]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
e2b01d9b504b4b41f09423a333989dafd1daab70
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc,
86 struct drm_atomic_state *state);
87 static int intel_framebuffer_init(struct drm_device *dev,
88 struct intel_framebuffer *ifb,
89 struct drm_mode_fb_cmd2 *mode_cmd,
90 struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94 struct intel_link_m_n *m_n,
95 struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_state *pipe_config);
101 static void chv_prepare_pll(struct intel_crtc *crtc,
102 const struct intel_crtc_state *pipe_config);
103 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
106 struct intel_crtc_state *crtc_state);
107 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
108 int num_connectors);
109 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
110 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
111
112 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
113 {
114 if (!connector->mst_port)
115 return connector->encoder;
116 else
117 return &connector->mst_port->mst_encoders[pipe]->base;
118 }
119
120 typedef struct {
121 int min, max;
122 } intel_range_t;
123
124 typedef struct {
125 int dot_limit;
126 int p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
133 };
134
135 int
136 intel_pch_rawclk(struct drm_device *dev)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139
140 WARN_ON(!HAS_PCH_SPLIT(dev));
141
142 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143 }
144
145 static inline u32 /* units of 100MHz */
146 intel_fdi_link_freq(struct drm_device *dev)
147 {
148 if (IS_GEN5(dev)) {
149 struct drm_i915_private *dev_priv = dev->dev_private;
150 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
151 } else
152 return 27;
153 }
154
155 static const intel_limit_t intel_limits_i8xx_dac = {
156 .dot = { .min = 25000, .max = 350000 },
157 .vco = { .min = 908000, .max = 1512000 },
158 .n = { .min = 2, .max = 16 },
159 .m = { .min = 96, .max = 140 },
160 .m1 = { .min = 18, .max = 26 },
161 .m2 = { .min = 6, .max = 16 },
162 .p = { .min = 4, .max = 128 },
163 .p1 = { .min = 2, .max = 33 },
164 .p2 = { .dot_limit = 165000,
165 .p2_slow = 4, .p2_fast = 2 },
166 };
167
168 static const intel_limit_t intel_limits_i8xx_dvo = {
169 .dot = { .min = 25000, .max = 350000 },
170 .vco = { .min = 908000, .max = 1512000 },
171 .n = { .min = 2, .max = 16 },
172 .m = { .min = 96, .max = 140 },
173 .m1 = { .min = 18, .max = 26 },
174 .m2 = { .min = 6, .max = 16 },
175 .p = { .min = 4, .max = 128 },
176 .p1 = { .min = 2, .max = 33 },
177 .p2 = { .dot_limit = 165000,
178 .p2_slow = 4, .p2_fast = 4 },
179 };
180
181 static const intel_limit_t intel_limits_i8xx_lvds = {
182 .dot = { .min = 25000, .max = 350000 },
183 .vco = { .min = 908000, .max = 1512000 },
184 .n = { .min = 2, .max = 16 },
185 .m = { .min = 96, .max = 140 },
186 .m1 = { .min = 18, .max = 26 },
187 .m2 = { .min = 6, .max = 16 },
188 .p = { .min = 4, .max = 128 },
189 .p1 = { .min = 1, .max = 6 },
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 14, .p2_fast = 7 },
192 };
193
194 static const intel_limit_t intel_limits_i9xx_sdvo = {
195 .dot = { .min = 20000, .max = 400000 },
196 .vco = { .min = 1400000, .max = 2800000 },
197 .n = { .min = 1, .max = 6 },
198 .m = { .min = 70, .max = 120 },
199 .m1 = { .min = 8, .max = 18 },
200 .m2 = { .min = 3, .max = 7 },
201 .p = { .min = 5, .max = 80 },
202 .p1 = { .min = 1, .max = 8 },
203 .p2 = { .dot_limit = 200000,
204 .p2_slow = 10, .p2_fast = 5 },
205 };
206
207 static const intel_limit_t intel_limits_i9xx_lvds = {
208 .dot = { .min = 20000, .max = 400000 },
209 .vco = { .min = 1400000, .max = 2800000 },
210 .n = { .min = 1, .max = 6 },
211 .m = { .min = 70, .max = 120 },
212 .m1 = { .min = 8, .max = 18 },
213 .m2 = { .min = 3, .max = 7 },
214 .p = { .min = 7, .max = 98 },
215 .p1 = { .min = 1, .max = 8 },
216 .p2 = { .dot_limit = 112000,
217 .p2_slow = 14, .p2_fast = 7 },
218 };
219
220
221 static const intel_limit_t intel_limits_g4x_sdvo = {
222 .dot = { .min = 25000, .max = 270000 },
223 .vco = { .min = 1750000, .max = 3500000},
224 .n = { .min = 1, .max = 4 },
225 .m = { .min = 104, .max = 138 },
226 .m1 = { .min = 17, .max = 23 },
227 .m2 = { .min = 5, .max = 11 },
228 .p = { .min = 10, .max = 30 },
229 .p1 = { .min = 1, .max = 3},
230 .p2 = { .dot_limit = 270000,
231 .p2_slow = 10,
232 .p2_fast = 10
233 },
234 };
235
236 static const intel_limit_t intel_limits_g4x_hdmi = {
237 .dot = { .min = 22000, .max = 400000 },
238 .vco = { .min = 1750000, .max = 3500000},
239 .n = { .min = 1, .max = 4 },
240 .m = { .min = 104, .max = 138 },
241 .m1 = { .min = 16, .max = 23 },
242 .m2 = { .min = 5, .max = 11 },
243 .p = { .min = 5, .max = 80 },
244 .p1 = { .min = 1, .max = 8},
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 10, .p2_fast = 5 },
247 };
248
249 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
250 .dot = { .min = 20000, .max = 115000 },
251 .vco = { .min = 1750000, .max = 3500000 },
252 .n = { .min = 1, .max = 3 },
253 .m = { .min = 104, .max = 138 },
254 .m1 = { .min = 17, .max = 23 },
255 .m2 = { .min = 5, .max = 11 },
256 .p = { .min = 28, .max = 112 },
257 .p1 = { .min = 2, .max = 8 },
258 .p2 = { .dot_limit = 0,
259 .p2_slow = 14, .p2_fast = 14
260 },
261 };
262
263 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
264 .dot = { .min = 80000, .max = 224000 },
265 .vco = { .min = 1750000, .max = 3500000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 104, .max = 138 },
268 .m1 = { .min = 17, .max = 23 },
269 .m2 = { .min = 5, .max = 11 },
270 .p = { .min = 14, .max = 42 },
271 .p1 = { .min = 2, .max = 6 },
272 .p2 = { .dot_limit = 0,
273 .p2_slow = 7, .p2_fast = 7
274 },
275 };
276
277 static const intel_limit_t intel_limits_pineview_sdvo = {
278 .dot = { .min = 20000, .max = 400000},
279 .vco = { .min = 1700000, .max = 3500000 },
280 /* Pineview's Ncounter is a ring counter */
281 .n = { .min = 3, .max = 6 },
282 .m = { .min = 2, .max = 256 },
283 /* Pineview only has one combined m divider, which we treat as m2. */
284 .m1 = { .min = 0, .max = 0 },
285 .m2 = { .min = 0, .max = 254 },
286 .p = { .min = 5, .max = 80 },
287 .p1 = { .min = 1, .max = 8 },
288 .p2 = { .dot_limit = 200000,
289 .p2_slow = 10, .p2_fast = 5 },
290 };
291
292 static const intel_limit_t intel_limits_pineview_lvds = {
293 .dot = { .min = 20000, .max = 400000 },
294 .vco = { .min = 1700000, .max = 3500000 },
295 .n = { .min = 3, .max = 6 },
296 .m = { .min = 2, .max = 256 },
297 .m1 = { .min = 0, .max = 0 },
298 .m2 = { .min = 0, .max = 254 },
299 .p = { .min = 7, .max = 112 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 112000,
302 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 /* Ironlake / Sandybridge
306 *
307 * We calculate clock using (register_value + 2) for N/M1/M2, so here
308 * the range value for them is (actual_value - 2).
309 */
310 static const intel_limit_t intel_limits_ironlake_dac = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 5 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 5, .max = 80 },
318 .p1 = { .min = 1, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 10, .p2_fast = 5 },
321 };
322
323 static const intel_limit_t intel_limits_ironlake_single_lvds = {
324 .dot = { .min = 25000, .max = 350000 },
325 .vco = { .min = 1760000, .max = 3510000 },
326 .n = { .min = 1, .max = 3 },
327 .m = { .min = 79, .max = 118 },
328 .m1 = { .min = 12, .max = 22 },
329 .m2 = { .min = 5, .max = 9 },
330 .p = { .min = 28, .max = 112 },
331 .p1 = { .min = 2, .max = 8 },
332 .p2 = { .dot_limit = 225000,
333 .p2_slow = 14, .p2_fast = 14 },
334 };
335
336 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
337 .dot = { .min = 25000, .max = 350000 },
338 .vco = { .min = 1760000, .max = 3510000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 79, .max = 127 },
341 .m1 = { .min = 12, .max = 22 },
342 .m2 = { .min = 5, .max = 9 },
343 .p = { .min = 14, .max = 56 },
344 .p1 = { .min = 2, .max = 8 },
345 .p2 = { .dot_limit = 225000,
346 .p2_slow = 7, .p2_fast = 7 },
347 };
348
349 /* LVDS 100mhz refclk limits. */
350 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
351 .dot = { .min = 25000, .max = 350000 },
352 .vco = { .min = 1760000, .max = 3510000 },
353 .n = { .min = 1, .max = 2 },
354 .m = { .min = 79, .max = 126 },
355 .m1 = { .min = 12, .max = 22 },
356 .m2 = { .min = 5, .max = 9 },
357 .p = { .min = 28, .max = 112 },
358 .p1 = { .min = 2, .max = 8 },
359 .p2 = { .dot_limit = 225000,
360 .p2_slow = 14, .p2_fast = 14 },
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 79, .max = 126 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 14, .max = 42 },
371 .p1 = { .min = 2, .max = 6 },
372 .p2 = { .dot_limit = 225000,
373 .p2_slow = 7, .p2_fast = 7 },
374 };
375
376 static const intel_limit_t intel_limits_vlv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
384 .vco = { .min = 4000000, .max = 6000000 },
385 .n = { .min = 1, .max = 7 },
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p1 = { .min = 2, .max = 3 },
389 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
390 };
391
392 static const intel_limit_t intel_limits_chv = {
393 /*
394 * These are the data rate limits (measured in fast clocks)
395 * since those are the strictest limits we have. The fast
396 * clock and actual rate limits are more relaxed, so checking
397 * them would make no difference.
398 */
399 .dot = { .min = 25000 * 5, .max = 540000 * 5},
400 .vco = { .min = 4800000, .max = 6480000 },
401 .n = { .min = 1, .max = 1 },
402 .m1 = { .min = 2, .max = 2 },
403 .m2 = { .min = 24 << 22, .max = 175 << 22 },
404 .p1 = { .min = 2, .max = 4 },
405 .p2 = { .p2_slow = 1, .p2_fast = 14 },
406 };
407
408 static const intel_limit_t intel_limits_bxt = {
409 /* FIXME: find real dot limits */
410 .dot = { .min = 0, .max = INT_MAX },
411 .vco = { .min = 4800000, .max = 6480000 },
412 .n = { .min = 1, .max = 1 },
413 .m1 = { .min = 2, .max = 2 },
414 /* FIXME: find real m2 limits */
415 .m2 = { .min = 2 << 22, .max = 255 << 22 },
416 .p1 = { .min = 2, .max = 4 },
417 .p2 = { .p2_slow = 1, .p2_fast = 20 },
418 };
419
420 static void vlv_clock(int refclk, intel_clock_t *clock)
421 {
422 clock->m = clock->m1 * clock->m2;
423 clock->p = clock->p1 * clock->p2;
424 if (WARN_ON(clock->n == 0 || clock->p == 0))
425 return;
426 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
427 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
428 }
429
430 /**
431 * Returns whether any output on the specified pipe is of the specified type
432 */
433 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
434 {
435 struct drm_device *dev = crtc->base.dev;
436 struct intel_encoder *encoder;
437
438 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
439 if (encoder->type == type)
440 return true;
441
442 return false;
443 }
444
445 /**
446 * Returns whether any output on the specified pipe will have the specified
447 * type after a staged modeset is complete, i.e., the same as
448 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
449 * encoder->crtc.
450 */
451 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
452 int type)
453 {
454 struct drm_atomic_state *state = crtc_state->base.state;
455 struct drm_connector *connector;
456 struct drm_connector_state *connector_state;
457 struct intel_encoder *encoder;
458 int i, num_connectors = 0;
459
460 for_each_connector_in_state(state, connector, connector_state, i) {
461 if (connector_state->crtc != crtc_state->base.crtc)
462 continue;
463
464 num_connectors++;
465
466 encoder = to_intel_encoder(connector_state->best_encoder);
467 if (encoder->type == type)
468 return true;
469 }
470
471 WARN_ON(num_connectors == 0);
472
473 return false;
474 }
475
476 static const intel_limit_t *
477 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
478 {
479 struct drm_device *dev = crtc_state->base.crtc->dev;
480 const intel_limit_t *limit;
481
482 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
483 if (intel_is_dual_link_lvds(dev)) {
484 if (refclk == 100000)
485 limit = &intel_limits_ironlake_dual_lvds_100m;
486 else
487 limit = &intel_limits_ironlake_dual_lvds;
488 } else {
489 if (refclk == 100000)
490 limit = &intel_limits_ironlake_single_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_single_lvds;
493 }
494 } else
495 limit = &intel_limits_ironlake_dac;
496
497 return limit;
498 }
499
500 static const intel_limit_t *
501 intel_g4x_limit(struct intel_crtc_state *crtc_state)
502 {
503 struct drm_device *dev = crtc_state->base.crtc->dev;
504 const intel_limit_t *limit;
505
506 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
507 if (intel_is_dual_link_lvds(dev))
508 limit = &intel_limits_g4x_dual_channel_lvds;
509 else
510 limit = &intel_limits_g4x_single_channel_lvds;
511 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
512 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
513 limit = &intel_limits_g4x_hdmi;
514 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
515 limit = &intel_limits_g4x_sdvo;
516 } else /* The option is for other outputs */
517 limit = &intel_limits_i9xx_sdvo;
518
519 return limit;
520 }
521
522 static const intel_limit_t *
523 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
524 {
525 struct drm_device *dev = crtc_state->base.crtc->dev;
526 const intel_limit_t *limit;
527
528 if (IS_BROXTON(dev))
529 limit = &intel_limits_bxt;
530 else if (HAS_PCH_SPLIT(dev))
531 limit = intel_ironlake_limit(crtc_state, refclk);
532 else if (IS_G4X(dev)) {
533 limit = intel_g4x_limit(crtc_state);
534 } else if (IS_PINEVIEW(dev)) {
535 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
536 limit = &intel_limits_pineview_lvds;
537 else
538 limit = &intel_limits_pineview_sdvo;
539 } else if (IS_CHERRYVIEW(dev)) {
540 limit = &intel_limits_chv;
541 } else if (IS_VALLEYVIEW(dev)) {
542 limit = &intel_limits_vlv;
543 } else if (!IS_GEN2(dev)) {
544 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
545 limit = &intel_limits_i9xx_lvds;
546 else
547 limit = &intel_limits_i9xx_sdvo;
548 } else {
549 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
550 limit = &intel_limits_i8xx_lvds;
551 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
552 limit = &intel_limits_i8xx_dvo;
553 else
554 limit = &intel_limits_i8xx_dac;
555 }
556 return limit;
557 }
558
559 /* m1 is reserved as 0 in Pineview, n is a ring counter */
560 static void pineview_clock(int refclk, intel_clock_t *clock)
561 {
562 clock->m = clock->m2 + 2;
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n == 0 || clock->p == 0))
565 return;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 }
569
570 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
571 {
572 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
573 }
574
575 static void i9xx_clock(int refclk, intel_clock_t *clock)
576 {
577 clock->m = i9xx_dpll_compute_m(clock);
578 clock->p = clock->p1 * clock->p2;
579 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
580 return;
581 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
582 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
583 }
584
585 static void chv_clock(int refclk, intel_clock_t *clock)
586 {
587 clock->m = clock->m1 * clock->m2;
588 clock->p = clock->p1 * clock->p2;
589 if (WARN_ON(clock->n == 0 || clock->p == 0))
590 return;
591 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
592 clock->n << 22);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594 }
595
596 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
597 /**
598 * Returns whether the given set of divisors are valid for a given refclk with
599 * the given connectors.
600 */
601
602 static bool intel_PLL_is_valid(struct drm_device *dev,
603 const intel_limit_t *limit,
604 const intel_clock_t *clock)
605 {
606 if (clock->n < limit->n.min || limit->n.max < clock->n)
607 INTELPllInvalid("n out of range\n");
608 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
609 INTELPllInvalid("p1 out of range\n");
610 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
611 INTELPllInvalid("m2 out of range\n");
612 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
613 INTELPllInvalid("m1 out of range\n");
614
615 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
616 if (clock->m1 <= clock->m2)
617 INTELPllInvalid("m1 <= m2\n");
618
619 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
620 if (clock->p < limit->p.min || limit->p.max < clock->p)
621 INTELPllInvalid("p out of range\n");
622 if (clock->m < limit->m.min || limit->m.max < clock->m)
623 INTELPllInvalid("m out of range\n");
624 }
625
626 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
627 INTELPllInvalid("vco out of range\n");
628 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
629 * connector, etc., rather than just a single range.
630 */
631 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
632 INTELPllInvalid("dot out of range\n");
633
634 return true;
635 }
636
637 static bool
638 i9xx_find_best_dpll(const intel_limit_t *limit,
639 struct intel_crtc_state *crtc_state,
640 int target, int refclk, intel_clock_t *match_clock,
641 intel_clock_t *best_clock)
642 {
643 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
644 struct drm_device *dev = crtc->base.dev;
645 intel_clock_t clock;
646 int err = target;
647
648 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
649 /*
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
653 */
654 if (intel_is_dual_link_lvds(dev))
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
665 memset(best_clock, 0, sizeof(*best_clock));
666
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
671 if (clock.m2 >= clock.m1)
672 break;
673 for (clock.n = limit->n.min;
674 clock.n <= limit->n.max; clock.n++) {
675 for (clock.p1 = limit->p1.min;
676 clock.p1 <= limit->p1.max; clock.p1++) {
677 int this_err;
678
679 i9xx_clock(refclk, &clock);
680 if (!intel_PLL_is_valid(dev, limit,
681 &clock))
682 continue;
683 if (match_clock &&
684 clock.p != match_clock->p)
685 continue;
686
687 this_err = abs(clock.dot - target);
688 if (this_err < err) {
689 *best_clock = clock;
690 err = this_err;
691 }
692 }
693 }
694 }
695 }
696
697 return (err != target);
698 }
699
700 static bool
701 pnv_find_best_dpll(const intel_limit_t *limit,
702 struct intel_crtc_state *crtc_state,
703 int target, int refclk, intel_clock_t *match_clock,
704 intel_clock_t *best_clock)
705 {
706 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
707 struct drm_device *dev = crtc->base.dev;
708 intel_clock_t clock;
709 int err = target;
710
711 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
712 /*
713 * For LVDS just rely on its current settings for dual-channel.
714 * We haven't figured out how to reliably set up different
715 * single/dual channel state, if we even can.
716 */
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729
730 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731 clock.m1++) {
732 for (clock.m2 = limit->m2.min;
733 clock.m2 <= limit->m2.max; clock.m2++) {
734 for (clock.n = limit->n.min;
735 clock.n <= limit->n.max; clock.n++) {
736 for (clock.p1 = limit->p1.min;
737 clock.p1 <= limit->p1.max; clock.p1++) {
738 int this_err;
739
740 pineview_clock(refclk, &clock);
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
743 continue;
744 if (match_clock &&
745 clock.p != match_clock->p)
746 continue;
747
748 this_err = abs(clock.dot - target);
749 if (this_err < err) {
750 *best_clock = clock;
751 err = this_err;
752 }
753 }
754 }
755 }
756 }
757
758 return (err != target);
759 }
760
761 static bool
762 g4x_find_best_dpll(const intel_limit_t *limit,
763 struct intel_crtc_state *crtc_state,
764 int target, int refclk, intel_clock_t *match_clock,
765 intel_clock_t *best_clock)
766 {
767 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
768 struct drm_device *dev = crtc->base.dev;
769 intel_clock_t clock;
770 int max_n;
771 bool found;
772 /* approximately equals target * 0.00585 */
773 int err_most = (target >> 8) + (target >> 9);
774 found = false;
775
776 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
777 if (intel_is_dual_link_lvds(dev))
778 clock.p2 = limit->p2.p2_fast;
779 else
780 clock.p2 = limit->p2.p2_slow;
781 } else {
782 if (target < limit->p2.dot_limit)
783 clock.p2 = limit->p2.p2_slow;
784 else
785 clock.p2 = limit->p2.p2_fast;
786 }
787
788 memset(best_clock, 0, sizeof(*best_clock));
789 max_n = limit->n.max;
790 /* based on hardware requirement, prefer smaller n to precision */
791 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
792 /* based on hardware requirement, prefere larger m1,m2 */
793 for (clock.m1 = limit->m1.max;
794 clock.m1 >= limit->m1.min; clock.m1--) {
795 for (clock.m2 = limit->m2.max;
796 clock.m2 >= limit->m2.min; clock.m2--) {
797 for (clock.p1 = limit->p1.max;
798 clock.p1 >= limit->p1.min; clock.p1--) {
799 int this_err;
800
801 i9xx_clock(refclk, &clock);
802 if (!intel_PLL_is_valid(dev, limit,
803 &clock))
804 continue;
805
806 this_err = abs(clock.dot - target);
807 if (this_err < err_most) {
808 *best_clock = clock;
809 err_most = this_err;
810 max_n = clock.n;
811 found = true;
812 }
813 }
814 }
815 }
816 }
817 return found;
818 }
819
820 /*
821 * Check if the calculated PLL configuration is more optimal compared to the
822 * best configuration and error found so far. Return the calculated error.
823 */
824 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
825 const intel_clock_t *calculated_clock,
826 const intel_clock_t *best_clock,
827 unsigned int best_error_ppm,
828 unsigned int *error_ppm)
829 {
830 /*
831 * For CHV ignore the error and consider only the P value.
832 * Prefer a bigger P value based on HW requirements.
833 */
834 if (IS_CHERRYVIEW(dev)) {
835 *error_ppm = 0;
836
837 return calculated_clock->p > best_clock->p;
838 }
839
840 if (WARN_ON_ONCE(!target_freq))
841 return false;
842
843 *error_ppm = div_u64(1000000ULL *
844 abs(target_freq - calculated_clock->dot),
845 target_freq);
846 /*
847 * Prefer a better P value over a better (smaller) error if the error
848 * is small. Ensure this preference for future configurations too by
849 * setting the error to 0.
850 */
851 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
852 *error_ppm = 0;
853
854 return true;
855 }
856
857 return *error_ppm + 10 < best_error_ppm;
858 }
859
860 static bool
861 vlv_find_best_dpll(const intel_limit_t *limit,
862 struct intel_crtc_state *crtc_state,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
867 struct drm_device *dev = crtc->base.dev;
868 intel_clock_t clock;
869 unsigned int bestppm = 1000000;
870 /* min update 19.2 MHz */
871 int max_n = min(limit->n.max, refclk / 19200);
872 bool found = false;
873
874 target *= 5; /* fast clock */
875
876 memset(best_clock, 0, sizeof(*best_clock));
877
878 /* based on hardware requirement, prefer smaller n to precision */
879 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
880 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
881 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
882 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
883 clock.p = clock.p1 * clock.p2;
884 /* based on hardware requirement, prefer bigger m1,m2 values */
885 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
886 unsigned int ppm;
887
888 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
889 refclk * clock.m1);
890
891 vlv_clock(refclk, &clock);
892
893 if (!intel_PLL_is_valid(dev, limit,
894 &clock))
895 continue;
896
897 if (!vlv_PLL_is_optimal(dev, target,
898 &clock,
899 best_clock,
900 bestppm, &ppm))
901 continue;
902
903 *best_clock = clock;
904 bestppm = ppm;
905 found = true;
906 }
907 }
908 }
909 }
910
911 return found;
912 }
913
914 static bool
915 chv_find_best_dpll(const intel_limit_t *limit,
916 struct intel_crtc_state *crtc_state,
917 int target, int refclk, intel_clock_t *match_clock,
918 intel_clock_t *best_clock)
919 {
920 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
921 struct drm_device *dev = crtc->base.dev;
922 unsigned int best_error_ppm;
923 intel_clock_t clock;
924 uint64_t m2;
925 int found = false;
926
927 memset(best_clock, 0, sizeof(*best_clock));
928 best_error_ppm = 1000000;
929
930 /*
931 * Based on hardware doc, the n always set to 1, and m1 always
932 * set to 2. If requires to support 200Mhz refclk, we need to
933 * revisit this because n may not 1 anymore.
934 */
935 clock.n = 1, clock.m1 = 2;
936 target *= 5; /* fast clock */
937
938 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939 for (clock.p2 = limit->p2.p2_fast;
940 clock.p2 >= limit->p2.p2_slow;
941 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942 unsigned int error_ppm;
943
944 clock.p = clock.p1 * clock.p2;
945
946 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
947 clock.n) << 22, refclk * clock.m1);
948
949 if (m2 > INT_MAX/clock.m1)
950 continue;
951
952 clock.m2 = m2;
953
954 chv_clock(refclk, &clock);
955
956 if (!intel_PLL_is_valid(dev, limit, &clock))
957 continue;
958
959 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960 best_error_ppm, &error_ppm))
961 continue;
962
963 *best_clock = clock;
964 best_error_ppm = error_ppm;
965 found = true;
966 }
967 }
968
969 return found;
970 }
971
972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
973 intel_clock_t *best_clock)
974 {
975 int refclk = i9xx_get_refclk(crtc_state, 0);
976
977 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
978 target_clock, refclk, NULL, best_clock);
979 }
980
981 bool intel_crtc_active(struct drm_crtc *crtc)
982 {
983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
984
985 /* Be paranoid as we can arrive here with only partial
986 * state retrieved from the hardware during setup.
987 *
988 * We can ditch the adjusted_mode.crtc_clock check as soon
989 * as Haswell has gained clock readout/fastboot support.
990 *
991 * We can ditch the crtc->primary->fb check as soon as we can
992 * properly reconstruct framebuffers.
993 *
994 * FIXME: The intel_crtc->active here should be switched to
995 * crtc->state->active once we have proper CRTC states wired up
996 * for atomic.
997 */
998 return intel_crtc->active && crtc->primary->state->fb &&
999 intel_crtc->config->base.adjusted_mode.crtc_clock;
1000 }
1001
1002 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1003 enum pipe pipe)
1004 {
1005 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1007
1008 return intel_crtc->config->cpu_transcoder;
1009 }
1010
1011 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1012 {
1013 struct drm_i915_private *dev_priv = dev->dev_private;
1014 u32 reg = PIPEDSL(pipe);
1015 u32 line1, line2;
1016 u32 line_mask;
1017
1018 if (IS_GEN2(dev))
1019 line_mask = DSL_LINEMASK_GEN2;
1020 else
1021 line_mask = DSL_LINEMASK_GEN3;
1022
1023 line1 = I915_READ(reg) & line_mask;
1024 mdelay(5);
1025 line2 = I915_READ(reg) & line_mask;
1026
1027 return line1 == line2;
1028 }
1029
1030 /*
1031 * intel_wait_for_pipe_off - wait for pipe to turn off
1032 * @crtc: crtc whose pipe to wait for
1033 *
1034 * After disabling a pipe, we can't wait for vblank in the usual way,
1035 * spinning on the vblank interrupt status bit, since we won't actually
1036 * see an interrupt when the pipe is disabled.
1037 *
1038 * On Gen4 and above:
1039 * wait for the pipe register state bit to turn off
1040 *
1041 * Otherwise:
1042 * wait for the display line value to settle (it usually
1043 * ends up stopping at the start of the next frame).
1044 *
1045 */
1046 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1047 {
1048 struct drm_device *dev = crtc->base.dev;
1049 struct drm_i915_private *dev_priv = dev->dev_private;
1050 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1051 enum pipe pipe = crtc->pipe;
1052
1053 if (INTEL_INFO(dev)->gen >= 4) {
1054 int reg = PIPECONF(cpu_transcoder);
1055
1056 /* Wait for the Pipe State to go off */
1057 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1058 100))
1059 WARN(1, "pipe_off wait timed out\n");
1060 } else {
1061 /* Wait for the display line to settle */
1062 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1063 WARN(1, "pipe_off wait timed out\n");
1064 }
1065 }
1066
1067 /*
1068 * ibx_digital_port_connected - is the specified port connected?
1069 * @dev_priv: i915 private structure
1070 * @port: the port to test
1071 *
1072 * Returns true if @port is connected, false otherwise.
1073 */
1074 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1075 struct intel_digital_port *port)
1076 {
1077 u32 bit;
1078
1079 if (HAS_PCH_IBX(dev_priv->dev)) {
1080 switch (port->port) {
1081 case PORT_B:
1082 bit = SDE_PORTB_HOTPLUG;
1083 break;
1084 case PORT_C:
1085 bit = SDE_PORTC_HOTPLUG;
1086 break;
1087 case PORT_D:
1088 bit = SDE_PORTD_HOTPLUG;
1089 break;
1090 default:
1091 return true;
1092 }
1093 } else {
1094 switch (port->port) {
1095 case PORT_B:
1096 bit = SDE_PORTB_HOTPLUG_CPT;
1097 break;
1098 case PORT_C:
1099 bit = SDE_PORTC_HOTPLUG_CPT;
1100 break;
1101 case PORT_D:
1102 bit = SDE_PORTD_HOTPLUG_CPT;
1103 break;
1104 default:
1105 return true;
1106 }
1107 }
1108
1109 return I915_READ(SDEISR) & bit;
1110 }
1111
1112 static const char *state_string(bool enabled)
1113 {
1114 return enabled ? "on" : "off";
1115 }
1116
1117 /* Only for pre-ILK configs */
1118 void assert_pll(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 int reg;
1122 u32 val;
1123 bool cur_state;
1124
1125 reg = DPLL(pipe);
1126 val = I915_READ(reg);
1127 cur_state = !!(val & DPLL_VCO_ENABLE);
1128 I915_STATE_WARN(cur_state != state,
1129 "PLL state assertion failure (expected %s, current %s)\n",
1130 state_string(state), state_string(cur_state));
1131 }
1132
1133 /* XXX: the dsi pll is shared between MIPI DSI ports */
1134 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1135 {
1136 u32 val;
1137 bool cur_state;
1138
1139 mutex_lock(&dev_priv->dpio_lock);
1140 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1141 mutex_unlock(&dev_priv->dpio_lock);
1142
1143 cur_state = val & DSI_PLL_VCO_EN;
1144 I915_STATE_WARN(cur_state != state,
1145 "DSI PLL state assertion failure (expected %s, current %s)\n",
1146 state_string(state), state_string(cur_state));
1147 }
1148 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1149 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1150
1151 struct intel_shared_dpll *
1152 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1153 {
1154 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1155
1156 if (crtc->config->shared_dpll < 0)
1157 return NULL;
1158
1159 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1160 }
1161
1162 /* For ILK+ */
1163 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1164 struct intel_shared_dpll *pll,
1165 bool state)
1166 {
1167 bool cur_state;
1168 struct intel_dpll_hw_state hw_state;
1169
1170 if (WARN (!pll,
1171 "asserting DPLL %s with no DPLL\n", state_string(state)))
1172 return;
1173
1174 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1175 I915_STATE_WARN(cur_state != state,
1176 "%s assertion failure (expected %s, current %s)\n",
1177 pll->name, state_string(state), state_string(cur_state));
1178 }
1179
1180 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1182 {
1183 int reg;
1184 u32 val;
1185 bool cur_state;
1186 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1187 pipe);
1188
1189 if (HAS_DDI(dev_priv->dev)) {
1190 /* DDI does not have a specific FDI_TX register */
1191 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1192 val = I915_READ(reg);
1193 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1194 } else {
1195 reg = FDI_TX_CTL(pipe);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & FDI_TX_ENABLE);
1198 }
1199 I915_STATE_WARN(cur_state != state,
1200 "FDI TX state assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
1202 }
1203 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1204 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1205
1206 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1207 enum pipe pipe, bool state)
1208 {
1209 int reg;
1210 u32 val;
1211 bool cur_state;
1212
1213 reg = FDI_RX_CTL(pipe);
1214 val = I915_READ(reg);
1215 cur_state = !!(val & FDI_RX_ENABLE);
1216 I915_STATE_WARN(cur_state != state,
1217 "FDI RX state assertion failure (expected %s, current %s)\n",
1218 state_string(state), state_string(cur_state));
1219 }
1220 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1221 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1222
1223 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1224 enum pipe pipe)
1225 {
1226 int reg;
1227 u32 val;
1228
1229 /* ILK FDI PLL is always enabled */
1230 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1231 return;
1232
1233 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1234 if (HAS_DDI(dev_priv->dev))
1235 return;
1236
1237 reg = FDI_TX_CTL(pipe);
1238 val = I915_READ(reg);
1239 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1240 }
1241
1242 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, bool state)
1244 {
1245 int reg;
1246 u32 val;
1247 bool cur_state;
1248
1249 reg = FDI_RX_CTL(pipe);
1250 val = I915_READ(reg);
1251 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1252 I915_STATE_WARN(cur_state != state,
1253 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1254 state_string(state), state_string(cur_state));
1255 }
1256
1257 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1258 enum pipe pipe)
1259 {
1260 struct drm_device *dev = dev_priv->dev;
1261 int pp_reg;
1262 u32 val;
1263 enum pipe panel_pipe = PIPE_A;
1264 bool locked = true;
1265
1266 if (WARN_ON(HAS_DDI(dev)))
1267 return;
1268
1269 if (HAS_PCH_SPLIT(dev)) {
1270 u32 port_sel;
1271
1272 pp_reg = PCH_PP_CONTROL;
1273 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1274
1275 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1276 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1277 panel_pipe = PIPE_B;
1278 /* XXX: else fix for eDP */
1279 } else if (IS_VALLEYVIEW(dev)) {
1280 /* presumably write lock depends on pipe, not port select */
1281 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1282 panel_pipe = pipe;
1283 } else {
1284 pp_reg = PP_CONTROL;
1285 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1286 panel_pipe = PIPE_B;
1287 }
1288
1289 val = I915_READ(pp_reg);
1290 if (!(val & PANEL_POWER_ON) ||
1291 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1292 locked = false;
1293
1294 I915_STATE_WARN(panel_pipe == pipe && locked,
1295 "panel assertion failure, pipe %c regs locked\n",
1296 pipe_name(pipe));
1297 }
1298
1299 static void assert_cursor(struct drm_i915_private *dev_priv,
1300 enum pipe pipe, bool state)
1301 {
1302 struct drm_device *dev = dev_priv->dev;
1303 bool cur_state;
1304
1305 if (IS_845G(dev) || IS_I865G(dev))
1306 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1307 else
1308 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1309
1310 I915_STATE_WARN(cur_state != state,
1311 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1312 pipe_name(pipe), state_string(state), state_string(cur_state));
1313 }
1314 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1315 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1316
1317 void assert_pipe(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, bool state)
1319 {
1320 int reg;
1321 u32 val;
1322 bool cur_state;
1323 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1324 pipe);
1325
1326 /* if we need the pipe quirk it must be always on */
1327 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1328 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1329 state = true;
1330
1331 if (!intel_display_power_is_enabled(dev_priv,
1332 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1333 cur_state = false;
1334 } else {
1335 reg = PIPECONF(cpu_transcoder);
1336 val = I915_READ(reg);
1337 cur_state = !!(val & PIPECONF_ENABLE);
1338 }
1339
1340 I915_STATE_WARN(cur_state != state,
1341 "pipe %c assertion failure (expected %s, current %s)\n",
1342 pipe_name(pipe), state_string(state), state_string(cur_state));
1343 }
1344
1345 static void assert_plane(struct drm_i915_private *dev_priv,
1346 enum plane plane, bool state)
1347 {
1348 int reg;
1349 u32 val;
1350 bool cur_state;
1351
1352 reg = DSPCNTR(plane);
1353 val = I915_READ(reg);
1354 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1355 I915_STATE_WARN(cur_state != state,
1356 "plane %c assertion failure (expected %s, current %s)\n",
1357 plane_name(plane), state_string(state), state_string(cur_state));
1358 }
1359
1360 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1361 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1362
1363 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe)
1365 {
1366 struct drm_device *dev = dev_priv->dev;
1367 int reg, i;
1368 u32 val;
1369 int cur_pipe;
1370
1371 /* Primary planes are fixed to pipes on gen4+ */
1372 if (INTEL_INFO(dev)->gen >= 4) {
1373 reg = DSPCNTR(pipe);
1374 val = I915_READ(reg);
1375 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1376 "plane %c assertion failure, should be disabled but not\n",
1377 plane_name(pipe));
1378 return;
1379 }
1380
1381 /* Need to check both planes against the pipe */
1382 for_each_pipe(dev_priv, i) {
1383 reg = DSPCNTR(i);
1384 val = I915_READ(reg);
1385 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1386 DISPPLANE_SEL_PIPE_SHIFT;
1387 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1388 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1389 plane_name(i), pipe_name(pipe));
1390 }
1391 }
1392
1393 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe)
1395 {
1396 struct drm_device *dev = dev_priv->dev;
1397 int reg, sprite;
1398 u32 val;
1399
1400 if (INTEL_INFO(dev)->gen >= 9) {
1401 for_each_sprite(dev_priv, pipe, sprite) {
1402 val = I915_READ(PLANE_CTL(pipe, sprite));
1403 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1404 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1405 sprite, pipe_name(pipe));
1406 }
1407 } else if (IS_VALLEYVIEW(dev)) {
1408 for_each_sprite(dev_priv, pipe, sprite) {
1409 reg = SPCNTR(pipe, sprite);
1410 val = I915_READ(reg);
1411 I915_STATE_WARN(val & SP_ENABLE,
1412 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1413 sprite_name(pipe, sprite), pipe_name(pipe));
1414 }
1415 } else if (INTEL_INFO(dev)->gen >= 7) {
1416 reg = SPRCTL(pipe);
1417 val = I915_READ(reg);
1418 I915_STATE_WARN(val & SPRITE_ENABLE,
1419 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1420 plane_name(pipe), pipe_name(pipe));
1421 } else if (INTEL_INFO(dev)->gen >= 5) {
1422 reg = DVSCNTR(pipe);
1423 val = I915_READ(reg);
1424 I915_STATE_WARN(val & DVS_ENABLE,
1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1426 plane_name(pipe), pipe_name(pipe));
1427 }
1428 }
1429
1430 static void assert_vblank_disabled(struct drm_crtc *crtc)
1431 {
1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1433 drm_crtc_vblank_put(crtc);
1434 }
1435
1436 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1437 {
1438 u32 val;
1439 bool enabled;
1440
1441 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1442
1443 val = I915_READ(PCH_DREF_CONTROL);
1444 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1445 DREF_SUPERSPREAD_SOURCE_MASK));
1446 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1447 }
1448
1449 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe)
1451 {
1452 int reg;
1453 u32 val;
1454 bool enabled;
1455
1456 reg = PCH_TRANSCONF(pipe);
1457 val = I915_READ(reg);
1458 enabled = !!(val & TRANS_ENABLE);
1459 I915_STATE_WARN(enabled,
1460 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1461 pipe_name(pipe));
1462 }
1463
1464 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe, u32 port_sel, u32 val)
1466 {
1467 if ((val & DP_PORT_EN) == 0)
1468 return false;
1469
1470 if (HAS_PCH_CPT(dev_priv->dev)) {
1471 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1472 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1473 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1474 return false;
1475 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1476 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1477 return false;
1478 } else {
1479 if ((val & DP_PIPE_MASK) != (pipe << 30))
1480 return false;
1481 }
1482 return true;
1483 }
1484
1485 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1486 enum pipe pipe, u32 val)
1487 {
1488 if ((val & SDVO_ENABLE) == 0)
1489 return false;
1490
1491 if (HAS_PCH_CPT(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1493 return false;
1494 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1495 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1496 return false;
1497 } else {
1498 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1499 return false;
1500 }
1501 return true;
1502 }
1503
1504 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506 {
1507 if ((val & LVDS_PORT_EN) == 0)
1508 return false;
1509
1510 if (HAS_PCH_CPT(dev_priv->dev)) {
1511 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1512 return false;
1513 } else {
1514 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1515 return false;
1516 }
1517 return true;
1518 }
1519
1520 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1521 enum pipe pipe, u32 val)
1522 {
1523 if ((val & ADPA_DAC_ENABLE) == 0)
1524 return false;
1525 if (HAS_PCH_CPT(dev_priv->dev)) {
1526 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1527 return false;
1528 } else {
1529 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1530 return false;
1531 }
1532 return true;
1533 }
1534
1535 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1536 enum pipe pipe, int reg, u32 port_sel)
1537 {
1538 u32 val = I915_READ(reg);
1539 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1540 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1541 reg, pipe_name(pipe));
1542
1543 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1544 && (val & DP_PIPEB_SELECT),
1545 "IBX PCH dp port still using transcoder B\n");
1546 }
1547
1548 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg)
1550 {
1551 u32 val = I915_READ(reg);
1552 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1553 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg, pipe_name(pipe));
1555
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1557 && (val & SDVO_PIPE_B_SELECT),
1558 "IBX PCH hdmi port still using transcoder B\n");
1559 }
1560
1561 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe)
1563 {
1564 int reg;
1565 u32 val;
1566
1567 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1568 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1569 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1570
1571 reg = PCH_ADPA;
1572 val = I915_READ(reg);
1573 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1574 "PCH VGA enabled on transcoder %c, should be disabled\n",
1575 pipe_name(pipe));
1576
1577 reg = PCH_LVDS;
1578 val = I915_READ(reg);
1579 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1580 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1581 pipe_name(pipe));
1582
1583 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1584 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1585 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1586 }
1587
1588 static void intel_init_dpio(struct drm_device *dev)
1589 {
1590 struct drm_i915_private *dev_priv = dev->dev_private;
1591
1592 if (!IS_VALLEYVIEW(dev))
1593 return;
1594
1595 /*
1596 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1597 * CHV x1 PHY (DP/HDMI D)
1598 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1599 */
1600 if (IS_CHERRYVIEW(dev)) {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1602 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1603 } else {
1604 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1605 }
1606 }
1607
1608 static void vlv_enable_pll(struct intel_crtc *crtc,
1609 const struct intel_crtc_state *pipe_config)
1610 {
1611 struct drm_device *dev = crtc->base.dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 int reg = DPLL(crtc->pipe);
1614 u32 dpll = pipe_config->dpll_hw_state.dpll;
1615
1616 assert_pipe_disabled(dev_priv, crtc->pipe);
1617
1618 /* No really, not for ILK+ */
1619 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1620
1621 /* PLL is protected by panel, make sure we can write it */
1622 if (IS_MOBILE(dev_priv->dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150);
1628
1629 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1630 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1631
1632 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1633 POSTING_READ(DPLL_MD(crtc->pipe));
1634
1635 /* We do this three times for luck */
1636 I915_WRITE(reg, dpll);
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
1639 I915_WRITE(reg, dpll);
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642 I915_WRITE(reg, dpll);
1643 POSTING_READ(reg);
1644 udelay(150); /* wait for warmup */
1645 }
1646
1647 static void chv_enable_pll(struct intel_crtc *crtc,
1648 const struct intel_crtc_state *pipe_config)
1649 {
1650 struct drm_device *dev = crtc->base.dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 int pipe = crtc->pipe;
1653 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1654 u32 tmp;
1655
1656 assert_pipe_disabled(dev_priv, crtc->pipe);
1657
1658 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1659
1660 mutex_lock(&dev_priv->dpio_lock);
1661
1662 /* Enable back the 10bit clock to display controller */
1663 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1664 tmp |= DPIO_DCLKP_EN;
1665 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1666
1667 /*
1668 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1669 */
1670 udelay(1);
1671
1672 /* Enable PLL */
1673 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1674
1675 /* Check PLL is locked */
1676 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1677 DRM_ERROR("PLL %d failed to lock\n", pipe);
1678
1679 /* not sure when this should be written */
1680 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1681 POSTING_READ(DPLL_MD(pipe));
1682
1683 mutex_unlock(&dev_priv->dpio_lock);
1684 }
1685
1686 static int intel_num_dvo_pipes(struct drm_device *dev)
1687 {
1688 struct intel_crtc *crtc;
1689 int count = 0;
1690
1691 for_each_intel_crtc(dev, crtc)
1692 count += crtc->active &&
1693 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1694
1695 return count;
1696 }
1697
1698 static void i9xx_enable_pll(struct intel_crtc *crtc)
1699 {
1700 struct drm_device *dev = crtc->base.dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702 int reg = DPLL(crtc->pipe);
1703 u32 dpll = crtc->config->dpll_hw_state.dpll;
1704
1705 assert_pipe_disabled(dev_priv, crtc->pipe);
1706
1707 /* No really, not for ILK+ */
1708 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1709
1710 /* PLL is protected by panel, make sure we can write it */
1711 if (IS_MOBILE(dev) && !IS_I830(dev))
1712 assert_panel_unlocked(dev_priv, crtc->pipe);
1713
1714 /* Enable DVO 2x clock on both PLLs if necessary */
1715 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1716 /*
1717 * It appears to be important that we don't enable this
1718 * for the current pipe before otherwise configuring the
1719 * PLL. No idea how this should be handled if multiple
1720 * DVO outputs are enabled simultaneosly.
1721 */
1722 dpll |= DPLL_DVO_2X_MODE;
1723 I915_WRITE(DPLL(!crtc->pipe),
1724 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1725 }
1726
1727 /* Wait for the clocks to stabilize. */
1728 POSTING_READ(reg);
1729 udelay(150);
1730
1731 if (INTEL_INFO(dev)->gen >= 4) {
1732 I915_WRITE(DPLL_MD(crtc->pipe),
1733 crtc->config->dpll_hw_state.dpll_md);
1734 } else {
1735 /* The pixel multiplier can only be updated once the
1736 * DPLL is enabled and the clocks are stable.
1737 *
1738 * So write it again.
1739 */
1740 I915_WRITE(reg, dpll);
1741 }
1742
1743 /* We do this three times for luck */
1744 I915_WRITE(reg, dpll);
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
1747 I915_WRITE(reg, dpll);
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
1750 I915_WRITE(reg, dpll);
1751 POSTING_READ(reg);
1752 udelay(150); /* wait for warmup */
1753 }
1754
1755 /**
1756 * i9xx_disable_pll - disable a PLL
1757 * @dev_priv: i915 private structure
1758 * @pipe: pipe PLL to disable
1759 *
1760 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 *
1762 * Note! This is for pre-ILK only.
1763 */
1764 static void i9xx_disable_pll(struct intel_crtc *crtc)
1765 {
1766 struct drm_device *dev = crtc->base.dev;
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768 enum pipe pipe = crtc->pipe;
1769
1770 /* Disable DVO 2x clock on both PLLs if necessary */
1771 if (IS_I830(dev) &&
1772 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1773 intel_num_dvo_pipes(dev) == 1) {
1774 I915_WRITE(DPLL(PIPE_B),
1775 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776 I915_WRITE(DPLL(PIPE_A),
1777 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778 }
1779
1780 /* Don't disable pipe or pipe PLLs if needed */
1781 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1783 return;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
1788 I915_WRITE(DPLL(pipe), 0);
1789 POSTING_READ(DPLL(pipe));
1790 }
1791
1792 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793 {
1794 u32 val = 0;
1795
1796 /* Make sure the pipe isn't still relying on us */
1797 assert_pipe_disabled(dev_priv, pipe);
1798
1799 /*
1800 * Leave integrated clock source and reference clock enabled for pipe B.
1801 * The latter is needed for VGA hotplug / manual detection.
1802 */
1803 if (pipe == PIPE_B)
1804 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1805 I915_WRITE(DPLL(pipe), val);
1806 POSTING_READ(DPLL(pipe));
1807
1808 }
1809
1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813 u32 val;
1814
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv, pipe);
1817
1818 /* Set PLL en = 0 */
1819 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1820 if (pipe != PIPE_A)
1821 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822 I915_WRITE(DPLL(pipe), val);
1823 POSTING_READ(DPLL(pipe));
1824
1825 mutex_lock(&dev_priv->dpio_lock);
1826
1827 /* Disable 10bit clock to display controller */
1828 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829 val &= ~DPIO_DCLKP_EN;
1830 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832 /* disable left/right clock distribution */
1833 if (pipe != PIPE_B) {
1834 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1835 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1836 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1837 } else {
1838 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1839 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1840 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1841 }
1842
1843 mutex_unlock(&dev_priv->dpio_lock);
1844 }
1845
1846 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1847 struct intel_digital_port *dport,
1848 unsigned int expected_mask)
1849 {
1850 u32 port_mask;
1851 int dpll_reg;
1852
1853 switch (dport->port) {
1854 case PORT_B:
1855 port_mask = DPLL_PORTB_READY_MASK;
1856 dpll_reg = DPLL(0);
1857 break;
1858 case PORT_C:
1859 port_mask = DPLL_PORTC_READY_MASK;
1860 dpll_reg = DPLL(0);
1861 expected_mask <<= 4;
1862 break;
1863 case PORT_D:
1864 port_mask = DPLL_PORTD_READY_MASK;
1865 dpll_reg = DPIO_PHY_STATUS;
1866 break;
1867 default:
1868 BUG();
1869 }
1870
1871 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1872 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1873 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1874 }
1875
1876 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1877 {
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882 if (WARN_ON(pll == NULL))
1883 return;
1884
1885 WARN_ON(!pll->config.crtc_mask);
1886 if (pll->active == 0) {
1887 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1888 WARN_ON(pll->on);
1889 assert_shared_dpll_disabled(dev_priv, pll);
1890
1891 pll->mode_set(dev_priv, pll);
1892 }
1893 }
1894
1895 /**
1896 * intel_enable_shared_dpll - enable PCH PLL
1897 * @dev_priv: i915 private structure
1898 * @pipe: pipe PLL to enable
1899 *
1900 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1901 * drives the transcoder clock.
1902 */
1903 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1904 {
1905 struct drm_device *dev = crtc->base.dev;
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1908
1909 if (WARN_ON(pll == NULL))
1910 return;
1911
1912 if (WARN_ON(pll->config.crtc_mask == 0))
1913 return;
1914
1915 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1916 pll->name, pll->active, pll->on,
1917 crtc->base.base.id);
1918
1919 if (pll->active++) {
1920 WARN_ON(!pll->on);
1921 assert_shared_dpll_enabled(dev_priv, pll);
1922 return;
1923 }
1924 WARN_ON(pll->on);
1925
1926 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1927
1928 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1929 pll->enable(dev_priv, pll);
1930 pll->on = true;
1931 }
1932
1933 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1934 {
1935 struct drm_device *dev = crtc->base.dev;
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1938
1939 /* PCH only available on ILK+ */
1940 BUG_ON(INTEL_INFO(dev)->gen < 5);
1941 if (WARN_ON(pll == NULL))
1942 return;
1943
1944 if (WARN_ON(pll->config.crtc_mask == 0))
1945 return;
1946
1947 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1948 pll->name, pll->active, pll->on,
1949 crtc->base.base.id);
1950
1951 if (WARN_ON(pll->active == 0)) {
1952 assert_shared_dpll_disabled(dev_priv, pll);
1953 return;
1954 }
1955
1956 assert_shared_dpll_enabled(dev_priv, pll);
1957 WARN_ON(!pll->on);
1958 if (--pll->active)
1959 return;
1960
1961 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1962 pll->disable(dev_priv, pll);
1963 pll->on = false;
1964
1965 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1966 }
1967
1968 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969 enum pipe pipe)
1970 {
1971 struct drm_device *dev = dev_priv->dev;
1972 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1974 uint32_t reg, val, pipeconf_val;
1975
1976 /* PCH only available on ILK+ */
1977 BUG_ON(!HAS_PCH_SPLIT(dev));
1978
1979 /* Make sure PCH DPLL is enabled */
1980 assert_shared_dpll_enabled(dev_priv,
1981 intel_crtc_to_shared_dpll(intel_crtc));
1982
1983 /* FDI must be feeding us bits for PCH ports */
1984 assert_fdi_tx_enabled(dev_priv, pipe);
1985 assert_fdi_rx_enabled(dev_priv, pipe);
1986
1987 if (HAS_PCH_CPT(dev)) {
1988 /* Workaround: Set the timing override bit before enabling the
1989 * pch transcoder. */
1990 reg = TRANS_CHICKEN2(pipe);
1991 val = I915_READ(reg);
1992 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1993 I915_WRITE(reg, val);
1994 }
1995
1996 reg = PCH_TRANSCONF(pipe);
1997 val = I915_READ(reg);
1998 pipeconf_val = I915_READ(PIPECONF(pipe));
1999
2000 if (HAS_PCH_IBX(dev_priv->dev)) {
2001 /*
2002 * make the BPC in transcoder be consistent with
2003 * that in pipeconf reg.
2004 */
2005 val &= ~PIPECONF_BPC_MASK;
2006 val |= pipeconf_val & PIPECONF_BPC_MASK;
2007 }
2008
2009 val &= ~TRANS_INTERLACE_MASK;
2010 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2011 if (HAS_PCH_IBX(dev_priv->dev) &&
2012 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2013 val |= TRANS_LEGACY_INTERLACED_ILK;
2014 else
2015 val |= TRANS_INTERLACED;
2016 else
2017 val |= TRANS_PROGRESSIVE;
2018
2019 I915_WRITE(reg, val | TRANS_ENABLE);
2020 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2021 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2022 }
2023
2024 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2025 enum transcoder cpu_transcoder)
2026 {
2027 u32 val, pipeconf_val;
2028
2029 /* PCH only available on ILK+ */
2030 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2031
2032 /* FDI must be feeding us bits for PCH ports */
2033 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2034 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2035
2036 /* Workaround: set timing override bit. */
2037 val = I915_READ(_TRANSA_CHICKEN2);
2038 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2039 I915_WRITE(_TRANSA_CHICKEN2, val);
2040
2041 val = TRANS_ENABLE;
2042 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2043
2044 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2045 PIPECONF_INTERLACED_ILK)
2046 val |= TRANS_INTERLACED;
2047 else
2048 val |= TRANS_PROGRESSIVE;
2049
2050 I915_WRITE(LPT_TRANSCONF, val);
2051 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2052 DRM_ERROR("Failed to enable PCH transcoder\n");
2053 }
2054
2055 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2056 enum pipe pipe)
2057 {
2058 struct drm_device *dev = dev_priv->dev;
2059 uint32_t reg, val;
2060
2061 /* FDI relies on the transcoder */
2062 assert_fdi_tx_disabled(dev_priv, pipe);
2063 assert_fdi_rx_disabled(dev_priv, pipe);
2064
2065 /* Ports must be off as well */
2066 assert_pch_ports_disabled(dev_priv, pipe);
2067
2068 reg = PCH_TRANSCONF(pipe);
2069 val = I915_READ(reg);
2070 val &= ~TRANS_ENABLE;
2071 I915_WRITE(reg, val);
2072 /* wait for PCH transcoder off, transcoder state */
2073 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2074 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2075
2076 if (!HAS_PCH_IBX(dev)) {
2077 /* Workaround: Clear the timing override chicken bit again. */
2078 reg = TRANS_CHICKEN2(pipe);
2079 val = I915_READ(reg);
2080 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2081 I915_WRITE(reg, val);
2082 }
2083 }
2084
2085 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2086 {
2087 u32 val;
2088
2089 val = I915_READ(LPT_TRANSCONF);
2090 val &= ~TRANS_ENABLE;
2091 I915_WRITE(LPT_TRANSCONF, val);
2092 /* wait for PCH transcoder off, transcoder state */
2093 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2094 DRM_ERROR("Failed to disable PCH transcoder\n");
2095
2096 /* Workaround: clear timing override bit. */
2097 val = I915_READ(_TRANSA_CHICKEN2);
2098 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2099 I915_WRITE(_TRANSA_CHICKEN2, val);
2100 }
2101
2102 /**
2103 * intel_enable_pipe - enable a pipe, asserting requirements
2104 * @crtc: crtc responsible for the pipe
2105 *
2106 * Enable @crtc's pipe, making sure that various hardware specific requirements
2107 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2108 */
2109 static void intel_enable_pipe(struct intel_crtc *crtc)
2110 {
2111 struct drm_device *dev = crtc->base.dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 enum pipe pipe = crtc->pipe;
2114 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2115 pipe);
2116 enum pipe pch_transcoder;
2117 int reg;
2118 u32 val;
2119
2120 assert_planes_disabled(dev_priv, pipe);
2121 assert_cursor_disabled(dev_priv, pipe);
2122 assert_sprites_disabled(dev_priv, pipe);
2123
2124 if (HAS_PCH_LPT(dev_priv->dev))
2125 pch_transcoder = TRANSCODER_A;
2126 else
2127 pch_transcoder = pipe;
2128
2129 /*
2130 * A pipe without a PLL won't actually be able to drive bits from
2131 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 * need the check.
2133 */
2134 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2135 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2136 assert_dsi_pll_enabled(dev_priv);
2137 else
2138 assert_pll_enabled(dev_priv, pipe);
2139 else {
2140 if (crtc->config->has_pch_encoder) {
2141 /* if driving the PCH, we need FDI enabled */
2142 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2143 assert_fdi_tx_pll_enabled(dev_priv,
2144 (enum pipe) cpu_transcoder);
2145 }
2146 /* FIXME: assert CPU port conditions for SNB+ */
2147 }
2148
2149 reg = PIPECONF(cpu_transcoder);
2150 val = I915_READ(reg);
2151 if (val & PIPECONF_ENABLE) {
2152 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2154 return;
2155 }
2156
2157 I915_WRITE(reg, val | PIPECONF_ENABLE);
2158 POSTING_READ(reg);
2159 }
2160
2161 /**
2162 * intel_disable_pipe - disable a pipe, asserting requirements
2163 * @crtc: crtc whose pipes is to be disabled
2164 *
2165 * Disable the pipe of @crtc, making sure that various hardware
2166 * specific requirements are met, if applicable, e.g. plane
2167 * disabled, panel fitter off, etc.
2168 *
2169 * Will wait until the pipe has shut down before returning.
2170 */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175 enum pipe pipe = crtc->pipe;
2176 int reg;
2177 u32 val;
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2186
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 /*
2210 * Plane regs are double buffered, going from enabled->disabled needs a
2211 * trigger in order to latch. The display address reg provides this.
2212 */
2213 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2214 enum plane plane)
2215 {
2216 struct drm_device *dev = dev_priv->dev;
2217 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2218
2219 I915_WRITE(reg, I915_READ(reg));
2220 POSTING_READ(reg);
2221 }
2222
2223 /**
2224 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2225 * @plane: plane to be enabled
2226 * @crtc: crtc for the plane
2227 *
2228 * Enable @plane on @crtc, making sure that the pipe is running first.
2229 */
2230 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2231 struct drm_crtc *crtc)
2232 {
2233 struct drm_device *dev = plane->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2236
2237 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2238 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2239 to_intel_plane_state(plane->state)->visible = true;
2240
2241 dev_priv->display.update_primary_plane(crtc, plane->fb,
2242 crtc->x, crtc->y);
2243 }
2244
2245 static bool need_vtd_wa(struct drm_device *dev)
2246 {
2247 #ifdef CONFIG_INTEL_IOMMU
2248 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2249 return true;
2250 #endif
2251 return false;
2252 }
2253
2254 unsigned int
2255 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2256 uint64_t fb_format_modifier)
2257 {
2258 unsigned int tile_height;
2259 uint32_t pixel_bytes;
2260
2261 switch (fb_format_modifier) {
2262 case DRM_FORMAT_MOD_NONE:
2263 tile_height = 1;
2264 break;
2265 case I915_FORMAT_MOD_X_TILED:
2266 tile_height = IS_GEN2(dev) ? 16 : 8;
2267 break;
2268 case I915_FORMAT_MOD_Y_TILED:
2269 tile_height = 32;
2270 break;
2271 case I915_FORMAT_MOD_Yf_TILED:
2272 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2273 switch (pixel_bytes) {
2274 default:
2275 case 1:
2276 tile_height = 64;
2277 break;
2278 case 2:
2279 case 4:
2280 tile_height = 32;
2281 break;
2282 case 8:
2283 tile_height = 16;
2284 break;
2285 case 16:
2286 WARN_ONCE(1,
2287 "128-bit pixels are not supported for display!");
2288 tile_height = 16;
2289 break;
2290 }
2291 break;
2292 default:
2293 MISSING_CASE(fb_format_modifier);
2294 tile_height = 1;
2295 break;
2296 }
2297
2298 return tile_height;
2299 }
2300
2301 unsigned int
2302 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2303 uint32_t pixel_format, uint64_t fb_format_modifier)
2304 {
2305 return ALIGN(height, intel_tile_height(dev, pixel_format,
2306 fb_format_modifier));
2307 }
2308
2309 static int
2310 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2311 const struct drm_plane_state *plane_state)
2312 {
2313 struct intel_rotation_info *info = &view->rotation_info;
2314
2315 *view = i915_ggtt_view_normal;
2316
2317 if (!plane_state)
2318 return 0;
2319
2320 if (!intel_rotation_90_or_270(plane_state->rotation))
2321 return 0;
2322
2323 *view = i915_ggtt_view_rotated;
2324
2325 info->height = fb->height;
2326 info->pixel_format = fb->pixel_format;
2327 info->pitch = fb->pitches[0];
2328 info->fb_modifier = fb->modifier[0];
2329
2330 return 0;
2331 }
2332
2333 int
2334 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2335 struct drm_framebuffer *fb,
2336 const struct drm_plane_state *plane_state,
2337 struct intel_engine_cs *pipelined)
2338 {
2339 struct drm_device *dev = fb->dev;
2340 struct drm_i915_private *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2342 struct i915_ggtt_view view;
2343 u32 alignment;
2344 int ret;
2345
2346 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2347
2348 switch (fb->modifier[0]) {
2349 case DRM_FORMAT_MOD_NONE:
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2353 alignment = 128 * 1024;
2354 else if (INTEL_INFO(dev)->gen >= 4)
2355 alignment = 4 * 1024;
2356 else
2357 alignment = 64 * 1024;
2358 break;
2359 case I915_FORMAT_MOD_X_TILED:
2360 if (INTEL_INFO(dev)->gen >= 9)
2361 alignment = 256 * 1024;
2362 else {
2363 /* pin() will align the object as required by fence */
2364 alignment = 0;
2365 }
2366 break;
2367 case I915_FORMAT_MOD_Y_TILED:
2368 case I915_FORMAT_MOD_Yf_TILED:
2369 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2370 "Y tiling bo slipped through, driver bug!\n"))
2371 return -EINVAL;
2372 alignment = 1 * 1024 * 1024;
2373 break;
2374 default:
2375 MISSING_CASE(fb->modifier[0]);
2376 return -EINVAL;
2377 }
2378
2379 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2380 if (ret)
2381 return ret;
2382
2383 /* Note that the w/a also requires 64 PTE of padding following the
2384 * bo. We currently fill all unused PTE with the shadow page and so
2385 * we should always have valid PTE following the scanout preventing
2386 * the VT-d warning.
2387 */
2388 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2389 alignment = 256 * 1024;
2390
2391 /*
2392 * Global gtt pte registers are special registers which actually forward
2393 * writes to a chunk of system memory. Which means that there is no risk
2394 * that the register values disappear as soon as we call
2395 * intel_runtime_pm_put(), so it is correct to wrap only the
2396 * pin/unpin/fence and not more.
2397 */
2398 intel_runtime_pm_get(dev_priv);
2399
2400 dev_priv->mm.interruptible = false;
2401 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2402 &view);
2403 if (ret)
2404 goto err_interruptible;
2405
2406 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2407 * fence, whereas 965+ only requires a fence if using
2408 * framebuffer compression. For simplicity, we always install
2409 * a fence as the cost is not that onerous.
2410 */
2411 ret = i915_gem_object_get_fence(obj);
2412 if (ret)
2413 goto err_unpin;
2414
2415 i915_gem_object_pin_fence(obj);
2416
2417 dev_priv->mm.interruptible = true;
2418 intel_runtime_pm_put(dev_priv);
2419 return 0;
2420
2421 err_unpin:
2422 i915_gem_object_unpin_from_display_plane(obj, &view);
2423 err_interruptible:
2424 dev_priv->mm.interruptible = true;
2425 intel_runtime_pm_put(dev_priv);
2426 return ret;
2427 }
2428
2429 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2430 const struct drm_plane_state *plane_state)
2431 {
2432 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2433 struct i915_ggtt_view view;
2434 int ret;
2435
2436 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2437
2438 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2439 WARN_ONCE(ret, "Couldn't get view from plane state!");
2440
2441 i915_gem_object_unpin_fence(obj);
2442 i915_gem_object_unpin_from_display_plane(obj, &view);
2443 }
2444
2445 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2446 * is assumed to be a power-of-two. */
2447 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2448 unsigned int tiling_mode,
2449 unsigned int cpp,
2450 unsigned int pitch)
2451 {
2452 if (tiling_mode != I915_TILING_NONE) {
2453 unsigned int tile_rows, tiles;
2454
2455 tile_rows = *y / 8;
2456 *y %= 8;
2457
2458 tiles = *x / (512/cpp);
2459 *x %= 512/cpp;
2460
2461 return tile_rows * pitch * 8 + tiles * 4096;
2462 } else {
2463 unsigned int offset;
2464
2465 offset = *y * pitch + *x * cpp;
2466 *y = 0;
2467 *x = (offset & 4095) / cpp;
2468 return offset & -4096;
2469 }
2470 }
2471
2472 static int i9xx_format_to_fourcc(int format)
2473 {
2474 switch (format) {
2475 case DISPPLANE_8BPP:
2476 return DRM_FORMAT_C8;
2477 case DISPPLANE_BGRX555:
2478 return DRM_FORMAT_XRGB1555;
2479 case DISPPLANE_BGRX565:
2480 return DRM_FORMAT_RGB565;
2481 default:
2482 case DISPPLANE_BGRX888:
2483 return DRM_FORMAT_XRGB8888;
2484 case DISPPLANE_RGBX888:
2485 return DRM_FORMAT_XBGR8888;
2486 case DISPPLANE_BGRX101010:
2487 return DRM_FORMAT_XRGB2101010;
2488 case DISPPLANE_RGBX101010:
2489 return DRM_FORMAT_XBGR2101010;
2490 }
2491 }
2492
2493 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2494 {
2495 switch (format) {
2496 case PLANE_CTL_FORMAT_RGB_565:
2497 return DRM_FORMAT_RGB565;
2498 default:
2499 case PLANE_CTL_FORMAT_XRGB_8888:
2500 if (rgb_order) {
2501 if (alpha)
2502 return DRM_FORMAT_ABGR8888;
2503 else
2504 return DRM_FORMAT_XBGR8888;
2505 } else {
2506 if (alpha)
2507 return DRM_FORMAT_ARGB8888;
2508 else
2509 return DRM_FORMAT_XRGB8888;
2510 }
2511 case PLANE_CTL_FORMAT_XRGB_2101010:
2512 if (rgb_order)
2513 return DRM_FORMAT_XBGR2101010;
2514 else
2515 return DRM_FORMAT_XRGB2101010;
2516 }
2517 }
2518
2519 static bool
2520 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2521 struct intel_initial_plane_config *plane_config)
2522 {
2523 struct drm_device *dev = crtc->base.dev;
2524 struct drm_i915_gem_object *obj = NULL;
2525 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2526 struct drm_framebuffer *fb = &plane_config->fb->base;
2527 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529 PAGE_SIZE);
2530
2531 size_aligned -= base_aligned;
2532
2533 if (plane_config->size == 0)
2534 return false;
2535
2536 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2537 base_aligned,
2538 base_aligned,
2539 size_aligned);
2540 if (!obj)
2541 return false;
2542
2543 obj->tiling_mode = plane_config->tiling;
2544 if (obj->tiling_mode == I915_TILING_X)
2545 obj->stride = fb->pitches[0];
2546
2547 mode_cmd.pixel_format = fb->pixel_format;
2548 mode_cmd.width = fb->width;
2549 mode_cmd.height = fb->height;
2550 mode_cmd.pitches[0] = fb->pitches[0];
2551 mode_cmd.modifier[0] = fb->modifier[0];
2552 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2553
2554 mutex_lock(&dev->struct_mutex);
2555 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2556 &mode_cmd, obj)) {
2557 DRM_DEBUG_KMS("intel fb init failed\n");
2558 goto out_unref_obj;
2559 }
2560 mutex_unlock(&dev->struct_mutex);
2561
2562 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2563 return true;
2564
2565 out_unref_obj:
2566 drm_gem_object_unreference(&obj->base);
2567 mutex_unlock(&dev->struct_mutex);
2568 return false;
2569 }
2570
2571 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2572 static void
2573 update_state_fb(struct drm_plane *plane)
2574 {
2575 if (plane->fb == plane->state->fb)
2576 return;
2577
2578 if (plane->state->fb)
2579 drm_framebuffer_unreference(plane->state->fb);
2580 plane->state->fb = plane->fb;
2581 if (plane->state->fb)
2582 drm_framebuffer_reference(plane->state->fb);
2583 }
2584
2585 static void
2586 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2587 struct intel_initial_plane_config *plane_config)
2588 {
2589 struct drm_device *dev = intel_crtc->base.dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct drm_crtc *c;
2592 struct intel_crtc *i;
2593 struct drm_i915_gem_object *obj;
2594 struct drm_plane *primary = intel_crtc->base.primary;
2595 struct drm_framebuffer *fb;
2596
2597 if (!plane_config->fb)
2598 return;
2599
2600 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2601 fb = &plane_config->fb->base;
2602 goto valid_fb;
2603 }
2604
2605 kfree(plane_config->fb);
2606
2607 /*
2608 * Failed to alloc the obj, check to see if we should share
2609 * an fb with another CRTC instead
2610 */
2611 for_each_crtc(dev, c) {
2612 i = to_intel_crtc(c);
2613
2614 if (c == &intel_crtc->base)
2615 continue;
2616
2617 if (!i->active)
2618 continue;
2619
2620 fb = c->primary->fb;
2621 if (!fb)
2622 continue;
2623
2624 obj = intel_fb_obj(fb);
2625 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2626 drm_framebuffer_reference(fb);
2627 goto valid_fb;
2628 }
2629 }
2630
2631 return;
2632
2633 valid_fb:
2634 obj = intel_fb_obj(fb);
2635 if (obj->tiling_mode != I915_TILING_NONE)
2636 dev_priv->preserve_bios_swizzle = true;
2637
2638 primary->fb = fb;
2639 primary->state->crtc = &intel_crtc->base;
2640 primary->crtc = &intel_crtc->base;
2641 update_state_fb(primary);
2642 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2643 }
2644
2645 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2646 struct drm_framebuffer *fb,
2647 int x, int y)
2648 {
2649 struct drm_device *dev = crtc->dev;
2650 struct drm_i915_private *dev_priv = dev->dev_private;
2651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652 struct drm_plane *primary = crtc->primary;
2653 bool visible = to_intel_plane_state(primary->state)->visible;
2654 struct drm_i915_gem_object *obj;
2655 int plane = intel_crtc->plane;
2656 unsigned long linear_offset;
2657 u32 dspcntr;
2658 u32 reg = DSPCNTR(plane);
2659 int pixel_size;
2660
2661 if (!visible || !fb) {
2662 I915_WRITE(reg, 0);
2663 if (INTEL_INFO(dev)->gen >= 4)
2664 I915_WRITE(DSPSURF(plane), 0);
2665 else
2666 I915_WRITE(DSPADDR(plane), 0);
2667 POSTING_READ(reg);
2668 return;
2669 }
2670
2671 obj = intel_fb_obj(fb);
2672 if (WARN_ON(obj == NULL))
2673 return;
2674
2675 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2676
2677 dspcntr = DISPPLANE_GAMMA_ENABLE;
2678
2679 dspcntr |= DISPLAY_PLANE_ENABLE;
2680
2681 if (INTEL_INFO(dev)->gen < 4) {
2682 if (intel_crtc->pipe == PIPE_B)
2683 dspcntr |= DISPPLANE_SEL_PIPE_B;
2684
2685 /* pipesrc and dspsize control the size that is scaled from,
2686 * which should always be the user's requested size.
2687 */
2688 I915_WRITE(DSPSIZE(plane),
2689 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2690 (intel_crtc->config->pipe_src_w - 1));
2691 I915_WRITE(DSPPOS(plane), 0);
2692 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2693 I915_WRITE(PRIMSIZE(plane),
2694 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2695 (intel_crtc->config->pipe_src_w - 1));
2696 I915_WRITE(PRIMPOS(plane), 0);
2697 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2698 }
2699
2700 switch (fb->pixel_format) {
2701 case DRM_FORMAT_C8:
2702 dspcntr |= DISPPLANE_8BPP;
2703 break;
2704 case DRM_FORMAT_XRGB1555:
2705 case DRM_FORMAT_ARGB1555:
2706 dspcntr |= DISPPLANE_BGRX555;
2707 break;
2708 case DRM_FORMAT_RGB565:
2709 dspcntr |= DISPPLANE_BGRX565;
2710 break;
2711 case DRM_FORMAT_XRGB8888:
2712 case DRM_FORMAT_ARGB8888:
2713 dspcntr |= DISPPLANE_BGRX888;
2714 break;
2715 case DRM_FORMAT_XBGR8888:
2716 case DRM_FORMAT_ABGR8888:
2717 dspcntr |= DISPPLANE_RGBX888;
2718 break;
2719 case DRM_FORMAT_XRGB2101010:
2720 case DRM_FORMAT_ARGB2101010:
2721 dspcntr |= DISPPLANE_BGRX101010;
2722 break;
2723 case DRM_FORMAT_XBGR2101010:
2724 case DRM_FORMAT_ABGR2101010:
2725 dspcntr |= DISPPLANE_RGBX101010;
2726 break;
2727 default:
2728 BUG();
2729 }
2730
2731 if (INTEL_INFO(dev)->gen >= 4 &&
2732 obj->tiling_mode != I915_TILING_NONE)
2733 dspcntr |= DISPPLANE_TILED;
2734
2735 if (IS_G4X(dev))
2736 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2737
2738 linear_offset = y * fb->pitches[0] + x * pixel_size;
2739
2740 if (INTEL_INFO(dev)->gen >= 4) {
2741 intel_crtc->dspaddr_offset =
2742 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2743 pixel_size,
2744 fb->pitches[0]);
2745 linear_offset -= intel_crtc->dspaddr_offset;
2746 } else {
2747 intel_crtc->dspaddr_offset = linear_offset;
2748 }
2749
2750 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2751 dspcntr |= DISPPLANE_ROTATE_180;
2752
2753 x += (intel_crtc->config->pipe_src_w - 1);
2754 y += (intel_crtc->config->pipe_src_h - 1);
2755
2756 /* Finding the last pixel of the last line of the display
2757 data and adding to linear_offset*/
2758 linear_offset +=
2759 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2760 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2761 }
2762
2763 I915_WRITE(reg, dspcntr);
2764
2765 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2766 if (INTEL_INFO(dev)->gen >= 4) {
2767 I915_WRITE(DSPSURF(plane),
2768 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2769 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2770 I915_WRITE(DSPLINOFF(plane), linear_offset);
2771 } else
2772 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2773 POSTING_READ(reg);
2774 }
2775
2776 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2777 struct drm_framebuffer *fb,
2778 int x, int y)
2779 {
2780 struct drm_device *dev = crtc->dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2783 struct drm_plane *primary = crtc->primary;
2784 bool visible = to_intel_plane_state(primary->state)->visible;
2785 struct drm_i915_gem_object *obj;
2786 int plane = intel_crtc->plane;
2787 unsigned long linear_offset;
2788 u32 dspcntr;
2789 u32 reg = DSPCNTR(plane);
2790 int pixel_size;
2791
2792 if (!visible || !fb) {
2793 I915_WRITE(reg, 0);
2794 I915_WRITE(DSPSURF(plane), 0);
2795 POSTING_READ(reg);
2796 return;
2797 }
2798
2799 obj = intel_fb_obj(fb);
2800 if (WARN_ON(obj == NULL))
2801 return;
2802
2803 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2804
2805 dspcntr = DISPPLANE_GAMMA_ENABLE;
2806
2807 dspcntr |= DISPLAY_PLANE_ENABLE;
2808
2809 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2810 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2811
2812 switch (fb->pixel_format) {
2813 case DRM_FORMAT_C8:
2814 dspcntr |= DISPPLANE_8BPP;
2815 break;
2816 case DRM_FORMAT_RGB565:
2817 dspcntr |= DISPPLANE_BGRX565;
2818 break;
2819 case DRM_FORMAT_XRGB8888:
2820 case DRM_FORMAT_ARGB8888:
2821 dspcntr |= DISPPLANE_BGRX888;
2822 break;
2823 case DRM_FORMAT_XBGR8888:
2824 case DRM_FORMAT_ABGR8888:
2825 dspcntr |= DISPPLANE_RGBX888;
2826 break;
2827 case DRM_FORMAT_XRGB2101010:
2828 case DRM_FORMAT_ARGB2101010:
2829 dspcntr |= DISPPLANE_BGRX101010;
2830 break;
2831 case DRM_FORMAT_XBGR2101010:
2832 case DRM_FORMAT_ABGR2101010:
2833 dspcntr |= DISPPLANE_RGBX101010;
2834 break;
2835 default:
2836 BUG();
2837 }
2838
2839 if (obj->tiling_mode != I915_TILING_NONE)
2840 dspcntr |= DISPPLANE_TILED;
2841
2842 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2843 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2844
2845 linear_offset = y * fb->pitches[0] + x * pixel_size;
2846 intel_crtc->dspaddr_offset =
2847 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2848 pixel_size,
2849 fb->pitches[0]);
2850 linear_offset -= intel_crtc->dspaddr_offset;
2851 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2852 dspcntr |= DISPPLANE_ROTATE_180;
2853
2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2855 x += (intel_crtc->config->pipe_src_w - 1);
2856 y += (intel_crtc->config->pipe_src_h - 1);
2857
2858 /* Finding the last pixel of the last line of the display
2859 data and adding to linear_offset*/
2860 linear_offset +=
2861 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2862 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2863 }
2864 }
2865
2866 I915_WRITE(reg, dspcntr);
2867
2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
2877 POSTING_READ(reg);
2878 }
2879
2880 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2881 uint32_t pixel_format)
2882 {
2883 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2884
2885 /*
2886 * The stride is either expressed as a multiple of 64 bytes
2887 * chunks for linear buffers or in number of tiles for tiled
2888 * buffers.
2889 */
2890 switch (fb_modifier) {
2891 case DRM_FORMAT_MOD_NONE:
2892 return 64;
2893 case I915_FORMAT_MOD_X_TILED:
2894 if (INTEL_INFO(dev)->gen == 2)
2895 return 128;
2896 return 512;
2897 case I915_FORMAT_MOD_Y_TILED:
2898 /* No need to check for old gens and Y tiling since this is
2899 * about the display engine and those will be blocked before
2900 * we get here.
2901 */
2902 return 128;
2903 case I915_FORMAT_MOD_Yf_TILED:
2904 if (bits_per_pixel == 8)
2905 return 64;
2906 else
2907 return 128;
2908 default:
2909 MISSING_CASE(fb_modifier);
2910 return 64;
2911 }
2912 }
2913
2914 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2915 struct drm_i915_gem_object *obj)
2916 {
2917 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2918
2919 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2920 view = &i915_ggtt_view_rotated;
2921
2922 return i915_gem_obj_ggtt_offset_view(obj, view);
2923 }
2924
2925 /*
2926 * This function detaches (aka. unbinds) unused scalers in hardware
2927 */
2928 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2929 {
2930 struct drm_device *dev;
2931 struct drm_i915_private *dev_priv;
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 if (!intel_crtc || !intel_crtc->config)
2936 return;
2937
2938 dev = intel_crtc->base.dev;
2939 dev_priv = dev->dev_private;
2940 scaler_state = &intel_crtc->config->scaler_state;
2941
2942 /* loop through and disable scalers that aren't in use */
2943 for (i = 0; i < intel_crtc->num_scalers; i++) {
2944 if (!scaler_state->scalers[i].in_use) {
2945 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2946 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2947 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2948 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949 intel_crtc->base.base.id, intel_crtc->pipe, i);
2950 }
2951 }
2952 }
2953
2954 u32 skl_plane_ctl_format(uint32_t pixel_format)
2955 {
2956 u32 format = 0;
2957
2958 switch (pixel_format) {
2959 case DRM_FORMAT_RGB565:
2960 format = PLANE_CTL_FORMAT_RGB_565;
2961 break;
2962 case DRM_FORMAT_XBGR8888:
2963 format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2964 break;
2965 case DRM_FORMAT_XRGB8888:
2966 format = PLANE_CTL_FORMAT_XRGB_8888;
2967 break;
2968 /*
2969 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2970 * to be already pre-multiplied. We need to add a knob (or a different
2971 * DRM_FORMAT) for user-space to configure that.
2972 */
2973 case DRM_FORMAT_ABGR8888:
2974 format = PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2975 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2976 break;
2977 case DRM_FORMAT_ARGB8888:
2978 format = PLANE_CTL_FORMAT_XRGB_8888 |
2979 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2980 break;
2981 case DRM_FORMAT_XRGB2101010:
2982 format = PLANE_CTL_FORMAT_XRGB_2101010;
2983 break;
2984 case DRM_FORMAT_XBGR2101010:
2985 format = PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2986 break;
2987 case DRM_FORMAT_YUYV:
2988 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2989 break;
2990 case DRM_FORMAT_YVYU:
2991 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2992 break;
2993 case DRM_FORMAT_UYVY:
2994 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2995 break;
2996 case DRM_FORMAT_VYUY:
2997 format = PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2998 break;
2999 default:
3000 BUG();
3001 }
3002
3003 return format;
3004 }
3005
3006 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3007 {
3008 u32 plane_ctl_tiling = 0;
3009
3010 switch (fb_modifier) {
3011 case DRM_FORMAT_MOD_NONE:
3012 break;
3013 case I915_FORMAT_MOD_X_TILED:
3014 plane_ctl_tiling = PLANE_CTL_TILED_X;
3015 break;
3016 case I915_FORMAT_MOD_Y_TILED:
3017 plane_ctl_tiling = PLANE_CTL_TILED_Y;
3018 break;
3019 case I915_FORMAT_MOD_Yf_TILED:
3020 plane_ctl_tiling = PLANE_CTL_TILED_YF;
3021 break;
3022 default:
3023 MISSING_CASE(fb_modifier);
3024 }
3025
3026 return plane_ctl_tiling;
3027 }
3028
3029 u32 skl_plane_ctl_rotation(unsigned int rotation)
3030 {
3031 u32 plane_ctl_rotation = 0;
3032
3033 switch (rotation) {
3034 case BIT(DRM_ROTATE_0):
3035 break;
3036 case BIT(DRM_ROTATE_90):
3037 plane_ctl_rotation = PLANE_CTL_ROTATE_90;
3038 break;
3039 case BIT(DRM_ROTATE_180):
3040 plane_ctl_rotation = PLANE_CTL_ROTATE_180;
3041 break;
3042 case BIT(DRM_ROTATE_270):
3043 plane_ctl_rotation = PLANE_CTL_ROTATE_270;
3044 break;
3045 default:
3046 MISSING_CASE(rotation);
3047 }
3048
3049 return plane_ctl_rotation;
3050 }
3051
3052 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3053 struct drm_framebuffer *fb,
3054 int x, int y)
3055 {
3056 struct drm_device *dev = crtc->dev;
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3059 struct drm_plane *plane = crtc->primary;
3060 bool visible = to_intel_plane_state(plane->state)->visible;
3061 struct drm_i915_gem_object *obj;
3062 int pipe = intel_crtc->pipe;
3063 u32 plane_ctl, stride_div, stride;
3064 u32 tile_height, plane_offset, plane_size;
3065 unsigned int rotation;
3066 int x_offset, y_offset;
3067 unsigned long surf_addr;
3068 struct intel_crtc_state *crtc_state = intel_crtc->config;
3069 struct intel_plane_state *plane_state;
3070 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3071 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3072 int scaler_id = -1;
3073
3074 plane_state = to_intel_plane_state(plane->state);
3075
3076 if (!visible || !fb) {
3077 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3078 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3079 POSTING_READ(PLANE_CTL(pipe, 0));
3080 return;
3081 }
3082
3083 plane_ctl = PLANE_CTL_ENABLE |
3084 PLANE_CTL_PIPE_GAMMA_ENABLE |
3085 PLANE_CTL_PIPE_CSC_ENABLE;
3086
3087 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3088 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3089 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3090
3091 rotation = plane->state->rotation;
3092 plane_ctl |= skl_plane_ctl_rotation(rotation);
3093
3094 obj = intel_fb_obj(fb);
3095 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3096 fb->pixel_format);
3097 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3098
3099 /*
3100 * FIXME: intel_plane_state->src, dst aren't set when transitional
3101 * update_plane helpers are called from legacy paths.
3102 * Once full atomic crtc is available, below check can be avoided.
3103 */
3104 if (drm_rect_width(&plane_state->src)) {
3105 scaler_id = plane_state->scaler_id;
3106 src_x = plane_state->src.x1 >> 16;
3107 src_y = plane_state->src.y1 >> 16;
3108 src_w = drm_rect_width(&plane_state->src) >> 16;
3109 src_h = drm_rect_height(&plane_state->src) >> 16;
3110 dst_x = plane_state->dst.x1;
3111 dst_y = plane_state->dst.y1;
3112 dst_w = drm_rect_width(&plane_state->dst);
3113 dst_h = drm_rect_height(&plane_state->dst);
3114
3115 WARN_ON(x != src_x || y != src_y);
3116 } else {
3117 src_w = intel_crtc->config->pipe_src_w;
3118 src_h = intel_crtc->config->pipe_src_h;
3119 }
3120
3121 if (intel_rotation_90_or_270(rotation)) {
3122 /* stride = Surface height in tiles */
3123 tile_height = intel_tile_height(dev, fb->pixel_format,
3124 fb->modifier[0]);
3125 stride = DIV_ROUND_UP(fb->height, tile_height);
3126 x_offset = stride * tile_height - y - src_h;
3127 y_offset = x;
3128 plane_size = (src_w - 1) << 16 | (src_h - 1);
3129 } else {
3130 stride = fb->pitches[0] / stride_div;
3131 x_offset = x;
3132 y_offset = y;
3133 plane_size = (src_h - 1) << 16 | (src_w - 1);
3134 }
3135 plane_offset = y_offset << 16 | x_offset;
3136
3137 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3138 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3139 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3140 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3141
3142 if (scaler_id >= 0) {
3143 uint32_t ps_ctrl = 0;
3144
3145 WARN_ON(!dst_w || !dst_h);
3146 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3147 crtc_state->scaler_state.scalers[scaler_id].mode;
3148 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3149 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3150 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3151 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3152 I915_WRITE(PLANE_POS(pipe, 0), 0);
3153 } else {
3154 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3155 }
3156
3157 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3158
3159 POSTING_READ(PLANE_SURF(pipe, 0));
3160 }
3161
3162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3163 static int
3164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3165 int x, int y, enum mode_set_atomic state)
3166 {
3167 struct drm_device *dev = crtc->dev;
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169
3170 if (dev_priv->display.disable_fbc)
3171 dev_priv->display.disable_fbc(dev);
3172
3173 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3174
3175 return 0;
3176 }
3177
3178 static void intel_complete_page_flips(struct drm_device *dev)
3179 {
3180 struct drm_crtc *crtc;
3181
3182 for_each_crtc(dev, crtc) {
3183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3184 enum plane plane = intel_crtc->plane;
3185
3186 intel_prepare_page_flip(dev, plane);
3187 intel_finish_page_flip_plane(dev, plane);
3188 }
3189 }
3190
3191 static void intel_update_primary_planes(struct drm_device *dev)
3192 {
3193 struct drm_i915_private *dev_priv = dev->dev_private;
3194 struct drm_crtc *crtc;
3195
3196 for_each_crtc(dev, crtc) {
3197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3198
3199 drm_modeset_lock(&crtc->mutex, NULL);
3200 /*
3201 * FIXME: Once we have proper support for primary planes (and
3202 * disabling them without disabling the entire crtc) allow again
3203 * a NULL crtc->primary->fb.
3204 */
3205 if (intel_crtc->active && crtc->primary->fb)
3206 dev_priv->display.update_primary_plane(crtc,
3207 crtc->primary->fb,
3208 crtc->x,
3209 crtc->y);
3210 drm_modeset_unlock(&crtc->mutex);
3211 }
3212 }
3213
3214 void intel_crtc_reset(struct intel_crtc *crtc)
3215 {
3216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3217
3218 if (!crtc->active)
3219 return;
3220
3221 intel_crtc_disable_planes(&crtc->base);
3222 dev_priv->display.crtc_disable(&crtc->base);
3223 dev_priv->display.crtc_enable(&crtc->base);
3224 intel_crtc_enable_planes(&crtc->base);
3225 }
3226
3227 void intel_prepare_reset(struct drm_device *dev)
3228 {
3229 struct drm_i915_private *dev_priv = to_i915(dev);
3230 struct intel_crtc *crtc;
3231
3232 /* no reset support for gen2 */
3233 if (IS_GEN2(dev))
3234 return;
3235
3236 /* reset doesn't touch the display */
3237 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3238 return;
3239
3240 drm_modeset_lock_all(dev);
3241
3242 /*
3243 * Disabling the crtcs gracefully seems nicer. Also the
3244 * g33 docs say we should at least disable all the planes.
3245 */
3246 for_each_intel_crtc(dev, crtc) {
3247 if (!crtc->active)
3248 continue;
3249
3250 intel_crtc_disable_planes(&crtc->base);
3251 dev_priv->display.crtc_disable(&crtc->base);
3252 }
3253 }
3254
3255 void intel_finish_reset(struct drm_device *dev)
3256 {
3257 struct drm_i915_private *dev_priv = to_i915(dev);
3258
3259 /*
3260 * Flips in the rings will be nuked by the reset,
3261 * so complete all pending flips so that user space
3262 * will get its events and not get stuck.
3263 */
3264 intel_complete_page_flips(dev);
3265
3266 /* no reset support for gen2 */
3267 if (IS_GEN2(dev))
3268 return;
3269
3270 /* reset doesn't touch the display */
3271 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3272 /*
3273 * Flips in the rings have been nuked by the reset,
3274 * so update the base address of all primary
3275 * planes to the the last fb to make sure we're
3276 * showing the correct fb after a reset.
3277 */
3278 intel_update_primary_planes(dev);
3279 return;
3280 }
3281
3282 /*
3283 * The display has been reset as well,
3284 * so need a full re-initialization.
3285 */
3286 intel_runtime_pm_disable_interrupts(dev_priv);
3287 intel_runtime_pm_enable_interrupts(dev_priv);
3288
3289 intel_modeset_init_hw(dev);
3290
3291 spin_lock_irq(&dev_priv->irq_lock);
3292 if (dev_priv->display.hpd_irq_setup)
3293 dev_priv->display.hpd_irq_setup(dev);
3294 spin_unlock_irq(&dev_priv->irq_lock);
3295
3296 intel_modeset_setup_hw_state(dev, true);
3297
3298 intel_hpd_init(dev_priv);
3299
3300 drm_modeset_unlock_all(dev);
3301 }
3302
3303 static void
3304 intel_finish_fb(struct drm_framebuffer *old_fb)
3305 {
3306 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3307 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3308 bool was_interruptible = dev_priv->mm.interruptible;
3309 int ret;
3310
3311 /* Big Hammer, we also need to ensure that any pending
3312 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3313 * current scanout is retired before unpinning the old
3314 * framebuffer. Note that we rely on userspace rendering
3315 * into the buffer attached to the pipe they are waiting
3316 * on. If not, userspace generates a GPU hang with IPEHR
3317 * point to the MI_WAIT_FOR_EVENT.
3318 *
3319 * This should only fail upon a hung GPU, in which case we
3320 * can safely continue.
3321 */
3322 dev_priv->mm.interruptible = false;
3323 ret = i915_gem_object_wait_rendering(obj, true);
3324 dev_priv->mm.interruptible = was_interruptible;
3325
3326 WARN_ON(ret);
3327 }
3328
3329 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3330 {
3331 struct drm_device *dev = crtc->dev;
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3334 bool pending;
3335
3336 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3337 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3338 return false;
3339
3340 spin_lock_irq(&dev->event_lock);
3341 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3342 spin_unlock_irq(&dev->event_lock);
3343
3344 return pending;
3345 }
3346
3347 static void intel_update_pipe_size(struct intel_crtc *crtc)
3348 {
3349 struct drm_device *dev = crtc->base.dev;
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 const struct drm_display_mode *adjusted_mode;
3352
3353 if (!i915.fastboot)
3354 return;
3355
3356 /*
3357 * Update pipe size and adjust fitter if needed: the reason for this is
3358 * that in compute_mode_changes we check the native mode (not the pfit
3359 * mode) to see if we can flip rather than do a full mode set. In the
3360 * fastboot case, we'll flip, but if we don't update the pipesrc and
3361 * pfit state, we'll end up with a big fb scanned out into the wrong
3362 * sized surface.
3363 *
3364 * To fix this properly, we need to hoist the checks up into
3365 * compute_mode_changes (or above), check the actual pfit state and
3366 * whether the platform allows pfit disable with pipe active, and only
3367 * then update the pipesrc and pfit state, even on the flip path.
3368 */
3369
3370 adjusted_mode = &crtc->config->base.adjusted_mode;
3371
3372 I915_WRITE(PIPESRC(crtc->pipe),
3373 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3374 (adjusted_mode->crtc_vdisplay - 1));
3375 if (!crtc->config->pch_pfit.enabled &&
3376 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3377 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3378 I915_WRITE(PF_CTL(crtc->pipe), 0);
3379 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3380 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3381 }
3382 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3383 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3384 }
3385
3386 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3387 {
3388 struct drm_device *dev = crtc->dev;
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3391 int pipe = intel_crtc->pipe;
3392 u32 reg, temp;
3393
3394 /* enable normal train */
3395 reg = FDI_TX_CTL(pipe);
3396 temp = I915_READ(reg);
3397 if (IS_IVYBRIDGE(dev)) {
3398 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3399 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3400 } else {
3401 temp &= ~FDI_LINK_TRAIN_NONE;
3402 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3403 }
3404 I915_WRITE(reg, temp);
3405
3406 reg = FDI_RX_CTL(pipe);
3407 temp = I915_READ(reg);
3408 if (HAS_PCH_CPT(dev)) {
3409 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3410 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3411 } else {
3412 temp &= ~FDI_LINK_TRAIN_NONE;
3413 temp |= FDI_LINK_TRAIN_NONE;
3414 }
3415 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3416
3417 /* wait one idle pattern time */
3418 POSTING_READ(reg);
3419 udelay(1000);
3420
3421 /* IVB wants error correction enabled */
3422 if (IS_IVYBRIDGE(dev))
3423 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3424 FDI_FE_ERRC_ENABLE);
3425 }
3426
3427 /* The FDI link training functions for ILK/Ibexpeak. */
3428 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3429 {
3430 struct drm_device *dev = crtc->dev;
3431 struct drm_i915_private *dev_priv = dev->dev_private;
3432 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3433 int pipe = intel_crtc->pipe;
3434 u32 reg, temp, tries;
3435
3436 /* FDI needs bits from pipe first */
3437 assert_pipe_enabled(dev_priv, pipe);
3438
3439 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3440 for train result */
3441 reg = FDI_RX_IMR(pipe);
3442 temp = I915_READ(reg);
3443 temp &= ~FDI_RX_SYMBOL_LOCK;
3444 temp &= ~FDI_RX_BIT_LOCK;
3445 I915_WRITE(reg, temp);
3446 I915_READ(reg);
3447 udelay(150);
3448
3449 /* enable CPU FDI TX and PCH FDI RX */
3450 reg = FDI_TX_CTL(pipe);
3451 temp = I915_READ(reg);
3452 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3453 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3454 temp &= ~FDI_LINK_TRAIN_NONE;
3455 temp |= FDI_LINK_TRAIN_PATTERN_1;
3456 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3457
3458 reg = FDI_RX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_1;
3462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3463
3464 POSTING_READ(reg);
3465 udelay(150);
3466
3467 /* Ironlake workaround, enable clock pointer after FDI enable*/
3468 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3469 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3470 FDI_RX_PHASE_SYNC_POINTER_EN);
3471
3472 reg = FDI_RX_IIR(pipe);
3473 for (tries = 0; tries < 5; tries++) {
3474 temp = I915_READ(reg);
3475 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3476
3477 if ((temp & FDI_RX_BIT_LOCK)) {
3478 DRM_DEBUG_KMS("FDI train 1 done.\n");
3479 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3480 break;
3481 }
3482 }
3483 if (tries == 5)
3484 DRM_ERROR("FDI train 1 fail!\n");
3485
3486 /* Train 2 */
3487 reg = FDI_TX_CTL(pipe);
3488 temp = I915_READ(reg);
3489 temp &= ~FDI_LINK_TRAIN_NONE;
3490 temp |= FDI_LINK_TRAIN_PATTERN_2;
3491 I915_WRITE(reg, temp);
3492
3493 reg = FDI_RX_CTL(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~FDI_LINK_TRAIN_NONE;
3496 temp |= FDI_LINK_TRAIN_PATTERN_2;
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
3500 udelay(150);
3501
3502 reg = FDI_RX_IIR(pipe);
3503 for (tries = 0; tries < 5; tries++) {
3504 temp = I915_READ(reg);
3505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3506
3507 if (temp & FDI_RX_SYMBOL_LOCK) {
3508 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3509 DRM_DEBUG_KMS("FDI train 2 done.\n");
3510 break;
3511 }
3512 }
3513 if (tries == 5)
3514 DRM_ERROR("FDI train 2 fail!\n");
3515
3516 DRM_DEBUG_KMS("FDI train done\n");
3517
3518 }
3519
3520 static const int snb_b_fdi_train_param[] = {
3521 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3522 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3523 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3524 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3525 };
3526
3527 /* The FDI link training functions for SNB/Cougarpoint. */
3528 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3529 {
3530 struct drm_device *dev = crtc->dev;
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3533 int pipe = intel_crtc->pipe;
3534 u32 reg, temp, i, retry;
3535
3536 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3537 for train result */
3538 reg = FDI_RX_IMR(pipe);
3539 temp = I915_READ(reg);
3540 temp &= ~FDI_RX_SYMBOL_LOCK;
3541 temp &= ~FDI_RX_BIT_LOCK;
3542 I915_WRITE(reg, temp);
3543
3544 POSTING_READ(reg);
3545 udelay(150);
3546
3547 /* enable CPU FDI TX and PCH FDI RX */
3548 reg = FDI_TX_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3551 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3552 temp &= ~FDI_LINK_TRAIN_NONE;
3553 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3555 /* SNB-B */
3556 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3557 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3558
3559 I915_WRITE(FDI_RX_MISC(pipe),
3560 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3561
3562 reg = FDI_RX_CTL(pipe);
3563 temp = I915_READ(reg);
3564 if (HAS_PCH_CPT(dev)) {
3565 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3566 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3567 } else {
3568 temp &= ~FDI_LINK_TRAIN_NONE;
3569 temp |= FDI_LINK_TRAIN_PATTERN_1;
3570 }
3571 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3572
3573 POSTING_READ(reg);
3574 udelay(150);
3575
3576 for (i = 0; i < 4; i++) {
3577 reg = FDI_TX_CTL(pipe);
3578 temp = I915_READ(reg);
3579 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3580 temp |= snb_b_fdi_train_param[i];
3581 I915_WRITE(reg, temp);
3582
3583 POSTING_READ(reg);
3584 udelay(500);
3585
3586 for (retry = 0; retry < 5; retry++) {
3587 reg = FDI_RX_IIR(pipe);
3588 temp = I915_READ(reg);
3589 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3590 if (temp & FDI_RX_BIT_LOCK) {
3591 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3592 DRM_DEBUG_KMS("FDI train 1 done.\n");
3593 break;
3594 }
3595 udelay(50);
3596 }
3597 if (retry < 5)
3598 break;
3599 }
3600 if (i == 4)
3601 DRM_ERROR("FDI train 1 fail!\n");
3602
3603 /* Train 2 */
3604 reg = FDI_TX_CTL(pipe);
3605 temp = I915_READ(reg);
3606 temp &= ~FDI_LINK_TRAIN_NONE;
3607 temp |= FDI_LINK_TRAIN_PATTERN_2;
3608 if (IS_GEN6(dev)) {
3609 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3610 /* SNB-B */
3611 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3612 }
3613 I915_WRITE(reg, temp);
3614
3615 reg = FDI_RX_CTL(pipe);
3616 temp = I915_READ(reg);
3617 if (HAS_PCH_CPT(dev)) {
3618 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3619 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3620 } else {
3621 temp &= ~FDI_LINK_TRAIN_NONE;
3622 temp |= FDI_LINK_TRAIN_PATTERN_2;
3623 }
3624 I915_WRITE(reg, temp);
3625
3626 POSTING_READ(reg);
3627 udelay(150);
3628
3629 for (i = 0; i < 4; i++) {
3630 reg = FDI_TX_CTL(pipe);
3631 temp = I915_READ(reg);
3632 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3633 temp |= snb_b_fdi_train_param[i];
3634 I915_WRITE(reg, temp);
3635
3636 POSTING_READ(reg);
3637 udelay(500);
3638
3639 for (retry = 0; retry < 5; retry++) {
3640 reg = FDI_RX_IIR(pipe);
3641 temp = I915_READ(reg);
3642 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3643 if (temp & FDI_RX_SYMBOL_LOCK) {
3644 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3645 DRM_DEBUG_KMS("FDI train 2 done.\n");
3646 break;
3647 }
3648 udelay(50);
3649 }
3650 if (retry < 5)
3651 break;
3652 }
3653 if (i == 4)
3654 DRM_ERROR("FDI train 2 fail!\n");
3655
3656 DRM_DEBUG_KMS("FDI train done.\n");
3657 }
3658
3659 /* Manual link training for Ivy Bridge A0 parts */
3660 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3661 {
3662 struct drm_device *dev = crtc->dev;
3663 struct drm_i915_private *dev_priv = dev->dev_private;
3664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3665 int pipe = intel_crtc->pipe;
3666 u32 reg, temp, i, j;
3667
3668 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3669 for train result */
3670 reg = FDI_RX_IMR(pipe);
3671 temp = I915_READ(reg);
3672 temp &= ~FDI_RX_SYMBOL_LOCK;
3673 temp &= ~FDI_RX_BIT_LOCK;
3674 I915_WRITE(reg, temp);
3675
3676 POSTING_READ(reg);
3677 udelay(150);
3678
3679 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3680 I915_READ(FDI_RX_IIR(pipe)));
3681
3682 /* Try each vswing and preemphasis setting twice before moving on */
3683 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3684 /* disable first in case we need to retry */
3685 reg = FDI_TX_CTL(pipe);
3686 temp = I915_READ(reg);
3687 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3688 temp &= ~FDI_TX_ENABLE;
3689 I915_WRITE(reg, temp);
3690
3691 reg = FDI_RX_CTL(pipe);
3692 temp = I915_READ(reg);
3693 temp &= ~FDI_LINK_TRAIN_AUTO;
3694 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3695 temp &= ~FDI_RX_ENABLE;
3696 I915_WRITE(reg, temp);
3697
3698 /* enable CPU FDI TX and PCH FDI RX */
3699 reg = FDI_TX_CTL(pipe);
3700 temp = I915_READ(reg);
3701 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3702 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3703 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3704 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3705 temp |= snb_b_fdi_train_param[j/2];
3706 temp |= FDI_COMPOSITE_SYNC;
3707 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3708
3709 I915_WRITE(FDI_RX_MISC(pipe),
3710 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3711
3712 reg = FDI_RX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3715 temp |= FDI_COMPOSITE_SYNC;
3716 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3717
3718 POSTING_READ(reg);
3719 udelay(1); /* should be 0.5us */
3720
3721 for (i = 0; i < 4; i++) {
3722 reg = FDI_RX_IIR(pipe);
3723 temp = I915_READ(reg);
3724 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726 if (temp & FDI_RX_BIT_LOCK ||
3727 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3728 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3729 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3730 i);
3731 break;
3732 }
3733 udelay(1); /* should be 0.5us */
3734 }
3735 if (i == 4) {
3736 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3737 continue;
3738 }
3739
3740 /* Train 2 */
3741 reg = FDI_TX_CTL(pipe);
3742 temp = I915_READ(reg);
3743 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3744 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3745 I915_WRITE(reg, temp);
3746
3747 reg = FDI_RX_CTL(pipe);
3748 temp = I915_READ(reg);
3749 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3750 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3751 I915_WRITE(reg, temp);
3752
3753 POSTING_READ(reg);
3754 udelay(2); /* should be 1.5us */
3755
3756 for (i = 0; i < 4; i++) {
3757 reg = FDI_RX_IIR(pipe);
3758 temp = I915_READ(reg);
3759 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3760
3761 if (temp & FDI_RX_SYMBOL_LOCK ||
3762 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3763 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3764 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3765 i);
3766 goto train_done;
3767 }
3768 udelay(2); /* should be 1.5us */
3769 }
3770 if (i == 4)
3771 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3772 }
3773
3774 train_done:
3775 DRM_DEBUG_KMS("FDI train done.\n");
3776 }
3777
3778 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3779 {
3780 struct drm_device *dev = intel_crtc->base.dev;
3781 struct drm_i915_private *dev_priv = dev->dev_private;
3782 int pipe = intel_crtc->pipe;
3783 u32 reg, temp;
3784
3785
3786 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3790 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3791 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3792 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3793
3794 POSTING_READ(reg);
3795 udelay(200);
3796
3797 /* Switch from Rawclk to PCDclk */
3798 temp = I915_READ(reg);
3799 I915_WRITE(reg, temp | FDI_PCDCLK);
3800
3801 POSTING_READ(reg);
3802 udelay(200);
3803
3804 /* Enable CPU FDI TX PLL, always on for Ironlake */
3805 reg = FDI_TX_CTL(pipe);
3806 temp = I915_READ(reg);
3807 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3808 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3809
3810 POSTING_READ(reg);
3811 udelay(100);
3812 }
3813 }
3814
3815 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3816 {
3817 struct drm_device *dev = intel_crtc->base.dev;
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819 int pipe = intel_crtc->pipe;
3820 u32 reg, temp;
3821
3822 /* Switch from PCDclk to Rawclk */
3823 reg = FDI_RX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3826
3827 /* Disable CPU FDI TX PLL */
3828 reg = FDI_TX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3831
3832 POSTING_READ(reg);
3833 udelay(100);
3834
3835 reg = FDI_RX_CTL(pipe);
3836 temp = I915_READ(reg);
3837 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3838
3839 /* Wait for the clocks to turn off. */
3840 POSTING_READ(reg);
3841 udelay(100);
3842 }
3843
3844 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3845 {
3846 struct drm_device *dev = crtc->dev;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849 int pipe = intel_crtc->pipe;
3850 u32 reg, temp;
3851
3852 /* disable CPU FDI tx and PCH FDI rx */
3853 reg = FDI_TX_CTL(pipe);
3854 temp = I915_READ(reg);
3855 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3856 POSTING_READ(reg);
3857
3858 reg = FDI_RX_CTL(pipe);
3859 temp = I915_READ(reg);
3860 temp &= ~(0x7 << 16);
3861 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3862 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3863
3864 POSTING_READ(reg);
3865 udelay(100);
3866
3867 /* Ironlake workaround, disable clock pointer after downing FDI */
3868 if (HAS_PCH_IBX(dev))
3869 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3870
3871 /* still set train pattern 1 */
3872 reg = FDI_TX_CTL(pipe);
3873 temp = I915_READ(reg);
3874 temp &= ~FDI_LINK_TRAIN_NONE;
3875 temp |= FDI_LINK_TRAIN_PATTERN_1;
3876 I915_WRITE(reg, temp);
3877
3878 reg = FDI_RX_CTL(pipe);
3879 temp = I915_READ(reg);
3880 if (HAS_PCH_CPT(dev)) {
3881 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3882 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3883 } else {
3884 temp &= ~FDI_LINK_TRAIN_NONE;
3885 temp |= FDI_LINK_TRAIN_PATTERN_1;
3886 }
3887 /* BPC in FDI rx is consistent with that in PIPECONF */
3888 temp &= ~(0x07 << 16);
3889 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3890 I915_WRITE(reg, temp);
3891
3892 POSTING_READ(reg);
3893 udelay(100);
3894 }
3895
3896 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3897 {
3898 struct intel_crtc *crtc;
3899
3900 /* Note that we don't need to be called with mode_config.lock here
3901 * as our list of CRTC objects is static for the lifetime of the
3902 * device and so cannot disappear as we iterate. Similarly, we can
3903 * happily treat the predicates as racy, atomic checks as userspace
3904 * cannot claim and pin a new fb without at least acquring the
3905 * struct_mutex and so serialising with us.
3906 */
3907 for_each_intel_crtc(dev, crtc) {
3908 if (atomic_read(&crtc->unpin_work_count) == 0)
3909 continue;
3910
3911 if (crtc->unpin_work)
3912 intel_wait_for_vblank(dev, crtc->pipe);
3913
3914 return true;
3915 }
3916
3917 return false;
3918 }
3919
3920 static void page_flip_completed(struct intel_crtc *intel_crtc)
3921 {
3922 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3923 struct intel_unpin_work *work = intel_crtc->unpin_work;
3924
3925 /* ensure that the unpin work is consistent wrt ->pending. */
3926 smp_rmb();
3927 intel_crtc->unpin_work = NULL;
3928
3929 if (work->event)
3930 drm_send_vblank_event(intel_crtc->base.dev,
3931 intel_crtc->pipe,
3932 work->event);
3933
3934 drm_crtc_vblank_put(&intel_crtc->base);
3935
3936 wake_up_all(&dev_priv->pending_flip_queue);
3937 queue_work(dev_priv->wq, &work->work);
3938
3939 trace_i915_flip_complete(intel_crtc->plane,
3940 work->pending_flip_obj);
3941 }
3942
3943 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3944 {
3945 struct drm_device *dev = crtc->dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947
3948 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3949 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3950 !intel_crtc_has_pending_flip(crtc),
3951 60*HZ) == 0)) {
3952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3953
3954 spin_lock_irq(&dev->event_lock);
3955 if (intel_crtc->unpin_work) {
3956 WARN_ONCE(1, "Removing stuck page flip\n");
3957 page_flip_completed(intel_crtc);
3958 }
3959 spin_unlock_irq(&dev->event_lock);
3960 }
3961
3962 if (crtc->primary->fb) {
3963 mutex_lock(&dev->struct_mutex);
3964 intel_finish_fb(crtc->primary->fb);
3965 mutex_unlock(&dev->struct_mutex);
3966 }
3967 }
3968
3969 /* Program iCLKIP clock to the desired frequency */
3970 static void lpt_program_iclkip(struct drm_crtc *crtc)
3971 {
3972 struct drm_device *dev = crtc->dev;
3973 struct drm_i915_private *dev_priv = dev->dev_private;
3974 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3975 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3976 u32 temp;
3977
3978 mutex_lock(&dev_priv->dpio_lock);
3979
3980 /* It is necessary to ungate the pixclk gate prior to programming
3981 * the divisors, and gate it back when it is done.
3982 */
3983 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3984
3985 /* Disable SSCCTL */
3986 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3987 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3988 SBI_SSCCTL_DISABLE,
3989 SBI_ICLK);
3990
3991 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3992 if (clock == 20000) {
3993 auxdiv = 1;
3994 divsel = 0x41;
3995 phaseinc = 0x20;
3996 } else {
3997 /* The iCLK virtual clock root frequency is in MHz,
3998 * but the adjusted_mode->crtc_clock in in KHz. To get the
3999 * divisors, it is necessary to divide one by another, so we
4000 * convert the virtual clock precision to KHz here for higher
4001 * precision.
4002 */
4003 u32 iclk_virtual_root_freq = 172800 * 1000;
4004 u32 iclk_pi_range = 64;
4005 u32 desired_divisor, msb_divisor_value, pi_value;
4006
4007 desired_divisor = (iclk_virtual_root_freq / clock);
4008 msb_divisor_value = desired_divisor / iclk_pi_range;
4009 pi_value = desired_divisor % iclk_pi_range;
4010
4011 auxdiv = 0;
4012 divsel = msb_divisor_value - 2;
4013 phaseinc = pi_value;
4014 }
4015
4016 /* This should not happen with any sane values */
4017 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4018 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4019 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4020 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4021
4022 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4023 clock,
4024 auxdiv,
4025 divsel,
4026 phasedir,
4027 phaseinc);
4028
4029 /* Program SSCDIVINTPHASE6 */
4030 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4031 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4032 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4033 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4034 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4035 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4036 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4037 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4038
4039 /* Program SSCAUXDIV */
4040 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4041 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4042 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4043 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4044
4045 /* Enable modulator and associated divider */
4046 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4047 temp &= ~SBI_SSCCTL_DISABLE;
4048 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4049
4050 /* Wait for initialization time */
4051 udelay(24);
4052
4053 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4054
4055 mutex_unlock(&dev_priv->dpio_lock);
4056 }
4057
4058 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4059 enum pipe pch_transcoder)
4060 {
4061 struct drm_device *dev = crtc->base.dev;
4062 struct drm_i915_private *dev_priv = dev->dev_private;
4063 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4064
4065 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4066 I915_READ(HTOTAL(cpu_transcoder)));
4067 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4068 I915_READ(HBLANK(cpu_transcoder)));
4069 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4070 I915_READ(HSYNC(cpu_transcoder)));
4071
4072 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4073 I915_READ(VTOTAL(cpu_transcoder)));
4074 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4075 I915_READ(VBLANK(cpu_transcoder)));
4076 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4077 I915_READ(VSYNC(cpu_transcoder)));
4078 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4079 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4080 }
4081
4082 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4083 {
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085 uint32_t temp;
4086
4087 temp = I915_READ(SOUTH_CHICKEN1);
4088 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4089 return;
4090
4091 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4092 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4093
4094 temp &= ~FDI_BC_BIFURCATION_SELECT;
4095 if (enable)
4096 temp |= FDI_BC_BIFURCATION_SELECT;
4097
4098 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4099 I915_WRITE(SOUTH_CHICKEN1, temp);
4100 POSTING_READ(SOUTH_CHICKEN1);
4101 }
4102
4103 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4104 {
4105 struct drm_device *dev = intel_crtc->base.dev;
4106
4107 switch (intel_crtc->pipe) {
4108 case PIPE_A:
4109 break;
4110 case PIPE_B:
4111 if (intel_crtc->config->fdi_lanes > 2)
4112 cpt_set_fdi_bc_bifurcation(dev, false);
4113 else
4114 cpt_set_fdi_bc_bifurcation(dev, true);
4115
4116 break;
4117 case PIPE_C:
4118 cpt_set_fdi_bc_bifurcation(dev, true);
4119
4120 break;
4121 default:
4122 BUG();
4123 }
4124 }
4125
4126 /*
4127 * Enable PCH resources required for PCH ports:
4128 * - PCH PLLs
4129 * - FDI training & RX/TX
4130 * - update transcoder timings
4131 * - DP transcoding bits
4132 * - transcoder
4133 */
4134 static void ironlake_pch_enable(struct drm_crtc *crtc)
4135 {
4136 struct drm_device *dev = crtc->dev;
4137 struct drm_i915_private *dev_priv = dev->dev_private;
4138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4139 int pipe = intel_crtc->pipe;
4140 u32 reg, temp;
4141
4142 assert_pch_transcoder_disabled(dev_priv, pipe);
4143
4144 if (IS_IVYBRIDGE(dev))
4145 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4146
4147 /* Write the TU size bits before fdi link training, so that error
4148 * detection works. */
4149 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4150 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4151
4152 /* For PCH output, training FDI link */
4153 dev_priv->display.fdi_link_train(crtc);
4154
4155 /* We need to program the right clock selection before writing the pixel
4156 * mutliplier into the DPLL. */
4157 if (HAS_PCH_CPT(dev)) {
4158 u32 sel;
4159
4160 temp = I915_READ(PCH_DPLL_SEL);
4161 temp |= TRANS_DPLL_ENABLE(pipe);
4162 sel = TRANS_DPLLB_SEL(pipe);
4163 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4164 temp |= sel;
4165 else
4166 temp &= ~sel;
4167 I915_WRITE(PCH_DPLL_SEL, temp);
4168 }
4169
4170 /* XXX: pch pll's can be enabled any time before we enable the PCH
4171 * transcoder, and we actually should do this to not upset any PCH
4172 * transcoder that already use the clock when we share it.
4173 *
4174 * Note that enable_shared_dpll tries to do the right thing, but
4175 * get_shared_dpll unconditionally resets the pll - we need that to have
4176 * the right LVDS enable sequence. */
4177 intel_enable_shared_dpll(intel_crtc);
4178
4179 /* set transcoder timing, panel must allow it */
4180 assert_panel_unlocked(dev_priv, pipe);
4181 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4182
4183 intel_fdi_normal_train(crtc);
4184
4185 /* For PCH DP, enable TRANS_DP_CTL */
4186 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4187 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4188 reg = TRANS_DP_CTL(pipe);
4189 temp = I915_READ(reg);
4190 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4191 TRANS_DP_SYNC_MASK |
4192 TRANS_DP_BPC_MASK);
4193 temp |= (TRANS_DP_OUTPUT_ENABLE |
4194 TRANS_DP_ENH_FRAMING);
4195 temp |= bpc << 9; /* same format but at 11:9 */
4196
4197 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4198 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4199 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4200 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4201
4202 switch (intel_trans_dp_port_sel(crtc)) {
4203 case PCH_DP_B:
4204 temp |= TRANS_DP_PORT_SEL_B;
4205 break;
4206 case PCH_DP_C:
4207 temp |= TRANS_DP_PORT_SEL_C;
4208 break;
4209 case PCH_DP_D:
4210 temp |= TRANS_DP_PORT_SEL_D;
4211 break;
4212 default:
4213 BUG();
4214 }
4215
4216 I915_WRITE(reg, temp);
4217 }
4218
4219 ironlake_enable_pch_transcoder(dev_priv, pipe);
4220 }
4221
4222 static void lpt_pch_enable(struct drm_crtc *crtc)
4223 {
4224 struct drm_device *dev = crtc->dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4227 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4228
4229 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4230
4231 lpt_program_iclkip(crtc);
4232
4233 /* Set transcoder timing. */
4234 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4235
4236 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4237 }
4238
4239 void intel_put_shared_dpll(struct intel_crtc *crtc)
4240 {
4241 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4242
4243 if (pll == NULL)
4244 return;
4245
4246 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4247 WARN(1, "bad %s crtc mask\n", pll->name);
4248 return;
4249 }
4250
4251 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4252 if (pll->config.crtc_mask == 0) {
4253 WARN_ON(pll->on);
4254 WARN_ON(pll->active);
4255 }
4256
4257 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4258 }
4259
4260 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4261 struct intel_crtc_state *crtc_state)
4262 {
4263 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4264 struct intel_shared_dpll *pll;
4265 enum intel_dpll_id i;
4266
4267 if (HAS_PCH_IBX(dev_priv->dev)) {
4268 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4269 i = (enum intel_dpll_id) crtc->pipe;
4270 pll = &dev_priv->shared_dplls[i];
4271
4272 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4273 crtc->base.base.id, pll->name);
4274
4275 WARN_ON(pll->new_config->crtc_mask);
4276
4277 goto found;
4278 }
4279
4280 if (IS_BROXTON(dev_priv->dev)) {
4281 /* PLL is attached to port in bxt */
4282 struct intel_encoder *encoder;
4283 struct intel_digital_port *intel_dig_port;
4284
4285 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4286 if (WARN_ON(!encoder))
4287 return NULL;
4288
4289 intel_dig_port = enc_to_dig_port(&encoder->base);
4290 /* 1:1 mapping between ports and PLLs */
4291 i = (enum intel_dpll_id)intel_dig_port->port;
4292 pll = &dev_priv->shared_dplls[i];
4293 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4294 crtc->base.base.id, pll->name);
4295 WARN_ON(pll->new_config->crtc_mask);
4296
4297 goto found;
4298 }
4299
4300 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4301 pll = &dev_priv->shared_dplls[i];
4302
4303 /* Only want to check enabled timings first */
4304 if (pll->new_config->crtc_mask == 0)
4305 continue;
4306
4307 if (memcmp(&crtc_state->dpll_hw_state,
4308 &pll->new_config->hw_state,
4309 sizeof(pll->new_config->hw_state)) == 0) {
4310 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4311 crtc->base.base.id, pll->name,
4312 pll->new_config->crtc_mask,
4313 pll->active);
4314 goto found;
4315 }
4316 }
4317
4318 /* Ok no matching timings, maybe there's a free one? */
4319 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4320 pll = &dev_priv->shared_dplls[i];
4321 if (pll->new_config->crtc_mask == 0) {
4322 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4323 crtc->base.base.id, pll->name);
4324 goto found;
4325 }
4326 }
4327
4328 return NULL;
4329
4330 found:
4331 if (pll->new_config->crtc_mask == 0)
4332 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4333
4334 crtc_state->shared_dpll = i;
4335 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4336 pipe_name(crtc->pipe));
4337
4338 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4339
4340 return pll;
4341 }
4342
4343 /**
4344 * intel_shared_dpll_start_config - start a new PLL staged config
4345 * @dev_priv: DRM device
4346 * @clear_pipes: mask of pipes that will have their PLLs freed
4347 *
4348 * Starts a new PLL staged config, copying the current config but
4349 * releasing the references of pipes specified in clear_pipes.
4350 */
4351 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4352 unsigned clear_pipes)
4353 {
4354 struct intel_shared_dpll *pll;
4355 enum intel_dpll_id i;
4356
4357 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4358 pll = &dev_priv->shared_dplls[i];
4359
4360 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4361 GFP_KERNEL);
4362 if (!pll->new_config)
4363 goto cleanup;
4364
4365 pll->new_config->crtc_mask &= ~clear_pipes;
4366 }
4367
4368 return 0;
4369
4370 cleanup:
4371 while (--i >= 0) {
4372 pll = &dev_priv->shared_dplls[i];
4373 kfree(pll->new_config);
4374 pll->new_config = NULL;
4375 }
4376
4377 return -ENOMEM;
4378 }
4379
4380 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4381 {
4382 struct intel_shared_dpll *pll;
4383 enum intel_dpll_id i;
4384
4385 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4386 pll = &dev_priv->shared_dplls[i];
4387
4388 WARN_ON(pll->new_config == &pll->config);
4389
4390 pll->config = *pll->new_config;
4391 kfree(pll->new_config);
4392 pll->new_config = NULL;
4393 }
4394 }
4395
4396 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4397 {
4398 struct intel_shared_dpll *pll;
4399 enum intel_dpll_id i;
4400
4401 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4402 pll = &dev_priv->shared_dplls[i];
4403
4404 WARN_ON(pll->new_config == &pll->config);
4405
4406 kfree(pll->new_config);
4407 pll->new_config = NULL;
4408 }
4409 }
4410
4411 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4412 {
4413 struct drm_i915_private *dev_priv = dev->dev_private;
4414 int dslreg = PIPEDSL(pipe);
4415 u32 temp;
4416
4417 temp = I915_READ(dslreg);
4418 udelay(500);
4419 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4420 if (wait_for(I915_READ(dslreg) != temp, 5))
4421 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4422 }
4423 }
4424
4425 /**
4426 * skl_update_scaler_users - Stages update to crtc's scaler state
4427 * @intel_crtc: crtc
4428 * @crtc_state: crtc_state
4429 * @plane: plane (NULL indicates crtc is requesting update)
4430 * @plane_state: plane's state
4431 * @force_detach: request unconditional detachment of scaler
4432 *
4433 * This function updates scaler state for requested plane or crtc.
4434 * To request scaler usage update for a plane, caller shall pass plane pointer.
4435 * To request scaler usage update for crtc, caller shall pass plane pointer
4436 * as NULL.
4437 *
4438 * Return
4439 * 0 - scaler_usage updated successfully
4440 * error - requested scaling cannot be supported or other error condition
4441 */
4442 int
4443 skl_update_scaler_users(
4444 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4445 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4446 int force_detach)
4447 {
4448 int need_scaling;
4449 int idx;
4450 int src_w, src_h, dst_w, dst_h;
4451 int *scaler_id;
4452 struct drm_framebuffer *fb;
4453 struct intel_crtc_scaler_state *scaler_state;
4454 unsigned int rotation;
4455
4456 if (!intel_crtc || !crtc_state)
4457 return 0;
4458
4459 scaler_state = &crtc_state->scaler_state;
4460
4461 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4462 fb = intel_plane ? plane_state->base.fb : NULL;
4463
4464 if (intel_plane) {
4465 src_w = drm_rect_width(&plane_state->src) >> 16;
4466 src_h = drm_rect_height(&plane_state->src) >> 16;
4467 dst_w = drm_rect_width(&plane_state->dst);
4468 dst_h = drm_rect_height(&plane_state->dst);
4469 scaler_id = &plane_state->scaler_id;
4470 rotation = plane_state->base.rotation;
4471 } else {
4472 struct drm_display_mode *adjusted_mode =
4473 &crtc_state->base.adjusted_mode;
4474 src_w = crtc_state->pipe_src_w;
4475 src_h = crtc_state->pipe_src_h;
4476 dst_w = adjusted_mode->hdisplay;
4477 dst_h = adjusted_mode->vdisplay;
4478 scaler_id = &scaler_state->scaler_id;
4479 rotation = DRM_ROTATE_0;
4480 }
4481
4482 need_scaling = intel_rotation_90_or_270(rotation) ?
4483 (src_h != dst_w || src_w != dst_h):
4484 (src_w != dst_w || src_h != dst_h);
4485
4486 /*
4487 * if plane is being disabled or scaler is no more required or force detach
4488 * - free scaler binded to this plane/crtc
4489 * - in order to do this, update crtc->scaler_usage
4490 *
4491 * Here scaler state in crtc_state is set free so that
4492 * scaler can be assigned to other user. Actual register
4493 * update to free the scaler is done in plane/panel-fit programming.
4494 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4495 */
4496 if (force_detach || !need_scaling || (intel_plane &&
4497 (!fb || !plane_state->visible))) {
4498 if (*scaler_id >= 0) {
4499 scaler_state->scaler_users &= ~(1 << idx);
4500 scaler_state->scalers[*scaler_id].in_use = 0;
4501
4502 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4503 "crtc_state = %p scaler_users = 0x%x\n",
4504 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4505 intel_plane ? intel_plane->base.base.id :
4506 intel_crtc->base.base.id, crtc_state,
4507 scaler_state->scaler_users);
4508 *scaler_id = -1;
4509 }
4510 return 0;
4511 }
4512
4513 /* range checks */
4514 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4515 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4516
4517 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4518 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4519 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4520 "size is out of scaler range\n",
4521 intel_plane ? "PLANE" : "CRTC",
4522 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4523 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4524 return -EINVAL;
4525 }
4526
4527 /* check colorkey */
4528 if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4529 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4530 intel_plane->base.base.id);
4531 return -EINVAL;
4532 }
4533
4534 /* Check src format */
4535 if (intel_plane) {
4536 switch (fb->pixel_format) {
4537 case DRM_FORMAT_RGB565:
4538 case DRM_FORMAT_XBGR8888:
4539 case DRM_FORMAT_XRGB8888:
4540 case DRM_FORMAT_ABGR8888:
4541 case DRM_FORMAT_ARGB8888:
4542 case DRM_FORMAT_XRGB2101010:
4543 case DRM_FORMAT_ARGB2101010:
4544 case DRM_FORMAT_XBGR2101010:
4545 case DRM_FORMAT_ABGR2101010:
4546 case DRM_FORMAT_YUYV:
4547 case DRM_FORMAT_YVYU:
4548 case DRM_FORMAT_UYVY:
4549 case DRM_FORMAT_VYUY:
4550 break;
4551 default:
4552 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4553 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4554 return -EINVAL;
4555 }
4556 }
4557
4558 /* mark this plane as a scaler user in crtc_state */
4559 scaler_state->scaler_users |= (1 << idx);
4560 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4561 "crtc_state = %p scaler_users = 0x%x\n",
4562 intel_plane ? "PLANE" : "CRTC",
4563 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4564 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4565 return 0;
4566 }
4567
4568 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4569 {
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 int pipe = crtc->pipe;
4573 struct intel_crtc_scaler_state *scaler_state =
4574 &crtc->config->scaler_state;
4575
4576 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4577
4578 /* To update pfit, first update scaler state */
4579 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4580 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4581 skl_detach_scalers(crtc);
4582 if (!enable)
4583 return;
4584
4585 if (crtc->config->pch_pfit.enabled) {
4586 int id;
4587
4588 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4589 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4590 return;
4591 }
4592
4593 id = scaler_state->scaler_id;
4594 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4595 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4596 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4597 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4598
4599 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4600 }
4601 }
4602
4603 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4604 {
4605 struct drm_device *dev = crtc->base.dev;
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 int pipe = crtc->pipe;
4608
4609 if (crtc->config->pch_pfit.enabled) {
4610 /* Force use of hard-coded filter coefficients
4611 * as some pre-programmed values are broken,
4612 * e.g. x201.
4613 */
4614 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4615 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4616 PF_PIPE_SEL_IVB(pipe));
4617 else
4618 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4619 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4620 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4621 }
4622 }
4623
4624 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4625 {
4626 struct drm_device *dev = crtc->dev;
4627 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4628 struct drm_plane *plane;
4629 struct intel_plane *intel_plane;
4630
4631 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4632 intel_plane = to_intel_plane(plane);
4633 if (intel_plane->pipe == pipe)
4634 intel_plane_restore(&intel_plane->base);
4635 }
4636 }
4637
4638 void hsw_enable_ips(struct intel_crtc *crtc)
4639 {
4640 struct drm_device *dev = crtc->base.dev;
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642
4643 if (!crtc->config->ips_enabled)
4644 return;
4645
4646 /* We can only enable IPS after we enable a plane and wait for a vblank */
4647 intel_wait_for_vblank(dev, crtc->pipe);
4648
4649 assert_plane_enabled(dev_priv, crtc->plane);
4650 if (IS_BROADWELL(dev)) {
4651 mutex_lock(&dev_priv->rps.hw_lock);
4652 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4653 mutex_unlock(&dev_priv->rps.hw_lock);
4654 /* Quoting Art Runyan: "its not safe to expect any particular
4655 * value in IPS_CTL bit 31 after enabling IPS through the
4656 * mailbox." Moreover, the mailbox may return a bogus state,
4657 * so we need to just enable it and continue on.
4658 */
4659 } else {
4660 I915_WRITE(IPS_CTL, IPS_ENABLE);
4661 /* The bit only becomes 1 in the next vblank, so this wait here
4662 * is essentially intel_wait_for_vblank. If we don't have this
4663 * and don't wait for vblanks until the end of crtc_enable, then
4664 * the HW state readout code will complain that the expected
4665 * IPS_CTL value is not the one we read. */
4666 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4667 DRM_ERROR("Timed out waiting for IPS enable\n");
4668 }
4669 }
4670
4671 void hsw_disable_ips(struct intel_crtc *crtc)
4672 {
4673 struct drm_device *dev = crtc->base.dev;
4674 struct drm_i915_private *dev_priv = dev->dev_private;
4675
4676 if (!crtc->config->ips_enabled)
4677 return;
4678
4679 assert_plane_enabled(dev_priv, crtc->plane);
4680 if (IS_BROADWELL(dev)) {
4681 mutex_lock(&dev_priv->rps.hw_lock);
4682 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4683 mutex_unlock(&dev_priv->rps.hw_lock);
4684 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4685 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4686 DRM_ERROR("Timed out waiting for IPS disable\n");
4687 } else {
4688 I915_WRITE(IPS_CTL, 0);
4689 POSTING_READ(IPS_CTL);
4690 }
4691
4692 /* We need to wait for a vblank before we can disable the plane. */
4693 intel_wait_for_vblank(dev, crtc->pipe);
4694 }
4695
4696 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4697 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4698 {
4699 struct drm_device *dev = crtc->dev;
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4702 enum pipe pipe = intel_crtc->pipe;
4703 int palreg = PALETTE(pipe);
4704 int i;
4705 bool reenable_ips = false;
4706
4707 /* The clocks have to be on to load the palette. */
4708 if (!crtc->state->enable || !intel_crtc->active)
4709 return;
4710
4711 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4712 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4713 assert_dsi_pll_enabled(dev_priv);
4714 else
4715 assert_pll_enabled(dev_priv, pipe);
4716 }
4717
4718 /* use legacy palette for Ironlake */
4719 if (!HAS_GMCH_DISPLAY(dev))
4720 palreg = LGC_PALETTE(pipe);
4721
4722 /* Workaround : Do not read or write the pipe palette/gamma data while
4723 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4724 */
4725 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4726 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4727 GAMMA_MODE_MODE_SPLIT)) {
4728 hsw_disable_ips(intel_crtc);
4729 reenable_ips = true;
4730 }
4731
4732 for (i = 0; i < 256; i++) {
4733 I915_WRITE(palreg + 4 * i,
4734 (intel_crtc->lut_r[i] << 16) |
4735 (intel_crtc->lut_g[i] << 8) |
4736 intel_crtc->lut_b[i]);
4737 }
4738
4739 if (reenable_ips)
4740 hsw_enable_ips(intel_crtc);
4741 }
4742
4743 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4744 {
4745 if (intel_crtc->overlay) {
4746 struct drm_device *dev = intel_crtc->base.dev;
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748
4749 mutex_lock(&dev->struct_mutex);
4750 dev_priv->mm.interruptible = false;
4751 (void) intel_overlay_switch_off(intel_crtc->overlay);
4752 dev_priv->mm.interruptible = true;
4753 mutex_unlock(&dev->struct_mutex);
4754 }
4755
4756 /* Let userspace switch the overlay on again. In most cases userspace
4757 * has to recompute where to put it anyway.
4758 */
4759 }
4760
4761 /**
4762 * intel_post_enable_primary - Perform operations after enabling primary plane
4763 * @crtc: the CRTC whose primary plane was just enabled
4764 *
4765 * Performs potentially sleeping operations that must be done after the primary
4766 * plane is enabled, such as updating FBC and IPS. Note that this may be
4767 * called due to an explicit primary plane update, or due to an implicit
4768 * re-enable that is caused when a sprite plane is updated to no longer
4769 * completely hide the primary plane.
4770 */
4771 static void
4772 intel_post_enable_primary(struct drm_crtc *crtc)
4773 {
4774 struct drm_device *dev = crtc->dev;
4775 struct drm_i915_private *dev_priv = dev->dev_private;
4776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4777 int pipe = intel_crtc->pipe;
4778
4779 /*
4780 * BDW signals flip done immediately if the plane
4781 * is disabled, even if the plane enable is already
4782 * armed to occur at the next vblank :(
4783 */
4784 if (IS_BROADWELL(dev))
4785 intel_wait_for_vblank(dev, pipe);
4786
4787 /*
4788 * FIXME IPS should be fine as long as one plane is
4789 * enabled, but in practice it seems to have problems
4790 * when going from primary only to sprite only and vice
4791 * versa.
4792 */
4793 hsw_enable_ips(intel_crtc);
4794
4795 mutex_lock(&dev->struct_mutex);
4796 intel_fbc_update(dev);
4797 mutex_unlock(&dev->struct_mutex);
4798
4799 /*
4800 * Gen2 reports pipe underruns whenever all planes are disabled.
4801 * So don't enable underrun reporting before at least some planes
4802 * are enabled.
4803 * FIXME: Need to fix the logic to work when we turn off all planes
4804 * but leave the pipe running.
4805 */
4806 if (IS_GEN2(dev))
4807 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4808
4809 /* Underruns don't raise interrupts, so check manually. */
4810 if (HAS_GMCH_DISPLAY(dev))
4811 i9xx_check_fifo_underruns(dev_priv);
4812 }
4813
4814 /**
4815 * intel_pre_disable_primary - Perform operations before disabling primary plane
4816 * @crtc: the CRTC whose primary plane is to be disabled
4817 *
4818 * Performs potentially sleeping operations that must be done before the
4819 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4820 * be called due to an explicit primary plane update, or due to an implicit
4821 * disable that is caused when a sprite plane completely hides the primary
4822 * plane.
4823 */
4824 static void
4825 intel_pre_disable_primary(struct drm_crtc *crtc)
4826 {
4827 struct drm_device *dev = crtc->dev;
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830 int pipe = intel_crtc->pipe;
4831
4832 /*
4833 * Gen2 reports pipe underruns whenever all planes are disabled.
4834 * So diasble underrun reporting before all the planes get disabled.
4835 * FIXME: Need to fix the logic to work when we turn off all planes
4836 * but leave the pipe running.
4837 */
4838 if (IS_GEN2(dev))
4839 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4840
4841 /*
4842 * Vblank time updates from the shadow to live plane control register
4843 * are blocked if the memory self-refresh mode is active at that
4844 * moment. So to make sure the plane gets truly disabled, disable
4845 * first the self-refresh mode. The self-refresh enable bit in turn
4846 * will be checked/applied by the HW only at the next frame start
4847 * event which is after the vblank start event, so we need to have a
4848 * wait-for-vblank between disabling the plane and the pipe.
4849 */
4850 if (HAS_GMCH_DISPLAY(dev))
4851 intel_set_memory_cxsr(dev_priv, false);
4852
4853 mutex_lock(&dev->struct_mutex);
4854 if (dev_priv->fbc.crtc == intel_crtc)
4855 intel_fbc_disable(dev);
4856 mutex_unlock(&dev->struct_mutex);
4857
4858 /*
4859 * FIXME IPS should be fine as long as one plane is
4860 * enabled, but in practice it seems to have problems
4861 * when going from primary only to sprite only and vice
4862 * versa.
4863 */
4864 hsw_disable_ips(intel_crtc);
4865 }
4866
4867 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4868 {
4869 intel_enable_primary_hw_plane(crtc->primary, crtc);
4870 intel_enable_sprite_planes(crtc);
4871 intel_crtc_update_cursor(crtc, true);
4872
4873 intel_post_enable_primary(crtc);
4874 }
4875
4876 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4877 {
4878 struct drm_device *dev = crtc->dev;
4879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4880 struct intel_plane *intel_plane;
4881 int pipe = intel_crtc->pipe;
4882
4883 intel_crtc_wait_for_pending_flips(crtc);
4884
4885 intel_pre_disable_primary(crtc);
4886
4887 intel_crtc_dpms_overlay_disable(intel_crtc);
4888 for_each_intel_plane(dev, intel_plane) {
4889 if (intel_plane->pipe == pipe) {
4890 struct drm_crtc *from = intel_plane->base.crtc;
4891
4892 intel_plane->disable_plane(&intel_plane->base,
4893 from ?: crtc, true);
4894 }
4895 }
4896
4897 /*
4898 * FIXME: Once we grow proper nuclear flip support out of this we need
4899 * to compute the mask of flip planes precisely. For the time being
4900 * consider this a flip to a NULL plane.
4901 */
4902 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4903 }
4904
4905 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4906 {
4907 struct drm_device *dev = crtc->dev;
4908 struct drm_i915_private *dev_priv = dev->dev_private;
4909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4910 struct intel_encoder *encoder;
4911 int pipe = intel_crtc->pipe;
4912
4913 WARN_ON(!crtc->state->enable);
4914
4915 if (intel_crtc->active)
4916 return;
4917
4918 if (intel_crtc->config->has_pch_encoder)
4919 intel_prepare_shared_dpll(intel_crtc);
4920
4921 if (intel_crtc->config->has_dp_encoder)
4922 intel_dp_set_m_n(intel_crtc, M1_N1);
4923
4924 intel_set_pipe_timings(intel_crtc);
4925
4926 if (intel_crtc->config->has_pch_encoder) {
4927 intel_cpu_transcoder_set_m_n(intel_crtc,
4928 &intel_crtc->config->fdi_m_n, NULL);
4929 }
4930
4931 ironlake_set_pipeconf(crtc);
4932
4933 intel_crtc->active = true;
4934
4935 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4936 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4937
4938 for_each_encoder_on_crtc(dev, crtc, encoder)
4939 if (encoder->pre_enable)
4940 encoder->pre_enable(encoder);
4941
4942 if (intel_crtc->config->has_pch_encoder) {
4943 /* Note: FDI PLL enabling _must_ be done before we enable the
4944 * cpu pipes, hence this is separate from all the other fdi/pch
4945 * enabling. */
4946 ironlake_fdi_pll_enable(intel_crtc);
4947 } else {
4948 assert_fdi_tx_disabled(dev_priv, pipe);
4949 assert_fdi_rx_disabled(dev_priv, pipe);
4950 }
4951
4952 ironlake_pfit_enable(intel_crtc);
4953
4954 /*
4955 * On ILK+ LUT must be loaded before the pipe is running but with
4956 * clocks enabled
4957 */
4958 intel_crtc_load_lut(crtc);
4959
4960 intel_update_watermarks(crtc);
4961 intel_enable_pipe(intel_crtc);
4962
4963 if (intel_crtc->config->has_pch_encoder)
4964 ironlake_pch_enable(crtc);
4965
4966 assert_vblank_disabled(crtc);
4967 drm_crtc_vblank_on(crtc);
4968
4969 for_each_encoder_on_crtc(dev, crtc, encoder)
4970 encoder->enable(encoder);
4971
4972 if (HAS_PCH_CPT(dev))
4973 cpt_verify_modeset(dev, intel_crtc->pipe);
4974 }
4975
4976 /* IPS only exists on ULT machines and is tied to pipe A. */
4977 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4978 {
4979 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4980 }
4981
4982 /*
4983 * This implements the workaround described in the "notes" section of the mode
4984 * set sequence documentation. When going from no pipes or single pipe to
4985 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4986 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4987 */
4988 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4989 {
4990 struct drm_device *dev = crtc->base.dev;
4991 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4992
4993 /* We want to get the other_active_crtc only if there's only 1 other
4994 * active crtc. */
4995 for_each_intel_crtc(dev, crtc_it) {
4996 if (!crtc_it->active || crtc_it == crtc)
4997 continue;
4998
4999 if (other_active_crtc)
5000 return;
5001
5002 other_active_crtc = crtc_it;
5003 }
5004 if (!other_active_crtc)
5005 return;
5006
5007 intel_wait_for_vblank(dev, other_active_crtc->pipe);
5008 intel_wait_for_vblank(dev, other_active_crtc->pipe);
5009 }
5010
5011 static void haswell_crtc_enable(struct drm_crtc *crtc)
5012 {
5013 struct drm_device *dev = crtc->dev;
5014 struct drm_i915_private *dev_priv = dev->dev_private;
5015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5016 struct intel_encoder *encoder;
5017 int pipe = intel_crtc->pipe;
5018
5019 WARN_ON(!crtc->state->enable);
5020
5021 if (intel_crtc->active)
5022 return;
5023
5024 if (intel_crtc_to_shared_dpll(intel_crtc))
5025 intel_enable_shared_dpll(intel_crtc);
5026
5027 if (intel_crtc->config->has_dp_encoder)
5028 intel_dp_set_m_n(intel_crtc, M1_N1);
5029
5030 intel_set_pipe_timings(intel_crtc);
5031
5032 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5033 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5034 intel_crtc->config->pixel_multiplier - 1);
5035 }
5036
5037 if (intel_crtc->config->has_pch_encoder) {
5038 intel_cpu_transcoder_set_m_n(intel_crtc,
5039 &intel_crtc->config->fdi_m_n, NULL);
5040 }
5041
5042 haswell_set_pipeconf(crtc);
5043
5044 intel_set_pipe_csc(crtc);
5045
5046 intel_crtc->active = true;
5047
5048 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5049 for_each_encoder_on_crtc(dev, crtc, encoder)
5050 if (encoder->pre_enable)
5051 encoder->pre_enable(encoder);
5052
5053 if (intel_crtc->config->has_pch_encoder) {
5054 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5055 true);
5056 dev_priv->display.fdi_link_train(crtc);
5057 }
5058
5059 intel_ddi_enable_pipe_clock(intel_crtc);
5060
5061 if (INTEL_INFO(dev)->gen == 9)
5062 skylake_pfit_update(intel_crtc, 1);
5063 else if (INTEL_INFO(dev)->gen < 9)
5064 ironlake_pfit_enable(intel_crtc);
5065 else
5066 MISSING_CASE(INTEL_INFO(dev)->gen);
5067
5068 /*
5069 * On ILK+ LUT must be loaded before the pipe is running but with
5070 * clocks enabled
5071 */
5072 intel_crtc_load_lut(crtc);
5073
5074 intel_ddi_set_pipe_settings(crtc);
5075 intel_ddi_enable_transcoder_func(crtc);
5076
5077 intel_update_watermarks(crtc);
5078 intel_enable_pipe(intel_crtc);
5079
5080 if (intel_crtc->config->has_pch_encoder)
5081 lpt_pch_enable(crtc);
5082
5083 if (intel_crtc->config->dp_encoder_is_mst)
5084 intel_ddi_set_vc_payload_alloc(crtc, true);
5085
5086 assert_vblank_disabled(crtc);
5087 drm_crtc_vblank_on(crtc);
5088
5089 for_each_encoder_on_crtc(dev, crtc, encoder) {
5090 encoder->enable(encoder);
5091 intel_opregion_notify_encoder(encoder, true);
5092 }
5093
5094 /* If we change the relative order between pipe/planes enabling, we need
5095 * to change the workaround. */
5096 haswell_mode_set_planes_workaround(intel_crtc);
5097 }
5098
5099 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5100 {
5101 struct drm_device *dev = crtc->base.dev;
5102 struct drm_i915_private *dev_priv = dev->dev_private;
5103 int pipe = crtc->pipe;
5104
5105 /* To avoid upsetting the power well on haswell only disable the pfit if
5106 * it's in use. The hw state code will make sure we get this right. */
5107 if (crtc->config->pch_pfit.enabled) {
5108 I915_WRITE(PF_CTL(pipe), 0);
5109 I915_WRITE(PF_WIN_POS(pipe), 0);
5110 I915_WRITE(PF_WIN_SZ(pipe), 0);
5111 }
5112 }
5113
5114 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5115 {
5116 struct drm_device *dev = crtc->dev;
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5119 struct intel_encoder *encoder;
5120 int pipe = intel_crtc->pipe;
5121 u32 reg, temp;
5122
5123 if (!intel_crtc->active)
5124 return;
5125
5126 for_each_encoder_on_crtc(dev, crtc, encoder)
5127 encoder->disable(encoder);
5128
5129 drm_crtc_vblank_off(crtc);
5130 assert_vblank_disabled(crtc);
5131
5132 if (intel_crtc->config->has_pch_encoder)
5133 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5134
5135 intel_disable_pipe(intel_crtc);
5136
5137 ironlake_pfit_disable(intel_crtc);
5138
5139 for_each_encoder_on_crtc(dev, crtc, encoder)
5140 if (encoder->post_disable)
5141 encoder->post_disable(encoder);
5142
5143 if (intel_crtc->config->has_pch_encoder) {
5144 ironlake_fdi_disable(crtc);
5145
5146 ironlake_disable_pch_transcoder(dev_priv, pipe);
5147
5148 if (HAS_PCH_CPT(dev)) {
5149 /* disable TRANS_DP_CTL */
5150 reg = TRANS_DP_CTL(pipe);
5151 temp = I915_READ(reg);
5152 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5153 TRANS_DP_PORT_SEL_MASK);
5154 temp |= TRANS_DP_PORT_SEL_NONE;
5155 I915_WRITE(reg, temp);
5156
5157 /* disable DPLL_SEL */
5158 temp = I915_READ(PCH_DPLL_SEL);
5159 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5160 I915_WRITE(PCH_DPLL_SEL, temp);
5161 }
5162
5163 /* disable PCH DPLL */
5164 intel_disable_shared_dpll(intel_crtc);
5165
5166 ironlake_fdi_pll_disable(intel_crtc);
5167 }
5168
5169 intel_crtc->active = false;
5170 intel_update_watermarks(crtc);
5171
5172 mutex_lock(&dev->struct_mutex);
5173 intel_fbc_update(dev);
5174 mutex_unlock(&dev->struct_mutex);
5175 }
5176
5177 static void haswell_crtc_disable(struct drm_crtc *crtc)
5178 {
5179 struct drm_device *dev = crtc->dev;
5180 struct drm_i915_private *dev_priv = dev->dev_private;
5181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5182 struct intel_encoder *encoder;
5183 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5184
5185 if (!intel_crtc->active)
5186 return;
5187
5188 for_each_encoder_on_crtc(dev, crtc, encoder) {
5189 intel_opregion_notify_encoder(encoder, false);
5190 encoder->disable(encoder);
5191 }
5192
5193 drm_crtc_vblank_off(crtc);
5194 assert_vblank_disabled(crtc);
5195
5196 if (intel_crtc->config->has_pch_encoder)
5197 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5198 false);
5199 intel_disable_pipe(intel_crtc);
5200
5201 if (intel_crtc->config->dp_encoder_is_mst)
5202 intel_ddi_set_vc_payload_alloc(crtc, false);
5203
5204 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5205
5206 if (INTEL_INFO(dev)->gen == 9)
5207 skylake_pfit_update(intel_crtc, 0);
5208 else if (INTEL_INFO(dev)->gen < 9)
5209 ironlake_pfit_disable(intel_crtc);
5210 else
5211 MISSING_CASE(INTEL_INFO(dev)->gen);
5212
5213 intel_ddi_disable_pipe_clock(intel_crtc);
5214
5215 if (intel_crtc->config->has_pch_encoder) {
5216 lpt_disable_pch_transcoder(dev_priv);
5217 intel_ddi_fdi_disable(crtc);
5218 }
5219
5220 for_each_encoder_on_crtc(dev, crtc, encoder)
5221 if (encoder->post_disable)
5222 encoder->post_disable(encoder);
5223
5224 intel_crtc->active = false;
5225 intel_update_watermarks(crtc);
5226
5227 mutex_lock(&dev->struct_mutex);
5228 intel_fbc_update(dev);
5229 mutex_unlock(&dev->struct_mutex);
5230
5231 if (intel_crtc_to_shared_dpll(intel_crtc))
5232 intel_disable_shared_dpll(intel_crtc);
5233 }
5234
5235 static void ironlake_crtc_off(struct drm_crtc *crtc)
5236 {
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238 intel_put_shared_dpll(intel_crtc);
5239 }
5240
5241
5242 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5243 {
5244 struct drm_device *dev = crtc->base.dev;
5245 struct drm_i915_private *dev_priv = dev->dev_private;
5246 struct intel_crtc_state *pipe_config = crtc->config;
5247
5248 if (!pipe_config->gmch_pfit.control)
5249 return;
5250
5251 /*
5252 * The panel fitter should only be adjusted whilst the pipe is disabled,
5253 * according to register description and PRM.
5254 */
5255 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5256 assert_pipe_disabled(dev_priv, crtc->pipe);
5257
5258 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5259 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5260
5261 /* Border color in case we don't scale up to the full screen. Black by
5262 * default, change to something else for debugging. */
5263 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5264 }
5265
5266 static enum intel_display_power_domain port_to_power_domain(enum port port)
5267 {
5268 switch (port) {
5269 case PORT_A:
5270 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5271 case PORT_B:
5272 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5273 case PORT_C:
5274 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5275 case PORT_D:
5276 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5277 default:
5278 WARN_ON_ONCE(1);
5279 return POWER_DOMAIN_PORT_OTHER;
5280 }
5281 }
5282
5283 #define for_each_power_domain(domain, mask) \
5284 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5285 if ((1 << (domain)) & (mask))
5286
5287 enum intel_display_power_domain
5288 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5289 {
5290 struct drm_device *dev = intel_encoder->base.dev;
5291 struct intel_digital_port *intel_dig_port;
5292
5293 switch (intel_encoder->type) {
5294 case INTEL_OUTPUT_UNKNOWN:
5295 /* Only DDI platforms should ever use this output type */
5296 WARN_ON_ONCE(!HAS_DDI(dev));
5297 case INTEL_OUTPUT_DISPLAYPORT:
5298 case INTEL_OUTPUT_HDMI:
5299 case INTEL_OUTPUT_EDP:
5300 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5301 return port_to_power_domain(intel_dig_port->port);
5302 case INTEL_OUTPUT_DP_MST:
5303 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5304 return port_to_power_domain(intel_dig_port->port);
5305 case INTEL_OUTPUT_ANALOG:
5306 return POWER_DOMAIN_PORT_CRT;
5307 case INTEL_OUTPUT_DSI:
5308 return POWER_DOMAIN_PORT_DSI;
5309 default:
5310 return POWER_DOMAIN_PORT_OTHER;
5311 }
5312 }
5313
5314 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5315 {
5316 struct drm_device *dev = crtc->dev;
5317 struct intel_encoder *intel_encoder;
5318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5319 enum pipe pipe = intel_crtc->pipe;
5320 unsigned long mask;
5321 enum transcoder transcoder;
5322
5323 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5324
5325 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5326 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5327 if (intel_crtc->config->pch_pfit.enabled ||
5328 intel_crtc->config->pch_pfit.force_thru)
5329 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5330
5331 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5332 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5333
5334 return mask;
5335 }
5336
5337 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5338 {
5339 struct drm_device *dev = state->dev;
5340 struct drm_i915_private *dev_priv = dev->dev_private;
5341 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5342 struct intel_crtc *crtc;
5343
5344 /*
5345 * First get all needed power domains, then put all unneeded, to avoid
5346 * any unnecessary toggling of the power wells.
5347 */
5348 for_each_intel_crtc(dev, crtc) {
5349 enum intel_display_power_domain domain;
5350
5351 if (!crtc->base.state->enable)
5352 continue;
5353
5354 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5355
5356 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5357 intel_display_power_get(dev_priv, domain);
5358 }
5359
5360 if (dev_priv->display.modeset_global_resources)
5361 dev_priv->display.modeset_global_resources(state);
5362
5363 for_each_intel_crtc(dev, crtc) {
5364 enum intel_display_power_domain domain;
5365
5366 for_each_power_domain(domain, crtc->enabled_power_domains)
5367 intel_display_power_put(dev_priv, domain);
5368
5369 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5370 }
5371
5372 intel_display_set_init_power(dev_priv, false);
5373 }
5374
5375 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5376 {
5377 struct drm_i915_private *dev_priv = dev->dev_private;
5378 uint32_t divider;
5379 uint32_t ratio;
5380 uint32_t current_freq;
5381 int ret;
5382
5383 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5384 switch (frequency) {
5385 case 144000:
5386 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5387 ratio = BXT_DE_PLL_RATIO(60);
5388 break;
5389 case 288000:
5390 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5391 ratio = BXT_DE_PLL_RATIO(60);
5392 break;
5393 case 384000:
5394 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5395 ratio = BXT_DE_PLL_RATIO(60);
5396 break;
5397 case 576000:
5398 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5399 ratio = BXT_DE_PLL_RATIO(60);
5400 break;
5401 case 624000:
5402 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5403 ratio = BXT_DE_PLL_RATIO(65);
5404 break;
5405 case 19200:
5406 /*
5407 * Bypass frequency with DE PLL disabled. Init ratio, divider
5408 * to suppress GCC warning.
5409 */
5410 ratio = 0;
5411 divider = 0;
5412 break;
5413 default:
5414 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5415
5416 return;
5417 }
5418
5419 mutex_lock(&dev_priv->rps.hw_lock);
5420 /* Inform power controller of upcoming frequency change */
5421 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5422 0x80000000);
5423 mutex_unlock(&dev_priv->rps.hw_lock);
5424
5425 if (ret) {
5426 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5427 ret, frequency);
5428 return;
5429 }
5430
5431 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5432 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5433 current_freq = current_freq * 500 + 1000;
5434
5435 /*
5436 * DE PLL has to be disabled when
5437 * - setting to 19.2MHz (bypass, PLL isn't used)
5438 * - before setting to 624MHz (PLL needs toggling)
5439 * - before setting to any frequency from 624MHz (PLL needs toggling)
5440 */
5441 if (frequency == 19200 || frequency == 624000 ||
5442 current_freq == 624000) {
5443 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5444 /* Timeout 200us */
5445 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5446 1))
5447 DRM_ERROR("timout waiting for DE PLL unlock\n");
5448 }
5449
5450 if (frequency != 19200) {
5451 uint32_t val;
5452
5453 val = I915_READ(BXT_DE_PLL_CTL);
5454 val &= ~BXT_DE_PLL_RATIO_MASK;
5455 val |= ratio;
5456 I915_WRITE(BXT_DE_PLL_CTL, val);
5457
5458 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5459 /* Timeout 200us */
5460 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5461 DRM_ERROR("timeout waiting for DE PLL lock\n");
5462
5463 val = I915_READ(CDCLK_CTL);
5464 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5465 val |= divider;
5466 /*
5467 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5468 * enable otherwise.
5469 */
5470 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5471 if (frequency >= 500000)
5472 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5473
5474 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5475 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5476 val |= (frequency - 1000) / 500;
5477 I915_WRITE(CDCLK_CTL, val);
5478 }
5479
5480 mutex_lock(&dev_priv->rps.hw_lock);
5481 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5482 DIV_ROUND_UP(frequency, 25000));
5483 mutex_unlock(&dev_priv->rps.hw_lock);
5484
5485 if (ret) {
5486 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5487 ret, frequency);
5488 return;
5489 }
5490
5491 dev_priv->cdclk_freq = frequency;
5492 }
5493
5494 void broxton_init_cdclk(struct drm_device *dev)
5495 {
5496 struct drm_i915_private *dev_priv = dev->dev_private;
5497 uint32_t val;
5498
5499 /*
5500 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5501 * or else the reset will hang because there is no PCH to respond.
5502 * Move the handshake programming to initialization sequence.
5503 * Previously was left up to BIOS.
5504 */
5505 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5506 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5507 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5508
5509 /* Enable PG1 for cdclk */
5510 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5511
5512 /* check if cd clock is enabled */
5513 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5514 DRM_DEBUG_KMS("Display already initialized\n");
5515 return;
5516 }
5517
5518 /*
5519 * FIXME:
5520 * - The initial CDCLK needs to be read from VBT.
5521 * Need to make this change after VBT has changes for BXT.
5522 * - check if setting the max (or any) cdclk freq is really necessary
5523 * here, it belongs to modeset time
5524 */
5525 broxton_set_cdclk(dev, 624000);
5526
5527 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5528 POSTING_READ(DBUF_CTL);
5529
5530 udelay(10);
5531
5532 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5533 DRM_ERROR("DBuf power enable timeout!\n");
5534 }
5535
5536 void broxton_uninit_cdclk(struct drm_device *dev)
5537 {
5538 struct drm_i915_private *dev_priv = dev->dev_private;
5539
5540 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5541 POSTING_READ(DBUF_CTL);
5542
5543 udelay(10);
5544
5545 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5546 DRM_ERROR("DBuf power disable timeout!\n");
5547
5548 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5549 broxton_set_cdclk(dev, 19200);
5550
5551 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5552 }
5553
5554 /* returns HPLL frequency in kHz */
5555 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5556 {
5557 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5558
5559 /* Obtain SKU information */
5560 mutex_lock(&dev_priv->dpio_lock);
5561 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5562 CCK_FUSE_HPLL_FREQ_MASK;
5563 mutex_unlock(&dev_priv->dpio_lock);
5564
5565 return vco_freq[hpll_freq] * 1000;
5566 }
5567
5568 static void vlv_update_cdclk(struct drm_device *dev)
5569 {
5570 struct drm_i915_private *dev_priv = dev->dev_private;
5571
5572 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5573 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5574 dev_priv->cdclk_freq);
5575
5576 /*
5577 * Program the gmbus_freq based on the cdclk frequency.
5578 * BSpec erroneously claims we should aim for 4MHz, but
5579 * in fact 1MHz is the correct frequency.
5580 */
5581 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5582 }
5583
5584 /* Adjust CDclk dividers to allow high res or save power if possible */
5585 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5586 {
5587 struct drm_i915_private *dev_priv = dev->dev_private;
5588 u32 val, cmd;
5589
5590 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5591 != dev_priv->cdclk_freq);
5592
5593 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5594 cmd = 2;
5595 else if (cdclk == 266667)
5596 cmd = 1;
5597 else
5598 cmd = 0;
5599
5600 mutex_lock(&dev_priv->rps.hw_lock);
5601 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5602 val &= ~DSPFREQGUAR_MASK;
5603 val |= (cmd << DSPFREQGUAR_SHIFT);
5604 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5605 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5606 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5607 50)) {
5608 DRM_ERROR("timed out waiting for CDclk change\n");
5609 }
5610 mutex_unlock(&dev_priv->rps.hw_lock);
5611
5612 if (cdclk == 400000) {
5613 u32 divider;
5614
5615 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5616
5617 mutex_lock(&dev_priv->dpio_lock);
5618 /* adjust cdclk divider */
5619 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5620 val &= ~DISPLAY_FREQUENCY_VALUES;
5621 val |= divider;
5622 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5623
5624 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5625 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5626 50))
5627 DRM_ERROR("timed out waiting for CDclk change\n");
5628 mutex_unlock(&dev_priv->dpio_lock);
5629 }
5630
5631 mutex_lock(&dev_priv->dpio_lock);
5632 /* adjust self-refresh exit latency value */
5633 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5634 val &= ~0x7f;
5635
5636 /*
5637 * For high bandwidth configs, we set a higher latency in the bunit
5638 * so that the core display fetch happens in time to avoid underruns.
5639 */
5640 if (cdclk == 400000)
5641 val |= 4500 / 250; /* 4.5 usec */
5642 else
5643 val |= 3000 / 250; /* 3.0 usec */
5644 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5645 mutex_unlock(&dev_priv->dpio_lock);
5646
5647 vlv_update_cdclk(dev);
5648 }
5649
5650 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5651 {
5652 struct drm_i915_private *dev_priv = dev->dev_private;
5653 u32 val, cmd;
5654
5655 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5656 != dev_priv->cdclk_freq);
5657
5658 switch (cdclk) {
5659 case 333333:
5660 case 320000:
5661 case 266667:
5662 case 200000:
5663 break;
5664 default:
5665 MISSING_CASE(cdclk);
5666 return;
5667 }
5668
5669 /*
5670 * Specs are full of misinformation, but testing on actual
5671 * hardware has shown that we just need to write the desired
5672 * CCK divider into the Punit register.
5673 */
5674 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5675
5676 mutex_lock(&dev_priv->rps.hw_lock);
5677 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5678 val &= ~DSPFREQGUAR_MASK_CHV;
5679 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5680 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5681 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5682 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5683 50)) {
5684 DRM_ERROR("timed out waiting for CDclk change\n");
5685 }
5686 mutex_unlock(&dev_priv->rps.hw_lock);
5687
5688 vlv_update_cdclk(dev);
5689 }
5690
5691 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5692 int max_pixclk)
5693 {
5694 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5695 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5696
5697 /*
5698 * Really only a few cases to deal with, as only 4 CDclks are supported:
5699 * 200MHz
5700 * 267MHz
5701 * 320/333MHz (depends on HPLL freq)
5702 * 400MHz (VLV only)
5703 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5704 * of the lower bin and adjust if needed.
5705 *
5706 * We seem to get an unstable or solid color picture at 200MHz.
5707 * Not sure what's wrong. For now use 200MHz only when all pipes
5708 * are off.
5709 */
5710 if (!IS_CHERRYVIEW(dev_priv) &&
5711 max_pixclk > freq_320*limit/100)
5712 return 400000;
5713 else if (max_pixclk > 266667*limit/100)
5714 return freq_320;
5715 else if (max_pixclk > 0)
5716 return 266667;
5717 else
5718 return 200000;
5719 }
5720
5721 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5722 int max_pixclk)
5723 {
5724 /*
5725 * FIXME:
5726 * - remove the guardband, it's not needed on BXT
5727 * - set 19.2MHz bypass frequency if there are no active pipes
5728 */
5729 if (max_pixclk > 576000*9/10)
5730 return 624000;
5731 else if (max_pixclk > 384000*9/10)
5732 return 576000;
5733 else if (max_pixclk > 288000*9/10)
5734 return 384000;
5735 else if (max_pixclk > 144000*9/10)
5736 return 288000;
5737 else
5738 return 144000;
5739 }
5740
5741 /* Compute the max pixel clock for new configuration. Uses atomic state if
5742 * that's non-NULL, look at current state otherwise. */
5743 static int intel_mode_max_pixclk(struct drm_device *dev,
5744 struct drm_atomic_state *state)
5745 {
5746 struct intel_crtc *intel_crtc;
5747 struct intel_crtc_state *crtc_state;
5748 int max_pixclk = 0;
5749
5750 for_each_intel_crtc(dev, intel_crtc) {
5751 if (state)
5752 crtc_state =
5753 intel_atomic_get_crtc_state(state, intel_crtc);
5754 else
5755 crtc_state = intel_crtc->config;
5756 if (IS_ERR(crtc_state))
5757 return PTR_ERR(crtc_state);
5758
5759 if (!crtc_state->base.enable)
5760 continue;
5761
5762 max_pixclk = max(max_pixclk,
5763 crtc_state->base.adjusted_mode.crtc_clock);
5764 }
5765
5766 return max_pixclk;
5767 }
5768
5769 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5770 {
5771 struct drm_i915_private *dev_priv = to_i915(state->dev);
5772 struct drm_crtc *crtc;
5773 struct drm_crtc_state *crtc_state;
5774 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5775 int cdclk, i;
5776
5777 if (max_pixclk < 0)
5778 return max_pixclk;
5779
5780 if (IS_VALLEYVIEW(dev_priv))
5781 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5782 else
5783 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5784
5785 if (cdclk == dev_priv->cdclk_freq)
5786 return 0;
5787
5788 /* add all active pipes to the state */
5789 for_each_crtc(state->dev, crtc) {
5790 if (!crtc->state->enable)
5791 continue;
5792
5793 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5794 if (IS_ERR(crtc_state))
5795 return PTR_ERR(crtc_state);
5796 }
5797
5798 /* disable/enable all currently active pipes while we change cdclk */
5799 for_each_crtc_in_state(state, crtc, crtc_state, i)
5800 if (crtc_state->enable)
5801 crtc_state->mode_changed = true;
5802
5803 return 0;
5804 }
5805
5806 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5807 {
5808 unsigned int credits, default_credits;
5809
5810 if (IS_CHERRYVIEW(dev_priv))
5811 default_credits = PFI_CREDIT(12);
5812 else
5813 default_credits = PFI_CREDIT(8);
5814
5815 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5816 /* CHV suggested value is 31 or 63 */
5817 if (IS_CHERRYVIEW(dev_priv))
5818 credits = PFI_CREDIT_31;
5819 else
5820 credits = PFI_CREDIT(15);
5821 } else {
5822 credits = default_credits;
5823 }
5824
5825 /*
5826 * WA - write default credits before re-programming
5827 * FIXME: should we also set the resend bit here?
5828 */
5829 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5830 default_credits);
5831
5832 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5833 credits | PFI_CREDIT_RESEND);
5834
5835 /*
5836 * FIXME is this guaranteed to clear
5837 * immediately or should we poll for it?
5838 */
5839 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5840 }
5841
5842 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
5843 {
5844 struct drm_device *dev = old_state->dev;
5845 struct drm_i915_private *dev_priv = dev->dev_private;
5846 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
5847 int req_cdclk;
5848
5849 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
5850 * never fail. */
5851 if (WARN_ON(max_pixclk < 0))
5852 return;
5853
5854 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5855
5856 if (req_cdclk != dev_priv->cdclk_freq) {
5857 /*
5858 * FIXME: We can end up here with all power domains off, yet
5859 * with a CDCLK frequency other than the minimum. To account
5860 * for this take the PIPE-A power domain, which covers the HW
5861 * blocks needed for the following programming. This can be
5862 * removed once it's guaranteed that we get here either with
5863 * the minimum CDCLK set, or the required power domains
5864 * enabled.
5865 */
5866 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5867
5868 if (IS_CHERRYVIEW(dev))
5869 cherryview_set_cdclk(dev, req_cdclk);
5870 else
5871 valleyview_set_cdclk(dev, req_cdclk);
5872
5873 vlv_program_pfi_credits(dev_priv);
5874
5875 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5876 }
5877 }
5878
5879 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5880 {
5881 struct drm_device *dev = crtc->dev;
5882 struct drm_i915_private *dev_priv = to_i915(dev);
5883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5884 struct intel_encoder *encoder;
5885 int pipe = intel_crtc->pipe;
5886 bool is_dsi;
5887
5888 WARN_ON(!crtc->state->enable);
5889
5890 if (intel_crtc->active)
5891 return;
5892
5893 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5894
5895 if (!is_dsi) {
5896 if (IS_CHERRYVIEW(dev))
5897 chv_prepare_pll(intel_crtc, intel_crtc->config);
5898 else
5899 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5900 }
5901
5902 if (intel_crtc->config->has_dp_encoder)
5903 intel_dp_set_m_n(intel_crtc, M1_N1);
5904
5905 intel_set_pipe_timings(intel_crtc);
5906
5907 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5908 struct drm_i915_private *dev_priv = dev->dev_private;
5909
5910 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5911 I915_WRITE(CHV_CANVAS(pipe), 0);
5912 }
5913
5914 i9xx_set_pipeconf(intel_crtc);
5915
5916 intel_crtc->active = true;
5917
5918 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5919
5920 for_each_encoder_on_crtc(dev, crtc, encoder)
5921 if (encoder->pre_pll_enable)
5922 encoder->pre_pll_enable(encoder);
5923
5924 if (!is_dsi) {
5925 if (IS_CHERRYVIEW(dev))
5926 chv_enable_pll(intel_crtc, intel_crtc->config);
5927 else
5928 vlv_enable_pll(intel_crtc, intel_crtc->config);
5929 }
5930
5931 for_each_encoder_on_crtc(dev, crtc, encoder)
5932 if (encoder->pre_enable)
5933 encoder->pre_enable(encoder);
5934
5935 i9xx_pfit_enable(intel_crtc);
5936
5937 intel_crtc_load_lut(crtc);
5938
5939 intel_update_watermarks(crtc);
5940 intel_enable_pipe(intel_crtc);
5941
5942 assert_vblank_disabled(crtc);
5943 drm_crtc_vblank_on(crtc);
5944
5945 for_each_encoder_on_crtc(dev, crtc, encoder)
5946 encoder->enable(encoder);
5947 }
5948
5949 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5950 {
5951 struct drm_device *dev = crtc->base.dev;
5952 struct drm_i915_private *dev_priv = dev->dev_private;
5953
5954 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5955 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5956 }
5957
5958 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5959 {
5960 struct drm_device *dev = crtc->dev;
5961 struct drm_i915_private *dev_priv = to_i915(dev);
5962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5963 struct intel_encoder *encoder;
5964 int pipe = intel_crtc->pipe;
5965
5966 WARN_ON(!crtc->state->enable);
5967
5968 if (intel_crtc->active)
5969 return;
5970
5971 i9xx_set_pll_dividers(intel_crtc);
5972
5973 if (intel_crtc->config->has_dp_encoder)
5974 intel_dp_set_m_n(intel_crtc, M1_N1);
5975
5976 intel_set_pipe_timings(intel_crtc);
5977
5978 i9xx_set_pipeconf(intel_crtc);
5979
5980 intel_crtc->active = true;
5981
5982 if (!IS_GEN2(dev))
5983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5984
5985 for_each_encoder_on_crtc(dev, crtc, encoder)
5986 if (encoder->pre_enable)
5987 encoder->pre_enable(encoder);
5988
5989 i9xx_enable_pll(intel_crtc);
5990
5991 i9xx_pfit_enable(intel_crtc);
5992
5993 intel_crtc_load_lut(crtc);
5994
5995 intel_update_watermarks(crtc);
5996 intel_enable_pipe(intel_crtc);
5997
5998 assert_vblank_disabled(crtc);
5999 drm_crtc_vblank_on(crtc);
6000
6001 for_each_encoder_on_crtc(dev, crtc, encoder)
6002 encoder->enable(encoder);
6003 }
6004
6005 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6006 {
6007 struct drm_device *dev = crtc->base.dev;
6008 struct drm_i915_private *dev_priv = dev->dev_private;
6009
6010 if (!crtc->config->gmch_pfit.control)
6011 return;
6012
6013 assert_pipe_disabled(dev_priv, crtc->pipe);
6014
6015 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6016 I915_READ(PFIT_CONTROL));
6017 I915_WRITE(PFIT_CONTROL, 0);
6018 }
6019
6020 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6021 {
6022 struct drm_device *dev = crtc->dev;
6023 struct drm_i915_private *dev_priv = dev->dev_private;
6024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6025 struct intel_encoder *encoder;
6026 int pipe = intel_crtc->pipe;
6027
6028 if (!intel_crtc->active)
6029 return;
6030
6031 /*
6032 * On gen2 planes are double buffered but the pipe isn't, so we must
6033 * wait for planes to fully turn off before disabling the pipe.
6034 * We also need to wait on all gmch platforms because of the
6035 * self-refresh mode constraint explained above.
6036 */
6037 intel_wait_for_vblank(dev, pipe);
6038
6039 for_each_encoder_on_crtc(dev, crtc, encoder)
6040 encoder->disable(encoder);
6041
6042 drm_crtc_vblank_off(crtc);
6043 assert_vblank_disabled(crtc);
6044
6045 intel_disable_pipe(intel_crtc);
6046
6047 i9xx_pfit_disable(intel_crtc);
6048
6049 for_each_encoder_on_crtc(dev, crtc, encoder)
6050 if (encoder->post_disable)
6051 encoder->post_disable(encoder);
6052
6053 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6054 if (IS_CHERRYVIEW(dev))
6055 chv_disable_pll(dev_priv, pipe);
6056 else if (IS_VALLEYVIEW(dev))
6057 vlv_disable_pll(dev_priv, pipe);
6058 else
6059 i9xx_disable_pll(intel_crtc);
6060 }
6061
6062 if (!IS_GEN2(dev))
6063 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6064
6065 intel_crtc->active = false;
6066 intel_update_watermarks(crtc);
6067
6068 mutex_lock(&dev->struct_mutex);
6069 intel_fbc_update(dev);
6070 mutex_unlock(&dev->struct_mutex);
6071 }
6072
6073 static void i9xx_crtc_off(struct drm_crtc *crtc)
6074 {
6075 }
6076
6077 /* Master function to enable/disable CRTC and corresponding power wells */
6078 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6079 {
6080 struct drm_device *dev = crtc->dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6083 enum intel_display_power_domain domain;
6084 unsigned long domains;
6085
6086 if (enable) {
6087 if (!intel_crtc->active) {
6088 domains = get_crtc_power_domains(crtc);
6089 for_each_power_domain(domain, domains)
6090 intel_display_power_get(dev_priv, domain);
6091 intel_crtc->enabled_power_domains = domains;
6092
6093 dev_priv->display.crtc_enable(crtc);
6094 intel_crtc_enable_planes(crtc);
6095 }
6096 } else {
6097 if (intel_crtc->active) {
6098 intel_crtc_disable_planes(crtc);
6099 dev_priv->display.crtc_disable(crtc);
6100
6101 domains = intel_crtc->enabled_power_domains;
6102 for_each_power_domain(domain, domains)
6103 intel_display_power_put(dev_priv, domain);
6104 intel_crtc->enabled_power_domains = 0;
6105 }
6106 }
6107 }
6108
6109 /**
6110 * Sets the power management mode of the pipe and plane.
6111 */
6112 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6113 {
6114 struct drm_device *dev = crtc->dev;
6115 struct intel_encoder *intel_encoder;
6116 bool enable = false;
6117
6118 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6119 enable |= intel_encoder->connectors_active;
6120
6121 intel_crtc_control(crtc, enable);
6122
6123 crtc->state->active = enable;
6124 }
6125
6126 static void intel_crtc_disable(struct drm_crtc *crtc)
6127 {
6128 struct drm_device *dev = crtc->dev;
6129 struct drm_connector *connector;
6130 struct drm_i915_private *dev_priv = dev->dev_private;
6131
6132 /* crtc should still be enabled when we disable it. */
6133 WARN_ON(!crtc->state->enable);
6134
6135 intel_crtc_disable_planes(crtc);
6136 dev_priv->display.crtc_disable(crtc);
6137 dev_priv->display.off(crtc);
6138
6139 drm_plane_helper_disable(crtc->primary);
6140
6141 /* Update computed state. */
6142 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6143 if (!connector->encoder || !connector->encoder->crtc)
6144 continue;
6145
6146 if (connector->encoder->crtc != crtc)
6147 continue;
6148
6149 connector->dpms = DRM_MODE_DPMS_OFF;
6150 to_intel_encoder(connector->encoder)->connectors_active = false;
6151 }
6152 }
6153
6154 void intel_encoder_destroy(struct drm_encoder *encoder)
6155 {
6156 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6157
6158 drm_encoder_cleanup(encoder);
6159 kfree(intel_encoder);
6160 }
6161
6162 /* Simple dpms helper for encoders with just one connector, no cloning and only
6163 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6164 * state of the entire output pipe. */
6165 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6166 {
6167 if (mode == DRM_MODE_DPMS_ON) {
6168 encoder->connectors_active = true;
6169
6170 intel_crtc_update_dpms(encoder->base.crtc);
6171 } else {
6172 encoder->connectors_active = false;
6173
6174 intel_crtc_update_dpms(encoder->base.crtc);
6175 }
6176 }
6177
6178 /* Cross check the actual hw state with our own modeset state tracking (and it's
6179 * internal consistency). */
6180 static void intel_connector_check_state(struct intel_connector *connector)
6181 {
6182 if (connector->get_hw_state(connector)) {
6183 struct intel_encoder *encoder = connector->encoder;
6184 struct drm_crtc *crtc;
6185 bool encoder_enabled;
6186 enum pipe pipe;
6187
6188 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6189 connector->base.base.id,
6190 connector->base.name);
6191
6192 /* there is no real hw state for MST connectors */
6193 if (connector->mst_port)
6194 return;
6195
6196 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6197 "wrong connector dpms state\n");
6198 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6199 "active connector not linked to encoder\n");
6200
6201 if (encoder) {
6202 I915_STATE_WARN(!encoder->connectors_active,
6203 "encoder->connectors_active not set\n");
6204
6205 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6206 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6207 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6208 return;
6209
6210 crtc = encoder->base.crtc;
6211
6212 I915_STATE_WARN(!crtc->state->enable,
6213 "crtc not enabled\n");
6214 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6215 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6216 "encoder active on the wrong pipe\n");
6217 }
6218 }
6219 }
6220
6221 int intel_connector_init(struct intel_connector *connector)
6222 {
6223 struct drm_connector_state *connector_state;
6224
6225 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6226 if (!connector_state)
6227 return -ENOMEM;
6228
6229 connector->base.state = connector_state;
6230 return 0;
6231 }
6232
6233 struct intel_connector *intel_connector_alloc(void)
6234 {
6235 struct intel_connector *connector;
6236
6237 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6238 if (!connector)
6239 return NULL;
6240
6241 if (intel_connector_init(connector) < 0) {
6242 kfree(connector);
6243 return NULL;
6244 }
6245
6246 return connector;
6247 }
6248
6249 /* Even simpler default implementation, if there's really no special case to
6250 * consider. */
6251 void intel_connector_dpms(struct drm_connector *connector, int mode)
6252 {
6253 /* All the simple cases only support two dpms states. */
6254 if (mode != DRM_MODE_DPMS_ON)
6255 mode = DRM_MODE_DPMS_OFF;
6256
6257 if (mode == connector->dpms)
6258 return;
6259
6260 connector->dpms = mode;
6261
6262 /* Only need to change hw state when actually enabled */
6263 if (connector->encoder)
6264 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6265
6266 intel_modeset_check_state(connector->dev);
6267 }
6268
6269 /* Simple connector->get_hw_state implementation for encoders that support only
6270 * one connector and no cloning and hence the encoder state determines the state
6271 * of the connector. */
6272 bool intel_connector_get_hw_state(struct intel_connector *connector)
6273 {
6274 enum pipe pipe = 0;
6275 struct intel_encoder *encoder = connector->encoder;
6276
6277 return encoder->get_hw_state(encoder, &pipe);
6278 }
6279
6280 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6281 {
6282 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6283 return crtc_state->fdi_lanes;
6284
6285 return 0;
6286 }
6287
6288 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6289 struct intel_crtc_state *pipe_config)
6290 {
6291 struct drm_atomic_state *state = pipe_config->base.state;
6292 struct intel_crtc *other_crtc;
6293 struct intel_crtc_state *other_crtc_state;
6294
6295 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6296 pipe_name(pipe), pipe_config->fdi_lanes);
6297 if (pipe_config->fdi_lanes > 4) {
6298 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6299 pipe_name(pipe), pipe_config->fdi_lanes);
6300 return -EINVAL;
6301 }
6302
6303 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6304 if (pipe_config->fdi_lanes > 2) {
6305 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6306 pipe_config->fdi_lanes);
6307 return -EINVAL;
6308 } else {
6309 return 0;
6310 }
6311 }
6312
6313 if (INTEL_INFO(dev)->num_pipes == 2)
6314 return 0;
6315
6316 /* Ivybridge 3 pipe is really complicated */
6317 switch (pipe) {
6318 case PIPE_A:
6319 return 0;
6320 case PIPE_B:
6321 if (pipe_config->fdi_lanes <= 2)
6322 return 0;
6323
6324 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6325 other_crtc_state =
6326 intel_atomic_get_crtc_state(state, other_crtc);
6327 if (IS_ERR(other_crtc_state))
6328 return PTR_ERR(other_crtc_state);
6329
6330 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6331 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6332 pipe_name(pipe), pipe_config->fdi_lanes);
6333 return -EINVAL;
6334 }
6335 return 0;
6336 case PIPE_C:
6337 if (pipe_config->fdi_lanes > 2) {
6338 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6339 pipe_name(pipe), pipe_config->fdi_lanes);
6340 return -EINVAL;
6341 }
6342
6343 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6344 other_crtc_state =
6345 intel_atomic_get_crtc_state(state, other_crtc);
6346 if (IS_ERR(other_crtc_state))
6347 return PTR_ERR(other_crtc_state);
6348
6349 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6350 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6351 return -EINVAL;
6352 }
6353 return 0;
6354 default:
6355 BUG();
6356 }
6357 }
6358
6359 #define RETRY 1
6360 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6361 struct intel_crtc_state *pipe_config)
6362 {
6363 struct drm_device *dev = intel_crtc->base.dev;
6364 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6365 int lane, link_bw, fdi_dotclock, ret;
6366 bool needs_recompute = false;
6367
6368 retry:
6369 /* FDI is a binary signal running at ~2.7GHz, encoding
6370 * each output octet as 10 bits. The actual frequency
6371 * is stored as a divider into a 100MHz clock, and the
6372 * mode pixel clock is stored in units of 1KHz.
6373 * Hence the bw of each lane in terms of the mode signal
6374 * is:
6375 */
6376 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6377
6378 fdi_dotclock = adjusted_mode->crtc_clock;
6379
6380 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6381 pipe_config->pipe_bpp);
6382
6383 pipe_config->fdi_lanes = lane;
6384
6385 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6386 link_bw, &pipe_config->fdi_m_n);
6387
6388 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6389 intel_crtc->pipe, pipe_config);
6390 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6391 pipe_config->pipe_bpp -= 2*3;
6392 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6393 pipe_config->pipe_bpp);
6394 needs_recompute = true;
6395 pipe_config->bw_constrained = true;
6396
6397 goto retry;
6398 }
6399
6400 if (needs_recompute)
6401 return RETRY;
6402
6403 return ret;
6404 }
6405
6406 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6407 struct intel_crtc_state *pipe_config)
6408 {
6409 pipe_config->ips_enabled = i915.enable_ips &&
6410 hsw_crtc_supports_ips(crtc) &&
6411 pipe_config->pipe_bpp <= 24;
6412 }
6413
6414 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6415 struct intel_crtc_state *pipe_config)
6416 {
6417 struct drm_device *dev = crtc->base.dev;
6418 struct drm_i915_private *dev_priv = dev->dev_private;
6419 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6420 int ret;
6421
6422 /* FIXME should check pixel clock limits on all platforms */
6423 if (INTEL_INFO(dev)->gen < 4) {
6424 int clock_limit =
6425 dev_priv->display.get_display_clock_speed(dev);
6426
6427 /*
6428 * Enable pixel doubling when the dot clock
6429 * is > 90% of the (display) core speed.
6430 *
6431 * GDG double wide on either pipe,
6432 * otherwise pipe A only.
6433 */
6434 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6435 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6436 clock_limit *= 2;
6437 pipe_config->double_wide = true;
6438 }
6439
6440 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6441 return -EINVAL;
6442 }
6443
6444 /*
6445 * Pipe horizontal size must be even in:
6446 * - DVO ganged mode
6447 * - LVDS dual channel mode
6448 * - Double wide pipe
6449 */
6450 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6451 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6452 pipe_config->pipe_src_w &= ~1;
6453
6454 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6455 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6456 */
6457 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6458 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6459 return -EINVAL;
6460
6461 if (HAS_IPS(dev))
6462 hsw_compute_ips_config(crtc, pipe_config);
6463
6464 if (pipe_config->has_pch_encoder)
6465 return ironlake_fdi_compute_config(crtc, pipe_config);
6466
6467 /* FIXME: remove below call once atomic mode set is place and all crtc
6468 * related checks called from atomic_crtc_check function */
6469 ret = 0;
6470 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6471 crtc, pipe_config->base.state);
6472 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6473
6474 return ret;
6475 }
6476
6477 static int skylake_get_display_clock_speed(struct drm_device *dev)
6478 {
6479 struct drm_i915_private *dev_priv = to_i915(dev);
6480 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6481 uint32_t cdctl = I915_READ(CDCLK_CTL);
6482 uint32_t linkrate;
6483
6484 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6485 WARN(1, "LCPLL1 not enabled\n");
6486 return 24000; /* 24MHz is the cd freq with NSSC ref */
6487 }
6488
6489 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6490 return 540000;
6491
6492 linkrate = (I915_READ(DPLL_CTRL1) &
6493 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6494
6495 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6496 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6497 /* vco 8640 */
6498 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6499 case CDCLK_FREQ_450_432:
6500 return 432000;
6501 case CDCLK_FREQ_337_308:
6502 return 308570;
6503 case CDCLK_FREQ_675_617:
6504 return 617140;
6505 default:
6506 WARN(1, "Unknown cd freq selection\n");
6507 }
6508 } else {
6509 /* vco 8100 */
6510 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6511 case CDCLK_FREQ_450_432:
6512 return 450000;
6513 case CDCLK_FREQ_337_308:
6514 return 337500;
6515 case CDCLK_FREQ_675_617:
6516 return 675000;
6517 default:
6518 WARN(1, "Unknown cd freq selection\n");
6519 }
6520 }
6521
6522 /* error case, do as if DPLL0 isn't enabled */
6523 return 24000;
6524 }
6525
6526 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6527 {
6528 struct drm_i915_private *dev_priv = dev->dev_private;
6529 uint32_t lcpll = I915_READ(LCPLL_CTL);
6530 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6531
6532 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6533 return 800000;
6534 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6535 return 450000;
6536 else if (freq == LCPLL_CLK_FREQ_450)
6537 return 450000;
6538 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6539 return 540000;
6540 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6541 return 337500;
6542 else
6543 return 675000;
6544 }
6545
6546 static int haswell_get_display_clock_speed(struct drm_device *dev)
6547 {
6548 struct drm_i915_private *dev_priv = dev->dev_private;
6549 uint32_t lcpll = I915_READ(LCPLL_CTL);
6550 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6551
6552 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6553 return 800000;
6554 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6555 return 450000;
6556 else if (freq == LCPLL_CLK_FREQ_450)
6557 return 450000;
6558 else if (IS_HSW_ULT(dev))
6559 return 337500;
6560 else
6561 return 540000;
6562 }
6563
6564 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6565 {
6566 struct drm_i915_private *dev_priv = dev->dev_private;
6567 u32 val;
6568 int divider;
6569
6570 if (dev_priv->hpll_freq == 0)
6571 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6572
6573 mutex_lock(&dev_priv->dpio_lock);
6574 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6575 mutex_unlock(&dev_priv->dpio_lock);
6576
6577 divider = val & DISPLAY_FREQUENCY_VALUES;
6578
6579 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6580 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6581 "cdclk change in progress\n");
6582
6583 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6584 }
6585
6586 static int ilk_get_display_clock_speed(struct drm_device *dev)
6587 {
6588 return 450000;
6589 }
6590
6591 static int i945_get_display_clock_speed(struct drm_device *dev)
6592 {
6593 return 400000;
6594 }
6595
6596 static int i915_get_display_clock_speed(struct drm_device *dev)
6597 {
6598 return 333333;
6599 }
6600
6601 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6602 {
6603 return 200000;
6604 }
6605
6606 static int pnv_get_display_clock_speed(struct drm_device *dev)
6607 {
6608 u16 gcfgc = 0;
6609
6610 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6611
6612 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6613 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6614 return 266667;
6615 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6616 return 333333;
6617 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6618 return 444444;
6619 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6620 return 200000;
6621 default:
6622 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6623 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6624 return 133333;
6625 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6626 return 166667;
6627 }
6628 }
6629
6630 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6631 {
6632 u16 gcfgc = 0;
6633
6634 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6635
6636 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6637 return 133333;
6638 else {
6639 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6640 case GC_DISPLAY_CLOCK_333_MHZ:
6641 return 333333;
6642 default:
6643 case GC_DISPLAY_CLOCK_190_200_MHZ:
6644 return 190000;
6645 }
6646 }
6647 }
6648
6649 static int i865_get_display_clock_speed(struct drm_device *dev)
6650 {
6651 return 266667;
6652 }
6653
6654 static int i855_get_display_clock_speed(struct drm_device *dev)
6655 {
6656 u16 hpllcc = 0;
6657 /* Assume that the hardware is in the high speed state. This
6658 * should be the default.
6659 */
6660 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6661 case GC_CLOCK_133_200:
6662 case GC_CLOCK_100_200:
6663 return 200000;
6664 case GC_CLOCK_166_250:
6665 return 250000;
6666 case GC_CLOCK_100_133:
6667 return 133333;
6668 }
6669
6670 /* Shouldn't happen */
6671 return 0;
6672 }
6673
6674 static int i830_get_display_clock_speed(struct drm_device *dev)
6675 {
6676 return 133333;
6677 }
6678
6679 static void
6680 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6681 {
6682 while (*num > DATA_LINK_M_N_MASK ||
6683 *den > DATA_LINK_M_N_MASK) {
6684 *num >>= 1;
6685 *den >>= 1;
6686 }
6687 }
6688
6689 static void compute_m_n(unsigned int m, unsigned int n,
6690 uint32_t *ret_m, uint32_t *ret_n)
6691 {
6692 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6693 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6694 intel_reduce_m_n_ratio(ret_m, ret_n);
6695 }
6696
6697 void
6698 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6699 int pixel_clock, int link_clock,
6700 struct intel_link_m_n *m_n)
6701 {
6702 m_n->tu = 64;
6703
6704 compute_m_n(bits_per_pixel * pixel_clock,
6705 link_clock * nlanes * 8,
6706 &m_n->gmch_m, &m_n->gmch_n);
6707
6708 compute_m_n(pixel_clock, link_clock,
6709 &m_n->link_m, &m_n->link_n);
6710 }
6711
6712 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6713 {
6714 if (i915.panel_use_ssc >= 0)
6715 return i915.panel_use_ssc != 0;
6716 return dev_priv->vbt.lvds_use_ssc
6717 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6718 }
6719
6720 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6721 int num_connectors)
6722 {
6723 struct drm_device *dev = crtc_state->base.crtc->dev;
6724 struct drm_i915_private *dev_priv = dev->dev_private;
6725 int refclk;
6726
6727 WARN_ON(!crtc_state->base.state);
6728
6729 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6730 refclk = 100000;
6731 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6732 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6733 refclk = dev_priv->vbt.lvds_ssc_freq;
6734 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6735 } else if (!IS_GEN2(dev)) {
6736 refclk = 96000;
6737 } else {
6738 refclk = 48000;
6739 }
6740
6741 return refclk;
6742 }
6743
6744 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6745 {
6746 return (1 << dpll->n) << 16 | dpll->m2;
6747 }
6748
6749 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6750 {
6751 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6752 }
6753
6754 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6755 struct intel_crtc_state *crtc_state,
6756 intel_clock_t *reduced_clock)
6757 {
6758 struct drm_device *dev = crtc->base.dev;
6759 u32 fp, fp2 = 0;
6760
6761 if (IS_PINEVIEW(dev)) {
6762 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6763 if (reduced_clock)
6764 fp2 = pnv_dpll_compute_fp(reduced_clock);
6765 } else {
6766 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6767 if (reduced_clock)
6768 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6769 }
6770
6771 crtc_state->dpll_hw_state.fp0 = fp;
6772
6773 crtc->lowfreq_avail = false;
6774 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6775 reduced_clock) {
6776 crtc_state->dpll_hw_state.fp1 = fp2;
6777 crtc->lowfreq_avail = true;
6778 } else {
6779 crtc_state->dpll_hw_state.fp1 = fp;
6780 }
6781 }
6782
6783 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6784 pipe)
6785 {
6786 u32 reg_val;
6787
6788 /*
6789 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6790 * and set it to a reasonable value instead.
6791 */
6792 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6793 reg_val &= 0xffffff00;
6794 reg_val |= 0x00000030;
6795 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6796
6797 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6798 reg_val &= 0x8cffffff;
6799 reg_val = 0x8c000000;
6800 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6801
6802 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6803 reg_val &= 0xffffff00;
6804 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6805
6806 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6807 reg_val &= 0x00ffffff;
6808 reg_val |= 0xb0000000;
6809 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6810 }
6811
6812 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6813 struct intel_link_m_n *m_n)
6814 {
6815 struct drm_device *dev = crtc->base.dev;
6816 struct drm_i915_private *dev_priv = dev->dev_private;
6817 int pipe = crtc->pipe;
6818
6819 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6820 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6821 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6822 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6823 }
6824
6825 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6826 struct intel_link_m_n *m_n,
6827 struct intel_link_m_n *m2_n2)
6828 {
6829 struct drm_device *dev = crtc->base.dev;
6830 struct drm_i915_private *dev_priv = dev->dev_private;
6831 int pipe = crtc->pipe;
6832 enum transcoder transcoder = crtc->config->cpu_transcoder;
6833
6834 if (INTEL_INFO(dev)->gen >= 5) {
6835 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6836 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6837 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6838 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6839 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6840 * for gen < 8) and if DRRS is supported (to make sure the
6841 * registers are not unnecessarily accessed).
6842 */
6843 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6844 crtc->config->has_drrs) {
6845 I915_WRITE(PIPE_DATA_M2(transcoder),
6846 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6847 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6848 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6849 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6850 }
6851 } else {
6852 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6853 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6854 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6855 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6856 }
6857 }
6858
6859 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6860 {
6861 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6862
6863 if (m_n == M1_N1) {
6864 dp_m_n = &crtc->config->dp_m_n;
6865 dp_m2_n2 = &crtc->config->dp_m2_n2;
6866 } else if (m_n == M2_N2) {
6867
6868 /*
6869 * M2_N2 registers are not supported. Hence m2_n2 divider value
6870 * needs to be programmed into M1_N1.
6871 */
6872 dp_m_n = &crtc->config->dp_m2_n2;
6873 } else {
6874 DRM_ERROR("Unsupported divider value\n");
6875 return;
6876 }
6877
6878 if (crtc->config->has_pch_encoder)
6879 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6880 else
6881 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6882 }
6883
6884 static void vlv_update_pll(struct intel_crtc *crtc,
6885 struct intel_crtc_state *pipe_config)
6886 {
6887 u32 dpll, dpll_md;
6888
6889 /*
6890 * Enable DPIO clock input. We should never disable the reference
6891 * clock for pipe B, since VGA hotplug / manual detection depends
6892 * on it.
6893 */
6894 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6895 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6896 /* We should never disable this, set it here for state tracking */
6897 if (crtc->pipe == PIPE_B)
6898 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6899 dpll |= DPLL_VCO_ENABLE;
6900 pipe_config->dpll_hw_state.dpll = dpll;
6901
6902 dpll_md = (pipe_config->pixel_multiplier - 1)
6903 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6904 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6905 }
6906
6907 static void vlv_prepare_pll(struct intel_crtc *crtc,
6908 const struct intel_crtc_state *pipe_config)
6909 {
6910 struct drm_device *dev = crtc->base.dev;
6911 struct drm_i915_private *dev_priv = dev->dev_private;
6912 int pipe = crtc->pipe;
6913 u32 mdiv;
6914 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6915 u32 coreclk, reg_val;
6916
6917 mutex_lock(&dev_priv->dpio_lock);
6918
6919 bestn = pipe_config->dpll.n;
6920 bestm1 = pipe_config->dpll.m1;
6921 bestm2 = pipe_config->dpll.m2;
6922 bestp1 = pipe_config->dpll.p1;
6923 bestp2 = pipe_config->dpll.p2;
6924
6925 /* See eDP HDMI DPIO driver vbios notes doc */
6926
6927 /* PLL B needs special handling */
6928 if (pipe == PIPE_B)
6929 vlv_pllb_recal_opamp(dev_priv, pipe);
6930
6931 /* Set up Tx target for periodic Rcomp update */
6932 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6933
6934 /* Disable target IRef on PLL */
6935 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6936 reg_val &= 0x00ffffff;
6937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6938
6939 /* Disable fast lock */
6940 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6941
6942 /* Set idtafcrecal before PLL is enabled */
6943 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6944 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6945 mdiv |= ((bestn << DPIO_N_SHIFT));
6946 mdiv |= (1 << DPIO_K_SHIFT);
6947
6948 /*
6949 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6950 * but we don't support that).
6951 * Note: don't use the DAC post divider as it seems unstable.
6952 */
6953 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6955
6956 mdiv |= DPIO_ENABLE_CALIBRATION;
6957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6958
6959 /* Set HBR and RBR LPF coefficients */
6960 if (pipe_config->port_clock == 162000 ||
6961 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6962 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6964 0x009f0003);
6965 else
6966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6967 0x00d0000f);
6968
6969 if (pipe_config->has_dp_encoder) {
6970 /* Use SSC source */
6971 if (pipe == PIPE_A)
6972 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6973 0x0df40000);
6974 else
6975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6976 0x0df70000);
6977 } else { /* HDMI or VGA */
6978 /* Use bend source */
6979 if (pipe == PIPE_A)
6980 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6981 0x0df70000);
6982 else
6983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6984 0x0df40000);
6985 }
6986
6987 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6988 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6989 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6990 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6991 coreclk |= 0x01000000;
6992 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6993
6994 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6995 mutex_unlock(&dev_priv->dpio_lock);
6996 }
6997
6998 static void chv_update_pll(struct intel_crtc *crtc,
6999 struct intel_crtc_state *pipe_config)
7000 {
7001 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7002 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7003 DPLL_VCO_ENABLE;
7004 if (crtc->pipe != PIPE_A)
7005 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7006
7007 pipe_config->dpll_hw_state.dpll_md =
7008 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7009 }
7010
7011 static void chv_prepare_pll(struct intel_crtc *crtc,
7012 const struct intel_crtc_state *pipe_config)
7013 {
7014 struct drm_device *dev = crtc->base.dev;
7015 struct drm_i915_private *dev_priv = dev->dev_private;
7016 int pipe = crtc->pipe;
7017 int dpll_reg = DPLL(crtc->pipe);
7018 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7019 u32 loopfilter, tribuf_calcntr;
7020 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7021 u32 dpio_val;
7022 int vco;
7023
7024 bestn = pipe_config->dpll.n;
7025 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7026 bestm1 = pipe_config->dpll.m1;
7027 bestm2 = pipe_config->dpll.m2 >> 22;
7028 bestp1 = pipe_config->dpll.p1;
7029 bestp2 = pipe_config->dpll.p2;
7030 vco = pipe_config->dpll.vco;
7031 dpio_val = 0;
7032 loopfilter = 0;
7033
7034 /*
7035 * Enable Refclk and SSC
7036 */
7037 I915_WRITE(dpll_reg,
7038 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7039
7040 mutex_lock(&dev_priv->dpio_lock);
7041
7042 /* p1 and p2 divider */
7043 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7044 5 << DPIO_CHV_S1_DIV_SHIFT |
7045 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7046 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7047 1 << DPIO_CHV_K_DIV_SHIFT);
7048
7049 /* Feedback post-divider - m2 */
7050 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7051
7052 /* Feedback refclk divider - n and m1 */
7053 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7054 DPIO_CHV_M1_DIV_BY_2 |
7055 1 << DPIO_CHV_N_DIV_SHIFT);
7056
7057 /* M2 fraction division */
7058 if (bestm2_frac)
7059 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7060
7061 /* M2 fraction division enable */
7062 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7063 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7064 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7065 if (bestm2_frac)
7066 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7067 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7068
7069 /* Program digital lock detect threshold */
7070 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7071 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7072 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7073 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7074 if (!bestm2_frac)
7075 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7076 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7077
7078 /* Loop filter */
7079 if (vco == 5400000) {
7080 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7081 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7082 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7083 tribuf_calcntr = 0x9;
7084 } else if (vco <= 6200000) {
7085 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7086 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7087 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7088 tribuf_calcntr = 0x9;
7089 } else if (vco <= 6480000) {
7090 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7091 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7092 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7093 tribuf_calcntr = 0x8;
7094 } else {
7095 /* Not supported. Apply the same limits as in the max case */
7096 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7097 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7098 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7099 tribuf_calcntr = 0;
7100 }
7101 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7102
7103 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7104 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7105 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7106 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7107
7108 /* AFC Recal */
7109 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7110 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7111 DPIO_AFC_RECAL);
7112
7113 mutex_unlock(&dev_priv->dpio_lock);
7114 }
7115
7116 /**
7117 * vlv_force_pll_on - forcibly enable just the PLL
7118 * @dev_priv: i915 private structure
7119 * @pipe: pipe PLL to enable
7120 * @dpll: PLL configuration
7121 *
7122 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7123 * in cases where we need the PLL enabled even when @pipe is not going to
7124 * be enabled.
7125 */
7126 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7127 const struct dpll *dpll)
7128 {
7129 struct intel_crtc *crtc =
7130 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7131 struct intel_crtc_state pipe_config = {
7132 .base.crtc = &crtc->base,
7133 .pixel_multiplier = 1,
7134 .dpll = *dpll,
7135 };
7136
7137 if (IS_CHERRYVIEW(dev)) {
7138 chv_update_pll(crtc, &pipe_config);
7139 chv_prepare_pll(crtc, &pipe_config);
7140 chv_enable_pll(crtc, &pipe_config);
7141 } else {
7142 vlv_update_pll(crtc, &pipe_config);
7143 vlv_prepare_pll(crtc, &pipe_config);
7144 vlv_enable_pll(crtc, &pipe_config);
7145 }
7146 }
7147
7148 /**
7149 * vlv_force_pll_off - forcibly disable just the PLL
7150 * @dev_priv: i915 private structure
7151 * @pipe: pipe PLL to disable
7152 *
7153 * Disable the PLL for @pipe. To be used in cases where we need
7154 * the PLL enabled even when @pipe is not going to be enabled.
7155 */
7156 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7157 {
7158 if (IS_CHERRYVIEW(dev))
7159 chv_disable_pll(to_i915(dev), pipe);
7160 else
7161 vlv_disable_pll(to_i915(dev), pipe);
7162 }
7163
7164 static void i9xx_update_pll(struct intel_crtc *crtc,
7165 struct intel_crtc_state *crtc_state,
7166 intel_clock_t *reduced_clock,
7167 int num_connectors)
7168 {
7169 struct drm_device *dev = crtc->base.dev;
7170 struct drm_i915_private *dev_priv = dev->dev_private;
7171 u32 dpll;
7172 bool is_sdvo;
7173 struct dpll *clock = &crtc_state->dpll;
7174
7175 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7176
7177 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7178 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7179
7180 dpll = DPLL_VGA_MODE_DIS;
7181
7182 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7183 dpll |= DPLLB_MODE_LVDS;
7184 else
7185 dpll |= DPLLB_MODE_DAC_SERIAL;
7186
7187 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7188 dpll |= (crtc_state->pixel_multiplier - 1)
7189 << SDVO_MULTIPLIER_SHIFT_HIRES;
7190 }
7191
7192 if (is_sdvo)
7193 dpll |= DPLL_SDVO_HIGH_SPEED;
7194
7195 if (crtc_state->has_dp_encoder)
7196 dpll |= DPLL_SDVO_HIGH_SPEED;
7197
7198 /* compute bitmask from p1 value */
7199 if (IS_PINEVIEW(dev))
7200 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7201 else {
7202 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7203 if (IS_G4X(dev) && reduced_clock)
7204 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7205 }
7206 switch (clock->p2) {
7207 case 5:
7208 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7209 break;
7210 case 7:
7211 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7212 break;
7213 case 10:
7214 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7215 break;
7216 case 14:
7217 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7218 break;
7219 }
7220 if (INTEL_INFO(dev)->gen >= 4)
7221 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7222
7223 if (crtc_state->sdvo_tv_clock)
7224 dpll |= PLL_REF_INPUT_TVCLKINBC;
7225 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7226 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7227 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7228 else
7229 dpll |= PLL_REF_INPUT_DREFCLK;
7230
7231 dpll |= DPLL_VCO_ENABLE;
7232 crtc_state->dpll_hw_state.dpll = dpll;
7233
7234 if (INTEL_INFO(dev)->gen >= 4) {
7235 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7236 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7237 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7238 }
7239 }
7240
7241 static void i8xx_update_pll(struct intel_crtc *crtc,
7242 struct intel_crtc_state *crtc_state,
7243 intel_clock_t *reduced_clock,
7244 int num_connectors)
7245 {
7246 struct drm_device *dev = crtc->base.dev;
7247 struct drm_i915_private *dev_priv = dev->dev_private;
7248 u32 dpll;
7249 struct dpll *clock = &crtc_state->dpll;
7250
7251 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7252
7253 dpll = DPLL_VGA_MODE_DIS;
7254
7255 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7256 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7257 } else {
7258 if (clock->p1 == 2)
7259 dpll |= PLL_P1_DIVIDE_BY_TWO;
7260 else
7261 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7262 if (clock->p2 == 4)
7263 dpll |= PLL_P2_DIVIDE_BY_4;
7264 }
7265
7266 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7267 dpll |= DPLL_DVO_2X_MODE;
7268
7269 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7270 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7271 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7272 else
7273 dpll |= PLL_REF_INPUT_DREFCLK;
7274
7275 dpll |= DPLL_VCO_ENABLE;
7276 crtc_state->dpll_hw_state.dpll = dpll;
7277 }
7278
7279 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7280 {
7281 struct drm_device *dev = intel_crtc->base.dev;
7282 struct drm_i915_private *dev_priv = dev->dev_private;
7283 enum pipe pipe = intel_crtc->pipe;
7284 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7285 struct drm_display_mode *adjusted_mode =
7286 &intel_crtc->config->base.adjusted_mode;
7287 uint32_t crtc_vtotal, crtc_vblank_end;
7288 int vsyncshift = 0;
7289
7290 /* We need to be careful not to changed the adjusted mode, for otherwise
7291 * the hw state checker will get angry at the mismatch. */
7292 crtc_vtotal = adjusted_mode->crtc_vtotal;
7293 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7294
7295 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7296 /* the chip adds 2 halflines automatically */
7297 crtc_vtotal -= 1;
7298 crtc_vblank_end -= 1;
7299
7300 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7301 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7302 else
7303 vsyncshift = adjusted_mode->crtc_hsync_start -
7304 adjusted_mode->crtc_htotal / 2;
7305 if (vsyncshift < 0)
7306 vsyncshift += adjusted_mode->crtc_htotal;
7307 }
7308
7309 if (INTEL_INFO(dev)->gen > 3)
7310 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7311
7312 I915_WRITE(HTOTAL(cpu_transcoder),
7313 (adjusted_mode->crtc_hdisplay - 1) |
7314 ((adjusted_mode->crtc_htotal - 1) << 16));
7315 I915_WRITE(HBLANK(cpu_transcoder),
7316 (adjusted_mode->crtc_hblank_start - 1) |
7317 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7318 I915_WRITE(HSYNC(cpu_transcoder),
7319 (adjusted_mode->crtc_hsync_start - 1) |
7320 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7321
7322 I915_WRITE(VTOTAL(cpu_transcoder),
7323 (adjusted_mode->crtc_vdisplay - 1) |
7324 ((crtc_vtotal - 1) << 16));
7325 I915_WRITE(VBLANK(cpu_transcoder),
7326 (adjusted_mode->crtc_vblank_start - 1) |
7327 ((crtc_vblank_end - 1) << 16));
7328 I915_WRITE(VSYNC(cpu_transcoder),
7329 (adjusted_mode->crtc_vsync_start - 1) |
7330 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7331
7332 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7333 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7334 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7335 * bits. */
7336 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7337 (pipe == PIPE_B || pipe == PIPE_C))
7338 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7339
7340 /* pipesrc controls the size that is scaled from, which should
7341 * always be the user's requested size.
7342 */
7343 I915_WRITE(PIPESRC(pipe),
7344 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7345 (intel_crtc->config->pipe_src_h - 1));
7346 }
7347
7348 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7349 struct intel_crtc_state *pipe_config)
7350 {
7351 struct drm_device *dev = crtc->base.dev;
7352 struct drm_i915_private *dev_priv = dev->dev_private;
7353 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7354 uint32_t tmp;
7355
7356 tmp = I915_READ(HTOTAL(cpu_transcoder));
7357 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7358 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7359 tmp = I915_READ(HBLANK(cpu_transcoder));
7360 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7361 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7362 tmp = I915_READ(HSYNC(cpu_transcoder));
7363 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7364 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7365
7366 tmp = I915_READ(VTOTAL(cpu_transcoder));
7367 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7368 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7369 tmp = I915_READ(VBLANK(cpu_transcoder));
7370 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7371 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7372 tmp = I915_READ(VSYNC(cpu_transcoder));
7373 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7374 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7375
7376 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7377 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7378 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7379 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7380 }
7381
7382 tmp = I915_READ(PIPESRC(crtc->pipe));
7383 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7384 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7385
7386 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7387 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7388 }
7389
7390 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7391 struct intel_crtc_state *pipe_config)
7392 {
7393 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7394 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7395 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7396 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7397
7398 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7399 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7400 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7401 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7402
7403 mode->flags = pipe_config->base.adjusted_mode.flags;
7404
7405 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7406 mode->flags |= pipe_config->base.adjusted_mode.flags;
7407 }
7408
7409 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7410 {
7411 struct drm_device *dev = intel_crtc->base.dev;
7412 struct drm_i915_private *dev_priv = dev->dev_private;
7413 uint32_t pipeconf;
7414
7415 pipeconf = 0;
7416
7417 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7418 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7419 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7420
7421 if (intel_crtc->config->double_wide)
7422 pipeconf |= PIPECONF_DOUBLE_WIDE;
7423
7424 /* only g4x and later have fancy bpc/dither controls */
7425 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7426 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7427 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7428 pipeconf |= PIPECONF_DITHER_EN |
7429 PIPECONF_DITHER_TYPE_SP;
7430
7431 switch (intel_crtc->config->pipe_bpp) {
7432 case 18:
7433 pipeconf |= PIPECONF_6BPC;
7434 break;
7435 case 24:
7436 pipeconf |= PIPECONF_8BPC;
7437 break;
7438 case 30:
7439 pipeconf |= PIPECONF_10BPC;
7440 break;
7441 default:
7442 /* Case prevented by intel_choose_pipe_bpp_dither. */
7443 BUG();
7444 }
7445 }
7446
7447 if (HAS_PIPE_CXSR(dev)) {
7448 if (intel_crtc->lowfreq_avail) {
7449 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7450 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7451 } else {
7452 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7453 }
7454 }
7455
7456 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7457 if (INTEL_INFO(dev)->gen < 4 ||
7458 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7459 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7460 else
7461 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7462 } else
7463 pipeconf |= PIPECONF_PROGRESSIVE;
7464
7465 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7466 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7467
7468 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7469 POSTING_READ(PIPECONF(intel_crtc->pipe));
7470 }
7471
7472 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7473 struct intel_crtc_state *crtc_state)
7474 {
7475 struct drm_device *dev = crtc->base.dev;
7476 struct drm_i915_private *dev_priv = dev->dev_private;
7477 int refclk, num_connectors = 0;
7478 intel_clock_t clock, reduced_clock;
7479 bool ok, has_reduced_clock = false;
7480 bool is_lvds = false, is_dsi = false;
7481 struct intel_encoder *encoder;
7482 const intel_limit_t *limit;
7483 struct drm_atomic_state *state = crtc_state->base.state;
7484 struct drm_connector *connector;
7485 struct drm_connector_state *connector_state;
7486 int i;
7487
7488 for_each_connector_in_state(state, connector, connector_state, i) {
7489 if (connector_state->crtc != &crtc->base)
7490 continue;
7491
7492 encoder = to_intel_encoder(connector_state->best_encoder);
7493
7494 switch (encoder->type) {
7495 case INTEL_OUTPUT_LVDS:
7496 is_lvds = true;
7497 break;
7498 case INTEL_OUTPUT_DSI:
7499 is_dsi = true;
7500 break;
7501 default:
7502 break;
7503 }
7504
7505 num_connectors++;
7506 }
7507
7508 if (is_dsi)
7509 return 0;
7510
7511 if (!crtc_state->clock_set) {
7512 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7513
7514 /*
7515 * Returns a set of divisors for the desired target clock with
7516 * the given refclk, or FALSE. The returned values represent
7517 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7518 * 2) / p1 / p2.
7519 */
7520 limit = intel_limit(crtc_state, refclk);
7521 ok = dev_priv->display.find_dpll(limit, crtc_state,
7522 crtc_state->port_clock,
7523 refclk, NULL, &clock);
7524 if (!ok) {
7525 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7526 return -EINVAL;
7527 }
7528
7529 if (is_lvds && dev_priv->lvds_downclock_avail) {
7530 /*
7531 * Ensure we match the reduced clock's P to the target
7532 * clock. If the clocks don't match, we can't switch
7533 * the display clock by using the FP0/FP1. In such case
7534 * we will disable the LVDS downclock feature.
7535 */
7536 has_reduced_clock =
7537 dev_priv->display.find_dpll(limit, crtc_state,
7538 dev_priv->lvds_downclock,
7539 refclk, &clock,
7540 &reduced_clock);
7541 }
7542 /* Compat-code for transition, will disappear. */
7543 crtc_state->dpll.n = clock.n;
7544 crtc_state->dpll.m1 = clock.m1;
7545 crtc_state->dpll.m2 = clock.m2;
7546 crtc_state->dpll.p1 = clock.p1;
7547 crtc_state->dpll.p2 = clock.p2;
7548 }
7549
7550 if (IS_GEN2(dev)) {
7551 i8xx_update_pll(crtc, crtc_state,
7552 has_reduced_clock ? &reduced_clock : NULL,
7553 num_connectors);
7554 } else if (IS_CHERRYVIEW(dev)) {
7555 chv_update_pll(crtc, crtc_state);
7556 } else if (IS_VALLEYVIEW(dev)) {
7557 vlv_update_pll(crtc, crtc_state);
7558 } else {
7559 i9xx_update_pll(crtc, crtc_state,
7560 has_reduced_clock ? &reduced_clock : NULL,
7561 num_connectors);
7562 }
7563
7564 return 0;
7565 }
7566
7567 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7568 struct intel_crtc_state *pipe_config)
7569 {
7570 struct drm_device *dev = crtc->base.dev;
7571 struct drm_i915_private *dev_priv = dev->dev_private;
7572 uint32_t tmp;
7573
7574 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7575 return;
7576
7577 tmp = I915_READ(PFIT_CONTROL);
7578 if (!(tmp & PFIT_ENABLE))
7579 return;
7580
7581 /* Check whether the pfit is attached to our pipe. */
7582 if (INTEL_INFO(dev)->gen < 4) {
7583 if (crtc->pipe != PIPE_B)
7584 return;
7585 } else {
7586 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7587 return;
7588 }
7589
7590 pipe_config->gmch_pfit.control = tmp;
7591 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7592 if (INTEL_INFO(dev)->gen < 5)
7593 pipe_config->gmch_pfit.lvds_border_bits =
7594 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7595 }
7596
7597 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7598 struct intel_crtc_state *pipe_config)
7599 {
7600 struct drm_device *dev = crtc->base.dev;
7601 struct drm_i915_private *dev_priv = dev->dev_private;
7602 int pipe = pipe_config->cpu_transcoder;
7603 intel_clock_t clock;
7604 u32 mdiv;
7605 int refclk = 100000;
7606
7607 /* In case of MIPI DPLL will not even be used */
7608 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7609 return;
7610
7611 mutex_lock(&dev_priv->dpio_lock);
7612 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7613 mutex_unlock(&dev_priv->dpio_lock);
7614
7615 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7616 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7617 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7618 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7619 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7620
7621 vlv_clock(refclk, &clock);
7622
7623 /* clock.dot is the fast clock */
7624 pipe_config->port_clock = clock.dot / 5;
7625 }
7626
7627 static void
7628 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7629 struct intel_initial_plane_config *plane_config)
7630 {
7631 struct drm_device *dev = crtc->base.dev;
7632 struct drm_i915_private *dev_priv = dev->dev_private;
7633 u32 val, base, offset;
7634 int pipe = crtc->pipe, plane = crtc->plane;
7635 int fourcc, pixel_format;
7636 unsigned int aligned_height;
7637 struct drm_framebuffer *fb;
7638 struct intel_framebuffer *intel_fb;
7639
7640 val = I915_READ(DSPCNTR(plane));
7641 if (!(val & DISPLAY_PLANE_ENABLE))
7642 return;
7643
7644 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7645 if (!intel_fb) {
7646 DRM_DEBUG_KMS("failed to alloc fb\n");
7647 return;
7648 }
7649
7650 fb = &intel_fb->base;
7651
7652 if (INTEL_INFO(dev)->gen >= 4) {
7653 if (val & DISPPLANE_TILED) {
7654 plane_config->tiling = I915_TILING_X;
7655 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7656 }
7657 }
7658
7659 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7660 fourcc = i9xx_format_to_fourcc(pixel_format);
7661 fb->pixel_format = fourcc;
7662 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7663
7664 if (INTEL_INFO(dev)->gen >= 4) {
7665 if (plane_config->tiling)
7666 offset = I915_READ(DSPTILEOFF(plane));
7667 else
7668 offset = I915_READ(DSPLINOFF(plane));
7669 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7670 } else {
7671 base = I915_READ(DSPADDR(plane));
7672 }
7673 plane_config->base = base;
7674
7675 val = I915_READ(PIPESRC(pipe));
7676 fb->width = ((val >> 16) & 0xfff) + 1;
7677 fb->height = ((val >> 0) & 0xfff) + 1;
7678
7679 val = I915_READ(DSPSTRIDE(pipe));
7680 fb->pitches[0] = val & 0xffffffc0;
7681
7682 aligned_height = intel_fb_align_height(dev, fb->height,
7683 fb->pixel_format,
7684 fb->modifier[0]);
7685
7686 plane_config->size = fb->pitches[0] * aligned_height;
7687
7688 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7689 pipe_name(pipe), plane, fb->width, fb->height,
7690 fb->bits_per_pixel, base, fb->pitches[0],
7691 plane_config->size);
7692
7693 plane_config->fb = intel_fb;
7694 }
7695
7696 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7697 struct intel_crtc_state *pipe_config)
7698 {
7699 struct drm_device *dev = crtc->base.dev;
7700 struct drm_i915_private *dev_priv = dev->dev_private;
7701 int pipe = pipe_config->cpu_transcoder;
7702 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7703 intel_clock_t clock;
7704 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7705 int refclk = 100000;
7706
7707 mutex_lock(&dev_priv->dpio_lock);
7708 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7709 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7710 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7711 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7712 mutex_unlock(&dev_priv->dpio_lock);
7713
7714 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7715 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7716 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7717 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7718 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7719
7720 chv_clock(refclk, &clock);
7721
7722 /* clock.dot is the fast clock */
7723 pipe_config->port_clock = clock.dot / 5;
7724 }
7725
7726 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7727 struct intel_crtc_state *pipe_config)
7728 {
7729 struct drm_device *dev = crtc->base.dev;
7730 struct drm_i915_private *dev_priv = dev->dev_private;
7731 uint32_t tmp;
7732
7733 if (!intel_display_power_is_enabled(dev_priv,
7734 POWER_DOMAIN_PIPE(crtc->pipe)))
7735 return false;
7736
7737 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7738 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7739
7740 tmp = I915_READ(PIPECONF(crtc->pipe));
7741 if (!(tmp & PIPECONF_ENABLE))
7742 return false;
7743
7744 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7745 switch (tmp & PIPECONF_BPC_MASK) {
7746 case PIPECONF_6BPC:
7747 pipe_config->pipe_bpp = 18;
7748 break;
7749 case PIPECONF_8BPC:
7750 pipe_config->pipe_bpp = 24;
7751 break;
7752 case PIPECONF_10BPC:
7753 pipe_config->pipe_bpp = 30;
7754 break;
7755 default:
7756 break;
7757 }
7758 }
7759
7760 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7761 pipe_config->limited_color_range = true;
7762
7763 if (INTEL_INFO(dev)->gen < 4)
7764 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7765
7766 intel_get_pipe_timings(crtc, pipe_config);
7767
7768 i9xx_get_pfit_config(crtc, pipe_config);
7769
7770 if (INTEL_INFO(dev)->gen >= 4) {
7771 tmp = I915_READ(DPLL_MD(crtc->pipe));
7772 pipe_config->pixel_multiplier =
7773 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7774 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7775 pipe_config->dpll_hw_state.dpll_md = tmp;
7776 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7777 tmp = I915_READ(DPLL(crtc->pipe));
7778 pipe_config->pixel_multiplier =
7779 ((tmp & SDVO_MULTIPLIER_MASK)
7780 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7781 } else {
7782 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7783 * port and will be fixed up in the encoder->get_config
7784 * function. */
7785 pipe_config->pixel_multiplier = 1;
7786 }
7787 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7788 if (!IS_VALLEYVIEW(dev)) {
7789 /*
7790 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7791 * on 830. Filter it out here so that we don't
7792 * report errors due to that.
7793 */
7794 if (IS_I830(dev))
7795 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7796
7797 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7798 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7799 } else {
7800 /* Mask out read-only status bits. */
7801 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7802 DPLL_PORTC_READY_MASK |
7803 DPLL_PORTB_READY_MASK);
7804 }
7805
7806 if (IS_CHERRYVIEW(dev))
7807 chv_crtc_clock_get(crtc, pipe_config);
7808 else if (IS_VALLEYVIEW(dev))
7809 vlv_crtc_clock_get(crtc, pipe_config);
7810 else
7811 i9xx_crtc_clock_get(crtc, pipe_config);
7812
7813 return true;
7814 }
7815
7816 static void ironlake_init_pch_refclk(struct drm_device *dev)
7817 {
7818 struct drm_i915_private *dev_priv = dev->dev_private;
7819 struct intel_encoder *encoder;
7820 u32 val, final;
7821 bool has_lvds = false;
7822 bool has_cpu_edp = false;
7823 bool has_panel = false;
7824 bool has_ck505 = false;
7825 bool can_ssc = false;
7826
7827 /* We need to take the global config into account */
7828 for_each_intel_encoder(dev, encoder) {
7829 switch (encoder->type) {
7830 case INTEL_OUTPUT_LVDS:
7831 has_panel = true;
7832 has_lvds = true;
7833 break;
7834 case INTEL_OUTPUT_EDP:
7835 has_panel = true;
7836 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7837 has_cpu_edp = true;
7838 break;
7839 default:
7840 break;
7841 }
7842 }
7843
7844 if (HAS_PCH_IBX(dev)) {
7845 has_ck505 = dev_priv->vbt.display_clock_mode;
7846 can_ssc = has_ck505;
7847 } else {
7848 has_ck505 = false;
7849 can_ssc = true;
7850 }
7851
7852 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7853 has_panel, has_lvds, has_ck505);
7854
7855 /* Ironlake: try to setup display ref clock before DPLL
7856 * enabling. This is only under driver's control after
7857 * PCH B stepping, previous chipset stepping should be
7858 * ignoring this setting.
7859 */
7860 val = I915_READ(PCH_DREF_CONTROL);
7861
7862 /* As we must carefully and slowly disable/enable each source in turn,
7863 * compute the final state we want first and check if we need to
7864 * make any changes at all.
7865 */
7866 final = val;
7867 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7868 if (has_ck505)
7869 final |= DREF_NONSPREAD_CK505_ENABLE;
7870 else
7871 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7872
7873 final &= ~DREF_SSC_SOURCE_MASK;
7874 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7875 final &= ~DREF_SSC1_ENABLE;
7876
7877 if (has_panel) {
7878 final |= DREF_SSC_SOURCE_ENABLE;
7879
7880 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7881 final |= DREF_SSC1_ENABLE;
7882
7883 if (has_cpu_edp) {
7884 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7885 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7886 else
7887 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7888 } else
7889 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7890 } else {
7891 final |= DREF_SSC_SOURCE_DISABLE;
7892 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7893 }
7894
7895 if (final == val)
7896 return;
7897
7898 /* Always enable nonspread source */
7899 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7900
7901 if (has_ck505)
7902 val |= DREF_NONSPREAD_CK505_ENABLE;
7903 else
7904 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7905
7906 if (has_panel) {
7907 val &= ~DREF_SSC_SOURCE_MASK;
7908 val |= DREF_SSC_SOURCE_ENABLE;
7909
7910 /* SSC must be turned on before enabling the CPU output */
7911 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7912 DRM_DEBUG_KMS("Using SSC on panel\n");
7913 val |= DREF_SSC1_ENABLE;
7914 } else
7915 val &= ~DREF_SSC1_ENABLE;
7916
7917 /* Get SSC going before enabling the outputs */
7918 I915_WRITE(PCH_DREF_CONTROL, val);
7919 POSTING_READ(PCH_DREF_CONTROL);
7920 udelay(200);
7921
7922 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7923
7924 /* Enable CPU source on CPU attached eDP */
7925 if (has_cpu_edp) {
7926 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7927 DRM_DEBUG_KMS("Using SSC on eDP\n");
7928 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7929 } else
7930 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7931 } else
7932 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7933
7934 I915_WRITE(PCH_DREF_CONTROL, val);
7935 POSTING_READ(PCH_DREF_CONTROL);
7936 udelay(200);
7937 } else {
7938 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7939
7940 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7941
7942 /* Turn off CPU output */
7943 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7944
7945 I915_WRITE(PCH_DREF_CONTROL, val);
7946 POSTING_READ(PCH_DREF_CONTROL);
7947 udelay(200);
7948
7949 /* Turn off the SSC source */
7950 val &= ~DREF_SSC_SOURCE_MASK;
7951 val |= DREF_SSC_SOURCE_DISABLE;
7952
7953 /* Turn off SSC1 */
7954 val &= ~DREF_SSC1_ENABLE;
7955
7956 I915_WRITE(PCH_DREF_CONTROL, val);
7957 POSTING_READ(PCH_DREF_CONTROL);
7958 udelay(200);
7959 }
7960
7961 BUG_ON(val != final);
7962 }
7963
7964 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7965 {
7966 uint32_t tmp;
7967
7968 tmp = I915_READ(SOUTH_CHICKEN2);
7969 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7970 I915_WRITE(SOUTH_CHICKEN2, tmp);
7971
7972 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7973 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7974 DRM_ERROR("FDI mPHY reset assert timeout\n");
7975
7976 tmp = I915_READ(SOUTH_CHICKEN2);
7977 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7978 I915_WRITE(SOUTH_CHICKEN2, tmp);
7979
7980 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7981 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7982 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7983 }
7984
7985 /* WaMPhyProgramming:hsw */
7986 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7987 {
7988 uint32_t tmp;
7989
7990 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7991 tmp &= ~(0xFF << 24);
7992 tmp |= (0x12 << 24);
7993 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7994
7995 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7996 tmp |= (1 << 11);
7997 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7998
7999 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8000 tmp |= (1 << 11);
8001 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8002
8003 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8004 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8005 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8006
8007 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8008 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8009 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8010
8011 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8012 tmp &= ~(7 << 13);
8013 tmp |= (5 << 13);
8014 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8015
8016 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8017 tmp &= ~(7 << 13);
8018 tmp |= (5 << 13);
8019 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8020
8021 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8022 tmp &= ~0xFF;
8023 tmp |= 0x1C;
8024 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8025
8026 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8027 tmp &= ~0xFF;
8028 tmp |= 0x1C;
8029 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8030
8031 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8032 tmp &= ~(0xFF << 16);
8033 tmp |= (0x1C << 16);
8034 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8035
8036 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8037 tmp &= ~(0xFF << 16);
8038 tmp |= (0x1C << 16);
8039 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8040
8041 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8042 tmp |= (1 << 27);
8043 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8044
8045 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8046 tmp |= (1 << 27);
8047 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8048
8049 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8050 tmp &= ~(0xF << 28);
8051 tmp |= (4 << 28);
8052 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8053
8054 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8055 tmp &= ~(0xF << 28);
8056 tmp |= (4 << 28);
8057 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8058 }
8059
8060 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8061 * Programming" based on the parameters passed:
8062 * - Sequence to enable CLKOUT_DP
8063 * - Sequence to enable CLKOUT_DP without spread
8064 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8065 */
8066 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8067 bool with_fdi)
8068 {
8069 struct drm_i915_private *dev_priv = dev->dev_private;
8070 uint32_t reg, tmp;
8071
8072 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8073 with_spread = true;
8074 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8075 with_fdi, "LP PCH doesn't have FDI\n"))
8076 with_fdi = false;
8077
8078 mutex_lock(&dev_priv->dpio_lock);
8079
8080 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8081 tmp &= ~SBI_SSCCTL_DISABLE;
8082 tmp |= SBI_SSCCTL_PATHALT;
8083 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8084
8085 udelay(24);
8086
8087 if (with_spread) {
8088 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8089 tmp &= ~SBI_SSCCTL_PATHALT;
8090 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8091
8092 if (with_fdi) {
8093 lpt_reset_fdi_mphy(dev_priv);
8094 lpt_program_fdi_mphy(dev_priv);
8095 }
8096 }
8097
8098 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8099 SBI_GEN0 : SBI_DBUFF0;
8100 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8101 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8102 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8103
8104 mutex_unlock(&dev_priv->dpio_lock);
8105 }
8106
8107 /* Sequence to disable CLKOUT_DP */
8108 static void lpt_disable_clkout_dp(struct drm_device *dev)
8109 {
8110 struct drm_i915_private *dev_priv = dev->dev_private;
8111 uint32_t reg, tmp;
8112
8113 mutex_lock(&dev_priv->dpio_lock);
8114
8115 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8116 SBI_GEN0 : SBI_DBUFF0;
8117 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8118 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8119 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8120
8121 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8122 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8123 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8124 tmp |= SBI_SSCCTL_PATHALT;
8125 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8126 udelay(32);
8127 }
8128 tmp |= SBI_SSCCTL_DISABLE;
8129 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8130 }
8131
8132 mutex_unlock(&dev_priv->dpio_lock);
8133 }
8134
8135 static void lpt_init_pch_refclk(struct drm_device *dev)
8136 {
8137 struct intel_encoder *encoder;
8138 bool has_vga = false;
8139
8140 for_each_intel_encoder(dev, encoder) {
8141 switch (encoder->type) {
8142 case INTEL_OUTPUT_ANALOG:
8143 has_vga = true;
8144 break;
8145 default:
8146 break;
8147 }
8148 }
8149
8150 if (has_vga)
8151 lpt_enable_clkout_dp(dev, true, true);
8152 else
8153 lpt_disable_clkout_dp(dev);
8154 }
8155
8156 /*
8157 * Initialize reference clocks when the driver loads
8158 */
8159 void intel_init_pch_refclk(struct drm_device *dev)
8160 {
8161 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8162 ironlake_init_pch_refclk(dev);
8163 else if (HAS_PCH_LPT(dev))
8164 lpt_init_pch_refclk(dev);
8165 }
8166
8167 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8168 {
8169 struct drm_device *dev = crtc_state->base.crtc->dev;
8170 struct drm_i915_private *dev_priv = dev->dev_private;
8171 struct drm_atomic_state *state = crtc_state->base.state;
8172 struct drm_connector *connector;
8173 struct drm_connector_state *connector_state;
8174 struct intel_encoder *encoder;
8175 int num_connectors = 0, i;
8176 bool is_lvds = false;
8177
8178 for_each_connector_in_state(state, connector, connector_state, i) {
8179 if (connector_state->crtc != crtc_state->base.crtc)
8180 continue;
8181
8182 encoder = to_intel_encoder(connector_state->best_encoder);
8183
8184 switch (encoder->type) {
8185 case INTEL_OUTPUT_LVDS:
8186 is_lvds = true;
8187 break;
8188 default:
8189 break;
8190 }
8191 num_connectors++;
8192 }
8193
8194 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8195 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8196 dev_priv->vbt.lvds_ssc_freq);
8197 return dev_priv->vbt.lvds_ssc_freq;
8198 }
8199
8200 return 120000;
8201 }
8202
8203 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8204 {
8205 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8207 int pipe = intel_crtc->pipe;
8208 uint32_t val;
8209
8210 val = 0;
8211
8212 switch (intel_crtc->config->pipe_bpp) {
8213 case 18:
8214 val |= PIPECONF_6BPC;
8215 break;
8216 case 24:
8217 val |= PIPECONF_8BPC;
8218 break;
8219 case 30:
8220 val |= PIPECONF_10BPC;
8221 break;
8222 case 36:
8223 val |= PIPECONF_12BPC;
8224 break;
8225 default:
8226 /* Case prevented by intel_choose_pipe_bpp_dither. */
8227 BUG();
8228 }
8229
8230 if (intel_crtc->config->dither)
8231 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8232
8233 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8234 val |= PIPECONF_INTERLACED_ILK;
8235 else
8236 val |= PIPECONF_PROGRESSIVE;
8237
8238 if (intel_crtc->config->limited_color_range)
8239 val |= PIPECONF_COLOR_RANGE_SELECT;
8240
8241 I915_WRITE(PIPECONF(pipe), val);
8242 POSTING_READ(PIPECONF(pipe));
8243 }
8244
8245 /*
8246 * Set up the pipe CSC unit.
8247 *
8248 * Currently only full range RGB to limited range RGB conversion
8249 * is supported, but eventually this should handle various
8250 * RGB<->YCbCr scenarios as well.
8251 */
8252 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8253 {
8254 struct drm_device *dev = crtc->dev;
8255 struct drm_i915_private *dev_priv = dev->dev_private;
8256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8257 int pipe = intel_crtc->pipe;
8258 uint16_t coeff = 0x7800; /* 1.0 */
8259
8260 /*
8261 * TODO: Check what kind of values actually come out of the pipe
8262 * with these coeff/postoff values and adjust to get the best
8263 * accuracy. Perhaps we even need to take the bpc value into
8264 * consideration.
8265 */
8266
8267 if (intel_crtc->config->limited_color_range)
8268 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8269
8270 /*
8271 * GY/GU and RY/RU should be the other way around according
8272 * to BSpec, but reality doesn't agree. Just set them up in
8273 * a way that results in the correct picture.
8274 */
8275 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8276 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8277
8278 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8279 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8280
8281 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8282 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8283
8284 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8285 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8286 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8287
8288 if (INTEL_INFO(dev)->gen > 6) {
8289 uint16_t postoff = 0;
8290
8291 if (intel_crtc->config->limited_color_range)
8292 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8293
8294 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8295 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8296 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8297
8298 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8299 } else {
8300 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8301
8302 if (intel_crtc->config->limited_color_range)
8303 mode |= CSC_BLACK_SCREEN_OFFSET;
8304
8305 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8306 }
8307 }
8308
8309 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8310 {
8311 struct drm_device *dev = crtc->dev;
8312 struct drm_i915_private *dev_priv = dev->dev_private;
8313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8314 enum pipe pipe = intel_crtc->pipe;
8315 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8316 uint32_t val;
8317
8318 val = 0;
8319
8320 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8321 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8322
8323 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8324 val |= PIPECONF_INTERLACED_ILK;
8325 else
8326 val |= PIPECONF_PROGRESSIVE;
8327
8328 I915_WRITE(PIPECONF(cpu_transcoder), val);
8329 POSTING_READ(PIPECONF(cpu_transcoder));
8330
8331 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8332 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8333
8334 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8335 val = 0;
8336
8337 switch (intel_crtc->config->pipe_bpp) {
8338 case 18:
8339 val |= PIPEMISC_DITHER_6_BPC;
8340 break;
8341 case 24:
8342 val |= PIPEMISC_DITHER_8_BPC;
8343 break;
8344 case 30:
8345 val |= PIPEMISC_DITHER_10_BPC;
8346 break;
8347 case 36:
8348 val |= PIPEMISC_DITHER_12_BPC;
8349 break;
8350 default:
8351 /* Case prevented by pipe_config_set_bpp. */
8352 BUG();
8353 }
8354
8355 if (intel_crtc->config->dither)
8356 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8357
8358 I915_WRITE(PIPEMISC(pipe), val);
8359 }
8360 }
8361
8362 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8363 struct intel_crtc_state *crtc_state,
8364 intel_clock_t *clock,
8365 bool *has_reduced_clock,
8366 intel_clock_t *reduced_clock)
8367 {
8368 struct drm_device *dev = crtc->dev;
8369 struct drm_i915_private *dev_priv = dev->dev_private;
8370 int refclk;
8371 const intel_limit_t *limit;
8372 bool ret, is_lvds = false;
8373
8374 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8375
8376 refclk = ironlake_get_refclk(crtc_state);
8377
8378 /*
8379 * Returns a set of divisors for the desired target clock with the given
8380 * refclk, or FALSE. The returned values represent the clock equation:
8381 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8382 */
8383 limit = intel_limit(crtc_state, refclk);
8384 ret = dev_priv->display.find_dpll(limit, crtc_state,
8385 crtc_state->port_clock,
8386 refclk, NULL, clock);
8387 if (!ret)
8388 return false;
8389
8390 if (is_lvds && dev_priv->lvds_downclock_avail) {
8391 /*
8392 * Ensure we match the reduced clock's P to the target clock.
8393 * If the clocks don't match, we can't switch the display clock
8394 * by using the FP0/FP1. In such case we will disable the LVDS
8395 * downclock feature.
8396 */
8397 *has_reduced_clock =
8398 dev_priv->display.find_dpll(limit, crtc_state,
8399 dev_priv->lvds_downclock,
8400 refclk, clock,
8401 reduced_clock);
8402 }
8403
8404 return true;
8405 }
8406
8407 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8408 {
8409 /*
8410 * Account for spread spectrum to avoid
8411 * oversubscribing the link. Max center spread
8412 * is 2.5%; use 5% for safety's sake.
8413 */
8414 u32 bps = target_clock * bpp * 21 / 20;
8415 return DIV_ROUND_UP(bps, link_bw * 8);
8416 }
8417
8418 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8419 {
8420 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8421 }
8422
8423 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8424 struct intel_crtc_state *crtc_state,
8425 u32 *fp,
8426 intel_clock_t *reduced_clock, u32 *fp2)
8427 {
8428 struct drm_crtc *crtc = &intel_crtc->base;
8429 struct drm_device *dev = crtc->dev;
8430 struct drm_i915_private *dev_priv = dev->dev_private;
8431 struct drm_atomic_state *state = crtc_state->base.state;
8432 struct drm_connector *connector;
8433 struct drm_connector_state *connector_state;
8434 struct intel_encoder *encoder;
8435 uint32_t dpll;
8436 int factor, num_connectors = 0, i;
8437 bool is_lvds = false, is_sdvo = false;
8438
8439 for_each_connector_in_state(state, connector, connector_state, i) {
8440 if (connector_state->crtc != crtc_state->base.crtc)
8441 continue;
8442
8443 encoder = to_intel_encoder(connector_state->best_encoder);
8444
8445 switch (encoder->type) {
8446 case INTEL_OUTPUT_LVDS:
8447 is_lvds = true;
8448 break;
8449 case INTEL_OUTPUT_SDVO:
8450 case INTEL_OUTPUT_HDMI:
8451 is_sdvo = true;
8452 break;
8453 default:
8454 break;
8455 }
8456
8457 num_connectors++;
8458 }
8459
8460 /* Enable autotuning of the PLL clock (if permissible) */
8461 factor = 21;
8462 if (is_lvds) {
8463 if ((intel_panel_use_ssc(dev_priv) &&
8464 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8465 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8466 factor = 25;
8467 } else if (crtc_state->sdvo_tv_clock)
8468 factor = 20;
8469
8470 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8471 *fp |= FP_CB_TUNE;
8472
8473 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8474 *fp2 |= FP_CB_TUNE;
8475
8476 dpll = 0;
8477
8478 if (is_lvds)
8479 dpll |= DPLLB_MODE_LVDS;
8480 else
8481 dpll |= DPLLB_MODE_DAC_SERIAL;
8482
8483 dpll |= (crtc_state->pixel_multiplier - 1)
8484 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8485
8486 if (is_sdvo)
8487 dpll |= DPLL_SDVO_HIGH_SPEED;
8488 if (crtc_state->has_dp_encoder)
8489 dpll |= DPLL_SDVO_HIGH_SPEED;
8490
8491 /* compute bitmask from p1 value */
8492 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8493 /* also FPA1 */
8494 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8495
8496 switch (crtc_state->dpll.p2) {
8497 case 5:
8498 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8499 break;
8500 case 7:
8501 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8502 break;
8503 case 10:
8504 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8505 break;
8506 case 14:
8507 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8508 break;
8509 }
8510
8511 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8512 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8513 else
8514 dpll |= PLL_REF_INPUT_DREFCLK;
8515
8516 return dpll | DPLL_VCO_ENABLE;
8517 }
8518
8519 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8520 struct intel_crtc_state *crtc_state)
8521 {
8522 struct drm_device *dev = crtc->base.dev;
8523 intel_clock_t clock, reduced_clock;
8524 u32 dpll = 0, fp = 0, fp2 = 0;
8525 bool ok, has_reduced_clock = false;
8526 bool is_lvds = false;
8527 struct intel_shared_dpll *pll;
8528
8529 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8530
8531 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8532 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8533
8534 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8535 &has_reduced_clock, &reduced_clock);
8536 if (!ok && !crtc_state->clock_set) {
8537 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8538 return -EINVAL;
8539 }
8540 /* Compat-code for transition, will disappear. */
8541 if (!crtc_state->clock_set) {
8542 crtc_state->dpll.n = clock.n;
8543 crtc_state->dpll.m1 = clock.m1;
8544 crtc_state->dpll.m2 = clock.m2;
8545 crtc_state->dpll.p1 = clock.p1;
8546 crtc_state->dpll.p2 = clock.p2;
8547 }
8548
8549 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8550 if (crtc_state->has_pch_encoder) {
8551 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8552 if (has_reduced_clock)
8553 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8554
8555 dpll = ironlake_compute_dpll(crtc, crtc_state,
8556 &fp, &reduced_clock,
8557 has_reduced_clock ? &fp2 : NULL);
8558
8559 crtc_state->dpll_hw_state.dpll = dpll;
8560 crtc_state->dpll_hw_state.fp0 = fp;
8561 if (has_reduced_clock)
8562 crtc_state->dpll_hw_state.fp1 = fp2;
8563 else
8564 crtc_state->dpll_hw_state.fp1 = fp;
8565
8566 pll = intel_get_shared_dpll(crtc, crtc_state);
8567 if (pll == NULL) {
8568 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8569 pipe_name(crtc->pipe));
8570 return -EINVAL;
8571 }
8572 }
8573
8574 if (is_lvds && has_reduced_clock)
8575 crtc->lowfreq_avail = true;
8576 else
8577 crtc->lowfreq_avail = false;
8578
8579 return 0;
8580 }
8581
8582 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8583 struct intel_link_m_n *m_n)
8584 {
8585 struct drm_device *dev = crtc->base.dev;
8586 struct drm_i915_private *dev_priv = dev->dev_private;
8587 enum pipe pipe = crtc->pipe;
8588
8589 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8590 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8591 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8592 & ~TU_SIZE_MASK;
8593 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8594 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8595 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8596 }
8597
8598 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8599 enum transcoder transcoder,
8600 struct intel_link_m_n *m_n,
8601 struct intel_link_m_n *m2_n2)
8602 {
8603 struct drm_device *dev = crtc->base.dev;
8604 struct drm_i915_private *dev_priv = dev->dev_private;
8605 enum pipe pipe = crtc->pipe;
8606
8607 if (INTEL_INFO(dev)->gen >= 5) {
8608 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8609 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8610 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8611 & ~TU_SIZE_MASK;
8612 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8613 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8614 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8615 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8616 * gen < 8) and if DRRS is supported (to make sure the
8617 * registers are not unnecessarily read).
8618 */
8619 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8620 crtc->config->has_drrs) {
8621 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8622 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8623 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8624 & ~TU_SIZE_MASK;
8625 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8626 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8627 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8628 }
8629 } else {
8630 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8631 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8632 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8633 & ~TU_SIZE_MASK;
8634 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8635 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8636 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8637 }
8638 }
8639
8640 void intel_dp_get_m_n(struct intel_crtc *crtc,
8641 struct intel_crtc_state *pipe_config)
8642 {
8643 if (pipe_config->has_pch_encoder)
8644 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8645 else
8646 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8647 &pipe_config->dp_m_n,
8648 &pipe_config->dp_m2_n2);
8649 }
8650
8651 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8652 struct intel_crtc_state *pipe_config)
8653 {
8654 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8655 &pipe_config->fdi_m_n, NULL);
8656 }
8657
8658 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8659 struct intel_crtc_state *pipe_config)
8660 {
8661 struct drm_device *dev = crtc->base.dev;
8662 struct drm_i915_private *dev_priv = dev->dev_private;
8663 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8664 uint32_t ps_ctrl = 0;
8665 int id = -1;
8666 int i;
8667
8668 /* find scaler attached to this pipe */
8669 for (i = 0; i < crtc->num_scalers; i++) {
8670 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8671 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8672 id = i;
8673 pipe_config->pch_pfit.enabled = true;
8674 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8675 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8676 break;
8677 }
8678 }
8679
8680 scaler_state->scaler_id = id;
8681 if (id >= 0) {
8682 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8683 } else {
8684 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8685 }
8686 }
8687
8688 static void
8689 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8690 struct intel_initial_plane_config *plane_config)
8691 {
8692 struct drm_device *dev = crtc->base.dev;
8693 struct drm_i915_private *dev_priv = dev->dev_private;
8694 u32 val, base, offset, stride_mult, tiling;
8695 int pipe = crtc->pipe;
8696 int fourcc, pixel_format;
8697 unsigned int aligned_height;
8698 struct drm_framebuffer *fb;
8699 struct intel_framebuffer *intel_fb;
8700
8701 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8702 if (!intel_fb) {
8703 DRM_DEBUG_KMS("failed to alloc fb\n");
8704 return;
8705 }
8706
8707 fb = &intel_fb->base;
8708
8709 val = I915_READ(PLANE_CTL(pipe, 0));
8710 if (!(val & PLANE_CTL_ENABLE))
8711 goto error;
8712
8713 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8714 fourcc = skl_format_to_fourcc(pixel_format,
8715 val & PLANE_CTL_ORDER_RGBX,
8716 val & PLANE_CTL_ALPHA_MASK);
8717 fb->pixel_format = fourcc;
8718 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8719
8720 tiling = val & PLANE_CTL_TILED_MASK;
8721 switch (tiling) {
8722 case PLANE_CTL_TILED_LINEAR:
8723 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8724 break;
8725 case PLANE_CTL_TILED_X:
8726 plane_config->tiling = I915_TILING_X;
8727 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8728 break;
8729 case PLANE_CTL_TILED_Y:
8730 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8731 break;
8732 case PLANE_CTL_TILED_YF:
8733 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8734 break;
8735 default:
8736 MISSING_CASE(tiling);
8737 goto error;
8738 }
8739
8740 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8741 plane_config->base = base;
8742
8743 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8744
8745 val = I915_READ(PLANE_SIZE(pipe, 0));
8746 fb->height = ((val >> 16) & 0xfff) + 1;
8747 fb->width = ((val >> 0) & 0x1fff) + 1;
8748
8749 val = I915_READ(PLANE_STRIDE(pipe, 0));
8750 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8751 fb->pixel_format);
8752 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8753
8754 aligned_height = intel_fb_align_height(dev, fb->height,
8755 fb->pixel_format,
8756 fb->modifier[0]);
8757
8758 plane_config->size = fb->pitches[0] * aligned_height;
8759
8760 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8761 pipe_name(pipe), fb->width, fb->height,
8762 fb->bits_per_pixel, base, fb->pitches[0],
8763 plane_config->size);
8764
8765 plane_config->fb = intel_fb;
8766 return;
8767
8768 error:
8769 kfree(fb);
8770 }
8771
8772 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8773 struct intel_crtc_state *pipe_config)
8774 {
8775 struct drm_device *dev = crtc->base.dev;
8776 struct drm_i915_private *dev_priv = dev->dev_private;
8777 uint32_t tmp;
8778
8779 tmp = I915_READ(PF_CTL(crtc->pipe));
8780
8781 if (tmp & PF_ENABLE) {
8782 pipe_config->pch_pfit.enabled = true;
8783 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8784 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8785
8786 /* We currently do not free assignements of panel fitters on
8787 * ivb/hsw (since we don't use the higher upscaling modes which
8788 * differentiates them) so just WARN about this case for now. */
8789 if (IS_GEN7(dev)) {
8790 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8791 PF_PIPE_SEL_IVB(crtc->pipe));
8792 }
8793 }
8794 }
8795
8796 static void
8797 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8798 struct intel_initial_plane_config *plane_config)
8799 {
8800 struct drm_device *dev = crtc->base.dev;
8801 struct drm_i915_private *dev_priv = dev->dev_private;
8802 u32 val, base, offset;
8803 int pipe = crtc->pipe;
8804 int fourcc, pixel_format;
8805 unsigned int aligned_height;
8806 struct drm_framebuffer *fb;
8807 struct intel_framebuffer *intel_fb;
8808
8809 val = I915_READ(DSPCNTR(pipe));
8810 if (!(val & DISPLAY_PLANE_ENABLE))
8811 return;
8812
8813 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8814 if (!intel_fb) {
8815 DRM_DEBUG_KMS("failed to alloc fb\n");
8816 return;
8817 }
8818
8819 fb = &intel_fb->base;
8820
8821 if (INTEL_INFO(dev)->gen >= 4) {
8822 if (val & DISPPLANE_TILED) {
8823 plane_config->tiling = I915_TILING_X;
8824 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8825 }
8826 }
8827
8828 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8829 fourcc = i9xx_format_to_fourcc(pixel_format);
8830 fb->pixel_format = fourcc;
8831 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8832
8833 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8834 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8835 offset = I915_READ(DSPOFFSET(pipe));
8836 } else {
8837 if (plane_config->tiling)
8838 offset = I915_READ(DSPTILEOFF(pipe));
8839 else
8840 offset = I915_READ(DSPLINOFF(pipe));
8841 }
8842 plane_config->base = base;
8843
8844 val = I915_READ(PIPESRC(pipe));
8845 fb->width = ((val >> 16) & 0xfff) + 1;
8846 fb->height = ((val >> 0) & 0xfff) + 1;
8847
8848 val = I915_READ(DSPSTRIDE(pipe));
8849 fb->pitches[0] = val & 0xffffffc0;
8850
8851 aligned_height = intel_fb_align_height(dev, fb->height,
8852 fb->pixel_format,
8853 fb->modifier[0]);
8854
8855 plane_config->size = fb->pitches[0] * aligned_height;
8856
8857 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8858 pipe_name(pipe), fb->width, fb->height,
8859 fb->bits_per_pixel, base, fb->pitches[0],
8860 plane_config->size);
8861
8862 plane_config->fb = intel_fb;
8863 }
8864
8865 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8866 struct intel_crtc_state *pipe_config)
8867 {
8868 struct drm_device *dev = crtc->base.dev;
8869 struct drm_i915_private *dev_priv = dev->dev_private;
8870 uint32_t tmp;
8871
8872 if (!intel_display_power_is_enabled(dev_priv,
8873 POWER_DOMAIN_PIPE(crtc->pipe)))
8874 return false;
8875
8876 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8877 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8878
8879 tmp = I915_READ(PIPECONF(crtc->pipe));
8880 if (!(tmp & PIPECONF_ENABLE))
8881 return false;
8882
8883 switch (tmp & PIPECONF_BPC_MASK) {
8884 case PIPECONF_6BPC:
8885 pipe_config->pipe_bpp = 18;
8886 break;
8887 case PIPECONF_8BPC:
8888 pipe_config->pipe_bpp = 24;
8889 break;
8890 case PIPECONF_10BPC:
8891 pipe_config->pipe_bpp = 30;
8892 break;
8893 case PIPECONF_12BPC:
8894 pipe_config->pipe_bpp = 36;
8895 break;
8896 default:
8897 break;
8898 }
8899
8900 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8901 pipe_config->limited_color_range = true;
8902
8903 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8904 struct intel_shared_dpll *pll;
8905
8906 pipe_config->has_pch_encoder = true;
8907
8908 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8909 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8910 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8911
8912 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8913
8914 if (HAS_PCH_IBX(dev_priv->dev)) {
8915 pipe_config->shared_dpll =
8916 (enum intel_dpll_id) crtc->pipe;
8917 } else {
8918 tmp = I915_READ(PCH_DPLL_SEL);
8919 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8920 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8921 else
8922 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8923 }
8924
8925 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8926
8927 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8928 &pipe_config->dpll_hw_state));
8929
8930 tmp = pipe_config->dpll_hw_state.dpll;
8931 pipe_config->pixel_multiplier =
8932 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8933 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8934
8935 ironlake_pch_clock_get(crtc, pipe_config);
8936 } else {
8937 pipe_config->pixel_multiplier = 1;
8938 }
8939
8940 intel_get_pipe_timings(crtc, pipe_config);
8941
8942 ironlake_get_pfit_config(crtc, pipe_config);
8943
8944 return true;
8945 }
8946
8947 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8948 {
8949 struct drm_device *dev = dev_priv->dev;
8950 struct intel_crtc *crtc;
8951
8952 for_each_intel_crtc(dev, crtc)
8953 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8954 pipe_name(crtc->pipe));
8955
8956 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8957 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8958 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8959 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8960 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8961 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8962 "CPU PWM1 enabled\n");
8963 if (IS_HASWELL(dev))
8964 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8965 "CPU PWM2 enabled\n");
8966 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8967 "PCH PWM1 enabled\n");
8968 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8969 "Utility pin enabled\n");
8970 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8971
8972 /*
8973 * In theory we can still leave IRQs enabled, as long as only the HPD
8974 * interrupts remain enabled. We used to check for that, but since it's
8975 * gen-specific and since we only disable LCPLL after we fully disable
8976 * the interrupts, the check below should be enough.
8977 */
8978 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8979 }
8980
8981 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8982 {
8983 struct drm_device *dev = dev_priv->dev;
8984
8985 if (IS_HASWELL(dev))
8986 return I915_READ(D_COMP_HSW);
8987 else
8988 return I915_READ(D_COMP_BDW);
8989 }
8990
8991 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8992 {
8993 struct drm_device *dev = dev_priv->dev;
8994
8995 if (IS_HASWELL(dev)) {
8996 mutex_lock(&dev_priv->rps.hw_lock);
8997 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8998 val))
8999 DRM_ERROR("Failed to write to D_COMP\n");
9000 mutex_unlock(&dev_priv->rps.hw_lock);
9001 } else {
9002 I915_WRITE(D_COMP_BDW, val);
9003 POSTING_READ(D_COMP_BDW);
9004 }
9005 }
9006
9007 /*
9008 * This function implements pieces of two sequences from BSpec:
9009 * - Sequence for display software to disable LCPLL
9010 * - Sequence for display software to allow package C8+
9011 * The steps implemented here are just the steps that actually touch the LCPLL
9012 * register. Callers should take care of disabling all the display engine
9013 * functions, doing the mode unset, fixing interrupts, etc.
9014 */
9015 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9016 bool switch_to_fclk, bool allow_power_down)
9017 {
9018 uint32_t val;
9019
9020 assert_can_disable_lcpll(dev_priv);
9021
9022 val = I915_READ(LCPLL_CTL);
9023
9024 if (switch_to_fclk) {
9025 val |= LCPLL_CD_SOURCE_FCLK;
9026 I915_WRITE(LCPLL_CTL, val);
9027
9028 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9029 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9030 DRM_ERROR("Switching to FCLK failed\n");
9031
9032 val = I915_READ(LCPLL_CTL);
9033 }
9034
9035 val |= LCPLL_PLL_DISABLE;
9036 I915_WRITE(LCPLL_CTL, val);
9037 POSTING_READ(LCPLL_CTL);
9038
9039 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9040 DRM_ERROR("LCPLL still locked\n");
9041
9042 val = hsw_read_dcomp(dev_priv);
9043 val |= D_COMP_COMP_DISABLE;
9044 hsw_write_dcomp(dev_priv, val);
9045 ndelay(100);
9046
9047 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9048 1))
9049 DRM_ERROR("D_COMP RCOMP still in progress\n");
9050
9051 if (allow_power_down) {
9052 val = I915_READ(LCPLL_CTL);
9053 val |= LCPLL_POWER_DOWN_ALLOW;
9054 I915_WRITE(LCPLL_CTL, val);
9055 POSTING_READ(LCPLL_CTL);
9056 }
9057 }
9058
9059 /*
9060 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9061 * source.
9062 */
9063 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9064 {
9065 uint32_t val;
9066
9067 val = I915_READ(LCPLL_CTL);
9068
9069 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9070 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9071 return;
9072
9073 /*
9074 * Make sure we're not on PC8 state before disabling PC8, otherwise
9075 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9076 */
9077 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9078
9079 if (val & LCPLL_POWER_DOWN_ALLOW) {
9080 val &= ~LCPLL_POWER_DOWN_ALLOW;
9081 I915_WRITE(LCPLL_CTL, val);
9082 POSTING_READ(LCPLL_CTL);
9083 }
9084
9085 val = hsw_read_dcomp(dev_priv);
9086 val |= D_COMP_COMP_FORCE;
9087 val &= ~D_COMP_COMP_DISABLE;
9088 hsw_write_dcomp(dev_priv, val);
9089
9090 val = I915_READ(LCPLL_CTL);
9091 val &= ~LCPLL_PLL_DISABLE;
9092 I915_WRITE(LCPLL_CTL, val);
9093
9094 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9095 DRM_ERROR("LCPLL not locked yet\n");
9096
9097 if (val & LCPLL_CD_SOURCE_FCLK) {
9098 val = I915_READ(LCPLL_CTL);
9099 val &= ~LCPLL_CD_SOURCE_FCLK;
9100 I915_WRITE(LCPLL_CTL, val);
9101
9102 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9103 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9104 DRM_ERROR("Switching back to LCPLL failed\n");
9105 }
9106
9107 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9108 }
9109
9110 /*
9111 * Package states C8 and deeper are really deep PC states that can only be
9112 * reached when all the devices on the system allow it, so even if the graphics
9113 * device allows PC8+, it doesn't mean the system will actually get to these
9114 * states. Our driver only allows PC8+ when going into runtime PM.
9115 *
9116 * The requirements for PC8+ are that all the outputs are disabled, the power
9117 * well is disabled and most interrupts are disabled, and these are also
9118 * requirements for runtime PM. When these conditions are met, we manually do
9119 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9120 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9121 * hang the machine.
9122 *
9123 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9124 * the state of some registers, so when we come back from PC8+ we need to
9125 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9126 * need to take care of the registers kept by RC6. Notice that this happens even
9127 * if we don't put the device in PCI D3 state (which is what currently happens
9128 * because of the runtime PM support).
9129 *
9130 * For more, read "Display Sequences for Package C8" on the hardware
9131 * documentation.
9132 */
9133 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9134 {
9135 struct drm_device *dev = dev_priv->dev;
9136 uint32_t val;
9137
9138 DRM_DEBUG_KMS("Enabling package C8+\n");
9139
9140 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9141 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9142 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9143 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9144 }
9145
9146 lpt_disable_clkout_dp(dev);
9147 hsw_disable_lcpll(dev_priv, true, true);
9148 }
9149
9150 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9151 {
9152 struct drm_device *dev = dev_priv->dev;
9153 uint32_t val;
9154
9155 DRM_DEBUG_KMS("Disabling package C8+\n");
9156
9157 hsw_restore_lcpll(dev_priv);
9158 lpt_init_pch_refclk(dev);
9159
9160 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9161 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9162 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9163 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9164 }
9165
9166 intel_prepare_ddi(dev);
9167 }
9168
9169 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9170 {
9171 struct drm_device *dev = old_state->dev;
9172 struct drm_i915_private *dev_priv = dev->dev_private;
9173 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9174 int req_cdclk;
9175
9176 /* see the comment in valleyview_modeset_global_resources */
9177 if (WARN_ON(max_pixclk < 0))
9178 return;
9179
9180 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9181
9182 if (req_cdclk != dev_priv->cdclk_freq)
9183 broxton_set_cdclk(dev, req_cdclk);
9184 }
9185
9186 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9187 struct intel_crtc_state *crtc_state)
9188 {
9189 if (!intel_ddi_pll_select(crtc, crtc_state))
9190 return -EINVAL;
9191
9192 crtc->lowfreq_avail = false;
9193
9194 return 0;
9195 }
9196
9197 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9198 enum port port,
9199 struct intel_crtc_state *pipe_config)
9200 {
9201 switch (port) {
9202 case PORT_A:
9203 pipe_config->ddi_pll_sel = SKL_DPLL0;
9204 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9205 break;
9206 case PORT_B:
9207 pipe_config->ddi_pll_sel = SKL_DPLL1;
9208 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9209 break;
9210 case PORT_C:
9211 pipe_config->ddi_pll_sel = SKL_DPLL2;
9212 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9213 break;
9214 default:
9215 DRM_ERROR("Incorrect port type\n");
9216 }
9217 }
9218
9219 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9220 enum port port,
9221 struct intel_crtc_state *pipe_config)
9222 {
9223 u32 temp, dpll_ctl1;
9224
9225 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9226 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9227
9228 switch (pipe_config->ddi_pll_sel) {
9229 case SKL_DPLL0:
9230 /*
9231 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9232 * of the shared DPLL framework and thus needs to be read out
9233 * separately
9234 */
9235 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9236 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9237 break;
9238 case SKL_DPLL1:
9239 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9240 break;
9241 case SKL_DPLL2:
9242 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9243 break;
9244 case SKL_DPLL3:
9245 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9246 break;
9247 }
9248 }
9249
9250 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9251 enum port port,
9252 struct intel_crtc_state *pipe_config)
9253 {
9254 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9255
9256 switch (pipe_config->ddi_pll_sel) {
9257 case PORT_CLK_SEL_WRPLL1:
9258 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9259 break;
9260 case PORT_CLK_SEL_WRPLL2:
9261 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9262 break;
9263 }
9264 }
9265
9266 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9267 struct intel_crtc_state *pipe_config)
9268 {
9269 struct drm_device *dev = crtc->base.dev;
9270 struct drm_i915_private *dev_priv = dev->dev_private;
9271 struct intel_shared_dpll *pll;
9272 enum port port;
9273 uint32_t tmp;
9274
9275 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9276
9277 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9278
9279 if (IS_SKYLAKE(dev))
9280 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9281 else if (IS_BROXTON(dev))
9282 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9283 else
9284 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9285
9286 if (pipe_config->shared_dpll >= 0) {
9287 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9288
9289 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9290 &pipe_config->dpll_hw_state));
9291 }
9292
9293 /*
9294 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9295 * DDI E. So just check whether this pipe is wired to DDI E and whether
9296 * the PCH transcoder is on.
9297 */
9298 if (INTEL_INFO(dev)->gen < 9 &&
9299 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9300 pipe_config->has_pch_encoder = true;
9301
9302 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9303 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9304 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9305
9306 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9307 }
9308 }
9309
9310 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9311 struct intel_crtc_state *pipe_config)
9312 {
9313 struct drm_device *dev = crtc->base.dev;
9314 struct drm_i915_private *dev_priv = dev->dev_private;
9315 enum intel_display_power_domain pfit_domain;
9316 uint32_t tmp;
9317
9318 if (!intel_display_power_is_enabled(dev_priv,
9319 POWER_DOMAIN_PIPE(crtc->pipe)))
9320 return false;
9321
9322 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9323 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9324
9325 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9326 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9327 enum pipe trans_edp_pipe;
9328 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9329 default:
9330 WARN(1, "unknown pipe linked to edp transcoder\n");
9331 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9332 case TRANS_DDI_EDP_INPUT_A_ON:
9333 trans_edp_pipe = PIPE_A;
9334 break;
9335 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9336 trans_edp_pipe = PIPE_B;
9337 break;
9338 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9339 trans_edp_pipe = PIPE_C;
9340 break;
9341 }
9342
9343 if (trans_edp_pipe == crtc->pipe)
9344 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9345 }
9346
9347 if (!intel_display_power_is_enabled(dev_priv,
9348 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9349 return false;
9350
9351 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9352 if (!(tmp & PIPECONF_ENABLE))
9353 return false;
9354
9355 haswell_get_ddi_port_state(crtc, pipe_config);
9356
9357 intel_get_pipe_timings(crtc, pipe_config);
9358
9359 if (INTEL_INFO(dev)->gen >= 9) {
9360 skl_init_scalers(dev, crtc, pipe_config);
9361 }
9362
9363 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9364
9365 if (INTEL_INFO(dev)->gen >= 9) {
9366 pipe_config->scaler_state.scaler_id = -1;
9367 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9368 }
9369
9370 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9371 if (INTEL_INFO(dev)->gen == 9)
9372 skylake_get_pfit_config(crtc, pipe_config);
9373 else if (INTEL_INFO(dev)->gen < 9)
9374 ironlake_get_pfit_config(crtc, pipe_config);
9375 else
9376 MISSING_CASE(INTEL_INFO(dev)->gen);
9377 }
9378
9379 if (IS_HASWELL(dev))
9380 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9381 (I915_READ(IPS_CTL) & IPS_ENABLE);
9382
9383 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9384 pipe_config->pixel_multiplier =
9385 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9386 } else {
9387 pipe_config->pixel_multiplier = 1;
9388 }
9389
9390 return true;
9391 }
9392
9393 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9394 {
9395 struct drm_device *dev = crtc->dev;
9396 struct drm_i915_private *dev_priv = dev->dev_private;
9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9398 uint32_t cntl = 0, size = 0;
9399
9400 if (base) {
9401 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9402 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9403 unsigned int stride = roundup_pow_of_two(width) * 4;
9404
9405 switch (stride) {
9406 default:
9407 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9408 width, stride);
9409 stride = 256;
9410 /* fallthrough */
9411 case 256:
9412 case 512:
9413 case 1024:
9414 case 2048:
9415 break;
9416 }
9417
9418 cntl |= CURSOR_ENABLE |
9419 CURSOR_GAMMA_ENABLE |
9420 CURSOR_FORMAT_ARGB |
9421 CURSOR_STRIDE(stride);
9422
9423 size = (height << 12) | width;
9424 }
9425
9426 if (intel_crtc->cursor_cntl != 0 &&
9427 (intel_crtc->cursor_base != base ||
9428 intel_crtc->cursor_size != size ||
9429 intel_crtc->cursor_cntl != cntl)) {
9430 /* On these chipsets we can only modify the base/size/stride
9431 * whilst the cursor is disabled.
9432 */
9433 I915_WRITE(_CURACNTR, 0);
9434 POSTING_READ(_CURACNTR);
9435 intel_crtc->cursor_cntl = 0;
9436 }
9437
9438 if (intel_crtc->cursor_base != base) {
9439 I915_WRITE(_CURABASE, base);
9440 intel_crtc->cursor_base = base;
9441 }
9442
9443 if (intel_crtc->cursor_size != size) {
9444 I915_WRITE(CURSIZE, size);
9445 intel_crtc->cursor_size = size;
9446 }
9447
9448 if (intel_crtc->cursor_cntl != cntl) {
9449 I915_WRITE(_CURACNTR, cntl);
9450 POSTING_READ(_CURACNTR);
9451 intel_crtc->cursor_cntl = cntl;
9452 }
9453 }
9454
9455 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9456 {
9457 struct drm_device *dev = crtc->dev;
9458 struct drm_i915_private *dev_priv = dev->dev_private;
9459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9460 int pipe = intel_crtc->pipe;
9461 uint32_t cntl;
9462
9463 cntl = 0;
9464 if (base) {
9465 cntl = MCURSOR_GAMMA_ENABLE;
9466 switch (intel_crtc->base.cursor->state->crtc_w) {
9467 case 64:
9468 cntl |= CURSOR_MODE_64_ARGB_AX;
9469 break;
9470 case 128:
9471 cntl |= CURSOR_MODE_128_ARGB_AX;
9472 break;
9473 case 256:
9474 cntl |= CURSOR_MODE_256_ARGB_AX;
9475 break;
9476 default:
9477 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9478 return;
9479 }
9480 cntl |= pipe << 28; /* Connect to correct pipe */
9481
9482 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9483 cntl |= CURSOR_PIPE_CSC_ENABLE;
9484 }
9485
9486 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9487 cntl |= CURSOR_ROTATE_180;
9488
9489 if (intel_crtc->cursor_cntl != cntl) {
9490 I915_WRITE(CURCNTR(pipe), cntl);
9491 POSTING_READ(CURCNTR(pipe));
9492 intel_crtc->cursor_cntl = cntl;
9493 }
9494
9495 /* and commit changes on next vblank */
9496 I915_WRITE(CURBASE(pipe), base);
9497 POSTING_READ(CURBASE(pipe));
9498
9499 intel_crtc->cursor_base = base;
9500 }
9501
9502 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9503 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9504 bool on)
9505 {
9506 struct drm_device *dev = crtc->dev;
9507 struct drm_i915_private *dev_priv = dev->dev_private;
9508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9509 int pipe = intel_crtc->pipe;
9510 int x = crtc->cursor_x;
9511 int y = crtc->cursor_y;
9512 u32 base = 0, pos = 0;
9513
9514 if (on)
9515 base = intel_crtc->cursor_addr;
9516
9517 if (x >= intel_crtc->config->pipe_src_w)
9518 base = 0;
9519
9520 if (y >= intel_crtc->config->pipe_src_h)
9521 base = 0;
9522
9523 if (x < 0) {
9524 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9525 base = 0;
9526
9527 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9528 x = -x;
9529 }
9530 pos |= x << CURSOR_X_SHIFT;
9531
9532 if (y < 0) {
9533 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9534 base = 0;
9535
9536 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9537 y = -y;
9538 }
9539 pos |= y << CURSOR_Y_SHIFT;
9540
9541 if (base == 0 && intel_crtc->cursor_base == 0)
9542 return;
9543
9544 I915_WRITE(CURPOS(pipe), pos);
9545
9546 /* ILK+ do this automagically */
9547 if (HAS_GMCH_DISPLAY(dev) &&
9548 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9549 base += (intel_crtc->base.cursor->state->crtc_h *
9550 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9551 }
9552
9553 if (IS_845G(dev) || IS_I865G(dev))
9554 i845_update_cursor(crtc, base);
9555 else
9556 i9xx_update_cursor(crtc, base);
9557 }
9558
9559 static bool cursor_size_ok(struct drm_device *dev,
9560 uint32_t width, uint32_t height)
9561 {
9562 if (width == 0 || height == 0)
9563 return false;
9564
9565 /*
9566 * 845g/865g are special in that they are only limited by
9567 * the width of their cursors, the height is arbitrary up to
9568 * the precision of the register. Everything else requires
9569 * square cursors, limited to a few power-of-two sizes.
9570 */
9571 if (IS_845G(dev) || IS_I865G(dev)) {
9572 if ((width & 63) != 0)
9573 return false;
9574
9575 if (width > (IS_845G(dev) ? 64 : 512))
9576 return false;
9577
9578 if (height > 1023)
9579 return false;
9580 } else {
9581 switch (width | height) {
9582 case 256:
9583 case 128:
9584 if (IS_GEN2(dev))
9585 return false;
9586 case 64:
9587 break;
9588 default:
9589 return false;
9590 }
9591 }
9592
9593 return true;
9594 }
9595
9596 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9597 u16 *blue, uint32_t start, uint32_t size)
9598 {
9599 int end = (start + size > 256) ? 256 : start + size, i;
9600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9601
9602 for (i = start; i < end; i++) {
9603 intel_crtc->lut_r[i] = red[i] >> 8;
9604 intel_crtc->lut_g[i] = green[i] >> 8;
9605 intel_crtc->lut_b[i] = blue[i] >> 8;
9606 }
9607
9608 intel_crtc_load_lut(crtc);
9609 }
9610
9611 /* VESA 640x480x72Hz mode to set on the pipe */
9612 static struct drm_display_mode load_detect_mode = {
9613 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9614 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9615 };
9616
9617 struct drm_framebuffer *
9618 __intel_framebuffer_create(struct drm_device *dev,
9619 struct drm_mode_fb_cmd2 *mode_cmd,
9620 struct drm_i915_gem_object *obj)
9621 {
9622 struct intel_framebuffer *intel_fb;
9623 int ret;
9624
9625 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9626 if (!intel_fb) {
9627 drm_gem_object_unreference(&obj->base);
9628 return ERR_PTR(-ENOMEM);
9629 }
9630
9631 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9632 if (ret)
9633 goto err;
9634
9635 return &intel_fb->base;
9636 err:
9637 drm_gem_object_unreference(&obj->base);
9638 kfree(intel_fb);
9639
9640 return ERR_PTR(ret);
9641 }
9642
9643 static struct drm_framebuffer *
9644 intel_framebuffer_create(struct drm_device *dev,
9645 struct drm_mode_fb_cmd2 *mode_cmd,
9646 struct drm_i915_gem_object *obj)
9647 {
9648 struct drm_framebuffer *fb;
9649 int ret;
9650
9651 ret = i915_mutex_lock_interruptible(dev);
9652 if (ret)
9653 return ERR_PTR(ret);
9654 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9655 mutex_unlock(&dev->struct_mutex);
9656
9657 return fb;
9658 }
9659
9660 static u32
9661 intel_framebuffer_pitch_for_width(int width, int bpp)
9662 {
9663 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9664 return ALIGN(pitch, 64);
9665 }
9666
9667 static u32
9668 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9669 {
9670 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9671 return PAGE_ALIGN(pitch * mode->vdisplay);
9672 }
9673
9674 static struct drm_framebuffer *
9675 intel_framebuffer_create_for_mode(struct drm_device *dev,
9676 struct drm_display_mode *mode,
9677 int depth, int bpp)
9678 {
9679 struct drm_i915_gem_object *obj;
9680 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9681
9682 obj = i915_gem_alloc_object(dev,
9683 intel_framebuffer_size_for_mode(mode, bpp));
9684 if (obj == NULL)
9685 return ERR_PTR(-ENOMEM);
9686
9687 mode_cmd.width = mode->hdisplay;
9688 mode_cmd.height = mode->vdisplay;
9689 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9690 bpp);
9691 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9692
9693 return intel_framebuffer_create(dev, &mode_cmd, obj);
9694 }
9695
9696 static struct drm_framebuffer *
9697 mode_fits_in_fbdev(struct drm_device *dev,
9698 struct drm_display_mode *mode)
9699 {
9700 #ifdef CONFIG_DRM_I915_FBDEV
9701 struct drm_i915_private *dev_priv = dev->dev_private;
9702 struct drm_i915_gem_object *obj;
9703 struct drm_framebuffer *fb;
9704
9705 if (!dev_priv->fbdev)
9706 return NULL;
9707
9708 if (!dev_priv->fbdev->fb)
9709 return NULL;
9710
9711 obj = dev_priv->fbdev->fb->obj;
9712 BUG_ON(!obj);
9713
9714 fb = &dev_priv->fbdev->fb->base;
9715 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9716 fb->bits_per_pixel))
9717 return NULL;
9718
9719 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9720 return NULL;
9721
9722 return fb;
9723 #else
9724 return NULL;
9725 #endif
9726 }
9727
9728 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9729 struct drm_crtc *crtc,
9730 struct drm_display_mode *mode,
9731 struct drm_framebuffer *fb,
9732 int x, int y)
9733 {
9734 struct drm_plane_state *plane_state;
9735 int hdisplay, vdisplay;
9736 int ret;
9737
9738 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9739 if (IS_ERR(plane_state))
9740 return PTR_ERR(plane_state);
9741
9742 if (mode)
9743 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9744 else
9745 hdisplay = vdisplay = 0;
9746
9747 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9748 if (ret)
9749 return ret;
9750 drm_atomic_set_fb_for_plane(plane_state, fb);
9751 plane_state->crtc_x = 0;
9752 plane_state->crtc_y = 0;
9753 plane_state->crtc_w = hdisplay;
9754 plane_state->crtc_h = vdisplay;
9755 plane_state->src_x = x << 16;
9756 plane_state->src_y = y << 16;
9757 plane_state->src_w = hdisplay << 16;
9758 plane_state->src_h = vdisplay << 16;
9759
9760 return 0;
9761 }
9762
9763 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9764 struct drm_display_mode *mode,
9765 struct intel_load_detect_pipe *old,
9766 struct drm_modeset_acquire_ctx *ctx)
9767 {
9768 struct intel_crtc *intel_crtc;
9769 struct intel_encoder *intel_encoder =
9770 intel_attached_encoder(connector);
9771 struct drm_crtc *possible_crtc;
9772 struct drm_encoder *encoder = &intel_encoder->base;
9773 struct drm_crtc *crtc = NULL;
9774 struct drm_device *dev = encoder->dev;
9775 struct drm_framebuffer *fb;
9776 struct drm_mode_config *config = &dev->mode_config;
9777 struct drm_atomic_state *state = NULL;
9778 struct drm_connector_state *connector_state;
9779 struct intel_crtc_state *crtc_state;
9780 int ret, i = -1;
9781
9782 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9783 connector->base.id, connector->name,
9784 encoder->base.id, encoder->name);
9785
9786 retry:
9787 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9788 if (ret)
9789 goto fail_unlock;
9790
9791 /*
9792 * Algorithm gets a little messy:
9793 *
9794 * - if the connector already has an assigned crtc, use it (but make
9795 * sure it's on first)
9796 *
9797 * - try to find the first unused crtc that can drive this connector,
9798 * and use that if we find one
9799 */
9800
9801 /* See if we already have a CRTC for this connector */
9802 if (encoder->crtc) {
9803 crtc = encoder->crtc;
9804
9805 ret = drm_modeset_lock(&crtc->mutex, ctx);
9806 if (ret)
9807 goto fail_unlock;
9808 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9809 if (ret)
9810 goto fail_unlock;
9811
9812 old->dpms_mode = connector->dpms;
9813 old->load_detect_temp = false;
9814
9815 /* Make sure the crtc and connector are running */
9816 if (connector->dpms != DRM_MODE_DPMS_ON)
9817 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9818
9819 return true;
9820 }
9821
9822 /* Find an unused one (if possible) */
9823 for_each_crtc(dev, possible_crtc) {
9824 i++;
9825 if (!(encoder->possible_crtcs & (1 << i)))
9826 continue;
9827 if (possible_crtc->state->enable)
9828 continue;
9829 /* This can occur when applying the pipe A quirk on resume. */
9830 if (to_intel_crtc(possible_crtc)->new_enabled)
9831 continue;
9832
9833 crtc = possible_crtc;
9834 break;
9835 }
9836
9837 /*
9838 * If we didn't find an unused CRTC, don't use any.
9839 */
9840 if (!crtc) {
9841 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9842 goto fail_unlock;
9843 }
9844
9845 ret = drm_modeset_lock(&crtc->mutex, ctx);
9846 if (ret)
9847 goto fail_unlock;
9848 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9849 if (ret)
9850 goto fail_unlock;
9851 intel_encoder->new_crtc = to_intel_crtc(crtc);
9852 to_intel_connector(connector)->new_encoder = intel_encoder;
9853
9854 intel_crtc = to_intel_crtc(crtc);
9855 intel_crtc->new_enabled = true;
9856 old->dpms_mode = connector->dpms;
9857 old->load_detect_temp = true;
9858 old->release_fb = NULL;
9859
9860 state = drm_atomic_state_alloc(dev);
9861 if (!state)
9862 return false;
9863
9864 state->acquire_ctx = ctx;
9865
9866 connector_state = drm_atomic_get_connector_state(state, connector);
9867 if (IS_ERR(connector_state)) {
9868 ret = PTR_ERR(connector_state);
9869 goto fail;
9870 }
9871
9872 connector_state->crtc = crtc;
9873 connector_state->best_encoder = &intel_encoder->base;
9874
9875 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9876 if (IS_ERR(crtc_state)) {
9877 ret = PTR_ERR(crtc_state);
9878 goto fail;
9879 }
9880
9881 crtc_state->base.active = crtc_state->base.enable = true;
9882
9883 if (!mode)
9884 mode = &load_detect_mode;
9885
9886 /* We need a framebuffer large enough to accommodate all accesses
9887 * that the plane may generate whilst we perform load detection.
9888 * We can not rely on the fbcon either being present (we get called
9889 * during its initialisation to detect all boot displays, or it may
9890 * not even exist) or that it is large enough to satisfy the
9891 * requested mode.
9892 */
9893 fb = mode_fits_in_fbdev(dev, mode);
9894 if (fb == NULL) {
9895 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9896 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9897 old->release_fb = fb;
9898 } else
9899 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9900 if (IS_ERR(fb)) {
9901 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9902 goto fail;
9903 }
9904
9905 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9906 if (ret)
9907 goto fail;
9908
9909 drm_mode_copy(&crtc_state->base.mode, mode);
9910
9911 if (intel_set_mode(crtc, state)) {
9912 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9913 if (old->release_fb)
9914 old->release_fb->funcs->destroy(old->release_fb);
9915 goto fail;
9916 }
9917 crtc->primary->crtc = crtc;
9918
9919 /* let the connector get through one full cycle before testing */
9920 intel_wait_for_vblank(dev, intel_crtc->pipe);
9921 return true;
9922
9923 fail:
9924 intel_crtc->new_enabled = crtc->state->enable;
9925 fail_unlock:
9926 drm_atomic_state_free(state);
9927 state = NULL;
9928
9929 if (ret == -EDEADLK) {
9930 drm_modeset_backoff(ctx);
9931 goto retry;
9932 }
9933
9934 return false;
9935 }
9936
9937 void intel_release_load_detect_pipe(struct drm_connector *connector,
9938 struct intel_load_detect_pipe *old,
9939 struct drm_modeset_acquire_ctx *ctx)
9940 {
9941 struct drm_device *dev = connector->dev;
9942 struct intel_encoder *intel_encoder =
9943 intel_attached_encoder(connector);
9944 struct drm_encoder *encoder = &intel_encoder->base;
9945 struct drm_crtc *crtc = encoder->crtc;
9946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9947 struct drm_atomic_state *state;
9948 struct drm_connector_state *connector_state;
9949 struct intel_crtc_state *crtc_state;
9950 int ret;
9951
9952 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9953 connector->base.id, connector->name,
9954 encoder->base.id, encoder->name);
9955
9956 if (old->load_detect_temp) {
9957 state = drm_atomic_state_alloc(dev);
9958 if (!state)
9959 goto fail;
9960
9961 state->acquire_ctx = ctx;
9962
9963 connector_state = drm_atomic_get_connector_state(state, connector);
9964 if (IS_ERR(connector_state))
9965 goto fail;
9966
9967 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9968 if (IS_ERR(crtc_state))
9969 goto fail;
9970
9971 to_intel_connector(connector)->new_encoder = NULL;
9972 intel_encoder->new_crtc = NULL;
9973 intel_crtc->new_enabled = false;
9974
9975 connector_state->best_encoder = NULL;
9976 connector_state->crtc = NULL;
9977
9978 crtc_state->base.enable = crtc_state->base.active = false;
9979
9980 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
9981 0, 0);
9982 if (ret)
9983 goto fail;
9984
9985 ret = intel_set_mode(crtc, state);
9986 if (ret)
9987 goto fail;
9988
9989 if (old->release_fb) {
9990 drm_framebuffer_unregister_private(old->release_fb);
9991 drm_framebuffer_unreference(old->release_fb);
9992 }
9993
9994 return;
9995 }
9996
9997 /* Switch crtc and encoder back off if necessary */
9998 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9999 connector->funcs->dpms(connector, old->dpms_mode);
10000
10001 return;
10002 fail:
10003 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10004 drm_atomic_state_free(state);
10005 }
10006
10007 static int i9xx_pll_refclk(struct drm_device *dev,
10008 const struct intel_crtc_state *pipe_config)
10009 {
10010 struct drm_i915_private *dev_priv = dev->dev_private;
10011 u32 dpll = pipe_config->dpll_hw_state.dpll;
10012
10013 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10014 return dev_priv->vbt.lvds_ssc_freq;
10015 else if (HAS_PCH_SPLIT(dev))
10016 return 120000;
10017 else if (!IS_GEN2(dev))
10018 return 96000;
10019 else
10020 return 48000;
10021 }
10022
10023 /* Returns the clock of the currently programmed mode of the given pipe. */
10024 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10025 struct intel_crtc_state *pipe_config)
10026 {
10027 struct drm_device *dev = crtc->base.dev;
10028 struct drm_i915_private *dev_priv = dev->dev_private;
10029 int pipe = pipe_config->cpu_transcoder;
10030 u32 dpll = pipe_config->dpll_hw_state.dpll;
10031 u32 fp;
10032 intel_clock_t clock;
10033 int refclk = i9xx_pll_refclk(dev, pipe_config);
10034
10035 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10036 fp = pipe_config->dpll_hw_state.fp0;
10037 else
10038 fp = pipe_config->dpll_hw_state.fp1;
10039
10040 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10041 if (IS_PINEVIEW(dev)) {
10042 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10043 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10044 } else {
10045 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10046 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10047 }
10048
10049 if (!IS_GEN2(dev)) {
10050 if (IS_PINEVIEW(dev))
10051 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10052 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10053 else
10054 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10055 DPLL_FPA01_P1_POST_DIV_SHIFT);
10056
10057 switch (dpll & DPLL_MODE_MASK) {
10058 case DPLLB_MODE_DAC_SERIAL:
10059 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10060 5 : 10;
10061 break;
10062 case DPLLB_MODE_LVDS:
10063 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10064 7 : 14;
10065 break;
10066 default:
10067 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10068 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10069 return;
10070 }
10071
10072 if (IS_PINEVIEW(dev))
10073 pineview_clock(refclk, &clock);
10074 else
10075 i9xx_clock(refclk, &clock);
10076 } else {
10077 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10078 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10079
10080 if (is_lvds) {
10081 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10082 DPLL_FPA01_P1_POST_DIV_SHIFT);
10083
10084 if (lvds & LVDS_CLKB_POWER_UP)
10085 clock.p2 = 7;
10086 else
10087 clock.p2 = 14;
10088 } else {
10089 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10090 clock.p1 = 2;
10091 else {
10092 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10093 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10094 }
10095 if (dpll & PLL_P2_DIVIDE_BY_4)
10096 clock.p2 = 4;
10097 else
10098 clock.p2 = 2;
10099 }
10100
10101 i9xx_clock(refclk, &clock);
10102 }
10103
10104 /*
10105 * This value includes pixel_multiplier. We will use
10106 * port_clock to compute adjusted_mode.crtc_clock in the
10107 * encoder's get_config() function.
10108 */
10109 pipe_config->port_clock = clock.dot;
10110 }
10111
10112 int intel_dotclock_calculate(int link_freq,
10113 const struct intel_link_m_n *m_n)
10114 {
10115 /*
10116 * The calculation for the data clock is:
10117 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10118 * But we want to avoid losing precison if possible, so:
10119 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10120 *
10121 * and the link clock is simpler:
10122 * link_clock = (m * link_clock) / n
10123 */
10124
10125 if (!m_n->link_n)
10126 return 0;
10127
10128 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10129 }
10130
10131 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10132 struct intel_crtc_state *pipe_config)
10133 {
10134 struct drm_device *dev = crtc->base.dev;
10135
10136 /* read out port_clock from the DPLL */
10137 i9xx_crtc_clock_get(crtc, pipe_config);
10138
10139 /*
10140 * This value does not include pixel_multiplier.
10141 * We will check that port_clock and adjusted_mode.crtc_clock
10142 * agree once we know their relationship in the encoder's
10143 * get_config() function.
10144 */
10145 pipe_config->base.adjusted_mode.crtc_clock =
10146 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10147 &pipe_config->fdi_m_n);
10148 }
10149
10150 /** Returns the currently programmed mode of the given pipe. */
10151 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10152 struct drm_crtc *crtc)
10153 {
10154 struct drm_i915_private *dev_priv = dev->dev_private;
10155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10156 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10157 struct drm_display_mode *mode;
10158 struct intel_crtc_state pipe_config;
10159 int htot = I915_READ(HTOTAL(cpu_transcoder));
10160 int hsync = I915_READ(HSYNC(cpu_transcoder));
10161 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10162 int vsync = I915_READ(VSYNC(cpu_transcoder));
10163 enum pipe pipe = intel_crtc->pipe;
10164
10165 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10166 if (!mode)
10167 return NULL;
10168
10169 /*
10170 * Construct a pipe_config sufficient for getting the clock info
10171 * back out of crtc_clock_get.
10172 *
10173 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10174 * to use a real value here instead.
10175 */
10176 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10177 pipe_config.pixel_multiplier = 1;
10178 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10179 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10180 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10181 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10182
10183 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10184 mode->hdisplay = (htot & 0xffff) + 1;
10185 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10186 mode->hsync_start = (hsync & 0xffff) + 1;
10187 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10188 mode->vdisplay = (vtot & 0xffff) + 1;
10189 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10190 mode->vsync_start = (vsync & 0xffff) + 1;
10191 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10192
10193 drm_mode_set_name(mode);
10194
10195 return mode;
10196 }
10197
10198 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10199 {
10200 struct drm_device *dev = crtc->dev;
10201 struct drm_i915_private *dev_priv = dev->dev_private;
10202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10203
10204 if (!HAS_GMCH_DISPLAY(dev))
10205 return;
10206
10207 if (!dev_priv->lvds_downclock_avail)
10208 return;
10209
10210 /*
10211 * Since this is called by a timer, we should never get here in
10212 * the manual case.
10213 */
10214 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10215 int pipe = intel_crtc->pipe;
10216 int dpll_reg = DPLL(pipe);
10217 int dpll;
10218
10219 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10220
10221 assert_panel_unlocked(dev_priv, pipe);
10222
10223 dpll = I915_READ(dpll_reg);
10224 dpll |= DISPLAY_RATE_SELECT_FPA1;
10225 I915_WRITE(dpll_reg, dpll);
10226 intel_wait_for_vblank(dev, pipe);
10227 dpll = I915_READ(dpll_reg);
10228 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10229 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10230 }
10231
10232 }
10233
10234 void intel_mark_busy(struct drm_device *dev)
10235 {
10236 struct drm_i915_private *dev_priv = dev->dev_private;
10237
10238 if (dev_priv->mm.busy)
10239 return;
10240
10241 intel_runtime_pm_get(dev_priv);
10242 i915_update_gfx_val(dev_priv);
10243 if (INTEL_INFO(dev)->gen >= 6)
10244 gen6_rps_busy(dev_priv);
10245 dev_priv->mm.busy = true;
10246 }
10247
10248 void intel_mark_idle(struct drm_device *dev)
10249 {
10250 struct drm_i915_private *dev_priv = dev->dev_private;
10251 struct drm_crtc *crtc;
10252
10253 if (!dev_priv->mm.busy)
10254 return;
10255
10256 dev_priv->mm.busy = false;
10257
10258 for_each_crtc(dev, crtc) {
10259 if (!crtc->primary->fb)
10260 continue;
10261
10262 intel_decrease_pllclock(crtc);
10263 }
10264
10265 if (INTEL_INFO(dev)->gen >= 6)
10266 gen6_rps_idle(dev->dev_private);
10267
10268 intel_runtime_pm_put(dev_priv);
10269 }
10270
10271 static void intel_crtc_destroy(struct drm_crtc *crtc)
10272 {
10273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10274 struct drm_device *dev = crtc->dev;
10275 struct intel_unpin_work *work;
10276
10277 spin_lock_irq(&dev->event_lock);
10278 work = intel_crtc->unpin_work;
10279 intel_crtc->unpin_work = NULL;
10280 spin_unlock_irq(&dev->event_lock);
10281
10282 if (work) {
10283 cancel_work_sync(&work->work);
10284 kfree(work);
10285 }
10286
10287 drm_crtc_cleanup(crtc);
10288
10289 kfree(intel_crtc);
10290 }
10291
10292 static void intel_unpin_work_fn(struct work_struct *__work)
10293 {
10294 struct intel_unpin_work *work =
10295 container_of(__work, struct intel_unpin_work, work);
10296 struct drm_device *dev = work->crtc->dev;
10297 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10298
10299 mutex_lock(&dev->struct_mutex);
10300 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10301 drm_gem_object_unreference(&work->pending_flip_obj->base);
10302
10303 intel_fbc_update(dev);
10304
10305 if (work->flip_queued_req)
10306 i915_gem_request_assign(&work->flip_queued_req, NULL);
10307 mutex_unlock(&dev->struct_mutex);
10308
10309 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10310 drm_framebuffer_unreference(work->old_fb);
10311
10312 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10313 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10314
10315 kfree(work);
10316 }
10317
10318 static void do_intel_finish_page_flip(struct drm_device *dev,
10319 struct drm_crtc *crtc)
10320 {
10321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10322 struct intel_unpin_work *work;
10323 unsigned long flags;
10324
10325 /* Ignore early vblank irqs */
10326 if (intel_crtc == NULL)
10327 return;
10328
10329 /*
10330 * This is called both by irq handlers and the reset code (to complete
10331 * lost pageflips) so needs the full irqsave spinlocks.
10332 */
10333 spin_lock_irqsave(&dev->event_lock, flags);
10334 work = intel_crtc->unpin_work;
10335
10336 /* Ensure we don't miss a work->pending update ... */
10337 smp_rmb();
10338
10339 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10340 spin_unlock_irqrestore(&dev->event_lock, flags);
10341 return;
10342 }
10343
10344 page_flip_completed(intel_crtc);
10345
10346 spin_unlock_irqrestore(&dev->event_lock, flags);
10347 }
10348
10349 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10350 {
10351 struct drm_i915_private *dev_priv = dev->dev_private;
10352 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10353
10354 do_intel_finish_page_flip(dev, crtc);
10355 }
10356
10357 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10358 {
10359 struct drm_i915_private *dev_priv = dev->dev_private;
10360 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10361
10362 do_intel_finish_page_flip(dev, crtc);
10363 }
10364
10365 /* Is 'a' after or equal to 'b'? */
10366 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10367 {
10368 return !((a - b) & 0x80000000);
10369 }
10370
10371 static bool page_flip_finished(struct intel_crtc *crtc)
10372 {
10373 struct drm_device *dev = crtc->base.dev;
10374 struct drm_i915_private *dev_priv = dev->dev_private;
10375
10376 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10377 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10378 return true;
10379
10380 /*
10381 * The relevant registers doen't exist on pre-ctg.
10382 * As the flip done interrupt doesn't trigger for mmio
10383 * flips on gmch platforms, a flip count check isn't
10384 * really needed there. But since ctg has the registers,
10385 * include it in the check anyway.
10386 */
10387 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10388 return true;
10389
10390 /*
10391 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10392 * used the same base address. In that case the mmio flip might
10393 * have completed, but the CS hasn't even executed the flip yet.
10394 *
10395 * A flip count check isn't enough as the CS might have updated
10396 * the base address just after start of vblank, but before we
10397 * managed to process the interrupt. This means we'd complete the
10398 * CS flip too soon.
10399 *
10400 * Combining both checks should get us a good enough result. It may
10401 * still happen that the CS flip has been executed, but has not
10402 * yet actually completed. But in case the base address is the same
10403 * anyway, we don't really care.
10404 */
10405 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10406 crtc->unpin_work->gtt_offset &&
10407 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10408 crtc->unpin_work->flip_count);
10409 }
10410
10411 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10412 {
10413 struct drm_i915_private *dev_priv = dev->dev_private;
10414 struct intel_crtc *intel_crtc =
10415 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10416 unsigned long flags;
10417
10418
10419 /*
10420 * This is called both by irq handlers and the reset code (to complete
10421 * lost pageflips) so needs the full irqsave spinlocks.
10422 *
10423 * NB: An MMIO update of the plane base pointer will also
10424 * generate a page-flip completion irq, i.e. every modeset
10425 * is also accompanied by a spurious intel_prepare_page_flip().
10426 */
10427 spin_lock_irqsave(&dev->event_lock, flags);
10428 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10429 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10430 spin_unlock_irqrestore(&dev->event_lock, flags);
10431 }
10432
10433 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10434 {
10435 /* Ensure that the work item is consistent when activating it ... */
10436 smp_wmb();
10437 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10438 /* and that it is marked active as soon as the irq could fire. */
10439 smp_wmb();
10440 }
10441
10442 static int intel_gen2_queue_flip(struct drm_device *dev,
10443 struct drm_crtc *crtc,
10444 struct drm_framebuffer *fb,
10445 struct drm_i915_gem_object *obj,
10446 struct intel_engine_cs *ring,
10447 uint32_t flags)
10448 {
10449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10450 u32 flip_mask;
10451 int ret;
10452
10453 ret = intel_ring_begin(ring, 6);
10454 if (ret)
10455 return ret;
10456
10457 /* Can't queue multiple flips, so wait for the previous
10458 * one to finish before executing the next.
10459 */
10460 if (intel_crtc->plane)
10461 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10462 else
10463 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10464 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10465 intel_ring_emit(ring, MI_NOOP);
10466 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10467 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10468 intel_ring_emit(ring, fb->pitches[0]);
10469 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10470 intel_ring_emit(ring, 0); /* aux display base address, unused */
10471
10472 intel_mark_page_flip_active(intel_crtc);
10473 __intel_ring_advance(ring);
10474 return 0;
10475 }
10476
10477 static int intel_gen3_queue_flip(struct drm_device *dev,
10478 struct drm_crtc *crtc,
10479 struct drm_framebuffer *fb,
10480 struct drm_i915_gem_object *obj,
10481 struct intel_engine_cs *ring,
10482 uint32_t flags)
10483 {
10484 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10485 u32 flip_mask;
10486 int ret;
10487
10488 ret = intel_ring_begin(ring, 6);
10489 if (ret)
10490 return ret;
10491
10492 if (intel_crtc->plane)
10493 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10494 else
10495 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10496 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10497 intel_ring_emit(ring, MI_NOOP);
10498 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10499 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10500 intel_ring_emit(ring, fb->pitches[0]);
10501 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10502 intel_ring_emit(ring, MI_NOOP);
10503
10504 intel_mark_page_flip_active(intel_crtc);
10505 __intel_ring_advance(ring);
10506 return 0;
10507 }
10508
10509 static int intel_gen4_queue_flip(struct drm_device *dev,
10510 struct drm_crtc *crtc,
10511 struct drm_framebuffer *fb,
10512 struct drm_i915_gem_object *obj,
10513 struct intel_engine_cs *ring,
10514 uint32_t flags)
10515 {
10516 struct drm_i915_private *dev_priv = dev->dev_private;
10517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10518 uint32_t pf, pipesrc;
10519 int ret;
10520
10521 ret = intel_ring_begin(ring, 4);
10522 if (ret)
10523 return ret;
10524
10525 /* i965+ uses the linear or tiled offsets from the
10526 * Display Registers (which do not change across a page-flip)
10527 * so we need only reprogram the base address.
10528 */
10529 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10530 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10531 intel_ring_emit(ring, fb->pitches[0]);
10532 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10533 obj->tiling_mode);
10534
10535 /* XXX Enabling the panel-fitter across page-flip is so far
10536 * untested on non-native modes, so ignore it for now.
10537 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10538 */
10539 pf = 0;
10540 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10541 intel_ring_emit(ring, pf | pipesrc);
10542
10543 intel_mark_page_flip_active(intel_crtc);
10544 __intel_ring_advance(ring);
10545 return 0;
10546 }
10547
10548 static int intel_gen6_queue_flip(struct drm_device *dev,
10549 struct drm_crtc *crtc,
10550 struct drm_framebuffer *fb,
10551 struct drm_i915_gem_object *obj,
10552 struct intel_engine_cs *ring,
10553 uint32_t flags)
10554 {
10555 struct drm_i915_private *dev_priv = dev->dev_private;
10556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10557 uint32_t pf, pipesrc;
10558 int ret;
10559
10560 ret = intel_ring_begin(ring, 4);
10561 if (ret)
10562 return ret;
10563
10564 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10565 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10566 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10567 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10568
10569 /* Contrary to the suggestions in the documentation,
10570 * "Enable Panel Fitter" does not seem to be required when page
10571 * flipping with a non-native mode, and worse causes a normal
10572 * modeset to fail.
10573 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10574 */
10575 pf = 0;
10576 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10577 intel_ring_emit(ring, pf | pipesrc);
10578
10579 intel_mark_page_flip_active(intel_crtc);
10580 __intel_ring_advance(ring);
10581 return 0;
10582 }
10583
10584 static int intel_gen7_queue_flip(struct drm_device *dev,
10585 struct drm_crtc *crtc,
10586 struct drm_framebuffer *fb,
10587 struct drm_i915_gem_object *obj,
10588 struct intel_engine_cs *ring,
10589 uint32_t flags)
10590 {
10591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10592 uint32_t plane_bit = 0;
10593 int len, ret;
10594
10595 switch (intel_crtc->plane) {
10596 case PLANE_A:
10597 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10598 break;
10599 case PLANE_B:
10600 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10601 break;
10602 case PLANE_C:
10603 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10604 break;
10605 default:
10606 WARN_ONCE(1, "unknown plane in flip command\n");
10607 return -ENODEV;
10608 }
10609
10610 len = 4;
10611 if (ring->id == RCS) {
10612 len += 6;
10613 /*
10614 * On Gen 8, SRM is now taking an extra dword to accommodate
10615 * 48bits addresses, and we need a NOOP for the batch size to
10616 * stay even.
10617 */
10618 if (IS_GEN8(dev))
10619 len += 2;
10620 }
10621
10622 /*
10623 * BSpec MI_DISPLAY_FLIP for IVB:
10624 * "The full packet must be contained within the same cache line."
10625 *
10626 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10627 * cacheline, if we ever start emitting more commands before
10628 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10629 * then do the cacheline alignment, and finally emit the
10630 * MI_DISPLAY_FLIP.
10631 */
10632 ret = intel_ring_cacheline_align(ring);
10633 if (ret)
10634 return ret;
10635
10636 ret = intel_ring_begin(ring, len);
10637 if (ret)
10638 return ret;
10639
10640 /* Unmask the flip-done completion message. Note that the bspec says that
10641 * we should do this for both the BCS and RCS, and that we must not unmask
10642 * more than one flip event at any time (or ensure that one flip message
10643 * can be sent by waiting for flip-done prior to queueing new flips).
10644 * Experimentation says that BCS works despite DERRMR masking all
10645 * flip-done completion events and that unmasking all planes at once
10646 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10647 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10648 */
10649 if (ring->id == RCS) {
10650 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10651 intel_ring_emit(ring, DERRMR);
10652 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10653 DERRMR_PIPEB_PRI_FLIP_DONE |
10654 DERRMR_PIPEC_PRI_FLIP_DONE));
10655 if (IS_GEN8(dev))
10656 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10657 MI_SRM_LRM_GLOBAL_GTT);
10658 else
10659 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10660 MI_SRM_LRM_GLOBAL_GTT);
10661 intel_ring_emit(ring, DERRMR);
10662 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10663 if (IS_GEN8(dev)) {
10664 intel_ring_emit(ring, 0);
10665 intel_ring_emit(ring, MI_NOOP);
10666 }
10667 }
10668
10669 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10670 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10671 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10672 intel_ring_emit(ring, (MI_NOOP));
10673
10674 intel_mark_page_flip_active(intel_crtc);
10675 __intel_ring_advance(ring);
10676 return 0;
10677 }
10678
10679 static bool use_mmio_flip(struct intel_engine_cs *ring,
10680 struct drm_i915_gem_object *obj)
10681 {
10682 /*
10683 * This is not being used for older platforms, because
10684 * non-availability of flip done interrupt forces us to use
10685 * CS flips. Older platforms derive flip done using some clever
10686 * tricks involving the flip_pending status bits and vblank irqs.
10687 * So using MMIO flips there would disrupt this mechanism.
10688 */
10689
10690 if (ring == NULL)
10691 return true;
10692
10693 if (INTEL_INFO(ring->dev)->gen < 5)
10694 return false;
10695
10696 if (i915.use_mmio_flip < 0)
10697 return false;
10698 else if (i915.use_mmio_flip > 0)
10699 return true;
10700 else if (i915.enable_execlists)
10701 return true;
10702 else
10703 return ring != i915_gem_request_get_ring(obj->last_read_req);
10704 }
10705
10706 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10707 {
10708 struct drm_device *dev = intel_crtc->base.dev;
10709 struct drm_i915_private *dev_priv = dev->dev_private;
10710 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10711 const enum pipe pipe = intel_crtc->pipe;
10712 u32 ctl, stride;
10713
10714 ctl = I915_READ(PLANE_CTL(pipe, 0));
10715 ctl &= ~PLANE_CTL_TILED_MASK;
10716 switch (fb->modifier[0]) {
10717 case DRM_FORMAT_MOD_NONE:
10718 break;
10719 case I915_FORMAT_MOD_X_TILED:
10720 ctl |= PLANE_CTL_TILED_X;
10721 break;
10722 case I915_FORMAT_MOD_Y_TILED:
10723 ctl |= PLANE_CTL_TILED_Y;
10724 break;
10725 case I915_FORMAT_MOD_Yf_TILED:
10726 ctl |= PLANE_CTL_TILED_YF;
10727 break;
10728 default:
10729 MISSING_CASE(fb->modifier[0]);
10730 }
10731
10732 /*
10733 * The stride is either expressed as a multiple of 64 bytes chunks for
10734 * linear buffers or in number of tiles for tiled buffers.
10735 */
10736 stride = fb->pitches[0] /
10737 intel_fb_stride_alignment(dev, fb->modifier[0],
10738 fb->pixel_format);
10739
10740 /*
10741 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10742 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10743 */
10744 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10745 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10746
10747 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10748 POSTING_READ(PLANE_SURF(pipe, 0));
10749 }
10750
10751 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10752 {
10753 struct drm_device *dev = intel_crtc->base.dev;
10754 struct drm_i915_private *dev_priv = dev->dev_private;
10755 struct intel_framebuffer *intel_fb =
10756 to_intel_framebuffer(intel_crtc->base.primary->fb);
10757 struct drm_i915_gem_object *obj = intel_fb->obj;
10758 u32 dspcntr;
10759 u32 reg;
10760
10761 reg = DSPCNTR(intel_crtc->plane);
10762 dspcntr = I915_READ(reg);
10763
10764 if (obj->tiling_mode != I915_TILING_NONE)
10765 dspcntr |= DISPPLANE_TILED;
10766 else
10767 dspcntr &= ~DISPPLANE_TILED;
10768
10769 I915_WRITE(reg, dspcntr);
10770
10771 I915_WRITE(DSPSURF(intel_crtc->plane),
10772 intel_crtc->unpin_work->gtt_offset);
10773 POSTING_READ(DSPSURF(intel_crtc->plane));
10774
10775 }
10776
10777 /*
10778 * XXX: This is the temporary way to update the plane registers until we get
10779 * around to using the usual plane update functions for MMIO flips
10780 */
10781 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10782 {
10783 struct drm_device *dev = intel_crtc->base.dev;
10784 bool atomic_update;
10785 u32 start_vbl_count;
10786
10787 intel_mark_page_flip_active(intel_crtc);
10788
10789 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10790
10791 if (INTEL_INFO(dev)->gen >= 9)
10792 skl_do_mmio_flip(intel_crtc);
10793 else
10794 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10795 ilk_do_mmio_flip(intel_crtc);
10796
10797 if (atomic_update)
10798 intel_pipe_update_end(intel_crtc, start_vbl_count);
10799 }
10800
10801 static void intel_mmio_flip_work_func(struct work_struct *work)
10802 {
10803 struct intel_mmio_flip *mmio_flip =
10804 container_of(work, struct intel_mmio_flip, work);
10805
10806 if (mmio_flip->rq)
10807 WARN_ON(__i915_wait_request(mmio_flip->rq,
10808 mmio_flip->crtc->reset_counter,
10809 false, NULL, NULL));
10810
10811 intel_do_mmio_flip(mmio_flip->crtc);
10812
10813 i915_gem_request_unreference__unlocked(mmio_flip->rq);
10814 kfree(mmio_flip);
10815 }
10816
10817 static int intel_queue_mmio_flip(struct drm_device *dev,
10818 struct drm_crtc *crtc,
10819 struct drm_framebuffer *fb,
10820 struct drm_i915_gem_object *obj,
10821 struct intel_engine_cs *ring,
10822 uint32_t flags)
10823 {
10824 struct intel_mmio_flip *mmio_flip;
10825
10826 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
10827 if (mmio_flip == NULL)
10828 return -ENOMEM;
10829
10830 mmio_flip->rq = i915_gem_request_reference(obj->last_write_req);
10831 mmio_flip->crtc = to_intel_crtc(crtc);
10832
10833 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
10834 schedule_work(&mmio_flip->work);
10835
10836 return 0;
10837 }
10838
10839 static int intel_default_queue_flip(struct drm_device *dev,
10840 struct drm_crtc *crtc,
10841 struct drm_framebuffer *fb,
10842 struct drm_i915_gem_object *obj,
10843 struct intel_engine_cs *ring,
10844 uint32_t flags)
10845 {
10846 return -ENODEV;
10847 }
10848
10849 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10850 struct drm_crtc *crtc)
10851 {
10852 struct drm_i915_private *dev_priv = dev->dev_private;
10853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10854 struct intel_unpin_work *work = intel_crtc->unpin_work;
10855 u32 addr;
10856
10857 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10858 return true;
10859
10860 if (!work->enable_stall_check)
10861 return false;
10862
10863 if (work->flip_ready_vblank == 0) {
10864 if (work->flip_queued_req &&
10865 !i915_gem_request_completed(work->flip_queued_req, true))
10866 return false;
10867
10868 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10869 }
10870
10871 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10872 return false;
10873
10874 /* Potential stall - if we see that the flip has happened,
10875 * assume a missed interrupt. */
10876 if (INTEL_INFO(dev)->gen >= 4)
10877 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10878 else
10879 addr = I915_READ(DSPADDR(intel_crtc->plane));
10880
10881 /* There is a potential issue here with a false positive after a flip
10882 * to the same address. We could address this by checking for a
10883 * non-incrementing frame counter.
10884 */
10885 return addr == work->gtt_offset;
10886 }
10887
10888 void intel_check_page_flip(struct drm_device *dev, int pipe)
10889 {
10890 struct drm_i915_private *dev_priv = dev->dev_private;
10891 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10893 struct intel_unpin_work *work;
10894
10895 WARN_ON(!in_interrupt());
10896
10897 if (crtc == NULL)
10898 return;
10899
10900 spin_lock(&dev->event_lock);
10901 work = intel_crtc->unpin_work;
10902 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
10903 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10904 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
10905 page_flip_completed(intel_crtc);
10906 work = NULL;
10907 }
10908 if (work != NULL &&
10909 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10910 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
10911 spin_unlock(&dev->event_lock);
10912 }
10913
10914 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10915 struct drm_framebuffer *fb,
10916 struct drm_pending_vblank_event *event,
10917 uint32_t page_flip_flags)
10918 {
10919 struct drm_device *dev = crtc->dev;
10920 struct drm_i915_private *dev_priv = dev->dev_private;
10921 struct drm_framebuffer *old_fb = crtc->primary->fb;
10922 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10924 struct drm_plane *primary = crtc->primary;
10925 enum pipe pipe = intel_crtc->pipe;
10926 struct intel_unpin_work *work;
10927 struct intel_engine_cs *ring;
10928 bool mmio_flip;
10929 int ret;
10930
10931 /*
10932 * drm_mode_page_flip_ioctl() should already catch this, but double
10933 * check to be safe. In the future we may enable pageflipping from
10934 * a disabled primary plane.
10935 */
10936 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10937 return -EBUSY;
10938
10939 /* Can't change pixel format via MI display flips. */
10940 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10941 return -EINVAL;
10942
10943 /*
10944 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10945 * Note that pitch changes could also affect these register.
10946 */
10947 if (INTEL_INFO(dev)->gen > 3 &&
10948 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10949 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10950 return -EINVAL;
10951
10952 if (i915_terminally_wedged(&dev_priv->gpu_error))
10953 goto out_hang;
10954
10955 work = kzalloc(sizeof(*work), GFP_KERNEL);
10956 if (work == NULL)
10957 return -ENOMEM;
10958
10959 work->event = event;
10960 work->crtc = crtc;
10961 work->old_fb = old_fb;
10962 INIT_WORK(&work->work, intel_unpin_work_fn);
10963
10964 ret = drm_crtc_vblank_get(crtc);
10965 if (ret)
10966 goto free_work;
10967
10968 /* We borrow the event spin lock for protecting unpin_work */
10969 spin_lock_irq(&dev->event_lock);
10970 if (intel_crtc->unpin_work) {
10971 /* Before declaring the flip queue wedged, check if
10972 * the hardware completed the operation behind our backs.
10973 */
10974 if (__intel_pageflip_stall_check(dev, crtc)) {
10975 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10976 page_flip_completed(intel_crtc);
10977 } else {
10978 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10979 spin_unlock_irq(&dev->event_lock);
10980
10981 drm_crtc_vblank_put(crtc);
10982 kfree(work);
10983 return -EBUSY;
10984 }
10985 }
10986 intel_crtc->unpin_work = work;
10987 spin_unlock_irq(&dev->event_lock);
10988
10989 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10990 flush_workqueue(dev_priv->wq);
10991
10992 /* Reference the objects for the scheduled work. */
10993 drm_framebuffer_reference(work->old_fb);
10994 drm_gem_object_reference(&obj->base);
10995
10996 crtc->primary->fb = fb;
10997 update_state_fb(crtc->primary);
10998
10999 work->pending_flip_obj = obj;
11000
11001 ret = i915_mutex_lock_interruptible(dev);
11002 if (ret)
11003 goto cleanup;
11004
11005 atomic_inc(&intel_crtc->unpin_work_count);
11006 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11007
11008 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11009 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11010
11011 if (IS_VALLEYVIEW(dev)) {
11012 ring = &dev_priv->ring[BCS];
11013 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11014 /* vlv: DISPLAY_FLIP fails to change tiling */
11015 ring = NULL;
11016 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11017 ring = &dev_priv->ring[BCS];
11018 } else if (INTEL_INFO(dev)->gen >= 7) {
11019 ring = i915_gem_request_get_ring(obj->last_read_req);
11020 if (ring == NULL || ring->id != RCS)
11021 ring = &dev_priv->ring[BCS];
11022 } else {
11023 ring = &dev_priv->ring[RCS];
11024 }
11025
11026 mmio_flip = use_mmio_flip(ring, obj);
11027
11028 /* When using CS flips, we want to emit semaphores between rings.
11029 * However, when using mmio flips we will create a task to do the
11030 * synchronisation, so all we want here is to pin the framebuffer
11031 * into the display plane and skip any waits.
11032 */
11033 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11034 crtc->primary->state,
11035 mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
11036 if (ret)
11037 goto cleanup_pending;
11038
11039 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11040 + intel_crtc->dspaddr_offset;
11041
11042 if (mmio_flip) {
11043 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11044 page_flip_flags);
11045 if (ret)
11046 goto cleanup_unpin;
11047
11048 i915_gem_request_assign(&work->flip_queued_req,
11049 obj->last_write_req);
11050 } else {
11051 if (obj->last_write_req) {
11052 ret = i915_gem_check_olr(obj->last_write_req);
11053 if (ret)
11054 goto cleanup_unpin;
11055 }
11056
11057 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11058 page_flip_flags);
11059 if (ret)
11060 goto cleanup_unpin;
11061
11062 i915_gem_request_assign(&work->flip_queued_req,
11063 intel_ring_get_request(ring));
11064 }
11065
11066 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11067 work->enable_stall_check = true;
11068
11069 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11070 INTEL_FRONTBUFFER_PRIMARY(pipe));
11071
11072 intel_fbc_disable(dev);
11073 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11074 mutex_unlock(&dev->struct_mutex);
11075
11076 trace_i915_flip_request(intel_crtc->plane, obj);
11077
11078 return 0;
11079
11080 cleanup_unpin:
11081 intel_unpin_fb_obj(fb, crtc->primary->state);
11082 cleanup_pending:
11083 atomic_dec(&intel_crtc->unpin_work_count);
11084 mutex_unlock(&dev->struct_mutex);
11085 cleanup:
11086 crtc->primary->fb = old_fb;
11087 update_state_fb(crtc->primary);
11088
11089 drm_gem_object_unreference_unlocked(&obj->base);
11090 drm_framebuffer_unreference(work->old_fb);
11091
11092 spin_lock_irq(&dev->event_lock);
11093 intel_crtc->unpin_work = NULL;
11094 spin_unlock_irq(&dev->event_lock);
11095
11096 drm_crtc_vblank_put(crtc);
11097 free_work:
11098 kfree(work);
11099
11100 if (ret == -EIO) {
11101 out_hang:
11102 ret = intel_plane_restore(primary);
11103 if (ret == 0 && event) {
11104 spin_lock_irq(&dev->event_lock);
11105 drm_send_vblank_event(dev, pipe, event);
11106 spin_unlock_irq(&dev->event_lock);
11107 }
11108 }
11109 return ret;
11110 }
11111
11112 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11113 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11114 .load_lut = intel_crtc_load_lut,
11115 .atomic_begin = intel_begin_crtc_commit,
11116 .atomic_flush = intel_finish_crtc_commit,
11117 };
11118
11119 /**
11120 * intel_modeset_update_staged_output_state
11121 *
11122 * Updates the staged output configuration state, e.g. after we've read out the
11123 * current hw state.
11124 */
11125 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11126 {
11127 struct intel_crtc *crtc;
11128 struct intel_encoder *encoder;
11129 struct intel_connector *connector;
11130
11131 for_each_intel_connector(dev, connector) {
11132 connector->new_encoder =
11133 to_intel_encoder(connector->base.encoder);
11134 }
11135
11136 for_each_intel_encoder(dev, encoder) {
11137 encoder->new_crtc =
11138 to_intel_crtc(encoder->base.crtc);
11139 }
11140
11141 for_each_intel_crtc(dev, crtc) {
11142 crtc->new_enabled = crtc->base.state->enable;
11143 }
11144 }
11145
11146 /* Transitional helper to copy current connector/encoder state to
11147 * connector->state. This is needed so that code that is partially
11148 * converted to atomic does the right thing.
11149 */
11150 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11151 {
11152 struct intel_connector *connector;
11153
11154 for_each_intel_connector(dev, connector) {
11155 if (connector->base.encoder) {
11156 connector->base.state->best_encoder =
11157 connector->base.encoder;
11158 connector->base.state->crtc =
11159 connector->base.encoder->crtc;
11160 } else {
11161 connector->base.state->best_encoder = NULL;
11162 connector->base.state->crtc = NULL;
11163 }
11164 }
11165 }
11166
11167 /* Fixup legacy state after an atomic state swap.
11168 */
11169 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11170 {
11171 struct intel_crtc *crtc;
11172 struct intel_encoder *encoder;
11173 struct intel_connector *connector;
11174
11175 for_each_intel_connector(state->dev, connector) {
11176 connector->base.encoder = connector->base.state->best_encoder;
11177 if (connector->base.encoder)
11178 connector->base.encoder->crtc =
11179 connector->base.state->crtc;
11180 }
11181
11182 /* Update crtc of disabled encoders */
11183 for_each_intel_encoder(state->dev, encoder) {
11184 int num_connectors = 0;
11185
11186 for_each_intel_connector(state->dev, connector)
11187 if (connector->base.encoder == &encoder->base)
11188 num_connectors++;
11189
11190 if (num_connectors == 0)
11191 encoder->base.crtc = NULL;
11192 }
11193
11194 for_each_intel_crtc(state->dev, crtc) {
11195 crtc->base.enabled = crtc->base.state->enable;
11196 crtc->config = to_intel_crtc_state(crtc->base.state);
11197 }
11198
11199 /* Copy the new configuration to the staged state, to keep the few
11200 * pieces of code that haven't been converted yet happy */
11201 intel_modeset_update_staged_output_state(state->dev);
11202 }
11203
11204 static void
11205 connected_sink_compute_bpp(struct intel_connector *connector,
11206 struct intel_crtc_state *pipe_config)
11207 {
11208 int bpp = pipe_config->pipe_bpp;
11209
11210 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11211 connector->base.base.id,
11212 connector->base.name);
11213
11214 /* Don't use an invalid EDID bpc value */
11215 if (connector->base.display_info.bpc &&
11216 connector->base.display_info.bpc * 3 < bpp) {
11217 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11218 bpp, connector->base.display_info.bpc*3);
11219 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11220 }
11221
11222 /* Clamp bpp to 8 on screens without EDID 1.4 */
11223 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11224 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11225 bpp);
11226 pipe_config->pipe_bpp = 24;
11227 }
11228 }
11229
11230 static int
11231 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11232 struct intel_crtc_state *pipe_config)
11233 {
11234 struct drm_device *dev = crtc->base.dev;
11235 struct drm_atomic_state *state;
11236 struct drm_connector *connector;
11237 struct drm_connector_state *connector_state;
11238 int bpp, i;
11239
11240 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11241 bpp = 10*3;
11242 else if (INTEL_INFO(dev)->gen >= 5)
11243 bpp = 12*3;
11244 else
11245 bpp = 8*3;
11246
11247
11248 pipe_config->pipe_bpp = bpp;
11249
11250 state = pipe_config->base.state;
11251
11252 /* Clamp display bpp to EDID value */
11253 for_each_connector_in_state(state, connector, connector_state, i) {
11254 if (connector_state->crtc != &crtc->base)
11255 continue;
11256
11257 connected_sink_compute_bpp(to_intel_connector(connector),
11258 pipe_config);
11259 }
11260
11261 return bpp;
11262 }
11263
11264 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11265 {
11266 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11267 "type: 0x%x flags: 0x%x\n",
11268 mode->crtc_clock,
11269 mode->crtc_hdisplay, mode->crtc_hsync_start,
11270 mode->crtc_hsync_end, mode->crtc_htotal,
11271 mode->crtc_vdisplay, mode->crtc_vsync_start,
11272 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11273 }
11274
11275 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11276 struct intel_crtc_state *pipe_config,
11277 const char *context)
11278 {
11279 struct drm_device *dev = crtc->base.dev;
11280 struct drm_plane *plane;
11281 struct intel_plane *intel_plane;
11282 struct intel_plane_state *state;
11283 struct drm_framebuffer *fb;
11284
11285 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11286 context, pipe_config, pipe_name(crtc->pipe));
11287
11288 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11289 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11290 pipe_config->pipe_bpp, pipe_config->dither);
11291 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11292 pipe_config->has_pch_encoder,
11293 pipe_config->fdi_lanes,
11294 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11295 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11296 pipe_config->fdi_m_n.tu);
11297 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11298 pipe_config->has_dp_encoder,
11299 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11300 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11301 pipe_config->dp_m_n.tu);
11302
11303 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11304 pipe_config->has_dp_encoder,
11305 pipe_config->dp_m2_n2.gmch_m,
11306 pipe_config->dp_m2_n2.gmch_n,
11307 pipe_config->dp_m2_n2.link_m,
11308 pipe_config->dp_m2_n2.link_n,
11309 pipe_config->dp_m2_n2.tu);
11310
11311 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11312 pipe_config->has_audio,
11313 pipe_config->has_infoframe);
11314
11315 DRM_DEBUG_KMS("requested mode:\n");
11316 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11317 DRM_DEBUG_KMS("adjusted mode:\n");
11318 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11319 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11320 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11321 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11322 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11323 DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11324 DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11325 DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
11326 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11327 pipe_config->gmch_pfit.control,
11328 pipe_config->gmch_pfit.pgm_ratios,
11329 pipe_config->gmch_pfit.lvds_border_bits);
11330 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11331 pipe_config->pch_pfit.pos,
11332 pipe_config->pch_pfit.size,
11333 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11334 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11335 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11336
11337 DRM_DEBUG_KMS("planes on this crtc\n");
11338 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11339 intel_plane = to_intel_plane(plane);
11340 if (intel_plane->pipe != crtc->pipe)
11341 continue;
11342
11343 state = to_intel_plane_state(plane->state);
11344 fb = state->base.fb;
11345 if (!fb) {
11346 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11347 "disabled, scaler_id = %d\n",
11348 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11349 plane->base.id, intel_plane->pipe,
11350 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11351 drm_plane_index(plane), state->scaler_id);
11352 continue;
11353 }
11354
11355 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11356 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11357 plane->base.id, intel_plane->pipe,
11358 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11359 drm_plane_index(plane));
11360 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11361 fb->base.id, fb->width, fb->height, fb->pixel_format);
11362 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11363 state->scaler_id,
11364 state->src.x1 >> 16, state->src.y1 >> 16,
11365 drm_rect_width(&state->src) >> 16,
11366 drm_rect_height(&state->src) >> 16,
11367 state->dst.x1, state->dst.y1,
11368 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11369 }
11370 }
11371
11372 static bool encoders_cloneable(const struct intel_encoder *a,
11373 const struct intel_encoder *b)
11374 {
11375 /* masks could be asymmetric, so check both ways */
11376 return a == b || (a->cloneable & (1 << b->type) &&
11377 b->cloneable & (1 << a->type));
11378 }
11379
11380 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11381 struct intel_crtc *crtc,
11382 struct intel_encoder *encoder)
11383 {
11384 struct intel_encoder *source_encoder;
11385 struct drm_connector *connector;
11386 struct drm_connector_state *connector_state;
11387 int i;
11388
11389 for_each_connector_in_state(state, connector, connector_state, i) {
11390 if (connector_state->crtc != &crtc->base)
11391 continue;
11392
11393 source_encoder =
11394 to_intel_encoder(connector_state->best_encoder);
11395 if (!encoders_cloneable(encoder, source_encoder))
11396 return false;
11397 }
11398
11399 return true;
11400 }
11401
11402 static bool check_encoder_cloning(struct drm_atomic_state *state,
11403 struct intel_crtc *crtc)
11404 {
11405 struct intel_encoder *encoder;
11406 struct drm_connector *connector;
11407 struct drm_connector_state *connector_state;
11408 int i;
11409
11410 for_each_connector_in_state(state, connector, connector_state, i) {
11411 if (connector_state->crtc != &crtc->base)
11412 continue;
11413
11414 encoder = to_intel_encoder(connector_state->best_encoder);
11415 if (!check_single_encoder_cloning(state, crtc, encoder))
11416 return false;
11417 }
11418
11419 return true;
11420 }
11421
11422 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11423 {
11424 struct drm_device *dev = state->dev;
11425 struct intel_encoder *encoder;
11426 struct drm_connector *connector;
11427 struct drm_connector_state *connector_state;
11428 unsigned int used_ports = 0;
11429 int i;
11430
11431 /*
11432 * Walk the connector list instead of the encoder
11433 * list to detect the problem on ddi platforms
11434 * where there's just one encoder per digital port.
11435 */
11436 for_each_connector_in_state(state, connector, connector_state, i) {
11437 if (!connector_state->best_encoder)
11438 continue;
11439
11440 encoder = to_intel_encoder(connector_state->best_encoder);
11441
11442 WARN_ON(!connector_state->crtc);
11443
11444 switch (encoder->type) {
11445 unsigned int port_mask;
11446 case INTEL_OUTPUT_UNKNOWN:
11447 if (WARN_ON(!HAS_DDI(dev)))
11448 break;
11449 case INTEL_OUTPUT_DISPLAYPORT:
11450 case INTEL_OUTPUT_HDMI:
11451 case INTEL_OUTPUT_EDP:
11452 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11453
11454 /* the same port mustn't appear more than once */
11455 if (used_ports & port_mask)
11456 return false;
11457
11458 used_ports |= port_mask;
11459 default:
11460 break;
11461 }
11462 }
11463
11464 return true;
11465 }
11466
11467 static void
11468 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11469 {
11470 struct drm_crtc_state tmp_state;
11471 struct intel_crtc_scaler_state scaler_state;
11472 struct intel_dpll_hw_state dpll_hw_state;
11473 enum intel_dpll_id shared_dpll;
11474
11475 /* Clear only the intel specific part of the crtc state excluding scalers */
11476 tmp_state = crtc_state->base;
11477 scaler_state = crtc_state->scaler_state;
11478 shared_dpll = crtc_state->shared_dpll;
11479 dpll_hw_state = crtc_state->dpll_hw_state;
11480
11481 memset(crtc_state, 0, sizeof *crtc_state);
11482
11483 crtc_state->base = tmp_state;
11484 crtc_state->scaler_state = scaler_state;
11485 crtc_state->shared_dpll = shared_dpll;
11486 crtc_state->dpll_hw_state = dpll_hw_state;
11487 }
11488
11489 static int
11490 intel_modeset_pipe_config(struct drm_crtc *crtc,
11491 struct drm_atomic_state *state,
11492 struct intel_crtc_state *pipe_config)
11493 {
11494 struct intel_encoder *encoder;
11495 struct drm_connector *connector;
11496 struct drm_connector_state *connector_state;
11497 int base_bpp, ret = -EINVAL;
11498 int i;
11499 bool retry = true;
11500
11501 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11502 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11503 return -EINVAL;
11504 }
11505
11506 if (!check_digital_port_conflicts(state)) {
11507 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11508 return -EINVAL;
11509 }
11510
11511 clear_intel_crtc_state(pipe_config);
11512
11513 pipe_config->cpu_transcoder =
11514 (enum transcoder) to_intel_crtc(crtc)->pipe;
11515
11516 /*
11517 * Sanitize sync polarity flags based on requested ones. If neither
11518 * positive or negative polarity is requested, treat this as meaning
11519 * negative polarity.
11520 */
11521 if (!(pipe_config->base.adjusted_mode.flags &
11522 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11523 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11524
11525 if (!(pipe_config->base.adjusted_mode.flags &
11526 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11527 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11528
11529 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11530 * plane pixel format and any sink constraints into account. Returns the
11531 * source plane bpp so that dithering can be selected on mismatches
11532 * after encoders and crtc also have had their say. */
11533 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11534 pipe_config);
11535 if (base_bpp < 0)
11536 goto fail;
11537
11538 /*
11539 * Determine the real pipe dimensions. Note that stereo modes can
11540 * increase the actual pipe size due to the frame doubling and
11541 * insertion of additional space for blanks between the frame. This
11542 * is stored in the crtc timings. We use the requested mode to do this
11543 * computation to clearly distinguish it from the adjusted mode, which
11544 * can be changed by the connectors in the below retry loop.
11545 */
11546 drm_crtc_get_hv_timing(&pipe_config->base.mode,
11547 &pipe_config->pipe_src_w,
11548 &pipe_config->pipe_src_h);
11549
11550 encoder_retry:
11551 /* Ensure the port clock defaults are reset when retrying. */
11552 pipe_config->port_clock = 0;
11553 pipe_config->pixel_multiplier = 1;
11554
11555 /* Fill in default crtc timings, allow encoders to overwrite them. */
11556 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11557 CRTC_STEREO_DOUBLE);
11558
11559 /* Pass our mode to the connectors and the CRTC to give them a chance to
11560 * adjust it according to limitations or connector properties, and also
11561 * a chance to reject the mode entirely.
11562 */
11563 for_each_connector_in_state(state, connector, connector_state, i) {
11564 if (connector_state->crtc != crtc)
11565 continue;
11566
11567 encoder = to_intel_encoder(connector_state->best_encoder);
11568
11569 if (!(encoder->compute_config(encoder, pipe_config))) {
11570 DRM_DEBUG_KMS("Encoder config failure\n");
11571 goto fail;
11572 }
11573 }
11574
11575 /* Set default port clock if not overwritten by the encoder. Needs to be
11576 * done afterwards in case the encoder adjusts the mode. */
11577 if (!pipe_config->port_clock)
11578 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11579 * pipe_config->pixel_multiplier;
11580
11581 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11582 if (ret < 0) {
11583 DRM_DEBUG_KMS("CRTC fixup failed\n");
11584 goto fail;
11585 }
11586
11587 if (ret == RETRY) {
11588 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11589 ret = -EINVAL;
11590 goto fail;
11591 }
11592
11593 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11594 retry = false;
11595 goto encoder_retry;
11596 }
11597
11598 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11599 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11600 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11601
11602 return 0;
11603 fail:
11604 return ret;
11605 }
11606
11607 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11608 {
11609 struct drm_encoder *encoder;
11610 struct drm_device *dev = crtc->dev;
11611
11612 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11613 if (encoder->crtc == crtc)
11614 return true;
11615
11616 return false;
11617 }
11618
11619 static bool
11620 needs_modeset(struct drm_crtc_state *state)
11621 {
11622 return state->mode_changed || state->active_changed;
11623 }
11624
11625 static void
11626 intel_modeset_update_state(struct drm_atomic_state *state)
11627 {
11628 struct drm_device *dev = state->dev;
11629 struct drm_i915_private *dev_priv = dev->dev_private;
11630 struct intel_encoder *intel_encoder;
11631 struct drm_crtc *crtc;
11632 struct drm_crtc_state *crtc_state;
11633 struct drm_connector *connector;
11634 int i;
11635
11636 intel_shared_dpll_commit(dev_priv);
11637
11638 for_each_intel_encoder(dev, intel_encoder) {
11639 if (!intel_encoder->base.crtc)
11640 continue;
11641
11642 for_each_crtc_in_state(state, crtc, crtc_state, i)
11643 if (crtc == intel_encoder->base.crtc)
11644 break;
11645
11646 if (crtc != intel_encoder->base.crtc)
11647 continue;
11648
11649 if (crtc_state->enable && needs_modeset(crtc_state))
11650 intel_encoder->connectors_active = false;
11651 }
11652
11653 drm_atomic_helper_swap_state(state->dev, state);
11654 intel_modeset_fixup_state(state);
11655
11656 /* Double check state. */
11657 for_each_crtc(dev, crtc) {
11658 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11659 }
11660
11661 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11662 if (!connector->encoder || !connector->encoder->crtc)
11663 continue;
11664
11665 for_each_crtc_in_state(state, crtc, crtc_state, i)
11666 if (crtc == connector->encoder->crtc)
11667 break;
11668
11669 if (crtc != connector->encoder->crtc)
11670 continue;
11671
11672 if (crtc->state->enable && needs_modeset(crtc->state)) {
11673 struct drm_property *dpms_property =
11674 dev->mode_config.dpms_property;
11675
11676 connector->dpms = DRM_MODE_DPMS_ON;
11677 drm_object_property_set_value(&connector->base,
11678 dpms_property,
11679 DRM_MODE_DPMS_ON);
11680
11681 intel_encoder = to_intel_encoder(connector->encoder);
11682 intel_encoder->connectors_active = true;
11683 }
11684 }
11685
11686 }
11687
11688 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11689 {
11690 int diff;
11691
11692 if (clock1 == clock2)
11693 return true;
11694
11695 if (!clock1 || !clock2)
11696 return false;
11697
11698 diff = abs(clock1 - clock2);
11699
11700 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11701 return true;
11702
11703 return false;
11704 }
11705
11706 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11707 list_for_each_entry((intel_crtc), \
11708 &(dev)->mode_config.crtc_list, \
11709 base.head) \
11710 if (mask & (1 <<(intel_crtc)->pipe))
11711
11712 static bool
11713 intel_pipe_config_compare(struct drm_device *dev,
11714 struct intel_crtc_state *current_config,
11715 struct intel_crtc_state *pipe_config)
11716 {
11717 #define PIPE_CONF_CHECK_X(name) \
11718 if (current_config->name != pipe_config->name) { \
11719 DRM_ERROR("mismatch in " #name " " \
11720 "(expected 0x%08x, found 0x%08x)\n", \
11721 current_config->name, \
11722 pipe_config->name); \
11723 return false; \
11724 }
11725
11726 #define PIPE_CONF_CHECK_I(name) \
11727 if (current_config->name != pipe_config->name) { \
11728 DRM_ERROR("mismatch in " #name " " \
11729 "(expected %i, found %i)\n", \
11730 current_config->name, \
11731 pipe_config->name); \
11732 return false; \
11733 }
11734
11735 /* This is required for BDW+ where there is only one set of registers for
11736 * switching between high and low RR.
11737 * This macro can be used whenever a comparison has to be made between one
11738 * hw state and multiple sw state variables.
11739 */
11740 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11741 if ((current_config->name != pipe_config->name) && \
11742 (current_config->alt_name != pipe_config->name)) { \
11743 DRM_ERROR("mismatch in " #name " " \
11744 "(expected %i or %i, found %i)\n", \
11745 current_config->name, \
11746 current_config->alt_name, \
11747 pipe_config->name); \
11748 return false; \
11749 }
11750
11751 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11752 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11753 DRM_ERROR("mismatch in " #name "(" #mask ") " \
11754 "(expected %i, found %i)\n", \
11755 current_config->name & (mask), \
11756 pipe_config->name & (mask)); \
11757 return false; \
11758 }
11759
11760 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11761 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11762 DRM_ERROR("mismatch in " #name " " \
11763 "(expected %i, found %i)\n", \
11764 current_config->name, \
11765 pipe_config->name); \
11766 return false; \
11767 }
11768
11769 #define PIPE_CONF_QUIRK(quirk) \
11770 ((current_config->quirks | pipe_config->quirks) & (quirk))
11771
11772 PIPE_CONF_CHECK_I(cpu_transcoder);
11773
11774 PIPE_CONF_CHECK_I(has_pch_encoder);
11775 PIPE_CONF_CHECK_I(fdi_lanes);
11776 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11777 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11778 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11779 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11780 PIPE_CONF_CHECK_I(fdi_m_n.tu);
11781
11782 PIPE_CONF_CHECK_I(has_dp_encoder);
11783
11784 if (INTEL_INFO(dev)->gen < 8) {
11785 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11786 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11787 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11788 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11789 PIPE_CONF_CHECK_I(dp_m_n.tu);
11790
11791 if (current_config->has_drrs) {
11792 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11793 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11794 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11795 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11796 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11797 }
11798 } else {
11799 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11800 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11801 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11802 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11803 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11804 }
11805
11806 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11807 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11808 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11809 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11810 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11811 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11812
11813 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11814 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11815 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11816 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11817 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11818 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11819
11820 PIPE_CONF_CHECK_I(pixel_multiplier);
11821 PIPE_CONF_CHECK_I(has_hdmi_sink);
11822 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11823 IS_VALLEYVIEW(dev))
11824 PIPE_CONF_CHECK_I(limited_color_range);
11825 PIPE_CONF_CHECK_I(has_infoframe);
11826
11827 PIPE_CONF_CHECK_I(has_audio);
11828
11829 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11830 DRM_MODE_FLAG_INTERLACE);
11831
11832 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11833 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11834 DRM_MODE_FLAG_PHSYNC);
11835 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11836 DRM_MODE_FLAG_NHSYNC);
11837 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11838 DRM_MODE_FLAG_PVSYNC);
11839 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11840 DRM_MODE_FLAG_NVSYNC);
11841 }
11842
11843 PIPE_CONF_CHECK_I(pipe_src_w);
11844 PIPE_CONF_CHECK_I(pipe_src_h);
11845
11846 /*
11847 * FIXME: BIOS likes to set up a cloned config with lvds+external
11848 * screen. Since we don't yet re-compute the pipe config when moving
11849 * just the lvds port away to another pipe the sw tracking won't match.
11850 *
11851 * Proper atomic modesets with recomputed global state will fix this.
11852 * Until then just don't check gmch state for inherited modes.
11853 */
11854 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11855 PIPE_CONF_CHECK_I(gmch_pfit.control);
11856 /* pfit ratios are autocomputed by the hw on gen4+ */
11857 if (INTEL_INFO(dev)->gen < 4)
11858 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11859 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11860 }
11861
11862 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11863 if (current_config->pch_pfit.enabled) {
11864 PIPE_CONF_CHECK_I(pch_pfit.pos);
11865 PIPE_CONF_CHECK_I(pch_pfit.size);
11866 }
11867
11868 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11869
11870 /* BDW+ don't expose a synchronous way to read the state */
11871 if (IS_HASWELL(dev))
11872 PIPE_CONF_CHECK_I(ips_enabled);
11873
11874 PIPE_CONF_CHECK_I(double_wide);
11875
11876 PIPE_CONF_CHECK_X(ddi_pll_sel);
11877
11878 PIPE_CONF_CHECK_I(shared_dpll);
11879 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11880 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11881 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11882 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11883 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11884 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11885 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11886 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11887
11888 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11889 PIPE_CONF_CHECK_I(pipe_bpp);
11890
11891 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11892 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11893
11894 #undef PIPE_CONF_CHECK_X
11895 #undef PIPE_CONF_CHECK_I
11896 #undef PIPE_CONF_CHECK_I_ALT
11897 #undef PIPE_CONF_CHECK_FLAGS
11898 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11899 #undef PIPE_CONF_QUIRK
11900
11901 return true;
11902 }
11903
11904 static void check_wm_state(struct drm_device *dev)
11905 {
11906 struct drm_i915_private *dev_priv = dev->dev_private;
11907 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11908 struct intel_crtc *intel_crtc;
11909 int plane;
11910
11911 if (INTEL_INFO(dev)->gen < 9)
11912 return;
11913
11914 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11915 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11916
11917 for_each_intel_crtc(dev, intel_crtc) {
11918 struct skl_ddb_entry *hw_entry, *sw_entry;
11919 const enum pipe pipe = intel_crtc->pipe;
11920
11921 if (!intel_crtc->active)
11922 continue;
11923
11924 /* planes */
11925 for_each_plane(dev_priv, pipe, plane) {
11926 hw_entry = &hw_ddb.plane[pipe][plane];
11927 sw_entry = &sw_ddb->plane[pipe][plane];
11928
11929 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11930 continue;
11931
11932 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11933 "(expected (%u,%u), found (%u,%u))\n",
11934 pipe_name(pipe), plane + 1,
11935 sw_entry->start, sw_entry->end,
11936 hw_entry->start, hw_entry->end);
11937 }
11938
11939 /* cursor */
11940 hw_entry = &hw_ddb.cursor[pipe];
11941 sw_entry = &sw_ddb->cursor[pipe];
11942
11943 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11944 continue;
11945
11946 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11947 "(expected (%u,%u), found (%u,%u))\n",
11948 pipe_name(pipe),
11949 sw_entry->start, sw_entry->end,
11950 hw_entry->start, hw_entry->end);
11951 }
11952 }
11953
11954 static void
11955 check_connector_state(struct drm_device *dev)
11956 {
11957 struct intel_connector *connector;
11958
11959 for_each_intel_connector(dev, connector) {
11960 /* This also checks the encoder/connector hw state with the
11961 * ->get_hw_state callbacks. */
11962 intel_connector_check_state(connector);
11963
11964 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11965 "connector's staged encoder doesn't match current encoder\n");
11966 }
11967 }
11968
11969 static void
11970 check_encoder_state(struct drm_device *dev)
11971 {
11972 struct intel_encoder *encoder;
11973 struct intel_connector *connector;
11974
11975 for_each_intel_encoder(dev, encoder) {
11976 bool enabled = false;
11977 bool active = false;
11978 enum pipe pipe, tracked_pipe;
11979
11980 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11981 encoder->base.base.id,
11982 encoder->base.name);
11983
11984 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11985 "encoder's stage crtc doesn't match current crtc\n");
11986 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11987 "encoder's active_connectors set, but no crtc\n");
11988
11989 for_each_intel_connector(dev, connector) {
11990 if (connector->base.encoder != &encoder->base)
11991 continue;
11992 enabled = true;
11993 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11994 active = true;
11995 }
11996 /*
11997 * for MST connectors if we unplug the connector is gone
11998 * away but the encoder is still connected to a crtc
11999 * until a modeset happens in response to the hotplug.
12000 */
12001 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12002 continue;
12003
12004 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12005 "encoder's enabled state mismatch "
12006 "(expected %i, found %i)\n",
12007 !!encoder->base.crtc, enabled);
12008 I915_STATE_WARN(active && !encoder->base.crtc,
12009 "active encoder with no crtc\n");
12010
12011 I915_STATE_WARN(encoder->connectors_active != active,
12012 "encoder's computed active state doesn't match tracked active state "
12013 "(expected %i, found %i)\n", active, encoder->connectors_active);
12014
12015 active = encoder->get_hw_state(encoder, &pipe);
12016 I915_STATE_WARN(active != encoder->connectors_active,
12017 "encoder's hw state doesn't match sw tracking "
12018 "(expected %i, found %i)\n",
12019 encoder->connectors_active, active);
12020
12021 if (!encoder->base.crtc)
12022 continue;
12023
12024 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12025 I915_STATE_WARN(active && pipe != tracked_pipe,
12026 "active encoder's pipe doesn't match"
12027 "(expected %i, found %i)\n",
12028 tracked_pipe, pipe);
12029
12030 }
12031 }
12032
12033 static void
12034 check_crtc_state(struct drm_device *dev)
12035 {
12036 struct drm_i915_private *dev_priv = dev->dev_private;
12037 struct intel_crtc *crtc;
12038 struct intel_encoder *encoder;
12039 struct intel_crtc_state pipe_config;
12040
12041 for_each_intel_crtc(dev, crtc) {
12042 bool enabled = false;
12043 bool active = false;
12044
12045 memset(&pipe_config, 0, sizeof(pipe_config));
12046
12047 DRM_DEBUG_KMS("[CRTC:%d]\n",
12048 crtc->base.base.id);
12049
12050 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12051 "active crtc, but not enabled in sw tracking\n");
12052
12053 for_each_intel_encoder(dev, encoder) {
12054 if (encoder->base.crtc != &crtc->base)
12055 continue;
12056 enabled = true;
12057 if (encoder->connectors_active)
12058 active = true;
12059 }
12060
12061 I915_STATE_WARN(active != crtc->active,
12062 "crtc's computed active state doesn't match tracked active state "
12063 "(expected %i, found %i)\n", active, crtc->active);
12064 I915_STATE_WARN(enabled != crtc->base.state->enable,
12065 "crtc's computed enabled state doesn't match tracked enabled state "
12066 "(expected %i, found %i)\n", enabled,
12067 crtc->base.state->enable);
12068
12069 active = dev_priv->display.get_pipe_config(crtc,
12070 &pipe_config);
12071
12072 /* hw state is inconsistent with the pipe quirk */
12073 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12074 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12075 active = crtc->active;
12076
12077 for_each_intel_encoder(dev, encoder) {
12078 enum pipe pipe;
12079 if (encoder->base.crtc != &crtc->base)
12080 continue;
12081 if (encoder->get_hw_state(encoder, &pipe))
12082 encoder->get_config(encoder, &pipe_config);
12083 }
12084
12085 I915_STATE_WARN(crtc->active != active,
12086 "crtc active state doesn't match with hw state "
12087 "(expected %i, found %i)\n", crtc->active, active);
12088
12089 if (active &&
12090 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12091 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12092 intel_dump_pipe_config(crtc, &pipe_config,
12093 "[hw state]");
12094 intel_dump_pipe_config(crtc, crtc->config,
12095 "[sw state]");
12096 }
12097 }
12098 }
12099
12100 static void
12101 check_shared_dpll_state(struct drm_device *dev)
12102 {
12103 struct drm_i915_private *dev_priv = dev->dev_private;
12104 struct intel_crtc *crtc;
12105 struct intel_dpll_hw_state dpll_hw_state;
12106 int i;
12107
12108 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12109 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12110 int enabled_crtcs = 0, active_crtcs = 0;
12111 bool active;
12112
12113 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12114
12115 DRM_DEBUG_KMS("%s\n", pll->name);
12116
12117 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12118
12119 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12120 "more active pll users than references: %i vs %i\n",
12121 pll->active, hweight32(pll->config.crtc_mask));
12122 I915_STATE_WARN(pll->active && !pll->on,
12123 "pll in active use but not on in sw tracking\n");
12124 I915_STATE_WARN(pll->on && !pll->active,
12125 "pll in on but not on in use in sw tracking\n");
12126 I915_STATE_WARN(pll->on != active,
12127 "pll on state mismatch (expected %i, found %i)\n",
12128 pll->on, active);
12129
12130 for_each_intel_crtc(dev, crtc) {
12131 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12132 enabled_crtcs++;
12133 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12134 active_crtcs++;
12135 }
12136 I915_STATE_WARN(pll->active != active_crtcs,
12137 "pll active crtcs mismatch (expected %i, found %i)\n",
12138 pll->active, active_crtcs);
12139 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12140 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12141 hweight32(pll->config.crtc_mask), enabled_crtcs);
12142
12143 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12144 sizeof(dpll_hw_state)),
12145 "pll hw state mismatch\n");
12146 }
12147 }
12148
12149 void
12150 intel_modeset_check_state(struct drm_device *dev)
12151 {
12152 check_wm_state(dev);
12153 check_connector_state(dev);
12154 check_encoder_state(dev);
12155 check_crtc_state(dev);
12156 check_shared_dpll_state(dev);
12157 }
12158
12159 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12160 int dotclock)
12161 {
12162 /*
12163 * FDI already provided one idea for the dotclock.
12164 * Yell if the encoder disagrees.
12165 */
12166 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12167 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12168 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12169 }
12170
12171 static void update_scanline_offset(struct intel_crtc *crtc)
12172 {
12173 struct drm_device *dev = crtc->base.dev;
12174
12175 /*
12176 * The scanline counter increments at the leading edge of hsync.
12177 *
12178 * On most platforms it starts counting from vtotal-1 on the
12179 * first active line. That means the scanline counter value is
12180 * always one less than what we would expect. Ie. just after
12181 * start of vblank, which also occurs at start of hsync (on the
12182 * last active line), the scanline counter will read vblank_start-1.
12183 *
12184 * On gen2 the scanline counter starts counting from 1 instead
12185 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12186 * to keep the value positive), instead of adding one.
12187 *
12188 * On HSW+ the behaviour of the scanline counter depends on the output
12189 * type. For DP ports it behaves like most other platforms, but on HDMI
12190 * there's an extra 1 line difference. So we need to add two instead of
12191 * one to the value.
12192 */
12193 if (IS_GEN2(dev)) {
12194 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12195 int vtotal;
12196
12197 vtotal = mode->crtc_vtotal;
12198 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12199 vtotal /= 2;
12200
12201 crtc->scanline_offset = vtotal - 1;
12202 } else if (HAS_DDI(dev) &&
12203 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12204 crtc->scanline_offset = 2;
12205 } else
12206 crtc->scanline_offset = 1;
12207 }
12208
12209 static struct intel_crtc_state *
12210 intel_modeset_compute_config(struct drm_crtc *crtc,
12211 struct drm_atomic_state *state)
12212 {
12213 struct intel_crtc_state *pipe_config;
12214 int ret = 0;
12215
12216 ret = drm_atomic_add_affected_connectors(state, crtc);
12217 if (ret)
12218 return ERR_PTR(ret);
12219
12220 ret = drm_atomic_helper_check_modeset(state->dev, state);
12221 if (ret)
12222 return ERR_PTR(ret);
12223
12224 /*
12225 * Note this needs changes when we start tracking multiple modes
12226 * and crtcs. At that point we'll need to compute the whole config
12227 * (i.e. one pipe_config for each crtc) rather than just the one
12228 * for this crtc.
12229 */
12230 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12231 if (IS_ERR(pipe_config))
12232 return pipe_config;
12233
12234 if (!pipe_config->base.enable)
12235 return pipe_config;
12236
12237 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12238 if (ret)
12239 return ERR_PTR(ret);
12240
12241 /* Check things that can only be changed through modeset */
12242 if (pipe_config->has_audio !=
12243 to_intel_crtc(crtc)->config->has_audio)
12244 pipe_config->base.mode_changed = true;
12245
12246 /*
12247 * Note we have an issue here with infoframes: current code
12248 * only updates them on the full mode set path per hw
12249 * requirements. So here we should be checking for any
12250 * required changes and forcing a mode set.
12251 */
12252
12253 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12254
12255 ret = drm_atomic_helper_check_planes(state->dev, state);
12256 if (ret)
12257 return ERR_PTR(ret);
12258
12259 return pipe_config;
12260 }
12261
12262 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12263 {
12264 struct drm_device *dev = state->dev;
12265 struct drm_i915_private *dev_priv = to_i915(dev);
12266 unsigned clear_pipes = 0;
12267 struct intel_crtc *intel_crtc;
12268 struct intel_crtc_state *intel_crtc_state;
12269 struct drm_crtc *crtc;
12270 struct drm_crtc_state *crtc_state;
12271 int ret = 0;
12272 int i;
12273
12274 if (!dev_priv->display.crtc_compute_clock)
12275 return 0;
12276
12277 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12278 intel_crtc = to_intel_crtc(crtc);
12279 intel_crtc_state = to_intel_crtc_state(crtc_state);
12280
12281 if (needs_modeset(crtc_state)) {
12282 clear_pipes |= 1 << intel_crtc->pipe;
12283 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12284 memset(&intel_crtc_state->dpll_hw_state, 0,
12285 sizeof(intel_crtc_state->dpll_hw_state));
12286 }
12287 }
12288
12289 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12290 if (ret)
12291 goto done;
12292
12293 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12294 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12295 continue;
12296
12297 intel_crtc = to_intel_crtc(crtc);
12298 intel_crtc_state = to_intel_crtc_state(crtc_state);
12299
12300 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12301 intel_crtc_state);
12302 if (ret) {
12303 intel_shared_dpll_abort_config(dev_priv);
12304 goto done;
12305 }
12306 }
12307
12308 done:
12309 return ret;
12310 }
12311
12312 /* Code that should eventually be part of atomic_check() */
12313 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12314 {
12315 struct drm_device *dev = state->dev;
12316 int ret;
12317
12318 /*
12319 * See if the config requires any additional preparation, e.g.
12320 * to adjust global state with pipes off. We need to do this
12321 * here so we can get the modeset_pipe updated config for the new
12322 * mode set on this crtc. For other crtcs we need to use the
12323 * adjusted_mode bits in the crtc directly.
12324 */
12325 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12326 ret = valleyview_modeset_global_pipes(state);
12327 if (ret)
12328 return ret;
12329 }
12330
12331 ret = __intel_set_mode_setup_plls(state);
12332 if (ret)
12333 return ret;
12334
12335 return 0;
12336 }
12337
12338 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12339 struct intel_crtc_state *pipe_config)
12340 {
12341 struct drm_device *dev = modeset_crtc->dev;
12342 struct drm_i915_private *dev_priv = dev->dev_private;
12343 struct drm_atomic_state *state = pipe_config->base.state;
12344 struct drm_crtc *crtc;
12345 struct drm_crtc_state *crtc_state;
12346 int ret = 0;
12347 int i;
12348
12349 ret = __intel_set_mode_checks(state);
12350 if (ret < 0)
12351 return ret;
12352
12353 ret = drm_atomic_helper_prepare_planes(dev, state);
12354 if (ret)
12355 return ret;
12356
12357 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12358 if (!needs_modeset(crtc_state))
12359 continue;
12360
12361 if (!crtc_state->enable) {
12362 intel_crtc_disable(crtc);
12363 } else if (crtc->state->enable) {
12364 intel_crtc_disable_planes(crtc);
12365 dev_priv->display.crtc_disable(crtc);
12366 }
12367 }
12368
12369 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12370 * to set it here already despite that we pass it down the callchain.
12371 *
12372 * Note we'll need to fix this up when we start tracking multiple
12373 * pipes; here we assume a single modeset_pipe and only track the
12374 * single crtc and mode.
12375 */
12376 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12377 modeset_crtc->mode = pipe_config->base.mode;
12378
12379 /*
12380 * Calculate and store various constants which
12381 * are later needed by vblank and swap-completion
12382 * timestamping. They are derived from true hwmode.
12383 */
12384 drm_calc_timestamping_constants(modeset_crtc,
12385 &pipe_config->base.adjusted_mode);
12386 }
12387
12388 /* Only after disabling all output pipelines that will be changed can we
12389 * update the the output configuration. */
12390 intel_modeset_update_state(state);
12391
12392 /* The state has been swaped above, so state actually contains the
12393 * old state now. */
12394
12395 modeset_update_crtc_power_domains(state);
12396
12397 drm_atomic_helper_commit_planes(dev, state);
12398
12399 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12400 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12401 if (!needs_modeset(crtc->state) || !crtc->state->enable)
12402 continue;
12403
12404 update_scanline_offset(to_intel_crtc(crtc));
12405
12406 dev_priv->display.crtc_enable(crtc);
12407 intel_crtc_enable_planes(crtc);
12408 }
12409
12410 /* FIXME: add subpixel order */
12411
12412 drm_atomic_helper_cleanup_planes(dev, state);
12413
12414 drm_atomic_state_free(state);
12415
12416 return 0;
12417 }
12418
12419 static int intel_set_mode_with_config(struct drm_crtc *crtc,
12420 struct intel_crtc_state *pipe_config)
12421 {
12422 int ret;
12423
12424 ret = __intel_set_mode(crtc, pipe_config);
12425
12426 if (ret == 0)
12427 intel_modeset_check_state(crtc->dev);
12428
12429 return ret;
12430 }
12431
12432 static int intel_set_mode(struct drm_crtc *crtc,
12433 struct drm_atomic_state *state)
12434 {
12435 struct intel_crtc_state *pipe_config;
12436 int ret = 0;
12437
12438 pipe_config = intel_modeset_compute_config(crtc, state);
12439 if (IS_ERR(pipe_config)) {
12440 ret = PTR_ERR(pipe_config);
12441 goto out;
12442 }
12443
12444 ret = intel_set_mode_with_config(crtc, pipe_config);
12445 if (ret)
12446 goto out;
12447
12448 out:
12449 return ret;
12450 }
12451
12452 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12453 {
12454 struct drm_device *dev = crtc->dev;
12455 struct drm_atomic_state *state;
12456 struct intel_crtc *intel_crtc;
12457 struct intel_encoder *encoder;
12458 struct intel_connector *connector;
12459 struct drm_connector_state *connector_state;
12460 struct intel_crtc_state *crtc_state;
12461 int ret;
12462
12463 state = drm_atomic_state_alloc(dev);
12464 if (!state) {
12465 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12466 crtc->base.id);
12467 return;
12468 }
12469
12470 state->acquire_ctx = dev->mode_config.acquire_ctx;
12471
12472 /* The force restore path in the HW readout code relies on the staged
12473 * config still keeping the user requested config while the actual
12474 * state has been overwritten by the configuration read from HW. We
12475 * need to copy the staged config to the atomic state, otherwise the
12476 * mode set will just reapply the state the HW is already in. */
12477 for_each_intel_encoder(dev, encoder) {
12478 if (&encoder->new_crtc->base != crtc)
12479 continue;
12480
12481 for_each_intel_connector(dev, connector) {
12482 if (connector->new_encoder != encoder)
12483 continue;
12484
12485 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12486 if (IS_ERR(connector_state)) {
12487 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12488 connector->base.base.id,
12489 connector->base.name,
12490 PTR_ERR(connector_state));
12491 continue;
12492 }
12493
12494 connector_state->crtc = crtc;
12495 connector_state->best_encoder = &encoder->base;
12496 }
12497 }
12498
12499 for_each_intel_crtc(dev, intel_crtc) {
12500 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
12501 continue;
12502
12503 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12504 if (IS_ERR(crtc_state)) {
12505 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12506 intel_crtc->base.base.id,
12507 PTR_ERR(crtc_state));
12508 continue;
12509 }
12510
12511 crtc_state->base.active = crtc_state->base.enable =
12512 intel_crtc->new_enabled;
12513
12514 if (&intel_crtc->base == crtc)
12515 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12516 }
12517
12518 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12519 crtc->primary->fb, crtc->x, crtc->y);
12520
12521 ret = intel_set_mode(crtc, state);
12522 if (ret)
12523 drm_atomic_state_free(state);
12524 }
12525
12526 #undef for_each_intel_crtc_masked
12527
12528 static bool intel_connector_in_mode_set(struct intel_connector *connector,
12529 struct drm_mode_set *set)
12530 {
12531 int ro;
12532
12533 for (ro = 0; ro < set->num_connectors; ro++)
12534 if (set->connectors[ro] == &connector->base)
12535 return true;
12536
12537 return false;
12538 }
12539
12540 static int
12541 intel_modeset_stage_output_state(struct drm_device *dev,
12542 struct drm_mode_set *set,
12543 struct drm_atomic_state *state)
12544 {
12545 struct intel_connector *connector;
12546 struct drm_connector *drm_connector;
12547 struct drm_connector_state *connector_state;
12548 struct drm_crtc *crtc;
12549 struct drm_crtc_state *crtc_state;
12550 int i, ret;
12551
12552 /* The upper layers ensure that we either disable a crtc or have a list
12553 * of connectors. For paranoia, double-check this. */
12554 WARN_ON(!set->fb && (set->num_connectors != 0));
12555 WARN_ON(set->fb && (set->num_connectors == 0));
12556
12557 for_each_intel_connector(dev, connector) {
12558 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12559
12560 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12561 continue;
12562
12563 connector_state =
12564 drm_atomic_get_connector_state(state, &connector->base);
12565 if (IS_ERR(connector_state))
12566 return PTR_ERR(connector_state);
12567
12568 if (in_mode_set) {
12569 int pipe = to_intel_crtc(set->crtc)->pipe;
12570 connector_state->best_encoder =
12571 &intel_find_encoder(connector, pipe)->base;
12572 }
12573
12574 if (connector->base.state->crtc != set->crtc)
12575 continue;
12576
12577 /* If we disable the crtc, disable all its connectors. Also, if
12578 * the connector is on the changing crtc but not on the new
12579 * connector list, disable it. */
12580 if (!set->fb || !in_mode_set) {
12581 connector_state->best_encoder = NULL;
12582
12583 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12584 connector->base.base.id,
12585 connector->base.name);
12586 }
12587 }
12588 /* connector->new_encoder is now updated for all connectors. */
12589
12590 for_each_connector_in_state(state, drm_connector, connector_state, i) {
12591 connector = to_intel_connector(drm_connector);
12592
12593 if (!connector_state->best_encoder) {
12594 ret = drm_atomic_set_crtc_for_connector(connector_state,
12595 NULL);
12596 if (ret)
12597 return ret;
12598
12599 continue;
12600 }
12601
12602 if (intel_connector_in_mode_set(connector, set)) {
12603 struct drm_crtc *crtc = connector->base.state->crtc;
12604
12605 /* If this connector was in a previous crtc, add it
12606 * to the state. We might need to disable it. */
12607 if (crtc) {
12608 crtc_state =
12609 drm_atomic_get_crtc_state(state, crtc);
12610 if (IS_ERR(crtc_state))
12611 return PTR_ERR(crtc_state);
12612 }
12613
12614 ret = drm_atomic_set_crtc_for_connector(connector_state,
12615 set->crtc);
12616 if (ret)
12617 return ret;
12618 }
12619
12620 /* Make sure the new CRTC will work with the encoder */
12621 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12622 connector_state->crtc)) {
12623 return -EINVAL;
12624 }
12625
12626 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12627 connector->base.base.id,
12628 connector->base.name,
12629 connector_state->crtc->base.id);
12630
12631 if (connector_state->best_encoder != &connector->encoder->base)
12632 connector->encoder =
12633 to_intel_encoder(connector_state->best_encoder);
12634 }
12635
12636 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12637 bool has_connectors;
12638
12639 ret = drm_atomic_add_affected_connectors(state, crtc);
12640 if (ret)
12641 return ret;
12642
12643 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12644 if (has_connectors != crtc_state->enable)
12645 crtc_state->enable =
12646 crtc_state->active = has_connectors;
12647 }
12648
12649 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12650 set->fb, set->x, set->y);
12651 if (ret)
12652 return ret;
12653
12654 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12655 if (IS_ERR(crtc_state))
12656 return PTR_ERR(crtc_state);
12657
12658 if (set->mode)
12659 drm_mode_copy(&crtc_state->mode, set->mode);
12660
12661 if (set->num_connectors)
12662 crtc_state->active = true;
12663
12664 return 0;
12665 }
12666
12667 static bool primary_plane_visible(struct drm_crtc *crtc)
12668 {
12669 struct intel_plane_state *plane_state =
12670 to_intel_plane_state(crtc->primary->state);
12671
12672 return plane_state->visible;
12673 }
12674
12675 static int intel_crtc_set_config(struct drm_mode_set *set)
12676 {
12677 struct drm_device *dev;
12678 struct drm_atomic_state *state = NULL;
12679 struct intel_crtc_state *pipe_config;
12680 bool primary_plane_was_visible;
12681 int ret;
12682
12683 BUG_ON(!set);
12684 BUG_ON(!set->crtc);
12685 BUG_ON(!set->crtc->helper_private);
12686
12687 /* Enforce sane interface api - has been abused by the fb helper. */
12688 BUG_ON(!set->mode && set->fb);
12689 BUG_ON(set->fb && set->num_connectors == 0);
12690
12691 if (set->fb) {
12692 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12693 set->crtc->base.id, set->fb->base.id,
12694 (int)set->num_connectors, set->x, set->y);
12695 } else {
12696 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12697 }
12698
12699 dev = set->crtc->dev;
12700
12701 state = drm_atomic_state_alloc(dev);
12702 if (!state)
12703 return -ENOMEM;
12704
12705 state->acquire_ctx = dev->mode_config.acquire_ctx;
12706
12707 ret = intel_modeset_stage_output_state(dev, set, state);
12708 if (ret)
12709 goto out;
12710
12711 pipe_config = intel_modeset_compute_config(set->crtc, state);
12712 if (IS_ERR(pipe_config)) {
12713 ret = PTR_ERR(pipe_config);
12714 goto out;
12715 }
12716
12717 intel_update_pipe_size(to_intel_crtc(set->crtc));
12718
12719 primary_plane_was_visible = primary_plane_visible(set->crtc);
12720
12721 ret = intel_set_mode_with_config(set->crtc, pipe_config);
12722
12723 if (ret == 0 &&
12724 pipe_config->base.enable &&
12725 pipe_config->base.planes_changed &&
12726 !needs_modeset(&pipe_config->base)) {
12727 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12728
12729 /*
12730 * We need to make sure the primary plane is re-enabled if it
12731 * has previously been turned off.
12732 */
12733 if (ret == 0 && !primary_plane_was_visible &&
12734 primary_plane_visible(set->crtc)) {
12735 WARN_ON(!intel_crtc->active);
12736 intel_post_enable_primary(set->crtc);
12737 }
12738
12739 /*
12740 * In the fastboot case this may be our only check of the
12741 * state after boot. It would be better to only do it on
12742 * the first update, but we don't have a nice way of doing that
12743 * (and really, set_config isn't used much for high freq page
12744 * flipping, so increasing its cost here shouldn't be a big
12745 * deal).
12746 */
12747 if (i915.fastboot && ret == 0)
12748 intel_modeset_check_state(set->crtc->dev);
12749 }
12750
12751 if (ret) {
12752 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12753 set->crtc->base.id, ret);
12754 }
12755
12756 out:
12757 if (ret)
12758 drm_atomic_state_free(state);
12759 return ret;
12760 }
12761
12762 static const struct drm_crtc_funcs intel_crtc_funcs = {
12763 .gamma_set = intel_crtc_gamma_set,
12764 .set_config = intel_crtc_set_config,
12765 .destroy = intel_crtc_destroy,
12766 .page_flip = intel_crtc_page_flip,
12767 .atomic_duplicate_state = intel_crtc_duplicate_state,
12768 .atomic_destroy_state = intel_crtc_destroy_state,
12769 };
12770
12771 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12772 struct intel_shared_dpll *pll,
12773 struct intel_dpll_hw_state *hw_state)
12774 {
12775 uint32_t val;
12776
12777 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12778 return false;
12779
12780 val = I915_READ(PCH_DPLL(pll->id));
12781 hw_state->dpll = val;
12782 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12783 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12784
12785 return val & DPLL_VCO_ENABLE;
12786 }
12787
12788 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12789 struct intel_shared_dpll *pll)
12790 {
12791 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12792 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12793 }
12794
12795 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12796 struct intel_shared_dpll *pll)
12797 {
12798 /* PCH refclock must be enabled first */
12799 ibx_assert_pch_refclk_enabled(dev_priv);
12800
12801 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12802
12803 /* Wait for the clocks to stabilize. */
12804 POSTING_READ(PCH_DPLL(pll->id));
12805 udelay(150);
12806
12807 /* The pixel multiplier can only be updated once the
12808 * DPLL is enabled and the clocks are stable.
12809 *
12810 * So write it again.
12811 */
12812 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12813 POSTING_READ(PCH_DPLL(pll->id));
12814 udelay(200);
12815 }
12816
12817 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12818 struct intel_shared_dpll *pll)
12819 {
12820 struct drm_device *dev = dev_priv->dev;
12821 struct intel_crtc *crtc;
12822
12823 /* Make sure no transcoder isn't still depending on us. */
12824 for_each_intel_crtc(dev, crtc) {
12825 if (intel_crtc_to_shared_dpll(crtc) == pll)
12826 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12827 }
12828
12829 I915_WRITE(PCH_DPLL(pll->id), 0);
12830 POSTING_READ(PCH_DPLL(pll->id));
12831 udelay(200);
12832 }
12833
12834 static char *ibx_pch_dpll_names[] = {
12835 "PCH DPLL A",
12836 "PCH DPLL B",
12837 };
12838
12839 static void ibx_pch_dpll_init(struct drm_device *dev)
12840 {
12841 struct drm_i915_private *dev_priv = dev->dev_private;
12842 int i;
12843
12844 dev_priv->num_shared_dpll = 2;
12845
12846 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12847 dev_priv->shared_dplls[i].id = i;
12848 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12849 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12850 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12851 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12852 dev_priv->shared_dplls[i].get_hw_state =
12853 ibx_pch_dpll_get_hw_state;
12854 }
12855 }
12856
12857 static void intel_shared_dpll_init(struct drm_device *dev)
12858 {
12859 struct drm_i915_private *dev_priv = dev->dev_private;
12860
12861 if (HAS_DDI(dev))
12862 intel_ddi_pll_init(dev);
12863 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12864 ibx_pch_dpll_init(dev);
12865 else
12866 dev_priv->num_shared_dpll = 0;
12867
12868 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12869 }
12870
12871 /**
12872 * intel_wm_need_update - Check whether watermarks need updating
12873 * @plane: drm plane
12874 * @state: new plane state
12875 *
12876 * Check current plane state versus the new one to determine whether
12877 * watermarks need to be recalculated.
12878 *
12879 * Returns true or false.
12880 */
12881 bool intel_wm_need_update(struct drm_plane *plane,
12882 struct drm_plane_state *state)
12883 {
12884 /* Update watermarks on tiling changes. */
12885 if (!plane->state->fb || !state->fb ||
12886 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12887 plane->state->rotation != state->rotation)
12888 return true;
12889
12890 return false;
12891 }
12892
12893 /**
12894 * intel_prepare_plane_fb - Prepare fb for usage on plane
12895 * @plane: drm plane to prepare for
12896 * @fb: framebuffer to prepare for presentation
12897 *
12898 * Prepares a framebuffer for usage on a display plane. Generally this
12899 * involves pinning the underlying object and updating the frontbuffer tracking
12900 * bits. Some older platforms need special physical address handling for
12901 * cursor planes.
12902 *
12903 * Returns 0 on success, negative error code on failure.
12904 */
12905 int
12906 intel_prepare_plane_fb(struct drm_plane *plane,
12907 struct drm_framebuffer *fb,
12908 const struct drm_plane_state *new_state)
12909 {
12910 struct drm_device *dev = plane->dev;
12911 struct intel_plane *intel_plane = to_intel_plane(plane);
12912 enum pipe pipe = intel_plane->pipe;
12913 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12914 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12915 unsigned frontbuffer_bits = 0;
12916 int ret = 0;
12917
12918 if (!obj)
12919 return 0;
12920
12921 switch (plane->type) {
12922 case DRM_PLANE_TYPE_PRIMARY:
12923 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12924 break;
12925 case DRM_PLANE_TYPE_CURSOR:
12926 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12927 break;
12928 case DRM_PLANE_TYPE_OVERLAY:
12929 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12930 break;
12931 }
12932
12933 mutex_lock(&dev->struct_mutex);
12934
12935 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12936 INTEL_INFO(dev)->cursor_needs_physical) {
12937 int align = IS_I830(dev) ? 16 * 1024 : 256;
12938 ret = i915_gem_object_attach_phys(obj, align);
12939 if (ret)
12940 DRM_DEBUG_KMS("failed to attach phys object\n");
12941 } else {
12942 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12943 }
12944
12945 if (ret == 0)
12946 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12947
12948 mutex_unlock(&dev->struct_mutex);
12949
12950 return ret;
12951 }
12952
12953 /**
12954 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12955 * @plane: drm plane to clean up for
12956 * @fb: old framebuffer that was on plane
12957 *
12958 * Cleans up a framebuffer that has just been removed from a plane.
12959 */
12960 void
12961 intel_cleanup_plane_fb(struct drm_plane *plane,
12962 struct drm_framebuffer *fb,
12963 const struct drm_plane_state *old_state)
12964 {
12965 struct drm_device *dev = plane->dev;
12966 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12967
12968 if (WARN_ON(!obj))
12969 return;
12970
12971 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12972 !INTEL_INFO(dev)->cursor_needs_physical) {
12973 mutex_lock(&dev->struct_mutex);
12974 intel_unpin_fb_obj(fb, old_state);
12975 mutex_unlock(&dev->struct_mutex);
12976 }
12977 }
12978
12979 int
12980 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12981 {
12982 int max_scale;
12983 struct drm_device *dev;
12984 struct drm_i915_private *dev_priv;
12985 int crtc_clock, cdclk;
12986
12987 if (!intel_crtc || !crtc_state)
12988 return DRM_PLANE_HELPER_NO_SCALING;
12989
12990 dev = intel_crtc->base.dev;
12991 dev_priv = dev->dev_private;
12992 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12993 cdclk = dev_priv->display.get_display_clock_speed(dev);
12994
12995 if (!crtc_clock || !cdclk)
12996 return DRM_PLANE_HELPER_NO_SCALING;
12997
12998 /*
12999 * skl max scale is lower of:
13000 * close to 3 but not 3, -1 is for that purpose
13001 * or
13002 * cdclk/crtc_clock
13003 */
13004 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13005
13006 return max_scale;
13007 }
13008
13009 static int
13010 intel_check_primary_plane(struct drm_plane *plane,
13011 struct intel_plane_state *state)
13012 {
13013 struct drm_device *dev = plane->dev;
13014 struct drm_i915_private *dev_priv = dev->dev_private;
13015 struct drm_crtc *crtc = state->base.crtc;
13016 struct intel_crtc *intel_crtc;
13017 struct intel_crtc_state *crtc_state;
13018 struct drm_framebuffer *fb = state->base.fb;
13019 struct drm_rect *dest = &state->dst;
13020 struct drm_rect *src = &state->src;
13021 const struct drm_rect *clip = &state->clip;
13022 bool can_position = false;
13023 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13024 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13025 int ret;
13026
13027 crtc = crtc ? crtc : plane->crtc;
13028 intel_crtc = to_intel_crtc(crtc);
13029 crtc_state = state->base.state ?
13030 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13031
13032 if (INTEL_INFO(dev)->gen >= 9) {
13033 min_scale = 1;
13034 max_scale = skl_max_scale(intel_crtc, crtc_state);
13035 can_position = true;
13036 }
13037
13038 ret = drm_plane_helper_check_update(plane, crtc, fb,
13039 src, dest, clip,
13040 min_scale,
13041 max_scale,
13042 can_position, true,
13043 &state->visible);
13044 if (ret)
13045 return ret;
13046
13047 if (intel_crtc->active) {
13048 struct intel_plane_state *old_state =
13049 to_intel_plane_state(plane->state);
13050
13051 intel_crtc->atomic.wait_for_flips = true;
13052
13053 /*
13054 * FBC does not work on some platforms for rotated
13055 * planes, so disable it when rotation is not 0 and
13056 * update it when rotation is set back to 0.
13057 *
13058 * FIXME: This is redundant with the fbc update done in
13059 * the primary plane enable function except that that
13060 * one is done too late. We eventually need to unify
13061 * this.
13062 */
13063 if (state->visible &&
13064 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13065 dev_priv->fbc.crtc == intel_crtc &&
13066 state->base.rotation != BIT(DRM_ROTATE_0)) {
13067 intel_crtc->atomic.disable_fbc = true;
13068 }
13069
13070 if (state->visible && !old_state->visible) {
13071 /*
13072 * BDW signals flip done immediately if the plane
13073 * is disabled, even if the plane enable is already
13074 * armed to occur at the next vblank :(
13075 */
13076 if (IS_BROADWELL(dev))
13077 intel_crtc->atomic.wait_vblank = true;
13078 }
13079
13080 intel_crtc->atomic.fb_bits |=
13081 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13082
13083 intel_crtc->atomic.update_fbc = true;
13084
13085 if (intel_wm_need_update(plane, &state->base))
13086 intel_crtc->atomic.update_wm = true;
13087 }
13088
13089 if (INTEL_INFO(dev)->gen >= 9) {
13090 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13091 to_intel_plane(plane), state, 0);
13092 if (ret)
13093 return ret;
13094 }
13095
13096 return 0;
13097 }
13098
13099 static void
13100 intel_commit_primary_plane(struct drm_plane *plane,
13101 struct intel_plane_state *state)
13102 {
13103 struct drm_crtc *crtc = state->base.crtc;
13104 struct drm_framebuffer *fb = state->base.fb;
13105 struct drm_device *dev = plane->dev;
13106 struct drm_i915_private *dev_priv = dev->dev_private;
13107 struct intel_crtc *intel_crtc;
13108 struct drm_rect *src = &state->src;
13109
13110 crtc = crtc ? crtc : plane->crtc;
13111 intel_crtc = to_intel_crtc(crtc);
13112
13113 plane->fb = fb;
13114 crtc->x = src->x1 >> 16;
13115 crtc->y = src->y1 >> 16;
13116
13117 if (intel_crtc->active) {
13118 if (state->visible)
13119 /* FIXME: kill this fastboot hack */
13120 intel_update_pipe_size(intel_crtc);
13121
13122 dev_priv->display.update_primary_plane(crtc, plane->fb,
13123 crtc->x, crtc->y);
13124 }
13125 }
13126
13127 static void
13128 intel_disable_primary_plane(struct drm_plane *plane,
13129 struct drm_crtc *crtc,
13130 bool force)
13131 {
13132 struct drm_device *dev = plane->dev;
13133 struct drm_i915_private *dev_priv = dev->dev_private;
13134
13135 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13136 }
13137
13138 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13139 {
13140 struct drm_device *dev = crtc->dev;
13141 struct drm_i915_private *dev_priv = dev->dev_private;
13142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13143 struct intel_plane *intel_plane;
13144 struct drm_plane *p;
13145 unsigned fb_bits = 0;
13146
13147 /* Track fb's for any planes being disabled */
13148 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13149 intel_plane = to_intel_plane(p);
13150
13151 if (intel_crtc->atomic.disabled_planes &
13152 (1 << drm_plane_index(p))) {
13153 switch (p->type) {
13154 case DRM_PLANE_TYPE_PRIMARY:
13155 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13156 break;
13157 case DRM_PLANE_TYPE_CURSOR:
13158 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13159 break;
13160 case DRM_PLANE_TYPE_OVERLAY:
13161 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13162 break;
13163 }
13164
13165 mutex_lock(&dev->struct_mutex);
13166 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13167 mutex_unlock(&dev->struct_mutex);
13168 }
13169 }
13170
13171 if (intel_crtc->atomic.wait_for_flips)
13172 intel_crtc_wait_for_pending_flips(crtc);
13173
13174 if (intel_crtc->atomic.disable_fbc)
13175 intel_fbc_disable(dev);
13176
13177 if (intel_crtc->atomic.pre_disable_primary)
13178 intel_pre_disable_primary(crtc);
13179
13180 if (intel_crtc->atomic.update_wm)
13181 intel_update_watermarks(crtc);
13182
13183 intel_runtime_pm_get(dev_priv);
13184
13185 /* Perform vblank evasion around commit operation */
13186 if (intel_crtc->active)
13187 intel_crtc->atomic.evade =
13188 intel_pipe_update_start(intel_crtc,
13189 &intel_crtc->atomic.start_vbl_count);
13190 }
13191
13192 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13193 {
13194 struct drm_device *dev = crtc->dev;
13195 struct drm_i915_private *dev_priv = dev->dev_private;
13196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13197 struct drm_plane *p;
13198
13199 if (intel_crtc->atomic.evade)
13200 intel_pipe_update_end(intel_crtc,
13201 intel_crtc->atomic.start_vbl_count);
13202
13203 intel_runtime_pm_put(dev_priv);
13204
13205 if (intel_crtc->atomic.wait_vblank)
13206 intel_wait_for_vblank(dev, intel_crtc->pipe);
13207
13208 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13209
13210 if (intel_crtc->atomic.update_fbc) {
13211 mutex_lock(&dev->struct_mutex);
13212 intel_fbc_update(dev);
13213 mutex_unlock(&dev->struct_mutex);
13214 }
13215
13216 if (intel_crtc->atomic.post_enable_primary)
13217 intel_post_enable_primary(crtc);
13218
13219 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13220 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13221 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13222 false, false);
13223
13224 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13225 }
13226
13227 /**
13228 * intel_plane_destroy - destroy a plane
13229 * @plane: plane to destroy
13230 *
13231 * Common destruction function for all types of planes (primary, cursor,
13232 * sprite).
13233 */
13234 void intel_plane_destroy(struct drm_plane *plane)
13235 {
13236 struct intel_plane *intel_plane = to_intel_plane(plane);
13237 drm_plane_cleanup(plane);
13238 kfree(intel_plane);
13239 }
13240
13241 const struct drm_plane_funcs intel_plane_funcs = {
13242 .update_plane = drm_atomic_helper_update_plane,
13243 .disable_plane = drm_atomic_helper_disable_plane,
13244 .destroy = intel_plane_destroy,
13245 .set_property = drm_atomic_helper_plane_set_property,
13246 .atomic_get_property = intel_plane_atomic_get_property,
13247 .atomic_set_property = intel_plane_atomic_set_property,
13248 .atomic_duplicate_state = intel_plane_duplicate_state,
13249 .atomic_destroy_state = intel_plane_destroy_state,
13250
13251 };
13252
13253 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13254 int pipe)
13255 {
13256 struct intel_plane *primary;
13257 struct intel_plane_state *state;
13258 const uint32_t *intel_primary_formats;
13259 int num_formats;
13260
13261 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13262 if (primary == NULL)
13263 return NULL;
13264
13265 state = intel_create_plane_state(&primary->base);
13266 if (!state) {
13267 kfree(primary);
13268 return NULL;
13269 }
13270 primary->base.state = &state->base;
13271
13272 primary->can_scale = false;
13273 primary->max_downscale = 1;
13274 if (INTEL_INFO(dev)->gen >= 9) {
13275 primary->can_scale = true;
13276 state->scaler_id = -1;
13277 }
13278 primary->pipe = pipe;
13279 primary->plane = pipe;
13280 primary->check_plane = intel_check_primary_plane;
13281 primary->commit_plane = intel_commit_primary_plane;
13282 primary->disable_plane = intel_disable_primary_plane;
13283 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13284 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13285 primary->plane = !pipe;
13286
13287 if (INTEL_INFO(dev)->gen <= 3) {
13288 intel_primary_formats = intel_primary_formats_gen2;
13289 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13290 } else {
13291 intel_primary_formats = intel_primary_formats_gen4;
13292 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13293 }
13294
13295 drm_universal_plane_init(dev, &primary->base, 0,
13296 &intel_plane_funcs,
13297 intel_primary_formats, num_formats,
13298 DRM_PLANE_TYPE_PRIMARY);
13299
13300 if (INTEL_INFO(dev)->gen >= 4)
13301 intel_create_rotation_property(dev, primary);
13302
13303 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13304
13305 return &primary->base;
13306 }
13307
13308 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13309 {
13310 if (!dev->mode_config.rotation_property) {
13311 unsigned long flags = BIT(DRM_ROTATE_0) |
13312 BIT(DRM_ROTATE_180);
13313
13314 if (INTEL_INFO(dev)->gen >= 9)
13315 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13316
13317 dev->mode_config.rotation_property =
13318 drm_mode_create_rotation_property(dev, flags);
13319 }
13320 if (dev->mode_config.rotation_property)
13321 drm_object_attach_property(&plane->base.base,
13322 dev->mode_config.rotation_property,
13323 plane->base.state->rotation);
13324 }
13325
13326 static int
13327 intel_check_cursor_plane(struct drm_plane *plane,
13328 struct intel_plane_state *state)
13329 {
13330 struct drm_crtc *crtc = state->base.crtc;
13331 struct drm_device *dev = plane->dev;
13332 struct drm_framebuffer *fb = state->base.fb;
13333 struct drm_rect *dest = &state->dst;
13334 struct drm_rect *src = &state->src;
13335 const struct drm_rect *clip = &state->clip;
13336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13337 struct intel_crtc *intel_crtc;
13338 unsigned stride;
13339 int ret;
13340
13341 crtc = crtc ? crtc : plane->crtc;
13342 intel_crtc = to_intel_crtc(crtc);
13343
13344 ret = drm_plane_helper_check_update(plane, crtc, fb,
13345 src, dest, clip,
13346 DRM_PLANE_HELPER_NO_SCALING,
13347 DRM_PLANE_HELPER_NO_SCALING,
13348 true, true, &state->visible);
13349 if (ret)
13350 return ret;
13351
13352
13353 /* if we want to turn off the cursor ignore width and height */
13354 if (!obj)
13355 goto finish;
13356
13357 /* Check for which cursor types we support */
13358 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13359 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13360 state->base.crtc_w, state->base.crtc_h);
13361 return -EINVAL;
13362 }
13363
13364 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13365 if (obj->base.size < stride * state->base.crtc_h) {
13366 DRM_DEBUG_KMS("buffer is too small\n");
13367 return -ENOMEM;
13368 }
13369
13370 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13371 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13372 ret = -EINVAL;
13373 }
13374
13375 finish:
13376 if (intel_crtc->active) {
13377 if (plane->state->crtc_w != state->base.crtc_w)
13378 intel_crtc->atomic.update_wm = true;
13379
13380 intel_crtc->atomic.fb_bits |=
13381 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13382 }
13383
13384 return ret;
13385 }
13386
13387 static void
13388 intel_disable_cursor_plane(struct drm_plane *plane,
13389 struct drm_crtc *crtc,
13390 bool force)
13391 {
13392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13393
13394 if (!force) {
13395 plane->fb = NULL;
13396 intel_crtc->cursor_bo = NULL;
13397 intel_crtc->cursor_addr = 0;
13398 }
13399
13400 intel_crtc_update_cursor(crtc, false);
13401 }
13402
13403 static void
13404 intel_commit_cursor_plane(struct drm_plane *plane,
13405 struct intel_plane_state *state)
13406 {
13407 struct drm_crtc *crtc = state->base.crtc;
13408 struct drm_device *dev = plane->dev;
13409 struct intel_crtc *intel_crtc;
13410 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13411 uint32_t addr;
13412
13413 crtc = crtc ? crtc : plane->crtc;
13414 intel_crtc = to_intel_crtc(crtc);
13415
13416 plane->fb = state->base.fb;
13417 crtc->cursor_x = state->base.crtc_x;
13418 crtc->cursor_y = state->base.crtc_y;
13419
13420 if (intel_crtc->cursor_bo == obj)
13421 goto update;
13422
13423 if (!obj)
13424 addr = 0;
13425 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13426 addr = i915_gem_obj_ggtt_offset(obj);
13427 else
13428 addr = obj->phys_handle->busaddr;
13429
13430 intel_crtc->cursor_addr = addr;
13431 intel_crtc->cursor_bo = obj;
13432 update:
13433
13434 if (intel_crtc->active)
13435 intel_crtc_update_cursor(crtc, state->visible);
13436 }
13437
13438 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13439 int pipe)
13440 {
13441 struct intel_plane *cursor;
13442 struct intel_plane_state *state;
13443
13444 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13445 if (cursor == NULL)
13446 return NULL;
13447
13448 state = intel_create_plane_state(&cursor->base);
13449 if (!state) {
13450 kfree(cursor);
13451 return NULL;
13452 }
13453 cursor->base.state = &state->base;
13454
13455 cursor->can_scale = false;
13456 cursor->max_downscale = 1;
13457 cursor->pipe = pipe;
13458 cursor->plane = pipe;
13459 cursor->check_plane = intel_check_cursor_plane;
13460 cursor->commit_plane = intel_commit_cursor_plane;
13461 cursor->disable_plane = intel_disable_cursor_plane;
13462
13463 drm_universal_plane_init(dev, &cursor->base, 0,
13464 &intel_plane_funcs,
13465 intel_cursor_formats,
13466 ARRAY_SIZE(intel_cursor_formats),
13467 DRM_PLANE_TYPE_CURSOR);
13468
13469 if (INTEL_INFO(dev)->gen >= 4) {
13470 if (!dev->mode_config.rotation_property)
13471 dev->mode_config.rotation_property =
13472 drm_mode_create_rotation_property(dev,
13473 BIT(DRM_ROTATE_0) |
13474 BIT(DRM_ROTATE_180));
13475 if (dev->mode_config.rotation_property)
13476 drm_object_attach_property(&cursor->base.base,
13477 dev->mode_config.rotation_property,
13478 state->base.rotation);
13479 }
13480
13481 if (INTEL_INFO(dev)->gen >=9)
13482 state->scaler_id = -1;
13483
13484 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13485
13486 return &cursor->base;
13487 }
13488
13489 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13490 struct intel_crtc_state *crtc_state)
13491 {
13492 int i;
13493 struct intel_scaler *intel_scaler;
13494 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13495
13496 for (i = 0; i < intel_crtc->num_scalers; i++) {
13497 intel_scaler = &scaler_state->scalers[i];
13498 intel_scaler->in_use = 0;
13499 intel_scaler->id = i;
13500
13501 intel_scaler->mode = PS_SCALER_MODE_DYN;
13502 }
13503
13504 scaler_state->scaler_id = -1;
13505 }
13506
13507 static void intel_crtc_init(struct drm_device *dev, int pipe)
13508 {
13509 struct drm_i915_private *dev_priv = dev->dev_private;
13510 struct intel_crtc *intel_crtc;
13511 struct intel_crtc_state *crtc_state = NULL;
13512 struct drm_plane *primary = NULL;
13513 struct drm_plane *cursor = NULL;
13514 int i, ret;
13515
13516 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13517 if (intel_crtc == NULL)
13518 return;
13519
13520 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13521 if (!crtc_state)
13522 goto fail;
13523 intel_crtc->config = crtc_state;
13524 intel_crtc->base.state = &crtc_state->base;
13525 crtc_state->base.crtc = &intel_crtc->base;
13526
13527 /* initialize shared scalers */
13528 if (INTEL_INFO(dev)->gen >= 9) {
13529 if (pipe == PIPE_C)
13530 intel_crtc->num_scalers = 1;
13531 else
13532 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13533
13534 skl_init_scalers(dev, intel_crtc, crtc_state);
13535 }
13536
13537 primary = intel_primary_plane_create(dev, pipe);
13538 if (!primary)
13539 goto fail;
13540
13541 cursor = intel_cursor_plane_create(dev, pipe);
13542 if (!cursor)
13543 goto fail;
13544
13545 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13546 cursor, &intel_crtc_funcs);
13547 if (ret)
13548 goto fail;
13549
13550 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13551 for (i = 0; i < 256; i++) {
13552 intel_crtc->lut_r[i] = i;
13553 intel_crtc->lut_g[i] = i;
13554 intel_crtc->lut_b[i] = i;
13555 }
13556
13557 /*
13558 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13559 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13560 */
13561 intel_crtc->pipe = pipe;
13562 intel_crtc->plane = pipe;
13563 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13564 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13565 intel_crtc->plane = !pipe;
13566 }
13567
13568 intel_crtc->cursor_base = ~0;
13569 intel_crtc->cursor_cntl = ~0;
13570 intel_crtc->cursor_size = ~0;
13571
13572 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13573 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13574 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13575 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13576
13577 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13578
13579 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13580 return;
13581
13582 fail:
13583 if (primary)
13584 drm_plane_cleanup(primary);
13585 if (cursor)
13586 drm_plane_cleanup(cursor);
13587 kfree(crtc_state);
13588 kfree(intel_crtc);
13589 }
13590
13591 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13592 {
13593 struct drm_encoder *encoder = connector->base.encoder;
13594 struct drm_device *dev = connector->base.dev;
13595
13596 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13597
13598 if (!encoder || WARN_ON(!encoder->crtc))
13599 return INVALID_PIPE;
13600
13601 return to_intel_crtc(encoder->crtc)->pipe;
13602 }
13603
13604 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13605 struct drm_file *file)
13606 {
13607 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13608 struct drm_crtc *drmmode_crtc;
13609 struct intel_crtc *crtc;
13610
13611 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13612
13613 if (!drmmode_crtc) {
13614 DRM_ERROR("no such CRTC id\n");
13615 return -ENOENT;
13616 }
13617
13618 crtc = to_intel_crtc(drmmode_crtc);
13619 pipe_from_crtc_id->pipe = crtc->pipe;
13620
13621 return 0;
13622 }
13623
13624 static int intel_encoder_clones(struct intel_encoder *encoder)
13625 {
13626 struct drm_device *dev = encoder->base.dev;
13627 struct intel_encoder *source_encoder;
13628 int index_mask = 0;
13629 int entry = 0;
13630
13631 for_each_intel_encoder(dev, source_encoder) {
13632 if (encoders_cloneable(encoder, source_encoder))
13633 index_mask |= (1 << entry);
13634
13635 entry++;
13636 }
13637
13638 return index_mask;
13639 }
13640
13641 static bool has_edp_a(struct drm_device *dev)
13642 {
13643 struct drm_i915_private *dev_priv = dev->dev_private;
13644
13645 if (!IS_MOBILE(dev))
13646 return false;
13647
13648 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13649 return false;
13650
13651 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13652 return false;
13653
13654 return true;
13655 }
13656
13657 static bool intel_crt_present(struct drm_device *dev)
13658 {
13659 struct drm_i915_private *dev_priv = dev->dev_private;
13660
13661 if (INTEL_INFO(dev)->gen >= 9)
13662 return false;
13663
13664 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13665 return false;
13666
13667 if (IS_CHERRYVIEW(dev))
13668 return false;
13669
13670 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13671 return false;
13672
13673 return true;
13674 }
13675
13676 static void intel_setup_outputs(struct drm_device *dev)
13677 {
13678 struct drm_i915_private *dev_priv = dev->dev_private;
13679 struct intel_encoder *encoder;
13680 bool dpd_is_edp = false;
13681
13682 intel_lvds_init(dev);
13683
13684 if (intel_crt_present(dev))
13685 intel_crt_init(dev);
13686
13687 if (IS_BROXTON(dev)) {
13688 /*
13689 * FIXME: Broxton doesn't support port detection via the
13690 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13691 * detect the ports.
13692 */
13693 intel_ddi_init(dev, PORT_A);
13694 intel_ddi_init(dev, PORT_B);
13695 intel_ddi_init(dev, PORT_C);
13696 } else if (HAS_DDI(dev)) {
13697 int found;
13698
13699 /*
13700 * Haswell uses DDI functions to detect digital outputs.
13701 * On SKL pre-D0 the strap isn't connected, so we assume
13702 * it's there.
13703 */
13704 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13705 /* WaIgnoreDDIAStrap: skl */
13706 if (found ||
13707 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13708 intel_ddi_init(dev, PORT_A);
13709
13710 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13711 * register */
13712 found = I915_READ(SFUSE_STRAP);
13713
13714 if (found & SFUSE_STRAP_DDIB_DETECTED)
13715 intel_ddi_init(dev, PORT_B);
13716 if (found & SFUSE_STRAP_DDIC_DETECTED)
13717 intel_ddi_init(dev, PORT_C);
13718 if (found & SFUSE_STRAP_DDID_DETECTED)
13719 intel_ddi_init(dev, PORT_D);
13720 } else if (HAS_PCH_SPLIT(dev)) {
13721 int found;
13722 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13723
13724 if (has_edp_a(dev))
13725 intel_dp_init(dev, DP_A, PORT_A);
13726
13727 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13728 /* PCH SDVOB multiplex with HDMIB */
13729 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13730 if (!found)
13731 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13732 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13733 intel_dp_init(dev, PCH_DP_B, PORT_B);
13734 }
13735
13736 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13737 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13738
13739 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13740 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13741
13742 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13743 intel_dp_init(dev, PCH_DP_C, PORT_C);
13744
13745 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13746 intel_dp_init(dev, PCH_DP_D, PORT_D);
13747 } else if (IS_VALLEYVIEW(dev)) {
13748 /*
13749 * The DP_DETECTED bit is the latched state of the DDC
13750 * SDA pin at boot. However since eDP doesn't require DDC
13751 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13752 * eDP ports may have been muxed to an alternate function.
13753 * Thus we can't rely on the DP_DETECTED bit alone to detect
13754 * eDP ports. Consult the VBT as well as DP_DETECTED to
13755 * detect eDP ports.
13756 */
13757 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13758 !intel_dp_is_edp(dev, PORT_B))
13759 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13760 PORT_B);
13761 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13762 intel_dp_is_edp(dev, PORT_B))
13763 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13764
13765 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13766 !intel_dp_is_edp(dev, PORT_C))
13767 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13768 PORT_C);
13769 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13770 intel_dp_is_edp(dev, PORT_C))
13771 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13772
13773 if (IS_CHERRYVIEW(dev)) {
13774 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13775 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13776 PORT_D);
13777 /* eDP not supported on port D, so don't check VBT */
13778 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13779 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13780 }
13781
13782 intel_dsi_init(dev);
13783 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13784 bool found = false;
13785
13786 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13787 DRM_DEBUG_KMS("probing SDVOB\n");
13788 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13789 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13790 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13791 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13792 }
13793
13794 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13795 intel_dp_init(dev, DP_B, PORT_B);
13796 }
13797
13798 /* Before G4X SDVOC doesn't have its own detect register */
13799
13800 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13801 DRM_DEBUG_KMS("probing SDVOC\n");
13802 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13803 }
13804
13805 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13806
13807 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13808 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13809 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13810 }
13811 if (SUPPORTS_INTEGRATED_DP(dev))
13812 intel_dp_init(dev, DP_C, PORT_C);
13813 }
13814
13815 if (SUPPORTS_INTEGRATED_DP(dev) &&
13816 (I915_READ(DP_D) & DP_DETECTED))
13817 intel_dp_init(dev, DP_D, PORT_D);
13818 } else if (IS_GEN2(dev))
13819 intel_dvo_init(dev);
13820
13821 if (SUPPORTS_TV(dev))
13822 intel_tv_init(dev);
13823
13824 intel_psr_init(dev);
13825
13826 for_each_intel_encoder(dev, encoder) {
13827 encoder->base.possible_crtcs = encoder->crtc_mask;
13828 encoder->base.possible_clones =
13829 intel_encoder_clones(encoder);
13830 }
13831
13832 intel_init_pch_refclk(dev);
13833
13834 drm_helper_move_panel_connectors_to_head(dev);
13835 }
13836
13837 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13838 {
13839 struct drm_device *dev = fb->dev;
13840 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13841
13842 drm_framebuffer_cleanup(fb);
13843 mutex_lock(&dev->struct_mutex);
13844 WARN_ON(!intel_fb->obj->framebuffer_references--);
13845 drm_gem_object_unreference(&intel_fb->obj->base);
13846 mutex_unlock(&dev->struct_mutex);
13847 kfree(intel_fb);
13848 }
13849
13850 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13851 struct drm_file *file,
13852 unsigned int *handle)
13853 {
13854 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13855 struct drm_i915_gem_object *obj = intel_fb->obj;
13856
13857 return drm_gem_handle_create(file, &obj->base, handle);
13858 }
13859
13860 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13861 .destroy = intel_user_framebuffer_destroy,
13862 .create_handle = intel_user_framebuffer_create_handle,
13863 };
13864
13865 static
13866 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13867 uint32_t pixel_format)
13868 {
13869 u32 gen = INTEL_INFO(dev)->gen;
13870
13871 if (gen >= 9) {
13872 /* "The stride in bytes must not exceed the of the size of 8K
13873 * pixels and 32K bytes."
13874 */
13875 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13876 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13877 return 32*1024;
13878 } else if (gen >= 4) {
13879 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13880 return 16*1024;
13881 else
13882 return 32*1024;
13883 } else if (gen >= 3) {
13884 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13885 return 8*1024;
13886 else
13887 return 16*1024;
13888 } else {
13889 /* XXX DSPC is limited to 4k tiled */
13890 return 8*1024;
13891 }
13892 }
13893
13894 static int intel_framebuffer_init(struct drm_device *dev,
13895 struct intel_framebuffer *intel_fb,
13896 struct drm_mode_fb_cmd2 *mode_cmd,
13897 struct drm_i915_gem_object *obj)
13898 {
13899 unsigned int aligned_height;
13900 int ret;
13901 u32 pitch_limit, stride_alignment;
13902
13903 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13904
13905 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13906 /* Enforce that fb modifier and tiling mode match, but only for
13907 * X-tiled. This is needed for FBC. */
13908 if (!!(obj->tiling_mode == I915_TILING_X) !=
13909 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13910 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13911 return -EINVAL;
13912 }
13913 } else {
13914 if (obj->tiling_mode == I915_TILING_X)
13915 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13916 else if (obj->tiling_mode == I915_TILING_Y) {
13917 DRM_DEBUG("No Y tiling for legacy addfb\n");
13918 return -EINVAL;
13919 }
13920 }
13921
13922 /* Passed in modifier sanity checking. */
13923 switch (mode_cmd->modifier[0]) {
13924 case I915_FORMAT_MOD_Y_TILED:
13925 case I915_FORMAT_MOD_Yf_TILED:
13926 if (INTEL_INFO(dev)->gen < 9) {
13927 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13928 mode_cmd->modifier[0]);
13929 return -EINVAL;
13930 }
13931 case DRM_FORMAT_MOD_NONE:
13932 case I915_FORMAT_MOD_X_TILED:
13933 break;
13934 default:
13935 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13936 mode_cmd->modifier[0]);
13937 return -EINVAL;
13938 }
13939
13940 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13941 mode_cmd->pixel_format);
13942 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13943 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13944 mode_cmd->pitches[0], stride_alignment);
13945 return -EINVAL;
13946 }
13947
13948 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13949 mode_cmd->pixel_format);
13950 if (mode_cmd->pitches[0] > pitch_limit) {
13951 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13952 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13953 "tiled" : "linear",
13954 mode_cmd->pitches[0], pitch_limit);
13955 return -EINVAL;
13956 }
13957
13958 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13959 mode_cmd->pitches[0] != obj->stride) {
13960 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13961 mode_cmd->pitches[0], obj->stride);
13962 return -EINVAL;
13963 }
13964
13965 /* Reject formats not supported by any plane early. */
13966 switch (mode_cmd->pixel_format) {
13967 case DRM_FORMAT_C8:
13968 case DRM_FORMAT_RGB565:
13969 case DRM_FORMAT_XRGB8888:
13970 case DRM_FORMAT_ARGB8888:
13971 break;
13972 case DRM_FORMAT_XRGB1555:
13973 case DRM_FORMAT_ARGB1555:
13974 if (INTEL_INFO(dev)->gen > 3) {
13975 DRM_DEBUG("unsupported pixel format: %s\n",
13976 drm_get_format_name(mode_cmd->pixel_format));
13977 return -EINVAL;
13978 }
13979 break;
13980 case DRM_FORMAT_XBGR8888:
13981 case DRM_FORMAT_ABGR8888:
13982 case DRM_FORMAT_XRGB2101010:
13983 case DRM_FORMAT_ARGB2101010:
13984 case DRM_FORMAT_XBGR2101010:
13985 case DRM_FORMAT_ABGR2101010:
13986 if (INTEL_INFO(dev)->gen < 4) {
13987 DRM_DEBUG("unsupported pixel format: %s\n",
13988 drm_get_format_name(mode_cmd->pixel_format));
13989 return -EINVAL;
13990 }
13991 break;
13992 case DRM_FORMAT_YUYV:
13993 case DRM_FORMAT_UYVY:
13994 case DRM_FORMAT_YVYU:
13995 case DRM_FORMAT_VYUY:
13996 if (INTEL_INFO(dev)->gen < 5) {
13997 DRM_DEBUG("unsupported pixel format: %s\n",
13998 drm_get_format_name(mode_cmd->pixel_format));
13999 return -EINVAL;
14000 }
14001 break;
14002 default:
14003 DRM_DEBUG("unsupported pixel format: %s\n",
14004 drm_get_format_name(mode_cmd->pixel_format));
14005 return -EINVAL;
14006 }
14007
14008 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14009 if (mode_cmd->offsets[0] != 0)
14010 return -EINVAL;
14011
14012 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14013 mode_cmd->pixel_format,
14014 mode_cmd->modifier[0]);
14015 /* FIXME drm helper for size checks (especially planar formats)? */
14016 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14017 return -EINVAL;
14018
14019 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14020 intel_fb->obj = obj;
14021 intel_fb->obj->framebuffer_references++;
14022
14023 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14024 if (ret) {
14025 DRM_ERROR("framebuffer init failed %d\n", ret);
14026 return ret;
14027 }
14028
14029 return 0;
14030 }
14031
14032 static struct drm_framebuffer *
14033 intel_user_framebuffer_create(struct drm_device *dev,
14034 struct drm_file *filp,
14035 struct drm_mode_fb_cmd2 *mode_cmd)
14036 {
14037 struct drm_i915_gem_object *obj;
14038
14039 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14040 mode_cmd->handles[0]));
14041 if (&obj->base == NULL)
14042 return ERR_PTR(-ENOENT);
14043
14044 return intel_framebuffer_create(dev, mode_cmd, obj);
14045 }
14046
14047 #ifndef CONFIG_DRM_I915_FBDEV
14048 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14049 {
14050 }
14051 #endif
14052
14053 static const struct drm_mode_config_funcs intel_mode_funcs = {
14054 .fb_create = intel_user_framebuffer_create,
14055 .output_poll_changed = intel_fbdev_output_poll_changed,
14056 .atomic_check = intel_atomic_check,
14057 .atomic_commit = intel_atomic_commit,
14058 };
14059
14060 /* Set up chip specific display functions */
14061 static void intel_init_display(struct drm_device *dev)
14062 {
14063 struct drm_i915_private *dev_priv = dev->dev_private;
14064
14065 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14066 dev_priv->display.find_dpll = g4x_find_best_dpll;
14067 else if (IS_CHERRYVIEW(dev))
14068 dev_priv->display.find_dpll = chv_find_best_dpll;
14069 else if (IS_VALLEYVIEW(dev))
14070 dev_priv->display.find_dpll = vlv_find_best_dpll;
14071 else if (IS_PINEVIEW(dev))
14072 dev_priv->display.find_dpll = pnv_find_best_dpll;
14073 else
14074 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14075
14076 if (INTEL_INFO(dev)->gen >= 9) {
14077 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14078 dev_priv->display.get_initial_plane_config =
14079 skylake_get_initial_plane_config;
14080 dev_priv->display.crtc_compute_clock =
14081 haswell_crtc_compute_clock;
14082 dev_priv->display.crtc_enable = haswell_crtc_enable;
14083 dev_priv->display.crtc_disable = haswell_crtc_disable;
14084 dev_priv->display.off = ironlake_crtc_off;
14085 dev_priv->display.update_primary_plane =
14086 skylake_update_primary_plane;
14087 } else if (HAS_DDI(dev)) {
14088 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14089 dev_priv->display.get_initial_plane_config =
14090 ironlake_get_initial_plane_config;
14091 dev_priv->display.crtc_compute_clock =
14092 haswell_crtc_compute_clock;
14093 dev_priv->display.crtc_enable = haswell_crtc_enable;
14094 dev_priv->display.crtc_disable = haswell_crtc_disable;
14095 dev_priv->display.off = ironlake_crtc_off;
14096 dev_priv->display.update_primary_plane =
14097 ironlake_update_primary_plane;
14098 } else if (HAS_PCH_SPLIT(dev)) {
14099 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14100 dev_priv->display.get_initial_plane_config =
14101 ironlake_get_initial_plane_config;
14102 dev_priv->display.crtc_compute_clock =
14103 ironlake_crtc_compute_clock;
14104 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14105 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14106 dev_priv->display.off = ironlake_crtc_off;
14107 dev_priv->display.update_primary_plane =
14108 ironlake_update_primary_plane;
14109 } else if (IS_VALLEYVIEW(dev)) {
14110 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14111 dev_priv->display.get_initial_plane_config =
14112 i9xx_get_initial_plane_config;
14113 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14114 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14115 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14116 dev_priv->display.off = i9xx_crtc_off;
14117 dev_priv->display.update_primary_plane =
14118 i9xx_update_primary_plane;
14119 } else {
14120 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14121 dev_priv->display.get_initial_plane_config =
14122 i9xx_get_initial_plane_config;
14123 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14124 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14125 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14126 dev_priv->display.off = i9xx_crtc_off;
14127 dev_priv->display.update_primary_plane =
14128 i9xx_update_primary_plane;
14129 }
14130
14131 /* Returns the core display clock speed */
14132 if (IS_SKYLAKE(dev))
14133 dev_priv->display.get_display_clock_speed =
14134 skylake_get_display_clock_speed;
14135 else if (IS_BROADWELL(dev))
14136 dev_priv->display.get_display_clock_speed =
14137 broadwell_get_display_clock_speed;
14138 else if (IS_HASWELL(dev))
14139 dev_priv->display.get_display_clock_speed =
14140 haswell_get_display_clock_speed;
14141 else if (IS_VALLEYVIEW(dev))
14142 dev_priv->display.get_display_clock_speed =
14143 valleyview_get_display_clock_speed;
14144 else if (IS_GEN5(dev))
14145 dev_priv->display.get_display_clock_speed =
14146 ilk_get_display_clock_speed;
14147 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14148 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14149 dev_priv->display.get_display_clock_speed =
14150 i945_get_display_clock_speed;
14151 else if (IS_I915G(dev))
14152 dev_priv->display.get_display_clock_speed =
14153 i915_get_display_clock_speed;
14154 else if (IS_I945GM(dev) || IS_845G(dev))
14155 dev_priv->display.get_display_clock_speed =
14156 i9xx_misc_get_display_clock_speed;
14157 else if (IS_PINEVIEW(dev))
14158 dev_priv->display.get_display_clock_speed =
14159 pnv_get_display_clock_speed;
14160 else if (IS_I915GM(dev))
14161 dev_priv->display.get_display_clock_speed =
14162 i915gm_get_display_clock_speed;
14163 else if (IS_I865G(dev))
14164 dev_priv->display.get_display_clock_speed =
14165 i865_get_display_clock_speed;
14166 else if (IS_I85X(dev))
14167 dev_priv->display.get_display_clock_speed =
14168 i855_get_display_clock_speed;
14169 else /* 852, 830 */
14170 dev_priv->display.get_display_clock_speed =
14171 i830_get_display_clock_speed;
14172
14173 if (IS_GEN5(dev)) {
14174 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14175 } else if (IS_GEN6(dev)) {
14176 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14177 } else if (IS_IVYBRIDGE(dev)) {
14178 /* FIXME: detect B0+ stepping and use auto training */
14179 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14180 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14181 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14182 } else if (IS_VALLEYVIEW(dev)) {
14183 dev_priv->display.modeset_global_resources =
14184 valleyview_modeset_global_resources;
14185 } else if (IS_BROXTON(dev)) {
14186 dev_priv->display.modeset_global_resources =
14187 broxton_modeset_global_resources;
14188 }
14189
14190 switch (INTEL_INFO(dev)->gen) {
14191 case 2:
14192 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14193 break;
14194
14195 case 3:
14196 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14197 break;
14198
14199 case 4:
14200 case 5:
14201 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14202 break;
14203
14204 case 6:
14205 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14206 break;
14207 case 7:
14208 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14209 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14210 break;
14211 case 9:
14212 /* Drop through - unsupported since execlist only. */
14213 default:
14214 /* Default just returns -ENODEV to indicate unsupported */
14215 dev_priv->display.queue_flip = intel_default_queue_flip;
14216 }
14217
14218 intel_panel_init_backlight_funcs(dev);
14219
14220 mutex_init(&dev_priv->pps_mutex);
14221 }
14222
14223 /*
14224 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14225 * resume, or other times. This quirk makes sure that's the case for
14226 * affected systems.
14227 */
14228 static void quirk_pipea_force(struct drm_device *dev)
14229 {
14230 struct drm_i915_private *dev_priv = dev->dev_private;
14231
14232 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14233 DRM_INFO("applying pipe a force quirk\n");
14234 }
14235
14236 static void quirk_pipeb_force(struct drm_device *dev)
14237 {
14238 struct drm_i915_private *dev_priv = dev->dev_private;
14239
14240 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14241 DRM_INFO("applying pipe b force quirk\n");
14242 }
14243
14244 /*
14245 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14246 */
14247 static void quirk_ssc_force_disable(struct drm_device *dev)
14248 {
14249 struct drm_i915_private *dev_priv = dev->dev_private;
14250 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14251 DRM_INFO("applying lvds SSC disable quirk\n");
14252 }
14253
14254 /*
14255 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14256 * brightness value
14257 */
14258 static void quirk_invert_brightness(struct drm_device *dev)
14259 {
14260 struct drm_i915_private *dev_priv = dev->dev_private;
14261 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14262 DRM_INFO("applying inverted panel brightness quirk\n");
14263 }
14264
14265 /* Some VBT's incorrectly indicate no backlight is present */
14266 static void quirk_backlight_present(struct drm_device *dev)
14267 {
14268 struct drm_i915_private *dev_priv = dev->dev_private;
14269 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14270 DRM_INFO("applying backlight present quirk\n");
14271 }
14272
14273 struct intel_quirk {
14274 int device;
14275 int subsystem_vendor;
14276 int subsystem_device;
14277 void (*hook)(struct drm_device *dev);
14278 };
14279
14280 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14281 struct intel_dmi_quirk {
14282 void (*hook)(struct drm_device *dev);
14283 const struct dmi_system_id (*dmi_id_list)[];
14284 };
14285
14286 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14287 {
14288 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14289 return 1;
14290 }
14291
14292 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14293 {
14294 .dmi_id_list = &(const struct dmi_system_id[]) {
14295 {
14296 .callback = intel_dmi_reverse_brightness,
14297 .ident = "NCR Corporation",
14298 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14299 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14300 },
14301 },
14302 { } /* terminating entry */
14303 },
14304 .hook = quirk_invert_brightness,
14305 },
14306 };
14307
14308 static struct intel_quirk intel_quirks[] = {
14309 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14310 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14311
14312 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14313 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14314
14315 /* 830 needs to leave pipe A & dpll A up */
14316 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14317
14318 /* 830 needs to leave pipe B & dpll B up */
14319 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14320
14321 /* Lenovo U160 cannot use SSC on LVDS */
14322 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14323
14324 /* Sony Vaio Y cannot use SSC on LVDS */
14325 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14326
14327 /* Acer Aspire 5734Z must invert backlight brightness */
14328 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14329
14330 /* Acer/eMachines G725 */
14331 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14332
14333 /* Acer/eMachines e725 */
14334 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14335
14336 /* Acer/Packard Bell NCL20 */
14337 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14338
14339 /* Acer Aspire 4736Z */
14340 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14341
14342 /* Acer Aspire 5336 */
14343 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14344
14345 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14346 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14347
14348 /* Acer C720 Chromebook (Core i3 4005U) */
14349 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14350
14351 /* Apple Macbook 2,1 (Core 2 T7400) */
14352 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14353
14354 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14355 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14356
14357 /* HP Chromebook 14 (Celeron 2955U) */
14358 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14359
14360 /* Dell Chromebook 11 */
14361 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14362 };
14363
14364 static void intel_init_quirks(struct drm_device *dev)
14365 {
14366 struct pci_dev *d = dev->pdev;
14367 int i;
14368
14369 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14370 struct intel_quirk *q = &intel_quirks[i];
14371
14372 if (d->device == q->device &&
14373 (d->subsystem_vendor == q->subsystem_vendor ||
14374 q->subsystem_vendor == PCI_ANY_ID) &&
14375 (d->subsystem_device == q->subsystem_device ||
14376 q->subsystem_device == PCI_ANY_ID))
14377 q->hook(dev);
14378 }
14379 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14380 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14381 intel_dmi_quirks[i].hook(dev);
14382 }
14383 }
14384
14385 /* Disable the VGA plane that we never use */
14386 static void i915_disable_vga(struct drm_device *dev)
14387 {
14388 struct drm_i915_private *dev_priv = dev->dev_private;
14389 u8 sr1;
14390 u32 vga_reg = i915_vgacntrl_reg(dev);
14391
14392 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14393 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14394 outb(SR01, VGA_SR_INDEX);
14395 sr1 = inb(VGA_SR_DATA);
14396 outb(sr1 | 1<<5, VGA_SR_DATA);
14397 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14398 udelay(300);
14399
14400 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14401 POSTING_READ(vga_reg);
14402 }
14403
14404 void intel_modeset_init_hw(struct drm_device *dev)
14405 {
14406 intel_prepare_ddi(dev);
14407
14408 if (IS_VALLEYVIEW(dev))
14409 vlv_update_cdclk(dev);
14410
14411 intel_init_clock_gating(dev);
14412
14413 intel_enable_gt_powersave(dev);
14414 }
14415
14416 void intel_modeset_init(struct drm_device *dev)
14417 {
14418 struct drm_i915_private *dev_priv = dev->dev_private;
14419 int sprite, ret;
14420 enum pipe pipe;
14421 struct intel_crtc *crtc;
14422
14423 drm_mode_config_init(dev);
14424
14425 dev->mode_config.min_width = 0;
14426 dev->mode_config.min_height = 0;
14427
14428 dev->mode_config.preferred_depth = 24;
14429 dev->mode_config.prefer_shadow = 1;
14430
14431 dev->mode_config.allow_fb_modifiers = true;
14432
14433 dev->mode_config.funcs = &intel_mode_funcs;
14434
14435 intel_init_quirks(dev);
14436
14437 intel_init_pm(dev);
14438
14439 if (INTEL_INFO(dev)->num_pipes == 0)
14440 return;
14441
14442 intel_init_display(dev);
14443 intel_init_audio(dev);
14444
14445 if (IS_GEN2(dev)) {
14446 dev->mode_config.max_width = 2048;
14447 dev->mode_config.max_height = 2048;
14448 } else if (IS_GEN3(dev)) {
14449 dev->mode_config.max_width = 4096;
14450 dev->mode_config.max_height = 4096;
14451 } else {
14452 dev->mode_config.max_width = 8192;
14453 dev->mode_config.max_height = 8192;
14454 }
14455
14456 if (IS_845G(dev) || IS_I865G(dev)) {
14457 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14458 dev->mode_config.cursor_height = 1023;
14459 } else if (IS_GEN2(dev)) {
14460 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14461 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14462 } else {
14463 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14464 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14465 }
14466
14467 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14468
14469 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14470 INTEL_INFO(dev)->num_pipes,
14471 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14472
14473 for_each_pipe(dev_priv, pipe) {
14474 intel_crtc_init(dev, pipe);
14475 for_each_sprite(dev_priv, pipe, sprite) {
14476 ret = intel_plane_init(dev, pipe, sprite);
14477 if (ret)
14478 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14479 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14480 }
14481 }
14482
14483 intel_init_dpio(dev);
14484
14485 intel_shared_dpll_init(dev);
14486
14487 /* Just disable it once at startup */
14488 i915_disable_vga(dev);
14489 intel_setup_outputs(dev);
14490
14491 /* Just in case the BIOS is doing something questionable. */
14492 intel_fbc_disable(dev);
14493
14494 drm_modeset_lock_all(dev);
14495 intel_modeset_setup_hw_state(dev, false);
14496 drm_modeset_unlock_all(dev);
14497
14498 for_each_intel_crtc(dev, crtc) {
14499 if (!crtc->active)
14500 continue;
14501
14502 /*
14503 * Note that reserving the BIOS fb up front prevents us
14504 * from stuffing other stolen allocations like the ring
14505 * on top. This prevents some ugliness at boot time, and
14506 * can even allow for smooth boot transitions if the BIOS
14507 * fb is large enough for the active pipe configuration.
14508 */
14509 if (dev_priv->display.get_initial_plane_config) {
14510 dev_priv->display.get_initial_plane_config(crtc,
14511 &crtc->plane_config);
14512 /*
14513 * If the fb is shared between multiple heads, we'll
14514 * just get the first one.
14515 */
14516 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14517 }
14518 }
14519 }
14520
14521 static void intel_enable_pipe_a(struct drm_device *dev)
14522 {
14523 struct intel_connector *connector;
14524 struct drm_connector *crt = NULL;
14525 struct intel_load_detect_pipe load_detect_temp;
14526 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14527
14528 /* We can't just switch on the pipe A, we need to set things up with a
14529 * proper mode and output configuration. As a gross hack, enable pipe A
14530 * by enabling the load detect pipe once. */
14531 for_each_intel_connector(dev, connector) {
14532 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14533 crt = &connector->base;
14534 break;
14535 }
14536 }
14537
14538 if (!crt)
14539 return;
14540
14541 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14542 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14543 }
14544
14545 static bool
14546 intel_check_plane_mapping(struct intel_crtc *crtc)
14547 {
14548 struct drm_device *dev = crtc->base.dev;
14549 struct drm_i915_private *dev_priv = dev->dev_private;
14550 u32 reg, val;
14551
14552 if (INTEL_INFO(dev)->num_pipes == 1)
14553 return true;
14554
14555 reg = DSPCNTR(!crtc->plane);
14556 val = I915_READ(reg);
14557
14558 if ((val & DISPLAY_PLANE_ENABLE) &&
14559 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14560 return false;
14561
14562 return true;
14563 }
14564
14565 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14566 {
14567 struct drm_device *dev = crtc->base.dev;
14568 struct drm_i915_private *dev_priv = dev->dev_private;
14569 u32 reg;
14570
14571 /* Clear any frame start delays used for debugging left by the BIOS */
14572 reg = PIPECONF(crtc->config->cpu_transcoder);
14573 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14574
14575 /* restore vblank interrupts to correct state */
14576 drm_crtc_vblank_reset(&crtc->base);
14577 if (crtc->active) {
14578 update_scanline_offset(crtc);
14579 drm_crtc_vblank_on(&crtc->base);
14580 }
14581
14582 /* We need to sanitize the plane -> pipe mapping first because this will
14583 * disable the crtc (and hence change the state) if it is wrong. Note
14584 * that gen4+ has a fixed plane -> pipe mapping. */
14585 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14586 struct intel_connector *connector;
14587 bool plane;
14588
14589 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14590 crtc->base.base.id);
14591
14592 /* Pipe has the wrong plane attached and the plane is active.
14593 * Temporarily change the plane mapping and disable everything
14594 * ... */
14595 plane = crtc->plane;
14596 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14597 crtc->plane = !plane;
14598 intel_crtc_disable_planes(&crtc->base);
14599 dev_priv->display.crtc_disable(&crtc->base);
14600 crtc->plane = plane;
14601
14602 /* ... and break all links. */
14603 for_each_intel_connector(dev, connector) {
14604 if (connector->encoder->base.crtc != &crtc->base)
14605 continue;
14606
14607 connector->base.dpms = DRM_MODE_DPMS_OFF;
14608 connector->base.encoder = NULL;
14609 }
14610 /* multiple connectors may have the same encoder:
14611 * handle them and break crtc link separately */
14612 for_each_intel_connector(dev, connector)
14613 if (connector->encoder->base.crtc == &crtc->base) {
14614 connector->encoder->base.crtc = NULL;
14615 connector->encoder->connectors_active = false;
14616 }
14617
14618 WARN_ON(crtc->active);
14619 crtc->base.state->enable = false;
14620 crtc->base.state->active = false;
14621 crtc->base.enabled = false;
14622 }
14623
14624 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14625 crtc->pipe == PIPE_A && !crtc->active) {
14626 /* BIOS forgot to enable pipe A, this mostly happens after
14627 * resume. Force-enable the pipe to fix this, the update_dpms
14628 * call below we restore the pipe to the right state, but leave
14629 * the required bits on. */
14630 intel_enable_pipe_a(dev);
14631 }
14632
14633 /* Adjust the state of the output pipe according to whether we
14634 * have active connectors/encoders. */
14635 intel_crtc_update_dpms(&crtc->base);
14636
14637 if (crtc->active != crtc->base.state->enable) {
14638 struct intel_encoder *encoder;
14639
14640 /* This can happen either due to bugs in the get_hw_state
14641 * functions or because the pipe is force-enabled due to the
14642 * pipe A quirk. */
14643 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14644 crtc->base.base.id,
14645 crtc->base.state->enable ? "enabled" : "disabled",
14646 crtc->active ? "enabled" : "disabled");
14647
14648 crtc->base.state->enable = crtc->active;
14649 crtc->base.state->active = crtc->active;
14650 crtc->base.enabled = crtc->active;
14651
14652 /* Because we only establish the connector -> encoder ->
14653 * crtc links if something is active, this means the
14654 * crtc is now deactivated. Break the links. connector
14655 * -> encoder links are only establish when things are
14656 * actually up, hence no need to break them. */
14657 WARN_ON(crtc->active);
14658
14659 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14660 WARN_ON(encoder->connectors_active);
14661 encoder->base.crtc = NULL;
14662 }
14663 }
14664
14665 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14666 /*
14667 * We start out with underrun reporting disabled to avoid races.
14668 * For correct bookkeeping mark this on active crtcs.
14669 *
14670 * Also on gmch platforms we dont have any hardware bits to
14671 * disable the underrun reporting. Which means we need to start
14672 * out with underrun reporting disabled also on inactive pipes,
14673 * since otherwise we'll complain about the garbage we read when
14674 * e.g. coming up after runtime pm.
14675 *
14676 * No protection against concurrent access is required - at
14677 * worst a fifo underrun happens which also sets this to false.
14678 */
14679 crtc->cpu_fifo_underrun_disabled = true;
14680 crtc->pch_fifo_underrun_disabled = true;
14681 }
14682 }
14683
14684 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14685 {
14686 struct intel_connector *connector;
14687 struct drm_device *dev = encoder->base.dev;
14688
14689 /* We need to check both for a crtc link (meaning that the
14690 * encoder is active and trying to read from a pipe) and the
14691 * pipe itself being active. */
14692 bool has_active_crtc = encoder->base.crtc &&
14693 to_intel_crtc(encoder->base.crtc)->active;
14694
14695 if (encoder->connectors_active && !has_active_crtc) {
14696 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14697 encoder->base.base.id,
14698 encoder->base.name);
14699
14700 /* Connector is active, but has no active pipe. This is
14701 * fallout from our resume register restoring. Disable
14702 * the encoder manually again. */
14703 if (encoder->base.crtc) {
14704 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14705 encoder->base.base.id,
14706 encoder->base.name);
14707 encoder->disable(encoder);
14708 if (encoder->post_disable)
14709 encoder->post_disable(encoder);
14710 }
14711 encoder->base.crtc = NULL;
14712 encoder->connectors_active = false;
14713
14714 /* Inconsistent output/port/pipe state happens presumably due to
14715 * a bug in one of the get_hw_state functions. Or someplace else
14716 * in our code, like the register restore mess on resume. Clamp
14717 * things to off as a safer default. */
14718 for_each_intel_connector(dev, connector) {
14719 if (connector->encoder != encoder)
14720 continue;
14721 connector->base.dpms = DRM_MODE_DPMS_OFF;
14722 connector->base.encoder = NULL;
14723 }
14724 }
14725 /* Enabled encoders without active connectors will be fixed in
14726 * the crtc fixup. */
14727 }
14728
14729 void i915_redisable_vga_power_on(struct drm_device *dev)
14730 {
14731 struct drm_i915_private *dev_priv = dev->dev_private;
14732 u32 vga_reg = i915_vgacntrl_reg(dev);
14733
14734 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14735 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14736 i915_disable_vga(dev);
14737 }
14738 }
14739
14740 void i915_redisable_vga(struct drm_device *dev)
14741 {
14742 struct drm_i915_private *dev_priv = dev->dev_private;
14743
14744 /* This function can be called both from intel_modeset_setup_hw_state or
14745 * at a very early point in our resume sequence, where the power well
14746 * structures are not yet restored. Since this function is at a very
14747 * paranoid "someone might have enabled VGA while we were not looking"
14748 * level, just check if the power well is enabled instead of trying to
14749 * follow the "don't touch the power well if we don't need it" policy
14750 * the rest of the driver uses. */
14751 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14752 return;
14753
14754 i915_redisable_vga_power_on(dev);
14755 }
14756
14757 static bool primary_get_hw_state(struct intel_crtc *crtc)
14758 {
14759 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14760
14761 if (!crtc->active)
14762 return false;
14763
14764 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14765 }
14766
14767 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14768 {
14769 struct drm_i915_private *dev_priv = dev->dev_private;
14770 enum pipe pipe;
14771 struct intel_crtc *crtc;
14772 struct intel_encoder *encoder;
14773 struct intel_connector *connector;
14774 int i;
14775
14776 for_each_intel_crtc(dev, crtc) {
14777 struct drm_plane *primary = crtc->base.primary;
14778 struct intel_plane_state *plane_state;
14779
14780 memset(crtc->config, 0, sizeof(*crtc->config));
14781
14782 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14783
14784 crtc->active = dev_priv->display.get_pipe_config(crtc,
14785 crtc->config);
14786
14787 crtc->base.state->enable = crtc->active;
14788 crtc->base.state->active = crtc->active;
14789 crtc->base.enabled = crtc->active;
14790
14791 plane_state = to_intel_plane_state(primary->state);
14792 plane_state->visible = primary_get_hw_state(crtc);
14793
14794 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14795 crtc->base.base.id,
14796 crtc->active ? "enabled" : "disabled");
14797 }
14798
14799 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14800 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14801
14802 pll->on = pll->get_hw_state(dev_priv, pll,
14803 &pll->config.hw_state);
14804 pll->active = 0;
14805 pll->config.crtc_mask = 0;
14806 for_each_intel_crtc(dev, crtc) {
14807 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14808 pll->active++;
14809 pll->config.crtc_mask |= 1 << crtc->pipe;
14810 }
14811 }
14812
14813 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14814 pll->name, pll->config.crtc_mask, pll->on);
14815
14816 if (pll->config.crtc_mask)
14817 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14818 }
14819
14820 for_each_intel_encoder(dev, encoder) {
14821 pipe = 0;
14822
14823 if (encoder->get_hw_state(encoder, &pipe)) {
14824 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14825 encoder->base.crtc = &crtc->base;
14826 encoder->get_config(encoder, crtc->config);
14827 } else {
14828 encoder->base.crtc = NULL;
14829 }
14830
14831 encoder->connectors_active = false;
14832 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14833 encoder->base.base.id,
14834 encoder->base.name,
14835 encoder->base.crtc ? "enabled" : "disabled",
14836 pipe_name(pipe));
14837 }
14838
14839 for_each_intel_connector(dev, connector) {
14840 if (connector->get_hw_state(connector)) {
14841 connector->base.dpms = DRM_MODE_DPMS_ON;
14842 connector->encoder->connectors_active = true;
14843 connector->base.encoder = &connector->encoder->base;
14844 } else {
14845 connector->base.dpms = DRM_MODE_DPMS_OFF;
14846 connector->base.encoder = NULL;
14847 }
14848 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14849 connector->base.base.id,
14850 connector->base.name,
14851 connector->base.encoder ? "enabled" : "disabled");
14852 }
14853 }
14854
14855 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14856 * and i915 state tracking structures. */
14857 void intel_modeset_setup_hw_state(struct drm_device *dev,
14858 bool force_restore)
14859 {
14860 struct drm_i915_private *dev_priv = dev->dev_private;
14861 enum pipe pipe;
14862 struct intel_crtc *crtc;
14863 struct intel_encoder *encoder;
14864 int i;
14865
14866 intel_modeset_readout_hw_state(dev);
14867
14868 /*
14869 * Now that we have the config, copy it to each CRTC struct
14870 * Note that this could go away if we move to using crtc_config
14871 * checking everywhere.
14872 */
14873 for_each_intel_crtc(dev, crtc) {
14874 if (crtc->active && i915.fastboot) {
14875 intel_mode_from_pipe_config(&crtc->base.mode,
14876 crtc->config);
14877 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14878 crtc->base.base.id);
14879 drm_mode_debug_printmodeline(&crtc->base.mode);
14880 }
14881 }
14882
14883 /* HW state is read out, now we need to sanitize this mess. */
14884 for_each_intel_encoder(dev, encoder) {
14885 intel_sanitize_encoder(encoder);
14886 }
14887
14888 for_each_pipe(dev_priv, pipe) {
14889 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14890 intel_sanitize_crtc(crtc);
14891 intel_dump_pipe_config(crtc, crtc->config,
14892 "[setup_hw_state]");
14893 }
14894
14895 intel_modeset_update_connector_atomic_state(dev);
14896
14897 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14898 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14899
14900 if (!pll->on || pll->active)
14901 continue;
14902
14903 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14904
14905 pll->disable(dev_priv, pll);
14906 pll->on = false;
14907 }
14908
14909 if (IS_GEN9(dev))
14910 skl_wm_get_hw_state(dev);
14911 else if (HAS_PCH_SPLIT(dev))
14912 ilk_wm_get_hw_state(dev);
14913
14914 if (force_restore) {
14915 i915_redisable_vga(dev);
14916
14917 /*
14918 * We need to use raw interfaces for restoring state to avoid
14919 * checking (bogus) intermediate states.
14920 */
14921 for_each_pipe(dev_priv, pipe) {
14922 struct drm_crtc *crtc =
14923 dev_priv->pipe_to_crtc_mapping[pipe];
14924
14925 intel_crtc_restore_mode(crtc);
14926 }
14927 } else {
14928 intel_modeset_update_staged_output_state(dev);
14929 }
14930
14931 intel_modeset_check_state(dev);
14932 }
14933
14934 void intel_modeset_gem_init(struct drm_device *dev)
14935 {
14936 struct drm_i915_private *dev_priv = dev->dev_private;
14937 struct drm_crtc *c;
14938 struct drm_i915_gem_object *obj;
14939 int ret;
14940
14941 mutex_lock(&dev->struct_mutex);
14942 intel_init_gt_powersave(dev);
14943 mutex_unlock(&dev->struct_mutex);
14944
14945 /*
14946 * There may be no VBT; and if the BIOS enabled SSC we can
14947 * just keep using it to avoid unnecessary flicker. Whereas if the
14948 * BIOS isn't using it, don't assume it will work even if the VBT
14949 * indicates as much.
14950 */
14951 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14952 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14953 DREF_SSC1_ENABLE);
14954
14955 intel_modeset_init_hw(dev);
14956
14957 intel_setup_overlay(dev);
14958
14959 /*
14960 * Make sure any fbs we allocated at startup are properly
14961 * pinned & fenced. When we do the allocation it's too early
14962 * for this.
14963 */
14964 for_each_crtc(dev, c) {
14965 obj = intel_fb_obj(c->primary->fb);
14966 if (obj == NULL)
14967 continue;
14968
14969 mutex_lock(&dev->struct_mutex);
14970 ret = intel_pin_and_fence_fb_obj(c->primary,
14971 c->primary->fb,
14972 c->primary->state,
14973 NULL);
14974 mutex_unlock(&dev->struct_mutex);
14975 if (ret) {
14976 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14977 to_intel_crtc(c)->pipe);
14978 drm_framebuffer_unreference(c->primary->fb);
14979 c->primary->fb = NULL;
14980 update_state_fb(c->primary);
14981 }
14982 }
14983
14984 intel_backlight_register(dev);
14985 }
14986
14987 void intel_connector_unregister(struct intel_connector *intel_connector)
14988 {
14989 struct drm_connector *connector = &intel_connector->base;
14990
14991 intel_panel_destroy_backlight(connector);
14992 drm_connector_unregister(connector);
14993 }
14994
14995 void intel_modeset_cleanup(struct drm_device *dev)
14996 {
14997 struct drm_i915_private *dev_priv = dev->dev_private;
14998 struct drm_connector *connector;
14999
15000 intel_disable_gt_powersave(dev);
15001
15002 intel_backlight_unregister(dev);
15003
15004 /*
15005 * Interrupts and polling as the first thing to avoid creating havoc.
15006 * Too much stuff here (turning of connectors, ...) would
15007 * experience fancy races otherwise.
15008 */
15009 intel_irq_uninstall(dev_priv);
15010
15011 /*
15012 * Due to the hpd irq storm handling the hotplug work can re-arm the
15013 * poll handlers. Hence disable polling after hpd handling is shut down.
15014 */
15015 drm_kms_helper_poll_fini(dev);
15016
15017 mutex_lock(&dev->struct_mutex);
15018
15019 intel_unregister_dsm_handler();
15020
15021 intel_fbc_disable(dev);
15022
15023 mutex_unlock(&dev->struct_mutex);
15024
15025 /* flush any delayed tasks or pending work */
15026 flush_scheduled_work();
15027
15028 /* destroy the backlight and sysfs files before encoders/connectors */
15029 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15030 struct intel_connector *intel_connector;
15031
15032 intel_connector = to_intel_connector(connector);
15033 intel_connector->unregister(intel_connector);
15034 }
15035
15036 drm_mode_config_cleanup(dev);
15037
15038 intel_cleanup_overlay(dev);
15039
15040 mutex_lock(&dev->struct_mutex);
15041 intel_cleanup_gt_powersave(dev);
15042 mutex_unlock(&dev->struct_mutex);
15043 }
15044
15045 /*
15046 * Return which encoder is currently attached for connector.
15047 */
15048 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15049 {
15050 return &intel_attached_encoder(connector)->base;
15051 }
15052
15053 void intel_connector_attach_encoder(struct intel_connector *connector,
15054 struct intel_encoder *encoder)
15055 {
15056 connector->encoder = encoder;
15057 drm_mode_connector_attach_encoder(&connector->base,
15058 &encoder->base);
15059 }
15060
15061 /*
15062 * set vga decode state - true == enable VGA decode
15063 */
15064 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15065 {
15066 struct drm_i915_private *dev_priv = dev->dev_private;
15067 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15068 u16 gmch_ctrl;
15069
15070 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15071 DRM_ERROR("failed to read control word\n");
15072 return -EIO;
15073 }
15074
15075 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15076 return 0;
15077
15078 if (state)
15079 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15080 else
15081 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15082
15083 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15084 DRM_ERROR("failed to write control word\n");
15085 return -EIO;
15086 }
15087
15088 return 0;
15089 }
15090
15091 struct intel_display_error_state {
15092
15093 u32 power_well_driver;
15094
15095 int num_transcoders;
15096
15097 struct intel_cursor_error_state {
15098 u32 control;
15099 u32 position;
15100 u32 base;
15101 u32 size;
15102 } cursor[I915_MAX_PIPES];
15103
15104 struct intel_pipe_error_state {
15105 bool power_domain_on;
15106 u32 source;
15107 u32 stat;
15108 } pipe[I915_MAX_PIPES];
15109
15110 struct intel_plane_error_state {
15111 u32 control;
15112 u32 stride;
15113 u32 size;
15114 u32 pos;
15115 u32 addr;
15116 u32 surface;
15117 u32 tile_offset;
15118 } plane[I915_MAX_PIPES];
15119
15120 struct intel_transcoder_error_state {
15121 bool power_domain_on;
15122 enum transcoder cpu_transcoder;
15123
15124 u32 conf;
15125
15126 u32 htotal;
15127 u32 hblank;
15128 u32 hsync;
15129 u32 vtotal;
15130 u32 vblank;
15131 u32 vsync;
15132 } transcoder[4];
15133 };
15134
15135 struct intel_display_error_state *
15136 intel_display_capture_error_state(struct drm_device *dev)
15137 {
15138 struct drm_i915_private *dev_priv = dev->dev_private;
15139 struct intel_display_error_state *error;
15140 int transcoders[] = {
15141 TRANSCODER_A,
15142 TRANSCODER_B,
15143 TRANSCODER_C,
15144 TRANSCODER_EDP,
15145 };
15146 int i;
15147
15148 if (INTEL_INFO(dev)->num_pipes == 0)
15149 return NULL;
15150
15151 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15152 if (error == NULL)
15153 return NULL;
15154
15155 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15156 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15157
15158 for_each_pipe(dev_priv, i) {
15159 error->pipe[i].power_domain_on =
15160 __intel_display_power_is_enabled(dev_priv,
15161 POWER_DOMAIN_PIPE(i));
15162 if (!error->pipe[i].power_domain_on)
15163 continue;
15164
15165 error->cursor[i].control = I915_READ(CURCNTR(i));
15166 error->cursor[i].position = I915_READ(CURPOS(i));
15167 error->cursor[i].base = I915_READ(CURBASE(i));
15168
15169 error->plane[i].control = I915_READ(DSPCNTR(i));
15170 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15171 if (INTEL_INFO(dev)->gen <= 3) {
15172 error->plane[i].size = I915_READ(DSPSIZE(i));
15173 error->plane[i].pos = I915_READ(DSPPOS(i));
15174 }
15175 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15176 error->plane[i].addr = I915_READ(DSPADDR(i));
15177 if (INTEL_INFO(dev)->gen >= 4) {
15178 error->plane[i].surface = I915_READ(DSPSURF(i));
15179 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15180 }
15181
15182 error->pipe[i].source = I915_READ(PIPESRC(i));
15183
15184 if (HAS_GMCH_DISPLAY(dev))
15185 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15186 }
15187
15188 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15189 if (HAS_DDI(dev_priv->dev))
15190 error->num_transcoders++; /* Account for eDP. */
15191
15192 for (i = 0; i < error->num_transcoders; i++) {
15193 enum transcoder cpu_transcoder = transcoders[i];
15194
15195 error->transcoder[i].power_domain_on =
15196 __intel_display_power_is_enabled(dev_priv,
15197 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15198 if (!error->transcoder[i].power_domain_on)
15199 continue;
15200
15201 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15202
15203 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15204 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15205 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15206 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15207 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15208 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15209 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15210 }
15211
15212 return error;
15213 }
15214
15215 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15216
15217 void
15218 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15219 struct drm_device *dev,
15220 struct intel_display_error_state *error)
15221 {
15222 struct drm_i915_private *dev_priv = dev->dev_private;
15223 int i;
15224
15225 if (!error)
15226 return;
15227
15228 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15229 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15230 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15231 error->power_well_driver);
15232 for_each_pipe(dev_priv, i) {
15233 err_printf(m, "Pipe [%d]:\n", i);
15234 err_printf(m, " Power: %s\n",
15235 error->pipe[i].power_domain_on ? "on" : "off");
15236 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15237 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15238
15239 err_printf(m, "Plane [%d]:\n", i);
15240 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15241 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15242 if (INTEL_INFO(dev)->gen <= 3) {
15243 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15244 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15245 }
15246 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15247 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15248 if (INTEL_INFO(dev)->gen >= 4) {
15249 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15250 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15251 }
15252
15253 err_printf(m, "Cursor [%d]:\n", i);
15254 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15255 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15256 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15257 }
15258
15259 for (i = 0; i < error->num_transcoders; i++) {
15260 err_printf(m, "CPU transcoder: %c\n",
15261 transcoder_name(error->transcoder[i].cpu_transcoder));
15262 err_printf(m, " Power: %s\n",
15263 error->transcoder[i].power_domain_on ? "on" : "off");
15264 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15265 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15266 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15267 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15268 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15269 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15270 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15271 }
15272 }
15273
15274 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15275 {
15276 struct intel_crtc *crtc;
15277
15278 for_each_intel_crtc(dev, crtc) {
15279 struct intel_unpin_work *work;
15280
15281 spin_lock_irq(&dev->event_lock);
15282
15283 work = crtc->unpin_work;
15284
15285 if (work && work->event &&
15286 work->event->base.file_priv == file) {
15287 kfree(work->event);
15288 work->event = NULL;
15289 }
15290
15291 spin_unlock_irq(&dev->event_lock);
15292 }
15293 }