]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 /* FDI */
80 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
81
82 static bool
83 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84 int target, int refclk, intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87 int target, int refclk, intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91 int target, int refclk, intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *best_clock);
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99 if (IS_GEN5(dev)) {
100 struct drm_i915_private *dev_priv = dev->dev_private;
101 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102 } else
103 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dvo = {
107 .dot = { .min = 25000, .max = 350000 },
108 .vco = { .min = 930000, .max = 1400000 },
109 .n = { .min = 3, .max = 16 },
110 .m = { .min = 96, .max = 140 },
111 .m1 = { .min = 18, .max = 26 },
112 .m2 = { .min = 6, .max = 16 },
113 .p = { .min = 4, .max = 128 },
114 .p1 = { .min = 2, .max = 33 },
115 .p2 = { .dot_limit = 165000,
116 .p2_slow = 4, .p2_fast = 2 },
117 .find_pll = intel_find_best_PLL,
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121 .dot = { .min = 25000, .max = 350000 },
122 .vco = { .min = 930000, .max = 1400000 },
123 .n = { .min = 3, .max = 16 },
124 .m = { .min = 96, .max = 140 },
125 .m1 = { .min = 18, .max = 26 },
126 .m2 = { .min = 6, .max = 16 },
127 .p = { .min = 4, .max = 128 },
128 .p1 = { .min = 1, .max = 6 },
129 .p2 = { .dot_limit = 165000,
130 .p2_slow = 14, .p2_fast = 7 },
131 .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135 .dot = { .min = 20000, .max = 400000 },
136 .vco = { .min = 1400000, .max = 2800000 },
137 .n = { .min = 1, .max = 6 },
138 .m = { .min = 70, .max = 120 },
139 .m1 = { .min = 10, .max = 22 },
140 .m2 = { .min = 5, .max = 9 },
141 .p = { .min = 5, .max = 80 },
142 .p1 = { .min = 1, .max = 8 },
143 .p2 = { .dot_limit = 200000,
144 .p2_slow = 10, .p2_fast = 5 },
145 .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_lvds = {
149 .dot = { .min = 20000, .max = 400000 },
150 .vco = { .min = 1400000, .max = 2800000 },
151 .n = { .min = 1, .max = 6 },
152 .m = { .min = 70, .max = 120 },
153 .m1 = { .min = 10, .max = 22 },
154 .m2 = { .min = 5, .max = 9 },
155 .p = { .min = 7, .max = 98 },
156 .p1 = { .min = 1, .max = 8 },
157 .p2 = { .dot_limit = 112000,
158 .p2_slow = 14, .p2_fast = 7 },
159 .find_pll = intel_find_best_PLL,
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164 .dot = { .min = 25000, .max = 270000 },
165 .vco = { .min = 1750000, .max = 3500000},
166 .n = { .min = 1, .max = 4 },
167 .m = { .min = 104, .max = 138 },
168 .m1 = { .min = 17, .max = 23 },
169 .m2 = { .min = 5, .max = 11 },
170 .p = { .min = 10, .max = 30 },
171 .p1 = { .min = 1, .max = 3},
172 .p2 = { .dot_limit = 270000,
173 .p2_slow = 10,
174 .p2_fast = 10
175 },
176 .find_pll = intel_g4x_find_best_PLL,
177 };
178
179 static const intel_limit_t intel_limits_g4x_hdmi = {
180 .dot = { .min = 22000, .max = 400000 },
181 .vco = { .min = 1750000, .max = 3500000},
182 .n = { .min = 1, .max = 4 },
183 .m = { .min = 104, .max = 138 },
184 .m1 = { .min = 16, .max = 23 },
185 .m2 = { .min = 5, .max = 11 },
186 .p = { .min = 5, .max = 80 },
187 .p1 = { .min = 1, .max = 8},
188 .p2 = { .dot_limit = 165000,
189 .p2_slow = 10, .p2_fast = 5 },
190 .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194 .dot = { .min = 20000, .max = 115000 },
195 .vco = { .min = 1750000, .max = 3500000 },
196 .n = { .min = 1, .max = 3 },
197 .m = { .min = 104, .max = 138 },
198 .m1 = { .min = 17, .max = 23 },
199 .m2 = { .min = 5, .max = 11 },
200 .p = { .min = 28, .max = 112 },
201 .p1 = { .min = 2, .max = 8 },
202 .p2 = { .dot_limit = 0,
203 .p2_slow = 14, .p2_fast = 14
204 },
205 .find_pll = intel_g4x_find_best_PLL,
206 };
207
208 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209 .dot = { .min = 80000, .max = 224000 },
210 .vco = { .min = 1750000, .max = 3500000 },
211 .n = { .min = 1, .max = 3 },
212 .m = { .min = 104, .max = 138 },
213 .m1 = { .min = 17, .max = 23 },
214 .m2 = { .min = 5, .max = 11 },
215 .p = { .min = 14, .max = 42 },
216 .p1 = { .min = 2, .max = 6 },
217 .p2 = { .dot_limit = 0,
218 .p2_slow = 7, .p2_fast = 7
219 },
220 .find_pll = intel_g4x_find_best_PLL,
221 };
222
223 static const intel_limit_t intel_limits_g4x_display_port = {
224 .dot = { .min = 161670, .max = 227000 },
225 .vco = { .min = 1750000, .max = 3500000},
226 .n = { .min = 1, .max = 2 },
227 .m = { .min = 97, .max = 108 },
228 .m1 = { .min = 0x10, .max = 0x12 },
229 .m2 = { .min = 0x05, .max = 0x06 },
230 .p = { .min = 10, .max = 20 },
231 .p1 = { .min = 1, .max = 2},
232 .p2 = { .dot_limit = 0,
233 .p2_slow = 10, .p2_fast = 10 },
234 .find_pll = intel_find_pll_g4x_dp,
235 };
236
237 static const intel_limit_t intel_limits_pineview_sdvo = {
238 .dot = { .min = 20000, .max = 400000},
239 .vco = { .min = 1700000, .max = 3500000 },
240 /* Pineview's Ncounter is a ring counter */
241 .n = { .min = 3, .max = 6 },
242 .m = { .min = 2, .max = 256 },
243 /* Pineview only has one combined m divider, which we treat as m2. */
244 .m1 = { .min = 0, .max = 0 },
245 .m2 = { .min = 0, .max = 254 },
246 .p = { .min = 5, .max = 80 },
247 .p1 = { .min = 1, .max = 8 },
248 .p2 = { .dot_limit = 200000,
249 .p2_slow = 10, .p2_fast = 5 },
250 .find_pll = intel_find_best_PLL,
251 };
252
253 static const intel_limit_t intel_limits_pineview_lvds = {
254 .dot = { .min = 20000, .max = 400000 },
255 .vco = { .min = 1700000, .max = 3500000 },
256 .n = { .min = 3, .max = 6 },
257 .m = { .min = 2, .max = 256 },
258 .m1 = { .min = 0, .max = 0 },
259 .m2 = { .min = 0, .max = 254 },
260 .p = { .min = 7, .max = 112 },
261 .p1 = { .min = 1, .max = 8 },
262 .p2 = { .dot_limit = 112000,
263 .p2_slow = 14, .p2_fast = 14 },
264 .find_pll = intel_find_best_PLL,
265 };
266
267 /* Ironlake / Sandybridge
268 *
269 * We calculate clock using (register_value + 2) for N/M1/M2, so here
270 * the range value for them is (actual_value - 2).
271 */
272 static const intel_limit_t intel_limits_ironlake_dac = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 5 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 10, .p2_fast = 5 },
283 .find_pll = intel_g4x_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_ironlake_single_lvds = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 3 },
290 .m = { .min = 79, .max = 118 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 3 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 14, .max = 56 },
308 .p1 = { .min = 2, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 7, .p2_fast = 7 },
311 .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 /* LVDS 100mhz refclk limits. */
315 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 2 },
319 .m = { .min = 79, .max = 126 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2,.max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
326 .find_pll = intel_g4x_find_best_PLL,
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 126 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 42 },
337 .p1 = { .min = 2,.max = 6 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_display_port = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000},
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 81, .max = 90 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 10, .max = 20 },
351 .p1 = { .min = 1, .max = 2},
352 .p2 = { .dot_limit = 0,
353 .p2_slow = 10, .p2_fast = 10 },
354 .find_pll = intel_find_pll_ironlake_dp,
355 };
356
357 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358 int refclk)
359 {
360 struct drm_device *dev = crtc->dev;
361 struct drm_i915_private *dev_priv = dev->dev_private;
362 const intel_limit_t *limit;
363
364 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366 LVDS_CLKB_POWER_UP) {
367 /* LVDS dual channel */
368 if (refclk == 100000)
369 limit = &intel_limits_ironlake_dual_lvds_100m;
370 else
371 limit = &intel_limits_ironlake_dual_lvds;
372 } else {
373 if (refclk == 100000)
374 limit = &intel_limits_ironlake_single_lvds_100m;
375 else
376 limit = &intel_limits_ironlake_single_lvds;
377 }
378 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379 HAS_eDP)
380 limit = &intel_limits_ironlake_display_port;
381 else
382 limit = &intel_limits_ironlake_dac;
383
384 return limit;
385 }
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389 struct drm_device *dev = crtc->dev;
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 const intel_limit_t *limit;
392
393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395 LVDS_CLKB_POWER_UP)
396 /* LVDS with dual channel */
397 limit = &intel_limits_g4x_dual_channel_lvds;
398 else
399 /* LVDS with dual channel */
400 limit = &intel_limits_g4x_single_channel_lvds;
401 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403 limit = &intel_limits_g4x_hdmi;
404 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405 limit = &intel_limits_g4x_sdvo;
406 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407 limit = &intel_limits_g4x_display_port;
408 } else /* The option is for other outputs */
409 limit = &intel_limits_i9xx_sdvo;
410
411 return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415 {
416 struct drm_device *dev = crtc->dev;
417 const intel_limit_t *limit;
418
419 if (HAS_PCH_SPLIT(dev))
420 limit = intel_ironlake_limit(crtc, refclk);
421 else if (IS_G4X(dev)) {
422 limit = intel_g4x_limit(crtc);
423 } else if (IS_PINEVIEW(dev)) {
424 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425 limit = &intel_limits_pineview_lvds;
426 else
427 limit = &intel_limits_pineview_sdvo;
428 } else if (!IS_GEN2(dev)) {
429 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430 limit = &intel_limits_i9xx_lvds;
431 else
432 limit = &intel_limits_i9xx_sdvo;
433 } else {
434 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435 limit = &intel_limits_i8xx_lvds;
436 else
437 limit = &intel_limits_i8xx_dvo;
438 }
439 return limit;
440 }
441
442 /* m1 is reserved as 0 in Pineview, n is a ring counter */
443 static void pineview_clock(int refclk, intel_clock_t *clock)
444 {
445 clock->m = clock->m2 + 2;
446 clock->p = clock->p1 * clock->p2;
447 clock->vco = refclk * clock->m / clock->n;
448 clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453 if (IS_PINEVIEW(dev)) {
454 pineview_clock(refclk, clock);
455 return;
456 }
457 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458 clock->p = clock->p1 * clock->p2;
459 clock->vco = refclk * clock->m / (clock->n + 2);
460 clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464 * Returns whether any output on the specified pipe is of the specified type
465 */
466 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467 {
468 struct drm_device *dev = crtc->dev;
469 struct drm_mode_config *mode_config = &dev->mode_config;
470 struct intel_encoder *encoder;
471
472 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473 if (encoder->base.crtc == crtc && encoder->type == type)
474 return true;
475
476 return false;
477 }
478
479 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
480 /**
481 * Returns whether the given set of divisors are valid for a given refclk with
482 * the given connectors.
483 */
484
485 static bool intel_PLL_is_valid(struct drm_device *dev,
486 const intel_limit_t *limit,
487 const intel_clock_t *clock)
488 {
489 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
490 INTELPllInvalid ("p1 out of range\n");
491 if (clock->p < limit->p.min || limit->p.max < clock->p)
492 INTELPllInvalid ("p out of range\n");
493 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
494 INTELPllInvalid ("m2 out of range\n");
495 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
496 INTELPllInvalid ("m1 out of range\n");
497 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498 INTELPllInvalid ("m1 <= m2\n");
499 if (clock->m < limit->m.min || limit->m.max < clock->m)
500 INTELPllInvalid ("m out of range\n");
501 if (clock->n < limit->n.min || limit->n.max < clock->n)
502 INTELPllInvalid ("n out of range\n");
503 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504 INTELPllInvalid ("vco out of range\n");
505 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506 * connector, etc., rather than just a single range.
507 */
508 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509 INTELPllInvalid ("dot out of range\n");
510
511 return true;
512 }
513
514 static bool
515 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516 int target, int refclk, intel_clock_t *best_clock)
517
518 {
519 struct drm_device *dev = crtc->dev;
520 struct drm_i915_private *dev_priv = dev->dev_private;
521 intel_clock_t clock;
522 int err = target;
523
524 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525 (I915_READ(LVDS)) != 0) {
526 /*
527 * For LVDS, if the panel is on, just rely on its current
528 * settings for dual-channel. We haven't figured out how to
529 * reliably set up different single/dual channel state, if we
530 * even can.
531 */
532 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533 LVDS_CLKB_POWER_UP)
534 clock.p2 = limit->p2.p2_fast;
535 else
536 clock.p2 = limit->p2.p2_slow;
537 } else {
538 if (target < limit->p2.dot_limit)
539 clock.p2 = limit->p2.p2_slow;
540 else
541 clock.p2 = limit->p2.p2_fast;
542 }
543
544 memset (best_clock, 0, sizeof (*best_clock));
545
546 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547 clock.m1++) {
548 for (clock.m2 = limit->m2.min;
549 clock.m2 <= limit->m2.max; clock.m2++) {
550 /* m1 is always 0 in Pineview */
551 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552 break;
553 for (clock.n = limit->n.min;
554 clock.n <= limit->n.max; clock.n++) {
555 for (clock.p1 = limit->p1.min;
556 clock.p1 <= limit->p1.max; clock.p1++) {
557 int this_err;
558
559 intel_clock(dev, refclk, &clock);
560 if (!intel_PLL_is_valid(dev, limit,
561 &clock))
562 continue;
563
564 this_err = abs(clock.dot - target);
565 if (this_err < err) {
566 *best_clock = clock;
567 err = this_err;
568 }
569 }
570 }
571 }
572 }
573
574 return (err != target);
575 }
576
577 static bool
578 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579 int target, int refclk, intel_clock_t *best_clock)
580 {
581 struct drm_device *dev = crtc->dev;
582 struct drm_i915_private *dev_priv = dev->dev_private;
583 intel_clock_t clock;
584 int max_n;
585 bool found;
586 /* approximately equals target * 0.00585 */
587 int err_most = (target >> 8) + (target >> 9);
588 found = false;
589
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591 int lvds_reg;
592
593 if (HAS_PCH_SPLIT(dev))
594 lvds_reg = PCH_LVDS;
595 else
596 lvds_reg = LVDS;
597 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598 LVDS_CLKB_POWER_UP)
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
609 memset(best_clock, 0, sizeof(*best_clock));
610 max_n = limit->n.max;
611 /* based on hardware requirement, prefer smaller n to precision */
612 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613 /* based on hardware requirement, prefere larger m1,m2 */
614 for (clock.m1 = limit->m1.max;
615 clock.m1 >= limit->m1.min; clock.m1--) {
616 for (clock.m2 = limit->m2.max;
617 clock.m2 >= limit->m2.min; clock.m2--) {
618 for (clock.p1 = limit->p1.max;
619 clock.p1 >= limit->p1.min; clock.p1--) {
620 int this_err;
621
622 intel_clock(dev, refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626
627 this_err = abs(clock.dot - target);
628 if (this_err < err_most) {
629 *best_clock = clock;
630 err_most = this_err;
631 max_n = clock.n;
632 found = true;
633 }
634 }
635 }
636 }
637 }
638 return found;
639 }
640
641 static bool
642 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643 int target, int refclk, intel_clock_t *best_clock)
644 {
645 struct drm_device *dev = crtc->dev;
646 intel_clock_t clock;
647
648 if (target < 200000) {
649 clock.n = 1;
650 clock.p1 = 2;
651 clock.p2 = 10;
652 clock.m1 = 12;
653 clock.m2 = 9;
654 } else {
655 clock.n = 2;
656 clock.p1 = 1;
657 clock.p2 = 10;
658 clock.m1 = 14;
659 clock.m2 = 8;
660 }
661 intel_clock(dev, refclk, &clock);
662 memcpy(best_clock, &clock, sizeof(intel_clock_t));
663 return true;
664 }
665
666 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
667 static bool
668 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669 int target, int refclk, intel_clock_t *best_clock)
670 {
671 intel_clock_t clock;
672 if (target < 200000) {
673 clock.p1 = 2;
674 clock.p2 = 10;
675 clock.n = 2;
676 clock.m1 = 23;
677 clock.m2 = 8;
678 } else {
679 clock.p1 = 1;
680 clock.p2 = 10;
681 clock.n = 1;
682 clock.m1 = 14;
683 clock.m2 = 2;
684 }
685 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686 clock.p = (clock.p1 * clock.p2);
687 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688 clock.vco = 0;
689 memcpy(best_clock, &clock, sizeof(intel_clock_t));
690 return true;
691 }
692
693 /**
694 * intel_wait_for_vblank - wait for vblank on a given pipe
695 * @dev: drm device
696 * @pipe: pipe to wait for
697 *
698 * Wait for vblank to occur on a given pipe. Needed for various bits of
699 * mode setting code.
700 */
701 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702 {
703 struct drm_i915_private *dev_priv = dev->dev_private;
704 int pipestat_reg = PIPESTAT(pipe);
705
706 /* Clear existing vblank status. Note this will clear any other
707 * sticky status fields as well.
708 *
709 * This races with i915_driver_irq_handler() with the result
710 * that either function could miss a vblank event. Here it is not
711 * fatal, as we will either wait upon the next vblank interrupt or
712 * timeout. Generally speaking intel_wait_for_vblank() is only
713 * called during modeset at which time the GPU should be idle and
714 * should *not* be performing page flips and thus not waiting on
715 * vblanks...
716 * Currently, the result of us stealing a vblank from the irq
717 * handler is that a single frame will be skipped during swapbuffers.
718 */
719 I915_WRITE(pipestat_reg,
720 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722 /* Wait for vblank interrupt bit to set */
723 if (wait_for(I915_READ(pipestat_reg) &
724 PIPE_VBLANK_INTERRUPT_STATUS,
725 50))
726 DRM_DEBUG_KMS("vblank wait timed out\n");
727 }
728
729 /*
730 * intel_wait_for_pipe_off - wait for pipe to turn off
731 * @dev: drm device
732 * @pipe: pipe to wait for
733 *
734 * After disabling a pipe, we can't wait for vblank in the usual way,
735 * spinning on the vblank interrupt status bit, since we won't actually
736 * see an interrupt when the pipe is disabled.
737 *
738 * On Gen4 and above:
739 * wait for the pipe register state bit to turn off
740 *
741 * Otherwise:
742 * wait for the display line value to settle (it usually
743 * ends up stopping at the start of the next frame).
744 *
745 */
746 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747 {
748 struct drm_i915_private *dev_priv = dev->dev_private;
749
750 if (INTEL_INFO(dev)->gen >= 4) {
751 int reg = PIPECONF(pipe);
752
753 /* Wait for the Pipe State to go off */
754 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755 100))
756 DRM_DEBUG_KMS("pipe_off wait timed out\n");
757 } else {
758 u32 last_line;
759 int reg = PIPEDSL(pipe);
760 unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762 /* Wait for the display line to settle */
763 do {
764 last_line = I915_READ(reg) & DSL_LINEMASK;
765 mdelay(5);
766 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767 time_after(timeout, jiffies));
768 if (time_after(jiffies, timeout))
769 DRM_DEBUG_KMS("pipe_off wait timed out\n");
770 }
771 }
772
773 static const char *state_string(bool enabled)
774 {
775 return enabled ? "on" : "off";
776 }
777
778 /* Only for pre-ILK configs */
779 static void assert_pll(struct drm_i915_private *dev_priv,
780 enum pipe pipe, bool state)
781 {
782 int reg;
783 u32 val;
784 bool cur_state;
785
786 reg = DPLL(pipe);
787 val = I915_READ(reg);
788 cur_state = !!(val & DPLL_VCO_ENABLE);
789 WARN(cur_state != state,
790 "PLL state assertion failure (expected %s, current %s)\n",
791 state_string(state), state_string(cur_state));
792 }
793 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
794 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796 /* For ILK+ */
797 static void assert_pch_pll(struct drm_i915_private *dev_priv,
798 enum pipe pipe, bool state)
799 {
800 int reg;
801 u32 val;
802 bool cur_state;
803
804 reg = PCH_DPLL(pipe);
805 val = I915_READ(reg);
806 cur_state = !!(val & DPLL_VCO_ENABLE);
807 WARN(cur_state != state,
808 "PCH PLL state assertion failure (expected %s, current %s)\n",
809 state_string(state), state_string(cur_state));
810 }
811 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815 enum pipe pipe, bool state)
816 {
817 int reg;
818 u32 val;
819 bool cur_state;
820
821 reg = FDI_TX_CTL(pipe);
822 val = I915_READ(reg);
823 cur_state = !!(val & FDI_TX_ENABLE);
824 WARN(cur_state != state,
825 "FDI TX state assertion failure (expected %s, current %s)\n",
826 state_string(state), state_string(cur_state));
827 }
828 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832 enum pipe pipe, bool state)
833 {
834 int reg;
835 u32 val;
836 bool cur_state;
837
838 reg = FDI_RX_CTL(pipe);
839 val = I915_READ(reg);
840 cur_state = !!(val & FDI_RX_ENABLE);
841 WARN(cur_state != state,
842 "FDI RX state assertion failure (expected %s, current %s)\n",
843 state_string(state), state_string(cur_state));
844 }
845 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849 enum pipe pipe)
850 {
851 int reg;
852 u32 val;
853
854 /* ILK FDI PLL is always enabled */
855 if (dev_priv->info->gen == 5)
856 return;
857
858 reg = FDI_TX_CTL(pipe);
859 val = I915_READ(reg);
860 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861 }
862
863 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
865 {
866 int reg;
867 u32 val;
868
869 reg = FDI_RX_CTL(pipe);
870 val = I915_READ(reg);
871 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872 }
873
874 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875 enum pipe pipe)
876 {
877 int pp_reg, lvds_reg;
878 u32 val;
879 enum pipe panel_pipe = PIPE_A;
880 bool locked = locked;
881
882 if (HAS_PCH_SPLIT(dev_priv->dev)) {
883 pp_reg = PCH_PP_CONTROL;
884 lvds_reg = PCH_LVDS;
885 } else {
886 pp_reg = PP_CONTROL;
887 lvds_reg = LVDS;
888 }
889
890 val = I915_READ(pp_reg);
891 if (!(val & PANEL_POWER_ON) ||
892 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893 locked = false;
894
895 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896 panel_pipe = PIPE_B;
897
898 WARN(panel_pipe == pipe && locked,
899 "panel assertion failure, pipe %c regs locked\n",
900 pipe_name(pipe));
901 }
902
903 static void assert_pipe(struct drm_i915_private *dev_priv,
904 enum pipe pipe, bool state)
905 {
906 int reg;
907 u32 val;
908 bool cur_state;
909
910 reg = PIPECONF(pipe);
911 val = I915_READ(reg);
912 cur_state = !!(val & PIPECONF_ENABLE);
913 WARN(cur_state != state,
914 "pipe %c assertion failure (expected %s, current %s)\n",
915 pipe_name(pipe), state_string(state), state_string(cur_state));
916 }
917 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921 enum plane plane)
922 {
923 int reg;
924 u32 val;
925
926 reg = DSPCNTR(plane);
927 val = I915_READ(reg);
928 WARN(!(val & DISPLAY_PLANE_ENABLE),
929 "plane %c assertion failure, should be active but is disabled\n",
930 plane_name(plane));
931 }
932
933 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934 enum pipe pipe)
935 {
936 int reg, i;
937 u32 val;
938 int cur_pipe;
939
940 /* Planes are fixed to pipes on ILK+ */
941 if (HAS_PCH_SPLIT(dev_priv->dev))
942 return;
943
944 /* Need to check both planes against the pipe */
945 for (i = 0; i < 2; i++) {
946 reg = DSPCNTR(i);
947 val = I915_READ(reg);
948 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949 DISPPLANE_SEL_PIPE_SHIFT;
950 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951 "plane %c assertion failure, should be off on pipe %c but is still active\n",
952 plane_name(i), pipe_name(pipe));
953 }
954 }
955
956 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957 {
958 u32 val;
959 bool enabled;
960
961 val = I915_READ(PCH_DREF_CONTROL);
962 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963 DREF_SUPERSPREAD_SOURCE_MASK));
964 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965 }
966
967 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968 enum pipe pipe)
969 {
970 int reg;
971 u32 val;
972 bool enabled;
973
974 reg = TRANSCONF(pipe);
975 val = I915_READ(reg);
976 enabled = !!(val & TRANS_ENABLE);
977 WARN(enabled,
978 "transcoder assertion failed, should be off on pipe %c but is still active\n",
979 pipe_name(pipe));
980 }
981
982 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983 enum pipe pipe, int reg)
984 {
985 u32 val = I915_READ(reg);
986 WARN(DP_PIPE_ENABLED(val, pipe),
987 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988 reg, pipe_name(pipe));
989 }
990
991 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992 enum pipe pipe, int reg)
993 {
994 u32 val = I915_READ(reg);
995 WARN(HDMI_PIPE_ENABLED(val, pipe),
996 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997 reg, pipe_name(pipe));
998 }
999
1000 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001 enum pipe pipe)
1002 {
1003 int reg;
1004 u32 val;
1005
1006 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010 reg = PCH_ADPA;
1011 val = I915_READ(reg);
1012 WARN(ADPA_PIPE_ENABLED(val, pipe),
1013 "PCH VGA enabled on transcoder %c, should be disabled\n",
1014 pipe_name(pipe));
1015
1016 reg = PCH_LVDS;
1017 val = I915_READ(reg);
1018 WARN(LVDS_PIPE_ENABLED(val, pipe),
1019 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1020 pipe_name(pipe));
1021
1022 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025 }
1026
1027 /**
1028 * intel_enable_pll - enable a PLL
1029 * @dev_priv: i915 private structure
1030 * @pipe: pipe PLL to enable
1031 *
1032 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1033 * make sure the PLL reg is writable first though, since the panel write
1034 * protect mechanism may be enabled.
1035 *
1036 * Note! This is for pre-ILK only.
1037 */
1038 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040 int reg;
1041 u32 val;
1042
1043 /* No really, not for ILK+ */
1044 BUG_ON(dev_priv->info->gen >= 5);
1045
1046 /* PLL is protected by panel, make sure we can write it */
1047 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048 assert_panel_unlocked(dev_priv, pipe);
1049
1050 reg = DPLL(pipe);
1051 val = I915_READ(reg);
1052 val |= DPLL_VCO_ENABLE;
1053
1054 /* We do this three times for luck */
1055 I915_WRITE(reg, val);
1056 POSTING_READ(reg);
1057 udelay(150); /* wait for warmup */
1058 I915_WRITE(reg, val);
1059 POSTING_READ(reg);
1060 udelay(150); /* wait for warmup */
1061 I915_WRITE(reg, val);
1062 POSTING_READ(reg);
1063 udelay(150); /* wait for warmup */
1064 }
1065
1066 /**
1067 * intel_disable_pll - disable a PLL
1068 * @dev_priv: i915 private structure
1069 * @pipe: pipe PLL to disable
1070 *
1071 * Disable the PLL for @pipe, making sure the pipe is off first.
1072 *
1073 * Note! This is for pre-ILK only.
1074 */
1075 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076 {
1077 int reg;
1078 u32 val;
1079
1080 /* Don't disable pipe A or pipe A PLLs if needed */
1081 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082 return;
1083
1084 /* Make sure the pipe isn't still relying on us */
1085 assert_pipe_disabled(dev_priv, pipe);
1086
1087 reg = DPLL(pipe);
1088 val = I915_READ(reg);
1089 val &= ~DPLL_VCO_ENABLE;
1090 I915_WRITE(reg, val);
1091 POSTING_READ(reg);
1092 }
1093
1094 /**
1095 * intel_enable_pch_pll - enable PCH PLL
1096 * @dev_priv: i915 private structure
1097 * @pipe: pipe PLL to enable
1098 *
1099 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1100 * drives the transcoder clock.
1101 */
1102 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103 enum pipe pipe)
1104 {
1105 int reg;
1106 u32 val;
1107
1108 /* PCH only available on ILK+ */
1109 BUG_ON(dev_priv->info->gen < 5);
1110
1111 /* PCH refclock must be enabled first */
1112 assert_pch_refclk_enabled(dev_priv);
1113
1114 reg = PCH_DPLL(pipe);
1115 val = I915_READ(reg);
1116 val |= DPLL_VCO_ENABLE;
1117 I915_WRITE(reg, val);
1118 POSTING_READ(reg);
1119 udelay(200);
1120 }
1121
1122 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* PCH only available on ILK+ */
1129 BUG_ON(dev_priv->info->gen < 5);
1130
1131 /* Make sure transcoder isn't still depending on us */
1132 assert_transcoder_disabled(dev_priv, pipe);
1133
1134 reg = PCH_DPLL(pipe);
1135 val = I915_READ(reg);
1136 val &= ~DPLL_VCO_ENABLE;
1137 I915_WRITE(reg, val);
1138 POSTING_READ(reg);
1139 udelay(200);
1140 }
1141
1142 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143 enum pipe pipe)
1144 {
1145 int reg;
1146 u32 val;
1147
1148 /* PCH only available on ILK+ */
1149 BUG_ON(dev_priv->info->gen < 5);
1150
1151 /* Make sure PCH DPLL is enabled */
1152 assert_pch_pll_enabled(dev_priv, pipe);
1153
1154 /* FDI must be feeding us bits for PCH ports */
1155 assert_fdi_tx_enabled(dev_priv, pipe);
1156 assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158 reg = TRANSCONF(pipe);
1159 val = I915_READ(reg);
1160 /*
1161 * make the BPC in transcoder be consistent with
1162 * that in pipeconf reg.
1163 */
1164 val &= ~PIPE_BPC_MASK;
1165 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166 I915_WRITE(reg, val | TRANS_ENABLE);
1167 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169 }
1170
1171 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172 enum pipe pipe)
1173 {
1174 int reg;
1175 u32 val;
1176
1177 /* FDI relies on the transcoder */
1178 assert_fdi_tx_disabled(dev_priv, pipe);
1179 assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181 /* Ports must be off as well */
1182 assert_pch_ports_disabled(dev_priv, pipe);
1183
1184 reg = TRANSCONF(pipe);
1185 val = I915_READ(reg);
1186 val &= ~TRANS_ENABLE;
1187 I915_WRITE(reg, val);
1188 /* wait for PCH transcoder off, transcoder state */
1189 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190 DRM_ERROR("failed to disable transcoder\n");
1191 }
1192
1193 /**
1194 * intel_enable_pipe - enable a pipe, asserting requirements
1195 * @dev_priv: i915 private structure
1196 * @pipe: pipe to enable
1197 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1198 *
1199 * Enable @pipe, making sure that various hardware specific requirements
1200 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201 *
1202 * @pipe should be %PIPE_A or %PIPE_B.
1203 *
1204 * Will wait until the pipe is actually running (i.e. first vblank) before
1205 * returning.
1206 */
1207 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208 bool pch_port)
1209 {
1210 int reg;
1211 u32 val;
1212
1213 /*
1214 * A pipe without a PLL won't actually be able to drive bits from
1215 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1216 * need the check.
1217 */
1218 if (!HAS_PCH_SPLIT(dev_priv->dev))
1219 assert_pll_enabled(dev_priv, pipe);
1220 else {
1221 if (pch_port) {
1222 /* if driving the PCH, we need FDI enabled */
1223 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225 }
1226 /* FIXME: assert CPU port conditions for SNB+ */
1227 }
1228
1229 reg = PIPECONF(pipe);
1230 val = I915_READ(reg);
1231 if (val & PIPECONF_ENABLE)
1232 return;
1233
1234 I915_WRITE(reg, val | PIPECONF_ENABLE);
1235 intel_wait_for_vblank(dev_priv->dev, pipe);
1236 }
1237
1238 /**
1239 * intel_disable_pipe - disable a pipe, asserting requirements
1240 * @dev_priv: i915 private structure
1241 * @pipe: pipe to disable
1242 *
1243 * Disable @pipe, making sure that various hardware specific requirements
1244 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245 *
1246 * @pipe should be %PIPE_A or %PIPE_B.
1247 *
1248 * Will wait until the pipe has shut down before returning.
1249 */
1250 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251 enum pipe pipe)
1252 {
1253 int reg;
1254 u32 val;
1255
1256 /*
1257 * Make sure planes won't keep trying to pump pixels to us,
1258 * or we might hang the display.
1259 */
1260 assert_planes_disabled(dev_priv, pipe);
1261
1262 /* Don't disable pipe A or pipe A PLLs if needed */
1263 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264 return;
1265
1266 reg = PIPECONF(pipe);
1267 val = I915_READ(reg);
1268 if ((val & PIPECONF_ENABLE) == 0)
1269 return;
1270
1271 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273 }
1274
1275 /**
1276 * intel_enable_plane - enable a display plane on a given pipe
1277 * @dev_priv: i915 private structure
1278 * @plane: plane to enable
1279 * @pipe: pipe being fed
1280 *
1281 * Enable @plane on @pipe, making sure that @pipe is running first.
1282 */
1283 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, enum pipe pipe)
1285 {
1286 int reg;
1287 u32 val;
1288
1289 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1290 assert_pipe_enabled(dev_priv, pipe);
1291
1292 reg = DSPCNTR(plane);
1293 val = I915_READ(reg);
1294 if (val & DISPLAY_PLANE_ENABLE)
1295 return;
1296
1297 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298 intel_wait_for_vblank(dev_priv->dev, pipe);
1299 }
1300
1301 /*
1302 * Plane regs are double buffered, going from enabled->disabled needs a
1303 * trigger in order to latch. The display address reg provides this.
1304 */
1305 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306 enum plane plane)
1307 {
1308 u32 reg = DSPADDR(plane);
1309 I915_WRITE(reg, I915_READ(reg));
1310 }
1311
1312 /**
1313 * intel_disable_plane - disable a display plane
1314 * @dev_priv: i915 private structure
1315 * @plane: plane to disable
1316 * @pipe: pipe consuming the data
1317 *
1318 * Disable @plane; should be an independent operation.
1319 */
1320 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321 enum plane plane, enum pipe pipe)
1322 {
1323 int reg;
1324 u32 val;
1325
1326 reg = DSPCNTR(plane);
1327 val = I915_READ(reg);
1328 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329 return;
1330
1331 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332 intel_flush_display_plane(dev_priv, plane);
1333 intel_wait_for_vblank(dev_priv->dev, pipe);
1334 }
1335
1336 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337 enum pipe pipe, int reg)
1338 {
1339 u32 val = I915_READ(reg);
1340 if (DP_PIPE_ENABLED(val, pipe))
1341 I915_WRITE(reg, val & ~DP_PORT_EN);
1342 }
1343
1344 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345 enum pipe pipe, int reg)
1346 {
1347 u32 val = I915_READ(reg);
1348 if (HDMI_PIPE_ENABLED(val, pipe))
1349 I915_WRITE(reg, val & ~PORT_ENABLE);
1350 }
1351
1352 /* Disable any ports connected to this transcoder */
1353 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354 enum pipe pipe)
1355 {
1356 u32 reg, val;
1357
1358 val = I915_READ(PCH_PP_CONTROL);
1359 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361 disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362 disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363 disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365 reg = PCH_ADPA;
1366 val = I915_READ(reg);
1367 if (ADPA_PIPE_ENABLED(val, pipe))
1368 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370 reg = PCH_LVDS;
1371 val = I915_READ(reg);
1372 if (LVDS_PIPE_ENABLED(val, pipe)) {
1373 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374 POSTING_READ(reg);
1375 udelay(100);
1376 }
1377
1378 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380 disable_pch_hdmi(dev_priv, pipe, HDMID);
1381 }
1382
1383 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384 {
1385 struct drm_device *dev = crtc->dev;
1386 struct drm_i915_private *dev_priv = dev->dev_private;
1387 struct drm_framebuffer *fb = crtc->fb;
1388 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389 struct drm_i915_gem_object *obj = intel_fb->obj;
1390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391 int plane, i;
1392 u32 fbc_ctl, fbc_ctl2;
1393
1394 if (fb->pitch == dev_priv->cfb_pitch &&
1395 obj->fence_reg == dev_priv->cfb_fence &&
1396 intel_crtc->plane == dev_priv->cfb_plane &&
1397 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398 return;
1399
1400 i8xx_disable_fbc(dev);
1401
1402 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404 if (fb->pitch < dev_priv->cfb_pitch)
1405 dev_priv->cfb_pitch = fb->pitch;
1406
1407 /* FBC_CTL wants 64B units */
1408 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409 dev_priv->cfb_fence = obj->fence_reg;
1410 dev_priv->cfb_plane = intel_crtc->plane;
1411 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413 /* Clear old tags */
1414 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415 I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417 /* Set it up... */
1418 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419 if (obj->tiling_mode != I915_TILING_NONE)
1420 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424 /* enable it... */
1425 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426 if (IS_I945GM(dev))
1427 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430 if (obj->tiling_mode != I915_TILING_NONE)
1431 fbc_ctl |= dev_priv->cfb_fence;
1432 I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436 }
1437
1438 void i8xx_disable_fbc(struct drm_device *dev)
1439 {
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 u32 fbc_ctl;
1442
1443 /* Disable compression */
1444 fbc_ctl = I915_READ(FBC_CONTROL);
1445 if ((fbc_ctl & FBC_CTL_EN) == 0)
1446 return;
1447
1448 fbc_ctl &= ~FBC_CTL_EN;
1449 I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451 /* Wait for compressing bit to clear */
1452 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453 DRM_DEBUG_KMS("FBC idle timed out\n");
1454 return;
1455 }
1456
1457 DRM_DEBUG_KMS("disabled FBC\n");
1458 }
1459
1460 static bool i8xx_fbc_enabled(struct drm_device *dev)
1461 {
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465 }
1466
1467 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468 {
1469 struct drm_device *dev = crtc->dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 struct drm_framebuffer *fb = crtc->fb;
1472 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473 struct drm_i915_gem_object *obj = intel_fb->obj;
1474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476 unsigned long stall_watermark = 200;
1477 u32 dpfc_ctl;
1478
1479 dpfc_ctl = I915_READ(DPFC_CONTROL);
1480 if (dpfc_ctl & DPFC_CTL_EN) {
1481 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482 dev_priv->cfb_fence == obj->fence_reg &&
1483 dev_priv->cfb_plane == intel_crtc->plane &&
1484 dev_priv->cfb_y == crtc->y)
1485 return;
1486
1487 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488 intel_wait_for_vblank(dev, intel_crtc->pipe);
1489 }
1490
1491 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492 dev_priv->cfb_fence = obj->fence_reg;
1493 dev_priv->cfb_plane = intel_crtc->plane;
1494 dev_priv->cfb_y = crtc->y;
1495
1496 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497 if (obj->tiling_mode != I915_TILING_NONE) {
1498 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500 } else {
1501 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502 }
1503
1504 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509 /* enable it... */
1510 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513 }
1514
1515 void g4x_disable_fbc(struct drm_device *dev)
1516 {
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 u32 dpfc_ctl;
1519
1520 /* Disable compression */
1521 dpfc_ctl = I915_READ(DPFC_CONTROL);
1522 if (dpfc_ctl & DPFC_CTL_EN) {
1523 dpfc_ctl &= ~DPFC_CTL_EN;
1524 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526 DRM_DEBUG_KMS("disabled FBC\n");
1527 }
1528 }
1529
1530 static bool g4x_fbc_enabled(struct drm_device *dev)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535 }
1536
1537 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538 {
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 u32 blt_ecoskpd;
1541
1542 /* Make sure blitter notifies FBC of writes */
1543 gen6_gt_force_wake_get(dev_priv);
1544 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546 GEN6_BLITTER_LOCK_SHIFT;
1547 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551 GEN6_BLITTER_LOCK_SHIFT);
1552 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554 gen6_gt_force_wake_put(dev_priv);
1555 }
1556
1557 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559 struct drm_device *dev = crtc->dev;
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 struct drm_framebuffer *fb = crtc->fb;
1562 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563 struct drm_i915_gem_object *obj = intel_fb->obj;
1564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566 unsigned long stall_watermark = 200;
1567 u32 dpfc_ctl;
1568
1569 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570 if (dpfc_ctl & DPFC_CTL_EN) {
1571 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572 dev_priv->cfb_fence == obj->fence_reg &&
1573 dev_priv->cfb_plane == intel_crtc->plane &&
1574 dev_priv->cfb_offset == obj->gtt_offset &&
1575 dev_priv->cfb_y == crtc->y)
1576 return;
1577
1578 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579 intel_wait_for_vblank(dev, intel_crtc->pipe);
1580 }
1581
1582 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583 dev_priv->cfb_fence = obj->fence_reg;
1584 dev_priv->cfb_plane = intel_crtc->plane;
1585 dev_priv->cfb_offset = obj->gtt_offset;
1586 dev_priv->cfb_y = crtc->y;
1587
1588 dpfc_ctl &= DPFC_RESERVED;
1589 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590 if (obj->tiling_mode != I915_TILING_NONE) {
1591 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593 } else {
1594 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595 }
1596
1597 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602 /* enable it... */
1603 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605 if (IS_GEN6(dev)) {
1606 I915_WRITE(SNB_DPFC_CTL_SA,
1607 SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609 sandybridge_blit_fbc_update(dev);
1610 }
1611
1612 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 void ironlake_disable_fbc(struct drm_device *dev)
1616 {
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 u32 dpfc_ctl;
1619
1620 /* Disable compression */
1621 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622 if (dpfc_ctl & DPFC_CTL_EN) {
1623 dpfc_ctl &= ~DPFC_CTL_EN;
1624 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626 DRM_DEBUG_KMS("disabled FBC\n");
1627 }
1628 }
1629
1630 static bool ironlake_fbc_enabled(struct drm_device *dev)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 bool intel_fbc_enabled(struct drm_device *dev)
1638 {
1639 struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641 if (!dev_priv->display.fbc_enabled)
1642 return false;
1643
1644 return dev_priv->display.fbc_enabled(dev);
1645 }
1646
1647 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648 {
1649 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651 if (!dev_priv->display.enable_fbc)
1652 return;
1653
1654 dev_priv->display.enable_fbc(crtc, interval);
1655 }
1656
1657 void intel_disable_fbc(struct drm_device *dev)
1658 {
1659 struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661 if (!dev_priv->display.disable_fbc)
1662 return;
1663
1664 dev_priv->display.disable_fbc(dev);
1665 }
1666
1667 /**
1668 * intel_update_fbc - enable/disable FBC as needed
1669 * @dev: the drm_device
1670 *
1671 * Set up the framebuffer compression hardware at mode set time. We
1672 * enable it if possible:
1673 * - plane A only (on pre-965)
1674 * - no pixel mulitply/line duplication
1675 * - no alpha buffer discard
1676 * - no dual wide
1677 * - framebuffer <= 2048 in width, 1536 in height
1678 *
1679 * We can't assume that any compression will take place (worst case),
1680 * so the compressed buffer has to be the same size as the uncompressed
1681 * one. It also must reside (along with the line length buffer) in
1682 * stolen memory.
1683 *
1684 * We need to enable/disable FBC on a global basis.
1685 */
1686 static void intel_update_fbc(struct drm_device *dev)
1687 {
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct drm_crtc *crtc = NULL, *tmp_crtc;
1690 struct intel_crtc *intel_crtc;
1691 struct drm_framebuffer *fb;
1692 struct intel_framebuffer *intel_fb;
1693 struct drm_i915_gem_object *obj;
1694
1695 DRM_DEBUG_KMS("\n");
1696
1697 if (!i915_powersave)
1698 return;
1699
1700 if (!I915_HAS_FBC(dev))
1701 return;
1702
1703 /*
1704 * If FBC is already on, we just have to verify that we can
1705 * keep it that way...
1706 * Need to disable if:
1707 * - more than one pipe is active
1708 * - changing FBC params (stride, fence, mode)
1709 * - new fb is too large to fit in compressed buffer
1710 * - going to an unsupported config (interlace, pixel multiply, etc.)
1711 */
1712 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713 if (tmp_crtc->enabled && tmp_crtc->fb) {
1714 if (crtc) {
1715 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717 goto out_disable;
1718 }
1719 crtc = tmp_crtc;
1720 }
1721 }
1722
1723 if (!crtc || crtc->fb == NULL) {
1724 DRM_DEBUG_KMS("no output, disabling\n");
1725 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726 goto out_disable;
1727 }
1728
1729 intel_crtc = to_intel_crtc(crtc);
1730 fb = crtc->fb;
1731 intel_fb = to_intel_framebuffer(fb);
1732 obj = intel_fb->obj;
1733
1734 if (!i915_enable_fbc) {
1735 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1736 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1737 goto out_disable;
1738 }
1739 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1740 DRM_DEBUG_KMS("framebuffer too large, disabling "
1741 "compression\n");
1742 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1743 goto out_disable;
1744 }
1745 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1746 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1747 DRM_DEBUG_KMS("mode incompatible with compression, "
1748 "disabling\n");
1749 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1750 goto out_disable;
1751 }
1752 if ((crtc->mode.hdisplay > 2048) ||
1753 (crtc->mode.vdisplay > 1536)) {
1754 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1755 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1756 goto out_disable;
1757 }
1758 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1759 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1760 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1761 goto out_disable;
1762 }
1763 if (obj->tiling_mode != I915_TILING_X) {
1764 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1765 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1766 goto out_disable;
1767 }
1768
1769 /* If the kernel debugger is active, always disable compression */
1770 if (in_dbg_master())
1771 goto out_disable;
1772
1773 intel_enable_fbc(crtc, 500);
1774 return;
1775
1776 out_disable:
1777 /* Multiple disables should be harmless */
1778 if (intel_fbc_enabled(dev)) {
1779 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1780 intel_disable_fbc(dev);
1781 }
1782 }
1783
1784 int
1785 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1786 struct drm_i915_gem_object *obj,
1787 struct intel_ring_buffer *pipelined)
1788 {
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 u32 alignment;
1791 int ret;
1792
1793 switch (obj->tiling_mode) {
1794 case I915_TILING_NONE:
1795 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1796 alignment = 128 * 1024;
1797 else if (INTEL_INFO(dev)->gen >= 4)
1798 alignment = 4 * 1024;
1799 else
1800 alignment = 64 * 1024;
1801 break;
1802 case I915_TILING_X:
1803 /* pin() will align the object as required by fence */
1804 alignment = 0;
1805 break;
1806 case I915_TILING_Y:
1807 /* FIXME: Is this true? */
1808 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1809 return -EINVAL;
1810 default:
1811 BUG();
1812 }
1813
1814 dev_priv->mm.interruptible = false;
1815 ret = i915_gem_object_pin(obj, alignment, true);
1816 if (ret)
1817 goto err_interruptible;
1818
1819 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1820 if (ret)
1821 goto err_unpin;
1822
1823 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1824 * fence, whereas 965+ only requires a fence if using
1825 * framebuffer compression. For simplicity, we always install
1826 * a fence as the cost is not that onerous.
1827 */
1828 if (obj->tiling_mode != I915_TILING_NONE) {
1829 ret = i915_gem_object_get_fence(obj, pipelined);
1830 if (ret)
1831 goto err_unpin;
1832 }
1833
1834 dev_priv->mm.interruptible = true;
1835 return 0;
1836
1837 err_unpin:
1838 i915_gem_object_unpin(obj);
1839 err_interruptible:
1840 dev_priv->mm.interruptible = true;
1841 return ret;
1842 }
1843
1844 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1845 static int
1846 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1847 int x, int y, enum mode_set_atomic state)
1848 {
1849 struct drm_device *dev = crtc->dev;
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1852 struct intel_framebuffer *intel_fb;
1853 struct drm_i915_gem_object *obj;
1854 int plane = intel_crtc->plane;
1855 unsigned long Start, Offset;
1856 u32 dspcntr;
1857 u32 reg;
1858
1859 switch (plane) {
1860 case 0:
1861 case 1:
1862 break;
1863 default:
1864 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1865 return -EINVAL;
1866 }
1867
1868 intel_fb = to_intel_framebuffer(fb);
1869 obj = intel_fb->obj;
1870
1871 reg = DSPCNTR(plane);
1872 dspcntr = I915_READ(reg);
1873 /* Mask out pixel format bits in case we change it */
1874 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1875 switch (fb->bits_per_pixel) {
1876 case 8:
1877 dspcntr |= DISPPLANE_8BPP;
1878 break;
1879 case 16:
1880 if (fb->depth == 15)
1881 dspcntr |= DISPPLANE_15_16BPP;
1882 else
1883 dspcntr |= DISPPLANE_16BPP;
1884 break;
1885 case 24:
1886 case 32:
1887 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1888 break;
1889 default:
1890 DRM_ERROR("Unknown color depth\n");
1891 return -EINVAL;
1892 }
1893 if (INTEL_INFO(dev)->gen >= 4) {
1894 if (obj->tiling_mode != I915_TILING_NONE)
1895 dspcntr |= DISPPLANE_TILED;
1896 else
1897 dspcntr &= ~DISPPLANE_TILED;
1898 }
1899
1900 if (HAS_PCH_SPLIT(dev))
1901 /* must disable */
1902 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1903
1904 I915_WRITE(reg, dspcntr);
1905
1906 Start = obj->gtt_offset;
1907 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1908
1909 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1910 Start, Offset, x, y, fb->pitch);
1911 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1912 if (INTEL_INFO(dev)->gen >= 4) {
1913 I915_WRITE(DSPSURF(plane), Start);
1914 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1915 I915_WRITE(DSPADDR(plane), Offset);
1916 } else
1917 I915_WRITE(DSPADDR(plane), Start + Offset);
1918 POSTING_READ(reg);
1919
1920 intel_update_fbc(dev);
1921 intel_increase_pllclock(crtc);
1922
1923 return 0;
1924 }
1925
1926 static int
1927 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1928 struct drm_framebuffer *old_fb)
1929 {
1930 struct drm_device *dev = crtc->dev;
1931 struct drm_i915_master_private *master_priv;
1932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933 int ret;
1934
1935 /* no fb bound */
1936 if (!crtc->fb) {
1937 DRM_DEBUG_KMS("No FB bound\n");
1938 return 0;
1939 }
1940
1941 switch (intel_crtc->plane) {
1942 case 0:
1943 case 1:
1944 break;
1945 default:
1946 return -EINVAL;
1947 }
1948
1949 mutex_lock(&dev->struct_mutex);
1950 ret = intel_pin_and_fence_fb_obj(dev,
1951 to_intel_framebuffer(crtc->fb)->obj,
1952 NULL);
1953 if (ret != 0) {
1954 mutex_unlock(&dev->struct_mutex);
1955 return ret;
1956 }
1957
1958 if (old_fb) {
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1961
1962 wait_event(dev_priv->pending_flip_queue,
1963 atomic_read(&dev_priv->mm.wedged) ||
1964 atomic_read(&obj->pending_flip) == 0);
1965
1966 /* Big Hammer, we also need to ensure that any pending
1967 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1968 * current scanout is retired before unpinning the old
1969 * framebuffer.
1970 *
1971 * This should only fail upon a hung GPU, in which case we
1972 * can safely continue.
1973 */
1974 ret = i915_gem_object_flush_gpu(obj);
1975 (void) ret;
1976 }
1977
1978 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1979 LEAVE_ATOMIC_MODE_SET);
1980 if (ret) {
1981 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1982 mutex_unlock(&dev->struct_mutex);
1983 return ret;
1984 }
1985
1986 if (old_fb) {
1987 intel_wait_for_vblank(dev, intel_crtc->pipe);
1988 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1989 }
1990
1991 mutex_unlock(&dev->struct_mutex);
1992
1993 if (!dev->primary->master)
1994 return 0;
1995
1996 master_priv = dev->primary->master->driver_priv;
1997 if (!master_priv->sarea_priv)
1998 return 0;
1999
2000 if (intel_crtc->pipe) {
2001 master_priv->sarea_priv->pipeB_x = x;
2002 master_priv->sarea_priv->pipeB_y = y;
2003 } else {
2004 master_priv->sarea_priv->pipeA_x = x;
2005 master_priv->sarea_priv->pipeA_y = y;
2006 }
2007
2008 return 0;
2009 }
2010
2011 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2012 {
2013 struct drm_device *dev = crtc->dev;
2014 struct drm_i915_private *dev_priv = dev->dev_private;
2015 u32 dpa_ctl;
2016
2017 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2018 dpa_ctl = I915_READ(DP_A);
2019 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2020
2021 if (clock < 200000) {
2022 u32 temp;
2023 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2024 /* workaround for 160Mhz:
2025 1) program 0x4600c bits 15:0 = 0x8124
2026 2) program 0x46010 bit 0 = 1
2027 3) program 0x46034 bit 24 = 1
2028 4) program 0x64000 bit 14 = 1
2029 */
2030 temp = I915_READ(0x4600c);
2031 temp &= 0xffff0000;
2032 I915_WRITE(0x4600c, temp | 0x8124);
2033
2034 temp = I915_READ(0x46010);
2035 I915_WRITE(0x46010, temp | 1);
2036
2037 temp = I915_READ(0x46034);
2038 I915_WRITE(0x46034, temp | (1 << 24));
2039 } else {
2040 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2041 }
2042 I915_WRITE(DP_A, dpa_ctl);
2043
2044 POSTING_READ(DP_A);
2045 udelay(500);
2046 }
2047
2048 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2049 {
2050 struct drm_device *dev = crtc->dev;
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053 int pipe = intel_crtc->pipe;
2054 u32 reg, temp;
2055
2056 /* enable normal train */
2057 reg = FDI_TX_CTL(pipe);
2058 temp = I915_READ(reg);
2059 if (IS_IVYBRIDGE(dev)) {
2060 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2061 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2062 } else {
2063 temp &= ~FDI_LINK_TRAIN_NONE;
2064 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2065 }
2066 I915_WRITE(reg, temp);
2067
2068 reg = FDI_RX_CTL(pipe);
2069 temp = I915_READ(reg);
2070 if (HAS_PCH_CPT(dev)) {
2071 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2072 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2073 } else {
2074 temp &= ~FDI_LINK_TRAIN_NONE;
2075 temp |= FDI_LINK_TRAIN_NONE;
2076 }
2077 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2078
2079 /* wait one idle pattern time */
2080 POSTING_READ(reg);
2081 udelay(1000);
2082
2083 /* IVB wants error correction enabled */
2084 if (IS_IVYBRIDGE(dev))
2085 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2086 FDI_FE_ERRC_ENABLE);
2087 }
2088
2089 /* The FDI link training functions for ILK/Ibexpeak. */
2090 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2091 {
2092 struct drm_device *dev = crtc->dev;
2093 struct drm_i915_private *dev_priv = dev->dev_private;
2094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095 int pipe = intel_crtc->pipe;
2096 int plane = intel_crtc->plane;
2097 u32 reg, temp, tries;
2098
2099 /* FDI needs bits from pipe & plane first */
2100 assert_pipe_enabled(dev_priv, pipe);
2101 assert_plane_enabled(dev_priv, plane);
2102
2103 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2104 for train result */
2105 reg = FDI_RX_IMR(pipe);
2106 temp = I915_READ(reg);
2107 temp &= ~FDI_RX_SYMBOL_LOCK;
2108 temp &= ~FDI_RX_BIT_LOCK;
2109 I915_WRITE(reg, temp);
2110 I915_READ(reg);
2111 udelay(150);
2112
2113 /* enable CPU FDI TX and PCH FDI RX */
2114 reg = FDI_TX_CTL(pipe);
2115 temp = I915_READ(reg);
2116 temp &= ~(7 << 19);
2117 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2118 temp &= ~FDI_LINK_TRAIN_NONE;
2119 temp |= FDI_LINK_TRAIN_PATTERN_1;
2120 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2121
2122 reg = FDI_RX_CTL(pipe);
2123 temp = I915_READ(reg);
2124 temp &= ~FDI_LINK_TRAIN_NONE;
2125 temp |= FDI_LINK_TRAIN_PATTERN_1;
2126 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2127
2128 POSTING_READ(reg);
2129 udelay(150);
2130
2131 /* Ironlake workaround, enable clock pointer after FDI enable*/
2132 if (HAS_PCH_IBX(dev)) {
2133 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2134 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2135 FDI_RX_PHASE_SYNC_POINTER_EN);
2136 }
2137
2138 reg = FDI_RX_IIR(pipe);
2139 for (tries = 0; tries < 5; tries++) {
2140 temp = I915_READ(reg);
2141 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2142
2143 if ((temp & FDI_RX_BIT_LOCK)) {
2144 DRM_DEBUG_KMS("FDI train 1 done.\n");
2145 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2146 break;
2147 }
2148 }
2149 if (tries == 5)
2150 DRM_ERROR("FDI train 1 fail!\n");
2151
2152 /* Train 2 */
2153 reg = FDI_TX_CTL(pipe);
2154 temp = I915_READ(reg);
2155 temp &= ~FDI_LINK_TRAIN_NONE;
2156 temp |= FDI_LINK_TRAIN_PATTERN_2;
2157 I915_WRITE(reg, temp);
2158
2159 reg = FDI_RX_CTL(pipe);
2160 temp = I915_READ(reg);
2161 temp &= ~FDI_LINK_TRAIN_NONE;
2162 temp |= FDI_LINK_TRAIN_PATTERN_2;
2163 I915_WRITE(reg, temp);
2164
2165 POSTING_READ(reg);
2166 udelay(150);
2167
2168 reg = FDI_RX_IIR(pipe);
2169 for (tries = 0; tries < 5; tries++) {
2170 temp = I915_READ(reg);
2171 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2172
2173 if (temp & FDI_RX_SYMBOL_LOCK) {
2174 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2175 DRM_DEBUG_KMS("FDI train 2 done.\n");
2176 break;
2177 }
2178 }
2179 if (tries == 5)
2180 DRM_ERROR("FDI train 2 fail!\n");
2181
2182 DRM_DEBUG_KMS("FDI train done\n");
2183
2184 }
2185
2186 static const int snb_b_fdi_train_param [] = {
2187 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2188 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2189 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2190 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2191 };
2192
2193 /* The FDI link training functions for SNB/Cougarpoint. */
2194 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2195 {
2196 struct drm_device *dev = crtc->dev;
2197 struct drm_i915_private *dev_priv = dev->dev_private;
2198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199 int pipe = intel_crtc->pipe;
2200 u32 reg, temp, i;
2201
2202 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2203 for train result */
2204 reg = FDI_RX_IMR(pipe);
2205 temp = I915_READ(reg);
2206 temp &= ~FDI_RX_SYMBOL_LOCK;
2207 temp &= ~FDI_RX_BIT_LOCK;
2208 I915_WRITE(reg, temp);
2209
2210 POSTING_READ(reg);
2211 udelay(150);
2212
2213 /* enable CPU FDI TX and PCH FDI RX */
2214 reg = FDI_TX_CTL(pipe);
2215 temp = I915_READ(reg);
2216 temp &= ~(7 << 19);
2217 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2218 temp &= ~FDI_LINK_TRAIN_NONE;
2219 temp |= FDI_LINK_TRAIN_PATTERN_1;
2220 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2221 /* SNB-B */
2222 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2223 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2224
2225 reg = FDI_RX_CTL(pipe);
2226 temp = I915_READ(reg);
2227 if (HAS_PCH_CPT(dev)) {
2228 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2229 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2230 } else {
2231 temp &= ~FDI_LINK_TRAIN_NONE;
2232 temp |= FDI_LINK_TRAIN_PATTERN_1;
2233 }
2234 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2235
2236 POSTING_READ(reg);
2237 udelay(150);
2238
2239 for (i = 0; i < 4; i++ ) {
2240 reg = FDI_TX_CTL(pipe);
2241 temp = I915_READ(reg);
2242 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2243 temp |= snb_b_fdi_train_param[i];
2244 I915_WRITE(reg, temp);
2245
2246 POSTING_READ(reg);
2247 udelay(500);
2248
2249 reg = FDI_RX_IIR(pipe);
2250 temp = I915_READ(reg);
2251 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2252
2253 if (temp & FDI_RX_BIT_LOCK) {
2254 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2255 DRM_DEBUG_KMS("FDI train 1 done.\n");
2256 break;
2257 }
2258 }
2259 if (i == 4)
2260 DRM_ERROR("FDI train 1 fail!\n");
2261
2262 /* Train 2 */
2263 reg = FDI_TX_CTL(pipe);
2264 temp = I915_READ(reg);
2265 temp &= ~FDI_LINK_TRAIN_NONE;
2266 temp |= FDI_LINK_TRAIN_PATTERN_2;
2267 if (IS_GEN6(dev)) {
2268 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2269 /* SNB-B */
2270 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2271 }
2272 I915_WRITE(reg, temp);
2273
2274 reg = FDI_RX_CTL(pipe);
2275 temp = I915_READ(reg);
2276 if (HAS_PCH_CPT(dev)) {
2277 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2278 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2279 } else {
2280 temp &= ~FDI_LINK_TRAIN_NONE;
2281 temp |= FDI_LINK_TRAIN_PATTERN_2;
2282 }
2283 I915_WRITE(reg, temp);
2284
2285 POSTING_READ(reg);
2286 udelay(150);
2287
2288 for (i = 0; i < 4; i++ ) {
2289 reg = FDI_TX_CTL(pipe);
2290 temp = I915_READ(reg);
2291 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2292 temp |= snb_b_fdi_train_param[i];
2293 I915_WRITE(reg, temp);
2294
2295 POSTING_READ(reg);
2296 udelay(500);
2297
2298 reg = FDI_RX_IIR(pipe);
2299 temp = I915_READ(reg);
2300 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2301
2302 if (temp & FDI_RX_SYMBOL_LOCK) {
2303 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2304 DRM_DEBUG_KMS("FDI train 2 done.\n");
2305 break;
2306 }
2307 }
2308 if (i == 4)
2309 DRM_ERROR("FDI train 2 fail!\n");
2310
2311 DRM_DEBUG_KMS("FDI train done.\n");
2312 }
2313
2314 /* Manual link training for Ivy Bridge A0 parts */
2315 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2316 {
2317 struct drm_device *dev = crtc->dev;
2318 struct drm_i915_private *dev_priv = dev->dev_private;
2319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2320 int pipe = intel_crtc->pipe;
2321 u32 reg, temp, i;
2322
2323 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2324 for train result */
2325 reg = FDI_RX_IMR(pipe);
2326 temp = I915_READ(reg);
2327 temp &= ~FDI_RX_SYMBOL_LOCK;
2328 temp &= ~FDI_RX_BIT_LOCK;
2329 I915_WRITE(reg, temp);
2330
2331 POSTING_READ(reg);
2332 udelay(150);
2333
2334 /* enable CPU FDI TX and PCH FDI RX */
2335 reg = FDI_TX_CTL(pipe);
2336 temp = I915_READ(reg);
2337 temp &= ~(7 << 19);
2338 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2339 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2340 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2341 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2342 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2343 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2344
2345 reg = FDI_RX_CTL(pipe);
2346 temp = I915_READ(reg);
2347 temp &= ~FDI_LINK_TRAIN_AUTO;
2348 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2350 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2351
2352 POSTING_READ(reg);
2353 udelay(150);
2354
2355 for (i = 0; i < 4; i++ ) {
2356 reg = FDI_TX_CTL(pipe);
2357 temp = I915_READ(reg);
2358 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2359 temp |= snb_b_fdi_train_param[i];
2360 I915_WRITE(reg, temp);
2361
2362 POSTING_READ(reg);
2363 udelay(500);
2364
2365 reg = FDI_RX_IIR(pipe);
2366 temp = I915_READ(reg);
2367 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2368
2369 if (temp & FDI_RX_BIT_LOCK ||
2370 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2371 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
2373 break;
2374 }
2375 }
2376 if (i == 4)
2377 DRM_ERROR("FDI train 1 fail!\n");
2378
2379 /* Train 2 */
2380 reg = FDI_TX_CTL(pipe);
2381 temp = I915_READ(reg);
2382 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2383 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2384 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2385 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2386 I915_WRITE(reg, temp);
2387
2388 reg = FDI_RX_CTL(pipe);
2389 temp = I915_READ(reg);
2390 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2391 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2392 I915_WRITE(reg, temp);
2393
2394 POSTING_READ(reg);
2395 udelay(150);
2396
2397 for (i = 0; i < 4; i++ ) {
2398 reg = FDI_TX_CTL(pipe);
2399 temp = I915_READ(reg);
2400 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2401 temp |= snb_b_fdi_train_param[i];
2402 I915_WRITE(reg, temp);
2403
2404 POSTING_READ(reg);
2405 udelay(500);
2406
2407 reg = FDI_RX_IIR(pipe);
2408 temp = I915_READ(reg);
2409 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411 if (temp & FDI_RX_SYMBOL_LOCK) {
2412 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2413 DRM_DEBUG_KMS("FDI train 2 done.\n");
2414 break;
2415 }
2416 }
2417 if (i == 4)
2418 DRM_ERROR("FDI train 2 fail!\n");
2419
2420 DRM_DEBUG_KMS("FDI train done.\n");
2421 }
2422
2423 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2424 {
2425 struct drm_device *dev = crtc->dev;
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2428 int pipe = intel_crtc->pipe;
2429 u32 reg, temp;
2430
2431 /* Write the TU size bits so error detection works */
2432 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2433 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2434
2435 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2436 reg = FDI_RX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 temp &= ~((0x7 << 19) | (0x7 << 16));
2439 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2440 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2441 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2442
2443 POSTING_READ(reg);
2444 udelay(200);
2445
2446 /* Switch from Rawclk to PCDclk */
2447 temp = I915_READ(reg);
2448 I915_WRITE(reg, temp | FDI_PCDCLK);
2449
2450 POSTING_READ(reg);
2451 udelay(200);
2452
2453 /* Enable CPU FDI TX PLL, always on for Ironlake */
2454 reg = FDI_TX_CTL(pipe);
2455 temp = I915_READ(reg);
2456 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2457 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2458
2459 POSTING_READ(reg);
2460 udelay(100);
2461 }
2462 }
2463
2464 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2465 {
2466 struct drm_device *dev = crtc->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469 int pipe = intel_crtc->pipe;
2470 u32 reg, temp;
2471
2472 /* disable CPU FDI tx and PCH FDI rx */
2473 reg = FDI_TX_CTL(pipe);
2474 temp = I915_READ(reg);
2475 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2476 POSTING_READ(reg);
2477
2478 reg = FDI_RX_CTL(pipe);
2479 temp = I915_READ(reg);
2480 temp &= ~(0x7 << 16);
2481 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2482 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2483
2484 POSTING_READ(reg);
2485 udelay(100);
2486
2487 /* Ironlake workaround, disable clock pointer after downing FDI */
2488 if (HAS_PCH_IBX(dev)) {
2489 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2490 I915_WRITE(FDI_RX_CHICKEN(pipe),
2491 I915_READ(FDI_RX_CHICKEN(pipe) &
2492 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2493 }
2494
2495 /* still set train pattern 1 */
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
2498 temp &= ~FDI_LINK_TRAIN_NONE;
2499 temp |= FDI_LINK_TRAIN_PATTERN_1;
2500 I915_WRITE(reg, temp);
2501
2502 reg = FDI_RX_CTL(pipe);
2503 temp = I915_READ(reg);
2504 if (HAS_PCH_CPT(dev)) {
2505 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2506 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2507 } else {
2508 temp &= ~FDI_LINK_TRAIN_NONE;
2509 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510 }
2511 /* BPC in FDI rx is consistent with that in PIPECONF */
2512 temp &= ~(0x07 << 16);
2513 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2514 I915_WRITE(reg, temp);
2515
2516 POSTING_READ(reg);
2517 udelay(100);
2518 }
2519
2520 /*
2521 * When we disable a pipe, we need to clear any pending scanline wait events
2522 * to avoid hanging the ring, which we assume we are waiting on.
2523 */
2524 static void intel_clear_scanline_wait(struct drm_device *dev)
2525 {
2526 struct drm_i915_private *dev_priv = dev->dev_private;
2527 struct intel_ring_buffer *ring;
2528 u32 tmp;
2529
2530 if (IS_GEN2(dev))
2531 /* Can't break the hang on i8xx */
2532 return;
2533
2534 ring = LP_RING(dev_priv);
2535 tmp = I915_READ_CTL(ring);
2536 if (tmp & RING_WAIT)
2537 I915_WRITE_CTL(ring, tmp);
2538 }
2539
2540 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2541 {
2542 struct drm_i915_gem_object *obj;
2543 struct drm_i915_private *dev_priv;
2544
2545 if (crtc->fb == NULL)
2546 return;
2547
2548 obj = to_intel_framebuffer(crtc->fb)->obj;
2549 dev_priv = crtc->dev->dev_private;
2550 wait_event(dev_priv->pending_flip_queue,
2551 atomic_read(&obj->pending_flip) == 0);
2552 }
2553
2554 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2555 {
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_mode_config *mode_config = &dev->mode_config;
2558 struct intel_encoder *encoder;
2559
2560 /*
2561 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2562 * must be driven by its own crtc; no sharing is possible.
2563 */
2564 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2565 if (encoder->base.crtc != crtc)
2566 continue;
2567
2568 switch (encoder->type) {
2569 case INTEL_OUTPUT_EDP:
2570 if (!intel_encoder_is_pch_edp(&encoder->base))
2571 return false;
2572 continue;
2573 }
2574 }
2575
2576 return true;
2577 }
2578
2579 /*
2580 * Enable PCH resources required for PCH ports:
2581 * - PCH PLLs
2582 * - FDI training & RX/TX
2583 * - update transcoder timings
2584 * - DP transcoding bits
2585 * - transcoder
2586 */
2587 static void ironlake_pch_enable(struct drm_crtc *crtc)
2588 {
2589 struct drm_device *dev = crtc->dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592 int pipe = intel_crtc->pipe;
2593 u32 reg, temp;
2594
2595 /* For PCH output, training FDI link */
2596 dev_priv->display.fdi_link_train(crtc);
2597
2598 intel_enable_pch_pll(dev_priv, pipe);
2599
2600 if (HAS_PCH_CPT(dev)) {
2601 /* Be sure PCH DPLL SEL is set */
2602 temp = I915_READ(PCH_DPLL_SEL);
2603 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2604 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2605 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2606 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2607 I915_WRITE(PCH_DPLL_SEL, temp);
2608 }
2609
2610 /* set transcoder timing, panel must allow it */
2611 assert_panel_unlocked(dev_priv, pipe);
2612 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2613 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2614 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2615
2616 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2617 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2618 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2619
2620 intel_fdi_normal_train(crtc);
2621
2622 /* For PCH DP, enable TRANS_DP_CTL */
2623 if (HAS_PCH_CPT(dev) &&
2624 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2625 reg = TRANS_DP_CTL(pipe);
2626 temp = I915_READ(reg);
2627 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2628 TRANS_DP_SYNC_MASK |
2629 TRANS_DP_BPC_MASK);
2630 temp |= (TRANS_DP_OUTPUT_ENABLE |
2631 TRANS_DP_ENH_FRAMING);
2632 temp |= TRANS_DP_8BPC;
2633
2634 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2635 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2636 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2637 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2638
2639 switch (intel_trans_dp_port_sel(crtc)) {
2640 case PCH_DP_B:
2641 temp |= TRANS_DP_PORT_SEL_B;
2642 break;
2643 case PCH_DP_C:
2644 temp |= TRANS_DP_PORT_SEL_C;
2645 break;
2646 case PCH_DP_D:
2647 temp |= TRANS_DP_PORT_SEL_D;
2648 break;
2649 default:
2650 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2651 temp |= TRANS_DP_PORT_SEL_B;
2652 break;
2653 }
2654
2655 I915_WRITE(reg, temp);
2656 }
2657
2658 intel_enable_transcoder(dev_priv, pipe);
2659 }
2660
2661 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2662 {
2663 struct drm_device *dev = crtc->dev;
2664 struct drm_i915_private *dev_priv = dev->dev_private;
2665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666 int pipe = intel_crtc->pipe;
2667 int plane = intel_crtc->plane;
2668 u32 temp;
2669 bool is_pch_port;
2670
2671 if (intel_crtc->active)
2672 return;
2673
2674 intel_crtc->active = true;
2675 intel_update_watermarks(dev);
2676
2677 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2678 temp = I915_READ(PCH_LVDS);
2679 if ((temp & LVDS_PORT_EN) == 0)
2680 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2681 }
2682
2683 is_pch_port = intel_crtc_driving_pch(crtc);
2684
2685 if (is_pch_port)
2686 ironlake_fdi_pll_enable(crtc);
2687 else
2688 ironlake_fdi_disable(crtc);
2689
2690 /* Enable panel fitting for LVDS */
2691 if (dev_priv->pch_pf_size &&
2692 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2693 /* Force use of hard-coded filter coefficients
2694 * as some pre-programmed values are broken,
2695 * e.g. x201.
2696 */
2697 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2698 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2699 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2700 }
2701
2702 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2703 intel_enable_plane(dev_priv, plane, pipe);
2704
2705 if (is_pch_port)
2706 ironlake_pch_enable(crtc);
2707
2708 intel_crtc_load_lut(crtc);
2709
2710 mutex_lock(&dev->struct_mutex);
2711 intel_update_fbc(dev);
2712 mutex_unlock(&dev->struct_mutex);
2713
2714 intel_crtc_update_cursor(crtc, true);
2715 }
2716
2717 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2718 {
2719 struct drm_device *dev = crtc->dev;
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2722 int pipe = intel_crtc->pipe;
2723 int plane = intel_crtc->plane;
2724 u32 reg, temp;
2725
2726 if (!intel_crtc->active)
2727 return;
2728
2729 intel_crtc_wait_for_pending_flips(crtc);
2730 drm_vblank_off(dev, pipe);
2731 intel_crtc_update_cursor(crtc, false);
2732
2733 intel_disable_plane(dev_priv, plane, pipe);
2734
2735 if (dev_priv->cfb_plane == plane &&
2736 dev_priv->display.disable_fbc)
2737 dev_priv->display.disable_fbc(dev);
2738
2739 intel_disable_pipe(dev_priv, pipe);
2740
2741 /* Disable PF */
2742 I915_WRITE(PF_CTL(pipe), 0);
2743 I915_WRITE(PF_WIN_SZ(pipe), 0);
2744
2745 ironlake_fdi_disable(crtc);
2746
2747 /* This is a horrible layering violation; we should be doing this in
2748 * the connector/encoder ->prepare instead, but we don't always have
2749 * enough information there about the config to know whether it will
2750 * actually be necessary or just cause undesired flicker.
2751 */
2752 intel_disable_pch_ports(dev_priv, pipe);
2753
2754 intel_disable_transcoder(dev_priv, pipe);
2755
2756 if (HAS_PCH_CPT(dev)) {
2757 /* disable TRANS_DP_CTL */
2758 reg = TRANS_DP_CTL(pipe);
2759 temp = I915_READ(reg);
2760 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2761 temp |= TRANS_DP_PORT_SEL_NONE;
2762 I915_WRITE(reg, temp);
2763
2764 /* disable DPLL_SEL */
2765 temp = I915_READ(PCH_DPLL_SEL);
2766 switch (pipe) {
2767 case 0:
2768 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2769 break;
2770 case 1:
2771 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2772 break;
2773 case 2:
2774 /* FIXME: manage transcoder PLLs? */
2775 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2776 break;
2777 default:
2778 BUG(); /* wtf */
2779 }
2780 I915_WRITE(PCH_DPLL_SEL, temp);
2781 }
2782
2783 /* disable PCH DPLL */
2784 intel_disable_pch_pll(dev_priv, pipe);
2785
2786 /* Switch from PCDclk to Rawclk */
2787 reg = FDI_RX_CTL(pipe);
2788 temp = I915_READ(reg);
2789 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2790
2791 /* Disable CPU FDI TX PLL */
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2795
2796 POSTING_READ(reg);
2797 udelay(100);
2798
2799 reg = FDI_RX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2802
2803 /* Wait for the clocks to turn off. */
2804 POSTING_READ(reg);
2805 udelay(100);
2806
2807 intel_crtc->active = false;
2808 intel_update_watermarks(dev);
2809
2810 mutex_lock(&dev->struct_mutex);
2811 intel_update_fbc(dev);
2812 intel_clear_scanline_wait(dev);
2813 mutex_unlock(&dev->struct_mutex);
2814 }
2815
2816 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2817 {
2818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819 int pipe = intel_crtc->pipe;
2820 int plane = intel_crtc->plane;
2821
2822 /* XXX: When our outputs are all unaware of DPMS modes other than off
2823 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2824 */
2825 switch (mode) {
2826 case DRM_MODE_DPMS_ON:
2827 case DRM_MODE_DPMS_STANDBY:
2828 case DRM_MODE_DPMS_SUSPEND:
2829 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2830 ironlake_crtc_enable(crtc);
2831 break;
2832
2833 case DRM_MODE_DPMS_OFF:
2834 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2835 ironlake_crtc_disable(crtc);
2836 break;
2837 }
2838 }
2839
2840 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2841 {
2842 if (!enable && intel_crtc->overlay) {
2843 struct drm_device *dev = intel_crtc->base.dev;
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845
2846 mutex_lock(&dev->struct_mutex);
2847 dev_priv->mm.interruptible = false;
2848 (void) intel_overlay_switch_off(intel_crtc->overlay);
2849 dev_priv->mm.interruptible = true;
2850 mutex_unlock(&dev->struct_mutex);
2851 }
2852
2853 /* Let userspace switch the overlay on again. In most cases userspace
2854 * has to recompute where to put it anyway.
2855 */
2856 }
2857
2858 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2859 {
2860 struct drm_device *dev = crtc->dev;
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2863 int pipe = intel_crtc->pipe;
2864 int plane = intel_crtc->plane;
2865
2866 if (intel_crtc->active)
2867 return;
2868
2869 intel_crtc->active = true;
2870 intel_update_watermarks(dev);
2871
2872 intel_enable_pll(dev_priv, pipe);
2873 intel_enable_pipe(dev_priv, pipe, false);
2874 intel_enable_plane(dev_priv, plane, pipe);
2875
2876 intel_crtc_load_lut(crtc);
2877 intel_update_fbc(dev);
2878
2879 /* Give the overlay scaler a chance to enable if it's on this pipe */
2880 intel_crtc_dpms_overlay(intel_crtc, true);
2881 intel_crtc_update_cursor(crtc, true);
2882 }
2883
2884 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2885 {
2886 struct drm_device *dev = crtc->dev;
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889 int pipe = intel_crtc->pipe;
2890 int plane = intel_crtc->plane;
2891
2892 if (!intel_crtc->active)
2893 return;
2894
2895 /* Give the overlay scaler a chance to disable if it's on this pipe */
2896 intel_crtc_wait_for_pending_flips(crtc);
2897 drm_vblank_off(dev, pipe);
2898 intel_crtc_dpms_overlay(intel_crtc, false);
2899 intel_crtc_update_cursor(crtc, false);
2900
2901 if (dev_priv->cfb_plane == plane &&
2902 dev_priv->display.disable_fbc)
2903 dev_priv->display.disable_fbc(dev);
2904
2905 intel_disable_plane(dev_priv, plane, pipe);
2906 intel_disable_pipe(dev_priv, pipe);
2907 intel_disable_pll(dev_priv, pipe);
2908
2909 intel_crtc->active = false;
2910 intel_update_fbc(dev);
2911 intel_update_watermarks(dev);
2912 intel_clear_scanline_wait(dev);
2913 }
2914
2915 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2916 {
2917 /* XXX: When our outputs are all unaware of DPMS modes other than off
2918 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2919 */
2920 switch (mode) {
2921 case DRM_MODE_DPMS_ON:
2922 case DRM_MODE_DPMS_STANDBY:
2923 case DRM_MODE_DPMS_SUSPEND:
2924 i9xx_crtc_enable(crtc);
2925 break;
2926 case DRM_MODE_DPMS_OFF:
2927 i9xx_crtc_disable(crtc);
2928 break;
2929 }
2930 }
2931
2932 /**
2933 * Sets the power management mode of the pipe and plane.
2934 */
2935 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2936 {
2937 struct drm_device *dev = crtc->dev;
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct drm_i915_master_private *master_priv;
2940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941 int pipe = intel_crtc->pipe;
2942 bool enabled;
2943
2944 if (intel_crtc->dpms_mode == mode)
2945 return;
2946
2947 intel_crtc->dpms_mode = mode;
2948
2949 dev_priv->display.dpms(crtc, mode);
2950
2951 if (!dev->primary->master)
2952 return;
2953
2954 master_priv = dev->primary->master->driver_priv;
2955 if (!master_priv->sarea_priv)
2956 return;
2957
2958 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2959
2960 switch (pipe) {
2961 case 0:
2962 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2963 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2964 break;
2965 case 1:
2966 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2967 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2968 break;
2969 default:
2970 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2971 break;
2972 }
2973 }
2974
2975 static void intel_crtc_disable(struct drm_crtc *crtc)
2976 {
2977 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2978 struct drm_device *dev = crtc->dev;
2979
2980 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2981
2982 if (crtc->fb) {
2983 mutex_lock(&dev->struct_mutex);
2984 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2985 mutex_unlock(&dev->struct_mutex);
2986 }
2987 }
2988
2989 /* Prepare for a mode set.
2990 *
2991 * Note we could be a lot smarter here. We need to figure out which outputs
2992 * will be enabled, which disabled (in short, how the config will changes)
2993 * and perform the minimum necessary steps to accomplish that, e.g. updating
2994 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2995 * panel fitting is in the proper state, etc.
2996 */
2997 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2998 {
2999 i9xx_crtc_disable(crtc);
3000 }
3001
3002 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3003 {
3004 i9xx_crtc_enable(crtc);
3005 }
3006
3007 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3008 {
3009 ironlake_crtc_disable(crtc);
3010 }
3011
3012 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3013 {
3014 ironlake_crtc_enable(crtc);
3015 }
3016
3017 void intel_encoder_prepare (struct drm_encoder *encoder)
3018 {
3019 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3020 /* lvds has its own version of prepare see intel_lvds_prepare */
3021 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3022 }
3023
3024 void intel_encoder_commit (struct drm_encoder *encoder)
3025 {
3026 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3027 /* lvds has its own version of commit see intel_lvds_commit */
3028 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3029 }
3030
3031 void intel_encoder_destroy(struct drm_encoder *encoder)
3032 {
3033 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3034
3035 drm_encoder_cleanup(encoder);
3036 kfree(intel_encoder);
3037 }
3038
3039 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3040 struct drm_display_mode *mode,
3041 struct drm_display_mode *adjusted_mode)
3042 {
3043 struct drm_device *dev = crtc->dev;
3044
3045 if (HAS_PCH_SPLIT(dev)) {
3046 /* FDI link clock is fixed at 2.7G */
3047 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3048 return false;
3049 }
3050
3051 /* XXX some encoders set the crtcinfo, others don't.
3052 * Obviously we need some form of conflict resolution here...
3053 */
3054 if (adjusted_mode->crtc_htotal == 0)
3055 drm_mode_set_crtcinfo(adjusted_mode, 0);
3056
3057 return true;
3058 }
3059
3060 static int i945_get_display_clock_speed(struct drm_device *dev)
3061 {
3062 return 400000;
3063 }
3064
3065 static int i915_get_display_clock_speed(struct drm_device *dev)
3066 {
3067 return 333000;
3068 }
3069
3070 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3071 {
3072 return 200000;
3073 }
3074
3075 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3076 {
3077 u16 gcfgc = 0;
3078
3079 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3080
3081 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3082 return 133000;
3083 else {
3084 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3085 case GC_DISPLAY_CLOCK_333_MHZ:
3086 return 333000;
3087 default:
3088 case GC_DISPLAY_CLOCK_190_200_MHZ:
3089 return 190000;
3090 }
3091 }
3092 }
3093
3094 static int i865_get_display_clock_speed(struct drm_device *dev)
3095 {
3096 return 266000;
3097 }
3098
3099 static int i855_get_display_clock_speed(struct drm_device *dev)
3100 {
3101 u16 hpllcc = 0;
3102 /* Assume that the hardware is in the high speed state. This
3103 * should be the default.
3104 */
3105 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3106 case GC_CLOCK_133_200:
3107 case GC_CLOCK_100_200:
3108 return 200000;
3109 case GC_CLOCK_166_250:
3110 return 250000;
3111 case GC_CLOCK_100_133:
3112 return 133000;
3113 }
3114
3115 /* Shouldn't happen */
3116 return 0;
3117 }
3118
3119 static int i830_get_display_clock_speed(struct drm_device *dev)
3120 {
3121 return 133000;
3122 }
3123
3124 struct fdi_m_n {
3125 u32 tu;
3126 u32 gmch_m;
3127 u32 gmch_n;
3128 u32 link_m;
3129 u32 link_n;
3130 };
3131
3132 static void
3133 fdi_reduce_ratio(u32 *num, u32 *den)
3134 {
3135 while (*num > 0xffffff || *den > 0xffffff) {
3136 *num >>= 1;
3137 *den >>= 1;
3138 }
3139 }
3140
3141 static void
3142 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3143 int link_clock, struct fdi_m_n *m_n)
3144 {
3145 m_n->tu = 64; /* default size */
3146
3147 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3148 m_n->gmch_m = bits_per_pixel * pixel_clock;
3149 m_n->gmch_n = link_clock * nlanes * 8;
3150 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3151
3152 m_n->link_m = pixel_clock;
3153 m_n->link_n = link_clock;
3154 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3155 }
3156
3157
3158 struct intel_watermark_params {
3159 unsigned long fifo_size;
3160 unsigned long max_wm;
3161 unsigned long default_wm;
3162 unsigned long guard_size;
3163 unsigned long cacheline_size;
3164 };
3165
3166 /* Pineview has different values for various configs */
3167 static const struct intel_watermark_params pineview_display_wm = {
3168 PINEVIEW_DISPLAY_FIFO,
3169 PINEVIEW_MAX_WM,
3170 PINEVIEW_DFT_WM,
3171 PINEVIEW_GUARD_WM,
3172 PINEVIEW_FIFO_LINE_SIZE
3173 };
3174 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3175 PINEVIEW_DISPLAY_FIFO,
3176 PINEVIEW_MAX_WM,
3177 PINEVIEW_DFT_HPLLOFF_WM,
3178 PINEVIEW_GUARD_WM,
3179 PINEVIEW_FIFO_LINE_SIZE
3180 };
3181 static const struct intel_watermark_params pineview_cursor_wm = {
3182 PINEVIEW_CURSOR_FIFO,
3183 PINEVIEW_CURSOR_MAX_WM,
3184 PINEVIEW_CURSOR_DFT_WM,
3185 PINEVIEW_CURSOR_GUARD_WM,
3186 PINEVIEW_FIFO_LINE_SIZE,
3187 };
3188 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3189 PINEVIEW_CURSOR_FIFO,
3190 PINEVIEW_CURSOR_MAX_WM,
3191 PINEVIEW_CURSOR_DFT_WM,
3192 PINEVIEW_CURSOR_GUARD_WM,
3193 PINEVIEW_FIFO_LINE_SIZE
3194 };
3195 static const struct intel_watermark_params g4x_wm_info = {
3196 G4X_FIFO_SIZE,
3197 G4X_MAX_WM,
3198 G4X_MAX_WM,
3199 2,
3200 G4X_FIFO_LINE_SIZE,
3201 };
3202 static const struct intel_watermark_params g4x_cursor_wm_info = {
3203 I965_CURSOR_FIFO,
3204 I965_CURSOR_MAX_WM,
3205 I965_CURSOR_DFT_WM,
3206 2,
3207 G4X_FIFO_LINE_SIZE,
3208 };
3209 static const struct intel_watermark_params i965_cursor_wm_info = {
3210 I965_CURSOR_FIFO,
3211 I965_CURSOR_MAX_WM,
3212 I965_CURSOR_DFT_WM,
3213 2,
3214 I915_FIFO_LINE_SIZE,
3215 };
3216 static const struct intel_watermark_params i945_wm_info = {
3217 I945_FIFO_SIZE,
3218 I915_MAX_WM,
3219 1,
3220 2,
3221 I915_FIFO_LINE_SIZE
3222 };
3223 static const struct intel_watermark_params i915_wm_info = {
3224 I915_FIFO_SIZE,
3225 I915_MAX_WM,
3226 1,
3227 2,
3228 I915_FIFO_LINE_SIZE
3229 };
3230 static const struct intel_watermark_params i855_wm_info = {
3231 I855GM_FIFO_SIZE,
3232 I915_MAX_WM,
3233 1,
3234 2,
3235 I830_FIFO_LINE_SIZE
3236 };
3237 static const struct intel_watermark_params i830_wm_info = {
3238 I830_FIFO_SIZE,
3239 I915_MAX_WM,
3240 1,
3241 2,
3242 I830_FIFO_LINE_SIZE
3243 };
3244
3245 static const struct intel_watermark_params ironlake_display_wm_info = {
3246 ILK_DISPLAY_FIFO,
3247 ILK_DISPLAY_MAXWM,
3248 ILK_DISPLAY_DFTWM,
3249 2,
3250 ILK_FIFO_LINE_SIZE
3251 };
3252 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3253 ILK_CURSOR_FIFO,
3254 ILK_CURSOR_MAXWM,
3255 ILK_CURSOR_DFTWM,
3256 2,
3257 ILK_FIFO_LINE_SIZE
3258 };
3259 static const struct intel_watermark_params ironlake_display_srwm_info = {
3260 ILK_DISPLAY_SR_FIFO,
3261 ILK_DISPLAY_MAX_SRWM,
3262 ILK_DISPLAY_DFT_SRWM,
3263 2,
3264 ILK_FIFO_LINE_SIZE
3265 };
3266 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3267 ILK_CURSOR_SR_FIFO,
3268 ILK_CURSOR_MAX_SRWM,
3269 ILK_CURSOR_DFT_SRWM,
3270 2,
3271 ILK_FIFO_LINE_SIZE
3272 };
3273
3274 static const struct intel_watermark_params sandybridge_display_wm_info = {
3275 SNB_DISPLAY_FIFO,
3276 SNB_DISPLAY_MAXWM,
3277 SNB_DISPLAY_DFTWM,
3278 2,
3279 SNB_FIFO_LINE_SIZE
3280 };
3281 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3282 SNB_CURSOR_FIFO,
3283 SNB_CURSOR_MAXWM,
3284 SNB_CURSOR_DFTWM,
3285 2,
3286 SNB_FIFO_LINE_SIZE
3287 };
3288 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3289 SNB_DISPLAY_SR_FIFO,
3290 SNB_DISPLAY_MAX_SRWM,
3291 SNB_DISPLAY_DFT_SRWM,
3292 2,
3293 SNB_FIFO_LINE_SIZE
3294 };
3295 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3296 SNB_CURSOR_SR_FIFO,
3297 SNB_CURSOR_MAX_SRWM,
3298 SNB_CURSOR_DFT_SRWM,
3299 2,
3300 SNB_FIFO_LINE_SIZE
3301 };
3302
3303
3304 /**
3305 * intel_calculate_wm - calculate watermark level
3306 * @clock_in_khz: pixel clock
3307 * @wm: chip FIFO params
3308 * @pixel_size: display pixel size
3309 * @latency_ns: memory latency for the platform
3310 *
3311 * Calculate the watermark level (the level at which the display plane will
3312 * start fetching from memory again). Each chip has a different display
3313 * FIFO size and allocation, so the caller needs to figure that out and pass
3314 * in the correct intel_watermark_params structure.
3315 *
3316 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3317 * on the pixel size. When it reaches the watermark level, it'll start
3318 * fetching FIFO line sized based chunks from memory until the FIFO fills
3319 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3320 * will occur, and a display engine hang could result.
3321 */
3322 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3323 const struct intel_watermark_params *wm,
3324 int fifo_size,
3325 int pixel_size,
3326 unsigned long latency_ns)
3327 {
3328 long entries_required, wm_size;
3329
3330 /*
3331 * Note: we need to make sure we don't overflow for various clock &
3332 * latency values.
3333 * clocks go from a few thousand to several hundred thousand.
3334 * latency is usually a few thousand
3335 */
3336 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3337 1000;
3338 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3339
3340 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3341
3342 wm_size = fifo_size - (entries_required + wm->guard_size);
3343
3344 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3345
3346 /* Don't promote wm_size to unsigned... */
3347 if (wm_size > (long)wm->max_wm)
3348 wm_size = wm->max_wm;
3349 if (wm_size <= 0)
3350 wm_size = wm->default_wm;
3351 return wm_size;
3352 }
3353
3354 struct cxsr_latency {
3355 int is_desktop;
3356 int is_ddr3;
3357 unsigned long fsb_freq;
3358 unsigned long mem_freq;
3359 unsigned long display_sr;
3360 unsigned long display_hpll_disable;
3361 unsigned long cursor_sr;
3362 unsigned long cursor_hpll_disable;
3363 };
3364
3365 static const struct cxsr_latency cxsr_latency_table[] = {
3366 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3367 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3368 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3369 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3370 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3371
3372 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3373 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3374 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3375 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3376 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3377
3378 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3379 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3380 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3381 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3382 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3383
3384 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3385 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3386 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3387 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3388 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3389
3390 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3391 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3392 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3393 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3394 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3395
3396 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3397 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3398 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3399 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3400 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3401 };
3402
3403 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3404 int is_ddr3,
3405 int fsb,
3406 int mem)
3407 {
3408 const struct cxsr_latency *latency;
3409 int i;
3410
3411 if (fsb == 0 || mem == 0)
3412 return NULL;
3413
3414 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3415 latency = &cxsr_latency_table[i];
3416 if (is_desktop == latency->is_desktop &&
3417 is_ddr3 == latency->is_ddr3 &&
3418 fsb == latency->fsb_freq && mem == latency->mem_freq)
3419 return latency;
3420 }
3421
3422 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3423
3424 return NULL;
3425 }
3426
3427 static void pineview_disable_cxsr(struct drm_device *dev)
3428 {
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431 /* deactivate cxsr */
3432 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3433 }
3434
3435 /*
3436 * Latency for FIFO fetches is dependent on several factors:
3437 * - memory configuration (speed, channels)
3438 * - chipset
3439 * - current MCH state
3440 * It can be fairly high in some situations, so here we assume a fairly
3441 * pessimal value. It's a tradeoff between extra memory fetches (if we
3442 * set this value too high, the FIFO will fetch frequently to stay full)
3443 * and power consumption (set it too low to save power and we might see
3444 * FIFO underruns and display "flicker").
3445 *
3446 * A value of 5us seems to be a good balance; safe for very low end
3447 * platforms but not overly aggressive on lower latency configs.
3448 */
3449 static const int latency_ns = 5000;
3450
3451 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3452 {
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 uint32_t dsparb = I915_READ(DSPARB);
3455 int size;
3456
3457 size = dsparb & 0x7f;
3458 if (plane)
3459 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3460
3461 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3462 plane ? "B" : "A", size);
3463
3464 return size;
3465 }
3466
3467 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3468 {
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t dsparb = I915_READ(DSPARB);
3471 int size;
3472
3473 size = dsparb & 0x1ff;
3474 if (plane)
3475 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3476 size >>= 1; /* Convert to cachelines */
3477
3478 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3479 plane ? "B" : "A", size);
3480
3481 return size;
3482 }
3483
3484 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3485 {
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 uint32_t dsparb = I915_READ(DSPARB);
3488 int size;
3489
3490 size = dsparb & 0x7f;
3491 size >>= 2; /* Convert to cachelines */
3492
3493 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3494 plane ? "B" : "A",
3495 size);
3496
3497 return size;
3498 }
3499
3500 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 uint32_t dsparb = I915_READ(DSPARB);
3504 int size;
3505
3506 size = dsparb & 0x7f;
3507 size >>= 1; /* Convert to cachelines */
3508
3509 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3510 plane ? "B" : "A", size);
3511
3512 return size;
3513 }
3514
3515 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3516 {
3517 struct drm_crtc *crtc, *enabled = NULL;
3518
3519 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3520 if (crtc->enabled && crtc->fb) {
3521 if (enabled)
3522 return NULL;
3523 enabled = crtc;
3524 }
3525 }
3526
3527 return enabled;
3528 }
3529
3530 static void pineview_update_wm(struct drm_device *dev)
3531 {
3532 struct drm_i915_private *dev_priv = dev->dev_private;
3533 struct drm_crtc *crtc;
3534 const struct cxsr_latency *latency;
3535 u32 reg;
3536 unsigned long wm;
3537
3538 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3539 dev_priv->fsb_freq, dev_priv->mem_freq);
3540 if (!latency) {
3541 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3542 pineview_disable_cxsr(dev);
3543 return;
3544 }
3545
3546 crtc = single_enabled_crtc(dev);
3547 if (crtc) {
3548 int clock = crtc->mode.clock;
3549 int pixel_size = crtc->fb->bits_per_pixel / 8;
3550
3551 /* Display SR */
3552 wm = intel_calculate_wm(clock, &pineview_display_wm,
3553 pineview_display_wm.fifo_size,
3554 pixel_size, latency->display_sr);
3555 reg = I915_READ(DSPFW1);
3556 reg &= ~DSPFW_SR_MASK;
3557 reg |= wm << DSPFW_SR_SHIFT;
3558 I915_WRITE(DSPFW1, reg);
3559 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3560
3561 /* cursor SR */
3562 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3563 pineview_display_wm.fifo_size,
3564 pixel_size, latency->cursor_sr);
3565 reg = I915_READ(DSPFW3);
3566 reg &= ~DSPFW_CURSOR_SR_MASK;
3567 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3568 I915_WRITE(DSPFW3, reg);
3569
3570 /* Display HPLL off SR */
3571 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3572 pineview_display_hplloff_wm.fifo_size,
3573 pixel_size, latency->display_hpll_disable);
3574 reg = I915_READ(DSPFW3);
3575 reg &= ~DSPFW_HPLL_SR_MASK;
3576 reg |= wm & DSPFW_HPLL_SR_MASK;
3577 I915_WRITE(DSPFW3, reg);
3578
3579 /* cursor HPLL off SR */
3580 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3581 pineview_display_hplloff_wm.fifo_size,
3582 pixel_size, latency->cursor_hpll_disable);
3583 reg = I915_READ(DSPFW3);
3584 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3585 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3586 I915_WRITE(DSPFW3, reg);
3587 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3588
3589 /* activate cxsr */
3590 I915_WRITE(DSPFW3,
3591 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3592 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3593 } else {
3594 pineview_disable_cxsr(dev);
3595 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3596 }
3597 }
3598
3599 static bool g4x_compute_wm0(struct drm_device *dev,
3600 int plane,
3601 const struct intel_watermark_params *display,
3602 int display_latency_ns,
3603 const struct intel_watermark_params *cursor,
3604 int cursor_latency_ns,
3605 int *plane_wm,
3606 int *cursor_wm)
3607 {
3608 struct drm_crtc *crtc;
3609 int htotal, hdisplay, clock, pixel_size;
3610 int line_time_us, line_count;
3611 int entries, tlb_miss;
3612
3613 crtc = intel_get_crtc_for_plane(dev, plane);
3614 if (crtc->fb == NULL || !crtc->enabled) {
3615 *cursor_wm = cursor->guard_size;
3616 *plane_wm = display->guard_size;
3617 return false;
3618 }
3619
3620 htotal = crtc->mode.htotal;
3621 hdisplay = crtc->mode.hdisplay;
3622 clock = crtc->mode.clock;
3623 pixel_size = crtc->fb->bits_per_pixel / 8;
3624
3625 /* Use the small buffer method to calculate plane watermark */
3626 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3627 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3628 if (tlb_miss > 0)
3629 entries += tlb_miss;
3630 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3631 *plane_wm = entries + display->guard_size;
3632 if (*plane_wm > (int)display->max_wm)
3633 *plane_wm = display->max_wm;
3634
3635 /* Use the large buffer method to calculate cursor watermark */
3636 line_time_us = ((htotal * 1000) / clock);
3637 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3638 entries = line_count * 64 * pixel_size;
3639 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3640 if (tlb_miss > 0)
3641 entries += tlb_miss;
3642 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3643 *cursor_wm = entries + cursor->guard_size;
3644 if (*cursor_wm > (int)cursor->max_wm)
3645 *cursor_wm = (int)cursor->max_wm;
3646
3647 return true;
3648 }
3649
3650 /*
3651 * Check the wm result.
3652 *
3653 * If any calculated watermark values is larger than the maximum value that
3654 * can be programmed into the associated watermark register, that watermark
3655 * must be disabled.
3656 */
3657 static bool g4x_check_srwm(struct drm_device *dev,
3658 int display_wm, int cursor_wm,
3659 const struct intel_watermark_params *display,
3660 const struct intel_watermark_params *cursor)
3661 {
3662 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3663 display_wm, cursor_wm);
3664
3665 if (display_wm > display->max_wm) {
3666 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3667 display_wm, display->max_wm);
3668 return false;
3669 }
3670
3671 if (cursor_wm > cursor->max_wm) {
3672 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3673 cursor_wm, cursor->max_wm);
3674 return false;
3675 }
3676
3677 if (!(display_wm || cursor_wm)) {
3678 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3679 return false;
3680 }
3681
3682 return true;
3683 }
3684
3685 static bool g4x_compute_srwm(struct drm_device *dev,
3686 int plane,
3687 int latency_ns,
3688 const struct intel_watermark_params *display,
3689 const struct intel_watermark_params *cursor,
3690 int *display_wm, int *cursor_wm)
3691 {
3692 struct drm_crtc *crtc;
3693 int hdisplay, htotal, pixel_size, clock;
3694 unsigned long line_time_us;
3695 int line_count, line_size;
3696 int small, large;
3697 int entries;
3698
3699 if (!latency_ns) {
3700 *display_wm = *cursor_wm = 0;
3701 return false;
3702 }
3703
3704 crtc = intel_get_crtc_for_plane(dev, plane);
3705 hdisplay = crtc->mode.hdisplay;
3706 htotal = crtc->mode.htotal;
3707 clock = crtc->mode.clock;
3708 pixel_size = crtc->fb->bits_per_pixel / 8;
3709
3710 line_time_us = (htotal * 1000) / clock;
3711 line_count = (latency_ns / line_time_us + 1000) / 1000;
3712 line_size = hdisplay * pixel_size;
3713
3714 /* Use the minimum of the small and large buffer method for primary */
3715 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3716 large = line_count * line_size;
3717
3718 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3719 *display_wm = entries + display->guard_size;
3720
3721 /* calculate the self-refresh watermark for display cursor */
3722 entries = line_count * pixel_size * 64;
3723 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3724 *cursor_wm = entries + cursor->guard_size;
3725
3726 return g4x_check_srwm(dev,
3727 *display_wm, *cursor_wm,
3728 display, cursor);
3729 }
3730
3731 #define single_plane_enabled(mask) is_power_of_2(mask)
3732
3733 static void g4x_update_wm(struct drm_device *dev)
3734 {
3735 static const int sr_latency_ns = 12000;
3736 struct drm_i915_private *dev_priv = dev->dev_private;
3737 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3738 int plane_sr, cursor_sr;
3739 unsigned int enabled = 0;
3740
3741 if (g4x_compute_wm0(dev, 0,
3742 &g4x_wm_info, latency_ns,
3743 &g4x_cursor_wm_info, latency_ns,
3744 &planea_wm, &cursora_wm))
3745 enabled |= 1;
3746
3747 if (g4x_compute_wm0(dev, 1,
3748 &g4x_wm_info, latency_ns,
3749 &g4x_cursor_wm_info, latency_ns,
3750 &planeb_wm, &cursorb_wm))
3751 enabled |= 2;
3752
3753 plane_sr = cursor_sr = 0;
3754 if (single_plane_enabled(enabled) &&
3755 g4x_compute_srwm(dev, ffs(enabled) - 1,
3756 sr_latency_ns,
3757 &g4x_wm_info,
3758 &g4x_cursor_wm_info,
3759 &plane_sr, &cursor_sr))
3760 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3761 else
3762 I915_WRITE(FW_BLC_SELF,
3763 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3764
3765 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3766 planea_wm, cursora_wm,
3767 planeb_wm, cursorb_wm,
3768 plane_sr, cursor_sr);
3769
3770 I915_WRITE(DSPFW1,
3771 (plane_sr << DSPFW_SR_SHIFT) |
3772 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3773 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3774 planea_wm);
3775 I915_WRITE(DSPFW2,
3776 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3777 (cursora_wm << DSPFW_CURSORA_SHIFT));
3778 /* HPLL off in SR has some issues on G4x... disable it */
3779 I915_WRITE(DSPFW3,
3780 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3781 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3782 }
3783
3784 static void i965_update_wm(struct drm_device *dev)
3785 {
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct drm_crtc *crtc;
3788 int srwm = 1;
3789 int cursor_sr = 16;
3790
3791 /* Calc sr entries for one plane configs */
3792 crtc = single_enabled_crtc(dev);
3793 if (crtc) {
3794 /* self-refresh has much higher latency */
3795 static const int sr_latency_ns = 12000;
3796 int clock = crtc->mode.clock;
3797 int htotal = crtc->mode.htotal;
3798 int hdisplay = crtc->mode.hdisplay;
3799 int pixel_size = crtc->fb->bits_per_pixel / 8;
3800 unsigned long line_time_us;
3801 int entries;
3802
3803 line_time_us = ((htotal * 1000) / clock);
3804
3805 /* Use ns/us then divide to preserve precision */
3806 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3807 pixel_size * hdisplay;
3808 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3809 srwm = I965_FIFO_SIZE - entries;
3810 if (srwm < 0)
3811 srwm = 1;
3812 srwm &= 0x1ff;
3813 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3814 entries, srwm);
3815
3816 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3817 pixel_size * 64;
3818 entries = DIV_ROUND_UP(entries,
3819 i965_cursor_wm_info.cacheline_size);
3820 cursor_sr = i965_cursor_wm_info.fifo_size -
3821 (entries + i965_cursor_wm_info.guard_size);
3822
3823 if (cursor_sr > i965_cursor_wm_info.max_wm)
3824 cursor_sr = i965_cursor_wm_info.max_wm;
3825
3826 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3827 "cursor %d\n", srwm, cursor_sr);
3828
3829 if (IS_CRESTLINE(dev))
3830 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3831 } else {
3832 /* Turn off self refresh if both pipes are enabled */
3833 if (IS_CRESTLINE(dev))
3834 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3835 & ~FW_BLC_SELF_EN);
3836 }
3837
3838 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3839 srwm);
3840
3841 /* 965 has limitations... */
3842 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3843 (8 << 16) | (8 << 8) | (8 << 0));
3844 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3845 /* update cursor SR watermark */
3846 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3847 }
3848
3849 static void i9xx_update_wm(struct drm_device *dev)
3850 {
3851 struct drm_i915_private *dev_priv = dev->dev_private;
3852 const struct intel_watermark_params *wm_info;
3853 uint32_t fwater_lo;
3854 uint32_t fwater_hi;
3855 int cwm, srwm = 1;
3856 int fifo_size;
3857 int planea_wm, planeb_wm;
3858 struct drm_crtc *crtc, *enabled = NULL;
3859
3860 if (IS_I945GM(dev))
3861 wm_info = &i945_wm_info;
3862 else if (!IS_GEN2(dev))
3863 wm_info = &i915_wm_info;
3864 else
3865 wm_info = &i855_wm_info;
3866
3867 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3868 crtc = intel_get_crtc_for_plane(dev, 0);
3869 if (crtc->enabled && crtc->fb) {
3870 planea_wm = intel_calculate_wm(crtc->mode.clock,
3871 wm_info, fifo_size,
3872 crtc->fb->bits_per_pixel / 8,
3873 latency_ns);
3874 enabled = crtc;
3875 } else
3876 planea_wm = fifo_size - wm_info->guard_size;
3877
3878 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3879 crtc = intel_get_crtc_for_plane(dev, 1);
3880 if (crtc->enabled && crtc->fb) {
3881 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3882 wm_info, fifo_size,
3883 crtc->fb->bits_per_pixel / 8,
3884 latency_ns);
3885 if (enabled == NULL)
3886 enabled = crtc;
3887 else
3888 enabled = NULL;
3889 } else
3890 planeb_wm = fifo_size - wm_info->guard_size;
3891
3892 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3893
3894 /*
3895 * Overlay gets an aggressive default since video jitter is bad.
3896 */
3897 cwm = 2;
3898
3899 /* Play safe and disable self-refresh before adjusting watermarks. */
3900 if (IS_I945G(dev) || IS_I945GM(dev))
3901 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3902 else if (IS_I915GM(dev))
3903 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3904
3905 /* Calc sr entries for one plane configs */
3906 if (HAS_FW_BLC(dev) && enabled) {
3907 /* self-refresh has much higher latency */
3908 static const int sr_latency_ns = 6000;
3909 int clock = enabled->mode.clock;
3910 int htotal = enabled->mode.htotal;
3911 int hdisplay = enabled->mode.hdisplay;
3912 int pixel_size = enabled->fb->bits_per_pixel / 8;
3913 unsigned long line_time_us;
3914 int entries;
3915
3916 line_time_us = (htotal * 1000) / clock;
3917
3918 /* Use ns/us then divide to preserve precision */
3919 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3920 pixel_size * hdisplay;
3921 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3922 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3923 srwm = wm_info->fifo_size - entries;
3924 if (srwm < 0)
3925 srwm = 1;
3926
3927 if (IS_I945G(dev) || IS_I945GM(dev))
3928 I915_WRITE(FW_BLC_SELF,
3929 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3930 else if (IS_I915GM(dev))
3931 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3932 }
3933
3934 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3935 planea_wm, planeb_wm, cwm, srwm);
3936
3937 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3938 fwater_hi = (cwm & 0x1f);
3939
3940 /* Set request length to 8 cachelines per fetch */
3941 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3942 fwater_hi = fwater_hi | (1 << 8);
3943
3944 I915_WRITE(FW_BLC, fwater_lo);
3945 I915_WRITE(FW_BLC2, fwater_hi);
3946
3947 if (HAS_FW_BLC(dev)) {
3948 if (enabled) {
3949 if (IS_I945G(dev) || IS_I945GM(dev))
3950 I915_WRITE(FW_BLC_SELF,
3951 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3952 else if (IS_I915GM(dev))
3953 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3954 DRM_DEBUG_KMS("memory self refresh enabled\n");
3955 } else
3956 DRM_DEBUG_KMS("memory self refresh disabled\n");
3957 }
3958 }
3959
3960 static void i830_update_wm(struct drm_device *dev)
3961 {
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct drm_crtc *crtc;
3964 uint32_t fwater_lo;
3965 int planea_wm;
3966
3967 crtc = single_enabled_crtc(dev);
3968 if (crtc == NULL)
3969 return;
3970
3971 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3972 dev_priv->display.get_fifo_size(dev, 0),
3973 crtc->fb->bits_per_pixel / 8,
3974 latency_ns);
3975 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3976 fwater_lo |= (3<<8) | planea_wm;
3977
3978 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3979
3980 I915_WRITE(FW_BLC, fwater_lo);
3981 }
3982
3983 #define ILK_LP0_PLANE_LATENCY 700
3984 #define ILK_LP0_CURSOR_LATENCY 1300
3985
3986 static bool ironlake_compute_wm0(struct drm_device *dev,
3987 int pipe,
3988 const struct intel_watermark_params *display,
3989 int display_latency_ns,
3990 const struct intel_watermark_params *cursor,
3991 int cursor_latency_ns,
3992 int *plane_wm,
3993 int *cursor_wm)
3994 {
3995 struct drm_crtc *crtc;
3996 int htotal, hdisplay, clock, pixel_size;
3997 int line_time_us, line_count;
3998 int entries, tlb_miss;
3999
4000 crtc = intel_get_crtc_for_pipe(dev, pipe);
4001 if (crtc->fb == NULL || !crtc->enabled)
4002 return false;
4003
4004 htotal = crtc->mode.htotal;
4005 hdisplay = crtc->mode.hdisplay;
4006 clock = crtc->mode.clock;
4007 pixel_size = crtc->fb->bits_per_pixel / 8;
4008
4009 /* Use the small buffer method to calculate plane watermark */
4010 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4011 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4012 if (tlb_miss > 0)
4013 entries += tlb_miss;
4014 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4015 *plane_wm = entries + display->guard_size;
4016 if (*plane_wm > (int)display->max_wm)
4017 *plane_wm = display->max_wm;
4018
4019 /* Use the large buffer method to calculate cursor watermark */
4020 line_time_us = ((htotal * 1000) / clock);
4021 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4022 entries = line_count * 64 * pixel_size;
4023 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4024 if (tlb_miss > 0)
4025 entries += tlb_miss;
4026 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4027 *cursor_wm = entries + cursor->guard_size;
4028 if (*cursor_wm > (int)cursor->max_wm)
4029 *cursor_wm = (int)cursor->max_wm;
4030
4031 return true;
4032 }
4033
4034 /*
4035 * Check the wm result.
4036 *
4037 * If any calculated watermark values is larger than the maximum value that
4038 * can be programmed into the associated watermark register, that watermark
4039 * must be disabled.
4040 */
4041 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4042 int fbc_wm, int display_wm, int cursor_wm,
4043 const struct intel_watermark_params *display,
4044 const struct intel_watermark_params *cursor)
4045 {
4046 struct drm_i915_private *dev_priv = dev->dev_private;
4047
4048 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4049 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4050
4051 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4052 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4053 fbc_wm, SNB_FBC_MAX_SRWM, level);
4054
4055 /* fbc has it's own way to disable FBC WM */
4056 I915_WRITE(DISP_ARB_CTL,
4057 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4058 return false;
4059 }
4060
4061 if (display_wm > display->max_wm) {
4062 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4063 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4064 return false;
4065 }
4066
4067 if (cursor_wm > cursor->max_wm) {
4068 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4069 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4070 return false;
4071 }
4072
4073 if (!(fbc_wm || display_wm || cursor_wm)) {
4074 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4075 return false;
4076 }
4077
4078 return true;
4079 }
4080
4081 /*
4082 * Compute watermark values of WM[1-3],
4083 */
4084 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4085 int latency_ns,
4086 const struct intel_watermark_params *display,
4087 const struct intel_watermark_params *cursor,
4088 int *fbc_wm, int *display_wm, int *cursor_wm)
4089 {
4090 struct drm_crtc *crtc;
4091 unsigned long line_time_us;
4092 int hdisplay, htotal, pixel_size, clock;
4093 int line_count, line_size;
4094 int small, large;
4095 int entries;
4096
4097 if (!latency_ns) {
4098 *fbc_wm = *display_wm = *cursor_wm = 0;
4099 return false;
4100 }
4101
4102 crtc = intel_get_crtc_for_plane(dev, plane);
4103 hdisplay = crtc->mode.hdisplay;
4104 htotal = crtc->mode.htotal;
4105 clock = crtc->mode.clock;
4106 pixel_size = crtc->fb->bits_per_pixel / 8;
4107
4108 line_time_us = (htotal * 1000) / clock;
4109 line_count = (latency_ns / line_time_us + 1000) / 1000;
4110 line_size = hdisplay * pixel_size;
4111
4112 /* Use the minimum of the small and large buffer method for primary */
4113 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4114 large = line_count * line_size;
4115
4116 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4117 *display_wm = entries + display->guard_size;
4118
4119 /*
4120 * Spec says:
4121 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4122 */
4123 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4124
4125 /* calculate the self-refresh watermark for display cursor */
4126 entries = line_count * pixel_size * 64;
4127 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4128 *cursor_wm = entries + cursor->guard_size;
4129
4130 return ironlake_check_srwm(dev, level,
4131 *fbc_wm, *display_wm, *cursor_wm,
4132 display, cursor);
4133 }
4134
4135 static void ironlake_update_wm(struct drm_device *dev)
4136 {
4137 struct drm_i915_private *dev_priv = dev->dev_private;
4138 int fbc_wm, plane_wm, cursor_wm;
4139 unsigned int enabled;
4140
4141 enabled = 0;
4142 if (ironlake_compute_wm0(dev, 0,
4143 &ironlake_display_wm_info,
4144 ILK_LP0_PLANE_LATENCY,
4145 &ironlake_cursor_wm_info,
4146 ILK_LP0_CURSOR_LATENCY,
4147 &plane_wm, &cursor_wm)) {
4148 I915_WRITE(WM0_PIPEA_ILK,
4149 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4150 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4151 " plane %d, " "cursor: %d\n",
4152 plane_wm, cursor_wm);
4153 enabled |= 1;
4154 }
4155
4156 if (ironlake_compute_wm0(dev, 1,
4157 &ironlake_display_wm_info,
4158 ILK_LP0_PLANE_LATENCY,
4159 &ironlake_cursor_wm_info,
4160 ILK_LP0_CURSOR_LATENCY,
4161 &plane_wm, &cursor_wm)) {
4162 I915_WRITE(WM0_PIPEB_ILK,
4163 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4164 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4165 " plane %d, cursor: %d\n",
4166 plane_wm, cursor_wm);
4167 enabled |= 2;
4168 }
4169
4170 /*
4171 * Calculate and update the self-refresh watermark only when one
4172 * display plane is used.
4173 */
4174 I915_WRITE(WM3_LP_ILK, 0);
4175 I915_WRITE(WM2_LP_ILK, 0);
4176 I915_WRITE(WM1_LP_ILK, 0);
4177
4178 if (!single_plane_enabled(enabled))
4179 return;
4180 enabled = ffs(enabled) - 1;
4181
4182 /* WM1 */
4183 if (!ironlake_compute_srwm(dev, 1, enabled,
4184 ILK_READ_WM1_LATENCY() * 500,
4185 &ironlake_display_srwm_info,
4186 &ironlake_cursor_srwm_info,
4187 &fbc_wm, &plane_wm, &cursor_wm))
4188 return;
4189
4190 I915_WRITE(WM1_LP_ILK,
4191 WM1_LP_SR_EN |
4192 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4193 (fbc_wm << WM1_LP_FBC_SHIFT) |
4194 (plane_wm << WM1_LP_SR_SHIFT) |
4195 cursor_wm);
4196
4197 /* WM2 */
4198 if (!ironlake_compute_srwm(dev, 2, enabled,
4199 ILK_READ_WM2_LATENCY() * 500,
4200 &ironlake_display_srwm_info,
4201 &ironlake_cursor_srwm_info,
4202 &fbc_wm, &plane_wm, &cursor_wm))
4203 return;
4204
4205 I915_WRITE(WM2_LP_ILK,
4206 WM2_LP_EN |
4207 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4208 (fbc_wm << WM1_LP_FBC_SHIFT) |
4209 (plane_wm << WM1_LP_SR_SHIFT) |
4210 cursor_wm);
4211
4212 /*
4213 * WM3 is unsupported on ILK, probably because we don't have latency
4214 * data for that power state
4215 */
4216 }
4217
4218 static void sandybridge_update_wm(struct drm_device *dev)
4219 {
4220 struct drm_i915_private *dev_priv = dev->dev_private;
4221 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4222 int fbc_wm, plane_wm, cursor_wm;
4223 unsigned int enabled;
4224
4225 enabled = 0;
4226 if (ironlake_compute_wm0(dev, 0,
4227 &sandybridge_display_wm_info, latency,
4228 &sandybridge_cursor_wm_info, latency,
4229 &plane_wm, &cursor_wm)) {
4230 I915_WRITE(WM0_PIPEA_ILK,
4231 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4232 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4233 " plane %d, " "cursor: %d\n",
4234 plane_wm, cursor_wm);
4235 enabled |= 1;
4236 }
4237
4238 if (ironlake_compute_wm0(dev, 1,
4239 &sandybridge_display_wm_info, latency,
4240 &sandybridge_cursor_wm_info, latency,
4241 &plane_wm, &cursor_wm)) {
4242 I915_WRITE(WM0_PIPEB_ILK,
4243 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4244 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4245 " plane %d, cursor: %d\n",
4246 plane_wm, cursor_wm);
4247 enabled |= 2;
4248 }
4249
4250 /*
4251 * Calculate and update the self-refresh watermark only when one
4252 * display plane is used.
4253 *
4254 * SNB support 3 levels of watermark.
4255 *
4256 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4257 * and disabled in the descending order
4258 *
4259 */
4260 I915_WRITE(WM3_LP_ILK, 0);
4261 I915_WRITE(WM2_LP_ILK, 0);
4262 I915_WRITE(WM1_LP_ILK, 0);
4263
4264 if (!single_plane_enabled(enabled))
4265 return;
4266 enabled = ffs(enabled) - 1;
4267
4268 /* WM1 */
4269 if (!ironlake_compute_srwm(dev, 1, enabled,
4270 SNB_READ_WM1_LATENCY() * 500,
4271 &sandybridge_display_srwm_info,
4272 &sandybridge_cursor_srwm_info,
4273 &fbc_wm, &plane_wm, &cursor_wm))
4274 return;
4275
4276 I915_WRITE(WM1_LP_ILK,
4277 WM1_LP_SR_EN |
4278 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4279 (fbc_wm << WM1_LP_FBC_SHIFT) |
4280 (plane_wm << WM1_LP_SR_SHIFT) |
4281 cursor_wm);
4282
4283 /* WM2 */
4284 if (!ironlake_compute_srwm(dev, 2, enabled,
4285 SNB_READ_WM2_LATENCY() * 500,
4286 &sandybridge_display_srwm_info,
4287 &sandybridge_cursor_srwm_info,
4288 &fbc_wm, &plane_wm, &cursor_wm))
4289 return;
4290
4291 I915_WRITE(WM2_LP_ILK,
4292 WM2_LP_EN |
4293 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4294 (fbc_wm << WM1_LP_FBC_SHIFT) |
4295 (plane_wm << WM1_LP_SR_SHIFT) |
4296 cursor_wm);
4297
4298 /* WM3 */
4299 if (!ironlake_compute_srwm(dev, 3, enabled,
4300 SNB_READ_WM3_LATENCY() * 500,
4301 &sandybridge_display_srwm_info,
4302 &sandybridge_cursor_srwm_info,
4303 &fbc_wm, &plane_wm, &cursor_wm))
4304 return;
4305
4306 I915_WRITE(WM3_LP_ILK,
4307 WM3_LP_EN |
4308 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4309 (fbc_wm << WM1_LP_FBC_SHIFT) |
4310 (plane_wm << WM1_LP_SR_SHIFT) |
4311 cursor_wm);
4312 }
4313
4314 /**
4315 * intel_update_watermarks - update FIFO watermark values based on current modes
4316 *
4317 * Calculate watermark values for the various WM regs based on current mode
4318 * and plane configuration.
4319 *
4320 * There are several cases to deal with here:
4321 * - normal (i.e. non-self-refresh)
4322 * - self-refresh (SR) mode
4323 * - lines are large relative to FIFO size (buffer can hold up to 2)
4324 * - lines are small relative to FIFO size (buffer can hold more than 2
4325 * lines), so need to account for TLB latency
4326 *
4327 * The normal calculation is:
4328 * watermark = dotclock * bytes per pixel * latency
4329 * where latency is platform & configuration dependent (we assume pessimal
4330 * values here).
4331 *
4332 * The SR calculation is:
4333 * watermark = (trunc(latency/line time)+1) * surface width *
4334 * bytes per pixel
4335 * where
4336 * line time = htotal / dotclock
4337 * surface width = hdisplay for normal plane and 64 for cursor
4338 * and latency is assumed to be high, as above.
4339 *
4340 * The final value programmed to the register should always be rounded up,
4341 * and include an extra 2 entries to account for clock crossings.
4342 *
4343 * We don't use the sprite, so we can ignore that. And on Crestline we have
4344 * to set the non-SR watermarks to 8.
4345 */
4346 static void intel_update_watermarks(struct drm_device *dev)
4347 {
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350 if (dev_priv->display.update_wm)
4351 dev_priv->display.update_wm(dev);
4352 }
4353
4354 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4355 {
4356 return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4357 }
4358
4359 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4360 struct drm_display_mode *mode,
4361 struct drm_display_mode *adjusted_mode,
4362 int x, int y,
4363 struct drm_framebuffer *old_fb)
4364 {
4365 struct drm_device *dev = crtc->dev;
4366 struct drm_i915_private *dev_priv = dev->dev_private;
4367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4368 int pipe = intel_crtc->pipe;
4369 int plane = intel_crtc->plane;
4370 int refclk, num_connectors = 0;
4371 intel_clock_t clock, reduced_clock;
4372 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4373 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4374 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4375 struct drm_mode_config *mode_config = &dev->mode_config;
4376 struct intel_encoder *encoder;
4377 const intel_limit_t *limit;
4378 int ret;
4379 u32 temp;
4380 u32 lvds_sync = 0;
4381
4382 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4383 if (encoder->base.crtc != crtc)
4384 continue;
4385
4386 switch (encoder->type) {
4387 case INTEL_OUTPUT_LVDS:
4388 is_lvds = true;
4389 break;
4390 case INTEL_OUTPUT_SDVO:
4391 case INTEL_OUTPUT_HDMI:
4392 is_sdvo = true;
4393 if (encoder->needs_tv_clock)
4394 is_tv = true;
4395 break;
4396 case INTEL_OUTPUT_DVO:
4397 is_dvo = true;
4398 break;
4399 case INTEL_OUTPUT_TVOUT:
4400 is_tv = true;
4401 break;
4402 case INTEL_OUTPUT_ANALOG:
4403 is_crt = true;
4404 break;
4405 case INTEL_OUTPUT_DISPLAYPORT:
4406 is_dp = true;
4407 break;
4408 }
4409
4410 num_connectors++;
4411 }
4412
4413 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4414 refclk = dev_priv->lvds_ssc_freq * 1000;
4415 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4416 refclk / 1000);
4417 } else if (!IS_GEN2(dev)) {
4418 refclk = 96000;
4419 } else {
4420 refclk = 48000;
4421 }
4422
4423 /*
4424 * Returns a set of divisors for the desired target clock with the given
4425 * refclk, or FALSE. The returned values represent the clock equation:
4426 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4427 */
4428 limit = intel_limit(crtc, refclk);
4429 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4430 if (!ok) {
4431 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4432 return -EINVAL;
4433 }
4434
4435 /* Ensure that the cursor is valid for the new mode before changing... */
4436 intel_crtc_update_cursor(crtc, true);
4437
4438 if (is_lvds && dev_priv->lvds_downclock_avail) {
4439 has_reduced_clock = limit->find_pll(limit, crtc,
4440 dev_priv->lvds_downclock,
4441 refclk,
4442 &reduced_clock);
4443 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4444 /*
4445 * If the different P is found, it means that we can't
4446 * switch the display clock by using the FP0/FP1.
4447 * In such case we will disable the LVDS downclock
4448 * feature.
4449 */
4450 DRM_DEBUG_KMS("Different P is found for "
4451 "LVDS clock/downclock\n");
4452 has_reduced_clock = 0;
4453 }
4454 }
4455 /* SDVO TV has fixed PLL values depend on its clock range,
4456 this mirrors vbios setting. */
4457 if (is_sdvo && is_tv) {
4458 if (adjusted_mode->clock >= 100000
4459 && adjusted_mode->clock < 140500) {
4460 clock.p1 = 2;
4461 clock.p2 = 10;
4462 clock.n = 3;
4463 clock.m1 = 16;
4464 clock.m2 = 8;
4465 } else if (adjusted_mode->clock >= 140500
4466 && adjusted_mode->clock <= 200000) {
4467 clock.p1 = 1;
4468 clock.p2 = 10;
4469 clock.n = 6;
4470 clock.m1 = 12;
4471 clock.m2 = 8;
4472 }
4473 }
4474
4475 if (IS_PINEVIEW(dev)) {
4476 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4477 if (has_reduced_clock)
4478 fp2 = (1 << reduced_clock.n) << 16 |
4479 reduced_clock.m1 << 8 | reduced_clock.m2;
4480 } else {
4481 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4482 if (has_reduced_clock)
4483 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4484 reduced_clock.m2;
4485 }
4486
4487 dpll = DPLL_VGA_MODE_DIS;
4488
4489 if (!IS_GEN2(dev)) {
4490 if (is_lvds)
4491 dpll |= DPLLB_MODE_LVDS;
4492 else
4493 dpll |= DPLLB_MODE_DAC_SERIAL;
4494 if (is_sdvo) {
4495 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4496 if (pixel_multiplier > 1) {
4497 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4498 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4499 }
4500 dpll |= DPLL_DVO_HIGH_SPEED;
4501 }
4502 if (is_dp)
4503 dpll |= DPLL_DVO_HIGH_SPEED;
4504
4505 /* compute bitmask from p1 value */
4506 if (IS_PINEVIEW(dev))
4507 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4508 else {
4509 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4510 if (IS_G4X(dev) && has_reduced_clock)
4511 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4512 }
4513 switch (clock.p2) {
4514 case 5:
4515 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4516 break;
4517 case 7:
4518 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4519 break;
4520 case 10:
4521 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4522 break;
4523 case 14:
4524 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4525 break;
4526 }
4527 if (INTEL_INFO(dev)->gen >= 4)
4528 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4529 } else {
4530 if (is_lvds) {
4531 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4532 } else {
4533 if (clock.p1 == 2)
4534 dpll |= PLL_P1_DIVIDE_BY_TWO;
4535 else
4536 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4537 if (clock.p2 == 4)
4538 dpll |= PLL_P2_DIVIDE_BY_4;
4539 }
4540 }
4541
4542 if (is_sdvo && is_tv)
4543 dpll |= PLL_REF_INPUT_TVCLKINBC;
4544 else if (is_tv)
4545 /* XXX: just matching BIOS for now */
4546 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4547 dpll |= 3;
4548 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4549 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4550 else
4551 dpll |= PLL_REF_INPUT_DREFCLK;
4552
4553 /* setup pipeconf */
4554 pipeconf = I915_READ(PIPECONF(pipe));
4555
4556 /* Set up the display plane register */
4557 dspcntr = DISPPLANE_GAMMA_ENABLE;
4558
4559 /* Ironlake's plane is forced to pipe, bit 24 is to
4560 enable color space conversion */
4561 if (pipe == 0)
4562 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4563 else
4564 dspcntr |= DISPPLANE_SEL_PIPE_B;
4565
4566 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4567 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4568 * core speed.
4569 *
4570 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4571 * pipe == 0 check?
4572 */
4573 if (mode->clock >
4574 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4575 pipeconf |= PIPECONF_DOUBLE_WIDE;
4576 else
4577 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4578 }
4579
4580 dpll |= DPLL_VCO_ENABLE;
4581
4582 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4583 drm_mode_debug_printmodeline(mode);
4584
4585 I915_WRITE(FP0(pipe), fp);
4586 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4587
4588 POSTING_READ(DPLL(pipe));
4589 udelay(150);
4590
4591 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4592 * This is an exception to the general rule that mode_set doesn't turn
4593 * things on.
4594 */
4595 if (is_lvds) {
4596 temp = I915_READ(LVDS);
4597 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4598 if (pipe == 1) {
4599 temp |= LVDS_PIPEB_SELECT;
4600 } else {
4601 temp &= ~LVDS_PIPEB_SELECT;
4602 }
4603 /* set the corresponsding LVDS_BORDER bit */
4604 temp |= dev_priv->lvds_border_bits;
4605 /* Set the B0-B3 data pairs corresponding to whether we're going to
4606 * set the DPLLs for dual-channel mode or not.
4607 */
4608 if (clock.p2 == 7)
4609 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4610 else
4611 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4612
4613 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4614 * appropriately here, but we need to look more thoroughly into how
4615 * panels behave in the two modes.
4616 */
4617 /* set the dithering flag on LVDS as needed */
4618 if (INTEL_INFO(dev)->gen >= 4) {
4619 if (dev_priv->lvds_dither)
4620 temp |= LVDS_ENABLE_DITHER;
4621 else
4622 temp &= ~LVDS_ENABLE_DITHER;
4623 }
4624 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4625 lvds_sync |= LVDS_HSYNC_POLARITY;
4626 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4627 lvds_sync |= LVDS_VSYNC_POLARITY;
4628 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4629 != lvds_sync) {
4630 char flags[2] = "-+";
4631 DRM_INFO("Changing LVDS panel from "
4632 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4633 flags[!(temp & LVDS_HSYNC_POLARITY)],
4634 flags[!(temp & LVDS_VSYNC_POLARITY)],
4635 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4636 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4637 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4638 temp |= lvds_sync;
4639 }
4640 I915_WRITE(LVDS, temp);
4641 }
4642
4643 if (is_dp) {
4644 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4645 }
4646
4647 I915_WRITE(DPLL(pipe), dpll);
4648
4649 /* Wait for the clocks to stabilize. */
4650 POSTING_READ(DPLL(pipe));
4651 udelay(150);
4652
4653 if (INTEL_INFO(dev)->gen >= 4) {
4654 temp = 0;
4655 if (is_sdvo) {
4656 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4657 if (temp > 1)
4658 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4659 else
4660 temp = 0;
4661 }
4662 I915_WRITE(DPLL_MD(pipe), temp);
4663 } else {
4664 /* The pixel multiplier can only be updated once the
4665 * DPLL is enabled and the clocks are stable.
4666 *
4667 * So write it again.
4668 */
4669 I915_WRITE(DPLL(pipe), dpll);
4670 }
4671
4672 intel_crtc->lowfreq_avail = false;
4673 if (is_lvds && has_reduced_clock && i915_powersave) {
4674 I915_WRITE(FP1(pipe), fp2);
4675 intel_crtc->lowfreq_avail = true;
4676 if (HAS_PIPE_CXSR(dev)) {
4677 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4678 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4679 }
4680 } else {
4681 I915_WRITE(FP1(pipe), fp);
4682 if (HAS_PIPE_CXSR(dev)) {
4683 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4684 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4685 }
4686 }
4687
4688 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4689 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4690 /* the chip adds 2 halflines automatically */
4691 adjusted_mode->crtc_vdisplay -= 1;
4692 adjusted_mode->crtc_vtotal -= 1;
4693 adjusted_mode->crtc_vblank_start -= 1;
4694 adjusted_mode->crtc_vblank_end -= 1;
4695 adjusted_mode->crtc_vsync_end -= 1;
4696 adjusted_mode->crtc_vsync_start -= 1;
4697 } else
4698 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4699
4700 I915_WRITE(HTOTAL(pipe),
4701 (adjusted_mode->crtc_hdisplay - 1) |
4702 ((adjusted_mode->crtc_htotal - 1) << 16));
4703 I915_WRITE(HBLANK(pipe),
4704 (adjusted_mode->crtc_hblank_start - 1) |
4705 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4706 I915_WRITE(HSYNC(pipe),
4707 (adjusted_mode->crtc_hsync_start - 1) |
4708 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4709
4710 I915_WRITE(VTOTAL(pipe),
4711 (adjusted_mode->crtc_vdisplay - 1) |
4712 ((adjusted_mode->crtc_vtotal - 1) << 16));
4713 I915_WRITE(VBLANK(pipe),
4714 (adjusted_mode->crtc_vblank_start - 1) |
4715 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4716 I915_WRITE(VSYNC(pipe),
4717 (adjusted_mode->crtc_vsync_start - 1) |
4718 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4719
4720 /* pipesrc and dspsize control the size that is scaled from,
4721 * which should always be the user's requested size.
4722 */
4723 I915_WRITE(DSPSIZE(plane),
4724 ((mode->vdisplay - 1) << 16) |
4725 (mode->hdisplay - 1));
4726 I915_WRITE(DSPPOS(plane), 0);
4727 I915_WRITE(PIPESRC(pipe),
4728 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4729
4730 I915_WRITE(PIPECONF(pipe), pipeconf);
4731 POSTING_READ(PIPECONF(pipe));
4732 intel_enable_pipe(dev_priv, pipe, false);
4733
4734 intel_wait_for_vblank(dev, pipe);
4735
4736 I915_WRITE(DSPCNTR(plane), dspcntr);
4737 POSTING_READ(DSPCNTR(plane));
4738
4739 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4740
4741 intel_update_watermarks(dev);
4742
4743 return ret;
4744 }
4745
4746 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4747 struct drm_display_mode *mode,
4748 struct drm_display_mode *adjusted_mode,
4749 int x, int y,
4750 struct drm_framebuffer *old_fb)
4751 {
4752 struct drm_device *dev = crtc->dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755 int pipe = intel_crtc->pipe;
4756 int plane = intel_crtc->plane;
4757 int refclk, num_connectors = 0;
4758 intel_clock_t clock, reduced_clock;
4759 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4760 bool ok, has_reduced_clock = false, is_sdvo = false;
4761 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4762 struct intel_encoder *has_edp_encoder = NULL;
4763 struct drm_mode_config *mode_config = &dev->mode_config;
4764 struct intel_encoder *encoder;
4765 const intel_limit_t *limit;
4766 int ret;
4767 struct fdi_m_n m_n = {0};
4768 u32 temp;
4769 u32 lvds_sync = 0;
4770 int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4771
4772 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4773 if (encoder->base.crtc != crtc)
4774 continue;
4775
4776 switch (encoder->type) {
4777 case INTEL_OUTPUT_LVDS:
4778 is_lvds = true;
4779 break;
4780 case INTEL_OUTPUT_SDVO:
4781 case INTEL_OUTPUT_HDMI:
4782 is_sdvo = true;
4783 if (encoder->needs_tv_clock)
4784 is_tv = true;
4785 break;
4786 case INTEL_OUTPUT_TVOUT:
4787 is_tv = true;
4788 break;
4789 case INTEL_OUTPUT_ANALOG:
4790 is_crt = true;
4791 break;
4792 case INTEL_OUTPUT_DISPLAYPORT:
4793 is_dp = true;
4794 break;
4795 case INTEL_OUTPUT_EDP:
4796 has_edp_encoder = encoder;
4797 break;
4798 }
4799
4800 num_connectors++;
4801 }
4802
4803 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4804 refclk = dev_priv->lvds_ssc_freq * 1000;
4805 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4806 refclk / 1000);
4807 } else {
4808 refclk = 96000;
4809 if (!has_edp_encoder ||
4810 intel_encoder_is_pch_edp(&has_edp_encoder->base))
4811 refclk = 120000; /* 120Mhz refclk */
4812 }
4813
4814 /*
4815 * Returns a set of divisors for the desired target clock with the given
4816 * refclk, or FALSE. The returned values represent the clock equation:
4817 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4818 */
4819 limit = intel_limit(crtc, refclk);
4820 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4821 if (!ok) {
4822 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4823 return -EINVAL;
4824 }
4825
4826 /* Ensure that the cursor is valid for the new mode before changing... */
4827 intel_crtc_update_cursor(crtc, true);
4828
4829 if (is_lvds && dev_priv->lvds_downclock_avail) {
4830 has_reduced_clock = limit->find_pll(limit, crtc,
4831 dev_priv->lvds_downclock,
4832 refclk,
4833 &reduced_clock);
4834 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4835 /*
4836 * If the different P is found, it means that we can't
4837 * switch the display clock by using the FP0/FP1.
4838 * In such case we will disable the LVDS downclock
4839 * feature.
4840 */
4841 DRM_DEBUG_KMS("Different P is found for "
4842 "LVDS clock/downclock\n");
4843 has_reduced_clock = 0;
4844 }
4845 }
4846 /* SDVO TV has fixed PLL values depend on its clock range,
4847 this mirrors vbios setting. */
4848 if (is_sdvo && is_tv) {
4849 if (adjusted_mode->clock >= 100000
4850 && adjusted_mode->clock < 140500) {
4851 clock.p1 = 2;
4852 clock.p2 = 10;
4853 clock.n = 3;
4854 clock.m1 = 16;
4855 clock.m2 = 8;
4856 } else if (adjusted_mode->clock >= 140500
4857 && adjusted_mode->clock <= 200000) {
4858 clock.p1 = 1;
4859 clock.p2 = 10;
4860 clock.n = 6;
4861 clock.m1 = 12;
4862 clock.m2 = 8;
4863 }
4864 }
4865
4866 /* FDI link */
4867 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4868 lane = 0;
4869 /* CPU eDP doesn't require FDI link, so just set DP M/N
4870 according to current link config */
4871 if (has_edp_encoder &&
4872 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4873 target_clock = mode->clock;
4874 intel_edp_link_config(has_edp_encoder,
4875 &lane, &link_bw);
4876 } else {
4877 /* [e]DP over FDI requires target mode clock
4878 instead of link clock */
4879 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4880 target_clock = mode->clock;
4881 else
4882 target_clock = adjusted_mode->clock;
4883
4884 /* FDI is a binary signal running at ~2.7GHz, encoding
4885 * each output octet as 10 bits. The actual frequency
4886 * is stored as a divider into a 100MHz clock, and the
4887 * mode pixel clock is stored in units of 1KHz.
4888 * Hence the bw of each lane in terms of the mode signal
4889 * is:
4890 */
4891 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4892 }
4893
4894 /* determine panel color depth */
4895 temp = I915_READ(PIPECONF(pipe));
4896 temp &= ~PIPE_BPC_MASK;
4897 if (is_lvds) {
4898 /* the BPC will be 6 if it is 18-bit LVDS panel */
4899 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4900 temp |= PIPE_8BPC;
4901 else
4902 temp |= PIPE_6BPC;
4903 } else if (has_edp_encoder) {
4904 switch (dev_priv->edp.bpp/3) {
4905 case 8:
4906 temp |= PIPE_8BPC;
4907 break;
4908 case 10:
4909 temp |= PIPE_10BPC;
4910 break;
4911 case 6:
4912 temp |= PIPE_6BPC;
4913 break;
4914 case 12:
4915 temp |= PIPE_12BPC;
4916 break;
4917 }
4918 } else
4919 temp |= PIPE_8BPC;
4920 I915_WRITE(PIPECONF(pipe), temp);
4921
4922 switch (temp & PIPE_BPC_MASK) {
4923 case PIPE_8BPC:
4924 bpp = 24;
4925 break;
4926 case PIPE_10BPC:
4927 bpp = 30;
4928 break;
4929 case PIPE_6BPC:
4930 bpp = 18;
4931 break;
4932 case PIPE_12BPC:
4933 bpp = 36;
4934 break;
4935 default:
4936 DRM_ERROR("unknown pipe bpc value\n");
4937 bpp = 24;
4938 }
4939
4940 if (!lane) {
4941 /*
4942 * Account for spread spectrum to avoid
4943 * oversubscribing the link. Max center spread
4944 * is 2.5%; use 5% for safety's sake.
4945 */
4946 u32 bps = target_clock * bpp * 21 / 20;
4947 lane = bps / (link_bw * 8) + 1;
4948 }
4949
4950 intel_crtc->fdi_lanes = lane;
4951
4952 if (pixel_multiplier > 1)
4953 link_bw *= pixel_multiplier;
4954 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4955
4956 /* Ironlake: try to setup display ref clock before DPLL
4957 * enabling. This is only under driver's control after
4958 * PCH B stepping, previous chipset stepping should be
4959 * ignoring this setting.
4960 */
4961 temp = I915_READ(PCH_DREF_CONTROL);
4962 /* Always enable nonspread source */
4963 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4964 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4965 temp &= ~DREF_SSC_SOURCE_MASK;
4966 temp |= DREF_SSC_SOURCE_ENABLE;
4967 I915_WRITE(PCH_DREF_CONTROL, temp);
4968
4969 POSTING_READ(PCH_DREF_CONTROL);
4970 udelay(200);
4971
4972 if (has_edp_encoder) {
4973 if (intel_panel_use_ssc(dev_priv)) {
4974 temp |= DREF_SSC1_ENABLE;
4975 I915_WRITE(PCH_DREF_CONTROL, temp);
4976
4977 POSTING_READ(PCH_DREF_CONTROL);
4978 udelay(200);
4979 }
4980 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4981
4982 /* Enable CPU source on CPU attached eDP */
4983 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4984 if (intel_panel_use_ssc(dev_priv))
4985 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4986 else
4987 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4988 } else {
4989 /* Enable SSC on PCH eDP if needed */
4990 if (intel_panel_use_ssc(dev_priv)) {
4991 DRM_ERROR("enabling SSC on PCH\n");
4992 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4993 }
4994 }
4995 I915_WRITE(PCH_DREF_CONTROL, temp);
4996 POSTING_READ(PCH_DREF_CONTROL);
4997 udelay(200);
4998 }
4999
5000 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5001 if (has_reduced_clock)
5002 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5003 reduced_clock.m2;
5004
5005 /* Enable autotuning of the PLL clock (if permissible) */
5006 factor = 21;
5007 if (is_lvds) {
5008 if ((intel_panel_use_ssc(dev_priv) &&
5009 dev_priv->lvds_ssc_freq == 100) ||
5010 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5011 factor = 25;
5012 } else if (is_sdvo && is_tv)
5013 factor = 20;
5014
5015 if (clock.m1 < factor * clock.n)
5016 fp |= FP_CB_TUNE;
5017
5018 dpll = 0;
5019
5020 if (is_lvds)
5021 dpll |= DPLLB_MODE_LVDS;
5022 else
5023 dpll |= DPLLB_MODE_DAC_SERIAL;
5024 if (is_sdvo) {
5025 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5026 if (pixel_multiplier > 1) {
5027 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5028 }
5029 dpll |= DPLL_DVO_HIGH_SPEED;
5030 }
5031 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5032 dpll |= DPLL_DVO_HIGH_SPEED;
5033
5034 /* compute bitmask from p1 value */
5035 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5036 /* also FPA1 */
5037 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5038
5039 switch (clock.p2) {
5040 case 5:
5041 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5042 break;
5043 case 7:
5044 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5045 break;
5046 case 10:
5047 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5048 break;
5049 case 14:
5050 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5051 break;
5052 }
5053
5054 if (is_sdvo && is_tv)
5055 dpll |= PLL_REF_INPUT_TVCLKINBC;
5056 else if (is_tv)
5057 /* XXX: just matching BIOS for now */
5058 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5059 dpll |= 3;
5060 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5061 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5062 else
5063 dpll |= PLL_REF_INPUT_DREFCLK;
5064
5065 /* setup pipeconf */
5066 pipeconf = I915_READ(PIPECONF(pipe));
5067
5068 /* Set up the display plane register */
5069 dspcntr = DISPPLANE_GAMMA_ENABLE;
5070
5071 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5072 drm_mode_debug_printmodeline(mode);
5073
5074 /* PCH eDP needs FDI, but CPU eDP does not */
5075 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5076 I915_WRITE(PCH_FP0(pipe), fp);
5077 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5078
5079 POSTING_READ(PCH_DPLL(pipe));
5080 udelay(150);
5081 }
5082
5083 /* enable transcoder DPLL */
5084 if (HAS_PCH_CPT(dev)) {
5085 temp = I915_READ(PCH_DPLL_SEL);
5086 switch (pipe) {
5087 case 0:
5088 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5089 break;
5090 case 1:
5091 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5092 break;
5093 case 2:
5094 /* FIXME: manage transcoder PLLs? */
5095 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5096 break;
5097 default:
5098 BUG();
5099 }
5100 I915_WRITE(PCH_DPLL_SEL, temp);
5101
5102 POSTING_READ(PCH_DPLL_SEL);
5103 udelay(150);
5104 }
5105
5106 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5107 * This is an exception to the general rule that mode_set doesn't turn
5108 * things on.
5109 */
5110 if (is_lvds) {
5111 temp = I915_READ(PCH_LVDS);
5112 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5113 if (pipe == 1) {
5114 if (HAS_PCH_CPT(dev))
5115 temp |= PORT_TRANS_B_SEL_CPT;
5116 else
5117 temp |= LVDS_PIPEB_SELECT;
5118 } else {
5119 if (HAS_PCH_CPT(dev))
5120 temp &= ~PORT_TRANS_SEL_MASK;
5121 else
5122 temp &= ~LVDS_PIPEB_SELECT;
5123 }
5124 /* set the corresponsding LVDS_BORDER bit */
5125 temp |= dev_priv->lvds_border_bits;
5126 /* Set the B0-B3 data pairs corresponding to whether we're going to
5127 * set the DPLLs for dual-channel mode or not.
5128 */
5129 if (clock.p2 == 7)
5130 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5131 else
5132 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5133
5134 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5135 * appropriately here, but we need to look more thoroughly into how
5136 * panels behave in the two modes.
5137 */
5138 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5139 lvds_sync |= LVDS_HSYNC_POLARITY;
5140 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5141 lvds_sync |= LVDS_VSYNC_POLARITY;
5142 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5143 != lvds_sync) {
5144 char flags[2] = "-+";
5145 DRM_INFO("Changing LVDS panel from "
5146 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5147 flags[!(temp & LVDS_HSYNC_POLARITY)],
5148 flags[!(temp & LVDS_VSYNC_POLARITY)],
5149 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5150 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5151 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5152 temp |= lvds_sync;
5153 }
5154 I915_WRITE(PCH_LVDS, temp);
5155 }
5156
5157 /* set the dithering flag and clear for anything other than a panel. */
5158 pipeconf &= ~PIPECONF_DITHER_EN;
5159 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5160 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5161 pipeconf |= PIPECONF_DITHER_EN;
5162 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5163 }
5164
5165 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5166 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5167 } else {
5168 /* For non-DP output, clear any trans DP clock recovery setting.*/
5169 I915_WRITE(TRANSDATA_M1(pipe), 0);
5170 I915_WRITE(TRANSDATA_N1(pipe), 0);
5171 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5172 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5173 }
5174
5175 if (!has_edp_encoder ||
5176 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5177 I915_WRITE(PCH_DPLL(pipe), dpll);
5178
5179 /* Wait for the clocks to stabilize. */
5180 POSTING_READ(PCH_DPLL(pipe));
5181 udelay(150);
5182
5183 /* The pixel multiplier can only be updated once the
5184 * DPLL is enabled and the clocks are stable.
5185 *
5186 * So write it again.
5187 */
5188 I915_WRITE(PCH_DPLL(pipe), dpll);
5189 }
5190
5191 intel_crtc->lowfreq_avail = false;
5192 if (is_lvds && has_reduced_clock && i915_powersave) {
5193 I915_WRITE(PCH_FP1(pipe), fp2);
5194 intel_crtc->lowfreq_avail = true;
5195 if (HAS_PIPE_CXSR(dev)) {
5196 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5197 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5198 }
5199 } else {
5200 I915_WRITE(PCH_FP1(pipe), fp);
5201 if (HAS_PIPE_CXSR(dev)) {
5202 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5203 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5204 }
5205 }
5206
5207 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5208 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5209 /* the chip adds 2 halflines automatically */
5210 adjusted_mode->crtc_vdisplay -= 1;
5211 adjusted_mode->crtc_vtotal -= 1;
5212 adjusted_mode->crtc_vblank_start -= 1;
5213 adjusted_mode->crtc_vblank_end -= 1;
5214 adjusted_mode->crtc_vsync_end -= 1;
5215 adjusted_mode->crtc_vsync_start -= 1;
5216 } else
5217 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5218
5219 I915_WRITE(HTOTAL(pipe),
5220 (adjusted_mode->crtc_hdisplay - 1) |
5221 ((adjusted_mode->crtc_htotal - 1) << 16));
5222 I915_WRITE(HBLANK(pipe),
5223 (adjusted_mode->crtc_hblank_start - 1) |
5224 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5225 I915_WRITE(HSYNC(pipe),
5226 (adjusted_mode->crtc_hsync_start - 1) |
5227 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5228
5229 I915_WRITE(VTOTAL(pipe),
5230 (adjusted_mode->crtc_vdisplay - 1) |
5231 ((adjusted_mode->crtc_vtotal - 1) << 16));
5232 I915_WRITE(VBLANK(pipe),
5233 (adjusted_mode->crtc_vblank_start - 1) |
5234 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5235 I915_WRITE(VSYNC(pipe),
5236 (adjusted_mode->crtc_vsync_start - 1) |
5237 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5238
5239 /* pipesrc controls the size that is scaled from, which should
5240 * always be the user's requested size.
5241 */
5242 I915_WRITE(PIPESRC(pipe),
5243 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5244
5245 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5246 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5247 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5248 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5249
5250 if (has_edp_encoder &&
5251 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5252 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5253 }
5254
5255 I915_WRITE(PIPECONF(pipe), pipeconf);
5256 POSTING_READ(PIPECONF(pipe));
5257
5258 intel_wait_for_vblank(dev, pipe);
5259
5260 if (IS_GEN5(dev)) {
5261 /* enable address swizzle for tiling buffer */
5262 temp = I915_READ(DISP_ARB_CTL);
5263 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5264 }
5265
5266 I915_WRITE(DSPCNTR(plane), dspcntr);
5267 POSTING_READ(DSPCNTR(plane));
5268 if (!HAS_PCH_SPLIT(dev))
5269 intel_enable_plane(dev_priv, plane, pipe);
5270
5271 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5272
5273 intel_update_watermarks(dev);
5274
5275 return ret;
5276 }
5277
5278 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5279 struct drm_display_mode *mode,
5280 struct drm_display_mode *adjusted_mode,
5281 int x, int y,
5282 struct drm_framebuffer *old_fb)
5283 {
5284 struct drm_device *dev = crtc->dev;
5285 struct drm_i915_private *dev_priv = dev->dev_private;
5286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5287 int pipe = intel_crtc->pipe;
5288 int ret;
5289
5290 drm_vblank_pre_modeset(dev, pipe);
5291
5292 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5293 x, y, old_fb);
5294
5295 drm_vblank_post_modeset(dev, pipe);
5296
5297 return ret;
5298 }
5299
5300 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5301 void intel_crtc_load_lut(struct drm_crtc *crtc)
5302 {
5303 struct drm_device *dev = crtc->dev;
5304 struct drm_i915_private *dev_priv = dev->dev_private;
5305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5306 int palreg = PALETTE(intel_crtc->pipe);
5307 int i;
5308
5309 /* The clocks have to be on to load the palette. */
5310 if (!crtc->enabled)
5311 return;
5312
5313 /* use legacy palette for Ironlake */
5314 if (HAS_PCH_SPLIT(dev))
5315 palreg = LGC_PALETTE(intel_crtc->pipe);
5316
5317 for (i = 0; i < 256; i++) {
5318 I915_WRITE(palreg + 4 * i,
5319 (intel_crtc->lut_r[i] << 16) |
5320 (intel_crtc->lut_g[i] << 8) |
5321 intel_crtc->lut_b[i]);
5322 }
5323 }
5324
5325 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5326 {
5327 struct drm_device *dev = crtc->dev;
5328 struct drm_i915_private *dev_priv = dev->dev_private;
5329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5330 bool visible = base != 0;
5331 u32 cntl;
5332
5333 if (intel_crtc->cursor_visible == visible)
5334 return;
5335
5336 cntl = I915_READ(_CURACNTR);
5337 if (visible) {
5338 /* On these chipsets we can only modify the base whilst
5339 * the cursor is disabled.
5340 */
5341 I915_WRITE(_CURABASE, base);
5342
5343 cntl &= ~(CURSOR_FORMAT_MASK);
5344 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5345 cntl |= CURSOR_ENABLE |
5346 CURSOR_GAMMA_ENABLE |
5347 CURSOR_FORMAT_ARGB;
5348 } else
5349 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5350 I915_WRITE(_CURACNTR, cntl);
5351
5352 intel_crtc->cursor_visible = visible;
5353 }
5354
5355 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5356 {
5357 struct drm_device *dev = crtc->dev;
5358 struct drm_i915_private *dev_priv = dev->dev_private;
5359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5360 int pipe = intel_crtc->pipe;
5361 bool visible = base != 0;
5362
5363 if (intel_crtc->cursor_visible != visible) {
5364 uint32_t cntl = I915_READ(CURCNTR(pipe));
5365 if (base) {
5366 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5367 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5368 cntl |= pipe << 28; /* Connect to correct pipe */
5369 } else {
5370 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5371 cntl |= CURSOR_MODE_DISABLE;
5372 }
5373 I915_WRITE(CURCNTR(pipe), cntl);
5374
5375 intel_crtc->cursor_visible = visible;
5376 }
5377 /* and commit changes on next vblank */
5378 I915_WRITE(CURBASE(pipe), base);
5379 }
5380
5381 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5382 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5383 bool on)
5384 {
5385 struct drm_device *dev = crtc->dev;
5386 struct drm_i915_private *dev_priv = dev->dev_private;
5387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5388 int pipe = intel_crtc->pipe;
5389 int x = intel_crtc->cursor_x;
5390 int y = intel_crtc->cursor_y;
5391 u32 base, pos;
5392 bool visible;
5393
5394 pos = 0;
5395
5396 if (on && crtc->enabled && crtc->fb) {
5397 base = intel_crtc->cursor_addr;
5398 if (x > (int) crtc->fb->width)
5399 base = 0;
5400
5401 if (y > (int) crtc->fb->height)
5402 base = 0;
5403 } else
5404 base = 0;
5405
5406 if (x < 0) {
5407 if (x + intel_crtc->cursor_width < 0)
5408 base = 0;
5409
5410 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5411 x = -x;
5412 }
5413 pos |= x << CURSOR_X_SHIFT;
5414
5415 if (y < 0) {
5416 if (y + intel_crtc->cursor_height < 0)
5417 base = 0;
5418
5419 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5420 y = -y;
5421 }
5422 pos |= y << CURSOR_Y_SHIFT;
5423
5424 visible = base != 0;
5425 if (!visible && !intel_crtc->cursor_visible)
5426 return;
5427
5428 I915_WRITE(CURPOS(pipe), pos);
5429 if (IS_845G(dev) || IS_I865G(dev))
5430 i845_update_cursor(crtc, base);
5431 else
5432 i9xx_update_cursor(crtc, base);
5433
5434 if (visible)
5435 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5436 }
5437
5438 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5439 struct drm_file *file,
5440 uint32_t handle,
5441 uint32_t width, uint32_t height)
5442 {
5443 struct drm_device *dev = crtc->dev;
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5446 struct drm_i915_gem_object *obj;
5447 uint32_t addr;
5448 int ret;
5449
5450 DRM_DEBUG_KMS("\n");
5451
5452 /* if we want to turn off the cursor ignore width and height */
5453 if (!handle) {
5454 DRM_DEBUG_KMS("cursor off\n");
5455 addr = 0;
5456 obj = NULL;
5457 mutex_lock(&dev->struct_mutex);
5458 goto finish;
5459 }
5460
5461 /* Currently we only support 64x64 cursors */
5462 if (width != 64 || height != 64) {
5463 DRM_ERROR("we currently only support 64x64 cursors\n");
5464 return -EINVAL;
5465 }
5466
5467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5468 if (&obj->base == NULL)
5469 return -ENOENT;
5470
5471 if (obj->base.size < width * height * 4) {
5472 DRM_ERROR("buffer is to small\n");
5473 ret = -ENOMEM;
5474 goto fail;
5475 }
5476
5477 /* we only need to pin inside GTT if cursor is non-phy */
5478 mutex_lock(&dev->struct_mutex);
5479 if (!dev_priv->info->cursor_needs_physical) {
5480 if (obj->tiling_mode) {
5481 DRM_ERROR("cursor cannot be tiled\n");
5482 ret = -EINVAL;
5483 goto fail_locked;
5484 }
5485
5486 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5487 if (ret) {
5488 DRM_ERROR("failed to pin cursor bo\n");
5489 goto fail_locked;
5490 }
5491
5492 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5493 if (ret) {
5494 DRM_ERROR("failed to move cursor bo into the GTT\n");
5495 goto fail_unpin;
5496 }
5497
5498 ret = i915_gem_object_put_fence(obj);
5499 if (ret) {
5500 DRM_ERROR("failed to move cursor bo into the GTT\n");
5501 goto fail_unpin;
5502 }
5503
5504 addr = obj->gtt_offset;
5505 } else {
5506 int align = IS_I830(dev) ? 16 * 1024 : 256;
5507 ret = i915_gem_attach_phys_object(dev, obj,
5508 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5509 align);
5510 if (ret) {
5511 DRM_ERROR("failed to attach phys object\n");
5512 goto fail_locked;
5513 }
5514 addr = obj->phys_obj->handle->busaddr;
5515 }
5516
5517 if (IS_GEN2(dev))
5518 I915_WRITE(CURSIZE, (height << 12) | width);
5519
5520 finish:
5521 if (intel_crtc->cursor_bo) {
5522 if (dev_priv->info->cursor_needs_physical) {
5523 if (intel_crtc->cursor_bo != obj)
5524 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5525 } else
5526 i915_gem_object_unpin(intel_crtc->cursor_bo);
5527 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5528 }
5529
5530 mutex_unlock(&dev->struct_mutex);
5531
5532 intel_crtc->cursor_addr = addr;
5533 intel_crtc->cursor_bo = obj;
5534 intel_crtc->cursor_width = width;
5535 intel_crtc->cursor_height = height;
5536
5537 intel_crtc_update_cursor(crtc, true);
5538
5539 return 0;
5540 fail_unpin:
5541 i915_gem_object_unpin(obj);
5542 fail_locked:
5543 mutex_unlock(&dev->struct_mutex);
5544 fail:
5545 drm_gem_object_unreference_unlocked(&obj->base);
5546 return ret;
5547 }
5548
5549 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5550 {
5551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552
5553 intel_crtc->cursor_x = x;
5554 intel_crtc->cursor_y = y;
5555
5556 intel_crtc_update_cursor(crtc, true);
5557
5558 return 0;
5559 }
5560
5561 /** Sets the color ramps on behalf of RandR */
5562 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5563 u16 blue, int regno)
5564 {
5565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5566
5567 intel_crtc->lut_r[regno] = red >> 8;
5568 intel_crtc->lut_g[regno] = green >> 8;
5569 intel_crtc->lut_b[regno] = blue >> 8;
5570 }
5571
5572 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5573 u16 *blue, int regno)
5574 {
5575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576
5577 *red = intel_crtc->lut_r[regno] << 8;
5578 *green = intel_crtc->lut_g[regno] << 8;
5579 *blue = intel_crtc->lut_b[regno] << 8;
5580 }
5581
5582 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5583 u16 *blue, uint32_t start, uint32_t size)
5584 {
5585 int end = (start + size > 256) ? 256 : start + size, i;
5586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5587
5588 for (i = start; i < end; i++) {
5589 intel_crtc->lut_r[i] = red[i] >> 8;
5590 intel_crtc->lut_g[i] = green[i] >> 8;
5591 intel_crtc->lut_b[i] = blue[i] >> 8;
5592 }
5593
5594 intel_crtc_load_lut(crtc);
5595 }
5596
5597 /**
5598 * Get a pipe with a simple mode set on it for doing load-based monitor
5599 * detection.
5600 *
5601 * It will be up to the load-detect code to adjust the pipe as appropriate for
5602 * its requirements. The pipe will be connected to no other encoders.
5603 *
5604 * Currently this code will only succeed if there is a pipe with no encoders
5605 * configured for it. In the future, it could choose to temporarily disable
5606 * some outputs to free up a pipe for its use.
5607 *
5608 * \return crtc, or NULL if no pipes are available.
5609 */
5610
5611 /* VESA 640x480x72Hz mode to set on the pipe */
5612 static struct drm_display_mode load_detect_mode = {
5613 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5614 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5615 };
5616
5617 static struct drm_framebuffer *
5618 intel_framebuffer_create(struct drm_device *dev,
5619 struct drm_mode_fb_cmd *mode_cmd,
5620 struct drm_i915_gem_object *obj)
5621 {
5622 struct intel_framebuffer *intel_fb;
5623 int ret;
5624
5625 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5626 if (!intel_fb) {
5627 drm_gem_object_unreference_unlocked(&obj->base);
5628 return ERR_PTR(-ENOMEM);
5629 }
5630
5631 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5632 if (ret) {
5633 drm_gem_object_unreference_unlocked(&obj->base);
5634 kfree(intel_fb);
5635 return ERR_PTR(ret);
5636 }
5637
5638 return &intel_fb->base;
5639 }
5640
5641 static u32
5642 intel_framebuffer_pitch_for_width(int width, int bpp)
5643 {
5644 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5645 return ALIGN(pitch, 64);
5646 }
5647
5648 static u32
5649 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5650 {
5651 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5652 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5653 }
5654
5655 static struct drm_framebuffer *
5656 intel_framebuffer_create_for_mode(struct drm_device *dev,
5657 struct drm_display_mode *mode,
5658 int depth, int bpp)
5659 {
5660 struct drm_i915_gem_object *obj;
5661 struct drm_mode_fb_cmd mode_cmd;
5662
5663 obj = i915_gem_alloc_object(dev,
5664 intel_framebuffer_size_for_mode(mode, bpp));
5665 if (obj == NULL)
5666 return ERR_PTR(-ENOMEM);
5667
5668 mode_cmd.width = mode->hdisplay;
5669 mode_cmd.height = mode->vdisplay;
5670 mode_cmd.depth = depth;
5671 mode_cmd.bpp = bpp;
5672 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5673
5674 return intel_framebuffer_create(dev, &mode_cmd, obj);
5675 }
5676
5677 static struct drm_framebuffer *
5678 mode_fits_in_fbdev(struct drm_device *dev,
5679 struct drm_display_mode *mode)
5680 {
5681 struct drm_i915_private *dev_priv = dev->dev_private;
5682 struct drm_i915_gem_object *obj;
5683 struct drm_framebuffer *fb;
5684
5685 if (dev_priv->fbdev == NULL)
5686 return NULL;
5687
5688 obj = dev_priv->fbdev->ifb.obj;
5689 if (obj == NULL)
5690 return NULL;
5691
5692 fb = &dev_priv->fbdev->ifb.base;
5693 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5694 fb->bits_per_pixel))
5695 return NULL;
5696
5697 if (obj->base.size < mode->vdisplay * fb->pitch)
5698 return NULL;
5699
5700 return fb;
5701 }
5702
5703 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5704 struct drm_connector *connector,
5705 struct drm_display_mode *mode,
5706 struct intel_load_detect_pipe *old)
5707 {
5708 struct intel_crtc *intel_crtc;
5709 struct drm_crtc *possible_crtc;
5710 struct drm_encoder *encoder = &intel_encoder->base;
5711 struct drm_crtc *crtc = NULL;
5712 struct drm_device *dev = encoder->dev;
5713 struct drm_framebuffer *old_fb;
5714 int i = -1;
5715
5716 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5717 connector->base.id, drm_get_connector_name(connector),
5718 encoder->base.id, drm_get_encoder_name(encoder));
5719
5720 /*
5721 * Algorithm gets a little messy:
5722 *
5723 * - if the connector already has an assigned crtc, use it (but make
5724 * sure it's on first)
5725 *
5726 * - try to find the first unused crtc that can drive this connector,
5727 * and use that if we find one
5728 */
5729
5730 /* See if we already have a CRTC for this connector */
5731 if (encoder->crtc) {
5732 crtc = encoder->crtc;
5733
5734 intel_crtc = to_intel_crtc(crtc);
5735 old->dpms_mode = intel_crtc->dpms_mode;
5736 old->load_detect_temp = false;
5737
5738 /* Make sure the crtc and connector are running */
5739 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5740 struct drm_encoder_helper_funcs *encoder_funcs;
5741 struct drm_crtc_helper_funcs *crtc_funcs;
5742
5743 crtc_funcs = crtc->helper_private;
5744 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5745
5746 encoder_funcs = encoder->helper_private;
5747 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5748 }
5749
5750 return true;
5751 }
5752
5753 /* Find an unused one (if possible) */
5754 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5755 i++;
5756 if (!(encoder->possible_crtcs & (1 << i)))
5757 continue;
5758 if (!possible_crtc->enabled) {
5759 crtc = possible_crtc;
5760 break;
5761 }
5762 }
5763
5764 /*
5765 * If we didn't find an unused CRTC, don't use any.
5766 */
5767 if (!crtc) {
5768 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5769 return false;
5770 }
5771
5772 encoder->crtc = crtc;
5773 connector->encoder = encoder;
5774
5775 intel_crtc = to_intel_crtc(crtc);
5776 old->dpms_mode = intel_crtc->dpms_mode;
5777 old->load_detect_temp = true;
5778 old->release_fb = NULL;
5779
5780 if (!mode)
5781 mode = &load_detect_mode;
5782
5783 old_fb = crtc->fb;
5784
5785 /* We need a framebuffer large enough to accommodate all accesses
5786 * that the plane may generate whilst we perform load detection.
5787 * We can not rely on the fbcon either being present (we get called
5788 * during its initialisation to detect all boot displays, or it may
5789 * not even exist) or that it is large enough to satisfy the
5790 * requested mode.
5791 */
5792 crtc->fb = mode_fits_in_fbdev(dev, mode);
5793 if (crtc->fb == NULL) {
5794 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5795 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5796 old->release_fb = crtc->fb;
5797 } else
5798 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5799 if (IS_ERR(crtc->fb)) {
5800 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5801 crtc->fb = old_fb;
5802 return false;
5803 }
5804
5805 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5806 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5807 if (old->release_fb)
5808 old->release_fb->funcs->destroy(old->release_fb);
5809 crtc->fb = old_fb;
5810 return false;
5811 }
5812
5813 /* let the connector get through one full cycle before testing */
5814 intel_wait_for_vblank(dev, intel_crtc->pipe);
5815
5816 return true;
5817 }
5818
5819 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5820 struct drm_connector *connector,
5821 struct intel_load_detect_pipe *old)
5822 {
5823 struct drm_encoder *encoder = &intel_encoder->base;
5824 struct drm_device *dev = encoder->dev;
5825 struct drm_crtc *crtc = encoder->crtc;
5826 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5827 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5828
5829 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5830 connector->base.id, drm_get_connector_name(connector),
5831 encoder->base.id, drm_get_encoder_name(encoder));
5832
5833 if (old->load_detect_temp) {
5834 connector->encoder = NULL;
5835 drm_helper_disable_unused_functions(dev);
5836
5837 if (old->release_fb)
5838 old->release_fb->funcs->destroy(old->release_fb);
5839
5840 return;
5841 }
5842
5843 /* Switch crtc and encoder back off if necessary */
5844 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5845 encoder_funcs->dpms(encoder, old->dpms_mode);
5846 crtc_funcs->dpms(crtc, old->dpms_mode);
5847 }
5848 }
5849
5850 /* Returns the clock of the currently programmed mode of the given pipe. */
5851 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5852 {
5853 struct drm_i915_private *dev_priv = dev->dev_private;
5854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5855 int pipe = intel_crtc->pipe;
5856 u32 dpll = I915_READ(DPLL(pipe));
5857 u32 fp;
5858 intel_clock_t clock;
5859
5860 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5861 fp = I915_READ(FP0(pipe));
5862 else
5863 fp = I915_READ(FP1(pipe));
5864
5865 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5866 if (IS_PINEVIEW(dev)) {
5867 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5868 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5869 } else {
5870 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5871 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5872 }
5873
5874 if (!IS_GEN2(dev)) {
5875 if (IS_PINEVIEW(dev))
5876 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5877 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5878 else
5879 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5880 DPLL_FPA01_P1_POST_DIV_SHIFT);
5881
5882 switch (dpll & DPLL_MODE_MASK) {
5883 case DPLLB_MODE_DAC_SERIAL:
5884 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5885 5 : 10;
5886 break;
5887 case DPLLB_MODE_LVDS:
5888 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5889 7 : 14;
5890 break;
5891 default:
5892 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5893 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5894 return 0;
5895 }
5896
5897 /* XXX: Handle the 100Mhz refclk */
5898 intel_clock(dev, 96000, &clock);
5899 } else {
5900 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5901
5902 if (is_lvds) {
5903 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5904 DPLL_FPA01_P1_POST_DIV_SHIFT);
5905 clock.p2 = 14;
5906
5907 if ((dpll & PLL_REF_INPUT_MASK) ==
5908 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5909 /* XXX: might not be 66MHz */
5910 intel_clock(dev, 66000, &clock);
5911 } else
5912 intel_clock(dev, 48000, &clock);
5913 } else {
5914 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5915 clock.p1 = 2;
5916 else {
5917 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5918 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5919 }
5920 if (dpll & PLL_P2_DIVIDE_BY_4)
5921 clock.p2 = 4;
5922 else
5923 clock.p2 = 2;
5924
5925 intel_clock(dev, 48000, &clock);
5926 }
5927 }
5928
5929 /* XXX: It would be nice to validate the clocks, but we can't reuse
5930 * i830PllIsValid() because it relies on the xf86_config connector
5931 * configuration being accurate, which it isn't necessarily.
5932 */
5933
5934 return clock.dot;
5935 }
5936
5937 /** Returns the currently programmed mode of the given pipe. */
5938 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5939 struct drm_crtc *crtc)
5940 {
5941 struct drm_i915_private *dev_priv = dev->dev_private;
5942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5943 int pipe = intel_crtc->pipe;
5944 struct drm_display_mode *mode;
5945 int htot = I915_READ(HTOTAL(pipe));
5946 int hsync = I915_READ(HSYNC(pipe));
5947 int vtot = I915_READ(VTOTAL(pipe));
5948 int vsync = I915_READ(VSYNC(pipe));
5949
5950 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5951 if (!mode)
5952 return NULL;
5953
5954 mode->clock = intel_crtc_clock_get(dev, crtc);
5955 mode->hdisplay = (htot & 0xffff) + 1;
5956 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5957 mode->hsync_start = (hsync & 0xffff) + 1;
5958 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5959 mode->vdisplay = (vtot & 0xffff) + 1;
5960 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5961 mode->vsync_start = (vsync & 0xffff) + 1;
5962 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5963
5964 drm_mode_set_name(mode);
5965 drm_mode_set_crtcinfo(mode, 0);
5966
5967 return mode;
5968 }
5969
5970 #define GPU_IDLE_TIMEOUT 500 /* ms */
5971
5972 /* When this timer fires, we've been idle for awhile */
5973 static void intel_gpu_idle_timer(unsigned long arg)
5974 {
5975 struct drm_device *dev = (struct drm_device *)arg;
5976 drm_i915_private_t *dev_priv = dev->dev_private;
5977
5978 if (!list_empty(&dev_priv->mm.active_list)) {
5979 /* Still processing requests, so just re-arm the timer. */
5980 mod_timer(&dev_priv->idle_timer, jiffies +
5981 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5982 return;
5983 }
5984
5985 dev_priv->busy = false;
5986 queue_work(dev_priv->wq, &dev_priv->idle_work);
5987 }
5988
5989 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5990
5991 static void intel_crtc_idle_timer(unsigned long arg)
5992 {
5993 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5994 struct drm_crtc *crtc = &intel_crtc->base;
5995 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5996 struct intel_framebuffer *intel_fb;
5997
5998 intel_fb = to_intel_framebuffer(crtc->fb);
5999 if (intel_fb && intel_fb->obj->active) {
6000 /* The framebuffer is still being accessed by the GPU. */
6001 mod_timer(&intel_crtc->idle_timer, jiffies +
6002 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6003 return;
6004 }
6005
6006 intel_crtc->busy = false;
6007 queue_work(dev_priv->wq, &dev_priv->idle_work);
6008 }
6009
6010 static void intel_increase_pllclock(struct drm_crtc *crtc)
6011 {
6012 struct drm_device *dev = crtc->dev;
6013 drm_i915_private_t *dev_priv = dev->dev_private;
6014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6015 int pipe = intel_crtc->pipe;
6016 int dpll_reg = DPLL(pipe);
6017 int dpll;
6018
6019 if (HAS_PCH_SPLIT(dev))
6020 return;
6021
6022 if (!dev_priv->lvds_downclock_avail)
6023 return;
6024
6025 dpll = I915_READ(dpll_reg);
6026 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6027 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6028
6029 /* Unlock panel regs */
6030 I915_WRITE(PP_CONTROL,
6031 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6032
6033 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6034 I915_WRITE(dpll_reg, dpll);
6035 intel_wait_for_vblank(dev, pipe);
6036
6037 dpll = I915_READ(dpll_reg);
6038 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6039 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6040
6041 /* ...and lock them again */
6042 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6043 }
6044
6045 /* Schedule downclock */
6046 mod_timer(&intel_crtc->idle_timer, jiffies +
6047 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6048 }
6049
6050 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6051 {
6052 struct drm_device *dev = crtc->dev;
6053 drm_i915_private_t *dev_priv = dev->dev_private;
6054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055 int pipe = intel_crtc->pipe;
6056 int dpll_reg = DPLL(pipe);
6057 int dpll = I915_READ(dpll_reg);
6058
6059 if (HAS_PCH_SPLIT(dev))
6060 return;
6061
6062 if (!dev_priv->lvds_downclock_avail)
6063 return;
6064
6065 /*
6066 * Since this is called by a timer, we should never get here in
6067 * the manual case.
6068 */
6069 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6070 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6071
6072 /* Unlock panel regs */
6073 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6074 PANEL_UNLOCK_REGS);
6075
6076 dpll |= DISPLAY_RATE_SELECT_FPA1;
6077 I915_WRITE(dpll_reg, dpll);
6078 intel_wait_for_vblank(dev, pipe);
6079 dpll = I915_READ(dpll_reg);
6080 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6081 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6082
6083 /* ...and lock them again */
6084 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6085 }
6086
6087 }
6088
6089 /**
6090 * intel_idle_update - adjust clocks for idleness
6091 * @work: work struct
6092 *
6093 * Either the GPU or display (or both) went idle. Check the busy status
6094 * here and adjust the CRTC and GPU clocks as necessary.
6095 */
6096 static void intel_idle_update(struct work_struct *work)
6097 {
6098 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6099 idle_work);
6100 struct drm_device *dev = dev_priv->dev;
6101 struct drm_crtc *crtc;
6102 struct intel_crtc *intel_crtc;
6103
6104 if (!i915_powersave)
6105 return;
6106
6107 mutex_lock(&dev->struct_mutex);
6108
6109 i915_update_gfx_val(dev_priv);
6110
6111 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6112 /* Skip inactive CRTCs */
6113 if (!crtc->fb)
6114 continue;
6115
6116 intel_crtc = to_intel_crtc(crtc);
6117 if (!intel_crtc->busy)
6118 intel_decrease_pllclock(crtc);
6119 }
6120
6121
6122 mutex_unlock(&dev->struct_mutex);
6123 }
6124
6125 /**
6126 * intel_mark_busy - mark the GPU and possibly the display busy
6127 * @dev: drm device
6128 * @obj: object we're operating on
6129 *
6130 * Callers can use this function to indicate that the GPU is busy processing
6131 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6132 * buffer), we'll also mark the display as busy, so we know to increase its
6133 * clock frequency.
6134 */
6135 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6136 {
6137 drm_i915_private_t *dev_priv = dev->dev_private;
6138 struct drm_crtc *crtc = NULL;
6139 struct intel_framebuffer *intel_fb;
6140 struct intel_crtc *intel_crtc;
6141
6142 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6143 return;
6144
6145 if (!dev_priv->busy)
6146 dev_priv->busy = true;
6147 else
6148 mod_timer(&dev_priv->idle_timer, jiffies +
6149 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6150
6151 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6152 if (!crtc->fb)
6153 continue;
6154
6155 intel_crtc = to_intel_crtc(crtc);
6156 intel_fb = to_intel_framebuffer(crtc->fb);
6157 if (intel_fb->obj == obj) {
6158 if (!intel_crtc->busy) {
6159 /* Non-busy -> busy, upclock */
6160 intel_increase_pllclock(crtc);
6161 intel_crtc->busy = true;
6162 } else {
6163 /* Busy -> busy, put off timer */
6164 mod_timer(&intel_crtc->idle_timer, jiffies +
6165 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6166 }
6167 }
6168 }
6169 }
6170
6171 static void intel_crtc_destroy(struct drm_crtc *crtc)
6172 {
6173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6174 struct drm_device *dev = crtc->dev;
6175 struct intel_unpin_work *work;
6176 unsigned long flags;
6177
6178 spin_lock_irqsave(&dev->event_lock, flags);
6179 work = intel_crtc->unpin_work;
6180 intel_crtc->unpin_work = NULL;
6181 spin_unlock_irqrestore(&dev->event_lock, flags);
6182
6183 if (work) {
6184 cancel_work_sync(&work->work);
6185 kfree(work);
6186 }
6187
6188 drm_crtc_cleanup(crtc);
6189
6190 kfree(intel_crtc);
6191 }
6192
6193 static void intel_unpin_work_fn(struct work_struct *__work)
6194 {
6195 struct intel_unpin_work *work =
6196 container_of(__work, struct intel_unpin_work, work);
6197
6198 mutex_lock(&work->dev->struct_mutex);
6199 i915_gem_object_unpin(work->old_fb_obj);
6200 drm_gem_object_unreference(&work->pending_flip_obj->base);
6201 drm_gem_object_unreference(&work->old_fb_obj->base);
6202
6203 mutex_unlock(&work->dev->struct_mutex);
6204 kfree(work);
6205 }
6206
6207 static void do_intel_finish_page_flip(struct drm_device *dev,
6208 struct drm_crtc *crtc)
6209 {
6210 drm_i915_private_t *dev_priv = dev->dev_private;
6211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6212 struct intel_unpin_work *work;
6213 struct drm_i915_gem_object *obj;
6214 struct drm_pending_vblank_event *e;
6215 struct timeval tnow, tvbl;
6216 unsigned long flags;
6217
6218 /* Ignore early vblank irqs */
6219 if (intel_crtc == NULL)
6220 return;
6221
6222 do_gettimeofday(&tnow);
6223
6224 spin_lock_irqsave(&dev->event_lock, flags);
6225 work = intel_crtc->unpin_work;
6226 if (work == NULL || !work->pending) {
6227 spin_unlock_irqrestore(&dev->event_lock, flags);
6228 return;
6229 }
6230
6231 intel_crtc->unpin_work = NULL;
6232
6233 if (work->event) {
6234 e = work->event;
6235 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6236
6237 /* Called before vblank count and timestamps have
6238 * been updated for the vblank interval of flip
6239 * completion? Need to increment vblank count and
6240 * add one videorefresh duration to returned timestamp
6241 * to account for this. We assume this happened if we
6242 * get called over 0.9 frame durations after the last
6243 * timestamped vblank.
6244 *
6245 * This calculation can not be used with vrefresh rates
6246 * below 5Hz (10Hz to be on the safe side) without
6247 * promoting to 64 integers.
6248 */
6249 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6250 9 * crtc->framedur_ns) {
6251 e->event.sequence++;
6252 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6253 crtc->framedur_ns);
6254 }
6255
6256 e->event.tv_sec = tvbl.tv_sec;
6257 e->event.tv_usec = tvbl.tv_usec;
6258
6259 list_add_tail(&e->base.link,
6260 &e->base.file_priv->event_list);
6261 wake_up_interruptible(&e->base.file_priv->event_wait);
6262 }
6263
6264 drm_vblank_put(dev, intel_crtc->pipe);
6265
6266 spin_unlock_irqrestore(&dev->event_lock, flags);
6267
6268 obj = work->old_fb_obj;
6269
6270 atomic_clear_mask(1 << intel_crtc->plane,
6271 &obj->pending_flip.counter);
6272 if (atomic_read(&obj->pending_flip) == 0)
6273 wake_up(&dev_priv->pending_flip_queue);
6274
6275 schedule_work(&work->work);
6276
6277 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6278 }
6279
6280 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6281 {
6282 drm_i915_private_t *dev_priv = dev->dev_private;
6283 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6284
6285 do_intel_finish_page_flip(dev, crtc);
6286 }
6287
6288 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6289 {
6290 drm_i915_private_t *dev_priv = dev->dev_private;
6291 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6292
6293 do_intel_finish_page_flip(dev, crtc);
6294 }
6295
6296 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6297 {
6298 drm_i915_private_t *dev_priv = dev->dev_private;
6299 struct intel_crtc *intel_crtc =
6300 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6301 unsigned long flags;
6302
6303 spin_lock_irqsave(&dev->event_lock, flags);
6304 if (intel_crtc->unpin_work) {
6305 if ((++intel_crtc->unpin_work->pending) > 1)
6306 DRM_ERROR("Prepared flip multiple times\n");
6307 } else {
6308 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6309 }
6310 spin_unlock_irqrestore(&dev->event_lock, flags);
6311 }
6312
6313 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6314 struct drm_framebuffer *fb,
6315 struct drm_pending_vblank_event *event)
6316 {
6317 struct drm_device *dev = crtc->dev;
6318 struct drm_i915_private *dev_priv = dev->dev_private;
6319 struct intel_framebuffer *intel_fb;
6320 struct drm_i915_gem_object *obj;
6321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6322 struct intel_unpin_work *work;
6323 unsigned long flags, offset;
6324 int pipe = intel_crtc->pipe;
6325 u32 pf, pipesrc;
6326 int ret;
6327
6328 work = kzalloc(sizeof *work, GFP_KERNEL);
6329 if (work == NULL)
6330 return -ENOMEM;
6331
6332 work->event = event;
6333 work->dev = crtc->dev;
6334 intel_fb = to_intel_framebuffer(crtc->fb);
6335 work->old_fb_obj = intel_fb->obj;
6336 INIT_WORK(&work->work, intel_unpin_work_fn);
6337
6338 /* We borrow the event spin lock for protecting unpin_work */
6339 spin_lock_irqsave(&dev->event_lock, flags);
6340 if (intel_crtc->unpin_work) {
6341 spin_unlock_irqrestore(&dev->event_lock, flags);
6342 kfree(work);
6343
6344 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6345 return -EBUSY;
6346 }
6347 intel_crtc->unpin_work = work;
6348 spin_unlock_irqrestore(&dev->event_lock, flags);
6349
6350 intel_fb = to_intel_framebuffer(fb);
6351 obj = intel_fb->obj;
6352
6353 mutex_lock(&dev->struct_mutex);
6354 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6355 if (ret)
6356 goto cleanup_work;
6357
6358 /* Reference the objects for the scheduled work. */
6359 drm_gem_object_reference(&work->old_fb_obj->base);
6360 drm_gem_object_reference(&obj->base);
6361
6362 crtc->fb = fb;
6363
6364 ret = drm_vblank_get(dev, intel_crtc->pipe);
6365 if (ret)
6366 goto cleanup_objs;
6367
6368 if (IS_GEN3(dev) || IS_GEN2(dev)) {
6369 u32 flip_mask;
6370
6371 /* Can't queue multiple flips, so wait for the previous
6372 * one to finish before executing the next.
6373 */
6374 ret = BEGIN_LP_RING(2);
6375 if (ret)
6376 goto cleanup_objs;
6377
6378 if (intel_crtc->plane)
6379 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6380 else
6381 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6382 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6383 OUT_RING(MI_NOOP);
6384 ADVANCE_LP_RING();
6385 }
6386
6387 work->pending_flip_obj = obj;
6388
6389 work->enable_stall_check = true;
6390
6391 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6392 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6393
6394 ret = BEGIN_LP_RING(4);
6395 if (ret)
6396 goto cleanup_objs;
6397
6398 /* Block clients from rendering to the new back buffer until
6399 * the flip occurs and the object is no longer visible.
6400 */
6401 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6402
6403 switch (INTEL_INFO(dev)->gen) {
6404 case 2:
6405 OUT_RING(MI_DISPLAY_FLIP |
6406 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6407 OUT_RING(fb->pitch);
6408 OUT_RING(obj->gtt_offset + offset);
6409 OUT_RING(MI_NOOP);
6410 break;
6411
6412 case 3:
6413 OUT_RING(MI_DISPLAY_FLIP_I915 |
6414 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6415 OUT_RING(fb->pitch);
6416 OUT_RING(obj->gtt_offset + offset);
6417 OUT_RING(MI_NOOP);
6418 break;
6419
6420 case 4:
6421 case 5:
6422 /* i965+ uses the linear or tiled offsets from the
6423 * Display Registers (which do not change across a page-flip)
6424 * so we need only reprogram the base address.
6425 */
6426 OUT_RING(MI_DISPLAY_FLIP |
6427 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6428 OUT_RING(fb->pitch);
6429 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6430
6431 /* XXX Enabling the panel-fitter across page-flip is so far
6432 * untested on non-native modes, so ignore it for now.
6433 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6434 */
6435 pf = 0;
6436 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6437 OUT_RING(pf | pipesrc);
6438 break;
6439
6440 case 6:
6441 case 7:
6442 OUT_RING(MI_DISPLAY_FLIP |
6443 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6444 OUT_RING(fb->pitch | obj->tiling_mode);
6445 OUT_RING(obj->gtt_offset);
6446
6447 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6448 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6449 OUT_RING(pf | pipesrc);
6450 break;
6451 }
6452 ADVANCE_LP_RING();
6453
6454 mutex_unlock(&dev->struct_mutex);
6455
6456 trace_i915_flip_request(intel_crtc->plane, obj);
6457
6458 return 0;
6459
6460 cleanup_objs:
6461 drm_gem_object_unreference(&work->old_fb_obj->base);
6462 drm_gem_object_unreference(&obj->base);
6463 cleanup_work:
6464 mutex_unlock(&dev->struct_mutex);
6465
6466 spin_lock_irqsave(&dev->event_lock, flags);
6467 intel_crtc->unpin_work = NULL;
6468 spin_unlock_irqrestore(&dev->event_lock, flags);
6469
6470 kfree(work);
6471
6472 return ret;
6473 }
6474
6475 static void intel_sanitize_modesetting(struct drm_device *dev,
6476 int pipe, int plane)
6477 {
6478 struct drm_i915_private *dev_priv = dev->dev_private;
6479 u32 reg, val;
6480
6481 if (HAS_PCH_SPLIT(dev))
6482 return;
6483
6484 /* Who knows what state these registers were left in by the BIOS or
6485 * grub?
6486 *
6487 * If we leave the registers in a conflicting state (e.g. with the
6488 * display plane reading from the other pipe than the one we intend
6489 * to use) then when we attempt to teardown the active mode, we will
6490 * not disable the pipes and planes in the correct order -- leaving
6491 * a plane reading from a disabled pipe and possibly leading to
6492 * undefined behaviour.
6493 */
6494
6495 reg = DSPCNTR(plane);
6496 val = I915_READ(reg);
6497
6498 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6499 return;
6500 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6501 return;
6502
6503 /* This display plane is active and attached to the other CPU pipe. */
6504 pipe = !pipe;
6505
6506 /* Disable the plane and wait for it to stop reading from the pipe. */
6507 intel_disable_plane(dev_priv, plane, pipe);
6508 intel_disable_pipe(dev_priv, pipe);
6509 }
6510
6511 static void intel_crtc_reset(struct drm_crtc *crtc)
6512 {
6513 struct drm_device *dev = crtc->dev;
6514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6515
6516 /* Reset flags back to the 'unknown' status so that they
6517 * will be correctly set on the initial modeset.
6518 */
6519 intel_crtc->dpms_mode = -1;
6520
6521 /* We need to fix up any BIOS configuration that conflicts with
6522 * our expectations.
6523 */
6524 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6525 }
6526
6527 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6528 .dpms = intel_crtc_dpms,
6529 .mode_fixup = intel_crtc_mode_fixup,
6530 .mode_set = intel_crtc_mode_set,
6531 .mode_set_base = intel_pipe_set_base,
6532 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6533 .load_lut = intel_crtc_load_lut,
6534 .disable = intel_crtc_disable,
6535 };
6536
6537 static const struct drm_crtc_funcs intel_crtc_funcs = {
6538 .reset = intel_crtc_reset,
6539 .cursor_set = intel_crtc_cursor_set,
6540 .cursor_move = intel_crtc_cursor_move,
6541 .gamma_set = intel_crtc_gamma_set,
6542 .set_config = drm_crtc_helper_set_config,
6543 .destroy = intel_crtc_destroy,
6544 .page_flip = intel_crtc_page_flip,
6545 };
6546
6547 static void intel_crtc_init(struct drm_device *dev, int pipe)
6548 {
6549 drm_i915_private_t *dev_priv = dev->dev_private;
6550 struct intel_crtc *intel_crtc;
6551 int i;
6552
6553 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6554 if (intel_crtc == NULL)
6555 return;
6556
6557 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6558
6559 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6560 for (i = 0; i < 256; i++) {
6561 intel_crtc->lut_r[i] = i;
6562 intel_crtc->lut_g[i] = i;
6563 intel_crtc->lut_b[i] = i;
6564 }
6565
6566 /* Swap pipes & planes for FBC on pre-965 */
6567 intel_crtc->pipe = pipe;
6568 intel_crtc->plane = pipe;
6569 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6570 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6571 intel_crtc->plane = !pipe;
6572 }
6573
6574 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6575 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6576 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6577 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6578
6579 intel_crtc_reset(&intel_crtc->base);
6580 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6581
6582 if (HAS_PCH_SPLIT(dev)) {
6583 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6584 intel_helper_funcs.commit = ironlake_crtc_commit;
6585 } else {
6586 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6587 intel_helper_funcs.commit = i9xx_crtc_commit;
6588 }
6589
6590 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6591
6592 intel_crtc->busy = false;
6593
6594 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6595 (unsigned long)intel_crtc);
6596 }
6597
6598 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6599 struct drm_file *file)
6600 {
6601 drm_i915_private_t *dev_priv = dev->dev_private;
6602 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6603 struct drm_mode_object *drmmode_obj;
6604 struct intel_crtc *crtc;
6605
6606 if (!dev_priv) {
6607 DRM_ERROR("called with no initialization\n");
6608 return -EINVAL;
6609 }
6610
6611 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6612 DRM_MODE_OBJECT_CRTC);
6613
6614 if (!drmmode_obj) {
6615 DRM_ERROR("no such CRTC id\n");
6616 return -EINVAL;
6617 }
6618
6619 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6620 pipe_from_crtc_id->pipe = crtc->pipe;
6621
6622 return 0;
6623 }
6624
6625 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6626 {
6627 struct intel_encoder *encoder;
6628 int index_mask = 0;
6629 int entry = 0;
6630
6631 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6632 if (type_mask & encoder->clone_mask)
6633 index_mask |= (1 << entry);
6634 entry++;
6635 }
6636
6637 return index_mask;
6638 }
6639
6640 static bool has_edp_a(struct drm_device *dev)
6641 {
6642 struct drm_i915_private *dev_priv = dev->dev_private;
6643
6644 if (!IS_MOBILE(dev))
6645 return false;
6646
6647 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6648 return false;
6649
6650 if (IS_GEN5(dev) &&
6651 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6652 return false;
6653
6654 return true;
6655 }
6656
6657 static void intel_setup_outputs(struct drm_device *dev)
6658 {
6659 struct drm_i915_private *dev_priv = dev->dev_private;
6660 struct intel_encoder *encoder;
6661 bool dpd_is_edp = false;
6662 bool has_lvds = false;
6663
6664 if (IS_MOBILE(dev) && !IS_I830(dev))
6665 has_lvds = intel_lvds_init(dev);
6666 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6667 /* disable the panel fitter on everything but LVDS */
6668 I915_WRITE(PFIT_CONTROL, 0);
6669 }
6670
6671 if (HAS_PCH_SPLIT(dev)) {
6672 dpd_is_edp = intel_dpd_is_edp(dev);
6673
6674 if (has_edp_a(dev))
6675 intel_dp_init(dev, DP_A);
6676
6677 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6678 intel_dp_init(dev, PCH_DP_D);
6679 }
6680
6681 intel_crt_init(dev);
6682
6683 if (HAS_PCH_SPLIT(dev)) {
6684 int found;
6685
6686 if (I915_READ(HDMIB) & PORT_DETECTED) {
6687 /* PCH SDVOB multiplex with HDMIB */
6688 found = intel_sdvo_init(dev, PCH_SDVOB);
6689 if (!found)
6690 intel_hdmi_init(dev, HDMIB);
6691 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6692 intel_dp_init(dev, PCH_DP_B);
6693 }
6694
6695 if (I915_READ(HDMIC) & PORT_DETECTED)
6696 intel_hdmi_init(dev, HDMIC);
6697
6698 if (I915_READ(HDMID) & PORT_DETECTED)
6699 intel_hdmi_init(dev, HDMID);
6700
6701 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6702 intel_dp_init(dev, PCH_DP_C);
6703
6704 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6705 intel_dp_init(dev, PCH_DP_D);
6706
6707 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6708 bool found = false;
6709
6710 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6711 DRM_DEBUG_KMS("probing SDVOB\n");
6712 found = intel_sdvo_init(dev, SDVOB);
6713 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6714 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6715 intel_hdmi_init(dev, SDVOB);
6716 }
6717
6718 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6719 DRM_DEBUG_KMS("probing DP_B\n");
6720 intel_dp_init(dev, DP_B);
6721 }
6722 }
6723
6724 /* Before G4X SDVOC doesn't have its own detect register */
6725
6726 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6727 DRM_DEBUG_KMS("probing SDVOC\n");
6728 found = intel_sdvo_init(dev, SDVOC);
6729 }
6730
6731 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6732
6733 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6734 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6735 intel_hdmi_init(dev, SDVOC);
6736 }
6737 if (SUPPORTS_INTEGRATED_DP(dev)) {
6738 DRM_DEBUG_KMS("probing DP_C\n");
6739 intel_dp_init(dev, DP_C);
6740 }
6741 }
6742
6743 if (SUPPORTS_INTEGRATED_DP(dev) &&
6744 (I915_READ(DP_D) & DP_DETECTED)) {
6745 DRM_DEBUG_KMS("probing DP_D\n");
6746 intel_dp_init(dev, DP_D);
6747 }
6748 } else if (IS_GEN2(dev))
6749 intel_dvo_init(dev);
6750
6751 if (SUPPORTS_TV(dev))
6752 intel_tv_init(dev);
6753
6754 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6755 encoder->base.possible_crtcs = encoder->crtc_mask;
6756 encoder->base.possible_clones =
6757 intel_encoder_clones(dev, encoder->clone_mask);
6758 }
6759
6760 intel_panel_setup_backlight(dev);
6761
6762 /* disable all the possible outputs/crtcs before entering KMS mode */
6763 drm_helper_disable_unused_functions(dev);
6764 }
6765
6766 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6767 {
6768 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6769
6770 drm_framebuffer_cleanup(fb);
6771 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6772
6773 kfree(intel_fb);
6774 }
6775
6776 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6777 struct drm_file *file,
6778 unsigned int *handle)
6779 {
6780 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6781 struct drm_i915_gem_object *obj = intel_fb->obj;
6782
6783 return drm_gem_handle_create(file, &obj->base, handle);
6784 }
6785
6786 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6787 .destroy = intel_user_framebuffer_destroy,
6788 .create_handle = intel_user_framebuffer_create_handle,
6789 };
6790
6791 int intel_framebuffer_init(struct drm_device *dev,
6792 struct intel_framebuffer *intel_fb,
6793 struct drm_mode_fb_cmd *mode_cmd,
6794 struct drm_i915_gem_object *obj)
6795 {
6796 int ret;
6797
6798 if (obj->tiling_mode == I915_TILING_Y)
6799 return -EINVAL;
6800
6801 if (mode_cmd->pitch & 63)
6802 return -EINVAL;
6803
6804 switch (mode_cmd->bpp) {
6805 case 8:
6806 case 16:
6807 case 24:
6808 case 32:
6809 break;
6810 default:
6811 return -EINVAL;
6812 }
6813
6814 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6815 if (ret) {
6816 DRM_ERROR("framebuffer init failed %d\n", ret);
6817 return ret;
6818 }
6819
6820 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6821 intel_fb->obj = obj;
6822 return 0;
6823 }
6824
6825 static struct drm_framebuffer *
6826 intel_user_framebuffer_create(struct drm_device *dev,
6827 struct drm_file *filp,
6828 struct drm_mode_fb_cmd *mode_cmd)
6829 {
6830 struct drm_i915_gem_object *obj;
6831
6832 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6833 if (&obj->base == NULL)
6834 return ERR_PTR(-ENOENT);
6835
6836 return intel_framebuffer_create(dev, mode_cmd, obj);
6837 }
6838
6839 static const struct drm_mode_config_funcs intel_mode_funcs = {
6840 .fb_create = intel_user_framebuffer_create,
6841 .output_poll_changed = intel_fb_output_poll_changed,
6842 };
6843
6844 static struct drm_i915_gem_object *
6845 intel_alloc_context_page(struct drm_device *dev)
6846 {
6847 struct drm_i915_gem_object *ctx;
6848 int ret;
6849
6850 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6851
6852 ctx = i915_gem_alloc_object(dev, 4096);
6853 if (!ctx) {
6854 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6855 return NULL;
6856 }
6857
6858 ret = i915_gem_object_pin(ctx, 4096, true);
6859 if (ret) {
6860 DRM_ERROR("failed to pin power context: %d\n", ret);
6861 goto err_unref;
6862 }
6863
6864 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6865 if (ret) {
6866 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6867 goto err_unpin;
6868 }
6869
6870 return ctx;
6871
6872 err_unpin:
6873 i915_gem_object_unpin(ctx);
6874 err_unref:
6875 drm_gem_object_unreference(&ctx->base);
6876 mutex_unlock(&dev->struct_mutex);
6877 return NULL;
6878 }
6879
6880 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6881 {
6882 struct drm_i915_private *dev_priv = dev->dev_private;
6883 u16 rgvswctl;
6884
6885 rgvswctl = I915_READ16(MEMSWCTL);
6886 if (rgvswctl & MEMCTL_CMD_STS) {
6887 DRM_DEBUG("gpu busy, RCS change rejected\n");
6888 return false; /* still busy with another command */
6889 }
6890
6891 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6892 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6893 I915_WRITE16(MEMSWCTL, rgvswctl);
6894 POSTING_READ16(MEMSWCTL);
6895
6896 rgvswctl |= MEMCTL_CMD_STS;
6897 I915_WRITE16(MEMSWCTL, rgvswctl);
6898
6899 return true;
6900 }
6901
6902 void ironlake_enable_drps(struct drm_device *dev)
6903 {
6904 struct drm_i915_private *dev_priv = dev->dev_private;
6905 u32 rgvmodectl = I915_READ(MEMMODECTL);
6906 u8 fmax, fmin, fstart, vstart;
6907
6908 /* Enable temp reporting */
6909 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6910 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6911
6912 /* 100ms RC evaluation intervals */
6913 I915_WRITE(RCUPEI, 100000);
6914 I915_WRITE(RCDNEI, 100000);
6915
6916 /* Set max/min thresholds to 90ms and 80ms respectively */
6917 I915_WRITE(RCBMAXAVG, 90000);
6918 I915_WRITE(RCBMINAVG, 80000);
6919
6920 I915_WRITE(MEMIHYST, 1);
6921
6922 /* Set up min, max, and cur for interrupt handling */
6923 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6924 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6925 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6926 MEMMODE_FSTART_SHIFT;
6927
6928 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6929 PXVFREQ_PX_SHIFT;
6930
6931 dev_priv->fmax = fmax; /* IPS callback will increase this */
6932 dev_priv->fstart = fstart;
6933
6934 dev_priv->max_delay = fstart;
6935 dev_priv->min_delay = fmin;
6936 dev_priv->cur_delay = fstart;
6937
6938 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6939 fmax, fmin, fstart);
6940
6941 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6942
6943 /*
6944 * Interrupts will be enabled in ironlake_irq_postinstall
6945 */
6946
6947 I915_WRITE(VIDSTART, vstart);
6948 POSTING_READ(VIDSTART);
6949
6950 rgvmodectl |= MEMMODE_SWMODE_EN;
6951 I915_WRITE(MEMMODECTL, rgvmodectl);
6952
6953 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6954 DRM_ERROR("stuck trying to change perf mode\n");
6955 msleep(1);
6956
6957 ironlake_set_drps(dev, fstart);
6958
6959 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6960 I915_READ(0x112e0);
6961 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6962 dev_priv->last_count2 = I915_READ(0x112f4);
6963 getrawmonotonic(&dev_priv->last_time2);
6964 }
6965
6966 void ironlake_disable_drps(struct drm_device *dev)
6967 {
6968 struct drm_i915_private *dev_priv = dev->dev_private;
6969 u16 rgvswctl = I915_READ16(MEMSWCTL);
6970
6971 /* Ack interrupts, disable EFC interrupt */
6972 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6973 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6974 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6975 I915_WRITE(DEIIR, DE_PCU_EVENT);
6976 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6977
6978 /* Go back to the starting frequency */
6979 ironlake_set_drps(dev, dev_priv->fstart);
6980 msleep(1);
6981 rgvswctl |= MEMCTL_CMD_STS;
6982 I915_WRITE(MEMSWCTL, rgvswctl);
6983 msleep(1);
6984
6985 }
6986
6987 void gen6_set_rps(struct drm_device *dev, u8 val)
6988 {
6989 struct drm_i915_private *dev_priv = dev->dev_private;
6990 u32 swreq;
6991
6992 swreq = (val & 0x3ff) << 25;
6993 I915_WRITE(GEN6_RPNSWREQ, swreq);
6994 }
6995
6996 void gen6_disable_rps(struct drm_device *dev)
6997 {
6998 struct drm_i915_private *dev_priv = dev->dev_private;
6999
7000 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7001 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7002 I915_WRITE(GEN6_PMIER, 0);
7003
7004 spin_lock_irq(&dev_priv->rps_lock);
7005 dev_priv->pm_iir = 0;
7006 spin_unlock_irq(&dev_priv->rps_lock);
7007
7008 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7009 }
7010
7011 static unsigned long intel_pxfreq(u32 vidfreq)
7012 {
7013 unsigned long freq;
7014 int div = (vidfreq & 0x3f0000) >> 16;
7015 int post = (vidfreq & 0x3000) >> 12;
7016 int pre = (vidfreq & 0x7);
7017
7018 if (!pre)
7019 return 0;
7020
7021 freq = ((div * 133333) / ((1<<post) * pre));
7022
7023 return freq;
7024 }
7025
7026 void intel_init_emon(struct drm_device *dev)
7027 {
7028 struct drm_i915_private *dev_priv = dev->dev_private;
7029 u32 lcfuse;
7030 u8 pxw[16];
7031 int i;
7032
7033 /* Disable to program */
7034 I915_WRITE(ECR, 0);
7035 POSTING_READ(ECR);
7036
7037 /* Program energy weights for various events */
7038 I915_WRITE(SDEW, 0x15040d00);
7039 I915_WRITE(CSIEW0, 0x007f0000);
7040 I915_WRITE(CSIEW1, 0x1e220004);
7041 I915_WRITE(CSIEW2, 0x04000004);
7042
7043 for (i = 0; i < 5; i++)
7044 I915_WRITE(PEW + (i * 4), 0);
7045 for (i = 0; i < 3; i++)
7046 I915_WRITE(DEW + (i * 4), 0);
7047
7048 /* Program P-state weights to account for frequency power adjustment */
7049 for (i = 0; i < 16; i++) {
7050 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7051 unsigned long freq = intel_pxfreq(pxvidfreq);
7052 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7053 PXVFREQ_PX_SHIFT;
7054 unsigned long val;
7055
7056 val = vid * vid;
7057 val *= (freq / 1000);
7058 val *= 255;
7059 val /= (127*127*900);
7060 if (val > 0xff)
7061 DRM_ERROR("bad pxval: %ld\n", val);
7062 pxw[i] = val;
7063 }
7064 /* Render standby states get 0 weight */
7065 pxw[14] = 0;
7066 pxw[15] = 0;
7067
7068 for (i = 0; i < 4; i++) {
7069 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7070 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7071 I915_WRITE(PXW + (i * 4), val);
7072 }
7073
7074 /* Adjust magic regs to magic values (more experimental results) */
7075 I915_WRITE(OGW0, 0);
7076 I915_WRITE(OGW1, 0);
7077 I915_WRITE(EG0, 0x00007f00);
7078 I915_WRITE(EG1, 0x0000000e);
7079 I915_WRITE(EG2, 0x000e0000);
7080 I915_WRITE(EG3, 0x68000300);
7081 I915_WRITE(EG4, 0x42000000);
7082 I915_WRITE(EG5, 0x00140031);
7083 I915_WRITE(EG6, 0);
7084 I915_WRITE(EG7, 0);
7085
7086 for (i = 0; i < 8; i++)
7087 I915_WRITE(PXWL + (i * 4), 0);
7088
7089 /* Enable PMON + select events */
7090 I915_WRITE(ECR, 0x80000019);
7091
7092 lcfuse = I915_READ(LCFUSE02);
7093
7094 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7095 }
7096
7097 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7098 {
7099 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7100 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7101 u32 pcu_mbox, rc6_mask = 0;
7102 int cur_freq, min_freq, max_freq;
7103 int i;
7104
7105 /* Here begins a magic sequence of register writes to enable
7106 * auto-downclocking.
7107 *
7108 * Perhaps there might be some value in exposing these to
7109 * userspace...
7110 */
7111 I915_WRITE(GEN6_RC_STATE, 0);
7112 mutex_lock(&dev_priv->dev->struct_mutex);
7113 gen6_gt_force_wake_get(dev_priv);
7114
7115 /* disable the counters and set deterministic thresholds */
7116 I915_WRITE(GEN6_RC_CONTROL, 0);
7117
7118 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7119 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7120 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7121 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7122 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7123
7124 for (i = 0; i < I915_NUM_RINGS; i++)
7125 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7126
7127 I915_WRITE(GEN6_RC_SLEEP, 0);
7128 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7129 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7130 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7131 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7132
7133 if (i915_enable_rc6)
7134 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7135 GEN6_RC_CTL_RC6_ENABLE;
7136
7137 I915_WRITE(GEN6_RC_CONTROL,
7138 rc6_mask |
7139 GEN6_RC_CTL_EI_MODE(1) |
7140 GEN6_RC_CTL_HW_ENABLE);
7141
7142 I915_WRITE(GEN6_RPNSWREQ,
7143 GEN6_FREQUENCY(10) |
7144 GEN6_OFFSET(0) |
7145 GEN6_AGGRESSIVE_TURBO);
7146 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7147 GEN6_FREQUENCY(12));
7148
7149 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7150 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7151 18 << 24 |
7152 6 << 16);
7153 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7154 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7155 I915_WRITE(GEN6_RP_UP_EI, 100000);
7156 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7157 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7158 I915_WRITE(GEN6_RP_CONTROL,
7159 GEN6_RP_MEDIA_TURBO |
7160 GEN6_RP_USE_NORMAL_FREQ |
7161 GEN6_RP_MEDIA_IS_GFX |
7162 GEN6_RP_ENABLE |
7163 GEN6_RP_UP_BUSY_AVG |
7164 GEN6_RP_DOWN_IDLE_CONT);
7165
7166 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7167 500))
7168 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7169
7170 I915_WRITE(GEN6_PCODE_DATA, 0);
7171 I915_WRITE(GEN6_PCODE_MAILBOX,
7172 GEN6_PCODE_READY |
7173 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7174 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7175 500))
7176 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7177
7178 min_freq = (rp_state_cap & 0xff0000) >> 16;
7179 max_freq = rp_state_cap & 0xff;
7180 cur_freq = (gt_perf_status & 0xff00) >> 8;
7181
7182 /* Check for overclock support */
7183 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7184 500))
7185 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7186 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7187 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7188 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7189 500))
7190 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7191 if (pcu_mbox & (1<<31)) { /* OC supported */
7192 max_freq = pcu_mbox & 0xff;
7193 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7194 }
7195
7196 /* In units of 100MHz */
7197 dev_priv->max_delay = max_freq;
7198 dev_priv->min_delay = min_freq;
7199 dev_priv->cur_delay = cur_freq;
7200
7201 /* requires MSI enabled */
7202 I915_WRITE(GEN6_PMIER,
7203 GEN6_PM_MBOX_EVENT |
7204 GEN6_PM_THERMAL_EVENT |
7205 GEN6_PM_RP_DOWN_TIMEOUT |
7206 GEN6_PM_RP_UP_THRESHOLD |
7207 GEN6_PM_RP_DOWN_THRESHOLD |
7208 GEN6_PM_RP_UP_EI_EXPIRED |
7209 GEN6_PM_RP_DOWN_EI_EXPIRED);
7210 spin_lock_irq(&dev_priv->rps_lock);
7211 WARN_ON(dev_priv->pm_iir != 0);
7212 I915_WRITE(GEN6_PMIMR, 0);
7213 spin_unlock_irq(&dev_priv->rps_lock);
7214 /* enable all PM interrupts */
7215 I915_WRITE(GEN6_PMINTRMSK, 0);
7216
7217 gen6_gt_force_wake_put(dev_priv);
7218 mutex_unlock(&dev_priv->dev->struct_mutex);
7219 }
7220
7221 static void ironlake_init_clock_gating(struct drm_device *dev)
7222 {
7223 struct drm_i915_private *dev_priv = dev->dev_private;
7224 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7225
7226 /* Required for FBC */
7227 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7228 DPFCRUNIT_CLOCK_GATE_DISABLE |
7229 DPFDUNIT_CLOCK_GATE_DISABLE;
7230 /* Required for CxSR */
7231 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7232
7233 I915_WRITE(PCH_3DCGDIS0,
7234 MARIUNIT_CLOCK_GATE_DISABLE |
7235 SVSMUNIT_CLOCK_GATE_DISABLE);
7236 I915_WRITE(PCH_3DCGDIS1,
7237 VFMUNIT_CLOCK_GATE_DISABLE);
7238
7239 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7240
7241 /*
7242 * According to the spec the following bits should be set in
7243 * order to enable memory self-refresh
7244 * The bit 22/21 of 0x42004
7245 * The bit 5 of 0x42020
7246 * The bit 15 of 0x45000
7247 */
7248 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7249 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7250 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7251 I915_WRITE(ILK_DSPCLK_GATE,
7252 (I915_READ(ILK_DSPCLK_GATE) |
7253 ILK_DPARB_CLK_GATE));
7254 I915_WRITE(DISP_ARB_CTL,
7255 (I915_READ(DISP_ARB_CTL) |
7256 DISP_FBC_WM_DIS));
7257 I915_WRITE(WM3_LP_ILK, 0);
7258 I915_WRITE(WM2_LP_ILK, 0);
7259 I915_WRITE(WM1_LP_ILK, 0);
7260
7261 /*
7262 * Based on the document from hardware guys the following bits
7263 * should be set unconditionally in order to enable FBC.
7264 * The bit 22 of 0x42000
7265 * The bit 22 of 0x42004
7266 * The bit 7,8,9 of 0x42020.
7267 */
7268 if (IS_IRONLAKE_M(dev)) {
7269 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7270 I915_READ(ILK_DISPLAY_CHICKEN1) |
7271 ILK_FBCQ_DIS);
7272 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7273 I915_READ(ILK_DISPLAY_CHICKEN2) |
7274 ILK_DPARB_GATE);
7275 I915_WRITE(ILK_DSPCLK_GATE,
7276 I915_READ(ILK_DSPCLK_GATE) |
7277 ILK_DPFC_DIS1 |
7278 ILK_DPFC_DIS2 |
7279 ILK_CLK_FBC);
7280 }
7281
7282 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7283 I915_READ(ILK_DISPLAY_CHICKEN2) |
7284 ILK_ELPIN_409_SELECT);
7285 I915_WRITE(_3D_CHICKEN2,
7286 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7287 _3D_CHICKEN2_WM_READ_PIPELINED);
7288 }
7289
7290 static void gen6_init_clock_gating(struct drm_device *dev)
7291 {
7292 struct drm_i915_private *dev_priv = dev->dev_private;
7293 int pipe;
7294 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7295
7296 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7297
7298 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7299 I915_READ(ILK_DISPLAY_CHICKEN2) |
7300 ILK_ELPIN_409_SELECT);
7301
7302 I915_WRITE(WM3_LP_ILK, 0);
7303 I915_WRITE(WM2_LP_ILK, 0);
7304 I915_WRITE(WM1_LP_ILK, 0);
7305
7306 /*
7307 * According to the spec the following bits should be
7308 * set in order to enable memory self-refresh and fbc:
7309 * The bit21 and bit22 of 0x42000
7310 * The bit21 and bit22 of 0x42004
7311 * The bit5 and bit7 of 0x42020
7312 * The bit14 of 0x70180
7313 * The bit14 of 0x71180
7314 */
7315 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7316 I915_READ(ILK_DISPLAY_CHICKEN1) |
7317 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7318 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7319 I915_READ(ILK_DISPLAY_CHICKEN2) |
7320 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7321 I915_WRITE(ILK_DSPCLK_GATE,
7322 I915_READ(ILK_DSPCLK_GATE) |
7323 ILK_DPARB_CLK_GATE |
7324 ILK_DPFD_CLK_GATE);
7325
7326 for_each_pipe(pipe)
7327 I915_WRITE(DSPCNTR(pipe),
7328 I915_READ(DSPCNTR(pipe)) |
7329 DISPPLANE_TRICKLE_FEED_DISABLE);
7330 }
7331
7332 static void ivybridge_init_clock_gating(struct drm_device *dev)
7333 {
7334 struct drm_i915_private *dev_priv = dev->dev_private;
7335 int pipe;
7336 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7337
7338 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7339
7340 I915_WRITE(WM3_LP_ILK, 0);
7341 I915_WRITE(WM2_LP_ILK, 0);
7342 I915_WRITE(WM1_LP_ILK, 0);
7343
7344 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
7345
7346 for_each_pipe(pipe)
7347 I915_WRITE(DSPCNTR(pipe),
7348 I915_READ(DSPCNTR(pipe)) |
7349 DISPPLANE_TRICKLE_FEED_DISABLE);
7350 }
7351
7352 static void g4x_init_clock_gating(struct drm_device *dev)
7353 {
7354 struct drm_i915_private *dev_priv = dev->dev_private;
7355 uint32_t dspclk_gate;
7356
7357 I915_WRITE(RENCLK_GATE_D1, 0);
7358 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7359 GS_UNIT_CLOCK_GATE_DISABLE |
7360 CL_UNIT_CLOCK_GATE_DISABLE);
7361 I915_WRITE(RAMCLK_GATE_D, 0);
7362 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7363 OVRUNIT_CLOCK_GATE_DISABLE |
7364 OVCUNIT_CLOCK_GATE_DISABLE;
7365 if (IS_GM45(dev))
7366 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7367 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7368 }
7369
7370 static void crestline_init_clock_gating(struct drm_device *dev)
7371 {
7372 struct drm_i915_private *dev_priv = dev->dev_private;
7373
7374 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7375 I915_WRITE(RENCLK_GATE_D2, 0);
7376 I915_WRITE(DSPCLK_GATE_D, 0);
7377 I915_WRITE(RAMCLK_GATE_D, 0);
7378 I915_WRITE16(DEUC, 0);
7379 }
7380
7381 static void broadwater_init_clock_gating(struct drm_device *dev)
7382 {
7383 struct drm_i915_private *dev_priv = dev->dev_private;
7384
7385 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7386 I965_RCC_CLOCK_GATE_DISABLE |
7387 I965_RCPB_CLOCK_GATE_DISABLE |
7388 I965_ISC_CLOCK_GATE_DISABLE |
7389 I965_FBC_CLOCK_GATE_DISABLE);
7390 I915_WRITE(RENCLK_GATE_D2, 0);
7391 }
7392
7393 static void gen3_init_clock_gating(struct drm_device *dev)
7394 {
7395 struct drm_i915_private *dev_priv = dev->dev_private;
7396 u32 dstate = I915_READ(D_STATE);
7397
7398 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7399 DSTATE_DOT_CLOCK_GATING;
7400 I915_WRITE(D_STATE, dstate);
7401 }
7402
7403 static void i85x_init_clock_gating(struct drm_device *dev)
7404 {
7405 struct drm_i915_private *dev_priv = dev->dev_private;
7406
7407 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7408 }
7409
7410 static void i830_init_clock_gating(struct drm_device *dev)
7411 {
7412 struct drm_i915_private *dev_priv = dev->dev_private;
7413
7414 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7415 }
7416
7417 static void ibx_init_clock_gating(struct drm_device *dev)
7418 {
7419 struct drm_i915_private *dev_priv = dev->dev_private;
7420
7421 /*
7422 * On Ibex Peak and Cougar Point, we need to disable clock
7423 * gating for the panel power sequencer or it will fail to
7424 * start up when no ports are active.
7425 */
7426 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7427 }
7428
7429 static void cpt_init_clock_gating(struct drm_device *dev)
7430 {
7431 struct drm_i915_private *dev_priv = dev->dev_private;
7432
7433 /*
7434 * On Ibex Peak and Cougar Point, we need to disable clock
7435 * gating for the panel power sequencer or it will fail to
7436 * start up when no ports are active.
7437 */
7438 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7439 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7440 DPLS_EDP_PPS_FIX_DIS);
7441 }
7442
7443 static void ironlake_teardown_rc6(struct drm_device *dev)
7444 {
7445 struct drm_i915_private *dev_priv = dev->dev_private;
7446
7447 if (dev_priv->renderctx) {
7448 i915_gem_object_unpin(dev_priv->renderctx);
7449 drm_gem_object_unreference(&dev_priv->renderctx->base);
7450 dev_priv->renderctx = NULL;
7451 }
7452
7453 if (dev_priv->pwrctx) {
7454 i915_gem_object_unpin(dev_priv->pwrctx);
7455 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7456 dev_priv->pwrctx = NULL;
7457 }
7458 }
7459
7460 static void ironlake_disable_rc6(struct drm_device *dev)
7461 {
7462 struct drm_i915_private *dev_priv = dev->dev_private;
7463
7464 if (I915_READ(PWRCTXA)) {
7465 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7466 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7467 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7468 50);
7469
7470 I915_WRITE(PWRCTXA, 0);
7471 POSTING_READ(PWRCTXA);
7472
7473 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7474 POSTING_READ(RSTDBYCTL);
7475 }
7476
7477 ironlake_teardown_rc6(dev);
7478 }
7479
7480 static int ironlake_setup_rc6(struct drm_device *dev)
7481 {
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483
7484 if (dev_priv->renderctx == NULL)
7485 dev_priv->renderctx = intel_alloc_context_page(dev);
7486 if (!dev_priv->renderctx)
7487 return -ENOMEM;
7488
7489 if (dev_priv->pwrctx == NULL)
7490 dev_priv->pwrctx = intel_alloc_context_page(dev);
7491 if (!dev_priv->pwrctx) {
7492 ironlake_teardown_rc6(dev);
7493 return -ENOMEM;
7494 }
7495
7496 return 0;
7497 }
7498
7499 void ironlake_enable_rc6(struct drm_device *dev)
7500 {
7501 struct drm_i915_private *dev_priv = dev->dev_private;
7502 int ret;
7503
7504 /* rc6 disabled by default due to repeated reports of hanging during
7505 * boot and resume.
7506 */
7507 if (!i915_enable_rc6)
7508 return;
7509
7510 mutex_lock(&dev->struct_mutex);
7511 ret = ironlake_setup_rc6(dev);
7512 if (ret) {
7513 mutex_unlock(&dev->struct_mutex);
7514 return;
7515 }
7516
7517 /*
7518 * GPU can automatically power down the render unit if given a page
7519 * to save state.
7520 */
7521 ret = BEGIN_LP_RING(6);
7522 if (ret) {
7523 ironlake_teardown_rc6(dev);
7524 mutex_unlock(&dev->struct_mutex);
7525 return;
7526 }
7527
7528 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7529 OUT_RING(MI_SET_CONTEXT);
7530 OUT_RING(dev_priv->renderctx->gtt_offset |
7531 MI_MM_SPACE_GTT |
7532 MI_SAVE_EXT_STATE_EN |
7533 MI_RESTORE_EXT_STATE_EN |
7534 MI_RESTORE_INHIBIT);
7535 OUT_RING(MI_SUSPEND_FLUSH);
7536 OUT_RING(MI_NOOP);
7537 OUT_RING(MI_FLUSH);
7538 ADVANCE_LP_RING();
7539
7540 /*
7541 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7542 * does an implicit flush, combined with MI_FLUSH above, it should be
7543 * safe to assume that renderctx is valid
7544 */
7545 ret = intel_wait_ring_idle(LP_RING(dev_priv));
7546 if (ret) {
7547 DRM_ERROR("failed to enable ironlake power power savings\n");
7548 ironlake_teardown_rc6(dev);
7549 mutex_unlock(&dev->struct_mutex);
7550 return;
7551 }
7552
7553 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7554 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7555 mutex_unlock(&dev->struct_mutex);
7556 }
7557
7558 void intel_init_clock_gating(struct drm_device *dev)
7559 {
7560 struct drm_i915_private *dev_priv = dev->dev_private;
7561
7562 dev_priv->display.init_clock_gating(dev);
7563
7564 if (dev_priv->display.init_pch_clock_gating)
7565 dev_priv->display.init_pch_clock_gating(dev);
7566 }
7567
7568 /* Set up chip specific display functions */
7569 static void intel_init_display(struct drm_device *dev)
7570 {
7571 struct drm_i915_private *dev_priv = dev->dev_private;
7572
7573 /* We always want a DPMS function */
7574 if (HAS_PCH_SPLIT(dev)) {
7575 dev_priv->display.dpms = ironlake_crtc_dpms;
7576 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7577 } else {
7578 dev_priv->display.dpms = i9xx_crtc_dpms;
7579 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7580 }
7581
7582 if (I915_HAS_FBC(dev)) {
7583 if (HAS_PCH_SPLIT(dev)) {
7584 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7585 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7586 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7587 } else if (IS_GM45(dev)) {
7588 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7589 dev_priv->display.enable_fbc = g4x_enable_fbc;
7590 dev_priv->display.disable_fbc = g4x_disable_fbc;
7591 } else if (IS_CRESTLINE(dev)) {
7592 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7593 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7594 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7595 }
7596 /* 855GM needs testing */
7597 }
7598
7599 /* Returns the core display clock speed */
7600 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7601 dev_priv->display.get_display_clock_speed =
7602 i945_get_display_clock_speed;
7603 else if (IS_I915G(dev))
7604 dev_priv->display.get_display_clock_speed =
7605 i915_get_display_clock_speed;
7606 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7607 dev_priv->display.get_display_clock_speed =
7608 i9xx_misc_get_display_clock_speed;
7609 else if (IS_I915GM(dev))
7610 dev_priv->display.get_display_clock_speed =
7611 i915gm_get_display_clock_speed;
7612 else if (IS_I865G(dev))
7613 dev_priv->display.get_display_clock_speed =
7614 i865_get_display_clock_speed;
7615 else if (IS_I85X(dev))
7616 dev_priv->display.get_display_clock_speed =
7617 i855_get_display_clock_speed;
7618 else /* 852, 830 */
7619 dev_priv->display.get_display_clock_speed =
7620 i830_get_display_clock_speed;
7621
7622 /* For FIFO watermark updates */
7623 if (HAS_PCH_SPLIT(dev)) {
7624 if (HAS_PCH_IBX(dev))
7625 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
7626 else if (HAS_PCH_CPT(dev))
7627 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
7628
7629 if (IS_GEN5(dev)) {
7630 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7631 dev_priv->display.update_wm = ironlake_update_wm;
7632 else {
7633 DRM_DEBUG_KMS("Failed to get proper latency. "
7634 "Disable CxSR\n");
7635 dev_priv->display.update_wm = NULL;
7636 }
7637 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7638 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7639 } else if (IS_GEN6(dev)) {
7640 if (SNB_READ_WM0_LATENCY()) {
7641 dev_priv->display.update_wm = sandybridge_update_wm;
7642 } else {
7643 DRM_DEBUG_KMS("Failed to read display plane latency. "
7644 "Disable CxSR\n");
7645 dev_priv->display.update_wm = NULL;
7646 }
7647 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7648 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7649 } else if (IS_IVYBRIDGE(dev)) {
7650 /* FIXME: detect B0+ stepping and use auto training */
7651 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7652 if (SNB_READ_WM0_LATENCY()) {
7653 dev_priv->display.update_wm = sandybridge_update_wm;
7654 } else {
7655 DRM_DEBUG_KMS("Failed to read display plane latency. "
7656 "Disable CxSR\n");
7657 dev_priv->display.update_wm = NULL;
7658 }
7659 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7660
7661 } else
7662 dev_priv->display.update_wm = NULL;
7663 } else if (IS_PINEVIEW(dev)) {
7664 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7665 dev_priv->is_ddr3,
7666 dev_priv->fsb_freq,
7667 dev_priv->mem_freq)) {
7668 DRM_INFO("failed to find known CxSR latency "
7669 "(found ddr%s fsb freq %d, mem freq %d), "
7670 "disabling CxSR\n",
7671 (dev_priv->is_ddr3 == 1) ? "3": "2",
7672 dev_priv->fsb_freq, dev_priv->mem_freq);
7673 /* Disable CxSR and never update its watermark again */
7674 pineview_disable_cxsr(dev);
7675 dev_priv->display.update_wm = NULL;
7676 } else
7677 dev_priv->display.update_wm = pineview_update_wm;
7678 } else if (IS_G4X(dev)) {
7679 dev_priv->display.update_wm = g4x_update_wm;
7680 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7681 } else if (IS_GEN4(dev)) {
7682 dev_priv->display.update_wm = i965_update_wm;
7683 if (IS_CRESTLINE(dev))
7684 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7685 else if (IS_BROADWATER(dev))
7686 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7687 } else if (IS_GEN3(dev)) {
7688 dev_priv->display.update_wm = i9xx_update_wm;
7689 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7690 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7691 } else if (IS_I865G(dev)) {
7692 dev_priv->display.update_wm = i830_update_wm;
7693 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7694 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7695 } else if (IS_I85X(dev)) {
7696 dev_priv->display.update_wm = i9xx_update_wm;
7697 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7698 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7699 } else {
7700 dev_priv->display.update_wm = i830_update_wm;
7701 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7702 if (IS_845G(dev))
7703 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7704 else
7705 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7706 }
7707 }
7708
7709 /*
7710 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7711 * resume, or other times. This quirk makes sure that's the case for
7712 * affected systems.
7713 */
7714 static void quirk_pipea_force (struct drm_device *dev)
7715 {
7716 struct drm_i915_private *dev_priv = dev->dev_private;
7717
7718 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7719 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7720 }
7721
7722 struct intel_quirk {
7723 int device;
7724 int subsystem_vendor;
7725 int subsystem_device;
7726 void (*hook)(struct drm_device *dev);
7727 };
7728
7729 struct intel_quirk intel_quirks[] = {
7730 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7731 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7732 /* HP Mini needs pipe A force quirk (LP: #322104) */
7733 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7734
7735 /* Thinkpad R31 needs pipe A force quirk */
7736 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7737 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7738 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7739
7740 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7741 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7742 /* ThinkPad X40 needs pipe A force quirk */
7743
7744 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7745 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7746
7747 /* 855 & before need to leave pipe A & dpll A up */
7748 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7749 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7750 };
7751
7752 static void intel_init_quirks(struct drm_device *dev)
7753 {
7754 struct pci_dev *d = dev->pdev;
7755 int i;
7756
7757 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7758 struct intel_quirk *q = &intel_quirks[i];
7759
7760 if (d->device == q->device &&
7761 (d->subsystem_vendor == q->subsystem_vendor ||
7762 q->subsystem_vendor == PCI_ANY_ID) &&
7763 (d->subsystem_device == q->subsystem_device ||
7764 q->subsystem_device == PCI_ANY_ID))
7765 q->hook(dev);
7766 }
7767 }
7768
7769 /* Disable the VGA plane that we never use */
7770 static void i915_disable_vga(struct drm_device *dev)
7771 {
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773 u8 sr1;
7774 u32 vga_reg;
7775
7776 if (HAS_PCH_SPLIT(dev))
7777 vga_reg = CPU_VGACNTRL;
7778 else
7779 vga_reg = VGACNTRL;
7780
7781 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7782 outb(1, VGA_SR_INDEX);
7783 sr1 = inb(VGA_SR_DATA);
7784 outb(sr1 | 1<<5, VGA_SR_DATA);
7785 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7786 udelay(300);
7787
7788 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7789 POSTING_READ(vga_reg);
7790 }
7791
7792 void intel_modeset_init(struct drm_device *dev)
7793 {
7794 struct drm_i915_private *dev_priv = dev->dev_private;
7795 int i;
7796
7797 drm_mode_config_init(dev);
7798
7799 dev->mode_config.min_width = 0;
7800 dev->mode_config.min_height = 0;
7801
7802 dev->mode_config.funcs = (void *)&intel_mode_funcs;
7803
7804 intel_init_quirks(dev);
7805
7806 intel_init_display(dev);
7807
7808 if (IS_GEN2(dev)) {
7809 dev->mode_config.max_width = 2048;
7810 dev->mode_config.max_height = 2048;
7811 } else if (IS_GEN3(dev)) {
7812 dev->mode_config.max_width = 4096;
7813 dev->mode_config.max_height = 4096;
7814 } else {
7815 dev->mode_config.max_width = 8192;
7816 dev->mode_config.max_height = 8192;
7817 }
7818 dev->mode_config.fb_base = dev->agp->base;
7819
7820 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7821 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7822
7823 for (i = 0; i < dev_priv->num_pipe; i++) {
7824 intel_crtc_init(dev, i);
7825 }
7826
7827 /* Just disable it once at startup */
7828 i915_disable_vga(dev);
7829 intel_setup_outputs(dev);
7830
7831 intel_init_clock_gating(dev);
7832
7833 if (IS_IRONLAKE_M(dev)) {
7834 ironlake_enable_drps(dev);
7835 intel_init_emon(dev);
7836 }
7837
7838 if (IS_GEN6(dev))
7839 gen6_enable_rps(dev_priv);
7840
7841 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7842 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7843 (unsigned long)dev);
7844 }
7845
7846 void intel_modeset_gem_init(struct drm_device *dev)
7847 {
7848 if (IS_IRONLAKE_M(dev))
7849 ironlake_enable_rc6(dev);
7850
7851 intel_setup_overlay(dev);
7852 }
7853
7854 void intel_modeset_cleanup(struct drm_device *dev)
7855 {
7856 struct drm_i915_private *dev_priv = dev->dev_private;
7857 struct drm_crtc *crtc;
7858 struct intel_crtc *intel_crtc;
7859
7860 drm_kms_helper_poll_fini(dev);
7861 mutex_lock(&dev->struct_mutex);
7862
7863 intel_unregister_dsm_handler();
7864
7865
7866 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7867 /* Skip inactive CRTCs */
7868 if (!crtc->fb)
7869 continue;
7870
7871 intel_crtc = to_intel_crtc(crtc);
7872 intel_increase_pllclock(crtc);
7873 }
7874
7875 if (dev_priv->display.disable_fbc)
7876 dev_priv->display.disable_fbc(dev);
7877
7878 if (IS_IRONLAKE_M(dev))
7879 ironlake_disable_drps(dev);
7880 if (IS_GEN6(dev))
7881 gen6_disable_rps(dev);
7882
7883 if (IS_IRONLAKE_M(dev))
7884 ironlake_disable_rc6(dev);
7885
7886 mutex_unlock(&dev->struct_mutex);
7887
7888 /* Disable the irq before mode object teardown, for the irq might
7889 * enqueue unpin/hotplug work. */
7890 drm_irq_uninstall(dev);
7891 cancel_work_sync(&dev_priv->hotplug_work);
7892
7893 /* Shut off idle work before the crtcs get freed. */
7894 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7895 intel_crtc = to_intel_crtc(crtc);
7896 del_timer_sync(&intel_crtc->idle_timer);
7897 }
7898 del_timer_sync(&dev_priv->idle_timer);
7899 cancel_work_sync(&dev_priv->idle_work);
7900
7901 drm_mode_config_cleanup(dev);
7902 }
7903
7904 /*
7905 * Return which encoder is currently attached for connector.
7906 */
7907 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7908 {
7909 return &intel_attached_encoder(connector)->base;
7910 }
7911
7912 void intel_connector_attach_encoder(struct intel_connector *connector,
7913 struct intel_encoder *encoder)
7914 {
7915 connector->encoder = encoder;
7916 drm_mode_connector_attach_encoder(&connector->base,
7917 &encoder->base);
7918 }
7919
7920 /*
7921 * set vga decode state - true == enable VGA decode
7922 */
7923 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7924 {
7925 struct drm_i915_private *dev_priv = dev->dev_private;
7926 u16 gmch_ctrl;
7927
7928 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7929 if (state)
7930 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7931 else
7932 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7933 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7934 return 0;
7935 }
7936
7937 #ifdef CONFIG_DEBUG_FS
7938 #include <linux/seq_file.h>
7939
7940 struct intel_display_error_state {
7941 struct intel_cursor_error_state {
7942 u32 control;
7943 u32 position;
7944 u32 base;
7945 u32 size;
7946 } cursor[2];
7947
7948 struct intel_pipe_error_state {
7949 u32 conf;
7950 u32 source;
7951
7952 u32 htotal;
7953 u32 hblank;
7954 u32 hsync;
7955 u32 vtotal;
7956 u32 vblank;
7957 u32 vsync;
7958 } pipe[2];
7959
7960 struct intel_plane_error_state {
7961 u32 control;
7962 u32 stride;
7963 u32 size;
7964 u32 pos;
7965 u32 addr;
7966 u32 surface;
7967 u32 tile_offset;
7968 } plane[2];
7969 };
7970
7971 struct intel_display_error_state *
7972 intel_display_capture_error_state(struct drm_device *dev)
7973 {
7974 drm_i915_private_t *dev_priv = dev->dev_private;
7975 struct intel_display_error_state *error;
7976 int i;
7977
7978 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7979 if (error == NULL)
7980 return NULL;
7981
7982 for (i = 0; i < 2; i++) {
7983 error->cursor[i].control = I915_READ(CURCNTR(i));
7984 error->cursor[i].position = I915_READ(CURPOS(i));
7985 error->cursor[i].base = I915_READ(CURBASE(i));
7986
7987 error->plane[i].control = I915_READ(DSPCNTR(i));
7988 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7989 error->plane[i].size = I915_READ(DSPSIZE(i));
7990 error->plane[i].pos= I915_READ(DSPPOS(i));
7991 error->plane[i].addr = I915_READ(DSPADDR(i));
7992 if (INTEL_INFO(dev)->gen >= 4) {
7993 error->plane[i].surface = I915_READ(DSPSURF(i));
7994 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7995 }
7996
7997 error->pipe[i].conf = I915_READ(PIPECONF(i));
7998 error->pipe[i].source = I915_READ(PIPESRC(i));
7999 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8000 error->pipe[i].hblank = I915_READ(HBLANK(i));
8001 error->pipe[i].hsync = I915_READ(HSYNC(i));
8002 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8003 error->pipe[i].vblank = I915_READ(VBLANK(i));
8004 error->pipe[i].vsync = I915_READ(VSYNC(i));
8005 }
8006
8007 return error;
8008 }
8009
8010 void
8011 intel_display_print_error_state(struct seq_file *m,
8012 struct drm_device *dev,
8013 struct intel_display_error_state *error)
8014 {
8015 int i;
8016
8017 for (i = 0; i < 2; i++) {
8018 seq_printf(m, "Pipe [%d]:\n", i);
8019 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8020 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8021 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8022 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8023 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8024 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8025 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8026 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8027
8028 seq_printf(m, "Plane [%d]:\n", i);
8029 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8030 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8031 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8032 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8033 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8034 if (INTEL_INFO(dev)->gen >= 4) {
8035 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8036 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8037 }
8038
8039 seq_printf(m, "Cursor [%d]:\n", i);
8040 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8041 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8042 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8043 }
8044 }
8045 #endif