 *
13760 * TODO: Move this (and other cleanup) to an async worker eventually.
13761 */
13762 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13763 intel_cstate = to_intel_crtc_state(crtc->state);
13764
13765 if (dev_priv->display.optimize_watermarks)
13766 dev_priv->display.optimize_watermarks(intel_cstate);
13767 }
13768
13769 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13770 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13771
13772 if (put_domains[i])
13773 modeset_put_power_domains(dev_priv, put_domains[i]);
13774
13775 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13776 }
13777
13778 drm_atomic_helper_commit_hw_done(state);
13779
13780 if (intel_state->modeset)
13781 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13782
13783 mutex_lock(&dev->struct_mutex);
13784 drm_atomic_helper_cleanup_planes(dev, state);
13785 mutex_unlock(&dev->struct_mutex);
13786
13787 drm_atomic_helper_commit_cleanup_done(state);
13788
13789 drm_atomic_state_free(state);
13790
13791 /* As one of the primary mmio accessors, KMS has a high likelihood
13792 * of triggering bugs in unclaimed access. After we finish
13793 * modesetting, see if an error has been flagged, and if so
13794 * enable debugging for the next modeset - and hope we catch
13795 * the culprit.
13796 *
13797 * XXX note that we assume display power is on at this point.
13798 * This might hold true now but we need to add pm helper to check
13799 * unclaimed only when the hardware is on, as atomic commits
13800 * can happen also when the device is completely off.
13801 */
13802 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13803 }
13804
13805 static void intel_atomic_commit_work(struct work_struct *work)
13806 {
13807 struct drm_atomic_state *state = container_of(work,
13808 struct drm_atomic_state,
13809 commit_work);
13810 intel_atomic_commit_tail(state);
13811 }
13812
13813 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13814 {
13815 struct drm_plane_state *old_plane_state;
13816 struct drm_plane *plane;
13817 struct drm_i915_gem_object *obj, *old_obj;
13818 struct intel_plane *intel_plane;
13819 int i;
13820
13821 mutex_lock(&state->dev->struct_mutex);
13822 for_each_plane_in_state(state, plane, old_plane_state, i) {
13823 obj = intel_fb_obj(plane->state->fb);
13824 old_obj = intel_fb_obj(old_plane_state->fb);
13825 intel_plane = to_intel_plane(plane);
13826
13827 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13828 }
13829 mutex_unlock(&state->dev->struct_mutex);
13830 }
13831
13832 /**
13833 * intel_atomic_commit - commit validated state object
13834 * @dev: DRM device
13835 * @state: the top-level driver state object
13836 * @nonblock: nonblocking commit
13837 *
13838 * This function commits a top-level state object that has been validated
13839 * with drm_atomic_helper_check().
13840 *
13841 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13842 * nonblocking commits are only safe for pure plane updates. Everything else
13843 * should work though.
13844 *
13845 * RETURNS
13846 * Zero for success or -errno.
13847 */
13848 static int intel_atomic_commit(struct drm_device *dev,
13849 struct drm_atomic_state *state,
13850 bool nonblock)
13851 {
13852 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13853 struct drm_i915_private *dev_priv = to_i915(dev);
13854 int ret = 0;
13855
13856 if (intel_state->modeset && nonblock) {
13857 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13858 return -EINVAL;
13859 }
13860
13861 ret = drm_atomic_helper_setup_commit(state, nonblock);
13862 if (ret)
13863 return ret;
13864
13865 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13866
13867 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13868 if (ret) {
13869 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13870 return ret;
13871 }
13872
13873 drm_atomic_helper_swap_state(state, true);
13874 dev_priv->wm.distrust_bios_wm = false;
13875 dev_priv->wm.skl_results = intel_state->wm_results;
13876 intel_shared_dpll_commit(state);
13877 intel_atomic_track_fbs(state);
13878
13879 if (nonblock)
13880 queue_work(system_unbound_wq, &state->commit_work);
13881 else
13882 intel_atomic_commit_tail(state);
13883
13884 return 0;
13885 }
13886
13887 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13888 {
13889 struct drm_device *dev = crtc->dev;
13890 struct drm_atomic_state *state;
13891 struct drm_crtc_state *crtc_state;
13892 int ret;
13893
13894 state = drm_atomic_state_alloc(dev);
13895 if (!state) {
13896 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13897 crtc->base.id, crtc->name);
13898 return;
13899 }
13900
13901 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13902
13903 retry:
13904 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13905 ret = PTR_ERR_OR_ZERO(crtc_state);
13906 if (!ret) {
13907 if (!crtc_state->active)
13908 goto out;
13909
13910 crtc_state->mode_changed = true;
13911 ret = drm_atomic_commit(state);
13912 }
13913
13914 if (ret == -EDEADLK) {
13915 drm_atomic_state_clear(state);
13916 drm_modeset_backoff(state->acquire_ctx);
13917 goto retry;
13918 }
13919
13920 if (ret)
13921 out:
13922 drm_atomic_state_free(state);
13923 }
13924
13925 #undef for_each_intel_crtc_masked
13926
13927 /*
13928 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
13929 * drm_atomic_helper_legacy_gamma_set() directly.
13930 */
13931 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
13932 u16 *red, u16 *green, u16 *blue,
13933 uint32_t size)
13934 {
13935 struct drm_device *dev = crtc->dev;
13936 struct drm_mode_config *config = &dev->mode_config;
13937 struct drm_crtc_state *state;
13938 int ret;
13939
13940 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
13941 if (ret)
13942 return ret;
13943
13944 /*
13945 * Make sure we update the legacy properties so this works when
13946 * atomic is not enabled.
13947 */
13948
13949 state = crtc->state;
13950
13951 drm_object_property_set_value(&crtc->base,
13952 config->degamma_lut_property,
13953 (state->degamma_lut) ?
13954 state->degamma_lut->base.id : 0);
13955
13956 drm_object_property_set_value(&crtc->base,
13957 config->ctm_property,
13958 (state->ctm) ?
13959 state->ctm->base.id : 0);
13960
13961 drm_object_property_set_value(&crtc->base,
13962 config->gamma_lut_property,
13963 (state->gamma_lut) ?
13964 state->gamma_lut->base.id : 0);
13965
13966 return 0;
13967 }
13968
13969 static const struct drm_crtc_funcs intel_crtc_funcs = {
13970 .gamma_set = intel_atomic_legacy_gamma_set,
13971 .set_config = drm_atomic_helper_set_config,
13972 .set_property = drm_atomic_helper_crtc_set_property,
13973 .destroy = intel_crtc_destroy,
13974 .page_flip = intel_crtc_page_flip,
13975 .atomic_duplicate_state = intel_crtc_duplicate_state,
13976 .atomic_destroy_state = intel_crtc_destroy_state,
13977 };
13978
13979 /**
13980 * intel_prepare_plane_fb - Prepare fb for usage on plane
13981 * @plane: drm plane to prepare for
13982 * @fb: framebuffer to prepare for presentation
13983 *
13984 * Prepares a framebuffer for usage on a display plane. Generally this
13985 * involves pinning the underlying object and updating the frontbuffer tracking
13986 * bits. Some older platforms need special physical address handling for
13987 * cursor planes.
13988 *
13989 * Must be called with struct_mutex held.
13990 *
13991 * Returns 0 on success, negative error code on failure.
13992 */
13993 int
13994 intel_prepare_plane_fb(struct drm_plane *plane,
13995 const struct drm_plane_state *new_state)
13996 {
13997 struct drm_device *dev = plane->dev;
13998 struct drm_framebuffer *fb = new_state->fb;
13999 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14000 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14001 struct reservation_object *resv;
14002 int ret = 0;
14003
14004 if (!obj && !old_obj)
14005 return 0;
14006
14007 if (old_obj) {
14008 struct drm_crtc_state *crtc_state =
14009 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14010
14011 /* Big Hammer, we also need to ensure that any pending
14012 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14013 * current scanout is retired before unpinning the old
14014 * framebuffer. Note that we rely on userspace rendering
14015 * into the buffer attached to the pipe they are waiting
14016 * on. If not, userspace generates a GPU hang with IPEHR
14017 * point to the MI_WAIT_FOR_EVENT.
14018 *
14019 * This should only fail upon a hung GPU, in which case we
14020 * can safely continue.
14021 */
14022 if (needs_modeset(crtc_state))
14023 ret = i915_gem_object_wait_rendering(old_obj, true);
14024 if (ret) {
14025 /* GPU hangs should have been swallowed by the wait */
14026 WARN_ON(ret == -EIO);
14027 return ret;
14028 }
14029 }
14030
14031 if (!obj)
14032 return 0;
14033
14034 /* For framebuffer backed by dmabuf, wait for fence */
14035 resv = i915_gem_object_get_dmabuf_resv(obj);
14036 if (resv) {
14037 long lret;
14038
14039 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14040 MAX_SCHEDULE_TIMEOUT);
14041 if (lret == -ERESTARTSYS)
14042 return lret;
14043
14044 WARN(lret < 0, "waiting returns %li\n", lret);
14045 }
14046
14047 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14048 INTEL_INFO(dev)->cursor_needs_physical) {
14049 int align = IS_I830(dev) ? 16 * 1024 : 256;
14050 ret = i915_gem_object_attach_phys(obj, align);
14051 if (ret)
14052 DRM_DEBUG_KMS("failed to attach phys object\n");
14053 } else {
14054 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14055 }
14056
14057 if (ret == 0) {
14058 struct intel_plane_state *plane_state =
14059 to_intel_plane_state(new_state);
14060
14061 i915_gem_request_assign(&plane_state->wait_req,
14062 obj->last_write_req);
14063 }
14064
14065 return ret;
14066 }
14067
14068 /**
14069 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14070 * @plane: drm plane to clean up for
14071 * @fb: old framebuffer that was on plane
14072 *
14073 * Cleans up a framebuffer that has just been removed from a plane.
14074 *
14075 * Must be called with struct_mutex held.
14076 */
14077 void
14078 intel_cleanup_plane_fb(struct drm_plane *plane,
14079 const struct drm_plane_state *old_state)
14080 {
14081 struct drm_device *dev = plane->dev;
14082 struct intel_plane_state *old_intel_state;
14083 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14084 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14085
14086 old_intel_state = to_intel_plane_state(old_state);
14087
14088 if (!obj && !old_obj)
14089 return;
14090
14091 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14092 !INTEL_INFO(dev)->cursor_needs_physical))
14093 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14094
14095 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14096 }
14097
14098 int
14099 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14100 {
14101 int max_scale;
14102 int crtc_clock, cdclk;
14103
14104 if (!intel_crtc || !crtc_state->base.enable)
14105 return DRM_PLANE_HELPER_NO_SCALING;
14106
14107 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14108 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14109
14110 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14111 return DRM_PLANE_HELPER_NO_SCALING;
14112
14113 /*
14114 * skl max scale is lower of:
14115 * close to 3 but not 3, -1 is for that purpose
14116 * or
14117 * cdclk/crtc_clock
14118 */
14119 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14120
14121 return max_scale;
14122 }
14123
14124 static int
14125 intel_check_primary_plane(struct drm_plane *plane,
14126 struct intel_crtc_state *crtc_state,
14127 struct intel_plane_state *state)
14128 {
14129 struct drm_crtc *crtc = state->base.crtc;
14130 struct drm_framebuffer *fb = state->base.fb;
14131 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14132 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14133 bool can_position = false;
14134
14135 if (INTEL_INFO(plane->dev)->gen >= 9) {
14136 /* use scaler when colorkey is not required */
14137 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14138 min_scale = 1;
14139 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14140 }
14141 can_position = true;
14142 }
14143
14144 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14145 &state->dst, &state->clip,
14146 state->base.rotation,
14147 min_scale, max_scale,
14148 can_position, true,
14149 &state->visible);
14150 }
14151
14152 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14153 struct drm_crtc_state *old_crtc_state)
14154 {
14155 struct drm_device *dev = crtc->dev;
14156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14157 struct intel_crtc_state *old_intel_state =
14158 to_intel_crtc_state(old_crtc_state);
14159 bool modeset = needs_modeset(crtc->state);
14160
14161 /* Perform vblank evasion around commit operation */
14162 intel_pipe_update_start(intel_crtc);
14163
14164 if (modeset)
14165 return;
14166
14167 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14168 intel_color_set_csc(crtc->state);
14169 intel_color_load_luts(crtc->state);
14170 }
14171
14172 if (to_intel_crtc_state(crtc->state)->update_pipe)
14173 intel_update_pipe_config(intel_crtc, old_intel_state);
14174 else if (INTEL_INFO(dev)->gen >= 9)
14175 skl_detach_scalers(intel_crtc);
14176 }
14177
14178 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14179 struct drm_crtc_state *old_crtc_state)
14180 {
14181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14182
14183 intel_pipe_update_end(intel_crtc, NULL);
14184 }
14185
14186 /**
14187 * intel_plane_destroy - destroy a plane
14188 * @plane: plane to destroy
14189 *
14190 * Common destruction function for all types of planes (primary, cursor,
14191 * sprite).
14192 */
14193 void intel_plane_destroy(struct drm_plane *plane)
14194 {
14195 if (!plane)
14196 return;
14197
14198 drm_plane_cleanup(plane);
14199 kfree(to_intel_plane(plane));
14200 }
14201
14202 const struct drm_plane_funcs intel_plane_funcs = {
14203 .update_plane = drm_atomic_helper_update_plane,
14204 .disable_plane = drm_atomic_helper_disable_plane,
14205 .destroy = intel_plane_destroy,
14206 .set_property = drm_atomic_helper_plane_set_property,
14207 .atomic_get_property = intel_plane_atomic_get_property,
14208 .atomic_set_property = intel_plane_atomic_set_property,
14209 .atomic_duplicate_state = intel_plane_duplicate_state,
14210 .atomic_destroy_state = intel_plane_destroy_state,
14211
14212 };
14213
14214 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14215 int pipe)
14216 {
14217 struct intel_plane *primary = NULL;
14218 struct intel_plane_state *state = NULL;
14219 const uint32_t *intel_primary_formats;
14220 unsigned int num_formats;
14221 int ret;
14222
14223 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14224 if (!primary)
14225 goto fail;
14226
14227 state = intel_create_plane_state(&primary->base);
14228 if (!state)
14229 goto fail;
14230 primary->base.state = &state->base;
14231
14232 primary->can_scale = false;
14233 primary->max_downscale = 1;
14234 if (INTEL_INFO(dev)->gen >= 9) {
14235 primary->can_scale = true;
14236 state->scaler_id = -1;
14237 }
14238 primary->pipe = pipe;
14239 primary->plane = pipe;
14240 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14241 primary->check_plane = intel_check_primary_plane;
14242 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14243 primary->plane = !pipe;
14244
14245 if (INTEL_INFO(dev)->gen >= 9) {
14246 intel_primary_formats = skl_primary_formats;
14247 num_formats = ARRAY_SIZE(skl_primary_formats);
14248
14249 primary->update_plane = skylake_update_primary_plane;
14250 primary->disable_plane = skylake_disable_primary_plane;
14251 } else if (HAS_PCH_SPLIT(dev)) {
14252 intel_primary_formats = i965_primary_formats;
14253 num_formats = ARRAY_SIZE(i965_primary_formats);
14254
14255 primary->update_plane = ironlake_update_primary_plane;
14256 primary->disable_plane = i9xx_disable_primary_plane;
14257 } else if (INTEL_INFO(dev)->gen >= 4) {
14258 intel_primary_formats = i965_primary_formats;
14259 num_formats = ARRAY_SIZE(i965_primary_formats);
14260
14261 primary->update_plane = i9xx_update_primary_plane;
14262 primary->disable_plane = i9xx_disable_primary_plane;
14263 } else {
14264 intel_primary_formats = i8xx_primary_formats;
14265 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14266
14267 primary->update_plane = i9xx_update_primary_plane;
14268 primary->disable_plane = i9xx_disable_primary_plane;
14269 }
14270
14271 if (INTEL_INFO(dev)->gen >= 9)
14272 ret = drm_universal_plane_init(dev, &primary->base, 0,
14273 &intel_plane_funcs,
14274 intel_primary_formats, num_formats,
14275 DRM_PLANE_TYPE_PRIMARY,
14276 "plane 1%c", pipe_name(pipe));
14277 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14278 ret = drm_universal_plane_init(dev, &primary->base, 0,
14279 &intel_plane_funcs,
14280 intel_primary_formats, num_formats,
14281 DRM_PLANE_TYPE_PRIMARY,
14282 "primary %c", pipe_name(pipe));
14283 else
14284 ret = drm_universal_plane_init(dev, &primary->base, 0,
14285 &intel_plane_funcs,
14286 intel_primary_formats, num_formats,
14287 DRM_PLANE_TYPE_PRIMARY,
14288 "plane %c", plane_name(primary->plane));
14289 if (ret)
14290 goto fail;
14291
14292 if (INTEL_INFO(dev)->gen >= 4)
14293 intel_create_rotation_property(dev, primary);
14294
14295 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14296
14297 return &primary->base;
14298
14299 fail:
14300 kfree(state);
14301 kfree(primary);
14302
14303 return NULL;
14304 }
14305
14306 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14307 {
14308 if (!dev->mode_config.rotation_property) {
14309 unsigned long flags = BIT(DRM_ROTATE_0) |
14310 BIT(DRM_ROTATE_180);
14311
14312 if (INTEL_INFO(dev)->gen >= 9)
14313 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14314
14315 dev->mode_config.rotation_property =
14316 drm_mode_create_rotation_property(dev, flags);
14317 }
14318 if (dev->mode_config.rotation_property)
14319 drm_object_attach_property(&plane->base.base,
14320 dev->mode_config.rotation_property,
14321 plane->base.state->rotation);
14322 }
14323
14324 static int
14325 intel_check_cursor_plane(struct drm_plane *plane,
14326 struct intel_crtc_state *crtc_state,
14327 struct intel_plane_state *state)
14328 {
14329 struct drm_crtc *crtc = crtc_state->base.crtc;
14330 struct drm_framebuffer *fb = state->base.fb;
14331 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14332 enum pipe pipe = to_intel_plane(plane)->pipe;
14333 unsigned stride;
14334 int ret;
14335
14336 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14337 &state->dst, &state->clip,
14338 state->base.rotation,
14339 DRM_PLANE_HELPER_NO_SCALING,
14340 DRM_PLANE_HELPER_NO_SCALING,
14341 true, true, &state->visible);
14342 if (ret)
14343 return ret;
14344
14345 /* if we want to turn off the cursor ignore width and height */
14346 if (!obj)
14347 return 0;
14348
14349 /* Check for which cursor types we support */
14350 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14351 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14352 state->base.crtc_w, state->base.crtc_h);
14353 return -EINVAL;
14354 }
14355
14356 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14357 if (obj->base.size < stride * state->base.crtc_h) {
14358 DRM_DEBUG_KMS("buffer is too small\n");
14359 return -ENOMEM;
14360 }
14361
14362 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14363 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14364 return -EINVAL;
14365 }
14366
14367 /*
14368 * There's something wrong with the cursor on CHV pipe C.
14369 * If it straddles the left edge of the screen then
14370 * moving it away from the edge or disabling it often
14371 * results in a pipe underrun, and often that can lead to
14372 * dead pipe (constant underrun reported, and it scans
14373 * out just a solid color). To recover from that, the
14374 * display power well must be turned off and on again.
14375 * Refuse the put the cursor into that compromised position.
14376 */
14377 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14378 state->visible && state->base.crtc_x < 0) {
14379 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14380 return -EINVAL;
14381 }
14382
14383 return 0;
14384 }
14385
14386 static void
14387 intel_disable_cursor_plane(struct drm_plane *plane,
14388 struct drm_crtc *crtc)
14389 {
14390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14391
14392 intel_crtc->cursor_addr = 0;
14393 intel_crtc_update_cursor(crtc, NULL);
14394 }
14395
14396 static void
14397 intel_update_cursor_plane(struct drm_plane *plane,
14398 const struct intel_crtc_state *crtc_state,
14399 const struct intel_plane_state *state)
14400 {
14401 struct drm_crtc *crtc = crtc_state->base.crtc;
14402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14403 struct drm_device *dev = plane->dev;
14404 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14405 uint32_t addr;
14406
14407 if (!obj)
14408 addr = 0;
14409 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14410 addr = i915_gem_obj_ggtt_offset(obj);
14411 else
14412 addr = obj->phys_handle->busaddr;
14413
14414 intel_crtc->cursor_addr = addr;
14415 intel_crtc_update_cursor(crtc, state);
14416 }
14417
14418 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14419 int pipe)
14420 {
14421 struct intel_plane *cursor = NULL;
14422 struct intel_plane_state *state = NULL;
14423 int ret;
14424
14425 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14426 if (!cursor)
14427 goto fail;
14428
14429 state = intel_create_plane_state(&cursor->base);
14430 if (!state)
14431 goto fail;
14432 cursor->base.state = &state->base;
14433
14434 cursor->can_scale = false;
14435 cursor->max_downscale = 1;
14436 cursor->pipe = pipe;
14437 cursor->plane = pipe;
14438 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14439 cursor->check_plane = intel_check_cursor_plane;
14440 cursor->update_plane = intel_update_cursor_plane;
14441 cursor->disable_plane = intel_disable_cursor_plane;
14442
14443 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14444 &intel_plane_funcs,
14445 intel_cursor_formats,
14446 ARRAY_SIZE(intel_cursor_formats),
14447 DRM_PLANE_TYPE_CURSOR,
14448 "cursor %c", pipe_name(pipe));
14449 if (ret)
14450 goto fail;
14451
14452 if (INTEL_INFO(dev)->gen >= 4) {
14453 if (!dev->mode_config.rotation_property)
14454 dev->mode_config.rotation_property =
14455 drm_mode_create_rotation_property(dev,
14456 BIT(DRM_ROTATE_0) |
14457 BIT(DRM_ROTATE_180));
14458 if (dev->mode_config.rotation_property)
14459 drm_object_attach_property(&cursor->base.base,
14460 dev->mode_config.rotation_property,
14461 state->base.rotation);
14462 }
14463
14464 if (INTEL_INFO(dev)->gen >=9)
14465 state->scaler_id = -1;
14466
14467 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14468
14469 return &cursor->base;
14470
14471 fail:
14472 kfree(state);
14473 kfree(cursor);
14474
14475 return NULL;
14476 }
14477
14478 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14479 struct intel_crtc_state *crtc_state)
14480 {
14481 int i;
14482 struct intel_scaler *intel_scaler;
14483 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14484
14485 for (i = 0; i < intel_crtc->num_scalers; i++) {
14486 intel_scaler = &scaler_state->scalers[i];
14487 intel_scaler->in_use = 0;
14488 intel_scaler->mode = PS_SCALER_MODE_DYN;
14489 }
14490
14491 scaler_state->scaler_id = -1;
14492 }
14493
14494 static void intel_crtc_init(struct drm_device *dev, int pipe)
14495 {
14496 struct drm_i915_private *dev_priv = to_i915(dev);
14497 struct intel_crtc *intel_crtc;
14498 struct intel_crtc_state *crtc_state = NULL;
14499 struct drm_plane *primary = NULL;
14500 struct drm_plane *cursor = NULL;
14501 int ret;
14502
14503 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14504 if (intel_crtc == NULL)
14505 return;
14506
14507 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14508 if (!crtc_state)
14509 goto fail;
14510 intel_crtc->config = crtc_state;
14511 intel_crtc->base.state = &crtc_state->base;
14512 crtc_state->base.crtc = &intel_crtc->base;
14513
14514 /* initialize shared scalers */
14515 if (INTEL_INFO(dev)->gen >= 9) {
14516 if (pipe == PIPE_C)
14517 intel_crtc->num_scalers = 1;
14518 else
14519 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14520
14521 skl_init_scalers(dev, intel_crtc, crtc_state);
14522 }
14523
14524 primary = intel_primary_plane_create(dev, pipe);
14525 if (!primary)
14526 goto fail;
14527
14528 cursor = intel_cursor_plane_create(dev, pipe);
14529 if (!cursor)
14530 goto fail;
14531
14532 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14533 cursor, &intel_crtc_funcs,
14534 "pipe %c", pipe_name(pipe));
14535 if (ret)
14536 goto fail;
14537
14538 /*
14539 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14540 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14541 */
14542 intel_crtc->pipe = pipe;
14543 intel_crtc->plane = pipe;
14544 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14545 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14546 intel_crtc->plane = !pipe;
14547 }
14548
14549 intel_crtc->cursor_base = ~0;
14550 intel_crtc->cursor_cntl = ~0;
14551 intel_crtc->cursor_size = ~0;
14552
14553 intel_crtc->wm.cxsr_allowed = true;
14554
14555 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14556 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14557 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14558 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14559
14560 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14561
14562 intel_color_init(&intel_crtc->base);
14563
14564 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14565 return;
14566
14567 fail:
14568 intel_plane_destroy(primary);
14569 intel_plane_destroy(cursor);
14570 kfree(crtc_state);
14571 kfree(intel_crtc);
14572 }
14573
14574 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14575 {
14576 struct drm_encoder *encoder = connector->base.encoder;
14577 struct drm_device *dev = connector->base.dev;
14578
14579 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14580
14581 if (!encoder || WARN_ON(!encoder->crtc))
14582 return INVALID_PIPE;
14583
14584 return to_intel_crtc(encoder->crtc)->pipe;
14585 }
14586
14587 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14588 struct drm_file *file)
14589 {
14590 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14591 struct drm_crtc *drmmode_crtc;
14592 struct intel_crtc *crtc;
14593
14594 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14595 if (!drmmode_crtc)
14596 return -ENOENT;
14597
14598 crtc = to_intel_crtc(drmmode_crtc);
14599 pipe_from_crtc_id->pipe = crtc->pipe;
14600
14601 return 0;
14602 }
14603
14604 static int intel_encoder_clones(struct intel_encoder *encoder)
14605 {
14606 struct drm_device *dev = encoder->base.dev;
14607 struct intel_encoder *source_encoder;
14608 int index_mask = 0;
14609 int entry = 0;
14610
14611 for_each_intel_encoder(dev, source_encoder) {
14612 if (encoders_cloneable(encoder, source_encoder))
14613 index_mask |= (1 << entry);
14614
14615 entry++;
14616 }
14617
14618 return index_mask;
14619 }
14620
14621 static bool has_edp_a(struct drm_device *dev)
14622 {
14623 struct drm_i915_private *dev_priv = to_i915(dev);
14624
14625 if (!IS_MOBILE(dev))
14626 return false;
14627
14628 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14629 return false;
14630
14631 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14632 return false;
14633
14634 return true;
14635 }
14636
14637 static bool intel_crt_present(struct drm_device *dev)
14638 {
14639 struct drm_i915_private *dev_priv = to_i915(dev);
14640
14641 if (INTEL_INFO(dev)->gen >= 9)
14642 return false;
14643
14644 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14645 return false;
14646
14647 if (IS_CHERRYVIEW(dev))
14648 return false;
14649
14650 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14651 return false;
14652
14653 /* DDI E can't be used if DDI A requires 4 lanes */
14654 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14655 return false;
14656
14657 if (!dev_priv->vbt.int_crt_support)
14658 return false;
14659
14660 return true;
14661 }
14662
14663 static void intel_setup_outputs(struct drm_device *dev)
14664 {
14665 struct drm_i915_private *dev_priv = to_i915(dev);
14666 struct intel_encoder *encoder;
14667 bool dpd_is_edp = false;
14668
14669 /*
14670 * intel_edp_init_connector() depends on this completing first, to
14671 * prevent the registeration of both eDP and LVDS and the incorrect
14672 * sharing of the PPS.
14673 */
14674 intel_lvds_init(dev);
14675
14676 if (intel_crt_present(dev))
14677 intel_crt_init(dev);
14678
14679 if (IS_BROXTON(dev)) {
14680 /*
14681 * FIXME: Broxton doesn't support port detection via the
14682 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14683 * detect the ports.
14684 */
14685 intel_ddi_init(dev, PORT_A);
14686 intel_ddi_init(dev, PORT_B);
14687 intel_ddi_init(dev, PORT_C);
14688
14689 intel_dsi_init(dev);
14690 } else if (HAS_DDI(dev)) {
14691 int found;
14692
14693 /*
14694 * Haswell uses DDI functions to detect digital outputs.
14695 * On SKL pre-D0 the strap isn't connected, so we assume
14696 * it's there.
14697 */
14698 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14699 /* WaIgnoreDDIAStrap: skl */
14700 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14701 intel_ddi_init(dev, PORT_A);
14702
14703 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14704 * register */
14705 found = I915_READ(SFUSE_STRAP);
14706
14707 if (found & SFUSE_STRAP_DDIB_DETECTED)
14708 intel_ddi_init(dev, PORT_B);
14709 if (found & SFUSE_STRAP_DDIC_DETECTED)
14710 intel_ddi_init(dev, PORT_C);
14711 if (found & SFUSE_STRAP_DDID_DETECTED)
14712 intel_ddi_init(dev, PORT_D);
14713 /*
14714 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14715 */
14716 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14717 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14718 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14719 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14720 intel_ddi_init(dev, PORT_E);
14721
14722 } else if (HAS_PCH_SPLIT(dev)) {
14723 int found;
14724 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14725
14726 if (has_edp_a(dev))
14727 intel_dp_init(dev, DP_A, PORT_A);
14728
14729 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14730 /* PCH SDVOB multiplex with HDMIB */
14731 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14732 if (!found)
14733 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14734 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14735 intel_dp_init(dev, PCH_DP_B, PORT_B);
14736 }
14737
14738 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14739 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14740
14741 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14742 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14743
14744 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14745 intel_dp_init(dev, PCH_DP_C, PORT_C);
14746
14747 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14748 intel_dp_init(dev, PCH_DP_D, PORT_D);
14749 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14750 bool has_edp, has_port;
14751
14752 /*
14753 * The DP_DETECTED bit is the latched state of the DDC
14754 * SDA pin at boot. However since eDP doesn't require DDC
14755 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14756 * eDP ports may have been muxed to an alternate function.
14757 * Thus we can't rely on the DP_DETECTED bit alone to detect
14758 * eDP ports. Consult the VBT as well as DP_DETECTED to
14759 * detect eDP ports.
14760 *
14761 * Sadly the straps seem to be missing sometimes even for HDMI
14762 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14763 * and VBT for the presence of the port. Additionally we can't
14764 * trust the port type the VBT declares as we've seen at least
14765 * HDMI ports that the VBT claim are DP or eDP.
14766 */
14767 has_edp = intel_dp_is_edp(dev, PORT_B);
14768 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14769 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14770 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14771 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14772 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14773
14774 has_edp = intel_dp_is_edp(dev, PORT_C);
14775 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14776 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14777 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14778 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14779 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14780
14781 if (IS_CHERRYVIEW(dev)) {
14782 /*
14783 * eDP not supported on port D,
14784 * so no need to worry about it
14785 */
14786 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14787 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14788 intel_dp_init(dev, CHV_DP_D, PORT_D);
14789 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14790 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14791 }
14792
14793 intel_dsi_init(dev);
14794 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14795 bool found = false;
14796
14797 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14798 DRM_DEBUG_KMS("probing SDVOB\n");
14799 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14800 if (!found && IS_G4X(dev)) {
14801 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14802 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14803 }
14804
14805 if (!found && IS_G4X(dev))
14806 intel_dp_init(dev, DP_B, PORT_B);
14807 }
14808
14809 /* Before G4X SDVOC doesn't have its own detect register */
14810
14811 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14812 DRM_DEBUG_KMS("probing SDVOC\n");
14813 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14814 }
14815
14816 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14817
14818 if (IS_G4X(dev)) {
14819 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14820 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14821 }
14822 if (IS_G4X(dev))
14823 intel_dp_init(dev, DP_C, PORT_C);
14824 }
14825
14826 if (IS_G4X(dev) &&
14827 (I915_READ(DP_D) & DP_DETECTED))
14828 intel_dp_init(dev, DP_D, PORT_D);
14829 } else if (IS_GEN2(dev))
14830 intel_dvo_init(dev);
14831
14832 if (SUPPORTS_TV(dev))
14833 intel_tv_init(dev);
14834
14835 intel_psr_init(dev);
14836
14837 for_each_intel_encoder(dev, encoder) {
14838 encoder->base.possible_crtcs = encoder->crtc_mask;
14839 encoder->base.possible_clones =
14840 intel_encoder_clones(encoder);
14841 }
14842
14843 intel_init_pch_refclk(dev);
14844
14845 drm_helper_move_panel_connectors_to_head(dev);
14846 }
14847
14848 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14849 {
14850 struct drm_device *dev = fb->dev;
14851 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14852
14853 drm_framebuffer_cleanup(fb);
14854 mutex_lock(&dev->struct_mutex);
14855 WARN_ON(!intel_fb->obj->framebuffer_references--);
14856 drm_gem_object_unreference(&intel_fb->obj->base);
14857 mutex_unlock(&dev->struct_mutex);
14858 kfree(intel_fb);
14859 }
14860
14861 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14862 struct drm_file *file,
14863 unsigned int *handle)
14864 {
14865 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14866 struct drm_i915_gem_object *obj = intel_fb->obj;
14867
14868 if (obj->userptr.mm) {
14869 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14870 return -EINVAL;
14871 }
14872
14873 return drm_gem_handle_create(file, &obj->base, handle);
14874 }
14875
14876 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14877 struct drm_file *file,
14878 unsigned flags, unsigned color,
14879 struct drm_clip_rect *clips,
14880 unsigned num_clips)
14881 {
14882 struct drm_device *dev = fb->dev;
14883 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14884 struct drm_i915_gem_object *obj = intel_fb->obj;
14885
14886 mutex_lock(&dev->struct_mutex);
14887 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14888 mutex_unlock(&dev->struct_mutex);
14889
14890 return 0;
14891 }
14892
14893 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14894 .destroy = intel_user_framebuffer_destroy,
14895 .create_handle = intel_user_framebuffer_create_handle,
14896 .dirty = intel_user_framebuffer_dirty,
14897 };
14898
14899 static
14900 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14901 uint32_t pixel_format)
14902 {
14903 u32 gen = INTEL_INFO(dev)->gen;
14904
14905 if (gen >= 9) {
14906 int cpp = drm_format_plane_cpp(pixel_format, 0);
14907
14908 /* "The stride in bytes must not exceed the of the size of 8K
14909 * pixels and 32K bytes."
14910 */
14911 return min(8192 * cpp, 32768);
14912 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14913 return 32*1024;
14914 } else if (gen >= 4) {
14915 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14916 return 16*1024;
14917 else
14918 return 32*1024;
14919 } else if (gen >= 3) {
14920 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14921 return 8*1024;
14922 else
14923 return 16*1024;
14924 } else {
14925 /* XXX DSPC is limited to 4k tiled */
14926 return 8*1024;
14927 }
14928 }
14929
14930 static int intel_framebuffer_init(struct drm_device *dev,
14931 struct intel_framebuffer *intel_fb,
14932 struct drm_mode_fb_cmd2 *mode_cmd,
14933 struct drm_i915_gem_object *obj)
14934 {
14935 struct drm_i915_private *dev_priv = to_i915(dev);
14936 unsigned int aligned_height;
14937 int ret;
14938 u32 pitch_limit, stride_alignment;
14939
14940 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14941
14942 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14943 /* Enforce that fb modifier and tiling mode match, but only for
14944 * X-tiled. This is needed for FBC. */
14945 if (!!(obj->tiling_mode == I915_TILING_X) !=
14946 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14947 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14948 return -EINVAL;
14949 }
14950 } else {
14951 if (obj->tiling_mode == I915_TILING_X)
14952 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14953 else if (obj->tiling_mode == I915_TILING_Y) {
14954 DRM_DEBUG("No Y tiling for legacy addfb\n");
14955 return -EINVAL;
14956 }
14957 }
14958
14959 /* Passed in modifier sanity checking. */
14960 switch (mode_cmd->modifier[0]) {
14961 case I915_FORMAT_MOD_Y_TILED:
14962 case I915_FORMAT_MOD_Yf_TILED:
14963 if (INTEL_INFO(dev)->gen < 9) {
14964 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14965 mode_cmd->modifier[0]);
14966 return -EINVAL;
14967 }
14968 case DRM_FORMAT_MOD_NONE:
14969 case I915_FORMAT_MOD_X_TILED:
14970 break;
14971 default:
14972 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14973 mode_cmd->modifier[0]);
14974 return -EINVAL;
14975 }
14976
14977 stride_alignment = intel_fb_stride_alignment(dev_priv,
14978 mode_cmd->modifier[0],
14979 mode_cmd->pixel_format);
14980 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14981 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14982 mode_cmd->pitches[0], stride_alignment);
14983 return -EINVAL;
14984 }
14985
14986 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14987 mode_cmd->pixel_format);
14988 if (mode_cmd->pitches[0] > pitch_limit) {
14989 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14990 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14991 "tiled" : "linear",
14992 mode_cmd->pitches[0], pitch_limit);
14993 return -EINVAL;
14994 }
14995
14996 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14997 mode_cmd->pitches[0] != obj->stride) {
14998 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14999 mode_cmd->pitches[0], obj->stride);
15000 return -EINVAL;
15001 }
15002
15003 /* Reject formats not supported by any plane early. */
15004 switch (mode_cmd->pixel_format) {
15005 case DRM_FORMAT_C8:
15006 case DRM_FORMAT_RGB565:
15007 case DRM_FORMAT_XRGB8888:
15008 case DRM_FORMAT_ARGB8888:
15009 break;
15010 case DRM_FORMAT_XRGB1555:
15011 if (INTEL_INFO(dev)->gen > 3) {
15012 DRM_DEBUG("unsupported pixel format: %s\n",
15013 drm_get_format_name(mode_cmd->pixel_format));
15014 return -EINVAL;
15015 }
15016 break;
15017 case DRM_FORMAT_ABGR8888:
15018 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15019 INTEL_INFO(dev)->gen < 9) {
15020 DRM_DEBUG("unsupported pixel format: %s\n",
15021 drm_get_format_name(mode_cmd->pixel_format));
15022 return -EINVAL;
15023 }
15024 break;
15025 case DRM_FORMAT_XBGR8888:
15026 case DRM_FORMAT_XRGB2101010:
15027 case DRM_FORMAT_XBGR2101010:
15028 if (INTEL_INFO(dev)->gen < 4) {
15029 DRM_DEBUG("unsupported pixel format: %s\n",
15030 drm_get_format_name(mode_cmd->pixel_format));
15031 return -EINVAL;
15032 }
15033 break;
15034 case DRM_FORMAT_ABGR2101010:
15035 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15036 DRM_DEBUG("unsupported pixel format: %s\n",
15037 drm_get_format_name(mode_cmd->pixel_format));
15038 return -EINVAL;
15039 }
15040 break;
15041 case DRM_FORMAT_YUYV:
15042 case DRM_FORMAT_UYVY:
15043 case DRM_FORMAT_YVYU:
15044 case DRM_FORMAT_VYUY:
15045 if (INTEL_INFO(dev)->gen < 5) {
15046 DRM_DEBUG("unsupported pixel format: %s\n",
15047 drm_get_format_name(mode_cmd->pixel_format));
15048 return -EINVAL;
15049 }
15050 break;
15051 default:
15052 DRM_DEBUG("unsupported pixel format: %s\n",
15053 drm_get_format_name(mode_cmd->pixel_format));
15054 return -EINVAL;
15055 }
15056
15057 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15058 if (mode_cmd->offsets[0] != 0)
15059 return -EINVAL;
15060
15061 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15062 mode_cmd->pixel_format,
15063 mode_cmd->modifier[0]);
15064 /* FIXME drm helper for size checks (especially planar formats)? */
15065 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15066 return -EINVAL;
15067
15068 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15069 intel_fb->obj = obj;
15070
15071 intel_fill_fb_info(dev_priv, &intel_fb->base);
15072
15073 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15074 if (ret) {
15075 DRM_ERROR("framebuffer init failed %d\n", ret);
15076 return ret;
15077 }
15078
15079 intel_fb->obj->framebuffer_references++;
15080
15081 return 0;
15082 }
15083
15084 static struct drm_framebuffer *
15085 intel_user_framebuffer_create(struct drm_device *dev,
15086 struct drm_file *filp,
15087 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15088 {
15089 struct drm_framebuffer *fb;
15090 struct drm_i915_gem_object *obj;
15091 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15092
15093 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
15094 if (&obj->base == NULL)
15095 return ERR_PTR(-ENOENT);
15096
15097 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15098 if (IS_ERR(fb))
15099 drm_gem_object_unreference_unlocked(&obj->base);
15100
15101 return fb;
15102 }
15103
15104 #ifndef CONFIG_DRM_FBDEV_EMULATION
15105 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15106 {
15107 }
15108 #endif
15109
15110 static const struct drm_mode_config_funcs intel_mode_funcs = {
15111 .fb_create = intel_user_framebuffer_create,
15112 .output_poll_changed = intel_fbdev_output_poll_changed,
15113 .atomic_check = intel_atomic_check,
15114 .atomic_commit = intel_atomic_commit,
15115 .atomic_state_alloc = intel_atomic_state_alloc,
15116 .atomic_state_clear = intel_atomic_state_clear,
15117 };
15118
15119 /**
15120 * intel_init_display_hooks - initialize the display modesetting hooks
15121 * @dev_priv: device private
15122 */
15123 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15124 {
15125 if (INTEL_INFO(dev_priv)->gen >= 9) {
15126 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15127 dev_priv->display.get_initial_plane_config =
15128 skylake_get_initial_plane_config;
15129 dev_priv->display.crtc_compute_clock =
15130 haswell_crtc_compute_clock;
15131 dev_priv->display.crtc_enable = haswell_crtc_enable;
15132 dev_priv->display.crtc_disable = haswell_crtc_disable;
15133 } else if (HAS_DDI(dev_priv)) {
15134 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15135 dev_priv->display.get_initial_plane_config =
15136 ironlake_get_initial_plane_config;
15137 dev_priv->display.crtc_compute_clock =
15138 haswell_crtc_compute_clock;
15139 dev_priv->display.crtc_enable = haswell_crtc_enable;
15140 dev_priv->display.crtc_disable = haswell_crtc_disable;
15141 } else if (HAS_PCH_SPLIT(dev_priv)) {
15142 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15143 dev_priv->display.get_initial_plane_config =
15144 ironlake_get_initial_plane_config;
15145 dev_priv->display.crtc_compute_clock =
15146 ironlake_crtc_compute_clock;
15147 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15148 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15149 } else if (IS_CHERRYVIEW(dev_priv)) {
15150 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15151 dev_priv->display.get_initial_plane_config =
15152 i9xx_get_initial_plane_config;
15153 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15154 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15155 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15156 } else if (IS_VALLEYVIEW(dev_priv)) {
15157 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15158 dev_priv->display.get_initial_plane_config =
15159 i9xx_get_initial_plane_config;
15160 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15161 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15162 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15163 } else if (IS_G4X(dev_priv)) {
15164 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15165 dev_priv->display.get_initial_plane_config =
15166 i9xx_get_initial_plane_config;
15167 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15168 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15169 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15170 } else if (IS_PINEVIEW(dev_priv)) {
15171 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15172 dev_priv->display.get_initial_plane_config =
15173 i9xx_get_initial_plane_config;
15174 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15175 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15176 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15177 } else if (!IS_GEN2(dev_priv)) {
15178 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15179 dev_priv->display.get_initial_plane_config =
15180 i9xx_get_initial_plane_config;
15181 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15182 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15183 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15184 } else {
15185 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15186 dev_priv->display.get_initial_plane_config =
15187 i9xx_get_initial_plane_config;
15188 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15189 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15190 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15191 }
15192
15193 /* Returns the core display clock speed */
15194 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15195 dev_priv->display.get_display_clock_speed =
15196 skylake_get_display_clock_speed;
15197 else if (IS_BROXTON(dev_priv))
15198 dev_priv->display.get_display_clock_speed =
15199 broxton_get_display_clock_speed;
15200 else if (IS_BROADWELL(dev_priv))
15201 dev_priv->display.get_display_clock_speed =
15202 broadwell_get_display_clock_speed;
15203 else if (IS_HASWELL(dev_priv))
15204 dev_priv->display.get_display_clock_speed =
15205 haswell_get_display_clock_speed;
15206 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15207 dev_priv->display.get_display_clock_speed =
15208 valleyview_get_display_clock_speed;
15209 else if (IS_GEN5(dev_priv))
15210 dev_priv->display.get_display_clock_speed =
15211 ilk_get_display_clock_speed;
15212 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15213 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15214 dev_priv->display.get_display_clock_speed =
15215 i945_get_display_clock_speed;
15216 else if (IS_GM45(dev_priv))
15217 dev_priv->display.get_display_clock_speed =
15218 gm45_get_display_clock_speed;
15219 else if (IS_CRESTLINE(dev_priv))
15220 dev_priv->display.get_display_clock_speed =
15221 i965gm_get_display_clock_speed;
15222 else if (IS_PINEVIEW(dev_priv))
15223 dev_priv->display.get_display_clock_speed =
15224 pnv_get_display_clock_speed;
15225 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15226 dev_priv->display.get_display_clock_speed =
15227 g33_get_display_clock_speed;
15228 else if (IS_I915G(dev_priv))
15229 dev_priv->display.get_display_clock_speed =
15230 i915_get_display_clock_speed;
15231 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15232 dev_priv->display.get_display_clock_speed =
15233 i9xx_misc_get_display_clock_speed;
15234 else if (IS_I915GM(dev_priv))
15235 dev_priv->display.get_display_clock_speed =
15236 i915gm_get_display_clock_speed;
15237 else if (IS_I865G(dev_priv))
15238 dev_priv->display.get_display_clock_speed =
15239 i865_get_display_clock_speed;
15240 else if (IS_I85X(dev_priv))
15241 dev_priv->display.get_display_clock_speed =
15242 i85x_get_display_clock_speed;
15243 else { /* 830 */
15244 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15245 dev_priv->display.get_display_clock_speed =
15246 i830_get_display_clock_speed;
15247 }
15248
15249 if (IS_GEN5(dev_priv)) {
15250 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15251 } else if (IS_GEN6(dev_priv)) {
15252 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15253 } else if (IS_IVYBRIDGE(dev_priv)) {
15254 /* FIXME: detect B0+ stepping and use auto training */
15255 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15256 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15257 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15258 }
15259
15260 if (IS_BROADWELL(dev_priv)) {
15261 dev_priv->display.modeset_commit_cdclk =
15262 broadwell_modeset_commit_cdclk;
15263 dev_priv->display.modeset_calc_cdclk =
15264 broadwell_modeset_calc_cdclk;
15265 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15266 dev_priv->display.modeset_commit_cdclk =
15267 valleyview_modeset_commit_cdclk;
15268 dev_priv->display.modeset_calc_cdclk =
15269 valleyview_modeset_calc_cdclk;
15270 } else if (IS_BROXTON(dev_priv)) {
15271 dev_priv->display.modeset_commit_cdclk =
15272 bxt_modeset_commit_cdclk;
15273 dev_priv->display.modeset_calc_cdclk =
15274 bxt_modeset_calc_cdclk;
15275 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15276 dev_priv->display.modeset_commit_cdclk =
15277 skl_modeset_commit_cdclk;
15278 dev_priv->display.modeset_calc_cdclk =
15279 skl_modeset_calc_cdclk;
15280 }
15281
15282 switch (INTEL_INFO(dev_priv)->gen) {
15283 case 2:
15284 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15285 break;
15286
15287 case 3:
15288 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15289 break;
15290
15291 case 4:
15292 case 5:
15293 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15294 break;
15295
15296 case 6:
15297 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15298 break;
15299 case 7:
15300 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15301 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15302 break;
15303 case 9:
15304 /* Drop through - unsupported since execlist only. */
15305 default:
15306 /* Default just returns -ENODEV to indicate unsupported */
15307 dev_priv->display.queue_flip = intel_default_queue_flip;
15308 }
15309 }
15310
15311 /*
15312 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15313 * resume, or other times. This quirk makes sure that's the case for
15314 * affected systems.
15315 */
15316 static void quirk_pipea_force(struct drm_device *dev)
15317 {
15318 struct drm_i915_private *dev_priv = to_i915(dev);
15319
15320 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15321 DRM_INFO("applying pipe a force quirk\n");
15322 }
15323
15324 static void quirk_pipeb_force(struct drm_device *dev)
15325 {
15326 struct drm_i915_private *dev_priv = to_i915(dev);
15327
15328 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15329 DRM_INFO("applying pipe b force quirk\n");
15330 }
15331
15332 /*
15333 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15334 */
15335 static void quirk_ssc_force_disable(struct drm_device *dev)
15336 {
15337 struct drm_i915_private *dev_priv = to_i915(dev);
15338 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15339 DRM_INFO("applying lvds SSC disable quirk\n");
15340 }
15341
15342 /*
15343 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15344 * brightness value
15345 */
15346 static void quirk_invert_brightness(struct drm_device *dev)
15347 {
15348 struct drm_i915_private *dev_priv = to_i915(dev);
15349 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15350 DRM_INFO("applying inverted panel brightness quirk\n");
15351 }
15352
15353 /* Some VBT's incorrectly indicate no backlight is present */
15354 static void quirk_backlight_present(struct drm_device *dev)
15355 {
15356 struct drm_i915_private *dev_priv = to_i915(dev);
15357 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15358 DRM_INFO("applying backlight present quirk\n");
15359 }
15360
15361 struct intel_quirk {
15362 int device;
15363 int subsystem_vendor;
15364 int subsystem_device;
15365 void (*hook)(struct drm_device *dev);
15366 };
15367
15368 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15369 struct intel_dmi_quirk {
15370 void (*hook)(struct drm_device *dev);
15371 const struct dmi_system_id (*dmi_id_list)[];
15372 };
15373
15374 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15375 {
15376 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15377 return 1;
15378 }
15379
15380 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15381 {
15382 .dmi_id_list = &(const struct dmi_system_id[]) {
15383 {
15384 .callback = intel_dmi_reverse_brightness,
15385 .ident = "NCR Corporation",
15386 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15387 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15388 },
15389 },
15390 { } /* terminating entry */
15391 },
15392 .hook = quirk_invert_brightness,
15393 },
15394 };
15395
15396 static struct intel_quirk intel_quirks[] = {
15397 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15398 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15399
15400 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15401 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15402
15403 /* 830 needs to leave pipe A & dpll A up */
15404 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15405
15406 /* 830 needs to leave pipe B & dpll B up */
15407 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15408
15409 /* Lenovo U160 cannot use SSC on LVDS */
15410 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15411
15412 /* Sony Vaio Y cannot use SSC on LVDS */
15413 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15414
15415 /* Acer Aspire 5734Z must invert backlight brightness */
15416 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15417
15418 /* Acer/eMachines G725 */
15419 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15420
15421 /* Acer/eMachines e725 */
15422 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15423
15424 /* Acer/Packard Bell NCL20 */
15425 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15426
15427 /* Acer Aspire 4736Z */
15428 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15429
15430 /* Acer Aspire 5336 */
15431 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15432
15433 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15434 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15435
15436 /* Acer C720 Chromebook (Core i3 4005U) */
15437 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15438
15439 /* Apple Macbook 2,1 (Core 2 T7400) */
15440 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15441
15442 /* Apple Macbook 4,1 */
15443 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15444
15445 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15446 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15447
15448 /* HP Chromebook 14 (Celeron 2955U) */
15449 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15450
15451 /* Dell Chromebook 11 */
15452 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15453
15454 /* Dell Chromebook 11 (2015 version) */
15455 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15456 };
15457
15458 static void intel_init_quirks(struct drm_device *dev)
15459 {
15460 struct pci_dev *d = dev->pdev;
15461 int i;
15462
15463 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15464 struct intel_quirk *q = &intel_quirks[i];
15465
15466 if (d->device == q->device &&
15467 (d->subsystem_vendor == q->subsystem_vendor ||
15468 q->subsystem_vendor == PCI_ANY_ID) &&
15469 (d->subsystem_device == q->subsystem_device ||
15470 q->subsystem_device == PCI_ANY_ID))
15471 q->hook(dev);
15472 }
15473 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15474 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15475 intel_dmi_quirks[i].hook(dev);
15476 }
15477 }
15478
15479 /* Disable the VGA plane that we never use */
15480 static void i915_disable_vga(struct drm_device *dev)
15481 {
15482 struct drm_i915_private *dev_priv = to_i915(dev);
15483 u8 sr1;
15484 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15485
15486 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15487 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15488 outb(SR01, VGA_SR_INDEX);
15489 sr1 = inb(VGA_SR_DATA);
15490 outb(sr1 | 1<<5, VGA_SR_DATA);
15491 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15492 udelay(300);
15493
15494 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15495 POSTING_READ(vga_reg);
15496 }
15497
15498 void intel_modeset_init_hw(struct drm_device *dev)
15499 {
15500 struct drm_i915_private *dev_priv = to_i915(dev);
15501
15502 intel_update_cdclk(dev);
15503
15504 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15505
15506 intel_init_clock_gating(dev);
15507 intel_enable_gt_powersave(dev_priv);
15508 }
15509
15510 /*
15511 * Calculate what we think the watermarks should be for the state we've read
15512 * out of the hardware and then immediately program those watermarks so that
15513 * we ensure the hardware settings match our internal state.
15514 *
15515 * We can calculate what we think WM's should be by creating a duplicate of the
15516 * current state (which was constructed during hardware readout) and running it
15517 * through the atomic check code to calculate new watermark values in the
15518 * state object.
15519 */
15520 static void sanitize_watermarks(struct drm_device *dev)
15521 {
15522 struct drm_i915_private *dev_priv = to_i915(dev);
15523 struct drm_atomic_state *state;
15524 struct drm_crtc *crtc;
15525 struct drm_crtc_state *cstate;
15526 struct drm_modeset_acquire_ctx ctx;
15527 int ret;
15528 int i;
15529
15530 /* Only supported on platforms that use atomic watermark design */
15531 if (!dev_priv->display.optimize_watermarks)
15532 return;
15533
15534 /*
15535 * We need to hold connection_mutex before calling duplicate_state so
15536 * that the connector loop is protected.
15537 */
15538 drm_modeset_acquire_init(&ctx, 0);
15539 retry:
15540 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15541 if (ret == -EDEADLK) {
15542 drm_modeset_backoff(&ctx);
15543 goto retry;
15544 } else if (WARN_ON(ret)) {
15545 goto fail;
15546 }
15547
15548 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15549 if (WARN_ON(IS_ERR(state)))
15550 goto fail;
15551
15552 /*
15553 * Hardware readout is the only time we don't want to calculate
15554 * intermediate watermarks (since we don't trust the current
15555 * watermarks).
15556 */
15557 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15558
15559 ret = intel_atomic_check(dev, state);
15560 if (ret) {
15561 /*
15562 * If we fail here, it means that the hardware appears to be
15563 * programmed in a way that shouldn't be possible, given our
15564 * understanding of watermark requirements. This might mean a
15565 * mistake in the hardware readout code or a mistake in the
15566 * watermark calculations for a given platform. Raise a WARN
15567 * so that this is noticeable.
15568 *
15569 * If this actually happens, we'll have to just leave the
15570 * BIOS-programmed watermarks untouched and hope for the best.
15571 */
15572 WARN(true, "Could not determine valid watermarks for inherited state\n");
15573 goto fail;
15574 }
15575
15576 /* Write calculated watermark values back */
15577 for_each_crtc_in_state(state, crtc, cstate, i) {
15578 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15579
15580 cs->wm.need_postvbl_update = true;
15581 dev_priv->display.optimize_watermarks(cs);
15582 }
15583
15584 drm_atomic_state_free(state);
15585 fail:
15586 drm_modeset_drop_locks(&ctx);
15587 drm_modeset_acquire_fini(&ctx);
15588 }
15589
15590 void intel_modeset_init(struct drm_device *dev)
15591 {
15592 struct drm_i915_private *dev_priv = to_i915(dev);
15593 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15594 int sprite, ret;
15595 enum pipe pipe;
15596 struct intel_crtc *crtc;
15597
15598 drm_mode_config_init(dev);
15599
15600 dev->mode_config.min_width = 0;
15601 dev->mode_config.min_height = 0;
15602
15603 dev->mode_config.preferred_depth = 24;
15604 dev->mode_config.prefer_shadow = 1;
15605
15606 dev->mode_config.allow_fb_modifiers = true;
15607
15608 dev->mode_config.funcs = &intel_mode_funcs;
15609
15610 intel_init_quirks(dev);
15611
15612 intel_init_pm(dev);
15613
15614 if (INTEL_INFO(dev)->num_pipes == 0)
15615 return;
15616
15617 /*
15618 * There may be no VBT; and if the BIOS enabled SSC we can
15619 * just keep using it to avoid unnecessary flicker. Whereas if the
15620 * BIOS isn't using it, don't assume it will work even if the VBT
15621 * indicates as much.
15622 */
15623 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15624 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15625 DREF_SSC1_ENABLE);
15626
15627 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15628 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15629 bios_lvds_use_ssc ? "en" : "dis",
15630 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15631 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15632 }
15633 }
15634
15635 if (IS_GEN2(dev)) {
15636 dev->mode_config.max_width = 2048;
15637 dev->mode_config.max_height = 2048;
15638 } else if (IS_GEN3(dev)) {
15639 dev->mode_config.max_width = 4096;
15640 dev->mode_config.max_height = 4096;
15641 } else {
15642 dev->mode_config.max_width = 8192;
15643 dev->mode_config.max_height = 8192;
15644 }
15645
15646 if (IS_845G(dev) || IS_I865G(dev)) {
15647 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15648 dev->mode_config.cursor_height = 1023;
15649 } else if (IS_GEN2(dev)) {
15650 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15651 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15652 } else {
15653 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15654 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15655 }
15656
15657 dev->mode_config.fb_base = ggtt->mappable_base;
15658
15659 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15660 INTEL_INFO(dev)->num_pipes,
15661 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15662
15663 for_each_pipe(dev_priv, pipe) {
15664 intel_crtc_init(dev, pipe);
15665 for_each_sprite(dev_priv, pipe, sprite) {
15666 ret = intel_plane_init(dev, pipe, sprite);
15667 if (ret)
15668 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15669 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15670 }
15671 }
15672
15673 intel_update_czclk(dev_priv);
15674 intel_update_cdclk(dev);
15675
15676 intel_shared_dpll_init(dev);
15677
15678 if (dev_priv->max_cdclk_freq == 0)
15679 intel_update_max_cdclk(dev);
15680
15681 /* Just disable it once at startup */
15682 i915_disable_vga(dev);
15683 intel_setup_outputs(dev);
15684
15685 drm_modeset_lock_all(dev);
15686 intel_modeset_setup_hw_state(dev);
15687 drm_modeset_unlock_all(dev);
15688
15689 for_each_intel_crtc(dev, crtc) {
15690 struct intel_initial_plane_config plane_config = {};
15691
15692 if (!crtc->active)
15693 continue;
15694
15695 /*
15696 * Note that reserving the BIOS fb up front prevents us
15697 * from stuffing other stolen allocations like the ring
15698 * on top. This prevents some ugliness at boot time, and
15699 * can even allow for smooth boot transitions if the BIOS
15700 * fb is large enough for the active pipe configuration.
15701 */
15702 dev_priv->display.get_initial_plane_config(crtc,
15703 &plane_config);
15704
15705 /*
15706 * If the fb is shared between multiple heads, we'll
15707 * just get the first one.
15708 */
15709 intel_find_initial_plane_obj(crtc, &plane_config);
15710 }
15711
15712 /*
15713 * Make sure hardware watermarks really match the state we read out.
15714 * Note that we need to do this after reconstructing the BIOS fb's
15715 * since the watermark calculation done here will use pstate->fb.
15716 */
15717 sanitize_watermarks(dev);
15718 }
15719
15720 static void intel_enable_pipe_a(struct drm_device *dev)
15721 {
15722 struct intel_connector *connector;
15723 struct drm_connector *crt = NULL;
15724 struct intel_load_detect_pipe load_detect_temp;
15725 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15726
15727 /* We can't just switch on the pipe A, we need to set things up with a
15728 * proper mode and output configuration. As a gross hack, enable pipe A
15729 * by enabling the load detect pipe once. */
15730 for_each_intel_connector(dev, connector) {
15731 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15732 crt = &connector->base;
15733 break;
15734 }
15735 }
15736
15737 if (!crt)
15738 return;
15739
15740 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15741 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15742 }
15743
15744 static bool
15745 intel_check_plane_mapping(struct intel_crtc *crtc)
15746 {
15747 struct drm_device *dev = crtc->base.dev;
15748 struct drm_i915_private *dev_priv = to_i915(dev);
15749 u32 val;
15750
15751 if (INTEL_INFO(dev)->num_pipes == 1)
15752 return true;
15753
15754 val = I915_READ(DSPCNTR(!crtc->plane));
15755
15756 if ((val & DISPLAY_PLANE_ENABLE) &&
15757 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15758 return false;
15759
15760 return true;
15761 }
15762
15763 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15764 {
15765 struct drm_device *dev = crtc->base.dev;
15766 struct intel_encoder *encoder;
15767
15768 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15769 return true;
15770
15771 return false;
15772 }
15773
15774 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15775 {
15776 struct drm_device *dev = encoder->base.dev;
15777 struct intel_connector *connector;
15778
15779 for_each_connector_on_encoder(dev, &encoder->base, connector)
15780 return true;
15781
15782 return false;
15783 }
15784
15785 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15786 {
15787 struct drm_device *dev = crtc->base.dev;
15788 struct drm_i915_private *dev_priv = to_i915(dev);
15789 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15790
15791 /* Clear any frame start delays used for debugging left by the BIOS */
15792 if (!transcoder_is_dsi(cpu_transcoder)) {
15793 i915_reg_t reg = PIPECONF(cpu_transcoder);
15794
15795 I915_WRITE(reg,
15796 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15797 }
15798
15799 /* restore vblank interrupts to correct state */
15800 drm_crtc_vblank_reset(&crtc->base);
15801 if (crtc->active) {
15802 struct intel_plane *plane;
15803
15804 drm_crtc_vblank_on(&crtc->base);
15805
15806 /* Disable everything but the primary plane */
15807 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15808 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15809 continue;
15810
15811 plane->disable_plane(&plane->base, &crtc->base);
15812 }
15813 }
15814
15815 /* We need to sanitize the plane -> pipe mapping first because this will
15816 * disable the crtc (and hence change the state) if it is wrong. Note
15817 * that gen4+ has a fixed plane -> pipe mapping. */
15818 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15819 bool plane;
15820
15821 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15822 crtc->base.base.id, crtc->base.name);
15823
15824 /* Pipe has the wrong plane attached and the plane is active.
15825 * Temporarily change the plane mapping and disable everything
15826 * ... */
15827 plane = crtc->plane;
15828 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15829 crtc->plane = !plane;
15830 intel_crtc_disable_noatomic(&crtc->base);
15831 crtc->plane = plane;
15832 }
15833
15834 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15835 crtc->pipe == PIPE_A && !crtc->active) {
15836 /* BIOS forgot to enable pipe A, this mostly happens after
15837 * resume. Force-enable the pipe to fix this, the update_dpms
15838 * call below we restore the pipe to the right state, but leave
15839 * the required bits on. */
15840 intel_enable_pipe_a(dev);
15841 }
15842
15843 /* Adjust the state of the output pipe according to whether we
15844 * have active connectors/encoders. */
15845 if (crtc->active && !intel_crtc_has_encoders(crtc))
15846 intel_crtc_disable_noatomic(&crtc->base);
15847
15848 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15849 /*
15850 * We start out with underrun reporting disabled to avoid races.
15851 * For correct bookkeeping mark this on active crtcs.
15852 *
15853 * Also on gmch platforms we dont have any hardware bits to
15854 * disable the underrun reporting. Which means we need to start
15855 * out with underrun reporting disabled also on inactive pipes,
15856 * since otherwise we'll complain about the garbage we read when
15857 * e.g. coming up after runtime pm.
15858 *
15859 * No protection against concurrent access is required - at
15860 * worst a fifo underrun happens which also sets this to false.
15861 */
15862 crtc->cpu_fifo_underrun_disabled = true;
15863 crtc->pch_fifo_underrun_disabled = true;
15864 }
15865 }
15866
15867 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15868 {
15869 struct intel_connector *connector;
15870 struct drm_device *dev = encoder->base.dev;
15871
15872 /* We need to check both for a crtc link (meaning that the
15873 * encoder is active and trying to read from a pipe) and the
15874 * pipe itself being active. */
15875 bool has_active_crtc = encoder->base.crtc &&
15876 to_intel_crtc(encoder->base.crtc)->active;
15877
15878 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15879 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15880 encoder->base.base.id,
15881 encoder->base.name);
15882
15883 /* Connector is active, but has no active pipe. This is
15884 * fallout from our resume register restoring. Disable
15885 * the encoder manually again. */
15886 if (encoder->base.crtc) {
15887 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15888 encoder->base.base.id,
15889 encoder->base.name);
15890 encoder->disable(encoder);
15891 if (encoder->post_disable)
15892 encoder->post_disable(encoder);
15893 }
15894 encoder->base.crtc = NULL;
15895
15896 /* Inconsistent output/port/pipe state happens presumably due to
15897 * a bug in one of the get_hw_state functions. Or someplace else
15898 * in our code, like the register restore mess on resume. Clamp
15899 * things to off as a safer default. */
15900 for_each_intel_connector(dev, connector) {
15901 if (connector->encoder != encoder)
15902 continue;
15903 connector->base.dpms = DRM_MODE_DPMS_OFF;
15904 connector->base.encoder = NULL;
15905 }
15906 }
15907 /* Enabled encoders without active connectors will be fixed in
15908 * the crtc fixup. */
15909 }
15910
15911 void i915_redisable_vga_power_on(struct drm_device *dev)
15912 {
15913 struct drm_i915_private *dev_priv = to_i915(dev);
15914 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15915
15916 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15917 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15918 i915_disable_vga(dev);
15919 }
15920 }
15921
15922 void i915_redisable_vga(struct drm_device *dev)
15923 {
15924 struct drm_i915_private *dev_priv = to_i915(dev);
15925
15926 /* This function can be called both from intel_modeset_setup_hw_state or
15927 * at a very early point in our resume sequence, where the power well
15928 * structures are not yet restored. Since this function is at a very
15929 * paranoid "someone might have enabled VGA while we were not looking"
15930 * level, just check if the power well is enabled instead of trying to
15931 * follow the "don't touch the power well if we don't need it" policy
15932 * the rest of the driver uses. */
15933 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15934 return;
15935
15936 i915_redisable_vga_power_on(dev);
15937
15938 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15939 }
15940
15941 static bool primary_get_hw_state(struct intel_plane *plane)
15942 {
15943 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15944
15945 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15946 }
15947
15948 /* FIXME read out full plane state for all planes */
15949 static void readout_plane_state(struct intel_crtc *crtc)
15950 {
15951 struct drm_plane *primary = crtc->base.primary;
15952 struct intel_plane_state *plane_state =
15953 to_intel_plane_state(primary->state);
15954
15955 plane_state->visible = crtc->active &&
15956 primary_get_hw_state(to_intel_plane(primary));
15957
15958 if (plane_state->visible)
15959 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15960 }
15961
15962 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15963 {
15964 struct drm_i915_private *dev_priv = to_i915(dev);
15965 enum pipe pipe;
15966 struct intel_crtc *crtc;
15967 struct intel_encoder *encoder;
15968 struct intel_connector *connector;
15969 int i;
15970
15971 dev_priv->active_crtcs = 0;
15972
15973 for_each_intel_crtc(dev, crtc) {
15974 struct intel_crtc_state *crtc_state = crtc->config;
15975 int pixclk = 0;
15976
15977 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15978 memset(crtc_state, 0, sizeof(*crtc_state));
15979 crtc_state->base.crtc = &crtc->base;
15980
15981 crtc_state->base.active = crtc_state->base.enable =
15982 dev_priv->display.get_pipe_config(crtc, crtc_state);
15983
15984 crtc->base.enabled = crtc_state->base.enable;
15985 crtc->active = crtc_state->base.active;
15986
15987 if (crtc_state->base.active) {
15988 dev_priv->active_crtcs |= 1 << crtc->pipe;
15989
15990 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15991 pixclk = ilk_pipe_pixel_rate(crtc_state);
15992 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15993 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15994 else
15995 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15996
15997 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15998 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15999 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16000 }
16001
16002 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16003
16004 readout_plane_state(crtc);
16005
16006 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16007 crtc->base.base.id, crtc->base.name,
16008 crtc->active ? "enabled" : "disabled");
16009 }
16010
16011 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16012 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16013
16014 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16015 &pll->config.hw_state);
16016 pll->config.crtc_mask = 0;
16017 for_each_intel_crtc(dev, crtc) {
16018 if (crtc->active && crtc->config->shared_dpll == pll)
16019 pll->config.crtc_mask |= 1 << crtc->pipe;
16020 }
16021 pll->active_mask = pll->config.crtc_mask;
16022
16023 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16024 pll->name, pll->config.crtc_mask, pll->on);
16025 }
16026
16027 for_each_intel_encoder(dev, encoder) {
16028 pipe = 0;
16029
16030 if (encoder->get_hw_state(encoder, &pipe)) {
16031 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16032 encoder->base.crtc = &crtc->base;
16033 crtc->config->output_types |= 1 << encoder->type;
16034 encoder->get_config(encoder, crtc->config);
16035 } else {
16036 encoder->base.crtc = NULL;
16037 }
16038
16039 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16040 encoder->base.base.id,
16041 encoder->base.name,
16042 encoder->base.crtc ? "enabled" : "disabled",
16043 pipe_name(pipe));
16044 }
16045
16046 for_each_intel_connector(dev, connector) {
16047 if (connector->get_hw_state(connector)) {
16048 connector->base.dpms = DRM_MODE_DPMS_ON;
16049
16050 encoder = connector->encoder;
16051 connector->base.encoder = &encoder->base;
16052
16053 if (encoder->base.crtc &&
16054 encoder->base.crtc->state->active) {
16055 /*
16056 * This has to be done during hardware readout
16057 * because anything calling .crtc_disable may
16058 * rely on the connector_mask being accurate.
16059 */
16060 encoder->base.crtc->state->connector_mask |=
16061 1 << drm_connector_index(&connector->base);
16062 encoder->base.crtc->state->encoder_mask |=
16063 1 << drm_encoder_index(&encoder->base);
16064 }
16065
16066 } else {
16067 connector->base.dpms = DRM_MODE_DPMS_OFF;
16068 connector->base.encoder = NULL;
16069 }
16070 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16071 connector->base.base.id,
16072 connector->base.name,
16073 connector->base.encoder ? "enabled" : "disabled");
16074 }
16075
16076 for_each_intel_crtc(dev, crtc) {
16077 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16078
16079 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16080 if (crtc->base.state->active) {
16081 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16082 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16083 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16084
16085 /*
16086 * The initial mode needs to be set in order to keep
16087 * the atomic core happy. It wants a valid mode if the
16088 * crtc's enabled, so we do the above call.
16089 *
16090 * At this point some state updated by the connectors
16091 * in their ->detect() callback has not run yet, so
16092 * no recalculation can be done yet.
16093 *
16094 * Even if we could do a recalculation and modeset
16095 * right now it would cause a double modeset if
16096 * fbdev or userspace chooses a different initial mode.
16097 *
16098 * If that happens, someone indicated they wanted a
16099 * mode change, which means it's safe to do a full
16100 * recalculation.
16101 */
16102 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16103
16104 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16105 update_scanline_offset(crtc);
16106 }
16107
16108 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16109 }
16110 }
16111
16112 /* Scan out the current hw modeset state,
16113 * and sanitizes it to the current state
16114 */
16115 static void
16116 intel_modeset_setup_hw_state(struct drm_device *dev)
16117 {
16118 struct drm_i915_private *dev_priv = to_i915(dev);
16119 enum pipe pipe;
16120 struct intel_crtc *crtc;
16121 struct intel_encoder *encoder;
16122 int i;
16123
16124 intel_modeset_readout_hw_state(dev);
16125
16126 /* HW state is read out, now we need to sanitize this mess. */
16127 for_each_intel_encoder(dev, encoder) {
16128 intel_sanitize_encoder(encoder);
16129 }
16130
16131 for_each_pipe(dev_priv, pipe) {
16132 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16133 intel_sanitize_crtc(crtc);
16134 intel_dump_pipe_config(crtc, crtc->config,
16135 "[setup_hw_state]");
16136 }
16137
16138 intel_modeset_update_connector_atomic_state(dev);
16139
16140 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16141 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16142
16143 if (!pll->on || pll->active_mask)
16144 continue;
16145
16146 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16147
16148 pll->funcs.disable(dev_priv, pll);
16149 pll->on = false;
16150 }
16151
16152 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16153 vlv_wm_get_hw_state(dev);
16154 else if (IS_GEN9(dev))
16155 skl_wm_get_hw_state(dev);
16156 else if (HAS_PCH_SPLIT(dev))
16157 ilk_wm_get_hw_state(dev);
16158
16159 for_each_intel_crtc(dev, crtc) {
16160 unsigned long put_domains;
16161
16162 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16163 if (WARN_ON(put_domains))
16164 modeset_put_power_domains(dev_priv, put_domains);
16165 }
16166 intel_display_set_init_power(dev_priv, false);
16167
16168 intel_fbc_init_pipe_state(dev_priv);
16169 }
16170
16171 void intel_display_resume(struct drm_device *dev)
16172 {
16173 struct drm_i915_private *dev_priv = to_i915(dev);
16174 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16175 struct drm_modeset_acquire_ctx ctx;
16176 int ret;
16177 bool setup = false;
16178
16179 dev_priv->modeset_restore_state = NULL;
16180
16181 /*
16182 * This is a cludge because with real atomic modeset mode_config.mutex
16183 * won't be taken. Unfortunately some probed state like
16184 * audio_codec_enable is still protected by mode_config.mutex, so lock
16185 * it here for now.
16186 */
16187 mutex_lock(&dev->mode_config.mutex);
16188 drm_modeset_acquire_init(&ctx, 0);
16189
16190 retry:
16191 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16192
16193 if (ret == 0 && !setup) {
16194 setup = true;
16195
16196 intel_modeset_setup_hw_state(dev);
16197 i915_redisable_vga(dev);
16198 }
16199
16200 if (ret == 0 && state) {
16201 struct drm_crtc_state *crtc_state;
16202 struct drm_crtc *crtc;
16203 int i;
16204
16205 state->acquire_ctx = &ctx;
16206
16207 /* ignore any reset values/BIOS leftovers in the WM registers */
16208 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16209
16210 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16211 /*
16212 * Force recalculation even if we restore
16213 * current state. With fast modeset this may not result
16214 * in a modeset when the state is compatible.
16215 */
16216 crtc_state->mode_changed = true;
16217 }
16218
16219 ret = drm_atomic_commit(state);
16220 }
16221
16222 if (ret == -EDEADLK) {
16223 drm_modeset_backoff(&ctx);
16224 goto retry;
16225 }
16226
16227 drm_modeset_drop_locks(&ctx);
16228 drm_modeset_acquire_fini(&ctx);
16229 mutex_unlock(&dev->mode_config.mutex);
16230
16231 if (ret) {
16232 DRM_ERROR("Restoring old state failed with %i\n", ret);
16233 drm_atomic_state_free(state);
16234 }
16235 }
16236
16237 void intel_modeset_gem_init(struct drm_device *dev)
16238 {
16239 struct drm_i915_private *dev_priv = to_i915(dev);
16240 struct drm_crtc *c;
16241 struct drm_i915_gem_object *obj;
16242 int ret;
16243
16244 intel_init_gt_powersave(dev_priv);
16245
16246 intel_modeset_init_hw(dev);
16247
16248 intel_setup_overlay(dev_priv);
16249
16250 /*
16251 * Make sure any fbs we allocated at startup are properly
16252 * pinned & fenced. When we do the allocation it's too early
16253 * for this.
16254 */
16255 for_each_crtc(dev, c) {
16256 obj = intel_fb_obj(c->primary->fb);
16257 if (obj == NULL)
16258 continue;
16259
16260 mutex_lock(&dev->struct_mutex);
16261 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16262 c->primary->state->rotation);
16263 mutex_unlock(&dev->struct_mutex);
16264 if (ret) {
16265 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16266 to_intel_crtc(c)->pipe);
16267 drm_framebuffer_unreference(c->primary->fb);
16268 c->primary->fb = NULL;
16269 c->primary->crtc = c->primary->state->crtc = NULL;
16270 update_state_fb(c->primary);
16271 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16272 }
16273 }
16274 }
16275
16276 int intel_connector_register(struct drm_connector *connector)
16277 {
16278 struct intel_connector *intel_connector = to_intel_connector(connector);
16279 int ret;
16280
16281 ret = intel_backlight_device_register(intel_connector);
16282 if (ret)
16283 goto err;
16284
16285 return 0;
16286
16287 err:
16288 return ret;
16289 }
16290
16291 void intel_connector_unregister(struct drm_connector *connector)
16292 {
16293 struct intel_connector *intel_connector = to_intel_connector(connector);
16294
16295 intel_backlight_device_unregister(intel_connector);
16296 intel_panel_destroy_backlight(connector);
16297 }
16298
16299 void intel_modeset_cleanup(struct drm_device *dev)
16300 {
16301 struct drm_i915_private *dev_priv = to_i915(dev);
16302
16303 intel_disable_gt_powersave(dev_priv);
16304
16305 /*
16306 * Interrupts and polling as the first thing to avoid creating havoc.
16307 * Too much stuff here (turning of connectors, ...) would
16308 * experience fancy races otherwise.
16309 */
16310 intel_irq_uninstall(dev_priv);
16311
16312 /*
16313 * Due to the hpd irq storm handling the hotplug work can re-arm the
16314 * poll handlers. Hence disable polling after hpd handling is shut down.
16315 */
16316 drm_kms_helper_poll_fini(dev);
16317
16318 intel_unregister_dsm_handler();
16319
16320 intel_fbc_global_disable(dev_priv);
16321
16322 /* flush any delayed tasks or pending work */
16323 flush_scheduled_work();
16324
16325 drm_mode_config_cleanup(dev);
16326
16327 intel_cleanup_overlay(dev_priv);
16328
16329 intel_cleanup_gt_powersave(dev_priv);
16330
16331 intel_teardown_gmbus(dev);
16332 }
16333
16334 void intel_connector_attach_encoder(struct intel_connector *connector,
16335 struct intel_encoder *encoder)
16336 {
16337 connector->encoder = encoder;
16338 drm_mode_connector_attach_encoder(&connector->base,
16339 &encoder->base);
16340 }
16341
16342 /*
16343 * set vga decode state - true == enable VGA decode
16344 */
16345 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16346 {
16347 struct drm_i915_private *dev_priv = to_i915(dev);
16348 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16349 u16 gmch_ctrl;
16350
16351 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16352 DRM_ERROR("failed to read control word\n");
16353 return -EIO;
16354 }
16355
16356 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16357 return 0;
16358
16359 if (state)
16360 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16361 else
16362 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16363
16364 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16365 DRM_ERROR("failed to write control word\n");
16366 return -EIO;
16367 }
16368
16369 return 0;
16370 }
16371
16372 struct intel_display_error_state {
16373
16374 u32 power_well_driver;
16375
16376 int num_transcoders;
16377
16378 struct intel_cursor_error_state {
16379 u32 control;
16380 u32 position;
16381 u32 base;
16382 u32 size;
16383 } cursor[I915_MAX_PIPES];
16384
16385 struct intel_pipe_error_state {
16386 bool power_domain_on;
16387 u32 source;
16388 u32 stat;
16389 } pipe[I915_MAX_PIPES];
16390
16391 struct intel_plane_error_state {
16392 u32 control;
16393 u32 stride;
16394 u32 size;
16395 u32 pos;
16396 u32 addr;
16397 u32 surface;
16398 u32 tile_offset;
16399 } plane[I915_MAX_PIPES];
16400
16401 struct intel_transcoder_error_state {
16402 bool power_domain_on;
16403 enum transcoder cpu_transcoder;
16404
16405 u32 conf;
16406
16407 u32 htotal;
16408 u32 hblank;
16409 u32 hsync;
16410 u32 vtotal;
16411 u32 vblank;
16412 u32 vsync;
16413 } transcoder[4];
16414 };
16415
16416 struct intel_display_error_state *
16417 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16418 {
16419 struct intel_display_error_state *error;
16420 int transcoders[] = {
16421 TRANSCODER_A,
16422 TRANSCODER_B,
16423 TRANSCODER_C,
16424 TRANSCODER_EDP,
16425 };
16426 int i;
16427
16428 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16429 return NULL;
16430
16431 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16432 if (error == NULL)
16433 return NULL;
16434
16435 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16436 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16437
16438 for_each_pipe(dev_priv, i) {
16439 error->pipe[i].power_domain_on =
16440 __intel_display_power_is_enabled(dev_priv,
16441 POWER_DOMAIN_PIPE(i));
16442 if (!error->pipe[i].power_domain_on)
16443 continue;
16444
16445 error->cursor[i].control = I915_READ(CURCNTR(i));
16446 error->cursor[i].position = I915_READ(CURPOS(i));
16447 error->cursor[i].base = I915_READ(CURBASE(i));
16448
16449 error->plane[i].control = I915_READ(DSPCNTR(i));
16450 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16451 if (INTEL_GEN(dev_priv) <= 3) {
16452 error->plane[i].size = I915_READ(DSPSIZE(i));
16453 error->plane[i].pos = I915_READ(DSPPOS(i));
16454 }
16455 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16456 error->plane[i].addr = I915_READ(DSPADDR(i));
16457 if (INTEL_GEN(dev_priv) >= 4) {
16458 error->plane[i].surface = I915_READ(DSPSURF(i));
16459 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16460 }
16461
16462 error->pipe[i].source = I915_READ(PIPESRC(i));
16463
16464 if (HAS_GMCH_DISPLAY(dev_priv))
16465 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16466 }
16467
16468 /* Note: this does not include DSI transcoders. */
16469 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16470 if (HAS_DDI(dev_priv))
16471 error->num_transcoders++; /* Account for eDP. */
16472
16473 for (i = 0; i < error->num_transcoders; i++) {
16474 enum transcoder cpu_transcoder = transcoders[i];
16475
16476 error->transcoder[i].power_domain_on =
16477 __intel_display_power_is_enabled(dev_priv,
16478 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16479 if (!error->transcoder[i].power_domain_on)
16480 continue;
16481
16482 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16483
16484 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16485 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16486 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16487 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16488 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16489 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16490 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16491 }
16492
16493 return error;
16494 }
16495
16496 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16497
16498 void
16499 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16500 struct drm_device *dev,
16501 struct intel_display_error_state *error)
16502 {
16503 struct drm_i915_private *dev_priv = to_i915(dev);
16504 int i;
16505
16506 if (!error)
16507 return;
16508
16509 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16510 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16511 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16512 error->power_well_driver);
16513 for_each_pipe(dev_priv, i) {
16514 err_printf(m, "Pipe [%d]:\n", i);
16515 err_printf(m, " Power: %s\n",
16516 onoff(error->pipe[i].power_domain_on));
16517 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16518 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16519
16520 err_printf(m, "Plane [%d]:\n", i);
16521 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16522 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16523 if (INTEL_INFO(dev)->gen <= 3) {
16524 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16525 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16526 }
16527 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16528 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16529 if (INTEL_INFO(dev)->gen >= 4) {
16530 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16531 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16532 }
16533
16534 err_printf(m, "Cursor [%d]:\n", i);
16535 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16536 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16537 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16538 }
16539
16540 for (i = 0; i < error->num_transcoders; i++) {
16541 err_printf(m, "CPU transcoder: %s\n",
16542 transcoder_name(error->transcoder[i].cpu_transcoder));
16543 err_printf(m, " Power: %s\n",
16544 onoff(error->transcoder[i].power_domain_on));
16545 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16546 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16547 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16548 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16549 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16550 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16551 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16552 }
16553 }