]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge airlied/drm-next into drm-misc-next
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101 struct drm_i915_gem_object *obj,
102 struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev,
124 struct drm_modeset_acquire_ctx *ctx);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126
127 struct intel_limit {
128 struct {
129 int min, max;
130 } dot, vco, n, m, m1, m2, p, p1;
131
132 struct {
133 int dot_limit;
134 int p2_slow, p2_fast;
135 } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 {
141 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143 /* Obtain SKU information */
144 mutex_lock(&dev_priv->sb_lock);
145 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146 CCK_FUSE_HPLL_FREQ_MASK;
147 mutex_unlock(&dev_priv->sb_lock);
148
149 return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153 const char *name, u32 reg, int ref_freq)
154 {
155 u32 val;
156 int divider;
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172 const char *name, u32 reg)
173 {
174 if (dev_priv->hpll_freq == 0)
175 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176
177 return vlv_get_cck_clock(dev_priv, name, reg,
178 dev_priv->hpll_freq);
179 }
180
181 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 {
183 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
184 return;
185
186 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
187 CCK_CZ_CLOCK_CONTROL);
188
189 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
190 }
191
192 static inline u32 /* units of 100MHz */
193 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
194 const struct intel_crtc_state *pipe_config)
195 {
196 if (HAS_DDI(dev_priv))
197 return pipe_config->port_clock; /* SPLL */
198 else if (IS_GEN5(dev_priv))
199 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
200 else
201 return 270000;
202 }
203
204 static const struct intel_limit intel_limits_i8xx_dac = {
205 .dot = { .min = 25000, .max = 350000 },
206 .vco = { .min = 908000, .max = 1512000 },
207 .n = { .min = 2, .max = 16 },
208 .m = { .min = 96, .max = 140 },
209 .m1 = { .min = 18, .max = 26 },
210 .m2 = { .min = 6, .max = 16 },
211 .p = { .min = 4, .max = 128 },
212 .p1 = { .min = 2, .max = 33 },
213 .p2 = { .dot_limit = 165000,
214 .p2_slow = 4, .p2_fast = 2 },
215 };
216
217 static const struct intel_limit intel_limits_i8xx_dvo = {
218 .dot = { .min = 25000, .max = 350000 },
219 .vco = { .min = 908000, .max = 1512000 },
220 .n = { .min = 2, .max = 16 },
221 .m = { .min = 96, .max = 140 },
222 .m1 = { .min = 18, .max = 26 },
223 .m2 = { .min = 6, .max = 16 },
224 .p = { .min = 4, .max = 128 },
225 .p1 = { .min = 2, .max = 33 },
226 .p2 = { .dot_limit = 165000,
227 .p2_slow = 4, .p2_fast = 4 },
228 };
229
230 static const struct intel_limit intel_limits_i8xx_lvds = {
231 .dot = { .min = 25000, .max = 350000 },
232 .vco = { .min = 908000, .max = 1512000 },
233 .n = { .min = 2, .max = 16 },
234 .m = { .min = 96, .max = 140 },
235 .m1 = { .min = 18, .max = 26 },
236 .m2 = { .min = 6, .max = 16 },
237 .p = { .min = 4, .max = 128 },
238 .p1 = { .min = 1, .max = 6 },
239 .p2 = { .dot_limit = 165000,
240 .p2_slow = 14, .p2_fast = 7 },
241 };
242
243 static const struct intel_limit intel_limits_i9xx_sdvo = {
244 .dot = { .min = 20000, .max = 400000 },
245 .vco = { .min = 1400000, .max = 2800000 },
246 .n = { .min = 1, .max = 6 },
247 .m = { .min = 70, .max = 120 },
248 .m1 = { .min = 8, .max = 18 },
249 .m2 = { .min = 3, .max = 7 },
250 .p = { .min = 5, .max = 80 },
251 .p1 = { .min = 1, .max = 8 },
252 .p2 = { .dot_limit = 200000,
253 .p2_slow = 10, .p2_fast = 5 },
254 };
255
256 static const struct intel_limit intel_limits_i9xx_lvds = {
257 .dot = { .min = 20000, .max = 400000 },
258 .vco = { .min = 1400000, .max = 2800000 },
259 .n = { .min = 1, .max = 6 },
260 .m = { .min = 70, .max = 120 },
261 .m1 = { .min = 8, .max = 18 },
262 .m2 = { .min = 3, .max = 7 },
263 .p = { .min = 7, .max = 98 },
264 .p1 = { .min = 1, .max = 8 },
265 .p2 = { .dot_limit = 112000,
266 .p2_slow = 14, .p2_fast = 7 },
267 };
268
269
270 static const struct intel_limit intel_limits_g4x_sdvo = {
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 1750000, .max = 3500000},
273 .n = { .min = 1, .max = 4 },
274 .m = { .min = 104, .max = 138 },
275 .m1 = { .min = 17, .max = 23 },
276 .m2 = { .min = 5, .max = 11 },
277 .p = { .min = 10, .max = 30 },
278 .p1 = { .min = 1, .max = 3},
279 .p2 = { .dot_limit = 270000,
280 .p2_slow = 10,
281 .p2_fast = 10
282 },
283 };
284
285 static const struct intel_limit intel_limits_g4x_hdmi = {
286 .dot = { .min = 22000, .max = 400000 },
287 .vco = { .min = 1750000, .max = 3500000},
288 .n = { .min = 1, .max = 4 },
289 .m = { .min = 104, .max = 138 },
290 .m1 = { .min = 16, .max = 23 },
291 .m2 = { .min = 5, .max = 11 },
292 .p = { .min = 5, .max = 80 },
293 .p1 = { .min = 1, .max = 8},
294 .p2 = { .dot_limit = 165000,
295 .p2_slow = 10, .p2_fast = 5 },
296 };
297
298 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
299 .dot = { .min = 20000, .max = 115000 },
300 .vco = { .min = 1750000, .max = 3500000 },
301 .n = { .min = 1, .max = 3 },
302 .m = { .min = 104, .max = 138 },
303 .m1 = { .min = 17, .max = 23 },
304 .m2 = { .min = 5, .max = 11 },
305 .p = { .min = 28, .max = 112 },
306 .p1 = { .min = 2, .max = 8 },
307 .p2 = { .dot_limit = 0,
308 .p2_slow = 14, .p2_fast = 14
309 },
310 };
311
312 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
313 .dot = { .min = 80000, .max = 224000 },
314 .vco = { .min = 1750000, .max = 3500000 },
315 .n = { .min = 1, .max = 3 },
316 .m = { .min = 104, .max = 138 },
317 .m1 = { .min = 17, .max = 23 },
318 .m2 = { .min = 5, .max = 11 },
319 .p = { .min = 14, .max = 42 },
320 .p1 = { .min = 2, .max = 6 },
321 .p2 = { .dot_limit = 0,
322 .p2_slow = 7, .p2_fast = 7
323 },
324 };
325
326 static const struct intel_limit intel_limits_pineview_sdvo = {
327 .dot = { .min = 20000, .max = 400000},
328 .vco = { .min = 1700000, .max = 3500000 },
329 /* Pineview's Ncounter is a ring counter */
330 .n = { .min = 3, .max = 6 },
331 .m = { .min = 2, .max = 256 },
332 /* Pineview only has one combined m divider, which we treat as m2. */
333 .m1 = { .min = 0, .max = 0 },
334 .m2 = { .min = 0, .max = 254 },
335 .p = { .min = 5, .max = 80 },
336 .p1 = { .min = 1, .max = 8 },
337 .p2 = { .dot_limit = 200000,
338 .p2_slow = 10, .p2_fast = 5 },
339 };
340
341 static const struct intel_limit intel_limits_pineview_lvds = {
342 .dot = { .min = 20000, .max = 400000 },
343 .vco = { .min = 1700000, .max = 3500000 },
344 .n = { .min = 3, .max = 6 },
345 .m = { .min = 2, .max = 256 },
346 .m1 = { .min = 0, .max = 0 },
347 .m2 = { .min = 0, .max = 254 },
348 .p = { .min = 7, .max = 112 },
349 .p1 = { .min = 1, .max = 8 },
350 .p2 = { .dot_limit = 112000,
351 .p2_slow = 14, .p2_fast = 14 },
352 };
353
354 /* Ironlake / Sandybridge
355 *
356 * We calculate clock using (register_value + 2) for N/M1/M2, so here
357 * the range value for them is (actual_value - 2).
358 */
359 static const struct intel_limit intel_limits_ironlake_dac = {
360 .dot = { .min = 25000, .max = 350000 },
361 .vco = { .min = 1760000, .max = 3510000 },
362 .n = { .min = 1, .max = 5 },
363 .m = { .min = 79, .max = 127 },
364 .m1 = { .min = 12, .max = 22 },
365 .m2 = { .min = 5, .max = 9 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
368 .p2 = { .dot_limit = 225000,
369 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const struct intel_limit intel_limits_ironlake_single_lvds = {
373 .dot = { .min = 25000, .max = 350000 },
374 .vco = { .min = 1760000, .max = 3510000 },
375 .n = { .min = 1, .max = 3 },
376 .m = { .min = 79, .max = 118 },
377 .m1 = { .min = 12, .max = 22 },
378 .m2 = { .min = 5, .max = 9 },
379 .p = { .min = 28, .max = 112 },
380 .p1 = { .min = 2, .max = 8 },
381 .p2 = { .dot_limit = 225000,
382 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
386 .dot = { .min = 25000, .max = 350000 },
387 .vco = { .min = 1760000, .max = 3510000 },
388 .n = { .min = 1, .max = 3 },
389 .m = { .min = 79, .max = 127 },
390 .m1 = { .min = 12, .max = 22 },
391 .m2 = { .min = 5, .max = 9 },
392 .p = { .min = 14, .max = 56 },
393 .p1 = { .min = 2, .max = 8 },
394 .p2 = { .dot_limit = 225000,
395 .p2_slow = 7, .p2_fast = 7 },
396 };
397
398 /* LVDS 100mhz refclk limits. */
399 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
400 .dot = { .min = 25000, .max = 350000 },
401 .vco = { .min = 1760000, .max = 3510000 },
402 .n = { .min = 1, .max = 2 },
403 .m = { .min = 79, .max = 126 },
404 .m1 = { .min = 12, .max = 22 },
405 .m2 = { .min = 5, .max = 9 },
406 .p = { .min = 28, .max = 112 },
407 .p1 = { .min = 2, .max = 8 },
408 .p2 = { .dot_limit = 225000,
409 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
413 .dot = { .min = 25000, .max = 350000 },
414 .vco = { .min = 1760000, .max = 3510000 },
415 .n = { .min = 1, .max = 3 },
416 .m = { .min = 79, .max = 126 },
417 .m1 = { .min = 12, .max = 22 },
418 .m2 = { .min = 5, .max = 9 },
419 .p = { .min = 14, .max = 42 },
420 .p1 = { .min = 2, .max = 6 },
421 .p2 = { .dot_limit = 225000,
422 .p2_slow = 7, .p2_fast = 7 },
423 };
424
425 static const struct intel_limit intel_limits_vlv = {
426 /*
427 * These are the data rate limits (measured in fast clocks)
428 * since those are the strictest limits we have. The fast
429 * clock and actual rate limits are more relaxed, so checking
430 * them would make no difference.
431 */
432 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
433 .vco = { .min = 4000000, .max = 6000000 },
434 .n = { .min = 1, .max = 7 },
435 .m1 = { .min = 2, .max = 3 },
436 .m2 = { .min = 11, .max = 156 },
437 .p1 = { .min = 2, .max = 3 },
438 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
439 };
440
441 static const struct intel_limit intel_limits_chv = {
442 /*
443 * These are the data rate limits (measured in fast clocks)
444 * since those are the strictest limits we have. The fast
445 * clock and actual rate limits are more relaxed, so checking
446 * them would make no difference.
447 */
448 .dot = { .min = 25000 * 5, .max = 540000 * 5},
449 .vco = { .min = 4800000, .max = 6480000 },
450 .n = { .min = 1, .max = 1 },
451 .m1 = { .min = 2, .max = 2 },
452 .m2 = { .min = 24 << 22, .max = 175 << 22 },
453 .p1 = { .min = 2, .max = 4 },
454 .p2 = { .p2_slow = 1, .p2_fast = 14 },
455 };
456
457 static const struct intel_limit intel_limits_bxt = {
458 /* FIXME: find real dot limits */
459 .dot = { .min = 0, .max = INT_MAX },
460 .vco = { .min = 4800000, .max = 6700000 },
461 .n = { .min = 1, .max = 1 },
462 .m1 = { .min = 2, .max = 2 },
463 /* FIXME: find real m2 limits */
464 .m2 = { .min = 2 << 22, .max = 255 << 22 },
465 .p1 = { .min = 2, .max = 4 },
466 .p2 = { .p2_slow = 1, .p2_fast = 20 },
467 };
468
469 static bool
470 needs_modeset(struct drm_crtc_state *state)
471 {
472 return drm_atomic_crtc_needs_modeset(state);
473 }
474
475 /*
476 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
477 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
478 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
479 * The helpers' return value is the rate of the clock that is fed to the
480 * display engine's pipe which can be the above fast dot clock rate or a
481 * divided-down version of it.
482 */
483 /* m1 is reserved as 0 in Pineview, n is a ring counter */
484 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 {
486 clock->m = clock->m2 + 2;
487 clock->p = clock->p1 * clock->p2;
488 if (WARN_ON(clock->n == 0 || clock->p == 0))
489 return 0;
490 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
491 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492
493 return clock->dot;
494 }
495
496 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 {
498 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
499 }
500
501 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 {
503 clock->m = i9xx_dpll_compute_m(clock);
504 clock->p = clock->p1 * clock->p2;
505 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
506 return 0;
507 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
508 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509
510 return clock->dot;
511 }
512
513 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 {
515 clock->m = clock->m1 * clock->m2;
516 clock->p = clock->p1 * clock->p2;
517 if (WARN_ON(clock->n == 0 || clock->p == 0))
518 return 0;
519 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
520 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521
522 return clock->dot / 5;
523 }
524
525 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 clock->m = clock->m1 * clock->m2;
528 clock->p = clock->p1 * clock->p2;
529 if (WARN_ON(clock->n == 0 || clock->p == 0))
530 return 0;
531 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
532 clock->n << 22);
533 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534
535 return clock->dot / 5;
536 }
537
538 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
539 /**
540 * Returns whether the given set of divisors are valid for a given refclk with
541 * the given connectors.
542 */
543
544 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
545 const struct intel_limit *limit,
546 const struct dpll *clock)
547 {
548 if (clock->n < limit->n.min || limit->n.max < clock->n)
549 INTELPllInvalid("n out of range\n");
550 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
551 INTELPllInvalid("p1 out of range\n");
552 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
553 INTELPllInvalid("m2 out of range\n");
554 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
555 INTELPllInvalid("m1 out of range\n");
556
557 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
558 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
559 if (clock->m1 <= clock->m2)
560 INTELPllInvalid("m1 <= m2\n");
561
562 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
563 !IS_GEN9_LP(dev_priv)) {
564 if (clock->p < limit->p.min || limit->p.max < clock->p)
565 INTELPllInvalid("p out of range\n");
566 if (clock->m < limit->m.min || limit->m.max < clock->m)
567 INTELPllInvalid("m out of range\n");
568 }
569
570 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571 INTELPllInvalid("vco out of range\n");
572 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573 * connector, etc., rather than just a single range.
574 */
575 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576 INTELPllInvalid("dot out of range\n");
577
578 return true;
579 }
580
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583 const struct intel_crtc_state *crtc_state,
584 int target)
585 {
586 struct drm_device *dev = crtc_state->base.crtc->dev;
587
588 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589 /*
590 * For LVDS just rely on its current settings for dual-channel.
591 * We haven't figured out how to reliably set up different
592 * single/dual channel state, if we even can.
593 */
594 if (intel_is_dual_link_lvds(dev))
595 return limit->p2.p2_fast;
596 else
597 return limit->p2.p2_slow;
598 } else {
599 if (target < limit->p2.dot_limit)
600 return limit->p2.p2_slow;
601 else
602 return limit->p2.p2_fast;
603 }
604 }
605
606 /*
607 * Returns a set of divisors for the desired target clock with the given
608 * refclk, or FALSE. The returned values represent the clock equation:
609 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610 *
611 * Target and reference clocks are specified in kHz.
612 *
613 * If match_clock is provided, then best_clock P divider must match the P
614 * divider from @match_clock used for LVDS downclocking.
615 */
616 static bool
617 i9xx_find_best_dpll(const struct intel_limit *limit,
618 struct intel_crtc_state *crtc_state,
619 int target, int refclk, struct dpll *match_clock,
620 struct dpll *best_clock)
621 {
622 struct drm_device *dev = crtc_state->base.crtc->dev;
623 struct dpll clock;
624 int err = target;
625
626 memset(best_clock, 0, sizeof(*best_clock));
627
628 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 clock.m1++) {
632 for (clock.m2 = limit->m2.min;
633 clock.m2 <= limit->m2.max; clock.m2++) {
634 if (clock.m2 >= clock.m1)
635 break;
636 for (clock.n = limit->n.min;
637 clock.n <= limit->n.max; clock.n++) {
638 for (clock.p1 = limit->p1.min;
639 clock.p1 <= limit->p1.max; clock.p1++) {
640 int this_err;
641
642 i9xx_calc_dpll_params(refclk, &clock);
643 if (!intel_PLL_is_valid(to_i915(dev),
644 limit,
645 &clock))
646 continue;
647 if (match_clock &&
648 clock.p != match_clock->p)
649 continue;
650
651 this_err = abs(clock.dot - target);
652 if (this_err < err) {
653 *best_clock = clock;
654 err = this_err;
655 }
656 }
657 }
658 }
659 }
660
661 return (err != target);
662 }
663
664 /*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
674 static bool
675 pnv_find_best_dpll(const struct intel_limit *limit,
676 struct intel_crtc_state *crtc_state,
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
679 {
680 struct drm_device *dev = crtc_state->base.crtc->dev;
681 struct dpll clock;
682 int err = target;
683
684 memset(best_clock, 0, sizeof(*best_clock));
685
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
692 for (clock.n = limit->n.min;
693 clock.n <= limit->n.max; clock.n++) {
694 for (clock.p1 = limit->p1.min;
695 clock.p1 <= limit->p1.max; clock.p1++) {
696 int this_err;
697
698 pnv_calc_dpll_params(refclk, &clock);
699 if (!intel_PLL_is_valid(to_i915(dev),
700 limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 /*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE. The returned values represent the clock equation:
723 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 *
725 * Target and reference clocks are specified in kHz.
726 *
727 * If match_clock is provided, then best_clock P divider must match the P
728 * divider from @match_clock used for LVDS downclocking.
729 */
730 static bool
731 g4x_find_best_dpll(const struct intel_limit *limit,
732 struct intel_crtc_state *crtc_state,
733 int target, int refclk, struct dpll *match_clock,
734 struct dpll *best_clock)
735 {
736 struct drm_device *dev = crtc_state->base.crtc->dev;
737 struct dpll clock;
738 int max_n;
739 bool found = false;
740 /* approximately equals target * 0.00585 */
741 int err_most = (target >> 8) + (target >> 9);
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
759 i9xx_calc_dpll_params(refclk, &clock);
760 if (!intel_PLL_is_valid(to_i915(dev),
761 limit,
762 &clock))
763 continue;
764
765 this_err = abs(clock.dot - target);
766 if (this_err < err_most) {
767 *best_clock = clock;
768 err_most = this_err;
769 max_n = clock.n;
770 found = true;
771 }
772 }
773 }
774 }
775 }
776 return found;
777 }
778
779 /*
780 * Check if the calculated PLL configuration is more optimal compared to the
781 * best configuration and error found so far. Return the calculated error.
782 */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784 const struct dpll *calculated_clock,
785 const struct dpll *best_clock,
786 unsigned int best_error_ppm,
787 unsigned int *error_ppm)
788 {
789 /*
790 * For CHV ignore the error and consider only the P value.
791 * Prefer a bigger P value based on HW requirements.
792 */
793 if (IS_CHERRYVIEW(to_i915(dev))) {
794 *error_ppm = 0;
795
796 return calculated_clock->p > best_clock->p;
797 }
798
799 if (WARN_ON_ONCE(!target_freq))
800 return false;
801
802 *error_ppm = div_u64(1000000ULL *
803 abs(target_freq - calculated_clock->dot),
804 target_freq);
805 /*
806 * Prefer a better P value over a better (smaller) error if the error
807 * is small. Ensure this preference for future configurations too by
808 * setting the error to 0.
809 */
810 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811 *error_ppm = 0;
812
813 return true;
814 }
815
816 return *error_ppm + 10 < best_error_ppm;
817 }
818
819 /*
820 * Returns a set of divisors for the desired target clock with the given
821 * refclk, or FALSE. The returned values represent the clock equation:
822 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823 */
824 static bool
825 vlv_find_best_dpll(const struct intel_limit *limit,
826 struct intel_crtc_state *crtc_state,
827 int target, int refclk, struct dpll *match_clock,
828 struct dpll *best_clock)
829 {
830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
831 struct drm_device *dev = crtc->base.dev;
832 struct dpll clock;
833 unsigned int bestppm = 1000000;
834 /* min update 19.2 MHz */
835 int max_n = min(limit->n.max, refclk / 19200);
836 bool found = false;
837
838 target *= 5; /* fast clock */
839
840 memset(best_clock, 0, sizeof(*best_clock));
841
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
845 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
846 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
847 clock.p = clock.p1 * clock.p2;
848 /* based on hardware requirement, prefer bigger m1,m2 values */
849 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
850 unsigned int ppm;
851
852 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
853 refclk * clock.m1);
854
855 vlv_calc_dpll_params(refclk, &clock);
856
857 if (!intel_PLL_is_valid(to_i915(dev),
858 limit,
859 &clock))
860 continue;
861
862 if (!vlv_PLL_is_optimal(dev, target,
863 &clock,
864 best_clock,
865 bestppm, &ppm))
866 continue;
867
868 *best_clock = clock;
869 bestppm = ppm;
870 found = true;
871 }
872 }
873 }
874 }
875
876 return found;
877 }
878
879 /*
880 * Returns a set of divisors for the desired target clock with the given
881 * refclk, or FALSE. The returned values represent the clock equation:
882 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883 */
884 static bool
885 chv_find_best_dpll(const struct intel_limit *limit,
886 struct intel_crtc_state *crtc_state,
887 int target, int refclk, struct dpll *match_clock,
888 struct dpll *best_clock)
889 {
890 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
891 struct drm_device *dev = crtc->base.dev;
892 unsigned int best_error_ppm;
893 struct dpll clock;
894 uint64_t m2;
895 int found = false;
896
897 memset(best_clock, 0, sizeof(*best_clock));
898 best_error_ppm = 1000000;
899
900 /*
901 * Based on hardware doc, the n always set to 1, and m1 always
902 * set to 2. If requires to support 200Mhz refclk, we need to
903 * revisit this because n may not 1 anymore.
904 */
905 clock.n = 1, clock.m1 = 2;
906 target *= 5; /* fast clock */
907
908 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
909 for (clock.p2 = limit->p2.p2_fast;
910 clock.p2 >= limit->p2.p2_slow;
911 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
912 unsigned int error_ppm;
913
914 clock.p = clock.p1 * clock.p2;
915
916 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
917 clock.n) << 22, refclk * clock.m1);
918
919 if (m2 > INT_MAX/clock.m1)
920 continue;
921
922 clock.m2 = m2;
923
924 chv_calc_dpll_params(refclk, &clock);
925
926 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
927 continue;
928
929 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
930 best_error_ppm, &error_ppm))
931 continue;
932
933 *best_clock = clock;
934 best_error_ppm = error_ppm;
935 found = true;
936 }
937 }
938
939 return found;
940 }
941
942 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
943 struct dpll *best_clock)
944 {
945 int refclk = 100000;
946 const struct intel_limit *limit = &intel_limits_bxt;
947
948 return chv_find_best_dpll(limit, crtc_state,
949 target_clock, refclk, NULL, best_clock);
950 }
951
952 bool intel_crtc_active(struct intel_crtc *crtc)
953 {
954 /* Be paranoid as we can arrive here with only partial
955 * state retrieved from the hardware during setup.
956 *
957 * We can ditch the adjusted_mode.crtc_clock check as soon
958 * as Haswell has gained clock readout/fastboot support.
959 *
960 * We can ditch the crtc->primary->fb check as soon as we can
961 * properly reconstruct framebuffers.
962 *
963 * FIXME: The intel_crtc->active here should be switched to
964 * crtc->state->active once we have proper CRTC states wired up
965 * for atomic.
966 */
967 return crtc->active && crtc->base.primary->state->fb &&
968 crtc->config->base.adjusted_mode.crtc_clock;
969 }
970
971 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
972 enum pipe pipe)
973 {
974 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975
976 return crtc->config->cpu_transcoder;
977 }
978
979 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 {
981 i915_reg_t reg = PIPEDSL(pipe);
982 u32 line1, line2;
983 u32 line_mask;
984
985 if (IS_GEN2(dev_priv))
986 line_mask = DSL_LINEMASK_GEN2;
987 else
988 line_mask = DSL_LINEMASK_GEN3;
989
990 line1 = I915_READ(reg) & line_mask;
991 msleep(5);
992 line2 = I915_READ(reg) & line_mask;
993
994 return line1 == line2;
995 }
996
997 /*
998 * intel_wait_for_pipe_off - wait for pipe to turn off
999 * @crtc: crtc whose pipe to wait for
1000 *
1001 * After disabling a pipe, we can't wait for vblank in the usual way,
1002 * spinning on the vblank interrupt status bit, since we won't actually
1003 * see an interrupt when the pipe is disabled.
1004 *
1005 * On Gen4 and above:
1006 * wait for the pipe register state bit to turn off
1007 *
1008 * Otherwise:
1009 * wait for the display line value to settle (it usually
1010 * ends up stopping at the start of the next frame).
1011 *
1012 */
1013 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 {
1015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1016 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1017 enum pipe pipe = crtc->pipe;
1018
1019 if (INTEL_GEN(dev_priv) >= 4) {
1020 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021
1022 /* Wait for the Pipe State to go off */
1023 if (intel_wait_for_register(dev_priv,
1024 reg, I965_PIPECONF_ACTIVE, 0,
1025 100))
1026 WARN(1, "pipe_off wait timed out\n");
1027 } else {
1028 /* Wait for the display line to settle */
1029 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 }
1032 }
1033
1034 /* Only for pre-ILK configs */
1035 void assert_pll(struct drm_i915_private *dev_priv,
1036 enum pipe pipe, bool state)
1037 {
1038 u32 val;
1039 bool cur_state;
1040
1041 val = I915_READ(DPLL(pipe));
1042 cur_state = !!(val & DPLL_VCO_ENABLE);
1043 I915_STATE_WARN(cur_state != state,
1044 "PLL state assertion failure (expected %s, current %s)\n",
1045 onoff(state), onoff(cur_state));
1046 }
1047
1048 /* XXX: the dsi pll is shared between MIPI DSI ports */
1049 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 {
1051 u32 val;
1052 bool cur_state;
1053
1054 mutex_lock(&dev_priv->sb_lock);
1055 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1056 mutex_unlock(&dev_priv->sb_lock);
1057
1058 cur_state = val & DSI_PLL_VCO_EN;
1059 I915_STATE_WARN(cur_state != state,
1060 "DSI PLL state assertion failure (expected %s, current %s)\n",
1061 onoff(state), onoff(cur_state));
1062 }
1063
1064 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1065 enum pipe pipe, bool state)
1066 {
1067 bool cur_state;
1068 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1069 pipe);
1070
1071 if (HAS_DDI(dev_priv)) {
1072 /* DDI does not have a specific FDI_TX register */
1073 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1074 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1075 } else {
1076 u32 val = I915_READ(FDI_TX_CTL(pipe));
1077 cur_state = !!(val & FDI_TX_ENABLE);
1078 }
1079 I915_STATE_WARN(cur_state != state,
1080 "FDI TX state assertion failure (expected %s, current %s)\n",
1081 onoff(state), onoff(cur_state));
1082 }
1083 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1084 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085
1086 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1087 enum pipe pipe, bool state)
1088 {
1089 u32 val;
1090 bool cur_state;
1091
1092 val = I915_READ(FDI_RX_CTL(pipe));
1093 cur_state = !!(val & FDI_RX_ENABLE);
1094 I915_STATE_WARN(cur_state != state,
1095 "FDI RX state assertion failure (expected %s, current %s)\n",
1096 onoff(state), onoff(cur_state));
1097 }
1098 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1099 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100
1101 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1102 enum pipe pipe)
1103 {
1104 u32 val;
1105
1106 /* ILK FDI PLL is always enabled */
1107 if (IS_GEN5(dev_priv))
1108 return;
1109
1110 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1111 if (HAS_DDI(dev_priv))
1112 return;
1113
1114 val = I915_READ(FDI_TX_CTL(pipe));
1115 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1116 }
1117
1118 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 u32 val;
1122 bool cur_state;
1123
1124 val = I915_READ(FDI_RX_CTL(pipe));
1125 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1126 I915_STATE_WARN(cur_state != state,
1127 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1128 onoff(state), onoff(cur_state));
1129 }
1130
1131 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 {
1133 i915_reg_t pp_reg;
1134 u32 val;
1135 enum pipe panel_pipe = PIPE_A;
1136 bool locked = true;
1137
1138 if (WARN_ON(HAS_DDI(dev_priv)))
1139 return;
1140
1141 if (HAS_PCH_SPLIT(dev_priv)) {
1142 u32 port_sel;
1143
1144 pp_reg = PP_CONTROL(0);
1145 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146
1147 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1148 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1149 panel_pipe = PIPE_B;
1150 /* XXX: else fix for eDP */
1151 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1152 /* presumably write lock depends on pipe, not port select */
1153 pp_reg = PP_CONTROL(pipe);
1154 panel_pipe = pipe;
1155 } else {
1156 pp_reg = PP_CONTROL(0);
1157 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1158 panel_pipe = PIPE_B;
1159 }
1160
1161 val = I915_READ(pp_reg);
1162 if (!(val & PANEL_POWER_ON) ||
1163 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1164 locked = false;
1165
1166 I915_STATE_WARN(panel_pipe == pipe && locked,
1167 "panel assertion failure, pipe %c regs locked\n",
1168 pipe_name(pipe));
1169 }
1170
1171 static void assert_cursor(struct drm_i915_private *dev_priv,
1172 enum pipe pipe, bool state)
1173 {
1174 bool cur_state;
1175
1176 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1177 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1178 else
1179 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180
1181 I915_STATE_WARN(cur_state != state,
1182 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1183 pipe_name(pipe), onoff(state), onoff(cur_state));
1184 }
1185 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1186 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187
1188 void assert_pipe(struct drm_i915_private *dev_priv,
1189 enum pipe pipe, bool state)
1190 {
1191 bool cur_state;
1192 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1193 pipe);
1194 enum intel_display_power_domain power_domain;
1195
1196 /* we keep both pipes enabled on 830 */
1197 if (IS_I830(dev_priv))
1198 state = true;
1199
1200 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205 intel_display_power_put(dev_priv, power_domain);
1206 } else {
1207 cur_state = false;
1208 }
1209
1210 I915_STATE_WARN(cur_state != state,
1211 "pipe %c assertion failure (expected %s, current %s)\n",
1212 pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216 enum plane plane, bool state)
1217 {
1218 u32 val;
1219 bool cur_state;
1220
1221 val = I915_READ(DSPCNTR(plane));
1222 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223 I915_STATE_WARN(cur_state != state,
1224 "plane %c assertion failure (expected %s, current %s)\n",
1225 plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232 enum pipe pipe)
1233 {
1234 int i;
1235
1236 /* Primary planes are fixed to pipes on gen4+ */
1237 if (INTEL_GEN(dev_priv) >= 4) {
1238 u32 val = I915_READ(DSPCNTR(pipe));
1239 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240 "plane %c assertion failure, should be disabled but not\n",
1241 plane_name(pipe));
1242 return;
1243 }
1244
1245 /* Need to check both planes against the pipe */
1246 for_each_pipe(dev_priv, i) {
1247 u32 val = I915_READ(DSPCNTR(i));
1248 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249 DISPPLANE_SEL_PIPE_SHIFT;
1250 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252 plane_name(i), pipe_name(pipe));
1253 }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258 {
1259 int sprite;
1260
1261 if (INTEL_GEN(dev_priv) >= 9) {
1262 for_each_sprite(dev_priv, pipe, sprite) {
1263 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266 sprite, pipe_name(pipe));
1267 }
1268 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269 for_each_sprite(dev_priv, pipe, sprite) {
1270 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271 I915_STATE_WARN(val & SP_ENABLE,
1272 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273 sprite_name(pipe, sprite), pipe_name(pipe));
1274 }
1275 } else if (INTEL_GEN(dev_priv) >= 7) {
1276 u32 val = I915_READ(SPRCTL(pipe));
1277 I915_STATE_WARN(val & SPRITE_ENABLE,
1278 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279 plane_name(pipe), pipe_name(pipe));
1280 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
1281 u32 val = I915_READ(DVSCNTR(pipe));
1282 I915_STATE_WARN(val & DVS_ENABLE,
1283 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284 plane_name(pipe), pipe_name(pipe));
1285 }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 u32 val;
1298 bool enabled;
1299
1300 val = I915_READ(PCH_TRANSCONF(pipe));
1301 enabled = !!(val & TRANS_ENABLE);
1302 I915_STATE_WARN(enabled,
1303 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304 pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310 if ((val & DP_PORT_EN) == 0)
1311 return false;
1312
1313 if (HAS_PCH_CPT(dev_priv)) {
1314 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else if (IS_CHERRYVIEW(dev_priv)) {
1318 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319 return false;
1320 } else {
1321 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322 return false;
1323 }
1324 return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, u32 val)
1329 {
1330 if ((val & SDVO_ENABLE) == 0)
1331 return false;
1332
1333 if (HAS_PCH_CPT(dev_priv)) {
1334 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335 return false;
1336 } else if (IS_CHERRYVIEW(dev_priv)) {
1337 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338 return false;
1339 } else {
1340 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341 return false;
1342 }
1343 return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, u32 val)
1348 {
1349 if ((val & LVDS_PORT_EN) == 0)
1350 return false;
1351
1352 if (HAS_PCH_CPT(dev_priv)) {
1353 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354 return false;
1355 } else {
1356 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357 return false;
1358 }
1359 return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363 enum pipe pipe, u32 val)
1364 {
1365 if ((val & ADPA_DAC_ENABLE) == 0)
1366 return false;
1367 if (HAS_PCH_CPT(dev_priv)) {
1368 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369 return false;
1370 } else {
1371 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372 return false;
1373 }
1374 return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378 enum pipe pipe, i915_reg_t reg,
1379 u32 port_sel)
1380 {
1381 u32 val = I915_READ(reg);
1382 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384 i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387 && (val & DP_PIPEB_SELECT),
1388 "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, i915_reg_t reg)
1393 {
1394 u32 val = I915_READ(reg);
1395 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397 i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400 && (val & SDVO_PIPE_B_SELECT),
1401 "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
1406 {
1407 u32 val;
1408
1409 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413 val = I915_READ(PCH_ADPA);
1414 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415 "PCH VGA enabled on transcoder %c, should be disabled\n",
1416 pipe_name(pipe));
1417
1418 val = I915_READ(PCH_LVDS);
1419 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421 pipe_name(pipe));
1422
1423 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429 const struct intel_crtc_state *pipe_config)
1430 {
1431 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432 enum pipe pipe = crtc->pipe;
1433
1434 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435 POSTING_READ(DPLL(pipe));
1436 udelay(150);
1437
1438 if (intel_wait_for_register(dev_priv,
1439 DPLL(pipe),
1440 DPLL_LOCK_VLV,
1441 DPLL_LOCK_VLV,
1442 1))
1443 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447 const struct intel_crtc_state *pipe_config)
1448 {
1449 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450 enum pipe pipe = crtc->pipe;
1451
1452 assert_pipe_disabled(dev_priv, pipe);
1453
1454 /* PLL is protected by panel, make sure we can write it */
1455 assert_panel_unlocked(dev_priv, pipe);
1456
1457 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458 _vlv_enable_pll(crtc, pipe_config);
1459
1460 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461 POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466 const struct intel_crtc_state *pipe_config)
1467 {
1468 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 enum pipe pipe = crtc->pipe;
1470 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471 u32 tmp;
1472
1473 mutex_lock(&dev_priv->sb_lock);
1474
1475 /* Enable back the 10bit clock to display controller */
1476 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477 tmp |= DPIO_DCLKP_EN;
1478 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480 mutex_unlock(&dev_priv->sb_lock);
1481
1482 /*
1483 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484 */
1485 udelay(1);
1486
1487 /* Enable PLL */
1488 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490 /* Check PLL is locked */
1491 if (intel_wait_for_register(dev_priv,
1492 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493 1))
1494 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498 const struct intel_crtc_state *pipe_config)
1499 {
1500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501 enum pipe pipe = crtc->pipe;
1502
1503 assert_pipe_disabled(dev_priv, pipe);
1504
1505 /* PLL is protected by panel, make sure we can write it */
1506 assert_panel_unlocked(dev_priv, pipe);
1507
1508 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509 _chv_enable_pll(crtc, pipe_config);
1510
1511 if (pipe != PIPE_A) {
1512 /*
1513 * WaPixelRepeatModeFixForC0:chv
1514 *
1515 * DPLLCMD is AWOL. Use chicken bits to propagate
1516 * the value from DPLLBMD to either pipe B or C.
1517 */
1518 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520 I915_WRITE(CBR4_VLV, 0);
1521 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523 /*
1524 * DPLLB VGA mode also seems to cause problems.
1525 * We should always have it disabled.
1526 */
1527 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528 } else {
1529 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530 POSTING_READ(DPLL_MD(pipe));
1531 }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536 struct intel_crtc *crtc;
1537 int count = 0;
1538
1539 for_each_intel_crtc(&dev_priv->drm, crtc) {
1540 count += crtc->base.state->active &&
1541 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542 }
1543
1544 return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 i915_reg_t reg = DPLL(crtc->pipe);
1551 u32 dpll = crtc->config->dpll_hw_state.dpll;
1552 int i;
1553
1554 assert_pipe_disabled(dev_priv, crtc->pipe);
1555
1556 /* PLL is protected by panel, make sure we can write it */
1557 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1558 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560 /* Enable DVO 2x clock on both PLLs if necessary */
1561 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562 /*
1563 * It appears to be important that we don't enable this
1564 * for the current pipe before otherwise configuring the
1565 * PLL. No idea how this should be handled if multiple
1566 * DVO outputs are enabled simultaneosly.
1567 */
1568 dpll |= DPLL_DVO_2X_MODE;
1569 I915_WRITE(DPLL(!crtc->pipe),
1570 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1571 }
1572
1573 /*
1574 * Apparently we need to have VGA mode enabled prior to changing
1575 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1576 * dividers, even though the register value does change.
1577 */
1578 I915_WRITE(reg, 0);
1579
1580 I915_WRITE(reg, dpll);
1581
1582 /* Wait for the clocks to stabilize. */
1583 POSTING_READ(reg);
1584 udelay(150);
1585
1586 if (INTEL_GEN(dev_priv) >= 4) {
1587 I915_WRITE(DPLL_MD(crtc->pipe),
1588 crtc->config->dpll_hw_state.dpll_md);
1589 } else {
1590 /* The pixel multiplier can only be updated once the
1591 * DPLL is enabled and the clocks are stable.
1592 *
1593 * So write it again.
1594 */
1595 I915_WRITE(reg, dpll);
1596 }
1597
1598 /* We do this three times for luck */
1599 for (i = 0; i < 3; i++) {
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150); /* wait for warmup */
1603 }
1604 }
1605
1606 /**
1607 * i9xx_disable_pll - disable a PLL
1608 * @dev_priv: i915 private structure
1609 * @pipe: pipe PLL to disable
1610 *
1611 * Disable the PLL for @pipe, making sure the pipe is off first.
1612 *
1613 * Note! This is for pre-ILK only.
1614 */
1615 static void i9xx_disable_pll(struct intel_crtc *crtc)
1616 {
1617 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1618 enum pipe pipe = crtc->pipe;
1619
1620 /* Disable DVO 2x clock on both PLLs if necessary */
1621 if (IS_I830(dev_priv) &&
1622 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1623 !intel_num_dvo_pipes(dev_priv)) {
1624 I915_WRITE(DPLL(PIPE_B),
1625 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1626 I915_WRITE(DPLL(PIPE_A),
1627 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1628 }
1629
1630 /* Don't disable pipe or pipe PLLs if needed */
1631 if (IS_I830(dev_priv))
1632 return;
1633
1634 /* Make sure the pipe isn't still relying on us */
1635 assert_pipe_disabled(dev_priv, pipe);
1636
1637 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1638 POSTING_READ(DPLL(pipe));
1639 }
1640
1641 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1642 {
1643 u32 val;
1644
1645 /* Make sure the pipe isn't still relying on us */
1646 assert_pipe_disabled(dev_priv, pipe);
1647
1648 val = DPLL_INTEGRATED_REF_CLK_VLV |
1649 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1650 if (pipe != PIPE_A)
1651 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1652
1653 I915_WRITE(DPLL(pipe), val);
1654 POSTING_READ(DPLL(pipe));
1655 }
1656
1657 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1658 {
1659 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1660 u32 val;
1661
1662 /* Make sure the pipe isn't still relying on us */
1663 assert_pipe_disabled(dev_priv, pipe);
1664
1665 val = DPLL_SSC_REF_CLK_CHV |
1666 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1667 if (pipe != PIPE_A)
1668 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1669
1670 I915_WRITE(DPLL(pipe), val);
1671 POSTING_READ(DPLL(pipe));
1672
1673 mutex_lock(&dev_priv->sb_lock);
1674
1675 /* Disable 10bit clock to display controller */
1676 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1677 val &= ~DPIO_DCLKP_EN;
1678 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1679
1680 mutex_unlock(&dev_priv->sb_lock);
1681 }
1682
1683 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1684 struct intel_digital_port *dport,
1685 unsigned int expected_mask)
1686 {
1687 u32 port_mask;
1688 i915_reg_t dpll_reg;
1689
1690 switch (dport->port) {
1691 case PORT_B:
1692 port_mask = DPLL_PORTB_READY_MASK;
1693 dpll_reg = DPLL(0);
1694 break;
1695 case PORT_C:
1696 port_mask = DPLL_PORTC_READY_MASK;
1697 dpll_reg = DPLL(0);
1698 expected_mask <<= 4;
1699 break;
1700 case PORT_D:
1701 port_mask = DPLL_PORTD_READY_MASK;
1702 dpll_reg = DPIO_PHY_STATUS;
1703 break;
1704 default:
1705 BUG();
1706 }
1707
1708 if (intel_wait_for_register(dev_priv,
1709 dpll_reg, port_mask, expected_mask,
1710 1000))
1711 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1712 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1713 }
1714
1715 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716 enum pipe pipe)
1717 {
1718 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1719 pipe);
1720 i915_reg_t reg;
1721 uint32_t val, pipeconf_val;
1722
1723 /* Make sure PCH DPLL is enabled */
1724 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1725
1726 /* FDI must be feeding us bits for PCH ports */
1727 assert_fdi_tx_enabled(dev_priv, pipe);
1728 assert_fdi_rx_enabled(dev_priv, pipe);
1729
1730 if (HAS_PCH_CPT(dev_priv)) {
1731 /* Workaround: Set the timing override bit before enabling the
1732 * pch transcoder. */
1733 reg = TRANS_CHICKEN2(pipe);
1734 val = I915_READ(reg);
1735 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1736 I915_WRITE(reg, val);
1737 }
1738
1739 reg = PCH_TRANSCONF(pipe);
1740 val = I915_READ(reg);
1741 pipeconf_val = I915_READ(PIPECONF(pipe));
1742
1743 if (HAS_PCH_IBX(dev_priv)) {
1744 /*
1745 * Make the BPC in transcoder be consistent with
1746 * that in pipeconf reg. For HDMI we must use 8bpc
1747 * here for both 8bpc and 12bpc.
1748 */
1749 val &= ~PIPECONF_BPC_MASK;
1750 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1751 val |= PIPECONF_8BPC;
1752 else
1753 val |= pipeconf_val & PIPECONF_BPC_MASK;
1754 }
1755
1756 val &= ~TRANS_INTERLACE_MASK;
1757 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1758 if (HAS_PCH_IBX(dev_priv) &&
1759 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1760 val |= TRANS_LEGACY_INTERLACED_ILK;
1761 else
1762 val |= TRANS_INTERLACED;
1763 else
1764 val |= TRANS_PROGRESSIVE;
1765
1766 I915_WRITE(reg, val | TRANS_ENABLE);
1767 if (intel_wait_for_register(dev_priv,
1768 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1769 100))
1770 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1771 }
1772
1773 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1774 enum transcoder cpu_transcoder)
1775 {
1776 u32 val, pipeconf_val;
1777
1778 /* FDI must be feeding us bits for PCH ports */
1779 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1780 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1781
1782 /* Workaround: set timing override bit. */
1783 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1784 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1785 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1786
1787 val = TRANS_ENABLE;
1788 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1789
1790 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1791 PIPECONF_INTERLACED_ILK)
1792 val |= TRANS_INTERLACED;
1793 else
1794 val |= TRANS_PROGRESSIVE;
1795
1796 I915_WRITE(LPT_TRANSCONF, val);
1797 if (intel_wait_for_register(dev_priv,
1798 LPT_TRANSCONF,
1799 TRANS_STATE_ENABLE,
1800 TRANS_STATE_ENABLE,
1801 100))
1802 DRM_ERROR("Failed to enable PCH transcoder\n");
1803 }
1804
1805 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807 {
1808 i915_reg_t reg;
1809 uint32_t val;
1810
1811 /* FDI relies on the transcoder */
1812 assert_fdi_tx_disabled(dev_priv, pipe);
1813 assert_fdi_rx_disabled(dev_priv, pipe);
1814
1815 /* Ports must be off as well */
1816 assert_pch_ports_disabled(dev_priv, pipe);
1817
1818 reg = PCH_TRANSCONF(pipe);
1819 val = I915_READ(reg);
1820 val &= ~TRANS_ENABLE;
1821 I915_WRITE(reg, val);
1822 /* wait for PCH transcoder off, transcoder state */
1823 if (intel_wait_for_register(dev_priv,
1824 reg, TRANS_STATE_ENABLE, 0,
1825 50))
1826 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1827
1828 if (HAS_PCH_CPT(dev_priv)) {
1829 /* Workaround: Clear the timing override chicken bit again. */
1830 reg = TRANS_CHICKEN2(pipe);
1831 val = I915_READ(reg);
1832 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1833 I915_WRITE(reg, val);
1834 }
1835 }
1836
1837 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1838 {
1839 u32 val;
1840
1841 val = I915_READ(LPT_TRANSCONF);
1842 val &= ~TRANS_ENABLE;
1843 I915_WRITE(LPT_TRANSCONF, val);
1844 /* wait for PCH transcoder off, transcoder state */
1845 if (intel_wait_for_register(dev_priv,
1846 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1847 50))
1848 DRM_ERROR("Failed to disable PCH transcoder\n");
1849
1850 /* Workaround: clear timing override bit. */
1851 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1852 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1853 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1854 }
1855
1856 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1857 {
1858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1859
1860 WARN_ON(!crtc->config->has_pch_encoder);
1861
1862 if (HAS_PCH_LPT(dev_priv))
1863 return TRANSCODER_A;
1864 else
1865 return (enum transcoder) crtc->pipe;
1866 }
1867
1868 /**
1869 * intel_enable_pipe - enable a pipe, asserting requirements
1870 * @crtc: crtc responsible for the pipe
1871 *
1872 * Enable @crtc's pipe, making sure that various hardware specific requirements
1873 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1874 */
1875 static void intel_enable_pipe(struct intel_crtc *crtc)
1876 {
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = to_i915(dev);
1879 enum pipe pipe = crtc->pipe;
1880 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1881 i915_reg_t reg;
1882 u32 val;
1883
1884 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1885
1886 assert_planes_disabled(dev_priv, pipe);
1887 assert_cursor_disabled(dev_priv, pipe);
1888 assert_sprites_disabled(dev_priv, pipe);
1889
1890 /*
1891 * A pipe without a PLL won't actually be able to drive bits from
1892 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1893 * need the check.
1894 */
1895 if (HAS_GMCH_DISPLAY(dev_priv)) {
1896 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1897 assert_dsi_pll_enabled(dev_priv);
1898 else
1899 assert_pll_enabled(dev_priv, pipe);
1900 } else {
1901 if (crtc->config->has_pch_encoder) {
1902 /* if driving the PCH, we need FDI enabled */
1903 assert_fdi_rx_pll_enabled(dev_priv,
1904 (enum pipe) intel_crtc_pch_transcoder(crtc));
1905 assert_fdi_tx_pll_enabled(dev_priv,
1906 (enum pipe) cpu_transcoder);
1907 }
1908 /* FIXME: assert CPU port conditions for SNB+ */
1909 }
1910
1911 reg = PIPECONF(cpu_transcoder);
1912 val = I915_READ(reg);
1913 if (val & PIPECONF_ENABLE) {
1914 /* we keep both pipes enabled on 830 */
1915 WARN_ON(!IS_I830(dev_priv));
1916 return;
1917 }
1918
1919 I915_WRITE(reg, val | PIPECONF_ENABLE);
1920 POSTING_READ(reg);
1921
1922 /*
1923 * Until the pipe starts DSL will read as 0, which would cause
1924 * an apparent vblank timestamp jump, which messes up also the
1925 * frame count when it's derived from the timestamps. So let's
1926 * wait for the pipe to start properly before we call
1927 * drm_crtc_vblank_on()
1928 */
1929 if (dev->max_vblank_count == 0 &&
1930 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1931 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1932 }
1933
1934 /**
1935 * intel_disable_pipe - disable a pipe, asserting requirements
1936 * @crtc: crtc whose pipes is to be disabled
1937 *
1938 * Disable the pipe of @crtc, making sure that various hardware
1939 * specific requirements are met, if applicable, e.g. plane
1940 * disabled, panel fitter off, etc.
1941 *
1942 * Will wait until the pipe has shut down before returning.
1943 */
1944 static void intel_disable_pipe(struct intel_crtc *crtc)
1945 {
1946 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1947 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1948 enum pipe pipe = crtc->pipe;
1949 i915_reg_t reg;
1950 u32 val;
1951
1952 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1953
1954 /*
1955 * Make sure planes won't keep trying to pump pixels to us,
1956 * or we might hang the display.
1957 */
1958 assert_planes_disabled(dev_priv, pipe);
1959 assert_cursor_disabled(dev_priv, pipe);
1960 assert_sprites_disabled(dev_priv, pipe);
1961
1962 reg = PIPECONF(cpu_transcoder);
1963 val = I915_READ(reg);
1964 if ((val & PIPECONF_ENABLE) == 0)
1965 return;
1966
1967 /*
1968 * Double wide has implications for planes
1969 * so best keep it disabled when not needed.
1970 */
1971 if (crtc->config->double_wide)
1972 val &= ~PIPECONF_DOUBLE_WIDE;
1973
1974 /* Don't disable pipe or pipe PLLs if needed */
1975 if (!IS_I830(dev_priv))
1976 val &= ~PIPECONF_ENABLE;
1977
1978 I915_WRITE(reg, val);
1979 if ((val & PIPECONF_ENABLE) == 0)
1980 intel_wait_for_pipe_off(crtc);
1981 }
1982
1983 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1984 {
1985 return IS_GEN2(dev_priv) ? 2048 : 4096;
1986 }
1987
1988 static unsigned int
1989 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1990 {
1991 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1992 unsigned int cpp = fb->format->cpp[plane];
1993
1994 switch (fb->modifier) {
1995 case DRM_FORMAT_MOD_LINEAR:
1996 return cpp;
1997 case I915_FORMAT_MOD_X_TILED:
1998 if (IS_GEN2(dev_priv))
1999 return 128;
2000 else
2001 return 512;
2002 case I915_FORMAT_MOD_Y_TILED:
2003 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2004 return 128;
2005 else
2006 return 512;
2007 case I915_FORMAT_MOD_Yf_TILED:
2008 switch (cpp) {
2009 case 1:
2010 return 64;
2011 case 2:
2012 case 4:
2013 return 128;
2014 case 8:
2015 case 16:
2016 return 256;
2017 default:
2018 MISSING_CASE(cpp);
2019 return cpp;
2020 }
2021 break;
2022 default:
2023 MISSING_CASE(fb->modifier);
2024 return cpp;
2025 }
2026 }
2027
2028 static unsigned int
2029 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2030 {
2031 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2032 return 1;
2033 else
2034 return intel_tile_size(to_i915(fb->dev)) /
2035 intel_tile_width_bytes(fb, plane);
2036 }
2037
2038 /* Return the tile dimensions in pixel units */
2039 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2040 unsigned int *tile_width,
2041 unsigned int *tile_height)
2042 {
2043 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2044 unsigned int cpp = fb->format->cpp[plane];
2045
2046 *tile_width = tile_width_bytes / cpp;
2047 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2048 }
2049
2050 unsigned int
2051 intel_fb_align_height(const struct drm_framebuffer *fb,
2052 int plane, unsigned int height)
2053 {
2054 unsigned int tile_height = intel_tile_height(fb, plane);
2055
2056 return ALIGN(height, tile_height);
2057 }
2058
2059 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2060 {
2061 unsigned int size = 0;
2062 int i;
2063
2064 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2065 size += rot_info->plane[i].width * rot_info->plane[i].height;
2066
2067 return size;
2068 }
2069
2070 static void
2071 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2072 const struct drm_framebuffer *fb,
2073 unsigned int rotation)
2074 {
2075 view->type = I915_GGTT_VIEW_NORMAL;
2076 if (drm_rotation_90_or_270(rotation)) {
2077 view->type = I915_GGTT_VIEW_ROTATED;
2078 view->rotated = to_intel_framebuffer(fb)->rot_info;
2079 }
2080 }
2081
2082 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2083 {
2084 if (IS_I830(dev_priv))
2085 return 16 * 1024;
2086 else if (IS_I85X(dev_priv))
2087 return 256;
2088 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2089 return 32;
2090 else
2091 return 4 * 1024;
2092 }
2093
2094 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2095 {
2096 if (INTEL_INFO(dev_priv)->gen >= 9)
2097 return 256 * 1024;
2098 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2099 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2100 return 128 * 1024;
2101 else if (INTEL_INFO(dev_priv)->gen >= 4)
2102 return 4 * 1024;
2103 else
2104 return 0;
2105 }
2106
2107 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2108 int plane)
2109 {
2110 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2111
2112 /* AUX_DIST needs only 4K alignment */
2113 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2114 return 4096;
2115
2116 switch (fb->modifier) {
2117 case DRM_FORMAT_MOD_LINEAR:
2118 return intel_linear_alignment(dev_priv);
2119 case I915_FORMAT_MOD_X_TILED:
2120 if (INTEL_GEN(dev_priv) >= 9)
2121 return 256 * 1024;
2122 return 0;
2123 case I915_FORMAT_MOD_Y_TILED:
2124 case I915_FORMAT_MOD_Yf_TILED:
2125 return 1 * 1024 * 1024;
2126 default:
2127 MISSING_CASE(fb->modifier);
2128 return 0;
2129 }
2130 }
2131
2132 struct i915_vma *
2133 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2134 {
2135 struct drm_device *dev = fb->dev;
2136 struct drm_i915_private *dev_priv = to_i915(dev);
2137 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2138 struct i915_ggtt_view view;
2139 struct i915_vma *vma;
2140 u32 alignment;
2141
2142 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2143
2144 alignment = intel_surf_alignment(fb, 0);
2145
2146 intel_fill_fb_ggtt_view(&view, fb, rotation);
2147
2148 /* Note that the w/a also requires 64 PTE of padding following the
2149 * bo. We currently fill all unused PTE with the shadow page and so
2150 * we should always have valid PTE following the scanout preventing
2151 * the VT-d warning.
2152 */
2153 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2154 alignment = 256 * 1024;
2155
2156 /*
2157 * Global gtt pte registers are special registers which actually forward
2158 * writes to a chunk of system memory. Which means that there is no risk
2159 * that the register values disappear as soon as we call
2160 * intel_runtime_pm_put(), so it is correct to wrap only the
2161 * pin/unpin/fence and not more.
2162 */
2163 intel_runtime_pm_get(dev_priv);
2164
2165 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2166 if (IS_ERR(vma))
2167 goto err;
2168
2169 if (i915_vma_is_map_and_fenceable(vma)) {
2170 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2171 * fence, whereas 965+ only requires a fence if using
2172 * framebuffer compression. For simplicity, we always, when
2173 * possible, install a fence as the cost is not that onerous.
2174 *
2175 * If we fail to fence the tiled scanout, then either the
2176 * modeset will reject the change (which is highly unlikely as
2177 * the affected systems, all but one, do not have unmappable
2178 * space) or we will not be able to enable full powersaving
2179 * techniques (also likely not to apply due to various limits
2180 * FBC and the like impose on the size of the buffer, which
2181 * presumably we violated anyway with this unmappable buffer).
2182 * Anyway, it is presumably better to stumble onwards with
2183 * something and try to run the system in a "less than optimal"
2184 * mode that matches the user configuration.
2185 */
2186 if (i915_vma_get_fence(vma) == 0)
2187 i915_vma_pin_fence(vma);
2188 }
2189
2190 i915_vma_get(vma);
2191 err:
2192 intel_runtime_pm_put(dev_priv);
2193 return vma;
2194 }
2195
2196 void intel_unpin_fb_vma(struct i915_vma *vma)
2197 {
2198 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2199
2200 i915_vma_unpin_fence(vma);
2201 i915_gem_object_unpin_from_display_plane(vma);
2202 i915_vma_put(vma);
2203 }
2204
2205 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2206 unsigned int rotation)
2207 {
2208 if (drm_rotation_90_or_270(rotation))
2209 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2210 else
2211 return fb->pitches[plane];
2212 }
2213
2214 /*
2215 * Convert the x/y offsets into a linear offset.
2216 * Only valid with 0/180 degree rotation, which is fine since linear
2217 * offset is only used with linear buffers on pre-hsw and tiled buffers
2218 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2219 */
2220 u32 intel_fb_xy_to_linear(int x, int y,
2221 const struct intel_plane_state *state,
2222 int plane)
2223 {
2224 const struct drm_framebuffer *fb = state->base.fb;
2225 unsigned int cpp = fb->format->cpp[plane];
2226 unsigned int pitch = fb->pitches[plane];
2227
2228 return y * pitch + x * cpp;
2229 }
2230
2231 /*
2232 * Add the x/y offsets derived from fb->offsets[] to the user
2233 * specified plane src x/y offsets. The resulting x/y offsets
2234 * specify the start of scanout from the beginning of the gtt mapping.
2235 */
2236 void intel_add_fb_offsets(int *x, int *y,
2237 const struct intel_plane_state *state,
2238 int plane)
2239
2240 {
2241 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2242 unsigned int rotation = state->base.rotation;
2243
2244 if (drm_rotation_90_or_270(rotation)) {
2245 *x += intel_fb->rotated[plane].x;
2246 *y += intel_fb->rotated[plane].y;
2247 } else {
2248 *x += intel_fb->normal[plane].x;
2249 *y += intel_fb->normal[plane].y;
2250 }
2251 }
2252
2253 /*
2254 * Input tile dimensions and pitch must already be
2255 * rotated to match x and y, and in pixel units.
2256 */
2257 static u32 _intel_adjust_tile_offset(int *x, int *y,
2258 unsigned int tile_width,
2259 unsigned int tile_height,
2260 unsigned int tile_size,
2261 unsigned int pitch_tiles,
2262 u32 old_offset,
2263 u32 new_offset)
2264 {
2265 unsigned int pitch_pixels = pitch_tiles * tile_width;
2266 unsigned int tiles;
2267
2268 WARN_ON(old_offset & (tile_size - 1));
2269 WARN_ON(new_offset & (tile_size - 1));
2270 WARN_ON(new_offset > old_offset);
2271
2272 tiles = (old_offset - new_offset) / tile_size;
2273
2274 *y += tiles / pitch_tiles * tile_height;
2275 *x += tiles % pitch_tiles * tile_width;
2276
2277 /* minimize x in case it got needlessly big */
2278 *y += *x / pitch_pixels * tile_height;
2279 *x %= pitch_pixels;
2280
2281 return new_offset;
2282 }
2283
2284 /*
2285 * Adjust the tile offset by moving the difference into
2286 * the x/y offsets.
2287 */
2288 static u32 intel_adjust_tile_offset(int *x, int *y,
2289 const struct intel_plane_state *state, int plane,
2290 u32 old_offset, u32 new_offset)
2291 {
2292 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2293 const struct drm_framebuffer *fb = state->base.fb;
2294 unsigned int cpp = fb->format->cpp[plane];
2295 unsigned int rotation = state->base.rotation;
2296 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2297
2298 WARN_ON(new_offset > old_offset);
2299
2300 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2301 unsigned int tile_size, tile_width, tile_height;
2302 unsigned int pitch_tiles;
2303
2304 tile_size = intel_tile_size(dev_priv);
2305 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2306
2307 if (drm_rotation_90_or_270(rotation)) {
2308 pitch_tiles = pitch / tile_height;
2309 swap(tile_width, tile_height);
2310 } else {
2311 pitch_tiles = pitch / (tile_width * cpp);
2312 }
2313
2314 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2315 tile_size, pitch_tiles,
2316 old_offset, new_offset);
2317 } else {
2318 old_offset += *y * pitch + *x * cpp;
2319
2320 *y = (old_offset - new_offset) / pitch;
2321 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2322 }
2323
2324 return new_offset;
2325 }
2326
2327 /*
2328 * Computes the linear offset to the base tile and adjusts
2329 * x, y. bytes per pixel is assumed to be a power-of-two.
2330 *
2331 * In the 90/270 rotated case, x and y are assumed
2332 * to be already rotated to match the rotated GTT view, and
2333 * pitch is the tile_height aligned framebuffer height.
2334 *
2335 * This function is used when computing the derived information
2336 * under intel_framebuffer, so using any of that information
2337 * here is not allowed. Anything under drm_framebuffer can be
2338 * used. This is why the user has to pass in the pitch since it
2339 * is specified in the rotated orientation.
2340 */
2341 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2342 int *x, int *y,
2343 const struct drm_framebuffer *fb, int plane,
2344 unsigned int pitch,
2345 unsigned int rotation,
2346 u32 alignment)
2347 {
2348 uint64_t fb_modifier = fb->modifier;
2349 unsigned int cpp = fb->format->cpp[plane];
2350 u32 offset, offset_aligned;
2351
2352 if (alignment)
2353 alignment--;
2354
2355 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2356 unsigned int tile_size, tile_width, tile_height;
2357 unsigned int tile_rows, tiles, pitch_tiles;
2358
2359 tile_size = intel_tile_size(dev_priv);
2360 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2361
2362 if (drm_rotation_90_or_270(rotation)) {
2363 pitch_tiles = pitch / tile_height;
2364 swap(tile_width, tile_height);
2365 } else {
2366 pitch_tiles = pitch / (tile_width * cpp);
2367 }
2368
2369 tile_rows = *y / tile_height;
2370 *y %= tile_height;
2371
2372 tiles = *x / tile_width;
2373 *x %= tile_width;
2374
2375 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2376 offset_aligned = offset & ~alignment;
2377
2378 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2379 tile_size, pitch_tiles,
2380 offset, offset_aligned);
2381 } else {
2382 offset = *y * pitch + *x * cpp;
2383 offset_aligned = offset & ~alignment;
2384
2385 *y = (offset & alignment) / pitch;
2386 *x = ((offset & alignment) - *y * pitch) / cpp;
2387 }
2388
2389 return offset_aligned;
2390 }
2391
2392 u32 intel_compute_tile_offset(int *x, int *y,
2393 const struct intel_plane_state *state,
2394 int plane)
2395 {
2396 struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2397 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2398 const struct drm_framebuffer *fb = state->base.fb;
2399 unsigned int rotation = state->base.rotation;
2400 int pitch = intel_fb_pitch(fb, plane, rotation);
2401 u32 alignment;
2402
2403 if (intel_plane->id == PLANE_CURSOR)
2404 alignment = intel_cursor_alignment(dev_priv);
2405 else
2406 alignment = intel_surf_alignment(fb, plane);
2407
2408 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2409 rotation, alignment);
2410 }
2411
2412 /* Convert the fb->offset[] linear offset into x/y offsets */
2413 static void intel_fb_offset_to_xy(int *x, int *y,
2414 const struct drm_framebuffer *fb, int plane)
2415 {
2416 unsigned int cpp = fb->format->cpp[plane];
2417 unsigned int pitch = fb->pitches[plane];
2418 u32 linear_offset = fb->offsets[plane];
2419
2420 *y = linear_offset / pitch;
2421 *x = linear_offset % pitch / cpp;
2422 }
2423
2424 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2425 {
2426 switch (fb_modifier) {
2427 case I915_FORMAT_MOD_X_TILED:
2428 return I915_TILING_X;
2429 case I915_FORMAT_MOD_Y_TILED:
2430 return I915_TILING_Y;
2431 default:
2432 return I915_TILING_NONE;
2433 }
2434 }
2435
2436 static int
2437 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2438 struct drm_framebuffer *fb)
2439 {
2440 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2441 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2442 u32 gtt_offset_rotated = 0;
2443 unsigned int max_size = 0;
2444 int i, num_planes = fb->format->num_planes;
2445 unsigned int tile_size = intel_tile_size(dev_priv);
2446
2447 for (i = 0; i < num_planes; i++) {
2448 unsigned int width, height;
2449 unsigned int cpp, size;
2450 u32 offset;
2451 int x, y;
2452
2453 cpp = fb->format->cpp[i];
2454 width = drm_framebuffer_plane_width(fb->width, fb, i);
2455 height = drm_framebuffer_plane_height(fb->height, fb, i);
2456
2457 intel_fb_offset_to_xy(&x, &y, fb, i);
2458
2459 /*
2460 * The fence (if used) is aligned to the start of the object
2461 * so having the framebuffer wrap around across the edge of the
2462 * fenced region doesn't really work. We have no API to configure
2463 * the fence start offset within the object (nor could we probably
2464 * on gen2/3). So it's just easier if we just require that the
2465 * fb layout agrees with the fence layout. We already check that the
2466 * fb stride matches the fence stride elsewhere.
2467 */
2468 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2469 (x + width) * cpp > fb->pitches[i]) {
2470 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2471 i, fb->offsets[i]);
2472 return -EINVAL;
2473 }
2474
2475 /*
2476 * First pixel of the framebuffer from
2477 * the start of the normal gtt mapping.
2478 */
2479 intel_fb->normal[i].x = x;
2480 intel_fb->normal[i].y = y;
2481
2482 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2483 fb, i, fb->pitches[i],
2484 DRM_MODE_ROTATE_0, tile_size);
2485 offset /= tile_size;
2486
2487 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2488 unsigned int tile_width, tile_height;
2489 unsigned int pitch_tiles;
2490 struct drm_rect r;
2491
2492 intel_tile_dims(fb, i, &tile_width, &tile_height);
2493
2494 rot_info->plane[i].offset = offset;
2495 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2496 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2497 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2498
2499 intel_fb->rotated[i].pitch =
2500 rot_info->plane[i].height * tile_height;
2501
2502 /* how many tiles does this plane need */
2503 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2504 /*
2505 * If the plane isn't horizontally tile aligned,
2506 * we need one more tile.
2507 */
2508 if (x != 0)
2509 size++;
2510
2511 /* rotate the x/y offsets to match the GTT view */
2512 r.x1 = x;
2513 r.y1 = y;
2514 r.x2 = x + width;
2515 r.y2 = y + height;
2516 drm_rect_rotate(&r,
2517 rot_info->plane[i].width * tile_width,
2518 rot_info->plane[i].height * tile_height,
2519 DRM_MODE_ROTATE_270);
2520 x = r.x1;
2521 y = r.y1;
2522
2523 /* rotate the tile dimensions to match the GTT view */
2524 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2525 swap(tile_width, tile_height);
2526
2527 /*
2528 * We only keep the x/y offsets, so push all of the
2529 * gtt offset into the x/y offsets.
2530 */
2531 _intel_adjust_tile_offset(&x, &y,
2532 tile_width, tile_height,
2533 tile_size, pitch_tiles,
2534 gtt_offset_rotated * tile_size, 0);
2535
2536 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2537
2538 /*
2539 * First pixel of the framebuffer from
2540 * the start of the rotated gtt mapping.
2541 */
2542 intel_fb->rotated[i].x = x;
2543 intel_fb->rotated[i].y = y;
2544 } else {
2545 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2546 x * cpp, tile_size);
2547 }
2548
2549 /* how many tiles in total needed in the bo */
2550 max_size = max(max_size, offset + size);
2551 }
2552
2553 if (max_size * tile_size > intel_fb->obj->base.size) {
2554 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2555 max_size * tile_size, intel_fb->obj->base.size);
2556 return -EINVAL;
2557 }
2558
2559 return 0;
2560 }
2561
2562 static int i9xx_format_to_fourcc(int format)
2563 {
2564 switch (format) {
2565 case DISPPLANE_8BPP:
2566 return DRM_FORMAT_C8;
2567 case DISPPLANE_BGRX555:
2568 return DRM_FORMAT_XRGB1555;
2569 case DISPPLANE_BGRX565:
2570 return DRM_FORMAT_RGB565;
2571 default:
2572 case DISPPLANE_BGRX888:
2573 return DRM_FORMAT_XRGB8888;
2574 case DISPPLANE_RGBX888:
2575 return DRM_FORMAT_XBGR8888;
2576 case DISPPLANE_BGRX101010:
2577 return DRM_FORMAT_XRGB2101010;
2578 case DISPPLANE_RGBX101010:
2579 return DRM_FORMAT_XBGR2101010;
2580 }
2581 }
2582
2583 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2584 {
2585 switch (format) {
2586 case PLANE_CTL_FORMAT_RGB_565:
2587 return DRM_FORMAT_RGB565;
2588 default:
2589 case PLANE_CTL_FORMAT_XRGB_8888:
2590 if (rgb_order) {
2591 if (alpha)
2592 return DRM_FORMAT_ABGR8888;
2593 else
2594 return DRM_FORMAT_XBGR8888;
2595 } else {
2596 if (alpha)
2597 return DRM_FORMAT_ARGB8888;
2598 else
2599 return DRM_FORMAT_XRGB8888;
2600 }
2601 case PLANE_CTL_FORMAT_XRGB_2101010:
2602 if (rgb_order)
2603 return DRM_FORMAT_XBGR2101010;
2604 else
2605 return DRM_FORMAT_XRGB2101010;
2606 }
2607 }
2608
2609 static bool
2610 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2611 struct intel_initial_plane_config *plane_config)
2612 {
2613 struct drm_device *dev = crtc->base.dev;
2614 struct drm_i915_private *dev_priv = to_i915(dev);
2615 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2616 struct drm_i915_gem_object *obj = NULL;
2617 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2618 struct drm_framebuffer *fb = &plane_config->fb->base;
2619 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2620 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2621 PAGE_SIZE);
2622
2623 size_aligned -= base_aligned;
2624
2625 if (plane_config->size == 0)
2626 return false;
2627
2628 /* If the FB is too big, just don't use it since fbdev is not very
2629 * important and we should probably use that space with FBC or other
2630 * features. */
2631 if (size_aligned * 2 > ggtt->stolen_usable_size)
2632 return false;
2633
2634 mutex_lock(&dev->struct_mutex);
2635 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2636 base_aligned,
2637 base_aligned,
2638 size_aligned);
2639 mutex_unlock(&dev->struct_mutex);
2640 if (!obj)
2641 return false;
2642
2643 if (plane_config->tiling == I915_TILING_X)
2644 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2645
2646 mode_cmd.pixel_format = fb->format->format;
2647 mode_cmd.width = fb->width;
2648 mode_cmd.height = fb->height;
2649 mode_cmd.pitches[0] = fb->pitches[0];
2650 mode_cmd.modifier[0] = fb->modifier;
2651 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2652
2653 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2654 DRM_DEBUG_KMS("intel fb init failed\n");
2655 goto out_unref_obj;
2656 }
2657
2658
2659 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2660 return true;
2661
2662 out_unref_obj:
2663 i915_gem_object_put(obj);
2664 return false;
2665 }
2666
2667 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2668 static void
2669 update_state_fb(struct drm_plane *plane)
2670 {
2671 if (plane->fb == plane->state->fb)
2672 return;
2673
2674 if (plane->state->fb)
2675 drm_framebuffer_unreference(plane->state->fb);
2676 plane->state->fb = plane->fb;
2677 if (plane->state->fb)
2678 drm_framebuffer_reference(plane->state->fb);
2679 }
2680
2681 static void
2682 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2683 struct intel_plane_state *plane_state,
2684 bool visible)
2685 {
2686 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2687
2688 plane_state->base.visible = visible;
2689
2690 /* FIXME pre-g4x don't work like this */
2691 if (visible) {
2692 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2693 crtc_state->active_planes |= BIT(plane->id);
2694 } else {
2695 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2696 crtc_state->active_planes &= ~BIT(plane->id);
2697 }
2698
2699 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2700 crtc_state->base.crtc->name,
2701 crtc_state->active_planes);
2702 }
2703
2704 static void
2705 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2706 struct intel_initial_plane_config *plane_config)
2707 {
2708 struct drm_device *dev = intel_crtc->base.dev;
2709 struct drm_i915_private *dev_priv = to_i915(dev);
2710 struct drm_crtc *c;
2711 struct drm_i915_gem_object *obj;
2712 struct drm_plane *primary = intel_crtc->base.primary;
2713 struct drm_plane_state *plane_state = primary->state;
2714 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2715 struct intel_plane *intel_plane = to_intel_plane(primary);
2716 struct intel_plane_state *intel_state =
2717 to_intel_plane_state(plane_state);
2718 struct drm_framebuffer *fb;
2719
2720 if (!plane_config->fb)
2721 return;
2722
2723 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2724 fb = &plane_config->fb->base;
2725 goto valid_fb;
2726 }
2727
2728 kfree(plane_config->fb);
2729
2730 /*
2731 * Failed to alloc the obj, check to see if we should share
2732 * an fb with another CRTC instead
2733 */
2734 for_each_crtc(dev, c) {
2735 struct intel_plane_state *state;
2736
2737 if (c == &intel_crtc->base)
2738 continue;
2739
2740 if (!to_intel_crtc(c)->active)
2741 continue;
2742
2743 state = to_intel_plane_state(c->primary->state);
2744 if (!state->vma)
2745 continue;
2746
2747 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2748 fb = c->primary->fb;
2749 drm_framebuffer_reference(fb);
2750 goto valid_fb;
2751 }
2752 }
2753
2754 /*
2755 * We've failed to reconstruct the BIOS FB. Current display state
2756 * indicates that the primary plane is visible, but has a NULL FB,
2757 * which will lead to problems later if we don't fix it up. The
2758 * simplest solution is to just disable the primary plane now and
2759 * pretend the BIOS never had it enabled.
2760 */
2761 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2762 to_intel_plane_state(plane_state),
2763 false);
2764 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2765 trace_intel_disable_plane(primary, intel_crtc);
2766 intel_plane->disable_plane(intel_plane, intel_crtc);
2767
2768 return;
2769
2770 valid_fb:
2771 mutex_lock(&dev->struct_mutex);
2772 intel_state->vma =
2773 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2774 mutex_unlock(&dev->struct_mutex);
2775 if (IS_ERR(intel_state->vma)) {
2776 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2777 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2778
2779 intel_state->vma = NULL;
2780 drm_framebuffer_unreference(fb);
2781 return;
2782 }
2783
2784 plane_state->src_x = 0;
2785 plane_state->src_y = 0;
2786 plane_state->src_w = fb->width << 16;
2787 plane_state->src_h = fb->height << 16;
2788
2789 plane_state->crtc_x = 0;
2790 plane_state->crtc_y = 0;
2791 plane_state->crtc_w = fb->width;
2792 plane_state->crtc_h = fb->height;
2793
2794 intel_state->base.src = drm_plane_state_src(plane_state);
2795 intel_state->base.dst = drm_plane_state_dest(plane_state);
2796
2797 obj = intel_fb_obj(fb);
2798 if (i915_gem_object_is_tiled(obj))
2799 dev_priv->preserve_bios_swizzle = true;
2800
2801 drm_framebuffer_reference(fb);
2802 primary->fb = primary->state->fb = fb;
2803 primary->crtc = primary->state->crtc = &intel_crtc->base;
2804
2805 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2806 to_intel_plane_state(plane_state),
2807 true);
2808
2809 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2810 &obj->frontbuffer_bits);
2811 }
2812
2813 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2814 unsigned int rotation)
2815 {
2816 int cpp = fb->format->cpp[plane];
2817
2818 switch (fb->modifier) {
2819 case DRM_FORMAT_MOD_LINEAR:
2820 case I915_FORMAT_MOD_X_TILED:
2821 switch (cpp) {
2822 case 8:
2823 return 4096;
2824 case 4:
2825 case 2:
2826 case 1:
2827 return 8192;
2828 default:
2829 MISSING_CASE(cpp);
2830 break;
2831 }
2832 break;
2833 case I915_FORMAT_MOD_Y_TILED:
2834 case I915_FORMAT_MOD_Yf_TILED:
2835 switch (cpp) {
2836 case 8:
2837 return 2048;
2838 case 4:
2839 return 4096;
2840 case 2:
2841 case 1:
2842 return 8192;
2843 default:
2844 MISSING_CASE(cpp);
2845 break;
2846 }
2847 break;
2848 default:
2849 MISSING_CASE(fb->modifier);
2850 }
2851
2852 return 2048;
2853 }
2854
2855 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2856 {
2857 const struct drm_framebuffer *fb = plane_state->base.fb;
2858 unsigned int rotation = plane_state->base.rotation;
2859 int x = plane_state->base.src.x1 >> 16;
2860 int y = plane_state->base.src.y1 >> 16;
2861 int w = drm_rect_width(&plane_state->base.src) >> 16;
2862 int h = drm_rect_height(&plane_state->base.src) >> 16;
2863 int max_width = skl_max_plane_width(fb, 0, rotation);
2864 int max_height = 4096;
2865 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2866
2867 if (w > max_width || h > max_height) {
2868 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2869 w, h, max_width, max_height);
2870 return -EINVAL;
2871 }
2872
2873 intel_add_fb_offsets(&x, &y, plane_state, 0);
2874 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2875 alignment = intel_surf_alignment(fb, 0);
2876
2877 /*
2878 * AUX surface offset is specified as the distance from the
2879 * main surface offset, and it must be non-negative. Make
2880 * sure that is what we will get.
2881 */
2882 if (offset > aux_offset)
2883 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2884 offset, aux_offset & ~(alignment - 1));
2885
2886 /*
2887 * When using an X-tiled surface, the plane blows up
2888 * if the x offset + width exceed the stride.
2889 *
2890 * TODO: linear and Y-tiled seem fine, Yf untested,
2891 */
2892 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2893 int cpp = fb->format->cpp[0];
2894
2895 while ((x + w) * cpp > fb->pitches[0]) {
2896 if (offset == 0) {
2897 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2898 return -EINVAL;
2899 }
2900
2901 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2902 offset, offset - alignment);
2903 }
2904 }
2905
2906 plane_state->main.offset = offset;
2907 plane_state->main.x = x;
2908 plane_state->main.y = y;
2909
2910 return 0;
2911 }
2912
2913 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2914 {
2915 const struct drm_framebuffer *fb = plane_state->base.fb;
2916 unsigned int rotation = plane_state->base.rotation;
2917 int max_width = skl_max_plane_width(fb, 1, rotation);
2918 int max_height = 4096;
2919 int x = plane_state->base.src.x1 >> 17;
2920 int y = plane_state->base.src.y1 >> 17;
2921 int w = drm_rect_width(&plane_state->base.src) >> 17;
2922 int h = drm_rect_height(&plane_state->base.src) >> 17;
2923 u32 offset;
2924
2925 intel_add_fb_offsets(&x, &y, plane_state, 1);
2926 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2927
2928 /* FIXME not quite sure how/if these apply to the chroma plane */
2929 if (w > max_width || h > max_height) {
2930 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2931 w, h, max_width, max_height);
2932 return -EINVAL;
2933 }
2934
2935 plane_state->aux.offset = offset;
2936 plane_state->aux.x = x;
2937 plane_state->aux.y = y;
2938
2939 return 0;
2940 }
2941
2942 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2943 {
2944 const struct drm_framebuffer *fb = plane_state->base.fb;
2945 unsigned int rotation = plane_state->base.rotation;
2946 int ret;
2947
2948 if (!plane_state->base.visible)
2949 return 0;
2950
2951 /* Rotate src coordinates to match rotated GTT view */
2952 if (drm_rotation_90_or_270(rotation))
2953 drm_rect_rotate(&plane_state->base.src,
2954 fb->width << 16, fb->height << 16,
2955 DRM_MODE_ROTATE_270);
2956
2957 /*
2958 * Handle the AUX surface first since
2959 * the main surface setup depends on it.
2960 */
2961 if (fb->format->format == DRM_FORMAT_NV12) {
2962 ret = skl_check_nv12_aux_surface(plane_state);
2963 if (ret)
2964 return ret;
2965 } else {
2966 plane_state->aux.offset = ~0xfff;
2967 plane_state->aux.x = 0;
2968 plane_state->aux.y = 0;
2969 }
2970
2971 ret = skl_check_main_surface(plane_state);
2972 if (ret)
2973 return ret;
2974
2975 return 0;
2976 }
2977
2978 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2979 const struct intel_plane_state *plane_state)
2980 {
2981 struct drm_i915_private *dev_priv =
2982 to_i915(plane_state->base.plane->dev);
2983 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2984 const struct drm_framebuffer *fb = plane_state->base.fb;
2985 unsigned int rotation = plane_state->base.rotation;
2986 u32 dspcntr;
2987
2988 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2989
2990 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2991 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2992 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2993
2994 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2995 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2996
2997 if (INTEL_GEN(dev_priv) < 4)
2998 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
2999
3000 switch (fb->format->format) {
3001 case DRM_FORMAT_C8:
3002 dspcntr |= DISPPLANE_8BPP;
3003 break;
3004 case DRM_FORMAT_XRGB1555:
3005 dspcntr |= DISPPLANE_BGRX555;
3006 break;
3007 case DRM_FORMAT_RGB565:
3008 dspcntr |= DISPPLANE_BGRX565;
3009 break;
3010 case DRM_FORMAT_XRGB8888:
3011 dspcntr |= DISPPLANE_BGRX888;
3012 break;
3013 case DRM_FORMAT_XBGR8888:
3014 dspcntr |= DISPPLANE_RGBX888;
3015 break;
3016 case DRM_FORMAT_XRGB2101010:
3017 dspcntr |= DISPPLANE_BGRX101010;
3018 break;
3019 case DRM_FORMAT_XBGR2101010:
3020 dspcntr |= DISPPLANE_RGBX101010;
3021 break;
3022 default:
3023 MISSING_CASE(fb->format->format);
3024 return 0;
3025 }
3026
3027 if (INTEL_GEN(dev_priv) >= 4 &&
3028 fb->modifier == I915_FORMAT_MOD_X_TILED)
3029 dspcntr |= DISPPLANE_TILED;
3030
3031 if (rotation & DRM_MODE_ROTATE_180)
3032 dspcntr |= DISPPLANE_ROTATE_180;
3033
3034 if (rotation & DRM_MODE_REFLECT_X)
3035 dspcntr |= DISPPLANE_MIRROR;
3036
3037 return dspcntr;
3038 }
3039
3040 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3041 {
3042 struct drm_i915_private *dev_priv =
3043 to_i915(plane_state->base.plane->dev);
3044 int src_x = plane_state->base.src.x1 >> 16;
3045 int src_y = plane_state->base.src.y1 >> 16;
3046 u32 offset;
3047
3048 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3049
3050 if (INTEL_GEN(dev_priv) >= 4)
3051 offset = intel_compute_tile_offset(&src_x, &src_y,
3052 plane_state, 0);
3053 else
3054 offset = 0;
3055
3056 /* HSW/BDW do this automagically in hardware */
3057 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3058 unsigned int rotation = plane_state->base.rotation;
3059 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3060 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3061
3062 if (rotation & DRM_MODE_ROTATE_180) {
3063 src_x += src_w - 1;
3064 src_y += src_h - 1;
3065 } else if (rotation & DRM_MODE_REFLECT_X) {
3066 src_x += src_w - 1;
3067 }
3068 }
3069
3070 plane_state->main.offset = offset;
3071 plane_state->main.x = src_x;
3072 plane_state->main.y = src_y;
3073
3074 return 0;
3075 }
3076
3077 static void i9xx_update_primary_plane(struct intel_plane *primary,
3078 const struct intel_crtc_state *crtc_state,
3079 const struct intel_plane_state *plane_state)
3080 {
3081 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3082 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3083 const struct drm_framebuffer *fb = plane_state->base.fb;
3084 enum plane plane = primary->plane;
3085 u32 linear_offset;
3086 u32 dspcntr = plane_state->ctl;
3087 i915_reg_t reg = DSPCNTR(plane);
3088 int x = plane_state->main.x;
3089 int y = plane_state->main.y;
3090 unsigned long irqflags;
3091
3092 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3093
3094 if (INTEL_GEN(dev_priv) >= 4)
3095 crtc->dspaddr_offset = plane_state->main.offset;
3096 else
3097 crtc->dspaddr_offset = linear_offset;
3098
3099 crtc->adjusted_x = x;
3100 crtc->adjusted_y = y;
3101
3102 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3103
3104 if (INTEL_GEN(dev_priv) < 4) {
3105 /* pipesrc and dspsize control the size that is scaled from,
3106 * which should always be the user's requested size.
3107 */
3108 I915_WRITE_FW(DSPSIZE(plane),
3109 ((crtc_state->pipe_src_h - 1) << 16) |
3110 (crtc_state->pipe_src_w - 1));
3111 I915_WRITE_FW(DSPPOS(plane), 0);
3112 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3113 I915_WRITE_FW(PRIMSIZE(plane),
3114 ((crtc_state->pipe_src_h - 1) << 16) |
3115 (crtc_state->pipe_src_w - 1));
3116 I915_WRITE_FW(PRIMPOS(plane), 0);
3117 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3118 }
3119
3120 I915_WRITE_FW(reg, dspcntr);
3121
3122 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3123 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3124 I915_WRITE_FW(DSPSURF(plane),
3125 intel_plane_ggtt_offset(plane_state) +
3126 crtc->dspaddr_offset);
3127 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3128 } else if (INTEL_GEN(dev_priv) >= 4) {
3129 I915_WRITE_FW(DSPSURF(plane),
3130 intel_plane_ggtt_offset(plane_state) +
3131 crtc->dspaddr_offset);
3132 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3133 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3134 } else {
3135 I915_WRITE_FW(DSPADDR(plane),
3136 intel_plane_ggtt_offset(plane_state) +
3137 crtc->dspaddr_offset);
3138 }
3139 POSTING_READ_FW(reg);
3140
3141 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3142 }
3143
3144 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3145 struct intel_crtc *crtc)
3146 {
3147 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3148 enum plane plane = primary->plane;
3149 unsigned long irqflags;
3150
3151 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3152
3153 I915_WRITE_FW(DSPCNTR(plane), 0);
3154 if (INTEL_INFO(dev_priv)->gen >= 4)
3155 I915_WRITE_FW(DSPSURF(plane), 0);
3156 else
3157 I915_WRITE_FW(DSPADDR(plane), 0);
3158 POSTING_READ_FW(DSPCNTR(plane));
3159
3160 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3161 }
3162
3163 static u32
3164 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3165 {
3166 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3167 return 64;
3168 else
3169 return intel_tile_width_bytes(fb, plane);
3170 }
3171
3172 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3173 {
3174 struct drm_device *dev = intel_crtc->base.dev;
3175 struct drm_i915_private *dev_priv = to_i915(dev);
3176
3177 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3178 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3179 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3180 }
3181
3182 /*
3183 * This function detaches (aka. unbinds) unused scalers in hardware
3184 */
3185 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3186 {
3187 struct intel_crtc_scaler_state *scaler_state;
3188 int i;
3189
3190 scaler_state = &intel_crtc->config->scaler_state;
3191
3192 /* loop through and disable scalers that aren't in use */
3193 for (i = 0; i < intel_crtc->num_scalers; i++) {
3194 if (!scaler_state->scalers[i].in_use)
3195 skl_detach_scaler(intel_crtc, i);
3196 }
3197 }
3198
3199 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3200 unsigned int rotation)
3201 {
3202 u32 stride;
3203
3204 if (plane >= fb->format->num_planes)
3205 return 0;
3206
3207 stride = intel_fb_pitch(fb, plane, rotation);
3208
3209 /*
3210 * The stride is either expressed as a multiple of 64 bytes chunks for
3211 * linear buffers or in number of tiles for tiled buffers.
3212 */
3213 if (drm_rotation_90_or_270(rotation))
3214 stride /= intel_tile_height(fb, plane);
3215 else
3216 stride /= intel_fb_stride_alignment(fb, plane);
3217
3218 return stride;
3219 }
3220
3221 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3222 {
3223 switch (pixel_format) {
3224 case DRM_FORMAT_C8:
3225 return PLANE_CTL_FORMAT_INDEXED;
3226 case DRM_FORMAT_RGB565:
3227 return PLANE_CTL_FORMAT_RGB_565;
3228 case DRM_FORMAT_XBGR8888:
3229 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3230 case DRM_FORMAT_XRGB8888:
3231 return PLANE_CTL_FORMAT_XRGB_8888;
3232 /*
3233 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3234 * to be already pre-multiplied. We need to add a knob (or a different
3235 * DRM_FORMAT) for user-space to configure that.
3236 */
3237 case DRM_FORMAT_ABGR8888:
3238 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3239 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3240 case DRM_FORMAT_ARGB8888:
3241 return PLANE_CTL_FORMAT_XRGB_8888 |
3242 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3243 case DRM_FORMAT_XRGB2101010:
3244 return PLANE_CTL_FORMAT_XRGB_2101010;
3245 case DRM_FORMAT_XBGR2101010:
3246 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3247 case DRM_FORMAT_YUYV:
3248 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3249 case DRM_FORMAT_YVYU:
3250 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3251 case DRM_FORMAT_UYVY:
3252 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3253 case DRM_FORMAT_VYUY:
3254 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3255 default:
3256 MISSING_CASE(pixel_format);
3257 }
3258
3259 return 0;
3260 }
3261
3262 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3263 {
3264 switch (fb_modifier) {
3265 case DRM_FORMAT_MOD_LINEAR:
3266 break;
3267 case I915_FORMAT_MOD_X_TILED:
3268 return PLANE_CTL_TILED_X;
3269 case I915_FORMAT_MOD_Y_TILED:
3270 return PLANE_CTL_TILED_Y;
3271 case I915_FORMAT_MOD_Yf_TILED:
3272 return PLANE_CTL_TILED_YF;
3273 default:
3274 MISSING_CASE(fb_modifier);
3275 }
3276
3277 return 0;
3278 }
3279
3280 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3281 {
3282 switch (rotation) {
3283 case DRM_MODE_ROTATE_0:
3284 break;
3285 /*
3286 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3287 * while i915 HW rotation is clockwise, thats why this swapping.
3288 */
3289 case DRM_MODE_ROTATE_90:
3290 return PLANE_CTL_ROTATE_270;
3291 case DRM_MODE_ROTATE_180:
3292 return PLANE_CTL_ROTATE_180;
3293 case DRM_MODE_ROTATE_270:
3294 return PLANE_CTL_ROTATE_90;
3295 default:
3296 MISSING_CASE(rotation);
3297 }
3298
3299 return 0;
3300 }
3301
3302 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3303 const struct intel_plane_state *plane_state)
3304 {
3305 struct drm_i915_private *dev_priv =
3306 to_i915(plane_state->base.plane->dev);
3307 const struct drm_framebuffer *fb = plane_state->base.fb;
3308 unsigned int rotation = plane_state->base.rotation;
3309 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3310 u32 plane_ctl;
3311
3312 plane_ctl = PLANE_CTL_ENABLE;
3313
3314 if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3315 plane_ctl |=
3316 PLANE_CTL_PIPE_GAMMA_ENABLE |
3317 PLANE_CTL_PIPE_CSC_ENABLE |
3318 PLANE_CTL_PLANE_GAMMA_DISABLE;
3319 }
3320
3321 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3322 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3323 plane_ctl |= skl_plane_ctl_rotation(rotation);
3324
3325 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3326 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3327 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3328 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3329
3330 return plane_ctl;
3331 }
3332
3333 static void skylake_update_primary_plane(struct intel_plane *plane,
3334 const struct intel_crtc_state *crtc_state,
3335 const struct intel_plane_state *plane_state)
3336 {
3337 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3338 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3339 const struct drm_framebuffer *fb = plane_state->base.fb;
3340 enum plane_id plane_id = plane->id;
3341 enum pipe pipe = plane->pipe;
3342 u32 plane_ctl = plane_state->ctl;
3343 unsigned int rotation = plane_state->base.rotation;
3344 u32 stride = skl_plane_stride(fb, 0, rotation);
3345 u32 surf_addr = plane_state->main.offset;
3346 int scaler_id = plane_state->scaler_id;
3347 int src_x = plane_state->main.x;
3348 int src_y = plane_state->main.y;
3349 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3350 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3351 int dst_x = plane_state->base.dst.x1;
3352 int dst_y = plane_state->base.dst.y1;
3353 int dst_w = drm_rect_width(&plane_state->base.dst);
3354 int dst_h = drm_rect_height(&plane_state->base.dst);
3355 unsigned long irqflags;
3356
3357 /* Sizes are 0 based */
3358 src_w--;
3359 src_h--;
3360 dst_w--;
3361 dst_h--;
3362
3363 crtc->dspaddr_offset = surf_addr;
3364
3365 crtc->adjusted_x = src_x;
3366 crtc->adjusted_y = src_y;
3367
3368 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3369
3370 if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3371 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3372 PLANE_COLOR_PIPE_GAMMA_ENABLE |
3373 PLANE_COLOR_PIPE_CSC_ENABLE |
3374 PLANE_COLOR_PLANE_GAMMA_DISABLE);
3375 }
3376
3377 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3378 I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3379 I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3380 I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3381
3382 if (scaler_id >= 0) {
3383 uint32_t ps_ctrl = 0;
3384
3385 WARN_ON(!dst_w || !dst_h);
3386 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3387 crtc_state->scaler_state.scalers[scaler_id].mode;
3388 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3389 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3390 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3391 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3392 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3393 } else {
3394 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3395 }
3396
3397 I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3398 intel_plane_ggtt_offset(plane_state) + surf_addr);
3399
3400 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3401
3402 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3403 }
3404
3405 static void skylake_disable_primary_plane(struct intel_plane *primary,
3406 struct intel_crtc *crtc)
3407 {
3408 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3409 enum plane_id plane_id = primary->id;
3410 enum pipe pipe = primary->pipe;
3411 unsigned long irqflags;
3412
3413 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3414
3415 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3416 I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3417 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3418
3419 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3420 }
3421
3422 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3423 {
3424 struct intel_crtc *crtc;
3425
3426 for_each_intel_crtc(&dev_priv->drm, crtc)
3427 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3428 }
3429
3430 static void intel_update_primary_planes(struct drm_device *dev)
3431 {
3432 struct drm_crtc *crtc;
3433
3434 for_each_crtc(dev, crtc) {
3435 struct intel_plane *plane = to_intel_plane(crtc->primary);
3436 struct intel_plane_state *plane_state =
3437 to_intel_plane_state(plane->base.state);
3438
3439 if (plane_state->base.visible) {
3440 trace_intel_update_plane(&plane->base,
3441 to_intel_crtc(crtc));
3442
3443 plane->update_plane(plane,
3444 to_intel_crtc_state(crtc->state),
3445 plane_state);
3446 }
3447 }
3448 }
3449
3450 static int
3451 __intel_display_resume(struct drm_device *dev,
3452 struct drm_atomic_state *state,
3453 struct drm_modeset_acquire_ctx *ctx)
3454 {
3455 struct drm_crtc_state *crtc_state;
3456 struct drm_crtc *crtc;
3457 int i, ret;
3458
3459 intel_modeset_setup_hw_state(dev, ctx);
3460 i915_redisable_vga(to_i915(dev));
3461
3462 if (!state)
3463 return 0;
3464
3465 /*
3466 * We've duplicated the state, pointers to the old state are invalid.
3467 *
3468 * Don't attempt to use the old state until we commit the duplicated state.
3469 */
3470 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3471 /*
3472 * Force recalculation even if we restore
3473 * current state. With fast modeset this may not result
3474 * in a modeset when the state is compatible.
3475 */
3476 crtc_state->mode_changed = true;
3477 }
3478
3479 /* ignore any reset values/BIOS leftovers in the WM registers */
3480 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3481 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3482
3483 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3484
3485 WARN_ON(ret == -EDEADLK);
3486 return ret;
3487 }
3488
3489 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3490 {
3491 return intel_has_gpu_reset(dev_priv) &&
3492 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3493 }
3494
3495 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3496 {
3497 struct drm_device *dev = &dev_priv->drm;
3498 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3499 struct drm_atomic_state *state;
3500 int ret;
3501
3502 /*
3503 * Need mode_config.mutex so that we don't
3504 * trample ongoing ->detect() and whatnot.
3505 */
3506 mutex_lock(&dev->mode_config.mutex);
3507 drm_modeset_acquire_init(ctx, 0);
3508 while (1) {
3509 ret = drm_modeset_lock_all_ctx(dev, ctx);
3510 if (ret != -EDEADLK)
3511 break;
3512
3513 drm_modeset_backoff(ctx);
3514 }
3515
3516 /* reset doesn't touch the display, but flips might get nuked anyway, */
3517 if (!i915.force_reset_modeset_test &&
3518 !gpu_reset_clobbers_display(dev_priv))
3519 return;
3520
3521 /*
3522 * Disabling the crtcs gracefully seems nicer. Also the
3523 * g33 docs say we should at least disable all the planes.
3524 */
3525 state = drm_atomic_helper_duplicate_state(dev, ctx);
3526 if (IS_ERR(state)) {
3527 ret = PTR_ERR(state);
3528 DRM_ERROR("Duplicating state failed with %i\n", ret);
3529 return;
3530 }
3531
3532 ret = drm_atomic_helper_disable_all(dev, ctx);
3533 if (ret) {
3534 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3535 drm_atomic_state_put(state);
3536 return;
3537 }
3538
3539 dev_priv->modeset_restore_state = state;
3540 state->acquire_ctx = ctx;
3541 }
3542
3543 void intel_finish_reset(struct drm_i915_private *dev_priv)
3544 {
3545 struct drm_device *dev = &dev_priv->drm;
3546 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3547 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3548 int ret;
3549
3550 /*
3551 * Flips in the rings will be nuked by the reset,
3552 * so complete all pending flips so that user space
3553 * will get its events and not get stuck.
3554 */
3555 intel_complete_page_flips(dev_priv);
3556
3557 dev_priv->modeset_restore_state = NULL;
3558
3559 /* reset doesn't touch the display */
3560 if (!gpu_reset_clobbers_display(dev_priv)) {
3561 if (!state) {
3562 /*
3563 * Flips in the rings have been nuked by the reset,
3564 * so update the base address of all primary
3565 * planes to the the last fb to make sure we're
3566 * showing the correct fb after a reset.
3567 *
3568 * FIXME: Atomic will make this obsolete since we won't schedule
3569 * CS-based flips (which might get lost in gpu resets) any more.
3570 */
3571 intel_update_primary_planes(dev);
3572 } else {
3573 ret = __intel_display_resume(dev, state, ctx);
3574 if (ret)
3575 DRM_ERROR("Restoring old state failed with %i\n", ret);
3576 }
3577 } else {
3578 /*
3579 * The display has been reset as well,
3580 * so need a full re-initialization.
3581 */
3582 intel_runtime_pm_disable_interrupts(dev_priv);
3583 intel_runtime_pm_enable_interrupts(dev_priv);
3584
3585 intel_pps_unlock_regs_wa(dev_priv);
3586 intel_modeset_init_hw(dev);
3587
3588 spin_lock_irq(&dev_priv->irq_lock);
3589 if (dev_priv->display.hpd_irq_setup)
3590 dev_priv->display.hpd_irq_setup(dev_priv);
3591 spin_unlock_irq(&dev_priv->irq_lock);
3592
3593 ret = __intel_display_resume(dev, state, ctx);
3594 if (ret)
3595 DRM_ERROR("Restoring old state failed with %i\n", ret);
3596
3597 intel_hpd_init(dev_priv);
3598 }
3599
3600 if (state)
3601 drm_atomic_state_put(state);
3602 drm_modeset_drop_locks(ctx);
3603 drm_modeset_acquire_fini(ctx);
3604 mutex_unlock(&dev->mode_config.mutex);
3605 }
3606
3607 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3608 {
3609 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3610
3611 if (i915_reset_backoff(error))
3612 return true;
3613
3614 if (crtc->reset_count != i915_reset_count(error))
3615 return true;
3616
3617 return false;
3618 }
3619
3620 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3621 {
3622 struct drm_device *dev = crtc->dev;
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624 bool pending;
3625
3626 if (abort_flip_on_reset(intel_crtc))
3627 return false;
3628
3629 spin_lock_irq(&dev->event_lock);
3630 pending = to_intel_crtc(crtc)->flip_work != NULL;
3631 spin_unlock_irq(&dev->event_lock);
3632
3633 return pending;
3634 }
3635
3636 static void intel_update_pipe_config(struct intel_crtc *crtc,
3637 struct intel_crtc_state *old_crtc_state)
3638 {
3639 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3640 struct intel_crtc_state *pipe_config =
3641 to_intel_crtc_state(crtc->base.state);
3642
3643 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3644 crtc->base.mode = crtc->base.state->mode;
3645
3646 /*
3647 * Update pipe size and adjust fitter if needed: the reason for this is
3648 * that in compute_mode_changes we check the native mode (not the pfit
3649 * mode) to see if we can flip rather than do a full mode set. In the
3650 * fastboot case, we'll flip, but if we don't update the pipesrc and
3651 * pfit state, we'll end up with a big fb scanned out into the wrong
3652 * sized surface.
3653 */
3654
3655 I915_WRITE(PIPESRC(crtc->pipe),
3656 ((pipe_config->pipe_src_w - 1) << 16) |
3657 (pipe_config->pipe_src_h - 1));
3658
3659 /* on skylake this is done by detaching scalers */
3660 if (INTEL_GEN(dev_priv) >= 9) {
3661 skl_detach_scalers(crtc);
3662
3663 if (pipe_config->pch_pfit.enabled)
3664 skylake_pfit_enable(crtc);
3665 } else if (HAS_PCH_SPLIT(dev_priv)) {
3666 if (pipe_config->pch_pfit.enabled)
3667 ironlake_pfit_enable(crtc);
3668 else if (old_crtc_state->pch_pfit.enabled)
3669 ironlake_pfit_disable(crtc, true);
3670 }
3671 }
3672
3673 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3674 {
3675 struct drm_device *dev = crtc->base.dev;
3676 struct drm_i915_private *dev_priv = to_i915(dev);
3677 int pipe = crtc->pipe;
3678 i915_reg_t reg;
3679 u32 temp;
3680
3681 /* enable normal train */
3682 reg = FDI_TX_CTL(pipe);
3683 temp = I915_READ(reg);
3684 if (IS_IVYBRIDGE(dev_priv)) {
3685 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3686 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3687 } else {
3688 temp &= ~FDI_LINK_TRAIN_NONE;
3689 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3690 }
3691 I915_WRITE(reg, temp);
3692
3693 reg = FDI_RX_CTL(pipe);
3694 temp = I915_READ(reg);
3695 if (HAS_PCH_CPT(dev_priv)) {
3696 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3697 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3698 } else {
3699 temp &= ~FDI_LINK_TRAIN_NONE;
3700 temp |= FDI_LINK_TRAIN_NONE;
3701 }
3702 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3703
3704 /* wait one idle pattern time */
3705 POSTING_READ(reg);
3706 udelay(1000);
3707
3708 /* IVB wants error correction enabled */
3709 if (IS_IVYBRIDGE(dev_priv))
3710 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3711 FDI_FE_ERRC_ENABLE);
3712 }
3713
3714 /* The FDI link training functions for ILK/Ibexpeak. */
3715 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3716 const struct intel_crtc_state *crtc_state)
3717 {
3718 struct drm_device *dev = crtc->base.dev;
3719 struct drm_i915_private *dev_priv = to_i915(dev);
3720 int pipe = crtc->pipe;
3721 i915_reg_t reg;
3722 u32 temp, tries;
3723
3724 /* FDI needs bits from pipe first */
3725 assert_pipe_enabled(dev_priv, pipe);
3726
3727 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3728 for train result */
3729 reg = FDI_RX_IMR(pipe);
3730 temp = I915_READ(reg);
3731 temp &= ~FDI_RX_SYMBOL_LOCK;
3732 temp &= ~FDI_RX_BIT_LOCK;
3733 I915_WRITE(reg, temp);
3734 I915_READ(reg);
3735 udelay(150);
3736
3737 /* enable CPU FDI TX and PCH FDI RX */
3738 reg = FDI_TX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3741 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3742 temp &= ~FDI_LINK_TRAIN_NONE;
3743 temp |= FDI_LINK_TRAIN_PATTERN_1;
3744 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3745
3746 reg = FDI_RX_CTL(pipe);
3747 temp = I915_READ(reg);
3748 temp &= ~FDI_LINK_TRAIN_NONE;
3749 temp |= FDI_LINK_TRAIN_PATTERN_1;
3750 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3751
3752 POSTING_READ(reg);
3753 udelay(150);
3754
3755 /* Ironlake workaround, enable clock pointer after FDI enable*/
3756 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3757 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3758 FDI_RX_PHASE_SYNC_POINTER_EN);
3759
3760 reg = FDI_RX_IIR(pipe);
3761 for (tries = 0; tries < 5; tries++) {
3762 temp = I915_READ(reg);
3763 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3764
3765 if ((temp & FDI_RX_BIT_LOCK)) {
3766 DRM_DEBUG_KMS("FDI train 1 done.\n");
3767 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3768 break;
3769 }
3770 }
3771 if (tries == 5)
3772 DRM_ERROR("FDI train 1 fail!\n");
3773
3774 /* Train 2 */
3775 reg = FDI_TX_CTL(pipe);
3776 temp = I915_READ(reg);
3777 temp &= ~FDI_LINK_TRAIN_NONE;
3778 temp |= FDI_LINK_TRAIN_PATTERN_2;
3779 I915_WRITE(reg, temp);
3780
3781 reg = FDI_RX_CTL(pipe);
3782 temp = I915_READ(reg);
3783 temp &= ~FDI_LINK_TRAIN_NONE;
3784 temp |= FDI_LINK_TRAIN_PATTERN_2;
3785 I915_WRITE(reg, temp);
3786
3787 POSTING_READ(reg);
3788 udelay(150);
3789
3790 reg = FDI_RX_IIR(pipe);
3791 for (tries = 0; tries < 5; tries++) {
3792 temp = I915_READ(reg);
3793 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3794
3795 if (temp & FDI_RX_SYMBOL_LOCK) {
3796 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3797 DRM_DEBUG_KMS("FDI train 2 done.\n");
3798 break;
3799 }
3800 }
3801 if (tries == 5)
3802 DRM_ERROR("FDI train 2 fail!\n");
3803
3804 DRM_DEBUG_KMS("FDI train done\n");
3805
3806 }
3807
3808 static const int snb_b_fdi_train_param[] = {
3809 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3810 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3811 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3812 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3813 };
3814
3815 /* The FDI link training functions for SNB/Cougarpoint. */
3816 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3817 const struct intel_crtc_state *crtc_state)
3818 {
3819 struct drm_device *dev = crtc->base.dev;
3820 struct drm_i915_private *dev_priv = to_i915(dev);
3821 int pipe = crtc->pipe;
3822 i915_reg_t reg;
3823 u32 temp, i, retry;
3824
3825 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3826 for train result */
3827 reg = FDI_RX_IMR(pipe);
3828 temp = I915_READ(reg);
3829 temp &= ~FDI_RX_SYMBOL_LOCK;
3830 temp &= ~FDI_RX_BIT_LOCK;
3831 I915_WRITE(reg, temp);
3832
3833 POSTING_READ(reg);
3834 udelay(150);
3835
3836 /* enable CPU FDI TX and PCH FDI RX */
3837 reg = FDI_TX_CTL(pipe);
3838 temp = I915_READ(reg);
3839 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3840 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3841 temp &= ~FDI_LINK_TRAIN_NONE;
3842 temp |= FDI_LINK_TRAIN_PATTERN_1;
3843 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3844 /* SNB-B */
3845 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3846 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3847
3848 I915_WRITE(FDI_RX_MISC(pipe),
3849 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3850
3851 reg = FDI_RX_CTL(pipe);
3852 temp = I915_READ(reg);
3853 if (HAS_PCH_CPT(dev_priv)) {
3854 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3855 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3856 } else {
3857 temp &= ~FDI_LINK_TRAIN_NONE;
3858 temp |= FDI_LINK_TRAIN_PATTERN_1;
3859 }
3860 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3861
3862 POSTING_READ(reg);
3863 udelay(150);
3864
3865 for (i = 0; i < 4; i++) {
3866 reg = FDI_TX_CTL(pipe);
3867 temp = I915_READ(reg);
3868 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3869 temp |= snb_b_fdi_train_param[i];
3870 I915_WRITE(reg, temp);
3871
3872 POSTING_READ(reg);
3873 udelay(500);
3874
3875 for (retry = 0; retry < 5; retry++) {
3876 reg = FDI_RX_IIR(pipe);
3877 temp = I915_READ(reg);
3878 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3879 if (temp & FDI_RX_BIT_LOCK) {
3880 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3881 DRM_DEBUG_KMS("FDI train 1 done.\n");
3882 break;
3883 }
3884 udelay(50);
3885 }
3886 if (retry < 5)
3887 break;
3888 }
3889 if (i == 4)
3890 DRM_ERROR("FDI train 1 fail!\n");
3891
3892 /* Train 2 */
3893 reg = FDI_TX_CTL(pipe);
3894 temp = I915_READ(reg);
3895 temp &= ~FDI_LINK_TRAIN_NONE;
3896 temp |= FDI_LINK_TRAIN_PATTERN_2;
3897 if (IS_GEN6(dev_priv)) {
3898 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3899 /* SNB-B */
3900 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3901 }
3902 I915_WRITE(reg, temp);
3903
3904 reg = FDI_RX_CTL(pipe);
3905 temp = I915_READ(reg);
3906 if (HAS_PCH_CPT(dev_priv)) {
3907 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3908 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3909 } else {
3910 temp &= ~FDI_LINK_TRAIN_NONE;
3911 temp |= FDI_LINK_TRAIN_PATTERN_2;
3912 }
3913 I915_WRITE(reg, temp);
3914
3915 POSTING_READ(reg);
3916 udelay(150);
3917
3918 for (i = 0; i < 4; i++) {
3919 reg = FDI_TX_CTL(pipe);
3920 temp = I915_READ(reg);
3921 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3922 temp |= snb_b_fdi_train_param[i];
3923 I915_WRITE(reg, temp);
3924
3925 POSTING_READ(reg);
3926 udelay(500);
3927
3928 for (retry = 0; retry < 5; retry++) {
3929 reg = FDI_RX_IIR(pipe);
3930 temp = I915_READ(reg);
3931 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3932 if (temp & FDI_RX_SYMBOL_LOCK) {
3933 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3934 DRM_DEBUG_KMS("FDI train 2 done.\n");
3935 break;
3936 }
3937 udelay(50);
3938 }
3939 if (retry < 5)
3940 break;
3941 }
3942 if (i == 4)
3943 DRM_ERROR("FDI train 2 fail!\n");
3944
3945 DRM_DEBUG_KMS("FDI train done.\n");
3946 }
3947
3948 /* Manual link training for Ivy Bridge A0 parts */
3949 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3950 const struct intel_crtc_state *crtc_state)
3951 {
3952 struct drm_device *dev = crtc->base.dev;
3953 struct drm_i915_private *dev_priv = to_i915(dev);
3954 int pipe = crtc->pipe;
3955 i915_reg_t reg;
3956 u32 temp, i, j;
3957
3958 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3959 for train result */
3960 reg = FDI_RX_IMR(pipe);
3961 temp = I915_READ(reg);
3962 temp &= ~FDI_RX_SYMBOL_LOCK;
3963 temp &= ~FDI_RX_BIT_LOCK;
3964 I915_WRITE(reg, temp);
3965
3966 POSTING_READ(reg);
3967 udelay(150);
3968
3969 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3970 I915_READ(FDI_RX_IIR(pipe)));
3971
3972 /* Try each vswing and preemphasis setting twice before moving on */
3973 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3974 /* disable first in case we need to retry */
3975 reg = FDI_TX_CTL(pipe);
3976 temp = I915_READ(reg);
3977 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3978 temp &= ~FDI_TX_ENABLE;
3979 I915_WRITE(reg, temp);
3980
3981 reg = FDI_RX_CTL(pipe);
3982 temp = I915_READ(reg);
3983 temp &= ~FDI_LINK_TRAIN_AUTO;
3984 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3985 temp &= ~FDI_RX_ENABLE;
3986 I915_WRITE(reg, temp);
3987
3988 /* enable CPU FDI TX and PCH FDI RX */
3989 reg = FDI_TX_CTL(pipe);
3990 temp = I915_READ(reg);
3991 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3992 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3993 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3994 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3995 temp |= snb_b_fdi_train_param[j/2];
3996 temp |= FDI_COMPOSITE_SYNC;
3997 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3998
3999 I915_WRITE(FDI_RX_MISC(pipe),
4000 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4001
4002 reg = FDI_RX_CTL(pipe);
4003 temp = I915_READ(reg);
4004 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4005 temp |= FDI_COMPOSITE_SYNC;
4006 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4007
4008 POSTING_READ(reg);
4009 udelay(1); /* should be 0.5us */
4010
4011 for (i = 0; i < 4; i++) {
4012 reg = FDI_RX_IIR(pipe);
4013 temp = I915_READ(reg);
4014 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4015
4016 if (temp & FDI_RX_BIT_LOCK ||
4017 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4018 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4019 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4020 i);
4021 break;
4022 }
4023 udelay(1); /* should be 0.5us */
4024 }
4025 if (i == 4) {
4026 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4027 continue;
4028 }
4029
4030 /* Train 2 */
4031 reg = FDI_TX_CTL(pipe);
4032 temp = I915_READ(reg);
4033 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4034 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4035 I915_WRITE(reg, temp);
4036
4037 reg = FDI_RX_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4040 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4041 I915_WRITE(reg, temp);
4042
4043 POSTING_READ(reg);
4044 udelay(2); /* should be 1.5us */
4045
4046 for (i = 0; i < 4; i++) {
4047 reg = FDI_RX_IIR(pipe);
4048 temp = I915_READ(reg);
4049 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4050
4051 if (temp & FDI_RX_SYMBOL_LOCK ||
4052 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4053 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4054 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4055 i);
4056 goto train_done;
4057 }
4058 udelay(2); /* should be 1.5us */
4059 }
4060 if (i == 4)
4061 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4062 }
4063
4064 train_done:
4065 DRM_DEBUG_KMS("FDI train done.\n");
4066 }
4067
4068 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4069 {
4070 struct drm_device *dev = intel_crtc->base.dev;
4071 struct drm_i915_private *dev_priv = to_i915(dev);
4072 int pipe = intel_crtc->pipe;
4073 i915_reg_t reg;
4074 u32 temp;
4075
4076 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4077 reg = FDI_RX_CTL(pipe);
4078 temp = I915_READ(reg);
4079 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4080 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4081 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4082 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4083
4084 POSTING_READ(reg);
4085 udelay(200);
4086
4087 /* Switch from Rawclk to PCDclk */
4088 temp = I915_READ(reg);
4089 I915_WRITE(reg, temp | FDI_PCDCLK);
4090
4091 POSTING_READ(reg);
4092 udelay(200);
4093
4094 /* Enable CPU FDI TX PLL, always on for Ironlake */
4095 reg = FDI_TX_CTL(pipe);
4096 temp = I915_READ(reg);
4097 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4098 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4099
4100 POSTING_READ(reg);
4101 udelay(100);
4102 }
4103 }
4104
4105 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4106 {
4107 struct drm_device *dev = intel_crtc->base.dev;
4108 struct drm_i915_private *dev_priv = to_i915(dev);
4109 int pipe = intel_crtc->pipe;
4110 i915_reg_t reg;
4111 u32 temp;
4112
4113 /* Switch from PCDclk to Rawclk */
4114 reg = FDI_RX_CTL(pipe);
4115 temp = I915_READ(reg);
4116 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4117
4118 /* Disable CPU FDI TX PLL */
4119 reg = FDI_TX_CTL(pipe);
4120 temp = I915_READ(reg);
4121 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4122
4123 POSTING_READ(reg);
4124 udelay(100);
4125
4126 reg = FDI_RX_CTL(pipe);
4127 temp = I915_READ(reg);
4128 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4129
4130 /* Wait for the clocks to turn off. */
4131 POSTING_READ(reg);
4132 udelay(100);
4133 }
4134
4135 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4136 {
4137 struct drm_device *dev = crtc->dev;
4138 struct drm_i915_private *dev_priv = to_i915(dev);
4139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4140 int pipe = intel_crtc->pipe;
4141 i915_reg_t reg;
4142 u32 temp;
4143
4144 /* disable CPU FDI tx and PCH FDI rx */
4145 reg = FDI_TX_CTL(pipe);
4146 temp = I915_READ(reg);
4147 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4148 POSTING_READ(reg);
4149
4150 reg = FDI_RX_CTL(pipe);
4151 temp = I915_READ(reg);
4152 temp &= ~(0x7 << 16);
4153 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4154 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4155
4156 POSTING_READ(reg);
4157 udelay(100);
4158
4159 /* Ironlake workaround, disable clock pointer after downing FDI */
4160 if (HAS_PCH_IBX(dev_priv))
4161 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4162
4163 /* still set train pattern 1 */
4164 reg = FDI_TX_CTL(pipe);
4165 temp = I915_READ(reg);
4166 temp &= ~FDI_LINK_TRAIN_NONE;
4167 temp |= FDI_LINK_TRAIN_PATTERN_1;
4168 I915_WRITE(reg, temp);
4169
4170 reg = FDI_RX_CTL(pipe);
4171 temp = I915_READ(reg);
4172 if (HAS_PCH_CPT(dev_priv)) {
4173 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4174 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4175 } else {
4176 temp &= ~FDI_LINK_TRAIN_NONE;
4177 temp |= FDI_LINK_TRAIN_PATTERN_1;
4178 }
4179 /* BPC in FDI rx is consistent with that in PIPECONF */
4180 temp &= ~(0x07 << 16);
4181 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4182 I915_WRITE(reg, temp);
4183
4184 POSTING_READ(reg);
4185 udelay(100);
4186 }
4187
4188 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4189 {
4190 struct intel_crtc *crtc;
4191
4192 /* Note that we don't need to be called with mode_config.lock here
4193 * as our list of CRTC objects is static for the lifetime of the
4194 * device and so cannot disappear as we iterate. Similarly, we can
4195 * happily treat the predicates as racy, atomic checks as userspace
4196 * cannot claim and pin a new fb without at least acquring the
4197 * struct_mutex and so serialising with us.
4198 */
4199 for_each_intel_crtc(&dev_priv->drm, crtc) {
4200 if (atomic_read(&crtc->unpin_work_count) == 0)
4201 continue;
4202
4203 if (crtc->flip_work)
4204 intel_wait_for_vblank(dev_priv, crtc->pipe);
4205
4206 return true;
4207 }
4208
4209 return false;
4210 }
4211
4212 static void page_flip_completed(struct intel_crtc *intel_crtc)
4213 {
4214 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4215 struct intel_flip_work *work = intel_crtc->flip_work;
4216
4217 intel_crtc->flip_work = NULL;
4218
4219 if (work->event)
4220 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4221
4222 drm_crtc_vblank_put(&intel_crtc->base);
4223
4224 wake_up_all(&dev_priv->pending_flip_queue);
4225 trace_i915_flip_complete(intel_crtc->plane,
4226 work->pending_flip_obj);
4227
4228 queue_work(dev_priv->wq, &work->unpin_work);
4229 }
4230
4231 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4232 {
4233 struct drm_device *dev = crtc->dev;
4234 struct drm_i915_private *dev_priv = to_i915(dev);
4235 long ret;
4236
4237 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4238
4239 ret = wait_event_interruptible_timeout(
4240 dev_priv->pending_flip_queue,
4241 !intel_crtc_has_pending_flip(crtc),
4242 60*HZ);
4243
4244 if (ret < 0)
4245 return ret;
4246
4247 if (ret == 0) {
4248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249 struct intel_flip_work *work;
4250
4251 spin_lock_irq(&dev->event_lock);
4252 work = intel_crtc->flip_work;
4253 if (work && !is_mmio_work(work)) {
4254 WARN_ONCE(1, "Removing stuck page flip\n");
4255 page_flip_completed(intel_crtc);
4256 }
4257 spin_unlock_irq(&dev->event_lock);
4258 }
4259
4260 return 0;
4261 }
4262
4263 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4264 {
4265 u32 temp;
4266
4267 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4268
4269 mutex_lock(&dev_priv->sb_lock);
4270
4271 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4272 temp |= SBI_SSCCTL_DISABLE;
4273 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4274
4275 mutex_unlock(&dev_priv->sb_lock);
4276 }
4277
4278 /* Program iCLKIP clock to the desired frequency */
4279 static void lpt_program_iclkip(struct intel_crtc *crtc)
4280 {
4281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4282 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4283 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4284 u32 temp;
4285
4286 lpt_disable_iclkip(dev_priv);
4287
4288 /* The iCLK virtual clock root frequency is in MHz,
4289 * but the adjusted_mode->crtc_clock in in KHz. To get the
4290 * divisors, it is necessary to divide one by another, so we
4291 * convert the virtual clock precision to KHz here for higher
4292 * precision.
4293 */
4294 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4295 u32 iclk_virtual_root_freq = 172800 * 1000;
4296 u32 iclk_pi_range = 64;
4297 u32 desired_divisor;
4298
4299 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4300 clock << auxdiv);
4301 divsel = (desired_divisor / iclk_pi_range) - 2;
4302 phaseinc = desired_divisor % iclk_pi_range;
4303
4304 /*
4305 * Near 20MHz is a corner case which is
4306 * out of range for the 7-bit divisor
4307 */
4308 if (divsel <= 0x7f)
4309 break;
4310 }
4311
4312 /* This should not happen with any sane values */
4313 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4314 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4315 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4316 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4317
4318 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4319 clock,
4320 auxdiv,
4321 divsel,
4322 phasedir,
4323 phaseinc);
4324
4325 mutex_lock(&dev_priv->sb_lock);
4326
4327 /* Program SSCDIVINTPHASE6 */
4328 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4329 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4330 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4331 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4332 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4333 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4334 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4335 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4336
4337 /* Program SSCAUXDIV */
4338 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4339 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4340 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4341 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4342
4343 /* Enable modulator and associated divider */
4344 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4345 temp &= ~SBI_SSCCTL_DISABLE;
4346 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4347
4348 mutex_unlock(&dev_priv->sb_lock);
4349
4350 /* Wait for initialization time */
4351 udelay(24);
4352
4353 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4354 }
4355
4356 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4357 {
4358 u32 divsel, phaseinc, auxdiv;
4359 u32 iclk_virtual_root_freq = 172800 * 1000;
4360 u32 iclk_pi_range = 64;
4361 u32 desired_divisor;
4362 u32 temp;
4363
4364 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4365 return 0;
4366
4367 mutex_lock(&dev_priv->sb_lock);
4368
4369 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4370 if (temp & SBI_SSCCTL_DISABLE) {
4371 mutex_unlock(&dev_priv->sb_lock);
4372 return 0;
4373 }
4374
4375 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4376 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4377 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4378 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4379 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4380
4381 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4382 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4383 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4384
4385 mutex_unlock(&dev_priv->sb_lock);
4386
4387 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4388
4389 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4390 desired_divisor << auxdiv);
4391 }
4392
4393 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4394 enum pipe pch_transcoder)
4395 {
4396 struct drm_device *dev = crtc->base.dev;
4397 struct drm_i915_private *dev_priv = to_i915(dev);
4398 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4399
4400 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4401 I915_READ(HTOTAL(cpu_transcoder)));
4402 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4403 I915_READ(HBLANK(cpu_transcoder)));
4404 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4405 I915_READ(HSYNC(cpu_transcoder)));
4406
4407 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4408 I915_READ(VTOTAL(cpu_transcoder)));
4409 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4410 I915_READ(VBLANK(cpu_transcoder)));
4411 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4412 I915_READ(VSYNC(cpu_transcoder)));
4413 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4414 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4415 }
4416
4417 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4418 {
4419 struct drm_i915_private *dev_priv = to_i915(dev);
4420 uint32_t temp;
4421
4422 temp = I915_READ(SOUTH_CHICKEN1);
4423 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4424 return;
4425
4426 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4427 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4428
4429 temp &= ~FDI_BC_BIFURCATION_SELECT;
4430 if (enable)
4431 temp |= FDI_BC_BIFURCATION_SELECT;
4432
4433 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4434 I915_WRITE(SOUTH_CHICKEN1, temp);
4435 POSTING_READ(SOUTH_CHICKEN1);
4436 }
4437
4438 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4439 {
4440 struct drm_device *dev = intel_crtc->base.dev;
4441
4442 switch (intel_crtc->pipe) {
4443 case PIPE_A:
4444 break;
4445 case PIPE_B:
4446 if (intel_crtc->config->fdi_lanes > 2)
4447 cpt_set_fdi_bc_bifurcation(dev, false);
4448 else
4449 cpt_set_fdi_bc_bifurcation(dev, true);
4450
4451 break;
4452 case PIPE_C:
4453 cpt_set_fdi_bc_bifurcation(dev, true);
4454
4455 break;
4456 default:
4457 BUG();
4458 }
4459 }
4460
4461 /* Return which DP Port should be selected for Transcoder DP control */
4462 static enum port
4463 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4464 {
4465 struct drm_device *dev = crtc->base.dev;
4466 struct intel_encoder *encoder;
4467
4468 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4469 if (encoder->type == INTEL_OUTPUT_DP ||
4470 encoder->type == INTEL_OUTPUT_EDP)
4471 return enc_to_dig_port(&encoder->base)->port;
4472 }
4473
4474 return -1;
4475 }
4476
4477 /*
4478 * Enable PCH resources required for PCH ports:
4479 * - PCH PLLs
4480 * - FDI training & RX/TX
4481 * - update transcoder timings
4482 * - DP transcoding bits
4483 * - transcoder
4484 */
4485 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4486 {
4487 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4488 struct drm_device *dev = crtc->base.dev;
4489 struct drm_i915_private *dev_priv = to_i915(dev);
4490 int pipe = crtc->pipe;
4491 u32 temp;
4492
4493 assert_pch_transcoder_disabled(dev_priv, pipe);
4494
4495 if (IS_IVYBRIDGE(dev_priv))
4496 ivybridge_update_fdi_bc_bifurcation(crtc);
4497
4498 /* Write the TU size bits before fdi link training, so that error
4499 * detection works. */
4500 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4501 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4502
4503 /* For PCH output, training FDI link */
4504 dev_priv->display.fdi_link_train(crtc, crtc_state);
4505
4506 /* We need to program the right clock selection before writing the pixel
4507 * mutliplier into the DPLL. */
4508 if (HAS_PCH_CPT(dev_priv)) {
4509 u32 sel;
4510
4511 temp = I915_READ(PCH_DPLL_SEL);
4512 temp |= TRANS_DPLL_ENABLE(pipe);
4513 sel = TRANS_DPLLB_SEL(pipe);
4514 if (crtc_state->shared_dpll ==
4515 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4516 temp |= sel;
4517 else
4518 temp &= ~sel;
4519 I915_WRITE(PCH_DPLL_SEL, temp);
4520 }
4521
4522 /* XXX: pch pll's can be enabled any time before we enable the PCH
4523 * transcoder, and we actually should do this to not upset any PCH
4524 * transcoder that already use the clock when we share it.
4525 *
4526 * Note that enable_shared_dpll tries to do the right thing, but
4527 * get_shared_dpll unconditionally resets the pll - we need that to have
4528 * the right LVDS enable sequence. */
4529 intel_enable_shared_dpll(crtc);
4530
4531 /* set transcoder timing, panel must allow it */
4532 assert_panel_unlocked(dev_priv, pipe);
4533 ironlake_pch_transcoder_set_timings(crtc, pipe);
4534
4535 intel_fdi_normal_train(crtc);
4536
4537 /* For PCH DP, enable TRANS_DP_CTL */
4538 if (HAS_PCH_CPT(dev_priv) &&
4539 intel_crtc_has_dp_encoder(crtc_state)) {
4540 const struct drm_display_mode *adjusted_mode =
4541 &crtc_state->base.adjusted_mode;
4542 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4543 i915_reg_t reg = TRANS_DP_CTL(pipe);
4544 temp = I915_READ(reg);
4545 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4546 TRANS_DP_SYNC_MASK |
4547 TRANS_DP_BPC_MASK);
4548 temp |= TRANS_DP_OUTPUT_ENABLE;
4549 temp |= bpc << 9; /* same format but at 11:9 */
4550
4551 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4552 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4553 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4554 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4555
4556 switch (intel_trans_dp_port_sel(crtc)) {
4557 case PORT_B:
4558 temp |= TRANS_DP_PORT_SEL_B;
4559 break;
4560 case PORT_C:
4561 temp |= TRANS_DP_PORT_SEL_C;
4562 break;
4563 case PORT_D:
4564 temp |= TRANS_DP_PORT_SEL_D;
4565 break;
4566 default:
4567 BUG();
4568 }
4569
4570 I915_WRITE(reg, temp);
4571 }
4572
4573 ironlake_enable_pch_transcoder(dev_priv, pipe);
4574 }
4575
4576 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4577 {
4578 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4579 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4580 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4581
4582 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4583
4584 lpt_program_iclkip(crtc);
4585
4586 /* Set transcoder timing. */
4587 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4588
4589 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4590 }
4591
4592 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4593 {
4594 struct drm_i915_private *dev_priv = to_i915(dev);
4595 i915_reg_t dslreg = PIPEDSL(pipe);
4596 u32 temp;
4597
4598 temp = I915_READ(dslreg);
4599 udelay(500);
4600 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4601 if (wait_for(I915_READ(dslreg) != temp, 5))
4602 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4603 }
4604 }
4605
4606 static int
4607 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4608 unsigned int scaler_user, int *scaler_id,
4609 int src_w, int src_h, int dst_w, int dst_h)
4610 {
4611 struct intel_crtc_scaler_state *scaler_state =
4612 &crtc_state->scaler_state;
4613 struct intel_crtc *intel_crtc =
4614 to_intel_crtc(crtc_state->base.crtc);
4615 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4616 const struct drm_display_mode *adjusted_mode =
4617 &crtc_state->base.adjusted_mode;
4618 int need_scaling;
4619
4620 /*
4621 * Src coordinates are already rotated by 270 degrees for
4622 * the 90/270 degree plane rotation cases (to match the
4623 * GTT mapping), hence no need to account for rotation here.
4624 */
4625 need_scaling = src_w != dst_w || src_h != dst_h;
4626
4627 /*
4628 * Scaling/fitting not supported in IF-ID mode in GEN9+
4629 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4630 * Once NV12 is enabled, handle it here while allocating scaler
4631 * for NV12.
4632 */
4633 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4634 need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4635 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4636 return -EINVAL;
4637 }
4638
4639 /*
4640 * if plane is being disabled or scaler is no more required or force detach
4641 * - free scaler binded to this plane/crtc
4642 * - in order to do this, update crtc->scaler_usage
4643 *
4644 * Here scaler state in crtc_state is set free so that
4645 * scaler can be assigned to other user. Actual register
4646 * update to free the scaler is done in plane/panel-fit programming.
4647 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4648 */
4649 if (force_detach || !need_scaling) {
4650 if (*scaler_id >= 0) {
4651 scaler_state->scaler_users &= ~(1 << scaler_user);
4652 scaler_state->scalers[*scaler_id].in_use = 0;
4653
4654 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4655 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4656 intel_crtc->pipe, scaler_user, *scaler_id,
4657 scaler_state->scaler_users);
4658 *scaler_id = -1;
4659 }
4660 return 0;
4661 }
4662
4663 /* range checks */
4664 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4665 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4666
4667 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4668 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4669 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4670 "size is out of scaler range\n",
4671 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4672 return -EINVAL;
4673 }
4674
4675 /* mark this plane as a scaler user in crtc_state */
4676 scaler_state->scaler_users |= (1 << scaler_user);
4677 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4678 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4679 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4680 scaler_state->scaler_users);
4681
4682 return 0;
4683 }
4684
4685 /**
4686 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4687 *
4688 * @state: crtc's scaler state
4689 *
4690 * Return
4691 * 0 - scaler_usage updated successfully
4692 * error - requested scaling cannot be supported or other error condition
4693 */
4694 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4695 {
4696 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4697
4698 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4699 &state->scaler_state.scaler_id,
4700 state->pipe_src_w, state->pipe_src_h,
4701 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4702 }
4703
4704 /**
4705 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4706 *
4707 * @state: crtc's scaler state
4708 * @plane_state: atomic plane state to update
4709 *
4710 * Return
4711 * 0 - scaler_usage updated successfully
4712 * error - requested scaling cannot be supported or other error condition
4713 */
4714 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4715 struct intel_plane_state *plane_state)
4716 {
4717
4718 struct intel_plane *intel_plane =
4719 to_intel_plane(plane_state->base.plane);
4720 struct drm_framebuffer *fb = plane_state->base.fb;
4721 int ret;
4722
4723 bool force_detach = !fb || !plane_state->base.visible;
4724
4725 ret = skl_update_scaler(crtc_state, force_detach,
4726 drm_plane_index(&intel_plane->base),
4727 &plane_state->scaler_id,
4728 drm_rect_width(&plane_state->base.src) >> 16,
4729 drm_rect_height(&plane_state->base.src) >> 16,
4730 drm_rect_width(&plane_state->base.dst),
4731 drm_rect_height(&plane_state->base.dst));
4732
4733 if (ret || plane_state->scaler_id < 0)
4734 return ret;
4735
4736 /* check colorkey */
4737 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4738 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4739 intel_plane->base.base.id,
4740 intel_plane->base.name);
4741 return -EINVAL;
4742 }
4743
4744 /* Check src format */
4745 switch (fb->format->format) {
4746 case DRM_FORMAT_RGB565:
4747 case DRM_FORMAT_XBGR8888:
4748 case DRM_FORMAT_XRGB8888:
4749 case DRM_FORMAT_ABGR8888:
4750 case DRM_FORMAT_ARGB8888:
4751 case DRM_FORMAT_XRGB2101010:
4752 case DRM_FORMAT_XBGR2101010:
4753 case DRM_FORMAT_YUYV:
4754 case DRM_FORMAT_YVYU:
4755 case DRM_FORMAT_UYVY:
4756 case DRM_FORMAT_VYUY:
4757 break;
4758 default:
4759 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4760 intel_plane->base.base.id, intel_plane->base.name,
4761 fb->base.id, fb->format->format);
4762 return -EINVAL;
4763 }
4764
4765 return 0;
4766 }
4767
4768 static void skylake_scaler_disable(struct intel_crtc *crtc)
4769 {
4770 int i;
4771
4772 for (i = 0; i < crtc->num_scalers; i++)
4773 skl_detach_scaler(crtc, i);
4774 }
4775
4776 static void skylake_pfit_enable(struct intel_crtc *crtc)
4777 {
4778 struct drm_device *dev = crtc->base.dev;
4779 struct drm_i915_private *dev_priv = to_i915(dev);
4780 int pipe = crtc->pipe;
4781 struct intel_crtc_scaler_state *scaler_state =
4782 &crtc->config->scaler_state;
4783
4784 if (crtc->config->pch_pfit.enabled) {
4785 int id;
4786
4787 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4788 return;
4789
4790 id = scaler_state->scaler_id;
4791 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4792 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4793 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4794 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4795 }
4796 }
4797
4798 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4799 {
4800 struct drm_device *dev = crtc->base.dev;
4801 struct drm_i915_private *dev_priv = to_i915(dev);
4802 int pipe = crtc->pipe;
4803
4804 if (crtc->config->pch_pfit.enabled) {
4805 /* Force use of hard-coded filter coefficients
4806 * as some pre-programmed values are broken,
4807 * e.g. x201.
4808 */
4809 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4810 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4811 PF_PIPE_SEL_IVB(pipe));
4812 else
4813 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4814 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4815 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4816 }
4817 }
4818
4819 void hsw_enable_ips(struct intel_crtc *crtc)
4820 {
4821 struct drm_device *dev = crtc->base.dev;
4822 struct drm_i915_private *dev_priv = to_i915(dev);
4823
4824 if (!crtc->config->ips_enabled)
4825 return;
4826
4827 /*
4828 * We can only enable IPS after we enable a plane and wait for a vblank
4829 * This function is called from post_plane_update, which is run after
4830 * a vblank wait.
4831 */
4832
4833 assert_plane_enabled(dev_priv, crtc->plane);
4834 if (IS_BROADWELL(dev_priv)) {
4835 mutex_lock(&dev_priv->rps.hw_lock);
4836 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4837 mutex_unlock(&dev_priv->rps.hw_lock);
4838 /* Quoting Art Runyan: "its not safe to expect any particular
4839 * value in IPS_CTL bit 31 after enabling IPS through the
4840 * mailbox." Moreover, the mailbox may return a bogus state,
4841 * so we need to just enable it and continue on.
4842 */
4843 } else {
4844 I915_WRITE(IPS_CTL, IPS_ENABLE);
4845 /* The bit only becomes 1 in the next vblank, so this wait here
4846 * is essentially intel_wait_for_vblank. If we don't have this
4847 * and don't wait for vblanks until the end of crtc_enable, then
4848 * the HW state readout code will complain that the expected
4849 * IPS_CTL value is not the one we read. */
4850 if (intel_wait_for_register(dev_priv,
4851 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4852 50))
4853 DRM_ERROR("Timed out waiting for IPS enable\n");
4854 }
4855 }
4856
4857 void hsw_disable_ips(struct intel_crtc *crtc)
4858 {
4859 struct drm_device *dev = crtc->base.dev;
4860 struct drm_i915_private *dev_priv = to_i915(dev);
4861
4862 if (!crtc->config->ips_enabled)
4863 return;
4864
4865 assert_plane_enabled(dev_priv, crtc->plane);
4866 if (IS_BROADWELL(dev_priv)) {
4867 mutex_lock(&dev_priv->rps.hw_lock);
4868 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4869 mutex_unlock(&dev_priv->rps.hw_lock);
4870 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4871 if (intel_wait_for_register(dev_priv,
4872 IPS_CTL, IPS_ENABLE, 0,
4873 42))
4874 DRM_ERROR("Timed out waiting for IPS disable\n");
4875 } else {
4876 I915_WRITE(IPS_CTL, 0);
4877 POSTING_READ(IPS_CTL);
4878 }
4879
4880 /* We need to wait for a vblank before we can disable the plane. */
4881 intel_wait_for_vblank(dev_priv, crtc->pipe);
4882 }
4883
4884 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4885 {
4886 if (intel_crtc->overlay) {
4887 struct drm_device *dev = intel_crtc->base.dev;
4888
4889 mutex_lock(&dev->struct_mutex);
4890 (void) intel_overlay_switch_off(intel_crtc->overlay);
4891 mutex_unlock(&dev->struct_mutex);
4892 }
4893
4894 /* Let userspace switch the overlay on again. In most cases userspace
4895 * has to recompute where to put it anyway.
4896 */
4897 }
4898
4899 /**
4900 * intel_post_enable_primary - Perform operations after enabling primary plane
4901 * @crtc: the CRTC whose primary plane was just enabled
4902 *
4903 * Performs potentially sleeping operations that must be done after the primary
4904 * plane is enabled, such as updating FBC and IPS. Note that this may be
4905 * called due to an explicit primary plane update, or due to an implicit
4906 * re-enable that is caused when a sprite plane is updated to no longer
4907 * completely hide the primary plane.
4908 */
4909 static void
4910 intel_post_enable_primary(struct drm_crtc *crtc)
4911 {
4912 struct drm_device *dev = crtc->dev;
4913 struct drm_i915_private *dev_priv = to_i915(dev);
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 int pipe = intel_crtc->pipe;
4916
4917 /*
4918 * FIXME IPS should be fine as long as one plane is
4919 * enabled, but in practice it seems to have problems
4920 * when going from primary only to sprite only and vice
4921 * versa.
4922 */
4923 hsw_enable_ips(intel_crtc);
4924
4925 /*
4926 * Gen2 reports pipe underruns whenever all planes are disabled.
4927 * So don't enable underrun reporting before at least some planes
4928 * are enabled.
4929 * FIXME: Need to fix the logic to work when we turn off all planes
4930 * but leave the pipe running.
4931 */
4932 if (IS_GEN2(dev_priv))
4933 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4934
4935 /* Underruns don't always raise interrupts, so check manually. */
4936 intel_check_cpu_fifo_underruns(dev_priv);
4937 intel_check_pch_fifo_underruns(dev_priv);
4938 }
4939
4940 /* FIXME move all this to pre_plane_update() with proper state tracking */
4941 static void
4942 intel_pre_disable_primary(struct drm_crtc *crtc)
4943 {
4944 struct drm_device *dev = crtc->dev;
4945 struct drm_i915_private *dev_priv = to_i915(dev);
4946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4947 int pipe = intel_crtc->pipe;
4948
4949 /*
4950 * Gen2 reports pipe underruns whenever all planes are disabled.
4951 * So diasble underrun reporting before all the planes get disabled.
4952 * FIXME: Need to fix the logic to work when we turn off all planes
4953 * but leave the pipe running.
4954 */
4955 if (IS_GEN2(dev_priv))
4956 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4957
4958 /*
4959 * FIXME IPS should be fine as long as one plane is
4960 * enabled, but in practice it seems to have problems
4961 * when going from primary only to sprite only and vice
4962 * versa.
4963 */
4964 hsw_disable_ips(intel_crtc);
4965 }
4966
4967 /* FIXME get rid of this and use pre_plane_update */
4968 static void
4969 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4970 {
4971 struct drm_device *dev = crtc->dev;
4972 struct drm_i915_private *dev_priv = to_i915(dev);
4973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4974 int pipe = intel_crtc->pipe;
4975
4976 intel_pre_disable_primary(crtc);
4977
4978 /*
4979 * Vblank time updates from the shadow to live plane control register
4980 * are blocked if the memory self-refresh mode is active at that
4981 * moment. So to make sure the plane gets truly disabled, disable
4982 * first the self-refresh mode. The self-refresh enable bit in turn
4983 * will be checked/applied by the HW only at the next frame start
4984 * event which is after the vblank start event, so we need to have a
4985 * wait-for-vblank between disabling the plane and the pipe.
4986 */
4987 if (HAS_GMCH_DISPLAY(dev_priv) &&
4988 intel_set_memory_cxsr(dev_priv, false))
4989 intel_wait_for_vblank(dev_priv, pipe);
4990 }
4991
4992 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4993 {
4994 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4995 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4996 struct intel_crtc_state *pipe_config =
4997 to_intel_crtc_state(crtc->base.state);
4998 struct drm_plane *primary = crtc->base.primary;
4999 struct drm_plane_state *old_pri_state =
5000 drm_atomic_get_existing_plane_state(old_state, primary);
5001
5002 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5003
5004 if (pipe_config->update_wm_post && pipe_config->base.active)
5005 intel_update_watermarks(crtc);
5006
5007 if (old_pri_state) {
5008 struct intel_plane_state *primary_state =
5009 to_intel_plane_state(primary->state);
5010 struct intel_plane_state *old_primary_state =
5011 to_intel_plane_state(old_pri_state);
5012
5013 intel_fbc_post_update(crtc);
5014
5015 if (primary_state->base.visible &&
5016 (needs_modeset(&pipe_config->base) ||
5017 !old_primary_state->base.visible))
5018 intel_post_enable_primary(&crtc->base);
5019 }
5020 }
5021
5022 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5023 struct intel_crtc_state *pipe_config)
5024 {
5025 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5026 struct drm_device *dev = crtc->base.dev;
5027 struct drm_i915_private *dev_priv = to_i915(dev);
5028 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5029 struct drm_plane *primary = crtc->base.primary;
5030 struct drm_plane_state *old_pri_state =
5031 drm_atomic_get_existing_plane_state(old_state, primary);
5032 bool modeset = needs_modeset(&pipe_config->base);
5033 struct intel_atomic_state *old_intel_state =
5034 to_intel_atomic_state(old_state);
5035
5036 if (old_pri_state) {
5037 struct intel_plane_state *primary_state =
5038 to_intel_plane_state(primary->state);
5039 struct intel_plane_state *old_primary_state =
5040 to_intel_plane_state(old_pri_state);
5041
5042 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5043
5044 if (old_primary_state->base.visible &&
5045 (modeset || !primary_state->base.visible))
5046 intel_pre_disable_primary(&crtc->base);
5047 }
5048
5049 /*
5050 * Vblank time updates from the shadow to live plane control register
5051 * are blocked if the memory self-refresh mode is active at that
5052 * moment. So to make sure the plane gets truly disabled, disable
5053 * first the self-refresh mode. The self-refresh enable bit in turn
5054 * will be checked/applied by the HW only at the next frame start
5055 * event which is after the vblank start event, so we need to have a
5056 * wait-for-vblank between disabling the plane and the pipe.
5057 */
5058 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5059 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5060 intel_wait_for_vblank(dev_priv, crtc->pipe);
5061
5062 /*
5063 * IVB workaround: must disable low power watermarks for at least
5064 * one frame before enabling scaling. LP watermarks can be re-enabled
5065 * when scaling is disabled.
5066 *
5067 * WaCxSRDisabledForSpriteScaling:ivb
5068 */
5069 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5070 intel_wait_for_vblank(dev_priv, crtc->pipe);
5071
5072 /*
5073 * If we're doing a modeset, we're done. No need to do any pre-vblank
5074 * watermark programming here.
5075 */
5076 if (needs_modeset(&pipe_config->base))
5077 return;
5078
5079 /*
5080 * For platforms that support atomic watermarks, program the
5081 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5082 * will be the intermediate values that are safe for both pre- and
5083 * post- vblank; when vblank happens, the 'active' values will be set
5084 * to the final 'target' values and we'll do this again to get the
5085 * optimal watermarks. For gen9+ platforms, the values we program here
5086 * will be the final target values which will get automatically latched
5087 * at vblank time; no further programming will be necessary.
5088 *
5089 * If a platform hasn't been transitioned to atomic watermarks yet,
5090 * we'll continue to update watermarks the old way, if flags tell
5091 * us to.
5092 */
5093 if (dev_priv->display.initial_watermarks != NULL)
5094 dev_priv->display.initial_watermarks(old_intel_state,
5095 pipe_config);
5096 else if (pipe_config->update_wm_pre)
5097 intel_update_watermarks(crtc);
5098 }
5099
5100 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5101 {
5102 struct drm_device *dev = crtc->dev;
5103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5104 struct drm_plane *p;
5105 int pipe = intel_crtc->pipe;
5106
5107 intel_crtc_dpms_overlay_disable(intel_crtc);
5108
5109 drm_for_each_plane_mask(p, dev, plane_mask)
5110 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5111
5112 /*
5113 * FIXME: Once we grow proper nuclear flip support out of this we need
5114 * to compute the mask of flip planes precisely. For the time being
5115 * consider this a flip to a NULL plane.
5116 */
5117 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5118 }
5119
5120 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5121 struct intel_crtc_state *crtc_state,
5122 struct drm_atomic_state *old_state)
5123 {
5124 struct drm_connector_state *conn_state;
5125 struct drm_connector *conn;
5126 int i;
5127
5128 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5129 struct intel_encoder *encoder =
5130 to_intel_encoder(conn_state->best_encoder);
5131
5132 if (conn_state->crtc != crtc)
5133 continue;
5134
5135 if (encoder->pre_pll_enable)
5136 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5137 }
5138 }
5139
5140 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5141 struct intel_crtc_state *crtc_state,
5142 struct drm_atomic_state *old_state)
5143 {
5144 struct drm_connector_state *conn_state;
5145 struct drm_connector *conn;
5146 int i;
5147
5148 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5149 struct intel_encoder *encoder =
5150 to_intel_encoder(conn_state->best_encoder);
5151
5152 if (conn_state->crtc != crtc)
5153 continue;
5154
5155 if (encoder->pre_enable)
5156 encoder->pre_enable(encoder, crtc_state, conn_state);
5157 }
5158 }
5159
5160 static void intel_encoders_enable(struct drm_crtc *crtc,
5161 struct intel_crtc_state *crtc_state,
5162 struct drm_atomic_state *old_state)
5163 {
5164 struct drm_connector_state *conn_state;
5165 struct drm_connector *conn;
5166 int i;
5167
5168 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5169 struct intel_encoder *encoder =
5170 to_intel_encoder(conn_state->best_encoder);
5171
5172 if (conn_state->crtc != crtc)
5173 continue;
5174
5175 encoder->enable(encoder, crtc_state, conn_state);
5176 intel_opregion_notify_encoder(encoder, true);
5177 }
5178 }
5179
5180 static void intel_encoders_disable(struct drm_crtc *crtc,
5181 struct intel_crtc_state *old_crtc_state,
5182 struct drm_atomic_state *old_state)
5183 {
5184 struct drm_connector_state *old_conn_state;
5185 struct drm_connector *conn;
5186 int i;
5187
5188 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5189 struct intel_encoder *encoder =
5190 to_intel_encoder(old_conn_state->best_encoder);
5191
5192 if (old_conn_state->crtc != crtc)
5193 continue;
5194
5195 intel_opregion_notify_encoder(encoder, false);
5196 encoder->disable(encoder, old_crtc_state, old_conn_state);
5197 }
5198 }
5199
5200 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5201 struct intel_crtc_state *old_crtc_state,
5202 struct drm_atomic_state *old_state)
5203 {
5204 struct drm_connector_state *old_conn_state;
5205 struct drm_connector *conn;
5206 int i;
5207
5208 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5209 struct intel_encoder *encoder =
5210 to_intel_encoder(old_conn_state->best_encoder);
5211
5212 if (old_conn_state->crtc != crtc)
5213 continue;
5214
5215 if (encoder->post_disable)
5216 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5217 }
5218 }
5219
5220 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5221 struct intel_crtc_state *old_crtc_state,
5222 struct drm_atomic_state *old_state)
5223 {
5224 struct drm_connector_state *old_conn_state;
5225 struct drm_connector *conn;
5226 int i;
5227
5228 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5229 struct intel_encoder *encoder =
5230 to_intel_encoder(old_conn_state->best_encoder);
5231
5232 if (old_conn_state->crtc != crtc)
5233 continue;
5234
5235 if (encoder->post_pll_disable)
5236 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5237 }
5238 }
5239
5240 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5241 struct drm_atomic_state *old_state)
5242 {
5243 struct drm_crtc *crtc = pipe_config->base.crtc;
5244 struct drm_device *dev = crtc->dev;
5245 struct drm_i915_private *dev_priv = to_i915(dev);
5246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5247 int pipe = intel_crtc->pipe;
5248 struct intel_atomic_state *old_intel_state =
5249 to_intel_atomic_state(old_state);
5250
5251 if (WARN_ON(intel_crtc->active))
5252 return;
5253
5254 /*
5255 * Sometimes spurious CPU pipe underruns happen during FDI
5256 * training, at least with VGA+HDMI cloning. Suppress them.
5257 *
5258 * On ILK we get an occasional spurious CPU pipe underruns
5259 * between eDP port A enable and vdd enable. Also PCH port
5260 * enable seems to result in the occasional CPU pipe underrun.
5261 *
5262 * Spurious PCH underruns also occur during PCH enabling.
5263 */
5264 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5265 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5266 if (intel_crtc->config->has_pch_encoder)
5267 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5268
5269 if (intel_crtc->config->has_pch_encoder)
5270 intel_prepare_shared_dpll(intel_crtc);
5271
5272 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5273 intel_dp_set_m_n(intel_crtc, M1_N1);
5274
5275 intel_set_pipe_timings(intel_crtc);
5276 intel_set_pipe_src_size(intel_crtc);
5277
5278 if (intel_crtc->config->has_pch_encoder) {
5279 intel_cpu_transcoder_set_m_n(intel_crtc,
5280 &intel_crtc->config->fdi_m_n, NULL);
5281 }
5282
5283 ironlake_set_pipeconf(crtc);
5284
5285 intel_crtc->active = true;
5286
5287 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5288
5289 if (intel_crtc->config->has_pch_encoder) {
5290 /* Note: FDI PLL enabling _must_ be done before we enable the
5291 * cpu pipes, hence this is separate from all the other fdi/pch
5292 * enabling. */
5293 ironlake_fdi_pll_enable(intel_crtc);
5294 } else {
5295 assert_fdi_tx_disabled(dev_priv, pipe);
5296 assert_fdi_rx_disabled(dev_priv, pipe);
5297 }
5298
5299 ironlake_pfit_enable(intel_crtc);
5300
5301 /*
5302 * On ILK+ LUT must be loaded before the pipe is running but with
5303 * clocks enabled
5304 */
5305 intel_color_load_luts(&pipe_config->base);
5306
5307 if (dev_priv->display.initial_watermarks != NULL)
5308 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5309 intel_enable_pipe(intel_crtc);
5310
5311 if (intel_crtc->config->has_pch_encoder)
5312 ironlake_pch_enable(pipe_config);
5313
5314 assert_vblank_disabled(crtc);
5315 drm_crtc_vblank_on(crtc);
5316
5317 intel_encoders_enable(crtc, pipe_config, old_state);
5318
5319 if (HAS_PCH_CPT(dev_priv))
5320 cpt_verify_modeset(dev, intel_crtc->pipe);
5321
5322 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5323 if (intel_crtc->config->has_pch_encoder)
5324 intel_wait_for_vblank(dev_priv, pipe);
5325 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5326 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5327 }
5328
5329 /* IPS only exists on ULT machines and is tied to pipe A. */
5330 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5331 {
5332 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5333 }
5334
5335 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5336 struct drm_atomic_state *old_state)
5337 {
5338 struct drm_crtc *crtc = pipe_config->base.crtc;
5339 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5341 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5342 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5343 struct intel_atomic_state *old_intel_state =
5344 to_intel_atomic_state(old_state);
5345
5346 if (WARN_ON(intel_crtc->active))
5347 return;
5348
5349 if (intel_crtc->config->has_pch_encoder)
5350 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5351 false);
5352
5353 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5354
5355 if (intel_crtc->config->shared_dpll)
5356 intel_enable_shared_dpll(intel_crtc);
5357
5358 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5359 intel_dp_set_m_n(intel_crtc, M1_N1);
5360
5361 if (!transcoder_is_dsi(cpu_transcoder))
5362 intel_set_pipe_timings(intel_crtc);
5363
5364 intel_set_pipe_src_size(intel_crtc);
5365
5366 if (cpu_transcoder != TRANSCODER_EDP &&
5367 !transcoder_is_dsi(cpu_transcoder)) {
5368 I915_WRITE(PIPE_MULT(cpu_transcoder),
5369 intel_crtc->config->pixel_multiplier - 1);
5370 }
5371
5372 if (intel_crtc->config->has_pch_encoder) {
5373 intel_cpu_transcoder_set_m_n(intel_crtc,
5374 &intel_crtc->config->fdi_m_n, NULL);
5375 }
5376
5377 if (!transcoder_is_dsi(cpu_transcoder))
5378 haswell_set_pipeconf(crtc);
5379
5380 haswell_set_pipemisc(crtc);
5381
5382 intel_color_set_csc(&pipe_config->base);
5383
5384 intel_crtc->active = true;
5385
5386 if (intel_crtc->config->has_pch_encoder)
5387 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5388 else
5389 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5390
5391 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5392
5393 if (intel_crtc->config->has_pch_encoder)
5394 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5395
5396 if (!transcoder_is_dsi(cpu_transcoder))
5397 intel_ddi_enable_pipe_clock(pipe_config);
5398
5399 if (INTEL_GEN(dev_priv) >= 9)
5400 skylake_pfit_enable(intel_crtc);
5401 else
5402 ironlake_pfit_enable(intel_crtc);
5403
5404 /*
5405 * On ILK+ LUT must be loaded before the pipe is running but with
5406 * clocks enabled
5407 */
5408 intel_color_load_luts(&pipe_config->base);
5409
5410 intel_ddi_set_pipe_settings(pipe_config);
5411 if (!transcoder_is_dsi(cpu_transcoder))
5412 intel_ddi_enable_transcoder_func(pipe_config);
5413
5414 if (dev_priv->display.initial_watermarks != NULL)
5415 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5416
5417 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5418 if (!transcoder_is_dsi(cpu_transcoder))
5419 intel_enable_pipe(intel_crtc);
5420
5421 if (intel_crtc->config->has_pch_encoder)
5422 lpt_pch_enable(pipe_config);
5423
5424 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5425 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5426
5427 assert_vblank_disabled(crtc);
5428 drm_crtc_vblank_on(crtc);
5429
5430 intel_encoders_enable(crtc, pipe_config, old_state);
5431
5432 if (intel_crtc->config->has_pch_encoder) {
5433 intel_wait_for_vblank(dev_priv, pipe);
5434 intel_wait_for_vblank(dev_priv, pipe);
5435 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5436 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5437 true);
5438 }
5439
5440 /* If we change the relative order between pipe/planes enabling, we need
5441 * to change the workaround. */
5442 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5443 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5444 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5445 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5446 }
5447 }
5448
5449 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5450 {
5451 struct drm_device *dev = crtc->base.dev;
5452 struct drm_i915_private *dev_priv = to_i915(dev);
5453 int pipe = crtc->pipe;
5454
5455 /* To avoid upsetting the power well on haswell only disable the pfit if
5456 * it's in use. The hw state code will make sure we get this right. */
5457 if (force || crtc->config->pch_pfit.enabled) {
5458 I915_WRITE(PF_CTL(pipe), 0);
5459 I915_WRITE(PF_WIN_POS(pipe), 0);
5460 I915_WRITE(PF_WIN_SZ(pipe), 0);
5461 }
5462 }
5463
5464 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5465 struct drm_atomic_state *old_state)
5466 {
5467 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5468 struct drm_device *dev = crtc->dev;
5469 struct drm_i915_private *dev_priv = to_i915(dev);
5470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5471 int pipe = intel_crtc->pipe;
5472
5473 /*
5474 * Sometimes spurious CPU pipe underruns happen when the
5475 * pipe is already disabled, but FDI RX/TX is still enabled.
5476 * Happens at least with VGA+HDMI cloning. Suppress them.
5477 */
5478 if (intel_crtc->config->has_pch_encoder) {
5479 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5480 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5481 }
5482
5483 intel_encoders_disable(crtc, old_crtc_state, old_state);
5484
5485 drm_crtc_vblank_off(crtc);
5486 assert_vblank_disabled(crtc);
5487
5488 intel_disable_pipe(intel_crtc);
5489
5490 ironlake_pfit_disable(intel_crtc, false);
5491
5492 if (intel_crtc->config->has_pch_encoder)
5493 ironlake_fdi_disable(crtc);
5494
5495 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5496
5497 if (intel_crtc->config->has_pch_encoder) {
5498 ironlake_disable_pch_transcoder(dev_priv, pipe);
5499
5500 if (HAS_PCH_CPT(dev_priv)) {
5501 i915_reg_t reg;
5502 u32 temp;
5503
5504 /* disable TRANS_DP_CTL */
5505 reg = TRANS_DP_CTL(pipe);
5506 temp = I915_READ(reg);
5507 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5508 TRANS_DP_PORT_SEL_MASK);
5509 temp |= TRANS_DP_PORT_SEL_NONE;
5510 I915_WRITE(reg, temp);
5511
5512 /* disable DPLL_SEL */
5513 temp = I915_READ(PCH_DPLL_SEL);
5514 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5515 I915_WRITE(PCH_DPLL_SEL, temp);
5516 }
5517
5518 ironlake_fdi_pll_disable(intel_crtc);
5519 }
5520
5521 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5522 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5523 }
5524
5525 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5526 struct drm_atomic_state *old_state)
5527 {
5528 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5529 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5531 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5532
5533 if (intel_crtc->config->has_pch_encoder)
5534 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5535 false);
5536
5537 intel_encoders_disable(crtc, old_crtc_state, old_state);
5538
5539 drm_crtc_vblank_off(crtc);
5540 assert_vblank_disabled(crtc);
5541
5542 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5543 if (!transcoder_is_dsi(cpu_transcoder))
5544 intel_disable_pipe(intel_crtc);
5545
5546 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5547 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5548
5549 if (!transcoder_is_dsi(cpu_transcoder))
5550 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5551
5552 if (INTEL_GEN(dev_priv) >= 9)
5553 skylake_scaler_disable(intel_crtc);
5554 else
5555 ironlake_pfit_disable(intel_crtc, false);
5556
5557 if (!transcoder_is_dsi(cpu_transcoder))
5558 intel_ddi_disable_pipe_clock(intel_crtc->config);
5559
5560 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5561
5562 if (old_crtc_state->has_pch_encoder)
5563 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5564 true);
5565 }
5566
5567 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5568 {
5569 struct drm_device *dev = crtc->base.dev;
5570 struct drm_i915_private *dev_priv = to_i915(dev);
5571 struct intel_crtc_state *pipe_config = crtc->config;
5572
5573 if (!pipe_config->gmch_pfit.control)
5574 return;
5575
5576 /*
5577 * The panel fitter should only be adjusted whilst the pipe is disabled,
5578 * according to register description and PRM.
5579 */
5580 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5581 assert_pipe_disabled(dev_priv, crtc->pipe);
5582
5583 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5584 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5585
5586 /* Border color in case we don't scale up to the full screen. Black by
5587 * default, change to something else for debugging. */
5588 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5589 }
5590
5591 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5592 {
5593 switch (port) {
5594 case PORT_A:
5595 return POWER_DOMAIN_PORT_DDI_A_LANES;
5596 case PORT_B:
5597 return POWER_DOMAIN_PORT_DDI_B_LANES;
5598 case PORT_C:
5599 return POWER_DOMAIN_PORT_DDI_C_LANES;
5600 case PORT_D:
5601 return POWER_DOMAIN_PORT_DDI_D_LANES;
5602 case PORT_E:
5603 return POWER_DOMAIN_PORT_DDI_E_LANES;
5604 default:
5605 MISSING_CASE(port);
5606 return POWER_DOMAIN_PORT_OTHER;
5607 }
5608 }
5609
5610 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5611 struct intel_crtc_state *crtc_state)
5612 {
5613 struct drm_device *dev = crtc->dev;
5614 struct drm_i915_private *dev_priv = to_i915(dev);
5615 struct drm_encoder *encoder;
5616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5617 enum pipe pipe = intel_crtc->pipe;
5618 u64 mask;
5619 enum transcoder transcoder = crtc_state->cpu_transcoder;
5620
5621 if (!crtc_state->base.active)
5622 return 0;
5623
5624 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5625 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5626 if (crtc_state->pch_pfit.enabled ||
5627 crtc_state->pch_pfit.force_thru)
5628 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5629
5630 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5631 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5632
5633 mask |= BIT_ULL(intel_encoder->power_domain);
5634 }
5635
5636 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5637 mask |= BIT(POWER_DOMAIN_AUDIO);
5638
5639 if (crtc_state->shared_dpll)
5640 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5641
5642 return mask;
5643 }
5644
5645 static u64
5646 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5647 struct intel_crtc_state *crtc_state)
5648 {
5649 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5651 enum intel_display_power_domain domain;
5652 u64 domains, new_domains, old_domains;
5653
5654 old_domains = intel_crtc->enabled_power_domains;
5655 intel_crtc->enabled_power_domains = new_domains =
5656 get_crtc_power_domains(crtc, crtc_state);
5657
5658 domains = new_domains & ~old_domains;
5659
5660 for_each_power_domain(domain, domains)
5661 intel_display_power_get(dev_priv, domain);
5662
5663 return old_domains & ~new_domains;
5664 }
5665
5666 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5667 u64 domains)
5668 {
5669 enum intel_display_power_domain domain;
5670
5671 for_each_power_domain(domain, domains)
5672 intel_display_power_put(dev_priv, domain);
5673 }
5674
5675 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5676 struct drm_atomic_state *old_state)
5677 {
5678 struct intel_atomic_state *old_intel_state =
5679 to_intel_atomic_state(old_state);
5680 struct drm_crtc *crtc = pipe_config->base.crtc;
5681 struct drm_device *dev = crtc->dev;
5682 struct drm_i915_private *dev_priv = to_i915(dev);
5683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5684 int pipe = intel_crtc->pipe;
5685
5686 if (WARN_ON(intel_crtc->active))
5687 return;
5688
5689 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5690 intel_dp_set_m_n(intel_crtc, M1_N1);
5691
5692 intel_set_pipe_timings(intel_crtc);
5693 intel_set_pipe_src_size(intel_crtc);
5694
5695 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5696 struct drm_i915_private *dev_priv = to_i915(dev);
5697
5698 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5699 I915_WRITE(CHV_CANVAS(pipe), 0);
5700 }
5701
5702 i9xx_set_pipeconf(intel_crtc);
5703
5704 intel_crtc->active = true;
5705
5706 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5707
5708 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5709
5710 if (IS_CHERRYVIEW(dev_priv)) {
5711 chv_prepare_pll(intel_crtc, intel_crtc->config);
5712 chv_enable_pll(intel_crtc, intel_crtc->config);
5713 } else {
5714 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5715 vlv_enable_pll(intel_crtc, intel_crtc->config);
5716 }
5717
5718 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5719
5720 i9xx_pfit_enable(intel_crtc);
5721
5722 intel_color_load_luts(&pipe_config->base);
5723
5724 dev_priv->display.initial_watermarks(old_intel_state,
5725 pipe_config);
5726 intel_enable_pipe(intel_crtc);
5727
5728 assert_vblank_disabled(crtc);
5729 drm_crtc_vblank_on(crtc);
5730
5731 intel_encoders_enable(crtc, pipe_config, old_state);
5732 }
5733
5734 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5735 {
5736 struct drm_device *dev = crtc->base.dev;
5737 struct drm_i915_private *dev_priv = to_i915(dev);
5738
5739 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5740 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5741 }
5742
5743 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5744 struct drm_atomic_state *old_state)
5745 {
5746 struct intel_atomic_state *old_intel_state =
5747 to_intel_atomic_state(old_state);
5748 struct drm_crtc *crtc = pipe_config->base.crtc;
5749 struct drm_device *dev = crtc->dev;
5750 struct drm_i915_private *dev_priv = to_i915(dev);
5751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5752 enum pipe pipe = intel_crtc->pipe;
5753
5754 if (WARN_ON(intel_crtc->active))
5755 return;
5756
5757 i9xx_set_pll_dividers(intel_crtc);
5758
5759 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5760 intel_dp_set_m_n(intel_crtc, M1_N1);
5761
5762 intel_set_pipe_timings(intel_crtc);
5763 intel_set_pipe_src_size(intel_crtc);
5764
5765 i9xx_set_pipeconf(intel_crtc);
5766
5767 intel_crtc->active = true;
5768
5769 if (!IS_GEN2(dev_priv))
5770 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5771
5772 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5773
5774 i9xx_enable_pll(intel_crtc);
5775
5776 i9xx_pfit_enable(intel_crtc);
5777
5778 intel_color_load_luts(&pipe_config->base);
5779
5780 if (dev_priv->display.initial_watermarks != NULL)
5781 dev_priv->display.initial_watermarks(old_intel_state,
5782 intel_crtc->config);
5783 else
5784 intel_update_watermarks(intel_crtc);
5785 intel_enable_pipe(intel_crtc);
5786
5787 assert_vblank_disabled(crtc);
5788 drm_crtc_vblank_on(crtc);
5789
5790 intel_encoders_enable(crtc, pipe_config, old_state);
5791 }
5792
5793 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5794 {
5795 struct drm_device *dev = crtc->base.dev;
5796 struct drm_i915_private *dev_priv = to_i915(dev);
5797
5798 if (!crtc->config->gmch_pfit.control)
5799 return;
5800
5801 assert_pipe_disabled(dev_priv, crtc->pipe);
5802
5803 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5804 I915_READ(PFIT_CONTROL));
5805 I915_WRITE(PFIT_CONTROL, 0);
5806 }
5807
5808 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5809 struct drm_atomic_state *old_state)
5810 {
5811 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5812 struct drm_device *dev = crtc->dev;
5813 struct drm_i915_private *dev_priv = to_i915(dev);
5814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5815 int pipe = intel_crtc->pipe;
5816
5817 /*
5818 * On gen2 planes are double buffered but the pipe isn't, so we must
5819 * wait for planes to fully turn off before disabling the pipe.
5820 */
5821 if (IS_GEN2(dev_priv))
5822 intel_wait_for_vblank(dev_priv, pipe);
5823
5824 intel_encoders_disable(crtc, old_crtc_state, old_state);
5825
5826 drm_crtc_vblank_off(crtc);
5827 assert_vblank_disabled(crtc);
5828
5829 intel_disable_pipe(intel_crtc);
5830
5831 i9xx_pfit_disable(intel_crtc);
5832
5833 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5834
5835 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5836 if (IS_CHERRYVIEW(dev_priv))
5837 chv_disable_pll(dev_priv, pipe);
5838 else if (IS_VALLEYVIEW(dev_priv))
5839 vlv_disable_pll(dev_priv, pipe);
5840 else
5841 i9xx_disable_pll(intel_crtc);
5842 }
5843
5844 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5845
5846 if (!IS_GEN2(dev_priv))
5847 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5848
5849 if (!dev_priv->display.initial_watermarks)
5850 intel_update_watermarks(intel_crtc);
5851
5852 /* clock the pipe down to 640x480@60 to potentially save power */
5853 if (IS_I830(dev_priv))
5854 i830_enable_pipe(dev_priv, pipe);
5855 }
5856
5857 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5858 struct drm_modeset_acquire_ctx *ctx)
5859 {
5860 struct intel_encoder *encoder;
5861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5862 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5863 enum intel_display_power_domain domain;
5864 u64 domains;
5865 struct drm_atomic_state *state;
5866 struct intel_crtc_state *crtc_state;
5867 int ret;
5868
5869 if (!intel_crtc->active)
5870 return;
5871
5872 if (crtc->primary->state->visible) {
5873 WARN_ON(intel_crtc->flip_work);
5874
5875 intel_pre_disable_primary_noatomic(crtc);
5876
5877 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5878 crtc->primary->state->visible = false;
5879 }
5880
5881 state = drm_atomic_state_alloc(crtc->dev);
5882 if (!state) {
5883 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5884 crtc->base.id, crtc->name);
5885 return;
5886 }
5887
5888 state->acquire_ctx = ctx;
5889
5890 /* Everything's already locked, -EDEADLK can't happen. */
5891 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5892 ret = drm_atomic_add_affected_connectors(state, crtc);
5893
5894 WARN_ON(IS_ERR(crtc_state) || ret);
5895
5896 dev_priv->display.crtc_disable(crtc_state, state);
5897
5898 drm_atomic_state_put(state);
5899
5900 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5901 crtc->base.id, crtc->name);
5902
5903 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5904 crtc->state->active = false;
5905 intel_crtc->active = false;
5906 crtc->enabled = false;
5907 crtc->state->connector_mask = 0;
5908 crtc->state->encoder_mask = 0;
5909
5910 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5911 encoder->base.crtc = NULL;
5912
5913 intel_fbc_disable(intel_crtc);
5914 intel_update_watermarks(intel_crtc);
5915 intel_disable_shared_dpll(intel_crtc);
5916
5917 domains = intel_crtc->enabled_power_domains;
5918 for_each_power_domain(domain, domains)
5919 intel_display_power_put(dev_priv, domain);
5920 intel_crtc->enabled_power_domains = 0;
5921
5922 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5923 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5924 }
5925
5926 /*
5927 * turn all crtc's off, but do not adjust state
5928 * This has to be paired with a call to intel_modeset_setup_hw_state.
5929 */
5930 int intel_display_suspend(struct drm_device *dev)
5931 {
5932 struct drm_i915_private *dev_priv = to_i915(dev);
5933 struct drm_atomic_state *state;
5934 int ret;
5935
5936 state = drm_atomic_helper_suspend(dev);
5937 ret = PTR_ERR_OR_ZERO(state);
5938 if (ret)
5939 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5940 else
5941 dev_priv->modeset_restore_state = state;
5942 return ret;
5943 }
5944
5945 void intel_encoder_destroy(struct drm_encoder *encoder)
5946 {
5947 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5948
5949 drm_encoder_cleanup(encoder);
5950 kfree(intel_encoder);
5951 }
5952
5953 /* Cross check the actual hw state with our own modeset state tracking (and it's
5954 * internal consistency). */
5955 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5956 struct drm_connector_state *conn_state)
5957 {
5958 struct intel_connector *connector = to_intel_connector(conn_state->connector);
5959
5960 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5961 connector->base.base.id,
5962 connector->base.name);
5963
5964 if (connector->get_hw_state(connector)) {
5965 struct intel_encoder *encoder = connector->encoder;
5966
5967 I915_STATE_WARN(!crtc_state,
5968 "connector enabled without attached crtc\n");
5969
5970 if (!crtc_state)
5971 return;
5972
5973 I915_STATE_WARN(!crtc_state->active,
5974 "connector is active, but attached crtc isn't\n");
5975
5976 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5977 return;
5978
5979 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5980 "atomic encoder doesn't match attached encoder\n");
5981
5982 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5983 "attached encoder crtc differs from connector crtc\n");
5984 } else {
5985 I915_STATE_WARN(crtc_state && crtc_state->active,
5986 "attached crtc is active, but connector isn't\n");
5987 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5988 "best encoder set without crtc!\n");
5989 }
5990 }
5991
5992 int intel_connector_init(struct intel_connector *connector)
5993 {
5994 struct intel_digital_connector_state *conn_state;
5995
5996 /*
5997 * Allocate enough memory to hold intel_digital_connector_state,
5998 * This might be a few bytes too many, but for connectors that don't
5999 * need it we'll free the state and allocate a smaller one on the first
6000 * succesful commit anyway.
6001 */
6002 conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6003 if (!conn_state)
6004 return -ENOMEM;
6005
6006 __drm_atomic_helper_connector_reset(&connector->base,
6007 &conn_state->base);
6008
6009 return 0;
6010 }
6011
6012 struct intel_connector *intel_connector_alloc(void)
6013 {
6014 struct intel_connector *connector;
6015
6016 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6017 if (!connector)
6018 return NULL;
6019
6020 if (intel_connector_init(connector) < 0) {
6021 kfree(connector);
6022 return NULL;
6023 }
6024
6025 return connector;
6026 }
6027
6028 /* Simple connector->get_hw_state implementation for encoders that support only
6029 * one connector and no cloning and hence the encoder state determines the state
6030 * of the connector. */
6031 bool intel_connector_get_hw_state(struct intel_connector *connector)
6032 {
6033 enum pipe pipe = 0;
6034 struct intel_encoder *encoder = connector->encoder;
6035
6036 return encoder->get_hw_state(encoder, &pipe);
6037 }
6038
6039 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6040 {
6041 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6042 return crtc_state->fdi_lanes;
6043
6044 return 0;
6045 }
6046
6047 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6048 struct intel_crtc_state *pipe_config)
6049 {
6050 struct drm_i915_private *dev_priv = to_i915(dev);
6051 struct drm_atomic_state *state = pipe_config->base.state;
6052 struct intel_crtc *other_crtc;
6053 struct intel_crtc_state *other_crtc_state;
6054
6055 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6056 pipe_name(pipe), pipe_config->fdi_lanes);
6057 if (pipe_config->fdi_lanes > 4) {
6058 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6059 pipe_name(pipe), pipe_config->fdi_lanes);
6060 return -EINVAL;
6061 }
6062
6063 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6064 if (pipe_config->fdi_lanes > 2) {
6065 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6066 pipe_config->fdi_lanes);
6067 return -EINVAL;
6068 } else {
6069 return 0;
6070 }
6071 }
6072
6073 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6074 return 0;
6075
6076 /* Ivybridge 3 pipe is really complicated */
6077 switch (pipe) {
6078 case PIPE_A:
6079 return 0;
6080 case PIPE_B:
6081 if (pipe_config->fdi_lanes <= 2)
6082 return 0;
6083
6084 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6085 other_crtc_state =
6086 intel_atomic_get_crtc_state(state, other_crtc);
6087 if (IS_ERR(other_crtc_state))
6088 return PTR_ERR(other_crtc_state);
6089
6090 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6091 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6092 pipe_name(pipe), pipe_config->fdi_lanes);
6093 return -EINVAL;
6094 }
6095 return 0;
6096 case PIPE_C:
6097 if (pipe_config->fdi_lanes > 2) {
6098 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6099 pipe_name(pipe), pipe_config->fdi_lanes);
6100 return -EINVAL;
6101 }
6102
6103 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6104 other_crtc_state =
6105 intel_atomic_get_crtc_state(state, other_crtc);
6106 if (IS_ERR(other_crtc_state))
6107 return PTR_ERR(other_crtc_state);
6108
6109 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6110 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6111 return -EINVAL;
6112 }
6113 return 0;
6114 default:
6115 BUG();
6116 }
6117 }
6118
6119 #define RETRY 1
6120 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6121 struct intel_crtc_state *pipe_config)
6122 {
6123 struct drm_device *dev = intel_crtc->base.dev;
6124 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6125 int lane, link_bw, fdi_dotclock, ret;
6126 bool needs_recompute = false;
6127
6128 retry:
6129 /* FDI is a binary signal running at ~2.7GHz, encoding
6130 * each output octet as 10 bits. The actual frequency
6131 * is stored as a divider into a 100MHz clock, and the
6132 * mode pixel clock is stored in units of 1KHz.
6133 * Hence the bw of each lane in terms of the mode signal
6134 * is:
6135 */
6136 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6137
6138 fdi_dotclock = adjusted_mode->crtc_clock;
6139
6140 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6141 pipe_config->pipe_bpp);
6142
6143 pipe_config->fdi_lanes = lane;
6144
6145 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6146 link_bw, &pipe_config->fdi_m_n, false);
6147
6148 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6149 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6150 pipe_config->pipe_bpp -= 2*3;
6151 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6152 pipe_config->pipe_bpp);
6153 needs_recompute = true;
6154 pipe_config->bw_constrained = true;
6155
6156 goto retry;
6157 }
6158
6159 if (needs_recompute)
6160 return RETRY;
6161
6162 return ret;
6163 }
6164
6165 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6166 struct intel_crtc_state *pipe_config)
6167 {
6168 if (pipe_config->pipe_bpp > 24)
6169 return false;
6170
6171 /* HSW can handle pixel rate up to cdclk? */
6172 if (IS_HASWELL(dev_priv))
6173 return true;
6174
6175 /*
6176 * We compare against max which means we must take
6177 * the increased cdclk requirement into account when
6178 * calculating the new cdclk.
6179 *
6180 * Should measure whether using a lower cdclk w/o IPS
6181 */
6182 return pipe_config->pixel_rate <=
6183 dev_priv->max_cdclk_freq * 95 / 100;
6184 }
6185
6186 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6187 struct intel_crtc_state *pipe_config)
6188 {
6189 struct drm_device *dev = crtc->base.dev;
6190 struct drm_i915_private *dev_priv = to_i915(dev);
6191
6192 pipe_config->ips_enabled = i915.enable_ips &&
6193 hsw_crtc_supports_ips(crtc) &&
6194 pipe_config_supports_ips(dev_priv, pipe_config);
6195 }
6196
6197 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6198 {
6199 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6200
6201 /* GDG double wide on either pipe, otherwise pipe A only */
6202 return INTEL_INFO(dev_priv)->gen < 4 &&
6203 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6204 }
6205
6206 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6207 {
6208 uint32_t pixel_rate;
6209
6210 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6211
6212 /*
6213 * We only use IF-ID interlacing. If we ever use
6214 * PF-ID we'll need to adjust the pixel_rate here.
6215 */
6216
6217 if (pipe_config->pch_pfit.enabled) {
6218 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6219 uint32_t pfit_size = pipe_config->pch_pfit.size;
6220
6221 pipe_w = pipe_config->pipe_src_w;
6222 pipe_h = pipe_config->pipe_src_h;
6223
6224 pfit_w = (pfit_size >> 16) & 0xFFFF;
6225 pfit_h = pfit_size & 0xFFFF;
6226 if (pipe_w < pfit_w)
6227 pipe_w = pfit_w;
6228 if (pipe_h < pfit_h)
6229 pipe_h = pfit_h;
6230
6231 if (WARN_ON(!pfit_w || !pfit_h))
6232 return pixel_rate;
6233
6234 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6235 pfit_w * pfit_h);
6236 }
6237
6238 return pixel_rate;
6239 }
6240
6241 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6242 {
6243 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6244
6245 if (HAS_GMCH_DISPLAY(dev_priv))
6246 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6247 crtc_state->pixel_rate =
6248 crtc_state->base.adjusted_mode.crtc_clock;
6249 else
6250 crtc_state->pixel_rate =
6251 ilk_pipe_pixel_rate(crtc_state);
6252 }
6253
6254 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6255 struct intel_crtc_state *pipe_config)
6256 {
6257 struct drm_device *dev = crtc->base.dev;
6258 struct drm_i915_private *dev_priv = to_i915(dev);
6259 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6260 int clock_limit = dev_priv->max_dotclk_freq;
6261
6262 if (INTEL_GEN(dev_priv) < 4) {
6263 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6264
6265 /*
6266 * Enable double wide mode when the dot clock
6267 * is > 90% of the (display) core speed.
6268 */
6269 if (intel_crtc_supports_double_wide(crtc) &&
6270 adjusted_mode->crtc_clock > clock_limit) {
6271 clock_limit = dev_priv->max_dotclk_freq;
6272 pipe_config->double_wide = true;
6273 }
6274 }
6275
6276 if (adjusted_mode->crtc_clock > clock_limit) {
6277 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6278 adjusted_mode->crtc_clock, clock_limit,
6279 yesno(pipe_config->double_wide));
6280 return -EINVAL;
6281 }
6282
6283 /*
6284 * Pipe horizontal size must be even in:
6285 * - DVO ganged mode
6286 * - LVDS dual channel mode
6287 * - Double wide pipe
6288 */
6289 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6290 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6291 pipe_config->pipe_src_w &= ~1;
6292
6293 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6294 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6295 */
6296 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6297 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6298 return -EINVAL;
6299
6300 intel_crtc_compute_pixel_rate(pipe_config);
6301
6302 if (HAS_IPS(dev_priv))
6303 hsw_compute_ips_config(crtc, pipe_config);
6304
6305 if (pipe_config->has_pch_encoder)
6306 return ironlake_fdi_compute_config(crtc, pipe_config);
6307
6308 return 0;
6309 }
6310
6311 static void
6312 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6313 {
6314 while (*num > DATA_LINK_M_N_MASK ||
6315 *den > DATA_LINK_M_N_MASK) {
6316 *num >>= 1;
6317 *den >>= 1;
6318 }
6319 }
6320
6321 static void compute_m_n(unsigned int m, unsigned int n,
6322 uint32_t *ret_m, uint32_t *ret_n,
6323 bool reduce_m_n)
6324 {
6325 /*
6326 * Reduce M/N as much as possible without loss in precision. Several DP
6327 * dongles in particular seem to be fussy about too large *link* M/N
6328 * values. The passed in values are more likely to have the least
6329 * significant bits zero than M after rounding below, so do this first.
6330 */
6331 if (reduce_m_n) {
6332 while ((m & 1) == 0 && (n & 1) == 0) {
6333 m >>= 1;
6334 n >>= 1;
6335 }
6336 }
6337
6338 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6339 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6340 intel_reduce_m_n_ratio(ret_m, ret_n);
6341 }
6342
6343 void
6344 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6345 int pixel_clock, int link_clock,
6346 struct intel_link_m_n *m_n,
6347 bool reduce_m_n)
6348 {
6349 m_n->tu = 64;
6350
6351 compute_m_n(bits_per_pixel * pixel_clock,
6352 link_clock * nlanes * 8,
6353 &m_n->gmch_m, &m_n->gmch_n,
6354 reduce_m_n);
6355
6356 compute_m_n(pixel_clock, link_clock,
6357 &m_n->link_m, &m_n->link_n,
6358 reduce_m_n);
6359 }
6360
6361 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6362 {
6363 if (i915.panel_use_ssc >= 0)
6364 return i915.panel_use_ssc != 0;
6365 return dev_priv->vbt.lvds_use_ssc
6366 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6367 }
6368
6369 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6370 {
6371 return (1 << dpll->n) << 16 | dpll->m2;
6372 }
6373
6374 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6375 {
6376 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6377 }
6378
6379 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6380 struct intel_crtc_state *crtc_state,
6381 struct dpll *reduced_clock)
6382 {
6383 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6384 u32 fp, fp2 = 0;
6385
6386 if (IS_PINEVIEW(dev_priv)) {
6387 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6388 if (reduced_clock)
6389 fp2 = pnv_dpll_compute_fp(reduced_clock);
6390 } else {
6391 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6392 if (reduced_clock)
6393 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6394 }
6395
6396 crtc_state->dpll_hw_state.fp0 = fp;
6397
6398 crtc->lowfreq_avail = false;
6399 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6400 reduced_clock) {
6401 crtc_state->dpll_hw_state.fp1 = fp2;
6402 crtc->lowfreq_avail = true;
6403 } else {
6404 crtc_state->dpll_hw_state.fp1 = fp;
6405 }
6406 }
6407
6408 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6409 pipe)
6410 {
6411 u32 reg_val;
6412
6413 /*
6414 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6415 * and set it to a reasonable value instead.
6416 */
6417 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6418 reg_val &= 0xffffff00;
6419 reg_val |= 0x00000030;
6420 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6421
6422 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6423 reg_val &= 0x00ffffff;
6424 reg_val |= 0x8c000000;
6425 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6426
6427 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6428 reg_val &= 0xffffff00;
6429 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6430
6431 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6432 reg_val &= 0x00ffffff;
6433 reg_val |= 0xb0000000;
6434 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6435 }
6436
6437 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6438 struct intel_link_m_n *m_n)
6439 {
6440 struct drm_device *dev = crtc->base.dev;
6441 struct drm_i915_private *dev_priv = to_i915(dev);
6442 int pipe = crtc->pipe;
6443
6444 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6445 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6446 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6447 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6448 }
6449
6450 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6451 struct intel_link_m_n *m_n,
6452 struct intel_link_m_n *m2_n2)
6453 {
6454 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6455 int pipe = crtc->pipe;
6456 enum transcoder transcoder = crtc->config->cpu_transcoder;
6457
6458 if (INTEL_GEN(dev_priv) >= 5) {
6459 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6460 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6461 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6462 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6463 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6464 * for gen < 8) and if DRRS is supported (to make sure the
6465 * registers are not unnecessarily accessed).
6466 */
6467 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6468 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6469 I915_WRITE(PIPE_DATA_M2(transcoder),
6470 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6471 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6472 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6473 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6474 }
6475 } else {
6476 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6477 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6478 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6479 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6480 }
6481 }
6482
6483 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6484 {
6485 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6486
6487 if (m_n == M1_N1) {
6488 dp_m_n = &crtc->config->dp_m_n;
6489 dp_m2_n2 = &crtc->config->dp_m2_n2;
6490 } else if (m_n == M2_N2) {
6491
6492 /*
6493 * M2_N2 registers are not supported. Hence m2_n2 divider value
6494 * needs to be programmed into M1_N1.
6495 */
6496 dp_m_n = &crtc->config->dp_m2_n2;
6497 } else {
6498 DRM_ERROR("Unsupported divider value\n");
6499 return;
6500 }
6501
6502 if (crtc->config->has_pch_encoder)
6503 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6504 else
6505 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6506 }
6507
6508 static void vlv_compute_dpll(struct intel_crtc *crtc,
6509 struct intel_crtc_state *pipe_config)
6510 {
6511 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6512 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6513 if (crtc->pipe != PIPE_A)
6514 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6515
6516 /* DPLL not used with DSI, but still need the rest set up */
6517 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6518 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6519 DPLL_EXT_BUFFER_ENABLE_VLV;
6520
6521 pipe_config->dpll_hw_state.dpll_md =
6522 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6523 }
6524
6525 static void chv_compute_dpll(struct intel_crtc *crtc,
6526 struct intel_crtc_state *pipe_config)
6527 {
6528 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6529 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6530 if (crtc->pipe != PIPE_A)
6531 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6532
6533 /* DPLL not used with DSI, but still need the rest set up */
6534 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6535 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6536
6537 pipe_config->dpll_hw_state.dpll_md =
6538 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6539 }
6540
6541 static void vlv_prepare_pll(struct intel_crtc *crtc,
6542 const struct intel_crtc_state *pipe_config)
6543 {
6544 struct drm_device *dev = crtc->base.dev;
6545 struct drm_i915_private *dev_priv = to_i915(dev);
6546 enum pipe pipe = crtc->pipe;
6547 u32 mdiv;
6548 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6549 u32 coreclk, reg_val;
6550
6551 /* Enable Refclk */
6552 I915_WRITE(DPLL(pipe),
6553 pipe_config->dpll_hw_state.dpll &
6554 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6555
6556 /* No need to actually set up the DPLL with DSI */
6557 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6558 return;
6559
6560 mutex_lock(&dev_priv->sb_lock);
6561
6562 bestn = pipe_config->dpll.n;
6563 bestm1 = pipe_config->dpll.m1;
6564 bestm2 = pipe_config->dpll.m2;
6565 bestp1 = pipe_config->dpll.p1;
6566 bestp2 = pipe_config->dpll.p2;
6567
6568 /* See eDP HDMI DPIO driver vbios notes doc */
6569
6570 /* PLL B needs special handling */
6571 if (pipe == PIPE_B)
6572 vlv_pllb_recal_opamp(dev_priv, pipe);
6573
6574 /* Set up Tx target for periodic Rcomp update */
6575 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6576
6577 /* Disable target IRef on PLL */
6578 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6579 reg_val &= 0x00ffffff;
6580 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6581
6582 /* Disable fast lock */
6583 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6584
6585 /* Set idtafcrecal before PLL is enabled */
6586 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6587 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6588 mdiv |= ((bestn << DPIO_N_SHIFT));
6589 mdiv |= (1 << DPIO_K_SHIFT);
6590
6591 /*
6592 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6593 * but we don't support that).
6594 * Note: don't use the DAC post divider as it seems unstable.
6595 */
6596 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6598
6599 mdiv |= DPIO_ENABLE_CALIBRATION;
6600 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6601
6602 /* Set HBR and RBR LPF coefficients */
6603 if (pipe_config->port_clock == 162000 ||
6604 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6605 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6607 0x009f0003);
6608 else
6609 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6610 0x00d0000f);
6611
6612 if (intel_crtc_has_dp_encoder(pipe_config)) {
6613 /* Use SSC source */
6614 if (pipe == PIPE_A)
6615 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6616 0x0df40000);
6617 else
6618 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6619 0x0df70000);
6620 } else { /* HDMI or VGA */
6621 /* Use bend source */
6622 if (pipe == PIPE_A)
6623 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6624 0x0df70000);
6625 else
6626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6627 0x0df40000);
6628 }
6629
6630 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6631 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6632 if (intel_crtc_has_dp_encoder(crtc->config))
6633 coreclk |= 0x01000000;
6634 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6635
6636 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6637 mutex_unlock(&dev_priv->sb_lock);
6638 }
6639
6640 static void chv_prepare_pll(struct intel_crtc *crtc,
6641 const struct intel_crtc_state *pipe_config)
6642 {
6643 struct drm_device *dev = crtc->base.dev;
6644 struct drm_i915_private *dev_priv = to_i915(dev);
6645 enum pipe pipe = crtc->pipe;
6646 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6647 u32 loopfilter, tribuf_calcntr;
6648 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6649 u32 dpio_val;
6650 int vco;
6651
6652 /* Enable Refclk and SSC */
6653 I915_WRITE(DPLL(pipe),
6654 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6655
6656 /* No need to actually set up the DPLL with DSI */
6657 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6658 return;
6659
6660 bestn = pipe_config->dpll.n;
6661 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6662 bestm1 = pipe_config->dpll.m1;
6663 bestm2 = pipe_config->dpll.m2 >> 22;
6664 bestp1 = pipe_config->dpll.p1;
6665 bestp2 = pipe_config->dpll.p2;
6666 vco = pipe_config->dpll.vco;
6667 dpio_val = 0;
6668 loopfilter = 0;
6669
6670 mutex_lock(&dev_priv->sb_lock);
6671
6672 /* p1 and p2 divider */
6673 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6674 5 << DPIO_CHV_S1_DIV_SHIFT |
6675 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6676 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6677 1 << DPIO_CHV_K_DIV_SHIFT);
6678
6679 /* Feedback post-divider - m2 */
6680 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6681
6682 /* Feedback refclk divider - n and m1 */
6683 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6684 DPIO_CHV_M1_DIV_BY_2 |
6685 1 << DPIO_CHV_N_DIV_SHIFT);
6686
6687 /* M2 fraction division */
6688 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6689
6690 /* M2 fraction division enable */
6691 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6692 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6693 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6694 if (bestm2_frac)
6695 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6696 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6697
6698 /* Program digital lock detect threshold */
6699 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6700 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6701 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6702 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6703 if (!bestm2_frac)
6704 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6705 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6706
6707 /* Loop filter */
6708 if (vco == 5400000) {
6709 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6710 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6711 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6712 tribuf_calcntr = 0x9;
6713 } else if (vco <= 6200000) {
6714 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6715 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6716 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6717 tribuf_calcntr = 0x9;
6718 } else if (vco <= 6480000) {
6719 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6720 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6721 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6722 tribuf_calcntr = 0x8;
6723 } else {
6724 /* Not supported. Apply the same limits as in the max case */
6725 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6726 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6727 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6728 tribuf_calcntr = 0;
6729 }
6730 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6731
6732 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6733 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6734 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6735 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6736
6737 /* AFC Recal */
6738 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6739 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6740 DPIO_AFC_RECAL);
6741
6742 mutex_unlock(&dev_priv->sb_lock);
6743 }
6744
6745 /**
6746 * vlv_force_pll_on - forcibly enable just the PLL
6747 * @dev_priv: i915 private structure
6748 * @pipe: pipe PLL to enable
6749 * @dpll: PLL configuration
6750 *
6751 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6752 * in cases where we need the PLL enabled even when @pipe is not going to
6753 * be enabled.
6754 */
6755 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6756 const struct dpll *dpll)
6757 {
6758 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6759 struct intel_crtc_state *pipe_config;
6760
6761 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6762 if (!pipe_config)
6763 return -ENOMEM;
6764
6765 pipe_config->base.crtc = &crtc->base;
6766 pipe_config->pixel_multiplier = 1;
6767 pipe_config->dpll = *dpll;
6768
6769 if (IS_CHERRYVIEW(dev_priv)) {
6770 chv_compute_dpll(crtc, pipe_config);
6771 chv_prepare_pll(crtc, pipe_config);
6772 chv_enable_pll(crtc, pipe_config);
6773 } else {
6774 vlv_compute_dpll(crtc, pipe_config);
6775 vlv_prepare_pll(crtc, pipe_config);
6776 vlv_enable_pll(crtc, pipe_config);
6777 }
6778
6779 kfree(pipe_config);
6780
6781 return 0;
6782 }
6783
6784 /**
6785 * vlv_force_pll_off - forcibly disable just the PLL
6786 * @dev_priv: i915 private structure
6787 * @pipe: pipe PLL to disable
6788 *
6789 * Disable the PLL for @pipe. To be used in cases where we need
6790 * the PLL enabled even when @pipe is not going to be enabled.
6791 */
6792 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6793 {
6794 if (IS_CHERRYVIEW(dev_priv))
6795 chv_disable_pll(dev_priv, pipe);
6796 else
6797 vlv_disable_pll(dev_priv, pipe);
6798 }
6799
6800 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6801 struct intel_crtc_state *crtc_state,
6802 struct dpll *reduced_clock)
6803 {
6804 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6805 u32 dpll;
6806 struct dpll *clock = &crtc_state->dpll;
6807
6808 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6809
6810 dpll = DPLL_VGA_MODE_DIS;
6811
6812 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6813 dpll |= DPLLB_MODE_LVDS;
6814 else
6815 dpll |= DPLLB_MODE_DAC_SERIAL;
6816
6817 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6818 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6819 dpll |= (crtc_state->pixel_multiplier - 1)
6820 << SDVO_MULTIPLIER_SHIFT_HIRES;
6821 }
6822
6823 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6824 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6825 dpll |= DPLL_SDVO_HIGH_SPEED;
6826
6827 if (intel_crtc_has_dp_encoder(crtc_state))
6828 dpll |= DPLL_SDVO_HIGH_SPEED;
6829
6830 /* compute bitmask from p1 value */
6831 if (IS_PINEVIEW(dev_priv))
6832 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6833 else {
6834 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6835 if (IS_G4X(dev_priv) && reduced_clock)
6836 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6837 }
6838 switch (clock->p2) {
6839 case 5:
6840 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6841 break;
6842 case 7:
6843 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6844 break;
6845 case 10:
6846 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6847 break;
6848 case 14:
6849 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6850 break;
6851 }
6852 if (INTEL_GEN(dev_priv) >= 4)
6853 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6854
6855 if (crtc_state->sdvo_tv_clock)
6856 dpll |= PLL_REF_INPUT_TVCLKINBC;
6857 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6858 intel_panel_use_ssc(dev_priv))
6859 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6860 else
6861 dpll |= PLL_REF_INPUT_DREFCLK;
6862
6863 dpll |= DPLL_VCO_ENABLE;
6864 crtc_state->dpll_hw_state.dpll = dpll;
6865
6866 if (INTEL_GEN(dev_priv) >= 4) {
6867 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6868 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6869 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6870 }
6871 }
6872
6873 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6874 struct intel_crtc_state *crtc_state,
6875 struct dpll *reduced_clock)
6876 {
6877 struct drm_device *dev = crtc->base.dev;
6878 struct drm_i915_private *dev_priv = to_i915(dev);
6879 u32 dpll;
6880 struct dpll *clock = &crtc_state->dpll;
6881
6882 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6883
6884 dpll = DPLL_VGA_MODE_DIS;
6885
6886 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6887 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6888 } else {
6889 if (clock->p1 == 2)
6890 dpll |= PLL_P1_DIVIDE_BY_TWO;
6891 else
6892 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6893 if (clock->p2 == 4)
6894 dpll |= PLL_P2_DIVIDE_BY_4;
6895 }
6896
6897 if (!IS_I830(dev_priv) &&
6898 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6899 dpll |= DPLL_DVO_2X_MODE;
6900
6901 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6902 intel_panel_use_ssc(dev_priv))
6903 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6904 else
6905 dpll |= PLL_REF_INPUT_DREFCLK;
6906
6907 dpll |= DPLL_VCO_ENABLE;
6908 crtc_state->dpll_hw_state.dpll = dpll;
6909 }
6910
6911 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6912 {
6913 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6914 enum pipe pipe = intel_crtc->pipe;
6915 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6916 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6917 uint32_t crtc_vtotal, crtc_vblank_end;
6918 int vsyncshift = 0;
6919
6920 /* We need to be careful not to changed the adjusted mode, for otherwise
6921 * the hw state checker will get angry at the mismatch. */
6922 crtc_vtotal = adjusted_mode->crtc_vtotal;
6923 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6924
6925 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6926 /* the chip adds 2 halflines automatically */
6927 crtc_vtotal -= 1;
6928 crtc_vblank_end -= 1;
6929
6930 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6931 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6932 else
6933 vsyncshift = adjusted_mode->crtc_hsync_start -
6934 adjusted_mode->crtc_htotal / 2;
6935 if (vsyncshift < 0)
6936 vsyncshift += adjusted_mode->crtc_htotal;
6937 }
6938
6939 if (INTEL_GEN(dev_priv) > 3)
6940 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6941
6942 I915_WRITE(HTOTAL(cpu_transcoder),
6943 (adjusted_mode->crtc_hdisplay - 1) |
6944 ((adjusted_mode->crtc_htotal - 1) << 16));
6945 I915_WRITE(HBLANK(cpu_transcoder),
6946 (adjusted_mode->crtc_hblank_start - 1) |
6947 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6948 I915_WRITE(HSYNC(cpu_transcoder),
6949 (adjusted_mode->crtc_hsync_start - 1) |
6950 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6951
6952 I915_WRITE(VTOTAL(cpu_transcoder),
6953 (adjusted_mode->crtc_vdisplay - 1) |
6954 ((crtc_vtotal - 1) << 16));
6955 I915_WRITE(VBLANK(cpu_transcoder),
6956 (adjusted_mode->crtc_vblank_start - 1) |
6957 ((crtc_vblank_end - 1) << 16));
6958 I915_WRITE(VSYNC(cpu_transcoder),
6959 (adjusted_mode->crtc_vsync_start - 1) |
6960 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6961
6962 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6963 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6964 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6965 * bits. */
6966 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6967 (pipe == PIPE_B || pipe == PIPE_C))
6968 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6969
6970 }
6971
6972 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6973 {
6974 struct drm_device *dev = intel_crtc->base.dev;
6975 struct drm_i915_private *dev_priv = to_i915(dev);
6976 enum pipe pipe = intel_crtc->pipe;
6977
6978 /* pipesrc controls the size that is scaled from, which should
6979 * always be the user's requested size.
6980 */
6981 I915_WRITE(PIPESRC(pipe),
6982 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6983 (intel_crtc->config->pipe_src_h - 1));
6984 }
6985
6986 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6987 struct intel_crtc_state *pipe_config)
6988 {
6989 struct drm_device *dev = crtc->base.dev;
6990 struct drm_i915_private *dev_priv = to_i915(dev);
6991 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6992 uint32_t tmp;
6993
6994 tmp = I915_READ(HTOTAL(cpu_transcoder));
6995 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6996 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6997 tmp = I915_READ(HBLANK(cpu_transcoder));
6998 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6999 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7000 tmp = I915_READ(HSYNC(cpu_transcoder));
7001 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7002 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7003
7004 tmp = I915_READ(VTOTAL(cpu_transcoder));
7005 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7006 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7007 tmp = I915_READ(VBLANK(cpu_transcoder));
7008 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7009 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7010 tmp = I915_READ(VSYNC(cpu_transcoder));
7011 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7012 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7013
7014 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7015 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7016 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7017 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7018 }
7019 }
7020
7021 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7022 struct intel_crtc_state *pipe_config)
7023 {
7024 struct drm_device *dev = crtc->base.dev;
7025 struct drm_i915_private *dev_priv = to_i915(dev);
7026 u32 tmp;
7027
7028 tmp = I915_READ(PIPESRC(crtc->pipe));
7029 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7030 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7031
7032 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7033 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7034 }
7035
7036 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7037 struct intel_crtc_state *pipe_config)
7038 {
7039 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7040 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7041 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7042 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7043
7044 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7045 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7046 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7047 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7048
7049 mode->flags = pipe_config->base.adjusted_mode.flags;
7050 mode->type = DRM_MODE_TYPE_DRIVER;
7051
7052 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7053
7054 mode->hsync = drm_mode_hsync(mode);
7055 mode->vrefresh = drm_mode_vrefresh(mode);
7056 drm_mode_set_name(mode);
7057 }
7058
7059 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7060 {
7061 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7062 uint32_t pipeconf;
7063
7064 pipeconf = 0;
7065
7066 /* we keep both pipes enabled on 830 */
7067 if (IS_I830(dev_priv))
7068 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7069
7070 if (intel_crtc->config->double_wide)
7071 pipeconf |= PIPECONF_DOUBLE_WIDE;
7072
7073 /* only g4x and later have fancy bpc/dither controls */
7074 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7075 IS_CHERRYVIEW(dev_priv)) {
7076 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7077 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7078 pipeconf |= PIPECONF_DITHER_EN |
7079 PIPECONF_DITHER_TYPE_SP;
7080
7081 switch (intel_crtc->config->pipe_bpp) {
7082 case 18:
7083 pipeconf |= PIPECONF_6BPC;
7084 break;
7085 case 24:
7086 pipeconf |= PIPECONF_8BPC;
7087 break;
7088 case 30:
7089 pipeconf |= PIPECONF_10BPC;
7090 break;
7091 default:
7092 /* Case prevented by intel_choose_pipe_bpp_dither. */
7093 BUG();
7094 }
7095 }
7096
7097 if (HAS_PIPE_CXSR(dev_priv)) {
7098 if (intel_crtc->lowfreq_avail) {
7099 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7100 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7101 } else {
7102 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7103 }
7104 }
7105
7106 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7107 if (INTEL_GEN(dev_priv) < 4 ||
7108 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7109 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7110 else
7111 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7112 } else
7113 pipeconf |= PIPECONF_PROGRESSIVE;
7114
7115 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7116 intel_crtc->config->limited_color_range)
7117 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7118
7119 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7120 POSTING_READ(PIPECONF(intel_crtc->pipe));
7121 }
7122
7123 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7124 struct intel_crtc_state *crtc_state)
7125 {
7126 struct drm_device *dev = crtc->base.dev;
7127 struct drm_i915_private *dev_priv = to_i915(dev);
7128 const struct intel_limit *limit;
7129 int refclk = 48000;
7130
7131 memset(&crtc_state->dpll_hw_state, 0,
7132 sizeof(crtc_state->dpll_hw_state));
7133
7134 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7135 if (intel_panel_use_ssc(dev_priv)) {
7136 refclk = dev_priv->vbt.lvds_ssc_freq;
7137 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7138 }
7139
7140 limit = &intel_limits_i8xx_lvds;
7141 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7142 limit = &intel_limits_i8xx_dvo;
7143 } else {
7144 limit = &intel_limits_i8xx_dac;
7145 }
7146
7147 if (!crtc_state->clock_set &&
7148 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7149 refclk, NULL, &crtc_state->dpll)) {
7150 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7151 return -EINVAL;
7152 }
7153
7154 i8xx_compute_dpll(crtc, crtc_state, NULL);
7155
7156 return 0;
7157 }
7158
7159 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7160 struct intel_crtc_state *crtc_state)
7161 {
7162 struct drm_device *dev = crtc->base.dev;
7163 struct drm_i915_private *dev_priv = to_i915(dev);
7164 const struct intel_limit *limit;
7165 int refclk = 96000;
7166
7167 memset(&crtc_state->dpll_hw_state, 0,
7168 sizeof(crtc_state->dpll_hw_state));
7169
7170 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7171 if (intel_panel_use_ssc(dev_priv)) {
7172 refclk = dev_priv->vbt.lvds_ssc_freq;
7173 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7174 }
7175
7176 if (intel_is_dual_link_lvds(dev))
7177 limit = &intel_limits_g4x_dual_channel_lvds;
7178 else
7179 limit = &intel_limits_g4x_single_channel_lvds;
7180 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7181 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7182 limit = &intel_limits_g4x_hdmi;
7183 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7184 limit = &intel_limits_g4x_sdvo;
7185 } else {
7186 /* The option is for other outputs */
7187 limit = &intel_limits_i9xx_sdvo;
7188 }
7189
7190 if (!crtc_state->clock_set &&
7191 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7192 refclk, NULL, &crtc_state->dpll)) {
7193 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7194 return -EINVAL;
7195 }
7196
7197 i9xx_compute_dpll(crtc, crtc_state, NULL);
7198
7199 return 0;
7200 }
7201
7202 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7203 struct intel_crtc_state *crtc_state)
7204 {
7205 struct drm_device *dev = crtc->base.dev;
7206 struct drm_i915_private *dev_priv = to_i915(dev);
7207 const struct intel_limit *limit;
7208 int refclk = 96000;
7209
7210 memset(&crtc_state->dpll_hw_state, 0,
7211 sizeof(crtc_state->dpll_hw_state));
7212
7213 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7214 if (intel_panel_use_ssc(dev_priv)) {
7215 refclk = dev_priv->vbt.lvds_ssc_freq;
7216 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7217 }
7218
7219 limit = &intel_limits_pineview_lvds;
7220 } else {
7221 limit = &intel_limits_pineview_sdvo;
7222 }
7223
7224 if (!crtc_state->clock_set &&
7225 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7226 refclk, NULL, &crtc_state->dpll)) {
7227 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7228 return -EINVAL;
7229 }
7230
7231 i9xx_compute_dpll(crtc, crtc_state, NULL);
7232
7233 return 0;
7234 }
7235
7236 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7237 struct intel_crtc_state *crtc_state)
7238 {
7239 struct drm_device *dev = crtc->base.dev;
7240 struct drm_i915_private *dev_priv = to_i915(dev);
7241 const struct intel_limit *limit;
7242 int refclk = 96000;
7243
7244 memset(&crtc_state->dpll_hw_state, 0,
7245 sizeof(crtc_state->dpll_hw_state));
7246
7247 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7248 if (intel_panel_use_ssc(dev_priv)) {
7249 refclk = dev_priv->vbt.lvds_ssc_freq;
7250 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7251 }
7252
7253 limit = &intel_limits_i9xx_lvds;
7254 } else {
7255 limit = &intel_limits_i9xx_sdvo;
7256 }
7257
7258 if (!crtc_state->clock_set &&
7259 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7260 refclk, NULL, &crtc_state->dpll)) {
7261 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7262 return -EINVAL;
7263 }
7264
7265 i9xx_compute_dpll(crtc, crtc_state, NULL);
7266
7267 return 0;
7268 }
7269
7270 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7271 struct intel_crtc_state *crtc_state)
7272 {
7273 int refclk = 100000;
7274 const struct intel_limit *limit = &intel_limits_chv;
7275
7276 memset(&crtc_state->dpll_hw_state, 0,
7277 sizeof(crtc_state->dpll_hw_state));
7278
7279 if (!crtc_state->clock_set &&
7280 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7281 refclk, NULL, &crtc_state->dpll)) {
7282 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7283 return -EINVAL;
7284 }
7285
7286 chv_compute_dpll(crtc, crtc_state);
7287
7288 return 0;
7289 }
7290
7291 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7292 struct intel_crtc_state *crtc_state)
7293 {
7294 int refclk = 100000;
7295 const struct intel_limit *limit = &intel_limits_vlv;
7296
7297 memset(&crtc_state->dpll_hw_state, 0,
7298 sizeof(crtc_state->dpll_hw_state));
7299
7300 if (!crtc_state->clock_set &&
7301 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7302 refclk, NULL, &crtc_state->dpll)) {
7303 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7304 return -EINVAL;
7305 }
7306
7307 vlv_compute_dpll(crtc, crtc_state);
7308
7309 return 0;
7310 }
7311
7312 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7313 struct intel_crtc_state *pipe_config)
7314 {
7315 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7316 uint32_t tmp;
7317
7318 if (INTEL_GEN(dev_priv) <= 3 &&
7319 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7320 return;
7321
7322 tmp = I915_READ(PFIT_CONTROL);
7323 if (!(tmp & PFIT_ENABLE))
7324 return;
7325
7326 /* Check whether the pfit is attached to our pipe. */
7327 if (INTEL_GEN(dev_priv) < 4) {
7328 if (crtc->pipe != PIPE_B)
7329 return;
7330 } else {
7331 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7332 return;
7333 }
7334
7335 pipe_config->gmch_pfit.control = tmp;
7336 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7337 }
7338
7339 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7340 struct intel_crtc_state *pipe_config)
7341 {
7342 struct drm_device *dev = crtc->base.dev;
7343 struct drm_i915_private *dev_priv = to_i915(dev);
7344 int pipe = pipe_config->cpu_transcoder;
7345 struct dpll clock;
7346 u32 mdiv;
7347 int refclk = 100000;
7348
7349 /* In case of DSI, DPLL will not be used */
7350 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7351 return;
7352
7353 mutex_lock(&dev_priv->sb_lock);
7354 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7355 mutex_unlock(&dev_priv->sb_lock);
7356
7357 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7358 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7359 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7360 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7361 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7362
7363 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7364 }
7365
7366 static void
7367 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7368 struct intel_initial_plane_config *plane_config)
7369 {
7370 struct drm_device *dev = crtc->base.dev;
7371 struct drm_i915_private *dev_priv = to_i915(dev);
7372 u32 val, base, offset;
7373 int pipe = crtc->pipe, plane = crtc->plane;
7374 int fourcc, pixel_format;
7375 unsigned int aligned_height;
7376 struct drm_framebuffer *fb;
7377 struct intel_framebuffer *intel_fb;
7378
7379 val = I915_READ(DSPCNTR(plane));
7380 if (!(val & DISPLAY_PLANE_ENABLE))
7381 return;
7382
7383 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7384 if (!intel_fb) {
7385 DRM_DEBUG_KMS("failed to alloc fb\n");
7386 return;
7387 }
7388
7389 fb = &intel_fb->base;
7390
7391 fb->dev = dev;
7392
7393 if (INTEL_GEN(dev_priv) >= 4) {
7394 if (val & DISPPLANE_TILED) {
7395 plane_config->tiling = I915_TILING_X;
7396 fb->modifier = I915_FORMAT_MOD_X_TILED;
7397 }
7398 }
7399
7400 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7401 fourcc = i9xx_format_to_fourcc(pixel_format);
7402 fb->format = drm_format_info(fourcc);
7403
7404 if (INTEL_GEN(dev_priv) >= 4) {
7405 if (plane_config->tiling)
7406 offset = I915_READ(DSPTILEOFF(plane));
7407 else
7408 offset = I915_READ(DSPLINOFF(plane));
7409 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7410 } else {
7411 base = I915_READ(DSPADDR(plane));
7412 }
7413 plane_config->base = base;
7414
7415 val = I915_READ(PIPESRC(pipe));
7416 fb->width = ((val >> 16) & 0xfff) + 1;
7417 fb->height = ((val >> 0) & 0xfff) + 1;
7418
7419 val = I915_READ(DSPSTRIDE(pipe));
7420 fb->pitches[0] = val & 0xffffffc0;
7421
7422 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7423
7424 plane_config->size = fb->pitches[0] * aligned_height;
7425
7426 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7427 pipe_name(pipe), plane, fb->width, fb->height,
7428 fb->format->cpp[0] * 8, base, fb->pitches[0],
7429 plane_config->size);
7430
7431 plane_config->fb = intel_fb;
7432 }
7433
7434 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7435 struct intel_crtc_state *pipe_config)
7436 {
7437 struct drm_device *dev = crtc->base.dev;
7438 struct drm_i915_private *dev_priv = to_i915(dev);
7439 int pipe = pipe_config->cpu_transcoder;
7440 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7441 struct dpll clock;
7442 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7443 int refclk = 100000;
7444
7445 /* In case of DSI, DPLL will not be used */
7446 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7447 return;
7448
7449 mutex_lock(&dev_priv->sb_lock);
7450 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7451 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7452 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7453 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7454 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7455 mutex_unlock(&dev_priv->sb_lock);
7456
7457 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7458 clock.m2 = (pll_dw0 & 0xff) << 22;
7459 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7460 clock.m2 |= pll_dw2 & 0x3fffff;
7461 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7462 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7463 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7464
7465 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7466 }
7467
7468 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7469 struct intel_crtc_state *pipe_config)
7470 {
7471 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7472 enum intel_display_power_domain power_domain;
7473 uint32_t tmp;
7474 bool ret;
7475
7476 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7477 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7478 return false;
7479
7480 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7481 pipe_config->shared_dpll = NULL;
7482
7483 ret = false;
7484
7485 tmp = I915_READ(PIPECONF(crtc->pipe));
7486 if (!(tmp & PIPECONF_ENABLE))
7487 goto out;
7488
7489 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7490 IS_CHERRYVIEW(dev_priv)) {
7491 switch (tmp & PIPECONF_BPC_MASK) {
7492 case PIPECONF_6BPC:
7493 pipe_config->pipe_bpp = 18;
7494 break;
7495 case PIPECONF_8BPC:
7496 pipe_config->pipe_bpp = 24;
7497 break;
7498 case PIPECONF_10BPC:
7499 pipe_config->pipe_bpp = 30;
7500 break;
7501 default:
7502 break;
7503 }
7504 }
7505
7506 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7507 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7508 pipe_config->limited_color_range = true;
7509
7510 if (INTEL_GEN(dev_priv) < 4)
7511 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7512
7513 intel_get_pipe_timings(crtc, pipe_config);
7514 intel_get_pipe_src_size(crtc, pipe_config);
7515
7516 i9xx_get_pfit_config(crtc, pipe_config);
7517
7518 if (INTEL_GEN(dev_priv) >= 4) {
7519 /* No way to read it out on pipes B and C */
7520 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7521 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7522 else
7523 tmp = I915_READ(DPLL_MD(crtc->pipe));
7524 pipe_config->pixel_multiplier =
7525 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7526 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7527 pipe_config->dpll_hw_state.dpll_md = tmp;
7528 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7529 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7530 tmp = I915_READ(DPLL(crtc->pipe));
7531 pipe_config->pixel_multiplier =
7532 ((tmp & SDVO_MULTIPLIER_MASK)
7533 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7534 } else {
7535 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7536 * port and will be fixed up in the encoder->get_config
7537 * function. */
7538 pipe_config->pixel_multiplier = 1;
7539 }
7540 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7541 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7542 /*
7543 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7544 * on 830. Filter it out here so that we don't
7545 * report errors due to that.
7546 */
7547 if (IS_I830(dev_priv))
7548 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7549
7550 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7551 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7552 } else {
7553 /* Mask out read-only status bits. */
7554 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7555 DPLL_PORTC_READY_MASK |
7556 DPLL_PORTB_READY_MASK);
7557 }
7558
7559 if (IS_CHERRYVIEW(dev_priv))
7560 chv_crtc_clock_get(crtc, pipe_config);
7561 else if (IS_VALLEYVIEW(dev_priv))
7562 vlv_crtc_clock_get(crtc, pipe_config);
7563 else
7564 i9xx_crtc_clock_get(crtc, pipe_config);
7565
7566 /*
7567 * Normally the dotclock is filled in by the encoder .get_config()
7568 * but in case the pipe is enabled w/o any ports we need a sane
7569 * default.
7570 */
7571 pipe_config->base.adjusted_mode.crtc_clock =
7572 pipe_config->port_clock / pipe_config->pixel_multiplier;
7573
7574 ret = true;
7575
7576 out:
7577 intel_display_power_put(dev_priv, power_domain);
7578
7579 return ret;
7580 }
7581
7582 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7583 {
7584 struct intel_encoder *encoder;
7585 int i;
7586 u32 val, final;
7587 bool has_lvds = false;
7588 bool has_cpu_edp = false;
7589 bool has_panel = false;
7590 bool has_ck505 = false;
7591 bool can_ssc = false;
7592 bool using_ssc_source = false;
7593
7594 /* We need to take the global config into account */
7595 for_each_intel_encoder(&dev_priv->drm, encoder) {
7596 switch (encoder->type) {
7597 case INTEL_OUTPUT_LVDS:
7598 has_panel = true;
7599 has_lvds = true;
7600 break;
7601 case INTEL_OUTPUT_EDP:
7602 has_panel = true;
7603 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7604 has_cpu_edp = true;
7605 break;
7606 default:
7607 break;
7608 }
7609 }
7610
7611 if (HAS_PCH_IBX(dev_priv)) {
7612 has_ck505 = dev_priv->vbt.display_clock_mode;
7613 can_ssc = has_ck505;
7614 } else {
7615 has_ck505 = false;
7616 can_ssc = true;
7617 }
7618
7619 /* Check if any DPLLs are using the SSC source */
7620 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7621 u32 temp = I915_READ(PCH_DPLL(i));
7622
7623 if (!(temp & DPLL_VCO_ENABLE))
7624 continue;
7625
7626 if ((temp & PLL_REF_INPUT_MASK) ==
7627 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7628 using_ssc_source = true;
7629 break;
7630 }
7631 }
7632
7633 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7634 has_panel, has_lvds, has_ck505, using_ssc_source);
7635
7636 /* Ironlake: try to setup display ref clock before DPLL
7637 * enabling. This is only under driver's control after
7638 * PCH B stepping, previous chipset stepping should be
7639 * ignoring this setting.
7640 */
7641 val = I915_READ(PCH_DREF_CONTROL);
7642
7643 /* As we must carefully and slowly disable/enable each source in turn,
7644 * compute the final state we want first and check if we need to
7645 * make any changes at all.
7646 */
7647 final = val;
7648 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7649 if (has_ck505)
7650 final |= DREF_NONSPREAD_CK505_ENABLE;
7651 else
7652 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7653
7654 final &= ~DREF_SSC_SOURCE_MASK;
7655 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7656 final &= ~DREF_SSC1_ENABLE;
7657
7658 if (has_panel) {
7659 final |= DREF_SSC_SOURCE_ENABLE;
7660
7661 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7662 final |= DREF_SSC1_ENABLE;
7663
7664 if (has_cpu_edp) {
7665 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7666 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7667 else
7668 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7669 } else
7670 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7671 } else if (using_ssc_source) {
7672 final |= DREF_SSC_SOURCE_ENABLE;
7673 final |= DREF_SSC1_ENABLE;
7674 }
7675
7676 if (final == val)
7677 return;
7678
7679 /* Always enable nonspread source */
7680 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7681
7682 if (has_ck505)
7683 val |= DREF_NONSPREAD_CK505_ENABLE;
7684 else
7685 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7686
7687 if (has_panel) {
7688 val &= ~DREF_SSC_SOURCE_MASK;
7689 val |= DREF_SSC_SOURCE_ENABLE;
7690
7691 /* SSC must be turned on before enabling the CPU output */
7692 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7693 DRM_DEBUG_KMS("Using SSC on panel\n");
7694 val |= DREF_SSC1_ENABLE;
7695 } else
7696 val &= ~DREF_SSC1_ENABLE;
7697
7698 /* Get SSC going before enabling the outputs */
7699 I915_WRITE(PCH_DREF_CONTROL, val);
7700 POSTING_READ(PCH_DREF_CONTROL);
7701 udelay(200);
7702
7703 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7704
7705 /* Enable CPU source on CPU attached eDP */
7706 if (has_cpu_edp) {
7707 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7708 DRM_DEBUG_KMS("Using SSC on eDP\n");
7709 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7710 } else
7711 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7712 } else
7713 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7714
7715 I915_WRITE(PCH_DREF_CONTROL, val);
7716 POSTING_READ(PCH_DREF_CONTROL);
7717 udelay(200);
7718 } else {
7719 DRM_DEBUG_KMS("Disabling CPU source output\n");
7720
7721 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7722
7723 /* Turn off CPU output */
7724 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7725
7726 I915_WRITE(PCH_DREF_CONTROL, val);
7727 POSTING_READ(PCH_DREF_CONTROL);
7728 udelay(200);
7729
7730 if (!using_ssc_source) {
7731 DRM_DEBUG_KMS("Disabling SSC source\n");
7732
7733 /* Turn off the SSC source */
7734 val &= ~DREF_SSC_SOURCE_MASK;
7735 val |= DREF_SSC_SOURCE_DISABLE;
7736
7737 /* Turn off SSC1 */
7738 val &= ~DREF_SSC1_ENABLE;
7739
7740 I915_WRITE(PCH_DREF_CONTROL, val);
7741 POSTING_READ(PCH_DREF_CONTROL);
7742 udelay(200);
7743 }
7744 }
7745
7746 BUG_ON(val != final);
7747 }
7748
7749 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7750 {
7751 uint32_t tmp;
7752
7753 tmp = I915_READ(SOUTH_CHICKEN2);
7754 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7755 I915_WRITE(SOUTH_CHICKEN2, tmp);
7756
7757 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7758 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7759 DRM_ERROR("FDI mPHY reset assert timeout\n");
7760
7761 tmp = I915_READ(SOUTH_CHICKEN2);
7762 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7763 I915_WRITE(SOUTH_CHICKEN2, tmp);
7764
7765 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7766 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7767 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7768 }
7769
7770 /* WaMPhyProgramming:hsw */
7771 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7772 {
7773 uint32_t tmp;
7774
7775 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7776 tmp &= ~(0xFF << 24);
7777 tmp |= (0x12 << 24);
7778 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7779
7780 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7781 tmp |= (1 << 11);
7782 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7783
7784 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7785 tmp |= (1 << 11);
7786 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7787
7788 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7789 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7790 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7791
7792 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7793 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7794 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7795
7796 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7797 tmp &= ~(7 << 13);
7798 tmp |= (5 << 13);
7799 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7800
7801 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7802 tmp &= ~(7 << 13);
7803 tmp |= (5 << 13);
7804 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7805
7806 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7807 tmp &= ~0xFF;
7808 tmp |= 0x1C;
7809 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7810
7811 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7812 tmp &= ~0xFF;
7813 tmp |= 0x1C;
7814 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7815
7816 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7817 tmp &= ~(0xFF << 16);
7818 tmp |= (0x1C << 16);
7819 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7820
7821 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7822 tmp &= ~(0xFF << 16);
7823 tmp |= (0x1C << 16);
7824 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7825
7826 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7827 tmp |= (1 << 27);
7828 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7829
7830 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7831 tmp |= (1 << 27);
7832 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7833
7834 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7835 tmp &= ~(0xF << 28);
7836 tmp |= (4 << 28);
7837 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7838
7839 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7840 tmp &= ~(0xF << 28);
7841 tmp |= (4 << 28);
7842 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7843 }
7844
7845 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7846 * Programming" based on the parameters passed:
7847 * - Sequence to enable CLKOUT_DP
7848 * - Sequence to enable CLKOUT_DP without spread
7849 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7850 */
7851 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7852 bool with_spread, bool with_fdi)
7853 {
7854 uint32_t reg, tmp;
7855
7856 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7857 with_spread = true;
7858 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7859 with_fdi, "LP PCH doesn't have FDI\n"))
7860 with_fdi = false;
7861
7862 mutex_lock(&dev_priv->sb_lock);
7863
7864 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7865 tmp &= ~SBI_SSCCTL_DISABLE;
7866 tmp |= SBI_SSCCTL_PATHALT;
7867 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7868
7869 udelay(24);
7870
7871 if (with_spread) {
7872 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7873 tmp &= ~SBI_SSCCTL_PATHALT;
7874 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7875
7876 if (with_fdi) {
7877 lpt_reset_fdi_mphy(dev_priv);
7878 lpt_program_fdi_mphy(dev_priv);
7879 }
7880 }
7881
7882 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7883 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7884 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7885 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7886
7887 mutex_unlock(&dev_priv->sb_lock);
7888 }
7889
7890 /* Sequence to disable CLKOUT_DP */
7891 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7892 {
7893 uint32_t reg, tmp;
7894
7895 mutex_lock(&dev_priv->sb_lock);
7896
7897 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7898 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7899 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7900 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7901
7902 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7903 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7904 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7905 tmp |= SBI_SSCCTL_PATHALT;
7906 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7907 udelay(32);
7908 }
7909 tmp |= SBI_SSCCTL_DISABLE;
7910 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7911 }
7912
7913 mutex_unlock(&dev_priv->sb_lock);
7914 }
7915
7916 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7917
7918 static const uint16_t sscdivintphase[] = {
7919 [BEND_IDX( 50)] = 0x3B23,
7920 [BEND_IDX( 45)] = 0x3B23,
7921 [BEND_IDX( 40)] = 0x3C23,
7922 [BEND_IDX( 35)] = 0x3C23,
7923 [BEND_IDX( 30)] = 0x3D23,
7924 [BEND_IDX( 25)] = 0x3D23,
7925 [BEND_IDX( 20)] = 0x3E23,
7926 [BEND_IDX( 15)] = 0x3E23,
7927 [BEND_IDX( 10)] = 0x3F23,
7928 [BEND_IDX( 5)] = 0x3F23,
7929 [BEND_IDX( 0)] = 0x0025,
7930 [BEND_IDX( -5)] = 0x0025,
7931 [BEND_IDX(-10)] = 0x0125,
7932 [BEND_IDX(-15)] = 0x0125,
7933 [BEND_IDX(-20)] = 0x0225,
7934 [BEND_IDX(-25)] = 0x0225,
7935 [BEND_IDX(-30)] = 0x0325,
7936 [BEND_IDX(-35)] = 0x0325,
7937 [BEND_IDX(-40)] = 0x0425,
7938 [BEND_IDX(-45)] = 0x0425,
7939 [BEND_IDX(-50)] = 0x0525,
7940 };
7941
7942 /*
7943 * Bend CLKOUT_DP
7944 * steps -50 to 50 inclusive, in steps of 5
7945 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7946 * change in clock period = -(steps / 10) * 5.787 ps
7947 */
7948 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7949 {
7950 uint32_t tmp;
7951 int idx = BEND_IDX(steps);
7952
7953 if (WARN_ON(steps % 5 != 0))
7954 return;
7955
7956 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7957 return;
7958
7959 mutex_lock(&dev_priv->sb_lock);
7960
7961 if (steps % 10 != 0)
7962 tmp = 0xAAAAAAAB;
7963 else
7964 tmp = 0x00000000;
7965 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7966
7967 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7968 tmp &= 0xffff0000;
7969 tmp |= sscdivintphase[idx];
7970 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7971
7972 mutex_unlock(&dev_priv->sb_lock);
7973 }
7974
7975 #undef BEND_IDX
7976
7977 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7978 {
7979 struct intel_encoder *encoder;
7980 bool has_vga = false;
7981
7982 for_each_intel_encoder(&dev_priv->drm, encoder) {
7983 switch (encoder->type) {
7984 case INTEL_OUTPUT_ANALOG:
7985 has_vga = true;
7986 break;
7987 default:
7988 break;
7989 }
7990 }
7991
7992 if (has_vga) {
7993 lpt_bend_clkout_dp(dev_priv, 0);
7994 lpt_enable_clkout_dp(dev_priv, true, true);
7995 } else {
7996 lpt_disable_clkout_dp(dev_priv);
7997 }
7998 }
7999
8000 /*
8001 * Initialize reference clocks when the driver loads
8002 */
8003 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8004 {
8005 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8006 ironlake_init_pch_refclk(dev_priv);
8007 else if (HAS_PCH_LPT(dev_priv))
8008 lpt_init_pch_refclk(dev_priv);
8009 }
8010
8011 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8012 {
8013 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8015 int pipe = intel_crtc->pipe;
8016 uint32_t val;
8017
8018 val = 0;
8019
8020 switch (intel_crtc->config->pipe_bpp) {
8021 case 18:
8022 val |= PIPECONF_6BPC;
8023 break;
8024 case 24:
8025 val |= PIPECONF_8BPC;
8026 break;
8027 case 30:
8028 val |= PIPECONF_10BPC;
8029 break;
8030 case 36:
8031 val |= PIPECONF_12BPC;
8032 break;
8033 default:
8034 /* Case prevented by intel_choose_pipe_bpp_dither. */
8035 BUG();
8036 }
8037
8038 if (intel_crtc->config->dither)
8039 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8040
8041 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8042 val |= PIPECONF_INTERLACED_ILK;
8043 else
8044 val |= PIPECONF_PROGRESSIVE;
8045
8046 if (intel_crtc->config->limited_color_range)
8047 val |= PIPECONF_COLOR_RANGE_SELECT;
8048
8049 I915_WRITE(PIPECONF(pipe), val);
8050 POSTING_READ(PIPECONF(pipe));
8051 }
8052
8053 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8054 {
8055 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8057 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8058 u32 val = 0;
8059
8060 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8061 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8062
8063 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8064 val |= PIPECONF_INTERLACED_ILK;
8065 else
8066 val |= PIPECONF_PROGRESSIVE;
8067
8068 I915_WRITE(PIPECONF(cpu_transcoder), val);
8069 POSTING_READ(PIPECONF(cpu_transcoder));
8070 }
8071
8072 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8073 {
8074 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8076
8077 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8078 u32 val = 0;
8079
8080 switch (intel_crtc->config->pipe_bpp) {
8081 case 18:
8082 val |= PIPEMISC_DITHER_6_BPC;
8083 break;
8084 case 24:
8085 val |= PIPEMISC_DITHER_8_BPC;
8086 break;
8087 case 30:
8088 val |= PIPEMISC_DITHER_10_BPC;
8089 break;
8090 case 36:
8091 val |= PIPEMISC_DITHER_12_BPC;
8092 break;
8093 default:
8094 /* Case prevented by pipe_config_set_bpp. */
8095 BUG();
8096 }
8097
8098 if (intel_crtc->config->dither)
8099 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8100
8101 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8102 }
8103 }
8104
8105 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8106 {
8107 /*
8108 * Account for spread spectrum to avoid
8109 * oversubscribing the link. Max center spread
8110 * is 2.5%; use 5% for safety's sake.
8111 */
8112 u32 bps = target_clock * bpp * 21 / 20;
8113 return DIV_ROUND_UP(bps, link_bw * 8);
8114 }
8115
8116 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8117 {
8118 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8119 }
8120
8121 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8122 struct intel_crtc_state *crtc_state,
8123 struct dpll *reduced_clock)
8124 {
8125 struct drm_crtc *crtc = &intel_crtc->base;
8126 struct drm_device *dev = crtc->dev;
8127 struct drm_i915_private *dev_priv = to_i915(dev);
8128 u32 dpll, fp, fp2;
8129 int factor;
8130
8131 /* Enable autotuning of the PLL clock (if permissible) */
8132 factor = 21;
8133 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8134 if ((intel_panel_use_ssc(dev_priv) &&
8135 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8136 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8137 factor = 25;
8138 } else if (crtc_state->sdvo_tv_clock)
8139 factor = 20;
8140
8141 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8142
8143 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8144 fp |= FP_CB_TUNE;
8145
8146 if (reduced_clock) {
8147 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8148
8149 if (reduced_clock->m < factor * reduced_clock->n)
8150 fp2 |= FP_CB_TUNE;
8151 } else {
8152 fp2 = fp;
8153 }
8154
8155 dpll = 0;
8156
8157 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8158 dpll |= DPLLB_MODE_LVDS;
8159 else
8160 dpll |= DPLLB_MODE_DAC_SERIAL;
8161
8162 dpll |= (crtc_state->pixel_multiplier - 1)
8163 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8164
8165 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8166 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8167 dpll |= DPLL_SDVO_HIGH_SPEED;
8168
8169 if (intel_crtc_has_dp_encoder(crtc_state))
8170 dpll |= DPLL_SDVO_HIGH_SPEED;
8171
8172 /*
8173 * The high speed IO clock is only really required for
8174 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8175 * possible to share the DPLL between CRT and HDMI. Enabling
8176 * the clock needlessly does no real harm, except use up a
8177 * bit of power potentially.
8178 *
8179 * We'll limit this to IVB with 3 pipes, since it has only two
8180 * DPLLs and so DPLL sharing is the only way to get three pipes
8181 * driving PCH ports at the same time. On SNB we could do this,
8182 * and potentially avoid enabling the second DPLL, but it's not
8183 * clear if it''s a win or loss power wise. No point in doing
8184 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8185 */
8186 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8187 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8188 dpll |= DPLL_SDVO_HIGH_SPEED;
8189
8190 /* compute bitmask from p1 value */
8191 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8192 /* also FPA1 */
8193 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8194
8195 switch (crtc_state->dpll.p2) {
8196 case 5:
8197 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8198 break;
8199 case 7:
8200 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8201 break;
8202 case 10:
8203 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8204 break;
8205 case 14:
8206 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8207 break;
8208 }
8209
8210 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8211 intel_panel_use_ssc(dev_priv))
8212 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8213 else
8214 dpll |= PLL_REF_INPUT_DREFCLK;
8215
8216 dpll |= DPLL_VCO_ENABLE;
8217
8218 crtc_state->dpll_hw_state.dpll = dpll;
8219 crtc_state->dpll_hw_state.fp0 = fp;
8220 crtc_state->dpll_hw_state.fp1 = fp2;
8221 }
8222
8223 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8224 struct intel_crtc_state *crtc_state)
8225 {
8226 struct drm_device *dev = crtc->base.dev;
8227 struct drm_i915_private *dev_priv = to_i915(dev);
8228 const struct intel_limit *limit;
8229 int refclk = 120000;
8230
8231 memset(&crtc_state->dpll_hw_state, 0,
8232 sizeof(crtc_state->dpll_hw_state));
8233
8234 crtc->lowfreq_avail = false;
8235
8236 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8237 if (!crtc_state->has_pch_encoder)
8238 return 0;
8239
8240 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8241 if (intel_panel_use_ssc(dev_priv)) {
8242 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8243 dev_priv->vbt.lvds_ssc_freq);
8244 refclk = dev_priv->vbt.lvds_ssc_freq;
8245 }
8246
8247 if (intel_is_dual_link_lvds(dev)) {
8248 if (refclk == 100000)
8249 limit = &intel_limits_ironlake_dual_lvds_100m;
8250 else
8251 limit = &intel_limits_ironlake_dual_lvds;
8252 } else {
8253 if (refclk == 100000)
8254 limit = &intel_limits_ironlake_single_lvds_100m;
8255 else
8256 limit = &intel_limits_ironlake_single_lvds;
8257 }
8258 } else {
8259 limit = &intel_limits_ironlake_dac;
8260 }
8261
8262 if (!crtc_state->clock_set &&
8263 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8264 refclk, NULL, &crtc_state->dpll)) {
8265 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8266 return -EINVAL;
8267 }
8268
8269 ironlake_compute_dpll(crtc, crtc_state, NULL);
8270
8271 if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8272 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8273 pipe_name(crtc->pipe));
8274 return -EINVAL;
8275 }
8276
8277 return 0;
8278 }
8279
8280 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8281 struct intel_link_m_n *m_n)
8282 {
8283 struct drm_device *dev = crtc->base.dev;
8284 struct drm_i915_private *dev_priv = to_i915(dev);
8285 enum pipe pipe = crtc->pipe;
8286
8287 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8288 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8289 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8290 & ~TU_SIZE_MASK;
8291 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8292 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8293 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8294 }
8295
8296 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8297 enum transcoder transcoder,
8298 struct intel_link_m_n *m_n,
8299 struct intel_link_m_n *m2_n2)
8300 {
8301 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8302 enum pipe pipe = crtc->pipe;
8303
8304 if (INTEL_GEN(dev_priv) >= 5) {
8305 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8306 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8307 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8308 & ~TU_SIZE_MASK;
8309 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8310 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8311 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8312 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8313 * gen < 8) and if DRRS is supported (to make sure the
8314 * registers are not unnecessarily read).
8315 */
8316 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8317 crtc->config->has_drrs) {
8318 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8319 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8320 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8321 & ~TU_SIZE_MASK;
8322 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8323 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8324 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8325 }
8326 } else {
8327 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8328 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8329 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8330 & ~TU_SIZE_MASK;
8331 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8332 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8333 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8334 }
8335 }
8336
8337 void intel_dp_get_m_n(struct intel_crtc *crtc,
8338 struct intel_crtc_state *pipe_config)
8339 {
8340 if (pipe_config->has_pch_encoder)
8341 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8342 else
8343 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8344 &pipe_config->dp_m_n,
8345 &pipe_config->dp_m2_n2);
8346 }
8347
8348 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8349 struct intel_crtc_state *pipe_config)
8350 {
8351 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8352 &pipe_config->fdi_m_n, NULL);
8353 }
8354
8355 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8356 struct intel_crtc_state *pipe_config)
8357 {
8358 struct drm_device *dev = crtc->base.dev;
8359 struct drm_i915_private *dev_priv = to_i915(dev);
8360 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8361 uint32_t ps_ctrl = 0;
8362 int id = -1;
8363 int i;
8364
8365 /* find scaler attached to this pipe */
8366 for (i = 0; i < crtc->num_scalers; i++) {
8367 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8368 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8369 id = i;
8370 pipe_config->pch_pfit.enabled = true;
8371 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8372 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8373 break;
8374 }
8375 }
8376
8377 scaler_state->scaler_id = id;
8378 if (id >= 0) {
8379 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8380 } else {
8381 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8382 }
8383 }
8384
8385 static void
8386 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8387 struct intel_initial_plane_config *plane_config)
8388 {
8389 struct drm_device *dev = crtc->base.dev;
8390 struct drm_i915_private *dev_priv = to_i915(dev);
8391 u32 val, base, offset, stride_mult, tiling;
8392 int pipe = crtc->pipe;
8393 int fourcc, pixel_format;
8394 unsigned int aligned_height;
8395 struct drm_framebuffer *fb;
8396 struct intel_framebuffer *intel_fb;
8397
8398 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8399 if (!intel_fb) {
8400 DRM_DEBUG_KMS("failed to alloc fb\n");
8401 return;
8402 }
8403
8404 fb = &intel_fb->base;
8405
8406 fb->dev = dev;
8407
8408 val = I915_READ(PLANE_CTL(pipe, 0));
8409 if (!(val & PLANE_CTL_ENABLE))
8410 goto error;
8411
8412 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8413 fourcc = skl_format_to_fourcc(pixel_format,
8414 val & PLANE_CTL_ORDER_RGBX,
8415 val & PLANE_CTL_ALPHA_MASK);
8416 fb->format = drm_format_info(fourcc);
8417
8418 tiling = val & PLANE_CTL_TILED_MASK;
8419 switch (tiling) {
8420 case PLANE_CTL_TILED_LINEAR:
8421 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8422 break;
8423 case PLANE_CTL_TILED_X:
8424 plane_config->tiling = I915_TILING_X;
8425 fb->modifier = I915_FORMAT_MOD_X_TILED;
8426 break;
8427 case PLANE_CTL_TILED_Y:
8428 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8429 break;
8430 case PLANE_CTL_TILED_YF:
8431 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8432 break;
8433 default:
8434 MISSING_CASE(tiling);
8435 goto error;
8436 }
8437
8438 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8439 plane_config->base = base;
8440
8441 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8442
8443 val = I915_READ(PLANE_SIZE(pipe, 0));
8444 fb->height = ((val >> 16) & 0xfff) + 1;
8445 fb->width = ((val >> 0) & 0x1fff) + 1;
8446
8447 val = I915_READ(PLANE_STRIDE(pipe, 0));
8448 stride_mult = intel_fb_stride_alignment(fb, 0);
8449 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8450
8451 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8452
8453 plane_config->size = fb->pitches[0] * aligned_height;
8454
8455 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8456 pipe_name(pipe), fb->width, fb->height,
8457 fb->format->cpp[0] * 8, base, fb->pitches[0],
8458 plane_config->size);
8459
8460 plane_config->fb = intel_fb;
8461 return;
8462
8463 error:
8464 kfree(intel_fb);
8465 }
8466
8467 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8468 struct intel_crtc_state *pipe_config)
8469 {
8470 struct drm_device *dev = crtc->base.dev;
8471 struct drm_i915_private *dev_priv = to_i915(dev);
8472 uint32_t tmp;
8473
8474 tmp = I915_READ(PF_CTL(crtc->pipe));
8475
8476 if (tmp & PF_ENABLE) {
8477 pipe_config->pch_pfit.enabled = true;
8478 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8479 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8480
8481 /* We currently do not free assignements of panel fitters on
8482 * ivb/hsw (since we don't use the higher upscaling modes which
8483 * differentiates them) so just WARN about this case for now. */
8484 if (IS_GEN7(dev_priv)) {
8485 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8486 PF_PIPE_SEL_IVB(crtc->pipe));
8487 }
8488 }
8489 }
8490
8491 static void
8492 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8493 struct intel_initial_plane_config *plane_config)
8494 {
8495 struct drm_device *dev = crtc->base.dev;
8496 struct drm_i915_private *dev_priv = to_i915(dev);
8497 u32 val, base, offset;
8498 int pipe = crtc->pipe;
8499 int fourcc, pixel_format;
8500 unsigned int aligned_height;
8501 struct drm_framebuffer *fb;
8502 struct intel_framebuffer *intel_fb;
8503
8504 val = I915_READ(DSPCNTR(pipe));
8505 if (!(val & DISPLAY_PLANE_ENABLE))
8506 return;
8507
8508 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8509 if (!intel_fb) {
8510 DRM_DEBUG_KMS("failed to alloc fb\n");
8511 return;
8512 }
8513
8514 fb = &intel_fb->base;
8515
8516 fb->dev = dev;
8517
8518 if (INTEL_GEN(dev_priv) >= 4) {
8519 if (val & DISPPLANE_TILED) {
8520 plane_config->tiling = I915_TILING_X;
8521 fb->modifier = I915_FORMAT_MOD_X_TILED;
8522 }
8523 }
8524
8525 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8526 fourcc = i9xx_format_to_fourcc(pixel_format);
8527 fb->format = drm_format_info(fourcc);
8528
8529 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8530 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8531 offset = I915_READ(DSPOFFSET(pipe));
8532 } else {
8533 if (plane_config->tiling)
8534 offset = I915_READ(DSPTILEOFF(pipe));
8535 else
8536 offset = I915_READ(DSPLINOFF(pipe));
8537 }
8538 plane_config->base = base;
8539
8540 val = I915_READ(PIPESRC(pipe));
8541 fb->width = ((val >> 16) & 0xfff) + 1;
8542 fb->height = ((val >> 0) & 0xfff) + 1;
8543
8544 val = I915_READ(DSPSTRIDE(pipe));
8545 fb->pitches[0] = val & 0xffffffc0;
8546
8547 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8548
8549 plane_config->size = fb->pitches[0] * aligned_height;
8550
8551 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8552 pipe_name(pipe), fb->width, fb->height,
8553 fb->format->cpp[0] * 8, base, fb->pitches[0],
8554 plane_config->size);
8555
8556 plane_config->fb = intel_fb;
8557 }
8558
8559 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8560 struct intel_crtc_state *pipe_config)
8561 {
8562 struct drm_device *dev = crtc->base.dev;
8563 struct drm_i915_private *dev_priv = to_i915(dev);
8564 enum intel_display_power_domain power_domain;
8565 uint32_t tmp;
8566 bool ret;
8567
8568 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8569 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8570 return false;
8571
8572 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8573 pipe_config->shared_dpll = NULL;
8574
8575 ret = false;
8576 tmp = I915_READ(PIPECONF(crtc->pipe));
8577 if (!(tmp & PIPECONF_ENABLE))
8578 goto out;
8579
8580 switch (tmp & PIPECONF_BPC_MASK) {
8581 case PIPECONF_6BPC:
8582 pipe_config->pipe_bpp = 18;
8583 break;
8584 case PIPECONF_8BPC:
8585 pipe_config->pipe_bpp = 24;
8586 break;
8587 case PIPECONF_10BPC:
8588 pipe_config->pipe_bpp = 30;
8589 break;
8590 case PIPECONF_12BPC:
8591 pipe_config->pipe_bpp = 36;
8592 break;
8593 default:
8594 break;
8595 }
8596
8597 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8598 pipe_config->limited_color_range = true;
8599
8600 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8601 struct intel_shared_dpll *pll;
8602 enum intel_dpll_id pll_id;
8603
8604 pipe_config->has_pch_encoder = true;
8605
8606 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8607 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8608 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8609
8610 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8611
8612 if (HAS_PCH_IBX(dev_priv)) {
8613 /*
8614 * The pipe->pch transcoder and pch transcoder->pll
8615 * mapping is fixed.
8616 */
8617 pll_id = (enum intel_dpll_id) crtc->pipe;
8618 } else {
8619 tmp = I915_READ(PCH_DPLL_SEL);
8620 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8621 pll_id = DPLL_ID_PCH_PLL_B;
8622 else
8623 pll_id= DPLL_ID_PCH_PLL_A;
8624 }
8625
8626 pipe_config->shared_dpll =
8627 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8628 pll = pipe_config->shared_dpll;
8629
8630 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8631 &pipe_config->dpll_hw_state));
8632
8633 tmp = pipe_config->dpll_hw_state.dpll;
8634 pipe_config->pixel_multiplier =
8635 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8636 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8637
8638 ironlake_pch_clock_get(crtc, pipe_config);
8639 } else {
8640 pipe_config->pixel_multiplier = 1;
8641 }
8642
8643 intel_get_pipe_timings(crtc, pipe_config);
8644 intel_get_pipe_src_size(crtc, pipe_config);
8645
8646 ironlake_get_pfit_config(crtc, pipe_config);
8647
8648 ret = true;
8649
8650 out:
8651 intel_display_power_put(dev_priv, power_domain);
8652
8653 return ret;
8654 }
8655
8656 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8657 {
8658 struct drm_device *dev = &dev_priv->drm;
8659 struct intel_crtc *crtc;
8660
8661 for_each_intel_crtc(dev, crtc)
8662 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8663 pipe_name(crtc->pipe));
8664
8665 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8666 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8667 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8668 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8669 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8670 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8671 "CPU PWM1 enabled\n");
8672 if (IS_HASWELL(dev_priv))
8673 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8674 "CPU PWM2 enabled\n");
8675 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8676 "PCH PWM1 enabled\n");
8677 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8678 "Utility pin enabled\n");
8679 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8680
8681 /*
8682 * In theory we can still leave IRQs enabled, as long as only the HPD
8683 * interrupts remain enabled. We used to check for that, but since it's
8684 * gen-specific and since we only disable LCPLL after we fully disable
8685 * the interrupts, the check below should be enough.
8686 */
8687 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8688 }
8689
8690 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8691 {
8692 if (IS_HASWELL(dev_priv))
8693 return I915_READ(D_COMP_HSW);
8694 else
8695 return I915_READ(D_COMP_BDW);
8696 }
8697
8698 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8699 {
8700 if (IS_HASWELL(dev_priv)) {
8701 mutex_lock(&dev_priv->rps.hw_lock);
8702 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8703 val))
8704 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8705 mutex_unlock(&dev_priv->rps.hw_lock);
8706 } else {
8707 I915_WRITE(D_COMP_BDW, val);
8708 POSTING_READ(D_COMP_BDW);
8709 }
8710 }
8711
8712 /*
8713 * This function implements pieces of two sequences from BSpec:
8714 * - Sequence for display software to disable LCPLL
8715 * - Sequence for display software to allow package C8+
8716 * The steps implemented here are just the steps that actually touch the LCPLL
8717 * register. Callers should take care of disabling all the display engine
8718 * functions, doing the mode unset, fixing interrupts, etc.
8719 */
8720 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8721 bool switch_to_fclk, bool allow_power_down)
8722 {
8723 uint32_t val;
8724
8725 assert_can_disable_lcpll(dev_priv);
8726
8727 val = I915_READ(LCPLL_CTL);
8728
8729 if (switch_to_fclk) {
8730 val |= LCPLL_CD_SOURCE_FCLK;
8731 I915_WRITE(LCPLL_CTL, val);
8732
8733 if (wait_for_us(I915_READ(LCPLL_CTL) &
8734 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8735 DRM_ERROR("Switching to FCLK failed\n");
8736
8737 val = I915_READ(LCPLL_CTL);
8738 }
8739
8740 val |= LCPLL_PLL_DISABLE;
8741 I915_WRITE(LCPLL_CTL, val);
8742 POSTING_READ(LCPLL_CTL);
8743
8744 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8745 DRM_ERROR("LCPLL still locked\n");
8746
8747 val = hsw_read_dcomp(dev_priv);
8748 val |= D_COMP_COMP_DISABLE;
8749 hsw_write_dcomp(dev_priv, val);
8750 ndelay(100);
8751
8752 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8753 1))
8754 DRM_ERROR("D_COMP RCOMP still in progress\n");
8755
8756 if (allow_power_down) {
8757 val = I915_READ(LCPLL_CTL);
8758 val |= LCPLL_POWER_DOWN_ALLOW;
8759 I915_WRITE(LCPLL_CTL, val);
8760 POSTING_READ(LCPLL_CTL);
8761 }
8762 }
8763
8764 /*
8765 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8766 * source.
8767 */
8768 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8769 {
8770 uint32_t val;
8771
8772 val = I915_READ(LCPLL_CTL);
8773
8774 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8775 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8776 return;
8777
8778 /*
8779 * Make sure we're not on PC8 state before disabling PC8, otherwise
8780 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8781 */
8782 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8783
8784 if (val & LCPLL_POWER_DOWN_ALLOW) {
8785 val &= ~LCPLL_POWER_DOWN_ALLOW;
8786 I915_WRITE(LCPLL_CTL, val);
8787 POSTING_READ(LCPLL_CTL);
8788 }
8789
8790 val = hsw_read_dcomp(dev_priv);
8791 val |= D_COMP_COMP_FORCE;
8792 val &= ~D_COMP_COMP_DISABLE;
8793 hsw_write_dcomp(dev_priv, val);
8794
8795 val = I915_READ(LCPLL_CTL);
8796 val &= ~LCPLL_PLL_DISABLE;
8797 I915_WRITE(LCPLL_CTL, val);
8798
8799 if (intel_wait_for_register(dev_priv,
8800 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8801 5))
8802 DRM_ERROR("LCPLL not locked yet\n");
8803
8804 if (val & LCPLL_CD_SOURCE_FCLK) {
8805 val = I915_READ(LCPLL_CTL);
8806 val &= ~LCPLL_CD_SOURCE_FCLK;
8807 I915_WRITE(LCPLL_CTL, val);
8808
8809 if (wait_for_us((I915_READ(LCPLL_CTL) &
8810 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8811 DRM_ERROR("Switching back to LCPLL failed\n");
8812 }
8813
8814 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8815 intel_update_cdclk(dev_priv);
8816 }
8817
8818 /*
8819 * Package states C8 and deeper are really deep PC states that can only be
8820 * reached when all the devices on the system allow it, so even if the graphics
8821 * device allows PC8+, it doesn't mean the system will actually get to these
8822 * states. Our driver only allows PC8+ when going into runtime PM.
8823 *
8824 * The requirements for PC8+ are that all the outputs are disabled, the power
8825 * well is disabled and most interrupts are disabled, and these are also
8826 * requirements for runtime PM. When these conditions are met, we manually do
8827 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8828 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8829 * hang the machine.
8830 *
8831 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8832 * the state of some registers, so when we come back from PC8+ we need to
8833 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8834 * need to take care of the registers kept by RC6. Notice that this happens even
8835 * if we don't put the device in PCI D3 state (which is what currently happens
8836 * because of the runtime PM support).
8837 *
8838 * For more, read "Display Sequences for Package C8" on the hardware
8839 * documentation.
8840 */
8841 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8842 {
8843 uint32_t val;
8844
8845 DRM_DEBUG_KMS("Enabling package C8+\n");
8846
8847 if (HAS_PCH_LPT_LP(dev_priv)) {
8848 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8849 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8850 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8851 }
8852
8853 lpt_disable_clkout_dp(dev_priv);
8854 hsw_disable_lcpll(dev_priv, true, true);
8855 }
8856
8857 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8858 {
8859 uint32_t val;
8860
8861 DRM_DEBUG_KMS("Disabling package C8+\n");
8862
8863 hsw_restore_lcpll(dev_priv);
8864 lpt_init_pch_refclk(dev_priv);
8865
8866 if (HAS_PCH_LPT_LP(dev_priv)) {
8867 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8868 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8869 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8870 }
8871 }
8872
8873 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8874 struct intel_crtc_state *crtc_state)
8875 {
8876 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8877 struct intel_encoder *encoder =
8878 intel_ddi_get_crtc_new_encoder(crtc_state);
8879
8880 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8881 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8882 pipe_name(crtc->pipe));
8883 return -EINVAL;
8884 }
8885 }
8886
8887 crtc->lowfreq_avail = false;
8888
8889 return 0;
8890 }
8891
8892 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8893 enum port port,
8894 struct intel_crtc_state *pipe_config)
8895 {
8896 enum intel_dpll_id id;
8897 u32 temp;
8898
8899 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8900 id = temp >> (port * 2);
8901
8902 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8903 return;
8904
8905 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8906 }
8907
8908 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8909 enum port port,
8910 struct intel_crtc_state *pipe_config)
8911 {
8912 enum intel_dpll_id id;
8913
8914 switch (port) {
8915 case PORT_A:
8916 id = DPLL_ID_SKL_DPLL0;
8917 break;
8918 case PORT_B:
8919 id = DPLL_ID_SKL_DPLL1;
8920 break;
8921 case PORT_C:
8922 id = DPLL_ID_SKL_DPLL2;
8923 break;
8924 default:
8925 DRM_ERROR("Incorrect port type\n");
8926 return;
8927 }
8928
8929 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8930 }
8931
8932 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8933 enum port port,
8934 struct intel_crtc_state *pipe_config)
8935 {
8936 enum intel_dpll_id id;
8937 u32 temp;
8938
8939 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8940 id = temp >> (port * 3 + 1);
8941
8942 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8943 return;
8944
8945 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8946 }
8947
8948 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8949 enum port port,
8950 struct intel_crtc_state *pipe_config)
8951 {
8952 enum intel_dpll_id id;
8953 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8954
8955 switch (ddi_pll_sel) {
8956 case PORT_CLK_SEL_WRPLL1:
8957 id = DPLL_ID_WRPLL1;
8958 break;
8959 case PORT_CLK_SEL_WRPLL2:
8960 id = DPLL_ID_WRPLL2;
8961 break;
8962 case PORT_CLK_SEL_SPLL:
8963 id = DPLL_ID_SPLL;
8964 break;
8965 case PORT_CLK_SEL_LCPLL_810:
8966 id = DPLL_ID_LCPLL_810;
8967 break;
8968 case PORT_CLK_SEL_LCPLL_1350:
8969 id = DPLL_ID_LCPLL_1350;
8970 break;
8971 case PORT_CLK_SEL_LCPLL_2700:
8972 id = DPLL_ID_LCPLL_2700;
8973 break;
8974 default:
8975 MISSING_CASE(ddi_pll_sel);
8976 /* fall through */
8977 case PORT_CLK_SEL_NONE:
8978 return;
8979 }
8980
8981 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8982 }
8983
8984 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8985 struct intel_crtc_state *pipe_config,
8986 u64 *power_domain_mask)
8987 {
8988 struct drm_device *dev = crtc->base.dev;
8989 struct drm_i915_private *dev_priv = to_i915(dev);
8990 enum intel_display_power_domain power_domain;
8991 u32 tmp;
8992
8993 /*
8994 * The pipe->transcoder mapping is fixed with the exception of the eDP
8995 * transcoder handled below.
8996 */
8997 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8998
8999 /*
9000 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9001 * consistency and less surprising code; it's in always on power).
9002 */
9003 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9004 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9005 enum pipe trans_edp_pipe;
9006 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9007 default:
9008 WARN(1, "unknown pipe linked to edp transcoder\n");
9009 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9010 case TRANS_DDI_EDP_INPUT_A_ON:
9011 trans_edp_pipe = PIPE_A;
9012 break;
9013 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9014 trans_edp_pipe = PIPE_B;
9015 break;
9016 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9017 trans_edp_pipe = PIPE_C;
9018 break;
9019 }
9020
9021 if (trans_edp_pipe == crtc->pipe)
9022 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9023 }
9024
9025 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9026 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9027 return false;
9028 *power_domain_mask |= BIT_ULL(power_domain);
9029
9030 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9031
9032 return tmp & PIPECONF_ENABLE;
9033 }
9034
9035 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9036 struct intel_crtc_state *pipe_config,
9037 u64 *power_domain_mask)
9038 {
9039 struct drm_device *dev = crtc->base.dev;
9040 struct drm_i915_private *dev_priv = to_i915(dev);
9041 enum intel_display_power_domain power_domain;
9042 enum port port;
9043 enum transcoder cpu_transcoder;
9044 u32 tmp;
9045
9046 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9047 if (port == PORT_A)
9048 cpu_transcoder = TRANSCODER_DSI_A;
9049 else
9050 cpu_transcoder = TRANSCODER_DSI_C;
9051
9052 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9053 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9054 continue;
9055 *power_domain_mask |= BIT_ULL(power_domain);
9056
9057 /*
9058 * The PLL needs to be enabled with a valid divider
9059 * configuration, otherwise accessing DSI registers will hang
9060 * the machine. See BSpec North Display Engine
9061 * registers/MIPI[BXT]. We can break out here early, since we
9062 * need the same DSI PLL to be enabled for both DSI ports.
9063 */
9064 if (!intel_dsi_pll_is_enabled(dev_priv))
9065 break;
9066
9067 /* XXX: this works for video mode only */
9068 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9069 if (!(tmp & DPI_ENABLE))
9070 continue;
9071
9072 tmp = I915_READ(MIPI_CTRL(port));
9073 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9074 continue;
9075
9076 pipe_config->cpu_transcoder = cpu_transcoder;
9077 break;
9078 }
9079
9080 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9081 }
9082
9083 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9084 struct intel_crtc_state *pipe_config)
9085 {
9086 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9087 struct intel_shared_dpll *pll;
9088 enum port port;
9089 uint32_t tmp;
9090
9091 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9092
9093 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9094
9095 if (IS_CANNONLAKE(dev_priv))
9096 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9097 else if (IS_GEN9_BC(dev_priv))
9098 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9099 else if (IS_GEN9_LP(dev_priv))
9100 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9101 else
9102 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9103
9104 pll = pipe_config->shared_dpll;
9105 if (pll) {
9106 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9107 &pipe_config->dpll_hw_state));
9108 }
9109
9110 /*
9111 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9112 * DDI E. So just check whether this pipe is wired to DDI E and whether
9113 * the PCH transcoder is on.
9114 */
9115 if (INTEL_GEN(dev_priv) < 9 &&
9116 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9117 pipe_config->has_pch_encoder = true;
9118
9119 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9120 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9121 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9122
9123 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9124 }
9125 }
9126
9127 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9128 struct intel_crtc_state *pipe_config)
9129 {
9130 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9131 enum intel_display_power_domain power_domain;
9132 u64 power_domain_mask;
9133 bool active;
9134
9135 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9136 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9137 return false;
9138 power_domain_mask = BIT_ULL(power_domain);
9139
9140 pipe_config->shared_dpll = NULL;
9141
9142 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9143
9144 if (IS_GEN9_LP(dev_priv) &&
9145 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9146 WARN_ON(active);
9147 active = true;
9148 }
9149
9150 if (!active)
9151 goto out;
9152
9153 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9154 haswell_get_ddi_port_state(crtc, pipe_config);
9155 intel_get_pipe_timings(crtc, pipe_config);
9156 }
9157
9158 intel_get_pipe_src_size(crtc, pipe_config);
9159
9160 pipe_config->gamma_mode =
9161 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9162
9163 if (INTEL_GEN(dev_priv) >= 9) {
9164 intel_crtc_init_scalers(crtc, pipe_config);
9165
9166 pipe_config->scaler_state.scaler_id = -1;
9167 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9168 }
9169
9170 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9171 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9172 power_domain_mask |= BIT_ULL(power_domain);
9173 if (INTEL_GEN(dev_priv) >= 9)
9174 skylake_get_pfit_config(crtc, pipe_config);
9175 else
9176 ironlake_get_pfit_config(crtc, pipe_config);
9177 }
9178
9179 if (IS_HASWELL(dev_priv))
9180 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9181 (I915_READ(IPS_CTL) & IPS_ENABLE);
9182
9183 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9184 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9185 pipe_config->pixel_multiplier =
9186 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9187 } else {
9188 pipe_config->pixel_multiplier = 1;
9189 }
9190
9191 out:
9192 for_each_power_domain(power_domain, power_domain_mask)
9193 intel_display_power_put(dev_priv, power_domain);
9194
9195 return active;
9196 }
9197
9198 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9199 {
9200 struct drm_i915_private *dev_priv =
9201 to_i915(plane_state->base.plane->dev);
9202 const struct drm_framebuffer *fb = plane_state->base.fb;
9203 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9204 u32 base;
9205
9206 if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9207 base = obj->phys_handle->busaddr;
9208 else
9209 base = intel_plane_ggtt_offset(plane_state);
9210
9211 base += plane_state->main.offset;
9212
9213 /* ILK+ do this automagically */
9214 if (HAS_GMCH_DISPLAY(dev_priv) &&
9215 plane_state->base.rotation & DRM_MODE_ROTATE_180)
9216 base += (plane_state->base.crtc_h *
9217 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9218
9219 return base;
9220 }
9221
9222 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9223 {
9224 int x = plane_state->base.crtc_x;
9225 int y = plane_state->base.crtc_y;
9226 u32 pos = 0;
9227
9228 if (x < 0) {
9229 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9230 x = -x;
9231 }
9232 pos |= x << CURSOR_X_SHIFT;
9233
9234 if (y < 0) {
9235 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9236 y = -y;
9237 }
9238 pos |= y << CURSOR_Y_SHIFT;
9239
9240 return pos;
9241 }
9242
9243 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9244 {
9245 const struct drm_mode_config *config =
9246 &plane_state->base.plane->dev->mode_config;
9247 int width = plane_state->base.crtc_w;
9248 int height = plane_state->base.crtc_h;
9249
9250 return width > 0 && width <= config->cursor_width &&
9251 height > 0 && height <= config->cursor_height;
9252 }
9253
9254 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9255 struct intel_plane_state *plane_state)
9256 {
9257 const struct drm_framebuffer *fb = plane_state->base.fb;
9258 int src_x, src_y;
9259 u32 offset;
9260 int ret;
9261
9262 ret = drm_plane_helper_check_state(&plane_state->base,
9263 &plane_state->clip,
9264 DRM_PLANE_HELPER_NO_SCALING,
9265 DRM_PLANE_HELPER_NO_SCALING,
9266 true, true);
9267 if (ret)
9268 return ret;
9269
9270 if (!fb)
9271 return 0;
9272
9273 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9274 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9275 return -EINVAL;
9276 }
9277
9278 src_x = plane_state->base.src_x >> 16;
9279 src_y = plane_state->base.src_y >> 16;
9280
9281 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9282 offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9283
9284 if (src_x != 0 || src_y != 0) {
9285 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9286 return -EINVAL;
9287 }
9288
9289 plane_state->main.offset = offset;
9290
9291 return 0;
9292 }
9293
9294 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9295 const struct intel_plane_state *plane_state)
9296 {
9297 const struct drm_framebuffer *fb = plane_state->base.fb;
9298
9299 return CURSOR_ENABLE |
9300 CURSOR_GAMMA_ENABLE |
9301 CURSOR_FORMAT_ARGB |
9302 CURSOR_STRIDE(fb->pitches[0]);
9303 }
9304
9305 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9306 {
9307 int width = plane_state->base.crtc_w;
9308
9309 /*
9310 * 845g/865g are only limited by the width of their cursors,
9311 * the height is arbitrary up to the precision of the register.
9312 */
9313 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9314 }
9315
9316 static int i845_check_cursor(struct intel_plane *plane,
9317 struct intel_crtc_state *crtc_state,
9318 struct intel_plane_state *plane_state)
9319 {
9320 const struct drm_framebuffer *fb = plane_state->base.fb;
9321 int ret;
9322
9323 ret = intel_check_cursor(crtc_state, plane_state);
9324 if (ret)
9325 return ret;
9326
9327 /* if we want to turn off the cursor ignore width and height */
9328 if (!fb)
9329 return 0;
9330
9331 /* Check for which cursor types we support */
9332 if (!i845_cursor_size_ok(plane_state)) {
9333 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9334 plane_state->base.crtc_w,
9335 plane_state->base.crtc_h);
9336 return -EINVAL;
9337 }
9338
9339 switch (fb->pitches[0]) {
9340 case 256:
9341 case 512:
9342 case 1024:
9343 case 2048:
9344 break;
9345 default:
9346 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9347 fb->pitches[0]);
9348 return -EINVAL;
9349 }
9350
9351 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9352
9353 return 0;
9354 }
9355
9356 static void i845_update_cursor(struct intel_plane *plane,
9357 const struct intel_crtc_state *crtc_state,
9358 const struct intel_plane_state *plane_state)
9359 {
9360 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9361 u32 cntl = 0, base = 0, pos = 0, size = 0;
9362 unsigned long irqflags;
9363
9364 if (plane_state && plane_state->base.visible) {
9365 unsigned int width = plane_state->base.crtc_w;
9366 unsigned int height = plane_state->base.crtc_h;
9367
9368 cntl = plane_state->ctl;
9369 size = (height << 12) | width;
9370
9371 base = intel_cursor_base(plane_state);
9372 pos = intel_cursor_position(plane_state);
9373 }
9374
9375 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9376
9377 /* On these chipsets we can only modify the base/size/stride
9378 * whilst the cursor is disabled.
9379 */
9380 if (plane->cursor.base != base ||
9381 plane->cursor.size != size ||
9382 plane->cursor.cntl != cntl) {
9383 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9384 I915_WRITE_FW(CURBASE(PIPE_A), base);
9385 I915_WRITE_FW(CURSIZE, size);
9386 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9387 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9388
9389 plane->cursor.base = base;
9390 plane->cursor.size = size;
9391 plane->cursor.cntl = cntl;
9392 } else {
9393 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9394 }
9395
9396 POSTING_READ_FW(CURCNTR(PIPE_A));
9397
9398 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9399 }
9400
9401 static void i845_disable_cursor(struct intel_plane *plane,
9402 struct intel_crtc *crtc)
9403 {
9404 i845_update_cursor(plane, NULL, NULL);
9405 }
9406
9407 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9408 const struct intel_plane_state *plane_state)
9409 {
9410 struct drm_i915_private *dev_priv =
9411 to_i915(plane_state->base.plane->dev);
9412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9413 u32 cntl;
9414
9415 cntl = MCURSOR_GAMMA_ENABLE;
9416
9417 if (HAS_DDI(dev_priv))
9418 cntl |= CURSOR_PIPE_CSC_ENABLE;
9419
9420 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9421
9422 switch (plane_state->base.crtc_w) {
9423 case 64:
9424 cntl |= CURSOR_MODE_64_ARGB_AX;
9425 break;
9426 case 128:
9427 cntl |= CURSOR_MODE_128_ARGB_AX;
9428 break;
9429 case 256:
9430 cntl |= CURSOR_MODE_256_ARGB_AX;
9431 break;
9432 default:
9433 MISSING_CASE(plane_state->base.crtc_w);
9434 return 0;
9435 }
9436
9437 if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9438 cntl |= CURSOR_ROTATE_180;
9439
9440 return cntl;
9441 }
9442
9443 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9444 {
9445 struct drm_i915_private *dev_priv =
9446 to_i915(plane_state->base.plane->dev);
9447 int width = plane_state->base.crtc_w;
9448 int height = plane_state->base.crtc_h;
9449
9450 if (!intel_cursor_size_ok(plane_state))
9451 return false;
9452
9453 /* Cursor width is limited to a few power-of-two sizes */
9454 switch (width) {
9455 case 256:
9456 case 128:
9457 case 64:
9458 break;
9459 default:
9460 return false;
9461 }
9462
9463 /*
9464 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9465 * height from 8 lines up to the cursor width, when the
9466 * cursor is not rotated. Everything else requires square
9467 * cursors.
9468 */
9469 if (HAS_CUR_FBC(dev_priv) &&
9470 plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9471 if (height < 8 || height > width)
9472 return false;
9473 } else {
9474 if (height != width)
9475 return false;
9476 }
9477
9478 return true;
9479 }
9480
9481 static int i9xx_check_cursor(struct intel_plane *plane,
9482 struct intel_crtc_state *crtc_state,
9483 struct intel_plane_state *plane_state)
9484 {
9485 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9486 const struct drm_framebuffer *fb = plane_state->base.fb;
9487 enum pipe pipe = plane->pipe;
9488 int ret;
9489
9490 ret = intel_check_cursor(crtc_state, plane_state);
9491 if (ret)
9492 return ret;
9493
9494 /* if we want to turn off the cursor ignore width and height */
9495 if (!fb)
9496 return 0;
9497
9498 /* Check for which cursor types we support */
9499 if (!i9xx_cursor_size_ok(plane_state)) {
9500 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9501 plane_state->base.crtc_w,
9502 plane_state->base.crtc_h);
9503 return -EINVAL;
9504 }
9505
9506 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9507 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9508 fb->pitches[0], plane_state->base.crtc_w);
9509 return -EINVAL;
9510 }
9511
9512 /*
9513 * There's something wrong with the cursor on CHV pipe C.
9514 * If it straddles the left edge of the screen then
9515 * moving it away from the edge or disabling it often
9516 * results in a pipe underrun, and often that can lead to
9517 * dead pipe (constant underrun reported, and it scans
9518 * out just a solid color). To recover from that, the
9519 * display power well must be turned off and on again.
9520 * Refuse the put the cursor into that compromised position.
9521 */
9522 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9523 plane_state->base.visible && plane_state->base.crtc_x < 0) {
9524 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9525 return -EINVAL;
9526 }
9527
9528 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9529
9530 return 0;
9531 }
9532
9533 static void i9xx_update_cursor(struct intel_plane *plane,
9534 const struct intel_crtc_state *crtc_state,
9535 const struct intel_plane_state *plane_state)
9536 {
9537 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9538 enum pipe pipe = plane->pipe;
9539 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9540 unsigned long irqflags;
9541
9542 if (plane_state && plane_state->base.visible) {
9543 cntl = plane_state->ctl;
9544
9545 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9546 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9547
9548 base = intel_cursor_base(plane_state);
9549 pos = intel_cursor_position(plane_state);
9550 }
9551
9552 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9553
9554 /*
9555 * On some platforms writing CURCNTR first will also
9556 * cause CURPOS to be armed by the CURBASE write.
9557 * Without the CURCNTR write the CURPOS write would
9558 * arm itself.
9559 *
9560 * CURCNTR and CUR_FBC_CTL are always
9561 * armed by the CURBASE write only.
9562 */
9563 if (plane->cursor.base != base ||
9564 plane->cursor.size != fbc_ctl ||
9565 plane->cursor.cntl != cntl) {
9566 I915_WRITE_FW(CURCNTR(pipe), cntl);
9567 if (HAS_CUR_FBC(dev_priv))
9568 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9569 I915_WRITE_FW(CURPOS(pipe), pos);
9570 I915_WRITE_FW(CURBASE(pipe), base);
9571
9572 plane->cursor.base = base;
9573 plane->cursor.size = fbc_ctl;
9574 plane->cursor.cntl = cntl;
9575 } else {
9576 I915_WRITE_FW(CURPOS(pipe), pos);
9577 }
9578
9579 POSTING_READ_FW(CURBASE(pipe));
9580
9581 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9582 }
9583
9584 static void i9xx_disable_cursor(struct intel_plane *plane,
9585 struct intel_crtc *crtc)
9586 {
9587 i9xx_update_cursor(plane, NULL, NULL);
9588 }
9589
9590
9591 /* VESA 640x480x72Hz mode to set on the pipe */
9592 static struct drm_display_mode load_detect_mode = {
9593 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9594 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9595 };
9596
9597 struct drm_framebuffer *
9598 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9599 struct drm_mode_fb_cmd2 *mode_cmd)
9600 {
9601 struct intel_framebuffer *intel_fb;
9602 int ret;
9603
9604 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9605 if (!intel_fb)
9606 return ERR_PTR(-ENOMEM);
9607
9608 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9609 if (ret)
9610 goto err;
9611
9612 return &intel_fb->base;
9613
9614 err:
9615 kfree(intel_fb);
9616 return ERR_PTR(ret);
9617 }
9618
9619 static u32
9620 intel_framebuffer_pitch_for_width(int width, int bpp)
9621 {
9622 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9623 return ALIGN(pitch, 64);
9624 }
9625
9626 static u32
9627 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9628 {
9629 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9630 return PAGE_ALIGN(pitch * mode->vdisplay);
9631 }
9632
9633 static struct drm_framebuffer *
9634 intel_framebuffer_create_for_mode(struct drm_device *dev,
9635 struct drm_display_mode *mode,
9636 int depth, int bpp)
9637 {
9638 struct drm_framebuffer *fb;
9639 struct drm_i915_gem_object *obj;
9640 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9641
9642 obj = i915_gem_object_create(to_i915(dev),
9643 intel_framebuffer_size_for_mode(mode, bpp));
9644 if (IS_ERR(obj))
9645 return ERR_CAST(obj);
9646
9647 mode_cmd.width = mode->hdisplay;
9648 mode_cmd.height = mode->vdisplay;
9649 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9650 bpp);
9651 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9652
9653 fb = intel_framebuffer_create(obj, &mode_cmd);
9654 if (IS_ERR(fb))
9655 i915_gem_object_put(obj);
9656
9657 return fb;
9658 }
9659
9660 static struct drm_framebuffer *
9661 mode_fits_in_fbdev(struct drm_device *dev,
9662 struct drm_display_mode *mode)
9663 {
9664 #ifdef CONFIG_DRM_FBDEV_EMULATION
9665 struct drm_i915_private *dev_priv = to_i915(dev);
9666 struct drm_i915_gem_object *obj;
9667 struct drm_framebuffer *fb;
9668
9669 if (!dev_priv->fbdev)
9670 return NULL;
9671
9672 if (!dev_priv->fbdev->fb)
9673 return NULL;
9674
9675 obj = dev_priv->fbdev->fb->obj;
9676 BUG_ON(!obj);
9677
9678 fb = &dev_priv->fbdev->fb->base;
9679 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9680 fb->format->cpp[0] * 8))
9681 return NULL;
9682
9683 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9684 return NULL;
9685
9686 drm_framebuffer_reference(fb);
9687 return fb;
9688 #else
9689 return NULL;
9690 #endif
9691 }
9692
9693 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9694 struct drm_crtc *crtc,
9695 struct drm_display_mode *mode,
9696 struct drm_framebuffer *fb,
9697 int x, int y)
9698 {
9699 struct drm_plane_state *plane_state;
9700 int hdisplay, vdisplay;
9701 int ret;
9702
9703 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9704 if (IS_ERR(plane_state))
9705 return PTR_ERR(plane_state);
9706
9707 if (mode)
9708 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9709 else
9710 hdisplay = vdisplay = 0;
9711
9712 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9713 if (ret)
9714 return ret;
9715 drm_atomic_set_fb_for_plane(plane_state, fb);
9716 plane_state->crtc_x = 0;
9717 plane_state->crtc_y = 0;
9718 plane_state->crtc_w = hdisplay;
9719 plane_state->crtc_h = vdisplay;
9720 plane_state->src_x = x << 16;
9721 plane_state->src_y = y << 16;
9722 plane_state->src_w = hdisplay << 16;
9723 plane_state->src_h = vdisplay << 16;
9724
9725 return 0;
9726 }
9727
9728 int intel_get_load_detect_pipe(struct drm_connector *connector,
9729 struct drm_display_mode *mode,
9730 struct intel_load_detect_pipe *old,
9731 struct drm_modeset_acquire_ctx *ctx)
9732 {
9733 struct intel_crtc *intel_crtc;
9734 struct intel_encoder *intel_encoder =
9735 intel_attached_encoder(connector);
9736 struct drm_crtc *possible_crtc;
9737 struct drm_encoder *encoder = &intel_encoder->base;
9738 struct drm_crtc *crtc = NULL;
9739 struct drm_device *dev = encoder->dev;
9740 struct drm_i915_private *dev_priv = to_i915(dev);
9741 struct drm_framebuffer *fb;
9742 struct drm_mode_config *config = &dev->mode_config;
9743 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9744 struct drm_connector_state *connector_state;
9745 struct intel_crtc_state *crtc_state;
9746 int ret, i = -1;
9747
9748 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9749 connector->base.id, connector->name,
9750 encoder->base.id, encoder->name);
9751
9752 old->restore_state = NULL;
9753
9754 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9755
9756 /*
9757 * Algorithm gets a little messy:
9758 *
9759 * - if the connector already has an assigned crtc, use it (but make
9760 * sure it's on first)
9761 *
9762 * - try to find the first unused crtc that can drive this connector,
9763 * and use that if we find one
9764 */
9765
9766 /* See if we already have a CRTC for this connector */
9767 if (connector->state->crtc) {
9768 crtc = connector->state->crtc;
9769
9770 ret = drm_modeset_lock(&crtc->mutex, ctx);
9771 if (ret)
9772 goto fail;
9773
9774 /* Make sure the crtc and connector are running */
9775 goto found;
9776 }
9777
9778 /* Find an unused one (if possible) */
9779 for_each_crtc(dev, possible_crtc) {
9780 i++;
9781 if (!(encoder->possible_crtcs & (1 << i)))
9782 continue;
9783
9784 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9785 if (ret)
9786 goto fail;
9787
9788 if (possible_crtc->state->enable) {
9789 drm_modeset_unlock(&possible_crtc->mutex);
9790 continue;
9791 }
9792
9793 crtc = possible_crtc;
9794 break;
9795 }
9796
9797 /*
9798 * If we didn't find an unused CRTC, don't use any.
9799 */
9800 if (!crtc) {
9801 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9802 ret = -ENODEV;
9803 goto fail;
9804 }
9805
9806 found:
9807 intel_crtc = to_intel_crtc(crtc);
9808
9809 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9810 if (ret)
9811 goto fail;
9812
9813 state = drm_atomic_state_alloc(dev);
9814 restore_state = drm_atomic_state_alloc(dev);
9815 if (!state || !restore_state) {
9816 ret = -ENOMEM;
9817 goto fail;
9818 }
9819
9820 state->acquire_ctx = ctx;
9821 restore_state->acquire_ctx = ctx;
9822
9823 connector_state = drm_atomic_get_connector_state(state, connector);
9824 if (IS_ERR(connector_state)) {
9825 ret = PTR_ERR(connector_state);
9826 goto fail;
9827 }
9828
9829 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9830 if (ret)
9831 goto fail;
9832
9833 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9834 if (IS_ERR(crtc_state)) {
9835 ret = PTR_ERR(crtc_state);
9836 goto fail;
9837 }
9838
9839 crtc_state->base.active = crtc_state->base.enable = true;
9840
9841 if (!mode)
9842 mode = &load_detect_mode;
9843
9844 /* We need a framebuffer large enough to accommodate all accesses
9845 * that the plane may generate whilst we perform load detection.
9846 * We can not rely on the fbcon either being present (we get called
9847 * during its initialisation to detect all boot displays, or it may
9848 * not even exist) or that it is large enough to satisfy the
9849 * requested mode.
9850 */
9851 fb = mode_fits_in_fbdev(dev, mode);
9852 if (fb == NULL) {
9853 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9854 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9855 } else
9856 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9857 if (IS_ERR(fb)) {
9858 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9859 ret = PTR_ERR(fb);
9860 goto fail;
9861 }
9862
9863 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9864 if (ret)
9865 goto fail;
9866
9867 drm_framebuffer_unreference(fb);
9868
9869 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9870 if (ret)
9871 goto fail;
9872
9873 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9874 if (!ret)
9875 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9876 if (!ret)
9877 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9878 if (ret) {
9879 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9880 goto fail;
9881 }
9882
9883 ret = drm_atomic_commit(state);
9884 if (ret) {
9885 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9886 goto fail;
9887 }
9888
9889 old->restore_state = restore_state;
9890 drm_atomic_state_put(state);
9891
9892 /* let the connector get through one full cycle before testing */
9893 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9894 return true;
9895
9896 fail:
9897 if (state) {
9898 drm_atomic_state_put(state);
9899 state = NULL;
9900 }
9901 if (restore_state) {
9902 drm_atomic_state_put(restore_state);
9903 restore_state = NULL;
9904 }
9905
9906 if (ret == -EDEADLK)
9907 return ret;
9908
9909 return false;
9910 }
9911
9912 void intel_release_load_detect_pipe(struct drm_connector *connector,
9913 struct intel_load_detect_pipe *old,
9914 struct drm_modeset_acquire_ctx *ctx)
9915 {
9916 struct intel_encoder *intel_encoder =
9917 intel_attached_encoder(connector);
9918 struct drm_encoder *encoder = &intel_encoder->base;
9919 struct drm_atomic_state *state = old->restore_state;
9920 int ret;
9921
9922 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9923 connector->base.id, connector->name,
9924 encoder->base.id, encoder->name);
9925
9926 if (!state)
9927 return;
9928
9929 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9930 if (ret)
9931 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9932 drm_atomic_state_put(state);
9933 }
9934
9935 static int i9xx_pll_refclk(struct drm_device *dev,
9936 const struct intel_crtc_state *pipe_config)
9937 {
9938 struct drm_i915_private *dev_priv = to_i915(dev);
9939 u32 dpll = pipe_config->dpll_hw_state.dpll;
9940
9941 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9942 return dev_priv->vbt.lvds_ssc_freq;
9943 else if (HAS_PCH_SPLIT(dev_priv))
9944 return 120000;
9945 else if (!IS_GEN2(dev_priv))
9946 return 96000;
9947 else
9948 return 48000;
9949 }
9950
9951 /* Returns the clock of the currently programmed mode of the given pipe. */
9952 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9953 struct intel_crtc_state *pipe_config)
9954 {
9955 struct drm_device *dev = crtc->base.dev;
9956 struct drm_i915_private *dev_priv = to_i915(dev);
9957 int pipe = pipe_config->cpu_transcoder;
9958 u32 dpll = pipe_config->dpll_hw_state.dpll;
9959 u32 fp;
9960 struct dpll clock;
9961 int port_clock;
9962 int refclk = i9xx_pll_refclk(dev, pipe_config);
9963
9964 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9965 fp = pipe_config->dpll_hw_state.fp0;
9966 else
9967 fp = pipe_config->dpll_hw_state.fp1;
9968
9969 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9970 if (IS_PINEVIEW(dev_priv)) {
9971 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9972 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9973 } else {
9974 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9975 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9976 }
9977
9978 if (!IS_GEN2(dev_priv)) {
9979 if (IS_PINEVIEW(dev_priv))
9980 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9981 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9982 else
9983 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9984 DPLL_FPA01_P1_POST_DIV_SHIFT);
9985
9986 switch (dpll & DPLL_MODE_MASK) {
9987 case DPLLB_MODE_DAC_SERIAL:
9988 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9989 5 : 10;
9990 break;
9991 case DPLLB_MODE_LVDS:
9992 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9993 7 : 14;
9994 break;
9995 default:
9996 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9997 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9998 return;
9999 }
10000
10001 if (IS_PINEVIEW(dev_priv))
10002 port_clock = pnv_calc_dpll_params(refclk, &clock);
10003 else
10004 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10005 } else {
10006 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10007 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10008
10009 if (is_lvds) {
10010 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10011 DPLL_FPA01_P1_POST_DIV_SHIFT);
10012
10013 if (lvds & LVDS_CLKB_POWER_UP)
10014 clock.p2 = 7;
10015 else
10016 clock.p2 = 14;
10017 } else {
10018 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10019 clock.p1 = 2;
10020 else {
10021 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10022 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10023 }
10024 if (dpll & PLL_P2_DIVIDE_BY_4)
10025 clock.p2 = 4;
10026 else
10027 clock.p2 = 2;
10028 }
10029
10030 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10031 }
10032
10033 /*
10034 * This value includes pixel_multiplier. We will use
10035 * port_clock to compute adjusted_mode.crtc_clock in the
10036 * encoder's get_config() function.
10037 */
10038 pipe_config->port_clock = port_clock;
10039 }
10040
10041 int intel_dotclock_calculate(int link_freq,
10042 const struct intel_link_m_n *m_n)
10043 {
10044 /*
10045 * The calculation for the data clock is:
10046 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10047 * But we want to avoid losing precison if possible, so:
10048 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10049 *
10050 * and the link clock is simpler:
10051 * link_clock = (m * link_clock) / n
10052 */
10053
10054 if (!m_n->link_n)
10055 return 0;
10056
10057 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10058 }
10059
10060 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10061 struct intel_crtc_state *pipe_config)
10062 {
10063 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10064
10065 /* read out port_clock from the DPLL */
10066 i9xx_crtc_clock_get(crtc, pipe_config);
10067
10068 /*
10069 * In case there is an active pipe without active ports,
10070 * we may need some idea for the dotclock anyway.
10071 * Calculate one based on the FDI configuration.
10072 */
10073 pipe_config->base.adjusted_mode.crtc_clock =
10074 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10075 &pipe_config->fdi_m_n);
10076 }
10077
10078 /** Returns the currently programmed mode of the given pipe. */
10079 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10080 struct drm_crtc *crtc)
10081 {
10082 struct drm_i915_private *dev_priv = to_i915(dev);
10083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10084 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10085 struct drm_display_mode *mode;
10086 struct intel_crtc_state *pipe_config;
10087 int htot = I915_READ(HTOTAL(cpu_transcoder));
10088 int hsync = I915_READ(HSYNC(cpu_transcoder));
10089 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10090 int vsync = I915_READ(VSYNC(cpu_transcoder));
10091 enum pipe pipe = intel_crtc->pipe;
10092
10093 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10094 if (!mode)
10095 return NULL;
10096
10097 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10098 if (!pipe_config) {
10099 kfree(mode);
10100 return NULL;
10101 }
10102
10103 /*
10104 * Construct a pipe_config sufficient for getting the clock info
10105 * back out of crtc_clock_get.
10106 *
10107 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10108 * to use a real value here instead.
10109 */
10110 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10111 pipe_config->pixel_multiplier = 1;
10112 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10113 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10114 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10115 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10116
10117 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10118 mode->hdisplay = (htot & 0xffff) + 1;
10119 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10120 mode->hsync_start = (hsync & 0xffff) + 1;
10121 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10122 mode->vdisplay = (vtot & 0xffff) + 1;
10123 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10124 mode->vsync_start = (vsync & 0xffff) + 1;
10125 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10126
10127 drm_mode_set_name(mode);
10128
10129 kfree(pipe_config);
10130
10131 return mode;
10132 }
10133
10134 static void intel_crtc_destroy(struct drm_crtc *crtc)
10135 {
10136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10137 struct drm_device *dev = crtc->dev;
10138 struct intel_flip_work *work;
10139
10140 spin_lock_irq(&dev->event_lock);
10141 work = intel_crtc->flip_work;
10142 intel_crtc->flip_work = NULL;
10143 spin_unlock_irq(&dev->event_lock);
10144
10145 if (work) {
10146 cancel_work_sync(&work->mmio_work);
10147 cancel_work_sync(&work->unpin_work);
10148 kfree(work);
10149 }
10150
10151 drm_crtc_cleanup(crtc);
10152
10153 kfree(intel_crtc);
10154 }
10155
10156 static void intel_unpin_work_fn(struct work_struct *__work)
10157 {
10158 struct intel_flip_work *work =
10159 container_of(__work, struct intel_flip_work, unpin_work);
10160 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10161 struct drm_device *dev = crtc->base.dev;
10162 struct drm_plane *primary = crtc->base.primary;
10163
10164 if (is_mmio_work(work))
10165 flush_work(&work->mmio_work);
10166
10167 mutex_lock(&dev->struct_mutex);
10168 intel_unpin_fb_vma(work->old_vma);
10169 i915_gem_object_put(work->pending_flip_obj);
10170 mutex_unlock(&dev->struct_mutex);
10171
10172 i915_gem_request_put(work->flip_queued_req);
10173
10174 intel_frontbuffer_flip_complete(to_i915(dev),
10175 to_intel_plane(primary)->frontbuffer_bit);
10176 intel_fbc_post_update(crtc);
10177 drm_framebuffer_unreference(work->old_fb);
10178
10179 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10180 atomic_dec(&crtc->unpin_work_count);
10181
10182 kfree(work);
10183 }
10184
10185 /* Is 'a' after or equal to 'b'? */
10186 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10187 {
10188 return !((a - b) & 0x80000000);
10189 }
10190
10191 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10192 struct intel_flip_work *work)
10193 {
10194 struct drm_device *dev = crtc->base.dev;
10195 struct drm_i915_private *dev_priv = to_i915(dev);
10196
10197 if (abort_flip_on_reset(crtc))
10198 return true;
10199
10200 /*
10201 * The relevant registers doen't exist on pre-ctg.
10202 * As the flip done interrupt doesn't trigger for mmio
10203 * flips on gmch platforms, a flip count check isn't
10204 * really needed there. But since ctg has the registers,
10205 * include it in the check anyway.
10206 */
10207 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10208 return true;
10209
10210 /*
10211 * BDW signals flip done immediately if the plane
10212 * is disabled, even if the plane enable is already
10213 * armed to occur at the next vblank :(
10214 */
10215
10216 /*
10217 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10218 * used the same base address. In that case the mmio flip might
10219 * have completed, but the CS hasn't even executed the flip yet.
10220 *
10221 * A flip count check isn't enough as the CS might have updated
10222 * the base address just after start of vblank, but before we
10223 * managed to process the interrupt. This means we'd complete the
10224 * CS flip too soon.
10225 *
10226 * Combining both checks should get us a good enough result. It may
10227 * still happen that the CS flip has been executed, but has not
10228 * yet actually completed. But in case the base address is the same
10229 * anyway, we don't really care.
10230 */
10231 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10232 crtc->flip_work->gtt_offset &&
10233 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10234 crtc->flip_work->flip_count);
10235 }
10236
10237 static bool
10238 __pageflip_finished_mmio(struct intel_crtc *crtc,
10239 struct intel_flip_work *work)
10240 {
10241 /*
10242 * MMIO work completes when vblank is different from
10243 * flip_queued_vblank.
10244 *
10245 * Reset counter value doesn't matter, this is handled by
10246 * i915_wait_request finishing early, so no need to handle
10247 * reset here.
10248 */
10249 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10250 }
10251
10252
10253 static bool pageflip_finished(struct intel_crtc *crtc,
10254 struct intel_flip_work *work)
10255 {
10256 if (!atomic_read(&work->pending))
10257 return false;
10258
10259 smp_rmb();
10260
10261 if (is_mmio_work(work))
10262 return __pageflip_finished_mmio(crtc, work);
10263 else
10264 return __pageflip_finished_cs(crtc, work);
10265 }
10266
10267 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10268 {
10269 struct drm_device *dev = &dev_priv->drm;
10270 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10271 struct intel_flip_work *work;
10272 unsigned long flags;
10273
10274 /* Ignore early vblank irqs */
10275 if (!crtc)
10276 return;
10277
10278 /*
10279 * This is called both by irq handlers and the reset code (to complete
10280 * lost pageflips) so needs the full irqsave spinlocks.
10281 */
10282 spin_lock_irqsave(&dev->event_lock, flags);
10283 work = crtc->flip_work;
10284
10285 if (work != NULL &&
10286 !is_mmio_work(work) &&
10287 pageflip_finished(crtc, work))
10288 page_flip_completed(crtc);
10289
10290 spin_unlock_irqrestore(&dev->event_lock, flags);
10291 }
10292
10293 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10294 {
10295 struct drm_device *dev = &dev_priv->drm;
10296 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10297 struct intel_flip_work *work;
10298 unsigned long flags;
10299
10300 /* Ignore early vblank irqs */
10301 if (!crtc)
10302 return;
10303
10304 /*
10305 * This is called both by irq handlers and the reset code (to complete
10306 * lost pageflips) so needs the full irqsave spinlocks.
10307 */
10308 spin_lock_irqsave(&dev->event_lock, flags);
10309 work = crtc->flip_work;
10310
10311 if (work != NULL &&
10312 is_mmio_work(work) &&
10313 pageflip_finished(crtc, work))
10314 page_flip_completed(crtc);
10315
10316 spin_unlock_irqrestore(&dev->event_lock, flags);
10317 }
10318
10319 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10320 struct intel_flip_work *work)
10321 {
10322 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10323
10324 /* Ensure that the work item is consistent when activating it ... */
10325 smp_mb__before_atomic();
10326 atomic_set(&work->pending, 1);
10327 }
10328
10329 static int intel_gen2_queue_flip(struct drm_device *dev,
10330 struct drm_crtc *crtc,
10331 struct drm_framebuffer *fb,
10332 struct drm_i915_gem_object *obj,
10333 struct drm_i915_gem_request *req,
10334 uint32_t flags)
10335 {
10336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10337 u32 flip_mask, *cs;
10338
10339 cs = intel_ring_begin(req, 6);
10340 if (IS_ERR(cs))
10341 return PTR_ERR(cs);
10342
10343 /* Can't queue multiple flips, so wait for the previous
10344 * one to finish before executing the next.
10345 */
10346 if (intel_crtc->plane)
10347 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10348 else
10349 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10350 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10351 *cs++ = MI_NOOP;
10352 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10353 *cs++ = fb->pitches[0];
10354 *cs++ = intel_crtc->flip_work->gtt_offset;
10355 *cs++ = 0; /* aux display base address, unused */
10356
10357 return 0;
10358 }
10359
10360 static int intel_gen3_queue_flip(struct drm_device *dev,
10361 struct drm_crtc *crtc,
10362 struct drm_framebuffer *fb,
10363 struct drm_i915_gem_object *obj,
10364 struct drm_i915_gem_request *req,
10365 uint32_t flags)
10366 {
10367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10368 u32 flip_mask, *cs;
10369
10370 cs = intel_ring_begin(req, 6);
10371 if (IS_ERR(cs))
10372 return PTR_ERR(cs);
10373
10374 if (intel_crtc->plane)
10375 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10376 else
10377 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10378 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10379 *cs++ = MI_NOOP;
10380 *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10381 *cs++ = fb->pitches[0];
10382 *cs++ = intel_crtc->flip_work->gtt_offset;
10383 *cs++ = MI_NOOP;
10384
10385 return 0;
10386 }
10387
10388 static int intel_gen4_queue_flip(struct drm_device *dev,
10389 struct drm_crtc *crtc,
10390 struct drm_framebuffer *fb,
10391 struct drm_i915_gem_object *obj,
10392 struct drm_i915_gem_request *req,
10393 uint32_t flags)
10394 {
10395 struct drm_i915_private *dev_priv = to_i915(dev);
10396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10397 u32 pf, pipesrc, *cs;
10398
10399 cs = intel_ring_begin(req, 4);
10400 if (IS_ERR(cs))
10401 return PTR_ERR(cs);
10402
10403 /* i965+ uses the linear or tiled offsets from the
10404 * Display Registers (which do not change across a page-flip)
10405 * so we need only reprogram the base address.
10406 */
10407 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10408 *cs++ = fb->pitches[0];
10409 *cs++ = intel_crtc->flip_work->gtt_offset |
10410 intel_fb_modifier_to_tiling(fb->modifier);
10411
10412 /* XXX Enabling the panel-fitter across page-flip is so far
10413 * untested on non-native modes, so ignore it for now.
10414 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10415 */
10416 pf = 0;
10417 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10418 *cs++ = pf | pipesrc;
10419
10420 return 0;
10421 }
10422
10423 static int intel_gen6_queue_flip(struct drm_device *dev,
10424 struct drm_crtc *crtc,
10425 struct drm_framebuffer *fb,
10426 struct drm_i915_gem_object *obj,
10427 struct drm_i915_gem_request *req,
10428 uint32_t flags)
10429 {
10430 struct drm_i915_private *dev_priv = to_i915(dev);
10431 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10432 u32 pf, pipesrc, *cs;
10433
10434 cs = intel_ring_begin(req, 4);
10435 if (IS_ERR(cs))
10436 return PTR_ERR(cs);
10437
10438 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10439 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10440 *cs++ = intel_crtc->flip_work->gtt_offset;
10441
10442 /* Contrary to the suggestions in the documentation,
10443 * "Enable Panel Fitter" does not seem to be required when page
10444 * flipping with a non-native mode, and worse causes a normal
10445 * modeset to fail.
10446 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10447 */
10448 pf = 0;
10449 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10450 *cs++ = pf | pipesrc;
10451
10452 return 0;
10453 }
10454
10455 static int intel_gen7_queue_flip(struct drm_device *dev,
10456 struct drm_crtc *crtc,
10457 struct drm_framebuffer *fb,
10458 struct drm_i915_gem_object *obj,
10459 struct drm_i915_gem_request *req,
10460 uint32_t flags)
10461 {
10462 struct drm_i915_private *dev_priv = to_i915(dev);
10463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10464 u32 *cs, plane_bit = 0;
10465 int len, ret;
10466
10467 switch (intel_crtc->plane) {
10468 case PLANE_A:
10469 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10470 break;
10471 case PLANE_B:
10472 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10473 break;
10474 case PLANE_C:
10475 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10476 break;
10477 default:
10478 WARN_ONCE(1, "unknown plane in flip command\n");
10479 return -ENODEV;
10480 }
10481
10482 len = 4;
10483 if (req->engine->id == RCS) {
10484 len += 6;
10485 /*
10486 * On Gen 8, SRM is now taking an extra dword to accommodate
10487 * 48bits addresses, and we need a NOOP for the batch size to
10488 * stay even.
10489 */
10490 if (IS_GEN8(dev_priv))
10491 len += 2;
10492 }
10493
10494 /*
10495 * BSpec MI_DISPLAY_FLIP for IVB:
10496 * "The full packet must be contained within the same cache line."
10497 *
10498 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10499 * cacheline, if we ever start emitting more commands before
10500 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10501 * then do the cacheline alignment, and finally emit the
10502 * MI_DISPLAY_FLIP.
10503 */
10504 ret = intel_ring_cacheline_align(req);
10505 if (ret)
10506 return ret;
10507
10508 cs = intel_ring_begin(req, len);
10509 if (IS_ERR(cs))
10510 return PTR_ERR(cs);
10511
10512 /* Unmask the flip-done completion message. Note that the bspec says that
10513 * we should do this for both the BCS and RCS, and that we must not unmask
10514 * more than one flip event at any time (or ensure that one flip message
10515 * can be sent by waiting for flip-done prior to queueing new flips).
10516 * Experimentation says that BCS works despite DERRMR masking all
10517 * flip-done completion events and that unmasking all planes at once
10518 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10519 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10520 */
10521 if (req->engine->id == RCS) {
10522 *cs++ = MI_LOAD_REGISTER_IMM(1);
10523 *cs++ = i915_mmio_reg_offset(DERRMR);
10524 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10525 DERRMR_PIPEB_PRI_FLIP_DONE |
10526 DERRMR_PIPEC_PRI_FLIP_DONE);
10527 if (IS_GEN8(dev_priv))
10528 *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10529 MI_SRM_LRM_GLOBAL_GTT;
10530 else
10531 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10532 *cs++ = i915_mmio_reg_offset(DERRMR);
10533 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10534 if (IS_GEN8(dev_priv)) {
10535 *cs++ = 0;
10536 *cs++ = MI_NOOP;
10537 }
10538 }
10539
10540 *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10541 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10542 *cs++ = intel_crtc->flip_work->gtt_offset;
10543 *cs++ = MI_NOOP;
10544
10545 return 0;
10546 }
10547
10548 static bool use_mmio_flip(struct intel_engine_cs *engine,
10549 struct drm_i915_gem_object *obj)
10550 {
10551 /*
10552 * This is not being used for older platforms, because
10553 * non-availability of flip done interrupt forces us to use
10554 * CS flips. Older platforms derive flip done using some clever
10555 * tricks involving the flip_pending status bits and vblank irqs.
10556 * So using MMIO flips there would disrupt this mechanism.
10557 */
10558
10559 if (engine == NULL)
10560 return true;
10561
10562 if (INTEL_GEN(engine->i915) < 5)
10563 return false;
10564
10565 if (i915.use_mmio_flip < 0)
10566 return false;
10567 else if (i915.use_mmio_flip > 0)
10568 return true;
10569 else if (i915.enable_execlists)
10570 return true;
10571
10572 return engine != i915_gem_object_last_write_engine(obj);
10573 }
10574
10575 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10576 unsigned int rotation,
10577 struct intel_flip_work *work)
10578 {
10579 struct drm_device *dev = intel_crtc->base.dev;
10580 struct drm_i915_private *dev_priv = to_i915(dev);
10581 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10582 const enum pipe pipe = intel_crtc->pipe;
10583 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10584
10585 ctl = I915_READ(PLANE_CTL(pipe, 0));
10586 ctl &= ~PLANE_CTL_TILED_MASK;
10587 switch (fb->modifier) {
10588 case DRM_FORMAT_MOD_LINEAR:
10589 break;
10590 case I915_FORMAT_MOD_X_TILED:
10591 ctl |= PLANE_CTL_TILED_X;
10592 break;
10593 case I915_FORMAT_MOD_Y_TILED:
10594 ctl |= PLANE_CTL_TILED_Y;
10595 break;
10596 case I915_FORMAT_MOD_Yf_TILED:
10597 ctl |= PLANE_CTL_TILED_YF;
10598 break;
10599 default:
10600 MISSING_CASE(fb->modifier);
10601 }
10602
10603 /*
10604 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10605 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10606 */
10607 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10608 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10609
10610 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10611 POSTING_READ(PLANE_SURF(pipe, 0));
10612 }
10613
10614 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10615 struct intel_flip_work *work)
10616 {
10617 struct drm_device *dev = intel_crtc->base.dev;
10618 struct drm_i915_private *dev_priv = to_i915(dev);
10619 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10620 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10621 u32 dspcntr;
10622
10623 dspcntr = I915_READ(reg);
10624
10625 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10626 dspcntr |= DISPPLANE_TILED;
10627 else
10628 dspcntr &= ~DISPPLANE_TILED;
10629
10630 I915_WRITE(reg, dspcntr);
10631
10632 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10633 POSTING_READ(DSPSURF(intel_crtc->plane));
10634 }
10635
10636 static void intel_mmio_flip_work_func(struct work_struct *w)
10637 {
10638 struct intel_flip_work *work =
10639 container_of(w, struct intel_flip_work, mmio_work);
10640 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10641 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10642 struct intel_framebuffer *intel_fb =
10643 to_intel_framebuffer(crtc->base.primary->fb);
10644 struct drm_i915_gem_object *obj = intel_fb->obj;
10645
10646 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10647
10648 intel_pipe_update_start(crtc);
10649
10650 if (INTEL_GEN(dev_priv) >= 9)
10651 skl_do_mmio_flip(crtc, work->rotation, work);
10652 else
10653 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10654 ilk_do_mmio_flip(crtc, work);
10655
10656 intel_pipe_update_end(crtc, work);
10657 }
10658
10659 static int intel_default_queue_flip(struct drm_device *dev,
10660 struct drm_crtc *crtc,
10661 struct drm_framebuffer *fb,
10662 struct drm_i915_gem_object *obj,
10663 struct drm_i915_gem_request *req,
10664 uint32_t flags)
10665 {
10666 return -ENODEV;
10667 }
10668
10669 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10670 struct intel_crtc *intel_crtc,
10671 struct intel_flip_work *work)
10672 {
10673 u32 addr, vblank;
10674
10675 if (!atomic_read(&work->pending))
10676 return false;
10677
10678 smp_rmb();
10679
10680 vblank = intel_crtc_get_vblank_counter(intel_crtc);
10681 if (work->flip_ready_vblank == 0) {
10682 if (work->flip_queued_req &&
10683 !i915_gem_request_completed(work->flip_queued_req))
10684 return false;
10685
10686 work->flip_ready_vblank = vblank;
10687 }
10688
10689 if (vblank - work->flip_ready_vblank < 3)
10690 return false;
10691
10692 /* Potential stall - if we see that the flip has happened,
10693 * assume a missed interrupt. */
10694 if (INTEL_GEN(dev_priv) >= 4)
10695 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10696 else
10697 addr = I915_READ(DSPADDR(intel_crtc->plane));
10698
10699 /* There is a potential issue here with a false positive after a flip
10700 * to the same address. We could address this by checking for a
10701 * non-incrementing frame counter.
10702 */
10703 return addr == work->gtt_offset;
10704 }
10705
10706 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10707 {
10708 struct drm_device *dev = &dev_priv->drm;
10709 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10710 struct intel_flip_work *work;
10711
10712 WARN_ON(!in_interrupt());
10713
10714 if (crtc == NULL)
10715 return;
10716
10717 spin_lock(&dev->event_lock);
10718 work = crtc->flip_work;
10719
10720 if (work != NULL && !is_mmio_work(work) &&
10721 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10722 WARN_ONCE(1,
10723 "Kicking stuck page flip: queued at %d, now %d\n",
10724 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10725 page_flip_completed(crtc);
10726 work = NULL;
10727 }
10728
10729 if (work != NULL && !is_mmio_work(work) &&
10730 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10731 intel_queue_rps_boost_for_request(work->flip_queued_req);
10732 spin_unlock(&dev->event_lock);
10733 }
10734
10735 __maybe_unused
10736 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10737 struct drm_framebuffer *fb,
10738 struct drm_pending_vblank_event *event,
10739 uint32_t page_flip_flags)
10740 {
10741 struct drm_device *dev = crtc->dev;
10742 struct drm_i915_private *dev_priv = to_i915(dev);
10743 struct drm_framebuffer *old_fb = crtc->primary->fb;
10744 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10746 struct drm_plane *primary = crtc->primary;
10747 enum pipe pipe = intel_crtc->pipe;
10748 struct intel_flip_work *work;
10749 struct intel_engine_cs *engine;
10750 bool mmio_flip;
10751 struct drm_i915_gem_request *request;
10752 struct i915_vma *vma;
10753 int ret;
10754
10755 /*
10756 * drm_mode_page_flip_ioctl() should already catch this, but double
10757 * check to be safe. In the future we may enable pageflipping from
10758 * a disabled primary plane.
10759 */
10760 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10761 return -EBUSY;
10762
10763 /* Can't change pixel format via MI display flips. */
10764 if (fb->format != crtc->primary->fb->format)
10765 return -EINVAL;
10766
10767 /*
10768 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10769 * Note that pitch changes could also affect these register.
10770 */
10771 if (INTEL_GEN(dev_priv) > 3 &&
10772 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10773 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10774 return -EINVAL;
10775
10776 if (i915_terminally_wedged(&dev_priv->gpu_error))
10777 goto out_hang;
10778
10779 work = kzalloc(sizeof(*work), GFP_KERNEL);
10780 if (work == NULL)
10781 return -ENOMEM;
10782
10783 work->event = event;
10784 work->crtc = crtc;
10785 work->old_fb = old_fb;
10786 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10787
10788 ret = drm_crtc_vblank_get(crtc);
10789 if (ret)
10790 goto free_work;
10791
10792 /* We borrow the event spin lock for protecting flip_work */
10793 spin_lock_irq(&dev->event_lock);
10794 if (intel_crtc->flip_work) {
10795 /* Before declaring the flip queue wedged, check if
10796 * the hardware completed the operation behind our backs.
10797 */
10798 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10799 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10800 page_flip_completed(intel_crtc);
10801 } else {
10802 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10803 spin_unlock_irq(&dev->event_lock);
10804
10805 drm_crtc_vblank_put(crtc);
10806 kfree(work);
10807 return -EBUSY;
10808 }
10809 }
10810 intel_crtc->flip_work = work;
10811 spin_unlock_irq(&dev->event_lock);
10812
10813 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10814 flush_workqueue(dev_priv->wq);
10815
10816 /* Reference the objects for the scheduled work. */
10817 drm_framebuffer_reference(work->old_fb);
10818
10819 crtc->primary->fb = fb;
10820 update_state_fb(crtc->primary);
10821
10822 work->pending_flip_obj = i915_gem_object_get(obj);
10823
10824 ret = i915_mutex_lock_interruptible(dev);
10825 if (ret)
10826 goto cleanup;
10827
10828 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10829 if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10830 ret = -EIO;
10831 goto unlock;
10832 }
10833
10834 atomic_inc(&intel_crtc->unpin_work_count);
10835
10836 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10837 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10838
10839 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10840 engine = dev_priv->engine[BCS];
10841 if (fb->modifier != old_fb->modifier)
10842 /* vlv: DISPLAY_FLIP fails to change tiling */
10843 engine = NULL;
10844 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10845 engine = dev_priv->engine[BCS];
10846 } else if (INTEL_GEN(dev_priv) >= 7) {
10847 engine = i915_gem_object_last_write_engine(obj);
10848 if (engine == NULL || engine->id != RCS)
10849 engine = dev_priv->engine[BCS];
10850 } else {
10851 engine = dev_priv->engine[RCS];
10852 }
10853
10854 mmio_flip = use_mmio_flip(engine, obj);
10855
10856 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10857 if (IS_ERR(vma)) {
10858 ret = PTR_ERR(vma);
10859 goto cleanup_pending;
10860 }
10861
10862 work->old_vma = to_intel_plane_state(primary->state)->vma;
10863 to_intel_plane_state(primary->state)->vma = vma;
10864
10865 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10866 work->rotation = crtc->primary->state->rotation;
10867
10868 /*
10869 * There's the potential that the next frame will not be compatible with
10870 * FBC, so we want to call pre_update() before the actual page flip.
10871 * The problem is that pre_update() caches some information about the fb
10872 * object, so we want to do this only after the object is pinned. Let's
10873 * be on the safe side and do this immediately before scheduling the
10874 * flip.
10875 */
10876 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10877 to_intel_plane_state(primary->state));
10878
10879 if (mmio_flip) {
10880 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10881 queue_work(system_unbound_wq, &work->mmio_work);
10882 } else {
10883 request = i915_gem_request_alloc(engine,
10884 dev_priv->kernel_context);
10885 if (IS_ERR(request)) {
10886 ret = PTR_ERR(request);
10887 goto cleanup_unpin;
10888 }
10889
10890 ret = i915_gem_request_await_object(request, obj, false);
10891 if (ret)
10892 goto cleanup_request;
10893
10894 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10895 page_flip_flags);
10896 if (ret)
10897 goto cleanup_request;
10898
10899 intel_mark_page_flip_active(intel_crtc, work);
10900
10901 work->flip_queued_req = i915_gem_request_get(request);
10902 i915_add_request(request);
10903 }
10904
10905 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10906 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10907 to_intel_plane(primary)->frontbuffer_bit);
10908 mutex_unlock(&dev->struct_mutex);
10909
10910 intel_frontbuffer_flip_prepare(to_i915(dev),
10911 to_intel_plane(primary)->frontbuffer_bit);
10912
10913 trace_i915_flip_request(intel_crtc->plane, obj);
10914
10915 return 0;
10916
10917 cleanup_request:
10918 i915_add_request(request);
10919 cleanup_unpin:
10920 to_intel_plane_state(primary->state)->vma = work->old_vma;
10921 intel_unpin_fb_vma(vma);
10922 cleanup_pending:
10923 atomic_dec(&intel_crtc->unpin_work_count);
10924 unlock:
10925 mutex_unlock(&dev->struct_mutex);
10926 cleanup:
10927 crtc->primary->fb = old_fb;
10928 update_state_fb(crtc->primary);
10929
10930 i915_gem_object_put(obj);
10931 drm_framebuffer_unreference(work->old_fb);
10932
10933 spin_lock_irq(&dev->event_lock);
10934 intel_crtc->flip_work = NULL;
10935 spin_unlock_irq(&dev->event_lock);
10936
10937 drm_crtc_vblank_put(crtc);
10938 free_work:
10939 kfree(work);
10940
10941 if (ret == -EIO) {
10942 struct drm_atomic_state *state;
10943 struct drm_plane_state *plane_state;
10944
10945 out_hang:
10946 state = drm_atomic_state_alloc(dev);
10947 if (!state)
10948 return -ENOMEM;
10949 state->acquire_ctx = dev->mode_config.acquire_ctx;
10950
10951 retry:
10952 plane_state = drm_atomic_get_plane_state(state, primary);
10953 ret = PTR_ERR_OR_ZERO(plane_state);
10954 if (!ret) {
10955 drm_atomic_set_fb_for_plane(plane_state, fb);
10956
10957 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10958 if (!ret)
10959 ret = drm_atomic_commit(state);
10960 }
10961
10962 if (ret == -EDEADLK) {
10963 drm_modeset_backoff(state->acquire_ctx);
10964 drm_atomic_state_clear(state);
10965 goto retry;
10966 }
10967
10968 drm_atomic_state_put(state);
10969
10970 if (ret == 0 && event) {
10971 spin_lock_irq(&dev->event_lock);
10972 drm_crtc_send_vblank_event(crtc, event);
10973 spin_unlock_irq(&dev->event_lock);
10974 }
10975 }
10976 return ret;
10977 }
10978
10979
10980 /**
10981 * intel_wm_need_update - Check whether watermarks need updating
10982 * @plane: drm plane
10983 * @state: new plane state
10984 *
10985 * Check current plane state versus the new one to determine whether
10986 * watermarks need to be recalculated.
10987 *
10988 * Returns true or false.
10989 */
10990 static bool intel_wm_need_update(struct drm_plane *plane,
10991 struct drm_plane_state *state)
10992 {
10993 struct intel_plane_state *new = to_intel_plane_state(state);
10994 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10995
10996 /* Update watermarks on tiling or size changes. */
10997 if (new->base.visible != cur->base.visible)
10998 return true;
10999
11000 if (!cur->base.fb || !new->base.fb)
11001 return false;
11002
11003 if (cur->base.fb->modifier != new->base.fb->modifier ||
11004 cur->base.rotation != new->base.rotation ||
11005 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
11006 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
11007 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
11008 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
11009 return true;
11010
11011 return false;
11012 }
11013
11014 static bool needs_scaling(struct intel_plane_state *state)
11015 {
11016 int src_w = drm_rect_width(&state->base.src) >> 16;
11017 int src_h = drm_rect_height(&state->base.src) >> 16;
11018 int dst_w = drm_rect_width(&state->base.dst);
11019 int dst_h = drm_rect_height(&state->base.dst);
11020
11021 return (src_w != dst_w || src_h != dst_h);
11022 }
11023
11024 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11025 struct drm_plane_state *plane_state)
11026 {
11027 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11028 struct drm_crtc *crtc = crtc_state->crtc;
11029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11030 struct intel_plane *plane = to_intel_plane(plane_state->plane);
11031 struct drm_device *dev = crtc->dev;
11032 struct drm_i915_private *dev_priv = to_i915(dev);
11033 struct intel_plane_state *old_plane_state =
11034 to_intel_plane_state(plane->base.state);
11035 bool mode_changed = needs_modeset(crtc_state);
11036 bool was_crtc_enabled = crtc->state->active;
11037 bool is_crtc_enabled = crtc_state->active;
11038 bool turn_off, turn_on, visible, was_visible;
11039 struct drm_framebuffer *fb = plane_state->fb;
11040 int ret;
11041
11042 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11043 ret = skl_update_scaler_plane(
11044 to_intel_crtc_state(crtc_state),
11045 to_intel_plane_state(plane_state));
11046 if (ret)
11047 return ret;
11048 }
11049
11050 was_visible = old_plane_state->base.visible;
11051 visible = plane_state->visible;
11052
11053 if (!was_crtc_enabled && WARN_ON(was_visible))
11054 was_visible = false;
11055
11056 /*
11057 * Visibility is calculated as if the crtc was on, but
11058 * after scaler setup everything depends on it being off
11059 * when the crtc isn't active.
11060 *
11061 * FIXME this is wrong for watermarks. Watermarks should also
11062 * be computed as if the pipe would be active. Perhaps move
11063 * per-plane wm computation to the .check_plane() hook, and
11064 * only combine the results from all planes in the current place?
11065 */
11066 if (!is_crtc_enabled) {
11067 plane_state->visible = visible = false;
11068 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11069 }
11070
11071 if (!was_visible && !visible)
11072 return 0;
11073
11074 if (fb != old_plane_state->base.fb)
11075 pipe_config->fb_changed = true;
11076
11077 turn_off = was_visible && (!visible || mode_changed);
11078 turn_on = visible && (!was_visible || mode_changed);
11079
11080 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11081 intel_crtc->base.base.id, intel_crtc->base.name,
11082 plane->base.base.id, plane->base.name,
11083 fb ? fb->base.id : -1);
11084
11085 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11086 plane->base.base.id, plane->base.name,
11087 was_visible, visible,
11088 turn_off, turn_on, mode_changed);
11089
11090 if (turn_on) {
11091 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11092 pipe_config->update_wm_pre = true;
11093
11094 /* must disable cxsr around plane enable/disable */
11095 if (plane->id != PLANE_CURSOR)
11096 pipe_config->disable_cxsr = true;
11097 } else if (turn_off) {
11098 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11099 pipe_config->update_wm_post = true;
11100
11101 /* must disable cxsr around plane enable/disable */
11102 if (plane->id != PLANE_CURSOR)
11103 pipe_config->disable_cxsr = true;
11104 } else if (intel_wm_need_update(&plane->base, plane_state)) {
11105 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11106 /* FIXME bollocks */
11107 pipe_config->update_wm_pre = true;
11108 pipe_config->update_wm_post = true;
11109 }
11110 }
11111
11112 if (visible || was_visible)
11113 pipe_config->fb_bits |= plane->frontbuffer_bit;
11114
11115 /*
11116 * WaCxSRDisabledForSpriteScaling:ivb
11117 *
11118 * cstate->update_wm was already set above, so this flag will
11119 * take effect when we commit and program watermarks.
11120 */
11121 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
11122 needs_scaling(to_intel_plane_state(plane_state)) &&
11123 !needs_scaling(old_plane_state))
11124 pipe_config->disable_lp_wm = true;
11125
11126 return 0;
11127 }
11128
11129 static bool encoders_cloneable(const struct intel_encoder *a,
11130 const struct intel_encoder *b)
11131 {
11132 /* masks could be asymmetric, so check both ways */
11133 return a == b || (a->cloneable & (1 << b->type) &&
11134 b->cloneable & (1 << a->type));
11135 }
11136
11137 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11138 struct intel_crtc *crtc,
11139 struct intel_encoder *encoder)
11140 {
11141 struct intel_encoder *source_encoder;
11142 struct drm_connector *connector;
11143 struct drm_connector_state *connector_state;
11144 int i;
11145
11146 for_each_new_connector_in_state(state, connector, connector_state, i) {
11147 if (connector_state->crtc != &crtc->base)
11148 continue;
11149
11150 source_encoder =
11151 to_intel_encoder(connector_state->best_encoder);
11152 if (!encoders_cloneable(encoder, source_encoder))
11153 return false;
11154 }
11155
11156 return true;
11157 }
11158
11159 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11160 struct drm_crtc_state *crtc_state)
11161 {
11162 struct drm_device *dev = crtc->dev;
11163 struct drm_i915_private *dev_priv = to_i915(dev);
11164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11165 struct intel_crtc_state *pipe_config =
11166 to_intel_crtc_state(crtc_state);
11167 struct drm_atomic_state *state = crtc_state->state;
11168 int ret;
11169 bool mode_changed = needs_modeset(crtc_state);
11170
11171 if (mode_changed && !crtc_state->active)
11172 pipe_config->update_wm_post = true;
11173
11174 if (mode_changed && crtc_state->enable &&
11175 dev_priv->display.crtc_compute_clock &&
11176 !WARN_ON(pipe_config->shared_dpll)) {
11177 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11178 pipe_config);
11179 if (ret)
11180 return ret;
11181 }
11182
11183 if (crtc_state->color_mgmt_changed) {
11184 ret = intel_color_check(crtc, crtc_state);
11185 if (ret)
11186 return ret;
11187
11188 /*
11189 * Changing color management on Intel hardware is
11190 * handled as part of planes update.
11191 */
11192 crtc_state->planes_changed = true;
11193 }
11194
11195 ret = 0;
11196 if (dev_priv->display.compute_pipe_wm) {
11197 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11198 if (ret) {
11199 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11200 return ret;
11201 }
11202 }
11203
11204 if (dev_priv->display.compute_intermediate_wm &&
11205 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11206 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11207 return 0;
11208
11209 /*
11210 * Calculate 'intermediate' watermarks that satisfy both the
11211 * old state and the new state. We can program these
11212 * immediately.
11213 */
11214 ret = dev_priv->display.compute_intermediate_wm(dev,
11215 intel_crtc,
11216 pipe_config);
11217 if (ret) {
11218 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11219 return ret;
11220 }
11221 } else if (dev_priv->display.compute_intermediate_wm) {
11222 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11223 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11224 }
11225
11226 if (INTEL_GEN(dev_priv) >= 9) {
11227 if (mode_changed)
11228 ret = skl_update_scaler_crtc(pipe_config);
11229
11230 if (!ret)
11231 ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11232 pipe_config);
11233 if (!ret)
11234 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11235 pipe_config);
11236 }
11237
11238 return ret;
11239 }
11240
11241 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11242 .atomic_begin = intel_begin_crtc_commit,
11243 .atomic_flush = intel_finish_crtc_commit,
11244 .atomic_check = intel_crtc_atomic_check,
11245 };
11246
11247 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11248 {
11249 struct intel_connector *connector;
11250 struct drm_connector_list_iter conn_iter;
11251
11252 drm_connector_list_iter_begin(dev, &conn_iter);
11253 for_each_intel_connector_iter(connector, &conn_iter) {
11254 if (connector->base.state->crtc)
11255 drm_connector_unreference(&connector->base);
11256
11257 if (connector->base.encoder) {
11258 connector->base.state->best_encoder =
11259 connector->base.encoder;
11260 connector->base.state->crtc =
11261 connector->base.encoder->crtc;
11262
11263 drm_connector_reference(&connector->base);
11264 } else {
11265 connector->base.state->best_encoder = NULL;
11266 connector->base.state->crtc = NULL;
11267 }
11268 }
11269 drm_connector_list_iter_end(&conn_iter);
11270 }
11271
11272 static void
11273 connected_sink_compute_bpp(struct intel_connector *connector,
11274 struct intel_crtc_state *pipe_config)
11275 {
11276 const struct drm_display_info *info = &connector->base.display_info;
11277 int bpp = pipe_config->pipe_bpp;
11278
11279 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11280 connector->base.base.id,
11281 connector->base.name);
11282
11283 /* Don't use an invalid EDID bpc value */
11284 if (info->bpc != 0 && info->bpc * 3 < bpp) {
11285 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11286 bpp, info->bpc * 3);
11287 pipe_config->pipe_bpp = info->bpc * 3;
11288 }
11289
11290 /* Clamp bpp to 8 on screens without EDID 1.4 */
11291 if (info->bpc == 0 && bpp > 24) {
11292 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11293 bpp);
11294 pipe_config->pipe_bpp = 24;
11295 }
11296 }
11297
11298 static int
11299 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11300 struct intel_crtc_state *pipe_config)
11301 {
11302 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11303 struct drm_atomic_state *state;
11304 struct drm_connector *connector;
11305 struct drm_connector_state *connector_state;
11306 int bpp, i;
11307
11308 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11309 IS_CHERRYVIEW(dev_priv)))
11310 bpp = 10*3;
11311 else if (INTEL_GEN(dev_priv) >= 5)
11312 bpp = 12*3;
11313 else
11314 bpp = 8*3;
11315
11316
11317 pipe_config->pipe_bpp = bpp;
11318
11319 state = pipe_config->base.state;
11320
11321 /* Clamp display bpp to EDID value */
11322 for_each_new_connector_in_state(state, connector, connector_state, i) {
11323 if (connector_state->crtc != &crtc->base)
11324 continue;
11325
11326 connected_sink_compute_bpp(to_intel_connector(connector),
11327 pipe_config);
11328 }
11329
11330 return bpp;
11331 }
11332
11333 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11334 {
11335 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11336 "type: 0x%x flags: 0x%x\n",
11337 mode->crtc_clock,
11338 mode->crtc_hdisplay, mode->crtc_hsync_start,
11339 mode->crtc_hsync_end, mode->crtc_htotal,
11340 mode->crtc_vdisplay, mode->crtc_vsync_start,
11341 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11342 }
11343
11344 static inline void
11345 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11346 unsigned int lane_count, struct intel_link_m_n *m_n)
11347 {
11348 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11349 id, lane_count,
11350 m_n->gmch_m, m_n->gmch_n,
11351 m_n->link_m, m_n->link_n, m_n->tu);
11352 }
11353
11354 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11355 struct intel_crtc_state *pipe_config,
11356 const char *context)
11357 {
11358 struct drm_device *dev = crtc->base.dev;
11359 struct drm_i915_private *dev_priv = to_i915(dev);
11360 struct drm_plane *plane;
11361 struct intel_plane *intel_plane;
11362 struct intel_plane_state *state;
11363 struct drm_framebuffer *fb;
11364
11365 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11366 crtc->base.base.id, crtc->base.name, context);
11367
11368 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11369 transcoder_name(pipe_config->cpu_transcoder),
11370 pipe_config->pipe_bpp, pipe_config->dither);
11371
11372 if (pipe_config->has_pch_encoder)
11373 intel_dump_m_n_config(pipe_config, "fdi",
11374 pipe_config->fdi_lanes,
11375 &pipe_config->fdi_m_n);
11376
11377 if (intel_crtc_has_dp_encoder(pipe_config)) {
11378 intel_dump_m_n_config(pipe_config, "dp m_n",
11379 pipe_config->lane_count, &pipe_config->dp_m_n);
11380 if (pipe_config->has_drrs)
11381 intel_dump_m_n_config(pipe_config, "dp m2_n2",
11382 pipe_config->lane_count,
11383 &pipe_config->dp_m2_n2);
11384 }
11385
11386 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11387 pipe_config->has_audio, pipe_config->has_infoframe);
11388
11389 DRM_DEBUG_KMS("requested mode:\n");
11390 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11391 DRM_DEBUG_KMS("adjusted mode:\n");
11392 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11393 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11394 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11395 pipe_config->port_clock,
11396 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11397 pipe_config->pixel_rate);
11398
11399 if (INTEL_GEN(dev_priv) >= 9)
11400 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11401 crtc->num_scalers,
11402 pipe_config->scaler_state.scaler_users,
11403 pipe_config->scaler_state.scaler_id);
11404
11405 if (HAS_GMCH_DISPLAY(dev_priv))
11406 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11407 pipe_config->gmch_pfit.control,
11408 pipe_config->gmch_pfit.pgm_ratios,
11409 pipe_config->gmch_pfit.lvds_border_bits);
11410 else
11411 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11412 pipe_config->pch_pfit.pos,
11413 pipe_config->pch_pfit.size,
11414 enableddisabled(pipe_config->pch_pfit.enabled));
11415
11416 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11417 pipe_config->ips_enabled, pipe_config->double_wide);
11418
11419 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11420
11421 DRM_DEBUG_KMS("planes on this crtc\n");
11422 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11423 struct drm_format_name_buf format_name;
11424 intel_plane = to_intel_plane(plane);
11425 if (intel_plane->pipe != crtc->pipe)
11426 continue;
11427
11428 state = to_intel_plane_state(plane->state);
11429 fb = state->base.fb;
11430 if (!fb) {
11431 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11432 plane->base.id, plane->name, state->scaler_id);
11433 continue;
11434 }
11435
11436 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11437 plane->base.id, plane->name,
11438 fb->base.id, fb->width, fb->height,
11439 drm_get_format_name(fb->format->format, &format_name));
11440 if (INTEL_GEN(dev_priv) >= 9)
11441 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11442 state->scaler_id,
11443 state->base.src.x1 >> 16,
11444 state->base.src.y1 >> 16,
11445 drm_rect_width(&state->base.src) >> 16,
11446 drm_rect_height(&state->base.src) >> 16,
11447 state->base.dst.x1, state->base.dst.y1,
11448 drm_rect_width(&state->base.dst),
11449 drm_rect_height(&state->base.dst));
11450 }
11451 }
11452
11453 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11454 {
11455 struct drm_device *dev = state->dev;
11456 struct drm_connector *connector;
11457 struct drm_connector_list_iter conn_iter;
11458 unsigned int used_ports = 0;
11459 unsigned int used_mst_ports = 0;
11460
11461 /*
11462 * Walk the connector list instead of the encoder
11463 * list to detect the problem on ddi platforms
11464 * where there's just one encoder per digital port.
11465 */
11466 drm_connector_list_iter_begin(dev, &conn_iter);
11467 drm_for_each_connector_iter(connector, &conn_iter) {
11468 struct drm_connector_state *connector_state;
11469 struct intel_encoder *encoder;
11470
11471 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11472 if (!connector_state)
11473 connector_state = connector->state;
11474
11475 if (!connector_state->best_encoder)
11476 continue;
11477
11478 encoder = to_intel_encoder(connector_state->best_encoder);
11479
11480 WARN_ON(!connector_state->crtc);
11481
11482 switch (encoder->type) {
11483 unsigned int port_mask;
11484 case INTEL_OUTPUT_UNKNOWN:
11485 if (WARN_ON(!HAS_DDI(to_i915(dev))))
11486 break;
11487 case INTEL_OUTPUT_DP:
11488 case INTEL_OUTPUT_HDMI:
11489 case INTEL_OUTPUT_EDP:
11490 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11491
11492 /* the same port mustn't appear more than once */
11493 if (used_ports & port_mask)
11494 return false;
11495
11496 used_ports |= port_mask;
11497 break;
11498 case INTEL_OUTPUT_DP_MST:
11499 used_mst_ports |=
11500 1 << enc_to_mst(&encoder->base)->primary->port;
11501 break;
11502 default:
11503 break;
11504 }
11505 }
11506 drm_connector_list_iter_end(&conn_iter);
11507
11508 /* can't mix MST and SST/HDMI on the same port */
11509 if (used_ports & used_mst_ports)
11510 return false;
11511
11512 return true;
11513 }
11514
11515 static void
11516 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11517 {
11518 struct drm_i915_private *dev_priv =
11519 to_i915(crtc_state->base.crtc->dev);
11520 struct intel_crtc_scaler_state scaler_state;
11521 struct intel_dpll_hw_state dpll_hw_state;
11522 struct intel_shared_dpll *shared_dpll;
11523 struct intel_crtc_wm_state wm_state;
11524 bool force_thru;
11525
11526 /* FIXME: before the switch to atomic started, a new pipe_config was
11527 * kzalloc'd. Code that depends on any field being zero should be
11528 * fixed, so that the crtc_state can be safely duplicated. For now,
11529 * only fields that are know to not cause problems are preserved. */
11530
11531 scaler_state = crtc_state->scaler_state;
11532 shared_dpll = crtc_state->shared_dpll;
11533 dpll_hw_state = crtc_state->dpll_hw_state;
11534 force_thru = crtc_state->pch_pfit.force_thru;
11535 if (IS_G4X(dev_priv) ||
11536 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11537 wm_state = crtc_state->wm;
11538
11539 /* Keep base drm_crtc_state intact, only clear our extended struct */
11540 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11541 memset(&crtc_state->base + 1, 0,
11542 sizeof(*crtc_state) - sizeof(crtc_state->base));
11543
11544 crtc_state->scaler_state = scaler_state;
11545 crtc_state->shared_dpll = shared_dpll;
11546 crtc_state->dpll_hw_state = dpll_hw_state;
11547 crtc_state->pch_pfit.force_thru = force_thru;
11548 if (IS_G4X(dev_priv) ||
11549 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11550 crtc_state->wm = wm_state;
11551 }
11552
11553 static int
11554 intel_modeset_pipe_config(struct drm_crtc *crtc,
11555 struct intel_crtc_state *pipe_config)
11556 {
11557 struct drm_atomic_state *state = pipe_config->base.state;
11558 struct intel_encoder *encoder;
11559 struct drm_connector *connector;
11560 struct drm_connector_state *connector_state;
11561 int base_bpp, ret = -EINVAL;
11562 int i;
11563 bool retry = true;
11564
11565 clear_intel_crtc_state(pipe_config);
11566
11567 pipe_config->cpu_transcoder =
11568 (enum transcoder) to_intel_crtc(crtc)->pipe;
11569
11570 /*
11571 * Sanitize sync polarity flags based on requested ones. If neither
11572 * positive or negative polarity is requested, treat this as meaning
11573 * negative polarity.
11574 */
11575 if (!(pipe_config->base.adjusted_mode.flags &
11576 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11577 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11578
11579 if (!(pipe_config->base.adjusted_mode.flags &
11580 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11581 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11582
11583 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11584 pipe_config);
11585 if (base_bpp < 0)
11586 goto fail;
11587
11588 /*
11589 * Determine the real pipe dimensions. Note that stereo modes can
11590 * increase the actual pipe size due to the frame doubling and
11591 * insertion of additional space for blanks between the frame. This
11592 * is stored in the crtc timings. We use the requested mode to do this
11593 * computation to clearly distinguish it from the adjusted mode, which
11594 * can be changed by the connectors in the below retry loop.
11595 */
11596 drm_mode_get_hv_timing(&pipe_config->base.mode,
11597 &pipe_config->pipe_src_w,
11598 &pipe_config->pipe_src_h);
11599
11600 for_each_new_connector_in_state(state, connector, connector_state, i) {
11601 if (connector_state->crtc != crtc)
11602 continue;
11603
11604 encoder = to_intel_encoder(connector_state->best_encoder);
11605
11606 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11607 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11608 goto fail;
11609 }
11610
11611 /*
11612 * Determine output_types before calling the .compute_config()
11613 * hooks so that the hooks can use this information safely.
11614 */
11615 pipe_config->output_types |= 1 << encoder->type;
11616 }
11617
11618 encoder_retry:
11619 /* Ensure the port clock defaults are reset when retrying. */
11620 pipe_config->port_clock = 0;
11621 pipe_config->pixel_multiplier = 1;
11622
11623 /* Fill in default crtc timings, allow encoders to overwrite them. */
11624 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11625 CRTC_STEREO_DOUBLE);
11626
11627 /* Pass our mode to the connectors and the CRTC to give them a chance to
11628 * adjust it according to limitations or connector properties, and also
11629 * a chance to reject the mode entirely.
11630 */
11631 for_each_new_connector_in_state(state, connector, connector_state, i) {
11632 if (connector_state->crtc != crtc)
11633 continue;
11634
11635 encoder = to_intel_encoder(connector_state->best_encoder);
11636
11637 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11638 DRM_DEBUG_KMS("Encoder config failure\n");
11639 goto fail;
11640 }
11641 }
11642
11643 /* Set default port clock if not overwritten by the encoder. Needs to be
11644 * done afterwards in case the encoder adjusts the mode. */
11645 if (!pipe_config->port_clock)
11646 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11647 * pipe_config->pixel_multiplier;
11648
11649 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11650 if (ret < 0) {
11651 DRM_DEBUG_KMS("CRTC fixup failed\n");
11652 goto fail;
11653 }
11654
11655 if (ret == RETRY) {
11656 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11657 ret = -EINVAL;
11658 goto fail;
11659 }
11660
11661 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11662 retry = false;
11663 goto encoder_retry;
11664 }
11665
11666 /* Dithering seems to not pass-through bits correctly when it should, so
11667 * only enable it on 6bpc panels and when its not a compliance
11668 * test requesting 6bpc video pattern.
11669 */
11670 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11671 !pipe_config->dither_force_disable;
11672 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11673 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11674
11675 fail:
11676 return ret;
11677 }
11678
11679 static void
11680 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11681 {
11682 struct drm_crtc *crtc;
11683 struct drm_crtc_state *new_crtc_state;
11684 int i;
11685
11686 /* Double check state. */
11687 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11688 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11689
11690 /*
11691 * Update legacy state to satisfy fbc code. This can
11692 * be removed when fbc uses the atomic state.
11693 */
11694 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11695 struct drm_plane_state *plane_state = crtc->primary->state;
11696
11697 crtc->primary->fb = plane_state->fb;
11698 crtc->x = plane_state->src_x >> 16;
11699 crtc->y = plane_state->src_y >> 16;
11700 }
11701 }
11702 }
11703
11704 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11705 {
11706 int diff;
11707
11708 if (clock1 == clock2)
11709 return true;
11710
11711 if (!clock1 || !clock2)
11712 return false;
11713
11714 diff = abs(clock1 - clock2);
11715
11716 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11717 return true;
11718
11719 return false;
11720 }
11721
11722 static bool
11723 intel_compare_m_n(unsigned int m, unsigned int n,
11724 unsigned int m2, unsigned int n2,
11725 bool exact)
11726 {
11727 if (m == m2 && n == n2)
11728 return true;
11729
11730 if (exact || !m || !n || !m2 || !n2)
11731 return false;
11732
11733 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11734
11735 if (n > n2) {
11736 while (n > n2) {
11737 m2 <<= 1;
11738 n2 <<= 1;
11739 }
11740 } else if (n < n2) {
11741 while (n < n2) {
11742 m <<= 1;
11743 n <<= 1;
11744 }
11745 }
11746
11747 if (n != n2)
11748 return false;
11749
11750 return intel_fuzzy_clock_check(m, m2);
11751 }
11752
11753 static bool
11754 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11755 struct intel_link_m_n *m2_n2,
11756 bool adjust)
11757 {
11758 if (m_n->tu == m2_n2->tu &&
11759 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11760 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11761 intel_compare_m_n(m_n->link_m, m_n->link_n,
11762 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11763 if (adjust)
11764 *m2_n2 = *m_n;
11765
11766 return true;
11767 }
11768
11769 return false;
11770 }
11771
11772 static void __printf(3, 4)
11773 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11774 {
11775 char *level;
11776 unsigned int category;
11777 struct va_format vaf;
11778 va_list args;
11779
11780 if (adjust) {
11781 level = KERN_DEBUG;
11782 category = DRM_UT_KMS;
11783 } else {
11784 level = KERN_ERR;
11785 category = DRM_UT_NONE;
11786 }
11787
11788 va_start(args, format);
11789 vaf.fmt = format;
11790 vaf.va = &args;
11791
11792 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11793
11794 va_end(args);
11795 }
11796
11797 static bool
11798 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11799 struct intel_crtc_state *current_config,
11800 struct intel_crtc_state *pipe_config,
11801 bool adjust)
11802 {
11803 bool ret = true;
11804
11805 #define PIPE_CONF_CHECK_X(name) \
11806 if (current_config->name != pipe_config->name) { \
11807 pipe_config_err(adjust, __stringify(name), \
11808 "(expected 0x%08x, found 0x%08x)\n", \
11809 current_config->name, \
11810 pipe_config->name); \
11811 ret = false; \
11812 }
11813
11814 #define PIPE_CONF_CHECK_I(name) \
11815 if (current_config->name != pipe_config->name) { \
11816 pipe_config_err(adjust, __stringify(name), \
11817 "(expected %i, found %i)\n", \
11818 current_config->name, \
11819 pipe_config->name); \
11820 ret = false; \
11821 }
11822
11823 #define PIPE_CONF_CHECK_P(name) \
11824 if (current_config->name != pipe_config->name) { \
11825 pipe_config_err(adjust, __stringify(name), \
11826 "(expected %p, found %p)\n", \
11827 current_config->name, \
11828 pipe_config->name); \
11829 ret = false; \
11830 }
11831
11832 #define PIPE_CONF_CHECK_M_N(name) \
11833 if (!intel_compare_link_m_n(&current_config->name, \
11834 &pipe_config->name,\
11835 adjust)) { \
11836 pipe_config_err(adjust, __stringify(name), \
11837 "(expected tu %i gmch %i/%i link %i/%i, " \
11838 "found tu %i, gmch %i/%i link %i/%i)\n", \
11839 current_config->name.tu, \
11840 current_config->name.gmch_m, \
11841 current_config->name.gmch_n, \
11842 current_config->name.link_m, \
11843 current_config->name.link_n, \
11844 pipe_config->name.tu, \
11845 pipe_config->name.gmch_m, \
11846 pipe_config->name.gmch_n, \
11847 pipe_config->name.link_m, \
11848 pipe_config->name.link_n); \
11849 ret = false; \
11850 }
11851
11852 /* This is required for BDW+ where there is only one set of registers for
11853 * switching between high and low RR.
11854 * This macro can be used whenever a comparison has to be made between one
11855 * hw state and multiple sw state variables.
11856 */
11857 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11858 if (!intel_compare_link_m_n(&current_config->name, \
11859 &pipe_config->name, adjust) && \
11860 !intel_compare_link_m_n(&current_config->alt_name, \
11861 &pipe_config->name, adjust)) { \
11862 pipe_config_err(adjust, __stringify(name), \
11863 "(expected tu %i gmch %i/%i link %i/%i, " \
11864 "or tu %i gmch %i/%i link %i/%i, " \
11865 "found tu %i, gmch %i/%i link %i/%i)\n", \
11866 current_config->name.tu, \
11867 current_config->name.gmch_m, \
11868 current_config->name.gmch_n, \
11869 current_config->name.link_m, \
11870 current_config->name.link_n, \
11871 current_config->alt_name.tu, \
11872 current_config->alt_name.gmch_m, \
11873 current_config->alt_name.gmch_n, \
11874 current_config->alt_name.link_m, \
11875 current_config->alt_name.link_n, \
11876 pipe_config->name.tu, \
11877 pipe_config->name.gmch_m, \
11878 pipe_config->name.gmch_n, \
11879 pipe_config->name.link_m, \
11880 pipe_config->name.link_n); \
11881 ret = false; \
11882 }
11883
11884 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11885 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11886 pipe_config_err(adjust, __stringify(name), \
11887 "(%x) (expected %i, found %i)\n", \
11888 (mask), \
11889 current_config->name & (mask), \
11890 pipe_config->name & (mask)); \
11891 ret = false; \
11892 }
11893
11894 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11895 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11896 pipe_config_err(adjust, __stringify(name), \
11897 "(expected %i, found %i)\n", \
11898 current_config->name, \
11899 pipe_config->name); \
11900 ret = false; \
11901 }
11902
11903 #define PIPE_CONF_QUIRK(quirk) \
11904 ((current_config->quirks | pipe_config->quirks) & (quirk))
11905
11906 PIPE_CONF_CHECK_I(cpu_transcoder);
11907
11908 PIPE_CONF_CHECK_I(has_pch_encoder);
11909 PIPE_CONF_CHECK_I(fdi_lanes);
11910 PIPE_CONF_CHECK_M_N(fdi_m_n);
11911
11912 PIPE_CONF_CHECK_I(lane_count);
11913 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11914
11915 if (INTEL_GEN(dev_priv) < 8) {
11916 PIPE_CONF_CHECK_M_N(dp_m_n);
11917
11918 if (current_config->has_drrs)
11919 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11920 } else
11921 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11922
11923 PIPE_CONF_CHECK_X(output_types);
11924
11925 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11926 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11927 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11928 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11929 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11930 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11931
11932 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11933 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11934 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11935 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11936 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11937 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11938
11939 PIPE_CONF_CHECK_I(pixel_multiplier);
11940 PIPE_CONF_CHECK_I(has_hdmi_sink);
11941 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11942 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11943 PIPE_CONF_CHECK_I(limited_color_range);
11944
11945 PIPE_CONF_CHECK_I(hdmi_scrambling);
11946 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11947 PIPE_CONF_CHECK_I(has_infoframe);
11948
11949 PIPE_CONF_CHECK_I(has_audio);
11950
11951 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11952 DRM_MODE_FLAG_INTERLACE);
11953
11954 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11955 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11956 DRM_MODE_FLAG_PHSYNC);
11957 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11958 DRM_MODE_FLAG_NHSYNC);
11959 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11960 DRM_MODE_FLAG_PVSYNC);
11961 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11962 DRM_MODE_FLAG_NVSYNC);
11963 }
11964
11965 PIPE_CONF_CHECK_X(gmch_pfit.control);
11966 /* pfit ratios are autocomputed by the hw on gen4+ */
11967 if (INTEL_GEN(dev_priv) < 4)
11968 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11969 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11970
11971 if (!adjust) {
11972 PIPE_CONF_CHECK_I(pipe_src_w);
11973 PIPE_CONF_CHECK_I(pipe_src_h);
11974
11975 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11976 if (current_config->pch_pfit.enabled) {
11977 PIPE_CONF_CHECK_X(pch_pfit.pos);
11978 PIPE_CONF_CHECK_X(pch_pfit.size);
11979 }
11980
11981 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11982 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11983 }
11984
11985 /* BDW+ don't expose a synchronous way to read the state */
11986 if (IS_HASWELL(dev_priv))
11987 PIPE_CONF_CHECK_I(ips_enabled);
11988
11989 PIPE_CONF_CHECK_I(double_wide);
11990
11991 PIPE_CONF_CHECK_P(shared_dpll);
11992 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11993 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11994 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11995 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11996 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11997 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11998 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11999 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12000 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12001
12002 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12003 PIPE_CONF_CHECK_X(dsi_pll.div);
12004
12005 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
12006 PIPE_CONF_CHECK_I(pipe_bpp);
12007
12008 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12009 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12010
12011 #undef PIPE_CONF_CHECK_X
12012 #undef PIPE_CONF_CHECK_I
12013 #undef PIPE_CONF_CHECK_P
12014 #undef PIPE_CONF_CHECK_FLAGS
12015 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12016 #undef PIPE_CONF_QUIRK
12017
12018 return ret;
12019 }
12020
12021 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12022 const struct intel_crtc_state *pipe_config)
12023 {
12024 if (pipe_config->has_pch_encoder) {
12025 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12026 &pipe_config->fdi_m_n);
12027 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12028
12029 /*
12030 * FDI already provided one idea for the dotclock.
12031 * Yell if the encoder disagrees.
12032 */
12033 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12034 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12035 fdi_dotclock, dotclock);
12036 }
12037 }
12038
12039 static void verify_wm_state(struct drm_crtc *crtc,
12040 struct drm_crtc_state *new_state)
12041 {
12042 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
12043 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12044 struct skl_pipe_wm hw_wm, *sw_wm;
12045 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12046 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12048 const enum pipe pipe = intel_crtc->pipe;
12049 int plane, level, max_level = ilk_wm_max_level(dev_priv);
12050
12051 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12052 return;
12053
12054 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
12055 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12056
12057 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12058 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12059
12060 /* planes */
12061 for_each_universal_plane(dev_priv, pipe, plane) {
12062 hw_plane_wm = &hw_wm.planes[plane];
12063 sw_plane_wm = &sw_wm->planes[plane];
12064
12065 /* Watermarks */
12066 for (level = 0; level <= max_level; level++) {
12067 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12068 &sw_plane_wm->wm[level]))
12069 continue;
12070
12071 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12072 pipe_name(pipe), plane + 1, level,
12073 sw_plane_wm->wm[level].plane_en,
12074 sw_plane_wm->wm[level].plane_res_b,
12075 sw_plane_wm->wm[level].plane_res_l,
12076 hw_plane_wm->wm[level].plane_en,
12077 hw_plane_wm->wm[level].plane_res_b,
12078 hw_plane_wm->wm[level].plane_res_l);
12079 }
12080
12081 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12082 &sw_plane_wm->trans_wm)) {
12083 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12084 pipe_name(pipe), plane + 1,
12085 sw_plane_wm->trans_wm.plane_en,
12086 sw_plane_wm->trans_wm.plane_res_b,
12087 sw_plane_wm->trans_wm.plane_res_l,
12088 hw_plane_wm->trans_wm.plane_en,
12089 hw_plane_wm->trans_wm.plane_res_b,
12090 hw_plane_wm->trans_wm.plane_res_l);
12091 }
12092
12093 /* DDB */
12094 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
12095 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
12096
12097 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12098 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12099 pipe_name(pipe), plane + 1,
12100 sw_ddb_entry->start, sw_ddb_entry->end,
12101 hw_ddb_entry->start, hw_ddb_entry->end);
12102 }
12103 }
12104
12105 /*
12106 * cursor
12107 * If the cursor plane isn't active, we may not have updated it's ddb
12108 * allocation. In that case since the ddb allocation will be updated
12109 * once the plane becomes visible, we can skip this check
12110 */
12111 if (1) {
12112 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
12113 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12114
12115 /* Watermarks */
12116 for (level = 0; level <= max_level; level++) {
12117 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12118 &sw_plane_wm->wm[level]))
12119 continue;
12120
12121 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12122 pipe_name(pipe), level,
12123 sw_plane_wm->wm[level].plane_en,
12124 sw_plane_wm->wm[level].plane_res_b,
12125 sw_plane_wm->wm[level].plane_res_l,
12126 hw_plane_wm->wm[level].plane_en,
12127 hw_plane_wm->wm[level].plane_res_b,
12128 hw_plane_wm->wm[level].plane_res_l);
12129 }
12130
12131 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12132 &sw_plane_wm->trans_wm)) {
12133 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12134 pipe_name(pipe),
12135 sw_plane_wm->trans_wm.plane_en,
12136 sw_plane_wm->trans_wm.plane_res_b,
12137 sw_plane_wm->trans_wm.plane_res_l,
12138 hw_plane_wm->trans_wm.plane_en,
12139 hw_plane_wm->trans_wm.plane_res_b,
12140 hw_plane_wm->trans_wm.plane_res_l);
12141 }
12142
12143 /* DDB */
12144 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12145 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12146
12147 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12148 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12149 pipe_name(pipe),
12150 sw_ddb_entry->start, sw_ddb_entry->end,
12151 hw_ddb_entry->start, hw_ddb_entry->end);
12152 }
12153 }
12154 }
12155
12156 static void
12157 verify_connector_state(struct drm_device *dev,
12158 struct drm_atomic_state *state,
12159 struct drm_crtc *crtc)
12160 {
12161 struct drm_connector *connector;
12162 struct drm_connector_state *new_conn_state;
12163 int i;
12164
12165 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12166 struct drm_encoder *encoder = connector->encoder;
12167 struct drm_crtc_state *crtc_state = NULL;
12168
12169 if (new_conn_state->crtc != crtc)
12170 continue;
12171
12172 if (crtc)
12173 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12174
12175 intel_connector_verify_state(crtc_state, new_conn_state);
12176
12177 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12178 "connector's atomic encoder doesn't match legacy encoder\n");
12179 }
12180 }
12181
12182 static void
12183 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12184 {
12185 struct intel_encoder *encoder;
12186 struct drm_connector *connector;
12187 struct drm_connector_state *old_conn_state, *new_conn_state;
12188 int i;
12189
12190 for_each_intel_encoder(dev, encoder) {
12191 bool enabled = false, found = false;
12192 enum pipe pipe;
12193
12194 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12195 encoder->base.base.id,
12196 encoder->base.name);
12197
12198 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12199 new_conn_state, i) {
12200 if (old_conn_state->best_encoder == &encoder->base)
12201 found = true;
12202
12203 if (new_conn_state->best_encoder != &encoder->base)
12204 continue;
12205 found = enabled = true;
12206
12207 I915_STATE_WARN(new_conn_state->crtc !=
12208 encoder->base.crtc,
12209 "connector's crtc doesn't match encoder crtc\n");
12210 }
12211
12212 if (!found)
12213 continue;
12214
12215 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12216 "encoder's enabled state mismatch "
12217 "(expected %i, found %i)\n",
12218 !!encoder->base.crtc, enabled);
12219
12220 if (!encoder->base.crtc) {
12221 bool active;
12222
12223 active = encoder->get_hw_state(encoder, &pipe);
12224 I915_STATE_WARN(active,
12225 "encoder detached but still enabled on pipe %c.\n",
12226 pipe_name(pipe));
12227 }
12228 }
12229 }
12230
12231 static void
12232 verify_crtc_state(struct drm_crtc *crtc,
12233 struct drm_crtc_state *old_crtc_state,
12234 struct drm_crtc_state *new_crtc_state)
12235 {
12236 struct drm_device *dev = crtc->dev;
12237 struct drm_i915_private *dev_priv = to_i915(dev);
12238 struct intel_encoder *encoder;
12239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12240 struct intel_crtc_state *pipe_config, *sw_config;
12241 struct drm_atomic_state *old_state;
12242 bool active;
12243
12244 old_state = old_crtc_state->state;
12245 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12246 pipe_config = to_intel_crtc_state(old_crtc_state);
12247 memset(pipe_config, 0, sizeof(*pipe_config));
12248 pipe_config->base.crtc = crtc;
12249 pipe_config->base.state = old_state;
12250
12251 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12252
12253 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12254
12255 /* we keep both pipes enabled on 830 */
12256 if (IS_I830(dev_priv))
12257 active = new_crtc_state->active;
12258
12259 I915_STATE_WARN(new_crtc_state->active != active,
12260 "crtc active state doesn't match with hw state "
12261 "(expected %i, found %i)\n", new_crtc_state->active, active);
12262
12263 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12264 "transitional active state does not match atomic hw state "
12265 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12266
12267 for_each_encoder_on_crtc(dev, crtc, encoder) {
12268 enum pipe pipe;
12269
12270 active = encoder->get_hw_state(encoder, &pipe);
12271 I915_STATE_WARN(active != new_crtc_state->active,
12272 "[ENCODER:%i] active %i with crtc active %i\n",
12273 encoder->base.base.id, active, new_crtc_state->active);
12274
12275 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12276 "Encoder connected to wrong pipe %c\n",
12277 pipe_name(pipe));
12278
12279 if (active) {
12280 pipe_config->output_types |= 1 << encoder->type;
12281 encoder->get_config(encoder, pipe_config);
12282 }
12283 }
12284
12285 intel_crtc_compute_pixel_rate(pipe_config);
12286
12287 if (!new_crtc_state->active)
12288 return;
12289
12290 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12291
12292 sw_config = to_intel_crtc_state(new_crtc_state);
12293 if (!intel_pipe_config_compare(dev_priv, sw_config,
12294 pipe_config, false)) {
12295 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12296 intel_dump_pipe_config(intel_crtc, pipe_config,
12297 "[hw state]");
12298 intel_dump_pipe_config(intel_crtc, sw_config,
12299 "[sw state]");
12300 }
12301 }
12302
12303 static void
12304 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12305 struct intel_shared_dpll *pll,
12306 struct drm_crtc *crtc,
12307 struct drm_crtc_state *new_state)
12308 {
12309 struct intel_dpll_hw_state dpll_hw_state;
12310 unsigned crtc_mask;
12311 bool active;
12312
12313 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12314
12315 DRM_DEBUG_KMS("%s\n", pll->name);
12316
12317 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12318
12319 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12320 I915_STATE_WARN(!pll->on && pll->active_mask,
12321 "pll in active use but not on in sw tracking\n");
12322 I915_STATE_WARN(pll->on && !pll->active_mask,
12323 "pll is on but not used by any active crtc\n");
12324 I915_STATE_WARN(pll->on != active,
12325 "pll on state mismatch (expected %i, found %i)\n",
12326 pll->on, active);
12327 }
12328
12329 if (!crtc) {
12330 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12331 "more active pll users than references: %x vs %x\n",
12332 pll->active_mask, pll->state.crtc_mask);
12333
12334 return;
12335 }
12336
12337 crtc_mask = 1 << drm_crtc_index(crtc);
12338
12339 if (new_state->active)
12340 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12341 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12342 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12343 else
12344 I915_STATE_WARN(pll->active_mask & crtc_mask,
12345 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12346 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12347
12348 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12349 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12350 crtc_mask, pll->state.crtc_mask);
12351
12352 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12353 &dpll_hw_state,
12354 sizeof(dpll_hw_state)),
12355 "pll hw state mismatch\n");
12356 }
12357
12358 static void
12359 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12360 struct drm_crtc_state *old_crtc_state,
12361 struct drm_crtc_state *new_crtc_state)
12362 {
12363 struct drm_i915_private *dev_priv = to_i915(dev);
12364 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12365 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12366
12367 if (new_state->shared_dpll)
12368 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12369
12370 if (old_state->shared_dpll &&
12371 old_state->shared_dpll != new_state->shared_dpll) {
12372 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12373 struct intel_shared_dpll *pll = old_state->shared_dpll;
12374
12375 I915_STATE_WARN(pll->active_mask & crtc_mask,
12376 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12377 pipe_name(drm_crtc_index(crtc)));
12378 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12379 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12380 pipe_name(drm_crtc_index(crtc)));
12381 }
12382 }
12383
12384 static void
12385 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12386 struct drm_atomic_state *state,
12387 struct drm_crtc_state *old_state,
12388 struct drm_crtc_state *new_state)
12389 {
12390 if (!needs_modeset(new_state) &&
12391 !to_intel_crtc_state(new_state)->update_pipe)
12392 return;
12393
12394 verify_wm_state(crtc, new_state);
12395 verify_connector_state(crtc->dev, state, crtc);
12396 verify_crtc_state(crtc, old_state, new_state);
12397 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12398 }
12399
12400 static void
12401 verify_disabled_dpll_state(struct drm_device *dev)
12402 {
12403 struct drm_i915_private *dev_priv = to_i915(dev);
12404 int i;
12405
12406 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12407 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12408 }
12409
12410 static void
12411 intel_modeset_verify_disabled(struct drm_device *dev,
12412 struct drm_atomic_state *state)
12413 {
12414 verify_encoder_state(dev, state);
12415 verify_connector_state(dev, state, NULL);
12416 verify_disabled_dpll_state(dev);
12417 }
12418
12419 static void update_scanline_offset(struct intel_crtc *crtc)
12420 {
12421 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12422
12423 /*
12424 * The scanline counter increments at the leading edge of hsync.
12425 *
12426 * On most platforms it starts counting from vtotal-1 on the
12427 * first active line. That means the scanline counter value is
12428 * always one less than what we would expect. Ie. just after
12429 * start of vblank, which also occurs at start of hsync (on the
12430 * last active line), the scanline counter will read vblank_start-1.
12431 *
12432 * On gen2 the scanline counter starts counting from 1 instead
12433 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12434 * to keep the value positive), instead of adding one.
12435 *
12436 * On HSW+ the behaviour of the scanline counter depends on the output
12437 * type. For DP ports it behaves like most other platforms, but on HDMI
12438 * there's an extra 1 line difference. So we need to add two instead of
12439 * one to the value.
12440 *
12441 * On VLV/CHV DSI the scanline counter would appear to increment
12442 * approx. 1/3 of a scanline before start of vblank. Unfortunately
12443 * that means we can't tell whether we're in vblank or not while
12444 * we're on that particular line. We must still set scanline_offset
12445 * to 1 so that the vblank timestamps come out correct when we query
12446 * the scanline counter from within the vblank interrupt handler.
12447 * However if queried just before the start of vblank we'll get an
12448 * answer that's slightly in the future.
12449 */
12450 if (IS_GEN2(dev_priv)) {
12451 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12452 int vtotal;
12453
12454 vtotal = adjusted_mode->crtc_vtotal;
12455 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12456 vtotal /= 2;
12457
12458 crtc->scanline_offset = vtotal - 1;
12459 } else if (HAS_DDI(dev_priv) &&
12460 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12461 crtc->scanline_offset = 2;
12462 } else
12463 crtc->scanline_offset = 1;
12464 }
12465
12466 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12467 {
12468 struct drm_device *dev = state->dev;
12469 struct drm_i915_private *dev_priv = to_i915(dev);
12470 struct drm_crtc *crtc;
12471 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12472 int i;
12473
12474 if (!dev_priv->display.crtc_compute_clock)
12475 return;
12476
12477 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12479 struct intel_shared_dpll *old_dpll =
12480 to_intel_crtc_state(old_crtc_state)->shared_dpll;
12481
12482 if (!needs_modeset(new_crtc_state))
12483 continue;
12484
12485 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12486
12487 if (!old_dpll)
12488 continue;
12489
12490 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12491 }
12492 }
12493
12494 /*
12495 * This implements the workaround described in the "notes" section of the mode
12496 * set sequence documentation. When going from no pipes or single pipe to
12497 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12498 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12499 */
12500 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12501 {
12502 struct drm_crtc_state *crtc_state;
12503 struct intel_crtc *intel_crtc;
12504 struct drm_crtc *crtc;
12505 struct intel_crtc_state *first_crtc_state = NULL;
12506 struct intel_crtc_state *other_crtc_state = NULL;
12507 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12508 int i;
12509
12510 /* look at all crtc's that are going to be enabled in during modeset */
12511 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12512 intel_crtc = to_intel_crtc(crtc);
12513
12514 if (!crtc_state->active || !needs_modeset(crtc_state))
12515 continue;
12516
12517 if (first_crtc_state) {
12518 other_crtc_state = to_intel_crtc_state(crtc_state);
12519 break;
12520 } else {
12521 first_crtc_state = to_intel_crtc_state(crtc_state);
12522 first_pipe = intel_crtc->pipe;
12523 }
12524 }
12525
12526 /* No workaround needed? */
12527 if (!first_crtc_state)
12528 return 0;
12529
12530 /* w/a possibly needed, check how many crtc's are already enabled. */
12531 for_each_intel_crtc(state->dev, intel_crtc) {
12532 struct intel_crtc_state *pipe_config;
12533
12534 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12535 if (IS_ERR(pipe_config))
12536 return PTR_ERR(pipe_config);
12537
12538 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12539
12540 if (!pipe_config->base.active ||
12541 needs_modeset(&pipe_config->base))
12542 continue;
12543
12544 /* 2 or more enabled crtcs means no need for w/a */
12545 if (enabled_pipe != INVALID_PIPE)
12546 return 0;
12547
12548 enabled_pipe = intel_crtc->pipe;
12549 }
12550
12551 if (enabled_pipe != INVALID_PIPE)
12552 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12553 else if (other_crtc_state)
12554 other_crtc_state->hsw_workaround_pipe = first_pipe;
12555
12556 return 0;
12557 }
12558
12559 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12560 {
12561 struct drm_crtc *crtc;
12562
12563 /* Add all pipes to the state */
12564 for_each_crtc(state->dev, crtc) {
12565 struct drm_crtc_state *crtc_state;
12566
12567 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12568 if (IS_ERR(crtc_state))
12569 return PTR_ERR(crtc_state);
12570 }
12571
12572 return 0;
12573 }
12574
12575 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12576 {
12577 struct drm_crtc *crtc;
12578
12579 /*
12580 * Add all pipes to the state, and force
12581 * a modeset on all the active ones.
12582 */
12583 for_each_crtc(state->dev, crtc) {
12584 struct drm_crtc_state *crtc_state;
12585 int ret;
12586
12587 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12588 if (IS_ERR(crtc_state))
12589 return PTR_ERR(crtc_state);
12590
12591 if (!crtc_state->active || needs_modeset(crtc_state))
12592 continue;
12593
12594 crtc_state->mode_changed = true;
12595
12596 ret = drm_atomic_add_affected_connectors(state, crtc);
12597 if (ret)
12598 return ret;
12599
12600 ret = drm_atomic_add_affected_planes(state, crtc);
12601 if (ret)
12602 return ret;
12603 }
12604
12605 return 0;
12606 }
12607
12608 static int intel_modeset_checks(struct drm_atomic_state *state)
12609 {
12610 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12611 struct drm_i915_private *dev_priv = to_i915(state->dev);
12612 struct drm_crtc *crtc;
12613 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12614 int ret = 0, i;
12615
12616 if (!check_digital_port_conflicts(state)) {
12617 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12618 return -EINVAL;
12619 }
12620
12621 intel_state->modeset = true;
12622 intel_state->active_crtcs = dev_priv->active_crtcs;
12623 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12624 intel_state->cdclk.actual = dev_priv->cdclk.actual;
12625
12626 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12627 if (new_crtc_state->active)
12628 intel_state->active_crtcs |= 1 << i;
12629 else
12630 intel_state->active_crtcs &= ~(1 << i);
12631
12632 if (old_crtc_state->active != new_crtc_state->active)
12633 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12634 }
12635
12636 /*
12637 * See if the config requires any additional preparation, e.g.
12638 * to adjust global state with pipes off. We need to do this
12639 * here so we can get the modeset_pipe updated config for the new
12640 * mode set on this crtc. For other crtcs we need to use the
12641 * adjusted_mode bits in the crtc directly.
12642 */
12643 if (dev_priv->display.modeset_calc_cdclk) {
12644 ret = dev_priv->display.modeset_calc_cdclk(state);
12645 if (ret < 0)
12646 return ret;
12647
12648 /*
12649 * Writes to dev_priv->cdclk.logical must protected by
12650 * holding all the crtc locks, even if we don't end up
12651 * touching the hardware
12652 */
12653 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12654 &intel_state->cdclk.logical)) {
12655 ret = intel_lock_all_pipes(state);
12656 if (ret < 0)
12657 return ret;
12658 }
12659
12660 /* All pipes must be switched off while we change the cdclk. */
12661 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12662 &intel_state->cdclk.actual)) {
12663 ret = intel_modeset_all_pipes(state);
12664 if (ret < 0)
12665 return ret;
12666 }
12667
12668 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12669 intel_state->cdclk.logical.cdclk,
12670 intel_state->cdclk.actual.cdclk);
12671 } else {
12672 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12673 }
12674
12675 intel_modeset_clear_plls(state);
12676
12677 if (IS_HASWELL(dev_priv))
12678 return haswell_mode_set_planes_workaround(state);
12679
12680 return 0;
12681 }
12682
12683 /*
12684 * Handle calculation of various watermark data at the end of the atomic check
12685 * phase. The code here should be run after the per-crtc and per-plane 'check'
12686 * handlers to ensure that all derived state has been updated.
12687 */
12688 static int calc_watermark_data(struct drm_atomic_state *state)
12689 {
12690 struct drm_device *dev = state->dev;
12691 struct drm_i915_private *dev_priv = to_i915(dev);
12692
12693 /* Is there platform-specific watermark information to calculate? */
12694 if (dev_priv->display.compute_global_watermarks)
12695 return dev_priv->display.compute_global_watermarks(state);
12696
12697 return 0;
12698 }
12699
12700 /**
12701 * intel_atomic_check - validate state object
12702 * @dev: drm device
12703 * @state: state to validate
12704 */
12705 static int intel_atomic_check(struct drm_device *dev,
12706 struct drm_atomic_state *state)
12707 {
12708 struct drm_i915_private *dev_priv = to_i915(dev);
12709 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12710 struct drm_crtc *crtc;
12711 struct drm_crtc_state *old_crtc_state, *crtc_state;
12712 int ret, i;
12713 bool any_ms = false;
12714
12715 ret = drm_atomic_helper_check_modeset(dev, state);
12716 if (ret)
12717 return ret;
12718
12719 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12720 struct intel_crtc_state *pipe_config =
12721 to_intel_crtc_state(crtc_state);
12722
12723 /* Catch I915_MODE_FLAG_INHERITED */
12724 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12725 crtc_state->mode_changed = true;
12726
12727 if (!needs_modeset(crtc_state))
12728 continue;
12729
12730 if (!crtc_state->enable) {
12731 any_ms = true;
12732 continue;
12733 }
12734
12735 /* FIXME: For only active_changed we shouldn't need to do any
12736 * state recomputation at all. */
12737
12738 ret = drm_atomic_add_affected_connectors(state, crtc);
12739 if (ret)
12740 return ret;
12741
12742 ret = intel_modeset_pipe_config(crtc, pipe_config);
12743 if (ret) {
12744 intel_dump_pipe_config(to_intel_crtc(crtc),
12745 pipe_config, "[failed]");
12746 return ret;
12747 }
12748
12749 if (i915.fastboot &&
12750 intel_pipe_config_compare(dev_priv,
12751 to_intel_crtc_state(old_crtc_state),
12752 pipe_config, true)) {
12753 crtc_state->mode_changed = false;
12754 pipe_config->update_pipe = true;
12755 }
12756
12757 if (needs_modeset(crtc_state))
12758 any_ms = true;
12759
12760 ret = drm_atomic_add_affected_planes(state, crtc);
12761 if (ret)
12762 return ret;
12763
12764 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12765 needs_modeset(crtc_state) ?
12766 "[modeset]" : "[fastset]");
12767 }
12768
12769 if (any_ms) {
12770 ret = intel_modeset_checks(state);
12771
12772 if (ret)
12773 return ret;
12774 } else {
12775 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12776 }
12777
12778 ret = drm_atomic_helper_check_planes(dev, state);
12779 if (ret)
12780 return ret;
12781
12782 intel_fbc_choose_crtc(dev_priv, state);
12783 return calc_watermark_data(state);
12784 }
12785
12786 static int intel_atomic_prepare_commit(struct drm_device *dev,
12787 struct drm_atomic_state *state)
12788 {
12789 struct drm_i915_private *dev_priv = to_i915(dev);
12790 struct drm_crtc_state *crtc_state;
12791 struct drm_crtc *crtc;
12792 int i, ret;
12793
12794 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12795 if (state->legacy_cursor_update)
12796 continue;
12797
12798 ret = intel_crtc_wait_for_pending_flips(crtc);
12799 if (ret)
12800 return ret;
12801
12802 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12803 flush_workqueue(dev_priv->wq);
12804 }
12805
12806 ret = mutex_lock_interruptible(&dev->struct_mutex);
12807 if (ret)
12808 return ret;
12809
12810 ret = drm_atomic_helper_prepare_planes(dev, state);
12811 mutex_unlock(&dev->struct_mutex);
12812
12813 return ret;
12814 }
12815
12816 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12817 {
12818 struct drm_device *dev = crtc->base.dev;
12819
12820 if (!dev->max_vblank_count)
12821 return drm_crtc_accurate_vblank_count(&crtc->base);
12822
12823 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12824 }
12825
12826 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12827 struct drm_i915_private *dev_priv,
12828 unsigned crtc_mask)
12829 {
12830 unsigned last_vblank_count[I915_MAX_PIPES];
12831 enum pipe pipe;
12832 int ret;
12833
12834 if (!crtc_mask)
12835 return;
12836
12837 for_each_pipe(dev_priv, pipe) {
12838 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12839 pipe);
12840
12841 if (!((1 << pipe) & crtc_mask))
12842 continue;
12843
12844 ret = drm_crtc_vblank_get(&crtc->base);
12845 if (WARN_ON(ret != 0)) {
12846 crtc_mask &= ~(1 << pipe);
12847 continue;
12848 }
12849
12850 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12851 }
12852
12853 for_each_pipe(dev_priv, pipe) {
12854 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12855 pipe);
12856 long lret;
12857
12858 if (!((1 << pipe) & crtc_mask))
12859 continue;
12860
12861 lret = wait_event_timeout(dev->vblank[pipe].queue,
12862 last_vblank_count[pipe] !=
12863 drm_crtc_vblank_count(&crtc->base),
12864 msecs_to_jiffies(50));
12865
12866 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12867
12868 drm_crtc_vblank_put(&crtc->base);
12869 }
12870 }
12871
12872 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12873 {
12874 /* fb updated, need to unpin old fb */
12875 if (crtc_state->fb_changed)
12876 return true;
12877
12878 /* wm changes, need vblank before final wm's */
12879 if (crtc_state->update_wm_post)
12880 return true;
12881
12882 if (crtc_state->wm.need_postvbl_update)
12883 return true;
12884
12885 return false;
12886 }
12887
12888 static void intel_update_crtc(struct drm_crtc *crtc,
12889 struct drm_atomic_state *state,
12890 struct drm_crtc_state *old_crtc_state,
12891 struct drm_crtc_state *new_crtc_state,
12892 unsigned int *crtc_vblank_mask)
12893 {
12894 struct drm_device *dev = crtc->dev;
12895 struct drm_i915_private *dev_priv = to_i915(dev);
12896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12897 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12898 bool modeset = needs_modeset(new_crtc_state);
12899
12900 if (modeset) {
12901 update_scanline_offset(intel_crtc);
12902 dev_priv->display.crtc_enable(pipe_config, state);
12903 } else {
12904 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12905 pipe_config);
12906 }
12907
12908 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12909 intel_fbc_enable(
12910 intel_crtc, pipe_config,
12911 to_intel_plane_state(crtc->primary->state));
12912 }
12913
12914 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12915
12916 if (needs_vblank_wait(pipe_config))
12917 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12918 }
12919
12920 static void intel_update_crtcs(struct drm_atomic_state *state,
12921 unsigned int *crtc_vblank_mask)
12922 {
12923 struct drm_crtc *crtc;
12924 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12925 int i;
12926
12927 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12928 if (!new_crtc_state->active)
12929 continue;
12930
12931 intel_update_crtc(crtc, state, old_crtc_state,
12932 new_crtc_state, crtc_vblank_mask);
12933 }
12934 }
12935
12936 static void skl_update_crtcs(struct drm_atomic_state *state,
12937 unsigned int *crtc_vblank_mask)
12938 {
12939 struct drm_i915_private *dev_priv = to_i915(state->dev);
12940 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12941 struct drm_crtc *crtc;
12942 struct intel_crtc *intel_crtc;
12943 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12944 struct intel_crtc_state *cstate;
12945 unsigned int updated = 0;
12946 bool progress;
12947 enum pipe pipe;
12948 int i;
12949
12950 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12951
12952 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12953 /* ignore allocations for crtc's that have been turned off. */
12954 if (new_crtc_state->active)
12955 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12956
12957 /*
12958 * Whenever the number of active pipes changes, we need to make sure we
12959 * update the pipes in the right order so that their ddb allocations
12960 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12961 * cause pipe underruns and other bad stuff.
12962 */
12963 do {
12964 progress = false;
12965
12966 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12967 bool vbl_wait = false;
12968 unsigned int cmask = drm_crtc_mask(crtc);
12969
12970 intel_crtc = to_intel_crtc(crtc);
12971 cstate = to_intel_crtc_state(crtc->state);
12972 pipe = intel_crtc->pipe;
12973
12974 if (updated & cmask || !cstate->base.active)
12975 continue;
12976
12977 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12978 continue;
12979
12980 updated |= cmask;
12981 entries[i] = &cstate->wm.skl.ddb;
12982
12983 /*
12984 * If this is an already active pipe, it's DDB changed,
12985 * and this isn't the last pipe that needs updating
12986 * then we need to wait for a vblank to pass for the
12987 * new ddb allocation to take effect.
12988 */
12989 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12990 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12991 !new_crtc_state->active_changed &&
12992 intel_state->wm_results.dirty_pipes != updated)
12993 vbl_wait = true;
12994
12995 intel_update_crtc(crtc, state, old_crtc_state,
12996 new_crtc_state, crtc_vblank_mask);
12997
12998 if (vbl_wait)
12999 intel_wait_for_vblank(dev_priv, pipe);
13000
13001 progress = true;
13002 }
13003 } while (progress);
13004 }
13005
13006 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
13007 {
13008 struct intel_atomic_state *state, *next;
13009 struct llist_node *freed;
13010
13011 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
13012 llist_for_each_entry_safe(state, next, freed, freed)
13013 drm_atomic_state_put(&state->base);
13014 }
13015
13016 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
13017 {
13018 struct drm_i915_private *dev_priv =
13019 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
13020
13021 intel_atomic_helper_free_state(dev_priv);
13022 }
13023
13024 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13025 {
13026 struct drm_device *dev = state->dev;
13027 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13028 struct drm_i915_private *dev_priv = to_i915(dev);
13029 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13030 struct drm_crtc *crtc;
13031 struct intel_crtc_state *intel_cstate;
13032 bool hw_check = intel_state->modeset;
13033 u64 put_domains[I915_MAX_PIPES] = {};
13034 unsigned crtc_vblank_mask = 0;
13035 int i;
13036
13037 drm_atomic_helper_wait_for_dependencies(state);
13038
13039 if (intel_state->modeset)
13040 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13041
13042 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13044
13045 if (needs_modeset(new_crtc_state) ||
13046 to_intel_crtc_state(new_crtc_state)->update_pipe) {
13047 hw_check = true;
13048
13049 put_domains[to_intel_crtc(crtc)->pipe] =
13050 modeset_get_crtc_power_domains(crtc,
13051 to_intel_crtc_state(new_crtc_state));
13052 }
13053
13054 if (!needs_modeset(new_crtc_state))
13055 continue;
13056
13057 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13058 to_intel_crtc_state(new_crtc_state));
13059
13060 if (old_crtc_state->active) {
13061 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13062 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
13063 intel_crtc->active = false;
13064 intel_fbc_disable(intel_crtc);
13065 intel_disable_shared_dpll(intel_crtc);
13066
13067 /*
13068 * Underruns don't always raise
13069 * interrupts, so check manually.
13070 */
13071 intel_check_cpu_fifo_underruns(dev_priv);
13072 intel_check_pch_fifo_underruns(dev_priv);
13073
13074 if (!crtc->state->active) {
13075 /*
13076 * Make sure we don't call initial_watermarks
13077 * for ILK-style watermark updates.
13078 *
13079 * No clue what this is supposed to achieve.
13080 */
13081 if (INTEL_GEN(dev_priv) >= 9)
13082 dev_priv->display.initial_watermarks(intel_state,
13083 to_intel_crtc_state(crtc->state));
13084 }
13085 }
13086 }
13087
13088 /* Only after disabling all output pipelines that will be changed can we
13089 * update the the output configuration. */
13090 intel_modeset_update_crtc_state(state);
13091
13092 if (intel_state->modeset) {
13093 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13094
13095 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
13096
13097 /*
13098 * SKL workaround: bspec recommends we disable the SAGV when we
13099 * have more then one pipe enabled
13100 */
13101 if (!intel_can_enable_sagv(state))
13102 intel_disable_sagv(dev_priv);
13103
13104 intel_modeset_verify_disabled(dev, state);
13105 }
13106
13107 /* Complete the events for pipes that have now been disabled */
13108 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13109 bool modeset = needs_modeset(new_crtc_state);
13110
13111 /* Complete events for now disable pipes here. */
13112 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13113 spin_lock_irq(&dev->event_lock);
13114 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13115 spin_unlock_irq(&dev->event_lock);
13116
13117 new_crtc_state->event = NULL;
13118 }
13119 }
13120
13121 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13122 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
13123
13124 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13125 * already, but still need the state for the delayed optimization. To
13126 * fix this:
13127 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13128 * - schedule that vblank worker _before_ calling hw_done
13129 * - at the start of commit_tail, cancel it _synchrously
13130 * - switch over to the vblank wait helper in the core after that since
13131 * we don't need out special handling any more.
13132 */
13133 if (!state->legacy_cursor_update)
13134 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13135
13136 /*
13137 * Now that the vblank has passed, we can go ahead and program the
13138 * optimal watermarks on platforms that need two-step watermark
13139 * programming.
13140 *
13141 * TODO: Move this (and other cleanup) to an async worker eventually.
13142 */
13143 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13144 intel_cstate = to_intel_crtc_state(new_crtc_state);
13145
13146 if (dev_priv->display.optimize_watermarks)
13147 dev_priv->display.optimize_watermarks(intel_state,
13148 intel_cstate);
13149 }
13150
13151 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13152 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13153
13154 if (put_domains[i])
13155 modeset_put_power_domains(dev_priv, put_domains[i]);
13156
13157 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13158 }
13159
13160 if (intel_state->modeset && intel_can_enable_sagv(state))
13161 intel_enable_sagv(dev_priv);
13162
13163 drm_atomic_helper_commit_hw_done(state);
13164
13165 if (intel_state->modeset) {
13166 /* As one of the primary mmio accessors, KMS has a high
13167 * likelihood of triggering bugs in unclaimed access. After we
13168 * finish modesetting, see if an error has been flagged, and if
13169 * so enable debugging for the next modeset - and hope we catch
13170 * the culprit.
13171 */
13172 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13173 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13174 }
13175
13176 mutex_lock(&dev->struct_mutex);
13177 drm_atomic_helper_cleanup_planes(dev, state);
13178 mutex_unlock(&dev->struct_mutex);
13179
13180 drm_atomic_helper_commit_cleanup_done(state);
13181
13182 drm_atomic_state_put(state);
13183
13184 intel_atomic_helper_free_state(dev_priv);
13185 }
13186
13187 static void intel_atomic_commit_work(struct work_struct *work)
13188 {
13189 struct drm_atomic_state *state =
13190 container_of(work, struct drm_atomic_state, commit_work);
13191
13192 intel_atomic_commit_tail(state);
13193 }
13194
13195 static int __i915_sw_fence_call
13196 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13197 enum i915_sw_fence_notify notify)
13198 {
13199 struct intel_atomic_state *state =
13200 container_of(fence, struct intel_atomic_state, commit_ready);
13201
13202 switch (notify) {
13203 case FENCE_COMPLETE:
13204 if (state->base.commit_work.func)
13205 queue_work(system_unbound_wq, &state->base.commit_work);
13206 break;
13207
13208 case FENCE_FREE:
13209 {
13210 struct intel_atomic_helper *helper =
13211 &to_i915(state->base.dev)->atomic_helper;
13212
13213 if (llist_add(&state->freed, &helper->free_list))
13214 schedule_work(&helper->free_work);
13215 break;
13216 }
13217 }
13218
13219 return NOTIFY_DONE;
13220 }
13221
13222 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13223 {
13224 struct drm_plane_state *old_plane_state, *new_plane_state;
13225 struct drm_plane *plane;
13226 int i;
13227
13228 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13229 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13230 intel_fb_obj(new_plane_state->fb),
13231 to_intel_plane(plane)->frontbuffer_bit);
13232 }
13233
13234 /**
13235 * intel_atomic_commit - commit validated state object
13236 * @dev: DRM device
13237 * @state: the top-level driver state object
13238 * @nonblock: nonblocking commit
13239 *
13240 * This function commits a top-level state object that has been validated
13241 * with drm_atomic_helper_check().
13242 *
13243 * RETURNS
13244 * Zero for success or -errno.
13245 */
13246 static int intel_atomic_commit(struct drm_device *dev,
13247 struct drm_atomic_state *state,
13248 bool nonblock)
13249 {
13250 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13251 struct drm_i915_private *dev_priv = to_i915(dev);
13252 int ret = 0;
13253
13254 ret = drm_atomic_helper_setup_commit(state, nonblock);
13255 if (ret)
13256 return ret;
13257
13258 drm_atomic_state_get(state);
13259 i915_sw_fence_init(&intel_state->commit_ready,
13260 intel_atomic_commit_ready);
13261
13262 ret = intel_atomic_prepare_commit(dev, state);
13263 if (ret) {
13264 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13265 i915_sw_fence_commit(&intel_state->commit_ready);
13266 return ret;
13267 }
13268
13269 /*
13270 * The intel_legacy_cursor_update() fast path takes care
13271 * of avoiding the vblank waits for simple cursor
13272 * movement and flips. For cursor on/off and size changes,
13273 * we want to perform the vblank waits so that watermark
13274 * updates happen during the correct frames. Gen9+ have
13275 * double buffered watermarks and so shouldn't need this.
13276 *
13277 * Do this after drm_atomic_helper_setup_commit() and
13278 * intel_atomic_prepare_commit() because we still want
13279 * to skip the flip and fb cleanup waits. Although that
13280 * does risk yanking the mapping from under the display
13281 * engine.
13282 *
13283 * FIXME doing watermarks and fb cleanup from a vblank worker
13284 * (assuming we had any) would solve these problems.
13285 */
13286 if (INTEL_GEN(dev_priv) < 9)
13287 state->legacy_cursor_update = false;
13288
13289 ret = drm_atomic_helper_swap_state(state, true);
13290 if (ret) {
13291 i915_sw_fence_commit(&intel_state->commit_ready);
13292
13293 mutex_lock(&dev->struct_mutex);
13294 drm_atomic_helper_cleanup_planes(dev, state);
13295 mutex_unlock(&dev->struct_mutex);
13296 return ret;
13297 }
13298 dev_priv->wm.distrust_bios_wm = false;
13299 intel_shared_dpll_swap_state(state);
13300 intel_atomic_track_fbs(state);
13301
13302 if (intel_state->modeset) {
13303 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13304 sizeof(intel_state->min_pixclk));
13305 dev_priv->active_crtcs = intel_state->active_crtcs;
13306 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13307 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13308 }
13309
13310 drm_atomic_state_get(state);
13311 INIT_WORK(&state->commit_work,
13312 nonblock ? intel_atomic_commit_work : NULL);
13313
13314 i915_sw_fence_commit(&intel_state->commit_ready);
13315 if (!nonblock) {
13316 i915_sw_fence_wait(&intel_state->commit_ready);
13317 intel_atomic_commit_tail(state);
13318 }
13319
13320 return 0;
13321 }
13322
13323 static const struct drm_crtc_funcs intel_crtc_funcs = {
13324 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13325 .set_config = drm_atomic_helper_set_config,
13326 .set_property = drm_atomic_helper_crtc_set_property,
13327 .destroy = intel_crtc_destroy,
13328 .page_flip = drm_atomic_helper_page_flip,
13329 .atomic_duplicate_state = intel_crtc_duplicate_state,
13330 .atomic_destroy_state = intel_crtc_destroy_state,
13331 .set_crc_source = intel_crtc_set_crc_source,
13332 };
13333
13334 /**
13335 * intel_prepare_plane_fb - Prepare fb for usage on plane
13336 * @plane: drm plane to prepare for
13337 * @fb: framebuffer to prepare for presentation
13338 *
13339 * Prepares a framebuffer for usage on a display plane. Generally this
13340 * involves pinning the underlying object and updating the frontbuffer tracking
13341 * bits. Some older platforms need special physical address handling for
13342 * cursor planes.
13343 *
13344 * Must be called with struct_mutex held.
13345 *
13346 * Returns 0 on success, negative error code on failure.
13347 */
13348 int
13349 intel_prepare_plane_fb(struct drm_plane *plane,
13350 struct drm_plane_state *new_state)
13351 {
13352 struct intel_atomic_state *intel_state =
13353 to_intel_atomic_state(new_state->state);
13354 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13355 struct drm_framebuffer *fb = new_state->fb;
13356 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13357 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13358 int ret;
13359
13360 if (obj) {
13361 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13362 INTEL_INFO(dev_priv)->cursor_needs_physical) {
13363 const int align = intel_cursor_alignment(dev_priv);
13364
13365 ret = i915_gem_object_attach_phys(obj, align);
13366 if (ret) {
13367 DRM_DEBUG_KMS("failed to attach phys object\n");
13368 return ret;
13369 }
13370 } else {
13371 struct i915_vma *vma;
13372
13373 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13374 if (IS_ERR(vma)) {
13375 DRM_DEBUG_KMS("failed to pin object\n");
13376 return PTR_ERR(vma);
13377 }
13378
13379 to_intel_plane_state(new_state)->vma = vma;
13380 }
13381 }
13382
13383 if (!obj && !old_obj)
13384 return 0;
13385
13386 if (old_obj) {
13387 struct drm_crtc_state *crtc_state =
13388 drm_atomic_get_existing_crtc_state(new_state->state,
13389 plane->state->crtc);
13390
13391 /* Big Hammer, we also need to ensure that any pending
13392 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13393 * current scanout is retired before unpinning the old
13394 * framebuffer. Note that we rely on userspace rendering
13395 * into the buffer attached to the pipe they are waiting
13396 * on. If not, userspace generates a GPU hang with IPEHR
13397 * point to the MI_WAIT_FOR_EVENT.
13398 *
13399 * This should only fail upon a hung GPU, in which case we
13400 * can safely continue.
13401 */
13402 if (needs_modeset(crtc_state)) {
13403 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13404 old_obj->resv, NULL,
13405 false, 0,
13406 GFP_KERNEL);
13407 if (ret < 0)
13408 return ret;
13409 }
13410 }
13411
13412 if (new_state->fence) { /* explicit fencing */
13413 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13414 new_state->fence,
13415 I915_FENCE_TIMEOUT,
13416 GFP_KERNEL);
13417 if (ret < 0)
13418 return ret;
13419 }
13420
13421 if (!obj)
13422 return 0;
13423
13424 if (!new_state->fence) { /* implicit fencing */
13425 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13426 obj->resv, NULL,
13427 false, I915_FENCE_TIMEOUT,
13428 GFP_KERNEL);
13429 if (ret < 0)
13430 return ret;
13431
13432 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13433 }
13434
13435 return 0;
13436 }
13437
13438 /**
13439 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13440 * @plane: drm plane to clean up for
13441 * @fb: old framebuffer that was on plane
13442 *
13443 * Cleans up a framebuffer that has just been removed from a plane.
13444 *
13445 * Must be called with struct_mutex held.
13446 */
13447 void
13448 intel_cleanup_plane_fb(struct drm_plane *plane,
13449 struct drm_plane_state *old_state)
13450 {
13451 struct i915_vma *vma;
13452
13453 /* Should only be called after a successful intel_prepare_plane_fb()! */
13454 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13455 if (vma)
13456 intel_unpin_fb_vma(vma);
13457 }
13458
13459 int
13460 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13461 {
13462 struct drm_i915_private *dev_priv;
13463 int max_scale;
13464 int crtc_clock, max_dotclk;
13465
13466 if (!intel_crtc || !crtc_state->base.enable)
13467 return DRM_PLANE_HELPER_NO_SCALING;
13468
13469 dev_priv = to_i915(intel_crtc->base.dev);
13470
13471 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13472 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13473
13474 if (IS_GEMINILAKE(dev_priv))
13475 max_dotclk *= 2;
13476
13477 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13478 return DRM_PLANE_HELPER_NO_SCALING;
13479
13480 /*
13481 * skl max scale is lower of:
13482 * close to 3 but not 3, -1 is for that purpose
13483 * or
13484 * cdclk/crtc_clock
13485 */
13486 max_scale = min((1 << 16) * 3 - 1,
13487 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13488
13489 return max_scale;
13490 }
13491
13492 static int
13493 intel_check_primary_plane(struct intel_plane *plane,
13494 struct intel_crtc_state *crtc_state,
13495 struct intel_plane_state *state)
13496 {
13497 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
13498 struct drm_crtc *crtc = state->base.crtc;
13499 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13500 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13501 bool can_position = false;
13502 int ret;
13503
13504 if (INTEL_GEN(dev_priv) >= 9) {
13505 /* use scaler when colorkey is not required */
13506 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13507 min_scale = 1;
13508 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13509 }
13510 can_position = true;
13511 }
13512
13513 ret = drm_plane_helper_check_state(&state->base,
13514 &state->clip,
13515 min_scale, max_scale,
13516 can_position, true);
13517 if (ret)
13518 return ret;
13519
13520 if (!state->base.fb)
13521 return 0;
13522
13523 if (INTEL_GEN(dev_priv) >= 9) {
13524 ret = skl_check_plane_surface(state);
13525 if (ret)
13526 return ret;
13527
13528 state->ctl = skl_plane_ctl(crtc_state, state);
13529 } else {
13530 ret = i9xx_check_plane_surface(state);
13531 if (ret)
13532 return ret;
13533
13534 state->ctl = i9xx_plane_ctl(crtc_state, state);
13535 }
13536
13537 return 0;
13538 }
13539
13540 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13541 struct drm_crtc_state *old_crtc_state)
13542 {
13543 struct drm_device *dev = crtc->dev;
13544 struct drm_i915_private *dev_priv = to_i915(dev);
13545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13546 struct intel_crtc_state *intel_cstate =
13547 to_intel_crtc_state(crtc->state);
13548 struct intel_crtc_state *old_intel_cstate =
13549 to_intel_crtc_state(old_crtc_state);
13550 struct intel_atomic_state *old_intel_state =
13551 to_intel_atomic_state(old_crtc_state->state);
13552 bool modeset = needs_modeset(crtc->state);
13553
13554 if (!modeset &&
13555 (intel_cstate->base.color_mgmt_changed ||
13556 intel_cstate->update_pipe)) {
13557 intel_color_set_csc(crtc->state);
13558 intel_color_load_luts(crtc->state);
13559 }
13560
13561 /* Perform vblank evasion around commit operation */
13562 intel_pipe_update_start(intel_crtc);
13563
13564 if (modeset)
13565 goto out;
13566
13567 if (intel_cstate->update_pipe)
13568 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13569 else if (INTEL_GEN(dev_priv) >= 9)
13570 skl_detach_scalers(intel_crtc);
13571
13572 out:
13573 if (dev_priv->display.atomic_update_watermarks)
13574 dev_priv->display.atomic_update_watermarks(old_intel_state,
13575 intel_cstate);
13576 }
13577
13578 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13579 struct drm_crtc_state *old_crtc_state)
13580 {
13581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13582
13583 intel_pipe_update_end(intel_crtc, NULL);
13584 }
13585
13586 /**
13587 * intel_plane_destroy - destroy a plane
13588 * @plane: plane to destroy
13589 *
13590 * Common destruction function for all types of planes (primary, cursor,
13591 * sprite).
13592 */
13593 void intel_plane_destroy(struct drm_plane *plane)
13594 {
13595 drm_plane_cleanup(plane);
13596 kfree(to_intel_plane(plane));
13597 }
13598
13599 const struct drm_plane_funcs intel_plane_funcs = {
13600 .update_plane = drm_atomic_helper_update_plane,
13601 .disable_plane = drm_atomic_helper_disable_plane,
13602 .destroy = intel_plane_destroy,
13603 .set_property = drm_atomic_helper_plane_set_property,
13604 .atomic_get_property = intel_plane_atomic_get_property,
13605 .atomic_set_property = intel_plane_atomic_set_property,
13606 .atomic_duplicate_state = intel_plane_duplicate_state,
13607 .atomic_destroy_state = intel_plane_destroy_state,
13608 };
13609
13610 static int
13611 intel_legacy_cursor_update(struct drm_plane *plane,
13612 struct drm_crtc *crtc,
13613 struct drm_framebuffer *fb,
13614 int crtc_x, int crtc_y,
13615 unsigned int crtc_w, unsigned int crtc_h,
13616 uint32_t src_x, uint32_t src_y,
13617 uint32_t src_w, uint32_t src_h,
13618 struct drm_modeset_acquire_ctx *ctx)
13619 {
13620 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13621 int ret;
13622 struct drm_plane_state *old_plane_state, *new_plane_state;
13623 struct intel_plane *intel_plane = to_intel_plane(plane);
13624 struct drm_framebuffer *old_fb;
13625 struct drm_crtc_state *crtc_state = crtc->state;
13626 struct i915_vma *old_vma;
13627
13628 /*
13629 * When crtc is inactive or there is a modeset pending,
13630 * wait for it to complete in the slowpath
13631 */
13632 if (!crtc_state->active || needs_modeset(crtc_state) ||
13633 to_intel_crtc_state(crtc_state)->update_pipe)
13634 goto slow;
13635
13636 old_plane_state = plane->state;
13637
13638 /*
13639 * If any parameters change that may affect watermarks,
13640 * take the slowpath. Only changing fb or position should be
13641 * in the fastpath.
13642 */
13643 if (old_plane_state->crtc != crtc ||
13644 old_plane_state->src_w != src_w ||
13645 old_plane_state->src_h != src_h ||
13646 old_plane_state->crtc_w != crtc_w ||
13647 old_plane_state->crtc_h != crtc_h ||
13648 !old_plane_state->fb != !fb)
13649 goto slow;
13650
13651 new_plane_state = intel_plane_duplicate_state(plane);
13652 if (!new_plane_state)
13653 return -ENOMEM;
13654
13655 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13656
13657 new_plane_state->src_x = src_x;
13658 new_plane_state->src_y = src_y;
13659 new_plane_state->src_w = src_w;
13660 new_plane_state->src_h = src_h;
13661 new_plane_state->crtc_x = crtc_x;
13662 new_plane_state->crtc_y = crtc_y;
13663 new_plane_state->crtc_w = crtc_w;
13664 new_plane_state->crtc_h = crtc_h;
13665
13666 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13667 to_intel_plane_state(new_plane_state));
13668 if (ret)
13669 goto out_free;
13670
13671 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13672 if (ret)
13673 goto out_free;
13674
13675 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13676 int align = intel_cursor_alignment(dev_priv);
13677
13678 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13679 if (ret) {
13680 DRM_DEBUG_KMS("failed to attach phys object\n");
13681 goto out_unlock;
13682 }
13683 } else {
13684 struct i915_vma *vma;
13685
13686 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13687 if (IS_ERR(vma)) {
13688 DRM_DEBUG_KMS("failed to pin object\n");
13689
13690 ret = PTR_ERR(vma);
13691 goto out_unlock;
13692 }
13693
13694 to_intel_plane_state(new_plane_state)->vma = vma;
13695 }
13696
13697 old_fb = old_plane_state->fb;
13698 old_vma = to_intel_plane_state(old_plane_state)->vma;
13699
13700 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13701 intel_plane->frontbuffer_bit);
13702
13703 /* Swap plane state */
13704 new_plane_state->fence = old_plane_state->fence;
13705 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13706 new_plane_state->fence = NULL;
13707 new_plane_state->fb = old_fb;
13708 to_intel_plane_state(new_plane_state)->vma = old_vma;
13709
13710 if (plane->state->visible) {
13711 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13712 intel_plane->update_plane(intel_plane,
13713 to_intel_crtc_state(crtc->state),
13714 to_intel_plane_state(plane->state));
13715 } else {
13716 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13717 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13718 }
13719
13720 intel_cleanup_plane_fb(plane, new_plane_state);
13721
13722 out_unlock:
13723 mutex_unlock(&dev_priv->drm.struct_mutex);
13724 out_free:
13725 intel_plane_destroy_state(plane, new_plane_state);
13726 return ret;
13727
13728 slow:
13729 return drm_atomic_helper_update_plane(plane, crtc, fb,
13730 crtc_x, crtc_y, crtc_w, crtc_h,
13731 src_x, src_y, src_w, src_h, ctx);
13732 }
13733
13734 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13735 .update_plane = intel_legacy_cursor_update,
13736 .disable_plane = drm_atomic_helper_disable_plane,
13737 .destroy = intel_plane_destroy,
13738 .set_property = drm_atomic_helper_plane_set_property,
13739 .atomic_get_property = intel_plane_atomic_get_property,
13740 .atomic_set_property = intel_plane_atomic_set_property,
13741 .atomic_duplicate_state = intel_plane_duplicate_state,
13742 .atomic_destroy_state = intel_plane_destroy_state,
13743 };
13744
13745 static struct intel_plane *
13746 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13747 {
13748 struct intel_plane *primary = NULL;
13749 struct intel_plane_state *state = NULL;
13750 const uint32_t *intel_primary_formats;
13751 unsigned int supported_rotations;
13752 unsigned int num_formats;
13753 int ret;
13754
13755 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13756 if (!primary) {
13757 ret = -ENOMEM;
13758 goto fail;
13759 }
13760
13761 state = intel_create_plane_state(&primary->base);
13762 if (!state) {
13763 ret = -ENOMEM;
13764 goto fail;
13765 }
13766
13767 primary->base.state = &state->base;
13768
13769 primary->can_scale = false;
13770 primary->max_downscale = 1;
13771 if (INTEL_GEN(dev_priv) >= 9) {
13772 primary->can_scale = true;
13773 state->scaler_id = -1;
13774 }
13775 primary->pipe = pipe;
13776 /*
13777 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13778 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13779 */
13780 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13781 primary->plane = (enum plane) !pipe;
13782 else
13783 primary->plane = (enum plane) pipe;
13784 primary->id = PLANE_PRIMARY;
13785 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13786 primary->check_plane = intel_check_primary_plane;
13787
13788 if (INTEL_GEN(dev_priv) >= 9) {
13789 intel_primary_formats = skl_primary_formats;
13790 num_formats = ARRAY_SIZE(skl_primary_formats);
13791
13792 primary->update_plane = skylake_update_primary_plane;
13793 primary->disable_plane = skylake_disable_primary_plane;
13794 } else if (INTEL_GEN(dev_priv) >= 4) {
13795 intel_primary_formats = i965_primary_formats;
13796 num_formats = ARRAY_SIZE(i965_primary_formats);
13797
13798 primary->update_plane = i9xx_update_primary_plane;
13799 primary->disable_plane = i9xx_disable_primary_plane;
13800 } else {
13801 intel_primary_formats = i8xx_primary_formats;
13802 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13803
13804 primary->update_plane = i9xx_update_primary_plane;
13805 primary->disable_plane = i9xx_disable_primary_plane;
13806 }
13807
13808 if (INTEL_GEN(dev_priv) >= 9)
13809 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13810 0, &intel_plane_funcs,
13811 intel_primary_formats, num_formats,
13812 DRM_PLANE_TYPE_PRIMARY,
13813 "plane 1%c", pipe_name(pipe));
13814 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13815 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13816 0, &intel_plane_funcs,
13817 intel_primary_formats, num_formats,
13818 DRM_PLANE_TYPE_PRIMARY,
13819 "primary %c", pipe_name(pipe));
13820 else
13821 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13822 0, &intel_plane_funcs,
13823 intel_primary_formats, num_formats,
13824 DRM_PLANE_TYPE_PRIMARY,
13825 "plane %c", plane_name(primary->plane));
13826 if (ret)
13827 goto fail;
13828
13829 if (INTEL_GEN(dev_priv) >= 9) {
13830 supported_rotations =
13831 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13832 DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13833 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13834 supported_rotations =
13835 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13836 DRM_MODE_REFLECT_X;
13837 } else if (INTEL_GEN(dev_priv) >= 4) {
13838 supported_rotations =
13839 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13840 } else {
13841 supported_rotations = DRM_MODE_ROTATE_0;
13842 }
13843
13844 if (INTEL_GEN(dev_priv) >= 4)
13845 drm_plane_create_rotation_property(&primary->base,
13846 DRM_MODE_ROTATE_0,
13847 supported_rotations);
13848
13849 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13850
13851 return primary;
13852
13853 fail:
13854 kfree(state);
13855 kfree(primary);
13856
13857 return ERR_PTR(ret);
13858 }
13859
13860 static struct intel_plane *
13861 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13862 enum pipe pipe)
13863 {
13864 struct intel_plane *cursor = NULL;
13865 struct intel_plane_state *state = NULL;
13866 int ret;
13867
13868 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13869 if (!cursor) {
13870 ret = -ENOMEM;
13871 goto fail;
13872 }
13873
13874 state = intel_create_plane_state(&cursor->base);
13875 if (!state) {
13876 ret = -ENOMEM;
13877 goto fail;
13878 }
13879
13880 cursor->base.state = &state->base;
13881
13882 cursor->can_scale = false;
13883 cursor->max_downscale = 1;
13884 cursor->pipe = pipe;
13885 cursor->plane = pipe;
13886 cursor->id = PLANE_CURSOR;
13887 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13888
13889 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13890 cursor->update_plane = i845_update_cursor;
13891 cursor->disable_plane = i845_disable_cursor;
13892 cursor->check_plane = i845_check_cursor;
13893 } else {
13894 cursor->update_plane = i9xx_update_cursor;
13895 cursor->disable_plane = i9xx_disable_cursor;
13896 cursor->check_plane = i9xx_check_cursor;
13897 }
13898
13899 cursor->cursor.base = ~0;
13900 cursor->cursor.cntl = ~0;
13901
13902 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13903 cursor->cursor.size = ~0;
13904
13905 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13906 0, &intel_cursor_plane_funcs,
13907 intel_cursor_formats,
13908 ARRAY_SIZE(intel_cursor_formats),
13909 DRM_PLANE_TYPE_CURSOR,
13910 "cursor %c", pipe_name(pipe));
13911 if (ret)
13912 goto fail;
13913
13914 if (INTEL_GEN(dev_priv) >= 4)
13915 drm_plane_create_rotation_property(&cursor->base,
13916 DRM_MODE_ROTATE_0,
13917 DRM_MODE_ROTATE_0 |
13918 DRM_MODE_ROTATE_180);
13919
13920 if (INTEL_GEN(dev_priv) >= 9)
13921 state->scaler_id = -1;
13922
13923 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13924
13925 return cursor;
13926
13927 fail:
13928 kfree(state);
13929 kfree(cursor);
13930
13931 return ERR_PTR(ret);
13932 }
13933
13934 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13935 struct intel_crtc_state *crtc_state)
13936 {
13937 struct intel_crtc_scaler_state *scaler_state =
13938 &crtc_state->scaler_state;
13939 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13940 int i;
13941
13942 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13943 if (!crtc->num_scalers)
13944 return;
13945
13946 for (i = 0; i < crtc->num_scalers; i++) {
13947 struct intel_scaler *scaler = &scaler_state->scalers[i];
13948
13949 scaler->in_use = 0;
13950 scaler->mode = PS_SCALER_MODE_DYN;
13951 }
13952
13953 scaler_state->scaler_id = -1;
13954 }
13955
13956 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13957 {
13958 struct intel_crtc *intel_crtc;
13959 struct intel_crtc_state *crtc_state = NULL;
13960 struct intel_plane *primary = NULL;
13961 struct intel_plane *cursor = NULL;
13962 int sprite, ret;
13963
13964 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13965 if (!intel_crtc)
13966 return -ENOMEM;
13967
13968 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13969 if (!crtc_state) {
13970 ret = -ENOMEM;
13971 goto fail;
13972 }
13973 intel_crtc->config = crtc_state;
13974 intel_crtc->base.state = &crtc_state->base;
13975 crtc_state->base.crtc = &intel_crtc->base;
13976
13977 primary = intel_primary_plane_create(dev_priv, pipe);
13978 if (IS_ERR(primary)) {
13979 ret = PTR_ERR(primary);
13980 goto fail;
13981 }
13982 intel_crtc->plane_ids_mask |= BIT(primary->id);
13983
13984 for_each_sprite(dev_priv, pipe, sprite) {
13985 struct intel_plane *plane;
13986
13987 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13988 if (IS_ERR(plane)) {
13989 ret = PTR_ERR(plane);
13990 goto fail;
13991 }
13992 intel_crtc->plane_ids_mask |= BIT(plane->id);
13993 }
13994
13995 cursor = intel_cursor_plane_create(dev_priv, pipe);
13996 if (IS_ERR(cursor)) {
13997 ret = PTR_ERR(cursor);
13998 goto fail;
13999 }
14000 intel_crtc->plane_ids_mask |= BIT(cursor->id);
14001
14002 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
14003 &primary->base, &cursor->base,
14004 &intel_crtc_funcs,
14005 "pipe %c", pipe_name(pipe));
14006 if (ret)
14007 goto fail;
14008
14009 intel_crtc->pipe = pipe;
14010 intel_crtc->plane = primary->plane;
14011
14012 /* initialize shared scalers */
14013 intel_crtc_init_scalers(intel_crtc, crtc_state);
14014
14015 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14016 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14017 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
14018 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
14019
14020 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14021
14022 intel_color_init(&intel_crtc->base);
14023
14024 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14025
14026 return 0;
14027
14028 fail:
14029 /*
14030 * drm_mode_config_cleanup() will free up any
14031 * crtcs/planes already initialized.
14032 */
14033 kfree(crtc_state);
14034 kfree(intel_crtc);
14035
14036 return ret;
14037 }
14038
14039 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14040 {
14041 struct drm_device *dev = connector->base.dev;
14042
14043 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14044
14045 if (!connector->base.state->crtc)
14046 return INVALID_PIPE;
14047
14048 return to_intel_crtc(connector->base.state->crtc)->pipe;
14049 }
14050
14051 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14052 struct drm_file *file)
14053 {
14054 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14055 struct drm_crtc *drmmode_crtc;
14056 struct intel_crtc *crtc;
14057
14058 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14059 if (!drmmode_crtc)
14060 return -ENOENT;
14061
14062 crtc = to_intel_crtc(drmmode_crtc);
14063 pipe_from_crtc_id->pipe = crtc->pipe;
14064
14065 return 0;
14066 }
14067
14068 static int intel_encoder_clones(struct intel_encoder *encoder)
14069 {
14070 struct drm_device *dev = encoder->base.dev;
14071 struct intel_encoder *source_encoder;
14072 int index_mask = 0;
14073 int entry = 0;
14074
14075 for_each_intel_encoder(dev, source_encoder) {
14076 if (encoders_cloneable(encoder, source_encoder))
14077 index_mask |= (1 << entry);
14078
14079 entry++;
14080 }
14081
14082 return index_mask;
14083 }
14084
14085 static bool has_edp_a(struct drm_i915_private *dev_priv)
14086 {
14087 if (!IS_MOBILE(dev_priv))
14088 return false;
14089
14090 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14091 return false;
14092
14093 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14094 return false;
14095
14096 return true;
14097 }
14098
14099 static bool intel_crt_present(struct drm_i915_private *dev_priv)
14100 {
14101 if (INTEL_GEN(dev_priv) >= 9)
14102 return false;
14103
14104 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14105 return false;
14106
14107 if (IS_CHERRYVIEW(dev_priv))
14108 return false;
14109
14110 if (HAS_PCH_LPT_H(dev_priv) &&
14111 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14112 return false;
14113
14114 /* DDI E can't be used if DDI A requires 4 lanes */
14115 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14116 return false;
14117
14118 if (!dev_priv->vbt.int_crt_support)
14119 return false;
14120
14121 return true;
14122 }
14123
14124 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14125 {
14126 int pps_num;
14127 int pps_idx;
14128
14129 if (HAS_DDI(dev_priv))
14130 return;
14131 /*
14132 * This w/a is needed at least on CPT/PPT, but to be sure apply it
14133 * everywhere where registers can be write protected.
14134 */
14135 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14136 pps_num = 2;
14137 else
14138 pps_num = 1;
14139
14140 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14141 u32 val = I915_READ(PP_CONTROL(pps_idx));
14142
14143 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14144 I915_WRITE(PP_CONTROL(pps_idx), val);
14145 }
14146 }
14147
14148 static void intel_pps_init(struct drm_i915_private *dev_priv)
14149 {
14150 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14151 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14152 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14153 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14154 else
14155 dev_priv->pps_mmio_base = PPS_BASE;
14156
14157 intel_pps_unlock_regs_wa(dev_priv);
14158 }
14159
14160 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14161 {
14162 struct intel_encoder *encoder;
14163 bool dpd_is_edp = false;
14164
14165 intel_pps_init(dev_priv);
14166
14167 /*
14168 * intel_edp_init_connector() depends on this completing first, to
14169 * prevent the registeration of both eDP and LVDS and the incorrect
14170 * sharing of the PPS.
14171 */
14172 intel_lvds_init(dev_priv);
14173
14174 if (intel_crt_present(dev_priv))
14175 intel_crt_init(dev_priv);
14176
14177 if (IS_GEN9_LP(dev_priv)) {
14178 /*
14179 * FIXME: Broxton doesn't support port detection via the
14180 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14181 * detect the ports.
14182 */
14183 intel_ddi_init(dev_priv, PORT_A);
14184 intel_ddi_init(dev_priv, PORT_B);
14185 intel_ddi_init(dev_priv, PORT_C);
14186
14187 intel_dsi_init(dev_priv);
14188 } else if (HAS_DDI(dev_priv)) {
14189 int found;
14190
14191 /*
14192 * Haswell uses DDI functions to detect digital outputs.
14193 * On SKL pre-D0 the strap isn't connected, so we assume
14194 * it's there.
14195 */
14196 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14197 /* WaIgnoreDDIAStrap: skl */
14198 if (found || IS_GEN9_BC(dev_priv))
14199 intel_ddi_init(dev_priv, PORT_A);
14200
14201 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14202 * register */
14203 found = I915_READ(SFUSE_STRAP);
14204
14205 if (found & SFUSE_STRAP_DDIB_DETECTED)
14206 intel_ddi_init(dev_priv, PORT_B);
14207 if (found & SFUSE_STRAP_DDIC_DETECTED)
14208 intel_ddi_init(dev_priv, PORT_C);
14209 if (found & SFUSE_STRAP_DDID_DETECTED)
14210 intel_ddi_init(dev_priv, PORT_D);
14211 /*
14212 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14213 */
14214 if (IS_GEN9_BC(dev_priv) &&
14215 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14216 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14217 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14218 intel_ddi_init(dev_priv, PORT_E);
14219
14220 } else if (HAS_PCH_SPLIT(dev_priv)) {
14221 int found;
14222 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14223
14224 if (has_edp_a(dev_priv))
14225 intel_dp_init(dev_priv, DP_A, PORT_A);
14226
14227 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14228 /* PCH SDVOB multiplex with HDMIB */
14229 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14230 if (!found)
14231 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14232 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14233 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14234 }
14235
14236 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14237 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14238
14239 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14240 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14241
14242 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14243 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14244
14245 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14246 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14247 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14248 bool has_edp, has_port;
14249
14250 /*
14251 * The DP_DETECTED bit is the latched state of the DDC
14252 * SDA pin at boot. However since eDP doesn't require DDC
14253 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14254 * eDP ports may have been muxed to an alternate function.
14255 * Thus we can't rely on the DP_DETECTED bit alone to detect
14256 * eDP ports. Consult the VBT as well as DP_DETECTED to
14257 * detect eDP ports.
14258 *
14259 * Sadly the straps seem to be missing sometimes even for HDMI
14260 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14261 * and VBT for the presence of the port. Additionally we can't
14262 * trust the port type the VBT declares as we've seen at least
14263 * HDMI ports that the VBT claim are DP or eDP.
14264 */
14265 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14266 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14267 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14268 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14269 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14270 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14271
14272 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14273 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14274 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14275 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14276 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14277 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14278
14279 if (IS_CHERRYVIEW(dev_priv)) {
14280 /*
14281 * eDP not supported on port D,
14282 * so no need to worry about it
14283 */
14284 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14285 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14286 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14287 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14288 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14289 }
14290
14291 intel_dsi_init(dev_priv);
14292 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14293 bool found = false;
14294
14295 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14296 DRM_DEBUG_KMS("probing SDVOB\n");
14297 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14298 if (!found && IS_G4X(dev_priv)) {
14299 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14300 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14301 }
14302
14303 if (!found && IS_G4X(dev_priv))
14304 intel_dp_init(dev_priv, DP_B, PORT_B);
14305 }
14306
14307 /* Before G4X SDVOC doesn't have its own detect register */
14308
14309 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14310 DRM_DEBUG_KMS("probing SDVOC\n");
14311 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14312 }
14313
14314 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14315
14316 if (IS_G4X(dev_priv)) {
14317 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14318 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14319 }
14320 if (IS_G4X(dev_priv))
14321 intel_dp_init(dev_priv, DP_C, PORT_C);
14322 }
14323
14324 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14325 intel_dp_init(dev_priv, DP_D, PORT_D);
14326 } else if (IS_GEN2(dev_priv))
14327 intel_dvo_init(dev_priv);
14328
14329 if (SUPPORTS_TV(dev_priv))
14330 intel_tv_init(dev_priv);
14331
14332 intel_psr_init(dev_priv);
14333
14334 for_each_intel_encoder(&dev_priv->drm, encoder) {
14335 encoder->base.possible_crtcs = encoder->crtc_mask;
14336 encoder->base.possible_clones =
14337 intel_encoder_clones(encoder);
14338 }
14339
14340 intel_init_pch_refclk(dev_priv);
14341
14342 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14343 }
14344
14345 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14346 {
14347 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14348
14349 drm_framebuffer_cleanup(fb);
14350
14351 i915_gem_object_lock(intel_fb->obj);
14352 WARN_ON(!intel_fb->obj->framebuffer_references--);
14353 i915_gem_object_unlock(intel_fb->obj);
14354
14355 i915_gem_object_put(intel_fb->obj);
14356
14357 kfree(intel_fb);
14358 }
14359
14360 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14361 struct drm_file *file,
14362 unsigned int *handle)
14363 {
14364 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14365 struct drm_i915_gem_object *obj = intel_fb->obj;
14366
14367 if (obj->userptr.mm) {
14368 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14369 return -EINVAL;
14370 }
14371
14372 return drm_gem_handle_create(file, &obj->base, handle);
14373 }
14374
14375 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14376 struct drm_file *file,
14377 unsigned flags, unsigned color,
14378 struct drm_clip_rect *clips,
14379 unsigned num_clips)
14380 {
14381 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14382
14383 i915_gem_object_flush_if_display(obj);
14384 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14385
14386 return 0;
14387 }
14388
14389 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14390 .destroy = intel_user_framebuffer_destroy,
14391 .create_handle = intel_user_framebuffer_create_handle,
14392 .dirty = intel_user_framebuffer_dirty,
14393 };
14394
14395 static
14396 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14397 uint64_t fb_modifier, uint32_t pixel_format)
14398 {
14399 u32 gen = INTEL_GEN(dev_priv);
14400
14401 if (gen >= 9) {
14402 int cpp = drm_format_plane_cpp(pixel_format, 0);
14403
14404 /* "The stride in bytes must not exceed the of the size of 8K
14405 * pixels and 32K bytes."
14406 */
14407 return min(8192 * cpp, 32768);
14408 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14409 return 32*1024;
14410 } else if (gen >= 4) {
14411 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14412 return 16*1024;
14413 else
14414 return 32*1024;
14415 } else if (gen >= 3) {
14416 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14417 return 8*1024;
14418 else
14419 return 16*1024;
14420 } else {
14421 /* XXX DSPC is limited to 4k tiled */
14422 return 8*1024;
14423 }
14424 }
14425
14426 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14427 struct drm_i915_gem_object *obj,
14428 struct drm_mode_fb_cmd2 *mode_cmd)
14429 {
14430 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14431 struct drm_format_name_buf format_name;
14432 u32 pitch_limit, stride_alignment;
14433 unsigned int tiling, stride;
14434 int ret = -EINVAL;
14435
14436 i915_gem_object_lock(obj);
14437 obj->framebuffer_references++;
14438 tiling = i915_gem_object_get_tiling(obj);
14439 stride = i915_gem_object_get_stride(obj);
14440 i915_gem_object_unlock(obj);
14441
14442 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14443 /*
14444 * If there's a fence, enforce that
14445 * the fb modifier and tiling mode match.
14446 */
14447 if (tiling != I915_TILING_NONE &&
14448 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14449 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14450 goto err;
14451 }
14452 } else {
14453 if (tiling == I915_TILING_X) {
14454 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14455 } else if (tiling == I915_TILING_Y) {
14456 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14457 goto err;
14458 }
14459 }
14460
14461 /* Passed in modifier sanity checking. */
14462 switch (mode_cmd->modifier[0]) {
14463 case I915_FORMAT_MOD_Y_TILED:
14464 case I915_FORMAT_MOD_Yf_TILED:
14465 if (INTEL_GEN(dev_priv) < 9) {
14466 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14467 mode_cmd->modifier[0]);
14468 goto err;
14469 }
14470 case DRM_FORMAT_MOD_LINEAR:
14471 case I915_FORMAT_MOD_X_TILED:
14472 break;
14473 default:
14474 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14475 mode_cmd->modifier[0]);
14476 goto err;
14477 }
14478
14479 /*
14480 * gen2/3 display engine uses the fence if present,
14481 * so the tiling mode must match the fb modifier exactly.
14482 */
14483 if (INTEL_INFO(dev_priv)->gen < 4 &&
14484 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14485 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14486 goto err;
14487 }
14488
14489 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14490 mode_cmd->pixel_format);
14491 if (mode_cmd->pitches[0] > pitch_limit) {
14492 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14493 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14494 "tiled" : "linear",
14495 mode_cmd->pitches[0], pitch_limit);
14496 goto err;
14497 }
14498
14499 /*
14500 * If there's a fence, enforce that
14501 * the fb pitch and fence stride match.
14502 */
14503 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14504 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14505 mode_cmd->pitches[0], stride);
14506 goto err;
14507 }
14508
14509 /* Reject formats not supported by any plane early. */
14510 switch (mode_cmd->pixel_format) {
14511 case DRM_FORMAT_C8:
14512 case DRM_FORMAT_RGB565:
14513 case DRM_FORMAT_XRGB8888:
14514 case DRM_FORMAT_ARGB8888:
14515 break;
14516 case DRM_FORMAT_XRGB1555:
14517 if (INTEL_GEN(dev_priv) > 3) {
14518 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14519 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14520 goto err;
14521 }
14522 break;
14523 case DRM_FORMAT_ABGR8888:
14524 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14525 INTEL_GEN(dev_priv) < 9) {
14526 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14527 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14528 goto err;
14529 }
14530 break;
14531 case DRM_FORMAT_XBGR8888:
14532 case DRM_FORMAT_XRGB2101010:
14533 case DRM_FORMAT_XBGR2101010:
14534 if (INTEL_GEN(dev_priv) < 4) {
14535 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14536 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14537 goto err;
14538 }
14539 break;
14540 case DRM_FORMAT_ABGR2101010:
14541 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14542 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14543 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14544 goto err;
14545 }
14546 break;
14547 case DRM_FORMAT_YUYV:
14548 case DRM_FORMAT_UYVY:
14549 case DRM_FORMAT_YVYU:
14550 case DRM_FORMAT_VYUY:
14551 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14552 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14553 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14554 goto err;
14555 }
14556 break;
14557 default:
14558 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14559 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14560 goto err;
14561 }
14562
14563 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14564 if (mode_cmd->offsets[0] != 0)
14565 goto err;
14566
14567 drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14568 &intel_fb->base, mode_cmd);
14569
14570 stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14571 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14572 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14573 mode_cmd->pitches[0], stride_alignment);
14574 goto err;
14575 }
14576
14577 intel_fb->obj = obj;
14578
14579 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14580 if (ret)
14581 goto err;
14582
14583 ret = drm_framebuffer_init(obj->base.dev,
14584 &intel_fb->base,
14585 &intel_fb_funcs);
14586 if (ret) {
14587 DRM_ERROR("framebuffer init failed %d\n", ret);
14588 goto err;
14589 }
14590
14591 return 0;
14592
14593 err:
14594 i915_gem_object_lock(obj);
14595 obj->framebuffer_references--;
14596 i915_gem_object_unlock(obj);
14597 return ret;
14598 }
14599
14600 static struct drm_framebuffer *
14601 intel_user_framebuffer_create(struct drm_device *dev,
14602 struct drm_file *filp,
14603 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14604 {
14605 struct drm_framebuffer *fb;
14606 struct drm_i915_gem_object *obj;
14607 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14608
14609 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14610 if (!obj)
14611 return ERR_PTR(-ENOENT);
14612
14613 fb = intel_framebuffer_create(obj, &mode_cmd);
14614 if (IS_ERR(fb))
14615 i915_gem_object_put(obj);
14616
14617 return fb;
14618 }
14619
14620 static void intel_atomic_state_free(struct drm_atomic_state *state)
14621 {
14622 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14623
14624 drm_atomic_state_default_release(state);
14625
14626 i915_sw_fence_fini(&intel_state->commit_ready);
14627
14628 kfree(state);
14629 }
14630
14631 static const struct drm_mode_config_funcs intel_mode_funcs = {
14632 .fb_create = intel_user_framebuffer_create,
14633 .output_poll_changed = intel_fbdev_output_poll_changed,
14634 .atomic_check = intel_atomic_check,
14635 .atomic_commit = intel_atomic_commit,
14636 .atomic_state_alloc = intel_atomic_state_alloc,
14637 .atomic_state_clear = intel_atomic_state_clear,
14638 .atomic_state_free = intel_atomic_state_free,
14639 };
14640
14641 /**
14642 * intel_init_display_hooks - initialize the display modesetting hooks
14643 * @dev_priv: device private
14644 */
14645 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14646 {
14647 intel_init_cdclk_hooks(dev_priv);
14648
14649 if (INTEL_INFO(dev_priv)->gen >= 9) {
14650 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14651 dev_priv->display.get_initial_plane_config =
14652 skylake_get_initial_plane_config;
14653 dev_priv->display.crtc_compute_clock =
14654 haswell_crtc_compute_clock;
14655 dev_priv->display.crtc_enable = haswell_crtc_enable;
14656 dev_priv->display.crtc_disable = haswell_crtc_disable;
14657 } else if (HAS_DDI(dev_priv)) {
14658 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14659 dev_priv->display.get_initial_plane_config =
14660 ironlake_get_initial_plane_config;
14661 dev_priv->display.crtc_compute_clock =
14662 haswell_crtc_compute_clock;
14663 dev_priv->display.crtc_enable = haswell_crtc_enable;
14664 dev_priv->display.crtc_disable = haswell_crtc_disable;
14665 } else if (HAS_PCH_SPLIT(dev_priv)) {
14666 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14667 dev_priv->display.get_initial_plane_config =
14668 ironlake_get_initial_plane_config;
14669 dev_priv->display.crtc_compute_clock =
14670 ironlake_crtc_compute_clock;
14671 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14672 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14673 } else if (IS_CHERRYVIEW(dev_priv)) {
14674 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14675 dev_priv->display.get_initial_plane_config =
14676 i9xx_get_initial_plane_config;
14677 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14678 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14679 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14680 } else if (IS_VALLEYVIEW(dev_priv)) {
14681 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14682 dev_priv->display.get_initial_plane_config =
14683 i9xx_get_initial_plane_config;
14684 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14685 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14686 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14687 } else if (IS_G4X(dev_priv)) {
14688 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14689 dev_priv->display.get_initial_plane_config =
14690 i9xx_get_initial_plane_config;
14691 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14692 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14693 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14694 } else if (IS_PINEVIEW(dev_priv)) {
14695 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14696 dev_priv->display.get_initial_plane_config =
14697 i9xx_get_initial_plane_config;
14698 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14699 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14700 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14701 } else if (!IS_GEN2(dev_priv)) {
14702 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14703 dev_priv->display.get_initial_plane_config =
14704 i9xx_get_initial_plane_config;
14705 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14706 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14707 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14708 } else {
14709 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14710 dev_priv->display.get_initial_plane_config =
14711 i9xx_get_initial_plane_config;
14712 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14713 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14714 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14715 }
14716
14717 if (IS_GEN5(dev_priv)) {
14718 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14719 } else if (IS_GEN6(dev_priv)) {
14720 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14721 } else if (IS_IVYBRIDGE(dev_priv)) {
14722 /* FIXME: detect B0+ stepping and use auto training */
14723 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14724 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14725 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14726 }
14727
14728 if (dev_priv->info.gen >= 9)
14729 dev_priv->display.update_crtcs = skl_update_crtcs;
14730 else
14731 dev_priv->display.update_crtcs = intel_update_crtcs;
14732
14733 switch (INTEL_INFO(dev_priv)->gen) {
14734 case 2:
14735 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14736 break;
14737
14738 case 3:
14739 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14740 break;
14741
14742 case 4:
14743 case 5:
14744 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14745 break;
14746
14747 case 6:
14748 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14749 break;
14750 case 7:
14751 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14752 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14753 break;
14754 case 9:
14755 /* Drop through - unsupported since execlist only. */
14756 default:
14757 /* Default just returns -ENODEV to indicate unsupported */
14758 dev_priv->display.queue_flip = intel_default_queue_flip;
14759 }
14760 }
14761
14762 /*
14763 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14764 */
14765 static void quirk_ssc_force_disable(struct drm_device *dev)
14766 {
14767 struct drm_i915_private *dev_priv = to_i915(dev);
14768 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14769 DRM_INFO("applying lvds SSC disable quirk\n");
14770 }
14771
14772 /*
14773 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14774 * brightness value
14775 */
14776 static void quirk_invert_brightness(struct drm_device *dev)
14777 {
14778 struct drm_i915_private *dev_priv = to_i915(dev);
14779 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14780 DRM_INFO("applying inverted panel brightness quirk\n");
14781 }
14782
14783 /* Some VBT's incorrectly indicate no backlight is present */
14784 static void quirk_backlight_present(struct drm_device *dev)
14785 {
14786 struct drm_i915_private *dev_priv = to_i915(dev);
14787 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14788 DRM_INFO("applying backlight present quirk\n");
14789 }
14790
14791 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14792 * which is 300 ms greater than eDP spec T12 min.
14793 */
14794 static void quirk_increase_t12_delay(struct drm_device *dev)
14795 {
14796 struct drm_i915_private *dev_priv = to_i915(dev);
14797
14798 dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14799 DRM_INFO("Applying T12 delay quirk\n");
14800 }
14801
14802 struct intel_quirk {
14803 int device;
14804 int subsystem_vendor;
14805 int subsystem_device;
14806 void (*hook)(struct drm_device *dev);
14807 };
14808
14809 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14810 struct intel_dmi_quirk {
14811 void (*hook)(struct drm_device *dev);
14812 const struct dmi_system_id (*dmi_id_list)[];
14813 };
14814
14815 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14816 {
14817 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14818 return 1;
14819 }
14820
14821 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14822 {
14823 .dmi_id_list = &(const struct dmi_system_id[]) {
14824 {
14825 .callback = intel_dmi_reverse_brightness,
14826 .ident = "NCR Corporation",
14827 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14828 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14829 },
14830 },
14831 { } /* terminating entry */
14832 },
14833 .hook = quirk_invert_brightness,
14834 },
14835 };
14836
14837 static struct intel_quirk intel_quirks[] = {
14838 /* Lenovo U160 cannot use SSC on LVDS */
14839 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14840
14841 /* Sony Vaio Y cannot use SSC on LVDS */
14842 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14843
14844 /* Acer Aspire 5734Z must invert backlight brightness */
14845 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14846
14847 /* Acer/eMachines G725 */
14848 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14849
14850 /* Acer/eMachines e725 */
14851 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14852
14853 /* Acer/Packard Bell NCL20 */
14854 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14855
14856 /* Acer Aspire 4736Z */
14857 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14858
14859 /* Acer Aspire 5336 */
14860 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14861
14862 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14863 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14864
14865 /* Acer C720 Chromebook (Core i3 4005U) */
14866 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14867
14868 /* Apple Macbook 2,1 (Core 2 T7400) */
14869 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14870
14871 /* Apple Macbook 4,1 */
14872 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14873
14874 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14875 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14876
14877 /* HP Chromebook 14 (Celeron 2955U) */
14878 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14879
14880 /* Dell Chromebook 11 */
14881 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14882
14883 /* Dell Chromebook 11 (2015 version) */
14884 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14885
14886 /* Toshiba Satellite P50-C-18C */
14887 { 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14888 };
14889
14890 static void intel_init_quirks(struct drm_device *dev)
14891 {
14892 struct pci_dev *d = dev->pdev;
14893 int i;
14894
14895 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14896 struct intel_quirk *q = &intel_quirks[i];
14897
14898 if (d->device == q->device &&
14899 (d->subsystem_vendor == q->subsystem_vendor ||
14900 q->subsystem_vendor == PCI_ANY_ID) &&
14901 (d->subsystem_device == q->subsystem_device ||
14902 q->subsystem_device == PCI_ANY_ID))
14903 q->hook(dev);
14904 }
14905 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14906 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14907 intel_dmi_quirks[i].hook(dev);
14908 }
14909 }
14910
14911 /* Disable the VGA plane that we never use */
14912 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14913 {
14914 struct pci_dev *pdev = dev_priv->drm.pdev;
14915 u8 sr1;
14916 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14917
14918 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14919 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14920 outb(SR01, VGA_SR_INDEX);
14921 sr1 = inb(VGA_SR_DATA);
14922 outb(sr1 | 1<<5, VGA_SR_DATA);
14923 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14924 udelay(300);
14925
14926 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14927 POSTING_READ(vga_reg);
14928 }
14929
14930 void intel_modeset_init_hw(struct drm_device *dev)
14931 {
14932 struct drm_i915_private *dev_priv = to_i915(dev);
14933
14934 intel_update_cdclk(dev_priv);
14935 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14936
14937 intel_init_clock_gating(dev_priv);
14938 }
14939
14940 /*
14941 * Calculate what we think the watermarks should be for the state we've read
14942 * out of the hardware and then immediately program those watermarks so that
14943 * we ensure the hardware settings match our internal state.
14944 *
14945 * We can calculate what we think WM's should be by creating a duplicate of the
14946 * current state (which was constructed during hardware readout) and running it
14947 * through the atomic check code to calculate new watermark values in the
14948 * state object.
14949 */
14950 static void sanitize_watermarks(struct drm_device *dev)
14951 {
14952 struct drm_i915_private *dev_priv = to_i915(dev);
14953 struct drm_atomic_state *state;
14954 struct intel_atomic_state *intel_state;
14955 struct drm_crtc *crtc;
14956 struct drm_crtc_state *cstate;
14957 struct drm_modeset_acquire_ctx ctx;
14958 int ret;
14959 int i;
14960
14961 /* Only supported on platforms that use atomic watermark design */
14962 if (!dev_priv->display.optimize_watermarks)
14963 return;
14964
14965 /*
14966 * We need to hold connection_mutex before calling duplicate_state so
14967 * that the connector loop is protected.
14968 */
14969 drm_modeset_acquire_init(&ctx, 0);
14970 retry:
14971 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14972 if (ret == -EDEADLK) {
14973 drm_modeset_backoff(&ctx);
14974 goto retry;
14975 } else if (WARN_ON(ret)) {
14976 goto fail;
14977 }
14978
14979 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14980 if (WARN_ON(IS_ERR(state)))
14981 goto fail;
14982
14983 intel_state = to_intel_atomic_state(state);
14984
14985 /*
14986 * Hardware readout is the only time we don't want to calculate
14987 * intermediate watermarks (since we don't trust the current
14988 * watermarks).
14989 */
14990 if (!HAS_GMCH_DISPLAY(dev_priv))
14991 intel_state->skip_intermediate_wm = true;
14992
14993 ret = intel_atomic_check(dev, state);
14994 if (ret) {
14995 /*
14996 * If we fail here, it means that the hardware appears to be
14997 * programmed in a way that shouldn't be possible, given our
14998 * understanding of watermark requirements. This might mean a
14999 * mistake in the hardware readout code or a mistake in the
15000 * watermark calculations for a given platform. Raise a WARN
15001 * so that this is noticeable.
15002 *
15003 * If this actually happens, we'll have to just leave the
15004 * BIOS-programmed watermarks untouched and hope for the best.
15005 */
15006 WARN(true, "Could not determine valid watermarks for inherited state\n");
15007 goto put_state;
15008 }
15009
15010 /* Write calculated watermark values back */
15011 for_each_new_crtc_in_state(state, crtc, cstate, i) {
15012 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15013
15014 cs->wm.need_postvbl_update = true;
15015 dev_priv->display.optimize_watermarks(intel_state, cs);
15016 }
15017
15018 put_state:
15019 drm_atomic_state_put(state);
15020 fail:
15021 drm_modeset_drop_locks(&ctx);
15022 drm_modeset_acquire_fini(&ctx);
15023 }
15024
15025 int intel_modeset_init(struct drm_device *dev)
15026 {
15027 struct drm_i915_private *dev_priv = to_i915(dev);
15028 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15029 enum pipe pipe;
15030 struct intel_crtc *crtc;
15031
15032 drm_mode_config_init(dev);
15033
15034 dev->mode_config.min_width = 0;
15035 dev->mode_config.min_height = 0;
15036
15037 dev->mode_config.preferred_depth = 24;
15038 dev->mode_config.prefer_shadow = 1;
15039
15040 dev->mode_config.allow_fb_modifiers = true;
15041
15042 dev->mode_config.funcs = &intel_mode_funcs;
15043
15044 init_llist_head(&dev_priv->atomic_helper.free_list);
15045 INIT_WORK(&dev_priv->atomic_helper.free_work,
15046 intel_atomic_helper_free_state_worker);
15047
15048 intel_init_quirks(dev);
15049
15050 intel_init_pm(dev_priv);
15051
15052 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15053 return 0;
15054
15055 /*
15056 * There may be no VBT; and if the BIOS enabled SSC we can
15057 * just keep using it to avoid unnecessary flicker. Whereas if the
15058 * BIOS isn't using it, don't assume it will work even if the VBT
15059 * indicates as much.
15060 */
15061 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15062 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15063 DREF_SSC1_ENABLE);
15064
15065 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15066 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15067 bios_lvds_use_ssc ? "en" : "dis",
15068 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15069 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15070 }
15071 }
15072
15073 if (IS_GEN2(dev_priv)) {
15074 dev->mode_config.max_width = 2048;
15075 dev->mode_config.max_height = 2048;
15076 } else if (IS_GEN3(dev_priv)) {
15077 dev->mode_config.max_width = 4096;
15078 dev->mode_config.max_height = 4096;
15079 } else {
15080 dev->mode_config.max_width = 8192;
15081 dev->mode_config.max_height = 8192;
15082 }
15083
15084 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15085 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15086 dev->mode_config.cursor_height = 1023;
15087 } else if (IS_GEN2(dev_priv)) {
15088 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15089 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15090 } else {
15091 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15092 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15093 }
15094
15095 dev->mode_config.fb_base = ggtt->mappable_base;
15096
15097 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15098 INTEL_INFO(dev_priv)->num_pipes,
15099 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15100
15101 for_each_pipe(dev_priv, pipe) {
15102 int ret;
15103
15104 ret = intel_crtc_init(dev_priv, pipe);
15105 if (ret) {
15106 drm_mode_config_cleanup(dev);
15107 return ret;
15108 }
15109 }
15110
15111 intel_shared_dpll_init(dev);
15112
15113 intel_update_czclk(dev_priv);
15114 intel_modeset_init_hw(dev);
15115
15116 if (dev_priv->max_cdclk_freq == 0)
15117 intel_update_max_cdclk(dev_priv);
15118
15119 /* Just disable it once at startup */
15120 i915_disable_vga(dev_priv);
15121 intel_setup_outputs(dev_priv);
15122
15123 drm_modeset_lock_all(dev);
15124 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15125 drm_modeset_unlock_all(dev);
15126
15127 for_each_intel_crtc(dev, crtc) {
15128 struct intel_initial_plane_config plane_config = {};
15129
15130 if (!crtc->active)
15131 continue;
15132
15133 /*
15134 * Note that reserving the BIOS fb up front prevents us
15135 * from stuffing other stolen allocations like the ring
15136 * on top. This prevents some ugliness at boot time, and
15137 * can even allow for smooth boot transitions if the BIOS
15138 * fb is large enough for the active pipe configuration.
15139 */
15140 dev_priv->display.get_initial_plane_config(crtc,
15141 &plane_config);
15142
15143 /*
15144 * If the fb is shared between multiple heads, we'll
15145 * just get the first one.
15146 */
15147 intel_find_initial_plane_obj(crtc, &plane_config);
15148 }
15149
15150 /*
15151 * Make sure hardware watermarks really match the state we read out.
15152 * Note that we need to do this after reconstructing the BIOS fb's
15153 * since the watermark calculation done here will use pstate->fb.
15154 */
15155 if (!HAS_GMCH_DISPLAY(dev_priv))
15156 sanitize_watermarks(dev);
15157
15158 return 0;
15159 }
15160
15161 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15162 {
15163 /* 640x480@60Hz, ~25175 kHz */
15164 struct dpll clock = {
15165 .m1 = 18,
15166 .m2 = 7,
15167 .p1 = 13,
15168 .p2 = 4,
15169 .n = 2,
15170 };
15171 u32 dpll, fp;
15172 int i;
15173
15174 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
15175
15176 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
15177 pipe_name(pipe), clock.vco, clock.dot);
15178
15179 fp = i9xx_dpll_compute_fp(&clock);
15180 dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
15181 DPLL_VGA_MODE_DIS |
15182 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
15183 PLL_P2_DIVIDE_BY_4 |
15184 PLL_REF_INPUT_DREFCLK |
15185 DPLL_VCO_ENABLE;
15186
15187 I915_WRITE(FP0(pipe), fp);
15188 I915_WRITE(FP1(pipe), fp);
15189
15190 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
15191 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
15192 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
15193 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
15194 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
15195 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
15196 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
15197
15198 /*
15199 * Apparently we need to have VGA mode enabled prior to changing
15200 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
15201 * dividers, even though the register value does change.
15202 */
15203 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
15204 I915_WRITE(DPLL(pipe), dpll);
15205
15206 /* Wait for the clocks to stabilize. */
15207 POSTING_READ(DPLL(pipe));
15208 udelay(150);
15209
15210 /* The pixel multiplier can only be updated once the
15211 * DPLL is enabled and the clocks are stable.
15212 *
15213 * So write it again.
15214 */
15215 I915_WRITE(DPLL(pipe), dpll);
15216
15217 /* We do this three times for luck */
15218 for (i = 0; i < 3 ; i++) {
15219 I915_WRITE(DPLL(pipe), dpll);
15220 POSTING_READ(DPLL(pipe));
15221 udelay(150); /* wait for warmup */
15222 }
15223
15224 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
15225 POSTING_READ(PIPECONF(pipe));
15226 }
15227
15228 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15229 {
15230 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
15231 pipe_name(pipe));
15232
15233 assert_plane_disabled(dev_priv, PLANE_A);
15234 assert_plane_disabled(dev_priv, PLANE_B);
15235
15236 I915_WRITE(PIPECONF(pipe), 0);
15237 POSTING_READ(PIPECONF(pipe));
15238
15239 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
15240 DRM_ERROR("pipe %c off wait timed out\n", pipe_name(pipe));
15241
15242 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
15243 POSTING_READ(DPLL(pipe));
15244 }
15245
15246 static bool
15247 intel_check_plane_mapping(struct intel_crtc *crtc)
15248 {
15249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15250 u32 val;
15251
15252 if (INTEL_INFO(dev_priv)->num_pipes == 1)
15253 return true;
15254
15255 val = I915_READ(DSPCNTR(!crtc->plane));
15256
15257 if ((val & DISPLAY_PLANE_ENABLE) &&
15258 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15259 return false;
15260
15261 return true;
15262 }
15263
15264 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15265 {
15266 struct drm_device *dev = crtc->base.dev;
15267 struct intel_encoder *encoder;
15268
15269 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15270 return true;
15271
15272 return false;
15273 }
15274
15275 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15276 {
15277 struct drm_device *dev = encoder->base.dev;
15278 struct intel_connector *connector;
15279
15280 for_each_connector_on_encoder(dev, &encoder->base, connector)
15281 return connector;
15282
15283 return NULL;
15284 }
15285
15286 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15287 enum transcoder pch_transcoder)
15288 {
15289 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15290 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15291 }
15292
15293 static void intel_sanitize_crtc(struct intel_crtc *crtc,
15294 struct drm_modeset_acquire_ctx *ctx)
15295 {
15296 struct drm_device *dev = crtc->base.dev;
15297 struct drm_i915_private *dev_priv = to_i915(dev);
15298 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15299
15300 /* Clear any frame start delays used for debugging left by the BIOS */
15301 if (!transcoder_is_dsi(cpu_transcoder)) {
15302 i915_reg_t reg = PIPECONF(cpu_transcoder);
15303
15304 I915_WRITE(reg,
15305 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15306 }
15307
15308 /* restore vblank interrupts to correct state */
15309 drm_crtc_vblank_reset(&crtc->base);
15310 if (crtc->active) {
15311 struct intel_plane *plane;
15312
15313 drm_crtc_vblank_on(&crtc->base);
15314
15315 /* Disable everything but the primary plane */
15316 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15317 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15318 continue;
15319
15320 trace_intel_disable_plane(&plane->base, crtc);
15321 plane->disable_plane(plane, crtc);
15322 }
15323 }
15324
15325 /* We need to sanitize the plane -> pipe mapping first because this will
15326 * disable the crtc (and hence change the state) if it is wrong. Note
15327 * that gen4+ has a fixed plane -> pipe mapping. */
15328 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15329 bool plane;
15330
15331 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15332 crtc->base.base.id, crtc->base.name);
15333
15334 /* Pipe has the wrong plane attached and the plane is active.
15335 * Temporarily change the plane mapping and disable everything
15336 * ... */
15337 plane = crtc->plane;
15338 crtc->base.primary->state->visible = true;
15339 crtc->plane = !plane;
15340 intel_crtc_disable_noatomic(&crtc->base, ctx);
15341 crtc->plane = plane;
15342 }
15343
15344 /* Adjust the state of the output pipe according to whether we
15345 * have active connectors/encoders. */
15346 if (crtc->active && !intel_crtc_has_encoders(crtc))
15347 intel_crtc_disable_noatomic(&crtc->base, ctx);
15348
15349 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15350 /*
15351 * We start out with underrun reporting disabled to avoid races.
15352 * For correct bookkeeping mark this on active crtcs.
15353 *
15354 * Also on gmch platforms we dont have any hardware bits to
15355 * disable the underrun reporting. Which means we need to start
15356 * out with underrun reporting disabled also on inactive pipes,
15357 * since otherwise we'll complain about the garbage we read when
15358 * e.g. coming up after runtime pm.
15359 *
15360 * No protection against concurrent access is required - at
15361 * worst a fifo underrun happens which also sets this to false.
15362 */
15363 crtc->cpu_fifo_underrun_disabled = true;
15364 /*
15365 * We track the PCH trancoder underrun reporting state
15366 * within the crtc. With crtc for pipe A housing the underrun
15367 * reporting state for PCH transcoder A, crtc for pipe B housing
15368 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15369 * and marking underrun reporting as disabled for the non-existing
15370 * PCH transcoders B and C would prevent enabling the south
15371 * error interrupt (see cpt_can_enable_serr_int()).
15372 */
15373 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15374 crtc->pch_fifo_underrun_disabled = true;
15375 }
15376 }
15377
15378 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15379 {
15380 struct intel_connector *connector;
15381
15382 /* We need to check both for a crtc link (meaning that the
15383 * encoder is active and trying to read from a pipe) and the
15384 * pipe itself being active. */
15385 bool has_active_crtc = encoder->base.crtc &&
15386 to_intel_crtc(encoder->base.crtc)->active;
15387
15388 connector = intel_encoder_find_connector(encoder);
15389 if (connector && !has_active_crtc) {
15390 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15391 encoder->base.base.id,
15392 encoder->base.name);
15393
15394 /* Connector is active, but has no active pipe. This is
15395 * fallout from our resume register restoring. Disable
15396 * the encoder manually again. */
15397 if (encoder->base.crtc) {
15398 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15399
15400 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15401 encoder->base.base.id,
15402 encoder->base.name);
15403 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15404 if (encoder->post_disable)
15405 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15406 }
15407 encoder->base.crtc = NULL;
15408
15409 /* Inconsistent output/port/pipe state happens presumably due to
15410 * a bug in one of the get_hw_state functions. Or someplace else
15411 * in our code, like the register restore mess on resume. Clamp
15412 * things to off as a safer default. */
15413
15414 connector->base.dpms = DRM_MODE_DPMS_OFF;
15415 connector->base.encoder = NULL;
15416 }
15417 /* Enabled encoders without active connectors will be fixed in
15418 * the crtc fixup. */
15419 }
15420
15421 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15422 {
15423 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15424
15425 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15426 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15427 i915_disable_vga(dev_priv);
15428 }
15429 }
15430
15431 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15432 {
15433 /* This function can be called both from intel_modeset_setup_hw_state or
15434 * at a very early point in our resume sequence, where the power well
15435 * structures are not yet restored. Since this function is at a very
15436 * paranoid "someone might have enabled VGA while we were not looking"
15437 * level, just check if the power well is enabled instead of trying to
15438 * follow the "don't touch the power well if we don't need it" policy
15439 * the rest of the driver uses. */
15440 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15441 return;
15442
15443 i915_redisable_vga_power_on(dev_priv);
15444
15445 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15446 }
15447
15448 static bool primary_get_hw_state(struct intel_plane *plane)
15449 {
15450 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15451
15452 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15453 }
15454
15455 /* FIXME read out full plane state for all planes */
15456 static void readout_plane_state(struct intel_crtc *crtc)
15457 {
15458 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15459 bool visible;
15460
15461 visible = crtc->active && primary_get_hw_state(primary);
15462
15463 intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15464 to_intel_plane_state(primary->base.state),
15465 visible);
15466 }
15467
15468 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15469 {
15470 struct drm_i915_private *dev_priv = to_i915(dev);
15471 enum pipe pipe;
15472 struct intel_crtc *crtc;
15473 struct intel_encoder *encoder;
15474 struct intel_connector *connector;
15475 struct drm_connector_list_iter conn_iter;
15476 int i;
15477
15478 dev_priv->active_crtcs = 0;
15479
15480 for_each_intel_crtc(dev, crtc) {
15481 struct intel_crtc_state *crtc_state =
15482 to_intel_crtc_state(crtc->base.state);
15483
15484 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15485 memset(crtc_state, 0, sizeof(*crtc_state));
15486 crtc_state->base.crtc = &crtc->base;
15487
15488 crtc_state->base.active = crtc_state->base.enable =
15489 dev_priv->display.get_pipe_config(crtc, crtc_state);
15490
15491 crtc->base.enabled = crtc_state->base.enable;
15492 crtc->active = crtc_state->base.active;
15493
15494 if (crtc_state->base.active)
15495 dev_priv->active_crtcs |= 1 << crtc->pipe;
15496
15497 readout_plane_state(crtc);
15498
15499 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15500 crtc->base.base.id, crtc->base.name,
15501 enableddisabled(crtc_state->base.active));
15502 }
15503
15504 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15505 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15506
15507 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15508 &pll->state.hw_state);
15509 pll->state.crtc_mask = 0;
15510 for_each_intel_crtc(dev, crtc) {
15511 struct intel_crtc_state *crtc_state =
15512 to_intel_crtc_state(crtc->base.state);
15513
15514 if (crtc_state->base.active &&
15515 crtc_state->shared_dpll == pll)
15516 pll->state.crtc_mask |= 1 << crtc->pipe;
15517 }
15518 pll->active_mask = pll->state.crtc_mask;
15519
15520 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15521 pll->name, pll->state.crtc_mask, pll->on);
15522 }
15523
15524 for_each_intel_encoder(dev, encoder) {
15525 pipe = 0;
15526
15527 if (encoder->get_hw_state(encoder, &pipe)) {
15528 struct intel_crtc_state *crtc_state;
15529
15530 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15531 crtc_state = to_intel_crtc_state(crtc->base.state);
15532
15533 encoder->base.crtc = &crtc->base;
15534 crtc_state->output_types |= 1 << encoder->type;
15535 encoder->get_config(encoder, crtc_state);
15536 } else {
15537 encoder->base.crtc = NULL;
15538 }
15539
15540 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15541 encoder->base.base.id, encoder->base.name,
15542 enableddisabled(encoder->base.crtc),
15543 pipe_name(pipe));
15544 }
15545
15546 drm_connector_list_iter_begin(dev, &conn_iter);
15547 for_each_intel_connector_iter(connector, &conn_iter) {
15548 if (connector->get_hw_state(connector)) {
15549 connector->base.dpms = DRM_MODE_DPMS_ON;
15550
15551 encoder = connector->encoder;
15552 connector->base.encoder = &encoder->base;
15553
15554 if (encoder->base.crtc &&
15555 encoder->base.crtc->state->active) {
15556 /*
15557 * This has to be done during hardware readout
15558 * because anything calling .crtc_disable may
15559 * rely on the connector_mask being accurate.
15560 */
15561 encoder->base.crtc->state->connector_mask |=
15562 1 << drm_connector_index(&connector->base);
15563 encoder->base.crtc->state->encoder_mask |=
15564 1 << drm_encoder_index(&encoder->base);
15565 }
15566
15567 } else {
15568 connector->base.dpms = DRM_MODE_DPMS_OFF;
15569 connector->base.encoder = NULL;
15570 }
15571 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15572 connector->base.base.id, connector->base.name,
15573 enableddisabled(connector->base.encoder));
15574 }
15575 drm_connector_list_iter_end(&conn_iter);
15576
15577 for_each_intel_crtc(dev, crtc) {
15578 struct intel_crtc_state *crtc_state =
15579 to_intel_crtc_state(crtc->base.state);
15580 int pixclk = 0;
15581
15582 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15583 if (crtc_state->base.active) {
15584 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15585 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15586 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15587
15588 /*
15589 * The initial mode needs to be set in order to keep
15590 * the atomic core happy. It wants a valid mode if the
15591 * crtc's enabled, so we do the above call.
15592 *
15593 * But we don't set all the derived state fully, hence
15594 * set a flag to indicate that a full recalculation is
15595 * needed on the next commit.
15596 */
15597 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15598
15599 intel_crtc_compute_pixel_rate(crtc_state);
15600
15601 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15602 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15603 pixclk = crtc_state->pixel_rate;
15604 else
15605 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15606
15607 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15608 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15609 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15610
15611 drm_calc_timestamping_constants(&crtc->base,
15612 &crtc_state->base.adjusted_mode);
15613 update_scanline_offset(crtc);
15614 }
15615
15616 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15617
15618 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15619 }
15620 }
15621
15622 static void
15623 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15624 {
15625 struct intel_encoder *encoder;
15626
15627 for_each_intel_encoder(&dev_priv->drm, encoder) {
15628 u64 get_domains;
15629 enum intel_display_power_domain domain;
15630
15631 if (!encoder->get_power_domains)
15632 continue;
15633
15634 get_domains = encoder->get_power_domains(encoder);
15635 for_each_power_domain(domain, get_domains)
15636 intel_display_power_get(dev_priv, domain);
15637 }
15638 }
15639
15640 /* Scan out the current hw modeset state,
15641 * and sanitizes it to the current state
15642 */
15643 static void
15644 intel_modeset_setup_hw_state(struct drm_device *dev,
15645 struct drm_modeset_acquire_ctx *ctx)
15646 {
15647 struct drm_i915_private *dev_priv = to_i915(dev);
15648 enum pipe pipe;
15649 struct intel_crtc *crtc;
15650 struct intel_encoder *encoder;
15651 int i;
15652
15653 intel_modeset_readout_hw_state(dev);
15654
15655 /* HW state is read out, now we need to sanitize this mess. */
15656 get_encoder_power_domains(dev_priv);
15657
15658 for_each_intel_encoder(dev, encoder) {
15659 intel_sanitize_encoder(encoder);
15660 }
15661
15662 for_each_pipe(dev_priv, pipe) {
15663 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15664
15665 intel_sanitize_crtc(crtc, ctx);
15666 intel_dump_pipe_config(crtc, crtc->config,
15667 "[setup_hw_state]");
15668 }
15669
15670 intel_modeset_update_connector_atomic_state(dev);
15671
15672 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15673 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15674
15675 if (!pll->on || pll->active_mask)
15676 continue;
15677
15678 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15679
15680 pll->funcs.disable(dev_priv, pll);
15681 pll->on = false;
15682 }
15683
15684 if (IS_G4X(dev_priv)) {
15685 g4x_wm_get_hw_state(dev);
15686 g4x_wm_sanitize(dev_priv);
15687 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15688 vlv_wm_get_hw_state(dev);
15689 vlv_wm_sanitize(dev_priv);
15690 } else if (IS_GEN9(dev_priv)) {
15691 skl_wm_get_hw_state(dev);
15692 } else if (HAS_PCH_SPLIT(dev_priv)) {
15693 ilk_wm_get_hw_state(dev);
15694 }
15695
15696 for_each_intel_crtc(dev, crtc) {
15697 u64 put_domains;
15698
15699 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15700 if (WARN_ON(put_domains))
15701 modeset_put_power_domains(dev_priv, put_domains);
15702 }
15703 intel_display_set_init_power(dev_priv, false);
15704
15705 intel_power_domains_verify_state(dev_priv);
15706
15707 intel_fbc_init_pipe_state(dev_priv);
15708 }
15709
15710 void intel_display_resume(struct drm_device *dev)
15711 {
15712 struct drm_i915_private *dev_priv = to_i915(dev);
15713 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15714 struct drm_modeset_acquire_ctx ctx;
15715 int ret;
15716
15717 dev_priv->modeset_restore_state = NULL;
15718 if (state)
15719 state->acquire_ctx = &ctx;
15720
15721 drm_modeset_acquire_init(&ctx, 0);
15722
15723 while (1) {
15724 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15725 if (ret != -EDEADLK)
15726 break;
15727
15728 drm_modeset_backoff(&ctx);
15729 }
15730
15731 if (!ret)
15732 ret = __intel_display_resume(dev, state, &ctx);
15733
15734 drm_modeset_drop_locks(&ctx);
15735 drm_modeset_acquire_fini(&ctx);
15736
15737 if (ret)
15738 DRM_ERROR("Restoring old state failed with %i\n", ret);
15739 if (state)
15740 drm_atomic_state_put(state);
15741 }
15742
15743 void intel_modeset_gem_init(struct drm_device *dev)
15744 {
15745 struct drm_i915_private *dev_priv = to_i915(dev);
15746
15747 intel_init_gt_powersave(dev_priv);
15748
15749 intel_setup_overlay(dev_priv);
15750 }
15751
15752 int intel_connector_register(struct drm_connector *connector)
15753 {
15754 struct intel_connector *intel_connector = to_intel_connector(connector);
15755 int ret;
15756
15757 ret = intel_backlight_device_register(intel_connector);
15758 if (ret)
15759 goto err;
15760
15761 return 0;
15762
15763 err:
15764 return ret;
15765 }
15766
15767 void intel_connector_unregister(struct drm_connector *connector)
15768 {
15769 struct intel_connector *intel_connector = to_intel_connector(connector);
15770
15771 intel_backlight_device_unregister(intel_connector);
15772 intel_panel_destroy_backlight(connector);
15773 }
15774
15775 void intel_modeset_cleanup(struct drm_device *dev)
15776 {
15777 struct drm_i915_private *dev_priv = to_i915(dev);
15778
15779 flush_work(&dev_priv->atomic_helper.free_work);
15780 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15781
15782 intel_disable_gt_powersave(dev_priv);
15783
15784 /*
15785 * Interrupts and polling as the first thing to avoid creating havoc.
15786 * Too much stuff here (turning of connectors, ...) would
15787 * experience fancy races otherwise.
15788 */
15789 intel_irq_uninstall(dev_priv);
15790
15791 /*
15792 * Due to the hpd irq storm handling the hotplug work can re-arm the
15793 * poll handlers. Hence disable polling after hpd handling is shut down.
15794 */
15795 drm_kms_helper_poll_fini(dev);
15796
15797 intel_unregister_dsm_handler();
15798
15799 intel_fbc_global_disable(dev_priv);
15800
15801 /* flush any delayed tasks or pending work */
15802 flush_scheduled_work();
15803
15804 drm_mode_config_cleanup(dev);
15805
15806 intel_cleanup_overlay(dev_priv);
15807
15808 intel_cleanup_gt_powersave(dev_priv);
15809
15810 intel_teardown_gmbus(dev_priv);
15811 }
15812
15813 void intel_connector_attach_encoder(struct intel_connector *connector,
15814 struct intel_encoder *encoder)
15815 {
15816 connector->encoder = encoder;
15817 drm_mode_connector_attach_encoder(&connector->base,
15818 &encoder->base);
15819 }
15820
15821 /*
15822 * set vga decode state - true == enable VGA decode
15823 */
15824 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15825 {
15826 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15827 u16 gmch_ctrl;
15828
15829 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15830 DRM_ERROR("failed to read control word\n");
15831 return -EIO;
15832 }
15833
15834 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15835 return 0;
15836
15837 if (state)
15838 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15839 else
15840 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15841
15842 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15843 DRM_ERROR("failed to write control word\n");
15844 return -EIO;
15845 }
15846
15847 return 0;
15848 }
15849
15850 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15851
15852 struct intel_display_error_state {
15853
15854 u32 power_well_driver;
15855
15856 int num_transcoders;
15857
15858 struct intel_cursor_error_state {
15859 u32 control;
15860 u32 position;
15861 u32 base;
15862 u32 size;
15863 } cursor[I915_MAX_PIPES];
15864
15865 struct intel_pipe_error_state {
15866 bool power_domain_on;
15867 u32 source;
15868 u32 stat;
15869 } pipe[I915_MAX_PIPES];
15870
15871 struct intel_plane_error_state {
15872 u32 control;
15873 u32 stride;
15874 u32 size;
15875 u32 pos;
15876 u32 addr;
15877 u32 surface;
15878 u32 tile_offset;
15879 } plane[I915_MAX_PIPES];
15880
15881 struct intel_transcoder_error_state {
15882 bool power_domain_on;
15883 enum transcoder cpu_transcoder;
15884
15885 u32 conf;
15886
15887 u32 htotal;
15888 u32 hblank;
15889 u32 hsync;
15890 u32 vtotal;
15891 u32 vblank;
15892 u32 vsync;
15893 } transcoder[4];
15894 };
15895
15896 struct intel_display_error_state *
15897 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15898 {
15899 struct intel_display_error_state *error;
15900 int transcoders[] = {
15901 TRANSCODER_A,
15902 TRANSCODER_B,
15903 TRANSCODER_C,
15904 TRANSCODER_EDP,
15905 };
15906 int i;
15907
15908 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15909 return NULL;
15910
15911 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15912 if (error == NULL)
15913 return NULL;
15914
15915 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15916 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15917
15918 for_each_pipe(dev_priv, i) {
15919 error->pipe[i].power_domain_on =
15920 __intel_display_power_is_enabled(dev_priv,
15921 POWER_DOMAIN_PIPE(i));
15922 if (!error->pipe[i].power_domain_on)
15923 continue;
15924
15925 error->cursor[i].control = I915_READ(CURCNTR(i));
15926 error->cursor[i].position = I915_READ(CURPOS(i));
15927 error->cursor[i].base = I915_READ(CURBASE(i));
15928
15929 error->plane[i].control = I915_READ(DSPCNTR(i));
15930 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15931 if (INTEL_GEN(dev_priv) <= 3) {
15932 error->plane[i].size = I915_READ(DSPSIZE(i));
15933 error->plane[i].pos = I915_READ(DSPPOS(i));
15934 }
15935 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15936 error->plane[i].addr = I915_READ(DSPADDR(i));
15937 if (INTEL_GEN(dev_priv) >= 4) {
15938 error->plane[i].surface = I915_READ(DSPSURF(i));
15939 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15940 }
15941
15942 error->pipe[i].source = I915_READ(PIPESRC(i));
15943
15944 if (HAS_GMCH_DISPLAY(dev_priv))
15945 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15946 }
15947
15948 /* Note: this does not include DSI transcoders. */
15949 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15950 if (HAS_DDI(dev_priv))
15951 error->num_transcoders++; /* Account for eDP. */
15952
15953 for (i = 0; i < error->num_transcoders; i++) {
15954 enum transcoder cpu_transcoder = transcoders[i];
15955
15956 error->transcoder[i].power_domain_on =
15957 __intel_display_power_is_enabled(dev_priv,
15958 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15959 if (!error->transcoder[i].power_domain_on)
15960 continue;
15961
15962 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15963
15964 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15965 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15966 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15967 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15968 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15969 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15970 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15971 }
15972
15973 return error;
15974 }
15975
15976 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15977
15978 void
15979 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15980 struct intel_display_error_state *error)
15981 {
15982 struct drm_i915_private *dev_priv = m->i915;
15983 int i;
15984
15985 if (!error)
15986 return;
15987
15988 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15989 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15990 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15991 error->power_well_driver);
15992 for_each_pipe(dev_priv, i) {
15993 err_printf(m, "Pipe [%d]:\n", i);
15994 err_printf(m, " Power: %s\n",
15995 onoff(error->pipe[i].power_domain_on));
15996 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15997 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15998
15999 err_printf(m, "Plane [%d]:\n", i);
16000 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16001 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16002 if (INTEL_GEN(dev_priv) <= 3) {
16003 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16004 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16005 }
16006 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16007 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16008 if (INTEL_GEN(dev_priv) >= 4) {
16009 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16010 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16011 }
16012
16013 err_printf(m, "Cursor [%d]:\n", i);
16014 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16015 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16016 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16017 }
16018
16019 for (i = 0; i < error->num_transcoders; i++) {
16020 err_printf(m, "CPU transcoder: %s\n",
16021 transcoder_name(error->transcoder[i].cpu_transcoder));
16022 err_printf(m, " Power: %s\n",
16023 onoff(error->transcoder[i].power_domain_on));
16024 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16025 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16026 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16027 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16028 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16029 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16030 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16031 }
16032 }
16033
16034 #endif