]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Update DRIVER_DATE to 20151120
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121 int min, max;
122 } intel_range_t;
123
124 typedef struct {
125 int dot_limit;
126 int p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140 /* Obtain SKU information */
141 mutex_lock(&dev_priv->sb_lock);
142 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143 CCK_FUSE_HPLL_FREQ_MASK;
144 mutex_unlock(&dev_priv->sb_lock);
145
146 return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150 const char *name, u32 reg)
151 {
152 u32 val;
153 int divider;
154
155 if (dev_priv->hpll_freq == 0)
156 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174 struct drm_i915_private *dev_priv = dev->dev_private;
175
176 WARN_ON(!HAS_PCH_SPLIT(dev));
177
178 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184 struct drm_i915_private *dev_priv = dev->dev_private;
185 uint32_t clkcfg;
186
187 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188 if (IS_VALLEYVIEW(dev))
189 return 200;
190
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
194 return 100;
195 case CLKCFG_FSB_533:
196 return 133;
197 case CLKCFG_FSB_667:
198 return 166;
199 case CLKCFG_FSB_800:
200 return 200;
201 case CLKCFG_FSB_1067:
202 return 266;
203 case CLKCFG_FSB_1333:
204 return 333;
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
208 return 400;
209 default:
210 return 133;
211 }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216 if (!IS_VALLEYVIEW(dev_priv))
217 return;
218
219 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220 CCK_CZ_CLOCK_CONTROL);
221
222 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228 if (IS_GEN5(dev)) {
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231 } else
232 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236 .dot = { .min = 25000, .max = 350000 },
237 .vco = { .min = 908000, .max = 1512000 },
238 .n = { .min = 2, .max = 16 },
239 .m = { .min = 96, .max = 140 },
240 .m1 = { .min = 18, .max = 26 },
241 .m2 = { .min = 6, .max = 16 },
242 .p = { .min = 4, .max = 128 },
243 .p1 = { .min = 2, .max = 33 },
244 .p2 = { .dot_limit = 165000,
245 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249 .dot = { .min = 25000, .max = 350000 },
250 .vco = { .min = 908000, .max = 1512000 },
251 .n = { .min = 2, .max = 16 },
252 .m = { .min = 96, .max = 140 },
253 .m1 = { .min = 18, .max = 26 },
254 .m2 = { .min = 6, .max = 16 },
255 .p = { .min = 4, .max = 128 },
256 .p1 = { .min = 2, .max = 33 },
257 .p2 = { .dot_limit = 165000,
258 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262 .dot = { .min = 25000, .max = 350000 },
263 .vco = { .min = 908000, .max = 1512000 },
264 .n = { .min = 2, .max = 16 },
265 .m = { .min = 96, .max = 140 },
266 .m1 = { .min = 18, .max = 26 },
267 .m2 = { .min = 6, .max = 16 },
268 .p = { .min = 4, .max = 128 },
269 .p1 = { .min = 1, .max = 6 },
270 .p2 = { .dot_limit = 165000,
271 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275 .dot = { .min = 20000, .max = 400000 },
276 .vco = { .min = 1400000, .max = 2800000 },
277 .n = { .min = 1, .max = 6 },
278 .m = { .min = 70, .max = 120 },
279 .m1 = { .min = 8, .max = 18 },
280 .m2 = { .min = 3, .max = 7 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1400000, .max = 2800000 },
290 .n = { .min = 1, .max = 6 },
291 .m = { .min = 70, .max = 120 },
292 .m1 = { .min = 8, .max = 18 },
293 .m2 = { .min = 3, .max = 7 },
294 .p = { .min = 7, .max = 98 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302 .dot = { .min = 25000, .max = 270000 },
303 .vco = { .min = 1750000, .max = 3500000},
304 .n = { .min = 1, .max = 4 },
305 .m = { .min = 104, .max = 138 },
306 .m1 = { .min = 17, .max = 23 },
307 .m2 = { .min = 5, .max = 11 },
308 .p = { .min = 10, .max = 30 },
309 .p1 = { .min = 1, .max = 3},
310 .p2 = { .dot_limit = 270000,
311 .p2_slow = 10,
312 .p2_fast = 10
313 },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317 .dot = { .min = 22000, .max = 400000 },
318 .vco = { .min = 1750000, .max = 3500000},
319 .n = { .min = 1, .max = 4 },
320 .m = { .min = 104, .max = 138 },
321 .m1 = { .min = 16, .max = 23 },
322 .m2 = { .min = 5, .max = 11 },
323 .p = { .min = 5, .max = 80 },
324 .p1 = { .min = 1, .max = 8},
325 .p2 = { .dot_limit = 165000,
326 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330 .dot = { .min = 20000, .max = 115000 },
331 .vco = { .min = 1750000, .max = 3500000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 28, .max = 112 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 0,
339 .p2_slow = 14, .p2_fast = 14
340 },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344 .dot = { .min = 80000, .max = 224000 },
345 .vco = { .min = 1750000, .max = 3500000 },
346 .n = { .min = 1, .max = 3 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 17, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 14, .max = 42 },
351 .p1 = { .min = 2, .max = 6 },
352 .p2 = { .dot_limit = 0,
353 .p2_slow = 7, .p2_fast = 7
354 },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358 .dot = { .min = 20000, .max = 400000},
359 .vco = { .min = 1700000, .max = 3500000 },
360 /* Pineview's Ncounter is a ring counter */
361 .n = { .min = 3, .max = 6 },
362 .m = { .min = 2, .max = 256 },
363 /* Pineview only has one combined m divider, which we treat as m2. */
364 .m1 = { .min = 0, .max = 0 },
365 .m2 = { .min = 0, .max = 254 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
368 .p2 = { .dot_limit = 200000,
369 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373 .dot = { .min = 20000, .max = 400000 },
374 .vco = { .min = 1700000, .max = 3500000 },
375 .n = { .min = 3, .max = 6 },
376 .m = { .min = 2, .max = 256 },
377 .m1 = { .min = 0, .max = 0 },
378 .m2 = { .min = 0, .max = 254 },
379 .p = { .min = 7, .max = 112 },
380 .p1 = { .min = 1, .max = 8 },
381 .p2 = { .dot_limit = 112000,
382 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386 *
387 * We calculate clock using (register_value + 2) for N/M1/M2, so here
388 * the range value for them is (actual_value - 2).
389 */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391 .dot = { .min = 25000, .max = 350000 },
392 .vco = { .min = 1760000, .max = 3510000 },
393 .n = { .min = 1, .max = 5 },
394 .m = { .min = 79, .max = 127 },
395 .m1 = { .min = 12, .max = 22 },
396 .m2 = { .min = 5, .max = 9 },
397 .p = { .min = 5, .max = 80 },
398 .p1 = { .min = 1, .max = 8 },
399 .p2 = { .dot_limit = 225000,
400 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404 .dot = { .min = 25000, .max = 350000 },
405 .vco = { .min = 1760000, .max = 3510000 },
406 .n = { .min = 1, .max = 3 },
407 .m = { .min = 79, .max = 118 },
408 .m1 = { .min = 12, .max = 22 },
409 .m2 = { .min = 5, .max = 9 },
410 .p = { .min = 28, .max = 112 },
411 .p1 = { .min = 2, .max = 8 },
412 .p2 = { .dot_limit = 225000,
413 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417 .dot = { .min = 25000, .max = 350000 },
418 .vco = { .min = 1760000, .max = 3510000 },
419 .n = { .min = 1, .max = 3 },
420 .m = { .min = 79, .max = 127 },
421 .m1 = { .min = 12, .max = 22 },
422 .m2 = { .min = 5, .max = 9 },
423 .p = { .min = 14, .max = 56 },
424 .p1 = { .min = 2, .max = 8 },
425 .p2 = { .dot_limit = 225000,
426 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 2 },
434 .m = { .min = 79, .max = 126 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 126 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 42 },
451 .p1 = { .min = 2, .max = 6 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457 /*
458 * These are the data rate limits (measured in fast clocks)
459 * since those are the strictest limits we have. The fast
460 * clock and actual rate limits are more relaxed, so checking
461 * them would make no difference.
462 */
463 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464 .vco = { .min = 4000000, .max = 6000000 },
465 .n = { .min = 1, .max = 7 },
466 .m1 = { .min = 2, .max = 3 },
467 .m2 = { .min = 11, .max = 156 },
468 .p1 = { .min = 2, .max = 3 },
469 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 540000 * 5},
480 .vco = { .min = 4800000, .max = 6480000 },
481 .n = { .min = 1, .max = 1 },
482 .m1 = { .min = 2, .max = 2 },
483 .m2 = { .min = 24 << 22, .max = 175 << 22 },
484 .p1 = { .min = 2, .max = 4 },
485 .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489 /* FIXME: find real dot limits */
490 .dot = { .min = 0, .max = INT_MAX },
491 .vco = { .min = 4800000, .max = 6700000 },
492 .n = { .min = 1, .max = 1 },
493 .m1 = { .min = 2, .max = 2 },
494 /* FIXME: find real m2 limits */
495 .m2 = { .min = 2 << 22, .max = 255 << 22 },
496 .p1 = { .min = 2, .max = 4 },
497 .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503 return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507 * Returns whether any output on the specified pipe is of the specified type
508 */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511 struct drm_device *dev = crtc->base.dev;
512 struct intel_encoder *encoder;
513
514 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515 if (encoder->type == type)
516 return true;
517
518 return false;
519 }
520
521 /**
522 * Returns whether any output on the specified pipe will have the specified
523 * type after a staged modeset is complete, i.e., the same as
524 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525 * encoder->crtc.
526 */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528 int type)
529 {
530 struct drm_atomic_state *state = crtc_state->base.state;
531 struct drm_connector *connector;
532 struct drm_connector_state *connector_state;
533 struct intel_encoder *encoder;
534 int i, num_connectors = 0;
535
536 for_each_connector_in_state(state, connector, connector_state, i) {
537 if (connector_state->crtc != crtc_state->base.crtc)
538 continue;
539
540 num_connectors++;
541
542 encoder = to_intel_encoder(connector_state->best_encoder);
543 if (encoder->type == type)
544 return true;
545 }
546
547 WARN_ON(num_connectors == 0);
548
549 return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555 struct drm_device *dev = crtc_state->base.crtc->dev;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559 if (intel_is_dual_link_lvds(dev)) {
560 if (refclk == 100000)
561 limit = &intel_limits_ironlake_dual_lvds_100m;
562 else
563 limit = &intel_limits_ironlake_dual_lvds;
564 } else {
565 if (refclk == 100000)
566 limit = &intel_limits_ironlake_single_lvds_100m;
567 else
568 limit = &intel_limits_ironlake_single_lvds;
569 }
570 } else
571 limit = &intel_limits_ironlake_dac;
572
573 return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579 struct drm_device *dev = crtc_state->base.crtc->dev;
580 const intel_limit_t *limit;
581
582 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583 if (intel_is_dual_link_lvds(dev))
584 limit = &intel_limits_g4x_dual_channel_lvds;
585 else
586 limit = &intel_limits_g4x_single_channel_lvds;
587 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589 limit = &intel_limits_g4x_hdmi;
590 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591 limit = &intel_limits_g4x_sdvo;
592 } else /* The option is for other outputs */
593 limit = &intel_limits_i9xx_sdvo;
594
595 return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601 struct drm_device *dev = crtc_state->base.crtc->dev;
602 const intel_limit_t *limit;
603
604 if (IS_BROXTON(dev))
605 limit = &intel_limits_bxt;
606 else if (HAS_PCH_SPLIT(dev))
607 limit = intel_ironlake_limit(crtc_state, refclk);
608 else if (IS_G4X(dev)) {
609 limit = intel_g4x_limit(crtc_state);
610 } else if (IS_PINEVIEW(dev)) {
611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612 limit = &intel_limits_pineview_lvds;
613 else
614 limit = &intel_limits_pineview_sdvo;
615 } else if (IS_CHERRYVIEW(dev)) {
616 limit = &intel_limits_chv;
617 } else if (IS_VALLEYVIEW(dev)) {
618 limit = &intel_limits_vlv;
619 } else if (!IS_GEN2(dev)) {
620 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621 limit = &intel_limits_i9xx_lvds;
622 else
623 limit = &intel_limits_i9xx_sdvo;
624 } else {
625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626 limit = &intel_limits_i8xx_lvds;
627 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628 limit = &intel_limits_i8xx_dvo;
629 else
630 limit = &intel_limits_i8xx_dac;
631 }
632 return limit;
633 }
634
635 /*
636 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639 * The helpers' return value is the rate of the clock that is fed to the
640 * display engine's pipe which can be the above fast dot clock rate or a
641 * divided-down version of it.
642 */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646 clock->m = clock->m2 + 2;
647 clock->p = clock->p1 * clock->p2;
648 if (WARN_ON(clock->n == 0 || clock->p == 0))
649 return 0;
650 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653 return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663 clock->m = i9xx_dpll_compute_m(clock);
664 clock->p = clock->p1 * clock->p2;
665 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666 return 0;
667 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670 return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675 clock->m = clock->m1 * clock->m2;
676 clock->p = clock->p1 * clock->p2;
677 if (WARN_ON(clock->n == 0 || clock->p == 0))
678 return 0;
679 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682 return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687 clock->m = clock->m1 * clock->m2;
688 clock->p = clock->p1 * clock->p2;
689 if (WARN_ON(clock->n == 0 || clock->p == 0))
690 return 0;
691 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692 clock->n << 22);
693 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695 return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700 * Returns whether the given set of divisors are valid for a given refclk with
701 * the given connectors.
702 */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705 const intel_limit_t *limit,
706 const intel_clock_t *clock)
707 {
708 if (clock->n < limit->n.min || limit->n.max < clock->n)
709 INTELPllInvalid("n out of range\n");
710 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
711 INTELPllInvalid("p1 out of range\n");
712 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
713 INTELPllInvalid("m2 out of range\n");
714 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
715 INTELPllInvalid("m1 out of range\n");
716
717 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718 if (clock->m1 <= clock->m2)
719 INTELPllInvalid("m1 <= m2\n");
720
721 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722 if (clock->p < limit->p.min || limit->p.max < clock->p)
723 INTELPllInvalid("p out of range\n");
724 if (clock->m < limit->m.min || limit->m.max < clock->m)
725 INTELPllInvalid("m out of range\n");
726 }
727
728 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729 INTELPllInvalid("vco out of range\n");
730 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731 * connector, etc., rather than just a single range.
732 */
733 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734 INTELPllInvalid("dot out of range\n");
735
736 return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741 const struct intel_crtc_state *crtc_state,
742 int target)
743 {
744 struct drm_device *dev = crtc_state->base.crtc->dev;
745
746 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747 /*
748 * For LVDS just rely on its current settings for dual-channel.
749 * We haven't figured out how to reliably set up different
750 * single/dual channel state, if we even can.
751 */
752 if (intel_is_dual_link_lvds(dev))
753 return limit->p2.p2_fast;
754 else
755 return limit->p2.p2_slow;
756 } else {
757 if (target < limit->p2.dot_limit)
758 return limit->p2.p2_slow;
759 else
760 return limit->p2.p2_fast;
761 }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766 struct intel_crtc_state *crtc_state,
767 int target, int refclk, intel_clock_t *match_clock,
768 intel_clock_t *best_clock)
769 {
770 struct drm_device *dev = crtc_state->base.crtc->dev;
771 intel_clock_t clock;
772 int err = target;
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 clock.m1++) {
780 for (clock.m2 = limit->m2.min;
781 clock.m2 <= limit->m2.max; clock.m2++) {
782 if (clock.m2 >= clock.m1)
783 break;
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 i9xx_calc_dpll_params(refclk, &clock);
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794 if (match_clock &&
795 clock.p != match_clock->p)
796 continue;
797
798 this_err = abs(clock.dot - target);
799 if (this_err < err) {
800 *best_clock = clock;
801 err = this_err;
802 }
803 }
804 }
805 }
806 }
807
808 return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813 struct intel_crtc_state *crtc_state,
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
816 {
817 struct drm_device *dev = crtc_state->base.crtc->dev;
818 intel_clock_t clock;
819 int err = target;
820
821 memset(best_clock, 0, sizeof(*best_clock));
822
823 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826 clock.m1++) {
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
829 for (clock.n = limit->n.min;
830 clock.n <= limit->n.max; clock.n++) {
831 for (clock.p1 = limit->p1.min;
832 clock.p1 <= limit->p1.max; clock.p1++) {
833 int this_err;
834
835 pnv_calc_dpll_params(refclk, &clock);
836 if (!intel_PLL_is_valid(dev, limit,
837 &clock))
838 continue;
839 if (match_clock &&
840 clock.p != match_clock->p)
841 continue;
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
845 *best_clock = clock;
846 err = this_err;
847 }
848 }
849 }
850 }
851 }
852
853 return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858 struct intel_crtc_state *crtc_state,
859 int target, int refclk, intel_clock_t *match_clock,
860 intel_clock_t *best_clock)
861 {
862 struct drm_device *dev = crtc_state->base.crtc->dev;
863 intel_clock_t clock;
864 int max_n;
865 bool found = false;
866 /* approximately equals target * 0.00585 */
867 int err_most = (target >> 8) + (target >> 9);
868
869 memset(best_clock, 0, sizeof(*best_clock));
870
871 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873 max_n = limit->n.max;
874 /* based on hardware requirement, prefer smaller n to precision */
875 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876 /* based on hardware requirement, prefere larger m1,m2 */
877 for (clock.m1 = limit->m1.max;
878 clock.m1 >= limit->m1.min; clock.m1--) {
879 for (clock.m2 = limit->m2.max;
880 clock.m2 >= limit->m2.min; clock.m2--) {
881 for (clock.p1 = limit->p1.max;
882 clock.p1 >= limit->p1.min; clock.p1--) {
883 int this_err;
884
885 i9xx_calc_dpll_params(refclk, &clock);
886 if (!intel_PLL_is_valid(dev, limit,
887 &clock))
888 continue;
889
890 this_err = abs(clock.dot - target);
891 if (this_err < err_most) {
892 *best_clock = clock;
893 err_most = this_err;
894 max_n = clock.n;
895 found = true;
896 }
897 }
898 }
899 }
900 }
901 return found;
902 }
903
904 /*
905 * Check if the calculated PLL configuration is more optimal compared to the
906 * best configuration and error found so far. Return the calculated error.
907 */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909 const intel_clock_t *calculated_clock,
910 const intel_clock_t *best_clock,
911 unsigned int best_error_ppm,
912 unsigned int *error_ppm)
913 {
914 /*
915 * For CHV ignore the error and consider only the P value.
916 * Prefer a bigger P value based on HW requirements.
917 */
918 if (IS_CHERRYVIEW(dev)) {
919 *error_ppm = 0;
920
921 return calculated_clock->p > best_clock->p;
922 }
923
924 if (WARN_ON_ONCE(!target_freq))
925 return false;
926
927 *error_ppm = div_u64(1000000ULL *
928 abs(target_freq - calculated_clock->dot),
929 target_freq);
930 /*
931 * Prefer a better P value over a better (smaller) error if the error
932 * is small. Ensure this preference for future configurations too by
933 * setting the error to 0.
934 */
935 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936 *error_ppm = 0;
937
938 return true;
939 }
940
941 return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946 struct intel_crtc_state *crtc_state,
947 int target, int refclk, intel_clock_t *match_clock,
948 intel_clock_t *best_clock)
949 {
950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951 struct drm_device *dev = crtc->base.dev;
952 intel_clock_t clock;
953 unsigned int bestppm = 1000000;
954 /* min update 19.2 MHz */
955 int max_n = min(limit->n.max, refclk / 19200);
956 bool found = false;
957
958 target *= 5; /* fast clock */
959
960 memset(best_clock, 0, sizeof(*best_clock));
961
962 /* based on hardware requirement, prefer smaller n to precision */
963 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967 clock.p = clock.p1 * clock.p2;
968 /* based on hardware requirement, prefer bigger m1,m2 values */
969 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970 unsigned int ppm;
971
972 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973 refclk * clock.m1);
974
975 vlv_calc_dpll_params(refclk, &clock);
976
977 if (!intel_PLL_is_valid(dev, limit,
978 &clock))
979 continue;
980
981 if (!vlv_PLL_is_optimal(dev, target,
982 &clock,
983 best_clock,
984 bestppm, &ppm))
985 continue;
986
987 *best_clock = clock;
988 bestppm = ppm;
989 found = true;
990 }
991 }
992 }
993 }
994
995 return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000 struct intel_crtc_state *crtc_state,
1001 int target, int refclk, intel_clock_t *match_clock,
1002 intel_clock_t *best_clock)
1003 {
1004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005 struct drm_device *dev = crtc->base.dev;
1006 unsigned int best_error_ppm;
1007 intel_clock_t clock;
1008 uint64_t m2;
1009 int found = false;
1010
1011 memset(best_clock, 0, sizeof(*best_clock));
1012 best_error_ppm = 1000000;
1013
1014 /*
1015 * Based on hardware doc, the n always set to 1, and m1 always
1016 * set to 2. If requires to support 200Mhz refclk, we need to
1017 * revisit this because n may not 1 anymore.
1018 */
1019 clock.n = 1, clock.m1 = 2;
1020 target *= 5; /* fast clock */
1021
1022 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023 for (clock.p2 = limit->p2.p2_fast;
1024 clock.p2 >= limit->p2.p2_slow;
1025 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026 unsigned int error_ppm;
1027
1028 clock.p = clock.p1 * clock.p2;
1029
1030 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031 clock.n) << 22, refclk * clock.m1);
1032
1033 if (m2 > INT_MAX/clock.m1)
1034 continue;
1035
1036 clock.m2 = m2;
1037
1038 chv_calc_dpll_params(refclk, &clock);
1039
1040 if (!intel_PLL_is_valid(dev, limit, &clock))
1041 continue;
1042
1043 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044 best_error_ppm, &error_ppm))
1045 continue;
1046
1047 *best_clock = clock;
1048 best_error_ppm = error_ppm;
1049 found = true;
1050 }
1051 }
1052
1053 return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057 intel_clock_t *best_clock)
1058 {
1059 int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062 target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069 /* Be paranoid as we can arrive here with only partial
1070 * state retrieved from the hardware during setup.
1071 *
1072 * We can ditch the adjusted_mode.crtc_clock check as soon
1073 * as Haswell has gained clock readout/fastboot support.
1074 *
1075 * We can ditch the crtc->primary->fb check as soon as we can
1076 * properly reconstruct framebuffers.
1077 *
1078 * FIXME: The intel_crtc->active here should be switched to
1079 * crtc->state->active once we have proper CRTC states wired up
1080 * for atomic.
1081 */
1082 return intel_crtc->active && crtc->primary->state->fb &&
1083 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087 enum pipe pipe)
1088 {
1089 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092 return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 i915_reg_t reg = PIPEDSL(pipe);
1099 u32 line1, line2;
1100 u32 line_mask;
1101
1102 if (IS_GEN2(dev))
1103 line_mask = DSL_LINEMASK_GEN2;
1104 else
1105 line_mask = DSL_LINEMASK_GEN3;
1106
1107 line1 = I915_READ(reg) & line_mask;
1108 msleep(5);
1109 line2 = I915_READ(reg) & line_mask;
1110
1111 return line1 == line2;
1112 }
1113
1114 /*
1115 * intel_wait_for_pipe_off - wait for pipe to turn off
1116 * @crtc: crtc whose pipe to wait for
1117 *
1118 * After disabling a pipe, we can't wait for vblank in the usual way,
1119 * spinning on the vblank interrupt status bit, since we won't actually
1120 * see an interrupt when the pipe is disabled.
1121 *
1122 * On Gen4 and above:
1123 * wait for the pipe register state bit to turn off
1124 *
1125 * Otherwise:
1126 * wait for the display line value to settle (it usually
1127 * ends up stopping at the start of the next frame).
1128 *
1129 */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132 struct drm_device *dev = crtc->base.dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135 enum pipe pipe = crtc->pipe;
1136
1137 if (INTEL_INFO(dev)->gen >= 4) {
1138 i915_reg_t reg = PIPECONF(cpu_transcoder);
1139
1140 /* Wait for the Pipe State to go off */
1141 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142 100))
1143 WARN(1, "pipe_off wait timed out\n");
1144 } else {
1145 /* Wait for the display line to settle */
1146 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147 WARN(1, "pipe_off wait timed out\n");
1148 }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153 return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158 enum pipe pipe, bool state)
1159 {
1160 u32 val;
1161 bool cur_state;
1162
1163 val = I915_READ(DPLL(pipe));
1164 cur_state = !!(val & DPLL_VCO_ENABLE);
1165 I915_STATE_WARN(cur_state != state,
1166 "PLL state assertion failure (expected %s, current %s)\n",
1167 state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173 u32 val;
1174 bool cur_state;
1175
1176 mutex_lock(&dev_priv->sb_lock);
1177 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178 mutex_unlock(&dev_priv->sb_lock);
1179
1180 cur_state = val & DSI_PLL_VCO_EN;
1181 I915_STATE_WARN(cur_state != state,
1182 "DSI PLL state assertion failure (expected %s, current %s)\n",
1183 state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193 if (crtc->config->shared_dpll < 0)
1194 return NULL;
1195
1196 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201 struct intel_shared_dpll *pll,
1202 bool state)
1203 {
1204 bool cur_state;
1205 struct intel_dpll_hw_state hw_state;
1206
1207 if (WARN (!pll,
1208 "asserting DPLL %s with no DPLL\n", state_string(state)))
1209 return;
1210
1211 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212 I915_STATE_WARN(cur_state != state,
1213 "%s assertion failure (expected %s, current %s)\n",
1214 pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 bool cur_state;
1221 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222 pipe);
1223
1224 if (HAS_DDI(dev_priv->dev)) {
1225 /* DDI does not have a specific FDI_TX register */
1226 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228 } else {
1229 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230 cur_state = !!(val & FDI_TX_ENABLE);
1231 }
1232 I915_STATE_WARN(cur_state != state,
1233 "FDI TX state assertion failure (expected %s, current %s)\n",
1234 state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 u32 val;
1243 bool cur_state;
1244
1245 val = I915_READ(FDI_RX_CTL(pipe));
1246 cur_state = !!(val & FDI_RX_ENABLE);
1247 I915_STATE_WARN(cur_state != state,
1248 "FDI RX state assertion failure (expected %s, current %s)\n",
1249 state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 u32 val;
1258
1259 /* ILK FDI PLL is always enabled */
1260 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261 return;
1262
1263 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264 if (HAS_DDI(dev_priv->dev))
1265 return;
1266
1267 val = I915_READ(FDI_TX_CTL(pipe));
1268 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, bool state)
1273 {
1274 u32 val;
1275 bool cur_state;
1276
1277 val = I915_READ(FDI_RX_CTL(pipe));
1278 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279 I915_STATE_WARN(cur_state != state,
1280 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281 state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286 {
1287 struct drm_device *dev = dev_priv->dev;
1288 i915_reg_t pp_reg;
1289 u32 val;
1290 enum pipe panel_pipe = PIPE_A;
1291 bool locked = true;
1292
1293 if (WARN_ON(HAS_DDI(dev)))
1294 return;
1295
1296 if (HAS_PCH_SPLIT(dev)) {
1297 u32 port_sel;
1298
1299 pp_reg = PCH_PP_CONTROL;
1300 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304 panel_pipe = PIPE_B;
1305 /* XXX: else fix for eDP */
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 /* presumably write lock depends on pipe, not port select */
1308 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309 panel_pipe = pipe;
1310 } else {
1311 pp_reg = PP_CONTROL;
1312 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313 panel_pipe = PIPE_B;
1314 }
1315
1316 val = I915_READ(pp_reg);
1317 if (!(val & PANEL_POWER_ON) ||
1318 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319 locked = false;
1320
1321 I915_STATE_WARN(panel_pipe == pipe && locked,
1322 "panel assertion failure, pipe %c regs locked\n",
1323 pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328 {
1329 struct drm_device *dev = dev_priv->dev;
1330 bool cur_state;
1331
1332 if (IS_845G(dev) || IS_I865G(dev))
1333 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334 else
1335 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345 enum pipe pipe, bool state)
1346 {
1347 bool cur_state;
1348 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349 pipe);
1350
1351 /* if we need the pipe quirk it must be always on */
1352 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354 state = true;
1355
1356 if (!intel_display_power_is_enabled(dev_priv,
1357 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358 cur_state = false;
1359 } else {
1360 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361 cur_state = !!(val & PIPECONF_ENABLE);
1362 }
1363
1364 I915_STATE_WARN(cur_state != state,
1365 "pipe %c assertion failure (expected %s, current %s)\n",
1366 pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370 enum plane plane, bool state)
1371 {
1372 u32 val;
1373 bool cur_state;
1374
1375 val = I915_READ(DSPCNTR(plane));
1376 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377 I915_STATE_WARN(cur_state != state,
1378 "plane %c assertion failure (expected %s, current %s)\n",
1379 plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe)
1387 {
1388 struct drm_device *dev = dev_priv->dev;
1389 int i;
1390
1391 /* Primary planes are fixed to pipes on gen4+ */
1392 if (INTEL_INFO(dev)->gen >= 4) {
1393 u32 val = I915_READ(DSPCNTR(pipe));
1394 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395 "plane %c assertion failure, should be disabled but not\n",
1396 plane_name(pipe));
1397 return;
1398 }
1399
1400 /* Need to check both planes against the pipe */
1401 for_each_pipe(dev_priv, i) {
1402 u32 val = I915_READ(DSPCNTR(i));
1403 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404 DISPPLANE_SEL_PIPE_SHIFT;
1405 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407 plane_name(i), pipe_name(pipe));
1408 }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413 {
1414 struct drm_device *dev = dev_priv->dev;
1415 int sprite;
1416
1417 if (INTEL_INFO(dev)->gen >= 9) {
1418 for_each_sprite(dev_priv, pipe, sprite) {
1419 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422 sprite, pipe_name(pipe));
1423 }
1424 } else if (IS_VALLEYVIEW(dev)) {
1425 for_each_sprite(dev_priv, pipe, sprite) {
1426 u32 val = I915_READ(SPCNTR(pipe, sprite));
1427 I915_STATE_WARN(val & SP_ENABLE,
1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429 sprite_name(pipe, sprite), pipe_name(pipe));
1430 }
1431 } else if (INTEL_INFO(dev)->gen >= 7) {
1432 u32 val = I915_READ(SPRCTL(pipe));
1433 I915_STATE_WARN(val & SPRITE_ENABLE,
1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435 plane_name(pipe), pipe_name(pipe));
1436 } else if (INTEL_INFO(dev)->gen >= 5) {
1437 u32 val = I915_READ(DVSCNTR(pipe));
1438 I915_STATE_WARN(val & DVS_ENABLE,
1439 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440 plane_name(pipe), pipe_name(pipe));
1441 }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452 u32 val;
1453 bool enabled;
1454
1455 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457 val = I915_READ(PCH_DREF_CONTROL);
1458 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459 DREF_SUPERSPREAD_SOURCE_MASK));
1460 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465 {
1466 u32 val;
1467 bool enabled;
1468
1469 val = I915_READ(PCH_TRANSCONF(pipe));
1470 enabled = !!(val & TRANS_ENABLE);
1471 I915_STATE_WARN(enabled,
1472 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473 pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479 if ((val & DP_PORT_EN) == 0)
1480 return false;
1481
1482 if (HAS_PCH_CPT(dev_priv->dev)) {
1483 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1484 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1485 return false;
1486 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1488 return false;
1489 } else {
1490 if ((val & DP_PIPE_MASK) != (pipe << 30))
1491 return false;
1492 }
1493 return true;
1494 }
1495
1496 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1497 enum pipe pipe, u32 val)
1498 {
1499 if ((val & SDVO_ENABLE) == 0)
1500 return false;
1501
1502 if (HAS_PCH_CPT(dev_priv->dev)) {
1503 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1504 return false;
1505 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1506 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1507 return false;
1508 } else {
1509 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1510 return false;
1511 }
1512 return true;
1513 }
1514
1515 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1516 enum pipe pipe, u32 val)
1517 {
1518 if ((val & LVDS_PORT_EN) == 0)
1519 return false;
1520
1521 if (HAS_PCH_CPT(dev_priv->dev)) {
1522 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1523 return false;
1524 } else {
1525 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1526 return false;
1527 }
1528 return true;
1529 }
1530
1531 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1532 enum pipe pipe, u32 val)
1533 {
1534 if ((val & ADPA_DAC_ENABLE) == 0)
1535 return false;
1536 if (HAS_PCH_CPT(dev_priv->dev)) {
1537 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1538 return false;
1539 } else {
1540 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1541 return false;
1542 }
1543 return true;
1544 }
1545
1546 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1547 enum pipe pipe, i915_reg_t reg,
1548 u32 port_sel)
1549 {
1550 u32 val = I915_READ(reg);
1551 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553 i915_mmio_reg_offset(reg), pipe_name(pipe));
1554
1555 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556 && (val & DP_PIPEB_SELECT),
1557 "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561 enum pipe pipe, i915_reg_t reg)
1562 {
1563 u32 val = I915_READ(reg);
1564 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566 i915_mmio_reg_offset(reg), pipe_name(pipe));
1567
1568 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569 && (val & SDVO_PIPE_B_SELECT),
1570 "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574 enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582 val = I915_READ(PCH_ADPA);
1583 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584 "PCH VGA enabled on transcoder %c, should be disabled\n",
1585 pipe_name(pipe));
1586
1587 val = I915_READ(PCH_LVDS);
1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590 pipe_name(pipe));
1591
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598 const struct intel_crtc_state *pipe_config)
1599 {
1600 struct drm_device *dev = crtc->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 i915_reg_t reg = DPLL(crtc->pipe);
1603 u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605 assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607 /* No really, not for ILK+ */
1608 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610 /* PLL is protected by panel, make sure we can write it */
1611 if (IS_MOBILE(dev_priv->dev))
1612 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150);
1617
1618 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622 POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624 /* We do this three times for luck */
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150); /* wait for warmup */
1628 I915_WRITE(reg, dpll);
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
1631 I915_WRITE(reg, dpll);
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637 const struct intel_crtc_state *pipe_config)
1638 {
1639 struct drm_device *dev = crtc->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 int pipe = crtc->pipe;
1642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643 u32 tmp;
1644
1645 assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649 mutex_lock(&dev_priv->sb_lock);
1650
1651 /* Enable back the 10bit clock to display controller */
1652 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653 tmp |= DPIO_DCLKP_EN;
1654 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656 mutex_unlock(&dev_priv->sb_lock);
1657
1658 /*
1659 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660 */
1661 udelay(1);
1662
1663 /* Enable PLL */
1664 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666 /* Check PLL is locked */
1667 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670 /* not sure when this should be written */
1671 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672 POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677 struct intel_crtc *crtc;
1678 int count = 0;
1679
1680 for_each_intel_crtc(dev, crtc)
1681 count += crtc->base.state->active &&
1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684 return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689 struct drm_device *dev = crtc->base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 i915_reg_t reg = DPLL(crtc->pipe);
1692 u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694 assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696 /* No really, not for ILK+ */
1697 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699 /* PLL is protected by panel, make sure we can write it */
1700 if (IS_MOBILE(dev) && !IS_I830(dev))
1701 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703 /* Enable DVO 2x clock on both PLLs if necessary */
1704 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705 /*
1706 * It appears to be important that we don't enable this
1707 * for the current pipe before otherwise configuring the
1708 * PLL. No idea how this should be handled if multiple
1709 * DVO outputs are enabled simultaneosly.
1710 */
1711 dpll |= DPLL_DVO_2X_MODE;
1712 I915_WRITE(DPLL(!crtc->pipe),
1713 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714 }
1715
1716 /* Wait for the clocks to stabilize. */
1717 POSTING_READ(reg);
1718 udelay(150);
1719
1720 if (INTEL_INFO(dev)->gen >= 4) {
1721 I915_WRITE(DPLL_MD(crtc->pipe),
1722 crtc->config->dpll_hw_state.dpll_md);
1723 } else {
1724 /* The pixel multiplier can only be updated once the
1725 * DPLL is enabled and the clocks are stable.
1726 *
1727 * So write it again.
1728 */
1729 I915_WRITE(reg, dpll);
1730 }
1731
1732 /* We do this three times for luck */
1733 I915_WRITE(reg, dpll);
1734 POSTING_READ(reg);
1735 udelay(150); /* wait for warmup */
1736 I915_WRITE(reg, dpll);
1737 POSTING_READ(reg);
1738 udelay(150); /* wait for warmup */
1739 I915_WRITE(reg, dpll);
1740 POSTING_READ(reg);
1741 udelay(150); /* wait for warmup */
1742 }
1743
1744 /**
1745 * i9xx_disable_pll - disable a PLL
1746 * @dev_priv: i915 private structure
1747 * @pipe: pipe PLL to disable
1748 *
1749 * Disable the PLL for @pipe, making sure the pipe is off first.
1750 *
1751 * Note! This is for pre-ILK only.
1752 */
1753 static void i9xx_disable_pll(struct intel_crtc *crtc)
1754 {
1755 struct drm_device *dev = crtc->base.dev;
1756 struct drm_i915_private *dev_priv = dev->dev_private;
1757 enum pipe pipe = crtc->pipe;
1758
1759 /* Disable DVO 2x clock on both PLLs if necessary */
1760 if (IS_I830(dev) &&
1761 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1762 !intel_num_dvo_pipes(dev)) {
1763 I915_WRITE(DPLL(PIPE_B),
1764 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765 I915_WRITE(DPLL(PIPE_A),
1766 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767 }
1768
1769 /* Don't disable pipe or pipe PLLs if needed */
1770 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1772 return;
1773
1774 /* Make sure the pipe isn't still relying on us */
1775 assert_pipe_disabled(dev_priv, pipe);
1776
1777 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1778 POSTING_READ(DPLL(pipe));
1779 }
1780
1781 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782 {
1783 u32 val;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
1788 /*
1789 * Leave integrated clock source and reference clock enabled for pipe B.
1790 * The latter is needed for VGA hotplug / manual detection.
1791 */
1792 val = DPLL_VGA_MODE_DIS;
1793 if (pipe == PIPE_B)
1794 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1795 I915_WRITE(DPLL(pipe), val);
1796 POSTING_READ(DPLL(pipe));
1797
1798 }
1799
1800 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1801 {
1802 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1803 u32 val;
1804
1805 /* Make sure the pipe isn't still relying on us */
1806 assert_pipe_disabled(dev_priv, pipe);
1807
1808 /* Set PLL en = 0 */
1809 val = DPLL_SSC_REF_CLK_CHV |
1810 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1811 if (pipe != PIPE_A)
1812 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1813 I915_WRITE(DPLL(pipe), val);
1814 POSTING_READ(DPLL(pipe));
1815
1816 mutex_lock(&dev_priv->sb_lock);
1817
1818 /* Disable 10bit clock to display controller */
1819 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1820 val &= ~DPIO_DCLKP_EN;
1821 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1822
1823 mutex_unlock(&dev_priv->sb_lock);
1824 }
1825
1826 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1827 struct intel_digital_port *dport,
1828 unsigned int expected_mask)
1829 {
1830 u32 port_mask;
1831 i915_reg_t dpll_reg;
1832
1833 switch (dport->port) {
1834 case PORT_B:
1835 port_mask = DPLL_PORTB_READY_MASK;
1836 dpll_reg = DPLL(0);
1837 break;
1838 case PORT_C:
1839 port_mask = DPLL_PORTC_READY_MASK;
1840 dpll_reg = DPLL(0);
1841 expected_mask <<= 4;
1842 break;
1843 case PORT_D:
1844 port_mask = DPLL_PORTD_READY_MASK;
1845 dpll_reg = DPIO_PHY_STATUS;
1846 break;
1847 default:
1848 BUG();
1849 }
1850
1851 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1852 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1853 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1854 }
1855
1856 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1857 {
1858 struct drm_device *dev = crtc->base.dev;
1859 struct drm_i915_private *dev_priv = dev->dev_private;
1860 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1861
1862 if (WARN_ON(pll == NULL))
1863 return;
1864
1865 WARN_ON(!pll->config.crtc_mask);
1866 if (pll->active == 0) {
1867 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1868 WARN_ON(pll->on);
1869 assert_shared_dpll_disabled(dev_priv, pll);
1870
1871 pll->mode_set(dev_priv, pll);
1872 }
1873 }
1874
1875 /**
1876 * intel_enable_shared_dpll - enable PCH PLL
1877 * @dev_priv: i915 private structure
1878 * @pipe: pipe PLL to enable
1879 *
1880 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1881 * drives the transcoder clock.
1882 */
1883 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1884 {
1885 struct drm_device *dev = crtc->base.dev;
1886 struct drm_i915_private *dev_priv = dev->dev_private;
1887 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1888
1889 if (WARN_ON(pll == NULL))
1890 return;
1891
1892 if (WARN_ON(pll->config.crtc_mask == 0))
1893 return;
1894
1895 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1896 pll->name, pll->active, pll->on,
1897 crtc->base.base.id);
1898
1899 if (pll->active++) {
1900 WARN_ON(!pll->on);
1901 assert_shared_dpll_enabled(dev_priv, pll);
1902 return;
1903 }
1904 WARN_ON(pll->on);
1905
1906 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1907
1908 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1909 pll->enable(dev_priv, pll);
1910 pll->on = true;
1911 }
1912
1913 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1914 {
1915 struct drm_device *dev = crtc->base.dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1918
1919 /* PCH only available on ILK+ */
1920 if (INTEL_INFO(dev)->gen < 5)
1921 return;
1922
1923 if (pll == NULL)
1924 return;
1925
1926 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1927 return;
1928
1929 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1930 pll->name, pll->active, pll->on,
1931 crtc->base.base.id);
1932
1933 if (WARN_ON(pll->active == 0)) {
1934 assert_shared_dpll_disabled(dev_priv, pll);
1935 return;
1936 }
1937
1938 assert_shared_dpll_enabled(dev_priv, pll);
1939 WARN_ON(!pll->on);
1940 if (--pll->active)
1941 return;
1942
1943 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1944 pll->disable(dev_priv, pll);
1945 pll->on = false;
1946
1947 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1948 }
1949
1950 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1951 enum pipe pipe)
1952 {
1953 struct drm_device *dev = dev_priv->dev;
1954 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1956 i915_reg_t reg;
1957 uint32_t val, pipeconf_val;
1958
1959 /* PCH only available on ILK+ */
1960 BUG_ON(!HAS_PCH_SPLIT(dev));
1961
1962 /* Make sure PCH DPLL is enabled */
1963 assert_shared_dpll_enabled(dev_priv,
1964 intel_crtc_to_shared_dpll(intel_crtc));
1965
1966 /* FDI must be feeding us bits for PCH ports */
1967 assert_fdi_tx_enabled(dev_priv, pipe);
1968 assert_fdi_rx_enabled(dev_priv, pipe);
1969
1970 if (HAS_PCH_CPT(dev)) {
1971 /* Workaround: Set the timing override bit before enabling the
1972 * pch transcoder. */
1973 reg = TRANS_CHICKEN2(pipe);
1974 val = I915_READ(reg);
1975 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1976 I915_WRITE(reg, val);
1977 }
1978
1979 reg = PCH_TRANSCONF(pipe);
1980 val = I915_READ(reg);
1981 pipeconf_val = I915_READ(PIPECONF(pipe));
1982
1983 if (HAS_PCH_IBX(dev_priv->dev)) {
1984 /*
1985 * Make the BPC in transcoder be consistent with
1986 * that in pipeconf reg. For HDMI we must use 8bpc
1987 * here for both 8bpc and 12bpc.
1988 */
1989 val &= ~PIPECONF_BPC_MASK;
1990 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1991 val |= PIPECONF_8BPC;
1992 else
1993 val |= pipeconf_val & PIPECONF_BPC_MASK;
1994 }
1995
1996 val &= ~TRANS_INTERLACE_MASK;
1997 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1998 if (HAS_PCH_IBX(dev_priv->dev) &&
1999 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2000 val |= TRANS_LEGACY_INTERLACED_ILK;
2001 else
2002 val |= TRANS_INTERLACED;
2003 else
2004 val |= TRANS_PROGRESSIVE;
2005
2006 I915_WRITE(reg, val | TRANS_ENABLE);
2007 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2008 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2009 }
2010
2011 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2012 enum transcoder cpu_transcoder)
2013 {
2014 u32 val, pipeconf_val;
2015
2016 /* PCH only available on ILK+ */
2017 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2018
2019 /* FDI must be feeding us bits for PCH ports */
2020 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2021 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2022
2023 /* Workaround: set timing override bit. */
2024 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2025 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2026 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2027
2028 val = TRANS_ENABLE;
2029 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2030
2031 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2032 PIPECONF_INTERLACED_ILK)
2033 val |= TRANS_INTERLACED;
2034 else
2035 val |= TRANS_PROGRESSIVE;
2036
2037 I915_WRITE(LPT_TRANSCONF, val);
2038 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2039 DRM_ERROR("Failed to enable PCH transcoder\n");
2040 }
2041
2042 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2043 enum pipe pipe)
2044 {
2045 struct drm_device *dev = dev_priv->dev;
2046 i915_reg_t reg;
2047 uint32_t val;
2048
2049 /* FDI relies on the transcoder */
2050 assert_fdi_tx_disabled(dev_priv, pipe);
2051 assert_fdi_rx_disabled(dev_priv, pipe);
2052
2053 /* Ports must be off as well */
2054 assert_pch_ports_disabled(dev_priv, pipe);
2055
2056 reg = PCH_TRANSCONF(pipe);
2057 val = I915_READ(reg);
2058 val &= ~TRANS_ENABLE;
2059 I915_WRITE(reg, val);
2060 /* wait for PCH transcoder off, transcoder state */
2061 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2062 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2063
2064 if (HAS_PCH_CPT(dev)) {
2065 /* Workaround: Clear the timing override chicken bit again. */
2066 reg = TRANS_CHICKEN2(pipe);
2067 val = I915_READ(reg);
2068 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2069 I915_WRITE(reg, val);
2070 }
2071 }
2072
2073 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2074 {
2075 u32 val;
2076
2077 val = I915_READ(LPT_TRANSCONF);
2078 val &= ~TRANS_ENABLE;
2079 I915_WRITE(LPT_TRANSCONF, val);
2080 /* wait for PCH transcoder off, transcoder state */
2081 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2082 DRM_ERROR("Failed to disable PCH transcoder\n");
2083
2084 /* Workaround: clear timing override bit. */
2085 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2086 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2087 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2088 }
2089
2090 /**
2091 * intel_enable_pipe - enable a pipe, asserting requirements
2092 * @crtc: crtc responsible for the pipe
2093 *
2094 * Enable @crtc's pipe, making sure that various hardware specific requirements
2095 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2096 */
2097 static void intel_enable_pipe(struct intel_crtc *crtc)
2098 {
2099 struct drm_device *dev = crtc->base.dev;
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 enum pipe pipe = crtc->pipe;
2102 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2103 enum pipe pch_transcoder;
2104 i915_reg_t reg;
2105 u32 val;
2106
2107 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2108
2109 assert_planes_disabled(dev_priv, pipe);
2110 assert_cursor_disabled(dev_priv, pipe);
2111 assert_sprites_disabled(dev_priv, pipe);
2112
2113 if (HAS_PCH_LPT(dev_priv->dev))
2114 pch_transcoder = TRANSCODER_A;
2115 else
2116 pch_transcoder = pipe;
2117
2118 /*
2119 * A pipe without a PLL won't actually be able to drive bits from
2120 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2121 * need the check.
2122 */
2123 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2124 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2125 assert_dsi_pll_enabled(dev_priv);
2126 else
2127 assert_pll_enabled(dev_priv, pipe);
2128 else {
2129 if (crtc->config->has_pch_encoder) {
2130 /* if driving the PCH, we need FDI enabled */
2131 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2132 assert_fdi_tx_pll_enabled(dev_priv,
2133 (enum pipe) cpu_transcoder);
2134 }
2135 /* FIXME: assert CPU port conditions for SNB+ */
2136 }
2137
2138 reg = PIPECONF(cpu_transcoder);
2139 val = I915_READ(reg);
2140 if (val & PIPECONF_ENABLE) {
2141 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2142 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2143 return;
2144 }
2145
2146 I915_WRITE(reg, val | PIPECONF_ENABLE);
2147 POSTING_READ(reg);
2148 }
2149
2150 /**
2151 * intel_disable_pipe - disable a pipe, asserting requirements
2152 * @crtc: crtc whose pipes is to be disabled
2153 *
2154 * Disable the pipe of @crtc, making sure that various hardware
2155 * specific requirements are met, if applicable, e.g. plane
2156 * disabled, panel fitter off, etc.
2157 *
2158 * Will wait until the pipe has shut down before returning.
2159 */
2160 static void intel_disable_pipe(struct intel_crtc *crtc)
2161 {
2162 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2163 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2164 enum pipe pipe = crtc->pipe;
2165 i915_reg_t reg;
2166 u32 val;
2167
2168 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2169
2170 /*
2171 * Make sure planes won't keep trying to pump pixels to us,
2172 * or we might hang the display.
2173 */
2174 assert_planes_disabled(dev_priv, pipe);
2175 assert_cursor_disabled(dev_priv, pipe);
2176 assert_sprites_disabled(dev_priv, pipe);
2177
2178 reg = PIPECONF(cpu_transcoder);
2179 val = I915_READ(reg);
2180 if ((val & PIPECONF_ENABLE) == 0)
2181 return;
2182
2183 /*
2184 * Double wide has implications for planes
2185 * so best keep it disabled when not needed.
2186 */
2187 if (crtc->config->double_wide)
2188 val &= ~PIPECONF_DOUBLE_WIDE;
2189
2190 /* Don't disable pipe or pipe PLLs if needed */
2191 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2192 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2193 val &= ~PIPECONF_ENABLE;
2194
2195 I915_WRITE(reg, val);
2196 if ((val & PIPECONF_ENABLE) == 0)
2197 intel_wait_for_pipe_off(crtc);
2198 }
2199
2200 static bool need_vtd_wa(struct drm_device *dev)
2201 {
2202 #ifdef CONFIG_INTEL_IOMMU
2203 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2204 return true;
2205 #endif
2206 return false;
2207 }
2208
2209 unsigned int
2210 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2211 uint64_t fb_format_modifier, unsigned int plane)
2212 {
2213 unsigned int tile_height;
2214 uint32_t pixel_bytes;
2215
2216 switch (fb_format_modifier) {
2217 case DRM_FORMAT_MOD_NONE:
2218 tile_height = 1;
2219 break;
2220 case I915_FORMAT_MOD_X_TILED:
2221 tile_height = IS_GEN2(dev) ? 16 : 8;
2222 break;
2223 case I915_FORMAT_MOD_Y_TILED:
2224 tile_height = 32;
2225 break;
2226 case I915_FORMAT_MOD_Yf_TILED:
2227 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2228 switch (pixel_bytes) {
2229 default:
2230 case 1:
2231 tile_height = 64;
2232 break;
2233 case 2:
2234 case 4:
2235 tile_height = 32;
2236 break;
2237 case 8:
2238 tile_height = 16;
2239 break;
2240 case 16:
2241 WARN_ONCE(1,
2242 "128-bit pixels are not supported for display!");
2243 tile_height = 16;
2244 break;
2245 }
2246 break;
2247 default:
2248 MISSING_CASE(fb_format_modifier);
2249 tile_height = 1;
2250 break;
2251 }
2252
2253 return tile_height;
2254 }
2255
2256 unsigned int
2257 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2258 uint32_t pixel_format, uint64_t fb_format_modifier)
2259 {
2260 return ALIGN(height, intel_tile_height(dev, pixel_format,
2261 fb_format_modifier, 0));
2262 }
2263
2264 static void
2265 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2266 const struct drm_plane_state *plane_state)
2267 {
2268 struct intel_rotation_info *info = &view->params.rotation_info;
2269 unsigned int tile_height, tile_pitch;
2270
2271 *view = i915_ggtt_view_normal;
2272
2273 if (!plane_state)
2274 return;
2275
2276 if (!intel_rotation_90_or_270(plane_state->rotation))
2277 return;
2278
2279 *view = i915_ggtt_view_rotated;
2280
2281 info->height = fb->height;
2282 info->pixel_format = fb->pixel_format;
2283 info->pitch = fb->pitches[0];
2284 info->uv_offset = fb->offsets[1];
2285 info->fb_modifier = fb->modifier[0];
2286
2287 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2288 fb->modifier[0], 0);
2289 tile_pitch = PAGE_SIZE / tile_height;
2290 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2291 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2292 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2293
2294 if (info->pixel_format == DRM_FORMAT_NV12) {
2295 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2296 fb->modifier[0], 1);
2297 tile_pitch = PAGE_SIZE / tile_height;
2298 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2300 tile_height);
2301 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2302 PAGE_SIZE;
2303 }
2304 }
2305
2306 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2307 {
2308 if (INTEL_INFO(dev_priv)->gen >= 9)
2309 return 256 * 1024;
2310 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2311 IS_VALLEYVIEW(dev_priv))
2312 return 128 * 1024;
2313 else if (INTEL_INFO(dev_priv)->gen >= 4)
2314 return 4 * 1024;
2315 else
2316 return 0;
2317 }
2318
2319 int
2320 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2321 struct drm_framebuffer *fb,
2322 const struct drm_plane_state *plane_state)
2323 {
2324 struct drm_device *dev = fb->dev;
2325 struct drm_i915_private *dev_priv = dev->dev_private;
2326 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2327 struct i915_ggtt_view view;
2328 u32 alignment;
2329 int ret;
2330
2331 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2332
2333 switch (fb->modifier[0]) {
2334 case DRM_FORMAT_MOD_NONE:
2335 alignment = intel_linear_alignment(dev_priv);
2336 break;
2337 case I915_FORMAT_MOD_X_TILED:
2338 if (INTEL_INFO(dev)->gen >= 9)
2339 alignment = 256 * 1024;
2340 else {
2341 /* pin() will align the object as required by fence */
2342 alignment = 0;
2343 }
2344 break;
2345 case I915_FORMAT_MOD_Y_TILED:
2346 case I915_FORMAT_MOD_Yf_TILED:
2347 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2348 "Y tiling bo slipped through, driver bug!\n"))
2349 return -EINVAL;
2350 alignment = 1 * 1024 * 1024;
2351 break;
2352 default:
2353 MISSING_CASE(fb->modifier[0]);
2354 return -EINVAL;
2355 }
2356
2357 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2358
2359 /* Note that the w/a also requires 64 PTE of padding following the
2360 * bo. We currently fill all unused PTE with the shadow page and so
2361 * we should always have valid PTE following the scanout preventing
2362 * the VT-d warning.
2363 */
2364 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2365 alignment = 256 * 1024;
2366
2367 /*
2368 * Global gtt pte registers are special registers which actually forward
2369 * writes to a chunk of system memory. Which means that there is no risk
2370 * that the register values disappear as soon as we call
2371 * intel_runtime_pm_put(), so it is correct to wrap only the
2372 * pin/unpin/fence and not more.
2373 */
2374 intel_runtime_pm_get(dev_priv);
2375
2376 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2377 &view);
2378 if (ret)
2379 goto err_pm;
2380
2381 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2382 * fence, whereas 965+ only requires a fence if using
2383 * framebuffer compression. For simplicity, we always install
2384 * a fence as the cost is not that onerous.
2385 */
2386 ret = i915_gem_object_get_fence(obj);
2387 if (ret == -EDEADLK) {
2388 /*
2389 * -EDEADLK means there are no free fences
2390 * no pending flips.
2391 *
2392 * This is propagated to atomic, but it uses
2393 * -EDEADLK to force a locking recovery, so
2394 * change the returned error to -EBUSY.
2395 */
2396 ret = -EBUSY;
2397 goto err_unpin;
2398 } else if (ret)
2399 goto err_unpin;
2400
2401 i915_gem_object_pin_fence(obj);
2402
2403 intel_runtime_pm_put(dev_priv);
2404 return 0;
2405
2406 err_unpin:
2407 i915_gem_object_unpin_from_display_plane(obj, &view);
2408 err_pm:
2409 intel_runtime_pm_put(dev_priv);
2410 return ret;
2411 }
2412
2413 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2414 const struct drm_plane_state *plane_state)
2415 {
2416 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2417 struct i915_ggtt_view view;
2418
2419 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2420
2421 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2422
2423 i915_gem_object_unpin_fence(obj);
2424 i915_gem_object_unpin_from_display_plane(obj, &view);
2425 }
2426
2427 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2428 * is assumed to be a power-of-two. */
2429 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2430 int *x, int *y,
2431 unsigned int tiling_mode,
2432 unsigned int cpp,
2433 unsigned int pitch)
2434 {
2435 if (tiling_mode != I915_TILING_NONE) {
2436 unsigned int tile_rows, tiles;
2437
2438 tile_rows = *y / 8;
2439 *y %= 8;
2440
2441 tiles = *x / (512/cpp);
2442 *x %= 512/cpp;
2443
2444 return tile_rows * pitch * 8 + tiles * 4096;
2445 } else {
2446 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2447 unsigned int offset;
2448
2449 offset = *y * pitch + *x * cpp;
2450 *y = (offset & alignment) / pitch;
2451 *x = ((offset & alignment) - *y * pitch) / cpp;
2452 return offset & ~alignment;
2453 }
2454 }
2455
2456 static int i9xx_format_to_fourcc(int format)
2457 {
2458 switch (format) {
2459 case DISPPLANE_8BPP:
2460 return DRM_FORMAT_C8;
2461 case DISPPLANE_BGRX555:
2462 return DRM_FORMAT_XRGB1555;
2463 case DISPPLANE_BGRX565:
2464 return DRM_FORMAT_RGB565;
2465 default:
2466 case DISPPLANE_BGRX888:
2467 return DRM_FORMAT_XRGB8888;
2468 case DISPPLANE_RGBX888:
2469 return DRM_FORMAT_XBGR8888;
2470 case DISPPLANE_BGRX101010:
2471 return DRM_FORMAT_XRGB2101010;
2472 case DISPPLANE_RGBX101010:
2473 return DRM_FORMAT_XBGR2101010;
2474 }
2475 }
2476
2477 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2478 {
2479 switch (format) {
2480 case PLANE_CTL_FORMAT_RGB_565:
2481 return DRM_FORMAT_RGB565;
2482 default:
2483 case PLANE_CTL_FORMAT_XRGB_8888:
2484 if (rgb_order) {
2485 if (alpha)
2486 return DRM_FORMAT_ABGR8888;
2487 else
2488 return DRM_FORMAT_XBGR8888;
2489 } else {
2490 if (alpha)
2491 return DRM_FORMAT_ARGB8888;
2492 else
2493 return DRM_FORMAT_XRGB8888;
2494 }
2495 case PLANE_CTL_FORMAT_XRGB_2101010:
2496 if (rgb_order)
2497 return DRM_FORMAT_XBGR2101010;
2498 else
2499 return DRM_FORMAT_XRGB2101010;
2500 }
2501 }
2502
2503 static bool
2504 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2505 struct intel_initial_plane_config *plane_config)
2506 {
2507 struct drm_device *dev = crtc->base.dev;
2508 struct drm_i915_private *dev_priv = to_i915(dev);
2509 struct drm_i915_gem_object *obj = NULL;
2510 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2511 struct drm_framebuffer *fb = &plane_config->fb->base;
2512 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2513 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2514 PAGE_SIZE);
2515
2516 size_aligned -= base_aligned;
2517
2518 if (plane_config->size == 0)
2519 return false;
2520
2521 /* If the FB is too big, just don't use it since fbdev is not very
2522 * important and we should probably use that space with FBC or other
2523 * features. */
2524 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2525 return false;
2526
2527 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528 base_aligned,
2529 base_aligned,
2530 size_aligned);
2531 if (!obj)
2532 return false;
2533
2534 obj->tiling_mode = plane_config->tiling;
2535 if (obj->tiling_mode == I915_TILING_X)
2536 obj->stride = fb->pitches[0];
2537
2538 mode_cmd.pixel_format = fb->pixel_format;
2539 mode_cmd.width = fb->width;
2540 mode_cmd.height = fb->height;
2541 mode_cmd.pitches[0] = fb->pitches[0];
2542 mode_cmd.modifier[0] = fb->modifier[0];
2543 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545 mutex_lock(&dev->struct_mutex);
2546 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2547 &mode_cmd, obj)) {
2548 DRM_DEBUG_KMS("intel fb init failed\n");
2549 goto out_unref_obj;
2550 }
2551 mutex_unlock(&dev->struct_mutex);
2552
2553 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2554 return true;
2555
2556 out_unref_obj:
2557 drm_gem_object_unreference(&obj->base);
2558 mutex_unlock(&dev->struct_mutex);
2559 return false;
2560 }
2561
2562 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2563 static void
2564 update_state_fb(struct drm_plane *plane)
2565 {
2566 if (plane->fb == plane->state->fb)
2567 return;
2568
2569 if (plane->state->fb)
2570 drm_framebuffer_unreference(plane->state->fb);
2571 plane->state->fb = plane->fb;
2572 if (plane->state->fb)
2573 drm_framebuffer_reference(plane->state->fb);
2574 }
2575
2576 static void
2577 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578 struct intel_initial_plane_config *plane_config)
2579 {
2580 struct drm_device *dev = intel_crtc->base.dev;
2581 struct drm_i915_private *dev_priv = dev->dev_private;
2582 struct drm_crtc *c;
2583 struct intel_crtc *i;
2584 struct drm_i915_gem_object *obj;
2585 struct drm_plane *primary = intel_crtc->base.primary;
2586 struct drm_plane_state *plane_state = primary->state;
2587 struct drm_framebuffer *fb;
2588
2589 if (!plane_config->fb)
2590 return;
2591
2592 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2593 fb = &plane_config->fb->base;
2594 goto valid_fb;
2595 }
2596
2597 kfree(plane_config->fb);
2598
2599 /*
2600 * Failed to alloc the obj, check to see if we should share
2601 * an fb with another CRTC instead
2602 */
2603 for_each_crtc(dev, c) {
2604 i = to_intel_crtc(c);
2605
2606 if (c == &intel_crtc->base)
2607 continue;
2608
2609 if (!i->active)
2610 continue;
2611
2612 fb = c->primary->fb;
2613 if (!fb)
2614 continue;
2615
2616 obj = intel_fb_obj(fb);
2617 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2618 drm_framebuffer_reference(fb);
2619 goto valid_fb;
2620 }
2621 }
2622
2623 return;
2624
2625 valid_fb:
2626 plane_state->src_x = plane_state->src_y = 0;
2627 plane_state->src_w = fb->width << 16;
2628 plane_state->src_h = fb->height << 16;
2629
2630 plane_state->crtc_x = plane_state->src_y = 0;
2631 plane_state->crtc_w = fb->width;
2632 plane_state->crtc_h = fb->height;
2633
2634 obj = intel_fb_obj(fb);
2635 if (obj->tiling_mode != I915_TILING_NONE)
2636 dev_priv->preserve_bios_swizzle = true;
2637
2638 drm_framebuffer_reference(fb);
2639 primary->fb = primary->state->fb = fb;
2640 primary->crtc = primary->state->crtc = &intel_crtc->base;
2641 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2642 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2643 }
2644
2645 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2646 struct drm_framebuffer *fb,
2647 int x, int y)
2648 {
2649 struct drm_device *dev = crtc->dev;
2650 struct drm_i915_private *dev_priv = dev->dev_private;
2651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652 struct drm_plane *primary = crtc->primary;
2653 bool visible = to_intel_plane_state(primary->state)->visible;
2654 struct drm_i915_gem_object *obj;
2655 int plane = intel_crtc->plane;
2656 unsigned long linear_offset;
2657 u32 dspcntr;
2658 i915_reg_t reg = DSPCNTR(plane);
2659 int pixel_size;
2660
2661 if (!visible || !fb) {
2662 I915_WRITE(reg, 0);
2663 if (INTEL_INFO(dev)->gen >= 4)
2664 I915_WRITE(DSPSURF(plane), 0);
2665 else
2666 I915_WRITE(DSPADDR(plane), 0);
2667 POSTING_READ(reg);
2668 return;
2669 }
2670
2671 obj = intel_fb_obj(fb);
2672 if (WARN_ON(obj == NULL))
2673 return;
2674
2675 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2676
2677 dspcntr = DISPPLANE_GAMMA_ENABLE;
2678
2679 dspcntr |= DISPLAY_PLANE_ENABLE;
2680
2681 if (INTEL_INFO(dev)->gen < 4) {
2682 if (intel_crtc->pipe == PIPE_B)
2683 dspcntr |= DISPPLANE_SEL_PIPE_B;
2684
2685 /* pipesrc and dspsize control the size that is scaled from,
2686 * which should always be the user's requested size.
2687 */
2688 I915_WRITE(DSPSIZE(plane),
2689 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2690 (intel_crtc->config->pipe_src_w - 1));
2691 I915_WRITE(DSPPOS(plane), 0);
2692 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2693 I915_WRITE(PRIMSIZE(plane),
2694 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2695 (intel_crtc->config->pipe_src_w - 1));
2696 I915_WRITE(PRIMPOS(plane), 0);
2697 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2698 }
2699
2700 switch (fb->pixel_format) {
2701 case DRM_FORMAT_C8:
2702 dspcntr |= DISPPLANE_8BPP;
2703 break;
2704 case DRM_FORMAT_XRGB1555:
2705 dspcntr |= DISPPLANE_BGRX555;
2706 break;
2707 case DRM_FORMAT_RGB565:
2708 dspcntr |= DISPPLANE_BGRX565;
2709 break;
2710 case DRM_FORMAT_XRGB8888:
2711 dspcntr |= DISPPLANE_BGRX888;
2712 break;
2713 case DRM_FORMAT_XBGR8888:
2714 dspcntr |= DISPPLANE_RGBX888;
2715 break;
2716 case DRM_FORMAT_XRGB2101010:
2717 dspcntr |= DISPPLANE_BGRX101010;
2718 break;
2719 case DRM_FORMAT_XBGR2101010:
2720 dspcntr |= DISPPLANE_RGBX101010;
2721 break;
2722 default:
2723 BUG();
2724 }
2725
2726 if (INTEL_INFO(dev)->gen >= 4 &&
2727 obj->tiling_mode != I915_TILING_NONE)
2728 dspcntr |= DISPPLANE_TILED;
2729
2730 if (IS_G4X(dev))
2731 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2732
2733 linear_offset = y * fb->pitches[0] + x * pixel_size;
2734
2735 if (INTEL_INFO(dev)->gen >= 4) {
2736 intel_crtc->dspaddr_offset =
2737 intel_gen4_compute_page_offset(dev_priv,
2738 &x, &y, obj->tiling_mode,
2739 pixel_size,
2740 fb->pitches[0]);
2741 linear_offset -= intel_crtc->dspaddr_offset;
2742 } else {
2743 intel_crtc->dspaddr_offset = linear_offset;
2744 }
2745
2746 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2747 dspcntr |= DISPPLANE_ROTATE_180;
2748
2749 x += (intel_crtc->config->pipe_src_w - 1);
2750 y += (intel_crtc->config->pipe_src_h - 1);
2751
2752 /* Finding the last pixel of the last line of the display
2753 data and adding to linear_offset*/
2754 linear_offset +=
2755 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2756 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2757 }
2758
2759 intel_crtc->adjusted_x = x;
2760 intel_crtc->adjusted_y = y;
2761
2762 I915_WRITE(reg, dspcntr);
2763
2764 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2765 if (INTEL_INFO(dev)->gen >= 4) {
2766 I915_WRITE(DSPSURF(plane),
2767 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2768 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2769 I915_WRITE(DSPLINOFF(plane), linear_offset);
2770 } else
2771 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2772 POSTING_READ(reg);
2773 }
2774
2775 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2776 struct drm_framebuffer *fb,
2777 int x, int y)
2778 {
2779 struct drm_device *dev = crtc->dev;
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 struct drm_plane *primary = crtc->primary;
2783 bool visible = to_intel_plane_state(primary->state)->visible;
2784 struct drm_i915_gem_object *obj;
2785 int plane = intel_crtc->plane;
2786 unsigned long linear_offset;
2787 u32 dspcntr;
2788 i915_reg_t reg = DSPCNTR(plane);
2789 int pixel_size;
2790
2791 if (!visible || !fb) {
2792 I915_WRITE(reg, 0);
2793 I915_WRITE(DSPSURF(plane), 0);
2794 POSTING_READ(reg);
2795 return;
2796 }
2797
2798 obj = intel_fb_obj(fb);
2799 if (WARN_ON(obj == NULL))
2800 return;
2801
2802 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2803
2804 dspcntr = DISPPLANE_GAMMA_ENABLE;
2805
2806 dspcntr |= DISPLAY_PLANE_ENABLE;
2807
2808 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2809 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2810
2811 switch (fb->pixel_format) {
2812 case DRM_FORMAT_C8:
2813 dspcntr |= DISPPLANE_8BPP;
2814 break;
2815 case DRM_FORMAT_RGB565:
2816 dspcntr |= DISPPLANE_BGRX565;
2817 break;
2818 case DRM_FORMAT_XRGB8888:
2819 dspcntr |= DISPPLANE_BGRX888;
2820 break;
2821 case DRM_FORMAT_XBGR8888:
2822 dspcntr |= DISPPLANE_RGBX888;
2823 break;
2824 case DRM_FORMAT_XRGB2101010:
2825 dspcntr |= DISPPLANE_BGRX101010;
2826 break;
2827 case DRM_FORMAT_XBGR2101010:
2828 dspcntr |= DISPPLANE_RGBX101010;
2829 break;
2830 default:
2831 BUG();
2832 }
2833
2834 if (obj->tiling_mode != I915_TILING_NONE)
2835 dspcntr |= DISPPLANE_TILED;
2836
2837 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2838 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2839
2840 linear_offset = y * fb->pitches[0] + x * pixel_size;
2841 intel_crtc->dspaddr_offset =
2842 intel_gen4_compute_page_offset(dev_priv,
2843 &x, &y, obj->tiling_mode,
2844 pixel_size,
2845 fb->pitches[0]);
2846 linear_offset -= intel_crtc->dspaddr_offset;
2847 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2848 dspcntr |= DISPPLANE_ROTATE_180;
2849
2850 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2851 x += (intel_crtc->config->pipe_src_w - 1);
2852 y += (intel_crtc->config->pipe_src_h - 1);
2853
2854 /* Finding the last pixel of the last line of the display
2855 data and adding to linear_offset*/
2856 linear_offset +=
2857 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2858 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2859 }
2860 }
2861
2862 intel_crtc->adjusted_x = x;
2863 intel_crtc->adjusted_y = y;
2864
2865 I915_WRITE(reg, dspcntr);
2866
2867 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2868 I915_WRITE(DSPSURF(plane),
2869 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2870 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2871 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2872 } else {
2873 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2874 I915_WRITE(DSPLINOFF(plane), linear_offset);
2875 }
2876 POSTING_READ(reg);
2877 }
2878
2879 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2880 uint32_t pixel_format)
2881 {
2882 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2883
2884 /*
2885 * The stride is either expressed as a multiple of 64 bytes
2886 * chunks for linear buffers or in number of tiles for tiled
2887 * buffers.
2888 */
2889 switch (fb_modifier) {
2890 case DRM_FORMAT_MOD_NONE:
2891 return 64;
2892 case I915_FORMAT_MOD_X_TILED:
2893 if (INTEL_INFO(dev)->gen == 2)
2894 return 128;
2895 return 512;
2896 case I915_FORMAT_MOD_Y_TILED:
2897 /* No need to check for old gens and Y tiling since this is
2898 * about the display engine and those will be blocked before
2899 * we get here.
2900 */
2901 return 128;
2902 case I915_FORMAT_MOD_Yf_TILED:
2903 if (bits_per_pixel == 8)
2904 return 64;
2905 else
2906 return 128;
2907 default:
2908 MISSING_CASE(fb_modifier);
2909 return 64;
2910 }
2911 }
2912
2913 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2914 struct drm_i915_gem_object *obj,
2915 unsigned int plane)
2916 {
2917 struct i915_ggtt_view view;
2918 struct i915_vma *vma;
2919 u64 offset;
2920
2921 intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2922 intel_plane->base.state);
2923
2924 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2925 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2926 view.type))
2927 return -1;
2928
2929 offset = vma->node.start;
2930
2931 if (plane == 1) {
2932 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
2933 PAGE_SIZE;
2934 }
2935
2936 WARN_ON(upper_32_bits(offset));
2937
2938 return lower_32_bits(offset);
2939 }
2940
2941 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2942 {
2943 struct drm_device *dev = intel_crtc->base.dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945
2946 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2947 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2948 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2949 }
2950
2951 /*
2952 * This function detaches (aka. unbinds) unused scalers in hardware
2953 */
2954 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2955 {
2956 struct intel_crtc_scaler_state *scaler_state;
2957 int i;
2958
2959 scaler_state = &intel_crtc->config->scaler_state;
2960
2961 /* loop through and disable scalers that aren't in use */
2962 for (i = 0; i < intel_crtc->num_scalers; i++) {
2963 if (!scaler_state->scalers[i].in_use)
2964 skl_detach_scaler(intel_crtc, i);
2965 }
2966 }
2967
2968 u32 skl_plane_ctl_format(uint32_t pixel_format)
2969 {
2970 switch (pixel_format) {
2971 case DRM_FORMAT_C8:
2972 return PLANE_CTL_FORMAT_INDEXED;
2973 case DRM_FORMAT_RGB565:
2974 return PLANE_CTL_FORMAT_RGB_565;
2975 case DRM_FORMAT_XBGR8888:
2976 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2977 case DRM_FORMAT_XRGB8888:
2978 return PLANE_CTL_FORMAT_XRGB_8888;
2979 /*
2980 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2981 * to be already pre-multiplied. We need to add a knob (or a different
2982 * DRM_FORMAT) for user-space to configure that.
2983 */
2984 case DRM_FORMAT_ABGR8888:
2985 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2986 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2987 case DRM_FORMAT_ARGB8888:
2988 return PLANE_CTL_FORMAT_XRGB_8888 |
2989 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2990 case DRM_FORMAT_XRGB2101010:
2991 return PLANE_CTL_FORMAT_XRGB_2101010;
2992 case DRM_FORMAT_XBGR2101010:
2993 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2994 case DRM_FORMAT_YUYV:
2995 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2996 case DRM_FORMAT_YVYU:
2997 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2998 case DRM_FORMAT_UYVY:
2999 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3000 case DRM_FORMAT_VYUY:
3001 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3002 default:
3003 MISSING_CASE(pixel_format);
3004 }
3005
3006 return 0;
3007 }
3008
3009 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3010 {
3011 switch (fb_modifier) {
3012 case DRM_FORMAT_MOD_NONE:
3013 break;
3014 case I915_FORMAT_MOD_X_TILED:
3015 return PLANE_CTL_TILED_X;
3016 case I915_FORMAT_MOD_Y_TILED:
3017 return PLANE_CTL_TILED_Y;
3018 case I915_FORMAT_MOD_Yf_TILED:
3019 return PLANE_CTL_TILED_YF;
3020 default:
3021 MISSING_CASE(fb_modifier);
3022 }
3023
3024 return 0;
3025 }
3026
3027 u32 skl_plane_ctl_rotation(unsigned int rotation)
3028 {
3029 switch (rotation) {
3030 case BIT(DRM_ROTATE_0):
3031 break;
3032 /*
3033 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3034 * while i915 HW rotation is clockwise, thats why this swapping.
3035 */
3036 case BIT(DRM_ROTATE_90):
3037 return PLANE_CTL_ROTATE_270;
3038 case BIT(DRM_ROTATE_180):
3039 return PLANE_CTL_ROTATE_180;
3040 case BIT(DRM_ROTATE_270):
3041 return PLANE_CTL_ROTATE_90;
3042 default:
3043 MISSING_CASE(rotation);
3044 }
3045
3046 return 0;
3047 }
3048
3049 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3050 struct drm_framebuffer *fb,
3051 int x, int y)
3052 {
3053 struct drm_device *dev = crtc->dev;
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3056 struct drm_plane *plane = crtc->primary;
3057 bool visible = to_intel_plane_state(plane->state)->visible;
3058 struct drm_i915_gem_object *obj;
3059 int pipe = intel_crtc->pipe;
3060 u32 plane_ctl, stride_div, stride;
3061 u32 tile_height, plane_offset, plane_size;
3062 unsigned int rotation;
3063 int x_offset, y_offset;
3064 u32 surf_addr;
3065 struct intel_crtc_state *crtc_state = intel_crtc->config;
3066 struct intel_plane_state *plane_state;
3067 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3068 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3069 int scaler_id = -1;
3070
3071 plane_state = to_intel_plane_state(plane->state);
3072
3073 if (!visible || !fb) {
3074 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3075 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3076 POSTING_READ(PLANE_CTL(pipe, 0));
3077 return;
3078 }
3079
3080 plane_ctl = PLANE_CTL_ENABLE |
3081 PLANE_CTL_PIPE_GAMMA_ENABLE |
3082 PLANE_CTL_PIPE_CSC_ENABLE;
3083
3084 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3085 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3086 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3087
3088 rotation = plane->state->rotation;
3089 plane_ctl |= skl_plane_ctl_rotation(rotation);
3090
3091 obj = intel_fb_obj(fb);
3092 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3093 fb->pixel_format);
3094 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3095
3096 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3097
3098 scaler_id = plane_state->scaler_id;
3099 src_x = plane_state->src.x1 >> 16;
3100 src_y = plane_state->src.y1 >> 16;
3101 src_w = drm_rect_width(&plane_state->src) >> 16;
3102 src_h = drm_rect_height(&plane_state->src) >> 16;
3103 dst_x = plane_state->dst.x1;
3104 dst_y = plane_state->dst.y1;
3105 dst_w = drm_rect_width(&plane_state->dst);
3106 dst_h = drm_rect_height(&plane_state->dst);
3107
3108 WARN_ON(x != src_x || y != src_y);
3109
3110 if (intel_rotation_90_or_270(rotation)) {
3111 /* stride = Surface height in tiles */
3112 tile_height = intel_tile_height(dev, fb->pixel_format,
3113 fb->modifier[0], 0);
3114 stride = DIV_ROUND_UP(fb->height, tile_height);
3115 x_offset = stride * tile_height - y - src_h;
3116 y_offset = x;
3117 plane_size = (src_w - 1) << 16 | (src_h - 1);
3118 } else {
3119 stride = fb->pitches[0] / stride_div;
3120 x_offset = x;
3121 y_offset = y;
3122 plane_size = (src_h - 1) << 16 | (src_w - 1);
3123 }
3124 plane_offset = y_offset << 16 | x_offset;
3125
3126 intel_crtc->adjusted_x = x_offset;
3127 intel_crtc->adjusted_y = y_offset;
3128
3129 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3130 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3131 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3132 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3133
3134 if (scaler_id >= 0) {
3135 uint32_t ps_ctrl = 0;
3136
3137 WARN_ON(!dst_w || !dst_h);
3138 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3139 crtc_state->scaler_state.scalers[scaler_id].mode;
3140 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3141 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3142 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3143 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3144 I915_WRITE(PLANE_POS(pipe, 0), 0);
3145 } else {
3146 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3147 }
3148
3149 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3150
3151 POSTING_READ(PLANE_SURF(pipe, 0));
3152 }
3153
3154 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3155 static int
3156 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3157 int x, int y, enum mode_set_atomic state)
3158 {
3159 struct drm_device *dev = crtc->dev;
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161
3162 if (dev_priv->fbc.disable_fbc)
3163 dev_priv->fbc.disable_fbc(dev_priv);
3164
3165 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3166
3167 return 0;
3168 }
3169
3170 static void intel_complete_page_flips(struct drm_device *dev)
3171 {
3172 struct drm_crtc *crtc;
3173
3174 for_each_crtc(dev, crtc) {
3175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3176 enum plane plane = intel_crtc->plane;
3177
3178 intel_prepare_page_flip(dev, plane);
3179 intel_finish_page_flip_plane(dev, plane);
3180 }
3181 }
3182
3183 static void intel_update_primary_planes(struct drm_device *dev)
3184 {
3185 struct drm_crtc *crtc;
3186
3187 for_each_crtc(dev, crtc) {
3188 struct intel_plane *plane = to_intel_plane(crtc->primary);
3189 struct intel_plane_state *plane_state;
3190
3191 drm_modeset_lock_crtc(crtc, &plane->base);
3192 plane_state = to_intel_plane_state(plane->base.state);
3193
3194 if (crtc->state->active && plane_state->base.fb)
3195 plane->commit_plane(&plane->base, plane_state);
3196
3197 drm_modeset_unlock_crtc(crtc);
3198 }
3199 }
3200
3201 void intel_prepare_reset(struct drm_device *dev)
3202 {
3203 /* no reset support for gen2 */
3204 if (IS_GEN2(dev))
3205 return;
3206
3207 /* reset doesn't touch the display */
3208 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3209 return;
3210
3211 drm_modeset_lock_all(dev);
3212 /*
3213 * Disabling the crtcs gracefully seems nicer. Also the
3214 * g33 docs say we should at least disable all the planes.
3215 */
3216 intel_display_suspend(dev);
3217 }
3218
3219 void intel_finish_reset(struct drm_device *dev)
3220 {
3221 struct drm_i915_private *dev_priv = to_i915(dev);
3222
3223 /*
3224 * Flips in the rings will be nuked by the reset,
3225 * so complete all pending flips so that user space
3226 * will get its events and not get stuck.
3227 */
3228 intel_complete_page_flips(dev);
3229
3230 /* no reset support for gen2 */
3231 if (IS_GEN2(dev))
3232 return;
3233
3234 /* reset doesn't touch the display */
3235 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3236 /*
3237 * Flips in the rings have been nuked by the reset,
3238 * so update the base address of all primary
3239 * planes to the the last fb to make sure we're
3240 * showing the correct fb after a reset.
3241 *
3242 * FIXME: Atomic will make this obsolete since we won't schedule
3243 * CS-based flips (which might get lost in gpu resets) any more.
3244 */
3245 intel_update_primary_planes(dev);
3246 return;
3247 }
3248
3249 /*
3250 * The display has been reset as well,
3251 * so need a full re-initialization.
3252 */
3253 intel_runtime_pm_disable_interrupts(dev_priv);
3254 intel_runtime_pm_enable_interrupts(dev_priv);
3255
3256 intel_modeset_init_hw(dev);
3257
3258 spin_lock_irq(&dev_priv->irq_lock);
3259 if (dev_priv->display.hpd_irq_setup)
3260 dev_priv->display.hpd_irq_setup(dev);
3261 spin_unlock_irq(&dev_priv->irq_lock);
3262
3263 intel_display_resume(dev);
3264
3265 intel_hpd_init(dev_priv);
3266
3267 drm_modeset_unlock_all(dev);
3268 }
3269
3270 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3271 {
3272 struct drm_device *dev = crtc->dev;
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3275 bool pending;
3276
3277 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3278 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3279 return false;
3280
3281 spin_lock_irq(&dev->event_lock);
3282 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3283 spin_unlock_irq(&dev->event_lock);
3284
3285 return pending;
3286 }
3287
3288 static void intel_update_pipe_config(struct intel_crtc *crtc,
3289 struct intel_crtc_state *old_crtc_state)
3290 {
3291 struct drm_device *dev = crtc->base.dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct intel_crtc_state *pipe_config =
3294 to_intel_crtc_state(crtc->base.state);
3295
3296 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3297 crtc->base.mode = crtc->base.state->mode;
3298
3299 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3300 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3301 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3302
3303 if (HAS_DDI(dev))
3304 intel_set_pipe_csc(&crtc->base);
3305
3306 /*
3307 * Update pipe size and adjust fitter if needed: the reason for this is
3308 * that in compute_mode_changes we check the native mode (not the pfit
3309 * mode) to see if we can flip rather than do a full mode set. In the
3310 * fastboot case, we'll flip, but if we don't update the pipesrc and
3311 * pfit state, we'll end up with a big fb scanned out into the wrong
3312 * sized surface.
3313 */
3314
3315 I915_WRITE(PIPESRC(crtc->pipe),
3316 ((pipe_config->pipe_src_w - 1) << 16) |
3317 (pipe_config->pipe_src_h - 1));
3318
3319 /* on skylake this is done by detaching scalers */
3320 if (INTEL_INFO(dev)->gen >= 9) {
3321 skl_detach_scalers(crtc);
3322
3323 if (pipe_config->pch_pfit.enabled)
3324 skylake_pfit_enable(crtc);
3325 } else if (HAS_PCH_SPLIT(dev)) {
3326 if (pipe_config->pch_pfit.enabled)
3327 ironlake_pfit_enable(crtc);
3328 else if (old_crtc_state->pch_pfit.enabled)
3329 ironlake_pfit_disable(crtc, true);
3330 }
3331 }
3332
3333 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3334 {
3335 struct drm_device *dev = crtc->dev;
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3338 int pipe = intel_crtc->pipe;
3339 i915_reg_t reg;
3340 u32 temp;
3341
3342 /* enable normal train */
3343 reg = FDI_TX_CTL(pipe);
3344 temp = I915_READ(reg);
3345 if (IS_IVYBRIDGE(dev)) {
3346 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3347 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3348 } else {
3349 temp &= ~FDI_LINK_TRAIN_NONE;
3350 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3351 }
3352 I915_WRITE(reg, temp);
3353
3354 reg = FDI_RX_CTL(pipe);
3355 temp = I915_READ(reg);
3356 if (HAS_PCH_CPT(dev)) {
3357 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3358 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3359 } else {
3360 temp &= ~FDI_LINK_TRAIN_NONE;
3361 temp |= FDI_LINK_TRAIN_NONE;
3362 }
3363 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3364
3365 /* wait one idle pattern time */
3366 POSTING_READ(reg);
3367 udelay(1000);
3368
3369 /* IVB wants error correction enabled */
3370 if (IS_IVYBRIDGE(dev))
3371 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3372 FDI_FE_ERRC_ENABLE);
3373 }
3374
3375 /* The FDI link training functions for ILK/Ibexpeak. */
3376 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3377 {
3378 struct drm_device *dev = crtc->dev;
3379 struct drm_i915_private *dev_priv = dev->dev_private;
3380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381 int pipe = intel_crtc->pipe;
3382 i915_reg_t reg;
3383 u32 temp, tries;
3384
3385 /* FDI needs bits from pipe first */
3386 assert_pipe_enabled(dev_priv, pipe);
3387
3388 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3389 for train result */
3390 reg = FDI_RX_IMR(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~FDI_RX_SYMBOL_LOCK;
3393 temp &= ~FDI_RX_BIT_LOCK;
3394 I915_WRITE(reg, temp);
3395 I915_READ(reg);
3396 udelay(150);
3397
3398 /* enable CPU FDI TX and PCH FDI RX */
3399 reg = FDI_TX_CTL(pipe);
3400 temp = I915_READ(reg);
3401 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3402 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3403 temp &= ~FDI_LINK_TRAIN_NONE;
3404 temp |= FDI_LINK_TRAIN_PATTERN_1;
3405 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3406
3407 reg = FDI_RX_CTL(pipe);
3408 temp = I915_READ(reg);
3409 temp &= ~FDI_LINK_TRAIN_NONE;
3410 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3412
3413 POSTING_READ(reg);
3414 udelay(150);
3415
3416 /* Ironlake workaround, enable clock pointer after FDI enable*/
3417 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3418 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3419 FDI_RX_PHASE_SYNC_POINTER_EN);
3420
3421 reg = FDI_RX_IIR(pipe);
3422 for (tries = 0; tries < 5; tries++) {
3423 temp = I915_READ(reg);
3424 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3425
3426 if ((temp & FDI_RX_BIT_LOCK)) {
3427 DRM_DEBUG_KMS("FDI train 1 done.\n");
3428 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3429 break;
3430 }
3431 }
3432 if (tries == 5)
3433 DRM_ERROR("FDI train 1 fail!\n");
3434
3435 /* Train 2 */
3436 reg = FDI_TX_CTL(pipe);
3437 temp = I915_READ(reg);
3438 temp &= ~FDI_LINK_TRAIN_NONE;
3439 temp |= FDI_LINK_TRAIN_PATTERN_2;
3440 I915_WRITE(reg, temp);
3441
3442 reg = FDI_RX_CTL(pipe);
3443 temp = I915_READ(reg);
3444 temp &= ~FDI_LINK_TRAIN_NONE;
3445 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446 I915_WRITE(reg, temp);
3447
3448 POSTING_READ(reg);
3449 udelay(150);
3450
3451 reg = FDI_RX_IIR(pipe);
3452 for (tries = 0; tries < 5; tries++) {
3453 temp = I915_READ(reg);
3454 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3455
3456 if (temp & FDI_RX_SYMBOL_LOCK) {
3457 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3458 DRM_DEBUG_KMS("FDI train 2 done.\n");
3459 break;
3460 }
3461 }
3462 if (tries == 5)
3463 DRM_ERROR("FDI train 2 fail!\n");
3464
3465 DRM_DEBUG_KMS("FDI train done\n");
3466
3467 }
3468
3469 static const int snb_b_fdi_train_param[] = {
3470 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3471 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3472 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3473 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3474 };
3475
3476 /* The FDI link training functions for SNB/Cougarpoint. */
3477 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3478 {
3479 struct drm_device *dev = crtc->dev;
3480 struct drm_i915_private *dev_priv = dev->dev_private;
3481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3482 int pipe = intel_crtc->pipe;
3483 i915_reg_t reg;
3484 u32 temp, i, retry;
3485
3486 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3487 for train result */
3488 reg = FDI_RX_IMR(pipe);
3489 temp = I915_READ(reg);
3490 temp &= ~FDI_RX_SYMBOL_LOCK;
3491 temp &= ~FDI_RX_BIT_LOCK;
3492 I915_WRITE(reg, temp);
3493
3494 POSTING_READ(reg);
3495 udelay(150);
3496
3497 /* enable CPU FDI TX and PCH FDI RX */
3498 reg = FDI_TX_CTL(pipe);
3499 temp = I915_READ(reg);
3500 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3501 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3502 temp &= ~FDI_LINK_TRAIN_NONE;
3503 temp |= FDI_LINK_TRAIN_PATTERN_1;
3504 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3505 /* SNB-B */
3506 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3507 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3508
3509 I915_WRITE(FDI_RX_MISC(pipe),
3510 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3511
3512 reg = FDI_RX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 if (HAS_PCH_CPT(dev)) {
3515 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3516 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3517 } else {
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 }
3521 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3522
3523 POSTING_READ(reg);
3524 udelay(150);
3525
3526 for (i = 0; i < 4; i++) {
3527 reg = FDI_TX_CTL(pipe);
3528 temp = I915_READ(reg);
3529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3530 temp |= snb_b_fdi_train_param[i];
3531 I915_WRITE(reg, temp);
3532
3533 POSTING_READ(reg);
3534 udelay(500);
3535
3536 for (retry = 0; retry < 5; retry++) {
3537 reg = FDI_RX_IIR(pipe);
3538 temp = I915_READ(reg);
3539 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3540 if (temp & FDI_RX_BIT_LOCK) {
3541 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3542 DRM_DEBUG_KMS("FDI train 1 done.\n");
3543 break;
3544 }
3545 udelay(50);
3546 }
3547 if (retry < 5)
3548 break;
3549 }
3550 if (i == 4)
3551 DRM_ERROR("FDI train 1 fail!\n");
3552
3553 /* Train 2 */
3554 reg = FDI_TX_CTL(pipe);
3555 temp = I915_READ(reg);
3556 temp &= ~FDI_LINK_TRAIN_NONE;
3557 temp |= FDI_LINK_TRAIN_PATTERN_2;
3558 if (IS_GEN6(dev)) {
3559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560 /* SNB-B */
3561 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3562 }
3563 I915_WRITE(reg, temp);
3564
3565 reg = FDI_RX_CTL(pipe);
3566 temp = I915_READ(reg);
3567 if (HAS_PCH_CPT(dev)) {
3568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3569 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3570 } else {
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573 }
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
3577 udelay(150);
3578
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_TX_CTL(pipe);
3581 temp = I915_READ(reg);
3582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3583 temp |= snb_b_fdi_train_param[i];
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
3587 udelay(500);
3588
3589 for (retry = 0; retry < 5; retry++) {
3590 reg = FDI_RX_IIR(pipe);
3591 temp = I915_READ(reg);
3592 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3593 if (temp & FDI_RX_SYMBOL_LOCK) {
3594 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3595 DRM_DEBUG_KMS("FDI train 2 done.\n");
3596 break;
3597 }
3598 udelay(50);
3599 }
3600 if (retry < 5)
3601 break;
3602 }
3603 if (i == 4)
3604 DRM_ERROR("FDI train 2 fail!\n");
3605
3606 DRM_DEBUG_KMS("FDI train done.\n");
3607 }
3608
3609 /* Manual link training for Ivy Bridge A0 parts */
3610 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3611 {
3612 struct drm_device *dev = crtc->dev;
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 int pipe = intel_crtc->pipe;
3616 i915_reg_t reg;
3617 u32 temp, i, j;
3618
3619 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3620 for train result */
3621 reg = FDI_RX_IMR(pipe);
3622 temp = I915_READ(reg);
3623 temp &= ~FDI_RX_SYMBOL_LOCK;
3624 temp &= ~FDI_RX_BIT_LOCK;
3625 I915_WRITE(reg, temp);
3626
3627 POSTING_READ(reg);
3628 udelay(150);
3629
3630 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3631 I915_READ(FDI_RX_IIR(pipe)));
3632
3633 /* Try each vswing and preemphasis setting twice before moving on */
3634 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3635 /* disable first in case we need to retry */
3636 reg = FDI_TX_CTL(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3639 temp &= ~FDI_TX_ENABLE;
3640 I915_WRITE(reg, temp);
3641
3642 reg = FDI_RX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp &= ~FDI_LINK_TRAIN_AUTO;
3645 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3646 temp &= ~FDI_RX_ENABLE;
3647 I915_WRITE(reg, temp);
3648
3649 /* enable CPU FDI TX and PCH FDI RX */
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
3652 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3653 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3654 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3655 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3656 temp |= snb_b_fdi_train_param[j/2];
3657 temp |= FDI_COMPOSITE_SYNC;
3658 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3659
3660 I915_WRITE(FDI_RX_MISC(pipe),
3661 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3662
3663 reg = FDI_RX_CTL(pipe);
3664 temp = I915_READ(reg);
3665 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3666 temp |= FDI_COMPOSITE_SYNC;
3667 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3668
3669 POSTING_READ(reg);
3670 udelay(1); /* should be 0.5us */
3671
3672 for (i = 0; i < 4; i++) {
3673 reg = FDI_RX_IIR(pipe);
3674 temp = I915_READ(reg);
3675 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3676
3677 if (temp & FDI_RX_BIT_LOCK ||
3678 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3679 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3680 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3681 i);
3682 break;
3683 }
3684 udelay(1); /* should be 0.5us */
3685 }
3686 if (i == 4) {
3687 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3688 continue;
3689 }
3690
3691 /* Train 2 */
3692 reg = FDI_TX_CTL(pipe);
3693 temp = I915_READ(reg);
3694 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3695 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3696 I915_WRITE(reg, temp);
3697
3698 reg = FDI_RX_CTL(pipe);
3699 temp = I915_READ(reg);
3700 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3701 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3702 I915_WRITE(reg, temp);
3703
3704 POSTING_READ(reg);
3705 udelay(2); /* should be 1.5us */
3706
3707 for (i = 0; i < 4; i++) {
3708 reg = FDI_RX_IIR(pipe);
3709 temp = I915_READ(reg);
3710 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3711
3712 if (temp & FDI_RX_SYMBOL_LOCK ||
3713 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3714 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3715 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3716 i);
3717 goto train_done;
3718 }
3719 udelay(2); /* should be 1.5us */
3720 }
3721 if (i == 4)
3722 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3723 }
3724
3725 train_done:
3726 DRM_DEBUG_KMS("FDI train done.\n");
3727 }
3728
3729 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3730 {
3731 struct drm_device *dev = intel_crtc->base.dev;
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 int pipe = intel_crtc->pipe;
3734 i915_reg_t reg;
3735 u32 temp;
3736
3737 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3738 reg = FDI_RX_CTL(pipe);
3739 temp = I915_READ(reg);
3740 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3741 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3742 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3743 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3744
3745 POSTING_READ(reg);
3746 udelay(200);
3747
3748 /* Switch from Rawclk to PCDclk */
3749 temp = I915_READ(reg);
3750 I915_WRITE(reg, temp | FDI_PCDCLK);
3751
3752 POSTING_READ(reg);
3753 udelay(200);
3754
3755 /* Enable CPU FDI TX PLL, always on for Ironlake */
3756 reg = FDI_TX_CTL(pipe);
3757 temp = I915_READ(reg);
3758 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3759 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3760
3761 POSTING_READ(reg);
3762 udelay(100);
3763 }
3764 }
3765
3766 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3767 {
3768 struct drm_device *dev = intel_crtc->base.dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 int pipe = intel_crtc->pipe;
3771 i915_reg_t reg;
3772 u32 temp;
3773
3774 /* Switch from PCDclk to Rawclk */
3775 reg = FDI_RX_CTL(pipe);
3776 temp = I915_READ(reg);
3777 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3778
3779 /* Disable CPU FDI TX PLL */
3780 reg = FDI_TX_CTL(pipe);
3781 temp = I915_READ(reg);
3782 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3783
3784 POSTING_READ(reg);
3785 udelay(100);
3786
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3790
3791 /* Wait for the clocks to turn off. */
3792 POSTING_READ(reg);
3793 udelay(100);
3794 }
3795
3796 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3797 {
3798 struct drm_device *dev = crtc->dev;
3799 struct drm_i915_private *dev_priv = dev->dev_private;
3800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801 int pipe = intel_crtc->pipe;
3802 i915_reg_t reg;
3803 u32 temp;
3804
3805 /* disable CPU FDI tx and PCH FDI rx */
3806 reg = FDI_TX_CTL(pipe);
3807 temp = I915_READ(reg);
3808 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3809 POSTING_READ(reg);
3810
3811 reg = FDI_RX_CTL(pipe);
3812 temp = I915_READ(reg);
3813 temp &= ~(0x7 << 16);
3814 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3815 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3816
3817 POSTING_READ(reg);
3818 udelay(100);
3819
3820 /* Ironlake workaround, disable clock pointer after downing FDI */
3821 if (HAS_PCH_IBX(dev))
3822 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3823
3824 /* still set train pattern 1 */
3825 reg = FDI_TX_CTL(pipe);
3826 temp = I915_READ(reg);
3827 temp &= ~FDI_LINK_TRAIN_NONE;
3828 temp |= FDI_LINK_TRAIN_PATTERN_1;
3829 I915_WRITE(reg, temp);
3830
3831 reg = FDI_RX_CTL(pipe);
3832 temp = I915_READ(reg);
3833 if (HAS_PCH_CPT(dev)) {
3834 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3836 } else {
3837 temp &= ~FDI_LINK_TRAIN_NONE;
3838 temp |= FDI_LINK_TRAIN_PATTERN_1;
3839 }
3840 /* BPC in FDI rx is consistent with that in PIPECONF */
3841 temp &= ~(0x07 << 16);
3842 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3843 I915_WRITE(reg, temp);
3844
3845 POSTING_READ(reg);
3846 udelay(100);
3847 }
3848
3849 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3850 {
3851 struct intel_crtc *crtc;
3852
3853 /* Note that we don't need to be called with mode_config.lock here
3854 * as our list of CRTC objects is static for the lifetime of the
3855 * device and so cannot disappear as we iterate. Similarly, we can
3856 * happily treat the predicates as racy, atomic checks as userspace
3857 * cannot claim and pin a new fb without at least acquring the
3858 * struct_mutex and so serialising with us.
3859 */
3860 for_each_intel_crtc(dev, crtc) {
3861 if (atomic_read(&crtc->unpin_work_count) == 0)
3862 continue;
3863
3864 if (crtc->unpin_work)
3865 intel_wait_for_vblank(dev, crtc->pipe);
3866
3867 return true;
3868 }
3869
3870 return false;
3871 }
3872
3873 static void page_flip_completed(struct intel_crtc *intel_crtc)
3874 {
3875 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3876 struct intel_unpin_work *work = intel_crtc->unpin_work;
3877
3878 /* ensure that the unpin work is consistent wrt ->pending. */
3879 smp_rmb();
3880 intel_crtc->unpin_work = NULL;
3881
3882 if (work->event)
3883 drm_send_vblank_event(intel_crtc->base.dev,
3884 intel_crtc->pipe,
3885 work->event);
3886
3887 drm_crtc_vblank_put(&intel_crtc->base);
3888
3889 wake_up_all(&dev_priv->pending_flip_queue);
3890 queue_work(dev_priv->wq, &work->work);
3891
3892 trace_i915_flip_complete(intel_crtc->plane,
3893 work->pending_flip_obj);
3894 }
3895
3896 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3897 {
3898 struct drm_device *dev = crtc->dev;
3899 struct drm_i915_private *dev_priv = dev->dev_private;
3900 long ret;
3901
3902 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3903
3904 ret = wait_event_interruptible_timeout(
3905 dev_priv->pending_flip_queue,
3906 !intel_crtc_has_pending_flip(crtc),
3907 60*HZ);
3908
3909 if (ret < 0)
3910 return ret;
3911
3912 if (ret == 0) {
3913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3914
3915 spin_lock_irq(&dev->event_lock);
3916 if (intel_crtc->unpin_work) {
3917 WARN_ONCE(1, "Removing stuck page flip\n");
3918 page_flip_completed(intel_crtc);
3919 }
3920 spin_unlock_irq(&dev->event_lock);
3921 }
3922
3923 return 0;
3924 }
3925
3926 /* Program iCLKIP clock to the desired frequency */
3927 static void lpt_program_iclkip(struct drm_crtc *crtc)
3928 {
3929 struct drm_device *dev = crtc->dev;
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3932 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3933 u32 temp;
3934
3935 mutex_lock(&dev_priv->sb_lock);
3936
3937 /* It is necessary to ungate the pixclk gate prior to programming
3938 * the divisors, and gate it back when it is done.
3939 */
3940 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3941
3942 /* Disable SSCCTL */
3943 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3944 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3945 SBI_SSCCTL_DISABLE,
3946 SBI_ICLK);
3947
3948 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3949 if (clock == 20000) {
3950 auxdiv = 1;
3951 divsel = 0x41;
3952 phaseinc = 0x20;
3953 } else {
3954 /* The iCLK virtual clock root frequency is in MHz,
3955 * but the adjusted_mode->crtc_clock in in KHz. To get the
3956 * divisors, it is necessary to divide one by another, so we
3957 * convert the virtual clock precision to KHz here for higher
3958 * precision.
3959 */
3960 u32 iclk_virtual_root_freq = 172800 * 1000;
3961 u32 iclk_pi_range = 64;
3962 u32 desired_divisor, msb_divisor_value, pi_value;
3963
3964 desired_divisor = (iclk_virtual_root_freq / clock);
3965 msb_divisor_value = desired_divisor / iclk_pi_range;
3966 pi_value = desired_divisor % iclk_pi_range;
3967
3968 auxdiv = 0;
3969 divsel = msb_divisor_value - 2;
3970 phaseinc = pi_value;
3971 }
3972
3973 /* This should not happen with any sane values */
3974 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3975 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3976 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3977 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3978
3979 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3980 clock,
3981 auxdiv,
3982 divsel,
3983 phasedir,
3984 phaseinc);
3985
3986 /* Program SSCDIVINTPHASE6 */
3987 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3988 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3989 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3990 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3991 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3992 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3993 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3994 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3995
3996 /* Program SSCAUXDIV */
3997 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3998 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3999 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4000 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4001
4002 /* Enable modulator and associated divider */
4003 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4004 temp &= ~SBI_SSCCTL_DISABLE;
4005 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4006
4007 /* Wait for initialization time */
4008 udelay(24);
4009
4010 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4011
4012 mutex_unlock(&dev_priv->sb_lock);
4013 }
4014
4015 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4016 enum pipe pch_transcoder)
4017 {
4018 struct drm_device *dev = crtc->base.dev;
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4021
4022 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4023 I915_READ(HTOTAL(cpu_transcoder)));
4024 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4025 I915_READ(HBLANK(cpu_transcoder)));
4026 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4027 I915_READ(HSYNC(cpu_transcoder)));
4028
4029 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4030 I915_READ(VTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4032 I915_READ(VBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4034 I915_READ(VSYNC(cpu_transcoder)));
4035 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4036 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4037 }
4038
4039 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4040 {
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 uint32_t temp;
4043
4044 temp = I915_READ(SOUTH_CHICKEN1);
4045 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4046 return;
4047
4048 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4049 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4050
4051 temp &= ~FDI_BC_BIFURCATION_SELECT;
4052 if (enable)
4053 temp |= FDI_BC_BIFURCATION_SELECT;
4054
4055 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4056 I915_WRITE(SOUTH_CHICKEN1, temp);
4057 POSTING_READ(SOUTH_CHICKEN1);
4058 }
4059
4060 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4061 {
4062 struct drm_device *dev = intel_crtc->base.dev;
4063
4064 switch (intel_crtc->pipe) {
4065 case PIPE_A:
4066 break;
4067 case PIPE_B:
4068 if (intel_crtc->config->fdi_lanes > 2)
4069 cpt_set_fdi_bc_bifurcation(dev, false);
4070 else
4071 cpt_set_fdi_bc_bifurcation(dev, true);
4072
4073 break;
4074 case PIPE_C:
4075 cpt_set_fdi_bc_bifurcation(dev, true);
4076
4077 break;
4078 default:
4079 BUG();
4080 }
4081 }
4082
4083 /* Return which DP Port should be selected for Transcoder DP control */
4084 static enum port
4085 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4086 {
4087 struct drm_device *dev = crtc->dev;
4088 struct intel_encoder *encoder;
4089
4090 for_each_encoder_on_crtc(dev, crtc, encoder) {
4091 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4092 encoder->type == INTEL_OUTPUT_EDP)
4093 return enc_to_dig_port(&encoder->base)->port;
4094 }
4095
4096 return -1;
4097 }
4098
4099 /*
4100 * Enable PCH resources required for PCH ports:
4101 * - PCH PLLs
4102 * - FDI training & RX/TX
4103 * - update transcoder timings
4104 * - DP transcoding bits
4105 * - transcoder
4106 */
4107 static void ironlake_pch_enable(struct drm_crtc *crtc)
4108 {
4109 struct drm_device *dev = crtc->dev;
4110 struct drm_i915_private *dev_priv = dev->dev_private;
4111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4112 int pipe = intel_crtc->pipe;
4113 u32 temp;
4114
4115 assert_pch_transcoder_disabled(dev_priv, pipe);
4116
4117 if (IS_IVYBRIDGE(dev))
4118 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4119
4120 /* Write the TU size bits before fdi link training, so that error
4121 * detection works. */
4122 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4123 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4124
4125 /* For PCH output, training FDI link */
4126 dev_priv->display.fdi_link_train(crtc);
4127
4128 /* We need to program the right clock selection before writing the pixel
4129 * mutliplier into the DPLL. */
4130 if (HAS_PCH_CPT(dev)) {
4131 u32 sel;
4132
4133 temp = I915_READ(PCH_DPLL_SEL);
4134 temp |= TRANS_DPLL_ENABLE(pipe);
4135 sel = TRANS_DPLLB_SEL(pipe);
4136 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4137 temp |= sel;
4138 else
4139 temp &= ~sel;
4140 I915_WRITE(PCH_DPLL_SEL, temp);
4141 }
4142
4143 /* XXX: pch pll's can be enabled any time before we enable the PCH
4144 * transcoder, and we actually should do this to not upset any PCH
4145 * transcoder that already use the clock when we share it.
4146 *
4147 * Note that enable_shared_dpll tries to do the right thing, but
4148 * get_shared_dpll unconditionally resets the pll - we need that to have
4149 * the right LVDS enable sequence. */
4150 intel_enable_shared_dpll(intel_crtc);
4151
4152 /* set transcoder timing, panel must allow it */
4153 assert_panel_unlocked(dev_priv, pipe);
4154 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4155
4156 intel_fdi_normal_train(crtc);
4157
4158 /* For PCH DP, enable TRANS_DP_CTL */
4159 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4160 const struct drm_display_mode *adjusted_mode =
4161 &intel_crtc->config->base.adjusted_mode;
4162 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4163 i915_reg_t reg = TRANS_DP_CTL(pipe);
4164 temp = I915_READ(reg);
4165 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4166 TRANS_DP_SYNC_MASK |
4167 TRANS_DP_BPC_MASK);
4168 temp |= TRANS_DP_OUTPUT_ENABLE;
4169 temp |= bpc << 9; /* same format but at 11:9 */
4170
4171 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4172 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4173 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4174 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4175
4176 switch (intel_trans_dp_port_sel(crtc)) {
4177 case PORT_B:
4178 temp |= TRANS_DP_PORT_SEL_B;
4179 break;
4180 case PORT_C:
4181 temp |= TRANS_DP_PORT_SEL_C;
4182 break;
4183 case PORT_D:
4184 temp |= TRANS_DP_PORT_SEL_D;
4185 break;
4186 default:
4187 BUG();
4188 }
4189
4190 I915_WRITE(reg, temp);
4191 }
4192
4193 ironlake_enable_pch_transcoder(dev_priv, pipe);
4194 }
4195
4196 static void lpt_pch_enable(struct drm_crtc *crtc)
4197 {
4198 struct drm_device *dev = crtc->dev;
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4201 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4202
4203 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4204
4205 lpt_program_iclkip(crtc);
4206
4207 /* Set transcoder timing. */
4208 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4209
4210 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4211 }
4212
4213 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4214 struct intel_crtc_state *crtc_state)
4215 {
4216 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4217 struct intel_shared_dpll *pll;
4218 struct intel_shared_dpll_config *shared_dpll;
4219 enum intel_dpll_id i;
4220
4221 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4222
4223 if (HAS_PCH_IBX(dev_priv->dev)) {
4224 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4225 i = (enum intel_dpll_id) crtc->pipe;
4226 pll = &dev_priv->shared_dplls[i];
4227
4228 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4229 crtc->base.base.id, pll->name);
4230
4231 WARN_ON(shared_dpll[i].crtc_mask);
4232
4233 goto found;
4234 }
4235
4236 if (IS_BROXTON(dev_priv->dev)) {
4237 /* PLL is attached to port in bxt */
4238 struct intel_encoder *encoder;
4239 struct intel_digital_port *intel_dig_port;
4240
4241 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4242 if (WARN_ON(!encoder))
4243 return NULL;
4244
4245 intel_dig_port = enc_to_dig_port(&encoder->base);
4246 /* 1:1 mapping between ports and PLLs */
4247 i = (enum intel_dpll_id)intel_dig_port->port;
4248 pll = &dev_priv->shared_dplls[i];
4249 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4250 crtc->base.base.id, pll->name);
4251 WARN_ON(shared_dpll[i].crtc_mask);
4252
4253 goto found;
4254 }
4255
4256 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4257 pll = &dev_priv->shared_dplls[i];
4258
4259 /* Only want to check enabled timings first */
4260 if (shared_dpll[i].crtc_mask == 0)
4261 continue;
4262
4263 if (memcmp(&crtc_state->dpll_hw_state,
4264 &shared_dpll[i].hw_state,
4265 sizeof(crtc_state->dpll_hw_state)) == 0) {
4266 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4267 crtc->base.base.id, pll->name,
4268 shared_dpll[i].crtc_mask,
4269 pll->active);
4270 goto found;
4271 }
4272 }
4273
4274 /* Ok no matching timings, maybe there's a free one? */
4275 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4276 pll = &dev_priv->shared_dplls[i];
4277 if (shared_dpll[i].crtc_mask == 0) {
4278 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4279 crtc->base.base.id, pll->name);
4280 goto found;
4281 }
4282 }
4283
4284 return NULL;
4285
4286 found:
4287 if (shared_dpll[i].crtc_mask == 0)
4288 shared_dpll[i].hw_state =
4289 crtc_state->dpll_hw_state;
4290
4291 crtc_state->shared_dpll = i;
4292 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4293 pipe_name(crtc->pipe));
4294
4295 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4296
4297 return pll;
4298 }
4299
4300 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4301 {
4302 struct drm_i915_private *dev_priv = to_i915(state->dev);
4303 struct intel_shared_dpll_config *shared_dpll;
4304 struct intel_shared_dpll *pll;
4305 enum intel_dpll_id i;
4306
4307 if (!to_intel_atomic_state(state)->dpll_set)
4308 return;
4309
4310 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4311 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4312 pll = &dev_priv->shared_dplls[i];
4313 pll->config = shared_dpll[i];
4314 }
4315 }
4316
4317 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4318 {
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 i915_reg_t dslreg = PIPEDSL(pipe);
4321 u32 temp;
4322
4323 temp = I915_READ(dslreg);
4324 udelay(500);
4325 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4326 if (wait_for(I915_READ(dslreg) != temp, 5))
4327 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4328 }
4329 }
4330
4331 static int
4332 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4333 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4334 int src_w, int src_h, int dst_w, int dst_h)
4335 {
4336 struct intel_crtc_scaler_state *scaler_state =
4337 &crtc_state->scaler_state;
4338 struct intel_crtc *intel_crtc =
4339 to_intel_crtc(crtc_state->base.crtc);
4340 int need_scaling;
4341
4342 need_scaling = intel_rotation_90_or_270(rotation) ?
4343 (src_h != dst_w || src_w != dst_h):
4344 (src_w != dst_w || src_h != dst_h);
4345
4346 /*
4347 * if plane is being disabled or scaler is no more required or force detach
4348 * - free scaler binded to this plane/crtc
4349 * - in order to do this, update crtc->scaler_usage
4350 *
4351 * Here scaler state in crtc_state is set free so that
4352 * scaler can be assigned to other user. Actual register
4353 * update to free the scaler is done in plane/panel-fit programming.
4354 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4355 */
4356 if (force_detach || !need_scaling) {
4357 if (*scaler_id >= 0) {
4358 scaler_state->scaler_users &= ~(1 << scaler_user);
4359 scaler_state->scalers[*scaler_id].in_use = 0;
4360
4361 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4362 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4363 intel_crtc->pipe, scaler_user, *scaler_id,
4364 scaler_state->scaler_users);
4365 *scaler_id = -1;
4366 }
4367 return 0;
4368 }
4369
4370 /* range checks */
4371 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4372 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4373
4374 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4375 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4376 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4377 "size is out of scaler range\n",
4378 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4379 return -EINVAL;
4380 }
4381
4382 /* mark this plane as a scaler user in crtc_state */
4383 scaler_state->scaler_users |= (1 << scaler_user);
4384 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4385 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4386 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4387 scaler_state->scaler_users);
4388
4389 return 0;
4390 }
4391
4392 /**
4393 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4394 *
4395 * @state: crtc's scaler state
4396 *
4397 * Return
4398 * 0 - scaler_usage updated successfully
4399 * error - requested scaling cannot be supported or other error condition
4400 */
4401 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4402 {
4403 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4404 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4405
4406 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4407 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4408
4409 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4410 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4411 state->pipe_src_w, state->pipe_src_h,
4412 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4413 }
4414
4415 /**
4416 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4417 *
4418 * @state: crtc's scaler state
4419 * @plane_state: atomic plane state to update
4420 *
4421 * Return
4422 * 0 - scaler_usage updated successfully
4423 * error - requested scaling cannot be supported or other error condition
4424 */
4425 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4426 struct intel_plane_state *plane_state)
4427 {
4428
4429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4430 struct intel_plane *intel_plane =
4431 to_intel_plane(plane_state->base.plane);
4432 struct drm_framebuffer *fb = plane_state->base.fb;
4433 int ret;
4434
4435 bool force_detach = !fb || !plane_state->visible;
4436
4437 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4438 intel_plane->base.base.id, intel_crtc->pipe,
4439 drm_plane_index(&intel_plane->base));
4440
4441 ret = skl_update_scaler(crtc_state, force_detach,
4442 drm_plane_index(&intel_plane->base),
4443 &plane_state->scaler_id,
4444 plane_state->base.rotation,
4445 drm_rect_width(&plane_state->src) >> 16,
4446 drm_rect_height(&plane_state->src) >> 16,
4447 drm_rect_width(&plane_state->dst),
4448 drm_rect_height(&plane_state->dst));
4449
4450 if (ret || plane_state->scaler_id < 0)
4451 return ret;
4452
4453 /* check colorkey */
4454 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4455 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4456 intel_plane->base.base.id);
4457 return -EINVAL;
4458 }
4459
4460 /* Check src format */
4461 switch (fb->pixel_format) {
4462 case DRM_FORMAT_RGB565:
4463 case DRM_FORMAT_XBGR8888:
4464 case DRM_FORMAT_XRGB8888:
4465 case DRM_FORMAT_ABGR8888:
4466 case DRM_FORMAT_ARGB8888:
4467 case DRM_FORMAT_XRGB2101010:
4468 case DRM_FORMAT_XBGR2101010:
4469 case DRM_FORMAT_YUYV:
4470 case DRM_FORMAT_YVYU:
4471 case DRM_FORMAT_UYVY:
4472 case DRM_FORMAT_VYUY:
4473 break;
4474 default:
4475 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4476 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4477 return -EINVAL;
4478 }
4479
4480 return 0;
4481 }
4482
4483 static void skylake_scaler_disable(struct intel_crtc *crtc)
4484 {
4485 int i;
4486
4487 for (i = 0; i < crtc->num_scalers; i++)
4488 skl_detach_scaler(crtc, i);
4489 }
4490
4491 static void skylake_pfit_enable(struct intel_crtc *crtc)
4492 {
4493 struct drm_device *dev = crtc->base.dev;
4494 struct drm_i915_private *dev_priv = dev->dev_private;
4495 int pipe = crtc->pipe;
4496 struct intel_crtc_scaler_state *scaler_state =
4497 &crtc->config->scaler_state;
4498
4499 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4500
4501 if (crtc->config->pch_pfit.enabled) {
4502 int id;
4503
4504 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4505 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4506 return;
4507 }
4508
4509 id = scaler_state->scaler_id;
4510 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4511 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4512 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4513 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4514
4515 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4516 }
4517 }
4518
4519 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4520 {
4521 struct drm_device *dev = crtc->base.dev;
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 int pipe = crtc->pipe;
4524
4525 if (crtc->config->pch_pfit.enabled) {
4526 /* Force use of hard-coded filter coefficients
4527 * as some pre-programmed values are broken,
4528 * e.g. x201.
4529 */
4530 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4531 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4532 PF_PIPE_SEL_IVB(pipe));
4533 else
4534 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4535 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4536 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4537 }
4538 }
4539
4540 void hsw_enable_ips(struct intel_crtc *crtc)
4541 {
4542 struct drm_device *dev = crtc->base.dev;
4543 struct drm_i915_private *dev_priv = dev->dev_private;
4544
4545 if (!crtc->config->ips_enabled)
4546 return;
4547
4548 /* We can only enable IPS after we enable a plane and wait for a vblank */
4549 intel_wait_for_vblank(dev, crtc->pipe);
4550
4551 assert_plane_enabled(dev_priv, crtc->plane);
4552 if (IS_BROADWELL(dev)) {
4553 mutex_lock(&dev_priv->rps.hw_lock);
4554 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4555 mutex_unlock(&dev_priv->rps.hw_lock);
4556 /* Quoting Art Runyan: "its not safe to expect any particular
4557 * value in IPS_CTL bit 31 after enabling IPS through the
4558 * mailbox." Moreover, the mailbox may return a bogus state,
4559 * so we need to just enable it and continue on.
4560 */
4561 } else {
4562 I915_WRITE(IPS_CTL, IPS_ENABLE);
4563 /* The bit only becomes 1 in the next vblank, so this wait here
4564 * is essentially intel_wait_for_vblank. If we don't have this
4565 * and don't wait for vblanks until the end of crtc_enable, then
4566 * the HW state readout code will complain that the expected
4567 * IPS_CTL value is not the one we read. */
4568 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4569 DRM_ERROR("Timed out waiting for IPS enable\n");
4570 }
4571 }
4572
4573 void hsw_disable_ips(struct intel_crtc *crtc)
4574 {
4575 struct drm_device *dev = crtc->base.dev;
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577
4578 if (!crtc->config->ips_enabled)
4579 return;
4580
4581 assert_plane_enabled(dev_priv, crtc->plane);
4582 if (IS_BROADWELL(dev)) {
4583 mutex_lock(&dev_priv->rps.hw_lock);
4584 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4585 mutex_unlock(&dev_priv->rps.hw_lock);
4586 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4587 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4588 DRM_ERROR("Timed out waiting for IPS disable\n");
4589 } else {
4590 I915_WRITE(IPS_CTL, 0);
4591 POSTING_READ(IPS_CTL);
4592 }
4593
4594 /* We need to wait for a vblank before we can disable the plane. */
4595 intel_wait_for_vblank(dev, crtc->pipe);
4596 }
4597
4598 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4599 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4600 {
4601 struct drm_device *dev = crtc->dev;
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604 enum pipe pipe = intel_crtc->pipe;
4605 int i;
4606 bool reenable_ips = false;
4607
4608 /* The clocks have to be on to load the palette. */
4609 if (!crtc->state->active)
4610 return;
4611
4612 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4613 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4614 assert_dsi_pll_enabled(dev_priv);
4615 else
4616 assert_pll_enabled(dev_priv, pipe);
4617 }
4618
4619 /* Workaround : Do not read or write the pipe palette/gamma data while
4620 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4621 */
4622 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4623 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4624 GAMMA_MODE_MODE_SPLIT)) {
4625 hsw_disable_ips(intel_crtc);
4626 reenable_ips = true;
4627 }
4628
4629 for (i = 0; i < 256; i++) {
4630 i915_reg_t palreg;
4631
4632 if (HAS_GMCH_DISPLAY(dev))
4633 palreg = PALETTE(pipe, i);
4634 else
4635 palreg = LGC_PALETTE(pipe, i);
4636
4637 I915_WRITE(palreg,
4638 (intel_crtc->lut_r[i] << 16) |
4639 (intel_crtc->lut_g[i] << 8) |
4640 intel_crtc->lut_b[i]);
4641 }
4642
4643 if (reenable_ips)
4644 hsw_enable_ips(intel_crtc);
4645 }
4646
4647 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4648 {
4649 if (intel_crtc->overlay) {
4650 struct drm_device *dev = intel_crtc->base.dev;
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652
4653 mutex_lock(&dev->struct_mutex);
4654 dev_priv->mm.interruptible = false;
4655 (void) intel_overlay_switch_off(intel_crtc->overlay);
4656 dev_priv->mm.interruptible = true;
4657 mutex_unlock(&dev->struct_mutex);
4658 }
4659
4660 /* Let userspace switch the overlay on again. In most cases userspace
4661 * has to recompute where to put it anyway.
4662 */
4663 }
4664
4665 /**
4666 * intel_post_enable_primary - Perform operations after enabling primary plane
4667 * @crtc: the CRTC whose primary plane was just enabled
4668 *
4669 * Performs potentially sleeping operations that must be done after the primary
4670 * plane is enabled, such as updating FBC and IPS. Note that this may be
4671 * called due to an explicit primary plane update, or due to an implicit
4672 * re-enable that is caused when a sprite plane is updated to no longer
4673 * completely hide the primary plane.
4674 */
4675 static void
4676 intel_post_enable_primary(struct drm_crtc *crtc)
4677 {
4678 struct drm_device *dev = crtc->dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4681 int pipe = intel_crtc->pipe;
4682
4683 /*
4684 * BDW signals flip done immediately if the plane
4685 * is disabled, even if the plane enable is already
4686 * armed to occur at the next vblank :(
4687 */
4688 if (IS_BROADWELL(dev))
4689 intel_wait_for_vblank(dev, pipe);
4690
4691 /*
4692 * FIXME IPS should be fine as long as one plane is
4693 * enabled, but in practice it seems to have problems
4694 * when going from primary only to sprite only and vice
4695 * versa.
4696 */
4697 hsw_enable_ips(intel_crtc);
4698
4699 /*
4700 * Gen2 reports pipe underruns whenever all planes are disabled.
4701 * So don't enable underrun reporting before at least some planes
4702 * are enabled.
4703 * FIXME: Need to fix the logic to work when we turn off all planes
4704 * but leave the pipe running.
4705 */
4706 if (IS_GEN2(dev))
4707 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4708
4709 /* Underruns don't always raise interrupts, so check manually. */
4710 intel_check_cpu_fifo_underruns(dev_priv);
4711 intel_check_pch_fifo_underruns(dev_priv);
4712 }
4713
4714 /**
4715 * intel_pre_disable_primary - Perform operations before disabling primary plane
4716 * @crtc: the CRTC whose primary plane is to be disabled
4717 *
4718 * Performs potentially sleeping operations that must be done before the
4719 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4720 * be called due to an explicit primary plane update, or due to an implicit
4721 * disable that is caused when a sprite plane completely hides the primary
4722 * plane.
4723 */
4724 static void
4725 intel_pre_disable_primary(struct drm_crtc *crtc)
4726 {
4727 struct drm_device *dev = crtc->dev;
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4730 int pipe = intel_crtc->pipe;
4731
4732 /*
4733 * Gen2 reports pipe underruns whenever all planes are disabled.
4734 * So diasble underrun reporting before all the planes get disabled.
4735 * FIXME: Need to fix the logic to work when we turn off all planes
4736 * but leave the pipe running.
4737 */
4738 if (IS_GEN2(dev))
4739 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4740
4741 /*
4742 * Vblank time updates from the shadow to live plane control register
4743 * are blocked if the memory self-refresh mode is active at that
4744 * moment. So to make sure the plane gets truly disabled, disable
4745 * first the self-refresh mode. The self-refresh enable bit in turn
4746 * will be checked/applied by the HW only at the next frame start
4747 * event which is after the vblank start event, so we need to have a
4748 * wait-for-vblank between disabling the plane and the pipe.
4749 */
4750 if (HAS_GMCH_DISPLAY(dev)) {
4751 intel_set_memory_cxsr(dev_priv, false);
4752 dev_priv->wm.vlv.cxsr = false;
4753 intel_wait_for_vblank(dev, pipe);
4754 }
4755
4756 /*
4757 * FIXME IPS should be fine as long as one plane is
4758 * enabled, but in practice it seems to have problems
4759 * when going from primary only to sprite only and vice
4760 * versa.
4761 */
4762 hsw_disable_ips(intel_crtc);
4763 }
4764
4765 static void intel_post_plane_update(struct intel_crtc *crtc)
4766 {
4767 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4768 struct drm_device *dev = crtc->base.dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770
4771 if (atomic->wait_vblank)
4772 intel_wait_for_vblank(dev, crtc->pipe);
4773
4774 intel_frontbuffer_flip(dev, atomic->fb_bits);
4775
4776 if (atomic->disable_cxsr)
4777 crtc->wm.cxsr_allowed = true;
4778
4779 if (crtc->atomic.update_wm_post)
4780 intel_update_watermarks(&crtc->base);
4781
4782 if (atomic->update_fbc)
4783 intel_fbc_update(dev_priv);
4784
4785 if (atomic->post_enable_primary)
4786 intel_post_enable_primary(&crtc->base);
4787
4788 memset(atomic, 0, sizeof(*atomic));
4789 }
4790
4791 static void intel_pre_plane_update(struct intel_crtc *crtc)
4792 {
4793 struct drm_device *dev = crtc->base.dev;
4794 struct drm_i915_private *dev_priv = dev->dev_private;
4795 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4796
4797 if (atomic->disable_fbc)
4798 intel_fbc_disable_crtc(crtc);
4799
4800 if (crtc->atomic.disable_ips)
4801 hsw_disable_ips(crtc);
4802
4803 if (atomic->pre_disable_primary)
4804 intel_pre_disable_primary(&crtc->base);
4805
4806 if (atomic->disable_cxsr) {
4807 crtc->wm.cxsr_allowed = false;
4808 intel_set_memory_cxsr(dev_priv, false);
4809 }
4810 }
4811
4812 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4813 {
4814 struct drm_device *dev = crtc->dev;
4815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4816 struct drm_plane *p;
4817 int pipe = intel_crtc->pipe;
4818
4819 intel_crtc_dpms_overlay_disable(intel_crtc);
4820
4821 drm_for_each_plane_mask(p, dev, plane_mask)
4822 to_intel_plane(p)->disable_plane(p, crtc);
4823
4824 /*
4825 * FIXME: Once we grow proper nuclear flip support out of this we need
4826 * to compute the mask of flip planes precisely. For the time being
4827 * consider this a flip to a NULL plane.
4828 */
4829 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4830 }
4831
4832 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4833 {
4834 struct drm_device *dev = crtc->dev;
4835 struct drm_i915_private *dev_priv = dev->dev_private;
4836 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4837 struct intel_encoder *encoder;
4838 int pipe = intel_crtc->pipe;
4839
4840 if (WARN_ON(intel_crtc->active))
4841 return;
4842
4843 if (intel_crtc->config->has_pch_encoder)
4844 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4845
4846 if (intel_crtc->config->has_pch_encoder)
4847 intel_prepare_shared_dpll(intel_crtc);
4848
4849 if (intel_crtc->config->has_dp_encoder)
4850 intel_dp_set_m_n(intel_crtc, M1_N1);
4851
4852 intel_set_pipe_timings(intel_crtc);
4853
4854 if (intel_crtc->config->has_pch_encoder) {
4855 intel_cpu_transcoder_set_m_n(intel_crtc,
4856 &intel_crtc->config->fdi_m_n, NULL);
4857 }
4858
4859 ironlake_set_pipeconf(crtc);
4860
4861 intel_crtc->active = true;
4862
4863 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4864
4865 for_each_encoder_on_crtc(dev, crtc, encoder)
4866 if (encoder->pre_enable)
4867 encoder->pre_enable(encoder);
4868
4869 if (intel_crtc->config->has_pch_encoder) {
4870 /* Note: FDI PLL enabling _must_ be done before we enable the
4871 * cpu pipes, hence this is separate from all the other fdi/pch
4872 * enabling. */
4873 ironlake_fdi_pll_enable(intel_crtc);
4874 } else {
4875 assert_fdi_tx_disabled(dev_priv, pipe);
4876 assert_fdi_rx_disabled(dev_priv, pipe);
4877 }
4878
4879 ironlake_pfit_enable(intel_crtc);
4880
4881 /*
4882 * On ILK+ LUT must be loaded before the pipe is running but with
4883 * clocks enabled
4884 */
4885 intel_crtc_load_lut(crtc);
4886
4887 intel_update_watermarks(crtc);
4888 intel_enable_pipe(intel_crtc);
4889
4890 if (intel_crtc->config->has_pch_encoder)
4891 ironlake_pch_enable(crtc);
4892
4893 assert_vblank_disabled(crtc);
4894 drm_crtc_vblank_on(crtc);
4895
4896 for_each_encoder_on_crtc(dev, crtc, encoder)
4897 encoder->enable(encoder);
4898
4899 if (HAS_PCH_CPT(dev))
4900 cpt_verify_modeset(dev, intel_crtc->pipe);
4901
4902 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4903 if (intel_crtc->config->has_pch_encoder)
4904 intel_wait_for_vblank(dev, pipe);
4905 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4906 }
4907
4908 /* IPS only exists on ULT machines and is tied to pipe A. */
4909 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4910 {
4911 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4912 }
4913
4914 static void haswell_crtc_enable(struct drm_crtc *crtc)
4915 {
4916 struct drm_device *dev = crtc->dev;
4917 struct drm_i915_private *dev_priv = dev->dev_private;
4918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4919 struct intel_encoder *encoder;
4920 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4921 struct intel_crtc_state *pipe_config =
4922 to_intel_crtc_state(crtc->state);
4923 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4924
4925 if (WARN_ON(intel_crtc->active))
4926 return;
4927
4928 if (intel_crtc->config->has_pch_encoder)
4929 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4930 false);
4931
4932 if (intel_crtc_to_shared_dpll(intel_crtc))
4933 intel_enable_shared_dpll(intel_crtc);
4934
4935 if (intel_crtc->config->has_dp_encoder)
4936 intel_dp_set_m_n(intel_crtc, M1_N1);
4937
4938 intel_set_pipe_timings(intel_crtc);
4939
4940 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4941 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4942 intel_crtc->config->pixel_multiplier - 1);
4943 }
4944
4945 if (intel_crtc->config->has_pch_encoder) {
4946 intel_cpu_transcoder_set_m_n(intel_crtc,
4947 &intel_crtc->config->fdi_m_n, NULL);
4948 }
4949
4950 haswell_set_pipeconf(crtc);
4951
4952 intel_set_pipe_csc(crtc);
4953
4954 intel_crtc->active = true;
4955
4956 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4957 for_each_encoder_on_crtc(dev, crtc, encoder) {
4958 if (encoder->pre_pll_enable)
4959 encoder->pre_pll_enable(encoder);
4960 if (encoder->pre_enable)
4961 encoder->pre_enable(encoder);
4962 }
4963
4964 if (intel_crtc->config->has_pch_encoder)
4965 dev_priv->display.fdi_link_train(crtc);
4966
4967 if (!is_dsi)
4968 intel_ddi_enable_pipe_clock(intel_crtc);
4969
4970 if (INTEL_INFO(dev)->gen >= 9)
4971 skylake_pfit_enable(intel_crtc);
4972 else
4973 ironlake_pfit_enable(intel_crtc);
4974
4975 /*
4976 * On ILK+ LUT must be loaded before the pipe is running but with
4977 * clocks enabled
4978 */
4979 intel_crtc_load_lut(crtc);
4980
4981 intel_ddi_set_pipe_settings(crtc);
4982 if (!is_dsi)
4983 intel_ddi_enable_transcoder_func(crtc);
4984
4985 intel_update_watermarks(crtc);
4986 intel_enable_pipe(intel_crtc);
4987
4988 if (intel_crtc->config->has_pch_encoder)
4989 lpt_pch_enable(crtc);
4990
4991 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
4992 intel_ddi_set_vc_payload_alloc(crtc, true);
4993
4994 assert_vblank_disabled(crtc);
4995 drm_crtc_vblank_on(crtc);
4996
4997 for_each_encoder_on_crtc(dev, crtc, encoder) {
4998 encoder->enable(encoder);
4999 intel_opregion_notify_encoder(encoder, true);
5000 }
5001
5002 if (intel_crtc->config->has_pch_encoder)
5003 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5004 true);
5005
5006 /* If we change the relative order between pipe/planes enabling, we need
5007 * to change the workaround. */
5008 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5009 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5010 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5011 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5012 }
5013 }
5014
5015 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5016 {
5017 struct drm_device *dev = crtc->base.dev;
5018 struct drm_i915_private *dev_priv = dev->dev_private;
5019 int pipe = crtc->pipe;
5020
5021 /* To avoid upsetting the power well on haswell only disable the pfit if
5022 * it's in use. The hw state code will make sure we get this right. */
5023 if (force || crtc->config->pch_pfit.enabled) {
5024 I915_WRITE(PF_CTL(pipe), 0);
5025 I915_WRITE(PF_WIN_POS(pipe), 0);
5026 I915_WRITE(PF_WIN_SZ(pipe), 0);
5027 }
5028 }
5029
5030 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5031 {
5032 struct drm_device *dev = crtc->dev;
5033 struct drm_i915_private *dev_priv = dev->dev_private;
5034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5035 struct intel_encoder *encoder;
5036 int pipe = intel_crtc->pipe;
5037
5038 if (intel_crtc->config->has_pch_encoder)
5039 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5040
5041 for_each_encoder_on_crtc(dev, crtc, encoder)
5042 encoder->disable(encoder);
5043
5044 drm_crtc_vblank_off(crtc);
5045 assert_vblank_disabled(crtc);
5046
5047 intel_disable_pipe(intel_crtc);
5048
5049 ironlake_pfit_disable(intel_crtc, false);
5050
5051 if (intel_crtc->config->has_pch_encoder)
5052 ironlake_fdi_disable(crtc);
5053
5054 for_each_encoder_on_crtc(dev, crtc, encoder)
5055 if (encoder->post_disable)
5056 encoder->post_disable(encoder);
5057
5058 if (intel_crtc->config->has_pch_encoder) {
5059 ironlake_disable_pch_transcoder(dev_priv, pipe);
5060
5061 if (HAS_PCH_CPT(dev)) {
5062 i915_reg_t reg;
5063 u32 temp;
5064
5065 /* disable TRANS_DP_CTL */
5066 reg = TRANS_DP_CTL(pipe);
5067 temp = I915_READ(reg);
5068 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5069 TRANS_DP_PORT_SEL_MASK);
5070 temp |= TRANS_DP_PORT_SEL_NONE;
5071 I915_WRITE(reg, temp);
5072
5073 /* disable DPLL_SEL */
5074 temp = I915_READ(PCH_DPLL_SEL);
5075 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5076 I915_WRITE(PCH_DPLL_SEL, temp);
5077 }
5078
5079 ironlake_fdi_pll_disable(intel_crtc);
5080 }
5081
5082 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5083 }
5084
5085 static void haswell_crtc_disable(struct drm_crtc *crtc)
5086 {
5087 struct drm_device *dev = crtc->dev;
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5090 struct intel_encoder *encoder;
5091 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5092 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5093
5094 if (intel_crtc->config->has_pch_encoder)
5095 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5096 false);
5097
5098 for_each_encoder_on_crtc(dev, crtc, encoder) {
5099 intel_opregion_notify_encoder(encoder, false);
5100 encoder->disable(encoder);
5101 }
5102
5103 drm_crtc_vblank_off(crtc);
5104 assert_vblank_disabled(crtc);
5105
5106 intel_disable_pipe(intel_crtc);
5107
5108 if (intel_crtc->config->dp_encoder_is_mst)
5109 intel_ddi_set_vc_payload_alloc(crtc, false);
5110
5111 if (!is_dsi)
5112 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5113
5114 if (INTEL_INFO(dev)->gen >= 9)
5115 skylake_scaler_disable(intel_crtc);
5116 else
5117 ironlake_pfit_disable(intel_crtc, false);
5118
5119 if (!is_dsi)
5120 intel_ddi_disable_pipe_clock(intel_crtc);
5121
5122 if (intel_crtc->config->has_pch_encoder) {
5123 lpt_disable_pch_transcoder(dev_priv);
5124 intel_ddi_fdi_disable(crtc);
5125 }
5126
5127 for_each_encoder_on_crtc(dev, crtc, encoder)
5128 if (encoder->post_disable)
5129 encoder->post_disable(encoder);
5130
5131 if (intel_crtc->config->has_pch_encoder)
5132 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5133 true);
5134 }
5135
5136 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5137 {
5138 struct drm_device *dev = crtc->base.dev;
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140 struct intel_crtc_state *pipe_config = crtc->config;
5141
5142 if (!pipe_config->gmch_pfit.control)
5143 return;
5144
5145 /*
5146 * The panel fitter should only be adjusted whilst the pipe is disabled,
5147 * according to register description and PRM.
5148 */
5149 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5150 assert_pipe_disabled(dev_priv, crtc->pipe);
5151
5152 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5153 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5154
5155 /* Border color in case we don't scale up to the full screen. Black by
5156 * default, change to something else for debugging. */
5157 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5158 }
5159
5160 static enum intel_display_power_domain port_to_power_domain(enum port port)
5161 {
5162 switch (port) {
5163 case PORT_A:
5164 return POWER_DOMAIN_PORT_DDI_A_LANES;
5165 case PORT_B:
5166 return POWER_DOMAIN_PORT_DDI_B_LANES;
5167 case PORT_C:
5168 return POWER_DOMAIN_PORT_DDI_C_LANES;
5169 case PORT_D:
5170 return POWER_DOMAIN_PORT_DDI_D_LANES;
5171 case PORT_E:
5172 return POWER_DOMAIN_PORT_DDI_E_LANES;
5173 default:
5174 MISSING_CASE(port);
5175 return POWER_DOMAIN_PORT_OTHER;
5176 }
5177 }
5178
5179 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5180 {
5181 switch (port) {
5182 case PORT_A:
5183 return POWER_DOMAIN_AUX_A;
5184 case PORT_B:
5185 return POWER_DOMAIN_AUX_B;
5186 case PORT_C:
5187 return POWER_DOMAIN_AUX_C;
5188 case PORT_D:
5189 return POWER_DOMAIN_AUX_D;
5190 case PORT_E:
5191 /* FIXME: Check VBT for actual wiring of PORT E */
5192 return POWER_DOMAIN_AUX_D;
5193 default:
5194 MISSING_CASE(port);
5195 return POWER_DOMAIN_AUX_A;
5196 }
5197 }
5198
5199 #define for_each_power_domain(domain, mask) \
5200 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5201 if ((1 << (domain)) & (mask))
5202
5203 enum intel_display_power_domain
5204 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5205 {
5206 struct drm_device *dev = intel_encoder->base.dev;
5207 struct intel_digital_port *intel_dig_port;
5208
5209 switch (intel_encoder->type) {
5210 case INTEL_OUTPUT_UNKNOWN:
5211 /* Only DDI platforms should ever use this output type */
5212 WARN_ON_ONCE(!HAS_DDI(dev));
5213 case INTEL_OUTPUT_DISPLAYPORT:
5214 case INTEL_OUTPUT_HDMI:
5215 case INTEL_OUTPUT_EDP:
5216 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5217 return port_to_power_domain(intel_dig_port->port);
5218 case INTEL_OUTPUT_DP_MST:
5219 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5220 return port_to_power_domain(intel_dig_port->port);
5221 case INTEL_OUTPUT_ANALOG:
5222 return POWER_DOMAIN_PORT_CRT;
5223 case INTEL_OUTPUT_DSI:
5224 return POWER_DOMAIN_PORT_DSI;
5225 default:
5226 return POWER_DOMAIN_PORT_OTHER;
5227 }
5228 }
5229
5230 enum intel_display_power_domain
5231 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5232 {
5233 struct drm_device *dev = intel_encoder->base.dev;
5234 struct intel_digital_port *intel_dig_port;
5235
5236 switch (intel_encoder->type) {
5237 case INTEL_OUTPUT_UNKNOWN:
5238 case INTEL_OUTPUT_HDMI:
5239 /*
5240 * Only DDI platforms should ever use these output types.
5241 * We can get here after the HDMI detect code has already set
5242 * the type of the shared encoder. Since we can't be sure
5243 * what's the status of the given connectors, play safe and
5244 * run the DP detection too.
5245 */
5246 WARN_ON_ONCE(!HAS_DDI(dev));
5247 case INTEL_OUTPUT_DISPLAYPORT:
5248 case INTEL_OUTPUT_EDP:
5249 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5250 return port_to_aux_power_domain(intel_dig_port->port);
5251 case INTEL_OUTPUT_DP_MST:
5252 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5253 return port_to_aux_power_domain(intel_dig_port->port);
5254 default:
5255 MISSING_CASE(intel_encoder->type);
5256 return POWER_DOMAIN_AUX_A;
5257 }
5258 }
5259
5260 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5261 {
5262 struct drm_device *dev = crtc->dev;
5263 struct intel_encoder *intel_encoder;
5264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5265 enum pipe pipe = intel_crtc->pipe;
5266 unsigned long mask;
5267 enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5268
5269 if (!crtc->state->active)
5270 return 0;
5271
5272 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5273 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5274 if (intel_crtc->config->pch_pfit.enabled ||
5275 intel_crtc->config->pch_pfit.force_thru)
5276 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5277
5278 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5279 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5280
5281 return mask;
5282 }
5283
5284 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5285 {
5286 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5288 enum intel_display_power_domain domain;
5289 unsigned long domains, new_domains, old_domains;
5290
5291 old_domains = intel_crtc->enabled_power_domains;
5292 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5293
5294 domains = new_domains & ~old_domains;
5295
5296 for_each_power_domain(domain, domains)
5297 intel_display_power_get(dev_priv, domain);
5298
5299 return old_domains & ~new_domains;
5300 }
5301
5302 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5303 unsigned long domains)
5304 {
5305 enum intel_display_power_domain domain;
5306
5307 for_each_power_domain(domain, domains)
5308 intel_display_power_put(dev_priv, domain);
5309 }
5310
5311 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5312 {
5313 struct drm_device *dev = state->dev;
5314 struct drm_i915_private *dev_priv = dev->dev_private;
5315 unsigned long put_domains[I915_MAX_PIPES] = {};
5316 struct drm_crtc_state *crtc_state;
5317 struct drm_crtc *crtc;
5318 int i;
5319
5320 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5321 if (needs_modeset(crtc->state))
5322 put_domains[to_intel_crtc(crtc)->pipe] =
5323 modeset_get_crtc_power_domains(crtc);
5324 }
5325
5326 if (dev_priv->display.modeset_commit_cdclk) {
5327 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5328
5329 if (cdclk != dev_priv->cdclk_freq &&
5330 !WARN_ON(!state->allow_modeset))
5331 dev_priv->display.modeset_commit_cdclk(state);
5332 }
5333
5334 for (i = 0; i < I915_MAX_PIPES; i++)
5335 if (put_domains[i])
5336 modeset_put_power_domains(dev_priv, put_domains[i]);
5337 }
5338
5339 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5340 {
5341 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5342
5343 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5344 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5345 return max_cdclk_freq;
5346 else if (IS_CHERRYVIEW(dev_priv))
5347 return max_cdclk_freq*95/100;
5348 else if (INTEL_INFO(dev_priv)->gen < 4)
5349 return 2*max_cdclk_freq*90/100;
5350 else
5351 return max_cdclk_freq*90/100;
5352 }
5353
5354 static void intel_update_max_cdclk(struct drm_device *dev)
5355 {
5356 struct drm_i915_private *dev_priv = dev->dev_private;
5357
5358 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5359 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5360
5361 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5362 dev_priv->max_cdclk_freq = 675000;
5363 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5364 dev_priv->max_cdclk_freq = 540000;
5365 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5366 dev_priv->max_cdclk_freq = 450000;
5367 else
5368 dev_priv->max_cdclk_freq = 337500;
5369 } else if (IS_BROADWELL(dev)) {
5370 /*
5371 * FIXME with extra cooling we can allow
5372 * 540 MHz for ULX and 675 Mhz for ULT.
5373 * How can we know if extra cooling is
5374 * available? PCI ID, VTB, something else?
5375 */
5376 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5377 dev_priv->max_cdclk_freq = 450000;
5378 else if (IS_BDW_ULX(dev))
5379 dev_priv->max_cdclk_freq = 450000;
5380 else if (IS_BDW_ULT(dev))
5381 dev_priv->max_cdclk_freq = 540000;
5382 else
5383 dev_priv->max_cdclk_freq = 675000;
5384 } else if (IS_CHERRYVIEW(dev)) {
5385 dev_priv->max_cdclk_freq = 320000;
5386 } else if (IS_VALLEYVIEW(dev)) {
5387 dev_priv->max_cdclk_freq = 400000;
5388 } else {
5389 /* otherwise assume cdclk is fixed */
5390 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5391 }
5392
5393 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5394
5395 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5396 dev_priv->max_cdclk_freq);
5397
5398 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5399 dev_priv->max_dotclk_freq);
5400 }
5401
5402 static void intel_update_cdclk(struct drm_device *dev)
5403 {
5404 struct drm_i915_private *dev_priv = dev->dev_private;
5405
5406 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5407 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5408 dev_priv->cdclk_freq);
5409
5410 /*
5411 * Program the gmbus_freq based on the cdclk frequency.
5412 * BSpec erroneously claims we should aim for 4MHz, but
5413 * in fact 1MHz is the correct frequency.
5414 */
5415 if (IS_VALLEYVIEW(dev)) {
5416 /*
5417 * Program the gmbus_freq based on the cdclk frequency.
5418 * BSpec erroneously claims we should aim for 4MHz, but
5419 * in fact 1MHz is the correct frequency.
5420 */
5421 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5422 }
5423
5424 if (dev_priv->max_cdclk_freq == 0)
5425 intel_update_max_cdclk(dev);
5426 }
5427
5428 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5429 {
5430 struct drm_i915_private *dev_priv = dev->dev_private;
5431 uint32_t divider;
5432 uint32_t ratio;
5433 uint32_t current_freq;
5434 int ret;
5435
5436 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5437 switch (frequency) {
5438 case 144000:
5439 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5440 ratio = BXT_DE_PLL_RATIO(60);
5441 break;
5442 case 288000:
5443 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5444 ratio = BXT_DE_PLL_RATIO(60);
5445 break;
5446 case 384000:
5447 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5448 ratio = BXT_DE_PLL_RATIO(60);
5449 break;
5450 case 576000:
5451 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5452 ratio = BXT_DE_PLL_RATIO(60);
5453 break;
5454 case 624000:
5455 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5456 ratio = BXT_DE_PLL_RATIO(65);
5457 break;
5458 case 19200:
5459 /*
5460 * Bypass frequency with DE PLL disabled. Init ratio, divider
5461 * to suppress GCC warning.
5462 */
5463 ratio = 0;
5464 divider = 0;
5465 break;
5466 default:
5467 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5468
5469 return;
5470 }
5471
5472 mutex_lock(&dev_priv->rps.hw_lock);
5473 /* Inform power controller of upcoming frequency change */
5474 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5475 0x80000000);
5476 mutex_unlock(&dev_priv->rps.hw_lock);
5477
5478 if (ret) {
5479 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5480 ret, frequency);
5481 return;
5482 }
5483
5484 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5485 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5486 current_freq = current_freq * 500 + 1000;
5487
5488 /*
5489 * DE PLL has to be disabled when
5490 * - setting to 19.2MHz (bypass, PLL isn't used)
5491 * - before setting to 624MHz (PLL needs toggling)
5492 * - before setting to any frequency from 624MHz (PLL needs toggling)
5493 */
5494 if (frequency == 19200 || frequency == 624000 ||
5495 current_freq == 624000) {
5496 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5497 /* Timeout 200us */
5498 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5499 1))
5500 DRM_ERROR("timout waiting for DE PLL unlock\n");
5501 }
5502
5503 if (frequency != 19200) {
5504 uint32_t val;
5505
5506 val = I915_READ(BXT_DE_PLL_CTL);
5507 val &= ~BXT_DE_PLL_RATIO_MASK;
5508 val |= ratio;
5509 I915_WRITE(BXT_DE_PLL_CTL, val);
5510
5511 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5512 /* Timeout 200us */
5513 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5514 DRM_ERROR("timeout waiting for DE PLL lock\n");
5515
5516 val = I915_READ(CDCLK_CTL);
5517 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5518 val |= divider;
5519 /*
5520 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5521 * enable otherwise.
5522 */
5523 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5524 if (frequency >= 500000)
5525 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5526
5527 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5528 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5529 val |= (frequency - 1000) / 500;
5530 I915_WRITE(CDCLK_CTL, val);
5531 }
5532
5533 mutex_lock(&dev_priv->rps.hw_lock);
5534 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5535 DIV_ROUND_UP(frequency, 25000));
5536 mutex_unlock(&dev_priv->rps.hw_lock);
5537
5538 if (ret) {
5539 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5540 ret, frequency);
5541 return;
5542 }
5543
5544 intel_update_cdclk(dev);
5545 }
5546
5547 void broxton_init_cdclk(struct drm_device *dev)
5548 {
5549 struct drm_i915_private *dev_priv = dev->dev_private;
5550 uint32_t val;
5551
5552 /*
5553 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5554 * or else the reset will hang because there is no PCH to respond.
5555 * Move the handshake programming to initialization sequence.
5556 * Previously was left up to BIOS.
5557 */
5558 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5559 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5560 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5561
5562 /* Enable PG1 for cdclk */
5563 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5564
5565 /* check if cd clock is enabled */
5566 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5567 DRM_DEBUG_KMS("Display already initialized\n");
5568 return;
5569 }
5570
5571 /*
5572 * FIXME:
5573 * - The initial CDCLK needs to be read from VBT.
5574 * Need to make this change after VBT has changes for BXT.
5575 * - check if setting the max (or any) cdclk freq is really necessary
5576 * here, it belongs to modeset time
5577 */
5578 broxton_set_cdclk(dev, 624000);
5579
5580 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5581 POSTING_READ(DBUF_CTL);
5582
5583 udelay(10);
5584
5585 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5586 DRM_ERROR("DBuf power enable timeout!\n");
5587 }
5588
5589 void broxton_uninit_cdclk(struct drm_device *dev)
5590 {
5591 struct drm_i915_private *dev_priv = dev->dev_private;
5592
5593 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5594 POSTING_READ(DBUF_CTL);
5595
5596 udelay(10);
5597
5598 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5599 DRM_ERROR("DBuf power disable timeout!\n");
5600
5601 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5602 broxton_set_cdclk(dev, 19200);
5603
5604 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5605 }
5606
5607 static const struct skl_cdclk_entry {
5608 unsigned int freq;
5609 unsigned int vco;
5610 } skl_cdclk_frequencies[] = {
5611 { .freq = 308570, .vco = 8640 },
5612 { .freq = 337500, .vco = 8100 },
5613 { .freq = 432000, .vco = 8640 },
5614 { .freq = 450000, .vco = 8100 },
5615 { .freq = 540000, .vco = 8100 },
5616 { .freq = 617140, .vco = 8640 },
5617 { .freq = 675000, .vco = 8100 },
5618 };
5619
5620 static unsigned int skl_cdclk_decimal(unsigned int freq)
5621 {
5622 return (freq - 1000) / 500;
5623 }
5624
5625 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5626 {
5627 unsigned int i;
5628
5629 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5630 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5631
5632 if (e->freq == freq)
5633 return e->vco;
5634 }
5635
5636 return 8100;
5637 }
5638
5639 static void
5640 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5641 {
5642 unsigned int min_freq;
5643 u32 val;
5644
5645 /* select the minimum CDCLK before enabling DPLL 0 */
5646 val = I915_READ(CDCLK_CTL);
5647 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5648 val |= CDCLK_FREQ_337_308;
5649
5650 if (required_vco == 8640)
5651 min_freq = 308570;
5652 else
5653 min_freq = 337500;
5654
5655 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5656
5657 I915_WRITE(CDCLK_CTL, val);
5658 POSTING_READ(CDCLK_CTL);
5659
5660 /*
5661 * We always enable DPLL0 with the lowest link rate possible, but still
5662 * taking into account the VCO required to operate the eDP panel at the
5663 * desired frequency. The usual DP link rates operate with a VCO of
5664 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5665 * The modeset code is responsible for the selection of the exact link
5666 * rate later on, with the constraint of choosing a frequency that
5667 * works with required_vco.
5668 */
5669 val = I915_READ(DPLL_CTRL1);
5670
5671 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5672 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5673 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5674 if (required_vco == 8640)
5675 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5676 SKL_DPLL0);
5677 else
5678 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5679 SKL_DPLL0);
5680
5681 I915_WRITE(DPLL_CTRL1, val);
5682 POSTING_READ(DPLL_CTRL1);
5683
5684 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5685
5686 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5687 DRM_ERROR("DPLL0 not locked\n");
5688 }
5689
5690 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5691 {
5692 int ret;
5693 u32 val;
5694
5695 /* inform PCU we want to change CDCLK */
5696 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5697 mutex_lock(&dev_priv->rps.hw_lock);
5698 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5699 mutex_unlock(&dev_priv->rps.hw_lock);
5700
5701 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5702 }
5703
5704 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5705 {
5706 unsigned int i;
5707
5708 for (i = 0; i < 15; i++) {
5709 if (skl_cdclk_pcu_ready(dev_priv))
5710 return true;
5711 udelay(10);
5712 }
5713
5714 return false;
5715 }
5716
5717 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5718 {
5719 struct drm_device *dev = dev_priv->dev;
5720 u32 freq_select, pcu_ack;
5721
5722 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5723
5724 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5725 DRM_ERROR("failed to inform PCU about cdclk change\n");
5726 return;
5727 }
5728
5729 /* set CDCLK_CTL */
5730 switch(freq) {
5731 case 450000:
5732 case 432000:
5733 freq_select = CDCLK_FREQ_450_432;
5734 pcu_ack = 1;
5735 break;
5736 case 540000:
5737 freq_select = CDCLK_FREQ_540;
5738 pcu_ack = 2;
5739 break;
5740 case 308570:
5741 case 337500:
5742 default:
5743 freq_select = CDCLK_FREQ_337_308;
5744 pcu_ack = 0;
5745 break;
5746 case 617140:
5747 case 675000:
5748 freq_select = CDCLK_FREQ_675_617;
5749 pcu_ack = 3;
5750 break;
5751 }
5752
5753 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5754 POSTING_READ(CDCLK_CTL);
5755
5756 /* inform PCU of the change */
5757 mutex_lock(&dev_priv->rps.hw_lock);
5758 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5759 mutex_unlock(&dev_priv->rps.hw_lock);
5760
5761 intel_update_cdclk(dev);
5762 }
5763
5764 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5765 {
5766 /* disable DBUF power */
5767 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5768 POSTING_READ(DBUF_CTL);
5769
5770 udelay(10);
5771
5772 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5773 DRM_ERROR("DBuf power disable timeout\n");
5774
5775 /* disable DPLL0 */
5776 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5777 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5778 DRM_ERROR("Couldn't disable DPLL0\n");
5779 }
5780
5781 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5782 {
5783 unsigned int required_vco;
5784
5785 /* DPLL0 not enabled (happens on early BIOS versions) */
5786 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5787 /* enable DPLL0 */
5788 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5789 skl_dpll0_enable(dev_priv, required_vco);
5790 }
5791
5792 /* set CDCLK to the frequency the BIOS chose */
5793 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5794
5795 /* enable DBUF power */
5796 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5797 POSTING_READ(DBUF_CTL);
5798
5799 udelay(10);
5800
5801 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5802 DRM_ERROR("DBuf power enable timeout\n");
5803 }
5804
5805 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5806 {
5807 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5808 uint32_t cdctl = I915_READ(CDCLK_CTL);
5809 int freq = dev_priv->skl_boot_cdclk;
5810
5811 /*
5812 * check if the pre-os intialized the display
5813 * There is SWF18 scratchpad register defined which is set by the
5814 * pre-os which can be used by the OS drivers to check the status
5815 */
5816 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5817 goto sanitize;
5818
5819 /* Is PLL enabled and locked ? */
5820 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5821 goto sanitize;
5822
5823 /* DPLL okay; verify the cdclock
5824 *
5825 * Noticed in some instances that the freq selection is correct but
5826 * decimal part is programmed wrong from BIOS where pre-os does not
5827 * enable display. Verify the same as well.
5828 */
5829 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5830 /* All well; nothing to sanitize */
5831 return false;
5832 sanitize:
5833 /*
5834 * As of now initialize with max cdclk till
5835 * we get dynamic cdclk support
5836 * */
5837 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5838 skl_init_cdclk(dev_priv);
5839
5840 /* we did have to sanitize */
5841 return true;
5842 }
5843
5844 /* Adjust CDclk dividers to allow high res or save power if possible */
5845 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5846 {
5847 struct drm_i915_private *dev_priv = dev->dev_private;
5848 u32 val, cmd;
5849
5850 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5851 != dev_priv->cdclk_freq);
5852
5853 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5854 cmd = 2;
5855 else if (cdclk == 266667)
5856 cmd = 1;
5857 else
5858 cmd = 0;
5859
5860 mutex_lock(&dev_priv->rps.hw_lock);
5861 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862 val &= ~DSPFREQGUAR_MASK;
5863 val |= (cmd << DSPFREQGUAR_SHIFT);
5864 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5865 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5866 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5867 50)) {
5868 DRM_ERROR("timed out waiting for CDclk change\n");
5869 }
5870 mutex_unlock(&dev_priv->rps.hw_lock);
5871
5872 mutex_lock(&dev_priv->sb_lock);
5873
5874 if (cdclk == 400000) {
5875 u32 divider;
5876
5877 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5878
5879 /* adjust cdclk divider */
5880 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5881 val &= ~CCK_FREQUENCY_VALUES;
5882 val |= divider;
5883 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5884
5885 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5886 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5887 50))
5888 DRM_ERROR("timed out waiting for CDclk change\n");
5889 }
5890
5891 /* adjust self-refresh exit latency value */
5892 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5893 val &= ~0x7f;
5894
5895 /*
5896 * For high bandwidth configs, we set a higher latency in the bunit
5897 * so that the core display fetch happens in time to avoid underruns.
5898 */
5899 if (cdclk == 400000)
5900 val |= 4500 / 250; /* 4.5 usec */
5901 else
5902 val |= 3000 / 250; /* 3.0 usec */
5903 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5904
5905 mutex_unlock(&dev_priv->sb_lock);
5906
5907 intel_update_cdclk(dev);
5908 }
5909
5910 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5911 {
5912 struct drm_i915_private *dev_priv = dev->dev_private;
5913 u32 val, cmd;
5914
5915 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5916 != dev_priv->cdclk_freq);
5917
5918 switch (cdclk) {
5919 case 333333:
5920 case 320000:
5921 case 266667:
5922 case 200000:
5923 break;
5924 default:
5925 MISSING_CASE(cdclk);
5926 return;
5927 }
5928
5929 /*
5930 * Specs are full of misinformation, but testing on actual
5931 * hardware has shown that we just need to write the desired
5932 * CCK divider into the Punit register.
5933 */
5934 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5935
5936 mutex_lock(&dev_priv->rps.hw_lock);
5937 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5938 val &= ~DSPFREQGUAR_MASK_CHV;
5939 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5940 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5941 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5942 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5943 50)) {
5944 DRM_ERROR("timed out waiting for CDclk change\n");
5945 }
5946 mutex_unlock(&dev_priv->rps.hw_lock);
5947
5948 intel_update_cdclk(dev);
5949 }
5950
5951 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5952 int max_pixclk)
5953 {
5954 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5955 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5956
5957 /*
5958 * Really only a few cases to deal with, as only 4 CDclks are supported:
5959 * 200MHz
5960 * 267MHz
5961 * 320/333MHz (depends on HPLL freq)
5962 * 400MHz (VLV only)
5963 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5964 * of the lower bin and adjust if needed.
5965 *
5966 * We seem to get an unstable or solid color picture at 200MHz.
5967 * Not sure what's wrong. For now use 200MHz only when all pipes
5968 * are off.
5969 */
5970 if (!IS_CHERRYVIEW(dev_priv) &&
5971 max_pixclk > freq_320*limit/100)
5972 return 400000;
5973 else if (max_pixclk > 266667*limit/100)
5974 return freq_320;
5975 else if (max_pixclk > 0)
5976 return 266667;
5977 else
5978 return 200000;
5979 }
5980
5981 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5982 int max_pixclk)
5983 {
5984 /*
5985 * FIXME:
5986 * - remove the guardband, it's not needed on BXT
5987 * - set 19.2MHz bypass frequency if there are no active pipes
5988 */
5989 if (max_pixclk > 576000*9/10)
5990 return 624000;
5991 else if (max_pixclk > 384000*9/10)
5992 return 576000;
5993 else if (max_pixclk > 288000*9/10)
5994 return 384000;
5995 else if (max_pixclk > 144000*9/10)
5996 return 288000;
5997 else
5998 return 144000;
5999 }
6000
6001 /* Compute the max pixel clock for new configuration. Uses atomic state if
6002 * that's non-NULL, look at current state otherwise. */
6003 static int intel_mode_max_pixclk(struct drm_device *dev,
6004 struct drm_atomic_state *state)
6005 {
6006 struct intel_crtc *intel_crtc;
6007 struct intel_crtc_state *crtc_state;
6008 int max_pixclk = 0;
6009
6010 for_each_intel_crtc(dev, intel_crtc) {
6011 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6012 if (IS_ERR(crtc_state))
6013 return PTR_ERR(crtc_state);
6014
6015 if (!crtc_state->base.enable)
6016 continue;
6017
6018 max_pixclk = max(max_pixclk,
6019 crtc_state->base.adjusted_mode.crtc_clock);
6020 }
6021
6022 return max_pixclk;
6023 }
6024
6025 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6026 {
6027 struct drm_device *dev = state->dev;
6028 struct drm_i915_private *dev_priv = dev->dev_private;
6029 int max_pixclk = intel_mode_max_pixclk(dev, state);
6030
6031 if (max_pixclk < 0)
6032 return max_pixclk;
6033
6034 to_intel_atomic_state(state)->cdclk =
6035 valleyview_calc_cdclk(dev_priv, max_pixclk);
6036
6037 return 0;
6038 }
6039
6040 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6041 {
6042 struct drm_device *dev = state->dev;
6043 struct drm_i915_private *dev_priv = dev->dev_private;
6044 int max_pixclk = intel_mode_max_pixclk(dev, state);
6045
6046 if (max_pixclk < 0)
6047 return max_pixclk;
6048
6049 to_intel_atomic_state(state)->cdclk =
6050 broxton_calc_cdclk(dev_priv, max_pixclk);
6051
6052 return 0;
6053 }
6054
6055 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6056 {
6057 unsigned int credits, default_credits;
6058
6059 if (IS_CHERRYVIEW(dev_priv))
6060 default_credits = PFI_CREDIT(12);
6061 else
6062 default_credits = PFI_CREDIT(8);
6063
6064 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6065 /* CHV suggested value is 31 or 63 */
6066 if (IS_CHERRYVIEW(dev_priv))
6067 credits = PFI_CREDIT_63;
6068 else
6069 credits = PFI_CREDIT(15);
6070 } else {
6071 credits = default_credits;
6072 }
6073
6074 /*
6075 * WA - write default credits before re-programming
6076 * FIXME: should we also set the resend bit here?
6077 */
6078 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6079 default_credits);
6080
6081 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6082 credits | PFI_CREDIT_RESEND);
6083
6084 /*
6085 * FIXME is this guaranteed to clear
6086 * immediately or should we poll for it?
6087 */
6088 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6089 }
6090
6091 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6092 {
6093 struct drm_device *dev = old_state->dev;
6094 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6095 struct drm_i915_private *dev_priv = dev->dev_private;
6096
6097 /*
6098 * FIXME: We can end up here with all power domains off, yet
6099 * with a CDCLK frequency other than the minimum. To account
6100 * for this take the PIPE-A power domain, which covers the HW
6101 * blocks needed for the following programming. This can be
6102 * removed once it's guaranteed that we get here either with
6103 * the minimum CDCLK set, or the required power domains
6104 * enabled.
6105 */
6106 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6107
6108 if (IS_CHERRYVIEW(dev))
6109 cherryview_set_cdclk(dev, req_cdclk);
6110 else
6111 valleyview_set_cdclk(dev, req_cdclk);
6112
6113 vlv_program_pfi_credits(dev_priv);
6114
6115 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6116 }
6117
6118 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6119 {
6120 struct drm_device *dev = crtc->dev;
6121 struct drm_i915_private *dev_priv = to_i915(dev);
6122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6123 struct intel_encoder *encoder;
6124 int pipe = intel_crtc->pipe;
6125 bool is_dsi;
6126
6127 if (WARN_ON(intel_crtc->active))
6128 return;
6129
6130 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6131
6132 if (intel_crtc->config->has_dp_encoder)
6133 intel_dp_set_m_n(intel_crtc, M1_N1);
6134
6135 intel_set_pipe_timings(intel_crtc);
6136
6137 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6138 struct drm_i915_private *dev_priv = dev->dev_private;
6139
6140 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6141 I915_WRITE(CHV_CANVAS(pipe), 0);
6142 }
6143
6144 i9xx_set_pipeconf(intel_crtc);
6145
6146 intel_crtc->active = true;
6147
6148 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6149
6150 for_each_encoder_on_crtc(dev, crtc, encoder)
6151 if (encoder->pre_pll_enable)
6152 encoder->pre_pll_enable(encoder);
6153
6154 if (!is_dsi) {
6155 if (IS_CHERRYVIEW(dev)) {
6156 chv_prepare_pll(intel_crtc, intel_crtc->config);
6157 chv_enable_pll(intel_crtc, intel_crtc->config);
6158 } else {
6159 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6160 vlv_enable_pll(intel_crtc, intel_crtc->config);
6161 }
6162 }
6163
6164 for_each_encoder_on_crtc(dev, crtc, encoder)
6165 if (encoder->pre_enable)
6166 encoder->pre_enable(encoder);
6167
6168 i9xx_pfit_enable(intel_crtc);
6169
6170 intel_crtc_load_lut(crtc);
6171
6172 intel_enable_pipe(intel_crtc);
6173
6174 assert_vblank_disabled(crtc);
6175 drm_crtc_vblank_on(crtc);
6176
6177 for_each_encoder_on_crtc(dev, crtc, encoder)
6178 encoder->enable(encoder);
6179 }
6180
6181 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6182 {
6183 struct drm_device *dev = crtc->base.dev;
6184 struct drm_i915_private *dev_priv = dev->dev_private;
6185
6186 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6187 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6188 }
6189
6190 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6191 {
6192 struct drm_device *dev = crtc->dev;
6193 struct drm_i915_private *dev_priv = to_i915(dev);
6194 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6195 struct intel_encoder *encoder;
6196 int pipe = intel_crtc->pipe;
6197
6198 if (WARN_ON(intel_crtc->active))
6199 return;
6200
6201 i9xx_set_pll_dividers(intel_crtc);
6202
6203 if (intel_crtc->config->has_dp_encoder)
6204 intel_dp_set_m_n(intel_crtc, M1_N1);
6205
6206 intel_set_pipe_timings(intel_crtc);
6207
6208 i9xx_set_pipeconf(intel_crtc);
6209
6210 intel_crtc->active = true;
6211
6212 if (!IS_GEN2(dev))
6213 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6214
6215 for_each_encoder_on_crtc(dev, crtc, encoder)
6216 if (encoder->pre_enable)
6217 encoder->pre_enable(encoder);
6218
6219 i9xx_enable_pll(intel_crtc);
6220
6221 i9xx_pfit_enable(intel_crtc);
6222
6223 intel_crtc_load_lut(crtc);
6224
6225 intel_update_watermarks(crtc);
6226 intel_enable_pipe(intel_crtc);
6227
6228 assert_vblank_disabled(crtc);
6229 drm_crtc_vblank_on(crtc);
6230
6231 for_each_encoder_on_crtc(dev, crtc, encoder)
6232 encoder->enable(encoder);
6233 }
6234
6235 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6236 {
6237 struct drm_device *dev = crtc->base.dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239
6240 if (!crtc->config->gmch_pfit.control)
6241 return;
6242
6243 assert_pipe_disabled(dev_priv, crtc->pipe);
6244
6245 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6246 I915_READ(PFIT_CONTROL));
6247 I915_WRITE(PFIT_CONTROL, 0);
6248 }
6249
6250 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6251 {
6252 struct drm_device *dev = crtc->dev;
6253 struct drm_i915_private *dev_priv = dev->dev_private;
6254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255 struct intel_encoder *encoder;
6256 int pipe = intel_crtc->pipe;
6257
6258 /*
6259 * On gen2 planes are double buffered but the pipe isn't, so we must
6260 * wait for planes to fully turn off before disabling the pipe.
6261 * We also need to wait on all gmch platforms because of the
6262 * self-refresh mode constraint explained above.
6263 */
6264 intel_wait_for_vblank(dev, pipe);
6265
6266 for_each_encoder_on_crtc(dev, crtc, encoder)
6267 encoder->disable(encoder);
6268
6269 drm_crtc_vblank_off(crtc);
6270 assert_vblank_disabled(crtc);
6271
6272 intel_disable_pipe(intel_crtc);
6273
6274 i9xx_pfit_disable(intel_crtc);
6275
6276 for_each_encoder_on_crtc(dev, crtc, encoder)
6277 if (encoder->post_disable)
6278 encoder->post_disable(encoder);
6279
6280 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6281 if (IS_CHERRYVIEW(dev))
6282 chv_disable_pll(dev_priv, pipe);
6283 else if (IS_VALLEYVIEW(dev))
6284 vlv_disable_pll(dev_priv, pipe);
6285 else
6286 i9xx_disable_pll(intel_crtc);
6287 }
6288
6289 for_each_encoder_on_crtc(dev, crtc, encoder)
6290 if (encoder->post_pll_disable)
6291 encoder->post_pll_disable(encoder);
6292
6293 if (!IS_GEN2(dev))
6294 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6295 }
6296
6297 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6298 {
6299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6300 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6301 enum intel_display_power_domain domain;
6302 unsigned long domains;
6303
6304 if (!intel_crtc->active)
6305 return;
6306
6307 if (to_intel_plane_state(crtc->primary->state)->visible) {
6308 WARN_ON(intel_crtc->unpin_work);
6309
6310 intel_pre_disable_primary(crtc);
6311 }
6312
6313 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6314 dev_priv->display.crtc_disable(crtc);
6315 intel_crtc->active = false;
6316 intel_update_watermarks(crtc);
6317 intel_disable_shared_dpll(intel_crtc);
6318
6319 domains = intel_crtc->enabled_power_domains;
6320 for_each_power_domain(domain, domains)
6321 intel_display_power_put(dev_priv, domain);
6322 intel_crtc->enabled_power_domains = 0;
6323 }
6324
6325 /*
6326 * turn all crtc's off, but do not adjust state
6327 * This has to be paired with a call to intel_modeset_setup_hw_state.
6328 */
6329 int intel_display_suspend(struct drm_device *dev)
6330 {
6331 struct drm_mode_config *config = &dev->mode_config;
6332 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6333 struct drm_atomic_state *state;
6334 struct drm_crtc *crtc;
6335 unsigned crtc_mask = 0;
6336 int ret = 0;
6337
6338 if (WARN_ON(!ctx))
6339 return 0;
6340
6341 lockdep_assert_held(&ctx->ww_ctx);
6342 state = drm_atomic_state_alloc(dev);
6343 if (WARN_ON(!state))
6344 return -ENOMEM;
6345
6346 state->acquire_ctx = ctx;
6347 state->allow_modeset = true;
6348
6349 for_each_crtc(dev, crtc) {
6350 struct drm_crtc_state *crtc_state =
6351 drm_atomic_get_crtc_state(state, crtc);
6352
6353 ret = PTR_ERR_OR_ZERO(crtc_state);
6354 if (ret)
6355 goto free;
6356
6357 if (!crtc_state->active)
6358 continue;
6359
6360 crtc_state->active = false;
6361 crtc_mask |= 1 << drm_crtc_index(crtc);
6362 }
6363
6364 if (crtc_mask) {
6365 ret = drm_atomic_commit(state);
6366
6367 if (!ret) {
6368 for_each_crtc(dev, crtc)
6369 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6370 crtc->state->active = true;
6371
6372 return ret;
6373 }
6374 }
6375
6376 free:
6377 if (ret)
6378 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6379 drm_atomic_state_free(state);
6380 return ret;
6381 }
6382
6383 void intel_encoder_destroy(struct drm_encoder *encoder)
6384 {
6385 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6386
6387 drm_encoder_cleanup(encoder);
6388 kfree(intel_encoder);
6389 }
6390
6391 /* Cross check the actual hw state with our own modeset state tracking (and it's
6392 * internal consistency). */
6393 static void intel_connector_check_state(struct intel_connector *connector)
6394 {
6395 struct drm_crtc *crtc = connector->base.state->crtc;
6396
6397 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6398 connector->base.base.id,
6399 connector->base.name);
6400
6401 if (connector->get_hw_state(connector)) {
6402 struct intel_encoder *encoder = connector->encoder;
6403 struct drm_connector_state *conn_state = connector->base.state;
6404
6405 I915_STATE_WARN(!crtc,
6406 "connector enabled without attached crtc\n");
6407
6408 if (!crtc)
6409 return;
6410
6411 I915_STATE_WARN(!crtc->state->active,
6412 "connector is active, but attached crtc isn't\n");
6413
6414 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6415 return;
6416
6417 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6418 "atomic encoder doesn't match attached encoder\n");
6419
6420 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6421 "attached encoder crtc differs from connector crtc\n");
6422 } else {
6423 I915_STATE_WARN(crtc && crtc->state->active,
6424 "attached crtc is active, but connector isn't\n");
6425 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6426 "best encoder set without crtc!\n");
6427 }
6428 }
6429
6430 int intel_connector_init(struct intel_connector *connector)
6431 {
6432 struct drm_connector_state *connector_state;
6433
6434 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6435 if (!connector_state)
6436 return -ENOMEM;
6437
6438 connector->base.state = connector_state;
6439 return 0;
6440 }
6441
6442 struct intel_connector *intel_connector_alloc(void)
6443 {
6444 struct intel_connector *connector;
6445
6446 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6447 if (!connector)
6448 return NULL;
6449
6450 if (intel_connector_init(connector) < 0) {
6451 kfree(connector);
6452 return NULL;
6453 }
6454
6455 return connector;
6456 }
6457
6458 /* Simple connector->get_hw_state implementation for encoders that support only
6459 * one connector and no cloning and hence the encoder state determines the state
6460 * of the connector. */
6461 bool intel_connector_get_hw_state(struct intel_connector *connector)
6462 {
6463 enum pipe pipe = 0;
6464 struct intel_encoder *encoder = connector->encoder;
6465
6466 return encoder->get_hw_state(encoder, &pipe);
6467 }
6468
6469 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6470 {
6471 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6472 return crtc_state->fdi_lanes;
6473
6474 return 0;
6475 }
6476
6477 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6478 struct intel_crtc_state *pipe_config)
6479 {
6480 struct drm_atomic_state *state = pipe_config->base.state;
6481 struct intel_crtc *other_crtc;
6482 struct intel_crtc_state *other_crtc_state;
6483
6484 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6485 pipe_name(pipe), pipe_config->fdi_lanes);
6486 if (pipe_config->fdi_lanes > 4) {
6487 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6488 pipe_name(pipe), pipe_config->fdi_lanes);
6489 return -EINVAL;
6490 }
6491
6492 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6493 if (pipe_config->fdi_lanes > 2) {
6494 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6495 pipe_config->fdi_lanes);
6496 return -EINVAL;
6497 } else {
6498 return 0;
6499 }
6500 }
6501
6502 if (INTEL_INFO(dev)->num_pipes == 2)
6503 return 0;
6504
6505 /* Ivybridge 3 pipe is really complicated */
6506 switch (pipe) {
6507 case PIPE_A:
6508 return 0;
6509 case PIPE_B:
6510 if (pipe_config->fdi_lanes <= 2)
6511 return 0;
6512
6513 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6514 other_crtc_state =
6515 intel_atomic_get_crtc_state(state, other_crtc);
6516 if (IS_ERR(other_crtc_state))
6517 return PTR_ERR(other_crtc_state);
6518
6519 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6520 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6521 pipe_name(pipe), pipe_config->fdi_lanes);
6522 return -EINVAL;
6523 }
6524 return 0;
6525 case PIPE_C:
6526 if (pipe_config->fdi_lanes > 2) {
6527 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6528 pipe_name(pipe), pipe_config->fdi_lanes);
6529 return -EINVAL;
6530 }
6531
6532 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6533 other_crtc_state =
6534 intel_atomic_get_crtc_state(state, other_crtc);
6535 if (IS_ERR(other_crtc_state))
6536 return PTR_ERR(other_crtc_state);
6537
6538 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6539 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6540 return -EINVAL;
6541 }
6542 return 0;
6543 default:
6544 BUG();
6545 }
6546 }
6547
6548 #define RETRY 1
6549 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6550 struct intel_crtc_state *pipe_config)
6551 {
6552 struct drm_device *dev = intel_crtc->base.dev;
6553 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6554 int lane, link_bw, fdi_dotclock, ret;
6555 bool needs_recompute = false;
6556
6557 retry:
6558 /* FDI is a binary signal running at ~2.7GHz, encoding
6559 * each output octet as 10 bits. The actual frequency
6560 * is stored as a divider into a 100MHz clock, and the
6561 * mode pixel clock is stored in units of 1KHz.
6562 * Hence the bw of each lane in terms of the mode signal
6563 * is:
6564 */
6565 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6566
6567 fdi_dotclock = adjusted_mode->crtc_clock;
6568
6569 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6570 pipe_config->pipe_bpp);
6571
6572 pipe_config->fdi_lanes = lane;
6573
6574 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6575 link_bw, &pipe_config->fdi_m_n);
6576
6577 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6578 intel_crtc->pipe, pipe_config);
6579 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6580 pipe_config->pipe_bpp -= 2*3;
6581 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6582 pipe_config->pipe_bpp);
6583 needs_recompute = true;
6584 pipe_config->bw_constrained = true;
6585
6586 goto retry;
6587 }
6588
6589 if (needs_recompute)
6590 return RETRY;
6591
6592 return ret;
6593 }
6594
6595 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6596 struct intel_crtc_state *pipe_config)
6597 {
6598 if (pipe_config->pipe_bpp > 24)
6599 return false;
6600
6601 /* HSW can handle pixel rate up to cdclk? */
6602 if (IS_HASWELL(dev_priv->dev))
6603 return true;
6604
6605 /*
6606 * We compare against max which means we must take
6607 * the increased cdclk requirement into account when
6608 * calculating the new cdclk.
6609 *
6610 * Should measure whether using a lower cdclk w/o IPS
6611 */
6612 return ilk_pipe_pixel_rate(pipe_config) <=
6613 dev_priv->max_cdclk_freq * 95 / 100;
6614 }
6615
6616 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6617 struct intel_crtc_state *pipe_config)
6618 {
6619 struct drm_device *dev = crtc->base.dev;
6620 struct drm_i915_private *dev_priv = dev->dev_private;
6621
6622 pipe_config->ips_enabled = i915.enable_ips &&
6623 hsw_crtc_supports_ips(crtc) &&
6624 pipe_config_supports_ips(dev_priv, pipe_config);
6625 }
6626
6627 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6628 {
6629 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6630
6631 /* GDG double wide on either pipe, otherwise pipe A only */
6632 return INTEL_INFO(dev_priv)->gen < 4 &&
6633 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6634 }
6635
6636 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6637 struct intel_crtc_state *pipe_config)
6638 {
6639 struct drm_device *dev = crtc->base.dev;
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6642
6643 /* FIXME should check pixel clock limits on all platforms */
6644 if (INTEL_INFO(dev)->gen < 4) {
6645 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6646
6647 /*
6648 * Enable double wide mode when the dot clock
6649 * is > 90% of the (display) core speed.
6650 */
6651 if (intel_crtc_supports_double_wide(crtc) &&
6652 adjusted_mode->crtc_clock > clock_limit) {
6653 clock_limit *= 2;
6654 pipe_config->double_wide = true;
6655 }
6656
6657 if (adjusted_mode->crtc_clock > clock_limit) {
6658 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6659 adjusted_mode->crtc_clock, clock_limit,
6660 yesno(pipe_config->double_wide));
6661 return -EINVAL;
6662 }
6663 }
6664
6665 /*
6666 * Pipe horizontal size must be even in:
6667 * - DVO ganged mode
6668 * - LVDS dual channel mode
6669 * - Double wide pipe
6670 */
6671 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6672 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6673 pipe_config->pipe_src_w &= ~1;
6674
6675 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6676 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6677 */
6678 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6679 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6680 return -EINVAL;
6681
6682 if (HAS_IPS(dev))
6683 hsw_compute_ips_config(crtc, pipe_config);
6684
6685 if (pipe_config->has_pch_encoder)
6686 return ironlake_fdi_compute_config(crtc, pipe_config);
6687
6688 return 0;
6689 }
6690
6691 static int skylake_get_display_clock_speed(struct drm_device *dev)
6692 {
6693 struct drm_i915_private *dev_priv = to_i915(dev);
6694 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6695 uint32_t cdctl = I915_READ(CDCLK_CTL);
6696 uint32_t linkrate;
6697
6698 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6699 return 24000; /* 24MHz is the cd freq with NSSC ref */
6700
6701 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6702 return 540000;
6703
6704 linkrate = (I915_READ(DPLL_CTRL1) &
6705 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6706
6707 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6708 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6709 /* vco 8640 */
6710 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6711 case CDCLK_FREQ_450_432:
6712 return 432000;
6713 case CDCLK_FREQ_337_308:
6714 return 308570;
6715 case CDCLK_FREQ_675_617:
6716 return 617140;
6717 default:
6718 WARN(1, "Unknown cd freq selection\n");
6719 }
6720 } else {
6721 /* vco 8100 */
6722 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6723 case CDCLK_FREQ_450_432:
6724 return 450000;
6725 case CDCLK_FREQ_337_308:
6726 return 337500;
6727 case CDCLK_FREQ_675_617:
6728 return 675000;
6729 default:
6730 WARN(1, "Unknown cd freq selection\n");
6731 }
6732 }
6733
6734 /* error case, do as if DPLL0 isn't enabled */
6735 return 24000;
6736 }
6737
6738 static int broxton_get_display_clock_speed(struct drm_device *dev)
6739 {
6740 struct drm_i915_private *dev_priv = to_i915(dev);
6741 uint32_t cdctl = I915_READ(CDCLK_CTL);
6742 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6743 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6744 int cdclk;
6745
6746 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6747 return 19200;
6748
6749 cdclk = 19200 * pll_ratio / 2;
6750
6751 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6752 case BXT_CDCLK_CD2X_DIV_SEL_1:
6753 return cdclk; /* 576MHz or 624MHz */
6754 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6755 return cdclk * 2 / 3; /* 384MHz */
6756 case BXT_CDCLK_CD2X_DIV_SEL_2:
6757 return cdclk / 2; /* 288MHz */
6758 case BXT_CDCLK_CD2X_DIV_SEL_4:
6759 return cdclk / 4; /* 144MHz */
6760 }
6761
6762 /* error case, do as if DE PLL isn't enabled */
6763 return 19200;
6764 }
6765
6766 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6767 {
6768 struct drm_i915_private *dev_priv = dev->dev_private;
6769 uint32_t lcpll = I915_READ(LCPLL_CTL);
6770 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6771
6772 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6773 return 800000;
6774 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6775 return 450000;
6776 else if (freq == LCPLL_CLK_FREQ_450)
6777 return 450000;
6778 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6779 return 540000;
6780 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6781 return 337500;
6782 else
6783 return 675000;
6784 }
6785
6786 static int haswell_get_display_clock_speed(struct drm_device *dev)
6787 {
6788 struct drm_i915_private *dev_priv = dev->dev_private;
6789 uint32_t lcpll = I915_READ(LCPLL_CTL);
6790 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6791
6792 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6793 return 800000;
6794 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6795 return 450000;
6796 else if (freq == LCPLL_CLK_FREQ_450)
6797 return 450000;
6798 else if (IS_HSW_ULT(dev))
6799 return 337500;
6800 else
6801 return 540000;
6802 }
6803
6804 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6805 {
6806 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6807 CCK_DISPLAY_CLOCK_CONTROL);
6808 }
6809
6810 static int ilk_get_display_clock_speed(struct drm_device *dev)
6811 {
6812 return 450000;
6813 }
6814
6815 static int i945_get_display_clock_speed(struct drm_device *dev)
6816 {
6817 return 400000;
6818 }
6819
6820 static int i915_get_display_clock_speed(struct drm_device *dev)
6821 {
6822 return 333333;
6823 }
6824
6825 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6826 {
6827 return 200000;
6828 }
6829
6830 static int pnv_get_display_clock_speed(struct drm_device *dev)
6831 {
6832 u16 gcfgc = 0;
6833
6834 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6835
6836 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6837 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6838 return 266667;
6839 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6840 return 333333;
6841 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6842 return 444444;
6843 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6844 return 200000;
6845 default:
6846 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6847 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6848 return 133333;
6849 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6850 return 166667;
6851 }
6852 }
6853
6854 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6855 {
6856 u16 gcfgc = 0;
6857
6858 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6859
6860 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6861 return 133333;
6862 else {
6863 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6864 case GC_DISPLAY_CLOCK_333_MHZ:
6865 return 333333;
6866 default:
6867 case GC_DISPLAY_CLOCK_190_200_MHZ:
6868 return 190000;
6869 }
6870 }
6871 }
6872
6873 static int i865_get_display_clock_speed(struct drm_device *dev)
6874 {
6875 return 266667;
6876 }
6877
6878 static int i85x_get_display_clock_speed(struct drm_device *dev)
6879 {
6880 u16 hpllcc = 0;
6881
6882 /*
6883 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6884 * encoding is different :(
6885 * FIXME is this the right way to detect 852GM/852GMV?
6886 */
6887 if (dev->pdev->revision == 0x1)
6888 return 133333;
6889
6890 pci_bus_read_config_word(dev->pdev->bus,
6891 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6892
6893 /* Assume that the hardware is in the high speed state. This
6894 * should be the default.
6895 */
6896 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6897 case GC_CLOCK_133_200:
6898 case GC_CLOCK_133_200_2:
6899 case GC_CLOCK_100_200:
6900 return 200000;
6901 case GC_CLOCK_166_250:
6902 return 250000;
6903 case GC_CLOCK_100_133:
6904 return 133333;
6905 case GC_CLOCK_133_266:
6906 case GC_CLOCK_133_266_2:
6907 case GC_CLOCK_166_266:
6908 return 266667;
6909 }
6910
6911 /* Shouldn't happen */
6912 return 0;
6913 }
6914
6915 static int i830_get_display_clock_speed(struct drm_device *dev)
6916 {
6917 return 133333;
6918 }
6919
6920 static unsigned int intel_hpll_vco(struct drm_device *dev)
6921 {
6922 struct drm_i915_private *dev_priv = dev->dev_private;
6923 static const unsigned int blb_vco[8] = {
6924 [0] = 3200000,
6925 [1] = 4000000,
6926 [2] = 5333333,
6927 [3] = 4800000,
6928 [4] = 6400000,
6929 };
6930 static const unsigned int pnv_vco[8] = {
6931 [0] = 3200000,
6932 [1] = 4000000,
6933 [2] = 5333333,
6934 [3] = 4800000,
6935 [4] = 2666667,
6936 };
6937 static const unsigned int cl_vco[8] = {
6938 [0] = 3200000,
6939 [1] = 4000000,
6940 [2] = 5333333,
6941 [3] = 6400000,
6942 [4] = 3333333,
6943 [5] = 3566667,
6944 [6] = 4266667,
6945 };
6946 static const unsigned int elk_vco[8] = {
6947 [0] = 3200000,
6948 [1] = 4000000,
6949 [2] = 5333333,
6950 [3] = 4800000,
6951 };
6952 static const unsigned int ctg_vco[8] = {
6953 [0] = 3200000,
6954 [1] = 4000000,
6955 [2] = 5333333,
6956 [3] = 6400000,
6957 [4] = 2666667,
6958 [5] = 4266667,
6959 };
6960 const unsigned int *vco_table;
6961 unsigned int vco;
6962 uint8_t tmp = 0;
6963
6964 /* FIXME other chipsets? */
6965 if (IS_GM45(dev))
6966 vco_table = ctg_vco;
6967 else if (IS_G4X(dev))
6968 vco_table = elk_vco;
6969 else if (IS_CRESTLINE(dev))
6970 vco_table = cl_vco;
6971 else if (IS_PINEVIEW(dev))
6972 vco_table = pnv_vco;
6973 else if (IS_G33(dev))
6974 vco_table = blb_vco;
6975 else
6976 return 0;
6977
6978 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6979
6980 vco = vco_table[tmp & 0x7];
6981 if (vco == 0)
6982 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6983 else
6984 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6985
6986 return vco;
6987 }
6988
6989 static int gm45_get_display_clock_speed(struct drm_device *dev)
6990 {
6991 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6992 uint16_t tmp = 0;
6993
6994 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6995
6996 cdclk_sel = (tmp >> 12) & 0x1;
6997
6998 switch (vco) {
6999 case 2666667:
7000 case 4000000:
7001 case 5333333:
7002 return cdclk_sel ? 333333 : 222222;
7003 case 3200000:
7004 return cdclk_sel ? 320000 : 228571;
7005 default:
7006 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7007 return 222222;
7008 }
7009 }
7010
7011 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7012 {
7013 static const uint8_t div_3200[] = { 16, 10, 8 };
7014 static const uint8_t div_4000[] = { 20, 12, 10 };
7015 static const uint8_t div_5333[] = { 24, 16, 14 };
7016 const uint8_t *div_table;
7017 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7018 uint16_t tmp = 0;
7019
7020 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7021
7022 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7023
7024 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7025 goto fail;
7026
7027 switch (vco) {
7028 case 3200000:
7029 div_table = div_3200;
7030 break;
7031 case 4000000:
7032 div_table = div_4000;
7033 break;
7034 case 5333333:
7035 div_table = div_5333;
7036 break;
7037 default:
7038 goto fail;
7039 }
7040
7041 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7042
7043 fail:
7044 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7045 return 200000;
7046 }
7047
7048 static int g33_get_display_clock_speed(struct drm_device *dev)
7049 {
7050 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7051 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7052 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7053 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7054 const uint8_t *div_table;
7055 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7056 uint16_t tmp = 0;
7057
7058 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7059
7060 cdclk_sel = (tmp >> 4) & 0x7;
7061
7062 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7063 goto fail;
7064
7065 switch (vco) {
7066 case 3200000:
7067 div_table = div_3200;
7068 break;
7069 case 4000000:
7070 div_table = div_4000;
7071 break;
7072 case 4800000:
7073 div_table = div_4800;
7074 break;
7075 case 5333333:
7076 div_table = div_5333;
7077 break;
7078 default:
7079 goto fail;
7080 }
7081
7082 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7083
7084 fail:
7085 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7086 return 190476;
7087 }
7088
7089 static void
7090 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7091 {
7092 while (*num > DATA_LINK_M_N_MASK ||
7093 *den > DATA_LINK_M_N_MASK) {
7094 *num >>= 1;
7095 *den >>= 1;
7096 }
7097 }
7098
7099 static void compute_m_n(unsigned int m, unsigned int n,
7100 uint32_t *ret_m, uint32_t *ret_n)
7101 {
7102 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7103 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7104 intel_reduce_m_n_ratio(ret_m, ret_n);
7105 }
7106
7107 void
7108 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7109 int pixel_clock, int link_clock,
7110 struct intel_link_m_n *m_n)
7111 {
7112 m_n->tu = 64;
7113
7114 compute_m_n(bits_per_pixel * pixel_clock,
7115 link_clock * nlanes * 8,
7116 &m_n->gmch_m, &m_n->gmch_n);
7117
7118 compute_m_n(pixel_clock, link_clock,
7119 &m_n->link_m, &m_n->link_n);
7120 }
7121
7122 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7123 {
7124 if (i915.panel_use_ssc >= 0)
7125 return i915.panel_use_ssc != 0;
7126 return dev_priv->vbt.lvds_use_ssc
7127 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7128 }
7129
7130 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7131 int num_connectors)
7132 {
7133 struct drm_device *dev = crtc_state->base.crtc->dev;
7134 struct drm_i915_private *dev_priv = dev->dev_private;
7135 int refclk;
7136
7137 WARN_ON(!crtc_state->base.state);
7138
7139 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7140 refclk = 100000;
7141 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7142 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7143 refclk = dev_priv->vbt.lvds_ssc_freq;
7144 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7145 } else if (!IS_GEN2(dev)) {
7146 refclk = 96000;
7147 } else {
7148 refclk = 48000;
7149 }
7150
7151 return refclk;
7152 }
7153
7154 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7155 {
7156 return (1 << dpll->n) << 16 | dpll->m2;
7157 }
7158
7159 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7160 {
7161 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7162 }
7163
7164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7165 struct intel_crtc_state *crtc_state,
7166 intel_clock_t *reduced_clock)
7167 {
7168 struct drm_device *dev = crtc->base.dev;
7169 u32 fp, fp2 = 0;
7170
7171 if (IS_PINEVIEW(dev)) {
7172 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7173 if (reduced_clock)
7174 fp2 = pnv_dpll_compute_fp(reduced_clock);
7175 } else {
7176 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7177 if (reduced_clock)
7178 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7179 }
7180
7181 crtc_state->dpll_hw_state.fp0 = fp;
7182
7183 crtc->lowfreq_avail = false;
7184 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7185 reduced_clock) {
7186 crtc_state->dpll_hw_state.fp1 = fp2;
7187 crtc->lowfreq_avail = true;
7188 } else {
7189 crtc_state->dpll_hw_state.fp1 = fp;
7190 }
7191 }
7192
7193 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7194 pipe)
7195 {
7196 u32 reg_val;
7197
7198 /*
7199 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7200 * and set it to a reasonable value instead.
7201 */
7202 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7203 reg_val &= 0xffffff00;
7204 reg_val |= 0x00000030;
7205 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7206
7207 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7208 reg_val &= 0x8cffffff;
7209 reg_val = 0x8c000000;
7210 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7211
7212 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7213 reg_val &= 0xffffff00;
7214 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7215
7216 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7217 reg_val &= 0x00ffffff;
7218 reg_val |= 0xb0000000;
7219 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7220 }
7221
7222 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7223 struct intel_link_m_n *m_n)
7224 {
7225 struct drm_device *dev = crtc->base.dev;
7226 struct drm_i915_private *dev_priv = dev->dev_private;
7227 int pipe = crtc->pipe;
7228
7229 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7230 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7231 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7232 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7233 }
7234
7235 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7236 struct intel_link_m_n *m_n,
7237 struct intel_link_m_n *m2_n2)
7238 {
7239 struct drm_device *dev = crtc->base.dev;
7240 struct drm_i915_private *dev_priv = dev->dev_private;
7241 int pipe = crtc->pipe;
7242 enum transcoder transcoder = crtc->config->cpu_transcoder;
7243
7244 if (INTEL_INFO(dev)->gen >= 5) {
7245 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7246 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7247 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7248 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7249 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7250 * for gen < 8) and if DRRS is supported (to make sure the
7251 * registers are not unnecessarily accessed).
7252 */
7253 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7254 crtc->config->has_drrs) {
7255 I915_WRITE(PIPE_DATA_M2(transcoder),
7256 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7257 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7258 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7259 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7260 }
7261 } else {
7262 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7263 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7264 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7265 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7266 }
7267 }
7268
7269 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7270 {
7271 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7272
7273 if (m_n == M1_N1) {
7274 dp_m_n = &crtc->config->dp_m_n;
7275 dp_m2_n2 = &crtc->config->dp_m2_n2;
7276 } else if (m_n == M2_N2) {
7277
7278 /*
7279 * M2_N2 registers are not supported. Hence m2_n2 divider value
7280 * needs to be programmed into M1_N1.
7281 */
7282 dp_m_n = &crtc->config->dp_m2_n2;
7283 } else {
7284 DRM_ERROR("Unsupported divider value\n");
7285 return;
7286 }
7287
7288 if (crtc->config->has_pch_encoder)
7289 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7290 else
7291 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7292 }
7293
7294 static void vlv_compute_dpll(struct intel_crtc *crtc,
7295 struct intel_crtc_state *pipe_config)
7296 {
7297 u32 dpll, dpll_md;
7298
7299 /*
7300 * Enable DPIO clock input. We should never disable the reference
7301 * clock for pipe B, since VGA hotplug / manual detection depends
7302 * on it.
7303 */
7304 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7305 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7306 /* We should never disable this, set it here for state tracking */
7307 if (crtc->pipe == PIPE_B)
7308 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7309 dpll |= DPLL_VCO_ENABLE;
7310 pipe_config->dpll_hw_state.dpll = dpll;
7311
7312 dpll_md = (pipe_config->pixel_multiplier - 1)
7313 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7314 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7315 }
7316
7317 static void vlv_prepare_pll(struct intel_crtc *crtc,
7318 const struct intel_crtc_state *pipe_config)
7319 {
7320 struct drm_device *dev = crtc->base.dev;
7321 struct drm_i915_private *dev_priv = dev->dev_private;
7322 int pipe = crtc->pipe;
7323 u32 mdiv;
7324 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7325 u32 coreclk, reg_val;
7326
7327 mutex_lock(&dev_priv->sb_lock);
7328
7329 bestn = pipe_config->dpll.n;
7330 bestm1 = pipe_config->dpll.m1;
7331 bestm2 = pipe_config->dpll.m2;
7332 bestp1 = pipe_config->dpll.p1;
7333 bestp2 = pipe_config->dpll.p2;
7334
7335 /* See eDP HDMI DPIO driver vbios notes doc */
7336
7337 /* PLL B needs special handling */
7338 if (pipe == PIPE_B)
7339 vlv_pllb_recal_opamp(dev_priv, pipe);
7340
7341 /* Set up Tx target for periodic Rcomp update */
7342 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7343
7344 /* Disable target IRef on PLL */
7345 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7346 reg_val &= 0x00ffffff;
7347 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7348
7349 /* Disable fast lock */
7350 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7351
7352 /* Set idtafcrecal before PLL is enabled */
7353 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7354 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7355 mdiv |= ((bestn << DPIO_N_SHIFT));
7356 mdiv |= (1 << DPIO_K_SHIFT);
7357
7358 /*
7359 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7360 * but we don't support that).
7361 * Note: don't use the DAC post divider as it seems unstable.
7362 */
7363 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7364 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7365
7366 mdiv |= DPIO_ENABLE_CALIBRATION;
7367 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7368
7369 /* Set HBR and RBR LPF coefficients */
7370 if (pipe_config->port_clock == 162000 ||
7371 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7372 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7373 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7374 0x009f0003);
7375 else
7376 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7377 0x00d0000f);
7378
7379 if (pipe_config->has_dp_encoder) {
7380 /* Use SSC source */
7381 if (pipe == PIPE_A)
7382 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7383 0x0df40000);
7384 else
7385 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7386 0x0df70000);
7387 } else { /* HDMI or VGA */
7388 /* Use bend source */
7389 if (pipe == PIPE_A)
7390 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391 0x0df70000);
7392 else
7393 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394 0x0df40000);
7395 }
7396
7397 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7398 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7400 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7401 coreclk |= 0x01000000;
7402 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7403
7404 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7405 mutex_unlock(&dev_priv->sb_lock);
7406 }
7407
7408 static void chv_compute_dpll(struct intel_crtc *crtc,
7409 struct intel_crtc_state *pipe_config)
7410 {
7411 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7412 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7413 DPLL_VCO_ENABLE;
7414 if (crtc->pipe != PIPE_A)
7415 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7416
7417 pipe_config->dpll_hw_state.dpll_md =
7418 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7419 }
7420
7421 static void chv_prepare_pll(struct intel_crtc *crtc,
7422 const struct intel_crtc_state *pipe_config)
7423 {
7424 struct drm_device *dev = crtc->base.dev;
7425 struct drm_i915_private *dev_priv = dev->dev_private;
7426 int pipe = crtc->pipe;
7427 i915_reg_t dpll_reg = DPLL(crtc->pipe);
7428 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7429 u32 loopfilter, tribuf_calcntr;
7430 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7431 u32 dpio_val;
7432 int vco;
7433
7434 bestn = pipe_config->dpll.n;
7435 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7436 bestm1 = pipe_config->dpll.m1;
7437 bestm2 = pipe_config->dpll.m2 >> 22;
7438 bestp1 = pipe_config->dpll.p1;
7439 bestp2 = pipe_config->dpll.p2;
7440 vco = pipe_config->dpll.vco;
7441 dpio_val = 0;
7442 loopfilter = 0;
7443
7444 /*
7445 * Enable Refclk and SSC
7446 */
7447 I915_WRITE(dpll_reg,
7448 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7449
7450 mutex_lock(&dev_priv->sb_lock);
7451
7452 /* p1 and p2 divider */
7453 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7454 5 << DPIO_CHV_S1_DIV_SHIFT |
7455 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7456 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7457 1 << DPIO_CHV_K_DIV_SHIFT);
7458
7459 /* Feedback post-divider - m2 */
7460 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7461
7462 /* Feedback refclk divider - n and m1 */
7463 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7464 DPIO_CHV_M1_DIV_BY_2 |
7465 1 << DPIO_CHV_N_DIV_SHIFT);
7466
7467 /* M2 fraction division */
7468 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7469
7470 /* M2 fraction division enable */
7471 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7472 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7473 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7474 if (bestm2_frac)
7475 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7476 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7477
7478 /* Program digital lock detect threshold */
7479 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7480 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7481 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7482 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7483 if (!bestm2_frac)
7484 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7485 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7486
7487 /* Loop filter */
7488 if (vco == 5400000) {
7489 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7490 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7491 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7492 tribuf_calcntr = 0x9;
7493 } else if (vco <= 6200000) {
7494 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7495 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7496 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7497 tribuf_calcntr = 0x9;
7498 } else if (vco <= 6480000) {
7499 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7500 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7501 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7502 tribuf_calcntr = 0x8;
7503 } else {
7504 /* Not supported. Apply the same limits as in the max case */
7505 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508 tribuf_calcntr = 0;
7509 }
7510 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7511
7512 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7513 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7514 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7515 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7516
7517 /* AFC Recal */
7518 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7519 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7520 DPIO_AFC_RECAL);
7521
7522 mutex_unlock(&dev_priv->sb_lock);
7523 }
7524
7525 /**
7526 * vlv_force_pll_on - forcibly enable just the PLL
7527 * @dev_priv: i915 private structure
7528 * @pipe: pipe PLL to enable
7529 * @dpll: PLL configuration
7530 *
7531 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7532 * in cases where we need the PLL enabled even when @pipe is not going to
7533 * be enabled.
7534 */
7535 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7536 const struct dpll *dpll)
7537 {
7538 struct intel_crtc *crtc =
7539 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7540 struct intel_crtc_state pipe_config = {
7541 .base.crtc = &crtc->base,
7542 .pixel_multiplier = 1,
7543 .dpll = *dpll,
7544 };
7545
7546 if (IS_CHERRYVIEW(dev)) {
7547 chv_compute_dpll(crtc, &pipe_config);
7548 chv_prepare_pll(crtc, &pipe_config);
7549 chv_enable_pll(crtc, &pipe_config);
7550 } else {
7551 vlv_compute_dpll(crtc, &pipe_config);
7552 vlv_prepare_pll(crtc, &pipe_config);
7553 vlv_enable_pll(crtc, &pipe_config);
7554 }
7555 }
7556
7557 /**
7558 * vlv_force_pll_off - forcibly disable just the PLL
7559 * @dev_priv: i915 private structure
7560 * @pipe: pipe PLL to disable
7561 *
7562 * Disable the PLL for @pipe. To be used in cases where we need
7563 * the PLL enabled even when @pipe is not going to be enabled.
7564 */
7565 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7566 {
7567 if (IS_CHERRYVIEW(dev))
7568 chv_disable_pll(to_i915(dev), pipe);
7569 else
7570 vlv_disable_pll(to_i915(dev), pipe);
7571 }
7572
7573 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7574 struct intel_crtc_state *crtc_state,
7575 intel_clock_t *reduced_clock,
7576 int num_connectors)
7577 {
7578 struct drm_device *dev = crtc->base.dev;
7579 struct drm_i915_private *dev_priv = dev->dev_private;
7580 u32 dpll;
7581 bool is_sdvo;
7582 struct dpll *clock = &crtc_state->dpll;
7583
7584 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7585
7586 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7587 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7588
7589 dpll = DPLL_VGA_MODE_DIS;
7590
7591 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7592 dpll |= DPLLB_MODE_LVDS;
7593 else
7594 dpll |= DPLLB_MODE_DAC_SERIAL;
7595
7596 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7597 dpll |= (crtc_state->pixel_multiplier - 1)
7598 << SDVO_MULTIPLIER_SHIFT_HIRES;
7599 }
7600
7601 if (is_sdvo)
7602 dpll |= DPLL_SDVO_HIGH_SPEED;
7603
7604 if (crtc_state->has_dp_encoder)
7605 dpll |= DPLL_SDVO_HIGH_SPEED;
7606
7607 /* compute bitmask from p1 value */
7608 if (IS_PINEVIEW(dev))
7609 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7610 else {
7611 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7612 if (IS_G4X(dev) && reduced_clock)
7613 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7614 }
7615 switch (clock->p2) {
7616 case 5:
7617 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7618 break;
7619 case 7:
7620 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7621 break;
7622 case 10:
7623 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7624 break;
7625 case 14:
7626 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7627 break;
7628 }
7629 if (INTEL_INFO(dev)->gen >= 4)
7630 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7631
7632 if (crtc_state->sdvo_tv_clock)
7633 dpll |= PLL_REF_INPUT_TVCLKINBC;
7634 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7635 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7636 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7637 else
7638 dpll |= PLL_REF_INPUT_DREFCLK;
7639
7640 dpll |= DPLL_VCO_ENABLE;
7641 crtc_state->dpll_hw_state.dpll = dpll;
7642
7643 if (INTEL_INFO(dev)->gen >= 4) {
7644 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7645 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7646 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7647 }
7648 }
7649
7650 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7651 struct intel_crtc_state *crtc_state,
7652 intel_clock_t *reduced_clock,
7653 int num_connectors)
7654 {
7655 struct drm_device *dev = crtc->base.dev;
7656 struct drm_i915_private *dev_priv = dev->dev_private;
7657 u32 dpll;
7658 struct dpll *clock = &crtc_state->dpll;
7659
7660 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7661
7662 dpll = DPLL_VGA_MODE_DIS;
7663
7664 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7665 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7666 } else {
7667 if (clock->p1 == 2)
7668 dpll |= PLL_P1_DIVIDE_BY_TWO;
7669 else
7670 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7671 if (clock->p2 == 4)
7672 dpll |= PLL_P2_DIVIDE_BY_4;
7673 }
7674
7675 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7676 dpll |= DPLL_DVO_2X_MODE;
7677
7678 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7679 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7680 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7681 else
7682 dpll |= PLL_REF_INPUT_DREFCLK;
7683
7684 dpll |= DPLL_VCO_ENABLE;
7685 crtc_state->dpll_hw_state.dpll = dpll;
7686 }
7687
7688 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7689 {
7690 struct drm_device *dev = intel_crtc->base.dev;
7691 struct drm_i915_private *dev_priv = dev->dev_private;
7692 enum pipe pipe = intel_crtc->pipe;
7693 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7694 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7695 uint32_t crtc_vtotal, crtc_vblank_end;
7696 int vsyncshift = 0;
7697
7698 /* We need to be careful not to changed the adjusted mode, for otherwise
7699 * the hw state checker will get angry at the mismatch. */
7700 crtc_vtotal = adjusted_mode->crtc_vtotal;
7701 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7702
7703 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7704 /* the chip adds 2 halflines automatically */
7705 crtc_vtotal -= 1;
7706 crtc_vblank_end -= 1;
7707
7708 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7709 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7710 else
7711 vsyncshift = adjusted_mode->crtc_hsync_start -
7712 adjusted_mode->crtc_htotal / 2;
7713 if (vsyncshift < 0)
7714 vsyncshift += adjusted_mode->crtc_htotal;
7715 }
7716
7717 if (INTEL_INFO(dev)->gen > 3)
7718 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7719
7720 I915_WRITE(HTOTAL(cpu_transcoder),
7721 (adjusted_mode->crtc_hdisplay - 1) |
7722 ((adjusted_mode->crtc_htotal - 1) << 16));
7723 I915_WRITE(HBLANK(cpu_transcoder),
7724 (adjusted_mode->crtc_hblank_start - 1) |
7725 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7726 I915_WRITE(HSYNC(cpu_transcoder),
7727 (adjusted_mode->crtc_hsync_start - 1) |
7728 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7729
7730 I915_WRITE(VTOTAL(cpu_transcoder),
7731 (adjusted_mode->crtc_vdisplay - 1) |
7732 ((crtc_vtotal - 1) << 16));
7733 I915_WRITE(VBLANK(cpu_transcoder),
7734 (adjusted_mode->crtc_vblank_start - 1) |
7735 ((crtc_vblank_end - 1) << 16));
7736 I915_WRITE(VSYNC(cpu_transcoder),
7737 (adjusted_mode->crtc_vsync_start - 1) |
7738 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7739
7740 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7741 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7742 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7743 * bits. */
7744 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7745 (pipe == PIPE_B || pipe == PIPE_C))
7746 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7747
7748 /* pipesrc controls the size that is scaled from, which should
7749 * always be the user's requested size.
7750 */
7751 I915_WRITE(PIPESRC(pipe),
7752 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7753 (intel_crtc->config->pipe_src_h - 1));
7754 }
7755
7756 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7757 struct intel_crtc_state *pipe_config)
7758 {
7759 struct drm_device *dev = crtc->base.dev;
7760 struct drm_i915_private *dev_priv = dev->dev_private;
7761 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7762 uint32_t tmp;
7763
7764 tmp = I915_READ(HTOTAL(cpu_transcoder));
7765 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7766 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7767 tmp = I915_READ(HBLANK(cpu_transcoder));
7768 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7769 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7770 tmp = I915_READ(HSYNC(cpu_transcoder));
7771 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7772 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7773
7774 tmp = I915_READ(VTOTAL(cpu_transcoder));
7775 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7776 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7777 tmp = I915_READ(VBLANK(cpu_transcoder));
7778 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7779 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7780 tmp = I915_READ(VSYNC(cpu_transcoder));
7781 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7782 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7783
7784 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7785 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7786 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7787 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7788 }
7789
7790 tmp = I915_READ(PIPESRC(crtc->pipe));
7791 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7792 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7793
7794 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7795 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7796 }
7797
7798 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7799 struct intel_crtc_state *pipe_config)
7800 {
7801 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7802 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7803 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7804 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7805
7806 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7807 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7808 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7809 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7810
7811 mode->flags = pipe_config->base.adjusted_mode.flags;
7812 mode->type = DRM_MODE_TYPE_DRIVER;
7813
7814 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7815 mode->flags |= pipe_config->base.adjusted_mode.flags;
7816
7817 mode->hsync = drm_mode_hsync(mode);
7818 mode->vrefresh = drm_mode_vrefresh(mode);
7819 drm_mode_set_name(mode);
7820 }
7821
7822 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7823 {
7824 struct drm_device *dev = intel_crtc->base.dev;
7825 struct drm_i915_private *dev_priv = dev->dev_private;
7826 uint32_t pipeconf;
7827
7828 pipeconf = 0;
7829
7830 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7831 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7832 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7833
7834 if (intel_crtc->config->double_wide)
7835 pipeconf |= PIPECONF_DOUBLE_WIDE;
7836
7837 /* only g4x and later have fancy bpc/dither controls */
7838 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7839 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7840 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7841 pipeconf |= PIPECONF_DITHER_EN |
7842 PIPECONF_DITHER_TYPE_SP;
7843
7844 switch (intel_crtc->config->pipe_bpp) {
7845 case 18:
7846 pipeconf |= PIPECONF_6BPC;
7847 break;
7848 case 24:
7849 pipeconf |= PIPECONF_8BPC;
7850 break;
7851 case 30:
7852 pipeconf |= PIPECONF_10BPC;
7853 break;
7854 default:
7855 /* Case prevented by intel_choose_pipe_bpp_dither. */
7856 BUG();
7857 }
7858 }
7859
7860 if (HAS_PIPE_CXSR(dev)) {
7861 if (intel_crtc->lowfreq_avail) {
7862 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7863 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7864 } else {
7865 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7866 }
7867 }
7868
7869 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7870 if (INTEL_INFO(dev)->gen < 4 ||
7871 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7872 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7873 else
7874 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7875 } else
7876 pipeconf |= PIPECONF_PROGRESSIVE;
7877
7878 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7879 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7880
7881 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7882 POSTING_READ(PIPECONF(intel_crtc->pipe));
7883 }
7884
7885 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7886 struct intel_crtc_state *crtc_state)
7887 {
7888 struct drm_device *dev = crtc->base.dev;
7889 struct drm_i915_private *dev_priv = dev->dev_private;
7890 int refclk, num_connectors = 0;
7891 intel_clock_t clock;
7892 bool ok;
7893 bool is_dsi = false;
7894 struct intel_encoder *encoder;
7895 const intel_limit_t *limit;
7896 struct drm_atomic_state *state = crtc_state->base.state;
7897 struct drm_connector *connector;
7898 struct drm_connector_state *connector_state;
7899 int i;
7900
7901 memset(&crtc_state->dpll_hw_state, 0,
7902 sizeof(crtc_state->dpll_hw_state));
7903
7904 for_each_connector_in_state(state, connector, connector_state, i) {
7905 if (connector_state->crtc != &crtc->base)
7906 continue;
7907
7908 encoder = to_intel_encoder(connector_state->best_encoder);
7909
7910 switch (encoder->type) {
7911 case INTEL_OUTPUT_DSI:
7912 is_dsi = true;
7913 break;
7914 default:
7915 break;
7916 }
7917
7918 num_connectors++;
7919 }
7920
7921 if (is_dsi)
7922 return 0;
7923
7924 if (!crtc_state->clock_set) {
7925 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7926
7927 /*
7928 * Returns a set of divisors for the desired target clock with
7929 * the given refclk, or FALSE. The returned values represent
7930 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7931 * 2) / p1 / p2.
7932 */
7933 limit = intel_limit(crtc_state, refclk);
7934 ok = dev_priv->display.find_dpll(limit, crtc_state,
7935 crtc_state->port_clock,
7936 refclk, NULL, &clock);
7937 if (!ok) {
7938 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7939 return -EINVAL;
7940 }
7941
7942 /* Compat-code for transition, will disappear. */
7943 crtc_state->dpll.n = clock.n;
7944 crtc_state->dpll.m1 = clock.m1;
7945 crtc_state->dpll.m2 = clock.m2;
7946 crtc_state->dpll.p1 = clock.p1;
7947 crtc_state->dpll.p2 = clock.p2;
7948 }
7949
7950 if (IS_GEN2(dev)) {
7951 i8xx_compute_dpll(crtc, crtc_state, NULL,
7952 num_connectors);
7953 } else if (IS_CHERRYVIEW(dev)) {
7954 chv_compute_dpll(crtc, crtc_state);
7955 } else if (IS_VALLEYVIEW(dev)) {
7956 vlv_compute_dpll(crtc, crtc_state);
7957 } else {
7958 i9xx_compute_dpll(crtc, crtc_state, NULL,
7959 num_connectors);
7960 }
7961
7962 return 0;
7963 }
7964
7965 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7966 struct intel_crtc_state *pipe_config)
7967 {
7968 struct drm_device *dev = crtc->base.dev;
7969 struct drm_i915_private *dev_priv = dev->dev_private;
7970 uint32_t tmp;
7971
7972 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7973 return;
7974
7975 tmp = I915_READ(PFIT_CONTROL);
7976 if (!(tmp & PFIT_ENABLE))
7977 return;
7978
7979 /* Check whether the pfit is attached to our pipe. */
7980 if (INTEL_INFO(dev)->gen < 4) {
7981 if (crtc->pipe != PIPE_B)
7982 return;
7983 } else {
7984 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7985 return;
7986 }
7987
7988 pipe_config->gmch_pfit.control = tmp;
7989 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7990 if (INTEL_INFO(dev)->gen < 5)
7991 pipe_config->gmch_pfit.lvds_border_bits =
7992 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7993 }
7994
7995 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7996 struct intel_crtc_state *pipe_config)
7997 {
7998 struct drm_device *dev = crtc->base.dev;
7999 struct drm_i915_private *dev_priv = dev->dev_private;
8000 int pipe = pipe_config->cpu_transcoder;
8001 intel_clock_t clock;
8002 u32 mdiv;
8003 int refclk = 100000;
8004
8005 /* In case of MIPI DPLL will not even be used */
8006 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8007 return;
8008
8009 mutex_lock(&dev_priv->sb_lock);
8010 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8011 mutex_unlock(&dev_priv->sb_lock);
8012
8013 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8014 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8015 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8016 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8017 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8018
8019 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8020 }
8021
8022 static void
8023 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8024 struct intel_initial_plane_config *plane_config)
8025 {
8026 struct drm_device *dev = crtc->base.dev;
8027 struct drm_i915_private *dev_priv = dev->dev_private;
8028 u32 val, base, offset;
8029 int pipe = crtc->pipe, plane = crtc->plane;
8030 int fourcc, pixel_format;
8031 unsigned int aligned_height;
8032 struct drm_framebuffer *fb;
8033 struct intel_framebuffer *intel_fb;
8034
8035 val = I915_READ(DSPCNTR(plane));
8036 if (!(val & DISPLAY_PLANE_ENABLE))
8037 return;
8038
8039 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8040 if (!intel_fb) {
8041 DRM_DEBUG_KMS("failed to alloc fb\n");
8042 return;
8043 }
8044
8045 fb = &intel_fb->base;
8046
8047 if (INTEL_INFO(dev)->gen >= 4) {
8048 if (val & DISPPLANE_TILED) {
8049 plane_config->tiling = I915_TILING_X;
8050 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8051 }
8052 }
8053
8054 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8055 fourcc = i9xx_format_to_fourcc(pixel_format);
8056 fb->pixel_format = fourcc;
8057 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8058
8059 if (INTEL_INFO(dev)->gen >= 4) {
8060 if (plane_config->tiling)
8061 offset = I915_READ(DSPTILEOFF(plane));
8062 else
8063 offset = I915_READ(DSPLINOFF(plane));
8064 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8065 } else {
8066 base = I915_READ(DSPADDR(plane));
8067 }
8068 plane_config->base = base;
8069
8070 val = I915_READ(PIPESRC(pipe));
8071 fb->width = ((val >> 16) & 0xfff) + 1;
8072 fb->height = ((val >> 0) & 0xfff) + 1;
8073
8074 val = I915_READ(DSPSTRIDE(pipe));
8075 fb->pitches[0] = val & 0xffffffc0;
8076
8077 aligned_height = intel_fb_align_height(dev, fb->height,
8078 fb->pixel_format,
8079 fb->modifier[0]);
8080
8081 plane_config->size = fb->pitches[0] * aligned_height;
8082
8083 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8084 pipe_name(pipe), plane, fb->width, fb->height,
8085 fb->bits_per_pixel, base, fb->pitches[0],
8086 plane_config->size);
8087
8088 plane_config->fb = intel_fb;
8089 }
8090
8091 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8092 struct intel_crtc_state *pipe_config)
8093 {
8094 struct drm_device *dev = crtc->base.dev;
8095 struct drm_i915_private *dev_priv = dev->dev_private;
8096 int pipe = pipe_config->cpu_transcoder;
8097 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8098 intel_clock_t clock;
8099 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8100 int refclk = 100000;
8101
8102 mutex_lock(&dev_priv->sb_lock);
8103 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8104 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8105 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8106 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8107 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8108 mutex_unlock(&dev_priv->sb_lock);
8109
8110 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8111 clock.m2 = (pll_dw0 & 0xff) << 22;
8112 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8113 clock.m2 |= pll_dw2 & 0x3fffff;
8114 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8115 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8116 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8117
8118 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8119 }
8120
8121 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8122 struct intel_crtc_state *pipe_config)
8123 {
8124 struct drm_device *dev = crtc->base.dev;
8125 struct drm_i915_private *dev_priv = dev->dev_private;
8126 uint32_t tmp;
8127
8128 if (!intel_display_power_is_enabled(dev_priv,
8129 POWER_DOMAIN_PIPE(crtc->pipe)))
8130 return false;
8131
8132 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8133 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8134
8135 tmp = I915_READ(PIPECONF(crtc->pipe));
8136 if (!(tmp & PIPECONF_ENABLE))
8137 return false;
8138
8139 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8140 switch (tmp & PIPECONF_BPC_MASK) {
8141 case PIPECONF_6BPC:
8142 pipe_config->pipe_bpp = 18;
8143 break;
8144 case PIPECONF_8BPC:
8145 pipe_config->pipe_bpp = 24;
8146 break;
8147 case PIPECONF_10BPC:
8148 pipe_config->pipe_bpp = 30;
8149 break;
8150 default:
8151 break;
8152 }
8153 }
8154
8155 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8156 pipe_config->limited_color_range = true;
8157
8158 if (INTEL_INFO(dev)->gen < 4)
8159 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8160
8161 intel_get_pipe_timings(crtc, pipe_config);
8162
8163 i9xx_get_pfit_config(crtc, pipe_config);
8164
8165 if (INTEL_INFO(dev)->gen >= 4) {
8166 tmp = I915_READ(DPLL_MD(crtc->pipe));
8167 pipe_config->pixel_multiplier =
8168 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8169 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8170 pipe_config->dpll_hw_state.dpll_md = tmp;
8171 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8172 tmp = I915_READ(DPLL(crtc->pipe));
8173 pipe_config->pixel_multiplier =
8174 ((tmp & SDVO_MULTIPLIER_MASK)
8175 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8176 } else {
8177 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8178 * port and will be fixed up in the encoder->get_config
8179 * function. */
8180 pipe_config->pixel_multiplier = 1;
8181 }
8182 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8183 if (!IS_VALLEYVIEW(dev)) {
8184 /*
8185 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8186 * on 830. Filter it out here so that we don't
8187 * report errors due to that.
8188 */
8189 if (IS_I830(dev))
8190 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8191
8192 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8193 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8194 } else {
8195 /* Mask out read-only status bits. */
8196 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8197 DPLL_PORTC_READY_MASK |
8198 DPLL_PORTB_READY_MASK);
8199 }
8200
8201 if (IS_CHERRYVIEW(dev))
8202 chv_crtc_clock_get(crtc, pipe_config);
8203 else if (IS_VALLEYVIEW(dev))
8204 vlv_crtc_clock_get(crtc, pipe_config);
8205 else
8206 i9xx_crtc_clock_get(crtc, pipe_config);
8207
8208 /*
8209 * Normally the dotclock is filled in by the encoder .get_config()
8210 * but in case the pipe is enabled w/o any ports we need a sane
8211 * default.
8212 */
8213 pipe_config->base.adjusted_mode.crtc_clock =
8214 pipe_config->port_clock / pipe_config->pixel_multiplier;
8215
8216 return true;
8217 }
8218
8219 static void ironlake_init_pch_refclk(struct drm_device *dev)
8220 {
8221 struct drm_i915_private *dev_priv = dev->dev_private;
8222 struct intel_encoder *encoder;
8223 u32 val, final;
8224 bool has_lvds = false;
8225 bool has_cpu_edp = false;
8226 bool has_panel = false;
8227 bool has_ck505 = false;
8228 bool can_ssc = false;
8229
8230 /* We need to take the global config into account */
8231 for_each_intel_encoder(dev, encoder) {
8232 switch (encoder->type) {
8233 case INTEL_OUTPUT_LVDS:
8234 has_panel = true;
8235 has_lvds = true;
8236 break;
8237 case INTEL_OUTPUT_EDP:
8238 has_panel = true;
8239 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8240 has_cpu_edp = true;
8241 break;
8242 default:
8243 break;
8244 }
8245 }
8246
8247 if (HAS_PCH_IBX(dev)) {
8248 has_ck505 = dev_priv->vbt.display_clock_mode;
8249 can_ssc = has_ck505;
8250 } else {
8251 has_ck505 = false;
8252 can_ssc = true;
8253 }
8254
8255 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8256 has_panel, has_lvds, has_ck505);
8257
8258 /* Ironlake: try to setup display ref clock before DPLL
8259 * enabling. This is only under driver's control after
8260 * PCH B stepping, previous chipset stepping should be
8261 * ignoring this setting.
8262 */
8263 val = I915_READ(PCH_DREF_CONTROL);
8264
8265 /* As we must carefully and slowly disable/enable each source in turn,
8266 * compute the final state we want first and check if we need to
8267 * make any changes at all.
8268 */
8269 final = val;
8270 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8271 if (has_ck505)
8272 final |= DREF_NONSPREAD_CK505_ENABLE;
8273 else
8274 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8275
8276 final &= ~DREF_SSC_SOURCE_MASK;
8277 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8278 final &= ~DREF_SSC1_ENABLE;
8279
8280 if (has_panel) {
8281 final |= DREF_SSC_SOURCE_ENABLE;
8282
8283 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8284 final |= DREF_SSC1_ENABLE;
8285
8286 if (has_cpu_edp) {
8287 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8288 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8289 else
8290 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8291 } else
8292 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8293 } else {
8294 final |= DREF_SSC_SOURCE_DISABLE;
8295 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8296 }
8297
8298 if (final == val)
8299 return;
8300
8301 /* Always enable nonspread source */
8302 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8303
8304 if (has_ck505)
8305 val |= DREF_NONSPREAD_CK505_ENABLE;
8306 else
8307 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8308
8309 if (has_panel) {
8310 val &= ~DREF_SSC_SOURCE_MASK;
8311 val |= DREF_SSC_SOURCE_ENABLE;
8312
8313 /* SSC must be turned on before enabling the CPU output */
8314 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8315 DRM_DEBUG_KMS("Using SSC on panel\n");
8316 val |= DREF_SSC1_ENABLE;
8317 } else
8318 val &= ~DREF_SSC1_ENABLE;
8319
8320 /* Get SSC going before enabling the outputs */
8321 I915_WRITE(PCH_DREF_CONTROL, val);
8322 POSTING_READ(PCH_DREF_CONTROL);
8323 udelay(200);
8324
8325 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8326
8327 /* Enable CPU source on CPU attached eDP */
8328 if (has_cpu_edp) {
8329 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8330 DRM_DEBUG_KMS("Using SSC on eDP\n");
8331 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8332 } else
8333 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8334 } else
8335 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8336
8337 I915_WRITE(PCH_DREF_CONTROL, val);
8338 POSTING_READ(PCH_DREF_CONTROL);
8339 udelay(200);
8340 } else {
8341 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8342
8343 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8344
8345 /* Turn off CPU output */
8346 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8347
8348 I915_WRITE(PCH_DREF_CONTROL, val);
8349 POSTING_READ(PCH_DREF_CONTROL);
8350 udelay(200);
8351
8352 /* Turn off the SSC source */
8353 val &= ~DREF_SSC_SOURCE_MASK;
8354 val |= DREF_SSC_SOURCE_DISABLE;
8355
8356 /* Turn off SSC1 */
8357 val &= ~DREF_SSC1_ENABLE;
8358
8359 I915_WRITE(PCH_DREF_CONTROL, val);
8360 POSTING_READ(PCH_DREF_CONTROL);
8361 udelay(200);
8362 }
8363
8364 BUG_ON(val != final);
8365 }
8366
8367 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8368 {
8369 uint32_t tmp;
8370
8371 tmp = I915_READ(SOUTH_CHICKEN2);
8372 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8373 I915_WRITE(SOUTH_CHICKEN2, tmp);
8374
8375 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8376 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8377 DRM_ERROR("FDI mPHY reset assert timeout\n");
8378
8379 tmp = I915_READ(SOUTH_CHICKEN2);
8380 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8381 I915_WRITE(SOUTH_CHICKEN2, tmp);
8382
8383 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8384 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8385 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8386 }
8387
8388 /* WaMPhyProgramming:hsw */
8389 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8390 {
8391 uint32_t tmp;
8392
8393 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8394 tmp &= ~(0xFF << 24);
8395 tmp |= (0x12 << 24);
8396 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8397
8398 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8399 tmp |= (1 << 11);
8400 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8401
8402 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8403 tmp |= (1 << 11);
8404 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8405
8406 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8407 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8408 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8409
8410 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8411 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8412 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8413
8414 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8415 tmp &= ~(7 << 13);
8416 tmp |= (5 << 13);
8417 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8418
8419 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8420 tmp &= ~(7 << 13);
8421 tmp |= (5 << 13);
8422 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8423
8424 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8425 tmp &= ~0xFF;
8426 tmp |= 0x1C;
8427 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8428
8429 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8430 tmp &= ~0xFF;
8431 tmp |= 0x1C;
8432 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8433
8434 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8435 tmp &= ~(0xFF << 16);
8436 tmp |= (0x1C << 16);
8437 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8438
8439 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8440 tmp &= ~(0xFF << 16);
8441 tmp |= (0x1C << 16);
8442 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8443
8444 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8445 tmp |= (1 << 27);
8446 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8447
8448 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8449 tmp |= (1 << 27);
8450 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8451
8452 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8453 tmp &= ~(0xF << 28);
8454 tmp |= (4 << 28);
8455 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8456
8457 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8458 tmp &= ~(0xF << 28);
8459 tmp |= (4 << 28);
8460 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8461 }
8462
8463 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8464 * Programming" based on the parameters passed:
8465 * - Sequence to enable CLKOUT_DP
8466 * - Sequence to enable CLKOUT_DP without spread
8467 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8468 */
8469 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8470 bool with_fdi)
8471 {
8472 struct drm_i915_private *dev_priv = dev->dev_private;
8473 uint32_t reg, tmp;
8474
8475 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8476 with_spread = true;
8477 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8478 with_fdi = false;
8479
8480 mutex_lock(&dev_priv->sb_lock);
8481
8482 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8483 tmp &= ~SBI_SSCCTL_DISABLE;
8484 tmp |= SBI_SSCCTL_PATHALT;
8485 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8486
8487 udelay(24);
8488
8489 if (with_spread) {
8490 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491 tmp &= ~SBI_SSCCTL_PATHALT;
8492 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8493
8494 if (with_fdi) {
8495 lpt_reset_fdi_mphy(dev_priv);
8496 lpt_program_fdi_mphy(dev_priv);
8497 }
8498 }
8499
8500 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8501 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8502 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8503 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8504
8505 mutex_unlock(&dev_priv->sb_lock);
8506 }
8507
8508 /* Sequence to disable CLKOUT_DP */
8509 static void lpt_disable_clkout_dp(struct drm_device *dev)
8510 {
8511 struct drm_i915_private *dev_priv = dev->dev_private;
8512 uint32_t reg, tmp;
8513
8514 mutex_lock(&dev_priv->sb_lock);
8515
8516 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8517 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8518 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8519 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8520
8521 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8522 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8523 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8524 tmp |= SBI_SSCCTL_PATHALT;
8525 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8526 udelay(32);
8527 }
8528 tmp |= SBI_SSCCTL_DISABLE;
8529 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8530 }
8531
8532 mutex_unlock(&dev_priv->sb_lock);
8533 }
8534
8535 static void lpt_init_pch_refclk(struct drm_device *dev)
8536 {
8537 struct intel_encoder *encoder;
8538 bool has_vga = false;
8539
8540 for_each_intel_encoder(dev, encoder) {
8541 switch (encoder->type) {
8542 case INTEL_OUTPUT_ANALOG:
8543 has_vga = true;
8544 break;
8545 default:
8546 break;
8547 }
8548 }
8549
8550 if (has_vga)
8551 lpt_enable_clkout_dp(dev, true, true);
8552 else
8553 lpt_disable_clkout_dp(dev);
8554 }
8555
8556 /*
8557 * Initialize reference clocks when the driver loads
8558 */
8559 void intel_init_pch_refclk(struct drm_device *dev)
8560 {
8561 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8562 ironlake_init_pch_refclk(dev);
8563 else if (HAS_PCH_LPT(dev))
8564 lpt_init_pch_refclk(dev);
8565 }
8566
8567 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8568 {
8569 struct drm_device *dev = crtc_state->base.crtc->dev;
8570 struct drm_i915_private *dev_priv = dev->dev_private;
8571 struct drm_atomic_state *state = crtc_state->base.state;
8572 struct drm_connector *connector;
8573 struct drm_connector_state *connector_state;
8574 struct intel_encoder *encoder;
8575 int num_connectors = 0, i;
8576 bool is_lvds = false;
8577
8578 for_each_connector_in_state(state, connector, connector_state, i) {
8579 if (connector_state->crtc != crtc_state->base.crtc)
8580 continue;
8581
8582 encoder = to_intel_encoder(connector_state->best_encoder);
8583
8584 switch (encoder->type) {
8585 case INTEL_OUTPUT_LVDS:
8586 is_lvds = true;
8587 break;
8588 default:
8589 break;
8590 }
8591 num_connectors++;
8592 }
8593
8594 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8595 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8596 dev_priv->vbt.lvds_ssc_freq);
8597 return dev_priv->vbt.lvds_ssc_freq;
8598 }
8599
8600 return 120000;
8601 }
8602
8603 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8604 {
8605 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8607 int pipe = intel_crtc->pipe;
8608 uint32_t val;
8609
8610 val = 0;
8611
8612 switch (intel_crtc->config->pipe_bpp) {
8613 case 18:
8614 val |= PIPECONF_6BPC;
8615 break;
8616 case 24:
8617 val |= PIPECONF_8BPC;
8618 break;
8619 case 30:
8620 val |= PIPECONF_10BPC;
8621 break;
8622 case 36:
8623 val |= PIPECONF_12BPC;
8624 break;
8625 default:
8626 /* Case prevented by intel_choose_pipe_bpp_dither. */
8627 BUG();
8628 }
8629
8630 if (intel_crtc->config->dither)
8631 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8632
8633 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8634 val |= PIPECONF_INTERLACED_ILK;
8635 else
8636 val |= PIPECONF_PROGRESSIVE;
8637
8638 if (intel_crtc->config->limited_color_range)
8639 val |= PIPECONF_COLOR_RANGE_SELECT;
8640
8641 I915_WRITE(PIPECONF(pipe), val);
8642 POSTING_READ(PIPECONF(pipe));
8643 }
8644
8645 /*
8646 * Set up the pipe CSC unit.
8647 *
8648 * Currently only full range RGB to limited range RGB conversion
8649 * is supported, but eventually this should handle various
8650 * RGB<->YCbCr scenarios as well.
8651 */
8652 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8653 {
8654 struct drm_device *dev = crtc->dev;
8655 struct drm_i915_private *dev_priv = dev->dev_private;
8656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8657 int pipe = intel_crtc->pipe;
8658 uint16_t coeff = 0x7800; /* 1.0 */
8659
8660 /*
8661 * TODO: Check what kind of values actually come out of the pipe
8662 * with these coeff/postoff values and adjust to get the best
8663 * accuracy. Perhaps we even need to take the bpc value into
8664 * consideration.
8665 */
8666
8667 if (intel_crtc->config->limited_color_range)
8668 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8669
8670 /*
8671 * GY/GU and RY/RU should be the other way around according
8672 * to BSpec, but reality doesn't agree. Just set them up in
8673 * a way that results in the correct picture.
8674 */
8675 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8676 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8677
8678 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8679 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8680
8681 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8682 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8683
8684 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8685 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8686 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8687
8688 if (INTEL_INFO(dev)->gen > 6) {
8689 uint16_t postoff = 0;
8690
8691 if (intel_crtc->config->limited_color_range)
8692 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8693
8694 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8695 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8696 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8697
8698 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8699 } else {
8700 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8701
8702 if (intel_crtc->config->limited_color_range)
8703 mode |= CSC_BLACK_SCREEN_OFFSET;
8704
8705 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8706 }
8707 }
8708
8709 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8710 {
8711 struct drm_device *dev = crtc->dev;
8712 struct drm_i915_private *dev_priv = dev->dev_private;
8713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8714 enum pipe pipe = intel_crtc->pipe;
8715 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8716 uint32_t val;
8717
8718 val = 0;
8719
8720 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8721 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8722
8723 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8724 val |= PIPECONF_INTERLACED_ILK;
8725 else
8726 val |= PIPECONF_PROGRESSIVE;
8727
8728 I915_WRITE(PIPECONF(cpu_transcoder), val);
8729 POSTING_READ(PIPECONF(cpu_transcoder));
8730
8731 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8732 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8733
8734 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8735 val = 0;
8736
8737 switch (intel_crtc->config->pipe_bpp) {
8738 case 18:
8739 val |= PIPEMISC_DITHER_6_BPC;
8740 break;
8741 case 24:
8742 val |= PIPEMISC_DITHER_8_BPC;
8743 break;
8744 case 30:
8745 val |= PIPEMISC_DITHER_10_BPC;
8746 break;
8747 case 36:
8748 val |= PIPEMISC_DITHER_12_BPC;
8749 break;
8750 default:
8751 /* Case prevented by pipe_config_set_bpp. */
8752 BUG();
8753 }
8754
8755 if (intel_crtc->config->dither)
8756 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8757
8758 I915_WRITE(PIPEMISC(pipe), val);
8759 }
8760 }
8761
8762 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8763 struct intel_crtc_state *crtc_state,
8764 intel_clock_t *clock,
8765 bool *has_reduced_clock,
8766 intel_clock_t *reduced_clock)
8767 {
8768 struct drm_device *dev = crtc->dev;
8769 struct drm_i915_private *dev_priv = dev->dev_private;
8770 int refclk;
8771 const intel_limit_t *limit;
8772 bool ret;
8773
8774 refclk = ironlake_get_refclk(crtc_state);
8775
8776 /*
8777 * Returns a set of divisors for the desired target clock with the given
8778 * refclk, or FALSE. The returned values represent the clock equation:
8779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8780 */
8781 limit = intel_limit(crtc_state, refclk);
8782 ret = dev_priv->display.find_dpll(limit, crtc_state,
8783 crtc_state->port_clock,
8784 refclk, NULL, clock);
8785 if (!ret)
8786 return false;
8787
8788 return true;
8789 }
8790
8791 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8792 {
8793 /*
8794 * Account for spread spectrum to avoid
8795 * oversubscribing the link. Max center spread
8796 * is 2.5%; use 5% for safety's sake.
8797 */
8798 u32 bps = target_clock * bpp * 21 / 20;
8799 return DIV_ROUND_UP(bps, link_bw * 8);
8800 }
8801
8802 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8803 {
8804 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8805 }
8806
8807 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8808 struct intel_crtc_state *crtc_state,
8809 u32 *fp,
8810 intel_clock_t *reduced_clock, u32 *fp2)
8811 {
8812 struct drm_crtc *crtc = &intel_crtc->base;
8813 struct drm_device *dev = crtc->dev;
8814 struct drm_i915_private *dev_priv = dev->dev_private;
8815 struct drm_atomic_state *state = crtc_state->base.state;
8816 struct drm_connector *connector;
8817 struct drm_connector_state *connector_state;
8818 struct intel_encoder *encoder;
8819 uint32_t dpll;
8820 int factor, num_connectors = 0, i;
8821 bool is_lvds = false, is_sdvo = false;
8822
8823 for_each_connector_in_state(state, connector, connector_state, i) {
8824 if (connector_state->crtc != crtc_state->base.crtc)
8825 continue;
8826
8827 encoder = to_intel_encoder(connector_state->best_encoder);
8828
8829 switch (encoder->type) {
8830 case INTEL_OUTPUT_LVDS:
8831 is_lvds = true;
8832 break;
8833 case INTEL_OUTPUT_SDVO:
8834 case INTEL_OUTPUT_HDMI:
8835 is_sdvo = true;
8836 break;
8837 default:
8838 break;
8839 }
8840
8841 num_connectors++;
8842 }
8843
8844 /* Enable autotuning of the PLL clock (if permissible) */
8845 factor = 21;
8846 if (is_lvds) {
8847 if ((intel_panel_use_ssc(dev_priv) &&
8848 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8849 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8850 factor = 25;
8851 } else if (crtc_state->sdvo_tv_clock)
8852 factor = 20;
8853
8854 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8855 *fp |= FP_CB_TUNE;
8856
8857 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8858 *fp2 |= FP_CB_TUNE;
8859
8860 dpll = 0;
8861
8862 if (is_lvds)
8863 dpll |= DPLLB_MODE_LVDS;
8864 else
8865 dpll |= DPLLB_MODE_DAC_SERIAL;
8866
8867 dpll |= (crtc_state->pixel_multiplier - 1)
8868 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8869
8870 if (is_sdvo)
8871 dpll |= DPLL_SDVO_HIGH_SPEED;
8872 if (crtc_state->has_dp_encoder)
8873 dpll |= DPLL_SDVO_HIGH_SPEED;
8874
8875 /* compute bitmask from p1 value */
8876 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8877 /* also FPA1 */
8878 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8879
8880 switch (crtc_state->dpll.p2) {
8881 case 5:
8882 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8883 break;
8884 case 7:
8885 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8886 break;
8887 case 10:
8888 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8889 break;
8890 case 14:
8891 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8892 break;
8893 }
8894
8895 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8896 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8897 else
8898 dpll |= PLL_REF_INPUT_DREFCLK;
8899
8900 return dpll | DPLL_VCO_ENABLE;
8901 }
8902
8903 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8904 struct intel_crtc_state *crtc_state)
8905 {
8906 struct drm_device *dev = crtc->base.dev;
8907 intel_clock_t clock, reduced_clock;
8908 u32 dpll = 0, fp = 0, fp2 = 0;
8909 bool ok, has_reduced_clock = false;
8910 bool is_lvds = false;
8911 struct intel_shared_dpll *pll;
8912
8913 memset(&crtc_state->dpll_hw_state, 0,
8914 sizeof(crtc_state->dpll_hw_state));
8915
8916 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8917
8918 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8919 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8920
8921 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8922 &has_reduced_clock, &reduced_clock);
8923 if (!ok && !crtc_state->clock_set) {
8924 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8925 return -EINVAL;
8926 }
8927 /* Compat-code for transition, will disappear. */
8928 if (!crtc_state->clock_set) {
8929 crtc_state->dpll.n = clock.n;
8930 crtc_state->dpll.m1 = clock.m1;
8931 crtc_state->dpll.m2 = clock.m2;
8932 crtc_state->dpll.p1 = clock.p1;
8933 crtc_state->dpll.p2 = clock.p2;
8934 }
8935
8936 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8937 if (crtc_state->has_pch_encoder) {
8938 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8939 if (has_reduced_clock)
8940 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8941
8942 dpll = ironlake_compute_dpll(crtc, crtc_state,
8943 &fp, &reduced_clock,
8944 has_reduced_clock ? &fp2 : NULL);
8945
8946 crtc_state->dpll_hw_state.dpll = dpll;
8947 crtc_state->dpll_hw_state.fp0 = fp;
8948 if (has_reduced_clock)
8949 crtc_state->dpll_hw_state.fp1 = fp2;
8950 else
8951 crtc_state->dpll_hw_state.fp1 = fp;
8952
8953 pll = intel_get_shared_dpll(crtc, crtc_state);
8954 if (pll == NULL) {
8955 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8956 pipe_name(crtc->pipe));
8957 return -EINVAL;
8958 }
8959 }
8960
8961 if (is_lvds && has_reduced_clock)
8962 crtc->lowfreq_avail = true;
8963 else
8964 crtc->lowfreq_avail = false;
8965
8966 return 0;
8967 }
8968
8969 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8970 struct intel_link_m_n *m_n)
8971 {
8972 struct drm_device *dev = crtc->base.dev;
8973 struct drm_i915_private *dev_priv = dev->dev_private;
8974 enum pipe pipe = crtc->pipe;
8975
8976 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8977 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8978 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8979 & ~TU_SIZE_MASK;
8980 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8981 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8982 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8983 }
8984
8985 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8986 enum transcoder transcoder,
8987 struct intel_link_m_n *m_n,
8988 struct intel_link_m_n *m2_n2)
8989 {
8990 struct drm_device *dev = crtc->base.dev;
8991 struct drm_i915_private *dev_priv = dev->dev_private;
8992 enum pipe pipe = crtc->pipe;
8993
8994 if (INTEL_INFO(dev)->gen >= 5) {
8995 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8996 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8997 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8998 & ~TU_SIZE_MASK;
8999 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9000 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9001 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9002 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9003 * gen < 8) and if DRRS is supported (to make sure the
9004 * registers are not unnecessarily read).
9005 */
9006 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9007 crtc->config->has_drrs) {
9008 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9009 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9010 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9011 & ~TU_SIZE_MASK;
9012 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9013 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9014 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9015 }
9016 } else {
9017 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9018 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9019 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9020 & ~TU_SIZE_MASK;
9021 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9022 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9023 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9024 }
9025 }
9026
9027 void intel_dp_get_m_n(struct intel_crtc *crtc,
9028 struct intel_crtc_state *pipe_config)
9029 {
9030 if (pipe_config->has_pch_encoder)
9031 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9032 else
9033 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9034 &pipe_config->dp_m_n,
9035 &pipe_config->dp_m2_n2);
9036 }
9037
9038 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9039 struct intel_crtc_state *pipe_config)
9040 {
9041 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9042 &pipe_config->fdi_m_n, NULL);
9043 }
9044
9045 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9046 struct intel_crtc_state *pipe_config)
9047 {
9048 struct drm_device *dev = crtc->base.dev;
9049 struct drm_i915_private *dev_priv = dev->dev_private;
9050 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9051 uint32_t ps_ctrl = 0;
9052 int id = -1;
9053 int i;
9054
9055 /* find scaler attached to this pipe */
9056 for (i = 0; i < crtc->num_scalers; i++) {
9057 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9058 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9059 id = i;
9060 pipe_config->pch_pfit.enabled = true;
9061 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9062 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9063 break;
9064 }
9065 }
9066
9067 scaler_state->scaler_id = id;
9068 if (id >= 0) {
9069 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9070 } else {
9071 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9072 }
9073 }
9074
9075 static void
9076 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9077 struct intel_initial_plane_config *plane_config)
9078 {
9079 struct drm_device *dev = crtc->base.dev;
9080 struct drm_i915_private *dev_priv = dev->dev_private;
9081 u32 val, base, offset, stride_mult, tiling;
9082 int pipe = crtc->pipe;
9083 int fourcc, pixel_format;
9084 unsigned int aligned_height;
9085 struct drm_framebuffer *fb;
9086 struct intel_framebuffer *intel_fb;
9087
9088 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9089 if (!intel_fb) {
9090 DRM_DEBUG_KMS("failed to alloc fb\n");
9091 return;
9092 }
9093
9094 fb = &intel_fb->base;
9095
9096 val = I915_READ(PLANE_CTL(pipe, 0));
9097 if (!(val & PLANE_CTL_ENABLE))
9098 goto error;
9099
9100 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9101 fourcc = skl_format_to_fourcc(pixel_format,
9102 val & PLANE_CTL_ORDER_RGBX,
9103 val & PLANE_CTL_ALPHA_MASK);
9104 fb->pixel_format = fourcc;
9105 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9106
9107 tiling = val & PLANE_CTL_TILED_MASK;
9108 switch (tiling) {
9109 case PLANE_CTL_TILED_LINEAR:
9110 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9111 break;
9112 case PLANE_CTL_TILED_X:
9113 plane_config->tiling = I915_TILING_X;
9114 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9115 break;
9116 case PLANE_CTL_TILED_Y:
9117 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9118 break;
9119 case PLANE_CTL_TILED_YF:
9120 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9121 break;
9122 default:
9123 MISSING_CASE(tiling);
9124 goto error;
9125 }
9126
9127 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9128 plane_config->base = base;
9129
9130 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9131
9132 val = I915_READ(PLANE_SIZE(pipe, 0));
9133 fb->height = ((val >> 16) & 0xfff) + 1;
9134 fb->width = ((val >> 0) & 0x1fff) + 1;
9135
9136 val = I915_READ(PLANE_STRIDE(pipe, 0));
9137 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9138 fb->pixel_format);
9139 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9140
9141 aligned_height = intel_fb_align_height(dev, fb->height,
9142 fb->pixel_format,
9143 fb->modifier[0]);
9144
9145 plane_config->size = fb->pitches[0] * aligned_height;
9146
9147 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9148 pipe_name(pipe), fb->width, fb->height,
9149 fb->bits_per_pixel, base, fb->pitches[0],
9150 plane_config->size);
9151
9152 plane_config->fb = intel_fb;
9153 return;
9154
9155 error:
9156 kfree(fb);
9157 }
9158
9159 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9160 struct intel_crtc_state *pipe_config)
9161 {
9162 struct drm_device *dev = crtc->base.dev;
9163 struct drm_i915_private *dev_priv = dev->dev_private;
9164 uint32_t tmp;
9165
9166 tmp = I915_READ(PF_CTL(crtc->pipe));
9167
9168 if (tmp & PF_ENABLE) {
9169 pipe_config->pch_pfit.enabled = true;
9170 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9171 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9172
9173 /* We currently do not free assignements of panel fitters on
9174 * ivb/hsw (since we don't use the higher upscaling modes which
9175 * differentiates them) so just WARN about this case for now. */
9176 if (IS_GEN7(dev)) {
9177 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9178 PF_PIPE_SEL_IVB(crtc->pipe));
9179 }
9180 }
9181 }
9182
9183 static void
9184 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9185 struct intel_initial_plane_config *plane_config)
9186 {
9187 struct drm_device *dev = crtc->base.dev;
9188 struct drm_i915_private *dev_priv = dev->dev_private;
9189 u32 val, base, offset;
9190 int pipe = crtc->pipe;
9191 int fourcc, pixel_format;
9192 unsigned int aligned_height;
9193 struct drm_framebuffer *fb;
9194 struct intel_framebuffer *intel_fb;
9195
9196 val = I915_READ(DSPCNTR(pipe));
9197 if (!(val & DISPLAY_PLANE_ENABLE))
9198 return;
9199
9200 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9201 if (!intel_fb) {
9202 DRM_DEBUG_KMS("failed to alloc fb\n");
9203 return;
9204 }
9205
9206 fb = &intel_fb->base;
9207
9208 if (INTEL_INFO(dev)->gen >= 4) {
9209 if (val & DISPPLANE_TILED) {
9210 plane_config->tiling = I915_TILING_X;
9211 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9212 }
9213 }
9214
9215 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9216 fourcc = i9xx_format_to_fourcc(pixel_format);
9217 fb->pixel_format = fourcc;
9218 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9219
9220 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9221 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9222 offset = I915_READ(DSPOFFSET(pipe));
9223 } else {
9224 if (plane_config->tiling)
9225 offset = I915_READ(DSPTILEOFF(pipe));
9226 else
9227 offset = I915_READ(DSPLINOFF(pipe));
9228 }
9229 plane_config->base = base;
9230
9231 val = I915_READ(PIPESRC(pipe));
9232 fb->width = ((val >> 16) & 0xfff) + 1;
9233 fb->height = ((val >> 0) & 0xfff) + 1;
9234
9235 val = I915_READ(DSPSTRIDE(pipe));
9236 fb->pitches[0] = val & 0xffffffc0;
9237
9238 aligned_height = intel_fb_align_height(dev, fb->height,
9239 fb->pixel_format,
9240 fb->modifier[0]);
9241
9242 plane_config->size = fb->pitches[0] * aligned_height;
9243
9244 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9245 pipe_name(pipe), fb->width, fb->height,
9246 fb->bits_per_pixel, base, fb->pitches[0],
9247 plane_config->size);
9248
9249 plane_config->fb = intel_fb;
9250 }
9251
9252 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9253 struct intel_crtc_state *pipe_config)
9254 {
9255 struct drm_device *dev = crtc->base.dev;
9256 struct drm_i915_private *dev_priv = dev->dev_private;
9257 uint32_t tmp;
9258
9259 if (!intel_display_power_is_enabled(dev_priv,
9260 POWER_DOMAIN_PIPE(crtc->pipe)))
9261 return false;
9262
9263 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9264 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9265
9266 tmp = I915_READ(PIPECONF(crtc->pipe));
9267 if (!(tmp & PIPECONF_ENABLE))
9268 return false;
9269
9270 switch (tmp & PIPECONF_BPC_MASK) {
9271 case PIPECONF_6BPC:
9272 pipe_config->pipe_bpp = 18;
9273 break;
9274 case PIPECONF_8BPC:
9275 pipe_config->pipe_bpp = 24;
9276 break;
9277 case PIPECONF_10BPC:
9278 pipe_config->pipe_bpp = 30;
9279 break;
9280 case PIPECONF_12BPC:
9281 pipe_config->pipe_bpp = 36;
9282 break;
9283 default:
9284 break;
9285 }
9286
9287 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9288 pipe_config->limited_color_range = true;
9289
9290 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9291 struct intel_shared_dpll *pll;
9292
9293 pipe_config->has_pch_encoder = true;
9294
9295 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9296 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9297 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9298
9299 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9300
9301 if (HAS_PCH_IBX(dev_priv->dev)) {
9302 pipe_config->shared_dpll =
9303 (enum intel_dpll_id) crtc->pipe;
9304 } else {
9305 tmp = I915_READ(PCH_DPLL_SEL);
9306 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9307 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9308 else
9309 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9310 }
9311
9312 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9313
9314 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9315 &pipe_config->dpll_hw_state));
9316
9317 tmp = pipe_config->dpll_hw_state.dpll;
9318 pipe_config->pixel_multiplier =
9319 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9320 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9321
9322 ironlake_pch_clock_get(crtc, pipe_config);
9323 } else {
9324 pipe_config->pixel_multiplier = 1;
9325 }
9326
9327 intel_get_pipe_timings(crtc, pipe_config);
9328
9329 ironlake_get_pfit_config(crtc, pipe_config);
9330
9331 return true;
9332 }
9333
9334 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9335 {
9336 struct drm_device *dev = dev_priv->dev;
9337 struct intel_crtc *crtc;
9338
9339 for_each_intel_crtc(dev, crtc)
9340 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9341 pipe_name(crtc->pipe));
9342
9343 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9344 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9345 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9346 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9347 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9348 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9349 "CPU PWM1 enabled\n");
9350 if (IS_HASWELL(dev))
9351 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9352 "CPU PWM2 enabled\n");
9353 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9354 "PCH PWM1 enabled\n");
9355 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9356 "Utility pin enabled\n");
9357 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9358
9359 /*
9360 * In theory we can still leave IRQs enabled, as long as only the HPD
9361 * interrupts remain enabled. We used to check for that, but since it's
9362 * gen-specific and since we only disable LCPLL after we fully disable
9363 * the interrupts, the check below should be enough.
9364 */
9365 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9366 }
9367
9368 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9369 {
9370 struct drm_device *dev = dev_priv->dev;
9371
9372 if (IS_HASWELL(dev))
9373 return I915_READ(D_COMP_HSW);
9374 else
9375 return I915_READ(D_COMP_BDW);
9376 }
9377
9378 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9379 {
9380 struct drm_device *dev = dev_priv->dev;
9381
9382 if (IS_HASWELL(dev)) {
9383 mutex_lock(&dev_priv->rps.hw_lock);
9384 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9385 val))
9386 DRM_ERROR("Failed to write to D_COMP\n");
9387 mutex_unlock(&dev_priv->rps.hw_lock);
9388 } else {
9389 I915_WRITE(D_COMP_BDW, val);
9390 POSTING_READ(D_COMP_BDW);
9391 }
9392 }
9393
9394 /*
9395 * This function implements pieces of two sequences from BSpec:
9396 * - Sequence for display software to disable LCPLL
9397 * - Sequence for display software to allow package C8+
9398 * The steps implemented here are just the steps that actually touch the LCPLL
9399 * register. Callers should take care of disabling all the display engine
9400 * functions, doing the mode unset, fixing interrupts, etc.
9401 */
9402 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9403 bool switch_to_fclk, bool allow_power_down)
9404 {
9405 uint32_t val;
9406
9407 assert_can_disable_lcpll(dev_priv);
9408
9409 val = I915_READ(LCPLL_CTL);
9410
9411 if (switch_to_fclk) {
9412 val |= LCPLL_CD_SOURCE_FCLK;
9413 I915_WRITE(LCPLL_CTL, val);
9414
9415 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9416 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9417 DRM_ERROR("Switching to FCLK failed\n");
9418
9419 val = I915_READ(LCPLL_CTL);
9420 }
9421
9422 val |= LCPLL_PLL_DISABLE;
9423 I915_WRITE(LCPLL_CTL, val);
9424 POSTING_READ(LCPLL_CTL);
9425
9426 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9427 DRM_ERROR("LCPLL still locked\n");
9428
9429 val = hsw_read_dcomp(dev_priv);
9430 val |= D_COMP_COMP_DISABLE;
9431 hsw_write_dcomp(dev_priv, val);
9432 ndelay(100);
9433
9434 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9435 1))
9436 DRM_ERROR("D_COMP RCOMP still in progress\n");
9437
9438 if (allow_power_down) {
9439 val = I915_READ(LCPLL_CTL);
9440 val |= LCPLL_POWER_DOWN_ALLOW;
9441 I915_WRITE(LCPLL_CTL, val);
9442 POSTING_READ(LCPLL_CTL);
9443 }
9444 }
9445
9446 /*
9447 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9448 * source.
9449 */
9450 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9451 {
9452 uint32_t val;
9453
9454 val = I915_READ(LCPLL_CTL);
9455
9456 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9457 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9458 return;
9459
9460 /*
9461 * Make sure we're not on PC8 state before disabling PC8, otherwise
9462 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9463 */
9464 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9465
9466 if (val & LCPLL_POWER_DOWN_ALLOW) {
9467 val &= ~LCPLL_POWER_DOWN_ALLOW;
9468 I915_WRITE(LCPLL_CTL, val);
9469 POSTING_READ(LCPLL_CTL);
9470 }
9471
9472 val = hsw_read_dcomp(dev_priv);
9473 val |= D_COMP_COMP_FORCE;
9474 val &= ~D_COMP_COMP_DISABLE;
9475 hsw_write_dcomp(dev_priv, val);
9476
9477 val = I915_READ(LCPLL_CTL);
9478 val &= ~LCPLL_PLL_DISABLE;
9479 I915_WRITE(LCPLL_CTL, val);
9480
9481 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9482 DRM_ERROR("LCPLL not locked yet\n");
9483
9484 if (val & LCPLL_CD_SOURCE_FCLK) {
9485 val = I915_READ(LCPLL_CTL);
9486 val &= ~LCPLL_CD_SOURCE_FCLK;
9487 I915_WRITE(LCPLL_CTL, val);
9488
9489 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9490 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9491 DRM_ERROR("Switching back to LCPLL failed\n");
9492 }
9493
9494 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9495 intel_update_cdclk(dev_priv->dev);
9496 }
9497
9498 /*
9499 * Package states C8 and deeper are really deep PC states that can only be
9500 * reached when all the devices on the system allow it, so even if the graphics
9501 * device allows PC8+, it doesn't mean the system will actually get to these
9502 * states. Our driver only allows PC8+ when going into runtime PM.
9503 *
9504 * The requirements for PC8+ are that all the outputs are disabled, the power
9505 * well is disabled and most interrupts are disabled, and these are also
9506 * requirements for runtime PM. When these conditions are met, we manually do
9507 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9508 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9509 * hang the machine.
9510 *
9511 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9512 * the state of some registers, so when we come back from PC8+ we need to
9513 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9514 * need to take care of the registers kept by RC6. Notice that this happens even
9515 * if we don't put the device in PCI D3 state (which is what currently happens
9516 * because of the runtime PM support).
9517 *
9518 * For more, read "Display Sequences for Package C8" on the hardware
9519 * documentation.
9520 */
9521 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9522 {
9523 struct drm_device *dev = dev_priv->dev;
9524 uint32_t val;
9525
9526 DRM_DEBUG_KMS("Enabling package C8+\n");
9527
9528 if (HAS_PCH_LPT_LP(dev)) {
9529 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9530 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9531 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9532 }
9533
9534 lpt_disable_clkout_dp(dev);
9535 hsw_disable_lcpll(dev_priv, true, true);
9536 }
9537
9538 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9539 {
9540 struct drm_device *dev = dev_priv->dev;
9541 uint32_t val;
9542
9543 DRM_DEBUG_KMS("Disabling package C8+\n");
9544
9545 hsw_restore_lcpll(dev_priv);
9546 lpt_init_pch_refclk(dev);
9547
9548 if (HAS_PCH_LPT_LP(dev)) {
9549 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9550 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9551 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9552 }
9553
9554 intel_prepare_ddi(dev);
9555 }
9556
9557 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9558 {
9559 struct drm_device *dev = old_state->dev;
9560 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9561
9562 broxton_set_cdclk(dev, req_cdclk);
9563 }
9564
9565 /* compute the max rate for new configuration */
9566 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9567 {
9568 struct intel_crtc *intel_crtc;
9569 struct intel_crtc_state *crtc_state;
9570 int max_pixel_rate = 0;
9571
9572 for_each_intel_crtc(state->dev, intel_crtc) {
9573 int pixel_rate;
9574
9575 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9576 if (IS_ERR(crtc_state))
9577 return PTR_ERR(crtc_state);
9578
9579 if (!crtc_state->base.enable)
9580 continue;
9581
9582 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9583
9584 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9585 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9586 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9587
9588 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9589 }
9590
9591 return max_pixel_rate;
9592 }
9593
9594 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9595 {
9596 struct drm_i915_private *dev_priv = dev->dev_private;
9597 uint32_t val, data;
9598 int ret;
9599
9600 if (WARN((I915_READ(LCPLL_CTL) &
9601 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9602 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9603 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9604 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9605 "trying to change cdclk frequency with cdclk not enabled\n"))
9606 return;
9607
9608 mutex_lock(&dev_priv->rps.hw_lock);
9609 ret = sandybridge_pcode_write(dev_priv,
9610 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9611 mutex_unlock(&dev_priv->rps.hw_lock);
9612 if (ret) {
9613 DRM_ERROR("failed to inform pcode about cdclk change\n");
9614 return;
9615 }
9616
9617 val = I915_READ(LCPLL_CTL);
9618 val |= LCPLL_CD_SOURCE_FCLK;
9619 I915_WRITE(LCPLL_CTL, val);
9620
9621 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9622 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9623 DRM_ERROR("Switching to FCLK failed\n");
9624
9625 val = I915_READ(LCPLL_CTL);
9626 val &= ~LCPLL_CLK_FREQ_MASK;
9627
9628 switch (cdclk) {
9629 case 450000:
9630 val |= LCPLL_CLK_FREQ_450;
9631 data = 0;
9632 break;
9633 case 540000:
9634 val |= LCPLL_CLK_FREQ_54O_BDW;
9635 data = 1;
9636 break;
9637 case 337500:
9638 val |= LCPLL_CLK_FREQ_337_5_BDW;
9639 data = 2;
9640 break;
9641 case 675000:
9642 val |= LCPLL_CLK_FREQ_675_BDW;
9643 data = 3;
9644 break;
9645 default:
9646 WARN(1, "invalid cdclk frequency\n");
9647 return;
9648 }
9649
9650 I915_WRITE(LCPLL_CTL, val);
9651
9652 val = I915_READ(LCPLL_CTL);
9653 val &= ~LCPLL_CD_SOURCE_FCLK;
9654 I915_WRITE(LCPLL_CTL, val);
9655
9656 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9657 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9658 DRM_ERROR("Switching back to LCPLL failed\n");
9659
9660 mutex_lock(&dev_priv->rps.hw_lock);
9661 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9662 mutex_unlock(&dev_priv->rps.hw_lock);
9663
9664 intel_update_cdclk(dev);
9665
9666 WARN(cdclk != dev_priv->cdclk_freq,
9667 "cdclk requested %d kHz but got %d kHz\n",
9668 cdclk, dev_priv->cdclk_freq);
9669 }
9670
9671 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9672 {
9673 struct drm_i915_private *dev_priv = to_i915(state->dev);
9674 int max_pixclk = ilk_max_pixel_rate(state);
9675 int cdclk;
9676
9677 /*
9678 * FIXME should also account for plane ratio
9679 * once 64bpp pixel formats are supported.
9680 */
9681 if (max_pixclk > 540000)
9682 cdclk = 675000;
9683 else if (max_pixclk > 450000)
9684 cdclk = 540000;
9685 else if (max_pixclk > 337500)
9686 cdclk = 450000;
9687 else
9688 cdclk = 337500;
9689
9690 /*
9691 * FIXME move the cdclk caclulation to
9692 * compute_config() so we can fail gracegully.
9693 */
9694 if (cdclk > dev_priv->max_cdclk_freq) {
9695 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9696 cdclk, dev_priv->max_cdclk_freq);
9697 cdclk = dev_priv->max_cdclk_freq;
9698 }
9699
9700 to_intel_atomic_state(state)->cdclk = cdclk;
9701
9702 return 0;
9703 }
9704
9705 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9706 {
9707 struct drm_device *dev = old_state->dev;
9708 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9709
9710 broadwell_set_cdclk(dev, req_cdclk);
9711 }
9712
9713 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9714 struct intel_crtc_state *crtc_state)
9715 {
9716 if (!intel_ddi_pll_select(crtc, crtc_state))
9717 return -EINVAL;
9718
9719 crtc->lowfreq_avail = false;
9720
9721 return 0;
9722 }
9723
9724 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9725 enum port port,
9726 struct intel_crtc_state *pipe_config)
9727 {
9728 switch (port) {
9729 case PORT_A:
9730 pipe_config->ddi_pll_sel = SKL_DPLL0;
9731 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9732 break;
9733 case PORT_B:
9734 pipe_config->ddi_pll_sel = SKL_DPLL1;
9735 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9736 break;
9737 case PORT_C:
9738 pipe_config->ddi_pll_sel = SKL_DPLL2;
9739 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9740 break;
9741 default:
9742 DRM_ERROR("Incorrect port type\n");
9743 }
9744 }
9745
9746 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9747 enum port port,
9748 struct intel_crtc_state *pipe_config)
9749 {
9750 u32 temp, dpll_ctl1;
9751
9752 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9753 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9754
9755 switch (pipe_config->ddi_pll_sel) {
9756 case SKL_DPLL0:
9757 /*
9758 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9759 * of the shared DPLL framework and thus needs to be read out
9760 * separately
9761 */
9762 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9763 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9764 break;
9765 case SKL_DPLL1:
9766 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9767 break;
9768 case SKL_DPLL2:
9769 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9770 break;
9771 case SKL_DPLL3:
9772 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9773 break;
9774 }
9775 }
9776
9777 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9778 enum port port,
9779 struct intel_crtc_state *pipe_config)
9780 {
9781 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9782
9783 switch (pipe_config->ddi_pll_sel) {
9784 case PORT_CLK_SEL_WRPLL1:
9785 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9786 break;
9787 case PORT_CLK_SEL_WRPLL2:
9788 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9789 break;
9790 }
9791 }
9792
9793 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9794 struct intel_crtc_state *pipe_config)
9795 {
9796 struct drm_device *dev = crtc->base.dev;
9797 struct drm_i915_private *dev_priv = dev->dev_private;
9798 struct intel_shared_dpll *pll;
9799 enum port port;
9800 uint32_t tmp;
9801
9802 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9803
9804 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9805
9806 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9807 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9808 else if (IS_BROXTON(dev))
9809 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9810 else
9811 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9812
9813 if (pipe_config->shared_dpll >= 0) {
9814 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9815
9816 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9817 &pipe_config->dpll_hw_state));
9818 }
9819
9820 /*
9821 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9822 * DDI E. So just check whether this pipe is wired to DDI E and whether
9823 * the PCH transcoder is on.
9824 */
9825 if (INTEL_INFO(dev)->gen < 9 &&
9826 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9827 pipe_config->has_pch_encoder = true;
9828
9829 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9830 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9831 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9832
9833 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9834 }
9835 }
9836
9837 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9838 struct intel_crtc_state *pipe_config)
9839 {
9840 struct drm_device *dev = crtc->base.dev;
9841 struct drm_i915_private *dev_priv = dev->dev_private;
9842 enum intel_display_power_domain pfit_domain;
9843 uint32_t tmp;
9844
9845 if (!intel_display_power_is_enabled(dev_priv,
9846 POWER_DOMAIN_PIPE(crtc->pipe)))
9847 return false;
9848
9849 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9850 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9851
9852 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9853 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9854 enum pipe trans_edp_pipe;
9855 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9856 default:
9857 WARN(1, "unknown pipe linked to edp transcoder\n");
9858 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9859 case TRANS_DDI_EDP_INPUT_A_ON:
9860 trans_edp_pipe = PIPE_A;
9861 break;
9862 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9863 trans_edp_pipe = PIPE_B;
9864 break;
9865 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9866 trans_edp_pipe = PIPE_C;
9867 break;
9868 }
9869
9870 if (trans_edp_pipe == crtc->pipe)
9871 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9872 }
9873
9874 if (!intel_display_power_is_enabled(dev_priv,
9875 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9876 return false;
9877
9878 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9879 if (!(tmp & PIPECONF_ENABLE))
9880 return false;
9881
9882 haswell_get_ddi_port_state(crtc, pipe_config);
9883
9884 intel_get_pipe_timings(crtc, pipe_config);
9885
9886 if (INTEL_INFO(dev)->gen >= 9) {
9887 skl_init_scalers(dev, crtc, pipe_config);
9888 }
9889
9890 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9891
9892 if (INTEL_INFO(dev)->gen >= 9) {
9893 pipe_config->scaler_state.scaler_id = -1;
9894 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9895 }
9896
9897 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9898 if (INTEL_INFO(dev)->gen >= 9)
9899 skylake_get_pfit_config(crtc, pipe_config);
9900 else
9901 ironlake_get_pfit_config(crtc, pipe_config);
9902 }
9903
9904 if (IS_HASWELL(dev))
9905 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9906 (I915_READ(IPS_CTL) & IPS_ENABLE);
9907
9908 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9909 pipe_config->pixel_multiplier =
9910 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9911 } else {
9912 pipe_config->pixel_multiplier = 1;
9913 }
9914
9915 return true;
9916 }
9917
9918 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9919 {
9920 struct drm_device *dev = crtc->dev;
9921 struct drm_i915_private *dev_priv = dev->dev_private;
9922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9923 uint32_t cntl = 0, size = 0;
9924
9925 if (base) {
9926 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9927 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9928 unsigned int stride = roundup_pow_of_two(width) * 4;
9929
9930 switch (stride) {
9931 default:
9932 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9933 width, stride);
9934 stride = 256;
9935 /* fallthrough */
9936 case 256:
9937 case 512:
9938 case 1024:
9939 case 2048:
9940 break;
9941 }
9942
9943 cntl |= CURSOR_ENABLE |
9944 CURSOR_GAMMA_ENABLE |
9945 CURSOR_FORMAT_ARGB |
9946 CURSOR_STRIDE(stride);
9947
9948 size = (height << 12) | width;
9949 }
9950
9951 if (intel_crtc->cursor_cntl != 0 &&
9952 (intel_crtc->cursor_base != base ||
9953 intel_crtc->cursor_size != size ||
9954 intel_crtc->cursor_cntl != cntl)) {
9955 /* On these chipsets we can only modify the base/size/stride
9956 * whilst the cursor is disabled.
9957 */
9958 I915_WRITE(CURCNTR(PIPE_A), 0);
9959 POSTING_READ(CURCNTR(PIPE_A));
9960 intel_crtc->cursor_cntl = 0;
9961 }
9962
9963 if (intel_crtc->cursor_base != base) {
9964 I915_WRITE(CURBASE(PIPE_A), base);
9965 intel_crtc->cursor_base = base;
9966 }
9967
9968 if (intel_crtc->cursor_size != size) {
9969 I915_WRITE(CURSIZE, size);
9970 intel_crtc->cursor_size = size;
9971 }
9972
9973 if (intel_crtc->cursor_cntl != cntl) {
9974 I915_WRITE(CURCNTR(PIPE_A), cntl);
9975 POSTING_READ(CURCNTR(PIPE_A));
9976 intel_crtc->cursor_cntl = cntl;
9977 }
9978 }
9979
9980 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9981 {
9982 struct drm_device *dev = crtc->dev;
9983 struct drm_i915_private *dev_priv = dev->dev_private;
9984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9985 int pipe = intel_crtc->pipe;
9986 uint32_t cntl;
9987
9988 cntl = 0;
9989 if (base) {
9990 cntl = MCURSOR_GAMMA_ENABLE;
9991 switch (intel_crtc->base.cursor->state->crtc_w) {
9992 case 64:
9993 cntl |= CURSOR_MODE_64_ARGB_AX;
9994 break;
9995 case 128:
9996 cntl |= CURSOR_MODE_128_ARGB_AX;
9997 break;
9998 case 256:
9999 cntl |= CURSOR_MODE_256_ARGB_AX;
10000 break;
10001 default:
10002 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10003 return;
10004 }
10005 cntl |= pipe << 28; /* Connect to correct pipe */
10006
10007 if (HAS_DDI(dev))
10008 cntl |= CURSOR_PIPE_CSC_ENABLE;
10009 }
10010
10011 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10012 cntl |= CURSOR_ROTATE_180;
10013
10014 if (intel_crtc->cursor_cntl != cntl) {
10015 I915_WRITE(CURCNTR(pipe), cntl);
10016 POSTING_READ(CURCNTR(pipe));
10017 intel_crtc->cursor_cntl = cntl;
10018 }
10019
10020 /* and commit changes on next vblank */
10021 I915_WRITE(CURBASE(pipe), base);
10022 POSTING_READ(CURBASE(pipe));
10023
10024 intel_crtc->cursor_base = base;
10025 }
10026
10027 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10028 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10029 bool on)
10030 {
10031 struct drm_device *dev = crtc->dev;
10032 struct drm_i915_private *dev_priv = dev->dev_private;
10033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10034 int pipe = intel_crtc->pipe;
10035 struct drm_plane_state *cursor_state = crtc->cursor->state;
10036 int x = cursor_state->crtc_x;
10037 int y = cursor_state->crtc_y;
10038 u32 base = 0, pos = 0;
10039
10040 if (on)
10041 base = intel_crtc->cursor_addr;
10042
10043 if (x >= intel_crtc->config->pipe_src_w)
10044 base = 0;
10045
10046 if (y >= intel_crtc->config->pipe_src_h)
10047 base = 0;
10048
10049 if (x < 0) {
10050 if (x + cursor_state->crtc_w <= 0)
10051 base = 0;
10052
10053 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10054 x = -x;
10055 }
10056 pos |= x << CURSOR_X_SHIFT;
10057
10058 if (y < 0) {
10059 if (y + cursor_state->crtc_h <= 0)
10060 base = 0;
10061
10062 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10063 y = -y;
10064 }
10065 pos |= y << CURSOR_Y_SHIFT;
10066
10067 if (base == 0 && intel_crtc->cursor_base == 0)
10068 return;
10069
10070 I915_WRITE(CURPOS(pipe), pos);
10071
10072 /* ILK+ do this automagically */
10073 if (HAS_GMCH_DISPLAY(dev) &&
10074 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10075 base += (cursor_state->crtc_h *
10076 cursor_state->crtc_w - 1) * 4;
10077 }
10078
10079 if (IS_845G(dev) || IS_I865G(dev))
10080 i845_update_cursor(crtc, base);
10081 else
10082 i9xx_update_cursor(crtc, base);
10083 }
10084
10085 static bool cursor_size_ok(struct drm_device *dev,
10086 uint32_t width, uint32_t height)
10087 {
10088 if (width == 0 || height == 0)
10089 return false;
10090
10091 /*
10092 * 845g/865g are special in that they are only limited by
10093 * the width of their cursors, the height is arbitrary up to
10094 * the precision of the register. Everything else requires
10095 * square cursors, limited to a few power-of-two sizes.
10096 */
10097 if (IS_845G(dev) || IS_I865G(dev)) {
10098 if ((width & 63) != 0)
10099 return false;
10100
10101 if (width > (IS_845G(dev) ? 64 : 512))
10102 return false;
10103
10104 if (height > 1023)
10105 return false;
10106 } else {
10107 switch (width | height) {
10108 case 256:
10109 case 128:
10110 if (IS_GEN2(dev))
10111 return false;
10112 case 64:
10113 break;
10114 default:
10115 return false;
10116 }
10117 }
10118
10119 return true;
10120 }
10121
10122 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10123 u16 *blue, uint32_t start, uint32_t size)
10124 {
10125 int end = (start + size > 256) ? 256 : start + size, i;
10126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10127
10128 for (i = start; i < end; i++) {
10129 intel_crtc->lut_r[i] = red[i] >> 8;
10130 intel_crtc->lut_g[i] = green[i] >> 8;
10131 intel_crtc->lut_b[i] = blue[i] >> 8;
10132 }
10133
10134 intel_crtc_load_lut(crtc);
10135 }
10136
10137 /* VESA 640x480x72Hz mode to set on the pipe */
10138 static struct drm_display_mode load_detect_mode = {
10139 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10140 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10141 };
10142
10143 struct drm_framebuffer *
10144 __intel_framebuffer_create(struct drm_device *dev,
10145 struct drm_mode_fb_cmd2 *mode_cmd,
10146 struct drm_i915_gem_object *obj)
10147 {
10148 struct intel_framebuffer *intel_fb;
10149 int ret;
10150
10151 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10152 if (!intel_fb)
10153 return ERR_PTR(-ENOMEM);
10154
10155 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10156 if (ret)
10157 goto err;
10158
10159 return &intel_fb->base;
10160
10161 err:
10162 kfree(intel_fb);
10163 return ERR_PTR(ret);
10164 }
10165
10166 static struct drm_framebuffer *
10167 intel_framebuffer_create(struct drm_device *dev,
10168 struct drm_mode_fb_cmd2 *mode_cmd,
10169 struct drm_i915_gem_object *obj)
10170 {
10171 struct drm_framebuffer *fb;
10172 int ret;
10173
10174 ret = i915_mutex_lock_interruptible(dev);
10175 if (ret)
10176 return ERR_PTR(ret);
10177 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10178 mutex_unlock(&dev->struct_mutex);
10179
10180 return fb;
10181 }
10182
10183 static u32
10184 intel_framebuffer_pitch_for_width(int width, int bpp)
10185 {
10186 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10187 return ALIGN(pitch, 64);
10188 }
10189
10190 static u32
10191 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10192 {
10193 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10194 return PAGE_ALIGN(pitch * mode->vdisplay);
10195 }
10196
10197 static struct drm_framebuffer *
10198 intel_framebuffer_create_for_mode(struct drm_device *dev,
10199 struct drm_display_mode *mode,
10200 int depth, int bpp)
10201 {
10202 struct drm_framebuffer *fb;
10203 struct drm_i915_gem_object *obj;
10204 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10205
10206 obj = i915_gem_alloc_object(dev,
10207 intel_framebuffer_size_for_mode(mode, bpp));
10208 if (obj == NULL)
10209 return ERR_PTR(-ENOMEM);
10210
10211 mode_cmd.width = mode->hdisplay;
10212 mode_cmd.height = mode->vdisplay;
10213 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10214 bpp);
10215 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10216
10217 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10218 if (IS_ERR(fb))
10219 drm_gem_object_unreference_unlocked(&obj->base);
10220
10221 return fb;
10222 }
10223
10224 static struct drm_framebuffer *
10225 mode_fits_in_fbdev(struct drm_device *dev,
10226 struct drm_display_mode *mode)
10227 {
10228 #ifdef CONFIG_DRM_FBDEV_EMULATION
10229 struct drm_i915_private *dev_priv = dev->dev_private;
10230 struct drm_i915_gem_object *obj;
10231 struct drm_framebuffer *fb;
10232
10233 if (!dev_priv->fbdev)
10234 return NULL;
10235
10236 if (!dev_priv->fbdev->fb)
10237 return NULL;
10238
10239 obj = dev_priv->fbdev->fb->obj;
10240 BUG_ON(!obj);
10241
10242 fb = &dev_priv->fbdev->fb->base;
10243 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10244 fb->bits_per_pixel))
10245 return NULL;
10246
10247 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10248 return NULL;
10249
10250 return fb;
10251 #else
10252 return NULL;
10253 #endif
10254 }
10255
10256 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10257 struct drm_crtc *crtc,
10258 struct drm_display_mode *mode,
10259 struct drm_framebuffer *fb,
10260 int x, int y)
10261 {
10262 struct drm_plane_state *plane_state;
10263 int hdisplay, vdisplay;
10264 int ret;
10265
10266 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10267 if (IS_ERR(plane_state))
10268 return PTR_ERR(plane_state);
10269
10270 if (mode)
10271 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10272 else
10273 hdisplay = vdisplay = 0;
10274
10275 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10276 if (ret)
10277 return ret;
10278 drm_atomic_set_fb_for_plane(plane_state, fb);
10279 plane_state->crtc_x = 0;
10280 plane_state->crtc_y = 0;
10281 plane_state->crtc_w = hdisplay;
10282 plane_state->crtc_h = vdisplay;
10283 plane_state->src_x = x << 16;
10284 plane_state->src_y = y << 16;
10285 plane_state->src_w = hdisplay << 16;
10286 plane_state->src_h = vdisplay << 16;
10287
10288 return 0;
10289 }
10290
10291 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10292 struct drm_display_mode *mode,
10293 struct intel_load_detect_pipe *old,
10294 struct drm_modeset_acquire_ctx *ctx)
10295 {
10296 struct intel_crtc *intel_crtc;
10297 struct intel_encoder *intel_encoder =
10298 intel_attached_encoder(connector);
10299 struct drm_crtc *possible_crtc;
10300 struct drm_encoder *encoder = &intel_encoder->base;
10301 struct drm_crtc *crtc = NULL;
10302 struct drm_device *dev = encoder->dev;
10303 struct drm_framebuffer *fb;
10304 struct drm_mode_config *config = &dev->mode_config;
10305 struct drm_atomic_state *state = NULL;
10306 struct drm_connector_state *connector_state;
10307 struct intel_crtc_state *crtc_state;
10308 int ret, i = -1;
10309
10310 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10311 connector->base.id, connector->name,
10312 encoder->base.id, encoder->name);
10313
10314 retry:
10315 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10316 if (ret)
10317 goto fail;
10318
10319 /*
10320 * Algorithm gets a little messy:
10321 *
10322 * - if the connector already has an assigned crtc, use it (but make
10323 * sure it's on first)
10324 *
10325 * - try to find the first unused crtc that can drive this connector,
10326 * and use that if we find one
10327 */
10328
10329 /* See if we already have a CRTC for this connector */
10330 if (encoder->crtc) {
10331 crtc = encoder->crtc;
10332
10333 ret = drm_modeset_lock(&crtc->mutex, ctx);
10334 if (ret)
10335 goto fail;
10336 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10337 if (ret)
10338 goto fail;
10339
10340 old->dpms_mode = connector->dpms;
10341 old->load_detect_temp = false;
10342
10343 /* Make sure the crtc and connector are running */
10344 if (connector->dpms != DRM_MODE_DPMS_ON)
10345 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10346
10347 return true;
10348 }
10349
10350 /* Find an unused one (if possible) */
10351 for_each_crtc(dev, possible_crtc) {
10352 i++;
10353 if (!(encoder->possible_crtcs & (1 << i)))
10354 continue;
10355 if (possible_crtc->state->enable)
10356 continue;
10357
10358 crtc = possible_crtc;
10359 break;
10360 }
10361
10362 /*
10363 * If we didn't find an unused CRTC, don't use any.
10364 */
10365 if (!crtc) {
10366 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10367 goto fail;
10368 }
10369
10370 ret = drm_modeset_lock(&crtc->mutex, ctx);
10371 if (ret)
10372 goto fail;
10373 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10374 if (ret)
10375 goto fail;
10376
10377 intel_crtc = to_intel_crtc(crtc);
10378 old->dpms_mode = connector->dpms;
10379 old->load_detect_temp = true;
10380 old->release_fb = NULL;
10381
10382 state = drm_atomic_state_alloc(dev);
10383 if (!state)
10384 return false;
10385
10386 state->acquire_ctx = ctx;
10387
10388 connector_state = drm_atomic_get_connector_state(state, connector);
10389 if (IS_ERR(connector_state)) {
10390 ret = PTR_ERR(connector_state);
10391 goto fail;
10392 }
10393
10394 connector_state->crtc = crtc;
10395 connector_state->best_encoder = &intel_encoder->base;
10396
10397 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10398 if (IS_ERR(crtc_state)) {
10399 ret = PTR_ERR(crtc_state);
10400 goto fail;
10401 }
10402
10403 crtc_state->base.active = crtc_state->base.enable = true;
10404
10405 if (!mode)
10406 mode = &load_detect_mode;
10407
10408 /* We need a framebuffer large enough to accommodate all accesses
10409 * that the plane may generate whilst we perform load detection.
10410 * We can not rely on the fbcon either being present (we get called
10411 * during its initialisation to detect all boot displays, or it may
10412 * not even exist) or that it is large enough to satisfy the
10413 * requested mode.
10414 */
10415 fb = mode_fits_in_fbdev(dev, mode);
10416 if (fb == NULL) {
10417 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10418 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10419 old->release_fb = fb;
10420 } else
10421 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10422 if (IS_ERR(fb)) {
10423 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10424 goto fail;
10425 }
10426
10427 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10428 if (ret)
10429 goto fail;
10430
10431 drm_mode_copy(&crtc_state->base.mode, mode);
10432
10433 if (drm_atomic_commit(state)) {
10434 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10435 if (old->release_fb)
10436 old->release_fb->funcs->destroy(old->release_fb);
10437 goto fail;
10438 }
10439 crtc->primary->crtc = crtc;
10440
10441 /* let the connector get through one full cycle before testing */
10442 intel_wait_for_vblank(dev, intel_crtc->pipe);
10443 return true;
10444
10445 fail:
10446 drm_atomic_state_free(state);
10447 state = NULL;
10448
10449 if (ret == -EDEADLK) {
10450 drm_modeset_backoff(ctx);
10451 goto retry;
10452 }
10453
10454 return false;
10455 }
10456
10457 void intel_release_load_detect_pipe(struct drm_connector *connector,
10458 struct intel_load_detect_pipe *old,
10459 struct drm_modeset_acquire_ctx *ctx)
10460 {
10461 struct drm_device *dev = connector->dev;
10462 struct intel_encoder *intel_encoder =
10463 intel_attached_encoder(connector);
10464 struct drm_encoder *encoder = &intel_encoder->base;
10465 struct drm_crtc *crtc = encoder->crtc;
10466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10467 struct drm_atomic_state *state;
10468 struct drm_connector_state *connector_state;
10469 struct intel_crtc_state *crtc_state;
10470 int ret;
10471
10472 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10473 connector->base.id, connector->name,
10474 encoder->base.id, encoder->name);
10475
10476 if (old->load_detect_temp) {
10477 state = drm_atomic_state_alloc(dev);
10478 if (!state)
10479 goto fail;
10480
10481 state->acquire_ctx = ctx;
10482
10483 connector_state = drm_atomic_get_connector_state(state, connector);
10484 if (IS_ERR(connector_state))
10485 goto fail;
10486
10487 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10488 if (IS_ERR(crtc_state))
10489 goto fail;
10490
10491 connector_state->best_encoder = NULL;
10492 connector_state->crtc = NULL;
10493
10494 crtc_state->base.enable = crtc_state->base.active = false;
10495
10496 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10497 0, 0);
10498 if (ret)
10499 goto fail;
10500
10501 ret = drm_atomic_commit(state);
10502 if (ret)
10503 goto fail;
10504
10505 if (old->release_fb) {
10506 drm_framebuffer_unregister_private(old->release_fb);
10507 drm_framebuffer_unreference(old->release_fb);
10508 }
10509
10510 return;
10511 }
10512
10513 /* Switch crtc and encoder back off if necessary */
10514 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10515 connector->funcs->dpms(connector, old->dpms_mode);
10516
10517 return;
10518 fail:
10519 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10520 drm_atomic_state_free(state);
10521 }
10522
10523 static int i9xx_pll_refclk(struct drm_device *dev,
10524 const struct intel_crtc_state *pipe_config)
10525 {
10526 struct drm_i915_private *dev_priv = dev->dev_private;
10527 u32 dpll = pipe_config->dpll_hw_state.dpll;
10528
10529 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10530 return dev_priv->vbt.lvds_ssc_freq;
10531 else if (HAS_PCH_SPLIT(dev))
10532 return 120000;
10533 else if (!IS_GEN2(dev))
10534 return 96000;
10535 else
10536 return 48000;
10537 }
10538
10539 /* Returns the clock of the currently programmed mode of the given pipe. */
10540 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10541 struct intel_crtc_state *pipe_config)
10542 {
10543 struct drm_device *dev = crtc->base.dev;
10544 struct drm_i915_private *dev_priv = dev->dev_private;
10545 int pipe = pipe_config->cpu_transcoder;
10546 u32 dpll = pipe_config->dpll_hw_state.dpll;
10547 u32 fp;
10548 intel_clock_t clock;
10549 int port_clock;
10550 int refclk = i9xx_pll_refclk(dev, pipe_config);
10551
10552 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10553 fp = pipe_config->dpll_hw_state.fp0;
10554 else
10555 fp = pipe_config->dpll_hw_state.fp1;
10556
10557 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10558 if (IS_PINEVIEW(dev)) {
10559 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10560 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10561 } else {
10562 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10563 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10564 }
10565
10566 if (!IS_GEN2(dev)) {
10567 if (IS_PINEVIEW(dev))
10568 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10569 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10570 else
10571 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10572 DPLL_FPA01_P1_POST_DIV_SHIFT);
10573
10574 switch (dpll & DPLL_MODE_MASK) {
10575 case DPLLB_MODE_DAC_SERIAL:
10576 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10577 5 : 10;
10578 break;
10579 case DPLLB_MODE_LVDS:
10580 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10581 7 : 14;
10582 break;
10583 default:
10584 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10585 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10586 return;
10587 }
10588
10589 if (IS_PINEVIEW(dev))
10590 port_clock = pnv_calc_dpll_params(refclk, &clock);
10591 else
10592 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10593 } else {
10594 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10595 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10596
10597 if (is_lvds) {
10598 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10599 DPLL_FPA01_P1_POST_DIV_SHIFT);
10600
10601 if (lvds & LVDS_CLKB_POWER_UP)
10602 clock.p2 = 7;
10603 else
10604 clock.p2 = 14;
10605 } else {
10606 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10607 clock.p1 = 2;
10608 else {
10609 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10610 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10611 }
10612 if (dpll & PLL_P2_DIVIDE_BY_4)
10613 clock.p2 = 4;
10614 else
10615 clock.p2 = 2;
10616 }
10617
10618 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10619 }
10620
10621 /*
10622 * This value includes pixel_multiplier. We will use
10623 * port_clock to compute adjusted_mode.crtc_clock in the
10624 * encoder's get_config() function.
10625 */
10626 pipe_config->port_clock = port_clock;
10627 }
10628
10629 int intel_dotclock_calculate(int link_freq,
10630 const struct intel_link_m_n *m_n)
10631 {
10632 /*
10633 * The calculation for the data clock is:
10634 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10635 * But we want to avoid losing precison if possible, so:
10636 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10637 *
10638 * and the link clock is simpler:
10639 * link_clock = (m * link_clock) / n
10640 */
10641
10642 if (!m_n->link_n)
10643 return 0;
10644
10645 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10646 }
10647
10648 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10649 struct intel_crtc_state *pipe_config)
10650 {
10651 struct drm_device *dev = crtc->base.dev;
10652
10653 /* read out port_clock from the DPLL */
10654 i9xx_crtc_clock_get(crtc, pipe_config);
10655
10656 /*
10657 * This value does not include pixel_multiplier.
10658 * We will check that port_clock and adjusted_mode.crtc_clock
10659 * agree once we know their relationship in the encoder's
10660 * get_config() function.
10661 */
10662 pipe_config->base.adjusted_mode.crtc_clock =
10663 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10664 &pipe_config->fdi_m_n);
10665 }
10666
10667 /** Returns the currently programmed mode of the given pipe. */
10668 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10669 struct drm_crtc *crtc)
10670 {
10671 struct drm_i915_private *dev_priv = dev->dev_private;
10672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10673 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10674 struct drm_display_mode *mode;
10675 struct intel_crtc_state pipe_config;
10676 int htot = I915_READ(HTOTAL(cpu_transcoder));
10677 int hsync = I915_READ(HSYNC(cpu_transcoder));
10678 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10679 int vsync = I915_READ(VSYNC(cpu_transcoder));
10680 enum pipe pipe = intel_crtc->pipe;
10681
10682 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10683 if (!mode)
10684 return NULL;
10685
10686 /*
10687 * Construct a pipe_config sufficient for getting the clock info
10688 * back out of crtc_clock_get.
10689 *
10690 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10691 * to use a real value here instead.
10692 */
10693 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10694 pipe_config.pixel_multiplier = 1;
10695 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10696 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10697 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10698 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10699
10700 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10701 mode->hdisplay = (htot & 0xffff) + 1;
10702 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10703 mode->hsync_start = (hsync & 0xffff) + 1;
10704 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10705 mode->vdisplay = (vtot & 0xffff) + 1;
10706 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10707 mode->vsync_start = (vsync & 0xffff) + 1;
10708 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10709
10710 drm_mode_set_name(mode);
10711
10712 return mode;
10713 }
10714
10715 void intel_mark_busy(struct drm_device *dev)
10716 {
10717 struct drm_i915_private *dev_priv = dev->dev_private;
10718
10719 if (dev_priv->mm.busy)
10720 return;
10721
10722 intel_runtime_pm_get(dev_priv);
10723 i915_update_gfx_val(dev_priv);
10724 if (INTEL_INFO(dev)->gen >= 6)
10725 gen6_rps_busy(dev_priv);
10726 dev_priv->mm.busy = true;
10727 }
10728
10729 void intel_mark_idle(struct drm_device *dev)
10730 {
10731 struct drm_i915_private *dev_priv = dev->dev_private;
10732
10733 if (!dev_priv->mm.busy)
10734 return;
10735
10736 dev_priv->mm.busy = false;
10737
10738 if (INTEL_INFO(dev)->gen >= 6)
10739 gen6_rps_idle(dev->dev_private);
10740
10741 intel_runtime_pm_put(dev_priv);
10742 }
10743
10744 static void intel_crtc_destroy(struct drm_crtc *crtc)
10745 {
10746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10747 struct drm_device *dev = crtc->dev;
10748 struct intel_unpin_work *work;
10749
10750 spin_lock_irq(&dev->event_lock);
10751 work = intel_crtc->unpin_work;
10752 intel_crtc->unpin_work = NULL;
10753 spin_unlock_irq(&dev->event_lock);
10754
10755 if (work) {
10756 cancel_work_sync(&work->work);
10757 kfree(work);
10758 }
10759
10760 drm_crtc_cleanup(crtc);
10761
10762 kfree(intel_crtc);
10763 }
10764
10765 static void intel_unpin_work_fn(struct work_struct *__work)
10766 {
10767 struct intel_unpin_work *work =
10768 container_of(__work, struct intel_unpin_work, work);
10769 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10770 struct drm_device *dev = crtc->base.dev;
10771 struct drm_plane *primary = crtc->base.primary;
10772
10773 mutex_lock(&dev->struct_mutex);
10774 intel_unpin_fb_obj(work->old_fb, primary->state);
10775 drm_gem_object_unreference(&work->pending_flip_obj->base);
10776
10777 if (work->flip_queued_req)
10778 i915_gem_request_assign(&work->flip_queued_req, NULL);
10779 mutex_unlock(&dev->struct_mutex);
10780
10781 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10782 drm_framebuffer_unreference(work->old_fb);
10783
10784 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10785 atomic_dec(&crtc->unpin_work_count);
10786
10787 kfree(work);
10788 }
10789
10790 static void do_intel_finish_page_flip(struct drm_device *dev,
10791 struct drm_crtc *crtc)
10792 {
10793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10794 struct intel_unpin_work *work;
10795 unsigned long flags;
10796
10797 /* Ignore early vblank irqs */
10798 if (intel_crtc == NULL)
10799 return;
10800
10801 /*
10802 * This is called both by irq handlers and the reset code (to complete
10803 * lost pageflips) so needs the full irqsave spinlocks.
10804 */
10805 spin_lock_irqsave(&dev->event_lock, flags);
10806 work = intel_crtc->unpin_work;
10807
10808 /* Ensure we don't miss a work->pending update ... */
10809 smp_rmb();
10810
10811 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10812 spin_unlock_irqrestore(&dev->event_lock, flags);
10813 return;
10814 }
10815
10816 page_flip_completed(intel_crtc);
10817
10818 spin_unlock_irqrestore(&dev->event_lock, flags);
10819 }
10820
10821 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10822 {
10823 struct drm_i915_private *dev_priv = dev->dev_private;
10824 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10825
10826 do_intel_finish_page_flip(dev, crtc);
10827 }
10828
10829 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10830 {
10831 struct drm_i915_private *dev_priv = dev->dev_private;
10832 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10833
10834 do_intel_finish_page_flip(dev, crtc);
10835 }
10836
10837 /* Is 'a' after or equal to 'b'? */
10838 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10839 {
10840 return !((a - b) & 0x80000000);
10841 }
10842
10843 static bool page_flip_finished(struct intel_crtc *crtc)
10844 {
10845 struct drm_device *dev = crtc->base.dev;
10846 struct drm_i915_private *dev_priv = dev->dev_private;
10847
10848 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10849 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10850 return true;
10851
10852 /*
10853 * The relevant registers doen't exist on pre-ctg.
10854 * As the flip done interrupt doesn't trigger for mmio
10855 * flips on gmch platforms, a flip count check isn't
10856 * really needed there. But since ctg has the registers,
10857 * include it in the check anyway.
10858 */
10859 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10860 return true;
10861
10862 /*
10863 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10864 * used the same base address. In that case the mmio flip might
10865 * have completed, but the CS hasn't even executed the flip yet.
10866 *
10867 * A flip count check isn't enough as the CS might have updated
10868 * the base address just after start of vblank, but before we
10869 * managed to process the interrupt. This means we'd complete the
10870 * CS flip too soon.
10871 *
10872 * Combining both checks should get us a good enough result. It may
10873 * still happen that the CS flip has been executed, but has not
10874 * yet actually completed. But in case the base address is the same
10875 * anyway, we don't really care.
10876 */
10877 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10878 crtc->unpin_work->gtt_offset &&
10879 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10880 crtc->unpin_work->flip_count);
10881 }
10882
10883 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10884 {
10885 struct drm_i915_private *dev_priv = dev->dev_private;
10886 struct intel_crtc *intel_crtc =
10887 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10888 unsigned long flags;
10889
10890
10891 /*
10892 * This is called both by irq handlers and the reset code (to complete
10893 * lost pageflips) so needs the full irqsave spinlocks.
10894 *
10895 * NB: An MMIO update of the plane base pointer will also
10896 * generate a page-flip completion irq, i.e. every modeset
10897 * is also accompanied by a spurious intel_prepare_page_flip().
10898 */
10899 spin_lock_irqsave(&dev->event_lock, flags);
10900 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10901 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10902 spin_unlock_irqrestore(&dev->event_lock, flags);
10903 }
10904
10905 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10906 {
10907 /* Ensure that the work item is consistent when activating it ... */
10908 smp_wmb();
10909 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10910 /* and that it is marked active as soon as the irq could fire. */
10911 smp_wmb();
10912 }
10913
10914 static int intel_gen2_queue_flip(struct drm_device *dev,
10915 struct drm_crtc *crtc,
10916 struct drm_framebuffer *fb,
10917 struct drm_i915_gem_object *obj,
10918 struct drm_i915_gem_request *req,
10919 uint32_t flags)
10920 {
10921 struct intel_engine_cs *ring = req->ring;
10922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10923 u32 flip_mask;
10924 int ret;
10925
10926 ret = intel_ring_begin(req, 6);
10927 if (ret)
10928 return ret;
10929
10930 /* Can't queue multiple flips, so wait for the previous
10931 * one to finish before executing the next.
10932 */
10933 if (intel_crtc->plane)
10934 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10935 else
10936 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10937 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10938 intel_ring_emit(ring, MI_NOOP);
10939 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10940 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10941 intel_ring_emit(ring, fb->pitches[0]);
10942 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10943 intel_ring_emit(ring, 0); /* aux display base address, unused */
10944
10945 intel_mark_page_flip_active(intel_crtc->unpin_work);
10946 return 0;
10947 }
10948
10949 static int intel_gen3_queue_flip(struct drm_device *dev,
10950 struct drm_crtc *crtc,
10951 struct drm_framebuffer *fb,
10952 struct drm_i915_gem_object *obj,
10953 struct drm_i915_gem_request *req,
10954 uint32_t flags)
10955 {
10956 struct intel_engine_cs *ring = req->ring;
10957 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10958 u32 flip_mask;
10959 int ret;
10960
10961 ret = intel_ring_begin(req, 6);
10962 if (ret)
10963 return ret;
10964
10965 if (intel_crtc->plane)
10966 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10967 else
10968 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10969 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10970 intel_ring_emit(ring, MI_NOOP);
10971 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10972 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10973 intel_ring_emit(ring, fb->pitches[0]);
10974 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10975 intel_ring_emit(ring, MI_NOOP);
10976
10977 intel_mark_page_flip_active(intel_crtc->unpin_work);
10978 return 0;
10979 }
10980
10981 static int intel_gen4_queue_flip(struct drm_device *dev,
10982 struct drm_crtc *crtc,
10983 struct drm_framebuffer *fb,
10984 struct drm_i915_gem_object *obj,
10985 struct drm_i915_gem_request *req,
10986 uint32_t flags)
10987 {
10988 struct intel_engine_cs *ring = req->ring;
10989 struct drm_i915_private *dev_priv = dev->dev_private;
10990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10991 uint32_t pf, pipesrc;
10992 int ret;
10993
10994 ret = intel_ring_begin(req, 4);
10995 if (ret)
10996 return ret;
10997
10998 /* i965+ uses the linear or tiled offsets from the
10999 * Display Registers (which do not change across a page-flip)
11000 * so we need only reprogram the base address.
11001 */
11002 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11003 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11004 intel_ring_emit(ring, fb->pitches[0]);
11005 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11006 obj->tiling_mode);
11007
11008 /* XXX Enabling the panel-fitter across page-flip is so far
11009 * untested on non-native modes, so ignore it for now.
11010 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11011 */
11012 pf = 0;
11013 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11014 intel_ring_emit(ring, pf | pipesrc);
11015
11016 intel_mark_page_flip_active(intel_crtc->unpin_work);
11017 return 0;
11018 }
11019
11020 static int intel_gen6_queue_flip(struct drm_device *dev,
11021 struct drm_crtc *crtc,
11022 struct drm_framebuffer *fb,
11023 struct drm_i915_gem_object *obj,
11024 struct drm_i915_gem_request *req,
11025 uint32_t flags)
11026 {
11027 struct intel_engine_cs *ring = req->ring;
11028 struct drm_i915_private *dev_priv = dev->dev_private;
11029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11030 uint32_t pf, pipesrc;
11031 int ret;
11032
11033 ret = intel_ring_begin(req, 4);
11034 if (ret)
11035 return ret;
11036
11037 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11038 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11039 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11040 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11041
11042 /* Contrary to the suggestions in the documentation,
11043 * "Enable Panel Fitter" does not seem to be required when page
11044 * flipping with a non-native mode, and worse causes a normal
11045 * modeset to fail.
11046 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11047 */
11048 pf = 0;
11049 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11050 intel_ring_emit(ring, pf | pipesrc);
11051
11052 intel_mark_page_flip_active(intel_crtc->unpin_work);
11053 return 0;
11054 }
11055
11056 static int intel_gen7_queue_flip(struct drm_device *dev,
11057 struct drm_crtc *crtc,
11058 struct drm_framebuffer *fb,
11059 struct drm_i915_gem_object *obj,
11060 struct drm_i915_gem_request *req,
11061 uint32_t flags)
11062 {
11063 struct intel_engine_cs *ring = req->ring;
11064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11065 uint32_t plane_bit = 0;
11066 int len, ret;
11067
11068 switch (intel_crtc->plane) {
11069 case PLANE_A:
11070 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11071 break;
11072 case PLANE_B:
11073 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11074 break;
11075 case PLANE_C:
11076 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11077 break;
11078 default:
11079 WARN_ONCE(1, "unknown plane in flip command\n");
11080 return -ENODEV;
11081 }
11082
11083 len = 4;
11084 if (ring->id == RCS) {
11085 len += 6;
11086 /*
11087 * On Gen 8, SRM is now taking an extra dword to accommodate
11088 * 48bits addresses, and we need a NOOP for the batch size to
11089 * stay even.
11090 */
11091 if (IS_GEN8(dev))
11092 len += 2;
11093 }
11094
11095 /*
11096 * BSpec MI_DISPLAY_FLIP for IVB:
11097 * "The full packet must be contained within the same cache line."
11098 *
11099 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11100 * cacheline, if we ever start emitting more commands before
11101 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11102 * then do the cacheline alignment, and finally emit the
11103 * MI_DISPLAY_FLIP.
11104 */
11105 ret = intel_ring_cacheline_align(req);
11106 if (ret)
11107 return ret;
11108
11109 ret = intel_ring_begin(req, len);
11110 if (ret)
11111 return ret;
11112
11113 /* Unmask the flip-done completion message. Note that the bspec says that
11114 * we should do this for both the BCS and RCS, and that we must not unmask
11115 * more than one flip event at any time (or ensure that one flip message
11116 * can be sent by waiting for flip-done prior to queueing new flips).
11117 * Experimentation says that BCS works despite DERRMR masking all
11118 * flip-done completion events and that unmasking all planes at once
11119 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11120 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11121 */
11122 if (ring->id == RCS) {
11123 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11124 intel_ring_emit_reg(ring, DERRMR);
11125 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11126 DERRMR_PIPEB_PRI_FLIP_DONE |
11127 DERRMR_PIPEC_PRI_FLIP_DONE));
11128 if (IS_GEN8(dev))
11129 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11130 MI_SRM_LRM_GLOBAL_GTT);
11131 else
11132 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11133 MI_SRM_LRM_GLOBAL_GTT);
11134 intel_ring_emit_reg(ring, DERRMR);
11135 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11136 if (IS_GEN8(dev)) {
11137 intel_ring_emit(ring, 0);
11138 intel_ring_emit(ring, MI_NOOP);
11139 }
11140 }
11141
11142 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11143 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11144 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11145 intel_ring_emit(ring, (MI_NOOP));
11146
11147 intel_mark_page_flip_active(intel_crtc->unpin_work);
11148 return 0;
11149 }
11150
11151 static bool use_mmio_flip(struct intel_engine_cs *ring,
11152 struct drm_i915_gem_object *obj)
11153 {
11154 /*
11155 * This is not being used for older platforms, because
11156 * non-availability of flip done interrupt forces us to use
11157 * CS flips. Older platforms derive flip done using some clever
11158 * tricks involving the flip_pending status bits and vblank irqs.
11159 * So using MMIO flips there would disrupt this mechanism.
11160 */
11161
11162 if (ring == NULL)
11163 return true;
11164
11165 if (INTEL_INFO(ring->dev)->gen < 5)
11166 return false;
11167
11168 if (i915.use_mmio_flip < 0)
11169 return false;
11170 else if (i915.use_mmio_flip > 0)
11171 return true;
11172 else if (i915.enable_execlists)
11173 return true;
11174 else
11175 return ring != i915_gem_request_get_ring(obj->last_write_req);
11176 }
11177
11178 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11179 unsigned int rotation,
11180 struct intel_unpin_work *work)
11181 {
11182 struct drm_device *dev = intel_crtc->base.dev;
11183 struct drm_i915_private *dev_priv = dev->dev_private;
11184 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11185 const enum pipe pipe = intel_crtc->pipe;
11186 u32 ctl, stride, tile_height;
11187
11188 ctl = I915_READ(PLANE_CTL(pipe, 0));
11189 ctl &= ~PLANE_CTL_TILED_MASK;
11190 switch (fb->modifier[0]) {
11191 case DRM_FORMAT_MOD_NONE:
11192 break;
11193 case I915_FORMAT_MOD_X_TILED:
11194 ctl |= PLANE_CTL_TILED_X;
11195 break;
11196 case I915_FORMAT_MOD_Y_TILED:
11197 ctl |= PLANE_CTL_TILED_Y;
11198 break;
11199 case I915_FORMAT_MOD_Yf_TILED:
11200 ctl |= PLANE_CTL_TILED_YF;
11201 break;
11202 default:
11203 MISSING_CASE(fb->modifier[0]);
11204 }
11205
11206 /*
11207 * The stride is either expressed as a multiple of 64 bytes chunks for
11208 * linear buffers or in number of tiles for tiled buffers.
11209 */
11210 if (intel_rotation_90_or_270(rotation)) {
11211 /* stride = Surface height in tiles */
11212 tile_height = intel_tile_height(dev, fb->pixel_format,
11213 fb->modifier[0], 0);
11214 stride = DIV_ROUND_UP(fb->height, tile_height);
11215 } else {
11216 stride = fb->pitches[0] /
11217 intel_fb_stride_alignment(dev, fb->modifier[0],
11218 fb->pixel_format);
11219 }
11220
11221 /*
11222 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11223 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11224 */
11225 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11226 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11227
11228 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11229 POSTING_READ(PLANE_SURF(pipe, 0));
11230 }
11231
11232 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11233 struct intel_unpin_work *work)
11234 {
11235 struct drm_device *dev = intel_crtc->base.dev;
11236 struct drm_i915_private *dev_priv = dev->dev_private;
11237 struct intel_framebuffer *intel_fb =
11238 to_intel_framebuffer(intel_crtc->base.primary->fb);
11239 struct drm_i915_gem_object *obj = intel_fb->obj;
11240 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11241 u32 dspcntr;
11242
11243 dspcntr = I915_READ(reg);
11244
11245 if (obj->tiling_mode != I915_TILING_NONE)
11246 dspcntr |= DISPPLANE_TILED;
11247 else
11248 dspcntr &= ~DISPPLANE_TILED;
11249
11250 I915_WRITE(reg, dspcntr);
11251
11252 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11253 POSTING_READ(DSPSURF(intel_crtc->plane));
11254 }
11255
11256 /*
11257 * XXX: This is the temporary way to update the plane registers until we get
11258 * around to using the usual plane update functions for MMIO flips
11259 */
11260 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11261 {
11262 struct intel_crtc *crtc = mmio_flip->crtc;
11263 struct intel_unpin_work *work;
11264
11265 spin_lock_irq(&crtc->base.dev->event_lock);
11266 work = crtc->unpin_work;
11267 spin_unlock_irq(&crtc->base.dev->event_lock);
11268 if (work == NULL)
11269 return;
11270
11271 intel_mark_page_flip_active(work);
11272
11273 intel_pipe_update_start(crtc);
11274
11275 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11276 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11277 else
11278 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11279 ilk_do_mmio_flip(crtc, work);
11280
11281 intel_pipe_update_end(crtc);
11282 }
11283
11284 static void intel_mmio_flip_work_func(struct work_struct *work)
11285 {
11286 struct intel_mmio_flip *mmio_flip =
11287 container_of(work, struct intel_mmio_flip, work);
11288
11289 if (mmio_flip->req) {
11290 WARN_ON(__i915_wait_request(mmio_flip->req,
11291 mmio_flip->crtc->reset_counter,
11292 false, NULL,
11293 &mmio_flip->i915->rps.mmioflips));
11294 i915_gem_request_unreference__unlocked(mmio_flip->req);
11295 }
11296
11297 intel_do_mmio_flip(mmio_flip);
11298 kfree(mmio_flip);
11299 }
11300
11301 static int intel_queue_mmio_flip(struct drm_device *dev,
11302 struct drm_crtc *crtc,
11303 struct drm_i915_gem_object *obj)
11304 {
11305 struct intel_mmio_flip *mmio_flip;
11306
11307 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11308 if (mmio_flip == NULL)
11309 return -ENOMEM;
11310
11311 mmio_flip->i915 = to_i915(dev);
11312 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11313 mmio_flip->crtc = to_intel_crtc(crtc);
11314 mmio_flip->rotation = crtc->primary->state->rotation;
11315
11316 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11317 schedule_work(&mmio_flip->work);
11318
11319 return 0;
11320 }
11321
11322 static int intel_default_queue_flip(struct drm_device *dev,
11323 struct drm_crtc *crtc,
11324 struct drm_framebuffer *fb,
11325 struct drm_i915_gem_object *obj,
11326 struct drm_i915_gem_request *req,
11327 uint32_t flags)
11328 {
11329 return -ENODEV;
11330 }
11331
11332 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11333 struct drm_crtc *crtc)
11334 {
11335 struct drm_i915_private *dev_priv = dev->dev_private;
11336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11337 struct intel_unpin_work *work = intel_crtc->unpin_work;
11338 u32 addr;
11339
11340 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11341 return true;
11342
11343 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11344 return false;
11345
11346 if (!work->enable_stall_check)
11347 return false;
11348
11349 if (work->flip_ready_vblank == 0) {
11350 if (work->flip_queued_req &&
11351 !i915_gem_request_completed(work->flip_queued_req, true))
11352 return false;
11353
11354 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11355 }
11356
11357 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11358 return false;
11359
11360 /* Potential stall - if we see that the flip has happened,
11361 * assume a missed interrupt. */
11362 if (INTEL_INFO(dev)->gen >= 4)
11363 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11364 else
11365 addr = I915_READ(DSPADDR(intel_crtc->plane));
11366
11367 /* There is a potential issue here with a false positive after a flip
11368 * to the same address. We could address this by checking for a
11369 * non-incrementing frame counter.
11370 */
11371 return addr == work->gtt_offset;
11372 }
11373
11374 void intel_check_page_flip(struct drm_device *dev, int pipe)
11375 {
11376 struct drm_i915_private *dev_priv = dev->dev_private;
11377 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11379 struct intel_unpin_work *work;
11380
11381 WARN_ON(!in_interrupt());
11382
11383 if (crtc == NULL)
11384 return;
11385
11386 spin_lock(&dev->event_lock);
11387 work = intel_crtc->unpin_work;
11388 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11389 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11390 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11391 page_flip_completed(intel_crtc);
11392 work = NULL;
11393 }
11394 if (work != NULL &&
11395 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11396 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11397 spin_unlock(&dev->event_lock);
11398 }
11399
11400 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11401 struct drm_framebuffer *fb,
11402 struct drm_pending_vblank_event *event,
11403 uint32_t page_flip_flags)
11404 {
11405 struct drm_device *dev = crtc->dev;
11406 struct drm_i915_private *dev_priv = dev->dev_private;
11407 struct drm_framebuffer *old_fb = crtc->primary->fb;
11408 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11409 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11410 struct drm_plane *primary = crtc->primary;
11411 enum pipe pipe = intel_crtc->pipe;
11412 struct intel_unpin_work *work;
11413 struct intel_engine_cs *ring;
11414 bool mmio_flip;
11415 struct drm_i915_gem_request *request = NULL;
11416 int ret;
11417
11418 /*
11419 * drm_mode_page_flip_ioctl() should already catch this, but double
11420 * check to be safe. In the future we may enable pageflipping from
11421 * a disabled primary plane.
11422 */
11423 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11424 return -EBUSY;
11425
11426 /* Can't change pixel format via MI display flips. */
11427 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11428 return -EINVAL;
11429
11430 /*
11431 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11432 * Note that pitch changes could also affect these register.
11433 */
11434 if (INTEL_INFO(dev)->gen > 3 &&
11435 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11436 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11437 return -EINVAL;
11438
11439 if (i915_terminally_wedged(&dev_priv->gpu_error))
11440 goto out_hang;
11441
11442 work = kzalloc(sizeof(*work), GFP_KERNEL);
11443 if (work == NULL)
11444 return -ENOMEM;
11445
11446 work->event = event;
11447 work->crtc = crtc;
11448 work->old_fb = old_fb;
11449 INIT_WORK(&work->work, intel_unpin_work_fn);
11450
11451 ret = drm_crtc_vblank_get(crtc);
11452 if (ret)
11453 goto free_work;
11454
11455 /* We borrow the event spin lock for protecting unpin_work */
11456 spin_lock_irq(&dev->event_lock);
11457 if (intel_crtc->unpin_work) {
11458 /* Before declaring the flip queue wedged, check if
11459 * the hardware completed the operation behind our backs.
11460 */
11461 if (__intel_pageflip_stall_check(dev, crtc)) {
11462 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11463 page_flip_completed(intel_crtc);
11464 } else {
11465 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11466 spin_unlock_irq(&dev->event_lock);
11467
11468 drm_crtc_vblank_put(crtc);
11469 kfree(work);
11470 return -EBUSY;
11471 }
11472 }
11473 intel_crtc->unpin_work = work;
11474 spin_unlock_irq(&dev->event_lock);
11475
11476 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11477 flush_workqueue(dev_priv->wq);
11478
11479 /* Reference the objects for the scheduled work. */
11480 drm_framebuffer_reference(work->old_fb);
11481 drm_gem_object_reference(&obj->base);
11482
11483 crtc->primary->fb = fb;
11484 update_state_fb(crtc->primary);
11485
11486 work->pending_flip_obj = obj;
11487
11488 ret = i915_mutex_lock_interruptible(dev);
11489 if (ret)
11490 goto cleanup;
11491
11492 atomic_inc(&intel_crtc->unpin_work_count);
11493 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11494
11495 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11496 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11497
11498 if (IS_VALLEYVIEW(dev)) {
11499 ring = &dev_priv->ring[BCS];
11500 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11501 /* vlv: DISPLAY_FLIP fails to change tiling */
11502 ring = NULL;
11503 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11504 ring = &dev_priv->ring[BCS];
11505 } else if (INTEL_INFO(dev)->gen >= 7) {
11506 ring = i915_gem_request_get_ring(obj->last_write_req);
11507 if (ring == NULL || ring->id != RCS)
11508 ring = &dev_priv->ring[BCS];
11509 } else {
11510 ring = &dev_priv->ring[RCS];
11511 }
11512
11513 mmio_flip = use_mmio_flip(ring, obj);
11514
11515 /* When using CS flips, we want to emit semaphores between rings.
11516 * However, when using mmio flips we will create a task to do the
11517 * synchronisation, so all we want here is to pin the framebuffer
11518 * into the display plane and skip any waits.
11519 */
11520 if (!mmio_flip) {
11521 ret = i915_gem_object_sync(obj, ring, &request);
11522 if (ret)
11523 goto cleanup_pending;
11524 }
11525
11526 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11527 crtc->primary->state);
11528 if (ret)
11529 goto cleanup_pending;
11530
11531 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11532 obj, 0);
11533 work->gtt_offset += intel_crtc->dspaddr_offset;
11534
11535 if (mmio_flip) {
11536 ret = intel_queue_mmio_flip(dev, crtc, obj);
11537 if (ret)
11538 goto cleanup_unpin;
11539
11540 i915_gem_request_assign(&work->flip_queued_req,
11541 obj->last_write_req);
11542 } else {
11543 if (!request) {
11544 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11545 if (ret)
11546 goto cleanup_unpin;
11547 }
11548
11549 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11550 page_flip_flags);
11551 if (ret)
11552 goto cleanup_unpin;
11553
11554 i915_gem_request_assign(&work->flip_queued_req, request);
11555 }
11556
11557 if (request)
11558 i915_add_request_no_flush(request);
11559
11560 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11561 work->enable_stall_check = true;
11562
11563 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11564 to_intel_plane(primary)->frontbuffer_bit);
11565 mutex_unlock(&dev->struct_mutex);
11566
11567 intel_fbc_disable_crtc(intel_crtc);
11568 intel_frontbuffer_flip_prepare(dev,
11569 to_intel_plane(primary)->frontbuffer_bit);
11570
11571 trace_i915_flip_request(intel_crtc->plane, obj);
11572
11573 return 0;
11574
11575 cleanup_unpin:
11576 intel_unpin_fb_obj(fb, crtc->primary->state);
11577 cleanup_pending:
11578 if (request)
11579 i915_gem_request_cancel(request);
11580 atomic_dec(&intel_crtc->unpin_work_count);
11581 mutex_unlock(&dev->struct_mutex);
11582 cleanup:
11583 crtc->primary->fb = old_fb;
11584 update_state_fb(crtc->primary);
11585
11586 drm_gem_object_unreference_unlocked(&obj->base);
11587 drm_framebuffer_unreference(work->old_fb);
11588
11589 spin_lock_irq(&dev->event_lock);
11590 intel_crtc->unpin_work = NULL;
11591 spin_unlock_irq(&dev->event_lock);
11592
11593 drm_crtc_vblank_put(crtc);
11594 free_work:
11595 kfree(work);
11596
11597 if (ret == -EIO) {
11598 struct drm_atomic_state *state;
11599 struct drm_plane_state *plane_state;
11600
11601 out_hang:
11602 state = drm_atomic_state_alloc(dev);
11603 if (!state)
11604 return -ENOMEM;
11605 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11606
11607 retry:
11608 plane_state = drm_atomic_get_plane_state(state, primary);
11609 ret = PTR_ERR_OR_ZERO(plane_state);
11610 if (!ret) {
11611 drm_atomic_set_fb_for_plane(plane_state, fb);
11612
11613 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11614 if (!ret)
11615 ret = drm_atomic_commit(state);
11616 }
11617
11618 if (ret == -EDEADLK) {
11619 drm_modeset_backoff(state->acquire_ctx);
11620 drm_atomic_state_clear(state);
11621 goto retry;
11622 }
11623
11624 if (ret)
11625 drm_atomic_state_free(state);
11626
11627 if (ret == 0 && event) {
11628 spin_lock_irq(&dev->event_lock);
11629 drm_send_vblank_event(dev, pipe, event);
11630 spin_unlock_irq(&dev->event_lock);
11631 }
11632 }
11633 return ret;
11634 }
11635
11636
11637 /**
11638 * intel_wm_need_update - Check whether watermarks need updating
11639 * @plane: drm plane
11640 * @state: new plane state
11641 *
11642 * Check current plane state versus the new one to determine whether
11643 * watermarks need to be recalculated.
11644 *
11645 * Returns true or false.
11646 */
11647 static bool intel_wm_need_update(struct drm_plane *plane,
11648 struct drm_plane_state *state)
11649 {
11650 struct intel_plane_state *new = to_intel_plane_state(state);
11651 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11652
11653 /* Update watermarks on tiling or size changes. */
11654 if (!plane->state->fb || !state->fb ||
11655 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11656 plane->state->rotation != state->rotation ||
11657 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11658 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11659 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11660 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11661 return true;
11662
11663 return false;
11664 }
11665
11666 static bool needs_scaling(struct intel_plane_state *state)
11667 {
11668 int src_w = drm_rect_width(&state->src) >> 16;
11669 int src_h = drm_rect_height(&state->src) >> 16;
11670 int dst_w = drm_rect_width(&state->dst);
11671 int dst_h = drm_rect_height(&state->dst);
11672
11673 return (src_w != dst_w || src_h != dst_h);
11674 }
11675
11676 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11677 struct drm_plane_state *plane_state)
11678 {
11679 struct drm_crtc *crtc = crtc_state->crtc;
11680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11681 struct drm_plane *plane = plane_state->plane;
11682 struct drm_device *dev = crtc->dev;
11683 struct drm_i915_private *dev_priv = dev->dev_private;
11684 struct intel_plane_state *old_plane_state =
11685 to_intel_plane_state(plane->state);
11686 int idx = intel_crtc->base.base.id, ret;
11687 int i = drm_plane_index(plane);
11688 bool mode_changed = needs_modeset(crtc_state);
11689 bool was_crtc_enabled = crtc->state->active;
11690 bool is_crtc_enabled = crtc_state->active;
11691 bool turn_off, turn_on, visible, was_visible;
11692 struct drm_framebuffer *fb = plane_state->fb;
11693
11694 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11695 plane->type != DRM_PLANE_TYPE_CURSOR) {
11696 ret = skl_update_scaler_plane(
11697 to_intel_crtc_state(crtc_state),
11698 to_intel_plane_state(plane_state));
11699 if (ret)
11700 return ret;
11701 }
11702
11703 was_visible = old_plane_state->visible;
11704 visible = to_intel_plane_state(plane_state)->visible;
11705
11706 if (!was_crtc_enabled && WARN_ON(was_visible))
11707 was_visible = false;
11708
11709 if (!is_crtc_enabled && WARN_ON(visible))
11710 visible = false;
11711
11712 if (!was_visible && !visible)
11713 return 0;
11714
11715 turn_off = was_visible && (!visible || mode_changed);
11716 turn_on = visible && (!was_visible || mode_changed);
11717
11718 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11719 plane->base.id, fb ? fb->base.id : -1);
11720
11721 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11722 plane->base.id, was_visible, visible,
11723 turn_off, turn_on, mode_changed);
11724
11725 if (turn_on) {
11726 intel_crtc->atomic.update_wm_pre = true;
11727 /* must disable cxsr around plane enable/disable */
11728 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11729 intel_crtc->atomic.disable_cxsr = true;
11730 /* to potentially re-enable cxsr */
11731 intel_crtc->atomic.wait_vblank = true;
11732 intel_crtc->atomic.update_wm_post = true;
11733 }
11734 } else if (turn_off) {
11735 intel_crtc->atomic.update_wm_post = true;
11736 /* must disable cxsr around plane enable/disable */
11737 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11738 if (is_crtc_enabled)
11739 intel_crtc->atomic.wait_vblank = true;
11740 intel_crtc->atomic.disable_cxsr = true;
11741 }
11742 } else if (intel_wm_need_update(plane, plane_state)) {
11743 intel_crtc->atomic.update_wm_pre = true;
11744 }
11745
11746 if (visible || was_visible)
11747 intel_crtc->atomic.fb_bits |=
11748 to_intel_plane(plane)->frontbuffer_bit;
11749
11750 switch (plane->type) {
11751 case DRM_PLANE_TYPE_PRIMARY:
11752 intel_crtc->atomic.pre_disable_primary = turn_off;
11753 intel_crtc->atomic.post_enable_primary = turn_on;
11754
11755 if (turn_off) {
11756 /*
11757 * FIXME: Actually if we will still have any other
11758 * plane enabled on the pipe we could let IPS enabled
11759 * still, but for now lets consider that when we make
11760 * primary invisible by setting DSPCNTR to 0 on
11761 * update_primary_plane function IPS needs to be
11762 * disable.
11763 */
11764 intel_crtc->atomic.disable_ips = true;
11765
11766 intel_crtc->atomic.disable_fbc = true;
11767 }
11768
11769 /*
11770 * FBC does not work on some platforms for rotated
11771 * planes, so disable it when rotation is not 0 and
11772 * update it when rotation is set back to 0.
11773 *
11774 * FIXME: This is redundant with the fbc update done in
11775 * the primary plane enable function except that that
11776 * one is done too late. We eventually need to unify
11777 * this.
11778 */
11779
11780 if (visible &&
11781 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11782 dev_priv->fbc.crtc == intel_crtc &&
11783 plane_state->rotation != BIT(DRM_ROTATE_0))
11784 intel_crtc->atomic.disable_fbc = true;
11785
11786 /*
11787 * BDW signals flip done immediately if the plane
11788 * is disabled, even if the plane enable is already
11789 * armed to occur at the next vblank :(
11790 */
11791 if (turn_on && IS_BROADWELL(dev))
11792 intel_crtc->atomic.wait_vblank = true;
11793
11794 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11795 break;
11796 case DRM_PLANE_TYPE_CURSOR:
11797 break;
11798 case DRM_PLANE_TYPE_OVERLAY:
11799 /*
11800 * WaCxSRDisabledForSpriteScaling:ivb
11801 *
11802 * cstate->update_wm was already set above, so this flag will
11803 * take effect when we commit and program watermarks.
11804 */
11805 if (IS_IVYBRIDGE(dev) &&
11806 needs_scaling(to_intel_plane_state(plane_state)) &&
11807 !needs_scaling(old_plane_state)) {
11808 to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11809 } else if (turn_off && !mode_changed) {
11810 intel_crtc->atomic.wait_vblank = true;
11811 intel_crtc->atomic.update_sprite_watermarks |=
11812 1 << i;
11813 }
11814
11815 break;
11816 }
11817 return 0;
11818 }
11819
11820 static bool encoders_cloneable(const struct intel_encoder *a,
11821 const struct intel_encoder *b)
11822 {
11823 /* masks could be asymmetric, so check both ways */
11824 return a == b || (a->cloneable & (1 << b->type) &&
11825 b->cloneable & (1 << a->type));
11826 }
11827
11828 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11829 struct intel_crtc *crtc,
11830 struct intel_encoder *encoder)
11831 {
11832 struct intel_encoder *source_encoder;
11833 struct drm_connector *connector;
11834 struct drm_connector_state *connector_state;
11835 int i;
11836
11837 for_each_connector_in_state(state, connector, connector_state, i) {
11838 if (connector_state->crtc != &crtc->base)
11839 continue;
11840
11841 source_encoder =
11842 to_intel_encoder(connector_state->best_encoder);
11843 if (!encoders_cloneable(encoder, source_encoder))
11844 return false;
11845 }
11846
11847 return true;
11848 }
11849
11850 static bool check_encoder_cloning(struct drm_atomic_state *state,
11851 struct intel_crtc *crtc)
11852 {
11853 struct intel_encoder *encoder;
11854 struct drm_connector *connector;
11855 struct drm_connector_state *connector_state;
11856 int i;
11857
11858 for_each_connector_in_state(state, connector, connector_state, i) {
11859 if (connector_state->crtc != &crtc->base)
11860 continue;
11861
11862 encoder = to_intel_encoder(connector_state->best_encoder);
11863 if (!check_single_encoder_cloning(state, crtc, encoder))
11864 return false;
11865 }
11866
11867 return true;
11868 }
11869
11870 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11871 struct drm_crtc_state *crtc_state)
11872 {
11873 struct drm_device *dev = crtc->dev;
11874 struct drm_i915_private *dev_priv = dev->dev_private;
11875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11876 struct intel_crtc_state *pipe_config =
11877 to_intel_crtc_state(crtc_state);
11878 struct drm_atomic_state *state = crtc_state->state;
11879 int ret;
11880 bool mode_changed = needs_modeset(crtc_state);
11881
11882 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11883 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11884 return -EINVAL;
11885 }
11886
11887 if (mode_changed && !crtc_state->active)
11888 intel_crtc->atomic.update_wm_post = true;
11889
11890 if (mode_changed && crtc_state->enable &&
11891 dev_priv->display.crtc_compute_clock &&
11892 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11893 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11894 pipe_config);
11895 if (ret)
11896 return ret;
11897 }
11898
11899 ret = 0;
11900 if (dev_priv->display.compute_pipe_wm) {
11901 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11902 if (ret)
11903 return ret;
11904 }
11905
11906 if (INTEL_INFO(dev)->gen >= 9) {
11907 if (mode_changed)
11908 ret = skl_update_scaler_crtc(pipe_config);
11909
11910 if (!ret)
11911 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11912 pipe_config);
11913 }
11914
11915 return ret;
11916 }
11917
11918 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11919 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11920 .load_lut = intel_crtc_load_lut,
11921 .atomic_begin = intel_begin_crtc_commit,
11922 .atomic_flush = intel_finish_crtc_commit,
11923 .atomic_check = intel_crtc_atomic_check,
11924 };
11925
11926 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11927 {
11928 struct intel_connector *connector;
11929
11930 for_each_intel_connector(dev, connector) {
11931 if (connector->base.encoder) {
11932 connector->base.state->best_encoder =
11933 connector->base.encoder;
11934 connector->base.state->crtc =
11935 connector->base.encoder->crtc;
11936 } else {
11937 connector->base.state->best_encoder = NULL;
11938 connector->base.state->crtc = NULL;
11939 }
11940 }
11941 }
11942
11943 static void
11944 connected_sink_compute_bpp(struct intel_connector *connector,
11945 struct intel_crtc_state *pipe_config)
11946 {
11947 int bpp = pipe_config->pipe_bpp;
11948
11949 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11950 connector->base.base.id,
11951 connector->base.name);
11952
11953 /* Don't use an invalid EDID bpc value */
11954 if (connector->base.display_info.bpc &&
11955 connector->base.display_info.bpc * 3 < bpp) {
11956 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11957 bpp, connector->base.display_info.bpc*3);
11958 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11959 }
11960
11961 /* Clamp bpp to 8 on screens without EDID 1.4 */
11962 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11963 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11964 bpp);
11965 pipe_config->pipe_bpp = 24;
11966 }
11967 }
11968
11969 static int
11970 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11971 struct intel_crtc_state *pipe_config)
11972 {
11973 struct drm_device *dev = crtc->base.dev;
11974 struct drm_atomic_state *state;
11975 struct drm_connector *connector;
11976 struct drm_connector_state *connector_state;
11977 int bpp, i;
11978
11979 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11980 bpp = 10*3;
11981 else if (INTEL_INFO(dev)->gen >= 5)
11982 bpp = 12*3;
11983 else
11984 bpp = 8*3;
11985
11986
11987 pipe_config->pipe_bpp = bpp;
11988
11989 state = pipe_config->base.state;
11990
11991 /* Clamp display bpp to EDID value */
11992 for_each_connector_in_state(state, connector, connector_state, i) {
11993 if (connector_state->crtc != &crtc->base)
11994 continue;
11995
11996 connected_sink_compute_bpp(to_intel_connector(connector),
11997 pipe_config);
11998 }
11999
12000 return bpp;
12001 }
12002
12003 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12004 {
12005 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12006 "type: 0x%x flags: 0x%x\n",
12007 mode->crtc_clock,
12008 mode->crtc_hdisplay, mode->crtc_hsync_start,
12009 mode->crtc_hsync_end, mode->crtc_htotal,
12010 mode->crtc_vdisplay, mode->crtc_vsync_start,
12011 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12012 }
12013
12014 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12015 struct intel_crtc_state *pipe_config,
12016 const char *context)
12017 {
12018 struct drm_device *dev = crtc->base.dev;
12019 struct drm_plane *plane;
12020 struct intel_plane *intel_plane;
12021 struct intel_plane_state *state;
12022 struct drm_framebuffer *fb;
12023
12024 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12025 context, pipe_config, pipe_name(crtc->pipe));
12026
12027 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12028 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12029 pipe_config->pipe_bpp, pipe_config->dither);
12030 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12031 pipe_config->has_pch_encoder,
12032 pipe_config->fdi_lanes,
12033 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12034 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12035 pipe_config->fdi_m_n.tu);
12036 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12037 pipe_config->has_dp_encoder,
12038 pipe_config->lane_count,
12039 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12040 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12041 pipe_config->dp_m_n.tu);
12042
12043 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12044 pipe_config->has_dp_encoder,
12045 pipe_config->lane_count,
12046 pipe_config->dp_m2_n2.gmch_m,
12047 pipe_config->dp_m2_n2.gmch_n,
12048 pipe_config->dp_m2_n2.link_m,
12049 pipe_config->dp_m2_n2.link_n,
12050 pipe_config->dp_m2_n2.tu);
12051
12052 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12053 pipe_config->has_audio,
12054 pipe_config->has_infoframe);
12055
12056 DRM_DEBUG_KMS("requested mode:\n");
12057 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12058 DRM_DEBUG_KMS("adjusted mode:\n");
12059 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12060 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12061 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12062 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12063 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12064 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12065 crtc->num_scalers,
12066 pipe_config->scaler_state.scaler_users,
12067 pipe_config->scaler_state.scaler_id);
12068 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12069 pipe_config->gmch_pfit.control,
12070 pipe_config->gmch_pfit.pgm_ratios,
12071 pipe_config->gmch_pfit.lvds_border_bits);
12072 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12073 pipe_config->pch_pfit.pos,
12074 pipe_config->pch_pfit.size,
12075 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12076 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12077 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12078
12079 if (IS_BROXTON(dev)) {
12080 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12081 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12082 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12083 pipe_config->ddi_pll_sel,
12084 pipe_config->dpll_hw_state.ebb0,
12085 pipe_config->dpll_hw_state.ebb4,
12086 pipe_config->dpll_hw_state.pll0,
12087 pipe_config->dpll_hw_state.pll1,
12088 pipe_config->dpll_hw_state.pll2,
12089 pipe_config->dpll_hw_state.pll3,
12090 pipe_config->dpll_hw_state.pll6,
12091 pipe_config->dpll_hw_state.pll8,
12092 pipe_config->dpll_hw_state.pll9,
12093 pipe_config->dpll_hw_state.pll10,
12094 pipe_config->dpll_hw_state.pcsdw12);
12095 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12096 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12097 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12098 pipe_config->ddi_pll_sel,
12099 pipe_config->dpll_hw_state.ctrl1,
12100 pipe_config->dpll_hw_state.cfgcr1,
12101 pipe_config->dpll_hw_state.cfgcr2);
12102 } else if (HAS_DDI(dev)) {
12103 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12104 pipe_config->ddi_pll_sel,
12105 pipe_config->dpll_hw_state.wrpll);
12106 } else {
12107 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12108 "fp0: 0x%x, fp1: 0x%x\n",
12109 pipe_config->dpll_hw_state.dpll,
12110 pipe_config->dpll_hw_state.dpll_md,
12111 pipe_config->dpll_hw_state.fp0,
12112 pipe_config->dpll_hw_state.fp1);
12113 }
12114
12115 DRM_DEBUG_KMS("planes on this crtc\n");
12116 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12117 intel_plane = to_intel_plane(plane);
12118 if (intel_plane->pipe != crtc->pipe)
12119 continue;
12120
12121 state = to_intel_plane_state(plane->state);
12122 fb = state->base.fb;
12123 if (!fb) {
12124 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12125 "disabled, scaler_id = %d\n",
12126 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12127 plane->base.id, intel_plane->pipe,
12128 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12129 drm_plane_index(plane), state->scaler_id);
12130 continue;
12131 }
12132
12133 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12134 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12135 plane->base.id, intel_plane->pipe,
12136 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12137 drm_plane_index(plane));
12138 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12139 fb->base.id, fb->width, fb->height, fb->pixel_format);
12140 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12141 state->scaler_id,
12142 state->src.x1 >> 16, state->src.y1 >> 16,
12143 drm_rect_width(&state->src) >> 16,
12144 drm_rect_height(&state->src) >> 16,
12145 state->dst.x1, state->dst.y1,
12146 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12147 }
12148 }
12149
12150 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12151 {
12152 struct drm_device *dev = state->dev;
12153 struct intel_encoder *encoder;
12154 struct drm_connector *connector;
12155 struct drm_connector_state *connector_state;
12156 unsigned int used_ports = 0;
12157 int i;
12158
12159 /*
12160 * Walk the connector list instead of the encoder
12161 * list to detect the problem on ddi platforms
12162 * where there's just one encoder per digital port.
12163 */
12164 for_each_connector_in_state(state, connector, connector_state, i) {
12165 if (!connector_state->best_encoder)
12166 continue;
12167
12168 encoder = to_intel_encoder(connector_state->best_encoder);
12169
12170 WARN_ON(!connector_state->crtc);
12171
12172 switch (encoder->type) {
12173 unsigned int port_mask;
12174 case INTEL_OUTPUT_UNKNOWN:
12175 if (WARN_ON(!HAS_DDI(dev)))
12176 break;
12177 case INTEL_OUTPUT_DISPLAYPORT:
12178 case INTEL_OUTPUT_HDMI:
12179 case INTEL_OUTPUT_EDP:
12180 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12181
12182 /* the same port mustn't appear more than once */
12183 if (used_ports & port_mask)
12184 return false;
12185
12186 used_ports |= port_mask;
12187 default:
12188 break;
12189 }
12190 }
12191
12192 return true;
12193 }
12194
12195 static void
12196 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12197 {
12198 struct drm_crtc_state tmp_state;
12199 struct intel_crtc_scaler_state scaler_state;
12200 struct intel_dpll_hw_state dpll_hw_state;
12201 enum intel_dpll_id shared_dpll;
12202 uint32_t ddi_pll_sel;
12203 bool force_thru;
12204
12205 /* FIXME: before the switch to atomic started, a new pipe_config was
12206 * kzalloc'd. Code that depends on any field being zero should be
12207 * fixed, so that the crtc_state can be safely duplicated. For now,
12208 * only fields that are know to not cause problems are preserved. */
12209
12210 tmp_state = crtc_state->base;
12211 scaler_state = crtc_state->scaler_state;
12212 shared_dpll = crtc_state->shared_dpll;
12213 dpll_hw_state = crtc_state->dpll_hw_state;
12214 ddi_pll_sel = crtc_state->ddi_pll_sel;
12215 force_thru = crtc_state->pch_pfit.force_thru;
12216
12217 memset(crtc_state, 0, sizeof *crtc_state);
12218
12219 crtc_state->base = tmp_state;
12220 crtc_state->scaler_state = scaler_state;
12221 crtc_state->shared_dpll = shared_dpll;
12222 crtc_state->dpll_hw_state = dpll_hw_state;
12223 crtc_state->ddi_pll_sel = ddi_pll_sel;
12224 crtc_state->pch_pfit.force_thru = force_thru;
12225 }
12226
12227 static int
12228 intel_modeset_pipe_config(struct drm_crtc *crtc,
12229 struct intel_crtc_state *pipe_config)
12230 {
12231 struct drm_atomic_state *state = pipe_config->base.state;
12232 struct intel_encoder *encoder;
12233 struct drm_connector *connector;
12234 struct drm_connector_state *connector_state;
12235 int base_bpp, ret = -EINVAL;
12236 int i;
12237 bool retry = true;
12238
12239 clear_intel_crtc_state(pipe_config);
12240
12241 pipe_config->cpu_transcoder =
12242 (enum transcoder) to_intel_crtc(crtc)->pipe;
12243
12244 /*
12245 * Sanitize sync polarity flags based on requested ones. If neither
12246 * positive or negative polarity is requested, treat this as meaning
12247 * negative polarity.
12248 */
12249 if (!(pipe_config->base.adjusted_mode.flags &
12250 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12251 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12252
12253 if (!(pipe_config->base.adjusted_mode.flags &
12254 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12255 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12256
12257 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12258 pipe_config);
12259 if (base_bpp < 0)
12260 goto fail;
12261
12262 /*
12263 * Determine the real pipe dimensions. Note that stereo modes can
12264 * increase the actual pipe size due to the frame doubling and
12265 * insertion of additional space for blanks between the frame. This
12266 * is stored in the crtc timings. We use the requested mode to do this
12267 * computation to clearly distinguish it from the adjusted mode, which
12268 * can be changed by the connectors in the below retry loop.
12269 */
12270 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12271 &pipe_config->pipe_src_w,
12272 &pipe_config->pipe_src_h);
12273
12274 encoder_retry:
12275 /* Ensure the port clock defaults are reset when retrying. */
12276 pipe_config->port_clock = 0;
12277 pipe_config->pixel_multiplier = 1;
12278
12279 /* Fill in default crtc timings, allow encoders to overwrite them. */
12280 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12281 CRTC_STEREO_DOUBLE);
12282
12283 /* Pass our mode to the connectors and the CRTC to give them a chance to
12284 * adjust it according to limitations or connector properties, and also
12285 * a chance to reject the mode entirely.
12286 */
12287 for_each_connector_in_state(state, connector, connector_state, i) {
12288 if (connector_state->crtc != crtc)
12289 continue;
12290
12291 encoder = to_intel_encoder(connector_state->best_encoder);
12292
12293 if (!(encoder->compute_config(encoder, pipe_config))) {
12294 DRM_DEBUG_KMS("Encoder config failure\n");
12295 goto fail;
12296 }
12297 }
12298
12299 /* Set default port clock if not overwritten by the encoder. Needs to be
12300 * done afterwards in case the encoder adjusts the mode. */
12301 if (!pipe_config->port_clock)
12302 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12303 * pipe_config->pixel_multiplier;
12304
12305 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12306 if (ret < 0) {
12307 DRM_DEBUG_KMS("CRTC fixup failed\n");
12308 goto fail;
12309 }
12310
12311 if (ret == RETRY) {
12312 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12313 ret = -EINVAL;
12314 goto fail;
12315 }
12316
12317 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12318 retry = false;
12319 goto encoder_retry;
12320 }
12321
12322 /* Dithering seems to not pass-through bits correctly when it should, so
12323 * only enable it on 6bpc panels. */
12324 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12325 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12326 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12327
12328 fail:
12329 return ret;
12330 }
12331
12332 static void
12333 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12334 {
12335 struct drm_crtc *crtc;
12336 struct drm_crtc_state *crtc_state;
12337 int i;
12338
12339 /* Double check state. */
12340 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12341 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12342
12343 /* Update hwmode for vblank functions */
12344 if (crtc->state->active)
12345 crtc->hwmode = crtc->state->adjusted_mode;
12346 else
12347 crtc->hwmode.crtc_clock = 0;
12348
12349 /*
12350 * Update legacy state to satisfy fbc code. This can
12351 * be removed when fbc uses the atomic state.
12352 */
12353 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12354 struct drm_plane_state *plane_state = crtc->primary->state;
12355
12356 crtc->primary->fb = plane_state->fb;
12357 crtc->x = plane_state->src_x >> 16;
12358 crtc->y = plane_state->src_y >> 16;
12359 }
12360 }
12361 }
12362
12363 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12364 {
12365 int diff;
12366
12367 if (clock1 == clock2)
12368 return true;
12369
12370 if (!clock1 || !clock2)
12371 return false;
12372
12373 diff = abs(clock1 - clock2);
12374
12375 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12376 return true;
12377
12378 return false;
12379 }
12380
12381 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12382 list_for_each_entry((intel_crtc), \
12383 &(dev)->mode_config.crtc_list, \
12384 base.head) \
12385 if (mask & (1 <<(intel_crtc)->pipe))
12386
12387 static bool
12388 intel_compare_m_n(unsigned int m, unsigned int n,
12389 unsigned int m2, unsigned int n2,
12390 bool exact)
12391 {
12392 if (m == m2 && n == n2)
12393 return true;
12394
12395 if (exact || !m || !n || !m2 || !n2)
12396 return false;
12397
12398 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12399
12400 if (m > m2) {
12401 while (m > m2) {
12402 m2 <<= 1;
12403 n2 <<= 1;
12404 }
12405 } else if (m < m2) {
12406 while (m < m2) {
12407 m <<= 1;
12408 n <<= 1;
12409 }
12410 }
12411
12412 return m == m2 && n == n2;
12413 }
12414
12415 static bool
12416 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12417 struct intel_link_m_n *m2_n2,
12418 bool adjust)
12419 {
12420 if (m_n->tu == m2_n2->tu &&
12421 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12422 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12423 intel_compare_m_n(m_n->link_m, m_n->link_n,
12424 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12425 if (adjust)
12426 *m2_n2 = *m_n;
12427
12428 return true;
12429 }
12430
12431 return false;
12432 }
12433
12434 static bool
12435 intel_pipe_config_compare(struct drm_device *dev,
12436 struct intel_crtc_state *current_config,
12437 struct intel_crtc_state *pipe_config,
12438 bool adjust)
12439 {
12440 bool ret = true;
12441
12442 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12443 do { \
12444 if (!adjust) \
12445 DRM_ERROR(fmt, ##__VA_ARGS__); \
12446 else \
12447 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12448 } while (0)
12449
12450 #define PIPE_CONF_CHECK_X(name) \
12451 if (current_config->name != pipe_config->name) { \
12452 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12453 "(expected 0x%08x, found 0x%08x)\n", \
12454 current_config->name, \
12455 pipe_config->name); \
12456 ret = false; \
12457 }
12458
12459 #define PIPE_CONF_CHECK_I(name) \
12460 if (current_config->name != pipe_config->name) { \
12461 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12462 "(expected %i, found %i)\n", \
12463 current_config->name, \
12464 pipe_config->name); \
12465 ret = false; \
12466 }
12467
12468 #define PIPE_CONF_CHECK_M_N(name) \
12469 if (!intel_compare_link_m_n(&current_config->name, \
12470 &pipe_config->name,\
12471 adjust)) { \
12472 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12473 "(expected tu %i gmch %i/%i link %i/%i, " \
12474 "found tu %i, gmch %i/%i link %i/%i)\n", \
12475 current_config->name.tu, \
12476 current_config->name.gmch_m, \
12477 current_config->name.gmch_n, \
12478 current_config->name.link_m, \
12479 current_config->name.link_n, \
12480 pipe_config->name.tu, \
12481 pipe_config->name.gmch_m, \
12482 pipe_config->name.gmch_n, \
12483 pipe_config->name.link_m, \
12484 pipe_config->name.link_n); \
12485 ret = false; \
12486 }
12487
12488 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12489 if (!intel_compare_link_m_n(&current_config->name, \
12490 &pipe_config->name, adjust) && \
12491 !intel_compare_link_m_n(&current_config->alt_name, \
12492 &pipe_config->name, adjust)) { \
12493 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12494 "(expected tu %i gmch %i/%i link %i/%i, " \
12495 "or tu %i gmch %i/%i link %i/%i, " \
12496 "found tu %i, gmch %i/%i link %i/%i)\n", \
12497 current_config->name.tu, \
12498 current_config->name.gmch_m, \
12499 current_config->name.gmch_n, \
12500 current_config->name.link_m, \
12501 current_config->name.link_n, \
12502 current_config->alt_name.tu, \
12503 current_config->alt_name.gmch_m, \
12504 current_config->alt_name.gmch_n, \
12505 current_config->alt_name.link_m, \
12506 current_config->alt_name.link_n, \
12507 pipe_config->name.tu, \
12508 pipe_config->name.gmch_m, \
12509 pipe_config->name.gmch_n, \
12510 pipe_config->name.link_m, \
12511 pipe_config->name.link_n); \
12512 ret = false; \
12513 }
12514
12515 /* This is required for BDW+ where there is only one set of registers for
12516 * switching between high and low RR.
12517 * This macro can be used whenever a comparison has to be made between one
12518 * hw state and multiple sw state variables.
12519 */
12520 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12521 if ((current_config->name != pipe_config->name) && \
12522 (current_config->alt_name != pipe_config->name)) { \
12523 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12524 "(expected %i or %i, found %i)\n", \
12525 current_config->name, \
12526 current_config->alt_name, \
12527 pipe_config->name); \
12528 ret = false; \
12529 }
12530
12531 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12532 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12533 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12534 "(expected %i, found %i)\n", \
12535 current_config->name & (mask), \
12536 pipe_config->name & (mask)); \
12537 ret = false; \
12538 }
12539
12540 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12541 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12542 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12543 "(expected %i, found %i)\n", \
12544 current_config->name, \
12545 pipe_config->name); \
12546 ret = false; \
12547 }
12548
12549 #define PIPE_CONF_QUIRK(quirk) \
12550 ((current_config->quirks | pipe_config->quirks) & (quirk))
12551
12552 PIPE_CONF_CHECK_I(cpu_transcoder);
12553
12554 PIPE_CONF_CHECK_I(has_pch_encoder);
12555 PIPE_CONF_CHECK_I(fdi_lanes);
12556 PIPE_CONF_CHECK_M_N(fdi_m_n);
12557
12558 PIPE_CONF_CHECK_I(has_dp_encoder);
12559 PIPE_CONF_CHECK_I(lane_count);
12560
12561 if (INTEL_INFO(dev)->gen < 8) {
12562 PIPE_CONF_CHECK_M_N(dp_m_n);
12563
12564 PIPE_CONF_CHECK_I(has_drrs);
12565 if (current_config->has_drrs)
12566 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12567 } else
12568 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12569
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12572 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12573 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12574 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12575 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12576
12577 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12578 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12580 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12581 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12582 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12583
12584 PIPE_CONF_CHECK_I(pixel_multiplier);
12585 PIPE_CONF_CHECK_I(has_hdmi_sink);
12586 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12587 IS_VALLEYVIEW(dev))
12588 PIPE_CONF_CHECK_I(limited_color_range);
12589 PIPE_CONF_CHECK_I(has_infoframe);
12590
12591 PIPE_CONF_CHECK_I(has_audio);
12592
12593 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12594 DRM_MODE_FLAG_INTERLACE);
12595
12596 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12597 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12598 DRM_MODE_FLAG_PHSYNC);
12599 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12600 DRM_MODE_FLAG_NHSYNC);
12601 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12602 DRM_MODE_FLAG_PVSYNC);
12603 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12604 DRM_MODE_FLAG_NVSYNC);
12605 }
12606
12607 PIPE_CONF_CHECK_X(gmch_pfit.control);
12608 /* pfit ratios are autocomputed by the hw on gen4+ */
12609 if (INTEL_INFO(dev)->gen < 4)
12610 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12611 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12612
12613 if (!adjust) {
12614 PIPE_CONF_CHECK_I(pipe_src_w);
12615 PIPE_CONF_CHECK_I(pipe_src_h);
12616
12617 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12618 if (current_config->pch_pfit.enabled) {
12619 PIPE_CONF_CHECK_X(pch_pfit.pos);
12620 PIPE_CONF_CHECK_X(pch_pfit.size);
12621 }
12622
12623 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12624 }
12625
12626 /* BDW+ don't expose a synchronous way to read the state */
12627 if (IS_HASWELL(dev))
12628 PIPE_CONF_CHECK_I(ips_enabled);
12629
12630 PIPE_CONF_CHECK_I(double_wide);
12631
12632 PIPE_CONF_CHECK_X(ddi_pll_sel);
12633
12634 PIPE_CONF_CHECK_I(shared_dpll);
12635 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12636 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12637 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12638 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12639 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12640 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12641 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12642 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12643
12644 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12645 PIPE_CONF_CHECK_I(pipe_bpp);
12646
12647 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12648 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12649
12650 #undef PIPE_CONF_CHECK_X
12651 #undef PIPE_CONF_CHECK_I
12652 #undef PIPE_CONF_CHECK_I_ALT
12653 #undef PIPE_CONF_CHECK_FLAGS
12654 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12655 #undef PIPE_CONF_QUIRK
12656 #undef INTEL_ERR_OR_DBG_KMS
12657
12658 return ret;
12659 }
12660
12661 static void check_wm_state(struct drm_device *dev)
12662 {
12663 struct drm_i915_private *dev_priv = dev->dev_private;
12664 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12665 struct intel_crtc *intel_crtc;
12666 int plane;
12667
12668 if (INTEL_INFO(dev)->gen < 9)
12669 return;
12670
12671 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12672 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12673
12674 for_each_intel_crtc(dev, intel_crtc) {
12675 struct skl_ddb_entry *hw_entry, *sw_entry;
12676 const enum pipe pipe = intel_crtc->pipe;
12677
12678 if (!intel_crtc->active)
12679 continue;
12680
12681 /* planes */
12682 for_each_plane(dev_priv, pipe, plane) {
12683 hw_entry = &hw_ddb.plane[pipe][plane];
12684 sw_entry = &sw_ddb->plane[pipe][plane];
12685
12686 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12687 continue;
12688
12689 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12690 "(expected (%u,%u), found (%u,%u))\n",
12691 pipe_name(pipe), plane + 1,
12692 sw_entry->start, sw_entry->end,
12693 hw_entry->start, hw_entry->end);
12694 }
12695
12696 /* cursor */
12697 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12698 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12699
12700 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12701 continue;
12702
12703 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12704 "(expected (%u,%u), found (%u,%u))\n",
12705 pipe_name(pipe),
12706 sw_entry->start, sw_entry->end,
12707 hw_entry->start, hw_entry->end);
12708 }
12709 }
12710
12711 static void
12712 check_connector_state(struct drm_device *dev,
12713 struct drm_atomic_state *old_state)
12714 {
12715 struct drm_connector_state *old_conn_state;
12716 struct drm_connector *connector;
12717 int i;
12718
12719 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12720 struct drm_encoder *encoder = connector->encoder;
12721 struct drm_connector_state *state = connector->state;
12722
12723 /* This also checks the encoder/connector hw state with the
12724 * ->get_hw_state callbacks. */
12725 intel_connector_check_state(to_intel_connector(connector));
12726
12727 I915_STATE_WARN(state->best_encoder != encoder,
12728 "connector's atomic encoder doesn't match legacy encoder\n");
12729 }
12730 }
12731
12732 static void
12733 check_encoder_state(struct drm_device *dev)
12734 {
12735 struct intel_encoder *encoder;
12736 struct intel_connector *connector;
12737
12738 for_each_intel_encoder(dev, encoder) {
12739 bool enabled = false;
12740 enum pipe pipe;
12741
12742 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12743 encoder->base.base.id,
12744 encoder->base.name);
12745
12746 for_each_intel_connector(dev, connector) {
12747 if (connector->base.state->best_encoder != &encoder->base)
12748 continue;
12749 enabled = true;
12750
12751 I915_STATE_WARN(connector->base.state->crtc !=
12752 encoder->base.crtc,
12753 "connector's crtc doesn't match encoder crtc\n");
12754 }
12755
12756 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12757 "encoder's enabled state mismatch "
12758 "(expected %i, found %i)\n",
12759 !!encoder->base.crtc, enabled);
12760
12761 if (!encoder->base.crtc) {
12762 bool active;
12763
12764 active = encoder->get_hw_state(encoder, &pipe);
12765 I915_STATE_WARN(active,
12766 "encoder detached but still enabled on pipe %c.\n",
12767 pipe_name(pipe));
12768 }
12769 }
12770 }
12771
12772 static void
12773 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12774 {
12775 struct drm_i915_private *dev_priv = dev->dev_private;
12776 struct intel_encoder *encoder;
12777 struct drm_crtc_state *old_crtc_state;
12778 struct drm_crtc *crtc;
12779 int i;
12780
12781 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12783 struct intel_crtc_state *pipe_config, *sw_config;
12784 bool active;
12785
12786 if (!needs_modeset(crtc->state) &&
12787 !to_intel_crtc_state(crtc->state)->update_pipe)
12788 continue;
12789
12790 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12791 pipe_config = to_intel_crtc_state(old_crtc_state);
12792 memset(pipe_config, 0, sizeof(*pipe_config));
12793 pipe_config->base.crtc = crtc;
12794 pipe_config->base.state = old_state;
12795
12796 DRM_DEBUG_KMS("[CRTC:%d]\n",
12797 crtc->base.id);
12798
12799 active = dev_priv->display.get_pipe_config(intel_crtc,
12800 pipe_config);
12801
12802 /* hw state is inconsistent with the pipe quirk */
12803 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12804 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12805 active = crtc->state->active;
12806
12807 I915_STATE_WARN(crtc->state->active != active,
12808 "crtc active state doesn't match with hw state "
12809 "(expected %i, found %i)\n", crtc->state->active, active);
12810
12811 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12812 "transitional active state does not match atomic hw state "
12813 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12814
12815 for_each_encoder_on_crtc(dev, crtc, encoder) {
12816 enum pipe pipe;
12817
12818 active = encoder->get_hw_state(encoder, &pipe);
12819 I915_STATE_WARN(active != crtc->state->active,
12820 "[ENCODER:%i] active %i with crtc active %i\n",
12821 encoder->base.base.id, active, crtc->state->active);
12822
12823 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12824 "Encoder connected to wrong pipe %c\n",
12825 pipe_name(pipe));
12826
12827 if (active)
12828 encoder->get_config(encoder, pipe_config);
12829 }
12830
12831 if (!crtc->state->active)
12832 continue;
12833
12834 sw_config = to_intel_crtc_state(crtc->state);
12835 if (!intel_pipe_config_compare(dev, sw_config,
12836 pipe_config, false)) {
12837 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12838 intel_dump_pipe_config(intel_crtc, pipe_config,
12839 "[hw state]");
12840 intel_dump_pipe_config(intel_crtc, sw_config,
12841 "[sw state]");
12842 }
12843 }
12844 }
12845
12846 static void
12847 check_shared_dpll_state(struct drm_device *dev)
12848 {
12849 struct drm_i915_private *dev_priv = dev->dev_private;
12850 struct intel_crtc *crtc;
12851 struct intel_dpll_hw_state dpll_hw_state;
12852 int i;
12853
12854 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12855 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12856 int enabled_crtcs = 0, active_crtcs = 0;
12857 bool active;
12858
12859 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12860
12861 DRM_DEBUG_KMS("%s\n", pll->name);
12862
12863 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12864
12865 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12866 "more active pll users than references: %i vs %i\n",
12867 pll->active, hweight32(pll->config.crtc_mask));
12868 I915_STATE_WARN(pll->active && !pll->on,
12869 "pll in active use but not on in sw tracking\n");
12870 I915_STATE_WARN(pll->on && !pll->active,
12871 "pll in on but not on in use in sw tracking\n");
12872 I915_STATE_WARN(pll->on != active,
12873 "pll on state mismatch (expected %i, found %i)\n",
12874 pll->on, active);
12875
12876 for_each_intel_crtc(dev, crtc) {
12877 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12878 enabled_crtcs++;
12879 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12880 active_crtcs++;
12881 }
12882 I915_STATE_WARN(pll->active != active_crtcs,
12883 "pll active crtcs mismatch (expected %i, found %i)\n",
12884 pll->active, active_crtcs);
12885 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12886 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12887 hweight32(pll->config.crtc_mask), enabled_crtcs);
12888
12889 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12890 sizeof(dpll_hw_state)),
12891 "pll hw state mismatch\n");
12892 }
12893 }
12894
12895 static void
12896 intel_modeset_check_state(struct drm_device *dev,
12897 struct drm_atomic_state *old_state)
12898 {
12899 check_wm_state(dev);
12900 check_connector_state(dev, old_state);
12901 check_encoder_state(dev);
12902 check_crtc_state(dev, old_state);
12903 check_shared_dpll_state(dev);
12904 }
12905
12906 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12907 int dotclock)
12908 {
12909 /*
12910 * FDI already provided one idea for the dotclock.
12911 * Yell if the encoder disagrees.
12912 */
12913 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12914 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12915 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12916 }
12917
12918 static void update_scanline_offset(struct intel_crtc *crtc)
12919 {
12920 struct drm_device *dev = crtc->base.dev;
12921
12922 /*
12923 * The scanline counter increments at the leading edge of hsync.
12924 *
12925 * On most platforms it starts counting from vtotal-1 on the
12926 * first active line. That means the scanline counter value is
12927 * always one less than what we would expect. Ie. just after
12928 * start of vblank, which also occurs at start of hsync (on the
12929 * last active line), the scanline counter will read vblank_start-1.
12930 *
12931 * On gen2 the scanline counter starts counting from 1 instead
12932 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12933 * to keep the value positive), instead of adding one.
12934 *
12935 * On HSW+ the behaviour of the scanline counter depends on the output
12936 * type. For DP ports it behaves like most other platforms, but on HDMI
12937 * there's an extra 1 line difference. So we need to add two instead of
12938 * one to the value.
12939 */
12940 if (IS_GEN2(dev)) {
12941 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12942 int vtotal;
12943
12944 vtotal = adjusted_mode->crtc_vtotal;
12945 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12946 vtotal /= 2;
12947
12948 crtc->scanline_offset = vtotal - 1;
12949 } else if (HAS_DDI(dev) &&
12950 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12951 crtc->scanline_offset = 2;
12952 } else
12953 crtc->scanline_offset = 1;
12954 }
12955
12956 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12957 {
12958 struct drm_device *dev = state->dev;
12959 struct drm_i915_private *dev_priv = to_i915(dev);
12960 struct intel_shared_dpll_config *shared_dpll = NULL;
12961 struct intel_crtc *intel_crtc;
12962 struct intel_crtc_state *intel_crtc_state;
12963 struct drm_crtc *crtc;
12964 struct drm_crtc_state *crtc_state;
12965 int i;
12966
12967 if (!dev_priv->display.crtc_compute_clock)
12968 return;
12969
12970 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12971 int dpll;
12972
12973 intel_crtc = to_intel_crtc(crtc);
12974 intel_crtc_state = to_intel_crtc_state(crtc_state);
12975 dpll = intel_crtc_state->shared_dpll;
12976
12977 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12978 continue;
12979
12980 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12981
12982 if (!shared_dpll)
12983 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12984
12985 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12986 }
12987 }
12988
12989 /*
12990 * This implements the workaround described in the "notes" section of the mode
12991 * set sequence documentation. When going from no pipes or single pipe to
12992 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12993 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12994 */
12995 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12996 {
12997 struct drm_crtc_state *crtc_state;
12998 struct intel_crtc *intel_crtc;
12999 struct drm_crtc *crtc;
13000 struct intel_crtc_state *first_crtc_state = NULL;
13001 struct intel_crtc_state *other_crtc_state = NULL;
13002 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13003 int i;
13004
13005 /* look at all crtc's that are going to be enabled in during modeset */
13006 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13007 intel_crtc = to_intel_crtc(crtc);
13008
13009 if (!crtc_state->active || !needs_modeset(crtc_state))
13010 continue;
13011
13012 if (first_crtc_state) {
13013 other_crtc_state = to_intel_crtc_state(crtc_state);
13014 break;
13015 } else {
13016 first_crtc_state = to_intel_crtc_state(crtc_state);
13017 first_pipe = intel_crtc->pipe;
13018 }
13019 }
13020
13021 /* No workaround needed? */
13022 if (!first_crtc_state)
13023 return 0;
13024
13025 /* w/a possibly needed, check how many crtc's are already enabled. */
13026 for_each_intel_crtc(state->dev, intel_crtc) {
13027 struct intel_crtc_state *pipe_config;
13028
13029 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13030 if (IS_ERR(pipe_config))
13031 return PTR_ERR(pipe_config);
13032
13033 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13034
13035 if (!pipe_config->base.active ||
13036 needs_modeset(&pipe_config->base))
13037 continue;
13038
13039 /* 2 or more enabled crtcs means no need for w/a */
13040 if (enabled_pipe != INVALID_PIPE)
13041 return 0;
13042
13043 enabled_pipe = intel_crtc->pipe;
13044 }
13045
13046 if (enabled_pipe != INVALID_PIPE)
13047 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13048 else if (other_crtc_state)
13049 other_crtc_state->hsw_workaround_pipe = first_pipe;
13050
13051 return 0;
13052 }
13053
13054 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13055 {
13056 struct drm_crtc *crtc;
13057 struct drm_crtc_state *crtc_state;
13058 int ret = 0;
13059
13060 /* add all active pipes to the state */
13061 for_each_crtc(state->dev, crtc) {
13062 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13063 if (IS_ERR(crtc_state))
13064 return PTR_ERR(crtc_state);
13065
13066 if (!crtc_state->active || needs_modeset(crtc_state))
13067 continue;
13068
13069 crtc_state->mode_changed = true;
13070
13071 ret = drm_atomic_add_affected_connectors(state, crtc);
13072 if (ret)
13073 break;
13074
13075 ret = drm_atomic_add_affected_planes(state, crtc);
13076 if (ret)
13077 break;
13078 }
13079
13080 return ret;
13081 }
13082
13083 static int intel_modeset_checks(struct drm_atomic_state *state)
13084 {
13085 struct drm_device *dev = state->dev;
13086 struct drm_i915_private *dev_priv = dev->dev_private;
13087 int ret;
13088
13089 if (!check_digital_port_conflicts(state)) {
13090 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13091 return -EINVAL;
13092 }
13093
13094 /*
13095 * See if the config requires any additional preparation, e.g.
13096 * to adjust global state with pipes off. We need to do this
13097 * here so we can get the modeset_pipe updated config for the new
13098 * mode set on this crtc. For other crtcs we need to use the
13099 * adjusted_mode bits in the crtc directly.
13100 */
13101 if (dev_priv->display.modeset_calc_cdclk) {
13102 unsigned int cdclk;
13103
13104 ret = dev_priv->display.modeset_calc_cdclk(state);
13105
13106 cdclk = to_intel_atomic_state(state)->cdclk;
13107 if (!ret && cdclk != dev_priv->cdclk_freq)
13108 ret = intel_modeset_all_pipes(state);
13109
13110 if (ret < 0)
13111 return ret;
13112 } else
13113 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13114
13115 intel_modeset_clear_plls(state);
13116
13117 if (IS_HASWELL(dev))
13118 return haswell_mode_set_planes_workaround(state);
13119
13120 return 0;
13121 }
13122
13123 /*
13124 * Handle calculation of various watermark data at the end of the atomic check
13125 * phase. The code here should be run after the per-crtc and per-plane 'check'
13126 * handlers to ensure that all derived state has been updated.
13127 */
13128 static void calc_watermark_data(struct drm_atomic_state *state)
13129 {
13130 struct drm_device *dev = state->dev;
13131 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13132 struct drm_crtc *crtc;
13133 struct drm_crtc_state *cstate;
13134 struct drm_plane *plane;
13135 struct drm_plane_state *pstate;
13136
13137 /*
13138 * Calculate watermark configuration details now that derived
13139 * plane/crtc state is all properly updated.
13140 */
13141 drm_for_each_crtc(crtc, dev) {
13142 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13143 crtc->state;
13144
13145 if (cstate->active)
13146 intel_state->wm_config.num_pipes_active++;
13147 }
13148 drm_for_each_legacy_plane(plane, dev) {
13149 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13150 plane->state;
13151
13152 if (!to_intel_plane_state(pstate)->visible)
13153 continue;
13154
13155 intel_state->wm_config.sprites_enabled = true;
13156 if (pstate->crtc_w != pstate->src_w >> 16 ||
13157 pstate->crtc_h != pstate->src_h >> 16)
13158 intel_state->wm_config.sprites_scaled = true;
13159 }
13160 }
13161
13162 /**
13163 * intel_atomic_check - validate state object
13164 * @dev: drm device
13165 * @state: state to validate
13166 */
13167 static int intel_atomic_check(struct drm_device *dev,
13168 struct drm_atomic_state *state)
13169 {
13170 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13171 struct drm_crtc *crtc;
13172 struct drm_crtc_state *crtc_state;
13173 int ret, i;
13174 bool any_ms = false;
13175
13176 ret = drm_atomic_helper_check_modeset(dev, state);
13177 if (ret)
13178 return ret;
13179
13180 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13181 struct intel_crtc_state *pipe_config =
13182 to_intel_crtc_state(crtc_state);
13183
13184 /* Catch I915_MODE_FLAG_INHERITED */
13185 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13186 crtc_state->mode_changed = true;
13187
13188 if (!crtc_state->enable) {
13189 if (needs_modeset(crtc_state))
13190 any_ms = true;
13191 continue;
13192 }
13193
13194 if (!needs_modeset(crtc_state))
13195 continue;
13196
13197 /* FIXME: For only active_changed we shouldn't need to do any
13198 * state recomputation at all. */
13199
13200 ret = drm_atomic_add_affected_connectors(state, crtc);
13201 if (ret)
13202 return ret;
13203
13204 ret = intel_modeset_pipe_config(crtc, pipe_config);
13205 if (ret)
13206 return ret;
13207
13208 if (intel_pipe_config_compare(state->dev,
13209 to_intel_crtc_state(crtc->state),
13210 pipe_config, true)) {
13211 crtc_state->mode_changed = false;
13212 to_intel_crtc_state(crtc_state)->update_pipe = true;
13213 }
13214
13215 if (needs_modeset(crtc_state)) {
13216 any_ms = true;
13217
13218 ret = drm_atomic_add_affected_planes(state, crtc);
13219 if (ret)
13220 return ret;
13221 }
13222
13223 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13224 needs_modeset(crtc_state) ?
13225 "[modeset]" : "[fastset]");
13226 }
13227
13228 if (any_ms) {
13229 ret = intel_modeset_checks(state);
13230
13231 if (ret)
13232 return ret;
13233 } else
13234 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
13235
13236 ret = drm_atomic_helper_check_planes(state->dev, state);
13237 if (ret)
13238 return ret;
13239
13240 calc_watermark_data(state);
13241
13242 return 0;
13243 }
13244
13245 static int intel_atomic_prepare_commit(struct drm_device *dev,
13246 struct drm_atomic_state *state,
13247 bool async)
13248 {
13249 struct drm_i915_private *dev_priv = dev->dev_private;
13250 struct drm_plane_state *plane_state;
13251 struct drm_crtc_state *crtc_state;
13252 struct drm_plane *plane;
13253 struct drm_crtc *crtc;
13254 int i, ret;
13255
13256 if (async) {
13257 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13258 return -EINVAL;
13259 }
13260
13261 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13262 ret = intel_crtc_wait_for_pending_flips(crtc);
13263 if (ret)
13264 return ret;
13265
13266 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13267 flush_workqueue(dev_priv->wq);
13268 }
13269
13270 ret = mutex_lock_interruptible(&dev->struct_mutex);
13271 if (ret)
13272 return ret;
13273
13274 ret = drm_atomic_helper_prepare_planes(dev, state);
13275 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13276 u32 reset_counter;
13277
13278 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13279 mutex_unlock(&dev->struct_mutex);
13280
13281 for_each_plane_in_state(state, plane, plane_state, i) {
13282 struct intel_plane_state *intel_plane_state =
13283 to_intel_plane_state(plane_state);
13284
13285 if (!intel_plane_state->wait_req)
13286 continue;
13287
13288 ret = __i915_wait_request(intel_plane_state->wait_req,
13289 reset_counter, true,
13290 NULL, NULL);
13291
13292 /* Swallow -EIO errors to allow updates during hw lockup. */
13293 if (ret == -EIO)
13294 ret = 0;
13295
13296 if (ret)
13297 break;
13298 }
13299
13300 if (!ret)
13301 return 0;
13302
13303 mutex_lock(&dev->struct_mutex);
13304 drm_atomic_helper_cleanup_planes(dev, state);
13305 }
13306
13307 mutex_unlock(&dev->struct_mutex);
13308 return ret;
13309 }
13310
13311 /**
13312 * intel_atomic_commit - commit validated state object
13313 * @dev: DRM device
13314 * @state: the top-level driver state object
13315 * @async: asynchronous commit
13316 *
13317 * This function commits a top-level state object that has been validated
13318 * with drm_atomic_helper_check().
13319 *
13320 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13321 * we can only handle plane-related operations and do not yet support
13322 * asynchronous commit.
13323 *
13324 * RETURNS
13325 * Zero for success or -errno.
13326 */
13327 static int intel_atomic_commit(struct drm_device *dev,
13328 struct drm_atomic_state *state,
13329 bool async)
13330 {
13331 struct drm_i915_private *dev_priv = dev->dev_private;
13332 struct drm_crtc_state *crtc_state;
13333 struct drm_crtc *crtc;
13334 int ret = 0;
13335 int i;
13336 bool any_ms = false;
13337
13338 ret = intel_atomic_prepare_commit(dev, state, async);
13339 if (ret) {
13340 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13341 return ret;
13342 }
13343
13344 drm_atomic_helper_swap_state(dev, state);
13345 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13346
13347 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13349
13350 if (!needs_modeset(crtc->state))
13351 continue;
13352
13353 any_ms = true;
13354 intel_pre_plane_update(intel_crtc);
13355
13356 if (crtc_state->active) {
13357 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13358 dev_priv->display.crtc_disable(crtc);
13359 intel_crtc->active = false;
13360 intel_disable_shared_dpll(intel_crtc);
13361 }
13362 }
13363
13364 /* Only after disabling all output pipelines that will be changed can we
13365 * update the the output configuration. */
13366 intel_modeset_update_crtc_state(state);
13367
13368 if (any_ms) {
13369 intel_shared_dpll_commit(state);
13370
13371 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13372 modeset_update_crtc_power_domains(state);
13373 }
13374
13375 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13376 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13378 bool modeset = needs_modeset(crtc->state);
13379 bool update_pipe = !modeset &&
13380 to_intel_crtc_state(crtc->state)->update_pipe;
13381 unsigned long put_domains = 0;
13382
13383 if (modeset)
13384 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13385
13386 if (modeset && crtc->state->active) {
13387 update_scanline_offset(to_intel_crtc(crtc));
13388 dev_priv->display.crtc_enable(crtc);
13389 }
13390
13391 if (update_pipe) {
13392 put_domains = modeset_get_crtc_power_domains(crtc);
13393
13394 /* make sure intel_modeset_check_state runs */
13395 any_ms = true;
13396 }
13397
13398 if (!modeset)
13399 intel_pre_plane_update(intel_crtc);
13400
13401 if (crtc->state->active &&
13402 (crtc->state->planes_changed || update_pipe))
13403 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13404
13405 if (put_domains)
13406 modeset_put_power_domains(dev_priv, put_domains);
13407
13408 intel_post_plane_update(intel_crtc);
13409
13410 if (modeset)
13411 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13412 }
13413
13414 /* FIXME: add subpixel order */
13415
13416 drm_atomic_helper_wait_for_vblanks(dev, state);
13417
13418 mutex_lock(&dev->struct_mutex);
13419 drm_atomic_helper_cleanup_planes(dev, state);
13420 mutex_unlock(&dev->struct_mutex);
13421
13422 if (any_ms)
13423 intel_modeset_check_state(dev, state);
13424
13425 drm_atomic_state_free(state);
13426
13427 return 0;
13428 }
13429
13430 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13431 {
13432 struct drm_device *dev = crtc->dev;
13433 struct drm_atomic_state *state;
13434 struct drm_crtc_state *crtc_state;
13435 int ret;
13436
13437 state = drm_atomic_state_alloc(dev);
13438 if (!state) {
13439 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13440 crtc->base.id);
13441 return;
13442 }
13443
13444 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13445
13446 retry:
13447 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13448 ret = PTR_ERR_OR_ZERO(crtc_state);
13449 if (!ret) {
13450 if (!crtc_state->active)
13451 goto out;
13452
13453 crtc_state->mode_changed = true;
13454 ret = drm_atomic_commit(state);
13455 }
13456
13457 if (ret == -EDEADLK) {
13458 drm_atomic_state_clear(state);
13459 drm_modeset_backoff(state->acquire_ctx);
13460 goto retry;
13461 }
13462
13463 if (ret)
13464 out:
13465 drm_atomic_state_free(state);
13466 }
13467
13468 #undef for_each_intel_crtc_masked
13469
13470 static const struct drm_crtc_funcs intel_crtc_funcs = {
13471 .gamma_set = intel_crtc_gamma_set,
13472 .set_config = drm_atomic_helper_set_config,
13473 .destroy = intel_crtc_destroy,
13474 .page_flip = intel_crtc_page_flip,
13475 .atomic_duplicate_state = intel_crtc_duplicate_state,
13476 .atomic_destroy_state = intel_crtc_destroy_state,
13477 };
13478
13479 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13480 struct intel_shared_dpll *pll,
13481 struct intel_dpll_hw_state *hw_state)
13482 {
13483 uint32_t val;
13484
13485 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13486 return false;
13487
13488 val = I915_READ(PCH_DPLL(pll->id));
13489 hw_state->dpll = val;
13490 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13491 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13492
13493 return val & DPLL_VCO_ENABLE;
13494 }
13495
13496 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13497 struct intel_shared_dpll *pll)
13498 {
13499 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13500 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13501 }
13502
13503 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13504 struct intel_shared_dpll *pll)
13505 {
13506 /* PCH refclock must be enabled first */
13507 ibx_assert_pch_refclk_enabled(dev_priv);
13508
13509 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13510
13511 /* Wait for the clocks to stabilize. */
13512 POSTING_READ(PCH_DPLL(pll->id));
13513 udelay(150);
13514
13515 /* The pixel multiplier can only be updated once the
13516 * DPLL is enabled and the clocks are stable.
13517 *
13518 * So write it again.
13519 */
13520 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13521 POSTING_READ(PCH_DPLL(pll->id));
13522 udelay(200);
13523 }
13524
13525 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13526 struct intel_shared_dpll *pll)
13527 {
13528 struct drm_device *dev = dev_priv->dev;
13529 struct intel_crtc *crtc;
13530
13531 /* Make sure no transcoder isn't still depending on us. */
13532 for_each_intel_crtc(dev, crtc) {
13533 if (intel_crtc_to_shared_dpll(crtc) == pll)
13534 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13535 }
13536
13537 I915_WRITE(PCH_DPLL(pll->id), 0);
13538 POSTING_READ(PCH_DPLL(pll->id));
13539 udelay(200);
13540 }
13541
13542 static char *ibx_pch_dpll_names[] = {
13543 "PCH DPLL A",
13544 "PCH DPLL B",
13545 };
13546
13547 static void ibx_pch_dpll_init(struct drm_device *dev)
13548 {
13549 struct drm_i915_private *dev_priv = dev->dev_private;
13550 int i;
13551
13552 dev_priv->num_shared_dpll = 2;
13553
13554 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13555 dev_priv->shared_dplls[i].id = i;
13556 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13557 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13558 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13559 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13560 dev_priv->shared_dplls[i].get_hw_state =
13561 ibx_pch_dpll_get_hw_state;
13562 }
13563 }
13564
13565 static void intel_shared_dpll_init(struct drm_device *dev)
13566 {
13567 struct drm_i915_private *dev_priv = dev->dev_private;
13568
13569 if (HAS_DDI(dev))
13570 intel_ddi_pll_init(dev);
13571 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13572 ibx_pch_dpll_init(dev);
13573 else
13574 dev_priv->num_shared_dpll = 0;
13575
13576 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13577 }
13578
13579 /**
13580 * intel_prepare_plane_fb - Prepare fb for usage on plane
13581 * @plane: drm plane to prepare for
13582 * @fb: framebuffer to prepare for presentation
13583 *
13584 * Prepares a framebuffer for usage on a display plane. Generally this
13585 * involves pinning the underlying object and updating the frontbuffer tracking
13586 * bits. Some older platforms need special physical address handling for
13587 * cursor planes.
13588 *
13589 * Must be called with struct_mutex held.
13590 *
13591 * Returns 0 on success, negative error code on failure.
13592 */
13593 int
13594 intel_prepare_plane_fb(struct drm_plane *plane,
13595 const struct drm_plane_state *new_state)
13596 {
13597 struct drm_device *dev = plane->dev;
13598 struct drm_framebuffer *fb = new_state->fb;
13599 struct intel_plane *intel_plane = to_intel_plane(plane);
13600 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13601 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13602 int ret = 0;
13603
13604 if (!obj && !old_obj)
13605 return 0;
13606
13607 if (old_obj) {
13608 struct drm_crtc_state *crtc_state =
13609 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13610
13611 /* Big Hammer, we also need to ensure that any pending
13612 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13613 * current scanout is retired before unpinning the old
13614 * framebuffer. Note that we rely on userspace rendering
13615 * into the buffer attached to the pipe they are waiting
13616 * on. If not, userspace generates a GPU hang with IPEHR
13617 * point to the MI_WAIT_FOR_EVENT.
13618 *
13619 * This should only fail upon a hung GPU, in which case we
13620 * can safely continue.
13621 */
13622 if (needs_modeset(crtc_state))
13623 ret = i915_gem_object_wait_rendering(old_obj, true);
13624
13625 /* Swallow -EIO errors to allow updates during hw lockup. */
13626 if (ret && ret != -EIO)
13627 return ret;
13628 }
13629
13630 if (!obj) {
13631 ret = 0;
13632 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13633 INTEL_INFO(dev)->cursor_needs_physical) {
13634 int align = IS_I830(dev) ? 16 * 1024 : 256;
13635 ret = i915_gem_object_attach_phys(obj, align);
13636 if (ret)
13637 DRM_DEBUG_KMS("failed to attach phys object\n");
13638 } else {
13639 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13640 }
13641
13642 if (ret == 0) {
13643 if (obj) {
13644 struct intel_plane_state *plane_state =
13645 to_intel_plane_state(new_state);
13646
13647 i915_gem_request_assign(&plane_state->wait_req,
13648 obj->last_write_req);
13649 }
13650
13651 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13652 }
13653
13654 return ret;
13655 }
13656
13657 /**
13658 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13659 * @plane: drm plane to clean up for
13660 * @fb: old framebuffer that was on plane
13661 *
13662 * Cleans up a framebuffer that has just been removed from a plane.
13663 *
13664 * Must be called with struct_mutex held.
13665 */
13666 void
13667 intel_cleanup_plane_fb(struct drm_plane *plane,
13668 const struct drm_plane_state *old_state)
13669 {
13670 struct drm_device *dev = plane->dev;
13671 struct intel_plane *intel_plane = to_intel_plane(plane);
13672 struct intel_plane_state *old_intel_state;
13673 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13674 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13675
13676 old_intel_state = to_intel_plane_state(old_state);
13677
13678 if (!obj && !old_obj)
13679 return;
13680
13681 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13682 !INTEL_INFO(dev)->cursor_needs_physical))
13683 intel_unpin_fb_obj(old_state->fb, old_state);
13684
13685 /* prepare_fb aborted? */
13686 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13687 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13688 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13689
13690 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13691
13692 }
13693
13694 int
13695 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13696 {
13697 int max_scale;
13698 struct drm_device *dev;
13699 struct drm_i915_private *dev_priv;
13700 int crtc_clock, cdclk;
13701
13702 if (!intel_crtc || !crtc_state)
13703 return DRM_PLANE_HELPER_NO_SCALING;
13704
13705 dev = intel_crtc->base.dev;
13706 dev_priv = dev->dev_private;
13707 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13708 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13709
13710 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13711 return DRM_PLANE_HELPER_NO_SCALING;
13712
13713 /*
13714 * skl max scale is lower of:
13715 * close to 3 but not 3, -1 is for that purpose
13716 * or
13717 * cdclk/crtc_clock
13718 */
13719 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13720
13721 return max_scale;
13722 }
13723
13724 static int
13725 intel_check_primary_plane(struct drm_plane *plane,
13726 struct intel_crtc_state *crtc_state,
13727 struct intel_plane_state *state)
13728 {
13729 struct drm_crtc *crtc = state->base.crtc;
13730 struct drm_framebuffer *fb = state->base.fb;
13731 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13732 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13733 bool can_position = false;
13734
13735 /* use scaler when colorkey is not required */
13736 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13737 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13738 min_scale = 1;
13739 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13740 can_position = true;
13741 }
13742
13743 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13744 &state->dst, &state->clip,
13745 min_scale, max_scale,
13746 can_position, true,
13747 &state->visible);
13748 }
13749
13750 static void
13751 intel_commit_primary_plane(struct drm_plane *plane,
13752 struct intel_plane_state *state)
13753 {
13754 struct drm_crtc *crtc = state->base.crtc;
13755 struct drm_framebuffer *fb = state->base.fb;
13756 struct drm_device *dev = plane->dev;
13757 struct drm_i915_private *dev_priv = dev->dev_private;
13758
13759 crtc = crtc ? crtc : plane->crtc;
13760
13761 dev_priv->display.update_primary_plane(crtc, fb,
13762 state->src.x1 >> 16,
13763 state->src.y1 >> 16);
13764 }
13765
13766 static void
13767 intel_disable_primary_plane(struct drm_plane *plane,
13768 struct drm_crtc *crtc)
13769 {
13770 struct drm_device *dev = plane->dev;
13771 struct drm_i915_private *dev_priv = dev->dev_private;
13772
13773 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13774 }
13775
13776 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13777 struct drm_crtc_state *old_crtc_state)
13778 {
13779 struct drm_device *dev = crtc->dev;
13780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13781 struct intel_crtc_state *old_intel_state =
13782 to_intel_crtc_state(old_crtc_state);
13783 bool modeset = needs_modeset(crtc->state);
13784
13785 if (intel_crtc->atomic.update_wm_pre)
13786 intel_update_watermarks(crtc);
13787
13788 /* Perform vblank evasion around commit operation */
13789 intel_pipe_update_start(intel_crtc);
13790
13791 if (modeset)
13792 return;
13793
13794 if (to_intel_crtc_state(crtc->state)->update_pipe)
13795 intel_update_pipe_config(intel_crtc, old_intel_state);
13796 else if (INTEL_INFO(dev)->gen >= 9)
13797 skl_detach_scalers(intel_crtc);
13798 }
13799
13800 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13801 struct drm_crtc_state *old_crtc_state)
13802 {
13803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13804
13805 intel_pipe_update_end(intel_crtc);
13806 }
13807
13808 /**
13809 * intel_plane_destroy - destroy a plane
13810 * @plane: plane to destroy
13811 *
13812 * Common destruction function for all types of planes (primary, cursor,
13813 * sprite).
13814 */
13815 void intel_plane_destroy(struct drm_plane *plane)
13816 {
13817 struct intel_plane *intel_plane = to_intel_plane(plane);
13818 drm_plane_cleanup(plane);
13819 kfree(intel_plane);
13820 }
13821
13822 const struct drm_plane_funcs intel_plane_funcs = {
13823 .update_plane = drm_atomic_helper_update_plane,
13824 .disable_plane = drm_atomic_helper_disable_plane,
13825 .destroy = intel_plane_destroy,
13826 .set_property = drm_atomic_helper_plane_set_property,
13827 .atomic_get_property = intel_plane_atomic_get_property,
13828 .atomic_set_property = intel_plane_atomic_set_property,
13829 .atomic_duplicate_state = intel_plane_duplicate_state,
13830 .atomic_destroy_state = intel_plane_destroy_state,
13831
13832 };
13833
13834 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13835 int pipe)
13836 {
13837 struct intel_plane *primary;
13838 struct intel_plane_state *state;
13839 const uint32_t *intel_primary_formats;
13840 unsigned int num_formats;
13841
13842 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13843 if (primary == NULL)
13844 return NULL;
13845
13846 state = intel_create_plane_state(&primary->base);
13847 if (!state) {
13848 kfree(primary);
13849 return NULL;
13850 }
13851 primary->base.state = &state->base;
13852
13853 primary->can_scale = false;
13854 primary->max_downscale = 1;
13855 if (INTEL_INFO(dev)->gen >= 9) {
13856 primary->can_scale = true;
13857 state->scaler_id = -1;
13858 }
13859 primary->pipe = pipe;
13860 primary->plane = pipe;
13861 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13862 primary->check_plane = intel_check_primary_plane;
13863 primary->commit_plane = intel_commit_primary_plane;
13864 primary->disable_plane = intel_disable_primary_plane;
13865 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13866 primary->plane = !pipe;
13867
13868 if (INTEL_INFO(dev)->gen >= 9) {
13869 intel_primary_formats = skl_primary_formats;
13870 num_formats = ARRAY_SIZE(skl_primary_formats);
13871 } else if (INTEL_INFO(dev)->gen >= 4) {
13872 intel_primary_formats = i965_primary_formats;
13873 num_formats = ARRAY_SIZE(i965_primary_formats);
13874 } else {
13875 intel_primary_formats = i8xx_primary_formats;
13876 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13877 }
13878
13879 drm_universal_plane_init(dev, &primary->base, 0,
13880 &intel_plane_funcs,
13881 intel_primary_formats, num_formats,
13882 DRM_PLANE_TYPE_PRIMARY);
13883
13884 if (INTEL_INFO(dev)->gen >= 4)
13885 intel_create_rotation_property(dev, primary);
13886
13887 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13888
13889 return &primary->base;
13890 }
13891
13892 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13893 {
13894 if (!dev->mode_config.rotation_property) {
13895 unsigned long flags = BIT(DRM_ROTATE_0) |
13896 BIT(DRM_ROTATE_180);
13897
13898 if (INTEL_INFO(dev)->gen >= 9)
13899 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13900
13901 dev->mode_config.rotation_property =
13902 drm_mode_create_rotation_property(dev, flags);
13903 }
13904 if (dev->mode_config.rotation_property)
13905 drm_object_attach_property(&plane->base.base,
13906 dev->mode_config.rotation_property,
13907 plane->base.state->rotation);
13908 }
13909
13910 static int
13911 intel_check_cursor_plane(struct drm_plane *plane,
13912 struct intel_crtc_state *crtc_state,
13913 struct intel_plane_state *state)
13914 {
13915 struct drm_crtc *crtc = crtc_state->base.crtc;
13916 struct drm_framebuffer *fb = state->base.fb;
13917 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13918 unsigned stride;
13919 int ret;
13920
13921 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13922 &state->dst, &state->clip,
13923 DRM_PLANE_HELPER_NO_SCALING,
13924 DRM_PLANE_HELPER_NO_SCALING,
13925 true, true, &state->visible);
13926 if (ret)
13927 return ret;
13928
13929 /* if we want to turn off the cursor ignore width and height */
13930 if (!obj)
13931 return 0;
13932
13933 /* Check for which cursor types we support */
13934 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13935 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13936 state->base.crtc_w, state->base.crtc_h);
13937 return -EINVAL;
13938 }
13939
13940 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13941 if (obj->base.size < stride * state->base.crtc_h) {
13942 DRM_DEBUG_KMS("buffer is too small\n");
13943 return -ENOMEM;
13944 }
13945
13946 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13947 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13948 return -EINVAL;
13949 }
13950
13951 return 0;
13952 }
13953
13954 static void
13955 intel_disable_cursor_plane(struct drm_plane *plane,
13956 struct drm_crtc *crtc)
13957 {
13958 intel_crtc_update_cursor(crtc, false);
13959 }
13960
13961 static void
13962 intel_commit_cursor_plane(struct drm_plane *plane,
13963 struct intel_plane_state *state)
13964 {
13965 struct drm_crtc *crtc = state->base.crtc;
13966 struct drm_device *dev = plane->dev;
13967 struct intel_crtc *intel_crtc;
13968 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13969 uint32_t addr;
13970
13971 crtc = crtc ? crtc : plane->crtc;
13972 intel_crtc = to_intel_crtc(crtc);
13973
13974 if (intel_crtc->cursor_bo == obj)
13975 goto update;
13976
13977 if (!obj)
13978 addr = 0;
13979 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13980 addr = i915_gem_obj_ggtt_offset(obj);
13981 else
13982 addr = obj->phys_handle->busaddr;
13983
13984 intel_crtc->cursor_addr = addr;
13985 intel_crtc->cursor_bo = obj;
13986
13987 update:
13988 intel_crtc_update_cursor(crtc, state->visible);
13989 }
13990
13991 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13992 int pipe)
13993 {
13994 struct intel_plane *cursor;
13995 struct intel_plane_state *state;
13996
13997 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13998 if (cursor == NULL)
13999 return NULL;
14000
14001 state = intel_create_plane_state(&cursor->base);
14002 if (!state) {
14003 kfree(cursor);
14004 return NULL;
14005 }
14006 cursor->base.state = &state->base;
14007
14008 cursor->can_scale = false;
14009 cursor->max_downscale = 1;
14010 cursor->pipe = pipe;
14011 cursor->plane = pipe;
14012 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14013 cursor->check_plane = intel_check_cursor_plane;
14014 cursor->commit_plane = intel_commit_cursor_plane;
14015 cursor->disable_plane = intel_disable_cursor_plane;
14016
14017 drm_universal_plane_init(dev, &cursor->base, 0,
14018 &intel_plane_funcs,
14019 intel_cursor_formats,
14020 ARRAY_SIZE(intel_cursor_formats),
14021 DRM_PLANE_TYPE_CURSOR);
14022
14023 if (INTEL_INFO(dev)->gen >= 4) {
14024 if (!dev->mode_config.rotation_property)
14025 dev->mode_config.rotation_property =
14026 drm_mode_create_rotation_property(dev,
14027 BIT(DRM_ROTATE_0) |
14028 BIT(DRM_ROTATE_180));
14029 if (dev->mode_config.rotation_property)
14030 drm_object_attach_property(&cursor->base.base,
14031 dev->mode_config.rotation_property,
14032 state->base.rotation);
14033 }
14034
14035 if (INTEL_INFO(dev)->gen >=9)
14036 state->scaler_id = -1;
14037
14038 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14039
14040 return &cursor->base;
14041 }
14042
14043 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14044 struct intel_crtc_state *crtc_state)
14045 {
14046 int i;
14047 struct intel_scaler *intel_scaler;
14048 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14049
14050 for (i = 0; i < intel_crtc->num_scalers; i++) {
14051 intel_scaler = &scaler_state->scalers[i];
14052 intel_scaler->in_use = 0;
14053 intel_scaler->mode = PS_SCALER_MODE_DYN;
14054 }
14055
14056 scaler_state->scaler_id = -1;
14057 }
14058
14059 static void intel_crtc_init(struct drm_device *dev, int pipe)
14060 {
14061 struct drm_i915_private *dev_priv = dev->dev_private;
14062 struct intel_crtc *intel_crtc;
14063 struct intel_crtc_state *crtc_state = NULL;
14064 struct drm_plane *primary = NULL;
14065 struct drm_plane *cursor = NULL;
14066 int i, ret;
14067
14068 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14069 if (intel_crtc == NULL)
14070 return;
14071
14072 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14073 if (!crtc_state)
14074 goto fail;
14075 intel_crtc->config = crtc_state;
14076 intel_crtc->base.state = &crtc_state->base;
14077 crtc_state->base.crtc = &intel_crtc->base;
14078
14079 /* initialize shared scalers */
14080 if (INTEL_INFO(dev)->gen >= 9) {
14081 if (pipe == PIPE_C)
14082 intel_crtc->num_scalers = 1;
14083 else
14084 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14085
14086 skl_init_scalers(dev, intel_crtc, crtc_state);
14087 }
14088
14089 primary = intel_primary_plane_create(dev, pipe);
14090 if (!primary)
14091 goto fail;
14092
14093 cursor = intel_cursor_plane_create(dev, pipe);
14094 if (!cursor)
14095 goto fail;
14096
14097 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14098 cursor, &intel_crtc_funcs);
14099 if (ret)
14100 goto fail;
14101
14102 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14103 for (i = 0; i < 256; i++) {
14104 intel_crtc->lut_r[i] = i;
14105 intel_crtc->lut_g[i] = i;
14106 intel_crtc->lut_b[i] = i;
14107 }
14108
14109 /*
14110 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14111 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14112 */
14113 intel_crtc->pipe = pipe;
14114 intel_crtc->plane = pipe;
14115 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14116 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14117 intel_crtc->plane = !pipe;
14118 }
14119
14120 intel_crtc->cursor_base = ~0;
14121 intel_crtc->cursor_cntl = ~0;
14122 intel_crtc->cursor_size = ~0;
14123
14124 intel_crtc->wm.cxsr_allowed = true;
14125
14126 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14127 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14128 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14129 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14130
14131 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14132
14133 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14134 return;
14135
14136 fail:
14137 if (primary)
14138 drm_plane_cleanup(primary);
14139 if (cursor)
14140 drm_plane_cleanup(cursor);
14141 kfree(crtc_state);
14142 kfree(intel_crtc);
14143 }
14144
14145 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14146 {
14147 struct drm_encoder *encoder = connector->base.encoder;
14148 struct drm_device *dev = connector->base.dev;
14149
14150 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14151
14152 if (!encoder || WARN_ON(!encoder->crtc))
14153 return INVALID_PIPE;
14154
14155 return to_intel_crtc(encoder->crtc)->pipe;
14156 }
14157
14158 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14159 struct drm_file *file)
14160 {
14161 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14162 struct drm_crtc *drmmode_crtc;
14163 struct intel_crtc *crtc;
14164
14165 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14166
14167 if (!drmmode_crtc) {
14168 DRM_ERROR("no such CRTC id\n");
14169 return -ENOENT;
14170 }
14171
14172 crtc = to_intel_crtc(drmmode_crtc);
14173 pipe_from_crtc_id->pipe = crtc->pipe;
14174
14175 return 0;
14176 }
14177
14178 static int intel_encoder_clones(struct intel_encoder *encoder)
14179 {
14180 struct drm_device *dev = encoder->base.dev;
14181 struct intel_encoder *source_encoder;
14182 int index_mask = 0;
14183 int entry = 0;
14184
14185 for_each_intel_encoder(dev, source_encoder) {
14186 if (encoders_cloneable(encoder, source_encoder))
14187 index_mask |= (1 << entry);
14188
14189 entry++;
14190 }
14191
14192 return index_mask;
14193 }
14194
14195 static bool has_edp_a(struct drm_device *dev)
14196 {
14197 struct drm_i915_private *dev_priv = dev->dev_private;
14198
14199 if (!IS_MOBILE(dev))
14200 return false;
14201
14202 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14203 return false;
14204
14205 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14206 return false;
14207
14208 return true;
14209 }
14210
14211 static bool intel_crt_present(struct drm_device *dev)
14212 {
14213 struct drm_i915_private *dev_priv = dev->dev_private;
14214
14215 if (INTEL_INFO(dev)->gen >= 9)
14216 return false;
14217
14218 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14219 return false;
14220
14221 if (IS_CHERRYVIEW(dev))
14222 return false;
14223
14224 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14225 return false;
14226
14227 return true;
14228 }
14229
14230 static void intel_setup_outputs(struct drm_device *dev)
14231 {
14232 struct drm_i915_private *dev_priv = dev->dev_private;
14233 struct intel_encoder *encoder;
14234 bool dpd_is_edp = false;
14235
14236 intel_lvds_init(dev);
14237
14238 if (intel_crt_present(dev))
14239 intel_crt_init(dev);
14240
14241 if (IS_BROXTON(dev)) {
14242 /*
14243 * FIXME: Broxton doesn't support port detection via the
14244 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14245 * detect the ports.
14246 */
14247 intel_ddi_init(dev, PORT_A);
14248 intel_ddi_init(dev, PORT_B);
14249 intel_ddi_init(dev, PORT_C);
14250 } else if (HAS_DDI(dev)) {
14251 int found;
14252
14253 /*
14254 * Haswell uses DDI functions to detect digital outputs.
14255 * On SKL pre-D0 the strap isn't connected, so we assume
14256 * it's there.
14257 */
14258 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14259 /* WaIgnoreDDIAStrap: skl */
14260 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14261 intel_ddi_init(dev, PORT_A);
14262
14263 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14264 * register */
14265 found = I915_READ(SFUSE_STRAP);
14266
14267 if (found & SFUSE_STRAP_DDIB_DETECTED)
14268 intel_ddi_init(dev, PORT_B);
14269 if (found & SFUSE_STRAP_DDIC_DETECTED)
14270 intel_ddi_init(dev, PORT_C);
14271 if (found & SFUSE_STRAP_DDID_DETECTED)
14272 intel_ddi_init(dev, PORT_D);
14273 /*
14274 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14275 */
14276 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14277 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14278 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14279 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14280 intel_ddi_init(dev, PORT_E);
14281
14282 } else if (HAS_PCH_SPLIT(dev)) {
14283 int found;
14284 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14285
14286 if (has_edp_a(dev))
14287 intel_dp_init(dev, DP_A, PORT_A);
14288
14289 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14290 /* PCH SDVOB multiplex with HDMIB */
14291 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14292 if (!found)
14293 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14294 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14295 intel_dp_init(dev, PCH_DP_B, PORT_B);
14296 }
14297
14298 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14299 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14300
14301 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14302 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14303
14304 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14305 intel_dp_init(dev, PCH_DP_C, PORT_C);
14306
14307 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14308 intel_dp_init(dev, PCH_DP_D, PORT_D);
14309 } else if (IS_VALLEYVIEW(dev)) {
14310 /*
14311 * The DP_DETECTED bit is the latched state of the DDC
14312 * SDA pin at boot. However since eDP doesn't require DDC
14313 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14314 * eDP ports may have been muxed to an alternate function.
14315 * Thus we can't rely on the DP_DETECTED bit alone to detect
14316 * eDP ports. Consult the VBT as well as DP_DETECTED to
14317 * detect eDP ports.
14318 */
14319 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14320 !intel_dp_is_edp(dev, PORT_B))
14321 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14322 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14323 intel_dp_is_edp(dev, PORT_B))
14324 intel_dp_init(dev, VLV_DP_B, PORT_B);
14325
14326 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14327 !intel_dp_is_edp(dev, PORT_C))
14328 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14329 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14330 intel_dp_is_edp(dev, PORT_C))
14331 intel_dp_init(dev, VLV_DP_C, PORT_C);
14332
14333 if (IS_CHERRYVIEW(dev)) {
14334 /* eDP not supported on port D, so don't check VBT */
14335 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14336 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14337 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14338 intel_dp_init(dev, CHV_DP_D, PORT_D);
14339 }
14340
14341 intel_dsi_init(dev);
14342 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14343 bool found = false;
14344
14345 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14346 DRM_DEBUG_KMS("probing SDVOB\n");
14347 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14348 if (!found && IS_G4X(dev)) {
14349 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14350 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14351 }
14352
14353 if (!found && IS_G4X(dev))
14354 intel_dp_init(dev, DP_B, PORT_B);
14355 }
14356
14357 /* Before G4X SDVOC doesn't have its own detect register */
14358
14359 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14360 DRM_DEBUG_KMS("probing SDVOC\n");
14361 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14362 }
14363
14364 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14365
14366 if (IS_G4X(dev)) {
14367 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14368 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14369 }
14370 if (IS_G4X(dev))
14371 intel_dp_init(dev, DP_C, PORT_C);
14372 }
14373
14374 if (IS_G4X(dev) &&
14375 (I915_READ(DP_D) & DP_DETECTED))
14376 intel_dp_init(dev, DP_D, PORT_D);
14377 } else if (IS_GEN2(dev))
14378 intel_dvo_init(dev);
14379
14380 if (SUPPORTS_TV(dev))
14381 intel_tv_init(dev);
14382
14383 intel_psr_init(dev);
14384
14385 for_each_intel_encoder(dev, encoder) {
14386 encoder->base.possible_crtcs = encoder->crtc_mask;
14387 encoder->base.possible_clones =
14388 intel_encoder_clones(encoder);
14389 }
14390
14391 intel_init_pch_refclk(dev);
14392
14393 drm_helper_move_panel_connectors_to_head(dev);
14394 }
14395
14396 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14397 {
14398 struct drm_device *dev = fb->dev;
14399 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14400
14401 drm_framebuffer_cleanup(fb);
14402 mutex_lock(&dev->struct_mutex);
14403 WARN_ON(!intel_fb->obj->framebuffer_references--);
14404 drm_gem_object_unreference(&intel_fb->obj->base);
14405 mutex_unlock(&dev->struct_mutex);
14406 kfree(intel_fb);
14407 }
14408
14409 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14410 struct drm_file *file,
14411 unsigned int *handle)
14412 {
14413 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14414 struct drm_i915_gem_object *obj = intel_fb->obj;
14415
14416 return drm_gem_handle_create(file, &obj->base, handle);
14417 }
14418
14419 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14420 struct drm_file *file,
14421 unsigned flags, unsigned color,
14422 struct drm_clip_rect *clips,
14423 unsigned num_clips)
14424 {
14425 struct drm_device *dev = fb->dev;
14426 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14427 struct drm_i915_gem_object *obj = intel_fb->obj;
14428
14429 mutex_lock(&dev->struct_mutex);
14430 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14431 mutex_unlock(&dev->struct_mutex);
14432
14433 return 0;
14434 }
14435
14436 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14437 .destroy = intel_user_framebuffer_destroy,
14438 .create_handle = intel_user_framebuffer_create_handle,
14439 .dirty = intel_user_framebuffer_dirty,
14440 };
14441
14442 static
14443 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14444 uint32_t pixel_format)
14445 {
14446 u32 gen = INTEL_INFO(dev)->gen;
14447
14448 if (gen >= 9) {
14449 /* "The stride in bytes must not exceed the of the size of 8K
14450 * pixels and 32K bytes."
14451 */
14452 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14453 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14454 return 32*1024;
14455 } else if (gen >= 4) {
14456 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14457 return 16*1024;
14458 else
14459 return 32*1024;
14460 } else if (gen >= 3) {
14461 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14462 return 8*1024;
14463 else
14464 return 16*1024;
14465 } else {
14466 /* XXX DSPC is limited to 4k tiled */
14467 return 8*1024;
14468 }
14469 }
14470
14471 static int intel_framebuffer_init(struct drm_device *dev,
14472 struct intel_framebuffer *intel_fb,
14473 struct drm_mode_fb_cmd2 *mode_cmd,
14474 struct drm_i915_gem_object *obj)
14475 {
14476 unsigned int aligned_height;
14477 int ret;
14478 u32 pitch_limit, stride_alignment;
14479
14480 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14481
14482 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14483 /* Enforce that fb modifier and tiling mode match, but only for
14484 * X-tiled. This is needed for FBC. */
14485 if (!!(obj->tiling_mode == I915_TILING_X) !=
14486 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14487 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14488 return -EINVAL;
14489 }
14490 } else {
14491 if (obj->tiling_mode == I915_TILING_X)
14492 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14493 else if (obj->tiling_mode == I915_TILING_Y) {
14494 DRM_DEBUG("No Y tiling for legacy addfb\n");
14495 return -EINVAL;
14496 }
14497 }
14498
14499 /* Passed in modifier sanity checking. */
14500 switch (mode_cmd->modifier[0]) {
14501 case I915_FORMAT_MOD_Y_TILED:
14502 case I915_FORMAT_MOD_Yf_TILED:
14503 if (INTEL_INFO(dev)->gen < 9) {
14504 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14505 mode_cmd->modifier[0]);
14506 return -EINVAL;
14507 }
14508 case DRM_FORMAT_MOD_NONE:
14509 case I915_FORMAT_MOD_X_TILED:
14510 break;
14511 default:
14512 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14513 mode_cmd->modifier[0]);
14514 return -EINVAL;
14515 }
14516
14517 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14518 mode_cmd->pixel_format);
14519 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14520 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14521 mode_cmd->pitches[0], stride_alignment);
14522 return -EINVAL;
14523 }
14524
14525 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14526 mode_cmd->pixel_format);
14527 if (mode_cmd->pitches[0] > pitch_limit) {
14528 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14529 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14530 "tiled" : "linear",
14531 mode_cmd->pitches[0], pitch_limit);
14532 return -EINVAL;
14533 }
14534
14535 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14536 mode_cmd->pitches[0] != obj->stride) {
14537 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14538 mode_cmd->pitches[0], obj->stride);
14539 return -EINVAL;
14540 }
14541
14542 /* Reject formats not supported by any plane early. */
14543 switch (mode_cmd->pixel_format) {
14544 case DRM_FORMAT_C8:
14545 case DRM_FORMAT_RGB565:
14546 case DRM_FORMAT_XRGB8888:
14547 case DRM_FORMAT_ARGB8888:
14548 break;
14549 case DRM_FORMAT_XRGB1555:
14550 if (INTEL_INFO(dev)->gen > 3) {
14551 DRM_DEBUG("unsupported pixel format: %s\n",
14552 drm_get_format_name(mode_cmd->pixel_format));
14553 return -EINVAL;
14554 }
14555 break;
14556 case DRM_FORMAT_ABGR8888:
14557 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14558 DRM_DEBUG("unsupported pixel format: %s\n",
14559 drm_get_format_name(mode_cmd->pixel_format));
14560 return -EINVAL;
14561 }
14562 break;
14563 case DRM_FORMAT_XBGR8888:
14564 case DRM_FORMAT_XRGB2101010:
14565 case DRM_FORMAT_XBGR2101010:
14566 if (INTEL_INFO(dev)->gen < 4) {
14567 DRM_DEBUG("unsupported pixel format: %s\n",
14568 drm_get_format_name(mode_cmd->pixel_format));
14569 return -EINVAL;
14570 }
14571 break;
14572 case DRM_FORMAT_ABGR2101010:
14573 if (!IS_VALLEYVIEW(dev)) {
14574 DRM_DEBUG("unsupported pixel format: %s\n",
14575 drm_get_format_name(mode_cmd->pixel_format));
14576 return -EINVAL;
14577 }
14578 break;
14579 case DRM_FORMAT_YUYV:
14580 case DRM_FORMAT_UYVY:
14581 case DRM_FORMAT_YVYU:
14582 case DRM_FORMAT_VYUY:
14583 if (INTEL_INFO(dev)->gen < 5) {
14584 DRM_DEBUG("unsupported pixel format: %s\n",
14585 drm_get_format_name(mode_cmd->pixel_format));
14586 return -EINVAL;
14587 }
14588 break;
14589 default:
14590 DRM_DEBUG("unsupported pixel format: %s\n",
14591 drm_get_format_name(mode_cmd->pixel_format));
14592 return -EINVAL;
14593 }
14594
14595 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14596 if (mode_cmd->offsets[0] != 0)
14597 return -EINVAL;
14598
14599 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14600 mode_cmd->pixel_format,
14601 mode_cmd->modifier[0]);
14602 /* FIXME drm helper for size checks (especially planar formats)? */
14603 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14604 return -EINVAL;
14605
14606 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14607 intel_fb->obj = obj;
14608 intel_fb->obj->framebuffer_references++;
14609
14610 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14611 if (ret) {
14612 DRM_ERROR("framebuffer init failed %d\n", ret);
14613 return ret;
14614 }
14615
14616 return 0;
14617 }
14618
14619 static struct drm_framebuffer *
14620 intel_user_framebuffer_create(struct drm_device *dev,
14621 struct drm_file *filp,
14622 struct drm_mode_fb_cmd2 *mode_cmd)
14623 {
14624 struct drm_framebuffer *fb;
14625 struct drm_i915_gem_object *obj;
14626
14627 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14628 mode_cmd->handles[0]));
14629 if (&obj->base == NULL)
14630 return ERR_PTR(-ENOENT);
14631
14632 fb = intel_framebuffer_create(dev, mode_cmd, obj);
14633 if (IS_ERR(fb))
14634 drm_gem_object_unreference_unlocked(&obj->base);
14635
14636 return fb;
14637 }
14638
14639 #ifndef CONFIG_DRM_FBDEV_EMULATION
14640 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14641 {
14642 }
14643 #endif
14644
14645 static const struct drm_mode_config_funcs intel_mode_funcs = {
14646 .fb_create = intel_user_framebuffer_create,
14647 .output_poll_changed = intel_fbdev_output_poll_changed,
14648 .atomic_check = intel_atomic_check,
14649 .atomic_commit = intel_atomic_commit,
14650 .atomic_state_alloc = intel_atomic_state_alloc,
14651 .atomic_state_clear = intel_atomic_state_clear,
14652 };
14653
14654 /* Set up chip specific display functions */
14655 static void intel_init_display(struct drm_device *dev)
14656 {
14657 struct drm_i915_private *dev_priv = dev->dev_private;
14658
14659 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14660 dev_priv->display.find_dpll = g4x_find_best_dpll;
14661 else if (IS_CHERRYVIEW(dev))
14662 dev_priv->display.find_dpll = chv_find_best_dpll;
14663 else if (IS_VALLEYVIEW(dev))
14664 dev_priv->display.find_dpll = vlv_find_best_dpll;
14665 else if (IS_PINEVIEW(dev))
14666 dev_priv->display.find_dpll = pnv_find_best_dpll;
14667 else
14668 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14669
14670 if (INTEL_INFO(dev)->gen >= 9) {
14671 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14672 dev_priv->display.get_initial_plane_config =
14673 skylake_get_initial_plane_config;
14674 dev_priv->display.crtc_compute_clock =
14675 haswell_crtc_compute_clock;
14676 dev_priv->display.crtc_enable = haswell_crtc_enable;
14677 dev_priv->display.crtc_disable = haswell_crtc_disable;
14678 dev_priv->display.update_primary_plane =
14679 skylake_update_primary_plane;
14680 } else if (HAS_DDI(dev)) {
14681 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14682 dev_priv->display.get_initial_plane_config =
14683 ironlake_get_initial_plane_config;
14684 dev_priv->display.crtc_compute_clock =
14685 haswell_crtc_compute_clock;
14686 dev_priv->display.crtc_enable = haswell_crtc_enable;
14687 dev_priv->display.crtc_disable = haswell_crtc_disable;
14688 dev_priv->display.update_primary_plane =
14689 ironlake_update_primary_plane;
14690 } else if (HAS_PCH_SPLIT(dev)) {
14691 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14692 dev_priv->display.get_initial_plane_config =
14693 ironlake_get_initial_plane_config;
14694 dev_priv->display.crtc_compute_clock =
14695 ironlake_crtc_compute_clock;
14696 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14697 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14698 dev_priv->display.update_primary_plane =
14699 ironlake_update_primary_plane;
14700 } else if (IS_VALLEYVIEW(dev)) {
14701 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14702 dev_priv->display.get_initial_plane_config =
14703 i9xx_get_initial_plane_config;
14704 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14705 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14706 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14707 dev_priv->display.update_primary_plane =
14708 i9xx_update_primary_plane;
14709 } else {
14710 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14711 dev_priv->display.get_initial_plane_config =
14712 i9xx_get_initial_plane_config;
14713 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14714 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14715 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14716 dev_priv->display.update_primary_plane =
14717 i9xx_update_primary_plane;
14718 }
14719
14720 /* Returns the core display clock speed */
14721 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14722 dev_priv->display.get_display_clock_speed =
14723 skylake_get_display_clock_speed;
14724 else if (IS_BROXTON(dev))
14725 dev_priv->display.get_display_clock_speed =
14726 broxton_get_display_clock_speed;
14727 else if (IS_BROADWELL(dev))
14728 dev_priv->display.get_display_clock_speed =
14729 broadwell_get_display_clock_speed;
14730 else if (IS_HASWELL(dev))
14731 dev_priv->display.get_display_clock_speed =
14732 haswell_get_display_clock_speed;
14733 else if (IS_VALLEYVIEW(dev))
14734 dev_priv->display.get_display_clock_speed =
14735 valleyview_get_display_clock_speed;
14736 else if (IS_GEN5(dev))
14737 dev_priv->display.get_display_clock_speed =
14738 ilk_get_display_clock_speed;
14739 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14740 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14741 dev_priv->display.get_display_clock_speed =
14742 i945_get_display_clock_speed;
14743 else if (IS_GM45(dev))
14744 dev_priv->display.get_display_clock_speed =
14745 gm45_get_display_clock_speed;
14746 else if (IS_CRESTLINE(dev))
14747 dev_priv->display.get_display_clock_speed =
14748 i965gm_get_display_clock_speed;
14749 else if (IS_PINEVIEW(dev))
14750 dev_priv->display.get_display_clock_speed =
14751 pnv_get_display_clock_speed;
14752 else if (IS_G33(dev) || IS_G4X(dev))
14753 dev_priv->display.get_display_clock_speed =
14754 g33_get_display_clock_speed;
14755 else if (IS_I915G(dev))
14756 dev_priv->display.get_display_clock_speed =
14757 i915_get_display_clock_speed;
14758 else if (IS_I945GM(dev) || IS_845G(dev))
14759 dev_priv->display.get_display_clock_speed =
14760 i9xx_misc_get_display_clock_speed;
14761 else if (IS_PINEVIEW(dev))
14762 dev_priv->display.get_display_clock_speed =
14763 pnv_get_display_clock_speed;
14764 else if (IS_I915GM(dev))
14765 dev_priv->display.get_display_clock_speed =
14766 i915gm_get_display_clock_speed;
14767 else if (IS_I865G(dev))
14768 dev_priv->display.get_display_clock_speed =
14769 i865_get_display_clock_speed;
14770 else if (IS_I85X(dev))
14771 dev_priv->display.get_display_clock_speed =
14772 i85x_get_display_clock_speed;
14773 else { /* 830 */
14774 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14775 dev_priv->display.get_display_clock_speed =
14776 i830_get_display_clock_speed;
14777 }
14778
14779 if (IS_GEN5(dev)) {
14780 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14781 } else if (IS_GEN6(dev)) {
14782 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14783 } else if (IS_IVYBRIDGE(dev)) {
14784 /* FIXME: detect B0+ stepping and use auto training */
14785 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14786 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14787 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14788 if (IS_BROADWELL(dev)) {
14789 dev_priv->display.modeset_commit_cdclk =
14790 broadwell_modeset_commit_cdclk;
14791 dev_priv->display.modeset_calc_cdclk =
14792 broadwell_modeset_calc_cdclk;
14793 }
14794 } else if (IS_VALLEYVIEW(dev)) {
14795 dev_priv->display.modeset_commit_cdclk =
14796 valleyview_modeset_commit_cdclk;
14797 dev_priv->display.modeset_calc_cdclk =
14798 valleyview_modeset_calc_cdclk;
14799 } else if (IS_BROXTON(dev)) {
14800 dev_priv->display.modeset_commit_cdclk =
14801 broxton_modeset_commit_cdclk;
14802 dev_priv->display.modeset_calc_cdclk =
14803 broxton_modeset_calc_cdclk;
14804 }
14805
14806 switch (INTEL_INFO(dev)->gen) {
14807 case 2:
14808 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14809 break;
14810
14811 case 3:
14812 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14813 break;
14814
14815 case 4:
14816 case 5:
14817 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14818 break;
14819
14820 case 6:
14821 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14822 break;
14823 case 7:
14824 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14825 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14826 break;
14827 case 9:
14828 /* Drop through - unsupported since execlist only. */
14829 default:
14830 /* Default just returns -ENODEV to indicate unsupported */
14831 dev_priv->display.queue_flip = intel_default_queue_flip;
14832 }
14833
14834 mutex_init(&dev_priv->pps_mutex);
14835 }
14836
14837 /*
14838 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14839 * resume, or other times. This quirk makes sure that's the case for
14840 * affected systems.
14841 */
14842 static void quirk_pipea_force(struct drm_device *dev)
14843 {
14844 struct drm_i915_private *dev_priv = dev->dev_private;
14845
14846 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14847 DRM_INFO("applying pipe a force quirk\n");
14848 }
14849
14850 static void quirk_pipeb_force(struct drm_device *dev)
14851 {
14852 struct drm_i915_private *dev_priv = dev->dev_private;
14853
14854 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14855 DRM_INFO("applying pipe b force quirk\n");
14856 }
14857
14858 /*
14859 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14860 */
14861 static void quirk_ssc_force_disable(struct drm_device *dev)
14862 {
14863 struct drm_i915_private *dev_priv = dev->dev_private;
14864 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14865 DRM_INFO("applying lvds SSC disable quirk\n");
14866 }
14867
14868 /*
14869 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14870 * brightness value
14871 */
14872 static void quirk_invert_brightness(struct drm_device *dev)
14873 {
14874 struct drm_i915_private *dev_priv = dev->dev_private;
14875 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14876 DRM_INFO("applying inverted panel brightness quirk\n");
14877 }
14878
14879 /* Some VBT's incorrectly indicate no backlight is present */
14880 static void quirk_backlight_present(struct drm_device *dev)
14881 {
14882 struct drm_i915_private *dev_priv = dev->dev_private;
14883 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14884 DRM_INFO("applying backlight present quirk\n");
14885 }
14886
14887 struct intel_quirk {
14888 int device;
14889 int subsystem_vendor;
14890 int subsystem_device;
14891 void (*hook)(struct drm_device *dev);
14892 };
14893
14894 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14895 struct intel_dmi_quirk {
14896 void (*hook)(struct drm_device *dev);
14897 const struct dmi_system_id (*dmi_id_list)[];
14898 };
14899
14900 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14901 {
14902 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14903 return 1;
14904 }
14905
14906 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14907 {
14908 .dmi_id_list = &(const struct dmi_system_id[]) {
14909 {
14910 .callback = intel_dmi_reverse_brightness,
14911 .ident = "NCR Corporation",
14912 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14913 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14914 },
14915 },
14916 { } /* terminating entry */
14917 },
14918 .hook = quirk_invert_brightness,
14919 },
14920 };
14921
14922 static struct intel_quirk intel_quirks[] = {
14923 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14924 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14925
14926 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14927 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14928
14929 /* 830 needs to leave pipe A & dpll A up */
14930 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14931
14932 /* 830 needs to leave pipe B & dpll B up */
14933 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14934
14935 /* Lenovo U160 cannot use SSC on LVDS */
14936 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14937
14938 /* Sony Vaio Y cannot use SSC on LVDS */
14939 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14940
14941 /* Acer Aspire 5734Z must invert backlight brightness */
14942 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14943
14944 /* Acer/eMachines G725 */
14945 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14946
14947 /* Acer/eMachines e725 */
14948 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14949
14950 /* Acer/Packard Bell NCL20 */
14951 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14952
14953 /* Acer Aspire 4736Z */
14954 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14955
14956 /* Acer Aspire 5336 */
14957 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14958
14959 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14960 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14961
14962 /* Acer C720 Chromebook (Core i3 4005U) */
14963 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14964
14965 /* Apple Macbook 2,1 (Core 2 T7400) */
14966 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14967
14968 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14969 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14970
14971 /* HP Chromebook 14 (Celeron 2955U) */
14972 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14973
14974 /* Dell Chromebook 11 */
14975 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14976 };
14977
14978 static void intel_init_quirks(struct drm_device *dev)
14979 {
14980 struct pci_dev *d = dev->pdev;
14981 int i;
14982
14983 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14984 struct intel_quirk *q = &intel_quirks[i];
14985
14986 if (d->device == q->device &&
14987 (d->subsystem_vendor == q->subsystem_vendor ||
14988 q->subsystem_vendor == PCI_ANY_ID) &&
14989 (d->subsystem_device == q->subsystem_device ||
14990 q->subsystem_device == PCI_ANY_ID))
14991 q->hook(dev);
14992 }
14993 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14994 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14995 intel_dmi_quirks[i].hook(dev);
14996 }
14997 }
14998
14999 /* Disable the VGA plane that we never use */
15000 static void i915_disable_vga(struct drm_device *dev)
15001 {
15002 struct drm_i915_private *dev_priv = dev->dev_private;
15003 u8 sr1;
15004 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15005
15006 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15007 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15008 outb(SR01, VGA_SR_INDEX);
15009 sr1 = inb(VGA_SR_DATA);
15010 outb(sr1 | 1<<5, VGA_SR_DATA);
15011 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15012 udelay(300);
15013
15014 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15015 POSTING_READ(vga_reg);
15016 }
15017
15018 void intel_modeset_init_hw(struct drm_device *dev)
15019 {
15020 intel_update_cdclk(dev);
15021 intel_prepare_ddi(dev);
15022 intel_init_clock_gating(dev);
15023 intel_enable_gt_powersave(dev);
15024 }
15025
15026 void intel_modeset_init(struct drm_device *dev)
15027 {
15028 struct drm_i915_private *dev_priv = dev->dev_private;
15029 int sprite, ret;
15030 enum pipe pipe;
15031 struct intel_crtc *crtc;
15032
15033 drm_mode_config_init(dev);
15034
15035 dev->mode_config.min_width = 0;
15036 dev->mode_config.min_height = 0;
15037
15038 dev->mode_config.preferred_depth = 24;
15039 dev->mode_config.prefer_shadow = 1;
15040
15041 dev->mode_config.allow_fb_modifiers = true;
15042
15043 dev->mode_config.funcs = &intel_mode_funcs;
15044
15045 intel_init_quirks(dev);
15046
15047 intel_init_pm(dev);
15048
15049 if (INTEL_INFO(dev)->num_pipes == 0)
15050 return;
15051
15052 /*
15053 * There may be no VBT; and if the BIOS enabled SSC we can
15054 * just keep using it to avoid unnecessary flicker. Whereas if the
15055 * BIOS isn't using it, don't assume it will work even if the VBT
15056 * indicates as much.
15057 */
15058 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15059 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15060 DREF_SSC1_ENABLE);
15061
15062 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15063 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15064 bios_lvds_use_ssc ? "en" : "dis",
15065 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15066 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15067 }
15068 }
15069
15070 intel_init_display(dev);
15071 intel_init_audio(dev);
15072
15073 if (IS_GEN2(dev)) {
15074 dev->mode_config.max_width = 2048;
15075 dev->mode_config.max_height = 2048;
15076 } else if (IS_GEN3(dev)) {
15077 dev->mode_config.max_width = 4096;
15078 dev->mode_config.max_height = 4096;
15079 } else {
15080 dev->mode_config.max_width = 8192;
15081 dev->mode_config.max_height = 8192;
15082 }
15083
15084 if (IS_845G(dev) || IS_I865G(dev)) {
15085 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15086 dev->mode_config.cursor_height = 1023;
15087 } else if (IS_GEN2(dev)) {
15088 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15089 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15090 } else {
15091 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15092 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15093 }
15094
15095 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15096
15097 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15098 INTEL_INFO(dev)->num_pipes,
15099 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15100
15101 for_each_pipe(dev_priv, pipe) {
15102 intel_crtc_init(dev, pipe);
15103 for_each_sprite(dev_priv, pipe, sprite) {
15104 ret = intel_plane_init(dev, pipe, sprite);
15105 if (ret)
15106 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15107 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15108 }
15109 }
15110
15111 intel_update_czclk(dev_priv);
15112 intel_update_cdclk(dev);
15113
15114 intel_shared_dpll_init(dev);
15115
15116 /* Just disable it once at startup */
15117 i915_disable_vga(dev);
15118 intel_setup_outputs(dev);
15119
15120 drm_modeset_lock_all(dev);
15121 intel_modeset_setup_hw_state(dev);
15122 drm_modeset_unlock_all(dev);
15123
15124 for_each_intel_crtc(dev, crtc) {
15125 struct intel_initial_plane_config plane_config = {};
15126
15127 if (!crtc->active)
15128 continue;
15129
15130 /*
15131 * Note that reserving the BIOS fb up front prevents us
15132 * from stuffing other stolen allocations like the ring
15133 * on top. This prevents some ugliness at boot time, and
15134 * can even allow for smooth boot transitions if the BIOS
15135 * fb is large enough for the active pipe configuration.
15136 */
15137 dev_priv->display.get_initial_plane_config(crtc,
15138 &plane_config);
15139
15140 /*
15141 * If the fb is shared between multiple heads, we'll
15142 * just get the first one.
15143 */
15144 intel_find_initial_plane_obj(crtc, &plane_config);
15145 }
15146 }
15147
15148 static void intel_enable_pipe_a(struct drm_device *dev)
15149 {
15150 struct intel_connector *connector;
15151 struct drm_connector *crt = NULL;
15152 struct intel_load_detect_pipe load_detect_temp;
15153 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15154
15155 /* We can't just switch on the pipe A, we need to set things up with a
15156 * proper mode and output configuration. As a gross hack, enable pipe A
15157 * by enabling the load detect pipe once. */
15158 for_each_intel_connector(dev, connector) {
15159 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15160 crt = &connector->base;
15161 break;
15162 }
15163 }
15164
15165 if (!crt)
15166 return;
15167
15168 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15169 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15170 }
15171
15172 static bool
15173 intel_check_plane_mapping(struct intel_crtc *crtc)
15174 {
15175 struct drm_device *dev = crtc->base.dev;
15176 struct drm_i915_private *dev_priv = dev->dev_private;
15177 u32 val;
15178
15179 if (INTEL_INFO(dev)->num_pipes == 1)
15180 return true;
15181
15182 val = I915_READ(DSPCNTR(!crtc->plane));
15183
15184 if ((val & DISPLAY_PLANE_ENABLE) &&
15185 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15186 return false;
15187
15188 return true;
15189 }
15190
15191 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15192 {
15193 struct drm_device *dev = crtc->base.dev;
15194 struct intel_encoder *encoder;
15195
15196 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15197 return true;
15198
15199 return false;
15200 }
15201
15202 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15203 {
15204 struct drm_device *dev = crtc->base.dev;
15205 struct drm_i915_private *dev_priv = dev->dev_private;
15206 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15207
15208 /* Clear any frame start delays used for debugging left by the BIOS */
15209 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15210
15211 /* restore vblank interrupts to correct state */
15212 drm_crtc_vblank_reset(&crtc->base);
15213 if (crtc->active) {
15214 struct intel_plane *plane;
15215
15216 drm_crtc_vblank_on(&crtc->base);
15217
15218 /* Disable everything but the primary plane */
15219 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15220 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15221 continue;
15222
15223 plane->disable_plane(&plane->base, &crtc->base);
15224 }
15225 }
15226
15227 /* We need to sanitize the plane -> pipe mapping first because this will
15228 * disable the crtc (and hence change the state) if it is wrong. Note
15229 * that gen4+ has a fixed plane -> pipe mapping. */
15230 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15231 bool plane;
15232
15233 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15234 crtc->base.base.id);
15235
15236 /* Pipe has the wrong plane attached and the plane is active.
15237 * Temporarily change the plane mapping and disable everything
15238 * ... */
15239 plane = crtc->plane;
15240 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15241 crtc->plane = !plane;
15242 intel_crtc_disable_noatomic(&crtc->base);
15243 crtc->plane = plane;
15244 }
15245
15246 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15247 crtc->pipe == PIPE_A && !crtc->active) {
15248 /* BIOS forgot to enable pipe A, this mostly happens after
15249 * resume. Force-enable the pipe to fix this, the update_dpms
15250 * call below we restore the pipe to the right state, but leave
15251 * the required bits on. */
15252 intel_enable_pipe_a(dev);
15253 }
15254
15255 /* Adjust the state of the output pipe according to whether we
15256 * have active connectors/encoders. */
15257 if (!intel_crtc_has_encoders(crtc))
15258 intel_crtc_disable_noatomic(&crtc->base);
15259
15260 if (crtc->active != crtc->base.state->active) {
15261 struct intel_encoder *encoder;
15262
15263 /* This can happen either due to bugs in the get_hw_state
15264 * functions or because of calls to intel_crtc_disable_noatomic,
15265 * or because the pipe is force-enabled due to the
15266 * pipe A quirk. */
15267 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15268 crtc->base.base.id,
15269 crtc->base.state->enable ? "enabled" : "disabled",
15270 crtc->active ? "enabled" : "disabled");
15271
15272 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15273 crtc->base.state->active = crtc->active;
15274 crtc->base.enabled = crtc->active;
15275
15276 /* Because we only establish the connector -> encoder ->
15277 * crtc links if something is active, this means the
15278 * crtc is now deactivated. Break the links. connector
15279 * -> encoder links are only establish when things are
15280 * actually up, hence no need to break them. */
15281 WARN_ON(crtc->active);
15282
15283 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15284 encoder->base.crtc = NULL;
15285 }
15286
15287 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15288 /*
15289 * We start out with underrun reporting disabled to avoid races.
15290 * For correct bookkeeping mark this on active crtcs.
15291 *
15292 * Also on gmch platforms we dont have any hardware bits to
15293 * disable the underrun reporting. Which means we need to start
15294 * out with underrun reporting disabled also on inactive pipes,
15295 * since otherwise we'll complain about the garbage we read when
15296 * e.g. coming up after runtime pm.
15297 *
15298 * No protection against concurrent access is required - at
15299 * worst a fifo underrun happens which also sets this to false.
15300 */
15301 crtc->cpu_fifo_underrun_disabled = true;
15302 crtc->pch_fifo_underrun_disabled = true;
15303 }
15304 }
15305
15306 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15307 {
15308 struct intel_connector *connector;
15309 struct drm_device *dev = encoder->base.dev;
15310 bool active = false;
15311
15312 /* We need to check both for a crtc link (meaning that the
15313 * encoder is active and trying to read from a pipe) and the
15314 * pipe itself being active. */
15315 bool has_active_crtc = encoder->base.crtc &&
15316 to_intel_crtc(encoder->base.crtc)->active;
15317
15318 for_each_intel_connector(dev, connector) {
15319 if (connector->base.encoder != &encoder->base)
15320 continue;
15321
15322 active = true;
15323 break;
15324 }
15325
15326 if (active && !has_active_crtc) {
15327 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15328 encoder->base.base.id,
15329 encoder->base.name);
15330
15331 /* Connector is active, but has no active pipe. This is
15332 * fallout from our resume register restoring. Disable
15333 * the encoder manually again. */
15334 if (encoder->base.crtc) {
15335 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15336 encoder->base.base.id,
15337 encoder->base.name);
15338 encoder->disable(encoder);
15339 if (encoder->post_disable)
15340 encoder->post_disable(encoder);
15341 }
15342 encoder->base.crtc = NULL;
15343
15344 /* Inconsistent output/port/pipe state happens presumably due to
15345 * a bug in one of the get_hw_state functions. Or someplace else
15346 * in our code, like the register restore mess on resume. Clamp
15347 * things to off as a safer default. */
15348 for_each_intel_connector(dev, connector) {
15349 if (connector->encoder != encoder)
15350 continue;
15351 connector->base.dpms = DRM_MODE_DPMS_OFF;
15352 connector->base.encoder = NULL;
15353 }
15354 }
15355 /* Enabled encoders without active connectors will be fixed in
15356 * the crtc fixup. */
15357 }
15358
15359 void i915_redisable_vga_power_on(struct drm_device *dev)
15360 {
15361 struct drm_i915_private *dev_priv = dev->dev_private;
15362 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15363
15364 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15365 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15366 i915_disable_vga(dev);
15367 }
15368 }
15369
15370 void i915_redisable_vga(struct drm_device *dev)
15371 {
15372 struct drm_i915_private *dev_priv = dev->dev_private;
15373
15374 /* This function can be called both from intel_modeset_setup_hw_state or
15375 * at a very early point in our resume sequence, where the power well
15376 * structures are not yet restored. Since this function is at a very
15377 * paranoid "someone might have enabled VGA while we were not looking"
15378 * level, just check if the power well is enabled instead of trying to
15379 * follow the "don't touch the power well if we don't need it" policy
15380 * the rest of the driver uses. */
15381 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15382 return;
15383
15384 i915_redisable_vga_power_on(dev);
15385 }
15386
15387 static bool primary_get_hw_state(struct intel_plane *plane)
15388 {
15389 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15390
15391 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15392 }
15393
15394 /* FIXME read out full plane state for all planes */
15395 static void readout_plane_state(struct intel_crtc *crtc)
15396 {
15397 struct drm_plane *primary = crtc->base.primary;
15398 struct intel_plane_state *plane_state =
15399 to_intel_plane_state(primary->state);
15400
15401 plane_state->visible = crtc->active &&
15402 primary_get_hw_state(to_intel_plane(primary));
15403
15404 if (plane_state->visible)
15405 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15406 }
15407
15408 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15409 {
15410 struct drm_i915_private *dev_priv = dev->dev_private;
15411 enum pipe pipe;
15412 struct intel_crtc *crtc;
15413 struct intel_encoder *encoder;
15414 struct intel_connector *connector;
15415 int i;
15416
15417 for_each_intel_crtc(dev, crtc) {
15418 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15419 memset(crtc->config, 0, sizeof(*crtc->config));
15420 crtc->config->base.crtc = &crtc->base;
15421
15422 crtc->active = dev_priv->display.get_pipe_config(crtc,
15423 crtc->config);
15424
15425 crtc->base.state->active = crtc->active;
15426 crtc->base.enabled = crtc->active;
15427
15428 readout_plane_state(crtc);
15429
15430 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15431 crtc->base.base.id,
15432 crtc->active ? "enabled" : "disabled");
15433 }
15434
15435 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15436 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15437
15438 pll->on = pll->get_hw_state(dev_priv, pll,
15439 &pll->config.hw_state);
15440 pll->active = 0;
15441 pll->config.crtc_mask = 0;
15442 for_each_intel_crtc(dev, crtc) {
15443 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15444 pll->active++;
15445 pll->config.crtc_mask |= 1 << crtc->pipe;
15446 }
15447 }
15448
15449 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15450 pll->name, pll->config.crtc_mask, pll->on);
15451
15452 if (pll->config.crtc_mask)
15453 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15454 }
15455
15456 for_each_intel_encoder(dev, encoder) {
15457 pipe = 0;
15458
15459 if (encoder->get_hw_state(encoder, &pipe)) {
15460 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15461 encoder->base.crtc = &crtc->base;
15462 encoder->get_config(encoder, crtc->config);
15463 } else {
15464 encoder->base.crtc = NULL;
15465 }
15466
15467 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15468 encoder->base.base.id,
15469 encoder->base.name,
15470 encoder->base.crtc ? "enabled" : "disabled",
15471 pipe_name(pipe));
15472 }
15473
15474 for_each_intel_connector(dev, connector) {
15475 if (connector->get_hw_state(connector)) {
15476 connector->base.dpms = DRM_MODE_DPMS_ON;
15477 connector->base.encoder = &connector->encoder->base;
15478 } else {
15479 connector->base.dpms = DRM_MODE_DPMS_OFF;
15480 connector->base.encoder = NULL;
15481 }
15482 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15483 connector->base.base.id,
15484 connector->base.name,
15485 connector->base.encoder ? "enabled" : "disabled");
15486 }
15487
15488 for_each_intel_crtc(dev, crtc) {
15489 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15490
15491 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15492 if (crtc->base.state->active) {
15493 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15494 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15495 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15496
15497 /*
15498 * The initial mode needs to be set in order to keep
15499 * the atomic core happy. It wants a valid mode if the
15500 * crtc's enabled, so we do the above call.
15501 *
15502 * At this point some state updated by the connectors
15503 * in their ->detect() callback has not run yet, so
15504 * no recalculation can be done yet.
15505 *
15506 * Even if we could do a recalculation and modeset
15507 * right now it would cause a double modeset if
15508 * fbdev or userspace chooses a different initial mode.
15509 *
15510 * If that happens, someone indicated they wanted a
15511 * mode change, which means it's safe to do a full
15512 * recalculation.
15513 */
15514 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15515
15516 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15517 update_scanline_offset(crtc);
15518 }
15519 }
15520 }
15521
15522 /* Scan out the current hw modeset state,
15523 * and sanitizes it to the current state
15524 */
15525 static void
15526 intel_modeset_setup_hw_state(struct drm_device *dev)
15527 {
15528 struct drm_i915_private *dev_priv = dev->dev_private;
15529 enum pipe pipe;
15530 struct intel_crtc *crtc;
15531 struct intel_encoder *encoder;
15532 int i;
15533
15534 intel_modeset_readout_hw_state(dev);
15535
15536 /* HW state is read out, now we need to sanitize this mess. */
15537 for_each_intel_encoder(dev, encoder) {
15538 intel_sanitize_encoder(encoder);
15539 }
15540
15541 for_each_pipe(dev_priv, pipe) {
15542 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15543 intel_sanitize_crtc(crtc);
15544 intel_dump_pipe_config(crtc, crtc->config,
15545 "[setup_hw_state]");
15546 }
15547
15548 intel_modeset_update_connector_atomic_state(dev);
15549
15550 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15551 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15552
15553 if (!pll->on || pll->active)
15554 continue;
15555
15556 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15557
15558 pll->disable(dev_priv, pll);
15559 pll->on = false;
15560 }
15561
15562 if (IS_VALLEYVIEW(dev))
15563 vlv_wm_get_hw_state(dev);
15564 else if (IS_GEN9(dev))
15565 skl_wm_get_hw_state(dev);
15566 else if (HAS_PCH_SPLIT(dev))
15567 ilk_wm_get_hw_state(dev);
15568
15569 for_each_intel_crtc(dev, crtc) {
15570 unsigned long put_domains;
15571
15572 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15573 if (WARN_ON(put_domains))
15574 modeset_put_power_domains(dev_priv, put_domains);
15575 }
15576 intel_display_set_init_power(dev_priv, false);
15577 }
15578
15579 void intel_display_resume(struct drm_device *dev)
15580 {
15581 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15582 struct intel_connector *conn;
15583 struct intel_plane *plane;
15584 struct drm_crtc *crtc;
15585 int ret;
15586
15587 if (!state)
15588 return;
15589
15590 state->acquire_ctx = dev->mode_config.acquire_ctx;
15591
15592 /* preserve complete old state, including dpll */
15593 intel_atomic_get_shared_dpll_state(state);
15594
15595 for_each_crtc(dev, crtc) {
15596 struct drm_crtc_state *crtc_state =
15597 drm_atomic_get_crtc_state(state, crtc);
15598
15599 ret = PTR_ERR_OR_ZERO(crtc_state);
15600 if (ret)
15601 goto err;
15602
15603 /* force a restore */
15604 crtc_state->mode_changed = true;
15605 }
15606
15607 for_each_intel_plane(dev, plane) {
15608 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15609 if (ret)
15610 goto err;
15611 }
15612
15613 for_each_intel_connector(dev, conn) {
15614 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15615 if (ret)
15616 goto err;
15617 }
15618
15619 intel_modeset_setup_hw_state(dev);
15620
15621 i915_redisable_vga(dev);
15622 ret = drm_atomic_commit(state);
15623 if (!ret)
15624 return;
15625
15626 err:
15627 DRM_ERROR("Restoring old state failed with %i\n", ret);
15628 drm_atomic_state_free(state);
15629 }
15630
15631 void intel_modeset_gem_init(struct drm_device *dev)
15632 {
15633 struct drm_crtc *c;
15634 struct drm_i915_gem_object *obj;
15635 int ret;
15636
15637 mutex_lock(&dev->struct_mutex);
15638 intel_init_gt_powersave(dev);
15639 mutex_unlock(&dev->struct_mutex);
15640
15641 intel_modeset_init_hw(dev);
15642
15643 intel_setup_overlay(dev);
15644
15645 /*
15646 * Make sure any fbs we allocated at startup are properly
15647 * pinned & fenced. When we do the allocation it's too early
15648 * for this.
15649 */
15650 for_each_crtc(dev, c) {
15651 obj = intel_fb_obj(c->primary->fb);
15652 if (obj == NULL)
15653 continue;
15654
15655 mutex_lock(&dev->struct_mutex);
15656 ret = intel_pin_and_fence_fb_obj(c->primary,
15657 c->primary->fb,
15658 c->primary->state);
15659 mutex_unlock(&dev->struct_mutex);
15660 if (ret) {
15661 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15662 to_intel_crtc(c)->pipe);
15663 drm_framebuffer_unreference(c->primary->fb);
15664 c->primary->fb = NULL;
15665 c->primary->crtc = c->primary->state->crtc = NULL;
15666 update_state_fb(c->primary);
15667 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15668 }
15669 }
15670
15671 intel_backlight_register(dev);
15672 }
15673
15674 void intel_connector_unregister(struct intel_connector *intel_connector)
15675 {
15676 struct drm_connector *connector = &intel_connector->base;
15677
15678 intel_panel_destroy_backlight(connector);
15679 drm_connector_unregister(connector);
15680 }
15681
15682 void intel_modeset_cleanup(struct drm_device *dev)
15683 {
15684 struct drm_i915_private *dev_priv = dev->dev_private;
15685 struct drm_connector *connector;
15686
15687 intel_disable_gt_powersave(dev);
15688
15689 intel_backlight_unregister(dev);
15690
15691 /*
15692 * Interrupts and polling as the first thing to avoid creating havoc.
15693 * Too much stuff here (turning of connectors, ...) would
15694 * experience fancy races otherwise.
15695 */
15696 intel_irq_uninstall(dev_priv);
15697
15698 /*
15699 * Due to the hpd irq storm handling the hotplug work can re-arm the
15700 * poll handlers. Hence disable polling after hpd handling is shut down.
15701 */
15702 drm_kms_helper_poll_fini(dev);
15703
15704 intel_unregister_dsm_handler();
15705
15706 intel_fbc_disable(dev_priv);
15707
15708 /* flush any delayed tasks or pending work */
15709 flush_scheduled_work();
15710
15711 /* destroy the backlight and sysfs files before encoders/connectors */
15712 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15713 struct intel_connector *intel_connector;
15714
15715 intel_connector = to_intel_connector(connector);
15716 intel_connector->unregister(intel_connector);
15717 }
15718
15719 drm_mode_config_cleanup(dev);
15720
15721 intel_cleanup_overlay(dev);
15722
15723 mutex_lock(&dev->struct_mutex);
15724 intel_cleanup_gt_powersave(dev);
15725 mutex_unlock(&dev->struct_mutex);
15726 }
15727
15728 /*
15729 * Return which encoder is currently attached for connector.
15730 */
15731 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15732 {
15733 return &intel_attached_encoder(connector)->base;
15734 }
15735
15736 void intel_connector_attach_encoder(struct intel_connector *connector,
15737 struct intel_encoder *encoder)
15738 {
15739 connector->encoder = encoder;
15740 drm_mode_connector_attach_encoder(&connector->base,
15741 &encoder->base);
15742 }
15743
15744 /*
15745 * set vga decode state - true == enable VGA decode
15746 */
15747 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15748 {
15749 struct drm_i915_private *dev_priv = dev->dev_private;
15750 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15751 u16 gmch_ctrl;
15752
15753 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15754 DRM_ERROR("failed to read control word\n");
15755 return -EIO;
15756 }
15757
15758 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15759 return 0;
15760
15761 if (state)
15762 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15763 else
15764 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15765
15766 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15767 DRM_ERROR("failed to write control word\n");
15768 return -EIO;
15769 }
15770
15771 return 0;
15772 }
15773
15774 struct intel_display_error_state {
15775
15776 u32 power_well_driver;
15777
15778 int num_transcoders;
15779
15780 struct intel_cursor_error_state {
15781 u32 control;
15782 u32 position;
15783 u32 base;
15784 u32 size;
15785 } cursor[I915_MAX_PIPES];
15786
15787 struct intel_pipe_error_state {
15788 bool power_domain_on;
15789 u32 source;
15790 u32 stat;
15791 } pipe[I915_MAX_PIPES];
15792
15793 struct intel_plane_error_state {
15794 u32 control;
15795 u32 stride;
15796 u32 size;
15797 u32 pos;
15798 u32 addr;
15799 u32 surface;
15800 u32 tile_offset;
15801 } plane[I915_MAX_PIPES];
15802
15803 struct intel_transcoder_error_state {
15804 bool power_domain_on;
15805 enum transcoder cpu_transcoder;
15806
15807 u32 conf;
15808
15809 u32 htotal;
15810 u32 hblank;
15811 u32 hsync;
15812 u32 vtotal;
15813 u32 vblank;
15814 u32 vsync;
15815 } transcoder[4];
15816 };
15817
15818 struct intel_display_error_state *
15819 intel_display_capture_error_state(struct drm_device *dev)
15820 {
15821 struct drm_i915_private *dev_priv = dev->dev_private;
15822 struct intel_display_error_state *error;
15823 int transcoders[] = {
15824 TRANSCODER_A,
15825 TRANSCODER_B,
15826 TRANSCODER_C,
15827 TRANSCODER_EDP,
15828 };
15829 int i;
15830
15831 if (INTEL_INFO(dev)->num_pipes == 0)
15832 return NULL;
15833
15834 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15835 if (error == NULL)
15836 return NULL;
15837
15838 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15839 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15840
15841 for_each_pipe(dev_priv, i) {
15842 error->pipe[i].power_domain_on =
15843 __intel_display_power_is_enabled(dev_priv,
15844 POWER_DOMAIN_PIPE(i));
15845 if (!error->pipe[i].power_domain_on)
15846 continue;
15847
15848 error->cursor[i].control = I915_READ(CURCNTR(i));
15849 error->cursor[i].position = I915_READ(CURPOS(i));
15850 error->cursor[i].base = I915_READ(CURBASE(i));
15851
15852 error->plane[i].control = I915_READ(DSPCNTR(i));
15853 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15854 if (INTEL_INFO(dev)->gen <= 3) {
15855 error->plane[i].size = I915_READ(DSPSIZE(i));
15856 error->plane[i].pos = I915_READ(DSPPOS(i));
15857 }
15858 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15859 error->plane[i].addr = I915_READ(DSPADDR(i));
15860 if (INTEL_INFO(dev)->gen >= 4) {
15861 error->plane[i].surface = I915_READ(DSPSURF(i));
15862 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15863 }
15864
15865 error->pipe[i].source = I915_READ(PIPESRC(i));
15866
15867 if (HAS_GMCH_DISPLAY(dev))
15868 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15869 }
15870
15871 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15872 if (HAS_DDI(dev_priv->dev))
15873 error->num_transcoders++; /* Account for eDP. */
15874
15875 for (i = 0; i < error->num_transcoders; i++) {
15876 enum transcoder cpu_transcoder = transcoders[i];
15877
15878 error->transcoder[i].power_domain_on =
15879 __intel_display_power_is_enabled(dev_priv,
15880 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15881 if (!error->transcoder[i].power_domain_on)
15882 continue;
15883
15884 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15885
15886 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15887 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15888 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15889 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15890 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15891 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15892 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15893 }
15894
15895 return error;
15896 }
15897
15898 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15899
15900 void
15901 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15902 struct drm_device *dev,
15903 struct intel_display_error_state *error)
15904 {
15905 struct drm_i915_private *dev_priv = dev->dev_private;
15906 int i;
15907
15908 if (!error)
15909 return;
15910
15911 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15912 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15913 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15914 error->power_well_driver);
15915 for_each_pipe(dev_priv, i) {
15916 err_printf(m, "Pipe [%d]:\n", i);
15917 err_printf(m, " Power: %s\n",
15918 error->pipe[i].power_domain_on ? "on" : "off");
15919 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15920 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15921
15922 err_printf(m, "Plane [%d]:\n", i);
15923 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15924 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15925 if (INTEL_INFO(dev)->gen <= 3) {
15926 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15927 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15928 }
15929 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15930 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15931 if (INTEL_INFO(dev)->gen >= 4) {
15932 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15933 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15934 }
15935
15936 err_printf(m, "Cursor [%d]:\n", i);
15937 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15938 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15939 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15940 }
15941
15942 for (i = 0; i < error->num_transcoders; i++) {
15943 err_printf(m, "CPU transcoder: %c\n",
15944 transcoder_name(error->transcoder[i].cpu_transcoder));
15945 err_printf(m, " Power: %s\n",
15946 error->transcoder[i].power_domain_on ? "on" : "off");
15947 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15948 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15949 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15950 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15951 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15952 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15953 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15954 }
15955 }
15956
15957 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15958 {
15959 struct intel_crtc *crtc;
15960
15961 for_each_intel_crtc(dev, crtc) {
15962 struct intel_unpin_work *work;
15963
15964 spin_lock_irq(&dev->event_lock);
15965
15966 work = crtc->unpin_work;
15967
15968 if (work && work->event &&
15969 work->event->base.file_priv == file) {
15970 kfree(work->event);
15971 work->event = NULL;
15972 }
15973
15974 spin_unlock_irq(&dev->event_lock);
15975 }
15976 }