]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Add frame buffer compression support on Ironlake mobile
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "drm_dp_helper.h"
38
39 #include "drm_crtc_helper.h"
40
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
46
47 typedef struct {
48 /* given values */
49 int n;
50 int m1, m2;
51 int p1, p2;
52 /* derived values */
53 int dot;
54 int vco;
55 int m;
56 int p;
57 } intel_clock_t;
58
59 typedef struct {
60 int min, max;
61 } intel_range_t;
62
63 typedef struct {
64 int dot_limit;
65 int p2_slow, p2_fast;
66 } intel_p2_t;
67
68 #define INTEL_P2_NUM 2
69 typedef struct intel_limit intel_limit_t;
70 struct intel_limit {
71 intel_range_t dot, vco, n, m, m1, m2, p, p1;
72 intel_p2_t p2;
73 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
100
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define PINEVIEW_VCO_MIN 1700000
106 #define PINEVIEW_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* Pineview's Ncounter is a ring counter */
110 #define PINEVIEW_N_MIN 3
111 #define PINEVIEW_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define PINEVIEW_M_MIN 2
115 #define PINEVIEW_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* Pineview M1 is reserved, and must be 0 */
121 #define PINEVIEW_M1_MIN 0
122 #define PINEVIEW_M1_MAX 0
123 #define PINEVIEW_M2_MIN 0
124 #define PINEVIEW_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define PINEVIEW_P_LVDS_MIN 7
130 #define PINEVIEW_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
236
237 /* Ironlake / Sandybridge */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
240 */
241 #define IRONLAKE_DOT_MIN 25000
242 #define IRONLAKE_DOT_MAX 350000
243 #define IRONLAKE_VCO_MIN 1760000
244 #define IRONLAKE_VCO_MAX 3510000
245 #define IRONLAKE_M1_MIN 12
246 #define IRONLAKE_M1_MAX 22
247 #define IRONLAKE_M2_MIN 5
248 #define IRONLAKE_M2_MAX 9
249 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
250
251 /* We have parameter ranges for different type of outputs. */
252
253 /* DAC & HDMI Refclk 120Mhz */
254 #define IRONLAKE_DAC_N_MIN 1
255 #define IRONLAKE_DAC_N_MAX 5
256 #define IRONLAKE_DAC_M_MIN 79
257 #define IRONLAKE_DAC_M_MAX 127
258 #define IRONLAKE_DAC_P_MIN 5
259 #define IRONLAKE_DAC_P_MAX 80
260 #define IRONLAKE_DAC_P1_MIN 1
261 #define IRONLAKE_DAC_P1_MAX 8
262 #define IRONLAKE_DAC_P2_SLOW 10
263 #define IRONLAKE_DAC_P2_FAST 5
264
265 /* LVDS single-channel 120Mhz refclk */
266 #define IRONLAKE_LVDS_S_N_MIN 1
267 #define IRONLAKE_LVDS_S_N_MAX 3
268 #define IRONLAKE_LVDS_S_M_MIN 79
269 #define IRONLAKE_LVDS_S_M_MAX 118
270 #define IRONLAKE_LVDS_S_P_MIN 28
271 #define IRONLAKE_LVDS_S_P_MAX 112
272 #define IRONLAKE_LVDS_S_P1_MIN 2
273 #define IRONLAKE_LVDS_S_P1_MAX 8
274 #define IRONLAKE_LVDS_S_P2_SLOW 14
275 #define IRONLAKE_LVDS_S_P2_FAST 14
276
277 /* LVDS dual-channel 120Mhz refclk */
278 #define IRONLAKE_LVDS_D_N_MIN 1
279 #define IRONLAKE_LVDS_D_N_MAX 3
280 #define IRONLAKE_LVDS_D_M_MIN 79
281 #define IRONLAKE_LVDS_D_M_MAX 127
282 #define IRONLAKE_LVDS_D_P_MIN 14
283 #define IRONLAKE_LVDS_D_P_MAX 56
284 #define IRONLAKE_LVDS_D_P1_MIN 2
285 #define IRONLAKE_LVDS_D_P1_MAX 8
286 #define IRONLAKE_LVDS_D_P2_SLOW 7
287 #define IRONLAKE_LVDS_D_P2_FAST 7
288
289 /* LVDS single-channel 100Mhz refclk */
290 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
291 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
292 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
293 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
294 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
295 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
296 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
297 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
298 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
299 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
300
301 /* LVDS dual-channel 100Mhz refclk */
302 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
303 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
304 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
305 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
306 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
307 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
308 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
309 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
310 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
311 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
312
313 /* DisplayPort */
314 #define IRONLAKE_DP_N_MIN 1
315 #define IRONLAKE_DP_N_MAX 2
316 #define IRONLAKE_DP_M_MIN 81
317 #define IRONLAKE_DP_M_MAX 90
318 #define IRONLAKE_DP_P_MIN 10
319 #define IRONLAKE_DP_P_MAX 20
320 #define IRONLAKE_DP_P2_FAST 10
321 #define IRONLAKE_DP_P2_SLOW 10
322 #define IRONLAKE_DP_P2_LIMIT 0
323 #define IRONLAKE_DP_P1_MIN 1
324 #define IRONLAKE_DP_P1_MAX 2
325
326 static bool
327 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
328 int target, int refclk, intel_clock_t *best_clock);
329 static bool
330 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
331 int target, int refclk, intel_clock_t *best_clock);
332
333 static bool
334 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
335 int target, int refclk, intel_clock_t *best_clock);
336 static bool
337 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
338 int target, int refclk, intel_clock_t *best_clock);
339
340 static const intel_limit_t intel_limits_i8xx_dvo = {
341 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
342 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
343 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
344 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
345 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
346 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
347 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
348 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
349 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
350 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
351 .find_pll = intel_find_best_PLL,
352 };
353
354 static const intel_limit_t intel_limits_i8xx_lvds = {
355 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
356 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
357 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
358 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
359 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
360 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
361 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
362 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
363 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
364 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
365 .find_pll = intel_find_best_PLL,
366 };
367
368 static const intel_limit_t intel_limits_i9xx_sdvo = {
369 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
370 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
371 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
372 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
373 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
374 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
375 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
376 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
377 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
378 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
379 .find_pll = intel_find_best_PLL,
380 };
381
382 static const intel_limit_t intel_limits_i9xx_lvds = {
383 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
384 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
385 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
386 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
387 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
388 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
389 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
390 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
391 /* The single-channel range is 25-112Mhz, and dual-channel
392 * is 80-224Mhz. Prefer single channel as much as possible.
393 */
394 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
395 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
396 .find_pll = intel_find_best_PLL,
397 };
398
399 /* below parameter and function is for G4X Chipset Family*/
400 static const intel_limit_t intel_limits_g4x_sdvo = {
401 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
402 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
403 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
404 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
405 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
406 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
407 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
408 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
409 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
410 .p2_slow = G4X_P2_SDVO_SLOW,
411 .p2_fast = G4X_P2_SDVO_FAST
412 },
413 .find_pll = intel_g4x_find_best_PLL,
414 };
415
416 static const intel_limit_t intel_limits_g4x_hdmi = {
417 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
418 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
419 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
420 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
421 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
422 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
423 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
424 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
425 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
426 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
427 .p2_fast = G4X_P2_HDMI_DAC_FAST
428 },
429 .find_pll = intel_g4x_find_best_PLL,
430 };
431
432 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
433 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
434 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
435 .vco = { .min = G4X_VCO_MIN,
436 .max = G4X_VCO_MAX },
437 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
438 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
439 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
440 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
441 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
442 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
443 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
444 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
445 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
447 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
448 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
449 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
450 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
451 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
452 },
453 .find_pll = intel_g4x_find_best_PLL,
454 };
455
456 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
457 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
458 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
459 .vco = { .min = G4X_VCO_MIN,
460 .max = G4X_VCO_MAX },
461 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
462 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
463 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
464 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
465 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
466 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
467 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
468 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
469 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
471 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
472 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
473 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
474 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
475 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
476 },
477 .find_pll = intel_g4x_find_best_PLL,
478 };
479
480 static const intel_limit_t intel_limits_g4x_display_port = {
481 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
482 .max = G4X_DOT_DISPLAY_PORT_MAX },
483 .vco = { .min = G4X_VCO_MIN,
484 .max = G4X_VCO_MAX},
485 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
486 .max = G4X_N_DISPLAY_PORT_MAX },
487 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
488 .max = G4X_M_DISPLAY_PORT_MAX },
489 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
490 .max = G4X_M1_DISPLAY_PORT_MAX },
491 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
492 .max = G4X_M2_DISPLAY_PORT_MAX },
493 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
494 .max = G4X_P_DISPLAY_PORT_MAX },
495 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
496 .max = G4X_P1_DISPLAY_PORT_MAX},
497 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
498 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
499 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
500 .find_pll = intel_find_pll_g4x_dp,
501 };
502
503 static const intel_limit_t intel_limits_pineview_sdvo = {
504 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
505 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
506 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
507 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
508 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
509 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
510 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
511 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
512 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
513 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
514 .find_pll = intel_find_best_PLL,
515 };
516
517 static const intel_limit_t intel_limits_pineview_lvds = {
518 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
519 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
520 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
521 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
522 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
523 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
524 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
525 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
526 /* Pineview only supports single-channel mode. */
527 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
529 .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_ironlake_dac = {
533 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
534 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
535 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
536 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
537 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
538 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
539 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
540 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
541 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
542 .p2_slow = IRONLAKE_DAC_P2_SLOW,
543 .p2_fast = IRONLAKE_DAC_P2_FAST },
544 .find_pll = intel_g4x_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_single_lvds = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
551 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
555 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
558 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_display_port = {
608 .dot = { .min = IRONLAKE_DOT_MIN,
609 .max = IRONLAKE_DOT_MAX },
610 .vco = { .min = IRONLAKE_VCO_MIN,
611 .max = IRONLAKE_VCO_MAX},
612 .n = { .min = IRONLAKE_DP_N_MIN,
613 .max = IRONLAKE_DP_N_MAX },
614 .m = { .min = IRONLAKE_DP_M_MIN,
615 .max = IRONLAKE_DP_M_MAX },
616 .m1 = { .min = IRONLAKE_M1_MIN,
617 .max = IRONLAKE_M1_MAX },
618 .m2 = { .min = IRONLAKE_M2_MIN,
619 .max = IRONLAKE_M2_MAX },
620 .p = { .min = IRONLAKE_DP_P_MIN,
621 .max = IRONLAKE_DP_P_MAX },
622 .p1 = { .min = IRONLAKE_DP_P1_MIN,
623 .max = IRONLAKE_DP_P1_MAX},
624 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
625 .p2_slow = IRONLAKE_DP_P2_SLOW,
626 .p2_fast = IRONLAKE_DP_P2_FAST },
627 .find_pll = intel_find_pll_ironlake_dp,
628 };
629
630 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
631 {
632 struct drm_device *dev = crtc->dev;
633 struct drm_i915_private *dev_priv = dev->dev_private;
634 const intel_limit_t *limit;
635 int refclk = 120;
636
637 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
638 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
639 refclk = 100;
640
641 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
642 LVDS_CLKB_POWER_UP) {
643 /* LVDS dual channel */
644 if (refclk == 100)
645 limit = &intel_limits_ironlake_dual_lvds_100m;
646 else
647 limit = &intel_limits_ironlake_dual_lvds;
648 } else {
649 if (refclk == 100)
650 limit = &intel_limits_ironlake_single_lvds_100m;
651 else
652 limit = &intel_limits_ironlake_single_lvds;
653 }
654 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
655 HAS_eDP)
656 limit = &intel_limits_ironlake_display_port;
657 else
658 limit = &intel_limits_ironlake_dac;
659
660 return limit;
661 }
662
663 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
664 {
665 struct drm_device *dev = crtc->dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667 const intel_limit_t *limit;
668
669 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
670 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
671 LVDS_CLKB_POWER_UP)
672 /* LVDS with dual channel */
673 limit = &intel_limits_g4x_dual_channel_lvds;
674 else
675 /* LVDS with dual channel */
676 limit = &intel_limits_g4x_single_channel_lvds;
677 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
678 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
679 limit = &intel_limits_g4x_hdmi;
680 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
681 limit = &intel_limits_g4x_sdvo;
682 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
683 limit = &intel_limits_g4x_display_port;
684 } else /* The option is for other outputs */
685 limit = &intel_limits_i9xx_sdvo;
686
687 return limit;
688 }
689
690 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
691 {
692 struct drm_device *dev = crtc->dev;
693 const intel_limit_t *limit;
694
695 if (HAS_PCH_SPLIT(dev))
696 limit = intel_ironlake_limit(crtc);
697 else if (IS_G4X(dev)) {
698 limit = intel_g4x_limit(crtc);
699 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
700 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
701 limit = &intel_limits_i9xx_lvds;
702 else
703 limit = &intel_limits_i9xx_sdvo;
704 } else if (IS_PINEVIEW(dev)) {
705 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
706 limit = &intel_limits_pineview_lvds;
707 else
708 limit = &intel_limits_pineview_sdvo;
709 } else {
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
711 limit = &intel_limits_i8xx_lvds;
712 else
713 limit = &intel_limits_i8xx_dvo;
714 }
715 return limit;
716 }
717
718 /* m1 is reserved as 0 in Pineview, n is a ring counter */
719 static void pineview_clock(int refclk, intel_clock_t *clock)
720 {
721 clock->m = clock->m2 + 2;
722 clock->p = clock->p1 * clock->p2;
723 clock->vco = refclk * clock->m / clock->n;
724 clock->dot = clock->vco / clock->p;
725 }
726
727 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
728 {
729 if (IS_PINEVIEW(dev)) {
730 pineview_clock(refclk, clock);
731 return;
732 }
733 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / (clock->n + 2);
736 clock->dot = clock->vco / clock->p;
737 }
738
739 /**
740 * Returns whether any output on the specified pipe is of the specified type
741 */
742 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
743 {
744 struct drm_device *dev = crtc->dev;
745 struct drm_mode_config *mode_config = &dev->mode_config;
746 struct drm_encoder *l_entry;
747
748 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
749 if (l_entry && l_entry->crtc == crtc) {
750 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
751 if (intel_encoder->type == type)
752 return true;
753 }
754 }
755 return false;
756 }
757
758 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
759 /**
760 * Returns whether the given set of divisors are valid for a given refclk with
761 * the given connectors.
762 */
763
764 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
765 {
766 const intel_limit_t *limit = intel_limit (crtc);
767 struct drm_device *dev = crtc->dev;
768
769 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
770 INTELPllInvalid ("p1 out of range\n");
771 if (clock->p < limit->p.min || limit->p.max < clock->p)
772 INTELPllInvalid ("p out of range\n");
773 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
774 INTELPllInvalid ("m2 out of range\n");
775 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
776 INTELPllInvalid ("m1 out of range\n");
777 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
778 INTELPllInvalid ("m1 <= m2\n");
779 if (clock->m < limit->m.min || limit->m.max < clock->m)
780 INTELPllInvalid ("m out of range\n");
781 if (clock->n < limit->n.min || limit->n.max < clock->n)
782 INTELPllInvalid ("n out of range\n");
783 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
784 INTELPllInvalid ("vco out of range\n");
785 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
786 * connector, etc., rather than just a single range.
787 */
788 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
789 INTELPllInvalid ("dot out of range\n");
790
791 return true;
792 }
793
794 static bool
795 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
796 int target, int refclk, intel_clock_t *best_clock)
797
798 {
799 struct drm_device *dev = crtc->dev;
800 struct drm_i915_private *dev_priv = dev->dev_private;
801 intel_clock_t clock;
802 int err = target;
803
804 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
805 (I915_READ(LVDS)) != 0) {
806 /*
807 * For LVDS, if the panel is on, just rely on its current
808 * settings for dual-channel. We haven't figured out how to
809 * reliably set up different single/dual channel state, if we
810 * even can.
811 */
812 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
813 LVDS_CLKB_POWER_UP)
814 clock.p2 = limit->p2.p2_fast;
815 else
816 clock.p2 = limit->p2.p2_slow;
817 } else {
818 if (target < limit->p2.dot_limit)
819 clock.p2 = limit->p2.p2_slow;
820 else
821 clock.p2 = limit->p2.p2_fast;
822 }
823
824 memset (best_clock, 0, sizeof (*best_clock));
825
826 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 clock.m1++) {
828 for (clock.m2 = limit->m2.min;
829 clock.m2 <= limit->m2.max; clock.m2++) {
830 /* m1 is always 0 in Pineview */
831 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
832 break;
833 for (clock.n = limit->n.min;
834 clock.n <= limit->n.max; clock.n++) {
835 for (clock.p1 = limit->p1.min;
836 clock.p1 <= limit->p1.max; clock.p1++) {
837 int this_err;
838
839 intel_clock(dev, refclk, &clock);
840
841 if (!intel_PLL_is_valid(crtc, &clock))
842 continue;
843
844 this_err = abs(clock.dot - target);
845 if (this_err < err) {
846 *best_clock = clock;
847 err = this_err;
848 }
849 }
850 }
851 }
852 }
853
854 return (err != target);
855 }
856
857 static bool
858 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
859 int target, int refclk, intel_clock_t *best_clock)
860 {
861 struct drm_device *dev = crtc->dev;
862 struct drm_i915_private *dev_priv = dev->dev_private;
863 intel_clock_t clock;
864 int max_n;
865 bool found;
866 /* approximately equals target * 0.00488 */
867 int err_most = (target >> 8) + (target >> 10);
868 found = false;
869
870 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
871 int lvds_reg;
872
873 if (HAS_PCH_SPLIT(dev))
874 lvds_reg = PCH_LVDS;
875 else
876 lvds_reg = LVDS;
877 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
878 LVDS_CLKB_POWER_UP)
879 clock.p2 = limit->p2.p2_fast;
880 else
881 clock.p2 = limit->p2.p2_slow;
882 } else {
883 if (target < limit->p2.dot_limit)
884 clock.p2 = limit->p2.p2_slow;
885 else
886 clock.p2 = limit->p2.p2_fast;
887 }
888
889 memset(best_clock, 0, sizeof(*best_clock));
890 max_n = limit->n.max;
891 /* based on hardware requirement, prefer smaller n to precision */
892 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
893 /* based on hardware requirement, prefere larger m1,m2 */
894 for (clock.m1 = limit->m1.max;
895 clock.m1 >= limit->m1.min; clock.m1--) {
896 for (clock.m2 = limit->m2.max;
897 clock.m2 >= limit->m2.min; clock.m2--) {
898 for (clock.p1 = limit->p1.max;
899 clock.p1 >= limit->p1.min; clock.p1--) {
900 int this_err;
901
902 intel_clock(dev, refclk, &clock);
903 if (!intel_PLL_is_valid(crtc, &clock))
904 continue;
905 this_err = abs(clock.dot - target) ;
906 if (this_err < err_most) {
907 *best_clock = clock;
908 err_most = this_err;
909 max_n = clock.n;
910 found = true;
911 }
912 }
913 }
914 }
915 }
916 return found;
917 }
918
919 static bool
920 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
921 int target, int refclk, intel_clock_t *best_clock)
922 {
923 struct drm_device *dev = crtc->dev;
924 intel_clock_t clock;
925
926 /* return directly when it is eDP */
927 if (HAS_eDP)
928 return true;
929
930 if (target < 200000) {
931 clock.n = 1;
932 clock.p1 = 2;
933 clock.p2 = 10;
934 clock.m1 = 12;
935 clock.m2 = 9;
936 } else {
937 clock.n = 2;
938 clock.p1 = 1;
939 clock.p2 = 10;
940 clock.m1 = 14;
941 clock.m2 = 8;
942 }
943 intel_clock(dev, refclk, &clock);
944 memcpy(best_clock, &clock, sizeof(intel_clock_t));
945 return true;
946 }
947
948 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
949 static bool
950 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
951 int target, int refclk, intel_clock_t *best_clock)
952 {
953 intel_clock_t clock;
954 if (target < 200000) {
955 clock.p1 = 2;
956 clock.p2 = 10;
957 clock.n = 2;
958 clock.m1 = 23;
959 clock.m2 = 8;
960 } else {
961 clock.p1 = 1;
962 clock.p2 = 10;
963 clock.n = 1;
964 clock.m1 = 14;
965 clock.m2 = 2;
966 }
967 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
968 clock.p = (clock.p1 * clock.p2);
969 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
970 clock.vco = 0;
971 memcpy(best_clock, &clock, sizeof(intel_clock_t));
972 return true;
973 }
974
975 void
976 intel_wait_for_vblank(struct drm_device *dev)
977 {
978 /* Wait for 20ms, i.e. one cycle at 50hz. */
979 msleep(20);
980 }
981
982 /* Parameters have changed, update FBC info */
983 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
984 {
985 struct drm_device *dev = crtc->dev;
986 struct drm_i915_private *dev_priv = dev->dev_private;
987 struct drm_framebuffer *fb = crtc->fb;
988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
989 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
991 int plane, i;
992 u32 fbc_ctl, fbc_ctl2;
993
994 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
995
996 if (fb->pitch < dev_priv->cfb_pitch)
997 dev_priv->cfb_pitch = fb->pitch;
998
999 /* FBC_CTL wants 64B units */
1000 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1001 dev_priv->cfb_fence = obj_priv->fence_reg;
1002 dev_priv->cfb_plane = intel_crtc->plane;
1003 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1004
1005 /* Clear old tags */
1006 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1007 I915_WRITE(FBC_TAG + (i * 4), 0);
1008
1009 /* Set it up... */
1010 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1011 if (obj_priv->tiling_mode != I915_TILING_NONE)
1012 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1013 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1014 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1015
1016 /* enable it... */
1017 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1018 if (IS_I945GM(dev))
1019 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1020 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1021 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1022 if (obj_priv->tiling_mode != I915_TILING_NONE)
1023 fbc_ctl |= dev_priv->cfb_fence;
1024 I915_WRITE(FBC_CONTROL, fbc_ctl);
1025
1026 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1027 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1028 }
1029
1030 void i8xx_disable_fbc(struct drm_device *dev)
1031 {
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033 unsigned long timeout = jiffies + msecs_to_jiffies(1);
1034 u32 fbc_ctl;
1035
1036 if (!I915_HAS_FBC(dev))
1037 return;
1038
1039 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1040 return; /* Already off, just return */
1041
1042 /* Disable compression */
1043 fbc_ctl = I915_READ(FBC_CONTROL);
1044 fbc_ctl &= ~FBC_CTL_EN;
1045 I915_WRITE(FBC_CONTROL, fbc_ctl);
1046
1047 /* Wait for compressing bit to clear */
1048 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1049 if (time_after(jiffies, timeout)) {
1050 DRM_DEBUG_DRIVER("FBC idle timed out\n");
1051 break;
1052 }
1053 ; /* do nothing */
1054 }
1055
1056 intel_wait_for_vblank(dev);
1057
1058 DRM_DEBUG_KMS("disabled FBC\n");
1059 }
1060
1061 static bool i8xx_fbc_enabled(struct drm_device *dev)
1062 {
1063 struct drm_i915_private *dev_priv = dev->dev_private;
1064
1065 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1066 }
1067
1068 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1069 {
1070 struct drm_device *dev = crtc->dev;
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 struct drm_framebuffer *fb = crtc->fb;
1073 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1074 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1076 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1077 DPFC_CTL_PLANEB);
1078 unsigned long stall_watermark = 200;
1079 u32 dpfc_ctl;
1080
1081 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1082 dev_priv->cfb_fence = obj_priv->fence_reg;
1083 dev_priv->cfb_plane = intel_crtc->plane;
1084
1085 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1086 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1087 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1088 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1089 } else {
1090 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1091 }
1092
1093 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1094 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1095 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1096 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1097 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1098
1099 /* enable it... */
1100 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1101
1102 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1103 }
1104
1105 void g4x_disable_fbc(struct drm_device *dev)
1106 {
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108 u32 dpfc_ctl;
1109
1110 /* Disable compression */
1111 dpfc_ctl = I915_READ(DPFC_CONTROL);
1112 dpfc_ctl &= ~DPFC_CTL_EN;
1113 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1114 intel_wait_for_vblank(dev);
1115
1116 DRM_DEBUG_KMS("disabled FBC\n");
1117 }
1118
1119 static bool g4x_fbc_enabled(struct drm_device *dev)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122
1123 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1124 }
1125
1126 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1127 {
1128 struct drm_device *dev = crtc->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_framebuffer *fb = crtc->fb;
1131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1132 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1134 int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1135 DPFC_CTL_PLANEB;
1136 unsigned long stall_watermark = 200;
1137 u32 dpfc_ctl;
1138
1139 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1140 dev_priv->cfb_fence = obj_priv->fence_reg;
1141 dev_priv->cfb_plane = intel_crtc->plane;
1142
1143 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1144 dpfc_ctl &= DPFC_RESERVED;
1145 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1146 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1147 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1148 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1149 } else {
1150 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1151 }
1152
1153 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1154 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1155 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1156 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1157 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1158 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1159 /* enable it... */
1160 I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1161 DPFC_CTL_EN);
1162
1163 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1164 }
1165
1166 void ironlake_disable_fbc(struct drm_device *dev)
1167 {
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 u32 dpfc_ctl;
1170
1171 /* Disable compression */
1172 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1173 dpfc_ctl &= ~DPFC_CTL_EN;
1174 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1175 intel_wait_for_vblank(dev);
1176
1177 DRM_DEBUG_KMS("disabled FBC\n");
1178 }
1179
1180 static bool ironlake_fbc_enabled(struct drm_device *dev)
1181 {
1182 struct drm_i915_private *dev_priv = dev->dev_private;
1183
1184 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1185 }
1186
1187 bool intel_fbc_enabled(struct drm_device *dev)
1188 {
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190
1191 if (!dev_priv->display.fbc_enabled)
1192 return false;
1193
1194 return dev_priv->display.fbc_enabled(dev);
1195 }
1196
1197 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1198 {
1199 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1200
1201 if (!dev_priv->display.enable_fbc)
1202 return;
1203
1204 dev_priv->display.enable_fbc(crtc, interval);
1205 }
1206
1207 void intel_disable_fbc(struct drm_device *dev)
1208 {
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210
1211 if (!dev_priv->display.disable_fbc)
1212 return;
1213
1214 dev_priv->display.disable_fbc(dev);
1215 }
1216
1217 /**
1218 * intel_update_fbc - enable/disable FBC as needed
1219 * @crtc: CRTC to point the compressor at
1220 * @mode: mode in use
1221 *
1222 * Set up the framebuffer compression hardware at mode set time. We
1223 * enable it if possible:
1224 * - plane A only (on pre-965)
1225 * - no pixel mulitply/line duplication
1226 * - no alpha buffer discard
1227 * - no dual wide
1228 * - framebuffer <= 2048 in width, 1536 in height
1229 *
1230 * We can't assume that any compression will take place (worst case),
1231 * so the compressed buffer has to be the same size as the uncompressed
1232 * one. It also must reside (along with the line length buffer) in
1233 * stolen memory.
1234 *
1235 * We need to enable/disable FBC on a global basis.
1236 */
1237 static void intel_update_fbc(struct drm_crtc *crtc,
1238 struct drm_display_mode *mode)
1239 {
1240 struct drm_device *dev = crtc->dev;
1241 struct drm_i915_private *dev_priv = dev->dev_private;
1242 struct drm_framebuffer *fb = crtc->fb;
1243 struct intel_framebuffer *intel_fb;
1244 struct drm_i915_gem_object *obj_priv;
1245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1246 int plane = intel_crtc->plane;
1247
1248 if (!i915_powersave)
1249 return;
1250
1251 if (!I915_HAS_FBC(dev))
1252 return;
1253
1254 if (!crtc->fb)
1255 return;
1256
1257 intel_fb = to_intel_framebuffer(fb);
1258 obj_priv = to_intel_bo(intel_fb->obj);
1259
1260 /*
1261 * If FBC is already on, we just have to verify that we can
1262 * keep it that way...
1263 * Need to disable if:
1264 * - changing FBC params (stride, fence, mode)
1265 * - new fb is too large to fit in compressed buffer
1266 * - going to an unsupported config (interlace, pixel multiply, etc.)
1267 */
1268 if (intel_fb->obj->size > dev_priv->cfb_size) {
1269 DRM_DEBUG_KMS("framebuffer too large, disabling "
1270 "compression\n");
1271 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1272 goto out_disable;
1273 }
1274 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1275 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1276 DRM_DEBUG_KMS("mode incompatible with compression, "
1277 "disabling\n");
1278 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1279 goto out_disable;
1280 }
1281 if ((mode->hdisplay > 2048) ||
1282 (mode->vdisplay > 1536)) {
1283 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1284 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1285 goto out_disable;
1286 }
1287 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1288 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1289 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1290 goto out_disable;
1291 }
1292 if (obj_priv->tiling_mode != I915_TILING_X) {
1293 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1294 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1295 goto out_disable;
1296 }
1297
1298 if (intel_fbc_enabled(dev)) {
1299 /* We can re-enable it in this case, but need to update pitch */
1300 if ((fb->pitch > dev_priv->cfb_pitch) ||
1301 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1302 (plane != dev_priv->cfb_plane))
1303 intel_disable_fbc(dev);
1304 }
1305
1306 /* Now try to turn it back on if possible */
1307 if (!intel_fbc_enabled(dev))
1308 intel_enable_fbc(crtc, 500);
1309
1310 return;
1311
1312 out_disable:
1313 /* Multiple disables should be harmless */
1314 if (intel_fbc_enabled(dev)) {
1315 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1316 intel_disable_fbc(dev);
1317 }
1318 }
1319
1320 static int
1321 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1322 {
1323 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1324 u32 alignment;
1325 int ret;
1326
1327 switch (obj_priv->tiling_mode) {
1328 case I915_TILING_NONE:
1329 alignment = 64 * 1024;
1330 break;
1331 case I915_TILING_X:
1332 /* pin() will align the object as required by fence */
1333 alignment = 0;
1334 break;
1335 case I915_TILING_Y:
1336 /* FIXME: Is this true? */
1337 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1338 return -EINVAL;
1339 default:
1340 BUG();
1341 }
1342
1343 ret = i915_gem_object_pin(obj, alignment);
1344 if (ret != 0)
1345 return ret;
1346
1347 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1348 * fence, whereas 965+ only requires a fence if using
1349 * framebuffer compression. For simplicity, we always install
1350 * a fence as the cost is not that onerous.
1351 */
1352 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1353 obj_priv->tiling_mode != I915_TILING_NONE) {
1354 ret = i915_gem_object_get_fence_reg(obj);
1355 if (ret != 0) {
1356 i915_gem_object_unpin(obj);
1357 return ret;
1358 }
1359 }
1360
1361 return 0;
1362 }
1363
1364 static int
1365 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1366 struct drm_framebuffer *old_fb)
1367 {
1368 struct drm_device *dev = crtc->dev;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 struct drm_i915_master_private *master_priv;
1371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1372 struct intel_framebuffer *intel_fb;
1373 struct drm_i915_gem_object *obj_priv;
1374 struct drm_gem_object *obj;
1375 int pipe = intel_crtc->pipe;
1376 int plane = intel_crtc->plane;
1377 unsigned long Start, Offset;
1378 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1379 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1380 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1381 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1382 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1383 u32 dspcntr;
1384 int ret;
1385
1386 /* no fb bound */
1387 if (!crtc->fb) {
1388 DRM_DEBUG_KMS("No FB bound\n");
1389 return 0;
1390 }
1391
1392 switch (plane) {
1393 case 0:
1394 case 1:
1395 break;
1396 default:
1397 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1398 return -EINVAL;
1399 }
1400
1401 intel_fb = to_intel_framebuffer(crtc->fb);
1402 obj = intel_fb->obj;
1403 obj_priv = to_intel_bo(obj);
1404
1405 mutex_lock(&dev->struct_mutex);
1406 ret = intel_pin_and_fence_fb_obj(dev, obj);
1407 if (ret != 0) {
1408 mutex_unlock(&dev->struct_mutex);
1409 return ret;
1410 }
1411
1412 ret = i915_gem_object_set_to_display_plane(obj);
1413 if (ret != 0) {
1414 i915_gem_object_unpin(obj);
1415 mutex_unlock(&dev->struct_mutex);
1416 return ret;
1417 }
1418
1419 dspcntr = I915_READ(dspcntr_reg);
1420 /* Mask out pixel format bits in case we change it */
1421 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1422 switch (crtc->fb->bits_per_pixel) {
1423 case 8:
1424 dspcntr |= DISPPLANE_8BPP;
1425 break;
1426 case 16:
1427 if (crtc->fb->depth == 15)
1428 dspcntr |= DISPPLANE_15_16BPP;
1429 else
1430 dspcntr |= DISPPLANE_16BPP;
1431 break;
1432 case 24:
1433 case 32:
1434 if (crtc->fb->depth == 30)
1435 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1436 else
1437 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1438 break;
1439 default:
1440 DRM_ERROR("Unknown color depth\n");
1441 i915_gem_object_unpin(obj);
1442 mutex_unlock(&dev->struct_mutex);
1443 return -EINVAL;
1444 }
1445 if (IS_I965G(dev)) {
1446 if (obj_priv->tiling_mode != I915_TILING_NONE)
1447 dspcntr |= DISPPLANE_TILED;
1448 else
1449 dspcntr &= ~DISPPLANE_TILED;
1450 }
1451
1452 if (HAS_PCH_SPLIT(dev))
1453 /* must disable */
1454 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1455
1456 I915_WRITE(dspcntr_reg, dspcntr);
1457
1458 Start = obj_priv->gtt_offset;
1459 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1460
1461 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1462 Start, Offset, x, y, crtc->fb->pitch);
1463 I915_WRITE(dspstride, crtc->fb->pitch);
1464 if (IS_I965G(dev)) {
1465 I915_WRITE(dspbase, Offset);
1466 I915_READ(dspbase);
1467 I915_WRITE(dspsurf, Start);
1468 I915_READ(dspsurf);
1469 I915_WRITE(dsptileoff, (y << 16) | x);
1470 } else {
1471 I915_WRITE(dspbase, Start + Offset);
1472 I915_READ(dspbase);
1473 }
1474
1475 if ((IS_I965G(dev) || plane == 0))
1476 intel_update_fbc(crtc, &crtc->mode);
1477
1478 intel_wait_for_vblank(dev);
1479
1480 if (old_fb) {
1481 intel_fb = to_intel_framebuffer(old_fb);
1482 obj_priv = to_intel_bo(intel_fb->obj);
1483 i915_gem_object_unpin(intel_fb->obj);
1484 }
1485 intel_increase_pllclock(crtc, true);
1486
1487 mutex_unlock(&dev->struct_mutex);
1488
1489 if (!dev->primary->master)
1490 return 0;
1491
1492 master_priv = dev->primary->master->driver_priv;
1493 if (!master_priv->sarea_priv)
1494 return 0;
1495
1496 if (pipe) {
1497 master_priv->sarea_priv->pipeB_x = x;
1498 master_priv->sarea_priv->pipeB_y = y;
1499 } else {
1500 master_priv->sarea_priv->pipeA_x = x;
1501 master_priv->sarea_priv->pipeA_y = y;
1502 }
1503
1504 return 0;
1505 }
1506
1507 /* Disable the VGA plane that we never use */
1508 static void i915_disable_vga (struct drm_device *dev)
1509 {
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 u8 sr1;
1512 u32 vga_reg;
1513
1514 if (HAS_PCH_SPLIT(dev))
1515 vga_reg = CPU_VGACNTRL;
1516 else
1517 vga_reg = VGACNTRL;
1518
1519 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1520 return;
1521
1522 I915_WRITE8(VGA_SR_INDEX, 1);
1523 sr1 = I915_READ8(VGA_SR_DATA);
1524 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1525 udelay(100);
1526
1527 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1528 }
1529
1530 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1531 {
1532 struct drm_device *dev = crtc->dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 dpa_ctl;
1535
1536 DRM_DEBUG_KMS("\n");
1537 dpa_ctl = I915_READ(DP_A);
1538 dpa_ctl &= ~DP_PLL_ENABLE;
1539 I915_WRITE(DP_A, dpa_ctl);
1540 }
1541
1542 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1543 {
1544 struct drm_device *dev = crtc->dev;
1545 struct drm_i915_private *dev_priv = dev->dev_private;
1546 u32 dpa_ctl;
1547
1548 dpa_ctl = I915_READ(DP_A);
1549 dpa_ctl |= DP_PLL_ENABLE;
1550 I915_WRITE(DP_A, dpa_ctl);
1551 udelay(200);
1552 }
1553
1554
1555 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1556 {
1557 struct drm_device *dev = crtc->dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 u32 dpa_ctl;
1560
1561 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1562 dpa_ctl = I915_READ(DP_A);
1563 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1564
1565 if (clock < 200000) {
1566 u32 temp;
1567 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1568 /* workaround for 160Mhz:
1569 1) program 0x4600c bits 15:0 = 0x8124
1570 2) program 0x46010 bit 0 = 1
1571 3) program 0x46034 bit 24 = 1
1572 4) program 0x64000 bit 14 = 1
1573 */
1574 temp = I915_READ(0x4600c);
1575 temp &= 0xffff0000;
1576 I915_WRITE(0x4600c, temp | 0x8124);
1577
1578 temp = I915_READ(0x46010);
1579 I915_WRITE(0x46010, temp | 1);
1580
1581 temp = I915_READ(0x46034);
1582 I915_WRITE(0x46034, temp | (1 << 24));
1583 } else {
1584 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1585 }
1586 I915_WRITE(DP_A, dpa_ctl);
1587
1588 udelay(500);
1589 }
1590
1591 /* The FDI link training functions for ILK/Ibexpeak. */
1592 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1593 {
1594 struct drm_device *dev = crtc->dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1597 int pipe = intel_crtc->pipe;
1598 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1599 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1600 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1601 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1602 u32 temp, tries = 0;
1603
1604 /* enable CPU FDI TX and PCH FDI RX */
1605 temp = I915_READ(fdi_tx_reg);
1606 temp |= FDI_TX_ENABLE;
1607 temp &= ~(7 << 19);
1608 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1609 temp &= ~FDI_LINK_TRAIN_NONE;
1610 temp |= FDI_LINK_TRAIN_PATTERN_1;
1611 I915_WRITE(fdi_tx_reg, temp);
1612 I915_READ(fdi_tx_reg);
1613
1614 temp = I915_READ(fdi_rx_reg);
1615 temp &= ~FDI_LINK_TRAIN_NONE;
1616 temp |= FDI_LINK_TRAIN_PATTERN_1;
1617 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1618 I915_READ(fdi_rx_reg);
1619 udelay(150);
1620
1621 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1622 for train result */
1623 temp = I915_READ(fdi_rx_imr_reg);
1624 temp &= ~FDI_RX_SYMBOL_LOCK;
1625 temp &= ~FDI_RX_BIT_LOCK;
1626 I915_WRITE(fdi_rx_imr_reg, temp);
1627 I915_READ(fdi_rx_imr_reg);
1628 udelay(150);
1629
1630 for (;;) {
1631 temp = I915_READ(fdi_rx_iir_reg);
1632 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1633
1634 if ((temp & FDI_RX_BIT_LOCK)) {
1635 DRM_DEBUG_KMS("FDI train 1 done.\n");
1636 I915_WRITE(fdi_rx_iir_reg,
1637 temp | FDI_RX_BIT_LOCK);
1638 break;
1639 }
1640
1641 tries++;
1642
1643 if (tries > 5) {
1644 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1645 break;
1646 }
1647 }
1648
1649 /* Train 2 */
1650 temp = I915_READ(fdi_tx_reg);
1651 temp &= ~FDI_LINK_TRAIN_NONE;
1652 temp |= FDI_LINK_TRAIN_PATTERN_2;
1653 I915_WRITE(fdi_tx_reg, temp);
1654
1655 temp = I915_READ(fdi_rx_reg);
1656 temp &= ~FDI_LINK_TRAIN_NONE;
1657 temp |= FDI_LINK_TRAIN_PATTERN_2;
1658 I915_WRITE(fdi_rx_reg, temp);
1659 udelay(150);
1660
1661 tries = 0;
1662
1663 for (;;) {
1664 temp = I915_READ(fdi_rx_iir_reg);
1665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1666
1667 if (temp & FDI_RX_SYMBOL_LOCK) {
1668 I915_WRITE(fdi_rx_iir_reg,
1669 temp | FDI_RX_SYMBOL_LOCK);
1670 DRM_DEBUG_KMS("FDI train 2 done.\n");
1671 break;
1672 }
1673
1674 tries++;
1675
1676 if (tries > 5) {
1677 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1678 break;
1679 }
1680 }
1681
1682 DRM_DEBUG_KMS("FDI train done\n");
1683 }
1684
1685 static int snb_b_fdi_train_param [] = {
1686 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1687 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1688 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1689 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1690 };
1691
1692 /* The FDI link training functions for SNB/Cougarpoint. */
1693 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1694 {
1695 struct drm_device *dev = crtc->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1698 int pipe = intel_crtc->pipe;
1699 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1700 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1701 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1702 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1703 u32 temp, i;
1704
1705 /* enable CPU FDI TX and PCH FDI RX */
1706 temp = I915_READ(fdi_tx_reg);
1707 temp |= FDI_TX_ENABLE;
1708 temp &= ~(7 << 19);
1709 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1710 temp &= ~FDI_LINK_TRAIN_NONE;
1711 temp |= FDI_LINK_TRAIN_PATTERN_1;
1712 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1713 /* SNB-B */
1714 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1715 I915_WRITE(fdi_tx_reg, temp);
1716 I915_READ(fdi_tx_reg);
1717
1718 temp = I915_READ(fdi_rx_reg);
1719 if (HAS_PCH_CPT(dev)) {
1720 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1721 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1722 } else {
1723 temp &= ~FDI_LINK_TRAIN_NONE;
1724 temp |= FDI_LINK_TRAIN_PATTERN_1;
1725 }
1726 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1727 I915_READ(fdi_rx_reg);
1728 udelay(150);
1729
1730 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1731 for train result */
1732 temp = I915_READ(fdi_rx_imr_reg);
1733 temp &= ~FDI_RX_SYMBOL_LOCK;
1734 temp &= ~FDI_RX_BIT_LOCK;
1735 I915_WRITE(fdi_rx_imr_reg, temp);
1736 I915_READ(fdi_rx_imr_reg);
1737 udelay(150);
1738
1739 for (i = 0; i < 4; i++ ) {
1740 temp = I915_READ(fdi_tx_reg);
1741 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1742 temp |= snb_b_fdi_train_param[i];
1743 I915_WRITE(fdi_tx_reg, temp);
1744 udelay(500);
1745
1746 temp = I915_READ(fdi_rx_iir_reg);
1747 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1748
1749 if (temp & FDI_RX_BIT_LOCK) {
1750 I915_WRITE(fdi_rx_iir_reg,
1751 temp | FDI_RX_BIT_LOCK);
1752 DRM_DEBUG_KMS("FDI train 1 done.\n");
1753 break;
1754 }
1755 }
1756 if (i == 4)
1757 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1758
1759 /* Train 2 */
1760 temp = I915_READ(fdi_tx_reg);
1761 temp &= ~FDI_LINK_TRAIN_NONE;
1762 temp |= FDI_LINK_TRAIN_PATTERN_2;
1763 if (IS_GEN6(dev)) {
1764 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1765 /* SNB-B */
1766 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1767 }
1768 I915_WRITE(fdi_tx_reg, temp);
1769
1770 temp = I915_READ(fdi_rx_reg);
1771 if (HAS_PCH_CPT(dev)) {
1772 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1773 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1774 } else {
1775 temp &= ~FDI_LINK_TRAIN_NONE;
1776 temp |= FDI_LINK_TRAIN_PATTERN_2;
1777 }
1778 I915_WRITE(fdi_rx_reg, temp);
1779 udelay(150);
1780
1781 for (i = 0; i < 4; i++ ) {
1782 temp = I915_READ(fdi_tx_reg);
1783 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1784 temp |= snb_b_fdi_train_param[i];
1785 I915_WRITE(fdi_tx_reg, temp);
1786 udelay(500);
1787
1788 temp = I915_READ(fdi_rx_iir_reg);
1789 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1790
1791 if (temp & FDI_RX_SYMBOL_LOCK) {
1792 I915_WRITE(fdi_rx_iir_reg,
1793 temp | FDI_RX_SYMBOL_LOCK);
1794 DRM_DEBUG_KMS("FDI train 2 done.\n");
1795 break;
1796 }
1797 }
1798 if (i == 4)
1799 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1800
1801 DRM_DEBUG_KMS("FDI train done.\n");
1802 }
1803
1804 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1805 {
1806 struct drm_device *dev = crtc->dev;
1807 struct drm_i915_private *dev_priv = dev->dev_private;
1808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1809 int pipe = intel_crtc->pipe;
1810 int plane = intel_crtc->plane;
1811 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1812 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1813 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1814 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1815 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1816 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1817 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1818 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1819 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1820 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1821 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1822 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1823 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1824 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1825 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1826 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1827 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1828 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1829 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1830 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1831 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1832 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1833 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1834 u32 temp;
1835 int n;
1836 u32 pipe_bpc;
1837
1838 temp = I915_READ(pipeconf_reg);
1839 pipe_bpc = temp & PIPE_BPC_MASK;
1840
1841 /* XXX: When our outputs are all unaware of DPMS modes other than off
1842 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1843 */
1844 switch (mode) {
1845 case DRM_MODE_DPMS_ON:
1846 case DRM_MODE_DPMS_STANDBY:
1847 case DRM_MODE_DPMS_SUSPEND:
1848 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1849
1850 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1851 temp = I915_READ(PCH_LVDS);
1852 if ((temp & LVDS_PORT_EN) == 0) {
1853 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1854 POSTING_READ(PCH_LVDS);
1855 }
1856 }
1857
1858 if (HAS_eDP) {
1859 /* enable eDP PLL */
1860 ironlake_enable_pll_edp(crtc);
1861 } else {
1862
1863 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1864 temp = I915_READ(fdi_rx_reg);
1865 /*
1866 * make the BPC in FDI Rx be consistent with that in
1867 * pipeconf reg.
1868 */
1869 temp &= ~(0x7 << 16);
1870 temp |= (pipe_bpc << 11);
1871 temp &= ~(7 << 19);
1872 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1873 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1874 I915_READ(fdi_rx_reg);
1875 udelay(200);
1876
1877 /* Switch from Rawclk to PCDclk */
1878 temp = I915_READ(fdi_rx_reg);
1879 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1880 I915_READ(fdi_rx_reg);
1881 udelay(200);
1882
1883 /* Enable CPU FDI TX PLL, always on for Ironlake */
1884 temp = I915_READ(fdi_tx_reg);
1885 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1886 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1887 I915_READ(fdi_tx_reg);
1888 udelay(100);
1889 }
1890 }
1891
1892 /* Enable panel fitting for LVDS */
1893 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1894 temp = I915_READ(pf_ctl_reg);
1895 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1896
1897 /* currently full aspect */
1898 I915_WRITE(pf_win_pos, 0);
1899
1900 I915_WRITE(pf_win_size,
1901 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1902 (dev_priv->panel_fixed_mode->vdisplay));
1903 }
1904
1905 /* Enable CPU pipe */
1906 temp = I915_READ(pipeconf_reg);
1907 if ((temp & PIPEACONF_ENABLE) == 0) {
1908 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1909 I915_READ(pipeconf_reg);
1910 udelay(100);
1911 }
1912
1913 /* configure and enable CPU plane */
1914 temp = I915_READ(dspcntr_reg);
1915 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1916 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1917 /* Flush the plane changes */
1918 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1919 }
1920
1921 if (!HAS_eDP) {
1922 /* For PCH output, training FDI link */
1923 if (IS_GEN6(dev))
1924 gen6_fdi_link_train(crtc);
1925 else
1926 ironlake_fdi_link_train(crtc);
1927
1928 /* enable PCH DPLL */
1929 temp = I915_READ(pch_dpll_reg);
1930 if ((temp & DPLL_VCO_ENABLE) == 0) {
1931 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1932 I915_READ(pch_dpll_reg);
1933 }
1934 udelay(200);
1935
1936 if (HAS_PCH_CPT(dev)) {
1937 /* Be sure PCH DPLL SEL is set */
1938 temp = I915_READ(PCH_DPLL_SEL);
1939 if (trans_dpll_sel == 0 &&
1940 (temp & TRANSA_DPLL_ENABLE) == 0)
1941 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1942 else if (trans_dpll_sel == 1 &&
1943 (temp & TRANSB_DPLL_ENABLE) == 0)
1944 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1945 I915_WRITE(PCH_DPLL_SEL, temp);
1946 I915_READ(PCH_DPLL_SEL);
1947 }
1948
1949 /* set transcoder timing */
1950 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1951 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1952 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1953
1954 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1955 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1956 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1957
1958 /* enable normal train */
1959 temp = I915_READ(fdi_tx_reg);
1960 temp &= ~FDI_LINK_TRAIN_NONE;
1961 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1962 FDI_TX_ENHANCE_FRAME_ENABLE);
1963 I915_READ(fdi_tx_reg);
1964
1965 temp = I915_READ(fdi_rx_reg);
1966 if (HAS_PCH_CPT(dev)) {
1967 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1968 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1969 } else {
1970 temp &= ~FDI_LINK_TRAIN_NONE;
1971 temp |= FDI_LINK_TRAIN_NONE;
1972 }
1973 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1974 I915_READ(fdi_rx_reg);
1975
1976 /* wait one idle pattern time */
1977 udelay(100);
1978
1979 /* For PCH DP, enable TRANS_DP_CTL */
1980 if (HAS_PCH_CPT(dev) &&
1981 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1982 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1983 int reg;
1984
1985 reg = I915_READ(trans_dp_ctl);
1986 reg &= ~TRANS_DP_PORT_SEL_MASK;
1987 reg = TRANS_DP_OUTPUT_ENABLE |
1988 TRANS_DP_ENH_FRAMING |
1989 TRANS_DP_VSYNC_ACTIVE_HIGH |
1990 TRANS_DP_HSYNC_ACTIVE_HIGH;
1991
1992 switch (intel_trans_dp_port_sel(crtc)) {
1993 case PCH_DP_B:
1994 reg |= TRANS_DP_PORT_SEL_B;
1995 break;
1996 case PCH_DP_C:
1997 reg |= TRANS_DP_PORT_SEL_C;
1998 break;
1999 case PCH_DP_D:
2000 reg |= TRANS_DP_PORT_SEL_D;
2001 break;
2002 default:
2003 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2004 reg |= TRANS_DP_PORT_SEL_B;
2005 break;
2006 }
2007
2008 I915_WRITE(trans_dp_ctl, reg);
2009 POSTING_READ(trans_dp_ctl);
2010 }
2011
2012 /* enable PCH transcoder */
2013 temp = I915_READ(transconf_reg);
2014 /*
2015 * make the BPC in transcoder be consistent with
2016 * that in pipeconf reg.
2017 */
2018 temp &= ~PIPE_BPC_MASK;
2019 temp |= pipe_bpc;
2020 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2021 I915_READ(transconf_reg);
2022
2023 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
2024 ;
2025
2026 }
2027
2028 intel_crtc_load_lut(crtc);
2029
2030 intel_update_fbc(crtc, &crtc->mode);
2031
2032 break;
2033 case DRM_MODE_DPMS_OFF:
2034 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
2035
2036 drm_vblank_off(dev, pipe);
2037 /* Disable display plane */
2038 temp = I915_READ(dspcntr_reg);
2039 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2040 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2041 /* Flush the plane changes */
2042 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2043 I915_READ(dspbase_reg);
2044 }
2045
2046 if (dev_priv->cfb_plane == plane &&
2047 dev_priv->display.disable_fbc)
2048 dev_priv->display.disable_fbc(dev);
2049
2050 i915_disable_vga(dev);
2051
2052 /* disable cpu pipe, disable after all planes disabled */
2053 temp = I915_READ(pipeconf_reg);
2054 if ((temp & PIPEACONF_ENABLE) != 0) {
2055 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2056 I915_READ(pipeconf_reg);
2057 n = 0;
2058 /* wait for cpu pipe off, pipe state */
2059 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
2060 n++;
2061 if (n < 60) {
2062 udelay(500);
2063 continue;
2064 } else {
2065 DRM_DEBUG_KMS("pipe %d off delay\n",
2066 pipe);
2067 break;
2068 }
2069 }
2070 } else
2071 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2072
2073 udelay(100);
2074
2075 /* Disable PF */
2076 temp = I915_READ(pf_ctl_reg);
2077 if ((temp & PF_ENABLE) != 0) {
2078 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2079 I915_READ(pf_ctl_reg);
2080 }
2081 I915_WRITE(pf_win_size, 0);
2082 POSTING_READ(pf_win_size);
2083
2084
2085 /* disable CPU FDI tx and PCH FDI rx */
2086 temp = I915_READ(fdi_tx_reg);
2087 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2088 I915_READ(fdi_tx_reg);
2089
2090 temp = I915_READ(fdi_rx_reg);
2091 /* BPC in FDI rx is consistent with that in pipeconf */
2092 temp &= ~(0x07 << 16);
2093 temp |= (pipe_bpc << 11);
2094 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2095 I915_READ(fdi_rx_reg);
2096
2097 udelay(100);
2098
2099 /* still set train pattern 1 */
2100 temp = I915_READ(fdi_tx_reg);
2101 temp &= ~FDI_LINK_TRAIN_NONE;
2102 temp |= FDI_LINK_TRAIN_PATTERN_1;
2103 I915_WRITE(fdi_tx_reg, temp);
2104 POSTING_READ(fdi_tx_reg);
2105
2106 temp = I915_READ(fdi_rx_reg);
2107 if (HAS_PCH_CPT(dev)) {
2108 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2109 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2110 } else {
2111 temp &= ~FDI_LINK_TRAIN_NONE;
2112 temp |= FDI_LINK_TRAIN_PATTERN_1;
2113 }
2114 I915_WRITE(fdi_rx_reg, temp);
2115 POSTING_READ(fdi_rx_reg);
2116
2117 udelay(100);
2118
2119 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2120 temp = I915_READ(PCH_LVDS);
2121 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2122 I915_READ(PCH_LVDS);
2123 udelay(100);
2124 }
2125
2126 /* disable PCH transcoder */
2127 temp = I915_READ(transconf_reg);
2128 if ((temp & TRANS_ENABLE) != 0) {
2129 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2130 I915_READ(transconf_reg);
2131 n = 0;
2132 /* wait for PCH transcoder off, transcoder state */
2133 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2134 n++;
2135 if (n < 60) {
2136 udelay(500);
2137 continue;
2138 } else {
2139 DRM_DEBUG_KMS("transcoder %d off "
2140 "delay\n", pipe);
2141 break;
2142 }
2143 }
2144 }
2145
2146 temp = I915_READ(transconf_reg);
2147 /* BPC in transcoder is consistent with that in pipeconf */
2148 temp &= ~PIPE_BPC_MASK;
2149 temp |= pipe_bpc;
2150 I915_WRITE(transconf_reg, temp);
2151 I915_READ(transconf_reg);
2152 udelay(100);
2153
2154 if (HAS_PCH_CPT(dev)) {
2155 /* disable TRANS_DP_CTL */
2156 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2157 int reg;
2158
2159 reg = I915_READ(trans_dp_ctl);
2160 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2161 I915_WRITE(trans_dp_ctl, reg);
2162 POSTING_READ(trans_dp_ctl);
2163
2164 /* disable DPLL_SEL */
2165 temp = I915_READ(PCH_DPLL_SEL);
2166 if (trans_dpll_sel == 0)
2167 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2168 else
2169 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2170 I915_WRITE(PCH_DPLL_SEL, temp);
2171 I915_READ(PCH_DPLL_SEL);
2172
2173 }
2174
2175 /* disable PCH DPLL */
2176 temp = I915_READ(pch_dpll_reg);
2177 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2178 I915_READ(pch_dpll_reg);
2179
2180 if (HAS_eDP) {
2181 ironlake_disable_pll_edp(crtc);
2182 }
2183
2184 /* Switch from PCDclk to Rawclk */
2185 temp = I915_READ(fdi_rx_reg);
2186 temp &= ~FDI_SEL_PCDCLK;
2187 I915_WRITE(fdi_rx_reg, temp);
2188 I915_READ(fdi_rx_reg);
2189
2190 /* Disable CPU FDI TX PLL */
2191 temp = I915_READ(fdi_tx_reg);
2192 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2193 I915_READ(fdi_tx_reg);
2194 udelay(100);
2195
2196 temp = I915_READ(fdi_rx_reg);
2197 temp &= ~FDI_RX_PLL_ENABLE;
2198 I915_WRITE(fdi_rx_reg, temp);
2199 I915_READ(fdi_rx_reg);
2200
2201 /* Wait for the clocks to turn off. */
2202 udelay(100);
2203 break;
2204 }
2205 }
2206
2207 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2208 {
2209 struct intel_overlay *overlay;
2210 int ret;
2211
2212 if (!enable && intel_crtc->overlay) {
2213 overlay = intel_crtc->overlay;
2214 mutex_lock(&overlay->dev->struct_mutex);
2215 for (;;) {
2216 ret = intel_overlay_switch_off(overlay);
2217 if (ret == 0)
2218 break;
2219
2220 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2221 if (ret != 0) {
2222 /* overlay doesn't react anymore. Usually
2223 * results in a black screen and an unkillable
2224 * X server. */
2225 BUG();
2226 overlay->hw_wedged = HW_WEDGED;
2227 break;
2228 }
2229 }
2230 mutex_unlock(&overlay->dev->struct_mutex);
2231 }
2232 /* Let userspace switch the overlay on again. In most cases userspace
2233 * has to recompute where to put it anyway. */
2234
2235 return;
2236 }
2237
2238 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2239 {
2240 struct drm_device *dev = crtc->dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2243 int pipe = intel_crtc->pipe;
2244 int plane = intel_crtc->plane;
2245 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2246 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2247 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2248 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2249 u32 temp;
2250
2251 /* XXX: When our outputs are all unaware of DPMS modes other than off
2252 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2253 */
2254 switch (mode) {
2255 case DRM_MODE_DPMS_ON:
2256 case DRM_MODE_DPMS_STANDBY:
2257 case DRM_MODE_DPMS_SUSPEND:
2258 intel_update_watermarks(dev);
2259
2260 /* Enable the DPLL */
2261 temp = I915_READ(dpll_reg);
2262 if ((temp & DPLL_VCO_ENABLE) == 0) {
2263 I915_WRITE(dpll_reg, temp);
2264 I915_READ(dpll_reg);
2265 /* Wait for the clocks to stabilize. */
2266 udelay(150);
2267 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2268 I915_READ(dpll_reg);
2269 /* Wait for the clocks to stabilize. */
2270 udelay(150);
2271 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2272 I915_READ(dpll_reg);
2273 /* Wait for the clocks to stabilize. */
2274 udelay(150);
2275 }
2276
2277 /* Enable the pipe */
2278 temp = I915_READ(pipeconf_reg);
2279 if ((temp & PIPEACONF_ENABLE) == 0)
2280 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2281
2282 /* Enable the plane */
2283 temp = I915_READ(dspcntr_reg);
2284 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2285 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2286 /* Flush the plane changes */
2287 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2288 }
2289
2290 intel_crtc_load_lut(crtc);
2291
2292 if ((IS_I965G(dev) || plane == 0))
2293 intel_update_fbc(crtc, &crtc->mode);
2294
2295 /* Give the overlay scaler a chance to enable if it's on this pipe */
2296 intel_crtc_dpms_overlay(intel_crtc, true);
2297 break;
2298 case DRM_MODE_DPMS_OFF:
2299 intel_update_watermarks(dev);
2300
2301 /* Give the overlay scaler a chance to disable if it's on this pipe */
2302 intel_crtc_dpms_overlay(intel_crtc, false);
2303 drm_vblank_off(dev, pipe);
2304
2305 if (dev_priv->cfb_plane == plane &&
2306 dev_priv->display.disable_fbc)
2307 dev_priv->display.disable_fbc(dev);
2308
2309 /* Disable the VGA plane that we never use */
2310 i915_disable_vga(dev);
2311
2312 /* Disable display plane */
2313 temp = I915_READ(dspcntr_reg);
2314 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2315 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2316 /* Flush the plane changes */
2317 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2318 I915_READ(dspbase_reg);
2319 }
2320
2321 if (!IS_I9XX(dev)) {
2322 /* Wait for vblank for the disable to take effect */
2323 intel_wait_for_vblank(dev);
2324 }
2325
2326 /* Next, disable display pipes */
2327 temp = I915_READ(pipeconf_reg);
2328 if ((temp & PIPEACONF_ENABLE) != 0) {
2329 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2330 I915_READ(pipeconf_reg);
2331 }
2332
2333 /* Wait for vblank for the disable to take effect. */
2334 intel_wait_for_vblank(dev);
2335
2336 temp = I915_READ(dpll_reg);
2337 if ((temp & DPLL_VCO_ENABLE) != 0) {
2338 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2339 I915_READ(dpll_reg);
2340 }
2341
2342 /* Wait for the clocks to turn off. */
2343 udelay(150);
2344 break;
2345 }
2346 }
2347
2348 /**
2349 * Sets the power management mode of the pipe and plane.
2350 *
2351 * This code should probably grow support for turning the cursor off and back
2352 * on appropriately at the same time as we're turning the pipe off/on.
2353 */
2354 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2355 {
2356 struct drm_device *dev = crtc->dev;
2357 struct drm_i915_private *dev_priv = dev->dev_private;
2358 struct drm_i915_master_private *master_priv;
2359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2360 int pipe = intel_crtc->pipe;
2361 bool enabled;
2362
2363 dev_priv->display.dpms(crtc, mode);
2364
2365 intel_crtc->dpms_mode = mode;
2366
2367 if (!dev->primary->master)
2368 return;
2369
2370 master_priv = dev->primary->master->driver_priv;
2371 if (!master_priv->sarea_priv)
2372 return;
2373
2374 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2375
2376 switch (pipe) {
2377 case 0:
2378 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2379 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2380 break;
2381 case 1:
2382 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2383 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2384 break;
2385 default:
2386 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2387 break;
2388 }
2389 }
2390
2391 static void intel_crtc_prepare (struct drm_crtc *crtc)
2392 {
2393 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2394 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2395 }
2396
2397 static void intel_crtc_commit (struct drm_crtc *crtc)
2398 {
2399 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2400 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2401 }
2402
2403 void intel_encoder_prepare (struct drm_encoder *encoder)
2404 {
2405 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2406 /* lvds has its own version of prepare see intel_lvds_prepare */
2407 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2408 }
2409
2410 void intel_encoder_commit (struct drm_encoder *encoder)
2411 {
2412 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2413 /* lvds has its own version of commit see intel_lvds_commit */
2414 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2415 }
2416
2417 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2418 struct drm_display_mode *mode,
2419 struct drm_display_mode *adjusted_mode)
2420 {
2421 struct drm_device *dev = crtc->dev;
2422 if (HAS_PCH_SPLIT(dev)) {
2423 /* FDI link clock is fixed at 2.7G */
2424 if (mode->clock * 3 > 27000 * 4)
2425 return MODE_CLOCK_HIGH;
2426 }
2427
2428 drm_mode_set_crtcinfo(adjusted_mode, 0);
2429 return true;
2430 }
2431
2432 static int i945_get_display_clock_speed(struct drm_device *dev)
2433 {
2434 return 400000;
2435 }
2436
2437 static int i915_get_display_clock_speed(struct drm_device *dev)
2438 {
2439 return 333000;
2440 }
2441
2442 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2443 {
2444 return 200000;
2445 }
2446
2447 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2448 {
2449 u16 gcfgc = 0;
2450
2451 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2452
2453 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2454 return 133000;
2455 else {
2456 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2457 case GC_DISPLAY_CLOCK_333_MHZ:
2458 return 333000;
2459 default:
2460 case GC_DISPLAY_CLOCK_190_200_MHZ:
2461 return 190000;
2462 }
2463 }
2464 }
2465
2466 static int i865_get_display_clock_speed(struct drm_device *dev)
2467 {
2468 return 266000;
2469 }
2470
2471 static int i855_get_display_clock_speed(struct drm_device *dev)
2472 {
2473 u16 hpllcc = 0;
2474 /* Assume that the hardware is in the high speed state. This
2475 * should be the default.
2476 */
2477 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2478 case GC_CLOCK_133_200:
2479 case GC_CLOCK_100_200:
2480 return 200000;
2481 case GC_CLOCK_166_250:
2482 return 250000;
2483 case GC_CLOCK_100_133:
2484 return 133000;
2485 }
2486
2487 /* Shouldn't happen */
2488 return 0;
2489 }
2490
2491 static int i830_get_display_clock_speed(struct drm_device *dev)
2492 {
2493 return 133000;
2494 }
2495
2496 /**
2497 * Return the pipe currently connected to the panel fitter,
2498 * or -1 if the panel fitter is not present or not in use
2499 */
2500 int intel_panel_fitter_pipe (struct drm_device *dev)
2501 {
2502 struct drm_i915_private *dev_priv = dev->dev_private;
2503 u32 pfit_control;
2504
2505 /* i830 doesn't have a panel fitter */
2506 if (IS_I830(dev))
2507 return -1;
2508
2509 pfit_control = I915_READ(PFIT_CONTROL);
2510
2511 /* See if the panel fitter is in use */
2512 if ((pfit_control & PFIT_ENABLE) == 0)
2513 return -1;
2514
2515 /* 965 can place panel fitter on either pipe */
2516 if (IS_I965G(dev))
2517 return (pfit_control >> 29) & 0x3;
2518
2519 /* older chips can only use pipe 1 */
2520 return 1;
2521 }
2522
2523 struct fdi_m_n {
2524 u32 tu;
2525 u32 gmch_m;
2526 u32 gmch_n;
2527 u32 link_m;
2528 u32 link_n;
2529 };
2530
2531 static void
2532 fdi_reduce_ratio(u32 *num, u32 *den)
2533 {
2534 while (*num > 0xffffff || *den > 0xffffff) {
2535 *num >>= 1;
2536 *den >>= 1;
2537 }
2538 }
2539
2540 #define DATA_N 0x800000
2541 #define LINK_N 0x80000
2542
2543 static void
2544 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2545 int link_clock, struct fdi_m_n *m_n)
2546 {
2547 u64 temp;
2548
2549 m_n->tu = 64; /* default size */
2550
2551 temp = (u64) DATA_N * pixel_clock;
2552 temp = div_u64(temp, link_clock);
2553 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2554 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2555 m_n->gmch_n = DATA_N;
2556 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2557
2558 temp = (u64) LINK_N * pixel_clock;
2559 m_n->link_m = div_u64(temp, link_clock);
2560 m_n->link_n = LINK_N;
2561 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2562 }
2563
2564
2565 struct intel_watermark_params {
2566 unsigned long fifo_size;
2567 unsigned long max_wm;
2568 unsigned long default_wm;
2569 unsigned long guard_size;
2570 unsigned long cacheline_size;
2571 };
2572
2573 /* Pineview has different values for various configs */
2574 static struct intel_watermark_params pineview_display_wm = {
2575 PINEVIEW_DISPLAY_FIFO,
2576 PINEVIEW_MAX_WM,
2577 PINEVIEW_DFT_WM,
2578 PINEVIEW_GUARD_WM,
2579 PINEVIEW_FIFO_LINE_SIZE
2580 };
2581 static struct intel_watermark_params pineview_display_hplloff_wm = {
2582 PINEVIEW_DISPLAY_FIFO,
2583 PINEVIEW_MAX_WM,
2584 PINEVIEW_DFT_HPLLOFF_WM,
2585 PINEVIEW_GUARD_WM,
2586 PINEVIEW_FIFO_LINE_SIZE
2587 };
2588 static struct intel_watermark_params pineview_cursor_wm = {
2589 PINEVIEW_CURSOR_FIFO,
2590 PINEVIEW_CURSOR_MAX_WM,
2591 PINEVIEW_CURSOR_DFT_WM,
2592 PINEVIEW_CURSOR_GUARD_WM,
2593 PINEVIEW_FIFO_LINE_SIZE,
2594 };
2595 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2596 PINEVIEW_CURSOR_FIFO,
2597 PINEVIEW_CURSOR_MAX_WM,
2598 PINEVIEW_CURSOR_DFT_WM,
2599 PINEVIEW_CURSOR_GUARD_WM,
2600 PINEVIEW_FIFO_LINE_SIZE
2601 };
2602 static struct intel_watermark_params g4x_wm_info = {
2603 G4X_FIFO_SIZE,
2604 G4X_MAX_WM,
2605 G4X_MAX_WM,
2606 2,
2607 G4X_FIFO_LINE_SIZE,
2608 };
2609 static struct intel_watermark_params g4x_cursor_wm_info = {
2610 I965_CURSOR_FIFO,
2611 I965_CURSOR_MAX_WM,
2612 I965_CURSOR_DFT_WM,
2613 2,
2614 G4X_FIFO_LINE_SIZE,
2615 };
2616 static struct intel_watermark_params i965_cursor_wm_info = {
2617 I965_CURSOR_FIFO,
2618 I965_CURSOR_MAX_WM,
2619 I965_CURSOR_DFT_WM,
2620 2,
2621 I915_FIFO_LINE_SIZE,
2622 };
2623 static struct intel_watermark_params i945_wm_info = {
2624 I945_FIFO_SIZE,
2625 I915_MAX_WM,
2626 1,
2627 2,
2628 I915_FIFO_LINE_SIZE
2629 };
2630 static struct intel_watermark_params i915_wm_info = {
2631 I915_FIFO_SIZE,
2632 I915_MAX_WM,
2633 1,
2634 2,
2635 I915_FIFO_LINE_SIZE
2636 };
2637 static struct intel_watermark_params i855_wm_info = {
2638 I855GM_FIFO_SIZE,
2639 I915_MAX_WM,
2640 1,
2641 2,
2642 I830_FIFO_LINE_SIZE
2643 };
2644 static struct intel_watermark_params i830_wm_info = {
2645 I830_FIFO_SIZE,
2646 I915_MAX_WM,
2647 1,
2648 2,
2649 I830_FIFO_LINE_SIZE
2650 };
2651
2652 static struct intel_watermark_params ironlake_display_wm_info = {
2653 ILK_DISPLAY_FIFO,
2654 ILK_DISPLAY_MAXWM,
2655 ILK_DISPLAY_DFTWM,
2656 2,
2657 ILK_FIFO_LINE_SIZE
2658 };
2659
2660 static struct intel_watermark_params ironlake_cursor_wm_info = {
2661 ILK_CURSOR_FIFO,
2662 ILK_CURSOR_MAXWM,
2663 ILK_CURSOR_DFTWM,
2664 2,
2665 ILK_FIFO_LINE_SIZE
2666 };
2667
2668 static struct intel_watermark_params ironlake_display_srwm_info = {
2669 ILK_DISPLAY_SR_FIFO,
2670 ILK_DISPLAY_MAX_SRWM,
2671 ILK_DISPLAY_DFT_SRWM,
2672 2,
2673 ILK_FIFO_LINE_SIZE
2674 };
2675
2676 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2677 ILK_CURSOR_SR_FIFO,
2678 ILK_CURSOR_MAX_SRWM,
2679 ILK_CURSOR_DFT_SRWM,
2680 2,
2681 ILK_FIFO_LINE_SIZE
2682 };
2683
2684 /**
2685 * intel_calculate_wm - calculate watermark level
2686 * @clock_in_khz: pixel clock
2687 * @wm: chip FIFO params
2688 * @pixel_size: display pixel size
2689 * @latency_ns: memory latency for the platform
2690 *
2691 * Calculate the watermark level (the level at which the display plane will
2692 * start fetching from memory again). Each chip has a different display
2693 * FIFO size and allocation, so the caller needs to figure that out and pass
2694 * in the correct intel_watermark_params structure.
2695 *
2696 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2697 * on the pixel size. When it reaches the watermark level, it'll start
2698 * fetching FIFO line sized based chunks from memory until the FIFO fills
2699 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2700 * will occur, and a display engine hang could result.
2701 */
2702 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2703 struct intel_watermark_params *wm,
2704 int pixel_size,
2705 unsigned long latency_ns)
2706 {
2707 long entries_required, wm_size;
2708
2709 /*
2710 * Note: we need to make sure we don't overflow for various clock &
2711 * latency values.
2712 * clocks go from a few thousand to several hundred thousand.
2713 * latency is usually a few thousand
2714 */
2715 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2716 1000;
2717 entries_required /= wm->cacheline_size;
2718
2719 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2720
2721 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2722
2723 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2724
2725 /* Don't promote wm_size to unsigned... */
2726 if (wm_size > (long)wm->max_wm)
2727 wm_size = wm->max_wm;
2728 if (wm_size <= 0)
2729 wm_size = wm->default_wm;
2730 return wm_size;
2731 }
2732
2733 struct cxsr_latency {
2734 int is_desktop;
2735 int is_ddr3;
2736 unsigned long fsb_freq;
2737 unsigned long mem_freq;
2738 unsigned long display_sr;
2739 unsigned long display_hpll_disable;
2740 unsigned long cursor_sr;
2741 unsigned long cursor_hpll_disable;
2742 };
2743
2744 static struct cxsr_latency cxsr_latency_table[] = {
2745 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2746 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2747 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2748 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2749 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2750
2751 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2752 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2753 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2754 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2755 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2756
2757 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2758 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2759 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2760 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2761 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2762
2763 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2764 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2765 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2766 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2767 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2768
2769 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2770 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2771 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2772 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2773 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2774
2775 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2776 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2777 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2778 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2779 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2780 };
2781
2782 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
2783 int fsb, int mem)
2784 {
2785 int i;
2786 struct cxsr_latency *latency;
2787
2788 if (fsb == 0 || mem == 0)
2789 return NULL;
2790
2791 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2792 latency = &cxsr_latency_table[i];
2793 if (is_desktop == latency->is_desktop &&
2794 is_ddr3 == latency->is_ddr3 &&
2795 fsb == latency->fsb_freq && mem == latency->mem_freq)
2796 return latency;
2797 }
2798
2799 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2800
2801 return NULL;
2802 }
2803
2804 static void pineview_disable_cxsr(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 u32 reg;
2808
2809 /* deactivate cxsr */
2810 reg = I915_READ(DSPFW3);
2811 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2812 I915_WRITE(DSPFW3, reg);
2813 DRM_INFO("Big FIFO is disabled\n");
2814 }
2815
2816 /*
2817 * Latency for FIFO fetches is dependent on several factors:
2818 * - memory configuration (speed, channels)
2819 * - chipset
2820 * - current MCH state
2821 * It can be fairly high in some situations, so here we assume a fairly
2822 * pessimal value. It's a tradeoff between extra memory fetches (if we
2823 * set this value too high, the FIFO will fetch frequently to stay full)
2824 * and power consumption (set it too low to save power and we might see
2825 * FIFO underruns and display "flicker").
2826 *
2827 * A value of 5us seems to be a good balance; safe for very low end
2828 * platforms but not overly aggressive on lower latency configs.
2829 */
2830 static const int latency_ns = 5000;
2831
2832 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2833 {
2834 struct drm_i915_private *dev_priv = dev->dev_private;
2835 uint32_t dsparb = I915_READ(DSPARB);
2836 int size;
2837
2838 if (plane == 0)
2839 size = dsparb & 0x7f;
2840 else
2841 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2842 (dsparb & 0x7f);
2843
2844 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2845 plane ? "B" : "A", size);
2846
2847 return size;
2848 }
2849
2850 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2851 {
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853 uint32_t dsparb = I915_READ(DSPARB);
2854 int size;
2855
2856 if (plane == 0)
2857 size = dsparb & 0x1ff;
2858 else
2859 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2860 (dsparb & 0x1ff);
2861 size >>= 1; /* Convert to cachelines */
2862
2863 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2864 plane ? "B" : "A", size);
2865
2866 return size;
2867 }
2868
2869 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2870 {
2871 struct drm_i915_private *dev_priv = dev->dev_private;
2872 uint32_t dsparb = I915_READ(DSPARB);
2873 int size;
2874
2875 size = dsparb & 0x7f;
2876 size >>= 2; /* Convert to cachelines */
2877
2878 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2879 plane ? "B" : "A",
2880 size);
2881
2882 return size;
2883 }
2884
2885 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2886 {
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 uint32_t dsparb = I915_READ(DSPARB);
2889 int size;
2890
2891 size = dsparb & 0x7f;
2892 size >>= 1; /* Convert to cachelines */
2893
2894 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2895 plane ? "B" : "A", size);
2896
2897 return size;
2898 }
2899
2900 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
2901 int planeb_clock, int sr_hdisplay, int unused,
2902 int pixel_size)
2903 {
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 u32 reg;
2906 unsigned long wm;
2907 struct cxsr_latency *latency;
2908 int sr_clock;
2909
2910 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2911 dev_priv->fsb_freq, dev_priv->mem_freq);
2912 if (!latency) {
2913 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2914 pineview_disable_cxsr(dev);
2915 return;
2916 }
2917
2918 if (!planea_clock || !planeb_clock) {
2919 sr_clock = planea_clock ? planea_clock : planeb_clock;
2920
2921 /* Display SR */
2922 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2923 pixel_size, latency->display_sr);
2924 reg = I915_READ(DSPFW1);
2925 reg &= ~DSPFW_SR_MASK;
2926 reg |= wm << DSPFW_SR_SHIFT;
2927 I915_WRITE(DSPFW1, reg);
2928 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2929
2930 /* cursor SR */
2931 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2932 pixel_size, latency->cursor_sr);
2933 reg = I915_READ(DSPFW3);
2934 reg &= ~DSPFW_CURSOR_SR_MASK;
2935 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2936 I915_WRITE(DSPFW3, reg);
2937
2938 /* Display HPLL off SR */
2939 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2940 pixel_size, latency->display_hpll_disable);
2941 reg = I915_READ(DSPFW3);
2942 reg &= ~DSPFW_HPLL_SR_MASK;
2943 reg |= wm & DSPFW_HPLL_SR_MASK;
2944 I915_WRITE(DSPFW3, reg);
2945
2946 /* cursor HPLL off SR */
2947 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2948 pixel_size, latency->cursor_hpll_disable);
2949 reg = I915_READ(DSPFW3);
2950 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2951 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2952 I915_WRITE(DSPFW3, reg);
2953 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2954
2955 /* activate cxsr */
2956 reg = I915_READ(DSPFW3);
2957 reg |= PINEVIEW_SELF_REFRESH_EN;
2958 I915_WRITE(DSPFW3, reg);
2959 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2960 } else {
2961 pineview_disable_cxsr(dev);
2962 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2963 }
2964 }
2965
2966 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2967 int planeb_clock, int sr_hdisplay, int sr_htotal,
2968 int pixel_size)
2969 {
2970 struct drm_i915_private *dev_priv = dev->dev_private;
2971 int total_size, cacheline_size;
2972 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2973 struct intel_watermark_params planea_params, planeb_params;
2974 unsigned long line_time_us;
2975 int sr_clock, sr_entries = 0, entries_required;
2976
2977 /* Create copies of the base settings for each pipe */
2978 planea_params = planeb_params = g4x_wm_info;
2979
2980 /* Grab a couple of global values before we overwrite them */
2981 total_size = planea_params.fifo_size;
2982 cacheline_size = planea_params.cacheline_size;
2983
2984 /*
2985 * Note: we need to make sure we don't overflow for various clock &
2986 * latency values.
2987 * clocks go from a few thousand to several hundred thousand.
2988 * latency is usually a few thousand
2989 */
2990 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2991 1000;
2992 entries_required /= G4X_FIFO_LINE_SIZE;
2993 planea_wm = entries_required + planea_params.guard_size;
2994
2995 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2996 1000;
2997 entries_required /= G4X_FIFO_LINE_SIZE;
2998 planeb_wm = entries_required + planeb_params.guard_size;
2999
3000 cursora_wm = cursorb_wm = 16;
3001 cursor_sr = 32;
3002
3003 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3004
3005 /* Calc sr entries for one plane configs */
3006 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3007 /* self-refresh has much higher latency */
3008 static const int sr_latency_ns = 12000;
3009
3010 sr_clock = planea_clock ? planea_clock : planeb_clock;
3011 line_time_us = ((sr_htotal * 1000) / sr_clock);
3012
3013 /* Use ns/us then divide to preserve precision */
3014 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3015 pixel_size * sr_hdisplay;
3016 sr_entries = roundup(sr_entries / cacheline_size, 1);
3017
3018 entries_required = (((sr_latency_ns / line_time_us) +
3019 1000) / 1000) * pixel_size * 64;
3020 entries_required = roundup(entries_required /
3021 g4x_cursor_wm_info.cacheline_size, 1);
3022 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3023
3024 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3025 cursor_sr = g4x_cursor_wm_info.max_wm;
3026 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3027 "cursor %d\n", sr_entries, cursor_sr);
3028
3029 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3030 } else {
3031 /* Turn off self refresh if both pipes are enabled */
3032 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3033 & ~FW_BLC_SELF_EN);
3034 }
3035
3036 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3037 planea_wm, planeb_wm, sr_entries);
3038
3039 planea_wm &= 0x3f;
3040 planeb_wm &= 0x3f;
3041
3042 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3043 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3044 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3045 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3046 (cursora_wm << DSPFW_CURSORA_SHIFT));
3047 /* HPLL off in SR has some issues on G4x... disable it */
3048 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3049 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3050 }
3051
3052 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3053 int planeb_clock, int sr_hdisplay, int sr_htotal,
3054 int pixel_size)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 unsigned long line_time_us;
3058 int sr_clock, sr_entries, srwm = 1;
3059 int cursor_sr = 16;
3060
3061 /* Calc sr entries for one plane configs */
3062 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3063 /* self-refresh has much higher latency */
3064 static const int sr_latency_ns = 12000;
3065
3066 sr_clock = planea_clock ? planea_clock : planeb_clock;
3067 line_time_us = ((sr_htotal * 1000) / sr_clock);
3068
3069 /* Use ns/us then divide to preserve precision */
3070 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3071 pixel_size * sr_hdisplay;
3072 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
3073 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3074 srwm = I965_FIFO_SIZE - sr_entries;
3075 if (srwm < 0)
3076 srwm = 1;
3077 srwm &= 0x1ff;
3078
3079 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3080 pixel_size * 64;
3081 sr_entries = roundup(sr_entries /
3082 i965_cursor_wm_info.cacheline_size, 1);
3083 cursor_sr = i965_cursor_wm_info.fifo_size -
3084 (sr_entries + i965_cursor_wm_info.guard_size);
3085
3086 if (cursor_sr > i965_cursor_wm_info.max_wm)
3087 cursor_sr = i965_cursor_wm_info.max_wm;
3088
3089 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3090 "cursor %d\n", srwm, cursor_sr);
3091
3092 if (IS_I965GM(dev))
3093 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3094 } else {
3095 /* Turn off self refresh if both pipes are enabled */
3096 if (IS_I965GM(dev))
3097 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3098 & ~FW_BLC_SELF_EN);
3099 }
3100
3101 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3102 srwm);
3103
3104 /* 965 has limitations... */
3105 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3106 (8 << 0));
3107 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3108 /* update cursor SR watermark */
3109 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3110 }
3111
3112 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3113 int planeb_clock, int sr_hdisplay, int sr_htotal,
3114 int pixel_size)
3115 {
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 uint32_t fwater_lo;
3118 uint32_t fwater_hi;
3119 int total_size, cacheline_size, cwm, srwm = 1;
3120 int planea_wm, planeb_wm;
3121 struct intel_watermark_params planea_params, planeb_params;
3122 unsigned long line_time_us;
3123 int sr_clock, sr_entries = 0;
3124
3125 /* Create copies of the base settings for each pipe */
3126 if (IS_I965GM(dev) || IS_I945GM(dev))
3127 planea_params = planeb_params = i945_wm_info;
3128 else if (IS_I9XX(dev))
3129 planea_params = planeb_params = i915_wm_info;
3130 else
3131 planea_params = planeb_params = i855_wm_info;
3132
3133 /* Grab a couple of global values before we overwrite them */
3134 total_size = planea_params.fifo_size;
3135 cacheline_size = planea_params.cacheline_size;
3136
3137 /* Update per-plane FIFO sizes */
3138 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3139 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3140
3141 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3142 pixel_size, latency_ns);
3143 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3144 pixel_size, latency_ns);
3145 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3146
3147 /*
3148 * Overlay gets an aggressive default since video jitter is bad.
3149 */
3150 cwm = 2;
3151
3152 /* Calc sr entries for one plane configs */
3153 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3154 (!planea_clock || !planeb_clock)) {
3155 /* self-refresh has much higher latency */
3156 static const int sr_latency_ns = 6000;
3157
3158 sr_clock = planea_clock ? planea_clock : planeb_clock;
3159 line_time_us = ((sr_htotal * 1000) / sr_clock);
3160
3161 /* Use ns/us then divide to preserve precision */
3162 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3163 pixel_size * sr_hdisplay;
3164 sr_entries = roundup(sr_entries / cacheline_size, 1);
3165 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3166 srwm = total_size - sr_entries;
3167 if (srwm < 0)
3168 srwm = 1;
3169
3170 if (IS_I945G(dev) || IS_I945GM(dev))
3171 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3172 else if (IS_I915GM(dev)) {
3173 /* 915M has a smaller SRWM field */
3174 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3175 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3176 }
3177 } else {
3178 /* Turn off self refresh if both pipes are enabled */
3179 if (IS_I945G(dev) || IS_I945GM(dev)) {
3180 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3181 & ~FW_BLC_SELF_EN);
3182 } else if (IS_I915GM(dev)) {
3183 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3184 }
3185 }
3186
3187 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3188 planea_wm, planeb_wm, cwm, srwm);
3189
3190 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3191 fwater_hi = (cwm & 0x1f);
3192
3193 /* Set request length to 8 cachelines per fetch */
3194 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3195 fwater_hi = fwater_hi | (1 << 8);
3196
3197 I915_WRITE(FW_BLC, fwater_lo);
3198 I915_WRITE(FW_BLC2, fwater_hi);
3199 }
3200
3201 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3202 int unused2, int unused3, int pixel_size)
3203 {
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3206 int planea_wm;
3207
3208 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3209
3210 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3211 pixel_size, latency_ns);
3212 fwater_lo |= (3<<8) | planea_wm;
3213
3214 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3215
3216 I915_WRITE(FW_BLC, fwater_lo);
3217 }
3218
3219 #define ILK_LP0_PLANE_LATENCY 700
3220 #define ILK_LP0_CURSOR_LATENCY 1300
3221
3222 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3223 int planeb_clock, int sr_hdisplay, int sr_htotal,
3224 int pixel_size)
3225 {
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3228 int sr_wm, cursor_wm;
3229 unsigned long line_time_us;
3230 int sr_clock, entries_required;
3231 u32 reg_value;
3232 int line_count;
3233 int planea_htotal = 0, planeb_htotal = 0;
3234 struct drm_crtc *crtc;
3235 struct intel_crtc *intel_crtc;
3236
3237 /* Need htotal for all active display plane */
3238 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3239 intel_crtc = to_intel_crtc(crtc);
3240 if (crtc->enabled) {
3241 if (intel_crtc->plane == 0)
3242 planea_htotal = crtc->mode.htotal;
3243 else
3244 planeb_htotal = crtc->mode.htotal;
3245 }
3246 }
3247
3248 /* Calculate and update the watermark for plane A */
3249 if (planea_clock) {
3250 entries_required = ((planea_clock / 1000) * pixel_size *
3251 ILK_LP0_PLANE_LATENCY) / 1000;
3252 entries_required = DIV_ROUND_UP(entries_required,
3253 ironlake_display_wm_info.cacheline_size);
3254 planea_wm = entries_required +
3255 ironlake_display_wm_info.guard_size;
3256
3257 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3258 planea_wm = ironlake_display_wm_info.max_wm;
3259
3260 /* Use the large buffer method to calculate cursor watermark */
3261 line_time_us = (planea_htotal * 1000) / planea_clock;
3262
3263 /* Use ns/us then divide to preserve precision */
3264 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3265
3266 /* calculate the cursor watermark for cursor A */
3267 entries_required = line_count * 64 * pixel_size;
3268 entries_required = DIV_ROUND_UP(entries_required,
3269 ironlake_cursor_wm_info.cacheline_size);
3270 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3271 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3272 cursora_wm = ironlake_cursor_wm_info.max_wm;
3273
3274 reg_value = I915_READ(WM0_PIPEA_ILK);
3275 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3276 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3277 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3278 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3279 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3280 "cursor: %d\n", planea_wm, cursora_wm);
3281 }
3282 /* Calculate and update the watermark for plane B */
3283 if (planeb_clock) {
3284 entries_required = ((planeb_clock / 1000) * pixel_size *
3285 ILK_LP0_PLANE_LATENCY) / 1000;
3286 entries_required = DIV_ROUND_UP(entries_required,
3287 ironlake_display_wm_info.cacheline_size);
3288 planeb_wm = entries_required +
3289 ironlake_display_wm_info.guard_size;
3290
3291 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3292 planeb_wm = ironlake_display_wm_info.max_wm;
3293
3294 /* Use the large buffer method to calculate cursor watermark */
3295 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3296
3297 /* Use ns/us then divide to preserve precision */
3298 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3299
3300 /* calculate the cursor watermark for cursor B */
3301 entries_required = line_count * 64 * pixel_size;
3302 entries_required = DIV_ROUND_UP(entries_required,
3303 ironlake_cursor_wm_info.cacheline_size);
3304 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3305 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3306 cursorb_wm = ironlake_cursor_wm_info.max_wm;
3307
3308 reg_value = I915_READ(WM0_PIPEB_ILK);
3309 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3310 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3311 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3312 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3313 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3314 "cursor: %d\n", planeb_wm, cursorb_wm);
3315 }
3316
3317 /*
3318 * Calculate and update the self-refresh watermark only when one
3319 * display plane is used.
3320 */
3321 if (!planea_clock || !planeb_clock) {
3322
3323 /* Read the self-refresh latency. The unit is 0.5us */
3324 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3325
3326 sr_clock = planea_clock ? planea_clock : planeb_clock;
3327 line_time_us = ((sr_htotal * 1000) / sr_clock);
3328
3329 /* Use ns/us then divide to preserve precision */
3330 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3331 / 1000;
3332
3333 /* calculate the self-refresh watermark for display plane */
3334 entries_required = line_count * sr_hdisplay * pixel_size;
3335 entries_required = DIV_ROUND_UP(entries_required,
3336 ironlake_display_srwm_info.cacheline_size);
3337 sr_wm = entries_required +
3338 ironlake_display_srwm_info.guard_size;
3339
3340 /* calculate the self-refresh watermark for display cursor */
3341 entries_required = line_count * pixel_size * 64;
3342 entries_required = DIV_ROUND_UP(entries_required,
3343 ironlake_cursor_srwm_info.cacheline_size);
3344 cursor_wm = entries_required +
3345 ironlake_cursor_srwm_info.guard_size;
3346
3347 /* configure watermark and enable self-refresh */
3348 reg_value = I915_READ(WM1_LP_ILK);
3349 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3350 WM1_LP_CURSOR_MASK);
3351 reg_value |= WM1_LP_SR_EN |
3352 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3353 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3354
3355 I915_WRITE(WM1_LP_ILK, reg_value);
3356 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3357 "cursor %d\n", sr_wm, cursor_wm);
3358
3359 } else {
3360 /* Turn off self refresh if both pipes are enabled */
3361 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3362 }
3363 }
3364 /**
3365 * intel_update_watermarks - update FIFO watermark values based on current modes
3366 *
3367 * Calculate watermark values for the various WM regs based on current mode
3368 * and plane configuration.
3369 *
3370 * There are several cases to deal with here:
3371 * - normal (i.e. non-self-refresh)
3372 * - self-refresh (SR) mode
3373 * - lines are large relative to FIFO size (buffer can hold up to 2)
3374 * - lines are small relative to FIFO size (buffer can hold more than 2
3375 * lines), so need to account for TLB latency
3376 *
3377 * The normal calculation is:
3378 * watermark = dotclock * bytes per pixel * latency
3379 * where latency is platform & configuration dependent (we assume pessimal
3380 * values here).
3381 *
3382 * The SR calculation is:
3383 * watermark = (trunc(latency/line time)+1) * surface width *
3384 * bytes per pixel
3385 * where
3386 * line time = htotal / dotclock
3387 * surface width = hdisplay for normal plane and 64 for cursor
3388 * and latency is assumed to be high, as above.
3389 *
3390 * The final value programmed to the register should always be rounded up,
3391 * and include an extra 2 entries to account for clock crossings.
3392 *
3393 * We don't use the sprite, so we can ignore that. And on Crestline we have
3394 * to set the non-SR watermarks to 8.
3395 */
3396 static void intel_update_watermarks(struct drm_device *dev)
3397 {
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 struct drm_crtc *crtc;
3400 struct intel_crtc *intel_crtc;
3401 int sr_hdisplay = 0;
3402 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3403 int enabled = 0, pixel_size = 0;
3404 int sr_htotal = 0;
3405
3406 if (!dev_priv->display.update_wm)
3407 return;
3408
3409 /* Get the clock config from both planes */
3410 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3411 intel_crtc = to_intel_crtc(crtc);
3412 if (crtc->enabled) {
3413 enabled++;
3414 if (intel_crtc->plane == 0) {
3415 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3416 intel_crtc->pipe, crtc->mode.clock);
3417 planea_clock = crtc->mode.clock;
3418 } else {
3419 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3420 intel_crtc->pipe, crtc->mode.clock);
3421 planeb_clock = crtc->mode.clock;
3422 }
3423 sr_hdisplay = crtc->mode.hdisplay;
3424 sr_clock = crtc->mode.clock;
3425 sr_htotal = crtc->mode.htotal;
3426 if (crtc->fb)
3427 pixel_size = crtc->fb->bits_per_pixel / 8;
3428 else
3429 pixel_size = 4; /* by default */
3430 }
3431 }
3432
3433 if (enabled <= 0)
3434 return;
3435
3436 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3437 sr_hdisplay, sr_htotal, pixel_size);
3438 }
3439
3440 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3441 struct drm_display_mode *mode,
3442 struct drm_display_mode *adjusted_mode,
3443 int x, int y,
3444 struct drm_framebuffer *old_fb)
3445 {
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449 int pipe = intel_crtc->pipe;
3450 int plane = intel_crtc->plane;
3451 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3452 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3453 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3454 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3455 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3456 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3457 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3458 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3459 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3460 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3461 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3462 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3463 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3464 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3465 int refclk, num_connectors = 0;
3466 intel_clock_t clock, reduced_clock;
3467 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3468 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3469 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3470 bool is_edp = false;
3471 struct drm_mode_config *mode_config = &dev->mode_config;
3472 struct drm_encoder *encoder;
3473 struct intel_encoder *intel_encoder = NULL;
3474 const intel_limit_t *limit;
3475 int ret;
3476 struct fdi_m_n m_n = {0};
3477 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3478 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3479 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3480 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3481 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3482 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3483 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3484 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3485 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3486 int lvds_reg = LVDS;
3487 u32 temp;
3488 int sdvo_pixel_multiply;
3489 int target_clock;
3490
3491 drm_vblank_pre_modeset(dev, pipe);
3492
3493 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3494
3495 if (!encoder || encoder->crtc != crtc)
3496 continue;
3497
3498 intel_encoder = enc_to_intel_encoder(encoder);
3499
3500 switch (intel_encoder->type) {
3501 case INTEL_OUTPUT_LVDS:
3502 is_lvds = true;
3503 break;
3504 case INTEL_OUTPUT_SDVO:
3505 case INTEL_OUTPUT_HDMI:
3506 is_sdvo = true;
3507 if (intel_encoder->needs_tv_clock)
3508 is_tv = true;
3509 break;
3510 case INTEL_OUTPUT_DVO:
3511 is_dvo = true;
3512 break;
3513 case INTEL_OUTPUT_TVOUT:
3514 is_tv = true;
3515 break;
3516 case INTEL_OUTPUT_ANALOG:
3517 is_crt = true;
3518 break;
3519 case INTEL_OUTPUT_DISPLAYPORT:
3520 is_dp = true;
3521 break;
3522 case INTEL_OUTPUT_EDP:
3523 is_edp = true;
3524 break;
3525 }
3526
3527 num_connectors++;
3528 }
3529
3530 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3531 refclk = dev_priv->lvds_ssc_freq * 1000;
3532 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3533 refclk / 1000);
3534 } else if (IS_I9XX(dev)) {
3535 refclk = 96000;
3536 if (HAS_PCH_SPLIT(dev))
3537 refclk = 120000; /* 120Mhz refclk */
3538 } else {
3539 refclk = 48000;
3540 }
3541
3542
3543 /*
3544 * Returns a set of divisors for the desired target clock with the given
3545 * refclk, or FALSE. The returned values represent the clock equation:
3546 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3547 */
3548 limit = intel_limit(crtc);
3549 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3550 if (!ok) {
3551 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3552 drm_vblank_post_modeset(dev, pipe);
3553 return -EINVAL;
3554 }
3555
3556 if (is_lvds && dev_priv->lvds_downclock_avail) {
3557 has_reduced_clock = limit->find_pll(limit, crtc,
3558 dev_priv->lvds_downclock,
3559 refclk,
3560 &reduced_clock);
3561 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3562 /*
3563 * If the different P is found, it means that we can't
3564 * switch the display clock by using the FP0/FP1.
3565 * In such case we will disable the LVDS downclock
3566 * feature.
3567 */
3568 DRM_DEBUG_KMS("Different P is found for "
3569 "LVDS clock/downclock\n");
3570 has_reduced_clock = 0;
3571 }
3572 }
3573 /* SDVO TV has fixed PLL values depend on its clock range,
3574 this mirrors vbios setting. */
3575 if (is_sdvo && is_tv) {
3576 if (adjusted_mode->clock >= 100000
3577 && adjusted_mode->clock < 140500) {
3578 clock.p1 = 2;
3579 clock.p2 = 10;
3580 clock.n = 3;
3581 clock.m1 = 16;
3582 clock.m2 = 8;
3583 } else if (adjusted_mode->clock >= 140500
3584 && adjusted_mode->clock <= 200000) {
3585 clock.p1 = 1;
3586 clock.p2 = 10;
3587 clock.n = 6;
3588 clock.m1 = 12;
3589 clock.m2 = 8;
3590 }
3591 }
3592
3593 /* FDI link */
3594 if (HAS_PCH_SPLIT(dev)) {
3595 int lane = 0, link_bw, bpp;
3596 /* eDP doesn't require FDI link, so just set DP M/N
3597 according to current link config */
3598 if (is_edp) {
3599 target_clock = mode->clock;
3600 intel_edp_link_config(intel_encoder,
3601 &lane, &link_bw);
3602 } else {
3603 /* DP over FDI requires target mode clock
3604 instead of link clock */
3605 if (is_dp)
3606 target_clock = mode->clock;
3607 else
3608 target_clock = adjusted_mode->clock;
3609 link_bw = 270000;
3610 }
3611
3612 /* determine panel color depth */
3613 temp = I915_READ(pipeconf_reg);
3614 temp &= ~PIPE_BPC_MASK;
3615 if (is_lvds) {
3616 int lvds_reg = I915_READ(PCH_LVDS);
3617 /* the BPC will be 6 if it is 18-bit LVDS panel */
3618 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3619 temp |= PIPE_8BPC;
3620 else
3621 temp |= PIPE_6BPC;
3622 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3623 switch (dev_priv->edp_bpp/3) {
3624 case 8:
3625 temp |= PIPE_8BPC;
3626 break;
3627 case 10:
3628 temp |= PIPE_10BPC;
3629 break;
3630 case 6:
3631 temp |= PIPE_6BPC;
3632 break;
3633 case 12:
3634 temp |= PIPE_12BPC;
3635 break;
3636 }
3637 } else
3638 temp |= PIPE_8BPC;
3639 I915_WRITE(pipeconf_reg, temp);
3640 I915_READ(pipeconf_reg);
3641
3642 switch (temp & PIPE_BPC_MASK) {
3643 case PIPE_8BPC:
3644 bpp = 24;
3645 break;
3646 case PIPE_10BPC:
3647 bpp = 30;
3648 break;
3649 case PIPE_6BPC:
3650 bpp = 18;
3651 break;
3652 case PIPE_12BPC:
3653 bpp = 36;
3654 break;
3655 default:
3656 DRM_ERROR("unknown pipe bpc value\n");
3657 bpp = 24;
3658 }
3659
3660 if (!lane) {
3661 /*
3662 * Account for spread spectrum to avoid
3663 * oversubscribing the link. Max center spread
3664 * is 2.5%; use 5% for safety's sake.
3665 */
3666 u32 bps = target_clock * bpp * 21 / 20;
3667 lane = bps / (link_bw * 8) + 1;
3668 }
3669
3670 intel_crtc->fdi_lanes = lane;
3671
3672 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3673 }
3674
3675 /* Ironlake: try to setup display ref clock before DPLL
3676 * enabling. This is only under driver's control after
3677 * PCH B stepping, previous chipset stepping should be
3678 * ignoring this setting.
3679 */
3680 if (HAS_PCH_SPLIT(dev)) {
3681 temp = I915_READ(PCH_DREF_CONTROL);
3682 /* Always enable nonspread source */
3683 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3684 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3685 I915_WRITE(PCH_DREF_CONTROL, temp);
3686 POSTING_READ(PCH_DREF_CONTROL);
3687
3688 temp &= ~DREF_SSC_SOURCE_MASK;
3689 temp |= DREF_SSC_SOURCE_ENABLE;
3690 I915_WRITE(PCH_DREF_CONTROL, temp);
3691 POSTING_READ(PCH_DREF_CONTROL);
3692
3693 udelay(200);
3694
3695 if (is_edp) {
3696 if (dev_priv->lvds_use_ssc) {
3697 temp |= DREF_SSC1_ENABLE;
3698 I915_WRITE(PCH_DREF_CONTROL, temp);
3699 POSTING_READ(PCH_DREF_CONTROL);
3700
3701 udelay(200);
3702
3703 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3704 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3705 I915_WRITE(PCH_DREF_CONTROL, temp);
3706 POSTING_READ(PCH_DREF_CONTROL);
3707 } else {
3708 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3709 I915_WRITE(PCH_DREF_CONTROL, temp);
3710 POSTING_READ(PCH_DREF_CONTROL);
3711 }
3712 }
3713 }
3714
3715 if (IS_PINEVIEW(dev)) {
3716 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3717 if (has_reduced_clock)
3718 fp2 = (1 << reduced_clock.n) << 16 |
3719 reduced_clock.m1 << 8 | reduced_clock.m2;
3720 } else {
3721 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3722 if (has_reduced_clock)
3723 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3724 reduced_clock.m2;
3725 }
3726
3727 if (!HAS_PCH_SPLIT(dev))
3728 dpll = DPLL_VGA_MODE_DIS;
3729
3730 if (IS_I9XX(dev)) {
3731 if (is_lvds)
3732 dpll |= DPLLB_MODE_LVDS;
3733 else
3734 dpll |= DPLLB_MODE_DAC_SERIAL;
3735 if (is_sdvo) {
3736 dpll |= DPLL_DVO_HIGH_SPEED;
3737 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3738 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3739 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3740 else if (HAS_PCH_SPLIT(dev))
3741 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3742 }
3743 if (is_dp)
3744 dpll |= DPLL_DVO_HIGH_SPEED;
3745
3746 /* compute bitmask from p1 value */
3747 if (IS_PINEVIEW(dev))
3748 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3749 else {
3750 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3751 /* also FPA1 */
3752 if (HAS_PCH_SPLIT(dev))
3753 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3754 if (IS_G4X(dev) && has_reduced_clock)
3755 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3756 }
3757 switch (clock.p2) {
3758 case 5:
3759 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3760 break;
3761 case 7:
3762 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3763 break;
3764 case 10:
3765 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3766 break;
3767 case 14:
3768 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3769 break;
3770 }
3771 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3772 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3773 } else {
3774 if (is_lvds) {
3775 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3776 } else {
3777 if (clock.p1 == 2)
3778 dpll |= PLL_P1_DIVIDE_BY_TWO;
3779 else
3780 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3781 if (clock.p2 == 4)
3782 dpll |= PLL_P2_DIVIDE_BY_4;
3783 }
3784 }
3785
3786 if (is_sdvo && is_tv)
3787 dpll |= PLL_REF_INPUT_TVCLKINBC;
3788 else if (is_tv)
3789 /* XXX: just matching BIOS for now */
3790 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3791 dpll |= 3;
3792 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3793 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3794 else
3795 dpll |= PLL_REF_INPUT_DREFCLK;
3796
3797 /* setup pipeconf */
3798 pipeconf = I915_READ(pipeconf_reg);
3799
3800 /* Set up the display plane register */
3801 dspcntr = DISPPLANE_GAMMA_ENABLE;
3802
3803 /* Ironlake's plane is forced to pipe, bit 24 is to
3804 enable color space conversion */
3805 if (!HAS_PCH_SPLIT(dev)) {
3806 if (pipe == 0)
3807 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3808 else
3809 dspcntr |= DISPPLANE_SEL_PIPE_B;
3810 }
3811
3812 if (pipe == 0 && !IS_I965G(dev)) {
3813 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3814 * core speed.
3815 *
3816 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3817 * pipe == 0 check?
3818 */
3819 if (mode->clock >
3820 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3821 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3822 else
3823 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3824 }
3825
3826 dspcntr |= DISPLAY_PLANE_ENABLE;
3827 pipeconf |= PIPEACONF_ENABLE;
3828 dpll |= DPLL_VCO_ENABLE;
3829
3830
3831 /* Disable the panel fitter if it was on our pipe */
3832 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3833 I915_WRITE(PFIT_CONTROL, 0);
3834
3835 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3836 drm_mode_debug_printmodeline(mode);
3837
3838 /* assign to Ironlake registers */
3839 if (HAS_PCH_SPLIT(dev)) {
3840 fp_reg = pch_fp_reg;
3841 dpll_reg = pch_dpll_reg;
3842 }
3843
3844 if (is_edp) {
3845 ironlake_disable_pll_edp(crtc);
3846 } else if ((dpll & DPLL_VCO_ENABLE)) {
3847 I915_WRITE(fp_reg, fp);
3848 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3849 I915_READ(dpll_reg);
3850 udelay(150);
3851 }
3852
3853 /* enable transcoder DPLL */
3854 if (HAS_PCH_CPT(dev)) {
3855 temp = I915_READ(PCH_DPLL_SEL);
3856 if (trans_dpll_sel == 0)
3857 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3858 else
3859 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3860 I915_WRITE(PCH_DPLL_SEL, temp);
3861 I915_READ(PCH_DPLL_SEL);
3862 udelay(150);
3863 }
3864
3865 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3866 * This is an exception to the general rule that mode_set doesn't turn
3867 * things on.
3868 */
3869 if (is_lvds) {
3870 u32 lvds;
3871
3872 if (HAS_PCH_SPLIT(dev))
3873 lvds_reg = PCH_LVDS;
3874
3875 lvds = I915_READ(lvds_reg);
3876 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3877 if (pipe == 1) {
3878 if (HAS_PCH_CPT(dev))
3879 lvds |= PORT_TRANS_B_SEL_CPT;
3880 else
3881 lvds |= LVDS_PIPEB_SELECT;
3882 } else {
3883 if (HAS_PCH_CPT(dev))
3884 lvds &= ~PORT_TRANS_SEL_MASK;
3885 else
3886 lvds &= ~LVDS_PIPEB_SELECT;
3887 }
3888 /* set the corresponsding LVDS_BORDER bit */
3889 lvds |= dev_priv->lvds_border_bits;
3890 /* Set the B0-B3 data pairs corresponding to whether we're going to
3891 * set the DPLLs for dual-channel mode or not.
3892 */
3893 if (clock.p2 == 7)
3894 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3895 else
3896 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3897
3898 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3899 * appropriately here, but we need to look more thoroughly into how
3900 * panels behave in the two modes.
3901 */
3902 /* set the dithering flag */
3903 if (IS_I965G(dev)) {
3904 if (dev_priv->lvds_dither) {
3905 if (HAS_PCH_SPLIT(dev)) {
3906 pipeconf |= PIPE_ENABLE_DITHER;
3907 pipeconf |= PIPE_DITHER_TYPE_ST01;
3908 } else
3909 lvds |= LVDS_ENABLE_DITHER;
3910 } else {
3911 if (HAS_PCH_SPLIT(dev)) {
3912 pipeconf &= ~PIPE_ENABLE_DITHER;
3913 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3914 } else
3915 lvds &= ~LVDS_ENABLE_DITHER;
3916 }
3917 }
3918 I915_WRITE(lvds_reg, lvds);
3919 I915_READ(lvds_reg);
3920 }
3921 if (is_dp)
3922 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3923 else if (HAS_PCH_SPLIT(dev)) {
3924 /* For non-DP output, clear any trans DP clock recovery setting.*/
3925 if (pipe == 0) {
3926 I915_WRITE(TRANSA_DATA_M1, 0);
3927 I915_WRITE(TRANSA_DATA_N1, 0);
3928 I915_WRITE(TRANSA_DP_LINK_M1, 0);
3929 I915_WRITE(TRANSA_DP_LINK_N1, 0);
3930 } else {
3931 I915_WRITE(TRANSB_DATA_M1, 0);
3932 I915_WRITE(TRANSB_DATA_N1, 0);
3933 I915_WRITE(TRANSB_DP_LINK_M1, 0);
3934 I915_WRITE(TRANSB_DP_LINK_N1, 0);
3935 }
3936 }
3937
3938 if (!is_edp) {
3939 I915_WRITE(fp_reg, fp);
3940 I915_WRITE(dpll_reg, dpll);
3941 I915_READ(dpll_reg);
3942 /* Wait for the clocks to stabilize. */
3943 udelay(150);
3944
3945 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3946 if (is_sdvo) {
3947 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3948 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3949 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3950 } else
3951 I915_WRITE(dpll_md_reg, 0);
3952 } else {
3953 /* write it again -- the BIOS does, after all */
3954 I915_WRITE(dpll_reg, dpll);
3955 }
3956 I915_READ(dpll_reg);
3957 /* Wait for the clocks to stabilize. */
3958 udelay(150);
3959 }
3960
3961 if (is_lvds && has_reduced_clock && i915_powersave) {
3962 I915_WRITE(fp_reg + 4, fp2);
3963 intel_crtc->lowfreq_avail = true;
3964 if (HAS_PIPE_CXSR(dev)) {
3965 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3966 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3967 }
3968 } else {
3969 I915_WRITE(fp_reg + 4, fp);
3970 intel_crtc->lowfreq_avail = false;
3971 if (HAS_PIPE_CXSR(dev)) {
3972 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3973 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3974 }
3975 }
3976
3977 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3978 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3979 /* the chip adds 2 halflines automatically */
3980 adjusted_mode->crtc_vdisplay -= 1;
3981 adjusted_mode->crtc_vtotal -= 1;
3982 adjusted_mode->crtc_vblank_start -= 1;
3983 adjusted_mode->crtc_vblank_end -= 1;
3984 adjusted_mode->crtc_vsync_end -= 1;
3985 adjusted_mode->crtc_vsync_start -= 1;
3986 } else
3987 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3988
3989 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3990 ((adjusted_mode->crtc_htotal - 1) << 16));
3991 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3992 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3993 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3994 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3995 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3996 ((adjusted_mode->crtc_vtotal - 1) << 16));
3997 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3998 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3999 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4000 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4001 /* pipesrc and dspsize control the size that is scaled from, which should
4002 * always be the user's requested size.
4003 */
4004 if (!HAS_PCH_SPLIT(dev)) {
4005 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4006 (mode->hdisplay - 1));
4007 I915_WRITE(dsppos_reg, 0);
4008 }
4009 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4010
4011 if (HAS_PCH_SPLIT(dev)) {
4012 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4013 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4014 I915_WRITE(link_m1_reg, m_n.link_m);
4015 I915_WRITE(link_n1_reg, m_n.link_n);
4016
4017 if (is_edp) {
4018 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4019 } else {
4020 /* enable FDI RX PLL too */
4021 temp = I915_READ(fdi_rx_reg);
4022 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4023 I915_READ(fdi_rx_reg);
4024 udelay(200);
4025
4026 /* enable FDI TX PLL too */
4027 temp = I915_READ(fdi_tx_reg);
4028 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4029 I915_READ(fdi_tx_reg);
4030
4031 /* enable FDI RX PCDCLK */
4032 temp = I915_READ(fdi_rx_reg);
4033 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4034 I915_READ(fdi_rx_reg);
4035 udelay(200);
4036 }
4037 }
4038
4039 I915_WRITE(pipeconf_reg, pipeconf);
4040 I915_READ(pipeconf_reg);
4041
4042 intel_wait_for_vblank(dev);
4043
4044 if (IS_IRONLAKE(dev)) {
4045 /* enable address swizzle for tiling buffer */
4046 temp = I915_READ(DISP_ARB_CTL);
4047 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4048 }
4049
4050 I915_WRITE(dspcntr_reg, dspcntr);
4051
4052 /* Flush the plane changes */
4053 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4054
4055 if ((IS_I965G(dev) || plane == 0))
4056 intel_update_fbc(crtc, &crtc->mode);
4057
4058 intel_update_watermarks(dev);
4059
4060 drm_vblank_post_modeset(dev, pipe);
4061
4062 return ret;
4063 }
4064
4065 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4066 void intel_crtc_load_lut(struct drm_crtc *crtc)
4067 {
4068 struct drm_device *dev = crtc->dev;
4069 struct drm_i915_private *dev_priv = dev->dev_private;
4070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4071 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4072 int i;
4073
4074 /* The clocks have to be on to load the palette. */
4075 if (!crtc->enabled)
4076 return;
4077
4078 /* use legacy palette for Ironlake */
4079 if (HAS_PCH_SPLIT(dev))
4080 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4081 LGC_PALETTE_B;
4082
4083 for (i = 0; i < 256; i++) {
4084 I915_WRITE(palreg + 4 * i,
4085 (intel_crtc->lut_r[i] << 16) |
4086 (intel_crtc->lut_g[i] << 8) |
4087 intel_crtc->lut_b[i]);
4088 }
4089 }
4090
4091 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4092 struct drm_file *file_priv,
4093 uint32_t handle,
4094 uint32_t width, uint32_t height)
4095 {
4096 struct drm_device *dev = crtc->dev;
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4099 struct drm_gem_object *bo;
4100 struct drm_i915_gem_object *obj_priv;
4101 int pipe = intel_crtc->pipe;
4102 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
4103 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
4104 uint32_t temp = I915_READ(control);
4105 size_t addr;
4106 int ret;
4107
4108 DRM_DEBUG_KMS("\n");
4109
4110 /* if we want to turn off the cursor ignore width and height */
4111 if (!handle) {
4112 DRM_DEBUG_KMS("cursor off\n");
4113 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4114 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4115 temp |= CURSOR_MODE_DISABLE;
4116 } else {
4117 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4118 }
4119 addr = 0;
4120 bo = NULL;
4121 mutex_lock(&dev->struct_mutex);
4122 goto finish;
4123 }
4124
4125 /* Currently we only support 64x64 cursors */
4126 if (width != 64 || height != 64) {
4127 DRM_ERROR("we currently only support 64x64 cursors\n");
4128 return -EINVAL;
4129 }
4130
4131 bo = drm_gem_object_lookup(dev, file_priv, handle);
4132 if (!bo)
4133 return -ENOENT;
4134
4135 obj_priv = to_intel_bo(bo);
4136
4137 if (bo->size < width * height * 4) {
4138 DRM_ERROR("buffer is to small\n");
4139 ret = -ENOMEM;
4140 goto fail;
4141 }
4142
4143 /* we only need to pin inside GTT if cursor is non-phy */
4144 mutex_lock(&dev->struct_mutex);
4145 if (!dev_priv->info->cursor_needs_physical) {
4146 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4147 if (ret) {
4148 DRM_ERROR("failed to pin cursor bo\n");
4149 goto fail_locked;
4150 }
4151
4152 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4153 if (ret) {
4154 DRM_ERROR("failed to move cursor bo into the GTT\n");
4155 goto fail_unpin;
4156 }
4157
4158 addr = obj_priv->gtt_offset;
4159 } else {
4160 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
4161 if (ret) {
4162 DRM_ERROR("failed to attach phys object\n");
4163 goto fail_locked;
4164 }
4165 addr = obj_priv->phys_obj->handle->busaddr;
4166 }
4167
4168 if (!IS_I9XX(dev))
4169 I915_WRITE(CURSIZE, (height << 12) | width);
4170
4171 /* Hooray for CUR*CNTR differences */
4172 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4173 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4174 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4175 temp |= (pipe << 28); /* Connect to correct pipe */
4176 } else {
4177 temp &= ~(CURSOR_FORMAT_MASK);
4178 temp |= CURSOR_ENABLE;
4179 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4180 }
4181
4182 finish:
4183 I915_WRITE(control, temp);
4184 I915_WRITE(base, addr);
4185
4186 if (intel_crtc->cursor_bo) {
4187 if (dev_priv->info->cursor_needs_physical) {
4188 if (intel_crtc->cursor_bo != bo)
4189 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4190 } else
4191 i915_gem_object_unpin(intel_crtc->cursor_bo);
4192 drm_gem_object_unreference(intel_crtc->cursor_bo);
4193 }
4194
4195 mutex_unlock(&dev->struct_mutex);
4196
4197 intel_crtc->cursor_addr = addr;
4198 intel_crtc->cursor_bo = bo;
4199
4200 return 0;
4201 fail_unpin:
4202 i915_gem_object_unpin(bo);
4203 fail_locked:
4204 mutex_unlock(&dev->struct_mutex);
4205 fail:
4206 drm_gem_object_unreference_unlocked(bo);
4207 return ret;
4208 }
4209
4210 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4211 {
4212 struct drm_device *dev = crtc->dev;
4213 struct drm_i915_private *dev_priv = dev->dev_private;
4214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4215 struct intel_framebuffer *intel_fb;
4216 int pipe = intel_crtc->pipe;
4217 uint32_t temp = 0;
4218 uint32_t adder;
4219
4220 if (crtc->fb) {
4221 intel_fb = to_intel_framebuffer(crtc->fb);
4222 intel_mark_busy(dev, intel_fb->obj);
4223 }
4224
4225 if (x < 0) {
4226 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4227 x = -x;
4228 }
4229 if (y < 0) {
4230 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4231 y = -y;
4232 }
4233
4234 temp |= x << CURSOR_X_SHIFT;
4235 temp |= y << CURSOR_Y_SHIFT;
4236
4237 adder = intel_crtc->cursor_addr;
4238 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4239 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4240
4241 return 0;
4242 }
4243
4244 /** Sets the color ramps on behalf of RandR */
4245 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4246 u16 blue, int regno)
4247 {
4248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249
4250 intel_crtc->lut_r[regno] = red >> 8;
4251 intel_crtc->lut_g[regno] = green >> 8;
4252 intel_crtc->lut_b[regno] = blue >> 8;
4253 }
4254
4255 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4256 u16 *blue, int regno)
4257 {
4258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259
4260 *red = intel_crtc->lut_r[regno] << 8;
4261 *green = intel_crtc->lut_g[regno] << 8;
4262 *blue = intel_crtc->lut_b[regno] << 8;
4263 }
4264
4265 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4266 u16 *blue, uint32_t size)
4267 {
4268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4269 int i;
4270
4271 if (size != 256)
4272 return;
4273
4274 for (i = 0; i < 256; i++) {
4275 intel_crtc->lut_r[i] = red[i] >> 8;
4276 intel_crtc->lut_g[i] = green[i] >> 8;
4277 intel_crtc->lut_b[i] = blue[i] >> 8;
4278 }
4279
4280 intel_crtc_load_lut(crtc);
4281 }
4282
4283 /**
4284 * Get a pipe with a simple mode set on it for doing load-based monitor
4285 * detection.
4286 *
4287 * It will be up to the load-detect code to adjust the pipe as appropriate for
4288 * its requirements. The pipe will be connected to no other encoders.
4289 *
4290 * Currently this code will only succeed if there is a pipe with no encoders
4291 * configured for it. In the future, it could choose to temporarily disable
4292 * some outputs to free up a pipe for its use.
4293 *
4294 * \return crtc, or NULL if no pipes are available.
4295 */
4296
4297 /* VESA 640x480x72Hz mode to set on the pipe */
4298 static struct drm_display_mode load_detect_mode = {
4299 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4300 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4301 };
4302
4303 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4304 struct drm_connector *connector,
4305 struct drm_display_mode *mode,
4306 int *dpms_mode)
4307 {
4308 struct intel_crtc *intel_crtc;
4309 struct drm_crtc *possible_crtc;
4310 struct drm_crtc *supported_crtc =NULL;
4311 struct drm_encoder *encoder = &intel_encoder->enc;
4312 struct drm_crtc *crtc = NULL;
4313 struct drm_device *dev = encoder->dev;
4314 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4315 struct drm_crtc_helper_funcs *crtc_funcs;
4316 int i = -1;
4317
4318 /*
4319 * Algorithm gets a little messy:
4320 * - if the connector already has an assigned crtc, use it (but make
4321 * sure it's on first)
4322 * - try to find the first unused crtc that can drive this connector,
4323 * and use that if we find one
4324 * - if there are no unused crtcs available, try to use the first
4325 * one we found that supports the connector
4326 */
4327
4328 /* See if we already have a CRTC for this connector */
4329 if (encoder->crtc) {
4330 crtc = encoder->crtc;
4331 /* Make sure the crtc and connector are running */
4332 intel_crtc = to_intel_crtc(crtc);
4333 *dpms_mode = intel_crtc->dpms_mode;
4334 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4335 crtc_funcs = crtc->helper_private;
4336 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4337 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4338 }
4339 return crtc;
4340 }
4341
4342 /* Find an unused one (if possible) */
4343 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4344 i++;
4345 if (!(encoder->possible_crtcs & (1 << i)))
4346 continue;
4347 if (!possible_crtc->enabled) {
4348 crtc = possible_crtc;
4349 break;
4350 }
4351 if (!supported_crtc)
4352 supported_crtc = possible_crtc;
4353 }
4354
4355 /*
4356 * If we didn't find an unused CRTC, don't use any.
4357 */
4358 if (!crtc) {
4359 return NULL;
4360 }
4361
4362 encoder->crtc = crtc;
4363 connector->encoder = encoder;
4364 intel_encoder->load_detect_temp = true;
4365
4366 intel_crtc = to_intel_crtc(crtc);
4367 *dpms_mode = intel_crtc->dpms_mode;
4368
4369 if (!crtc->enabled) {
4370 if (!mode)
4371 mode = &load_detect_mode;
4372 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4373 } else {
4374 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4375 crtc_funcs = crtc->helper_private;
4376 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4377 }
4378
4379 /* Add this connector to the crtc */
4380 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4381 encoder_funcs->commit(encoder);
4382 }
4383 /* let the connector get through one full cycle before testing */
4384 intel_wait_for_vblank(dev);
4385
4386 return crtc;
4387 }
4388
4389 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4390 struct drm_connector *connector, int dpms_mode)
4391 {
4392 struct drm_encoder *encoder = &intel_encoder->enc;
4393 struct drm_device *dev = encoder->dev;
4394 struct drm_crtc *crtc = encoder->crtc;
4395 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4396 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4397
4398 if (intel_encoder->load_detect_temp) {
4399 encoder->crtc = NULL;
4400 connector->encoder = NULL;
4401 intel_encoder->load_detect_temp = false;
4402 crtc->enabled = drm_helper_crtc_in_use(crtc);
4403 drm_helper_disable_unused_functions(dev);
4404 }
4405
4406 /* Switch crtc and encoder back off if necessary */
4407 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4408 if (encoder->crtc == crtc)
4409 encoder_funcs->dpms(encoder, dpms_mode);
4410 crtc_funcs->dpms(crtc, dpms_mode);
4411 }
4412 }
4413
4414 /* Returns the clock of the currently programmed mode of the given pipe. */
4415 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4416 {
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4419 int pipe = intel_crtc->pipe;
4420 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4421 u32 fp;
4422 intel_clock_t clock;
4423
4424 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4425 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4426 else
4427 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4428
4429 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4430 if (IS_PINEVIEW(dev)) {
4431 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4432 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4433 } else {
4434 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4435 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4436 }
4437
4438 if (IS_I9XX(dev)) {
4439 if (IS_PINEVIEW(dev))
4440 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4441 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4442 else
4443 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4444 DPLL_FPA01_P1_POST_DIV_SHIFT);
4445
4446 switch (dpll & DPLL_MODE_MASK) {
4447 case DPLLB_MODE_DAC_SERIAL:
4448 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4449 5 : 10;
4450 break;
4451 case DPLLB_MODE_LVDS:
4452 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4453 7 : 14;
4454 break;
4455 default:
4456 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4457 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4458 return 0;
4459 }
4460
4461 /* XXX: Handle the 100Mhz refclk */
4462 intel_clock(dev, 96000, &clock);
4463 } else {
4464 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4465
4466 if (is_lvds) {
4467 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4468 DPLL_FPA01_P1_POST_DIV_SHIFT);
4469 clock.p2 = 14;
4470
4471 if ((dpll & PLL_REF_INPUT_MASK) ==
4472 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4473 /* XXX: might not be 66MHz */
4474 intel_clock(dev, 66000, &clock);
4475 } else
4476 intel_clock(dev, 48000, &clock);
4477 } else {
4478 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4479 clock.p1 = 2;
4480 else {
4481 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4482 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4483 }
4484 if (dpll & PLL_P2_DIVIDE_BY_4)
4485 clock.p2 = 4;
4486 else
4487 clock.p2 = 2;
4488
4489 intel_clock(dev, 48000, &clock);
4490 }
4491 }
4492
4493 /* XXX: It would be nice to validate the clocks, but we can't reuse
4494 * i830PllIsValid() because it relies on the xf86_config connector
4495 * configuration being accurate, which it isn't necessarily.
4496 */
4497
4498 return clock.dot;
4499 }
4500
4501 /** Returns the currently programmed mode of the given pipe. */
4502 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4503 struct drm_crtc *crtc)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4507 int pipe = intel_crtc->pipe;
4508 struct drm_display_mode *mode;
4509 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4510 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4511 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4512 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4513
4514 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4515 if (!mode)
4516 return NULL;
4517
4518 mode->clock = intel_crtc_clock_get(dev, crtc);
4519 mode->hdisplay = (htot & 0xffff) + 1;
4520 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4521 mode->hsync_start = (hsync & 0xffff) + 1;
4522 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4523 mode->vdisplay = (vtot & 0xffff) + 1;
4524 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4525 mode->vsync_start = (vsync & 0xffff) + 1;
4526 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4527
4528 drm_mode_set_name(mode);
4529 drm_mode_set_crtcinfo(mode, 0);
4530
4531 return mode;
4532 }
4533
4534 #define GPU_IDLE_TIMEOUT 500 /* ms */
4535
4536 /* When this timer fires, we've been idle for awhile */
4537 static void intel_gpu_idle_timer(unsigned long arg)
4538 {
4539 struct drm_device *dev = (struct drm_device *)arg;
4540 drm_i915_private_t *dev_priv = dev->dev_private;
4541
4542 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4543
4544 dev_priv->busy = false;
4545
4546 queue_work(dev_priv->wq, &dev_priv->idle_work);
4547 }
4548
4549 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4550
4551 static void intel_crtc_idle_timer(unsigned long arg)
4552 {
4553 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4554 struct drm_crtc *crtc = &intel_crtc->base;
4555 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4556
4557 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4558
4559 intel_crtc->busy = false;
4560
4561 queue_work(dev_priv->wq, &dev_priv->idle_work);
4562 }
4563
4564 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4565 {
4566 struct drm_device *dev = crtc->dev;
4567 drm_i915_private_t *dev_priv = dev->dev_private;
4568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4569 int pipe = intel_crtc->pipe;
4570 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4571 int dpll = I915_READ(dpll_reg);
4572
4573 if (HAS_PCH_SPLIT(dev))
4574 return;
4575
4576 if (!dev_priv->lvds_downclock_avail)
4577 return;
4578
4579 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4580 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4581
4582 /* Unlock panel regs */
4583 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4584
4585 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4586 I915_WRITE(dpll_reg, dpll);
4587 dpll = I915_READ(dpll_reg);
4588 intel_wait_for_vblank(dev);
4589 dpll = I915_READ(dpll_reg);
4590 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4591 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4592
4593 /* ...and lock them again */
4594 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4595 }
4596
4597 /* Schedule downclock */
4598 if (schedule)
4599 mod_timer(&intel_crtc->idle_timer, jiffies +
4600 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4601 }
4602
4603 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4604 {
4605 struct drm_device *dev = crtc->dev;
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4608 int pipe = intel_crtc->pipe;
4609 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4610 int dpll = I915_READ(dpll_reg);
4611
4612 if (HAS_PCH_SPLIT(dev))
4613 return;
4614
4615 if (!dev_priv->lvds_downclock_avail)
4616 return;
4617
4618 /*
4619 * Since this is called by a timer, we should never get here in
4620 * the manual case.
4621 */
4622 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4623 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4624
4625 /* Unlock panel regs */
4626 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4627
4628 dpll |= DISPLAY_RATE_SELECT_FPA1;
4629 I915_WRITE(dpll_reg, dpll);
4630 dpll = I915_READ(dpll_reg);
4631 intel_wait_for_vblank(dev);
4632 dpll = I915_READ(dpll_reg);
4633 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4634 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4635
4636 /* ...and lock them again */
4637 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4638 }
4639
4640 }
4641
4642 /**
4643 * intel_idle_update - adjust clocks for idleness
4644 * @work: work struct
4645 *
4646 * Either the GPU or display (or both) went idle. Check the busy status
4647 * here and adjust the CRTC and GPU clocks as necessary.
4648 */
4649 static void intel_idle_update(struct work_struct *work)
4650 {
4651 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4652 idle_work);
4653 struct drm_device *dev = dev_priv->dev;
4654 struct drm_crtc *crtc;
4655 struct intel_crtc *intel_crtc;
4656 int enabled = 0;
4657
4658 if (!i915_powersave)
4659 return;
4660
4661 mutex_lock(&dev->struct_mutex);
4662
4663 i915_update_gfx_val(dev_priv);
4664
4665 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4666 /* Skip inactive CRTCs */
4667 if (!crtc->fb)
4668 continue;
4669
4670 enabled++;
4671 intel_crtc = to_intel_crtc(crtc);
4672 if (!intel_crtc->busy)
4673 intel_decrease_pllclock(crtc);
4674 }
4675
4676 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4677 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4678 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4679 }
4680
4681 mutex_unlock(&dev->struct_mutex);
4682 }
4683
4684 /**
4685 * intel_mark_busy - mark the GPU and possibly the display busy
4686 * @dev: drm device
4687 * @obj: object we're operating on
4688 *
4689 * Callers can use this function to indicate that the GPU is busy processing
4690 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4691 * buffer), we'll also mark the display as busy, so we know to increase its
4692 * clock frequency.
4693 */
4694 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4695 {
4696 drm_i915_private_t *dev_priv = dev->dev_private;
4697 struct drm_crtc *crtc = NULL;
4698 struct intel_framebuffer *intel_fb;
4699 struct intel_crtc *intel_crtc;
4700
4701 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4702 return;
4703
4704 if (!dev_priv->busy) {
4705 if (IS_I945G(dev) || IS_I945GM(dev)) {
4706 u32 fw_blc_self;
4707
4708 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4709 fw_blc_self = I915_READ(FW_BLC_SELF);
4710 fw_blc_self &= ~FW_BLC_SELF_EN;
4711 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4712 }
4713 dev_priv->busy = true;
4714 } else
4715 mod_timer(&dev_priv->idle_timer, jiffies +
4716 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4717
4718 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4719 if (!crtc->fb)
4720 continue;
4721
4722 intel_crtc = to_intel_crtc(crtc);
4723 intel_fb = to_intel_framebuffer(crtc->fb);
4724 if (intel_fb->obj == obj) {
4725 if (!intel_crtc->busy) {
4726 if (IS_I945G(dev) || IS_I945GM(dev)) {
4727 u32 fw_blc_self;
4728
4729 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4730 fw_blc_self = I915_READ(FW_BLC_SELF);
4731 fw_blc_self &= ~FW_BLC_SELF_EN;
4732 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4733 }
4734 /* Non-busy -> busy, upclock */
4735 intel_increase_pllclock(crtc, true);
4736 intel_crtc->busy = true;
4737 } else {
4738 /* Busy -> busy, put off timer */
4739 mod_timer(&intel_crtc->idle_timer, jiffies +
4740 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4741 }
4742 }
4743 }
4744 }
4745
4746 static void intel_crtc_destroy(struct drm_crtc *crtc)
4747 {
4748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4749
4750 drm_crtc_cleanup(crtc);
4751 kfree(intel_crtc);
4752 }
4753
4754 struct intel_unpin_work {
4755 struct work_struct work;
4756 struct drm_device *dev;
4757 struct drm_gem_object *old_fb_obj;
4758 struct drm_gem_object *pending_flip_obj;
4759 struct drm_pending_vblank_event *event;
4760 int pending;
4761 };
4762
4763 static void intel_unpin_work_fn(struct work_struct *__work)
4764 {
4765 struct intel_unpin_work *work =
4766 container_of(__work, struct intel_unpin_work, work);
4767
4768 mutex_lock(&work->dev->struct_mutex);
4769 i915_gem_object_unpin(work->old_fb_obj);
4770 drm_gem_object_unreference(work->pending_flip_obj);
4771 drm_gem_object_unreference(work->old_fb_obj);
4772 mutex_unlock(&work->dev->struct_mutex);
4773 kfree(work);
4774 }
4775
4776 static void do_intel_finish_page_flip(struct drm_device *dev,
4777 struct drm_crtc *crtc)
4778 {
4779 drm_i915_private_t *dev_priv = dev->dev_private;
4780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4781 struct intel_unpin_work *work;
4782 struct drm_i915_gem_object *obj_priv;
4783 struct drm_pending_vblank_event *e;
4784 struct timeval now;
4785 unsigned long flags;
4786
4787 /* Ignore early vblank irqs */
4788 if (intel_crtc == NULL)
4789 return;
4790
4791 spin_lock_irqsave(&dev->event_lock, flags);
4792 work = intel_crtc->unpin_work;
4793 if (work == NULL || !work->pending) {
4794 spin_unlock_irqrestore(&dev->event_lock, flags);
4795 return;
4796 }
4797
4798 intel_crtc->unpin_work = NULL;
4799 drm_vblank_put(dev, intel_crtc->pipe);
4800
4801 if (work->event) {
4802 e = work->event;
4803 do_gettimeofday(&now);
4804 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4805 e->event.tv_sec = now.tv_sec;
4806 e->event.tv_usec = now.tv_usec;
4807 list_add_tail(&e->base.link,
4808 &e->base.file_priv->event_list);
4809 wake_up_interruptible(&e->base.file_priv->event_wait);
4810 }
4811
4812 spin_unlock_irqrestore(&dev->event_lock, flags);
4813
4814 obj_priv = to_intel_bo(work->pending_flip_obj);
4815
4816 /* Initial scanout buffer will have a 0 pending flip count */
4817 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4818 atomic_dec_and_test(&obj_priv->pending_flip))
4819 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4820 schedule_work(&work->work);
4821
4822 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4823 }
4824
4825 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4826 {
4827 drm_i915_private_t *dev_priv = dev->dev_private;
4828 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4829
4830 do_intel_finish_page_flip(dev, crtc);
4831 }
4832
4833 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4834 {
4835 drm_i915_private_t *dev_priv = dev->dev_private;
4836 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4837
4838 do_intel_finish_page_flip(dev, crtc);
4839 }
4840
4841 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4842 {
4843 drm_i915_private_t *dev_priv = dev->dev_private;
4844 struct intel_crtc *intel_crtc =
4845 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4846 unsigned long flags;
4847
4848 spin_lock_irqsave(&dev->event_lock, flags);
4849 if (intel_crtc->unpin_work) {
4850 intel_crtc->unpin_work->pending = 1;
4851 } else {
4852 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4853 }
4854 spin_unlock_irqrestore(&dev->event_lock, flags);
4855 }
4856
4857 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4858 struct drm_framebuffer *fb,
4859 struct drm_pending_vblank_event *event)
4860 {
4861 struct drm_device *dev = crtc->dev;
4862 struct drm_i915_private *dev_priv = dev->dev_private;
4863 struct intel_framebuffer *intel_fb;
4864 struct drm_i915_gem_object *obj_priv;
4865 struct drm_gem_object *obj;
4866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4867 struct intel_unpin_work *work;
4868 unsigned long flags;
4869 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4870 int ret, pipesrc;
4871 u32 flip_mask;
4872
4873 work = kzalloc(sizeof *work, GFP_KERNEL);
4874 if (work == NULL)
4875 return -ENOMEM;
4876
4877 work->event = event;
4878 work->dev = crtc->dev;
4879 intel_fb = to_intel_framebuffer(crtc->fb);
4880 work->old_fb_obj = intel_fb->obj;
4881 INIT_WORK(&work->work, intel_unpin_work_fn);
4882
4883 /* We borrow the event spin lock for protecting unpin_work */
4884 spin_lock_irqsave(&dev->event_lock, flags);
4885 if (intel_crtc->unpin_work) {
4886 spin_unlock_irqrestore(&dev->event_lock, flags);
4887 kfree(work);
4888
4889 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4890 return -EBUSY;
4891 }
4892 intel_crtc->unpin_work = work;
4893 spin_unlock_irqrestore(&dev->event_lock, flags);
4894
4895 intel_fb = to_intel_framebuffer(fb);
4896 obj = intel_fb->obj;
4897
4898 mutex_lock(&dev->struct_mutex);
4899 ret = intel_pin_and_fence_fb_obj(dev, obj);
4900 if (ret != 0) {
4901 mutex_unlock(&dev->struct_mutex);
4902
4903 spin_lock_irqsave(&dev->event_lock, flags);
4904 intel_crtc->unpin_work = NULL;
4905 spin_unlock_irqrestore(&dev->event_lock, flags);
4906
4907 kfree(work);
4908
4909 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4910 to_intel_bo(obj));
4911 return ret;
4912 }
4913
4914 /* Reference the objects for the scheduled work. */
4915 drm_gem_object_reference(work->old_fb_obj);
4916 drm_gem_object_reference(obj);
4917
4918 crtc->fb = fb;
4919 i915_gem_object_flush_write_domain(obj);
4920 drm_vblank_get(dev, intel_crtc->pipe);
4921 obj_priv = to_intel_bo(obj);
4922 atomic_inc(&obj_priv->pending_flip);
4923 work->pending_flip_obj = obj;
4924
4925 if (intel_crtc->plane)
4926 flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4927 else
4928 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
4929
4930 /* Wait for any previous flip to finish */
4931 if (IS_GEN3(dev))
4932 while (I915_READ(ISR) & flip_mask)
4933 ;
4934
4935 BEGIN_LP_RING(4);
4936 if (IS_I965G(dev)) {
4937 OUT_RING(MI_DISPLAY_FLIP |
4938 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4939 OUT_RING(fb->pitch);
4940 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4941 pipesrc = I915_READ(pipesrc_reg);
4942 OUT_RING(pipesrc & 0x0fff0fff);
4943 } else {
4944 OUT_RING(MI_DISPLAY_FLIP_I915 |
4945 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4946 OUT_RING(fb->pitch);
4947 OUT_RING(obj_priv->gtt_offset);
4948 OUT_RING(MI_NOOP);
4949 }
4950 ADVANCE_LP_RING();
4951
4952 mutex_unlock(&dev->struct_mutex);
4953
4954 trace_i915_flip_request(intel_crtc->plane, obj);
4955
4956 return 0;
4957 }
4958
4959 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4960 .dpms = intel_crtc_dpms,
4961 .mode_fixup = intel_crtc_mode_fixup,
4962 .mode_set = intel_crtc_mode_set,
4963 .mode_set_base = intel_pipe_set_base,
4964 .prepare = intel_crtc_prepare,
4965 .commit = intel_crtc_commit,
4966 .load_lut = intel_crtc_load_lut,
4967 };
4968
4969 static const struct drm_crtc_funcs intel_crtc_funcs = {
4970 .cursor_set = intel_crtc_cursor_set,
4971 .cursor_move = intel_crtc_cursor_move,
4972 .gamma_set = intel_crtc_gamma_set,
4973 .set_config = drm_crtc_helper_set_config,
4974 .destroy = intel_crtc_destroy,
4975 .page_flip = intel_crtc_page_flip,
4976 };
4977
4978
4979 static void intel_crtc_init(struct drm_device *dev, int pipe)
4980 {
4981 drm_i915_private_t *dev_priv = dev->dev_private;
4982 struct intel_crtc *intel_crtc;
4983 int i;
4984
4985 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4986 if (intel_crtc == NULL)
4987 return;
4988
4989 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4990
4991 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4992 intel_crtc->pipe = pipe;
4993 intel_crtc->plane = pipe;
4994 for (i = 0; i < 256; i++) {
4995 intel_crtc->lut_r[i] = i;
4996 intel_crtc->lut_g[i] = i;
4997 intel_crtc->lut_b[i] = i;
4998 }
4999
5000 /* Swap pipes & planes for FBC on pre-965 */
5001 intel_crtc->pipe = pipe;
5002 intel_crtc->plane = pipe;
5003 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5004 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5005 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5006 }
5007
5008 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5009 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5010 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5011 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5012
5013 intel_crtc->cursor_addr = 0;
5014 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5015 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5016
5017 intel_crtc->busy = false;
5018
5019 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5020 (unsigned long)intel_crtc);
5021 }
5022
5023 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5024 struct drm_file *file_priv)
5025 {
5026 drm_i915_private_t *dev_priv = dev->dev_private;
5027 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5028 struct drm_mode_object *drmmode_obj;
5029 struct intel_crtc *crtc;
5030
5031 if (!dev_priv) {
5032 DRM_ERROR("called with no initialization\n");
5033 return -EINVAL;
5034 }
5035
5036 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5037 DRM_MODE_OBJECT_CRTC);
5038
5039 if (!drmmode_obj) {
5040 DRM_ERROR("no such CRTC id\n");
5041 return -EINVAL;
5042 }
5043
5044 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5045 pipe_from_crtc_id->pipe = crtc->pipe;
5046
5047 return 0;
5048 }
5049
5050 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5051 {
5052 struct drm_crtc *crtc = NULL;
5053
5054 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5056 if (intel_crtc->pipe == pipe)
5057 break;
5058 }
5059 return crtc;
5060 }
5061
5062 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5063 {
5064 int index_mask = 0;
5065 struct drm_encoder *encoder;
5066 int entry = 0;
5067
5068 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5069 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5070 if (type_mask & intel_encoder->clone_mask)
5071 index_mask |= (1 << entry);
5072 entry++;
5073 }
5074 return index_mask;
5075 }
5076
5077
5078 static void intel_setup_outputs(struct drm_device *dev)
5079 {
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct drm_encoder *encoder;
5082
5083 intel_crt_init(dev);
5084
5085 /* Set up integrated LVDS */
5086 if (IS_MOBILE(dev) && !IS_I830(dev))
5087 intel_lvds_init(dev);
5088
5089 if (HAS_PCH_SPLIT(dev)) {
5090 int found;
5091
5092 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5093 intel_dp_init(dev, DP_A);
5094
5095 if (I915_READ(HDMIB) & PORT_DETECTED) {
5096 /* PCH SDVOB multiplex with HDMIB */
5097 found = intel_sdvo_init(dev, PCH_SDVOB);
5098 if (!found)
5099 intel_hdmi_init(dev, HDMIB);
5100 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5101 intel_dp_init(dev, PCH_DP_B);
5102 }
5103
5104 if (I915_READ(HDMIC) & PORT_DETECTED)
5105 intel_hdmi_init(dev, HDMIC);
5106
5107 if (I915_READ(HDMID) & PORT_DETECTED)
5108 intel_hdmi_init(dev, HDMID);
5109
5110 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5111 intel_dp_init(dev, PCH_DP_C);
5112
5113 if (I915_READ(PCH_DP_D) & DP_DETECTED)
5114 intel_dp_init(dev, PCH_DP_D);
5115
5116 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5117 bool found = false;
5118
5119 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5120 DRM_DEBUG_KMS("probing SDVOB\n");
5121 found = intel_sdvo_init(dev, SDVOB);
5122 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5123 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5124 intel_hdmi_init(dev, SDVOB);
5125 }
5126
5127 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5128 DRM_DEBUG_KMS("probing DP_B\n");
5129 intel_dp_init(dev, DP_B);
5130 }
5131 }
5132
5133 /* Before G4X SDVOC doesn't have its own detect register */
5134
5135 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5136 DRM_DEBUG_KMS("probing SDVOC\n");
5137 found = intel_sdvo_init(dev, SDVOC);
5138 }
5139
5140 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5141
5142 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5143 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5144 intel_hdmi_init(dev, SDVOC);
5145 }
5146 if (SUPPORTS_INTEGRATED_DP(dev)) {
5147 DRM_DEBUG_KMS("probing DP_C\n");
5148 intel_dp_init(dev, DP_C);
5149 }
5150 }
5151
5152 if (SUPPORTS_INTEGRATED_DP(dev) &&
5153 (I915_READ(DP_D) & DP_DETECTED)) {
5154 DRM_DEBUG_KMS("probing DP_D\n");
5155 intel_dp_init(dev, DP_D);
5156 }
5157 } else if (IS_GEN2(dev))
5158 intel_dvo_init(dev);
5159
5160 if (SUPPORTS_TV(dev))
5161 intel_tv_init(dev);
5162
5163 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5164 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5165
5166 encoder->possible_crtcs = intel_encoder->crtc_mask;
5167 encoder->possible_clones = intel_encoder_clones(dev,
5168 intel_encoder->clone_mask);
5169 }
5170 }
5171
5172 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5173 {
5174 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5175
5176 drm_framebuffer_cleanup(fb);
5177 drm_gem_object_unreference_unlocked(intel_fb->obj);
5178
5179 kfree(intel_fb);
5180 }
5181
5182 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5183 struct drm_file *file_priv,
5184 unsigned int *handle)
5185 {
5186 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5187 struct drm_gem_object *object = intel_fb->obj;
5188
5189 return drm_gem_handle_create(file_priv, object, handle);
5190 }
5191
5192 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5193 .destroy = intel_user_framebuffer_destroy,
5194 .create_handle = intel_user_framebuffer_create_handle,
5195 };
5196
5197 int intel_framebuffer_init(struct drm_device *dev,
5198 struct intel_framebuffer *intel_fb,
5199 struct drm_mode_fb_cmd *mode_cmd,
5200 struct drm_gem_object *obj)
5201 {
5202 int ret;
5203
5204 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5205 if (ret) {
5206 DRM_ERROR("framebuffer init failed %d\n", ret);
5207 return ret;
5208 }
5209
5210 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5211 intel_fb->obj = obj;
5212 return 0;
5213 }
5214
5215 static struct drm_framebuffer *
5216 intel_user_framebuffer_create(struct drm_device *dev,
5217 struct drm_file *filp,
5218 struct drm_mode_fb_cmd *mode_cmd)
5219 {
5220 struct drm_gem_object *obj;
5221 struct intel_framebuffer *intel_fb;
5222 int ret;
5223
5224 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5225 if (!obj)
5226 return NULL;
5227
5228 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5229 if (!intel_fb)
5230 return NULL;
5231
5232 ret = intel_framebuffer_init(dev, intel_fb,
5233 mode_cmd, obj);
5234 if (ret) {
5235 drm_gem_object_unreference_unlocked(obj);
5236 kfree(intel_fb);
5237 return NULL;
5238 }
5239
5240 return &intel_fb->base;
5241 }
5242
5243 static const struct drm_mode_config_funcs intel_mode_funcs = {
5244 .fb_create = intel_user_framebuffer_create,
5245 .output_poll_changed = intel_fb_output_poll_changed,
5246 };
5247
5248 static struct drm_gem_object *
5249 intel_alloc_power_context(struct drm_device *dev)
5250 {
5251 struct drm_gem_object *pwrctx;
5252 int ret;
5253
5254 pwrctx = i915_gem_alloc_object(dev, 4096);
5255 if (!pwrctx) {
5256 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5257 return NULL;
5258 }
5259
5260 mutex_lock(&dev->struct_mutex);
5261 ret = i915_gem_object_pin(pwrctx, 4096);
5262 if (ret) {
5263 DRM_ERROR("failed to pin power context: %d\n", ret);
5264 goto err_unref;
5265 }
5266
5267 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5268 if (ret) {
5269 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5270 goto err_unpin;
5271 }
5272 mutex_unlock(&dev->struct_mutex);
5273
5274 return pwrctx;
5275
5276 err_unpin:
5277 i915_gem_object_unpin(pwrctx);
5278 err_unref:
5279 drm_gem_object_unreference(pwrctx);
5280 mutex_unlock(&dev->struct_mutex);
5281 return NULL;
5282 }
5283
5284 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5285 {
5286 struct drm_i915_private *dev_priv = dev->dev_private;
5287 u16 rgvswctl;
5288
5289 rgvswctl = I915_READ16(MEMSWCTL);
5290 if (rgvswctl & MEMCTL_CMD_STS) {
5291 DRM_DEBUG("gpu busy, RCS change rejected\n");
5292 return false; /* still busy with another command */
5293 }
5294
5295 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5296 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5297 I915_WRITE16(MEMSWCTL, rgvswctl);
5298 POSTING_READ16(MEMSWCTL);
5299
5300 rgvswctl |= MEMCTL_CMD_STS;
5301 I915_WRITE16(MEMSWCTL, rgvswctl);
5302
5303 return true;
5304 }
5305
5306 void ironlake_enable_drps(struct drm_device *dev)
5307 {
5308 struct drm_i915_private *dev_priv = dev->dev_private;
5309 u32 rgvmodectl = I915_READ(MEMMODECTL);
5310 u8 fmax, fmin, fstart, vstart;
5311 int i = 0;
5312
5313 /* 100ms RC evaluation intervals */
5314 I915_WRITE(RCUPEI, 100000);
5315 I915_WRITE(RCDNEI, 100000);
5316
5317 /* Set max/min thresholds to 90ms and 80ms respectively */
5318 I915_WRITE(RCBMAXAVG, 90000);
5319 I915_WRITE(RCBMINAVG, 80000);
5320
5321 I915_WRITE(MEMIHYST, 1);
5322
5323 /* Set up min, max, and cur for interrupt handling */
5324 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5325 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5326 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5327 MEMMODE_FSTART_SHIFT;
5328 fstart = fmax;
5329
5330 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5331 PXVFREQ_PX_SHIFT;
5332
5333 dev_priv->fmax = fstart; /* IPS callback will increase this */
5334 dev_priv->fstart = fstart;
5335
5336 dev_priv->max_delay = fmax;
5337 dev_priv->min_delay = fmin;
5338 dev_priv->cur_delay = fstart;
5339
5340 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5341 fstart);
5342
5343 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5344
5345 /*
5346 * Interrupts will be enabled in ironlake_irq_postinstall
5347 */
5348
5349 I915_WRITE(VIDSTART, vstart);
5350 POSTING_READ(VIDSTART);
5351
5352 rgvmodectl |= MEMMODE_SWMODE_EN;
5353 I915_WRITE(MEMMODECTL, rgvmodectl);
5354
5355 while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5356 if (i++ > 100) {
5357 DRM_ERROR("stuck trying to change perf mode\n");
5358 break;
5359 }
5360 msleep(1);
5361 }
5362 msleep(1);
5363
5364 ironlake_set_drps(dev, fstart);
5365
5366 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5367 I915_READ(0x112e0);
5368 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5369 dev_priv->last_count2 = I915_READ(0x112f4);
5370 getrawmonotonic(&dev_priv->last_time2);
5371 }
5372
5373 void ironlake_disable_drps(struct drm_device *dev)
5374 {
5375 struct drm_i915_private *dev_priv = dev->dev_private;
5376 u16 rgvswctl = I915_READ16(MEMSWCTL);
5377
5378 /* Ack interrupts, disable EFC interrupt */
5379 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5380 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5381 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5382 I915_WRITE(DEIIR, DE_PCU_EVENT);
5383 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5384
5385 /* Go back to the starting frequency */
5386 ironlake_set_drps(dev, dev_priv->fstart);
5387 msleep(1);
5388 rgvswctl |= MEMCTL_CMD_STS;
5389 I915_WRITE(MEMSWCTL, rgvswctl);
5390 msleep(1);
5391
5392 }
5393
5394 static unsigned long intel_pxfreq(u32 vidfreq)
5395 {
5396 unsigned long freq;
5397 int div = (vidfreq & 0x3f0000) >> 16;
5398 int post = (vidfreq & 0x3000) >> 12;
5399 int pre = (vidfreq & 0x7);
5400
5401 if (!pre)
5402 return 0;
5403
5404 freq = ((div * 133333) / ((1<<post) * pre));
5405
5406 return freq;
5407 }
5408
5409 void intel_init_emon(struct drm_device *dev)
5410 {
5411 struct drm_i915_private *dev_priv = dev->dev_private;
5412 u32 lcfuse;
5413 u8 pxw[16];
5414 int i;
5415
5416 /* Disable to program */
5417 I915_WRITE(ECR, 0);
5418 POSTING_READ(ECR);
5419
5420 /* Program energy weights for various events */
5421 I915_WRITE(SDEW, 0x15040d00);
5422 I915_WRITE(CSIEW0, 0x007f0000);
5423 I915_WRITE(CSIEW1, 0x1e220004);
5424 I915_WRITE(CSIEW2, 0x04000004);
5425
5426 for (i = 0; i < 5; i++)
5427 I915_WRITE(PEW + (i * 4), 0);
5428 for (i = 0; i < 3; i++)
5429 I915_WRITE(DEW + (i * 4), 0);
5430
5431 /* Program P-state weights to account for frequency power adjustment */
5432 for (i = 0; i < 16; i++) {
5433 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5434 unsigned long freq = intel_pxfreq(pxvidfreq);
5435 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5436 PXVFREQ_PX_SHIFT;
5437 unsigned long val;
5438
5439 val = vid * vid;
5440 val *= (freq / 1000);
5441 val *= 255;
5442 val /= (127*127*900);
5443 if (val > 0xff)
5444 DRM_ERROR("bad pxval: %ld\n", val);
5445 pxw[i] = val;
5446 }
5447 /* Render standby states get 0 weight */
5448 pxw[14] = 0;
5449 pxw[15] = 0;
5450
5451 for (i = 0; i < 4; i++) {
5452 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5453 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5454 I915_WRITE(PXW + (i * 4), val);
5455 }
5456
5457 /* Adjust magic regs to magic values (more experimental results) */
5458 I915_WRITE(OGW0, 0);
5459 I915_WRITE(OGW1, 0);
5460 I915_WRITE(EG0, 0x00007f00);
5461 I915_WRITE(EG1, 0x0000000e);
5462 I915_WRITE(EG2, 0x000e0000);
5463 I915_WRITE(EG3, 0x68000300);
5464 I915_WRITE(EG4, 0x42000000);
5465 I915_WRITE(EG5, 0x00140031);
5466 I915_WRITE(EG6, 0);
5467 I915_WRITE(EG7, 0);
5468
5469 for (i = 0; i < 8; i++)
5470 I915_WRITE(PXWL + (i * 4), 0);
5471
5472 /* Enable PMON + select events */
5473 I915_WRITE(ECR, 0x80000019);
5474
5475 lcfuse = I915_READ(LCFUSE02);
5476
5477 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5478 }
5479
5480 void intel_init_clock_gating(struct drm_device *dev)
5481 {
5482 struct drm_i915_private *dev_priv = dev->dev_private;
5483
5484 /*
5485 * Disable clock gating reported to work incorrectly according to the
5486 * specs, but enable as much else as we can.
5487 */
5488 if (HAS_PCH_SPLIT(dev)) {
5489 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5490
5491 if (IS_IRONLAKE(dev)) {
5492 /* Required for FBC */
5493 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5494 /* Required for CxSR */
5495 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5496
5497 I915_WRITE(PCH_3DCGDIS0,
5498 MARIUNIT_CLOCK_GATE_DISABLE |
5499 SVSMUNIT_CLOCK_GATE_DISABLE);
5500 }
5501
5502 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5503
5504 /*
5505 * According to the spec the following bits should be set in
5506 * order to enable memory self-refresh
5507 * The bit 22/21 of 0x42004
5508 * The bit 5 of 0x42020
5509 * The bit 15 of 0x45000
5510 */
5511 if (IS_IRONLAKE(dev)) {
5512 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5513 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5514 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5515 I915_WRITE(ILK_DSPCLK_GATE,
5516 (I915_READ(ILK_DSPCLK_GATE) |
5517 ILK_DPARB_CLK_GATE));
5518 I915_WRITE(DISP_ARB_CTL,
5519 (I915_READ(DISP_ARB_CTL) |
5520 DISP_FBC_WM_DIS));
5521 }
5522 /*
5523 * Based on the document from hardware guys the following bits
5524 * should be set unconditionally in order to enable FBC.
5525 * The bit 22 of 0x42000
5526 * The bit 22 of 0x42004
5527 * The bit 7,8,9 of 0x42020.
5528 */
5529 if (IS_IRONLAKE_M(dev)) {
5530 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5531 I915_READ(ILK_DISPLAY_CHICKEN1) |
5532 ILK_FBCQ_DIS);
5533 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5534 I915_READ(ILK_DISPLAY_CHICKEN2) |
5535 ILK_DPARB_GATE);
5536 I915_WRITE(ILK_DSPCLK_GATE,
5537 I915_READ(ILK_DSPCLK_GATE) |
5538 ILK_DPFC_DIS1 |
5539 ILK_DPFC_DIS2 |
5540 ILK_CLK_FBC);
5541 }
5542 return;
5543 } else if (IS_G4X(dev)) {
5544 uint32_t dspclk_gate;
5545 I915_WRITE(RENCLK_GATE_D1, 0);
5546 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5547 GS_UNIT_CLOCK_GATE_DISABLE |
5548 CL_UNIT_CLOCK_GATE_DISABLE);
5549 I915_WRITE(RAMCLK_GATE_D, 0);
5550 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5551 OVRUNIT_CLOCK_GATE_DISABLE |
5552 OVCUNIT_CLOCK_GATE_DISABLE;
5553 if (IS_GM45(dev))
5554 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5555 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5556 } else if (IS_I965GM(dev)) {
5557 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5558 I915_WRITE(RENCLK_GATE_D2, 0);
5559 I915_WRITE(DSPCLK_GATE_D, 0);
5560 I915_WRITE(RAMCLK_GATE_D, 0);
5561 I915_WRITE16(DEUC, 0);
5562 } else if (IS_I965G(dev)) {
5563 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5564 I965_RCC_CLOCK_GATE_DISABLE |
5565 I965_RCPB_CLOCK_GATE_DISABLE |
5566 I965_ISC_CLOCK_GATE_DISABLE |
5567 I965_FBC_CLOCK_GATE_DISABLE);
5568 I915_WRITE(RENCLK_GATE_D2, 0);
5569 } else if (IS_I9XX(dev)) {
5570 u32 dstate = I915_READ(D_STATE);
5571
5572 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5573 DSTATE_DOT_CLOCK_GATING;
5574 I915_WRITE(D_STATE, dstate);
5575 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5576 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5577 } else if (IS_I830(dev)) {
5578 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5579 }
5580
5581 /*
5582 * GPU can automatically power down the render unit if given a page
5583 * to save state.
5584 */
5585 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5586 struct drm_i915_gem_object *obj_priv = NULL;
5587
5588 if (dev_priv->pwrctx) {
5589 obj_priv = to_intel_bo(dev_priv->pwrctx);
5590 } else {
5591 struct drm_gem_object *pwrctx;
5592
5593 pwrctx = intel_alloc_power_context(dev);
5594 if (pwrctx) {
5595 dev_priv->pwrctx = pwrctx;
5596 obj_priv = to_intel_bo(pwrctx);
5597 }
5598 }
5599
5600 if (obj_priv) {
5601 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5602 I915_WRITE(MCHBAR_RENDER_STANDBY,
5603 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5604 }
5605 }
5606 }
5607
5608 /* Set up chip specific display functions */
5609 static void intel_init_display(struct drm_device *dev)
5610 {
5611 struct drm_i915_private *dev_priv = dev->dev_private;
5612
5613 /* We always want a DPMS function */
5614 if (HAS_PCH_SPLIT(dev))
5615 dev_priv->display.dpms = ironlake_crtc_dpms;
5616 else
5617 dev_priv->display.dpms = i9xx_crtc_dpms;
5618
5619 if (I915_HAS_FBC(dev)) {
5620 if (IS_IRONLAKE_M(dev)) {
5621 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5622 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5623 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5624 } else if (IS_GM45(dev)) {
5625 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5626 dev_priv->display.enable_fbc = g4x_enable_fbc;
5627 dev_priv->display.disable_fbc = g4x_disable_fbc;
5628 } else if (IS_I965GM(dev)) {
5629 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5630 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5631 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5632 }
5633 /* 855GM needs testing */
5634 }
5635
5636 /* Returns the core display clock speed */
5637 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5638 dev_priv->display.get_display_clock_speed =
5639 i945_get_display_clock_speed;
5640 else if (IS_I915G(dev))
5641 dev_priv->display.get_display_clock_speed =
5642 i915_get_display_clock_speed;
5643 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5644 dev_priv->display.get_display_clock_speed =
5645 i9xx_misc_get_display_clock_speed;
5646 else if (IS_I915GM(dev))
5647 dev_priv->display.get_display_clock_speed =
5648 i915gm_get_display_clock_speed;
5649 else if (IS_I865G(dev))
5650 dev_priv->display.get_display_clock_speed =
5651 i865_get_display_clock_speed;
5652 else if (IS_I85X(dev))
5653 dev_priv->display.get_display_clock_speed =
5654 i855_get_display_clock_speed;
5655 else /* 852, 830 */
5656 dev_priv->display.get_display_clock_speed =
5657 i830_get_display_clock_speed;
5658
5659 /* For FIFO watermark updates */
5660 if (HAS_PCH_SPLIT(dev)) {
5661 if (IS_IRONLAKE(dev)) {
5662 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5663 dev_priv->display.update_wm = ironlake_update_wm;
5664 else {
5665 DRM_DEBUG_KMS("Failed to get proper latency. "
5666 "Disable CxSR\n");
5667 dev_priv->display.update_wm = NULL;
5668 }
5669 } else
5670 dev_priv->display.update_wm = NULL;
5671 } else if (IS_PINEVIEW(dev)) {
5672 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5673 dev_priv->is_ddr3,
5674 dev_priv->fsb_freq,
5675 dev_priv->mem_freq)) {
5676 DRM_INFO("failed to find known CxSR latency "
5677 "(found ddr%s fsb freq %d, mem freq %d), "
5678 "disabling CxSR\n",
5679 (dev_priv->is_ddr3 == 1) ? "3": "2",
5680 dev_priv->fsb_freq, dev_priv->mem_freq);
5681 /* Disable CxSR and never update its watermark again */
5682 pineview_disable_cxsr(dev);
5683 dev_priv->display.update_wm = NULL;
5684 } else
5685 dev_priv->display.update_wm = pineview_update_wm;
5686 } else if (IS_G4X(dev))
5687 dev_priv->display.update_wm = g4x_update_wm;
5688 else if (IS_I965G(dev))
5689 dev_priv->display.update_wm = i965_update_wm;
5690 else if (IS_I9XX(dev)) {
5691 dev_priv->display.update_wm = i9xx_update_wm;
5692 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5693 } else if (IS_I85X(dev)) {
5694 dev_priv->display.update_wm = i9xx_update_wm;
5695 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5696 } else {
5697 dev_priv->display.update_wm = i830_update_wm;
5698 if (IS_845G(dev))
5699 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5700 else
5701 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5702 }
5703 }
5704
5705 void intel_modeset_init(struct drm_device *dev)
5706 {
5707 struct drm_i915_private *dev_priv = dev->dev_private;
5708 int i;
5709
5710 drm_mode_config_init(dev);
5711
5712 dev->mode_config.min_width = 0;
5713 dev->mode_config.min_height = 0;
5714
5715 dev->mode_config.funcs = (void *)&intel_mode_funcs;
5716
5717 intel_init_display(dev);
5718
5719 if (IS_I965G(dev)) {
5720 dev->mode_config.max_width = 8192;
5721 dev->mode_config.max_height = 8192;
5722 } else if (IS_I9XX(dev)) {
5723 dev->mode_config.max_width = 4096;
5724 dev->mode_config.max_height = 4096;
5725 } else {
5726 dev->mode_config.max_width = 2048;
5727 dev->mode_config.max_height = 2048;
5728 }
5729
5730 /* set memory base */
5731 if (IS_I9XX(dev))
5732 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5733 else
5734 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5735
5736 if (IS_MOBILE(dev) || IS_I9XX(dev))
5737 dev_priv->num_pipe = 2;
5738 else
5739 dev_priv->num_pipe = 1;
5740 DRM_DEBUG_KMS("%d display pipe%s available.\n",
5741 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
5742
5743 for (i = 0; i < dev_priv->num_pipe; i++) {
5744 intel_crtc_init(dev, i);
5745 }
5746
5747 intel_setup_outputs(dev);
5748
5749 intel_init_clock_gating(dev);
5750
5751 if (IS_IRONLAKE_M(dev)) {
5752 ironlake_enable_drps(dev);
5753 intel_init_emon(dev);
5754 }
5755
5756 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5757 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5758 (unsigned long)dev);
5759
5760 intel_setup_overlay(dev);
5761 }
5762
5763 void intel_modeset_cleanup(struct drm_device *dev)
5764 {
5765 struct drm_i915_private *dev_priv = dev->dev_private;
5766 struct drm_crtc *crtc;
5767 struct intel_crtc *intel_crtc;
5768
5769 mutex_lock(&dev->struct_mutex);
5770
5771 drm_kms_helper_poll_fini(dev);
5772 intel_fbdev_fini(dev);
5773
5774 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5775 /* Skip inactive CRTCs */
5776 if (!crtc->fb)
5777 continue;
5778
5779 intel_crtc = to_intel_crtc(crtc);
5780 intel_increase_pllclock(crtc, false);
5781 del_timer_sync(&intel_crtc->idle_timer);
5782 }
5783
5784 del_timer_sync(&dev_priv->idle_timer);
5785
5786 if (dev_priv->display.disable_fbc)
5787 dev_priv->display.disable_fbc(dev);
5788
5789 if (dev_priv->pwrctx) {
5790 struct drm_i915_gem_object *obj_priv;
5791
5792 obj_priv = to_intel_bo(dev_priv->pwrctx);
5793 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5794 I915_READ(PWRCTXA);
5795 i915_gem_object_unpin(dev_priv->pwrctx);
5796 drm_gem_object_unreference(dev_priv->pwrctx);
5797 }
5798
5799 if (IS_IRONLAKE_M(dev))
5800 ironlake_disable_drps(dev);
5801
5802 mutex_unlock(&dev->struct_mutex);
5803
5804 drm_mode_config_cleanup(dev);
5805 }
5806
5807
5808 /*
5809 * Return which encoder is currently attached for connector.
5810 */
5811 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5812 {
5813 struct drm_mode_object *obj;
5814 struct drm_encoder *encoder;
5815 int i;
5816
5817 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5818 if (connector->encoder_ids[i] == 0)
5819 break;
5820
5821 obj = drm_mode_object_find(connector->dev,
5822 connector->encoder_ids[i],
5823 DRM_MODE_OBJECT_ENCODER);
5824 if (!obj)
5825 continue;
5826
5827 encoder = obj_to_encoder(obj);
5828 return encoder;
5829 }
5830 return NULL;
5831 }
5832
5833 /*
5834 * set vga decode state - true == enable VGA decode
5835 */
5836 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5837 {
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 u16 gmch_ctrl;
5840
5841 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5842 if (state)
5843 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5844 else
5845 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5846 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5847 return 0;
5848 }